
Hyper-Real-Time Ice Simulation
and Modeling Using GPGPU

By

c©Shadi Alawneh, B. Eng., M. Eng.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philosophy

Memorial University of Newfoundland

May 2014

ii

Doctor of Philosophy (2014) Memorial University of Newfoundland
(Electrical and Computer Engineering) St. John’s, Newfoundland

Title: Hyper-Real-Time Ice Simulation and Modeling Using GPGPU

Author: Shadi Alawneh, B. Eng. (Jordan University of Science and Technol-
ogy), M. Eng. (Memorial University of Newfoundland)

Supervisor: Dr. Dennis Peters
Co-Supervisor: Dr. Claude Daley

Abstract

Simulation of the behaviour of a ship operating in pack ice is a computationally in-

tensive process to which General Purpose Computing on Graphical Processing Units

(GPGPU) can be applied. GPGPU is the use of a GPU (graphics processing unit)

to do general purpose scientific and engineering computing. The model for GPU

computing is to use a CPU and GPU together in a heterogeneous co-processing com-

puting platform. The sequential part of the application runs on the CPU and the

computationally-intensive part is accelerated by the GPU. From the users perspec-

tive, the application just runs faster because it is using the high-performance of the

GPU to boost performance. This thesis presents an efficient parallel implementation

of such a simulator developed using the NVIDIA Compute Unified Device Archi-

tecture (CUDA). This simulator can be used to give users the ability to analyze

ice-interactions for design, assessment and training purposes. This thesis also de-

scribes the execution of experiments to evaluate the performance of the simulator

and to validate the numerical modeling of ship operations in pack ice. It also de-

scribes the useful applications that have been done using this simulator in planning

ice management activities.

i

Acknowledgements

I would like to express my sincere appreciation for the assistance and guidance of

my supervisors, Dr. Dennis K. Peters and Dr. Claude Daley, in the preparation of

this thesis and for their thoughtful guidance, constructive criticism and mentorship

throughout my many years under their tutelage. Dr. Claude Daley collaborated with

me on the GPU ice simulation equations in Chapter 3, Appendix A.1, and on the two

applications of planning ice management activities in Chapter 6. [11, 10]

In addition I am idebted to my supervisory committee, Drs. Bruce Colbourne,

Theodore Norvell, who have each taken the time to offer suggestions and guidance

to help to improve the quality of this work. Dr. Bruce Colbourne collaborated with

me on the autopilot algorithm for steering the vessel back on track in Chapter 3 and

Appendix A.1.2.

Many friends and colleagues who have been associated with the Sustainable Tech-

nology for Polar Ships and Structures (STePS2) Research Group, either as faculty,

staff, students or visiting scholars, have offered support and suggestions that have

undoubtedly contributed to this work. In particular, Roelf C. Dragt collaborated

with me on the experiments to validate the generic GPGPU model functionality in

ii

0. Acknowledgements iii

Chapter 6.

The financial support was received from: ABS, Atlantic Canada Opportunities

Agency, BMT Fleet Technology, Husky Oil Operations Ltd, Research and Develop-

ment Council, Newfoundland and Labrador and Samsung Heavy Industries.

Last but not least my father (Ghazi) and mother (Moyasser), It is just for being

you.

Publications

1. Claude Daley and Shadi Alawneh and Dennis Peters and Gary Blades and

Bruce Colbourne. Simulation of Managed Sea Ice Loads on a Floating Off-

shore Platform using GPGPU-Event Mechanics. Accepted to The Interna-

tional Conference and Exhibition on Performance of Ships and Structures in

Ice (ICETECH 2014), July 2014, Banff, Alberta, Canada.

2. Claude Daley and Shadi Alawneh and Dennis Peters and Bruce Colbourne.

GPU-Event-Mechanics Evaluation of Ice Impact Load Statistics. Proc. The

Offshore Technology Conference (OTC 2014), February 2014, Houston, Texas,

USA.

3. Shadi Alawneh, Roelof Draget, Dennis Peters, Claude Daley and Stephen

Bruneau. Hyper-Real-Time Ice Simulation And Modeling Using GPGPU. Sub-

mitted to IEEE Transactions On Computers, November 2013.

4. Steven Chaulk, Shadi Alawneh, Dennis Peters, Haochen Zhang, Claude Daley

and Gary Blades. Ice Floe Simulator. Poster, Newfoundland Electrical and

Computer Engineering Conference, November 2013, St. John’s, NL, Canada.

iv

0. Publications v

5. Shadi Alawneh and Dennis Peters. 2D Triangulation of Polygons on CUDA.

Proc. The 2013 International Conference on High Performance Computing &

Simulation (HPCS 2013) , July 2013, Helsinki, Finland. (Acceptance rate:

39.5%)

6. Shadi Alawneh, Dennis Peters and Roelof Dragt. Ice Simulation Using

GPGPU. Poster, The International GPU Technology Conference (GTC 2013),

March 2013, San Jose, California.

7. Roelof Dragt, Stephen Bruneau and Shadi Alawneh. Design and Execution

of Model Experiments to Validate Numerical Modelling of 2D Ship Operations

in Pack Ice. In: Proc. Newfoundland Electrical and Computer Engineering

Conference, November 2012, St. John’s, NL, Canada.

8. Claude Daley, Shadi Alawneh, Dennis Peters, Bruce Quinton and Bruce Col-

bourne. GPU Modeling of Ship Operations in Pack Ice. Proc. The Interna-

tional Conference and Exhibition on Performance of Ships and Structures in

Ice (ICETECH 2012), September 2012, Banff, Alberta, Canada.

9. Shadi Alawneh and Dennis Peters. Ice Simulation Using GPGPU. In: Proc.

14th IEEE International Conference on High Performance Computing and

Communications (HPCC-2012), June 2012, Liverpool, UK. (Acceptance rate:

26.2%)

10. Shadi Alawneh and Dennis Peters. Enhancing Performance of Simulations

using GPGPU. In: Proc. Newfoundland Electrical and Computer Engineering

0. Publications vi

Conference, November 2011, St. John’s, NL, Canada.

11. Justin Adams, Justin Sheppard, Shadi Alawneh and D. Peters. Ice-Floe

Simulation Viewer Tool. In: Proc. Newfoundland Electrical and Computer

Engineering Conference, November 2011, St. John’s, NL, Canada.

Contents

Abstract i

Acknowledgements ii

Publications iv

List of Acronyms xviii

1 Introduction 1

1.1 Ice Floe Simulation . 7

1.2 Scope . 7

1.3 Collaborations . 9

1.4 Outline of this Thesis . 10

2 Related Work 11

2.1 Ice Simulation . 11

2.2 GPGPU Applications . 12

2.2.1 Physically Based Simulation 13

vii

CONTENTS viii

2.2.2 Computational Geometry . 15

3 GPGPU Model Description 17

3.1 Model Input . 17

3.2 Model Mechanics . 18

3.2.1 Ice Behaviour . 18

3.2.2 Vessel Description . 21

4 Methodology 25

4.1 Single Program Multiple Data (SPMD) Parallel Programming Model 25

4.2 Stream Processing . 26

4.3 CUDA . 27

4.4 Collision Detection . 29

4.5 High Level Algorithm of the Simulator 34

5 Optimization and Development 36

5.1 Implementation Discussion of the Ice Simulator 36

5.2 Polygon Intersection . 39

5.2.1 Results . 39

5.3 2D Triangulation of Polygons . 40

5.3.1 Polygon Triangulation by Ear Clipping 40

5.3.2 Results . 43

5.4 Ice Simulator Performance Evaluation 43

5.4.1 Results . 46

CONTENTS ix

5.5 Alternative Collision Detection Approaches 48

5.5.1 Uniform Grid Data Structure 48

5.5.1.1 Results . 50

5.5.2 Triangulation Mesh . 51

5.5.2.1 Results . 51

5.6 Kernel Block Size and Number of Blocks 52

5.7 Data Transfer between the GPU and the CPU 54

6 Model Validation and Applications 58

6.1 Model Validation . 58

6.1.1 Modeling the GPGPU Model 59

6.1.2 Model Experiments . 59

6.1.2.1 Method of Creating Ship-Floe and Floe-Floe Collisions 60

6.1.2.2 Comparison of Experimental Data to Numerical Sim-

ulation . 63

6.1.2.3 Numerical Model Validation and Recommendations . 64

6.2 Applications . 66

6.2.1 GPU Modeling of Ship Operations in Pack Ice 67

6.2.1.1 Model Input . 68

6.2.1.1.1 Ice Conditions 68

6.2.1.1.2 Vessel Description 70

6.2.1.2 Model Mechanics . 71

6.2.1.2.1 Ice Behaviour 71

CONTENTS x

6.2.1.2.2 Vessel Behaviour 72

6.2.1.3 Model Results . 73

6.2.1.3.1 Field Images 73

6.2.1.3.2 Time Sequence Results 73

6.2.1.3.3 Parametric Results 76

6.2.2 Ice-Event-Mechanics Evaluation of Ice Impact Load Statistics 82

6.2.2.1 Impact Algorithm Check 84

6.2.2.2 Simulation Description 85

6.2.2.3 Parametric Results 90

6.2.2.4 Load Level Statistics 95

6.2.2.5 Ice Load Statistics from Fields Trials Data 96

6.2.2.6 Discussion . 101

7 Conclusion and Future Work 104

7.1 Conclusion . 104

7.1.1 Contributions . 105

7.2 Future Work . 106

A Appendix 108

A.1 GPU Ice Simulation Equations . 108

A.1.1 Polygon Geometry . 108

A.1.1.1 Area . 109

A.1.1.2 Centroid Coordinates 109

CONTENTS xi

A.1.1.3 Local Polygon Coordinates (Aligned) 110

A.1.1.4 Polygon Aligned Area Moments 110

A.1.1.5 Polygon Principal Axis Angle 111

A.1.1.6 Local Polygon Coordinates (Rotated) 111

A.1.1.7 Polygon Principal Area Moments 111

A.1.2 The Vessel Properties . 111

A.1.3 Description of the Ice Floes Motion 112

A.1.4 Description of the Mass Reduction Coefficient Co for the 2D

Simulation . 113

A.1.5 The Impulse Calculation . 115

A.1.6 Description of the Mass Reduction Coefficient Co for a Ship in

2.5D Simulation . 117

A.1.7 Description of the Mass Reduction Coefficient Co for an Ice

Floe in 2.5D Simulation . 120

A.1.8 Description of the Ship-Ice Impact Calculation 122

A.1.9 Description of the Water Drag 125

A.1.10 Description of the Current and Wind Force 125

B Appendix 127

B.1 Simulation File Structure . 127

B.1.1 Example .ice File . 128

B.2 Simulator Design . 129

List of Figures

1.1 Ice floes.[28] . 8

1.2 Ice simulation viewer. 9

3.1 Sketch of 2D concept used in simulations. [11] 18

3.2 Idealization of 2D collision between two finite bodies. [10] 19

3.3 Assumption concerning the location and direction of impact forces. [10] 20

3.4 Geometry of 2D vessel polygon. [10] 22

3.5 3D shape of the vessel (half full shown). [10] 22

4.1 SPMD model. [3] . 26

4.2 Simple comparison of a CPU and a GPU. [47] 27

4.3 CUDA overview. [45] . 28

4.4 Nonintersecting convex polygons (left). Intersecting convex polygons

(right). [17] . 31

4.5 Snapshots of polygon intersection algorithm, sequenced left to right,

top to bottom. [49] . 33

4.6 Ice simulator flowchart. 35

xii

LIST OF FIGURES xiii

5.1 Tesla C2050. [48] . 37

5.2 Computation time per iteration of the three GPU approaches for an

ice field has 456 floes. 38

5.3 Compute time. 40

5.4 Speed up of the GPU implementation to detect and locate the inter-

section between polygons over the CPU implementation. 41

5.5 Ear clipping process. [18] . 42

5.6 Compute time of polygon triangulation. 44

5.7 Speed up of the GPU implementation of polygon triangulation over

the CPU implementation. 45

5.8 Bounding circle method. 45

5.9 Computation time per iteration for the 456 ice field. 46

5.10 Variable radius approach speed up for the 456 ice field. 47

5.11 Computation time per iteration for the 824 ice field. 48

5.12 Variable radius approach speed up for the 824 ice field. 49

5.13 Uniform grid using sorting. [20] . 50

5.14 Computation time per iteration for the 456 ice field using the uniform

grid and list of neighbours approaches. 51

5.15 Variable radius approach speed up over uniform grid approach for the

456 ice field. 52

5.16 Computation time per iteration for the 456 ice field using the triangu-

lation mesh and list of neighbours approaches. 53

LIST OF FIGURES xiv

5.17 Variable radius approach speed up over triangulation mesh approach

for the 456 ice field. 54

5.18 Computation time per iteration using different block sizes 55

5.19 Computation time per iteration using different number of timesteps . 57

6.1 Schematic view of the 2D concept used in the model. 59

6.2 Drawing of the acrylic tank, dimensions are in meters. 60

6.3 Design drawing of the vessel used in the experiments. 61

6.4 Schematic experiment layout, showing the vessel, some floes and the

towing carriage above the tank. 62

6.5 Comparison between the numerical model (Num) and experimental

data (Exp) of a one ship and one floe situation. 62

6.6 Pack ice comparison, numerical model (Num) and experimental data

(Exp). 63

6.7 Comparison between the numerical simulation and the experiments

of a single case. The bodies in the numerical model are shown with

coloured dots for clarity. 65

6.8 Example of natural first year pack ice. [11] 67

6.9 35%, 39% and 41% simulation domains. [11] 68

6.10 42%, 50% and 69% simulation domains. [11] 69

6.11 46% and 60% simulation domains (hexagons). [11] 70

6.12 Close-up of random polygonal ice floes. [11] 71

6.13 Close-up of hexagonal ice floes. [11] 72

LIST OF FIGURES xv

6.14 Sketch of 2D concept used in simulations. [11] 72

6.15 Geometry of vessel polygon. [11] . 73

6.16 Image from simulation video in 35% coverage. [11] 74

6.17 Image from simulation video in 35% coverage showing action zone. [11] 74

6.18 Partial time-history of ice collision forces on the vessel 35% coverage.

[11] . 75

6.19 Vessel speed during simulation 35% coverage. [11] 75

6.20 Net thrust during simulation in 35% coverage. [11] 76

6.21 Comparison of resistance estimates in 35% coverage. [11] 78

6.22 Comparison of resistance estimates in 39% coverage. [11] 78

6.23 Comparison of resistance estimates in 41% coverage. [11] 79

6.24 Comparison of resistance estimates in 50% coverage. [11] 79

6.25 Comparison of resistance estimates in 69% coverage. [11] 80

6.26 GPU model resistance estimates vs. velocity. [11] 80

6.27 GPU model resistance estimates vs. concentration. [11] 81

6.28 Calibration impact Cases. [10] . 85

6.29 Direct vs GEM impacts compared for validation. purposes[10] 85

6.30 Ice Conditions for runs 46 through 50.[10] 86

6.31 Probability plot for ice floe apex angle data.[10] 89

6.32 Probability plot for ice floe mass values, for both all floes and just those

floes struck in runs 46-50.[10] . 90

6.33 Plot of impact locations on the vessel (runs 46-50).[10] 92

LIST OF FIGURES xvi

6.34 Plot of % impacts vs. lateral distance from centerline (runs 46-50). [10] 92

6.35 Plot of impacts forces vs. distance from stem (runs 46-50). [10] . . . 93

6.36 Plot of impacts forces vs. ship speed (runs 46-50).[10] 94

6.37 Plot of impacts forces vs. ship speed on panel 1 for 0.7m thick floes

(runs 46-50).[10] . 95

6.38 Probability plots of cumulative distribution of impacts forces (runs 16-

30 and 46-50).[10] . 96

6.39 Arctic region map showing various ice loads ship trials.[10] 98

6.40 Ice impact load vs. ship speed from USCG POLAR SEA during 3

voyages.[10] . 100

6.41 Ice impact load vs. ship speed from CCGS LOUIS S ST. LAURENT

during a trans arctic voyage in 1994.[10] 100

6.42 Ice impact load statistics for the POLAR SEA during its 1983 voyage

in the first year ice of the south bering sea.[10] 101

A.1 Polygon coordinate systems. 109

A.2 2D ship collision point geometry. 114

A.3 2.5D ship collision point geometry. 117

A.4 Rotated x-y coordinate systems for ship and ice. 118

A.5 2.5D ice floe collision point geometry. 121

A.6 Ship-ice mpact. 123

List of Tables

5.1 The number of blocks for the 3584 ice field 56

5.2 The number of blocks for the 7168 ice field 56

6.1 List of simulation run parameters.[11] 71

6.2 Listing of first 35 run cases, with summary result values.[10] 87

6.3 Listing of last 35 run cases, with summary result values.[10] 88

B.1 The classes in the ice simulator . 130

xvii

List of Acronyms

Acronym Description

GPGPU General Purpose Computing on Graphical Processing Units

CUDA Compute Unified Device Architecture

GPUs Graphics Processing Units

STePS2 The Sustainable Technology for Polar Ships and Structures

IEMM Ice Event Mechanics Modeling

GEM GPU Event Mechanics

NSE Navier Stokes Equations

PDEs Partial Differential Equations

CSG Constructive Solid Geometry

SCS Sequenced Convex Subtraction

SMP Symmetric Multiprocessor

SPMD Single Program Multiple Data

MPMD Multiple Program Multiple Data

MPI Message Passing Model

xviii

Chapter 1

Introduction

The Sustainable Technology for Polar Ships and Structures project (referred to as

STePS2)1 supports sustainable development of polar regions by developing direct

design tools for polar ships and offshore structures. Direct design improves on tradi-

tional design methods by calculating loads and responses against defined performance

criteria. The deliverables of the project include a numerical model which accurately

handles collision scenarios between ice and steel structures. The research described

in this thesis is to use General Purpose GPU computing, or GPGPU, to implement

some of the numerical models in this project.

