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Abstract 
 

Heavy oil fly ash (HOFA) is a by-product generated in power plants by the burning of heavy 

fuel oil. The main constituent of HOFA is unburned carbon; it also contains other elements 

such as arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), nickel (Ni), 

lead (Pb), copper (Cu), zinc (Zn), selenium (Se), calcium (Ca), magnesium (Mg), sodium 

(Na), silicon (Si), aluminium (Al), iron (Fe), and vanadium (V) in different forms of oxides 

or sulfates. Due to insufficient knowledge of the physical and chemical properties and related 

applications of this by-product, it is usually disposed off into  landfills.  

In order to explore the beneficial utilization of HOFA, this research study analyzes the 

physical, chemical, and morphological characteristics of HOFA. It also includes an in-depth 

investigation on its reuse as (i) a natural absorbent such as activated carbon (AC), (ii) fill 

material for construction use, and (iii) a colour ingredient in ornamental concrete.     

Chemical and physical activation techniques were used to produce fly ash activated carbon 

(FAC). Before activation, the minerals and other metals present in the HOFA were removed 

by standard leaching procedures. The performances of the produced FAC were tested for the 

removal of selected pollutants such as dyes, naphthalene, and metals from aqueous solutions. 

The results from the laboratory batch experiments indicated that the developed FAC has the 

potential to remove organic and inorganic (e.g., 85% to 90%) pollutants from wastewater.  

Soil stabilizer or fill material for construction use was prepared by mixing HOFA with 

Portland cement at different ratios. The leaching behaviour of the trace elements and 

compounds within HOFA and fill materials was studied by standard laboratory batch and 

column leaching tests. The results of the study showed that the toxic elements in HOFA are 
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easily leachable and can be toxic to the environment. However, the addition of 40% Portland 

cement with HOFA significantly decreased the leaching concentration of most elements 

below the permissible level. 

To explore the possible use of HOFA as a black pigment or admixture in ornamental 

concrete, it was mixed with cement mortar at different percentages. The standard 

compressive strength test with 50 mm cement mortar cubes showed that the addition of 2% 

to 5% HOFA in cement mortar does not affect its compressive strength. The leaching 

behaviour of trace elements within HOFA mixed concrete material was also investigated 

through laboratory batch leaching experiments. The findings confirmed that HOFA can be 

used as a black pigment in ornamental concrete, which is environmentally safe, and provides 

a good balance between colour and concrete quality. 

In the final phase of this research, a human health risk assessment methodology was 

developed in order to assess the potential health risk to people living in the area surrounding 

the HOFA dumping site. This study also explores environmental concerns and the 

importance of HOFA management practices. 
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Chapter 1 

 

Introduction and Overview 

 

1.1 Background 

 

During combustion, oil drops are heated and burned with oxygen. At the same time, 

impurities such as sulphur, vanadium, and nickel within the fuel oil are transformed and react 

with gaseous hydrocarbons to form particulate matter, which is known as ash (Wayne et al., 

2009). The ash accumulated on boilerplates is called bottom ash, and ash with the exhaust 

collected by dust collector devices is called fly ash (Sakai and Sugiyama, 1970). The burning 

of a kiloliter of heavy fuel oil (HFO) yields about 3 kilograms (kg) of ash (Tsai and Tsai, 

1997), and most of this ash (approximately 90%) is passed through a flue gas steam, which is  

collected by air pollution control devices such as  electrostatic precipitators (ESP) or 

cyclones (Hsieh and Tsai, 2003). The fly ash generated by the burning of HFO is generally 

termed heavy fuel oil fly ash (HOFA). On average, 50-60 tonnes of HOFA are generated per 

day from a mid-range (i.e., 2300 MW power generating capacity) power plant (Hsieh and 

Tsai, 2003; Wayne et al., 2009).  

HOFA, which is composed of low density fine particles, has the potential to disperse into the 

air during handling and transportation. Due to their light density, these particles can travel a 

long distance before settling on land, water, or vegetation. The dispersion of HOFA may 

result in the contamination of soil, water, and air. Inhalation of HOFA particles may pose 

potential health impacts, since they contain high levels of heavy metals. HOFA is an 
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environmental concern. Indeed, due to poor management and uncontrolled disposal it may 

pose an environmental and public health hazard (Mohapatra and Rao, 2001; Choi et al., 

2002; Fernandez et al., 2003). An HOFA dumping area is a potential source of airborne 

particles; leach from an HOFA dumping site may contaminate a nearby water body, soil, and 

groundwater and have a negative impact on the environment (Fernandez et al., 2003; 

Mofarrah and Husain, 2013).  

People exposed to HOFA may suffer from coughing, bronchial irritation, gastrointestinal 

diseases, and conjunctivitis (Zhang et al., 1995; Jiang et al., 2000; Lozano and Juan, 2001; 

Navarro et al., 2007;).  Improper handling and disposal of HOFA may cause negative health 

effects on workers and the surrounding exposed population (e.g., lung irritation injury) 

(Andrew et al., 2002).  

Considering the long-term impact of HOFA on the environment, it is important to find a 

sustainable eco-friendly economical method for the proper management of HOFA. The 

recycling of HOFA by producing new products or reusing it as a product for use in pollution 

control technology has substantial economical and environmental benefits. 

1.2 Scope of this study 

Yearly a million tonnes of HOFA are generated worldwide but only a small portion is reused 

for productive purposes (Mõtlep et al., 2010). Generally, HOFA is dumped into landfills or 

waste containment facilities (Baek et al., 2007). This dumping of HOFA could be a potential 

source for soil, groundwater, and surface water contamination. Although in different parts of 

the world vanadium and nickel are recovered from HOFA, the major part of this waste (about 

90-95%) is dumped into landfills (Akita et al., 1995; Miura et al., 2001; Guibal et al., 2003), 

which need to be managed. The cost associated with the management of this vast quantity of 
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HOFA is high, and an increasing trend is expected due to the stringent environmental 

regulations being enforced worldwide. 

A potential economic incentive exists for developing innovative and environmentally safe 

applications of this waste. This study explores the potential uses of HOFA as a natural 

adsorbent in removing organic and inorganic compounds from wastewater. The research also 

indentified that HOFA blended with cement can be used as soil stabilization material in an 

environmentally safe manner. This research contributes to minimizing the scientific gap 

regarding HOFA management and attempts to develop a good approach to its reuse as a 

value-added commercial product.  

1.3 Research objectives 

A significant amount of research has been conducted on the reuse of coal fly ash but very 

little research has been done on the beneficial utilization of HOFA. Due to the different 

chemical compositions of coal and HFO, the characteristics of the two types of fly ash that 

result also differ.  Fly ash from HFO burning has a higher percentage of unburned carbon, 

less silica, and a higher level of vanadium, nickel, and magnesium than coal fly ash. 

Considering the above research scope, this study aims to develop environmentally friendly 

management options of HOFA. The main objectives of this research are to 

a. Analyze the physical and chemical characteristics of HOFA.  

b. Evaluate the human health risk associated with HOFA dumping (i.e., current 

management practices). 

c. Conduct different leaching tests to evaluate the environmental impacts associated 

with HOFA.  
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d. Evaluate potential uses of HOFA as construction material such as a soil stabilizer and 

a colour ingredient in ornamental concrete.  

e. Extract clean carbon from HOFA and prepare fly ash activated carbon (FAC). 

f. Investigate the efficiency of the produced FAC to adsorb selected pollutants from 

wastewater. 

g. Evaluate the regeneration efficiency of used FAC. 

h. Model the FAC adsorption characteristics of selected pollutants in wastewater.  

1.4 Originality and contributions  

Through the development of HOFA management strategies, this research focused on the 

conversion of HOFA into environmentally friendly products such as AC, a soil stabilizer, 

and a colour ingredient in ornamental concrete. The author’s contributions and originality of 

this study can be summarized as follows: 

 Analyzed physical and chemical characteristics of different types of HOFA.  

 Extracted clean carbon from HOFA and prepared fly ash activated carbon (FAC). 

 Studied the FAC adsorption characteristics of pollutants such as Cr (IV), naphthalene, 

and MB from aqueous solution. 

 Conducted leaching tests to evaluate the environmental impact of HOFA.  

 Evaluated the potential application of HOFA in construction material such as a soil 

stabilizer and a colour ingredient in ornamental concrete.  

 Developed a health risk assessment methodology to assess the human health risk 

posed by HOFA dumping. 
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This research also contributed to the  scientific platform through different publications. The 

list of publications from this study, including a paper under review or in preparation, are as 

follows: 

 Mofarrah, A., Husain, T., (2013). Evaluation of Environmental Pollution and 

Possible Management Options of Heavy Oil Fly Ash. Journal of Material Cycles and 

Waste Management, vol. 15 (1), pp. 73-81. 

 Mofarrah, A.,  Husain, T., (2013). Use of Heavy Oil Fly Ash as a Color Ingredient 

in Cement Mortar. International Journal of Concrete Structures and Materials, vol. 7 

(2), pp. 111-117. 

 Mofarrah, A., Husain, T.,  Bottaro, C., (2013). Characterization of Activated Carbon 

Obtained from Saudi Arabian Fly Ash, International Journal of Environmental 

Science and Technology (IJEST), Volume 11, Issue 1, pp 159-168. 

 Mofarrah, A., Husain, T., Ekram, Y. D., (2012). Investigation of the Potential Use of 

Heavy Oil Fly Ash as Stabilized Fill Material for Construction. Journal of Materials 

in Civil Engineering, vol. 24 (6), pp. 684-690.  

 Mofarrah, A., Husain, T.,  Ekram, Y. D., (2012). Communicating human health risks 

associated with airborne particulate released from fly ash dumping site: Probabilistic 

Approach, book chapter Academy Publish. 

 Mofarrah, A., Husain, T.,  Ekram, Y. D, (2012). Production of activated carbon from 

Saudi Arabian fly ash to develop pollution mitigation technology. First International 

Conference on Environmental Challenges in Arid Regions, 2012, Jeddah, paper No. 

0747.  
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 Mofarrah, A., Husain, T., Chen, B., (2013). Optimizing Cr (VI) adsorption on 

activated carbon produced from heavy oil fly ash. Journal of Material Cycles and 

Waste Management, DOI: 10.1007/s10163-013-0197-7.  

 

1.5 Overview of the thesis 

The organization of the thesis follows the guidelines approved by the Faculty of Engineering 

and Applied Science of Memorial University of Newfoundland. This study is organized into 

eight chapters. Chapter 1 presents a statement of problems, the scope of the study, and the 

objectives of this research. The background of HOFA, its available management options, and 

related literature are presented in Chapter 2. The experimental setup and characteristics 

analysis of HOFA are presented in Chapter 3. The methodology used to assess the human 

health risk associated with the dumping of HOFA in landfills is presented in Chapter 4. The 

potential application of HOFA as a construction material and different leaching tests are 

described in Chapter 5. Chapter 6 describes the production and characterization of fly ash 

activated carbon (FAC). Adsorption experiments and related modeling are presented in 

Chapter 7. This study concludes in Chapter 8 with recommendations for future work. Figure 

1-1 schematically shows how various chapters are organized in this thesis. 
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Figure1-1 Structure of the thesis 
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Chapter 2  

 

Literature Review 

 

2.1 Introduction 

Heavy fuel oil (HFO) plays an important role in power generation in many parts of the 

world.  Due to its availability in local market and relatively low cost, major power generation 

facilities in several countries, including Spain, Italy, Taiwan, and Saudi Arabia, use HFO. 

