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Abstract

This thesis looks at fitting the radial density of atoms in molecules using a least

squares minimization. As proof of concept the radial electron densities of individual

atoms of the first three periods were fitted using a linear combination of six Gaussian

functions. The core electrons of the individual atom fits were used as an initial guess

for the core electrons of the atoms in molecule fit while the now non-spherically sym-

metric valence shells of the atoms in molecules were fitted using non-nuclear centred

Gaussian functions. The radial densities of atoms in molecules for each molecular or-

bital were also fitted. The fits were computed using Mathematica. The thesis shows

that it is possible to use the radial electron density of the atoms in molecule fits to

produce/reproduce molecular electron densities.
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Chapter 1

Introduction

1.1 Background

A very basic concept of chemistry is that molecules are made up of atoms and

the molecular properties are derived from the properties of the individual atoms. The

properties of an atom in a molecule will be different than the atomic properties of

individual free atoms. This is the theory of atoms in molecules (AIM).

A property of atoms and molecules is electron density. Electron density can

be obtained experimentally from X-ray crystal diffraction or computationally using

Wavefunction Theory or Density Functional Theory (DFT). In DFT the density is

found by minimizing a density functional with respect to energy, whereas in wavefunc-

tion theory, such as Hartree-Fock, a wavefunction is found by solving the Schrödinger

equation:
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ĤΨ(r) = EΨ(r) (1.1.1)

where Ĥ is the Hamiltonian, Ψ(r) is the wavefunction and E is the total energy of

the system. Once you solve for the wavefunction, in Hartree-Fock theory, the electron

density ρ(r) can be expressed as:

ρ(r) = 2

N/2∑
a

ψa(r)ψ
∗
a(r) (1.1.2)

where the sum is over the molecular orbitals ψa(r).

From the theory of AIM, the electron density of a molecule can be partitioned

into atomic contributions (Equation 1.1.3). This thesis explores how to fit these

atomic electron density contributions. The fits will then be stored for many atoms in

molecules so that they may be used to build molecular electron densities (Equation

1.1.4).

ρHF (r)→
∑
A

ρA(r) (1.1.3)

ρfit(r)←
∑
A

ρfitA (r) (1.1.4)

In Equation 1.1.3 ρHF (r) is the electron density of the molecule found using

Hartree-Fock Theory, while ρA is the atomic contribution of the Ath atom. The

fits used to build a molecule would require that they be of atoms from a similar

chemical environment (what other atoms does the atom in a molecule interact with,
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what atoms are it bonded too). For example, if you wish to construct a ketone

(for instance propanone), the carbon atom that bonds to the oxygen should be at

minimum a carbon atom double bonded to an oxygen atom and two other like atoms,

ideally, in this case, two carbons.

1.2 Radial Electron Density

The radial electron density of an atom is defined as:

ρradA (r) = r2AρA(r) (1.2.1)

where rA is the distance from some point to atom A, and ρA(r) is the density at

that point. When looking at a molecule, however, the radial density is not as simply

defined. Which center do you choose to calculate rA? A simple solution to this

problem comes from AIM theory. We know that the electron density of a molecule is

the sum of the individual atomic electron densities. The radial electron density of a

molecule is defined as:

ρrad(r) =
∑
A

r2AρA(r) (1.2.2)

which shows that if the molecular electron density can be partitioned into their atomic

contributions, the molecular radial electron density can be calculated.

Why use radial electron densities? From Figure 1.2.1a one can see that the elec-

tron density of an oxygen atom has a very large sharp peak at the nucleus. The

density quickly becomes zero as you move away from the nucleus. These two features
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make it a challenge to fit, as most least squares fitting programs will focus on fitting

the large peak. The small numbers (less than ten) of the valence shell region have

little consequence when compared to the large numbers of the core (core values range

from 100-10000, increasing as atomic number increases) to the numbers rapidly ap-

proaching zero as r increases. This is a problem since the most interesting regions of

atoms in molecules are the valence regions where most of the bonding occurs. From

Figure 1.2.1b we see the radial electron density of oxygen. The first thing to note

is that it is no longer a single large peak at the nucleus. Instead there is a sharp

peak close to the nucleus to represent the core electrons, and a more diffuse peak to

represent the valence electrons beyond the core peak. So not only does the radial

electron density have more of the character of the atom, but it should be easier to

fit the valence electrons now that the radial electron density is more than one sharp

peak at the nucleus. Another example showing the differences in electron and radial

electron density is seen by comparing Figure 1.2.1a and 1.2.2a. Both graphs are al-

most identical with their only difference being the maximum reached by the peaks.

Now consider Figure 1.2.1b and 1.2.2b. Oxygen only has one peak while chlorine has

two sharp core peaks close to the nucleus. The valence shell of oxygen is sharper and

closer to the nucleus than chlorine’s valence shell which is more diffuse.
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Figure 1.2.1: Electron density (a) and radial electron density (b) of an oxygen atom.
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Figure 1.2.2: Electron density (a) and radial electron density (b) of a chlorine atom.
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1.3 Partition Schemes

A partitioning scheme is used to determine what portion of a molecular electron

density belongs to an individual atom in that molecule. The atomic radial electron

density of an atom in molecule is defined as:

ρradA (r) = WA(r)ρrad(r) (1.3.1)

where WA(r) is the weight or amount of radial density at point r belonging to atom

A. In this case how one defines the weight is the partition scheme, though it should

be noted that a weight is not needed to partition a molecule into its atomic contribu-

tions. An example of this is Bader’s Quantum Theory of Atoms In Molecules. This

is discussed in more detail in Section 1.4. In the case of the Iterated Stockholder

Approach (ISA) [2] two equations that define the density of atom A and the weight

of atom A are solved simultaneously and iteratively:

ρA(r) = ρ(r)
wA(r)∑
B

wB(r)
(1.3.2)

wA(r) = 〈ρA(r)〉A (1.3.3)

In Equation 1.3.1 WA(r) is defined as:

WA(r) =
wA(r)∑
B

wB(r)
(1.3.4)

In Equations 1.3.2 and 1.3.3 the densities are spherically symmetric and the density
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functions are normalized to the number of electrons. In Equation 1.3.2 the weight (or

partitioning function) of atom A is found by dividing the weight function of A (wA(r))

by the sum of all the weight functions of all the atoms in that molecule (
∑
B

wB(r)).

In ISA the weight functions are found by spherically averaging the electron density

of atom A. This is Equation 1.3.3.

Another way to define the weight of atom A is to use the Becke weight formulation

[3]. In the Becke weight formulation the weight of atom A is defined as it is in

Equation 1.3.4 where wA(r) is the cell function of the Ath atom. The cell function

can be thought of as a polyhedron that is made of the perpendicular bisectors of the

vectors connecting atom A to every other atom. This leads to defining wA(r) as:

wA(r) =
∏
B 6=A

s(µAB) (1.3.5)

where µAB is one of the set of elliptical coordinates Becke uses to describe the bound-

ary of the polyhedron. The range of µAB is between and including negative one and

one. The coordinate µAB is defined as:

µAB =
riA − riB
RAB

(1.3.6)

where RAB is the distance between atom A and atom B, riA and riB are the distances

to some grid point i from atom A and atom B respectively.

In Equation 1.3.5, s(µAB) is a step function that Becke defines as:

s(µAB) =
1

2
(1− f(µAB)) (1.3.7)
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where f(µAB) is the polynomial:

f(µAB) =
3

2
µAB −

1

2
µ3
AB (1.3.8)

The polynomial in Equation 1.3.8 defines a step function that is not steep enough

for a boundary between atoms, so Becke defines the new function hi(µAB) as:

h1(µij) = f(µAB)

h2(µij) = f(f(µAB))

h3(µij) = f(f(f(µAB)))

...

(1.3.9)

Becke states that h3(µij) is a steep enough step function. Substituting the new step

function (h3) into Equation 1.3.7:

s(µAB) =
1

2
(1− h3(µij)) =

1

2
(1− f(f(f(µAB)))) (1.3.10)

The Becke weight formulation previously presented is for homonuclear species.

The general formulation for heteronuclear species replaces the µAB with νAB which is

defined as:

νAB = µAB + aAB(1− µ2
AB) (1.3.11)

where aAB is defined as:
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aAB =
uAB

u2AB − 1
(1.3.12)

where uAB is defined as:

uAB =
χAB + 1

χAB − 1
(1.3.13)

where χAB is the ratio of the atomic radii of atom A and B respectively and can be

written as:

χAB =
RA

RB

(1.3.14)

In his paper Becke [3] suggests using Bragg-Slater radii.

The Becke weight fails if the radii is greater than 2.4, in this case aAB would fall

outside its allowed range of ±1/2. This keeps s(µAB) monotonic when transformed to

s(νAB) . When using Bragg-Slater radii this happens mostly with atoms paired with

hydrogen, which has a Bragg-Slater radius of 0.25. Becke suggests, as a solution, to

increase the radius of hydrogen to 0.35, and in any cases where the ratio of the radii is

greater than 2.4 or less than 0.42 (its inverse) then the ratio be set to that maximum

or minimum.

1.4 Previous Work

There are a few schemes that partition molecules into their atomic contribution,

these contributions are then studied to help further understand molecules and their
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properties. As mentioned in section 1.3 one can define a weight to partition a molecule

and in those cases how the weight is defined is the partition scheme. There are also

partition schemes that do not depend on defining a weight. One of these schemes is

Bader’s quantum theory of atoms in molecules (QTAIM) [4]. In QTAIM the electron

density is partitioned by defining zero-flux surfaces. Zero-flux surfaces are found by

following gradient paths, and can be viewed using contour graphs of electron density.

The gradient of the electron density is:

∇ρ(x, y, z) =
∂ρ

∂x
ı̂+

∂ρ

∂y
̂+

∂ρ

∂z
k̂ (1.4.1)

where ı̂,̂ and k̂ are the unit vectors pointing in the x,y,z direction respectively. The

vector described by the gradient points to the largest increase in density, which when

followed, points to a maximum in electron density. Critical points are points in which

the gradient is zero (∇ρ(x, y, z) = 0). One type of critical point occurs when electron

density is a maximum. They are called nuclear attractors. Another important critical

point is the bond critical point. This is the point where the gradient of the electron

density goes to zero between two atoms, as seen in Figure 1.4.1, which shows the

bond critical point between the oxygen and carbon atoms in CH2O.
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Figure 1.4.1: This Figure was taken from Jessica Besaw’s Honours Thesis [1].The
bond critical point (green) seen between a carbon (black) and oxygen (pink) in CH2O
os located where the gradients paths meet (red arrows). The atomic interaction line
is denoted by black arrows.

The critical points help describe the properties of the atoms in molecules. The

gradient paths and the contour map help to identify these boundaries as in Figure

1.4.2. For example, imagine the boundary as a barrier along the line between oxygen
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and the rest of the molecule. All of the density on the oxygen side of the barrier

belongs to the oxygen atom, while none of the the density beyond the barrier belongs

to oxygen. The boundary itself is made up of interatomic surfaces that separate the

atoms. This of course means that atoms in QTAIM do not overlap.

Figure 1.4.2: This Figure was taken from Jessica Besaw’s Honours Thesis [1]. The
gradient paths of electron density superimposed upon its contour plot in the symmetry
plane of CH2O.

As was mentioned, there are a few types of critical points, the critical points are

identified by the rank of the hessian, which is:
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∇∇ρ(r) =


∂2ρ
∂x2

∂2ρ
∂x∂y

∂2ρ
∂x∂z

∂2ρ
∂y∂x

∂2ρ
∂y2

∂2ρ
∂y∂z

∂2ρ
∂z∂x

∂2ρ
∂z∂y

∂2ρ
∂z2

 (1.4.2)

The rank is the number of nonzero eigenvalues of the hessian. The critical points are

also identified by their signature which comes from the Laplacian:

∇2ρ(r) =
∂2ρ

∂x2
+
∂2ρ

∂y2
+
∂2ρ

∂z2
= λ1 + λ2 + λ3 (1.4.3)

where λi,i ∈ 1, 2, 3 are the eigenvalues of the hessian.