Sea ice is a complex natural material that presents a challenge to ships and offshore

structures. The idea described here allows the practical and rapid determination of

ship-ice, ice-ice and ice-structure interaction forces and effects in a sophisticated ice

regime. The term rapid is meant to mean at least real-time with the aim to be

1http://www.engr.mun.ca/steps2/index.php

1

1. Introduction 2

hyper-real-time. The term practical implies that the method can be developed using

software and hardware that is reasonably affordable by typical computer users. The

method is designed to take advantage of massively parallel computations that are

possible using GPU hardware. The main idea of the method is to treat ice as a set of

discrete objects with a fast execution properties, and to model the system mechanics

mainly as a set of discrete contact and failure events. In this way it becomes possible

to parallelize the problem, so that a very large number of ice floes can be modeled.

This approach is called the Ice Event Mechanics Modeling (IEMM) method which

builds a system solution from a large set of discrete events occurring between a large

set of discrete objects. The discrete events among the discrete objects are described

with simple event equations (event solutions). It is unlike existing methods (such as

finite element [64] and discrete element [40] methods, and others such as Particle in

Cell [61] methods) that are built on the ideas of continuum mechanics.

With the relatively recent development of GPUs it has become possible to employ

massively parallel computation on the level of a desktop computer. Massively parallel

computation coupled with discrete event solutions for ice-ice and ice-structure inter-

actions are combined to create a method to permit the rapid practical simulation of

realistic ice behaviour. The approach permits the development of useful solutions to a

number of practical problems that have been plaguing the designers of arctic offshore

constructions (ships and structures) for many years. The problem components are as

follows:

1. Discreteness and Fidelity: Almost any photograph of a ship or a structure in ice,

1. Introduction 3

or a photo of the ice itself will indicate the ice is not smooth. The ice is actually a

very large number of discrete, nearly rigid objects, all interacting with each other

and any structure that we place in the sea. Standard approaches used to model

this situation fail to capture in any realistic way the discreteness of the situation.

Either the models focus all their attention in single events (single collisions)

or they treat multiple events by smoothing the problem into some form of

continuum. This leads to a general lack of confidence in models, and an over

reliance on the scarce, expensive and inadequate full scale data. There is a great

need for models that can support engineering design and assessment of arctic

structures, models that will have features that are obviously and demonstrably

comparable to the discrete features that are apparent in real sea ice.

2. Training: To allow for improved training of vessel operators in realistic ice con-

ditions, we must have ship ice interaction calculations performed and displayed

in real time. This is a significant challenge, due to the complexity of ice and

the nature of the mechanics of solids. With most vehicles (cars, planes, ships

in water), the vehicle is passing through or over a relatively smooth continuum.

The environment is not altered by the vehicle. In the case of ice, the vessel must

break the ice, and the ice will remain broken. (Planes do not break the air, cars

do not break the road). Modeling ice loads using standard approaches (finite

element modeling etc) takes so long that real-time simulation is not feasible.

The IEMM approach enables a high degree of realism in training situations.

3. Long range Planning and Design: Arctic resource developments will require

1. Introduction 4

many novel ships and structures. In the past it would have been normal prac-

tice to learn from novel designs through a system of trial and error (success

and failure). Increasingly there is a need to lower risks and plan against fail-

ure in advance. As such there is a need to conduct the trial and error exercises

through long term high fidelity simulations, to the greatest practical extent. The

IEMM concept is aimed at this challenge. By enabling hyper-real-time simula-

tion with high physical fidelity, it will be possible to conduct design-life-length

simulations, with treatment of evolving ice conditions, realistic operations and

natural variability. The concept will enable designers, regulators and stakehold-

ers in offshore projects to gain a much greater level of confidence in the safety

of the projects and the key issues that must be addressed.

Graphics Processing Units (GPUs) are considered one of the most powerful form

of computing hardware currently [51]. There are many researchers and developers

who have become interested in using this power for general purpose computing. An

overview of some applications in which general-purpose computing on graphics hard-

ware has been successful is described in Section 2.2.

GPUs are particularly attractive for many numerical problems, not only because

they provide tremendous computational power at a very low cost, but also because this

power/cost ratio is increasing much faster than for traditional CPUs. A reason for this

is a fundamental architectural difference: CPUs are optimized for high performance

on sequential code, with many transistors dedicated to extracting instruction-level

parallelism with techniques such as branch prediction and out-of-order execution.

1. Introduction 5

On the other hand, the highly data-parallel nature of graphics computations enables

GPUs to use additional transistors more directly for computation, achieving higher

arithmetic intensity with the same transistor count [51]. Many other computations

found in modeling and simulation problems are also highly data-parallel and therefore

can take advantage of this specialized processing power.

Hence, this research uses the benefit of the high performance of the GPU to

implement fast algorithms that can simulate ice-ice and ice-structure interactions in

a very short time. Simulation of the behaviour of a ship operating in pack ice is a

computationally intensive process to which a GPGPU approach can be applied. This

thesis presents an efficient parallel implementation of such a simulator developed using

CUDA. It also presents the results of the experiments that have used to evaluate

the performance of the algorithms that have developed in this work. Moreover, it

describes the experiments to validate the numerical model of ship operations in 2D

pack ice and the useful applications that have been done using this simulator in

planning ice management activities.

The experiments that have been used to evaluate the performance of the algo-

rithms will be discussed in detail in Chapter 5 and are listed below:

• The first experiment explores the effectiveness of CUDA using a GPGPU ap-

proach to detect and locate the intersection between polygons. It consists of

implementing both GPU and CPU versions of the algorithms to detect and

locate the intersection between polygons and then running both of them on

various data sets of various sizes and measuring the speed-up.

1. Introduction 6

• The second experiment explores the effectiveness of CUDA using a GPGPU

approach for 2D triangulation of polygons. It consists of implementing a GPU

and CPU versions of the algorithm and then running both of them on various

data sets of polygons of various set sizes and measuring the speed-up.

• The third experiment consists of implementing both GPU and CPU versions of

the simulator and running them both on various ice fields for several iterations

to compare the performance.

• The fourth experiment explores two alternative collision detection approaches.

The first approach is called uniform grid [20] and the second approach is called

triangulation mesh [41]. It also discusses the performance evaluation of the two

approaches.

A number of experiments were done to validate the numerical model of ship op-

erations in 2D pack ice. These experiments will be discussed in detail in Chapter 6.

It consists of the design and execution of experiments to validate a Graphics Pro-

cessing Unit based numerical modeling of ship operations in 2D pack ice. Using a

polypropylene vessel and floes, ship-floe and floe-floe interactions are modelled in a

model basin and recorded on camera. The video is processed using image processing

techniques to track individual floes (and the vessel) to calculate their position and

velocity over time. These results are compared with those of a numerical simulation

using identical initial conditions. Conclusions are drawn about the accuracy of the

numerical model and several points of improvement are identified.

1. Introduction 7

The useful applications that have been done using this simulator in planning ice

management activities will be discussed in detail in Chapter 6 and are listed below:

• The first application explores the use of an event-mechanics approach that is

used in the GPGPU model to asses vessel performance in pack ice.

• The second application explores the use of an event-mechanics approach that

is used in the GPGPU model to assess local ice loads on a vessel operating in

pack ice.

1.1 Ice Floe Simulation

The particular problem that we are investigating is to simulate the behaviour of

floating ice floes (pack ice, see Figure 1.1) as they move under the influence of currents

and wind and interact with land, ships and other structures, possibly breaking up in

the process. In a two-dimensional model, we model the floes as convex polygons and

perform a discrete time simulation of the behaviour of these objects. The goal of this

work is to be able to simulate behaviour of ice fields sufficiently quickly to allow the

results to be used for planning ice management activities, and so it is necessary to

achieve many times faster than real-time simulation.

1.2 Scope

This project is structured in two components, the Ice Simulation Engine, which is the

focus of this thesis, and an Ice Simulation Viewer, which is being developed to display

1. Introduction 8

Figure 1.1: Ice floes.[28]

the data produced by the simulation engine. The simulation viewer displays frames

of ice field data sequentially to provide its user with a video of a simulation of the

field. It is currently used by the STePS2 software team to help determine the validity

of the data calculated by the simulation and will eventually be used to present results

to project partners. The Ice Simulation Viewer is being developed in C++ using the

Qt [4] user interface framework. Figure 1.2 shows a screenshot of the main interface

of the Ice Simulation Viewer with an ice field loaded. For more details about the Ice

Simulation Viewer see [2].

This thesis handles the 2D simulation of pack ice and consider driving forces (e.g.,

1. Introduction 9

Figure 1.2: Ice simulation viewer.

current, wind) and investigates Modeling of 3D aspects but doesn’t consider motion

in 3D. The goal is to achieve a simulation that is fast enough to be practically used

for planning ice behaviour and vessel activities in realistic size ice fields. The 3D

version of the simulation will be left for future work.

1.3 Collaborations

In this thesis, there are a number of aspects that were done in-collaborations with

Dr. Claude Daley and Roelf C. Dragt. These collaborations are discussed in detail

in Chapter 6. A full list of the contributions of this thesis are discussed in detail in

Chapter 7. The contributions in these collaborations are as follows:

• Design and coding of the GPGPU ice simulator software to implement the ice

1. Introduction 10

mechanics equations.

• Implementing and optimizing collision detection and intersection algorithms

that are used in the ice simulator to get a hyper-real-time simulation.

• Performed all experiments using various ice fields to obtain all the numerical

data from the simulations that is needed to validate the GPGPU model func-

tionality and to assess the local ice loads on a vessel operating in pack ice.

1.4 Outline of this Thesis

Chapter 2 describes the related work. Chapter 3 describes the mechanics of the

GPGPU model. Chapter 4 describes the programming language that is used to

implement the simulator, the algorithms for the collision detection and the simulator

framework. The algorithm development and experiments to evaluate the performance

are discussed in Chapter 5, and Chapter 6 discusses the experiments to validate the

GPGPU model and it also discusses the useful application of the GPGPU ice simulator

in simulating and analysis vessel operations in pack ice. Chapter 7 discusses the

conclusions and future work.

Chapter 2

Related Work

2.1 Ice Simulation

The interaction between a ship and ice is a complex process. The most important

factors that this process depends on are: the ice conditions, the hull geometry and

the relative velocity between the ship and the ice. The main idea of ice breaking

was explained by Enkvist et al [19]. Kotras et al. [32] and Valanto [62] described an

overview of ship-level ice interaction where they divided the interaction process into

several phases: breaking, rotating, sliding and clearing. This work focuses on the 2D

clearing in open pack ice and the ice breaking.

A good understanding of the processes of ship-ice interaction is essential for de-

veloping reliable theoretical models. These models help optimise the design and

operation of ships in Arctic waters. Several performance models exist, including

semi-analytical and purely empirical variants, e.g. [38, 29, 55]. These models can be

11

2. Related Work 12

used in the early design stage for an icebreaker to choose a hull form and a propulsion

system that give the best possible performance in terms of global resistance, available

thrust, maximum speed and fuel consumption. As well as they can be used to help

ship crew optimise their route.

Lubbad et al. [39] described a numerical model to simulate the process of ship-

ice interaction in real-time, using PhysX [44], a real-time physics engine middleware

SDK, to solve the equations of rigid body motions for all ice floes in the calculation

domain. They have validated their results of the simulator against experimental

data from model-scale and full-scale tests. The validation tests showed a adequate

agreement between the model calculations and experimental measurements. The goal

of this work is to be able to simulate behaviour of ice fields sufficiently quickly by using

GPGPU to allow the results to be used for planning ice management activities, and

so it is necessary to achieve many times faster than real-time simulation. The results

of that work suggest that the level of hyper-real-time performance that we hope to

achieve will not result from PhysX. The physics engine also does not implement the

realistic ice mechanics.

2.2 GPGPU Applications

GPUs have a large number of high-performance cores that are able to achieve high

computation and data throughput. Currently, GPUs have support for accessible

programming interfaces and industry-standard languages such as C. Hence, these

chips have the ability to perform more than just the specific graphics computations

2. Related Work 13

for which they were originally designed. Developers who use GPUs to implement

their applications often achieve speedups of orders of magnitude vs. optimized CPU

implementations [26].

There are several advantages of GPGPU that make it particularly attractive:

Recent graphics architectures provide tremendous memory bandwidth and computa-

tional horsepower. Graphics hardware is fast and getting faster quickly. Graphics

hardware performance is increasing more rapidly than that of CPUs because of semi-

conductor density, driven by advances in fabrication technology, increases at the same

rate for both platforms.

Section 2.2, describes an overview of some applications in which general-purpose

computing on graphics hardware has been successful.

2.2.1 Physically Based Simulation

There are several researchers who have developed particle system simulation on GPUs.

Kipfer et al. [30] described an approach for simulating particle systems on the GPU

including inter-particle collisions by using the GPU to quickly re-order the particles

to determine potential colliding pairs. Kolb et al. [31] described a GPU particle

system simulator that provides a support for accurate collisions of particles with

scene geometry by using GPU depth comparisons to detect penetration. A simple

GPU particle system example is provided in the NVIDIA SDK [22]. They described

how to implement a particle system in CUDA, including particle collisions using a

uniform grid data structure which will be described in chapter 5. The uniform grid

2. Related Work 14

data structure to handle collisions has been tried in this work but it didn’t result in

better performance than the current approach that has been used in this thesis.

Several groups have used the GPU to successfully simulate fluid dynamics. A

couple of papers described solutions of the Navier-Stokes equations (NSE) for incom-

pressible fluid flow using the GPU [5, 21, 27, 33]. Harris [25] gives an introduction

to the NSE and a complete description of a basic GPU implementation. Harris et

al. [27] used GPU-based NSE solutions with partial differential equations (PDEs) for

thermodynamics and water condensation and light scattering simulation to develop

visual simulation of cloud dynamics. A simulation of the dynamics of ideal gases in

two and three dimensions using the Euler equations on the GPU was described in

[24].

Recent work shows that the rigid body simulation for computer games performs

very well on GPUs. Havok [6, 23] explained an API for rigid body and particle

simulation on GPUs which has all features for full collisions between rigid bodies

and particles, and provides support for simulating and rendering on separate GPUs

in a multi-GPU system. Running on a PC with dual NVIDIA GeForce 7900 GTX

GPUs and a dual-core AMD Athlon 64 X2 CPU, Havok FX achieves more than a 10x

speedup running on GPUs compared to an equivalent, highly optimized multithreaded

CPU implementation running on the dual-core CPU alone.

The ice simulation is a computationally intensive process and consists of many

interacting ice floes behaving according to physical models which make it similar to

these kinds of simulation in this category.

2. Related Work 15

2.2.2 Computational Geometry

GPUs have been found useful in computational geometry such as collision detection

and Constructive Solid Geometry (CSG).

Stewart et al [59] have designed an algorithm for Overlap Graph subtraction Se-

quences using the GPU and explain how it can be used with the Sequenced Convex

Subtraction (SCS) algorithm for CSG Rendering. The SCS algorithm for CSG se-

quentially subtracts convex volumes from the z-buffer (When an object is rendered,

the depth of a generated pixel (z coordinate) is stored in a buffer called z-buffer).

The performance of the algorithm is determined by the length of the subtraction

sequence used. They have used an approach which results in faster subtraction of

large numbers of convex objects from the z-buffer. Object-space intersection detec-

tion (spatial overlap) is used as a means of producing shorter subtraction sequences.

They have used a term overlap graph to store the spatial relationship of the objects

in a CSG product. Any CSG tree can be represented as a union of products termed

sum-of-products. CSG products consist only of intersections and subtractions. Nodes

in the graph correspond to shapes or objects while edges in the graph indicate spa-

tial overlaps. Bounding volumes are used to build the overlap graph. Experimental

results indicated speed-up factors of up to three.