Saudi Arabia uses about 320 million barrels of HFO and crude oil annually for its power 

generation (Breakbulk Online News, 2010-07-20), which produces about one-quarter million 

tonnes of HOFA, most of which is dumped into landfills. 

Although Canada has reduced its use of HFO for power generation, in some parts of Canada  

a mixture of HFO and petroleum coke is used to generate electricity. According to statistics, 

Newfoundland and Labrador uses 3.4%, Nova Scotia and Prince Edward Island use 15.8%, 

and New Brunswick uses 36.1% HFO or a mixture of HFO and petroleum coke for power 

generation (Paul and Caouette, 2007). This indicates that a large amount of HOFA is being 

generated by provincial power industries.  

In Italy, approximately 14 million tonnes of HFO is used for power generation, and its 

annual production of HOFA is about 27,600 tonnes (Rapporto Ambientale, 2000). According 

to Hsieh and Tsai (2003), Taiwan consumes 15 million kiloliters of fuel oil per year, which 

produces about 45,000 tonnes of HOFA. The improper disposal of HOFA can cause the air 

quality deterioration and impact surface water and groundwater. The volume of fly ash waste 

generated by power plants, as well as the cost of disposal of this waste, are continually 
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increasing, and this challenges environmental engineers to develop improved cost-effective 

and environmentally sound management plans.  

Table 2-1 Typical chemical composition of HOFA  

(Gupta and Krishnamurthy, 1992; Kwon, et al., 2005) 

Parameters Fly Ash  Unit 

Arsenic (As) 2.84 mg/kg 

Barium (Ba) 4.23 mg/kg 

Cadmium (Cd) ND mg/kg 

Cobalt (Co) 0.042 mg/kg 

Chromium (Cr) 2.25 mg/kg 

Copper (Cu) 16.36 mg/kg 

Iron (Fe) 1368 mg/kg 

Mercury (Hg) ND mg/kg 

Manganese (Mn) 29.6 mg/kg 

Molybdenum (Mo) 0.153 mg/kg 

Nickel (Ni) 135.6 mg/kg 

Lead (Pb) 4.355 mg/kg 

Selenium (Se) 228.6 mg/kg 

Tin (Sn) ND mg/kg 

Vanadium (V) 1508 mg/kg 

Zinc (Zn) 8.36 mg/kg 

Unburned Ash % 3.14 % 

Carbon % 50-90 % 

 

Until 2014, the most of the research related to HOFA management has been confined to its 

characterization and to the recovery of valuable materials like vanadium and nickel from this 

by product (Akita et al., 1995; Miura et al., 2001; Vitolo et al., 2001; Guibal et al., 2003; 

Baek et al., 2007). A large volume of residue is left after metal extraction, which is currently 

considered waste residue for landfill disposal. HOFA characteristics depend on the type of 

fuel and the method of combustion. Chemical analysis shows that HOFA is composed 
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mainly of carbon (e.g., 70~80%), sulphur, and residue ash (Tsai and Tsai, 1997; Kwon et al., 

2005). It also contains inorganic substances such as silicon dioxide (SiO2), iron (III) oxide 

(Fe2O3), and aluminum oxide (Al2O3) (Kwon et al., 2005); valuable metallic compounds 

such as 20-30% vanadium and 0.8-6% nickel (Zhang et al., 1995; Lozano and Juan, 2001); 

and heavy metals such as arsenic (As), cadmium (Cd), mercury (Hg), and copper (Cu) which 

exist in crude petroleum (Hwang et al., 1996). The typical chemical composition of HOFA as 

found in the literature is shown in Table 2-1.  

The moisture content, density, and porosity of HOFA as found in the literature are listed in 

Table 2-2. The bulk density of HOFA varies from 0.20 to 1.50 g/cm
3
, and its true density and 

porosity are reported as 2.15 g/cm
3
 and 10.31% respectively (Kwon et al., 2005). 

Table 2-2 Physical properties of heavy HOFA  

(Gupta and Krishnamurthy, 1992; Kwon et al., 2005) 

Sample Moisture 

content (%) 

Bulk density 

(g/cm
3
) 

True density 

(g/cm
3
) 

Porosity (%) 

HOFA 11.54 0.52 2.15 10.31 

 

The particle size of HOFA ranges from 10 to 120 (μm). The particles of HOFA contain small 

pores of a few μm in size which may have formed during the combustion process (Kwon et 

al., 2005). The colour of HOFA is close to carbon black (Kwon et al., 2005); however, the 

colour of HOFA mainly depends on the burning process and the characteristics of the HFO.   

2.2 Activated carbon  

Activated carbon (AC) is a family of carbonaceous material which has been processed to 

make it highly porous (Ahmadpour and Do, 1996; Rodriguez-Reinoso, 1997). Because of its 
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extensive surface area and high adsorption capacity, AC is widely used as an adsorbent to 

control pollution in many industries (Mohan and Pittman, 2006). Usually two broad types of 

AC, such as (i) Granular activated carbon (GAC), and (ii) Powdered activated carbon (PAC), 

are used in industrial applications. According to the American Water Works Association 

Standard (AWWA, 1997), carbon having particle size 0.297 mm or larger is defined as GAC; 

on the other hand, a carbon particle finer than 0.297 mm is termed as PAC.  

The pore size of AC ranges from 1 nm to 1000 nm, and its surface area from 500 m
2
/g to 

1500 m
2
/g (Cooney, 1999). The large surface  area (e.g., 300-2500 m

2
/g) of AC allows it to 

absorb more substances from the liquid and gas phases (Snell et al., 1974).  Generally AC is 

free from all non-carbon impurities (Lua and Guo, 2000), but, depending on the nature of the 

raw material and the activation process, it may contain a trace amount of mineral matter 

(e.g., ash content) (Mattson, 1971; Menendez and Martin, 2006).  

Porosity is a favourable characteristic of AC: high porosity provides more surface area, 

which leads to a greater adsorption capacity. The porosity of AC depends mainly on the 

nature of the raw material and the activation process (Diaz-Teran et al., 2001). According to 

the International Union of Pure and Applied Chemistry (IUPAC) definitions, the pore size of 

AC can be classified into three major groups: (i) micropores (< 2 nm), (ii) mesopores (2-50 

nm), and (iii) macropores (>50 nm)  (Sing et al., 1985; Menendez and Martin, 2006). The 

main part of the internal surface and the total pore volume of AC are composed of 

micropores and mesopores (Menendez and Martin, 2006). In the adsorption process, 

macropores act as an entrance gateway through which the adsorptive molecules travel to the 

mesopores, from where the smaller molecules enter micropore regions. Mesopore regions are 
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suitable only for trapping large molecular species such as colour molecules (Mattson, 1971; 

Menendez and Martin, 2006).  

2.3 Production of activated carbon  

Materials with a high carbon and low inorganic content such as wood, lignite, peat, and coal 

are generally used as raw materials for AC production (Lua and Guo, 2001). Industrial and 

agricultural waste or by-products such as macadamia nutshell, paper mill sludge, peach 

stone, fly ash etc. can also be used to produce AC (Ahmadpour and Do, 1997; Hsieh and 

Tsai, 2003; Menendez and Martin, 2006). The production of AC involves various cleaning 

and pyrolysis steps. Some impurities in the raw material are removed by systematic leaching 

and washing processes. Sometimes chemical agents are used in this process. The removal of 

volatile components from the raw materials and the development of AC are followed by 

different pyrolysis processes. Pyrolysis can be followed by chemical or physical activation 

(Menendez and Martin, 2006).   

In chemical activation, the raw material is treated with an applicable amount of the chemical 

agent. Common chemical agents such as alkali, salt of alkaline-earth, and some acids (e.g., 

KOH, K2CO3, NaOH, Na2CO3, AlCl3, ZnCl2, MgCl2, HCl, H3PO4, and H2SO4) are well 

documented in the literature (Smisek and Cerny, 1970; Ahmadpour and Do, 1996; 

Caramuscio et al., 2003; Menendez and Martin, 2006). Calcium hydroxide, calcium chloride, 

manganese chloride, and sodium hydroxide are also used as common dehydrating agents 

(Bansal and Goyal, 2005). In this process, the raw material is mixed with a chemical solution 

to form a plastic mass, which is burnt at a low temperature (i.e., generally 90-100°C) for 

several hours (depending on the raw material) to allow for chemical decomposition. The 

mass is then carbonized at a high temperature, generally above 600°C (Bansal and Goyal, 
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2005). After carbonization, the activated product is thoroughly washed with water to 

eliminate any excess chemical. Finally, the product is dried at a low temperature (e.g., 90-

100°C) to obtain AC (Rodriguez-Reinoso, 1997). In chemical activation, the mixing ratio of 

the chemical agent and raw material depends on the characteristics of the raw material and 

the activation process, usually a 1:4 ratio is used (Rodriguez-Reinoso, 1997). The chemical 

dose, temperature, and reaction time are the main factors that control the properties of the 

final product (Bansal and Goyal, 2005).  The physical activation process usually involves 

two steps: first, the raw material is burnt for an extended period at a low temperature (e.g.,  

400-700°C) under an inert environment to form charcoal (Cuhadaroglu and Uygun, 2008; 

Lowell 2004). This process, called carbonization, eliminates the volatile and liquid 

components from the raw material and produces a solid carbon-rich residue. The burning 

period could range from 1 hr to 48 hrs, depending on the property of the raw material 

(Rodriguez-Reinoso, 1997).  

In the activation process, char from carbonization is burnt at temperatures ranging from 

400°C to 1000°C by an oxidizing agent such as steam or carbon dioxide (CO2) for a limited 

period of time (Jankowaka et al., 1991; Lua and Guo, 2000; Lillo-Rodenas et al., 2007). 

Nitrogen (N2) is generally used as an inert gas to carry the oxidizing agent to the system  

(Lillo-Rodenas et al., 2005). Different types of furnaces such as vertical multi-hearth 

furnaces, tube furnaces, and fluidized bed reactors have been used to produce AC. Various 

activation methods have been developed (Mor et al., 2007; Okiemmen et al., 2007; Sari et 

al., 2007; Gupta and Ali, 2004; Mohan et al., 2005), but these procedures all follow the same 

basic principle: carbonization and activation with an oxidizing agent (Menendez and Martin, 

2006). The interlinking of the steps involved in producing AC is shown in Figure 2-1. 