In QTAIM, molecules are partitioned into atomic contributions, The Atomic Or-

bitals of the Topological Atom [5], expands on QTAIM by creating molecular orbitals

from linear combinations of atomic orbitals. To do this imagine a system of n doubly

occupied orbitals, and a three dimensional space split up into NA atomic domains

denoted by DA, a n x n Hermitian matrix can be formed with the elements:

QA
ij =

∫
DA

ϕ∗i (r)ϕj(r)dv (1.4.4)

where ϕ∗i (r) and ϕj(r) are molecular orbitals, making the matrix QA an overlap

matrix. The molecular orbitals can be broken into intratomic parts such that:

ϕAi (r) =


ϕi(r) if r ∈ DA

0 if r /∈ DA

(1.4.5)
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The matrix QA can be diagonalized using the unitary matrix UA. The nonzero

diagonal elements of the transformed QA are used to define the basis set (“effective

atomic orbitals”):

χAµ (r) =
1√
λAµ

n∑
i=1

UA
iµϕ

A
i (r) (1.4.6)

where λAµ are the nonzero diagonals of the transformed matrix QA. The index µ goes

from one to nA, the number of nonzero diagonals. The basis set produces orbitals

with occupancy numbers that sum to give the correct number of electrons for the

atoms as seen by QTAIM. The basis set may also be used to produce the correct

bond orders.
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Chapter 2

Computational Method

All densities and radial densities were generated on brasdor server of ACEnet

using a copy of MUNgauss code [6]. Codes produced were written in Fortran90 and

implemented using MUNgauss. The densities were calculated at HF/6-31G(d). All

graphs and fits were generated using Mathematica 8.
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Chapter 3

Mathematical Development

3.1 Least Squares Fit

The proposed least squares fit problem is:

(ρHF (r)−
∑
A

ρA(r))2 (3.1.1)

where ρHF (r) is the molecular electron density obtained using HF theory, and ρA(r)

is the fitted density of atom A. The fitted density sums to give the molecular electron

density. As mentioned before, radial electron densities will be used which changes

Equation 3.1.1 to:

∫
(
∑
A

r2AWA(r)ρHF (r)−
∑
A

r2AρA(r))2dr (3.1.2)

In Equation 3.1.2 WA(r) is how the molecule is partitioned and in our case is from

33



the Becke weight formulation as discussed in Section 1.3. Now we want to impose

the constraint that the sum of the number of electrons of the atoms equals the total

number of electrons (N) which can be expressed as:

∑
A

∫ ∞
0

r2AρA(r)dr −N = 0 (3.1.3)

One method for solving a least squares problem is the Lagrange Undetermined

Multiplier Method. The first step is to set the Lagrange expression, which in this

case is:

L =

∫
(
∑
A

r2AWA(r)ρHF (r)−
∑
A

r2AρA(r))2dr + λ(

∫ ∞
0

∑
A

r2AρA(r)dr −N) (3.1.4)

Now expanding ρA(r) as:

ρA(r) =
∑
a

ηAa |ψAa (r)|2 (3.1.5)

where ψAa (r) is the molecular orbital a on atom A and ηAa is the occupancy of that

orbital. The Lagrange expression becomes:

L =

∫
(
∑
A

r2AWA(r)ρHF (r)−
∑
A

r2A
∑
a

ηAa |ψAa (r)|2)2dr

+λ(

∫ ∞
0

∑
A

r2A
∑
a

ηAa |ψAa (r)|2dr −N)

(3.1.6)

To solve using the Lagrange method, the partial derivative is calculated and set
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to zero:

δL = 2ηBb δψ
B∗
b (r)

∫
[r2A(WA(r)ρHF (r)−

∑
a

ηAa |ψAa (r)|2)ψBb (r)]dr

−ηBb λ′
∫
r2Bδψ

B∗
b (r)ψBb dr

+2ηBb δψ
B
b (r)

∫
[r2A(WA(r)ρHF (r)−

∑
a

ηAa |ψAa (r)|2)ψB∗b (r)dr]

−ηBb λ′
∫
r2Bδψ

B
b (r)ψB∗b dr = 0

(3.1.7)

Rearranging Equation 3.1.7 becomes:

2ηBb δψ
B∗
b (r)

∫
[r2A(WA(r)ρHF (r)−

∑
a

ηAa |ψAa (r)|2)− r2Bλ′]ψBb (r)dr + cc = 0 (3.1.8)

It should be noted that in Equation 3.1.8 the derivative is for some orbital b on

some atom B, and that λ′ is λ/2. Ignoring the complex conjugate the equation can

be rearranged to give the eigenvalue equation:

r2A(WA(r)ρHF (r)−
∑
a

ηAa |ψAa (r)|2)ψBb (r) = λ′r2Bψ
B
b (r) (3.1.9)

Next we define an operator f̂ as:

f̂ = r2A(WA(r)ρHF (r)−
∑
a

ηAa |ψAa (r)|2) (3.1.10)

Equation 3.1.9 can now be written as:
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f̂ψBb (r) = λ′r2Bψ
B
b (r) (3.1.11)

Introducing the basis set:

ψBb (r) =
∑
λ

CB
λbχ

B
λ (r) (3.1.12)

and then integrating and multiplying though by χB∗λ , Equation 3.1.11 becomes:

∑
λ

CB
λb

∫
χB∗σ (r)f̂χBλ (r)dr =

∑
λ

CB
λbλ
′
∫
χB∗σ (r)χBλ (r)dr (3.1.13)

Expanding f̂ we have:

∑
λ

CB
λb

∫
[χB∗σ (r)r4A(WA(r)ρHF (r)−

∑
a

ηAa ψ
A
a (r)ψA∗a (r))χBλ (r)]dr (3.1.14)

This equation can be broken into a part that contains the Hartree-Fock density and

individual atom densities. Expressing the Hartree-Fock density as molecular orbitals

and introducing the basis set, the first integral becomes:

r2AWA(r)

∫
χB∗σ (r)(

∑
α

∑
β

CC
αcC

D
βdχ

C
α (r)χD∗β (r))χBλ (r)dr (3.1.15)

The integral in Equation 3.1.15 is similar to an overlap integral with four centers

instead of the usual two, so it is written in a similar notation to the overlap integral.

We now have the Hartree-Fock contribution to the left hand side of Equation 3.1.13
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as:

FHF = r2AWAP
CD
αβ S

CDBB
αβλσ (3.1.16)

The second integral obtained after expanding f̂ of Equation 3.1.13, involves the

individual atom densities of the atoms in molecules, unlike the first integral of Equa-

tion 3.1.14 that involed the Hartree-Fock molecular density. The molecular orbitals

can be expressed in terms of the basis set as:

r2A

∫
χB∗σ (r)(

∑
a

ηAa
∑
µ

∑
ν

CA
µaC

A
νaχ

A
µ (r)χA∗ν (r))χBλ (r)dr (3.1.17)

Now Equation 3.1.17 also has an overlap like integral with four centers instead of two

and thus can be written as:

FFit = r2AP
AA
µν S

AABB
µνλσ (3.1.18)

From Equations 3.1.16 and 3.1.18 the integral part of Equation 3.1.14 can be written

as:

F = FHF − FFit (3.1.19)

The integral on the right side of Equation 3.1.13 is the overlap. Equation 3.1.13 in

matrix notation is:

FC = λ′CS (3.1.20)

37



which is similar to Roothaan’s equation with four center integrals.

3.2 Gaussian Product and Multi-Centered Inte-

grals

One of the useful properties of Gaussian functions is that the product of two

Gaussian functions is a Gaussian function. If we have a general Gaussian function

centered at A:

GA = NAx
l
Ay

m
A z

n
Ae−αr

2
A (3.2.1)

where NA is a constant, α is an exponent. xlA, ymA , znA are the angular components

that depend on the quantum numbers l,m,n. The sum of the quantum numbers l,m,n

determines the type of function. When the quantum numbers sum to zero it is an

s-type, when the sum is one it’s a p-type, and so on. In Equation 3.2.1 rA is:

rA = r − A (3.2.2)

where A represents the coordinates of center A. To simplify how the new center is

found we initially choose an s-type, making Equation 3.2.1:

GA = NAe−αr
2
A (3.2.3)

If we multiply this function by a similar Gaussian function centered at B then the

resulting function is another Gaussian function centered at P. Our new Gaussian
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function is:

GP = NANBe−αr
2
Ae−βr

2
B (3.2.4)

which can be rewritten as:

GP = NANBKe−γr
2
P (3.2.5)

where K and γ are found when multiplying out the exponent portion of Equation

3.2.4 and can be shown to be:

K = exp

[
−αβ
α + β

(A−B)2
]

(3.2.6)

γ = α + β (3.2.7)

rP from Equation 3.2.5 can be expressed the same way as rA in Equation 3.2.2 by

replacing the A with P, which is defined as:

P =
αA+ βB

α + β
(3.2.8)

Now to show how the angular part of the Gaussian functions behaves, consider a

Gaussian function with m and n quantum numbers set to zero. With any non-zero

number for l, equation 3.2.1 becomes:

GA = NAx
l
Ae−αr

2
A (3.2.9)
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where xA is:

xA = x− Ax = (x− Px) + (Px − Ax) = xA + PAx (3.2.10)

where Px and Ax are the x coordinates of centers P and A respectively. Now that xA

is known xlA can be shown to be:

xlA =
l∑

i=0

PAx
l−i
(
l

i

)
xiP (3.2.11)

where
(
l
i

)
is the binomial coefficient which can be expressed mathematically as:

(
l

i

)
=

l!

i!(l − i)!
(3.2.12)

In the case of the product of two Gaussian functions, we would obtain a GP similar

to the one in Equation 3.2.5 with the added product of xlA and xoB which is expressed

as:

xlAx
o
B =

l∑
i=0

o∑
j=0

PAx
l−i
PBx

o−j
(
l

i

)(
o

j

)
xi+jP (3.2.13)

Now lets introduce the integer k such that:

k = i+ j (3.2.14)

Now Equation 3.2.13 becomes:
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xlAx
o
B =

l+o∑
k=0

[
l∑

i=0

o∑
j=0

PAx
l−i
PBx

o−j
(
l

i

)(
o

j

)]
xkP (3.2.15)

The portion of Equation 3.2.15 in square brackets is a function of l,o,PAx,PBx for

each value of k. Equation 3.2.15 can now be written as:

xlAx
o
B =

l+o∑
k=0

fkx(l, o, PAx, PBx)x
kx

P (3.2.16)

Now the product of two general Gaussian functions at two different centers is:

GAGB = GP = NANBK
l+o∑
kx=0

m+p∑
ky=0

n+q∑
kz=0

fkxfkyfkzx
kx

P x
ky

P x
kz

P e−γr
2
P (3.2.17)

The overlap of two Gaussian functions centered at A and B is the integral of Equation

3.2.17, which can be broken down into the product of three equations of the form:

Fk =

∞∫
−∞

tke−γt
2

dt (3.2.18)

The only nonzero solution to Equation 3.2.18 is when k is an even integer. Equation

3.2.18 can be rewritten as:

Fk = 2

∞∫
0

tke−γt
2

dt (3.2.19)

which when solved for even k gives:
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Fk = γ−(k+1)/2 (k − 1)!!