Pascucci [52] has introduced an approach to compute isosurfaces using GPUs.

Using the vertex programming capability of modern graphics cards the cost of com-

puting an isosurface is transferred from the CPU to the GPU. Vertex programming

is an assembly language interface to the transform and lighting unit in the GPU and

2. Related Work 16

it provides instruction set to perform all vertex math. This has the advantage that

the task is off-loaded from the CPU and storing the surface in main memory can be

avoided.

Chapter 3

GPGPU Model Description

3.1 Model Input

The model can simulate all transit scenarios in which both the ice floes and the vessel

are modelled as convex polygons with less than twenty sides. For numerical reasons,

the bodies are not allowed to be in initial contact with each other and all objects and

processes are two dimensional.

The floes in the model have three degrees of freedom: movement in x-and y-

direction and rotation around the z-axis. The ship is restricted to one degree of

freedom, movement in x-direction (forward movement). Figure 3.1 shows the 2D

concept.

The starting position of all the floes and the vessel are stored in an .ice-file. This

file type is used as the input for the numerical simulation and contains all the positions

and initial velocities of the bodies (vessel, floes and sides). For more details about

17

3. GPGPU Model Description 18

Figure 3.1: Sketch of 2D concept used in simulations. [11]

the file structure see Appendix B.

3.2 Model Mechanics

3.2.1 Ice Behaviour

As stated in Chapter 1, the concept for the simulation is the rapid assessment of a

sequence of discrete interactions with a large number of discrete ice objects. The

transit of a vessel through pack ice, and the interactions of the ice are modeled as a

set of contact events. The movements are treated using simple equations of motion.

The individual ice blocks move in the 2D space of the simulation. The position and

velocity of each floe is updated every time step. A simple water drag model results

in the floes tending to slow. Ice-ice interactions account for both ice crushing impact

forces and steady elastic stresses to resist static pressure. In this generation of the

model there are no rafting, rubbling and no floe splitting. These are being planned

for future generations of the model.

Each ice-ice collision event within the pack is treated using a method that can

be traced to Popov et. al [53]. The method was updated to reflect pressure-area

effects [9], and used for a variety of ship-ice interaction scenarios [12]. When two

3. GPGPU Model Description 19

bodies collide in a 2D world, each body has 3 degrees of freedom, as well as two mass

parameters, and a shape (see Figure 3.2). The large number of parameters makes

the collision problem potentially very difficult. The problem can be substantially

simplified by making a few simplifying assumptions and viewing the problem from

the perspective of the collision point. It is assumed that the collision will be of short

duration, and that the force will act, in the frictionless case, normal to the line of

contact (see Figure 3.3). With these assumptions the problem can be reduced to an

equivalent one dimensional collision. The equivalent velocity is the closing velocity

at the point of contact along the collision normal

Figure 3.2: Idealization of 2D collision between two finite bodies. [10]

The mass reduction factor (R) for one body subject to a collision along a normal

is:

R = l2 +m2 +
η2

r2x
(3.1)

Where l and m are direction cosines of the inward normal vector, η is the moment

arm of the normal vector about the centroid and r2x is the square of the radius of

gyration of the body (see Figure 3.2). Each body in a two body collision has a unique

mass reduction factor. The above mass reduction factor represents the simplest case

3. GPGPU Model Description 20

Figure 3.3: Assumption concerning the location and direction of impact forces. [10]

for 2D without added mass or friction. Enhancements to the formula have been

developed to include effects of hydrodynamic added mass and friction and 3D effects

(see [9]).

The program assumes that all collisions are inelastic, where the ice crushing energy

absorbs all the effective kinetic energy. A collision is detected in one time step when

the two bodies are found to overlap. The effective masses and normal velocities are

determined for each colliding body for their respective points of impact. The direction

of relative motion is determined to allow the determination of the friction direction.

The impulse that will eliminate the net normal velocity is then found. That impulse

is applied to each body in an equal and opposite sense. The result is that the normal

velocity at that point is zero in the next time step. This does not mean that all

motion is stopped. Ice floes tend to rotate around the collision point and slide away.

3. GPGPU Model Description 21

This approach does contain some idealizations and approximations, but does appear

to be stable and produce reasonable results.

The forces are found by using the “process pressure-area” relationship for ice,

the ice edge shape, hull angles, and effective mass of each collision (see [9]). It

should be noted that two distinct versions of this approach are used in the Ice-Event-

Mechanics simulation. The kinematics of the vessel and ice are modeled in 2D, so

one implementation of the model derives the 2D forces. Those algorithms assume

that the vessel is wall sided, and do not permit ice to move under the hull. Another

algorithm takes the hull form into account and determines impact forces using the 3D

mechanics and shapes. These 3D forces are logged for later analysis. For the above

reasons, the simulation presented is termed a 2.5D simulation. It is for this reason

that the simulations are limited to open pack. High ice concentrations and pressure

in the ice pack would create conditions that would invalidate the assumptions. Future

model development is planned to remove these restrictions. For more details about

the GPU ice simulation equations see Appendix A.

3.2.2 Vessel Description

This section describes the vessel that was used in the experiments in Chapter 6.

The vessel currently simulated is 100m long and 20m wide. The vessel is meant to

represent a large offshore supply vessel with some ice capability. In plan view, the

vessel’s waterline is a polygon as shown in Figure 3.4. The bow of the vessel is sloped

as an ice-going vessel would be. Figure 3.5 shows the 3D shape of the vessel.

3. GPGPU Model Description 22

Figure 3.4: Geometry of 2D vessel polygon. [10]

Figure 3.5: 3D shape of the vessel (half full shown). [10]

The vessel moves through the ice pack using a simple auto pilot model, rather

than at a fixed speed and direction. There is a constant-power thrust and water

resistance model which combines the effects of a reduction in net vessel resistance

and an increase in propeller thrust as the vessel is slowed. In the absence of the pack

ice, this net thrust model brings the vessel to a steady forward speed from a standing

or moving start.

3. GPGPU Model Description 23

The net thrust is calculated as follows:

Tnet = Tbollard − CresistanceV 3 (3.2)

Where Tnet is the net thrust applied to the vessel model, Tbollard is the arbitrary

assigned bollard (zero speed) thrust and V is the ship velocity.

The constant Cresistance incorporates both resistance reduction and thrust increase

effects and is calculated for each bollard thrust such that the net thrust is zero at a

given open water speed Vow. This model means that the vessel has a declining net

force applied to it as the speed increases and will find a lower equilibrium speed as

the average ice force from ice impacts increases. The simulations that were done in

Chapter 6 cover 5 power levels, which are expressed in terms of the bollard thrust

from a low of 46.25kN to a high of 740kN of thrust.

When the vessel strikes an ice floe it can be slowed or deflected or both. Course

control is achieved by providing un-coupled heading and sway Proportional-Derivative

controls that apply a countering sway force and a countering yaw moment when

deviations in the set heading and course line are detected. Damping is provided by

sway and yaw velocity dependent terms.

Myaw = G1δθ +G2
dθ

dt
(3.3)

Fsway = G3δy +G4
dy

dt
(3.4)

Where Myaw is the correcting moment, δθ is the deviation from the set head-

ing, Fsway is the correcting sway force, δy is the deviation from the set track and

3. GPGPU Model Description 24

G1, G2, G3, G4 are controller gains that are set to achieve the desired course holding

characteristics.

This simple autopilot steers the vessel back on track. In this way the vessel more

realistically responds to the multiple collisions that it experiences. Floe impacts tend

to slow the vessel and cause deviations in the track and heading but these deviations

are countered by the change in thrust or changes in moment and sway force. For

more details about the properties of the vessel see Appendix A.1.2.

Chapter 4

Methodology

4.1 Single Program Multiple Data (SPMD) Par-

allel Programming Model

This work uses the SPMD programming model. In this programming model all tasks

perform the same computations on different partitions of the data. This model also

has the required features to allow the tasks to branch or conditionally perform some

of the computations. Therefore, it is not necessarily that all tasks should perform all

computations. Figure 4.1 illustrates the SPMD model.

25

4. Methodology 26

Figure 4.1: SPMD model. [3]

4.2 Stream Processing

The basic programming model of traditional GPGPU is stream processing, which is

closely related to SIMD1. A uniform set of data that can be processed in parallel is

called a stream. The stream is processed by a series of instructions, called a kernel

[50]. Stream processing is a very simple and restricted form of parallel processing

that avoids the need for explicit synchronization and communication management.

It is especially designed for algorithms that require significant numerical processing

over large sets of similar data (data parallelism) and where computations for one part

of the data only depend on ‘nearby’ data elements. In the case of data dependencies,

recursion or random memory accesses, stream processing becomes ineffective [50, 7].

Computer graphics processing is very well suited for stream processing, since ver-

tices, fragments and pixels can be processed independently of each other, with clearly

defined directions and address spaces for memory accesses. The stream processing

programming model allows for more throughput-oriented processor architectures. For

1Single Instruction Multiple Data, in the Flynn’s taxonomy of computer architectures

4. Methodology 27

example, without data dependencies caches, can be reduced in size and the transistors

can be used for ALUs instead. Figure 4.2 shows a simple model of a modern CPU

and a GPU. The CPU uses a high proportion of its transistors for controls and caches

while the GPU uses them for computation (ALUs).

Figure 4.2: Simple comparison of a CPU and a GPU. [47]

4.3 CUDA

Compute Unified Device Architecture (CUDA) is a comprehensive software and hard-

ware architecture for GPGPU that was developed and released by Nvidia in 2007. It

is Nvidia’s move into GPGPU and High-Performance Computing (HPC), combining

good programmability, performance, and ease of use. A major design goal of CUDA

is to support heterogeneous computations in a sense that serial parts of an application

are executed on the CPU and parallel parts on the GPU[46]. A general overview of

CUDA is illustrated in Figure 4.3.

Nowadays, there are two distinct types of programming interfaces supported by

CUDA. The first type is using the device level APIs (left part of Figure 4.3) in

4. Methodology 28

Figure 4.3: CUDA overview. [45]

which we could use the new GPGPU standard DirectX Compute by using the high-

level shader language (HLSL) to implement compute shaders. The second standard is

OpenCL which is created by the Khronos Group (as is OpenGL). OpenCL kernels are

written in OpenCL C. The two approaches don’t depend on the GPU hardware; hence

they can use GPUs from different vendors. In addition to that, there is a third device-

level approach through low-level CUDA programming which directly uses the driver.

One advantage of this approach is it gives us a lot of control, but a disadvantage is that

it is complicated because it is low-level (it interacts with binaries or assembly code).

Another programming interface is the language integration programming interface

(right column of Figure 4.3). It is better to use the C runtime for CUDA, which

4. Methodology 29

is a high-level approach that requires less code and is easier in programming and

debugging [45]. Also, other high-level languages could be used (e.g. Fortran, Java,

Python, or .NET languages through bindings). Therefore, this work uses the C

runtime for CUDA.

Based on [43], the CUDA programming model suggests a helpful way to solve

the problems by splitting it into two steps: First dividing the problem into coarse

independent sub-problems (grids) and then into finer sub-tasks that can be executed

cooperatively (thread blocks). The programmer writes a serial C-for-CUDA program,

which invokes parallel kernels (functions written in C). The kernel is usually executed

as a grid of thread blocks. In each block the threads work together through barrier

synchronization and they have access to a shared memory that is only visible to

the block. Each thread in a block has a different thread ID. Each grid consists of

independent blocks. Each block in a grid has a different block ID. Grids can be

executed either independently or dependently. Independent grids can be executed in

parallel provided that we have a hardware that supports executing concurrent grids.

Dependent grids can only be executed sequentially. There is an implicit barrier that

ensures that all blocks of a previous grid have finished before any block of the new

grid is started.

4.4 Collision Detection

Since a discrete time simulation has been used in this work, for each time step,

collisions are detected by searching for regions of overlap between ice floes, computing

4. Methodology 30

the force that would result from such a collision and adjusting the velocity of each

floe accordingly. The problem of detecting collisions between ice floes is broken down

into two parts: determining if the floes are overlapping and computing the region of

overlap.

To determine whether or not two convex polygons are intersecting, the method

of separating axes [17] has been used. This method is for determining whether or

not two stationary convex objects are intersecting. This method is a fast generic

algorithm that can remove the need to have collision detection code for each type

pair (any type of convex polygons: 3-sided, 4-sided, 5-sided, etc...) thereby reducing

code and maintenance.

In this method the test for nonintersection of two convex objects is simply stated:

If there exists a line for which the intervals of projection (the lowest and highest

values of the polygon projection on the line) of the two objects onto that line do not

intersect, then the objects do not intersect. Such a line is called a separating line or,

more commonly, a separating axis.

For a pair of convex polygons in 2D, only a finite set of direction vectors needs to

be considered for separation tests: the normal vectors to the edges of the polygons.

The left picture in Figure 4.4 shows two nonintersecting polygons that are separated

along a direction determined by the normal to an edge of one polygon. The right

picture shows two polygons that intersect (there are no separating directions).

Once it is determined that two polygons are overlapping, the region of overlap

is identified to compute the resultant momentum. Finding the intersection of two

4. Methodology 31

Figure 4.4: Nonintersecting convex polygons (left). Intersecting convex polygons
(right). [17]

arbitrary polygons of n and m vertices must have quadratic complexity, Ω(nm). But

the intersection of two convex polygons has only linear complexity, O(n+m). Inter-

section of convex polygons is a key component of a number of algorithms, including

determining whether two sets of points are separable by a line. The first linear al-

gorithm was found by Shamos [57], and since then a variety of different algorithms

have been developed, all achieving O(n + m) time complexity [49]. This work uses

the algorithm that was developed by O’Rourke, Chien, Olson & Naddor.

The basic idea of the algorithm is as illustrated in Algorithm 1 [49]. Here, the

boundaries of the two polygons P and Q are oriented counterclockwise, and let A and

B be directed edges on each. The algorithm has A and B chasing one another. An

example that explains the algorithm is illustrated in Figure 4.5. The edges A and B

are shown as vectors. For more details about the algorithm see [49].

4. Methodology 32

Algorithm 1 :Intersection of convex polygons

// Assume that P and Q overlap

Choose A and B arbitrarily.

repeat

if A intersects B then

The point of intersection is a vertex.

One endpoint of each of A and B is a vertex.

end if

Advance either A or B, depending on which is pointing at the other.

until both A and B cycle their polygons

if no intersections were found then

One polygon must be entirely within the other.

end if

4. Methodology 33

Figure 4.5: Snapshots of polygon intersection algorithm, sequenced left to right, top
to bottom. [49]

4. Methodology 34

4.5 High Level Algorithm of the Simulator

Figure 4.6 shows the high-level flow of the ice simulator. At the beginning the CPU

reads the ice floe data (position and velocity) and initializes the simulation parame-

ters. The initial data is transferred from the CPU to the GPU. Then, the GPU takes

over the main work of the simulation. First, the “create neighbours list” kernel is

launched to find the list of ice floes that might overlap with each ice floe. Then, the

“test intersection and find collision response” kernel is launched to determine the list

of ice floes that have overlap with each ice floe and to calculate the collision response

for each ice floe. Last, the “update” kernel is launched to update the position and

velocity for all ice floes. After that, the ice floes data is transferred back to the CPU.

This process is repeated until the simulation is completed. The kernels were executed

using one thread for each ice floe.

4. Methodology 35

Figure 4.6: Ice simulator flowchart.

Chapter 5

Optimization and Development

This chapter describes the experiments that have used to evaluate the performance

of the algorithms that have developed in this work. It also discusses the different

approaches for implementing the ice simulator.

This work uses Intel(R) Xeon(R) CPU @2.27GHz and a GPU Tesla C2050 card

which is shown in Figure 5.1. This card has 448 processor cores, 1.15 GHz processor

core clock and 144 GB/sec memory bandwidth.

5.1 Implementation Discussion of the Ice Simula-

tor

As implementation have been developed. Three different general structures of the

GPU solution have been progressed through. They are explained below and the

relative performance of these is illustrated in Figure 5.2.

36

5. Optimization and Development 37

Figure 5.1: Tesla C2050. [48]

In the first implementation, two CUDA kernels were used: The first kernel was

executed using one thread per ice floe, it finds the list of all pair-wise collisions by

determining which pairs of ice floes are overlapping. The second kernel was executed

using one thread per overlapping ice floe pair, it computes the collision response

(momentum) for each pair. This approach resulted in speed-up of up to 10 times as

compared with the CPU implementation, but didn’t achieve hyper-real-time results

in all cases and therefore was insufficient.

In the second implementation the two kernels were merged in one kernel. One

thread for each polygon to check the collision with other ice floes and calculate the

response. This approach was a little faster than the first, but still insufficient for the

general case.