14 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Graphical representation of activation methods 

2.4 Application of AC 

AC has proven applications in environmental purification. It has been broadly applied to the 

removal of different pollutants from industrial processes (Gupta and Ali, 2004; Mohan et al., 

2005; Gode and Pehlivan, 2006). However, the use of commercial activated carbon  (CAC) 

for the treatment of industrial pollutants involves a high cost, which has led researchers to 

develop alternative cost-effective adsorbents. In many areas around the world, high carbon 

content materials such as agricultural wastes and industrial by-products are locally available 

in large quantities; these can be utilized as low-cost adsorbents. Researchers have focused on 

seeking a low-cost adsorbent from industrial and/or agricultural by-products (Ahmed and 

Dhedan, 2012; Gode and Pehlivan, 2006). The conversion of agricultural by-products or 

industrial wastes into adsorbents for pollution control would reduce its disposal cost and 

provide an alternative to CAC (Kurniawan et al., 2006). Based on a recent review by Mohan 
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and Pittman (2006), these low-cost adsorbents can be divided into three categories: (1) 

biomass, (2) agricultural and industrial wastes, and (3) nano-sized particles. Among other 

industrial wastes, carbon rich fly ash has been extensively studied by researchers for their 

removal of pollutants from the air and aqueous solutions (Akgerman and Zardkoohi, 1996; 

Banerjee et al., 2004; Ahmaruzzaman and Sharma, 2005; Sarkar and Acharya, 2006).  Bayat 

(2002) used Turkish fly ash to remove Cr (VI) ions from wastewater. Gupta and Ali (2004) 

used bagasse fly ash to remove lead and chromium from wastewater. Mukherjee et al. (2007) 

studied the adsorption of phenol onto AC derived from bagasse fly ash as well. Rachakornkij 

et al. (2004) studied the adsorption of dyes from aqueous solutions by bagasse fly ash. These 

studies show that fly ash from different sources has the potential to be used for the sorption 

of both inorganic and organic pollutants. Most of these studies use fly ash from coal 

combustion or agricultural wastes. On the other hand, the burning of HFO in power 

generation industries produces thousands of tonnes of HOFA with a very high carbon 

content; this HOFA has potential reuse scope. Studies have been conducted to recover 

vanadium and nickel from HOFA (Akita et al., 1995; Tsai and Tsai, 1998; Vitolo et al., 

2001; Miura et al., 2001; Guibal et al., 2003), but, after recovering the metals, the major part 

of the fly ash is dumped into landfills (Akita et al., 1995). Until now, few studies have been 

conducted on HOFA as a possible absorbent source. Caramuscio et al. (2003) prepared AC 

from HOFA and found that the surface area was 156 m
2
/g. Davini (2002) prepared AC from 

HOFA with a surface area greater than 1000 m
2
/g, and used it for flue gas treatment. Using 

chemical activation process, Yaumi et al. (2013) prepared AC from oil fly ash with a 

maximum Brunauer Emmett Teller (BET) surface area of 318 m
2
/g. This study used 

produced AC to capture carbon dioxide gas from industrial system. A survey of the literature 
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confirms that HOFA could be a potential source of adsorbent, but this has not been fully 

explored. All the possibilities mentioned in the literature prompts the proposed research with 

HOFA for detailed investigation and  to produce high quality adsorbent or to explore other 

reuse options. 

2.5 Regeneration of spent activated carbon 

When the adsorption capacity of AC is reached in saturation, it must be regenerated or 

discarded (Hiltz, 1988). Reactivation involves the modification of AC. In this process the 

contaminants are desorbed and burnt at a temperature generally above 800
o
C in a furnace 

(e.g., rotary kiln) (Zanitsch, 1997). Carbon reactivation is feasible for the large scale 

production (Schuliger, 1988). 

The regeneration of AC usually involves removing the adsorbed contaminants without 

destroying the structure of the AC. In a common regeneration process steam is passed 

through the spent AC bed to restored its capacity (Hiltz, 1988; Junjie et al., 1999; ADG, 

2001). Sometimes a hot inert gas such as nitrogen is used to remove the contaminants from 

the saturated AC bed (ADG, 2001). The application of steam or gas flow could be either 

counter-current or co-current to the original waste stream’s flow.  Regeneration processes 

usually run on-site inside an adsorption vessel. The main advantages of on-site regeneration 

include a greater saving of AC, which is destroyed during off-site reactivation (ADG, 2001).  
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Chapter 3 

 

Characterization of Heavy Fuel Oil Fly Ash  

 

3.1 Sample collection  

Depending on the properties of HFO and burning process, the chemical compositions of 

HOFA vary considerably, but all HOFA includes substantial amounts of unburned carbon 

and minor percentage of other elements including heavy metal. To understand the properties 

of HOFA,  characterization is  necessity.  For this study fly ash samples were collected from 

two sources: the first (FA-SA) was collected from a power plant in Saudi Arabia; the second 

(FA-NB) was collected from a power plant in New Brunswick, Canada. The FA samples 

were collected directly from an electrostatic precipitator (ESP). The FA-SA sample was 

produced by the burning of HFO with high sulphur content (about 2-3%); the FA-NB sample 

was produced from a mixture of petroleum coke and 2% HFO. 

Dry samples were collected from the ESP and stored in an airtight container. Two layers of 

packing were used during transportation of the samples. The sample was stored in a 

polyethylene bag to prevent moisture adsorption, then the bag containing the sample was 

placed in an airtight plastic box and transferred to the laboratory. In the laboratory, the 

samples were always kept in a dry place in the manner in which they were received.  

 3.2 Sample analysis 

Visually the two FA samples appeared different in colour: the FA-NB sample can be 

represented as a true black; the FA-SA sample looked a dark greenish grey. Both samples are 

lightweight and consist of airborne particulates. The physical properties of HOFA, such as 
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bulk density, specific gravity, and moisture content, were analyzed by following the standard 

testing method described in the following sections. 

3.2.1 Bulk density 

The bulk density of FA was determined using the method suggested by Ahmedna et al. 

(1997), which consists of placing a known weight of FA in a 25 ml cylinder to a specified 

volume, tapping the cylinder for at least 1-2 minutes, and measuring the volume of FA. The 

bulk density can be determined as 

s

s

V

W
                                                                                                                      (3-1) 

where, ρ is the bulk density (g/cm
3
), Ws is the weight of the FA sample g, and Vs is the 

volume of the packed sample (cm
3
). The bulk densities of the FAs are reported in Table 3-1. 

3.2.2 Specific gravity  

The specific gravity (GS) of FA was determined by standard test procedures (ASTM D854-

00). The main steps involved in this testing can be summarized as follows: (i) weigh an 

empty clean and dry pycnometer, WP, (ii) place about 10 g of oven-dried FA in the 

pycnometer and record the weight of the pycnometer containing the dry FA, WPf , (iii) add 

distilled water to fill about one-half to three-quarters of the pycnometer and soak the sample 

for 10 minutes to remove the entrapped air, and apply a partial vacuum to the contents for 10 

minutes, (iv) carefully remove the vacuum from the pycnometer, (v) fill the pycnometer with 

distilled water (to the mark), clean the exterior surface of the pycnometer with a dirt-free dry 

cloth/tissue, and determine the weight of the pycnometer and its contents, WB, (vii) empty the 

pycnometer, clean it, and fill with distilled water (to the mark); clean the exterior surface of 
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the pycnometer with a clean, dry cloth/tissue, and determine the weight of the pycnometer 

with the distilled water, Wpw, and (viii) the specific gravity of the FA can be  calculated as 

follows:  

)-(
  

Bo

o
s

WWpwW

W
G




                                        

    (3-2) 

 

where, Wo is the  mass of dry FA (Wpf -Wp) in g. Gs of FA is reported in Table 3-1. 

3.2.3 Moisture content  

Approximately 10 g (weighed to an accuracy of 0.1 mg) of FA was placed on a flat 

aluminum tray and heated in a well-ventilated oven at 105±5°C for 12 hrs. After cooling in a 

desiccator, the sample was reweighed. The moisture content of FA was determined as 

follows (Wesche et al., 1989): 

)(%100
2
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m
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mc 


                                        (3-3) 

where, ml is the original mass of wet FA in g, m2 is the final mass of dried FA in g, mc is the  

moisture content %. The moisture content of the FA is reported in Table 3-1. 

3.2.4 Loss on ignition 

Approximately 1 g (weighed to an accuracy of 0.1 mg) of FA was placed on a flat aluminum 

tray and heated in a well-ventilated oven at 975±25°C for 1 hr. After cooling in a desiccator, 

the sample was reweighed. The following equation was used to calculate the loss of ignition 

of FA samples (Wesche et al., 1989): 
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where, wl is the original mass of wet FA in g, w2 is the final mass of dried FA in g. Li is the 

loss on ignition %. Li of FA is reported in Table 3-1. 

Table 3-1 Physical properties of HOFA 

 
Parameters FA-SA   FA-NB 

Colour (Visual observation) Grey Black 

Bulk density (g/cm3) 0.255 0.250 

Specific gravity  (GS) 1.44 1.39 

Moisture content 9.62% 12.79% 

Li 25% 32% 

Ash content 14.5% 16.32% 

pH 8.90 8.70 

Iodine number 2.95 5.25 

 

3.2.5 Ash content 

The ash content was determined by the standard method (D2866-94) suggested by ASTM 

(2000). In this case, 0.5 g of FA was dried at 105°C for 24 hrs and placed in a weighed 

ceramic crucible. The sample was heated in an electrical furnace at 650°C for 3 hrs. The 

crucible was cooled in a desiccator and weighed. The percentage of ash was calculated as 

follows:  

100  (%)Ash 



i

sfsi

W

WW

                                                                              

(3-5) 

where, WSi  is the weight of the crucible containing the FA in g, WSf  is the weight of the 

crucible in g, and Wi is the weight of the original FA used in g. The ash content of the FA is 

reported in Table 3-1. 
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3.2.6 Iodine number 

Iodine number (IN) can be defined as the milligrams of iodine adsorbed by 1.0 g of FA. The 

ASTM standard method (D4607-94) was used to determine the iodine number. In this case, 

10.0 ml of 0.1 N iodine solution in a conical flask was titrated with a 0.1 N sodium 

thiosulfate solution in the presence of 2 drops of 1% by wt starch solution until the solution 

became colourless. Then 0.05 g of FA was added to a flask containing 15 ml of a 0.1 N 

iodine solution and the mixture shaken for 4 min and then filtered. Ten milliliters of filtrate 

were titrated with a standard sodium thiosulfate solution using 2 drops of starch solution as 

the indicator. The iodine number was calculated by the equation suggested by ASTM 1112-

01 (2006) as follows: 

M

)/(..N.VV(
 IN

)sb 10159126


                                                 (3-6) 

where, Vb and Vs (ml) are, respectively, volume of sodium thiosulfate solution required for 

blank and FA sample titrations, N (mol/L) is the normality of the sodium thiosulfate solution, 

126.9 is the atomic weight of iodine, and M (g) is the mass of FA used. The iodine number of 

the FA is reported in Table 3-1. 

3.2.7 pH
 
determination 

The pH of FA was measured according to the procedure outlined by Belen et al. (2009). In 

this case, 4.0 g of FA was weighed into a 250 ml beaker and 100 ml of distilled water added 

to it. The beaker was covered with a cap and the mixture boiled for 5 minutes. The 

supernatant liquid was poured off while it was at a temperature above 60°C. The decanted 

portion was cooled to the ambient temperature and its pH measured by a VWR scientific pH 

meter model 3000. The pH of the FA is reported in Table 3-1. 
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3.2.8 Trace elements 

A quantitative chemical analysis was performed to determine the concentration of major 

elements in the FA samples. Microwave-assisted acid digestion followed by an inductively 

coupled plasma-mass atomic spectrometry (ICP-MS) examination was used to determine the 

trace element concentrations. A standard method (e.g., EPA 6020-B) was used to analyze the 

samples. An energy dispersive spectrometer (EDS) was used to analyze the carbon and 

sulphur in the FA samples. The concentration of selected trace elements found in HOFA is 

listed in Table 3-2. 