2k/2
√
π (3.2.20)

This gives the overlap integral of two Gaussian functions centered at A and B (SAB):

SAB = NANBK

(l+o)/2∑
kx=0

(m+p)/2∑
ky=0

(n+q)/2∑
kz=0

f2kxf2kyf2kzγ
(2kx+2ky+2kz+3)/2

∗(2kx − 1)!!

2kx/2
(2ky − 1)!!

2ky/2
(2kz − 1)!!

2kz/2
π3/2

(3.2.21)

To solve a four centered integral of the centers A,B,C,D the procedure for the

Gaussian product can be followed. First create a new center at P using centers A

and B.

GAGB = GP = NANBKP

Px∑
kxP=0

Py∑
kyP=0

Pz∑
kzP=0

fPkxP f
P
kyP
fPkzPx

kxP
P x

kyP
P x

kzP
P e−γ

P r2P (3.2.22)

Then create second new centers Q using center C and D.

GCGD = GQ = NCNDKQ

Qx∑
kxQ=0

Qy∑
kyQ=0

Qz∑
kzQ=0

fQkxQ
fQ
kyQ
fQkzQ

x
kxQ
Q x

kyQ
Q x

kzQ
Q e−γ

Qr2Q (3.2.23)

Next create another center S from centers P and Q, the same way that P and Q were

created. The new expoent γS is defined as:
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γS = γP + γQ (3.2.24)

The new center can be defined as:

S =
γPP + γQQ

γP + γQ
(3.2.25)

the expanding the exponent portion of the equation gives:

KS = exp

[
−γPγQ

γP + γQ
(P −Q)2

]
(3.2.26)

The angular part of GS is:

x
kxP
P x

kxQ
Q =

kxP+kxQ∑
k=0

 kxP∑
i=0

kxQ∑
j=0

PPx
kxQ−iPQx

kxQ−j
(
kxP
i

)(
kxQ
j

)xkS (3.2.27)

As in Equation 3.2.16, the portion in the square brackets can be replaced with

the function f making the Gaussian at center S:

GS = NANBNCNDKPKQKS

Px∑
kxP=0

Py∑
kyP=0

Pz∑
kzP=0

Qx∑
kxQ=0

Qy∑
kyQ=0

Qz∑
kzQ=0

fPkxP f
P
kyP
fPkzP f

Q
kxQ
fQ
kyQ

Px+Qx∑
kxS=0

Py+Qy∑
kyS=0

Pz+Qz∑
kzS=0

fSkxSf
S
kyS
fSkzSx

kxS
S x

kyS
S x

kzS
S e−γ

Sr2S

(3.2.28)

The new Gaussian GS can be integrated using the same method as the 2 center

integrals to give four center overlap of A,B,C,D.
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The code developed from this section can be found in Appendix A.
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Chapter 4

Results

4.1 Fitting Radial Electron Densities of Atoms

The proof of concept is to show that molecular radial electron densities can be

partitioned into atomic contributions. These contributions were then fitted and the

fits were then combined into the molecular density. Before attempting the atoms in

molecules fits it was decided to fit the individual atomic radial electron density for

atoms of the first three periods of the periodic table (H-Ar). The individual densities

were fit using a linear combination of nuclear centered s-type Gaussians given by:

ρrad =
n∑
i=1

(cie
−αir

2

)2r2 (4.1.1)

In Equation 4.1.1 ci and αi are the coefficients and exponents of the Gaussian

function found using Mathematica’s built-in function Findfit. In all cases, any neg-

ative coefficients or exponents were thrown out and the case reran with constraints
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to ensure all positive coefficients and exponents. Although negative coefficients make

sense mathematically they do not physically. The density is calculated from the

coefficients, therefore negative coefficients implies negative density. The number of

Gaussians used (n in Equation 4.1.1) for the first three periods was six. In the case

of atoms, the electron density in all three dimensions is spherically symmetric about

the nucleus so Equation 4.1.1 is general for one to three dimensions and r is:

r =
√
x2 + y2 + z2 (4.1.2)

Looking at the atom in the yz-plane the equation would be the same as 4.1.1 while

replacing r2 with y2 + z2.

Figures 4.1.1a and 4.1.1b show plots of the fit for the radial electron density of

the lithium atom and a comparison of the fit with the actual radial density obtained

via Hartree-Fock theory. As was established in Section 1.2, some shell structure is

visible, a sharper peak close to the nucleus representing the core and more diffuse

valence peak further out from the nucleus. Another feature of the individual atoms

is that they are spherically symmetric about the nucleus, which in the case of the

individual atom fits is at the origin. Visually the graphical comparison of the actual

radial density to the fit is excellent, they appear to overlap perfectly, the fitted graph

in 4.1.1b is only visible above and below 5 and -5 bohr respectively where the actual

density was cut off, to show that the fitted graph was also present.

46



-6 -4 -2 2 4 6
r HBohrL

0.05

0.10

0.15

0.20

Ρrad

(a) Fitted radial electron density of a Li atom.
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(b) Fitted (blue) vs actual (red) radial electron density of a Li atom.

Figure 4.1.1: Fit of the radial electron density of a Li atom (a) and a comparison of
the fit and the actual radial electron density (b) vs r in bohr.
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Figures 4.1.2a and 4.1.2b show plots of the fit for the radial electron density of the

fluorine atom and a comparison of the fit with the actual radial density. As expected,

the core shell of fluorine is much sharper than the core shell of the lithium atom.

The valence shell is less diffuse and closer to the nucleus than the valence shell of

the lithium atom. Looking at the comparison Figure 4.1.2b, visually it looks good

but not perfect. Looking closely at the core shell it can be seen that the fit slightly

exaggerates the maximum and minimum of the core shell.
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(a) Fitted radial electron density of a F atom.
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(b) Fitted (blue) vs actual (red) radial electron density of a F atom.

Figure 4.1.2: Fit of the radial electron density of a F atom (a) and a comparison of
the fit and the actual radial electron density (b) vs r in bohr.

49



The fit of the Cl atom can be seen in Figure 4.1.3a. There are now two sharp core

shells close to the nucleus as expected. As you move down the rows of the periodic

table the number of cores increases, and it has a diffuse valence shell. Looking at the

valence shell in Figure 4.1.3b we see that the fit does not do as well on the valence

shell, as compared to the fits of the valence shells of atoms from the second period.

This suggests that the 6 s-type Gaussians are not enough to fit both core and valence

shells of a second row atom. From Table 4.1, it can be seen that as you move across

the periodic table from lithium to neon, six s-type Gaussians are enough to fit the

density, since the root mean square deviation(RMSD) in the electron density is no

more than 0.0015. As you move down the period to sodium and towards argon the

six Gaussians are not enough to fit the two cores and the valence shells. Here the

RMSD becomes as large as 0.012. Since the core shells compose most of the electron

density the valence shell is fitted poorly.

Table 4.1: Root mean squared deviation, the number of electrons (Ne) and the error
in the expected number of electrons in the fits for the atomic radial electron densities.

Atom RMSD Ne |∆Ne|
H 0.00006 1.001 0.001

He 0.000007 2.000 0.000

Li 0.00024 2.962 0.038

Be 0.00138 3.960 0.040

B 0.00067 5.005 0.005

C 0.00049 5.999 0.001

N 0.00089 6.991 0.009

O 0.00118 8.001 0.001

F 0.00131 9.003 0.003

Atom RMSD Ne |∆Ne|
Ne 0.00146 10.005 0.005

Na 0.00251 10.861 0.139

Mg 0.00185 11.893 0.107

Al 0.00305 12.820 0.180

Si 0.00456 13.815 0.185

P 0.00546 15.005 0.005

S 0.00539 16.004 0.004

Cl 0.01013 16.698 0.302

Ar 0.01198 17.665 0.335
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(a) Fitted radial electron density of a Cl atom.

-4 -2 2 4
r HBohrL

0.5

1.0

1.5

Ρrad

(b) Fitted (blue) vs actual (red) radial electron density of a Cl atom.

Figure 4.1.3: Fit of the radial electron density of a Cl atom (a) and a comparison of
the fit and the actual radial electron density (b) vs r in bohr.
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The need for more than six Gaussian functions can also be seen in the number of

electrons, which can be obtained by integrating the fit such that:

Ne = 4π

∞∫
0

n∑
i=1

(cie
−αir

2

)2r2dr (4.1.3)

The number of electrons is in good agreement with the expected number of electrons

for the first two periods but gets worse as you move down to the third period and

across it. As can be seen in Table 4.1 the root mean square deviation in the number

of electrons goes from 0.139 to 0.335 in going from sodium to argon. The root mean

square deviation can be defined as:

d =

√√√√∑r (ρHF (r)− ρfit(r))2

n
(4.1.4)

where ρHF (r) is the actual radial density, ρfit(r) is the radial density of the fit at

some point r, and n is the number of points evaluated.

4.2 Fitting Radial Electron Densities of Atoms in

Molecules

As is expected, for an atom in a molecule when the atoms interact their properties,

such as density, are affected. In the case of electron densities, the valence electrons

can be redistributed, lost or gained, while leaving the core electrons mostly unaffected

[1, 19]. The redistribution of valence electron densities means that s-type Gaussian

functions are no longer suitable to model the valence shells of the electron density.
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S-type Gaussian functions are spherically symmetric about their center. While this is

fine for the core electrons, the valence electron shells will not be spherically symmetric

about the nucleus. The spherical symmetry can be broken by adding non-nuclear

centered Gaussian functions which will have the form:

ce−α(r+rs)
2

(4.2.1)

where c is a constant and α is an exponent and rs is some shift in the direction of r.

In the case of one dimensional fits, r is along the bond axis, which in MUNgauss is

always in the z direction for diatomics. The general model, Equation 4.1.1, as seen

in Section 4.1, becomes:

ρrad =
n∑
i=1

(cie
−αir

2

)2r2 +
m∑
j=1

(cje
−αj(r+sj)

2

)2r2 (4.2.2)

where n and m are the number of nuclear centered and floating Gaussian functions

(Gaussians that have been shifted to a new center) used in the fit respectively and

sj is the shift in the floating Gaussian. Unlike the individual atom fits, where n was

set to six, for AIM the number of nuclear centered Gaussian functions is set to four

or five depending on where the atom is on the periodic table of the elements. The

number of floating Gaussian functions used was one to four. The nuclear centered

Gaussian functions were used to fit the core shells of the radial electron density. The

floating Gaussian functions were used to fit the valence shell radial electron density.

The initial guess for the nuclear centered Gaussian functions was taken from the

individual atom fits.

53



Comparing Figures 4.2.1a and 4.2.1b, it is easy to see the change in the valence

shell of the radial electron density for lithium in lithium hydride. For atomic lithium

(Figure 4.2.1a) the valence shell is spherically symmetric, while lithium in lithium

hydride has no valence shell on the non-bonding side of the nucleus in the radial

electron density. Also, where the valence shell of the radial election density in atomic

lithium is diffuse with a low minimum, the valence shell in the bonding area of lithium

in lithium hydride (right of the atom at the origin) is very sharp with a maximum

close to the maximum of the core shell radial electron density. Figure 4.2.1b, the

comparison of the fit to the actual radial electron density, it can be seen that though

it may not appear to match the actual radial electron density as well as the individual

lithium fit it does have the correct shape.
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(a) Actual individual Li atom radial electron density.
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(b) Fitted (blue) vs actual (red) radial electron density of Li in LiH.

Figure 4.2.1: Radial electron density of the Li atom (a) and a comparison of the fit
and the actual radial electron density of Li in LiH (b) vs r in bohr.
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Figure 4.2.2b shows the fit of fluorine in hydrogen fluoride. Unlike lithium in

Figure 4.2.1b, fluorine still has a valence shell of the radial electron density in the

non-bonding region (left of the atom at the origin) which is a wider and taller peak

compared to the valence shell of the radial electron density in the bonding region.