In the third implementation took advantage of the fact that ice floes that are

widely separated are unlikely to overlap any time soon, and therefore the number

of ice floes to be checked for collision can be dramatically reduced by eliminating

5. Optimization and Development 38

those that are beyond some distance away. To do this another kernel was added to

find the list of neighbours for each ice floe that are within the region where they

might overlap with it soon. Therefore, instead of checking the collisions with every

other ice floe, the collisions just need to be check with those in this list. The list is re-

created periodically, but not every time step, so that the total number of computations

is significantly reduced. This approach is significantly faster than the other two

approaches as seen in Figure 5.2 and achieves substantially better than real-time for

small ice fields.

Figure 5.2: Computation time per iteration of the three GPU approaches for an ice
field has 456 floes.

5. Optimization and Development 39

5.2 Polygon Intersection

The problem was explored here is to detect and locate the intersection between poly-

gons. Both serial and parallel algorithms to compute the intersection between poly-

gons were implemented. Then, both algorithms were run using 25 data sets of poly-

gons: five different set sizes (100, 500, 1000, 2000, 3000) and each size has five data

sets. These sets were generated randomly using matlab. Finally, the speed-up (ratio

of time for serial algorithm to that for parallel algorithm) was measured.

5.2.1 Results

Figure 5.3 shows the CPU and GPU time to detect and locate the intersection between

polygons for all five data sets. As seen in Figure 5.3, it is clear that the GPU time is

less than the CPU time, and as the number of polygons increases, the CPU time gets

much higher than GPU time. Therefore, the GPU is faster when there are a huge

number of polygons.

Figure 5.4 shows the speed up in all five different cases. As seen in Figure 5.4, the

highest speed up is when the number of polygons is 448. This is due the number of

processor cores (448) on the GPU card that has been used in this work. Each polygon

is handled by one core, but in cases where there are more than 448 polygons, one core

must handle more than one polygon.

5. Optimization and Development 40

Figure 5.3: Compute time.

5.3 2D Triangulation of Polygons

The triangulation mesh to handle the collision detection has been tried in this work.

Therefore, the present work explores the effectiveness of CUDA using GPGPU ap-

proach for 2D Triangulation of Polygons. An experiment to measure the performance

of the GPU with respect to the CPU was conducted. The experiment consists of

implementing a serial and parallel algorithm to triangulate 2D polygons. Both algo-

rithms were run using 6 data sets of polygons of different set sizes (500, 1000, 2000,

4000, 8000, 16000) and then the speed-up was measured.

5.3.1 Polygon Triangulation by Ear Clipping

Polygon Triangulation is the process of decomposing a simple polygon into triangles.

It is known from computational geometry that any triangulation of a simple polygon

5. Optimization and Development 41

Figure 5.4: Speed up of the GPU implementation to detect and locate the intersection
between polygons over the CPU implementation.

of n vertices has n − 2 triangles. There are several algorithms that have been used

for polygon triangulation. In this work, the ear clipping algorithm have been used,

which has quadratic complexity, O(n2), in the number of verticies. Another algorithm

that has a linear complexity, O(n), is known in theory [8] but it is more difficult to

implement.

An ear of a polygon is a triangle formed by three consecutive vertices V0, V1, V2

such that no other vertices of the polygon are located inside the triangle. The line

segment between V0 and V2 is called a diagonal of the polygon. The vertex V1 is called

the ear tip. Based on [41], any simple polygon with at least four vertices has at least

two non-overlapping ears. Therefore, the basic idea of this algorithm as illustrated

in Algorithm 2 is to find such an ear, remove it from the polygon and repeat this

process until there is only one triangle left.

5. Optimization and Development 42

Algorithm 2 :Ear clipping

1. while n > 3 do

(a) Locate an ear tip v2

(b) Output the the triangle v1, v2, v3

(c) delete v2

Figure 5.5 shows an example that explains the triangulation algorithm.

Figure 5.5: Ear clipping process. [18]

5. Optimization and Development 43

5.3.2 Results

Figure 5.6 shows the CPU and GPU time to triangulate polygons for all six data sets.

As seen in Figure 5.6, it is clear that the GPU time is significantly less than the CPU

time, and as the number of polygons increases, the CPU time gets much higher than

GPU time. Therefore, the GPU is faster when there are huge number of polygons.

Figure 5.7, which shows the speed up for all six set sizes. As seen in Figure 5.7, the

highest speed up is when the number of polygons is 2000. This is due to the number

of multiprocessors on the card that we have used (14). In CUDA each thread block

executes on one multiprocessor. In this work a block size of 128 threads was used.

Therefore, the number of blocks is 16 (2000/128) which is approximately equal to

the number of multiprocessors (14). So, each block is approximately handled by one

multiprocessor, but in cases where are more than 2000 polygons one multiprocessor

must handle more than one block.

5.4 Ice Simulator Performance Evaluation

A serial and parallel version of the simulator were implemented and both versions

were tested on two different ice fields and different (real-time) durations. The first ice

field has 456 ice floes and the second one has 824 ice floes. These two ice fields will

be described in Chapter 6. The simulations were run with and without ice breaking.

In both cases, there was no difference in the performance therefore it didn’t slow

down the speed-up of the simulator. The computation time step (∆t) that was used

5. Optimization and Development 44

Figure 5.6: Compute time of polygon triangulation.

in the simulations is 0.1s. This time step is chosen to maintain accuracy in the ice

mechanics. Two different approaches were tried to generate the list of neighbours

for each ice floe: In the first approach, a fixed radius around each floe in the entire

ice field was used. In the second approach, the list of neighbours were found using

a variable radius specific to each floe pair (bounding circle check - see Figure 5.8).

When using bounding circle method, a circle is assumed around the ice floe. The

radius of this circle is equal to the largest radius in the ice floe. When an imaginary

circle touches or overlaps another imaginary circle (around the ice floe), the ice floe

is considered a neighbour. Finally, the speed-up was measured.

5. Optimization and Development 45

Figure 5.7: Speed up of the GPU implementation of polygon triangulation over the
CPU implementation.

Figure 5.8: Bounding circle method.

5. Optimization and Development 46

5.4.1 Results

Figure 5.9 shows the CPU and GPU computation time per iteration to simulate the

behaviour of the ship in the first ice field which has 456 ice floes for all five different

durations (numbers of iterations) using the two approaches for generating the list of

neighbours. As seen in Figure 5.9 it is clear that the second approach, using a variable

radius, is faster than the first approach, using a fixed radius, and the GPU time is

much lower than the CPU time. Therefore, this work uses the second approach to

generate the list of neighbours. Moreover, the simulation is hyper-real-time since the

computation time per iteration is less than the computation time step (∆t = 0.1s).

Figure 5.9: Computation time per iteration for the 456 ice field.

Figure 5.10 shows the speed up in all five different cases using the second approach

for generating the list of neighbours for the first ice field.

5. Optimization and Development 47

Figure 5.10: Variable radius approach speed up for the 456 ice field.

Figure 5.11 shows the CPU and GPU computation time per iteration to simulate

the behaviour of the ship in the second ice field, which has 824 ice floes for all five

different durations using the two approaches that we have used to generate the list of

neighbours. As seen in Figure 5.11 it is clear again that the variable radius approach

is faster than the fixed radius approach, and the GPU time is much lower than the

CPU time. Moreover, the simulation is hyper real-time, since the computation time

per iteration is less than the computation time step (∆t = 0.1s).

Figure 5.12 shows the speed up in all five different cases using the second approach

for generating the list of neighbours for the second ice field.

5. Optimization and Development 48

Figure 5.11: Computation time per iteration for the 824 ice field.

5.5 Alternative Collision Detection Approaches

This section describes an alternative collision detection approaches that have been

tried in this work. It also discusses the performance evaluation of the approaches.

5.5.1 Uniform Grid Data Structure

In the uniform grid [20], a grid subdivides the simulation space into a grid of uniformly

sized cells. For the sake of simplicity, a gird where the cell size is the same as the size

of the largest ice floe (double its radius) was used. Also, the grid is called “loose”

grid, where each ice floe is assigned to only one grid cell based on it is centroid. Since

each ice floe can potentially overlap several grid cells, this means that the ice floes

in the neighbouring cells (9 cells in total in 2D grid) must be also examined in the

5. Optimization and Development 49

Figure 5.12: Variable radius approach speed up for the 824 ice field.

collision processing to see if they are touching the ice floe.

The grid is built using sorting. The algorithm to build the grid consists of several

kernels. The first one “calcHash” calculates a hash value for each ice floe based on its

cell id. The linear cell id as the hash was used. The kernel stores the results to the

“particleHash” array in global memory as a uint2 pair (cell hash, ice floe id). Then,

the ice floes are sorted based on their hash values. The sorting is performed using the

fast radix sort provided by the CUDPP library, which uses the algorithm described

in [56]. This creates a list of ice floe ids in cell order. In order for this sorted list

to be useful, the start of any given cell in the sorted list must be calculated. This

is done by running another kernel “findCellStart”, which uses a thread per ice floe

and compares the cell index of the current ice floe with the cell index of the previous

ice floe in the sorted list. If the index is different, this indicates the start of a new

5. Optimization and Development 50

cell, and the start address is written to another array using a scattered write. Also,

the index of the end of each cell is found in a similar way. Figure 5.13 demonstrates

creating the grid using the sorting method.

Figure 5.13: Uniform grid using sorting. [20]

5.5.1.1 Results

Figure 5.14 shows the GPU computation time per iteration to simulate the behaviour

of the ship in the first ice field which has 456 ice floes for all five different durations.

“Variable Radius” is the computation time using the list of neighbours approach that

have been discussed in section 5.1 and “Uniform Grid” is the computation time using

the uniform grid approach.

Figure 5.15 shows the speed up of using the variable radius approach over the

uniform grid approach in all five different cases.

As seen in Figures 5.14 and 5.15 it is clear that the uniform grid approach is slower

than the variable radius approach. Therefore, the variable radius approach was used

in this work.

5. Optimization and Development 51

Figure 5.14: Computation time per iteration for the 456 ice field using the uniform
grid and list of neighbours approaches.

5.5.2 Triangulation Mesh

The second alternative collision detection approach called triangulation mesh. Based

on this approach to determine if two polygons intersects: each polygon is divided

into triangles and then it is determined whether at least two triangles from the two

polygons intersects.

5.5.2.1 Results

Figure 5.16 shows the GPU computation time per iteration to simulate the behaviour

of the ship in the first ice field which has 456 ice floes for all five different durations.

“Variable Radius” is the computation time using the list of neighbours approach that

5. Optimization and Development 52

Figure 5.15: Variable radius approach speed up over uniform grid approach for the
456 ice field.

have been discussed in section 5.1 and “Triangulation Mesh” is the computation time

using the triangulation mesh approach.

Figure 5.17 shows the speed up of using the variable radius approach over the

triangulation mesh approach in all five different cases.

As seen in Figures 5.16 and 5.17 it is clear that the triangulation mesh approach

is slower than the variable radius approach. Therefore, the variable radius approach

was used in this work.

5.6 Kernel Block Size and Number of Blocks

As seen in Chapter 4, the kernel is executed as a grid of thread blocks. Therefore,

the block size (number of threads per block) and the number of blocks per grid must

5. Optimization and Development 53

Figure 5.16: Computation time per iteration for the 456 ice field using the triangula-
tion mesh and list of neighbours approaches.

be identified before the kernel is launched. A number of experiments were done to

see the effect of the block size and number of blocks on the performance of the ice

simulator. The simulator was run on two different ice fields for 3000 iterations with

different block sizes (2, 4, 8, 16, 32, 64, 128, 256). The first ice field has 3584 ice floes

and the second one has 7168 ice floes. Then, the computation time per iteration is

measured, which shown in Figure 5.18.

As seen in Figure 5.18, the computation time per iteration is higher for smaller

block sizes and when the block size is 32 and higher the computation time per iteration

gets better. This is due to the number of multiprocessors on the GPU card that were

used (14). Also, each multiprocessor has 32 cuda cores. Therefore, to get the full

use of the multiprocessors the block size should be a multiple of the number of cuda

5. Optimization and Development 54

Figure 5.17: Variable radius approach speed up over triangulation mesh approach for
the 456 ice field.

cores per multiprocessor on the GPU card (32) and the number of blocks should be

a multiple of the number of multiprocessors on the GPU card (14). When the block

size is 32, the number of blocks for the 3584 ice field is 112 (=3584/32). Since one

thread is used for each ice floe, the number of blocks is equal to the number of ice

floes divided by the block size. Tables 5.1 & 5.2 show the number of blocks for each

ice field.

5.7 Data Transfer between the GPU and the CPU

It is known that the data transfer between the GPU and the CPU is a big bottleneck

in achieving high performance in GPU/CPU applications. Therefore, to reduce the

5. Optimization and Development 55

Figure 5.18: Computation time per iteration using different block sizes

latency of transferring the data back from the GPU to the CPU, a parameter (n) was

added to control the number of time steps taken before copying the data back to the

CPU.

Another experiment was conducted to see the effect of copying the data back from

the GPU to the CPU on the performance of the simulator. The experiment consists

of simulating an ice field that has a 7168 ice floes for 3000 iterations and measuring

the computation time per iteration for a different values of n (the number of time

steps). As seen in Figure 5.19, the computation time per iteration decreases as the

number of timesteps increases. When the number of timesteps increases, the amount

of data that is copied back from the GPU to the CPU decreases and therefore the

5. Optimization and Development 56

Table 5.1: The number of blocks for the 3584 ice field
#Of Blocks Block Size
1792 2
896 4
448 8
224 16
112 32
56 64
28 128
14 256

Table 5.2: The number of blocks for the 7168 ice field
#Of Blocks Block Size
3584 2
1792 4
896 8
448 16
224 32
112 64
56 128
28 256

computation time decreases.

5. Optimization and Development 57

Figure 5.19: Computation time per iteration using different number of timesteps

Chapter 6

Model Validation and Applications

This chapter describes the experiments to validate the numerical model of ship oper-

ations in 2D pack ice. It also describes the useful applications that have been done

using the GPGPU ice simulator in simulating and analysis vessel operations in pack

ice.

6.1 Model Validation

A series of pilot experiments to validate the generic GPGPU model functionality and

to identify points of improvement has been performed in cooperation with Roelf C.

Dragt and was presented in a conference paper [16]. He was an exchange student in

the STePS2 project.

58

6. Model Validation and Applications 59

6.1.1 Modeling the GPGPU Model

The GPGPU model has been validated using physical model experiments. These

experiments were designed to replicate the physical conditions of the GPGPU model

as closely as possible. Most important were the degrees of freedom for the floes and

the vessel. The floes have three degrees of freedom; movement in x-and y-direction

and rotation around the z-axis. This means that rafting and rubbling are excluded.

The ship is restricted to one degree of freedom, movement in x-direction (forward

movement). Figure 6.1 shows the 2D concept and the axis used.

X
Y

Z

-��7
6

Figure 6.1: Schematic view of the 2D concept used in the model.

6.1.2 Model Experiments

The main goal is divided into three subgoals:

A To develop a repeatable method of creating ship-floe and floe-floe collisions in

the lab that is consistent with the 2D formulation of the GPGPU model.

B To develop a method to compare the results to a numerical simulation.

C Validate the numerical model and make recommendations.

6. Model Validation and Applications 60

6.1.2.1 Method of Creating Ship-Floe and Floe-Floe Collisions

The experiments are carried out in a transparent acrylic tank, located in the marine

laboratory of Memorial University of Newfoundland’s Engineering and Applied Sci-

ences Faculty. The tank measures 7.9 meter in length, 1.47 meters wide and 0.97

meters deep and the walls are constructed out of acrylic glass to enable an all-round

view, as is shown in Figure 6.2.

Figure 6.2: Drawing of the acrylic tank, dimensions are in meters.

The ship and the floes are constructed out of polypropylene, with a density of 905

kg/m3, which closely approximates to the density of ice. Polypropylene was chosen

because it has the right density and it doesn’t melt. These properties are close to the

conditions of the GPGPU model, which assumes rigid body behaviour. Finally, the

material can be reused many times, which makes it an ideal material for tank testing.

6. Model Validation and Applications 61

The floes are 12.7 mm thick (1/2 inch) and randomly shaped into convex polygons

with three to six sides. The vessel itself was made out of a 50.8 mm thick (2 inch)

sheet of polypropylene, with an overall length of 0.91 m (36 inches) and a beam

of 0.178 m (7 inches). A small recess was machined into the vessel to reduce the

weight and increase the freeboard. The floes and the vessel do not change shape over

the depth, because of the 2D restriction. Figure 6.3 shows the vessel with her main

dimensions.