Table 3-2 Chemical composition of HOFA 

Elements (ppm = mg/kg) FA- SA FA -NB 

Arsenic (As) 2.239 68.281 

Bromide (Br) 370.9 124.5 

Cadmium (Cd) 3.275 1.588 

 
Cobalt (Co) 3.28 247.79 

 
Chromium (Cr) 4.056 107.60 

 
Copper (Cu) 170.40 120.30 

 
Iron (Fe) 981.0 22633.0 

Mercury (Hg) 0.245 Not detectable 

Manganese (Mn) 20.675 135.385 

Molybdenum (Mo) 26.047 398.387 

Nickel (Ni) 1762.22 11852.93 

 
Lead (Pb) 10.995 116.095 

 
Selenium (Se) 11.592 13.186 

 
Tin (Sn) 17.274 9.556 

Vanadium (V) 2957.701 34487.12 

 
Zinc (Zn) 130.84 592.131 

  

The elemental analysis shows that HOFA is composed mainly of carbon. However, other 

elements which are significantly elevated in HOFA include V, Ni, As, Cr, Cd, Cu, Fe, Zn, 

and Pb. Chemical analysis confirmed FA-SA and FA-NB contained 85.56% and 51.86% 
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carbon respectively. The sulphur (S) content of FA-SA measured 6.24%. The chemical 

composition of HOFA mainly depends on HFO characteristics and the burning environment. 

However, for reuse purposes a lower impurity is favourable. From a comparative analysis of 

the two FA samples, FA-SA  was found to have a  higher percentage of carbon and relatively 

low impurities, which is a favourable characteristic for its reuse as an adsorbent. High-

carbon-content materials have significant economic advantages for reuse as adsorbents 

(Melih et al., 2011).   

3.2.9 X-ray diffraction analysis 

To study their crystallographic structure and mineral composition, the FA samples were 

analyzed using a powder X-ray diffraction (XRD) technique. A Rigaku Americas 

Corporation Ultima IV X-ray diffractometer operated at 40 kV and 44 mA was used for these 

measurements. The detector was scanned over a range of 2ϴ angles from 5
o
 to 75

o
, at a step 

size of 0.02
o
 and a dwell time of 2 s per step. The resulting powder diffraction patterns were 

analyzed utilizing the JADE version 9 software developed by Materials Data Inc. (MDI). 
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Figure 3-1 X-ray diffraction analysis of FA-SA 
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Although both FA samples exhibited an unstructured nature in the X-ray, some distinct 

mineral and compound peaks (i.e., quartz, vanadium oxide) were observed for the FA- NB. 

In this case, some peaks were attributed to carbon in its graphite state. The XRD structure of 

sample FA-NB is shown in Figure 3-2. An XRD study of sample FA-SA (Figure 3-1) 

exhibits high peaks of carbon in its graphite state, metallic sulfate and minerals were found to 

be very low compared to the carbon element.  
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Figure 3-2 X-ray diffraction analysis of FA- NB 

 

3.2.10 Scanning electron microscopy analysis 

In the scanning electron microscopy (SEM) investigations, a Quartz PIC image measurement 

system observed the microstructure of the FA samples. Each sample was mounted in an 

epoxy resin and the surface ground flat by 600 grit abrasive paper. The sample was polished 

to achieve a smooth surface. The polished sample was placed in a vacuum and etched with 
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argon (Ar) gas for 20 min. The microstructures of FA were examined with SEM and 

photographs taken. 

 

(a)   SEM micrographs of FA-SA 

 

 
 

(b)   SEM micrographs of FA- NB 

Figure 3-3 SEM analysis of FA 

The SEM micrographs (Figure 3-3) show that FA particles can be compared with spherical 

shapes ranging from a few to several micrometers in size. The particles are highly porous in 
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nature especially for the FA-SA sample (Figure 3-3a). These pores are individual and 

randomly located on the particle surface. Pores on the particles are generally formed by the 

explosion of gas inside the particle during the burning and particle formation phase (Wayne 

et al., 2009).  

3.2.11 Particle size determination 

With a spatula a small amount of FA sample was placed in a laboratory centrifuge tube. The 

tube was then filled with approximately 40 ml of 0.05% NaPO3 solution. After hand shaking, 

it was placed in a tray in a Branson Ultrasonic Bath Model 5510 for overnight. Finally, the 

particle size of the FA sample was measured by a HORBIA PARTICA laser scattering 

particle size analyzer model LA-950 using a wet dispersion method in a NaPO3 solution.  

This analysis confirmed that the mean diameter of FA samples FA-NB and FA-SA is 8.56 

and 53.50 µm with a standard deviation of 5.21 and 32.90 µm respectively as shown in 

Figure 3-4. According to Itskos et al. (2009), the chemical and physical properties, and 

subsequently the potential industrial utilization of FA, greatly depend on particle size 

distribution. Particle size is an important property of FA: smaller particles provide a greater 

surface area. Particle size affects the mobilization of any trace element through FA. 
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(a)  Particle size distribution of FA-SA 
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(b) Particle size distribution of FA-NB 

Figure 3-4 Particle size distribution of FA 

3.2.12 Surface area and pore volume analysis 

The BET surface area and porosity of the FA samples were measured by N2 adsorption at 

77K using an automated adsorption apparatus BEL SOPR-MAX, BEL Japan Inc.  The 
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surface area (m
2
/g) was measured by an isotherm from the (BET) equation (Equations 3-7 to 

3-11), using a relative pressure range of 0.05-0.35, considering the area of the N2 molecule as 

0.162 nm
2
 at 77K (Rodriguez-Reinoso, 1997). The total pore volume, VT, was obtained from 

the N2 adsorption isotherm at p/p0 = 0.99.   
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where, v is the  volume of adsorbed  N2 molecule at standard temperature and pressure (STP), 

P and P0 are equilibrium and saturation pressures of adsorbate, vm is the  volume of gas (STP) 

required to form one monolayer, c is the  BET constant related to energy of adsorption, N is 

the  Avogadro’s number (6.02E+23), A(N) is the  cross-section of N2 (0.162  nm
2
), SABET is 

the  total BET surface area (m
2
), SBET is the specific BET surface area (m

2
/g), and a = mass 

of adsorbent (g).  The BET surface area was calculated by plotting 1 / v [(P0 / P) − 1] on the 

y-axis and P/P0 on the x-axis in the range of 0.05 < P/P0 < 0.35. The slope (S) and the y-

intercept (I) of the plot were used to calculate vm and the BET constant c.  
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Figure 3-5 shows the N2-77K adsorption isotherms for raw HOFA samples. According to the 

Brunauer-Deming-Deming-Teller (BDDT) classification, these isotherms can be classified 

between Type II and Type III. The isotherm concave to the p/po axis typical represent 

microporous materials. However, the study isotherms do not reach the plateau at higher 

relative pressure, indicating the presence of meso and macro-porosity, which can be 

considered Type II isotherm. The surface areas of the FA were estimated by the BET 

equation and reported in Table 3-3. As can be seen (Table 3-3), the maximum surface area 

and micropore structures of FA- NB are higher than for FA- SA.  
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Figure 3-5 N2-77K adsorption isotherms for prepared FAC and raw HOFA 

Although there are many available methods by which to calculate pore size (Gregg and Sing, 

1982; Sing et al., 1985; Rouquerol et al., 1999), the Dubinin-Radushkevich (DR) equation is 
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the most acceptable way of deriving the total micropore volume from any isotherm (Gregg 

and Sing, 1982). For this study, the DR theory (Equation 3-12) was applied to N2 isotherms 

to obtain the micropore volume of the FA samples. 
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where, v is the  pore volume that has been filled at p/po (cm
3
/g), vo is the  micropore volume 

of monolayer (cm
3
/g), B is  a constant related to the Gaussian pore distribution (K

-2
), T is the  

temperature at which the isotherm has been taken (K),  is a constant, depends on the 

adsorbate,  po/p is the  inverse of the relative pressure at which the isotherm developed.  For a 

given isotherm, a plot [log10 (po/pi)]
2 

 versus log (v) yields a straight line (at least some part 

of the plot). Finally, the total pore volume can be estimated at a partial pressure of 0.99 p/p0 

(STP) using a conversion factor of 0.001547 (Kruk and Jaroniec, 2001). Stepwise procedures 

for the DR method can be described as follows: 

(i) Review the adsorption data, (ii) calculate log10, (v) and [log10 (po/p)]
2
,
 
(iii) plot log10, (v) 

versus [log10 (po/p)]
2
, (iv) select the appropriate linear region of the curve, (v) calculate the 

slope and the intercept of the linear model by least squares, (iv) check the goodness of fit, 

(vi) calculate the monolayer capacity, vo, using the intercept of the linear model on the y-

axis, i.e., log10 (vo), (vii) calculate the total micropore volume by multiplying vo by the 

density conversion factor (values of density conversion factor for nitrogen  is 0.001547 cm
3
 

liquid/cm
3
 STP). For example, the y-intercept of the raw FA- SA sample is 0.1.25 (Figure 3-

6); the micropore volume (Vmc) of FA- SA can be estimated as: 

 

)/(00116.0001547.010 3125.0 gcmVmc                          (3-13) 
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Figure 3-6 DR plot for micropore volume estimation (FA-SA) 

 

y = -3.955x + 0.195

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.01 0.02 0.03 0.04

lo
g
(V

o
lu

m
e 

A
d

so
rb

ed
 (
cm

3
/g

, 
S

T
P

)

(log po/p)2

Appropriate linear region (NB-FA)

 
 

Figure 3-7 DR plot for micropore volume estimation (FA-NB) 
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Table 3-3 Textural properties of HOFA 

Parameters FA-SA FA-NB 

a
BET  Surface area (m

2
/g) 1.4496 2.1815 

bTotal pore volume vT (cm3/g) 0.004416 0.01574 

cMicropore volume vmc  (cm3/g) 0.00116 0.0024 

dMesopore volume (cm3/g) 0.00325 0.0133 

Mean pore diameter (nm) 12.185 28.861 

a Specific surface area (m2/g): BET equation (P/P0 = 0.05~0.35) 

b Total pore volume  vT (cm3/g): v (P/P0=0.99) × 0.001547 

c Micropore volume (cm3/g): DR equation, vo × 0.001547 
d Mesopore volume (cm3/g): vT - vmc  

 

3.3 Batch leaching test 

A batch leaching test (BLT) was conducted to investigate the leaching behaviour and 

mobility of trace elements in FA. The management of FA often requires this information in 

order to interpret the leachability of metals in the environment (Scott et al., 1990). Many 

leaching test protocols, such as the toxicity characteristic leaching procedure (TCLP), 

equilibrium leach test (ELT), and acid neutralization capacity (ANC), have been cited in the 

literature (USEPA, 1989; ECAEC, 1986). These tests were developed to simulate the 

leaching processes of waste materials in landfills or other disposal facilities in order to 

evaluate their possible risk to humans and/or ecosystems. TCLP, developed by the United 

States Environmental Protection Agency (USEPA), is widely used to classify hazardous solid 

wastes and to evaluate the worst leaching conditions in a landfill (USEPA, 1989). ANC and 

ELT simulate the leaching characteristics caused by precipitation on improperly designed 

landfills (ECAEC, 1986). ELT is designed to evaluate the maximum leachate concentration 

under mild conditions, while ANC uses acidic solutions to evaluate the leachate (ECAEC, 

1986). Both ANC and ELT are applicable to fine- to moderate-sized waste materials 
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(ECAEC, 1986). Based on the particle sizes of HOFA, an ELT and ANC method was 

selected for this study. Pollutants from a landfill are mainly leached by rainwater or acid rain. 