Visually the comparison of the fit and actual radial electron density, Figure 4.2.2b,

has a few flaws, but overall has the correct shape. Figures 4.2.2a and 4.2.2b of

fluorine also shows, like the lithium Figures 4.2.1a and 4.2.1b, how the core shells of

the radial electron density are unchanged, while the valence shell in the bonding and

non-bonding region are no longer spherically symmetric.
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(a) Actual individual F atom radial electron density.
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(b) Fitted (blue) vs Actual (red)radial electron density of F in HF.

Figure 4.2.2: Radial electron density of the F atom (a) and a comparison of the fit
and the actual radial electron density of F in HF (b) vs r in bohr.

57



One of our goals was to show that once a molecule is partitioned into its atomic

contributions, and those contributions are fitted, the fits could be used to reconstruct

the molecular radial electron density. Figure 4.2.3a is an example of the reconstruction

of the molecular radial electron density of lithium hydride (LiH). The fit of lithium,

the pink graph, was added to the hydrogen fit, the orange graph, to give the molecular

radial electron density fit of LiH, the green graph. When visually compared to the

actual molecular radial electron density, as seen in Figure 4.2.3b, it has the correct

shape, with few errors. The same can be said of Figure 4.2.4b where the fits of

hydrogen and fluorine in hydrogen fluoride were used to construct the molecular

radial density fit of hydrogen fluoride, which when compared visually to the actual

molecular radial electron density appears to match almost perfectly.

58



-2 2 4 6 8
r HBohrL

0.05

0.10

0.15

0.20

Ρrad

(a) Fitted radial electron densities of Li (pink) and H (orange) in LiH (green).
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(b) Fitted(green) vs actual(red) molecular radial electron density of LiH.

Figure 4.2.3: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of LiH vs r in bohr.
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(a) Fitted radial electron densities of F (pink) and H (orange) in HF (green).
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(b) Fitted (green) vs actual (red) molecular radial electron density of HF.

Figure 4.2.4: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of HF vs r in bohr.
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Unlike the root mean squared deviation in radial electron density for the indi-

vidual atoms, whose error increases from left to right in a period, the deviation in

the atom in molecules, as seen in Table 4.2, tends to vary more. For instance oxygen

in diatomic oxygen and beryllium in beryllium hydride had a RMSD of 0.0058 and

0.0056 respectively. Which is larger than the RMSD of fluorine in difluoride and

hydrogen fluoride which were 0.0034 and 0.0028 respectively. The fit of oxygen in

carbon monoxide has a RMSD of 0.0021 which is again lower than both the fluorine

fits, which suggests that the error depends on what the atoms are bonded to.

Table 4.2: Root mean squared deviation of the fits for atomic radial electron densities
of AIM and root mean squared deviation of the fits for the total molecular radial
electron density.

Molecule Atom RMSD

AIM Molecular

H2 H 0.00067 0.00094

Li2 Li 0.00095 0.0013

O2 O 0.00582 0.0082

F2 F 0.00342 0.0048

LiH Li 0.00150 0.0016

H 0.00042

HF F 0.00284 0.0029

H 0.00038

CO C 0.00429 0.0048

O 0.00209

BeH2 Be 0.00563 0.0057

H1 0.00044

H2 0.00044
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4.3 Fitting Molecular Orbital Radial Electron Den-

sities of Atoms in Molecules

It has been shown that it is possible to fit atoms in molecules radial electron den-

sities and then use those fitted radial electron densities to reconstruct the molecular

radial electron density, in one dimension. Atoms exist in three dimensions so we need

to expand from one dimension to three dimensions to see the whole picture. Instead of

jumping from fitting atoms in one dimension to three dimensions, it can be beneficial

to fit atoms in two dimensions first. The fewer electrons that an atom or atom in a

molecule has, the less complex the radial electron density, hence the easier it is to fit.

For instance, hydrogen in dihydrogen has no core electrons, in one dimension it was

fitted using four floating Gaussian functions. So in two dimensions the fit should be

four floating Gaussian functions dependent on both y and z. The equation used to

fit the two dimensional hydrogen in dihydrogen is:

ρrad =
4∑
j=1

(cyzj e−α
y
j (y+y

s
j )

2−αz
j (z+z

s
j )

2

)2(z2 + y2) (4.3.1)

In Equation 4.3.1 there are separate shifts and exponents for the y and z directions

for every floating Gaussian used, this formulation seems to give the best results which

can be seen in Figures 4.3.1a and 4.3.1b. In Figure 4.3.1a, the fit of hydrogen in

dihydrogen, even though it has the correct general shape the minimums at z of +1

and -1 bohr are too low.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure 4.3.1: The fitted (a) and actual (b) radial electron density of H in H2 in the
yz-plane.
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From this we can generalize Equation 4.3.1 to be:

ρrad =
n∑
i=1

(cyzi e−α
y
j (y)

2−αz
j (z)

2

)2(z2+y2)+
m∑
j=1

(cyzj e−α
y
j (y+s

y
j )

2−αz
j (z+s

z
j )

2

)2(z2+y2) (4.3.2)

which is the general equation used for fitting lithium in dilithium. In one dimension

lithium required four nuclear centered Gaussian functions for the core and two floating

Gaussian functions for the valence shell, one in the non-bonding region (left of the

nucleus) and one in the bonding region (right of the nucleus). A two dimensional fit

was done using the same number of nuclear centered and floating Gaussian functions.

The results can be seen in Figure 4.3.2a which when compared to the actual radial

electron density, Figure 4.3.2b, that the valence shells have slightly different shapes.

For instance, the valence shell of the fit seems to be rounder moving from -5 to +5

bohr on the y axis at about a z of +4 bohr. When trying to improve the fitted

radial electron density of lithium the core tends to cause problems, for instance when

trying to add another function, Findfit sets the floating Gaussians shift to zero to fit

the core shell better or moves the floating Gaussian away from any shell (valence or

core) and, forces the coefficient of the new Gaussian to be near zero, leaving the fit

unimproved.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure 4.3.2: The fitted (a) and actual (b) radial electron density of Li in Li2 in the
yz-plane.
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The problem with trying to improve the fits of the two dimensional radial electron

densities lead to trying to fit the radial densities of the molecular orbitals of each atom

in the molecule. Using molecular orbitals instead of the whole atom density would

allow us to fit the atom densities in parts. Core electrons occupy the lower energy

molecular orbitals while the valence electrons occupy the higher energy molecular

orbitals. Considering lithium in dilithium, the first two molecular orbitals as seen

in Figures 4.3.3a and 4.3.3b are identical and are each one half of the core electron

density of the total core electron density of lithium with a small valence shell at

around 4.0 bohr. The fit with the lowest RMSD was obtained using five nuclear

centered Gaussian functions and one floating Gaussian function.
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(a) Fitted radial electron density.
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(b) Fitted (blue) vs actual (red) radial electron density.

Figure 4.3.3: Fitted radial electron density (a) and a comparison of the fitted and the
actual radial electron density (b) of molecular orbitals one and two of Li in Li2 vs r
in bohr.
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The third molecular orbital, as can be seen in Figures 4.3.4a and 4.3.4b, consists

of the valence shells in the bonding and non-bonding region, and small core shells

on either side of the nucleus. To fit this molecular orbital the individual shells were

isolated by ignoring any density before and after their minimums. For example, to

fit the large valence shell in the bonding region, only the density from 1.12 to 4.5

bohr was considered. The large valence shell in the bonding region was fitted using

one floating Gaussian function, the core shells at the nucleus were fitted using one

nuclear centered Gaussian function, and the diffuse valence shell was fitted using two

floating Gaussian functions. The four functions were then added together and their

parameters optimized to give the best result. In Figure 4.3.4b the fit has the correct

general shape but is not perfect, for instance, going from the valence shell to the

core shell in the non-bonding region, the radial density of the fit does not reach zero,

unlike the actual radial density.
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(a) Fitted radial electron density.
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(b) Fitted (blue) vs actual (red) radial electron density.

Figure 4.3.4: Fitted radial electron density (a) and a comparison of the fitted and the
actual radial electron density (b) of molecular orbital three of Li in Li2 vs r in bohr.
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Once the molecular orbitals were fitted they were then added together to give the

total atom in molecule radial electron density to verify the process. This can be seen

in Figures 4.3.5a and 4.3.5b.
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(a) Fitted total radial electron density.
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(b) Fitted (blue) vs actual (red) total radial electron density.

Figure 4.3.5: Total fitted radial electron density (a) and a comparison of the fitted
and the actual total radial electron density (b) of Li in Li2 vs r in bohr.
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In Table 4.3, where the RMSD of the atom in molecule fit and the atom in molecule

fit by molecular orbitals is compared. It can see that the method lowered the error in

case of lithium and carbon in dilithium and carbon monoxide respectively, while the

error was higher in the case of diatomic oxygen. Not only is in the deviation of the fit

from the actual electron density show little overall improvement for the fits of atoms

in molecules, it also more time consuming to fit each atom. There are multiple fits

per atom, the number of fits is one half the number of electrons for that atom in a

molecule, which for the diatomic oxygen is eight. Although it is good to note that in

some cases not all the molecular orbitals will have radial electron densities for certain

atoms, in the case of diatomic oxygen only molecular orbitals one, two, three, four

and six were required to be fitted for the first atom.

Table 4.3: Root mean square deviation of the fits for atomic and molecular orbital
radial electron densities of AIM.

Molecule Atom AIM RMSD MO RMSD

Li2 Li 0.00095 0.00047

LiH Li 0.00015 0.00016

O2 O 0.0058 0.0083

CO C 0.0043 0.0031
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Chapter 5

Conclusions

The code utilizing the least squares fitting algorithm could not be completed

within the time frame of this thesis. The code containing the four center integral

algorithm though ready, requires fine tuning and some minor updates to MUNgauss,

such as updating overlap integrals to handle any shells s-h integrated with shells from

s-g instead of only shells s-f. Shells are like the Gaussian types talked about in section

3.2, an s shell has no special dependence in any direction so the sum of its angular

quantum numbers is zero, while a p can be spatially dependent in either x,y or z, the

sum of the p shells angular quantum numbers would be one. The sum of quantum

numbers for d, f, g and h would be 2, 3, 4 and 5 respectively. The least squares fitting

code is still a viable fitting option once the four center integral code is ready.

It has been shown that it is possible to fit the first two periods of atoms of

the periodic table (H-Ne) with just six s-type nuclear centered Gaussian functions.