The vessel is controlled using an overhead carriage, which is connected to the

vessel using an aluminium tow post. The carriage is suspended and moved by a

wire loop, mounted over the centerline of the tank. The wire is driven by a variable

speed motor, which is controlled by a DC controller (see Figure 6.4). Unfortunately,

the overhead carriage was not stiff enough to restrict all the vessel’s movements in

sway and yaw direction. Therefore, the criteria set for the experiment (the vessel

only moves in x-direction) was not entirely met. However, the error introduced is

relatively small, as is shown in subsection 6.1.2.2.

Figure 6.3: Design drawing of the vessel used in the experiments.

6. Model Validation and Applications 62

Figure 6.4: Schematic experiment layout, showing the vessel, some floes and the
towing carriage above the tank.

(a) Position in 2D space (b) Velocity in x-direction

(c) Velocity in y-direction

Figure 6.5: Comparison between the numerical model (Num) and experimental data
(Exp) of a one ship and one floe situation.

6. Model Validation and Applications 63

(a) Position in 2D space (b) Velocity in x-direction

(c) Velocity in y-direction

Figure 6.6: Pack ice comparison, numerical model (Num) and experimental data
(Exp).

6.1.2.2 Comparison of Experimental Data to Numerical Simulation

The starting position of all the floes, is manually converted into an .ice file. This file

type is used as the input for the GPGPU simulation and contains all the positions

and initial velocities of the bodies (vessel, floes and sides).

The GPGPU simulation processes the .ice input file and the resulting position

6. Model Validation and Applications 64

and velocities for each floe and the vessel over time are compared with those from

the experiment, creating a plot with overlaying directions and velocity profiles. A

situation with one floe and the vessel is shown in Figure 6.5 and a pack ice simulation

is shown in Figure 6.6. Both figures display the position (a), velocity in x-direction (b)

and velocity in y-direction (c). The experimental data contained some noise, which is

filtered by averaging. Also, due to the resolution of the camera and the thresholding

method, a change in centroid of just a couple of pixels induces in velocity.

Also, the ship in the experiment is able to sway a little, which is visible on the

graphs. However, these disturbances are relatively small compared to the floe veloci-

ties.

Finally, the graphical output of the numerical model enables qualitative compari-

son with the experimental data by placing both videos next to each other, as is shown

for four frames in Figure 6.7.

6.1.2.3 Numerical Model Validation and Recommendations

The model is validated in a qualitative way, visually comparing the data from the

experiment with the GPGPU simulations. Conclusions can be drawn from this com-

parison, because the data sets are obviously different.

Based on the comparison of four experiments with only one floe and the vessel

and one experiment with thirty floes and one vessel, the conclusions are as follows:

1. The hydrodynamics of the floes (water drag, added mass and wave damping)

are likely is need of improvement in the GPGPU model. This shows floes (in

6. Model Validation and Applications 65

(a) t ≈ 4 sec

(b) t ≈ 8 sec

(c) t ≈ 12 sec

(d) t ≈ 25 sec

Figure 6.7: Comparison between the numerical simulation and the experiments of
a single case. The bodies in the numerical model are shown with coloured dots for
clarity.

6. Model Validation and Applications 66

open water, see Figure 6.5) loosing little velocity over time compared to the

experiments. Since the model is used to model pack ice, open water behaviour

is of less importance than collisional behaviour. However, it does influence the

speed at which the floes collide and thus influences the “chain of events”.

2. The GPGPU model, in pack ice situations (Figure 6.6), shows positions and ve-

locities at the early stage of the simulation which are close to the experimental

values. This leads to the conclusion that the collisions are modelled quite real-

istically. However, over time the average velocity of the floes in the numerical

model is still higher than the velocity of the floes in the experiment, due to the

low loss of energy in from hydrodynamics factors.

3. In the experiment, it is noticeable that the surface tension makes floes stick

together, influencing their motions and speeds. It is clearly seen how the floes

follow a different trajectory in Figure 6.6(a) and 6.7. This is not incorporated

in the model (because in large scale, it is neglectable) but is important in the

scale used for the experiments.

6.2 Applications

This section describes the applications that have been done using the GPGPU ice sim-

ulator in simulating and analysis vessel operations in pack ice. Which have previously

been reported in IceTech [11] and OTC [10].

6. Model Validation and Applications 67

6.2.1 GPU Modeling of Ship Operations in Pack Ice

The work in this section has been done in cooperation with Dr. Claude Daley. A set

of simulation domains, each containing hundreds of discrete and interacting ice floes

is modeled. A simple vessel is modeled as it navigates through the domains. Each

ship-ice collision is modeled, as is every ice-ice contact. Time histories of resistance,

speed and position are presented along with the parametric sensitivities. The results

are compared to published data from analytical, numerical and scale model tests.

The problem explored here is the transit of a vessel through open pack ice (see

Figure 6.8), with floes ranging in size from 1m to 20m. A ship transiting this kind of

ice cover will not only collide with many floes, but the ice floes will interact with each

other in a complex way. A very large number of interactions will occur as a vessel

travels even one ship length. The complexity of the problem is more readily handled

by using the parallel computing power of a GPU.

Figure 6.8: Example of natural first year pack ice. [11]

The simulation results given here represent only a first step in the use of this

technology. The longer term aim of the project is to permit realistic and rapid simu-

6. Model Validation and Applications 68

lation of a wide range of ship-ice and ice-structure interactions and operations. The

simulations presented in this work, involving simultaneous interactions of hundreds

of ice floes have been performed at computational speeds up to 6x real time.

6.2.1.1 Model Input

6.2.1.1.1 Ice Conditions The simulations presented below were performed in

eight different ice fields. Six of the fields involved randomly shaped and oriented

pack ice of varying concentration (see Figure 6.9 and Figure 6.10), while two involved

regular arrays of equally sized hexagons (see Figure 6.11).

Figure 6.9: 35%, 39% and 41% simulation domains. [11]

6. Model Validation and Applications 69

Figure 6.10: 42%, 50% and 69% simulation domains. [11]

For the random polygon cases, the ice floes were all represented as convex polygons

of less than 20 sides. Floes were typically 4 to 7 sided (see Figure 6.12). The floe

characteristic dimensions (defined as the square root of the area) ranged from 2m

to 20 m, with a mean of 6.9m and a standard deviation of 3.9m. The floe set was

created by drawing polygons of several of the floes in Figure 1 and then making

multiple copies of the floes. The different concentrations were created manually by

copying floes to increasingly fill in the gaps. For numerical reasons all the simulations

started with no floes in contact with any other floes.

For the hexagonal polygon cases, the floes were all the same size, with a char-

6. Model Validation and Applications 70

Figure 6.11: 46% and 60% simulation domains (hexagons). [11]

acteristic dimension of 10.1m (see Figure 6.13). The polygons were slightly rotated,

with the intent of breaking the perfect symmetry and diminishing the tendency to

interlock.

6.2.1.1.2 Vessel Description The vessel used in the simulation has the following

nominal properties:

• Length: 100m

• Beam: 20m

• Mass: 7200 tonnes

• Geometry: 2D polygon (see Figure 6.14, 6.15)

6. Model Validation and Applications 71

Table 6.1: List of simulation run parameters.[11]
Run #s Number of Floes Ice Coverage Bollard Thrust [kN] geometry

1.1 to 1.5 560 35% 23, 46, 92,178, 370 random
2.1 to 2.5 581 39% 23, 46, 92,178, 370 random
3.1 to 3.5 618 41% 23, 46, 92,178, 370 random
4.1 to 4.5 657 42% 23, 46, 92,178, 370 random
5.1 to 5.5 456 46% 23, 46, 92,178, 370 hexagonal
6.1 to 6.5 824 50% 23, 46, 92,178, 370 random
7.1 to 7.5 595 60% 23, 46, 92,178, 370 hexagonal
8.1 to 8.5 721 a 69% 23, 46, 92,178, 370 random

ain this case there field was 200x 250m instead of the normal 200x500m

Figure 6.12: Close-up of random polygonal ice floes. [11]

6.2.1.2 Model Mechanics

6.2.1.2.1 Ice Behaviour As stated above, the concept for the simulation is the

rapid assessment of a sequence of discrete interactions with a large number of discrete

ice objects. The transit of a vessel through pack ice, and the interactions of the ice are

modeled as a set of contact events. The movements are treated using simple equations

of motion. The individual ice blocks move in the 2D space of the simulation. The

position and velocity of each floe is updated every time step. A simple water drag

6. Model Validation and Applications 72

Figure 6.13: Close-up of hexagonal ice floes. [11]

Figure 6.14: Sketch of 2D concept used in simulations. [11]

model results in the floes tending to slow. Ice-ice interactions account for both ice

crushing impact forces and steady elastic stresses to resist static pressure. In this

generation of the model there are no environmental driving forces (wind, current),

nor are there any of the more complex responses such as rafting and rubbling. These

are being planned for future generations of the model.

6.2.1.2.2 Vessel Behaviour The vessel is modeled as only moving forward with

a simple self-propulsion algorithm. A simple water resistance model is combined with

a simple thrust deduction model to produce a simple net-thrust vs. speed effect. In

open water, the vessel will accelerate until the net thrust is zero, and then settle at

its open water speed. In pack ice the sequence of ice forces will, on average, balance

6. Model Validation and Applications 73

Figure 6.15: Geometry of vessel polygon. [11]

the available net thrust at some speed below the open water speed. In this way the

average net thrust is a surrogate for time-averaged ice resistance. The process is not

steady. Future versions of the model will include more aspects of vessel behaviour.

6.2.1.3 Model Results

6.2.1.3.1 Field Images Figure 6.16 shows an image of a simulation taken as

the vessel transits open pack ice. The vessel leaves a track of relatively open water

along with a zone where the ice is more closely packed. The ice ahead and to the

sides is undisturbed. A very large number is ship-ice and ice-ice contacts have taken

place. Figure 6.16 shows a similar situation, but with 3 images overlaid using partial

transparency. This makes it easier to see the ice floe disturbance (termed the “action

zone”). The size and shape of the action zone changes as the ice cover becomes more

concentrated.

6.2.1.3.2 Time Sequence Results Shown below are three time series plots for

the simulation in 35% ice cover with a bollard thrust (it is a force that drives the

ship) of 370kN. As the vessel moves through the ice, a sequence on impulses acts on

the ship. The net thrust model tends to keep the ship moving and the vessel tends

6. Model Validation and Applications 74

Figure 6.16: Image from simulation video in 35% coverage. [11]

Figure 6.17: Image from simulation video in 35% coverage showing action zone. [11]

to settle down to a speed where the ice forces balance the available net thrust. The

process is not steady because the ice forces are a series of very short impulses mixed

with relatively long periods of no ice loads. Figure 6.18 shows a portion of the ice

impact forces on the vessel. The ice forces are very quick, but do tend to last longer

than one simulation step due to the number of floes in contact and the turning (and

thus re-impact) of the floes. If the entire time history of this data were shown, it

appears to be just a sequence of spikes.

Figure 6.19 shows the vessel speed for the entire simulation. At the start, the

6. Model Validation and Applications 75

Figure 6.18: Partial time-history of ice collision forces on the vessel 35% coverage.
[11]

vessel is set moving at its open water speed. As it enters the ice field it quickly slows

to a nearly steady ice speed, though still with fluctuations. The fluctuations are due

to the ice impulse loads. Figure 6.20 shows the net thrust. This time-averaged value

of net thrust is effectively the ice resistance, as long as the net acceleration is close

to zero.

Figure 6.19: Vessel speed during simulation 35% coverage. [11]

These plots are representative of the simulations performed. Each impact is

6. Model Validation and Applications 76

Figure 6.20: Net thrust during simulation in 35% coverage. [11]

tracked. Considerably more data is available for extraction from the simulations,

such as the exact location of the impact on the hull. The approach also lends itself

to easily including stochastic distributions of ice geometric and strength properties

(shape, thickness, strength), which would generate additional data for parametric

relationships.

6.2.1.3.3 Parametric Results To illustrate the general validity of the approach

as well as to identify areas for improvement, the following section presents parametric

trends in the results. The influence of velocity and ice concentration will be presented

and compared to other published data. In the plots below (Figure 6.21 to Figure 6.27)

the data labelled GPU refers to the present results. WC(2010) refers to an empirical

model based on physical model tests [63]. MA(1989) refers to an analytical model of

resistance in pack ice [42].

Ice resistance vs. velocity for various ice concentrations is given in Figure 6.21 to

6. Model Validation and Applications 77

Figure 6.25. The plots show two noteworthy aspects. The agreement with MA(1989)

is remarkably good, while the agreement with WC(2010) is much less so. This is likely

due to several reasons. The MA(1989) model made essentially the same assumptions

about contact and energy that are in the GPU simulation. In both cases, all colli-

sions are inelastic, such that energy is absorbed in ice crushing and water drag while

momentum is conserved.

The WC(2010) model has a quite different basis. For one thing the WC model is

an empirical fit to model test data at higher concentrations and much lower relative

speeds. This means that there is some potential for error in the extrapolation to

lower concentrations and or the higher speeds of this study. Secondly and more

importantly, the WC physical tests contained a number of physical behaviours that

were not part of the GPU model. In the physical model tests the ice was able to

flex, raft, and rubble, as well as submerge below a 3D ship shape. These additional

behaviours would result in different trend. There is also the likelihood that the ice

sizes and shapes were different, which may have made a difference. As evidence of

this, the GPU simulations in the 60% regular hexagonal pack ice resulted in noticeably

higher resistance than in random floes. This appeared to be the result of mechanical

interlocking among the floes.

6. Model Validation and Applications 78

Figure 6.21: Comparison of resistance estimates in 35% coverage. [11]

Figure 6.22: Comparison of resistance estimates in 39% coverage. [11]

6. Model Validation and Applications 79

Figure 6.23: Comparison of resistance estimates in 41% coverage. [11]

Figure 6.24: Comparison of resistance estimates in 50% coverage. [11]

6. Model Validation and Applications 80

Figure 6.25: Comparison of resistance estimates in 69% coverage. [11]

Figure 6.26: GPU model resistance estimates vs. velocity. [11]

6. Model Validation and Applications 81

Figure 6.27: GPU model resistance estimates vs. concentration. [11]

Figure 6.26 shows the trends of resistance vs. velocity for all the concentrations

with random floes. The curves are approximately quadratic (i.e. exponent on velocity

is close to two).

Figure 6.27 shows the trends vs. ice concentration. One interesting aspect to note

is that the relationship is close to linear at slower speeds and becomes much less so

at higher speed. This could be the result of the change in the size of the action zone

as speed increases.

6. Model Validation and Applications 82

6.2.2 Ice-Event-Mechanics Evaluation of Ice Impact Load

Statistics

The work in this section has been done in cooperation with Dr. Claude Daley. In this

work the use of a Ice-Event-Mechanics simulation to assess local ice loads on a vessel

operating in pack ice has been explored. A simple vessel is modeled as it navigates

through the domain. Each ship-ice collision is modeled, as is every ice-ice contact.

Each ship-ice collision event is logged, along with all relevant ice and ship data.

Thousands of collisions are logged as the vessel transits many tens of kilometres of ice

pack. The resulting impact load statistics are qualitatively evaluated and compared

to published field data. The analysis provides insight into the nature of loads in pack

ice.

Ice class vessels are unique in a number of ways in comparison to non-ice class

vessels. Hull strength, power, hull form and winterization aspects are all issues that

raise special challenges in the design of ice class ships. This work focuses on matters

of local ice loads which pertain to hull strength in ice class vessels. More specifically,

the work examines the parametric causes of local ice loads and statistics that result

as a ship transits through open pack ice.

The issue of pack ice transit is of interest to those wishing to operate safely in such

conditions. One key question is that of safe operational speeds. Consider the special

case of open pack ice, where floes are relatively small, numerous and resting in calm

water. A vessel moving through such an ice cover would experience a series of discrete

collisions. As long as a vessel moved very slowly, the loads would be very low. In

6. Model Validation and Applications 83

such a case the vessel could make safe and steady progress, even if it had a relatively

low ice class. However, if the vessel attempted to operate more aggressively, impact

speeds would increase and a higher ice class would be needed for safe operations. The

investigation below provides some insight into the factors that influence the loads in

this situation. These factors include hull form, speed, floe size and concentration, ice

thickness, strength and edge shape. Most prior studies have tended to focus on ice

thickness and strength as the primary determinants of load. This study shows that ice

edge shape and mass, along with hull form and locations are also strong determinants

of loads, and especially the load statistics. The simulations provide some interesting

data, especially when compared to field trials data.

A related focus for the study is to explore the use of GEM approach. The GEM

approach represents the integration of a number of concepts. The physical space is

described as a set of bodies. The movement (kinematics) of the bodies is tracked using

simple equations of motion. Time is divided into relatively long ‘moments’, during

which events occur. All variables in the simulation—forces, movements, fractures and

other changes—are considered to be aspects of events. Some events are momentary,

while others are continuing. Some events involve a single body and are termed solo

events. Motion, for example, is treated as a solo event. Some events are two-body

events. Impact is an example of a two-body event. The GEM approach lends itself to

parallel implementation, which in this case is accomplished in a GPU environment.