To simulate the appropriate leaching environment, distilled water (p
H 

= 6.3) and acid solution 

(p
H 

= 3.0 using distilled water with nitric acid) were used as leaching media. All test 

apparatus were cleaned with an acid solution (e.g., 15% HNO3 solution) and rinsed with 

distilled water prior to the leaching experiments. The batch extraction procedures and liquid 

to solid (L/S) ratios are reported in Table 3-4. To ensure continuous stirring of the samples, a 

PHIPPS & BIRD stirrer model 7790-400 with 10 revolutions per minute (rpm) was used over 

the test period. 

Table 3-4 Experimental conditions of batch leaching test 

Method Leachant 

L/S 

Ratio 

Extraction 

time (h) 

Temperature 

(°C) 

Reference 

ELT Distilled water (pH=6.3) 4:1 7 days 25 (ECAEC, 1986) 

ANC HNO3 solutions (pH=3.0) 3:1 48 hours 25 (ECAEC, 1986) 

 

Among the trace metals originally present in the HOFA samples (Table 3-2), a significant 

percentage (i.e., 0-3345 mg/L) was obtained through leaching tests under different conditions 

(Table 3-5). In this case the maximum leachate concentration (MLC) is 3345 mg/L for V 

followed by Ni at 2494 mg/L. All elements showed higher leaching rates under an acidic 

medium than with distilled water, except for V and Cd in sample FA-NB. This test proved that 

the leachability of the metals is affected by the acidity of the leaching solution. Similar 

results were observed by Van der Sloot (2002). From this test it is also clear that pH has a 

significant impact on the mobility of the trace elements present in HOFA. Leach from an 

HOFA dumping site may have polluted the groundwater or a nearby surface-water body. In 
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many developing countries people still use untreated groundwater and surface water for 

household purposes. To manage the possible environmental impacts associated with HOFA 

dumping, a local authority may need a maximum leaching concentration (MLC). In order to 

evaluate the possible impacts of HOFA on the portable water, MLCs were compared with the 

drinking-water threshold values set by United Kingdom (DWT, 2001) and USEPA (1993).  

Table 3-5 shows that the MLCs (6.94, 0.242, 9.988, 15.60, 0.006, 1442.98, 1.559, and 74.867 

mg/L) respectively for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed their highest 

environmental permissible concentrations (0.01, 0.001, 0.005, 0.02, 0.002, 0.05, 0.05, and 5 

mg/L) respectively, as recommended by DWT (2001) and USEPA (1993). 

Table 3-5 Results of batch experiments 

Heavy 

metals 

Detection 

limit  

(mg/L) 

 

 Peak concentration levels (mg/L) Permissible 

limit 
a
 

FA- NB FA- SA FA- NB FA- SA 

ANC (PH = 3) ELT (PH =6.3)  

As 0.001 6.940 0.041 1.710 0.002 0.01 

Cd 0.001 0.217 0.004 0.242 0.004 0.001 

Co 0 31.83 0.05 

 

29.64 0.05 - 

Cr 0.005 9.988 0.283 

 

5.854 0.162 0.05 

Cu 0 15.60 0.600 12.30 0.700 0.02 

Hg 0 ND 0.006 ND 0.003 0.002 

Ni 0 1442.98 77.91 

 

1395.51 55.86 0.05 

Pb 0 0.568 0.116 0.273 0.025 0.05 

Se 0.027 1.559 0.031 1.446 0 - 

V 0.001 2494.155 303.912 

 

3345.546 102.626 

 

- 

Zn 0.002 74.867 0.894 

 

65.623 0.652 b5.00 

Note: ND = not detectable;  a(DWT, 2001); b
(USEPA, 1993) 

 

BLT results indicate that the elements in the HOFA easily leach into the environment by 

rainwater or acid rain. The amount of toxic metals released through HOFA is hazardous to 

the environment and to human health. Because of this, the proper management of HOFA is 
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crucial. Although particle-removal devices in power plants effectively minimize air pollution 

by capturing fine particles, this experiment reveals that toxic elements in HOFA are 

introduced to the environment by land-based dumping. 

3.4 Summary 

The physical and chemical properties of two different HOFA samples have been examined. 

Standard batch leaching tests were conducted in order to identify the mobility of potentially 

hazardous elements within HOFA. The results indicated that most of the toxic elements in 

HOFA can easily leach into the environment, which might result in toxicity to ecosystems 

and humans through contamination of the surface and groundwater.  

The two HOFA samples presented both differences and similarities in their properties. 

However, characteristics analysis showed a high percentage of unburned carbon, less toxic 

metals, and an extremely porous particle surface of the Saudi Arabian HOFA, which could 

be a feasible source of raw material for producing a good quality natural adsorbent for 

industrial use. This reuse would have environmental and economic benefits and also reduce 

HOFA management costs.  
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Chapter 4 

 

Methodology for Health Risk Assessment Associated with 

Fly Ash Dumping  

 

4.1 Introduction 

The goal of health risk assessment is to estimate the severity and likelihood of damage to 

human health from exposure to pollutants. Risk assessment models are used to identify 

human exposure limits to contaminants via multiple exposure routes such as inhalation, 

ingestion, and dermal contact. Regulatory agencies use health risk assessment processes for a 

variety of situations: (i) to set standards for toxic chemicals in air, water, soil, or food, (ii) to 

conduct baseline analyses of contaminated sites or facilities and determine remedial actions, 

(iii) to develop cleanup goals at contaminated sites, and (iv) to evaluate the effectiveness of 

existing and new technologies used for the prevention, control, or mitigation of hazards and 

risks. There are two primary methods of risk analysis. Qualitative analysis, which helps to 

identify the resources at risk, uses simple calculations and expert assumptions and 

procedures. It does not quantify the hazards or frequencies of risk. Different qualitative 

scales are used to assess an acceptable level of risk and develop awareness procedures. On 

the other hand, quantitative analysis, which identifies the magnitudes of losses associated 

with hazards, involves exposure dose estimates against a benchmark of toxicity, such as a 

cancer slope factor (SF) or a reference dose (RfD). For example, the quantitative analysis is 

generally used to estimate the probability of risk in a community where the chemical was 
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suddenly spilled or to calculate the health risks associated with the presence of metals in the 

air or the drinking water.  

Risk assessment provides an effective framework for determining the relative importance of 

problems and the allocation of resources to reduce the risks. The results of risk assessment 

help to develop target prevention, remediation, and control efforts for areas, sources, or 

situations in which the greatest risk reductions can be achieved with available resources. This 

study develops an integrated risk assessment methodology to assess human health risks 

associated with the airborne metals (AM) released from a fly ash (FA) dumping site. The 

methodology involves (a) dispersion of AM in the ambient environment, with a 

consideration of source uncertainties, (b) human exposure and response assessment, and (c) 

characterization of the human health risk. The ground-level inhalable dust concentration was 

predicted using an Industrial Source Complex (ISC3) air dispersion model (ISC, 1987). The 

exposure concentration of arsenic (As), cadmium (Cd), and chromium (Cr) were established 

by chemical analysis of the source FA dust. The possible health risk to residents living near a 

FA dumping site in Saudi Arabia is addressed through this analysis. Several models are 

available for a health risk assessment. The application of such methods depends on the nature 

and availability of data. In general, a risk assessment process consists of four basic steps. 

4.1.1 Hazard identification 

The purpose of hazard identification is to identify the adverse effects of a substance 

(USEPA, 1991). Initially, a Preliminary Hazard List (PHL) is generated for a specific 

assessment. Based on toxicity analysis the PHL is grouped into classes. Sometimes a 

consequence assessment (i.e., a possible undesired event) resulting from a hazard is needed 

prior to risk analysis. Hazard scenarios may address questions related to exposures and 
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levels: who (exposed), what (levels), where (exposed), when (exposed), why (exposed), and 

how (USEPA, 1991). For example, identifying the level of a chemical contaminant like 

arsenic or benzene and documenting its toxic effects on humans are part of hazard 

identification. 

4.1.2 Exposure assessment 

Exposure assessment evaluates the contaminant’s concentration in the environment and its 

intake rate by the target organisms. It also identifies the potential pathways (e.g., inhalation, 

ingestion, and dermal contact) of human exposure and chemical intake associated with each 

pathway (USEPA, 1989, 1991). 

4.1.3 Dose-response assessment 

Based on the degree of exposure, a dose-response assessment quantifies the adverse effects 

arising from exposure to a hazardous agent (USEPA, 1991). It is usually expressed 

mathematically as a plot showing the response in living organisms to different doses of a 

chemical agent. 

4.1.4 Risk characterization 

Risk characterization is an integral component and final step of a risk assessment process. 

Risk characterization estimates the potential impact of a hazard based on the severity of its 

effects and the amount of exposure (USEPA, 1991). After the characterization of risk, 

sometimes regulatory options are evaluated in a process called risk management. Social, 

political, and economic issues, as well as engineering knowledge, are used in risk 

management. 
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4.2 Background of the study 

Due to its local availability and relatively low cost some power production facilities in Saudi 

Arabia use heavy fuel oil (HFO) to generate electricity. HFO is the main fuel contributing to 

more than 70% of Saudi Arabia’s national energy production (ECRA, 2009). Chemical 

analysis (Chapter 3) showed that a significant amount of heavy metals such as arsenic (As), 

cadmium (Cd), mercury (Hg), copper (Cu), vanadium (V), and nickel (Ni) is present in 

HOFA. HOFA consists of airborne particles with very low bulk density which varies from 

0.250 g/cm
3
 to 0.50 g/cm

3
 (Chapter 3). In Saudi Arabia, thousands of tonnes of HOFA are 

generated yearly and dumped into landfills. HOFA production will continue to increase in 

the future; therefore, power plants in the Kingdom may face difficulties with their HOFA 

disposal. The current industrial management practices of HOFA in the Kingdom mainly 

follow a dry disposal procedure: FA is transported by truck or conveyor from power plant to 

disposal site. Land disposal of FA creates ever-growing environmental problems, including 

the pollution of air, surface water, and groundwater. Air pollution is caused by direct 

emissions of windblown ash from the disposal facilities. Airborne dust can fall in, and 

contaminate, the surface water or soil. Dumping FA involves different activities (i.e., 

handling, transportation, and disposal) which lead to the formation of airborne dust. This 

metal-contaminated dust can be inhaled and swallowed by exposed humans and animals. 