It is also possible to fit the third period (Na-Ar) with six s-type nuclear centered
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Gaussian functions but not as well, and it can be seen that the error of the six

Gaussian function fit increases moving from left to right within both the second and

third periods. This is because a core shell requires about four to six s-type nuclear

centered Gaussian functions to fit it well, while a valence shell requires around one

to four s-type Gaussian functions. Meaning that to improve the atomic fits one

needs to add more s-type nuclear centered Gaussian functions for atoms of the third

period. The second period may show improvement with one additional Gaussian

function to the heavier elements in that row. The individual atom fits may also be

improved by fitting atoms by atomic orbital the way the atoms in molecules were

fitted in Section 4.3. The cores shells could be fitted with six s-type nuclear centered

Gaussian functions separately, without hindering the fitting of the valence shell. The

core shells in this case are more important, as they are utilized as the initial guess

for the cores shells of atoms in molecules. It has also been shown that the radial

densities of atoms in molecules can be fitted using a combination of s-type nuclear

and non-nuclear centered Gaussian functions in one dimension. It is also possible

to assemble molecules from fitted electron densities in one dimension. Though some

work was done in two dimensions, the fits still have to be improved before moving to

fitting in three dimensions. The best way to do this is by fitting radial densities of

molecular orbitals. Though it is very time consuming and tends to give results that

vary from better to worse than the atoms in molecule fits, it would help manage the

core shells that become more of a problem when fitting in two dimensions. It would

also benefit from automation. As it would no longer take hours to fit the atoms and

errors may also be reduced.
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A.1 Four Center Integrals

FUNCTION TRACEMS(A,B)

USE program_constants

USE type_molecule

USE type_basis_set

USE QM_objects

implicit none

double precision :: TRACEMS

double precision,dimension(Basis%Nbasis,Basis%Nbasis) :: C,A,B

integer :: Ibasis

C=MATMUL(A,B)

TRACEMS=ZERO

do Ibasis=1,Basis%Nbasis

TRACEMS = TRACEMS + C(Ibasis,Ibasis)

end do

return

END FUNCTION TRACEMS

subroutine GG_prod_int

!***********************************************************************

! Date last modified: MAY 08, 2012 Version 1.0 *

! Author: R.A. Poirier & Devin G. S. Nippard *
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! Description:Integrate the product of 4 Gaussians *

!***********************************************************************

! Modules:

USE program_constants

USE type_molecule

USE type_basis_set

USE QM_objects

USE matrix_print

implicit none

!

! Local scalars:

integer :: Ishell,Jshell,Ifrst,Jfrst,Ilast,Jlast

integer :: Lshell,Kshell,Lfrst,Kfrst,Llast,Klast

integer :: Istart,Jstart,Pstart,Iend,Jend,Pend

integer :: Lstart,Kstart,Qstart,Lend,Kend,Qend

integer :: Iatmshl,Jatmshl

integer :: Latmshl,Katmshl

integer :: LAMAX,LBMAX

integer :: LCMAX,LDMAX

integer :: Irange,Jrange,Lrange,Krange

integer :: Igauss,Jgauss,Lgauss,Kgauss

integer :: Ibasis,Jbasis,Lbasis,Kbasis
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integer :: Iaos,JaoS

integer :: Laos,KaoS

integer :: IGBGN,JGBGN,IGend,JGend,JF

integer :: LGBGN,KGBGN,LGend,KGend,KF,LF

integer :: LPMAX,LIM1DSP,LIM1DSQ,LIM1DSPQ

integer :: I,IJX,IJY,IJZ,J,IX,IY,IZ,JX,JY,JZ

integer :: K,KLX,KLY,KLZ,L,KX,KY,KZ,LX,LY,LZ

integer :: IJKLX,IJKLY,IJKLZ

integer :: INTC,INTC2,ICOUNT,TOTint,INTCa,INTCb,INTCc

integer :: LENTQP,LENTQQ,LENTQPQ,LPQMAX,LQMAX

integer :: MATlen,MAXlen

double precision :: ABX,ABY,ABZ,ARABSQ,CRCDSQ,KAB,KCD,KPQ, &

AS,BS,CS,DS,CUT1,COEFPQ,COEFQ,COEFP, &

EAB,EIAB,EXPAB,ECD,EICD,EXPCD,EPQ, &

EIPQ,EIO2PQ,EXPPQ,PX,PY,PZ,QX,QY,QZ, &

PQX,PQY,PQZ,RX,RY,RZ,STERMPQ,ZPR,ZQR, &

YPR,YQR,XPR,XQR,CDX,CDY,CDZ

double precision :: XA,XB,YA,YB,ZA,ZB,XC,XD,YC,YD,ZC,ZD, &

ABSQ,PQSQ,CDSQ,XAP,XBP,YBP,YAP,ZAP, &

ZBP,COEFAB,STERMAB,EIO2AB,XCQ,XDQ, &

YCQ,YDQ,ZCQ,ZDQ,COEFCD,STERMCD,EIO2CD,COEFR

!

! Local arrays:
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integer :: INDIX(32),INDIY(32),INDIZ(32),INDJX(32),INDJY(32), &

INDJZ(32),INDeIX(32),INDeIY(32),INDeIZ(32), &

INDeJX(32),INDeJY(32),INDeJZ(32),INDeLX(32), &

INDeLY(32),INDeLZ(32),INDeKX(32),INDeKY(32),INDeKZ(32)

double precision :: CA(20),CB(20),CC(20),CD(20),CP(40),CQ(40), &

SSPQ(1300),SXPQ(32),SYPQ(32),SZPQ(32), &

S1CPQ(6),CCXPQ(192),CCYPQ(192),CCZPQ(192), &

SSAB(100),SXAB(32),SYAB(32),SZAB(32), &

S1CAB(6),CCXAB(192),CCYAB(192),CCZAB(192), &

SSCD(100),SXCD(32),SYCD(32),SZCD(32),S1CCD(6),CCXCD(192),CCYCD(192),CCZCD(192)

double precision, dimension(:), allocatable :: OVRLAPP,OVRLAPQ

double precision, dimension(:,:), allocatable :: Nij

!

parameter (CUT1=-75.0D0)

! s| p | d | f | g |

DATA

INDJX/1,2,1,1,3,1,1,2,2,1,4,1,1,2,3,3,2,1,1,2,5,1,1,2,4,4,2,1,1,3,3,1/,&

INDJY/1,1,2,1,1,3,1,2,1,2,1,4,1,3,2,1,1,2,3,2,1,5,1,4,2,1,1,2,4,3,1,3/,&

INDJZ/1,1,1,2,1,1,3,1,2,2,1,1,4,1,1,2,3,3,2,2,1,1,5,1,1,2,4,4,2,1,3,3/,&

INDeIX/0,4,0,0,8,0,0,4,4,0,12,0,0,4,8,8,4,0,0,4,16,0,0,4,12,12,4,0,0,8,8,0/,&

INDeIY/0,0,4,0,0,8,0,4,0,4,0,12,0,8,4,0,0,4,8,4,0,16,0,12,4,0,0,4,12,8,0,8/,&

INDeIZ/0,0,0,4,0,0,8,0,4,4,0,0,12,0,0,4,8,8,4,4,0,0,16,0,0,4,12,12,4,0,8,8/,&

INDeJX/0,4,0,0,8,0,0,4,4,0,12,0,0,4,8,8,4,0,0,4,16,0,0,4,12,12,4,0,0,8,8,0/,&
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INDeJY/0,0,4,0,0,8,0,4,0,4,0,12,0,8,4,0,0,4,8,4,0,16,0,12,4,0,0,4,12,8,0,8/,&

INDeJZ/0,0,0,4,0,0,8,0,4,4,0,0,12,0,0,4,8,8,4,4,0,0,16,0,0,4,12,12,4,0,8,8/,&

INDeKX/0,1,0,0,2,0,0,1,1,0,3,0,3,1,2,2,1,0,0,1,4,0,0,1,3,3,1,0,0,2,2,0/,&

INDeKY/0,0,1,0,0,2,0,1,0,1,0,3,0,2,1,0,0,1,2,1,0,4,0,3,1,0,0,1,3,2,0,2/,&

INDeKZ/0,0,0,1,0,0,2,0,1,1,0,0,3,0,0,1,2,2,1,1,0,0,4,1,0,1,3,3,2,0,2,2/,&

INDeLX/1,2,1,1,3,1,1,2,2,1,4,1,1,2,3,3,2,1,1,2,5,1,1,2,4,4,2,1,1,3,3,1/,&

INDeLY/1,1,2,1,1,3,1,2,1,2,1,4,1,3,2,1,1,2,3,2,1,5,1,4,2,1,1,2,4,3,1,3/,&

INDeLZ/1,1,1,2,1,1,3,1,2,2,1,1,4,1,1,2,3,3,2,2,1,1,5,1,1,2,4,4,2,1,3,3/

!

type Gauss_prod_int

integer :: Ibasis

integer :: Jbasis

integer :: Kbasis

integer :: Lbasis

double precision :: value

end type

type(Gauss_prod_int), dimension(:), allocatable :: GGPQ

! Begin:

call PRG_manager (’enter’, ’GG_PROD_INT’, ’1EINT%GG’)

!

call GET_object (’QM’,’CMO’,’RHF’)

write(6,*)’Byond get object ’

call flush(6)
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MATlen=Basis%Nbasis*(Basis%Nbasis+1)/2

MAXlen=MATlen*MATlen

! Object:

if(.not.allocated(GGPQ))then

allocate (GGPQ(MAXlen),OVRLAPP(MATlen),OVRLAPQ(MATlen))

else

if(Basis%Nbasis.ne.size(GGPQ,1))then

deallocate (GGPQ,OVRLAPP,OVRLAPQ)

allocate (GGPQ(MAXlen),OVRLAPP(MATlen),OVRLAPQ(MATlen))

end if

end if

if(.not.allocated(Nij))then

allocate (Nij(Basis%Nbasis,Basis%Nbasis))

else

if(Basis%Nbasis.ne.size(Nij,1))then

deallocate (Nij)

allocate (Nij(Basis%Nbasis,Basis%Nbasis))

end if

end if

Nij(1:Basis%Nbasis,1:basis%Nbasis)=0.0D0

!

do I=1,32

INDIX(I)= 4*(INDJX(I)-1)
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INDIY(I)= 4*(INDJY(I)-1)

INDIZ(I)= 4*(INDJZ(I)-1)

end do

ICOUNT=0

!

! Loop over shells.

! Loop over Ishell.

do Ishell=1,Basis%Nshells

LAMAX=Basis%shell(Ishell)%Xtype+1

Istart=Basis%shell(Ishell)%Xstart

Iend=Basis%shell(Ishell)%XEND

Irange=Iend-Istart+1

IGBGN=Basis%shell(Ishell)%EXPBGN

IGEND=Basis%shell(Ishell)%EXPEND

Ifrst=Basis%shell(Ishell)%frstSHL

!

! Loop over Jshell.

do Jshell=1,Ishell

LBMAX=Basis%shell(Jshell)%Xtype+1

Jstart=Basis%shell(Jshell)%Xstart

Jend=Basis%shell(Jshell)%XEND

Jrange=Jend-Jstart+1
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JGBGN=Basis%shell(Jshell)%EXPBGN

JGEND=Basis%shell(Jshell)%EXPEND

Jfrst=Basis%shell(Jshell)%frstSHL

!

Ilast= Basis%shell(Ishell)%lastSHL

!

! Loop over Kshell.

do Kshell=1,Jshell

LCMAX=Basis%shell(Kshell)%Xtype+1

Kstart=Basis%shell(Kshell)%Xstart

Kend=Basis%shell(Kshell)%XEND

Krange=Kend-Kstart+1

KGBGN=Basis%shell(Kshell)%EXPBGN

KGEND=Basis%shell(Kshell)%EXPEND

Kfrst=Basis%shell(Kshell)%frstSHL

!

! Loop over Lshell

!

do Lshell=1,Kshell

LDMAX=Basis%shell(Lshell)%Xtype+1

Lstart=Basis%shell(Lshell)%Xstart

Lend=Basis%shell(Lshell)%XEND
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Lrange=Lend-Lstart+1

LGBGN=Basis%shell(Lshell)%EXPBGN

LGEND=Basis%shell(Lshell)%EXPEND

Lfrst=Basis%shell(Lshell)%frstSHL

! Loop over Iatmshl

do Iatmshl=Ifrst,Ilast

XA=CARTESIAN(Basis%atmshl(Iatmshl)%ATMLST)%X

YA=CARTESIAN(Basis%atmshl(Iatmshl)%ATMLST)%Y

ZA=CARTESIAN(Basis%atmshl(Iatmshl)%ATMLST)%Z

Iaos=Basis%atmshl(Iatmshl)%frstAO-1

!