The event models are the analytical solutions of specific scenarios. As a result, the

events do not require solution (in the numerical sense) during the GEM simulation.

6. Model Validation and Applications 84

The event solution is merely invoked for the specific inputs that arise at that point

in the GEM simulation. For example, the collision load depends on the specific

shape and position of the ice floe, as well as thickness, flexural strength and crushing

behaviour. The load also depends on hull form and impact location, as well as the

mass properties of the ship. There are dozens of input variables which influence the

specific event parameters. Nevertheless, the computation problem is far smaller than

if the continuum mechanics were to be solved for each collision event. The GEM

model focuses on the large scale system involving a large number of bodies, rather

than on any single impact.

6.2.2.1 Impact Algorithm Check

The collision model used in the GEM simulation has a relativly simple analytical

solution that can be solved in a spreadsheet. To check that the GEM software is

producing the expected impact results for a variety of cases, a set of 32 calibration

impacts (See Figure 6.28) were modeled in both the GEM program and a spreadsheet.

In each of the 32 cases a 10m x 10m ice floe was placed directly in front of the vessel

and allowed to strike. The GEM forces were compared to the spreadsheet results.

The comparison is shown in Figure 6.29. There were some small differences attributed

to the slight differences in the contact locations that arise in the numerical model.

Overall the agreement is excellent and confirms that no gross errors occurred in the

implementation

6. Model Validation and Applications 85

Figure 6.28: Calibration impact Cases. [10]

Figure 6.29: Direct vs GEM impacts compared for validation. purposes[10]

6.2.2.2 Simulation Description

The simulations presented all involve a ship transiting through a 200m x 500m pack

ice region at a set power level. One example case is shown in Figure 6.30. The ice

represents 4/10th ice cover, with a mix of thin, medium and thick first year ice (0.5m,

6. Model Validation and Applications 86

0.7m and 1.2m floes). The floes are random in size (same range for each thickness).

The egg code (The basic data concerning concentrations, stages of development (age)

and form (floe size) of ice are contained in a simple oval form. A maximum of three

ice types is described within the oval) that represents the ice is also shown in Figure

6.30. Tables 6.2,6.3 describe the 70 individual runs that form the data for this paper.

A summary of the key simulation parameters and results are given. The ice floes are

comprised of 3 groups of random polygons. Each group can be assigned a common

thickness and in this way a wide variety of cases can be developed depending on which

thickness values are assigned to which ice group. Two of the groups represents 1/10th

coverage (10% of the surface area) while one group represents 2/10th coverage. In

total there are 668 unique ice floes, which are combined in various ways and assigned

various thicknesses in the various runs.

In total, in the 70 runs performed there were 28,685 ship-ice collisions recorded,

which are the basis of the analysis presented. It should be noted that many more

ice-ice and ice-wall collisions were simulated but were not logged, nor were the ice

resistance values. The GEM approach lends itself to a variety of potential uses.

Figure 6.30: Ice Conditions for runs 46 through 50.[10]

6. Model Validation and Applications 87

Table 6.2: Listing of first 35 run cases, with summary result values.[10]

6. Model Validation and Applications 88

Table 6.3: Listing of last 35 run cases, with summary result values.[10]

The ice floes are represented as convex polygons with a range of apex angles. The

angles for all 668 floes were analyzed to examine the distribution of the values. As

shown in Figure 6.31, the angles appear to follow a Weibull distribution, though not

6. Model Validation and Applications 89

perfectly. One interesting aspect is that the angles are limited to 180 degrees. The

Weibull distribution appears to fit the data quite well, but fails to capture the fixed

upper limit at 180. As can be seen from Figure 10, the Weibull model would predict

that a small number of apex values would be above 180 degrees.

While this is obviously impossible (for convex shapes), the model appears to fit

the bulk of the data quite well. This statistical modeling was performed using the

Minitab software (Minitab 2013). The reason for presenting these values is that the

floe apex angle is one of the key input parameters that determines the impact force

values. The higher apex angles result in higher force values. This relationship may

be counter-intuitive. The reason is that higher angles mean a more rapid rise in area

and force as contact occurs, resulting in a ’harder’ impact.

Figure 6.31: Probability plot for ice floe apex angle data.[10]

Another important input parameter is the ice floe mass. Figure 6.32 shows the

mass statistics for all 668 floes and also for the set of 2520 impacted floes that occurred

6. Model Validation and Applications 90

in runs 46-50. The floe mass is determined by the product of area, thickness and mass

density. The mass values appear to follow a lognormal distribution. It appears that

the floes impacted are representative of the whole population. This would be expected

in the case of the simple navigation strategy modeled here. If a more sophisticated

hazard avoidance strategy were to be modeled one might expect a different result.

The distributions of apex angle and floe mass are the result of the shapes and sizes of

the ice floes in the digitized image (Figure 6.8), rather than being user determined.

Figure 6.32: Probability plot for ice floe mass values, for both all floes and just those
floes struck in runs 46-50.[10]

6.2.2.3 Parametric Results

There are various kinds of parametric simulation results that will be presented below.

These particular results are from runs 46-50, which involve 10% thick ice, 20% medium

ice and 10% thin ice. The five runs are for a range of power levels and velocities, and

cover 2.5km of transit.

6. Model Validation and Applications 91

Figure 6.33 shows the set of locations of the impacts on the bow. The points tend

to be on the hull edge, though there are cases where contact could appear to be inside

or outside the hull. This is because of the way contact is defined, as is sketched in

the figure. There tend to be a greater number of impacts towards the stem. Figure

6.34 quantifies this trend by plotting the percentage of impacts that occur within

each meter of width of the vessel. In a simple estimate of the rate of impacts per

meter width, one might expect that the rate per meter would be constant. This

is because each meter will sweep through the same area of ice cover and nominally

sweep over the same number of floes (assuming a uniform ice cover as in this case).

However, the actual kinematics of the collisions tend to result in the more forward

collisions creating a shadow or shield that lowers the number of collisions further aft.

This trend might change significantly if more complex navigation practices were to

be modeled. The navigation here was just a simple auto pilot with no attempt to

avoid any specific features.

6. Model Validation and Applications 92

Figure 6.33: Plot of impact locations on the vessel (runs 46-50).[10]

Figure 6.34: Plot of % impacts vs. lateral distance from centerline (runs 46-50). [10]

Figure 6.35 plots the magnitude of the impact forces vs. the distance from the

stem. This shows the maximum forces occur closer to the stem. The specific shape of

the vessel (waterline and frame angles) will influence these results, possibly strongly.

6. Model Validation and Applications 93

In this work only one hull form has been examined.

Figure 6.35: Plot of impacts forces vs. distance from stem (runs 46-50). [10]

Figure 6.36 plots the magnitude of the impact forces vs. the vessel speed. The

data has the typical appearance of field data (see Figure 6.41) where trends are easily

obscured by the mass of variable data. The variations are also influenced by hull

shape, floe size, thickness and apex angle. The effect of velocity can be obscured.

A trend line through the data is most strongly influenced by the majority of small

impacts. The equation relating mean force to velocity is:

F = 0.0023v1.68 [MN]

The higher values of force appear to be following a somewhat different trend, in

that they appear to be limited to a force of 1.6 MN. This is obviously an artifact

of the specific simulation rather than an actual limit. The load mechanics used

in the simulation are deterministic and as such the forces should be bounded. In

most impacts the various input parameters combine to produce load lower than the

6. Model Validation and Applications 94

maximum.

Figure 6.36: Plot of impacts forces vs. ship speed (runs 46-50).[10]

Figure 6.37 presents results for a specific subset of the collisions. Only those

impacts on the first panel of the hull near the bow, and only those involving an

impact with 0.7m thick floes are presented. Along with the GEM data is the solution

for force vs. velocity for a collision with a 252t floe, with a 170deg. apex angle, both

of which approximately represent the highest possible values in the simulation. This

is a worst case combination, for which the flexural failure limit is also included. The

data lies well within the bounds of the limit case.

6. Model Validation and Applications 95

Figure 6.37: Plot of impacts forces vs. ship speed on panel 1 for 0.7m thick floes
(runs 46-50).[10]

6.2.2.4 Load Level Statistics

The ice load statistics for several groups of runs appear to follow a Weibull distri-

bution, especially at the upper end. Figure 6.38 shows the cumulative probability

distribution data for a set of cases. Data labelled 121 is from runs 46-50. Data la-

belled 004 is from runs 16-20. Data labelled 040 is from runs 21-25. Data labelled 400

is from runs 26-30. The set labelled All is all of the above. In each case the coverage

is 40%. In the case of 004 the ice thickness is 0.5m, or thin ice. In the 040 case the

ice is all 0.7m thick, or medium ice. In the 400 case the ice is all 1.2m thick, or thick

ice. In the 121 case there is 10% thick ice, 20% medium ice and 10% thin ice. In all

cases the data has been modeled with a Weibull distribution, which has a cumulative

distribution function:

F (x, k, λ) = 1− ex/λ

6. Model Validation and Applications 96

where x is the load in Newtons, k is the shape parameter and λ is the scale

parameter. Figure 6.38 shows that the distributions are all very similar, though not

identical as can be seen by examining the scale parameter for each data set. Loads

are higher in the thicker ice, as would be expected. The remarkable thing is that the

overall variation of the loads tend to mask the relatively small variations caused by

thickness changes. The other sources of variation include velocity, floe size, floe apex

angles and hull angles

Figure 6.38: Probability plots of cumulative distribution of impacts forces (runs 16-30
and 46-50).[10]

6.2.2.5 Ice Load Statistics from Fields Trials Data

Ice impact load data has been gathered on a number of vessels. Figure 6.39 shows

a map of the areas where ice impact load data have been collected on four different

vessels. The USCGC Polar Sea conducted a series of western arctic trials in the 1980s

[15, 58, 13, 14]. The Polar Sea had a load panel installed in its bow, large enough to

6. Model Validation and Applications 97

capture impact loads as the ship struck ice floes. The data from those trials covers a

wide variety of ice conditions, ranging from first year ice in the Bering Sea to heavy

multi-year ice in the North Chukchi and Beaufort Seas, covering everything from open

pack, to close pack, ridged and level ice. The CCGS Louis S. St. Laurent conducted

a trans-Arctic voyage in 1997 and measured impact loads on panels similar to the

arrangement on the Polar Sea [54]. The Polar Sea and Louis St. Laurent data had

similar load measuring systems, and could measure the total impact force during a

collision with an ice edge.

A Baltic ice class vessel called the MS Kemira was instrumented to measure frame

loads [34, 35]. The Kemira data was collected during normal commercial cargo voy-

ages in first year sea ice in the northern Baltic. The KV Svalbard, a Norwegian Coast

Guard vessel, was also instrumented to measure frame loads. Data was recorded in

the Barents Sea in 2007 [37, 36].

The data collected on these vessels represents a significant portion of the available

scientific data concerning ice impact loads in sea ice. The data from these various

trials will be discussed. It is important to consider that the vessels were of differing size

and shape, operating in differing conditions, and with quite different sensor packages

and levels of coverage

6. Model Validation and Applications 98

Figure 6.39: Arctic region map showing various ice loads ship trials.[10]

The present authors have direct access to the raw measurement data from both

the Polar Sea and the Louis S. St. Laurent. The authors do not have access to the raw

data from the Kemira or Svalbard. However, analysis of the data from the Kemira

and Svalbard has been published. The authors of those data sets have suggested

that the data follows Weibull or similar (i.e. exponential) distributions. See [60] for

analysis of Kemira data and [1] for a discussion of Svalbard data.

Figure 6.40 shows some of the impact load data from the Polar Sea plotted as

impact force vs. ship speed. Within and one sea area there appears to be little

obvious relationship between force and velocity, much as was observed in the GEM

simulation (see e.g. Figure 6.36). It is interesting to note that in sea areas with lighter

6. Model Validation and Applications 99

ice (Bering Sea) the vessel speeds were higher while the loads were lower than were

the case in the regions of heavier ice (North Chukchi Sea). This is a natural result.

For the present assessment it shows that loads are influenced by a combination of ice

conditions and navigation practices.

Figure 6.41 shows impact load data from the 1994 Arctic Ocean voyage of the Louis

S. St. Laurent. Once again there is no obvious trend between force and velocity,

with a very slight inverse relationship when a single curve is fit to all data. The

vessel transited a wide variety of conditions and so would have experienced similar

navigation effects as discussed above.

It should be noted that the field data from the two vessels is subject to a number of

artifacts that GEM data is not. Field data tends to be gathered with a threshold, such

that all small load values are ignored. Also there is the problem of the completeness

of the record. For both the Polar Sea and the St. Laurent, some of the load data

did not have a corresponding velocity. All such data was plotted at a small velocity

(0.25m/s), which does obviously involve an error. The GEM simulation values are

complete in all respects, with all impacts at all locations fully logged.

6. Model Validation and Applications 100

Figure 6.40: Ice impact load vs. ship speed from USCG POLAR SEA during 3
voyages.[10]

Figure 6.41: Ice impact load vs. ship speed from CCGS LOUIS S ST. LAURENT
during a trans arctic voyage in 1994.[10]

Figure 6.42 shows one probability distribution for ice impacts on the Polar Sea

in first year ice in the South Bering Sea. The data appears to show fluctuations

which may be associated with varying ice conditions and interaction mechanisms.

6. Model Validation and Applications 101

Nevertheless, the data is reasonably well described by a Weibull distribution.

Figure 6.42: Ice impact load statistics for the POLAR SEA during its 1983 voyage in
the first year ice of the south bering sea.[10]

6.2.2.6 Discussion

Ship-ice interaction is a complex process, influenced by many nonlinear and some

linear mechanical processes as well as by the many vessel design parameters and the

navigation practices. Developing an understanding of the process is a challenge that

requires the integration of many approaches. Full scale data is crucially needed to

provide direct knowledge of the process and to allow validation of the models and

theories used to describe the process. Unfortunately full scale data is both limited

and imperfect. Conventional numerical modeling approaches have tended to focus on

either the local mechanics or the broad system level, often leaving these two types of

models somewhat disconnected.

In this work we have presented results from a new development we call GEM

6. Model Validation and Applications 102

(GPU-Event Mechanics). The approach allows us to follow the movement of the vessel

(s) and the ice floes for a long period of time, even while we include all the individual

collision and contact events. By combining the modeling of short term events and

long term kinematics, the model accounts for system level behaviour without the need

to overly simplify the kinematics and impacts. It is intended to expand on the range

of events covered and to improve the sophistication of the kinematics.

This work presents a number of new insights into some questions of interest. One

is the question of the statistical nature of ice loads. This analysis has shown that

while ice thickness does influence load, through its influence of mass and flexural

strength, the main cause of variations shown here is due to the variable ice mass and

apex angle. While this is far from definitive, it is a useful insight. In many situations

the ice thickness does not vary over orders of magnitude while the loads often do.

The GEM program can be a useful tool in exploring the sources of variability in the

loads, helping to establish a better understanding of the statistics, especially at the

extreme or design levels.

Another useful result is shown in Figure 6.34. While one might expect that a

ship in uniform pack ice would experience a similar impact rate per meter of breadth

anywhere in the bow, the GEM results are showing a kind of shadowing effect. This

is possible because all ice floe motions and interactions are being tracked. Further

studies of a wider range of ice conditions, combined with more realistic navigation

strategies would help to explain both the rate of collisions and also the appropriate

design loads for various parts of a vessel. The question of the validity of the hull area

6. Model Validation and Applications 103

factors used in ice class structural design is of great practical significance.

Figures 6.36,6.37 show the GPU results for force as a function of speed. As is

typical of full scale data (Figures 6.40,6.41) the effects of speed are lost in the gen-

eral scatter. The field data and even the GEM data show no obvious limits (upper

bounds). Nevertheless, the GEM model mechanics have very specific limits that are

so rarely reached that they are not evident. Most statistical models assume open tail

distributions, and so may predict extreme design values higher than may be phys-

ically possible. The GEM model can easily be used with probabilistic as well as

deterministic inputs, and would be able to explore this question, and remove unnec-

essary conservatism. Any excessive conservatism, is costly and tends to undermine

potential improvements in other aspects of a design

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The experiments demonstrated performance benefits for simulating the complex me-

chanics of a ship operating in pack ice. It is clear that GPGPU has the potential to

significantly improve the processing time of highly data parallel algorithms.

The discussion and results have described a new class of model that integrates

a number of old ideas into a new capability. The developments of the ice simulator

in this thesis have permitted the modeling of a massive event set in faster than real

time, using affordable desktop computer hardware. With demands for greater safety

and greater understanding of ship and structure operations in polar regions, there is

a need for new simulation tools. The Ice-Event-Mechanics approach permits the user

to model complex problems in a timely and practical way.