Long-term exposure to AM can lead to many human diseases, which are well documented in 

the literature (IARC, 1980; Comba et al., 2006;). Effective evaluation is crucial in assessing 

the health risk associated with FA dumping. Risk assessment results can be used for 

improving FA management systems. However, the quality of information available for the 

health risk assessment of AM released from HOFA disposal sites is often inadequate; this 
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lack prompted the present study.  Risk assessment generally describes the origin of 

pollutants, their movement within the environment, and their exposure pathways. The 

resulting human health risk can then be calculated by using data, models, and necessary 

assumptions related to the exposure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Health risk assessment procedure for landfill dust emissions 
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The goal of risk assessment is to estimate the severity and likelihood of harm to human 

health from exposure to a substance or activity (USEPA, 1991). Using an inhalation 

pathway, Christopher et al. (2006) conducted a quantitative human risk assessment of the air 

pollution released from landfills. This study observed that landfill pollutants have a negative 

impact on human health. The significant health effects of heavy metals are reported in the 

literature (IARC, 1973, 1980; WHO, 2003). Various studies which have assessed the health 

risk to residents living near landfills demonstrate a significant health risk for the exposed 

population (Jarup et al., 2002; Redfearn and Roberts, 2002; Comba et al., 2006). Several 

models are available for health risk assessment (Mofarrah and Husain, 2011; Cohrssen and 

Covello, 1989; USEPA, 1991). The application of such methods depends on the nature and 

availability of the data. Uncertainties in risk estimates may arise from sources such as the 

measurement or estimation of parameters, natural variability in individual response, 

variability in the environmental concentration of toxicants over time and space, and 

unverifiable assumptions in dose-response models or extrapolations of the results of these 

models (Kentel, 2004). Environmental conditions may change the pollutant concentration in 

the ambient air; it may vary as a function of air temperature, wind circulation, or humidity. 

The point estimate of risk always acknowledges the existence of these uncertainties in the 

output results. Recently, probabilistic risk assessment (PRA) methodology has become well 

accepted in analyzing uncertainties in risk estimates. PRA is the general term for risk 

assessment that uses probability theory and models to represent the likelihood of different 

risk levels in a population or to characterize the uncertainty in risk estimates (Maxwell and 

Kastenberg, 1999). The most widely used PRA approach to characterizing uncertainty in risk 

assessment studies is the Monte Carlo (MC) simulation (USEPA, 1996). The result of a PRA 
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approach is a probability distribution which reflects the combination of all input 

distributions. However, in a PRA approach, if input distributions provide variability, then 

output risks may provide some variability. If input distributions reflect uncertainty, then 

output risk distributions may provide information about the uncertainty in the estimated risk 

(USEPA, 2001).  

The objective of this study is to model human exposure to airborne metals released by the 

dumping of HOFA into landfill sites, with the aim of providing safe and effective FA 

management options. In order to quantify the health risk associated with airborne metals 

released from a fly ash dumping site, this study uses a PRA approach. Potential exposure 

routes for nearby residents may be the inhalation of particles, the ingestion of contaminated 

home-grown food, drinking water from wells contaminated with leachates, and skin contact 

with contaminated soil.  

However, for this study the evaluation of exposure pathways was based on site-specific 

situations. As the region has a low precipitation, the mobility of metals in the environmental 

media via surface or subsurface water movement was assumed to be insignificant. On the 

other hand, fugitive dust is a dominant environmental phenomenon in this area, and airborne 

metals from the FA dumping site have long been considered a potential health hazard for the 

surrounding population. Based on the toxicity level, three heavy metals, arsenic (As), 

cadmium (Cd), and chromium (Cr), were chosen to demonstrate the proposed methodology 

for evaluating risks to adult receptors. 

4.3 Methodology  

The major steps that contribute to the risk assessment paradigm are shown in Figure 4-1. The 

different steps of the methodology are illustrated below. 
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4.3.1 Prediction of exposure concentration  

The exposure concentrations at receptor points were estimated by using an air dispersion 

model. An air dispersion model is a tool that simulates the release and dispersion of air 

pollutants in the atmosphere. It is used to study air pollution or changing the amount of 

pollutants released into the air from existing emission sources. Several models are available 

for urban air dispersion modeling: industrial source complex (ISC) modeling system 

(USEPA, 1995), AERMOD atmospheric dispersion modeling system (Cimorelli et al., 1998; 

USEPA, 2002), and CALPUFF dispersion modeling system (Scire et al., 2000). The 

applicability of these models depends on regulatory needs and input data requirements. 

Model application also depends on underlying physical concepts, temporal and spatial scales, 

the type of source, and the type of component, etc. Among others, industrial source complex 

(ISC3) model developed by USEPA (1995) is a popular air dispersion modelling system. The 

ISC3 dispersion model is based on a modified form of the Gaussian plume equation, which 

uses empirical dispersion coefficients and includes adjustments for plume rise, limited 

mixing height, and elevated terrain.  Pollutant levels are computed from measured hourly 

values of wind speed and direction and estimated hourly values of atmospheric stability and 

mixing height. The ISC3 model can incorporate point, area, and volume sources. The ISC3 

model uses hourly meteorological records to define the conditions for plume rise, transport, 

diffusion, and deposition (USEPA, 1995). It calculates the hourly concentration or deposition 

value for each source and receptor and is summed to obtain the total concentration produced 

at each receptor by the combined sources emissions (Mofarrah and Husain, 2010). To 

calculate the ground-level dust concentration at receptor points, this study used the ISC3 air 

dispersion model. The study area was divided into an equal grid system and all receptor 
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points converted to Cartesian (x, y) coordinates prior to performing the dispersion 

calculations. 

4.3.2 Source identification and dust emission rate estimation 

Many activities or situations contribute to dust generation in FA landfills: (i) a new dumping 

area, (ii) the operation of vehicles, and (iii) the uncovered surfaces of the landfill (USEPA, 

1994). Fugitive dust easily results from a new dumping area through the process of wind 

erosion once the wind speed is greater than 2.5 m/sec on a sunny day (Howell et al., 1998; 

Etyemeziana et al., 2003; Jorkevic et al., 2004). Operation activities are another important 

source as moving vehicles in the landfill site often release large amounts of dust from the 

road, especially at speeds higher than 20 km/hr (Etyemeziana et al., 2003). Dust from 

uncovered surfaces could easily be created by wind at speeds above 5.0 m/sec (Clausnitzer, 

1996; Ho et al., 2003). Since dust emission greatly depends on source and activity, it is 

important that the dust emission rate be predicted for each event separately. Dust emission 

from a dumping site can be calculated by using the emission factors suggested by the AP-42 

guidebook (USEPA, 1994). Emissions from a FA dumping site are highly variable; they 

depend on such factors as the local environment, operation activities, and the movement of 

vehicles. For this study, (i) uncovered surfaces, (ii) new dumping spots, and (iii) operation 

activities were considered potential dust emission sources.  

The calculation of an emission factor for FA handling (including loading, unloading, etc.) 

was based on the wind velocity, particle size, and moisture content of FA using Equation 4-1 

(USEPA, 1994): 
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where, E is the emission factor g/ton, k is the particle size multiplier (dimensionless), U is the 

mean wind speed, meters per second (m/ sec), M is the material moisture content %. The 

particle size multiplier k varies with particle size range. However, for this investigation the 

average particle size of FA = 56.25 µm and the multiplier k = 0.74 were used as suggested by 

USEPA (1994). Using the emission factor (E), the total dust emission calculation was based 

on the amount of FA dumped per day into the landfill using the following relationship:  

CF

ME
Q FA )( 


                                                                         (4-2) 

where, Q is the emission rate in g/s, MFA is the amount of FA dumping to the site on a daily 

basis in ton/day, CF is the conversion factor (86400 second/day); E is the dust emission 

factor in the source in g/ton, calculated by Equation 4-1. 

According to USEPA (1989a), the total dust emission from an active storage area due to 

wind erosion can be calculated as follows: 
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                                              (4-3) 

where, s is the silt content of the material (weight %), p is the number of days per year with 

at least 0.01 inch of precipitation, f is the percentage of time the wind speed is greater than 12 
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miles per hour (mph), Q(A) is the total dust emission from an active storage area in 

lb/year/acre of surface, which was converted to g/m
2
/s. 

4.3.3 Risk characterization 

The average chronic daily intake (CID) of metals via the inhalation of airborne dust 

particulate was calculated by the following equation (USEPA, 1991): 

AT BW 

CR ED   EF   AF IRA   CC
CID Inhdm 




                                          (4-4) 

Cm is the metal concentrations in dust, from the laboratory experiment in mg/kg, Cd is the 

dust concentration in the air at receptor points in μg/m
3
 determined by an ISC3 air dispersion 

model, IRA is the inhalation rate of air m
3
/hr, AFInh is the absorption factor for the lungs (unit 

less), used a value of 1 for conservative risk assessment as recommended by USEPA (1991), 

EF is the exposure frequency in days/year, BW is the human body weight in kg, ED is the 

exposure duration in year, CR is the conversion factor (10
-9

), AT is the average time in 

number of day. 

The combined non-carcinogenic risk is normally expressed by a dimensionless term called a 

hazard index (HI). This is simply the ratio of the CID to the reference dose (RfD) (mg/kg 

day) as follows:  





4

1 i

i

RfD

CID

i

HI

                                                                                         (4-5) 

The cumulative cancer risk (CR) was calculated by adding the chronic daily intake values 

multiplied by the corresponding slope factors of the respective heavy metals as follows: 

 


n

i
ii SFCIDCR

1                                                               (4-6) 
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where, SFi is the carcinogenic slope factor of ith pollutant (mg/kg/day)
-1

, n is the number of  

pollutants, CIDi is the chronic daily intake value for the pollutant i (mg/kg/day), i equal to 

1,2,3,4... represents the heavy metals. 

Table 4-1 Parameters used in human risk analysis 
 

Parameters Symbol/Unit Distribution Values References 

Body weight BW (kg) Triangle Triangle (63,70,77) Mofarrah and 

Husain, 2013 

Inhalation rate  IRA (m3/hour) Log normal LN (0.8334,0.108334) Section 4.3.4 

Metal concentrations in 

FA  

Cm (mg/kg) Normal As = N (2.51, 1.75) 

Cd = N (0.824, 0.511) 

Cr = N (3.02, 2.32) 

 

Lab analysis  

Exposure frequency EF (days/year) Constant 350 USEPA, 1991  

Exposure duration  ED (years) Log normal  µ = 5.32, σ = 3.09 
Benekos et al., 

2007 

Number of year the person 

is likely to be exposed 
LE (days) Constant 

25,550; for cancer risk 

estimation 

10,950; for non-cancer 

risk estimation 

USEPA, 1991 

Carcinogenic slope factor 

(SF)  

Inhalation SFs  

(mg/kg/day)-1 
Constant 

As = 1.5E+01 

Cd = 6.30E+00 

Cr  = 42 

IRIS, 1995 

IRIS, 1995 

IRIS, 1995 

Reference dose (RfD) 
Inhalation RfDs 

(mg/kg/day) 
Constant 

As = 8.6E-06 

Cd = 8.00E-04 

Cr  = 1.0E-03 

IRIS, 1995 

IRIS, 1995  

Health Canada, 

2007 

 

4.3.4 Evaluations of risk assessment parameters  

Metal concentration in FA  

A quantitative chemical analysis was performed to determine the metal concentrations in the 

HOFA samples. An inductively coupled plasma-mass atomic spectrometry (ICP-MS) was 
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used. The mean and standard deviations of different metal concentrations are shown in Table 

4-1. 

Inhalation rate 

The inhalation rate varies from person to person. According to USEPA (1991), the average 

inhalation rate for adult receptors was 0.8334 m
3
/hour. For this study, a log normal 

distribution with geometric mean and geometric standard deviation LN (0.8334, 0.1083) was 

selected for the adult inhalation rate. 