! Loop over Jatmshl

Jlast= Basis%shell(Jshell)%lastSHL

IF(Ishell.EQ.Jshell)Jlast=Iatmshl

do Jatmshl=Jfrst,Jlast

XB=CARTESIAN(Basis%atmshl(Jatmshl)%ATMLST)%X

YB=CARTESIAN(Basis%atmshl(Jatmshl)%ATMLST)%Y

ZB=CARTESIAN(Basis%atmshl(Jatmshl)%ATMLST)%Z

Jaos=Basis%atmshl(Jatmshl)%frstAO-1

!

LPMAX=LAMAX+LBMAX-1

LIM1DSP=(LPMAX+3)/2
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LENTQP=Irange*Jrange

ABX=XB-XA

ABY=YB-YA

ABZ=ZB-ZA

ABSQ=ABX*ABX+ABY*ABY+ABZ*ABZ

!

! Loop over Katmshl

Klast= Basis%shell(Kshell)%lastSHL

! IF(Ishell.EQ.Kshell)Klast=Iatmshl

! IF(Jshell.EQ.Kshell)Klast=Jatmshl

do Katmshl=Kfrst,Klast

XC=CARTESIAN(Basis%atmshl(Katmshl)%ATMLST)%X

YC=CARTESIAN(Basis%atmshl(Katmshl)%ATMLST)%Y

ZC=CARTESIAN(Basis%atmshl(Katmshl)%ATMLST)%Z

Kaos=Basis%atmshl(Katmshl)%frstAO-1

!

! Loop over Latmshl

Llast= Basis%shell(Lshell)%lastSHL

! IF(Ishell.EQ.Lshell)Llast=Iatmshl

! IF(Jshell.EQ.Lshell)Llast=Jatmshl

IF(Kshell.EQ.Lshell)Llast=Katmshl
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do Latmshl=Lfrst,Llast

XD=CARTESIAN(Basis%atmshl(Latmshl)%ATMLST)%X

YD=CARTESIAN(Basis%atmshl(Latmshl)%ATMLST)%Y

ZD=CARTESIAN(Basis%atmshl(Latmshl)%ATMLST)%Z

Laos=Basis%atmshl(Latmshl)%frstAO-1

!

LQMAX=LCMAX+LDMAX-1

LIM1DSQ=(LQMAX+3)/2

LENTQQ=Lrange*Krange

CDX=XD-XC

CDY=YD-YC

CDZ=ZD-ZC

CDSQ=CDX*CDX+CDY*CDY+CDZ*CDZ

LPQMAX=LPMAX+LQMAX-1

LENTQPQ=Irange*Jrange*Lrange*Krange

LIM1DSPQ=(LPQMAX+3)/2

do I=1,LENTQPQ

SSPQ(I)=ZERO

end do ! I

! write(UNIout,’(A,10I2)’)’LENTQPQ ’, LENTQPQ

! write(UNIout,’(A,10I2)’)’LENTQP ’, LENTQP
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! write(UNIout,’(A,10I2)’)’LENTQQ ’, LENTQQ

do I=1,LENTQP

SSAB(I)=ZERO

end do ! I

!

! Loop over primitive Gaussians.

do Igauss=IGBGN,IGEND

AS=Basis%gaussian(Igauss)%exp

call FILLCC (LAMAX, Basis%gaussian(Igauss)%CONTRC, CA)

do Jgauss=JGBGN,JGEND

BS=Basis%gaussian(Jgauss)%exp

call FILLCC (LBMAX, Basis%gaussian(Jgauss)%CONTRC, CB)

EAB=AS+BS

EIAB=ONE/EAB

EIO2AB=PT5*EIAB

KAB=-BS*AS*ABSQ/EAB

EXPAB=ZERO

IF(KAB.GT.CUT1)EXPAB=DEXP(KAB)

PX=(AS*XA+BS*XB)/EAB

PY=(AS*YA+BS*YB)/EAB
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PZ=(AS*ZA+BS*ZB)/EAB

XAP=PX-XA

XBP=PX-XB

YAP=PY-YA

YBP=PY-YB

ZAP=PZ-ZA

ZBP=PZ-ZB

call GETCC1 (CCXAB,CCYAB,CCZAB,XAP,XBP,YAP,YBP,ZAP,ZBP, &

LAMAX,LBMAX)

!

STERMAB=DSQRT(EIAB*PI_VAL)

call GET1CS (S1CAB, STERMAB, EIO2AB, LPMAX)

call GET2CS (SXAB, S1CAB, CCXAB, LAMAX, LBMAX)

call GET2CS (SYAB, S1CAB, CCYAB, LAMAX, LBMAX)

do I=1,LIM1DSP

S1CAB(I)=S1CAB(I)*EXPAB

end do ! I

call GET2CS (SZAB, S1CAB, CCZAB, LAMAX, LBMAX)

INTCa=0

!

do I=Istart,Iend

IX=INDIX(I)

IY=INDIY(I)
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IZ=INDIZ(I)

do J=Jstart,Jend

JX=INDJX(J)

JY=INDJY(J)

JZ=INDJZ(J)

IJX=IX+JX

IJY=IY+JY

IJZ=IZ+JZ

INTCa=INTCa+1

COEFAB=CA(I)*CB(J)

SSAB(INTCa)=SSAB(INTCa)+SYAB(IJY)*SZAB(IJZ)*SXAB(IJX)*COEFAB

end do ! J

end do ! I

!

call FILMAT (SSAB,OVRLAPP,MATlen,Iend,Jend, &

Iatmshl,Jatmshl,Irange,Jrange,Iaos,JaoS)

do I=1,LENTQQ

SSCD(I)=ZERO

end do ! I

do Kgauss=KGBGN,KGEND

CS=Basis%gaussian(Kgauss)%exp

call FILLCC (LCMAX, Basis%gaussian(Kgauss)%CONTRC, CC)
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do Lgauss=LGBGN,LGEND

DS=Basis%gaussian(Lgauss)%exp

call FILLCC (LDMAX, Basis%gaussian(Lgauss)%CONTRC, CD)

ECD=CS+DS

EICD=ONE/ECD

EIO2CD=PT5*EICD

KCD=-DS*CS*CDSQ/ECD

EXPCD=ZERO

IF(KCD.GT.CUT1)EXPCD=DEXP(KCD)

QX=(CS*XC+DS*XD)/ECD

QY=(CS*YC+DS*YD)/ECD

QZ=(CS*ZC+DS*ZD)/ECD

XCQ=QX-XC

XDQ=QX-XD

YCQ=QY-YC

YDQ=QY-YD

ZCQ=QZ-ZC

ZDQ=QZ-ZD

call GETCC1 (CCXCD,CCYCD,CCZCD,XCQ,XDQ,YCQ,YDQ,ZCQ,ZDQ, &

LCMAX,LDMAX)

STERMCD=DSQRT(EICD*PI_VAL)

94



call GET1CS (S1CCD, STERMCD, EIO2CD, LQMAX)

call GET2CS (SXCD, S1CCD, CCXCD, LCMAX, LDMAX)

call GET2CS (SYCD, S1CCD, CCYCD, LCMAX, LDMAX)

do I=1,LIM1DSQ

S1CCD(I)=S1CCD(I)*EXPCD

end do ! I

call GET2CS (SZCD, S1CCD, CCZCD, LCMAX, LDMAX)

!

INTCb=0

do K=Kstart,Kend

KX=INDIX(K)

KY=INDIY(K)

KZ=INDIZ(K)

do L=Lstart,Lend

LX=INDJX(L)

LY=INDJY(L)

LZ=INDJZ(L)

KLX=KX+LX

KLY=KY+LY

KLZ=KZ+LZ

INTCb=INTCb+1

COEFCD=CC(K)*CD(L)

SSCD(INTCb)=SSCD(INTCb)+SYCD(KLY)*SZCD(KLZ)*SXCD(KLX)*COEFCD
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end do ! J

end do ! I

!

call FILMAT (SSCD,OVRLAPQ,MATlen,Kend,Lend, &

Katmshl,Latmshl,Krange,Lrange,Kaos,LaoS)

!

PQX=QX-PX

PQY=QY-PY

PQZ=QZ-PZ

PQSQ=PQX*PQX+PQY*PQY+PQZ*PQZ

EPQ=EAB+ECD

EIPQ=ONE/EPQ

EIO2PQ=PT5*EIPQ

KPQ=-EAB*ECD*PQSQ/EPQ

EXPPQ=ZERO

IF(KPQ.GT.CUT1)EXPPQ=DEXP(KPQ)

RX=(ECD*QX+EAB*PX)/EPQ

RY=(ECD*QY+EAB*PY)/EPQ

RZ=(ECD*QZ+EAB*PZ)/EPQ

XPR=RX-PX
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XQR=RX-QX

YPR=RY-PY

YQR=RY-QY

ZPR=RZ-PZ

ZQR=RZ-QZ

call GETCC1 (CCXPQ,CCYPQ,CCZPQ,XPR,XQR,YPR,YQR,ZPR,ZQR, &

LPMAX,LQMAX)

!

! Calculate the gaussian products

STERMPQ=DSQRT(EIPQ*PI_VAL)

call GET1CS (S1CPQ, STERMPQ, EIO2PQ, LPQMAX)

call GET2CS (SXPQ, S1CPQ, CCXPQ, LPMAX, LQMAX)

call GET2CS (SYPQ, S1CPQ, CCYPQ, LPMAX, LQMAX)

do I=1,LIM1DSPQ

S1CPQ(I)=S1CPQ(I)*EXPPQ

end do ! I

call GET2CS (SZPQ, S1CPQ, CCZPQ, LPMAX, LQMAX)

!

INTC=0

do I=Istart,Iend
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IX=INDeIX(I)

IY=INDeIY(I)

IZ=INDeIZ(I)

! write(6,*)’IX,IY,IZ: ’,IX,IY,IZ

! call flush(6)

do J=Jstart,Jend

JX=INDeJX(J)

JY=INDeJY(J)

JZ=INDeJZ(J)

! write(6,*)’JX,JY,JZ: ’,JX,JY,JZ

! call flush(6)

do K=Kstart,Kend

KX=INDeKX(K)

KY=INDeKY(K)

KZ=INDeKZ(K)

! write(6,*)’KX,KY,KZ: ’,KX,KY,KZ

! call flush(6)

do L=Lstart,Lend

LX=INDeLX(L)

LY=INDeLY(L)

LZ=INDeLZ(L)

! write(6,*)’LX,LY,LZ: ’,LX,LY,LZ

! call flush(6)
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IJKLX=IX+JX+KX+LX

IJKLY=IY+JY+KY+LY

IJKLZ=IZ+JZ+KZ+LZ

COEFR=CA(I)*CB(J)*CC(K)*CD(L)

INTC=INTC+1

SSPQ(INTC)=SSPQ(INTC)+SXPQ(IJKLX)*SYPQ(IJKLY)*SZPQ(IJKLZ)*COEFR

end do ! L

end do ! K

end do ! J

end do ! I

end do ! Jgauss

end do ! Igauss

end do ! Lgauss

end do ! Kgauss

! write(6,*)’INTC after P,Q loop: ’,INTC

!

! End of loop over Gaussians.

!