The numerical model shows the general trends which are also visible in the exper-

104

7. Conclusion and Future Work 105

imental data. Especially in the pack ice scenario, it shows realistic behaviour.

7.1.1 Contributions

The main contributions of this work are as follows:

• It introduces a new GPGPU simulator that can be used to simulate the be-

haviour of a ship in pack ice. Using the new GPGPU simulator, hyper-real-time

simulations can be achieved which will allow the results to be used in planning

ice management activities. This feature has great practical significance for de-

sign, assessment and training applications.

• It demonstrates three different general structures of the GPGPU solution for

the ice simulator.

• It describes a GPGPU implementation of a collision detection algorithm (Sepa-

rating Axes Theorem) which can be used to detect the collisions between convex

polygons.

• It describes a GPGPU implementation of an algorithm that can be used to find

the intersection between convex polygons.

• It describes a GPGPU implementation of an algorithm that can be used to

triangulate a simple polygon (Polygon Triangulation By Ear Clipping).

• It demonstrates the performance of using different GPGPU collision detection

approaches (Triangulation Mesh and Uniform Grid Structure) to detect the

7. Conclusion and Future Work 106

collisions between polygons.

• It introduces a new GPGPU collision detection approach (variable radius) to

reduce the number of polygons to be checked for collision by eliminating those

that are beyond some distance away.

7.2 Future Work

Further development and optimization are necessary for a larger ice fields. One way

to improve the performance of the simulation for a larger ice fields is to implement

the simulator using multiple GPUs.

The GEM model is a work in progress. The version discussed here tracks a single

vessel through a simple open ice pack and it has the following features:

• Floe edge flexural failure, with new floe creation.

• Wind loads on floes.

• Current forces on floes.

Further enhancements are being planned that will add:

• Rafting behaviour (2.5D).

• Floe Splitting.

• Simplified Ridging at floe-floe contacts.

7. Conclusion and Future Work 107

The above enhancements can be implemented in the current 2.5D model. To take

the technology to an entirely new level, the modeling will need to be implemented in

a full 3D framework.

In 2012, Intel announced that Xeon Phi will be the brand name used for all prod-

ucts based on their Many Integrated Core architecture. An interesting experiment to

be done in the future is implement the simulator using the Xeon Phi and compare

the performance with the Tesla GPU card.

With an improved model, an improved method also needs to be found to validate

the model through model experiments. This should include better controlled ship

motions (so that sway and yaw motions are resisted), a more realistic representation

of ice floes and a more effective quantitative method to compare the trajectories

between the experiments and GPGPU simulations.

Appendix A

Appendix

A.1 GPU Ice Simulation Equations

This section describes the GPU ice simulation equations that have been implemented

in the ice simulator. These equations derived by Dr. Claude Daley. The units used

in this work follow the international system of units (SI).

A.1.1 Polygon Geometry

Each polygon is defined by the coordinates of n points. These points are in counter-

clockwise. Each point can be expressed in one of 3 coordinate systems, global, lo-

cal(aligned) and local(rotated). All three are used at various points.

108

A. Appendix 109

Figure A.1: Polygon coordinate systems.

A.1.1.1 Area

The area of any polygon A will not change until the floe is broken into two parts. So

the area can be calculated from the global coordinates and stored. The calculation

will work using any of the 3 coordinate systems.

agi = (xgiygi+1 − xgi+1ygi) (A.1)

A =
1

2

n∑
i=1

agi (A.2)

(note: for i=n+1, use i=1, agi is the signed swept area of the line defined by each

pair of points).

A.1.1.2 Centroid Coordinates

xgc =
1

6A

n∑
i=1

(xgi + xgi+1)agi (A.3)

ygc =
1

6A

n∑
i=1

(ygi + ygi+1)agi (A.4)

A. Appendix 110

The calculation will only work using the global coordinate system. It will produce

zero for local coordinates (may be used as a check).

A.1.1.3 Local Polygon Coordinates (Aligned)

Local (aligned) coordinates are found by shifting the values by the global centroid

coordinates:

xai = xgi − xgc (A.5)

yai = ygi − ygc (A.6)

A.1.1.4 Polygon Aligned Area Moments

A general polygon has two 2nd moments of inertia as well as a product of inertia:

Jxx =
1

12

n∑
i=1

(ya2i + yaiyai+1 + ya2i+1)aai (A.7)

Jyy =
1

12

n∑
i=1

(xa2i + xaixai+1 + xa2i+1)aai (A.8)

Jxy =
1

24

n∑
i=1

(xaiyai+1 + 2xaiyai + 2xai+1yai+1 + xai+1yai)aai (A.9)

Where aai = (xaiyai+1 − xai+1yai).

These values must be computed using the aligned local coordinates.

A. Appendix 111

A.1.1.5 Polygon Principal Axis Angle

The angle θ is the angle from the global x axis to the principal axis:

θ = −1

2
atan(

2Jxy
Jxx − Jyy

) (A.10)

A.1.1.6 Local Polygon Coordinates (Rotated)

xri = xai cos θ + yai sin θ (A.11)

yri = −xai sin θ + yai cos θ (A.12)

A.1.1.7 Polygon Principal Area Moments

A general polygon has two 2nd moments of inertia as well as a product of inertia:

Ixx =
1

12

n∑
i=1

(yr2i + yriyri+1 + yr2i+1)ari (A.13)

Iyy =
1

12

n∑
i=1

(xr2i + xrixri+1 + xr2i+1)ari (A.14)

Ixy =
1

24

n∑
i=1

(xriyri+1 + 2xriyri + 2xri+1yri+1 + xri+1yri)ari (A.15)

Izz = Ixx + Iyy (A.16)

Where ari = (xriyri+1 − xri+1yri). These values must be computed using the

rotated (principal) local coordinates.

A.1.2 The Vessel Properties

The mass of the ship can be found as:

M = L.B.T.CB.ρwater (A.17)

A. Appendix 112

Where L is the legnth of the ship = 100 m, B is the beam of the ship = 20 m, T

is the height of the ship = B
2.5

= 8 m, CB is the block coefficient = 0.7 and ρwater =

1025 kg/m3.

The principal area moments of the ship can be found as:

Ix = Mrx2 (A.18)

Iy = Mry2 (A.19)

Iz = Mrz2 (A.20)

Where rx = 0.33B, ry = 0.25L, rz = 0.25L and M is the mass of the ship.

A.1.3 Description of the Ice Floes Motion

Polygon movement is represented by movement of the centroid g. At tj: gj =

(Xgj, Ygj, rj). Where (Xgj, Ygj) are the global X and Y coordinates of the centroid

and rj is the angular position of the centroid.

For each polygon, there are three positions Xgj, Ygj and rj. Also, there are three

velocities Vx, Vy and ω. In this case, after a time change ∆t:

Xgj+1 = Xgj + Vx∆t (A.21)

Ygj+1 = Ygj + Vy∆t (A.22)

rgj+1 = rgj + ω∆t (A.23)

Given gj, the local coordinates of each polygon can be as:

XLi = Xi −Xgj (A.24)

A. Appendix 113

Y Li = Yi − Ygj (A.25)

for all i (all the points). Then, the orthogonal coordinates can be found as:

Ri =
√
XL2

i + Y L2
i (A.26)

θi = atan2(Y Li, XLi) (A.27)

Then, the angle θ can be updated as:

θi = θi + (rj+1 − rj) (A.28)

Finally, the global coordinates can updated as:

Xi = (Ri cos(θi)) +Xgj (A.29)

Yi = (Ri sin(θi)) + Ygj (A.30)

A.1.4 Description of the Mass Reduction Coefficient Co for

the 2D Simulation

A collision taking place at point ’P’ (see Figure A.2) on the ship, will result in a

normal force Fn. Point P will accelerate, and a component of the acceleration will

be along the normal vector N, with a magnitude an. The collision can be modeled

as if point P were a single mass (a 1 degree of freedom system) with an equivalent

mass Me. The equivalent mass is a function of the inertial properties (mass, radius of

gyration, hull angles and moment arms) of the ship. The equivalent mass is linearly

proportional to the mass (displacement) of the vessel, and can be expressed as:

A. Appendix 114

Figure A.2: 2D ship collision point geometry.

Me = M/Co (A.31)

Where Co is the mass reduction coefficient. This approach was first developed by

Popov (1972).

At any point P (xas,yas) on a ‘wall sided’ hull (β = 0) the inward normal vector

can be expressed as:

N = li+mj (A.32)

Where i and j are the unit vectors aligned with the global coordinate system, l

and m are called ‘direction cosines’ and can be positive or negative.

The yaw moment arm is:

ηl = mxs− lys (A.33)

In this case, with added masses ignored, the mass radius of gyration (squared) in

yaw is:

A. Appendix 115

rz2 = Iz/A (A.34)

With the above defined, the mass reduction coefficient is:

Co = l2 +m2 + ηl2/rz2 (A.35)

A.1.5 The Impulse Calculation

The collision applies an impulse Ie(= Fndt) to the floe at the point of contact. There

are two types of impluse: Elastic and InElastic.

The InElastic impluse is:

IInElastic = MecVc (A.36)

Mec =
1

1
Mec1

+ 1
Mec2

(A.37)

Mec1 = M1/Co1 (A.38)

Mec2 = M2/Co2 (A.39)

Vc = Vn1c + Vn2c (A.40)

Vnc1 = −Vxg1l1c − Vyg1m1c − ωg1η1 (A.41)

Vnc2 = −Vxg2l2c − Vyg2m2c − ωg2η2 (A.42)

Where Mec is the effective mass of the collision, Mec1 is the effective mass of floe

1, Mec2 is the effective mass of floe 2, M1 is the mass of floe 1, M2 is the mass of floe

1, Co1 is the mass reduction coefficient of floe 1, Co2 is the mass reduction coefficient

of floe 2, Vc is the closing velocity along the normal N, Vn1c is the outward velocity

A. Appendix 116

along N for floe 1 at the centroid, Vn2c is the outward velocity along N for floe 2 at

the centroid, Vxg1, Vyg2 is the linear velocity for floe 1 at the centroid, Vxg2, Vyg2 is the

linear velocity for floe 2 at the centroid, ωg1, ωg2 is the angular velocity for floe 1,2 at

the centroid and η1, η2 is the yaw moment arm for floe 1,2.

The Elastic impulse is:

IElastic = 0.05Cσmaxwh∆t (A.43)

C = min(((A0Kice)/w ∗D), 1) (A.44)

h = min(h1, h2) (A.45)

D = min(sqrt(A1), sqrt(A2)) (A.46)

Where w is the length of the line of intersection, ∆t is the time step, h1, h2 are

the thicknesses of the two floes, A1, A2 are the areas of the two floes, A0 is the area

of the overlap between the two floes, σmax = 1Mpa and Kice = 100 units.

When the friction is ignored, all contact forces are normal to lines of contact.

When the friction is included, a second force is added in the tangential direction.

The changes in velocity at the center of gravity in the globally aligned local coor-

dinate system are:

dVx = (Iel)/M (A.47)

dVy = (Iem)/M (A.48)

dVω = (Ieηl)/(Mrz2) (A.49)

A. Appendix 117

A.1.6 Description of the Mass Reduction Coefficient Co for

a Ship in 2.5D Simulation

Figure A.3: 2.5D ship collision point geometry.

The coordinate system shown in Figure A.2 is valid of 2D (wall-sided) collisions.

For cases where the ship is considered to have sloping sides as shown in Figure A.3,

there are two improvements that are required. On improvement is the use of rotated

(principal) coordinates as shown in Figure A.4. One reason for using principal coor-

dinates is that the roll and pitch responses of the ice floe are better handled using

the principal coordinates. Secondly, it will be easier to calculate and express the 3D

normal vector if we use the principal exes.

At any point P on a ‘sloped’ hull (β > 0) the inward Normal 2D vector Ns can be

expressed as:

A. Appendix 118

Figure A.4: Rotated x-y coordinate systems for ship and ice.

Ns = li+mj (A.50)

The same vector can be re-expressed in rotated coordinates:

Nsr = lrsi+mrsj (A.51)

lrs = l cos(θ) +msin(θ) (A.52)

mrs = −l sin(θ) +mcos(θ) (A.53)

The 3D normal vector Nsb can be derived from Nsr:

Nsb = lsbi+msbj + nsbk (A.54)

lsb = lrs cos(β) (A.55)

A. Appendix 119

msb = mrs cos(β) (A.56)

nsb = sin(β) (A.57)

And the moment arms are (assume z=0):

λls = nsbyrs−msbz (A.58)

µls = lsbz − nsbxrs (A.59)

ηls = msbxrs− sbyrs (A.60)

The added mass terms are as follows (estimates):

AMsx = 0 (A.61)

AMsy = 0.5 (A.62)

AMsz = 1.0 (A.63)

AMsrol = 0.25 (A.64)

AMspit = 1.0 (A.65)

AMsyaw = 0.6 (A.66)

Where AMsx is the added mass factor in surge, AMsy is the added mass factor

in sway, AMsz is the added mass factor in heave, AMsrol is the added mass factor in

roll, AMspit is the added mass factor in pitch and AMsyaw is the added mass factor

in yaw.

The mass radius of gyration (squared) are:

rxs2 = 0.003L2 (A.67)

A. Appendix 120

rys2 = 0.05L2 (A.68)

rzs2 = 0.06L2 (A.69)

Where L is the length of the ship.

The effective mass of the ship can be expressed as:

Mse = Ms/Cos (A.70)

Ms = shipmass (A.71)

Where Cos = lsb2/(1+AMsx)+msb2/(1+AMsy)+nsb2/(1+AMsz)+λls2/((1+

AMsrol)rxs2) + µls2/((1 + AMspit)rys2) + ηls2/((1 + AMsyaw)rzs2).

Using the added mass assumptions, this simplifies to:

Cos = lsb2 +msb2/1.5 + nsb2/2 + λls2/(1.25rxs2) + µls2/(2rys2) + ηls2/(1.6rzs2)

(A.72)

A.1.7 Description of the Mass Reduction Coefficient Co for

an Ice Floe in 2.5D Simulation

At any point (xrf,yrf) on a ‘sloped’ ice impact (β > 0) the inward normal vector can

be expressed as:

Nfb = lfbi+mfbj + nfbk (A.73)

lfb = lrf cos(β) (A.74)

mfb = mrf cos(β) (A.75)

nfb = sin(β) (A.76)

A. Appendix 121

Figure A.5: 2.5D ice floe collision point geometry.

And the moment arms are (assume z=0):

λlf = nfbyrf −mfbz (A.77)

µlf = lfbz − nfbxrf (A.78)

ηlf = mfbxrf − lfbyrf (A.79)

The added mass terms are as follows (estimates):

AMfx = 0 (A.80)

AMfy = 0 (A.81)

AMfz = 1.0 (A.82)

AMfrol = 1.0 (A.83)

AMfpit = 1.0 (A.84)

AMfyaw = 0 (A.85)

A. Appendix 122

Where AMfx is the added mass factor in surge, AMfy is the added mass factor

in sway, AMfz is the added mass factor in heave, AMfrol is the added mass factor in

roll, AMfpit is the added mass factor in pitch and AMfyaw is the added mass factor

in yaw.

The mass radius of gyration (squared) are:

rxf 2 = Ixx/A (A.86)

ryf 2 = Iyy/A (A.87)

rzf 2 = Izz/A (A.88)

Where Ixx, Iyy, Izz are the principal area moments. A is the area of the floe.

The effective mass of the ice floe can be expressed as:

Mfe = Mf/Cof (A.89)

Mf = ρAt = 900At (A.90)

Where Cof = lfb2/(1 + AMfx) + mfb2/(1 + AMfy) + nfb2/(1 + AMfz) +

λlf 2/((1 +AMfrol)rxf 2) +µlf 2/((1 +AMfpit)ryf 2) + ηlf 2/((1 +AMfyaw)rzf 2).

Using the added mass assumptions, this simplifies to:

Cof = lfb2 +mfb2 + nfb2/2 + λlf 2/(2rxf 2) + µlf 2/(2ryf 2) + ηlf 2/(rzf 2) (A.91)

A.1.8 Description of the Ship-Ice Impact Calculation

The normal force can be found by:

Fn = P0.fa.(
KEe.fx

P0.fa
)
fx−1
fx (A.92)

A. Appendix 123

Figure A.6: Ship-ice mpact.

Where KEe = Me
2
.V nb2, V nb = V n cos(β), V n : 2-body closing speed along 2D

normal and Me = 1
1/Mse+1/Mfe

.