Body weight (BW) 

According to USEPA (1991), the body weight for adult receptors was 70 kg. This value may 

differ for the population near the FA dumping site. The present risk assessment study 

assumed a triangle distribution, with the most likely value 70 kg, a minimum 63 kg, and a 

maximum 77 kg for adult body weights.  

Life expectancy (AT) 

At present, there is no human characteristics data for this risk assessment study. According to 

USEPA (1991), an average human life expectancy is 70 years for a carcinogenic risk 

assessment.  For this study, life expectancy is assumed to be a triangle distribution (63, 70, 

and 77), with minimum 63, most likely value 70, and maximum 77 years respectively. All 

other parameters used in the risk assessment are reported in Table 1. 

4.4 Case study 

The Rabigh power plant (RPP), which is situated near Jeddah city, is one of the largest power 

generation facilities in Saudi Arabia. About 10,000 tonnes of FA are generated yearly by this 

plant, which dumps into the landfill. The Rabigh area has a typical arid climate. A very low 

rainfall (i.e., 0-10 mm) is observed from May to December, and precipitation ranging from 
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14 mm to 30 mm is observed from January through April (SEC, 2007). The average 

temperature of this region varies from 14°C to 35°C respectively in the winter and summer 

seasons (SEC, 2007). There is no air quality monitoring station in this area; the closest 

reliable metrological recording station for the area is the Jeddah airport. As shown in Figure 

4-2, the prevailing wind direction is north-west, which was estimated by using the 

meteorology data of 2006 from the Jeddah airport metrological monitoring station.  

 

Figure 4-2 Prevailing  wind direction in the study area 
 

There is no surface-water body near the FA dumping site. Because the groundwater table is 

very deep, the mobility of metals in environmental media via surface or subsurface water 

movement was assumed to be insignificant. Therefore, this investigation was undertaken in 

order to provide information about the human health risk associated with the FA dumping 

site through an inhalation pathway only.  The exposure assessment was modeled by an ISC3 

air dispersion model to predict the risk agent to the nearest receptor point.  
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Figure 4-3 Configuration of risk assessment study area 
 

The FA dumping site was modeled at 500 × 400 m (Figure 4-3). Based on the dominant wind 

directions, three points (i.e., zones A, B, and C) were assumed to be receptor locations which 

are sensitive to airborne metals released from the FA dumping site. 

Fugitive dust easily results from the new dumping area through a process of wind erosion on 

a sunny day or landfill activity. This analysis assumed that a 30 m
2
 new dumping area will be 

created by routine operations. Operation activities are another important source of fugitive 

dust, since moving vehicles and the loading and unloading of FA often releases large 

amounts of particles into the atmosphere. For this assessment, a 30 m wide and 200 m long 

road is considered a daily operation area in the landfill site. Although a good practice in a 
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landfill operation is to cover a new dumping area regularly, this may not be possible for each 

case. For a conservative analysis, a 100 m
2
 area was assumed to be a daily basis uncovered 

surface from where air particles could be stirred up by the wind. The estimates of FA dust 

emissions from these three sources were based on the amount of FA dumped on a daily basis. 

From the investigation, it was found that the Rabigh power facility generates about 25-30 

tonnes of FA per day. 

Table 4-2 Evaluation of emission rate for different activities in the FA landfill 
 

Sources Unit Symbol Emission rate 

Uncovered surfaces g/m2/s (µ, σ) (6.28E-5, 2.51.14E-5) 

New dumping area g/m2/s (µ, σ) (6.28E-5, 2.51.14E-5)  

Operation activities g/s (µ, σ) (0.000136, 3.87E-5) 

µ = arithmetic mean ; σ = standard deviation 

 

To minimize uncertainty in the study a variable FA dumping rate with a mean and standard 

deviation of 28 tonnes /day and 8 tonnes /day respectively was assumed. Using Equations 4-

1 and 4-2 the emission dust rate was calculated for various activities. The wind erosion dust 

for uncovered and new dumping areas was calculated by Equation 4-3. The silt content of FA 

was assumed to be 75% by weight, and only 10 days per year considered to experience 

precipitation within a certain rang. Based on the metrological information 60% of the time 

with a standard deviation of 10% was considered to be when there was a wind speed greater 

than 12 mph over the FA dumping area. Table 4-2 shows the emission factors calculated for 

this assessment. A Monte Carlo simulation (MCS) with 1000 iterations was used to generate 

the cumulative distribution of emission rates for each scenario.   
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Using the emission rates (Table 4-2), an ISC3 model predicted 24-hour maximum ground-

level dust concentrations at three receptor points (i.e., zones A, B, and C) in Figure 4-3. To 

minimize the influence of parameter uncertainty, especially the emission rate estimation, 

MCS was used. The MCS approach involves the repeated generation of random values for 

uncertain input parameters. With a known emission rate probability distribution, 1000 sets of 

possible values were generated. Consequently, using the 2006 metrological data from the 

Jeddah airport, at each receptor point 1000 sets of maximum ground-level dust concentration 

values were generated (Table 4-3). The spatial distribution of the FA dust over the study area 

(for #1 simulation) is shown in Figure 4-4. The cumulative distribution function (CDF) of 

FA dust concentrations at different receptor points is shown in Figure 4-5. The maximum 

and minimum values of the predicted ground-level dust concentrations at zone A are 239.15 

and 194.76 µg/m
3
, respectively. The histogram of the 1000 simulation runs shows a normal 

distribution. The produced mean and standard deviation values were 218.25 and 7.05 µg/m
3
, 

respectively. The maximum and minimum values of the predicted ground-level dust 

concentrations at zone B are 648.33 and 527.99 µg/m
3
, respectively. Similarly, the mean and 

standard deviation values of the predicted ground-level dust concentrations at zone C are 

535.80 and 17.28 µg/m
3
, respectively. 
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Figure 4-4 FA dust distribution over the study area (for #1 simulation) 

 

To estimate the human risk for the selected metals associated with FA dust, MCS was used 

to propagate the information supplied by the probability distribution functions and constant 

variables. A 1000 times iteration was used to calculate the risk distributions.  

A determination of the non-cancer risk associated with the pollutants is based on a hazard 

quotient (HQ), which is simply the ratio of the estimated CID to RfD. The sum of HQs for all 

pollutants with similar toxic effects is the HI. A HI less than 1 indicates that the predicted 

risk is unlikely to pose potential human health risks. On the other hand, a HI greater than 1 

indicates potential adverse health effects (USEPA, 1991). 
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Table 4-3 FA dust concentrations at different receptor zones (for 1000 simulations)  

Number of 

simulation 

Zone A Zone B Zone C 

1 214.22 580.74 524.94 

2 226.32 613.52 554.57 

3 213.96 580.02 524.29 

4 206.34 559.36 505.61 

5 220.30 597.20 539.82 

6 227.40 616.47 557.24 

. 

. 

. 

. 

. 

. 

. 

. 
994 206.01 558.47 504.81 

995 214.42 581.28 525.43 

996 227.18 615.85 556.68 

997 207.27 561.87 507.89 

998 221.14 599.49 541.89 

999 216.60 587.19 530.77 

1000 215.64 584.57 528.40 

 

For this study, the CDF of HI associated with arsenic (As), cadmium (Cd), and chromium 

(Cr) were generated. The predicted minimum and maximum HI was found to be 0.00121 and 

0.00396 respectively for zones A and B as shown in Figure 4-6.   
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Figure 4-5 Cumulative distribution of dust concentration at receptor zones 
 

 

Figure 4-6 Cumulative HQ at different receptor zones  
 

The CDF of the total cancer risk associated with As, Cd, and Cr is shown in Figure 4-7. The 

maximum individual risk was found to be 1.86E-07, 5.81E-07, and 5.55E-07 respectively for 

zones A, B, and C.  
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Figure 4-7 Cumulative cancer risk at different receptor zones 
 

Although different regions worldwide use a 1 in 1 million (10
-6

) lifetime cancer risk as the 

most acceptable human health risk posed by carcinogenic agents, USEPA (1991) considers a 

range from 1 in 10,000 (or 1 x 10
-4

) to 1 in 1,000,000 (1 x 10
-6

) as the acceptable risk. 

Comparing the risk levels shown in Figure 4-6 with the tolerable ranges (e.g., 1 x 10
-6

), it 

was found that the lifetime risk associated with inhalation of dust-borne metals is below the 

acceptable level.  

4.5  Summary 

The human health risks presented in this study are estimated based on the direct inhalation of 

dust by the population living surrounding the FA dumping area. The deposition of dust is 

another factor that may cause nearby soil and water pollution. The study offers an initial 

screening, which is of value in addressing concerns about the potential risks to human health 

from the bulk disposal of FA at strategic locations. For a comprehensive investigation, other 
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exposure scenarios such as the ingestion of contaminated soil and home-grown food, and 

skin contact with contaminated soil should be considered.  
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Chapter 5 

 

Potential Use of Heavy Oil Fly Ash as Construction Material 

 

5.1 Overview 

Characteristics analysis (Chapter 3) showed that HOFA could be used as a primary material 

for such uses as soil stabilizer/ fill material for construction, a colour ingredient for 

ornamental concrete, or an adsorbent for industrial pollutions control (Mofarrah et al., 2012; 

Hsieh and Tsai, 2003). The goal of the present study (in this chapter) is to use HOFA in such 

construction activities as (i) fill soil stabilizer/ fill material , and (ii) a colour ingredient for 

ornamental concrete. FA from coal combustion (e.g., pozzolanic fly ash) has been used 

extensively in engineering applications including fill materials and as an admixture in the 

cement industry (Jones, 1995); however, due to different characteristics of HOFA such 

applications are limited.   

In order to explore the possible use of HOFA in engineering applications, this chapter 

describes the experimental procedures and outcomes from deferment experiments using 

Saudi Arabian fly ash (i.e., FA-SA). Two sets of experiments were conducted: (i) the first 

experiment described the possible use of HOFA as a soil stabilizer/fill material, and (ii) a 

second experiment investigated the use of HOFA as a black pigment or admixture in 

ornamental concrete. Batch and column leaching tests were also conducted to study their 

environmental effects. 
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5.2 Possible use of HOFA as soil stabilizer/fill material 

Soil stabilization refers to the process of changing soil properties and improving its physical 

stability and durability. Many techniques are available for soil stabilization: compaction, 

dewatering, and adding admixture materials to the soil (Neopaney et al., 2012). Among 

others, the addition of cementitious or pozzolanic materials to improve soil properties is well 

established. Due to its pozzolanic properties, coal fly ash has proven applications as a soil 

stabilizer in many engineering projects (Kumpiene et al., 2007; Edil et al., 2006). However, 

such application is limited to carbon-rich HOFA (Mofarrah et al., 2012). This experiment 

focuses mainly on the potential use of HOFA as a soil stabilizer by mixing it with Portland 

cement. 

5.2.1 Preparation of fill/stabilized materials 

Three stabilized ash samples (i.e., FA20, FA30, and FA40) were prepared by mixing 160 g 

of oven-dried wel-mixed (i.e., 105°C for 24 hrs) HOFA with 32 g (i.e., 20% by weight), 48 g 

(i.e., 30% by weight), and 64 g (i.e., 40% by weight) of Portland cement, respectively. The 

moisture content of the mixture was increased by adding 40% water by weight to each 

sample. The prepared samples were kept in a dessicator for 28 days to allow sufficient 

reaction time (Mofarrah et al., 2012).  After 28 days, each sample was divided into two equal 

parts in order to obtain samples for batch and column leaching tests.  