INTC2=0

do I=1,Irange

Ibasis=I+Iaos
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JF=Jrange

do J=1,JF

Jbasis=J+Jaos

KF=Krange

do K=1,KF

Kbasis=K+Kaos

LF=Lrange

do L=1,LF

Lbasis=L+Laos

INTC2=INTC2+1

write(6,*)’Ibasis; Jbasis; Kbasis: Lbasis; SSPQ’,Ibasis, &

Jbasis,Kbasis,Lbasis,SSPQ(INTC2)

if(dabs(SSPQ(INTC2)).le.1.0E-08)cycle

! write(6,*)’,Ibasis, Jbasis, SSPQ = ’,Ibasis, Jbasis, SSPQ(INTC2)

! write(6,*)’Ibasis; Jbasis; Nij’, Ibasis, Jbasis, Nij(Ibasis,Jbasis)

! write(6,*)’Kbasis; Lbasis; Nij’, Kbasis, Lbasis, Nij(Kbasis,Lbasis)

if((Ibasis.eq.Kbasis).and.(Jbasis.eq.Lbasis))then

Nij(Ibasis,Jbasis)=1.0D0/(DSQRT(SSPQ(INTC2)))

Nij(Jbasis,Ibasis)=Nij(Ibasis,Jbasis)

! write(6,*)’Ibasis, Jbasis, SSPQ = ’,Ibasis, Jbasis, SSPQ(INTC2)

end if

if((Ibasis.eq.Jbasis).and.(Kbasis.eq.Lbasis))then

Nij(Ibasis,Kbasis)=1.0D0/(DSQRT(SSPQ(INTC2)))
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Nij(Kbasis,Ibasis)=Nij(Ibasis,Kbasis)

end if

ICOUNT=ICOUNT+1

GGPQ(ICOUNT)%Ibasis=Ibasis

GGPQ(ICOUNT)%Jbasis=Jbasis

GGPQ(ICOUNT)%Kbasis=Kbasis

GGPQ(ICOUNT)%Lbasis=Lbasis

GGPQ(ICOUNT)%value=SSPQ(INTC2)

end do ! L

end do ! K

end do ! J

end do ! I

! write(6,*)’INTC,INTC2 after I,J,K,L loop: ’,Iatmshl,Jatmshl, &

Katmshl,Latmshl,’: ’,INTC,INTC2

! write(6,*)’ICOUNT after I,J,K,L loop: ’,ICOUNT

do I=1,Irange

Ibasis=I+Iaos

do J=1,Jrange

Jbasis=J+Jaos

! write(UNIout,’(A,2I3,D18.6)’)’Ibasis ; Jbasis ; Nij’, &

Ibasis, Jbasis, Nij(Ibasis,Jbasis)

end do
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end do

end do ! Latmshl

end do ! Katmshl

end do ! Jatmshl

end do ! Iatmshl

end do ! Lshell

end do ! Kshell

end do ! Jshell

end do ! Ishell

TOTint=ICOUNT

write(UNIout,’(A,I10)’) ’TOTint = ’,TOTint

! End of loop over shells.

do I=1,Irange

Ibasis=I+Iaos

do J=1,Jrange

Jbasis=J+Jaos

!write(UNIout,’(A,2I3,D18.6)’)’Ibasis ; Jbasis ; Nij’, Ibasis, &

Jbasis, Nij(Ibasis,Jbasis)

end do

end do
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do ICOUNT=1,TOTint

GGPQ(ICOUNT)%value=GGPQ(ICOUNT)%value*Nij(GGPQ(ICOUNT)%Ibasis,&

GGPQ(ICOUNT)%Jbasis)*Nij(GGPQ(ICOUNT)%Kbasis,&

GGPQ(ICOUNT)%Lbasis)

! write(UNIout,’(A,2I3,D18.6)’)’Ibasis ; Jbasis ; Nij’,&

! GGPQ(ICOUNT)%Ibasis, &

! GGPQ(ICOUNT)%Jbasis, &

! Nij(GGPQ(ICOUNT)%Ibasis,

! GGPQ(ICOUNT)%Jbasis) &

end do

write(UNIout,’(A)’) ’Ibasis ; Jbasis ; Kbasis ; Lbasis ; GGPQ’

do ICOUNT=1,TOTint

write(UNIout,’(4I3,D18.6)’) GGPQ(ICOUNT)%Ibasis, &

GGPQ(ICOUNT)%Jbasis, &

GGPQ(ICOUNT)%Kbasis, &

GGPQ(ICOUNT)%Lbasis, &

GGPQ(ICOUNT)%value

end do

write(UNIout,*)’OVERLAPP’

call PRT_matrix (OVRLAPP, MATlen, Basis%Nbasis)

write(UNIout,*)’OVERLAPQ’

call PRT_matrix (OVRLAPQ, MATlen, Basis%Nbasis)
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write(UNIout,*)’Nij’

call PRT_matrix (Nij, Basis%Nbasis, Basis%Nbasis)

call Fitting_Atoms

!

! End of routine GG_PROD_INT

call PRG_manager (’exit’, ’GG_PROD_INT’, ’1EINT%GG’)

return

CONTAINS!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>!

subroutine Fitting_Atoms

!***********************************************************************

! Date last modified: Dec 17, 2012 Version 1.0 *

! Author: Devin G. S. Nippard *

! Description: *

!***********************************************************************

! Modules:

implicit none

! Local scalars:

integer :: Iatom,Iiter,Ic,Kbasis,Lbasis,Max_iter,IterC

double precision :: check,TrPS,TRACEMS

! Local arrays:

double precision ,ALLOCATABLE, dimension(:,:) :: F_hf,F_fit,Mkl,SSA,PM0SQ
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double precision ,ALLOCATABLE, dimension(:,:) :: F_diff,C_old,C_new,Pfit

double precision , dimension(Basis%Nbasis) :: EIGVAL

write(6,*)’It made it to FA’

call flush(6)

! Call PRT_matrix (PM0,MATlen,Basis%Nbasis)

! call flush(6)

if(.not.allocated(Mkl))then

allocate (Mkl(Basis%Nbasis,Basis%Nbasis),&

F_diff(Basis%Nbasis,Basis%Nbasis), &

F_hf(Basis%Nbasis,Basis%Nbasis), &

F_fit(Basis%Nbasis,Basis%Nbasis), &

SSA(Basis%Nbasis,Basis%Nbasis), &

PM0SQ(Basis%Nbasis,Basis%Nbasis))

else

if(Basis%Nbasis.ne.size(Mkl,1))then

deallocate (Mkl,F_diff,F_hf,F_fit,SSA,PM0SQ)

allocate (Mkl(Basis%Nbasis,Basis%Nbasis), &

F_diff(Basis%Nbasis,Basis%Nbasis), &

F_hf(Basis%Nbasis,Basis%Nbasis), &

F_fit(Basis%Nbasis,Basis%Nbasis), &

SSA(Basis%Nbasis,Basis%Nbasis), &

PM0SQ(Basis%Nbasis,Basis%Nbasis))

end if
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end if

call UPT_to_SQS (OVRLAPP, MATlen, OVRLAP, Basis%Nbasis)

call UPT_to_SQS (PM0, MATlen, PM0SQ, Basis%Nbasis)

write(6,*)’Byond get initalization ’

call flush(6)

IterC=0

Max_iter=25

write(6,*)’Hello’

call flush(6)

Mkl(1:Basis%Nbasis,1:basis%Nbasis)=0.0D0

C_old(1:Basis%Nbasis,1:basis%Nbasis)=0.0D0

TrPS=0.0D0

do Iiter=1,Max_iter

do Iatom=1,Natoms

do Kbasis = 1,Basis%Nbasis

do Lbasis = 1,Basis%Nbasis
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do Ic = 1,TOTint

if ((Kbasis.eq.GGPQ(Ic)%Kbasis).and.(Lbasis.eq.GGPQ(Ic)%Lbasis)) then

Mkl(GGPQ(Ic)%Ibasis,GGPQ(Ic)%Jbasis) = GGPQ(Ic)%value

Mkl(GGPQ(Ic)%Jbasis,GGPQ(Ic)%Ibasis) = GGPQ(Ic)%value

endif

end do !Ic

F_hf(Kbasis,Lbasis) = TRACEMS(PM0SQ,Mkl)

Pfit = MATMUL(C_old,TRANSPOSE(C_old))

F_fit(Kbasis,Lbasis) = TRACEMS(C_old,Mkl)

end do !L

end do !K

F_diff=F_hf - F_fit

call DETlinW (SSA, F_diff , C_new , EIGVAL)

Pfit = MATMUL(C_new,TRANSPOSE(C_new))

TrPS = TrPS + TraceMS(Pfit,SSA)

end do !Iatom
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check = Nelectrons - TrPS

if ((check.le.1.0E-08))exit

IterC=IterC+1

end do !Iiter

write(UNIout,’(A,I3)’)’IterC’,IterC

Call PRT_matrix (Pfit, Basis%Nbasis, Basis%Nbasis)

Call PRT_matrix (PM0SQ, Basis%Nbasis, Basis%Nbasis)

return

end subroutine Fitting_Atoms

!END CONTAINS !

end subroutine GG_prod_int
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A.2 Molecular Orbital Radial Electron Density

subroutine RADIAL_MO_DENSITY_MESH

!****************************************************************************************

! Date last modified: Sept 26, 2013 *

! Authors: Devin Nippard *

! Description: *

! Calculate the radial MO density on a set of grid points (mesh) *

!****************************************************************************************

! Modules:

USE program_files

USE program_interface

USE QM_interface

USE QM_defaults

USE QM_objects

USE type_grids

USE type_density

USE type_molecule

USE type_elements

USE scalar_objects

USE N_integration

implicit none
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integer :: Ipoint,IJ,FAC,Nbasis,NMOs,Mu,Nu,MATlen,Iatom,IMO,File_unit

double precision :: Xg,Yg,Zg,Xa,Ya,Za

double precision :: BeckeW,radSq,MO_den

double precision, allocatable,dimension(:) :: MOradA

!

call PRG_manager (’enter’,’RADIAL_MO_DENSITY_MESH’, ’UTILITY’)

call GET_object (’MOL’, ’GRIDS’, ’MESH’)

call GET_object (’QM’, ’CMO’, ’RHF’)

!

call BLD_NI_XI

MATlen=size(PM0)

NMOs=CMO%NoccMO

Nbasis=size(CMO%coeff,1)

allocate (AOprod(1:MATlen))

allocate (MOradA(NGridPoints))

do Iatom=1,Natoms

Xa=CARTESIAN(Iatom)%X

Ya=CARTESIAN(Iatom)%Y

Za=CARTESIAN(Iatom)%Z

do IMO=1,NMOs
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do Ipoint=1,NGridPoints

Xg=grid_point(Ipoint)%x

Yg=grid_point(Ipoint)%y

Zg=grid_point(Ipoint)%z

radSq = (Xg-Xa)**2+(Yg-Ya)**2+(Zg-Za)**2

call BeckeW1(Xg, Yg, Zg, Iatom, XI, BeckeW)

call AO_products (Xg, Yg, Zg)

MO_den=0.0d0

do Mu=1,Nbasis

do Nu=1,Mu

FAC=1.0d0

if(Mu.ne.Nu)Fac=2.0d0

IJ=Mu*(Mu-1)/2+Nu

MO_den=MO_den+FAC*CMO%coeff(Mu,IMO)*CMO%coeff(Nu,IMO)*AOprod(IJ)

end do ! Nu

end do ! Mu

MOradA(Ipoint)=BeckeW*radSq*MO_den

end do !Ipoint

! Now print the radial densities for Iatom and IMO

if(MoleculePrint.or.AtomPrint)then

call BLD_plot_file_MO (’RDEN_MESH’, NGridPoints, Iatom, IMO, File_unit)

else

File_unit=UNIout
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end if

write(File_unit,’(a,i8,a,i8)’)’MO: ’,IMO,’ for atom: ’,Iatom

call PRT_DENSITY_MESH (File_unit, MOradA, NGridPoints)

if(MoleculePrint.or.AtomPrint)close (unit=File_unit)

end do ! IMO

end do ! Iatom

call PRG_manager (’exit’,’RADIAL_MO_DENSITY_MESH’, ’UTILITY’)

end subroutine RADIAL_MO_DENSITY_MESH
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Appendix B

Radial Electron Densities

113



B.1 Individual Atom Densities in 1 Dimension

B.1.1 Period One Atoms (H-He)
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.1: (a) Fit of the radial electron density of the H atom and (b) comparison
of the fit and the actual radial electron density.