For initial simplicity:

P0 = 1MPa (A.93)

fx = 3 (A.94)

ex = 0 (A.95)

Fn = 1.3104P
1/3
0 .fa1/3.Me2/3.V nb4/3 (A.96)

fa in (deg):

fa1/3 = (0.012φ+ 0.6)(1.38− 0.027β + 0.0004β2) (A.97)

fa in (rad):

fa1/3 = (0.69φ+ 0.6)(1.38− 1.55β + 1.31β2) (A.98)

A. Appendix 124

The limit on the normal force can be found by:

Fnlim =
0.382σh2φKv

(sin(β)− µ cos(β))− 0.039(cos(β) + µ sin(β))
(A.99)

Where Kv = Max(1, 2.14FR0.33), FR = V nb√
gh

, σ = 5 x 105 N/m2, h is the thickness

of the ice, µ is the friction factor and g = 9.81 m/s2.

The ice floe will break into two floes if the normal force greater than the limit on

the normal force (Fn > Fnlim). The length of the break can be found as:

Lcusp = 1.2min((20 ∗ h/Kv), Lc) (A.100)

Where Lc is the distance from the point of contact to the centroid of the floe.

The velocites of the two new floes can be found as:

~V1 = ~ωx ~CC1 + ~V (A.101)

~V2 = ~ωx ~CC2 + ~V (A.102)

~ω1 = ~ω (A.103)

~ω2 = ~ω (A.104)

Where ~V is the linear velocity of the original floe, ~V1 is the linear velocity of the

first new floe, ~V2 is the linear velocity of the second new floe, ~ω is the angular velocity

of the original floe, ~ω1 is the angular velocity of the first new floe, ~ω1 is the angular

velocity of the second new floe, ~CC1 is the distance from the centroid of the first new

floe to the centroid of the original floe and ~CC2 is the distance from the centroid of

the second new floe to the centroid of the original floe.

A. Appendix 125

A.1.9 Description of the Water Drag

The change in the velocities of the ice floes from the water drag force can be found

as:

dV x = −1

2

ρwaterV x
2Cd∆t

ρicetice
(A.105)

dV y = −1

2

ρwaterV y
2Cd∆t

ρicetice
(A.106)

dω = −1

2

ρwaterω
2Cd∆t

ρicetice
(A.107)

Where V x is the current linear velocity of the ice floe in the x-direction, V y is

the current linear velocity of the ice floe in the y-direction, ω is the current angular

velocity of the ice floe, tice is the thickness of the ice, ρwater is the water density =

1025 kg/m3, ρice is the ice density = 900 kg/m3, Cd is the water drag coefficient =

0.05 and ∆t is the time step.

A.1.10 Description of the Current and Wind Force

The current and wind are applied as a force per unit area. The change in the velocities

of the ice floes from the current and wind can be found as:

∆Vwind =
Fwind∆t

ρicetice
(A.108)

∆Vcurrent =
Fcurrent∆t

ρicetice
(A.109)

dV xwind = ∆Vwind cos(θ) (A.110)

dV ywind = ∆Vwind sin(θ) (A.111)

dV xcurrent = ∆Vcurrent cos(θ) (A.112)

A. Appendix 126

dV ycurrent = ∆Vcurrent sin(θ) (A.113)

Where Fwind is the magnitude of the wind force per unit area, Fcurrent is the

magnitude of the current force per unit area, ∆Vwind is the magnitude of the change

of the velocity from the wind force, ∆Vcurrent is the magnitude of the change of the

velocity from the current force and θ is the wind or current direction.

Appendix B

Appendix

B.1 Simulation File Structure

This file (.ice) used to store the simulation data. The file is written in XML (eXtensi-

ble Markup Language)1 and follow a unique scheme created specifically for simulation

files. The XML parser CMarkup2 is used for reading and writing .ice files.

• Each file contains an entire simulation

• The initial frame (index = 0) contains all objects in a simulation

• Subsequent frames only contain updated object information if it changes from

the previous frame. This eliminates the unnecessary repetition of object data

every frame

1http://www.w3schools.com/xml/xml whatis.asp
2http://www.firstobject.com

127

B. Appendix 128

• The 〈IceF loeSim〉 element contains the entire simulation which is made up of

〈frame〉 elements. The 〈IceF loeSim〉 element has an ”numFrames” attribute

which represents the number of frames/scenes in the simulation

• Each 〈frame〉 element represents an individual frame/scene. The frame number

is given by the ”index” attribute

• Each frame contains 〈object〉 elements representing an individual object within

a frame

• Every object has an ”index” attribute which is constant throughout the entire

simulation and used to track changes to an object’s parameters between frames

• Objects contain parameter elements (currently only 〈coordinates〉, 〈velocity〉

and 〈thickness〉) which describe the object

B.1.1 Example .ice File

Listing B.1: Simulation File Structure (.ice)

1 <i ceFloeS im numFrames=”INT”>

2 |

3 | <frame index=”INT”>

4 | |

5 | | <ob j e c t index=”INT”>

6 | | | |

7 | | | | <coo rd ina t e s> FLOAT FLOAT . . . </ coo rd ina t e s>

8 | | | |

B. Appendix 129

9 | | | | <v e l o c i t y x=”FLOAT” y=”FLOAT” a=”FLOAT” />

10 | | | |

11 | | | | <t h i c k n e s s> FLOAT </ t h i c k n e s s>

12 | | | |

13 | | </ ob j e c t>

14 | |

15 | | .

16 | | .

17 | | .

18 | |

19 | |

20 | </ frame>

21 |

22 | .

23 | .

24 | .

25 |

26 </ iceFloeSim>

B.2 Simulator Design

Table B.1 describes the classes that are used in the ice simulator.

Class Name Description

FileParser Reads the input file and exctracts the information about

polygons

Frame Stores all required information about the scene

B. Appendix 130

Markup Interface for the XML parser

Point Stores the coordinates for vertices of the polygon

PolygonObj Stores all information about the polygon and provides

several functions that can be used to calculate the prop-

erties (mass, area, centroid, etc...) of the polygon

Polygon Kernel Contains the computationally intensive work which is

implemented as kernels and executed on the GPU

PolygonSystem C wrapper class

Simulation Stores the simulation data

Simulator Provides functions that can be used to run and control

the simulation

Table B.1: The classes in the ice simulator

References

[1] S. A., B. Leira, , and K. Riska. Short term extreme statistics of local ice loads
on ship hulls. Cold Regions Science and Technology, pages 130–143, 2012.

[2] J. Adams, J. Sheppard, S. Alawneh, and D. Peters. Ice-floe simulation viewer
tool. In Proceedings of Newfoundland Electrical and Computer Engineering Con-
ference (NECEC 2011), IEEE, St. John’s, NL, Canada, Nov 2011.

[3] B. Barney. Introduction to parallel computing. Techni-
cal report, Lawrence Livermore National Laboratory, 2013.
https://computing.llnl.gov/tutorials/parallel comp.

[4] J. Blanchette and M. Summerfield. C++ GUI Programming with Qt 4 (2nd
Edition) (Prentice Hall Open Source Software Development Series). Prentice
Hall, 2 edition, Feb. 2008.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on the
GPU: conjugate gradients and multigrid. ACM Trans. Graph., 22(3):917–924,
July 2003.

[6] A. H. Bond. Havok fx: GPU-accelerated physics for pc games. In Proceedings
of Game Developers Conference 2006, mar 2006. http://www.havok. com/con-
tent/view/187/77/.

[7] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: stream computing on graphics hardware. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers, pages 777–786, New York, NY, USA, 2004.
ACM Press.

[8] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.
Geom., 6(5):485–524, Aug. 1991.

[9] C. Daley. Energy based ice collision forces. In POAC ’99, Helsinki, Finland,
1999.

131

REFERENCES 132

[10] C. Daley, S. Alawneh, D. Peters, and B. Colbourne. GPU-event-mechanics eval-
uation of ice impact load statistics. In Offshore Technology Conference (OTC
2014), Houston, Texas, USA, 2014.

[11] C. Daley, S. Alawneh, D. Peters, B. Quinton, and B. Colbourne. GPU modeling
of ship operations in pack ice. In International Conference and Exhibition on
Performance of Ships and Structures in Ice (ICETECH 2012), Banff, Alberta,
Canada, 2012.

[12] C. Daley and A. Kendrick. Direct design of large ice class ships with emphasis
on the midbody ice belt. In Proc. 27th Int’l Conf. on Offshore Mechanics and
Arctic Engineering OMAE2008, Estoril, Portugal, 2008.

[13] C. Daley, J. St. John, R. Brown, J. Meyer, and I. Glen. Ice loads and ship
response to ice - a second season. Technical Report SSC-339, Report to U.S.
Ship Structures Committee, 1990.

[14] C. Daley, J. St. John, R. Brown, J. Meyer, and I. Glen. Ice loads and ship
response to ice - consolidation. Technical Report SSC-340, Report to U.S. Ship
Structures Committee, 1990.

[15] C. Daley, J. St. John, F. Siebold, and I. Bayly. Analysis of extreme ice loads
measured on uscgc polar sea. In Transactions, SNAME, New York, USA, 1984.

[16] R. Dragt, S. Bruneau, and S. Alawneh. Design and execution of model exper-
iments to validate numerical modelling of 2d ship operations in pack ice. In
Proceedings of Newfoundland Electrical and Computer Engineering Conference
(NECEC 2012), IEEE, St. John’s, NL, Canada, Nov 2012.

[17] D. Eberly. Intersection of convex objects: The method of separating axes. Geo-
metric Tools, LL, 2008.

[18] D. Eberly. Triangulation by ear clipping. Technical report, Geometrictools,
March 2008. http://www.geometrictools.com.

[19] E. Enkvist, P. Varsta, and K. Riska. The ship-ice interaction. In Proceedings
of The International Conference on Port and Ocean Engineering under Arctic
Conditions (POAC), volume 2, page 9771002, Trondheim, 1979.

[20] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann, 2005.

[21] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. A multigrid
solver for boundary value problems using programmable graphics hardware. In

REFERENCES 133

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS ’03, pages 102–111, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[22] S. Green. Nvidia particle system sample. Technical report, Nvidia, 2004.
http://download.developer.nvidia.com/developer/SDK/.

[23] S. Green and M. J. Harris. Game physics simulation on nvidia GPUs. In
Proceedings of Game Developers Conference 2006, mar 2006. http://www. ha-
vok.com/content/view/187/77/.

[24] T. R. Hagen and J. R. Natvig. Solving the Euler Equations on Graphics Pro-
cessing Units. Comp. Sci. - ICCS, pages 220–227, 2006.

[25] M. Harris. Fast fluid dynamics simulation on the GPU. In ACM SIGGRAPH
2005 Courses, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

[26] M. Harris. GPGPU website. Technical report, GPGPU, 2008.
http://www.gpgpu.org/.

[27] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. Simulation of cloud
dynamics on graphics hardware. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware, HWWS ’03, pages 92–101,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[28] Haxon. Ice floe at oslofjord. Technical report, panoramio, mar 2009.
http://www.panoramio.com/photo/19618780.

[29] A. Keinonen, B. R. Revill, and A. Reynolds. Ice breaker characteristics syn-
thesis. Technical Report TP 12812 E., Report of AKAC Inc. to Transportation
Development Centre, 1996.

[30] P. Kipfer, M. Segal, and R. Westermann. UberFlow: a GPU-based particle
engine. In HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 115–122, New York, NY, USA, 2004.
ACM.

[31] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision
detection for large particle systems. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware, HWWS ’04, pages 123–131,
New York, NY, USA, 2004. ACM.

[32] T. Kotras, A. Baird, and J. Naegle. Predicting ship performance in level ice.
SNAME Transactions 91, page 329349, 1983.

REFERENCES 134

[33] J. Krüger and R. Westermann. Linear algebra operators for GPU implementation
of numerical algorithms. ACM Trans. Graph., 22(3):908–916, July 2003.

[34] P. Kujala. On the statistics of ice loads on ship hull in the baltic. Mechanical
Engineering Series, pages 1–19, 1994.

[35] P. Kujala. Semi-empirical evaluation of long term ice loads on a ship hull. Marine
Structures, 9(9):849–871, 1996.

[36] B. Leira, L. Børsheim, ø. Espeland, and J. Amdahl. Ice-load estimation for a
ship hull based on continuous response monitoring. Journal of Engineering for
the Maritime Environment, pages 529–540, 2009.

[37] B. Leira, B.J. Estimation of ice loads on a ship hull based on strain measure-
ments. In Proceedings of the 27th International Conference on Offshore Mechan-
ics and Arctic Engineering, Estoril, Portugal, 2008.

[38] G. Lindqvist. A straightforward method for calculation of ice resistance of ships.
In Proceedings of The International Conference on Port and Ocean Engineering
under Arctic Conditions (POAC), volume 2, page 722735, Lule, 1989.

[39] R. Lubbad and S. Løset. A numerical model for real-time simulation of shipice
interaction. Cold Regions Science and Technology, 65(2):111 – 127, 2011.

[40] S. Luding. Introduction to discrete element methods : basic of contact force
models and how to perform the micro-macro transition to continuum theory. Eu-
ropean Journal of Environmental and Civil Engineering, 12(7-8):785–826, 2008.

[41] G. H. Meisters. Polygons Have Ears. The American Mathematical Monthly,
82(6):648–651, 1975.

[42] D. Muggeridge and A. F. Aboulazm. Analytical investigation of ship resistance
in broken or pack ice. In Proc. 8th Int. Conference, Offshore Mechanics & Arctic
Engng, volume IV, page 359365, 1989.

[43] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with cuda. Queue, 6:40–53, March 2008.

[44] Nivida. Physx. Technical report, Nvidia, 2004.
http://www.geforce.com/hardware/technology/physx.

[45] Nvidia. Cuda architecture overview v1.1. introduction & overview. Technical
report, Nvidia, 2009.

REFERENCES 135

[46] Nvidia. Cuda development tools v2.3. getting started. Technical report, Nvidia,
2009.

[47] Nvidia. Cuda programming guide v2.3.1. Technical report, Nvidia, 2009.

[48] Nvidia. Tesla c2050. Technical report, Nvidia, 2010.
http://www.nvidia.com/object/tesla-supercomputing-solutions.html.

[49] J. O’Rourke. Computational Geometry in C. Cambridge University Press, New
York, NY, USA, 2nd edition, 1998.

[50] J. Owens. Streaming architectures and technology trends. In M. Pharr, editor,
GPU Gems 2, chapter 29, pages 457–470. Addison Wesley, Mar. 2005.

[51] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn, and
T. J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[52] V. Pascucci. Isosurface computation made simple. In VisSym, pages 293–300,
2004.

[53] Y. Popov, O. Faddeyev, D. Kheisin, and A. Yalovlev. Strength of ships sailing
in ice. Sudostroenie Publishing House, Leningrad, 1967.

[54] A. Rich, J. St. John, and R. Browne. Ice load impact measurements on the
ccgs louis s. st.-laurent during the 1994 arctic ocean crossing - analysis and
conclusions. Technical report, Report to Canadian Coast Guard and US Coast
Guard, 1997.

[55] K. Riska, M. Patey, S. Kishi, and K. Kamesaki. Influence of ice conditions on
ship transit times in ice. In Proceedings of The International Conference on
Port and Ocean Engineering under Arctic Conditions (POAC), volume 2, page
729745, Ottawa, Ontario, Canada, 2001.

[56] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for
manycore GPUs. In Proceedings of the 2009 IEEE International Symposium on
Parallel and Distributed Processing, IPDPS ’09, pages 1–10, Washington, DC,
USA, 2009. IEEE Computer Society.

[57] M. I. Shamos. Computational geometry. PHD thesis, Yale University, New Haven,
1978.

[58] J. St. John, C. Daley, and H. Blount. Ice loads and ship response to ice. Technical
Report SSC-329, Report to U.S. Ship Structures Committee, 1985.

REFERENCES 136

[59] N. Stewart, G. Leach, and S. John. Improved CSG rendering using overlap
graph subtraction sequences. In Proceedings of the International Conference on
Computer Graphics and Interactive Techniques in Australasia and South East
Asia (GRAPHITE 2003), pages 47–53. Acm Press, 2003.

[60] M. Suominen and P. Kujala. Analysis of short-term ice load measurements on
board ms kemira during the winters 1987 and 1988. Technical Report AM-22,
Report to Aalto University, School of Science and Technology, Department of
Applied Mechanics. Espoo, Finland, 2010.

[61] D. Tskhakaya. The particle-in-cell method. In H. Fehske, R. Schneider, and
A. Weie, editors, Computational Many-Particle Physics, volume 739 of Lecture
Notes in Physics, pages 161–189. Springer Berlin Heidelberg, 2008.

[62] P. Valanto. The resistance of ships in level ice. SNAME Transactions 109, page
5383, 2001.

[63] R. C. Woolgar and D. B. Colbourne. Effects of hullice friction coefficient on
predictions of pack ice forces for moored offshore vessels. Ocean Engineering,
37(23):296 – 303, 2010.

[64] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method:
Its Basis and Fundamentals, Sixth Edition. Butterworth-Heinemann, 6 edition,
may 2005.