114



-4 -2 2 4
r HBohrL

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ρrad

(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.2: (a) Fit of the radial electron density of the He atom and (b) comparison
of the fit and the actual radial electron density.
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B.1.2 Period Two Atoms (Li-Ne)
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.3: (a) Fit of the radial electron density of the Li atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.4: (a) Fit of the radial electron density of the Be atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.

-4 -2 2 4
r HBohrL

0.1

0.2

0.3

0.4

Ρrad

(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.5: (a) Fit of the radial electron density of the B atom and (b) comparison
of the fit and the actual radial electron density.

118



-4 -2 2 4
r HBohrL

0.1

0.2

0.3

0.4

0.5

Ρrad

(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.6: (a) Fit of the radial electron density of the C atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.7: (a) Fit of the radial electron density of the N atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.8: (a) Fit of the radial electron density of the O atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.9: (a) Fit of the radial electron density of the F atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.10: (a) Fit of the radial electron density of the Ne atom and (b) comparison
of the fit and the actual radial electron density.
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B.1.3 Period Three Atoms (Na-Ar)
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.11: (a) Fit of the radial electron density of the Na atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.12: (a) Fit of the radial electron density of the Mg atom and (b) compar-
ison of the fit and the actual radial electron density.

125



-4 -2 2 4
r HBohrL

0.2

0.4

0.6

0.8

1.0

1.2

Ρrad

(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.13: (a) Fit of the radial electron density of the Al atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.14: (a) Fit of the radial electron density of the Si atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.15: (a) Fit of the radial electron density of the P atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.16: (a) Fit of the radial electron density of the S atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.17: (a) Fit of the radial electron density of the Cl atom and (b) comparison
of the fit and the actual radial electron density.
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(a) Fitted radial density.
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(b) Fitted (Blue) vs actual (Red) radial density.

Figure B.1.18: (a) Fit of the radial electron density of the Ar atom and (b) comparison
of the fit and the actual radial electron density.
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B.2 Individual Atom Densities in 2 Dimensions

B.2.1 Period One Atoms (H-He)

(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.1: The fitted (a) and actual (b) radial electron density of H in the yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.2: The fitted (a) and actual (b) radial electron density of He in the yz-
plane.
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B.2.2 Period Two Atoms (Li-Ne)

(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.3: The fitted (a) and actual (b) radial electron density of Li in the yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.4: The fitted (a) and actual (b) radial electron density of Be in the yz-
plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.5: The fitted (a) and actual (b) radial electron density of B in the yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.6: The fitted (a) and actual (b) radial electron density of C in the yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.7: The fitted (a) and actual (b) radial electron density of N in the yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.8: The fitted (a) and actual (b) radial electron density of O in the yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.9: The fitted (a) and actual (b) radial electron density of F in the yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.10: The fitted (a) and actual (b) radial electron density of Ne in the
yz-plane.

B.2.3 Period Three Atoms (Na-Ar)
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.11: The fitted (a) and actual (b) radial electron density of Na in the
yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.12: The fitted (a) and actual (b) radial electron density of Mg in the
yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.13: The fitted (a) and actual (b) radial electron density of Al in the
yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.14: The fitted (a) and actual (b) radial electron density of Si in the yz-
plane.

145



(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.15: The fitted (a) and actual (b) radial electron density of P in the yz-
plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.16: The fitted (a) and actual (b) radial electron density of S in the yz-
plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.17: The fitted (a) and actual (b) radial electron density of Cl in the
yz-plane.
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(a) Fitted radial electron density.

(b) Actual radial electron density.

Figure B.2.18: The fitted (a) and actual (b) radial electron density of Ar in the
yz-plane.
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B.3 AIM Densities

B.3.1 H2
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(a) Individual H atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.1: Radial electron density of the H atom (a) and a comparison of the fit
and the actual radial electron density of H at (0,0,0) in H2 (b) vs r in bohr.
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(a) Individual H atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.2: Radial electron density of the H atom (a) and a comparison of the fit
and the actual radial electron density of H at (0,0,1.3) in H2 (b) vs r in bohr.
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(a) Fitted radial electron densities of H at (0,0,0) (Pink) and H at (0,0,1.3)
(Orange) in H2 (Green).
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(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.3: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of H2 vs r in bohr.
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B.3.2 Li2

-4 -2 2 4
r HBohrL

0.05

0.10

0.15

0.20

Ρrad

(a) Individual Li atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.4: Radial electron density of the Li atom (a) and a comparison of the fit
and the actual radial electron density of Li at (0,0,0) in Li2 (b) vs r in bohr.
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(a) Individual Li atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.5: Radial electron density of the Li atom (a) and a comparison of the fit
and the actual radial electron density of Li at (0,0,5.3) in Li2 (b) vs r in bohr.
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(a) Fitted radial electron densities of Li at (0,0,0) (Pink) and Li at
(0,0,5.3) (Orange) in Li2 (Green).
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(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.6: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of Li2 vs r in bohr.

155



B.3.3 O2
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(a) Individual O atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.7: Radial electron density of the O atom (a) and a comparison of the fit
and the actual radial electron density of O at (0,0,0) in O2 (b) vs r in bohr.
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(a) Individual O atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.8: Radial electron density of the O atom (a) and a comparison of the fit
and the actual radial electron density of O at (0,0,2.3) in O2 (b) vs r in bohr.
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(a) Fitted radial electron densities of O at (0,0,0) (Pink) and O at (0,0,2.3)
(Orange) in O2 (Green).
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(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.9: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of O2 (b) vs r in bohr.
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B.3.4 F2
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(a) Individual F atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.10: Radial electron density of the F atom (a) and a comparison of the fit
and the actual radial electron density of F at (0,0,0) in F2 (b) vs r in bohr.
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(a) Individual F atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.11: Radial electron density of the F atom (a) and a comparison of the fit
and the actual radial electron density of F at (0,0,2.7) in F2 (b) vs r in bohr.
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(a) Fitted radial electron densities of F at (0,0,0) (Pink) and F at (0,0,2.7)
(Orange) in F2 (Green).
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(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.12: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of F2 (b) vs r in bohr.
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B.3.5 LiH
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(a) Individual Li atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.13: Radial electron density of the Li atom (a) and a comparison of the fit
and the actual radial electron density of Li at (0,0,0) in LiH (b) vs r in bohr.
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(a) Individual H atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.14: Radial electron density of the H atom (a) and a comparison of the fit
and the actual radial electron density of H at (0,0,3.1) in LiH (b) vs r in bohr.

163



-2 2 4 6 8
r HBohrL

0.05

0.10

0.15

0.20

Ρrad

(a) Fitted radial electron densities of Li at (0,0,0) (Pink) and H at (0,0,3.1)
(Orange) in LiH (Green).
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(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.15: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of LiH (b) vs r in bohr.
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B.3.6 HF
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(a) Individual F atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.16: Radial electron density of the F atom (a) and a comparison of the fit
and the actual radial electron density of F at (0,0,0) in HF (b) vs r in bohr.
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(a) Individual H atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.17: Radial electron density of the H atom (a) and a comparison of the fit
and the actual radial electron density of H at (0,0,1.7) in HF (b) vs r in bohr.

166



-2 2 4
r HBohrL

0.2

0.4

0.6

0.8
Ρrad

(a) Fitted radial electron densities of F at (0,0,0) (Pink) and H at (0,0,1.7)
(Orange) in HF (Green).

-4 -2 2 4 6 8
r HBohrL

0.2

0.4

0.6

0.8
Ρrad

(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.18: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of HF (b) vs r in bohr.
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B.3.7 CO
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(a) Individual C atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.19: Radial electron density of the C atom (a) and a comparison of the fit
and the actual radial electron density of C at (0,0,0) in CO (b) vs r in bohr.
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(a) Individual O atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.20: Radial electron density of the O atom (a) and a comparison of the fit
and the actual radial electron density of O at (0,0,2.1) in CO (b) vs r in bohr.
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(a) Fitted radial electron densities of C at (0,0,0) (Pink) and O at (0,0,2.1)
(Orange) in CO (Green).
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(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.21: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of CO (b) vs r in bohr.
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B.3.8 BeH2
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(a) Individual Be atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.22: Radial electron density of the Be atom (a) and a comparison of the fit
and the actual radial electron density of Be at (0,0,0) in BeH2 (b) vs r in bohr.
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(a) Individual H atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.23: Radial electron density of the H atom (a) and a comparison of the fit
and the actual radial electron density of H at (0,0,2.5) in BeH2 (b) vs r in bohr.
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(a) Individual H atom radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.3.24: Radial electron density of the H atom (a) and a comparison of the fit
and the actual radial electron density of H at (0,0,-2.5) in BeH2 (b) vs r in bohr.

173



-5 5
r HBohrL

0.05

0.10

0.15

0.20

0.25

0.30

Ρrad

(a) Fitted radial electron densities of Be at (0,0,0) (Pink), H at (0,0,2.5)
(Orange) and H at (0,0,-2.5) (Orange) in BeH2 (Green).
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(b) Fitted (Green) vs actual (Red) molecular radial electron density.

Figure B.3.25: A comparison of radial electron density of the fitted AIM and the total
molecular radial electron density (a) and a comparison of the fitted and the actual
molecular radial electron density (b) of BeH2 (b) vs r in bohr.
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B.4 Molecular Orbital Densities

B.4.1 Li in Li2
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.1: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital one of Li in Li2 vs r in bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.2: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital two of Li in Li2 vs r in bohr.
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(a) Fitted Density of MO Three
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.3: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital three of Li in Li2 vs r in
bohr.
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(a) Total fitted radial electron density.
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(b) Total fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.4: Total fitted radial electron density (a) and a comparison of the fitted
and the actual total radial electron density (b) of Li in Li2 vs r in bohr.
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B.4.2 Li in LiH
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.5: Fitted radial electron density (a) and a comparison of the fitted and
the actual(Red) radial electron density (b) of molecular orbital one of Li in LiH vs r
in bohr.
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(a) Fitted radial electron density.

-4 -2 2 4
r HBohrL

0.05

0.10

0.15

0.20

Ρrad

(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.6: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital two of Li in LiH vs r in
bohr.
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(a) Total fitted radial electron density.
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(b) Total fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.7: Total fitted radial electron density (a) and a comparison of the fitted
and the actual total radial electron density (b) of Li in LiH vs r in bohr.
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B.4.3 C in CO
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.8: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital two of C in CO vs r in bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.9: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital three of C in CO vs r in
bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.10: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital four of C in CO vs r in
bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.11: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital seven of C in CO vs r in
bohr.
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(a) Total fitted radial electron density.
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(b) Total fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.12: Total fitted radial electron density (a) and a comparison of the fitted
and the actual total radial electron density (b) of C in CO vs r in bohr.
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B.4.4 O in O2
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.13: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital one of O in O2 vs r in bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.14: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital two of O in O2 vs r in bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.15: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital three of O in O2 vs r in
bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.16: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital four of O in O2 vs r in bohr.
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(a) Fitted radial electron density.
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(b) Fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.17: Fitted radial electron density (a) and a comparison of the fitted and
the actual radial electron density (b) of molecular orbital six of O in O2 vs r in bohr.
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(a) Total fitted radial electron density.
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(b) Total fitted (Blue) vs actual (Red) radial electron density.

Figure B.4.18: Total fitted radial electron density (a) and a comparison of the fitted
and the actual total radial electron density (b) of O in O2 vs r in bohr.
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