5.2.2 Batch leaching test 

Leaching tests generally evaluate the worst-case environmental scenario associated with 

solid waste (Querol et al., 1996; Praharaj et al., 2002; Fytianos et al., 1998). The goal of this 

test is to investigate the leaching behaviour of toxic components in solid waste. Various  

batch leaching test (BLT) were discussed in Chapter 3.  
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Table 5-1 Properties of batch leaching tests 

 
Method 

 

Leachate   Maximum 

particle 

size 

L/S 

ratio 

 

Extraction 

time (h) 

Number 

of steps 

Temperature 

(°C) 

Reference 

 

ELT 

 

distilled 

water 

(pH=6.3) 
 

150 μm 

 
4:1 7 days 1 25 

USEPA, 

1989 
 

ANC 

HNO3 

solutions 

(pH=3.0) 

150 μm 

 
3:1 48 hours 1 25 

ECAEC, 

1986 

 

 

For this study, a BLT was conducted on three stabilized samples (i.e., FA20, FA30, and 

FA40) to determine the metals’ leaching characteristics. Considering the particle size 

distribution of the HOFA sample, an ELT and an ANC method were selected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Column leaching test device 

 

Distilled water (p
H
=6.3) and an acid solution (p

H
=3.0, using distilled water with HNO3) were 

used as leaching media. All test apparatus and glass were cleaned with an acid solution (e.g., 

15% HNO3 solution) and rinsed with distilled water prior to the leaching experiments. The 
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batch extraction procedures and liquid to solid (L/S) mixing ratio are shown in Table 5-1. To 

ensure continuous stirring of the samples, a PHIPPS & BIRD stirrer model 7790-400 at 10 

rpm was used over the test periods. The mixtures from the above experiments were filtered 

through 0.45 µm  Whatman filter paper and acidified with a nitric acid solution to make pH < 

2 for the chemical analysis. 

5.2.3 Column leaching test  

 To evaluate the realistic leaching characteristics, a column leaching test (CLT) was 

conducted on three stabilized samples (i.e., FA20, FA30, and FA40) and an HOFA sample 

following the test procedures described in the literature (Francis and White, 1987; Reemtsma 

and Mehrtens, 1997). The stabilized samples (i.e., FA20, FA30, and FA40) and 80 g of 

HOFA were separately transferred into a fixed Pyrex glass column (40 mm in internal 

diameter and 30 cm in length) for the leaching test. A small amount of glass wool with a 

filter paper was also packed at the bottom of the column to prevent the loss of fine particles 

during leaching.  To simulate the possible field conditions, the specimen was compacted 

inside the column by a 5 mm rod in two layers with 5-10 blows in each layer. This 

compaction was conducted because materials could be compacted after being placed in a 

field. The leachability of metals is highly affected by the acidity of the leaching solution; it 

decreases with an increase in pH values (Mofarrah et al., 2012). To evaluate the maximum 

leach conditions only an acidic solution (pH
 
= 3.0, using distilled water with HNO3) was 

used in the column test. The outflow velocity of the resulting leachate was controlled in such 

a way that the cumulative liquid to solid (L/S) ratio did not exceed the values in Table 5-1. A 

flow rate of 5 ml/hr was maintained, which is equivalent to L/S ratios of 1.5 and 3.0 at the 

end of 24 hrs and 48 hrs, respectively. A leaching solution was passed through the column in 
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a down flow motion and pumped from the outlets by a peristaltic pump. The main advantage 

of this pump is that there is no chance for fluids to come in contact with the moving parts of 

the pump, because the fluid is pumped through an interior tube. The test was conducted at 

room temperature, and approximately 5 cm of liquid was maintained above the sample 

placed inside the column. Figure 5-1 shows the experimental setup used for this study.   

The resulting leachates were collected after 24 h and 48 h and stored in polyethylene bottles. 

The leachate from the above experiments was filtered through 0.45 µm filter paper and 

acidified with a nitric acid solution to make the pH < 2 for the chemical analysis. The 

element concentrations of the resulting leachates and leaching solutions (blank value) were 

determined by an ICP-MS. Finally, the concentrations of the elements were obtained by 

calculating the differences between the blank value and the concentration value for the 

leachates. 

Table 5-2 Results of batch experiments 

 
Heavy 

metals 

Detection 

limit  

(mg/L) 

 

 Peak concentration levels (mg/L) 

HOFA FA20 FA30 FA40 HOFA FA20 FA30 FA40 

 Acid solution (pH = 3) Distilled water (pH = 6.3) 

As 0.001 0.041 0.002 0.001 ND 0.002 0.001 0 ND 

Cd 0.001 0.004 0.004 

 

0.001 ND 0.004 0.001 0.002 ND 

Co 0 0.05 

 

0 0 0 0.05 0 0 0 

Cr 0.005 0.283 

 

0.225 0.129 

 

0.083 0.162 0.301 0.036 0.093 

Cu 0 0.600 0.2 0.2 0.1 0.7 0.2 0.2 0.1 

Hg 0 0.006 0.002 0.001 0 0.003 0.001 0.001 0 

Ni 0 77.91 

 

0.42 0.05 0.04 55.86 0.18 0.01 0.01 

Pb 0 0.116 0.005 0.003 0.002 0.025 0.003 0.013 0.006 

Se 0.027 0.031 0.009 0.001 0.001 ND 0.001 ND ND 

V 0.001 303.912 

 

0.702 0.594 0.079 102.626 

 

0.507 0.021 0.019 

Zn 0.002 0.894 

 

0.093 0.031 0.048 0.652 0.057 0.037 0.063 
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5.2.4 Outcomes and discussion 

Among the trace metals originally present in the HOFA, only a minor percentage was 

obtained through leaching tests under various conditions. The batch experiments had a 

concentration range of 0-303.91 mg/L (Table 5-2). In this case, the maximum leachate 

concentration is 303.91 mg/L for V, followed by Ni at 77.91 mg/L.  

Table 5-3 Results of column leaching experiments 

 
Heavy 

metals 

Detection 

limit  

(mg/L) 

 

Peak Concentration Levels  (mg/L) with pH =3.0 

HOFA FA20 FA30 FA40 HOFA FA20 FA30 FA40 

After 24 hrs After 48 hrs  

As 0.001 0.031 

 

0.006 0.004 ND 0.005 ND ND ND 

Cd 0.001 0.006 

 

0.001 ND ND 0.001 ND ND ND 

Co 0 0.08 

 

0.01 0.01 0 0.010 

 

0.0012 0 0 

Cr 0.005 0.343 

 

0.149 0.094 0.026 0.006 

 

0.020 

 

0.005 

 

0.005 

 
Cu 0 14.2 

 

0.40 0.2 0 0 

 

0.001 

 

0.001 

 

0 

 
Hg 0 0.007 0.002 0.001 0 0.001 0.001 0 0 

Ni 0 76.94 

 

0.04 0.03 0.02 0.02 

 

0.003 

 

0.003 0.001 

Pb 0 0.553 

 

0.0978 0.0643 0.0535 0.014 

 

0.0011 

 

0.001 

 

0.001 

 
Se 0.027 0.033 

 

0.004 0.004 0.012 0.018 

 

0.002 

 

0.002 

 

0.002 

 
V 0.001 307.54 

 

0.007 0.083 0.007 2.235 

 

0.001 

 

0.001 

 

ND 

 
Zn 0.002 3.471 

 

0.124 0.938 0.592 0.061 

 

0.0024 

 

0.0015 ND 

Note: ND = not detectable 

 

The peak concentration levels of heavy metals obtained from the CLT over a period of 48 hr 

are shown in Table 5-3. The results show that the overall leach concentrations of trace metals 

are relatively less in the batch tests compared with the column tests. In CLT, the leaching 

concentration (LC) of the elements is high at the initial stage (i.e., 0-24 hrs). After an initial 

high LC, the concentration then significantly decreases (24-48 hr sampling). The water 

soluble elements and fraction of elements attached to the solid surface may easily leach in  

the first stage of the experiment; this could be one reason for a high LC in the initial stage. 
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As leaching continues, the concentration of the water soluble fraction gradually decreases. 

However, this does not confirm that LCs will continually decrease with time. Many trace 

elements may be dissolved by physical and chemical reactions and then leach from residues 

after a long period of time (Wang et al., 2008).  
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Figure 5-2 pH effects on leaching behaviour of 11 trace elements 
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The leaching behaviour of many trace elements from HOFA and stabilized ash is affected by 

the acidity of the solution. Figure 5-2 exhibits information about the change in leaching 

behaviour of 11 elements. The leachability of As (Figure 5-2a) was found to be dependent on 

the pH of the solution, i.e., its LCs decreased with an increase in the solution’s pH. In this 

case, the HOFA has a higher LC in BLT compared to CLT, but the stabilized ash showed a 

maximum LC in CLT.  
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Figure 5-3 MLC of the six heavy metals related to the environmental standard 
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The leachability of Cd and Cr (Figures 5-2b and c, respectively) decreased with an increase 

in the p
H
 of the leaching solution. In this case, the HOFA has a higher LC in CLT compared 

to BLT, but the stabilized ash showed a maximum LC in BLT. The leaching behaviours of 

Cu, Hg, Pb, Zn, Ni, V, and Co (Figures 5-2d, e, f, g, h, i, and j, respectively) increase with a 

decrease in the leaching solution’s pH. These metals showed higher LCs in CLT than in BLT 

for both HOFA and stabilized ash. The leachability of Se (Figure 5-2k) decreases with an 

increase in the leaching medium’s pH. In this case, the HOFA has a higher LC in CLT 

compared to BLT, but the stabilized ash (i.e., FA20) showed a maximum LC in BLT. As 

shown in Figure 5-2, the addition of cement with HOFA dramatically decreased the LCs of 

all the metals. It also proved that the amount of cement has a significant influence on the LC.  

The maximum leaching concentration (MLC) of the heavy metals is compared with the 

permissible concentration recommended by environmental agencies (Table 5-4). The LCs of 

six toxic heavy metals (i.e., As, Cd, Cr, Cu, Hg, and Pb) from HOFA and stabilized ash were 

compared with drinking-water threshold values suggested by USEPA (1993) and the United 

Kingdom’s Drinking Water Threshold (DWT, 2001). As can be seen from Figure 5-3, the 

maximum LCs (0.041, 0.006, 0.343, 14.20, 0.007, and 0.535 mg/L respectively) of As, Cd, 

Cr, Cu, Hg, and Pb from HOFA exceeds the highest environmental permissible 

concentrations recommended by USEPA and DWT.  

In addition, leachate from HOFA (e.g., Cu, Ni, Zn) also exceeded the landfill drainage 

standard (Table 5-4) set by the Council of the European Communities (CEC, 1991). On the 

other hand, the addition of cement to HOFA significantly decreased the LC of most of the 

elements to below permissible levels. It also shows that the amount of cement has an 
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influence on the LC. However, the addition of 20% and 30% cement to HOFA does not 

decrease the metals’ LCs below permissible levels in all cases (e.g., Cr, Hg, and Pb 

respectively, Figures 5-3c, e, and f). Furthermore, if we compare the metals’ LCs with 

environmental regulations (Figure 5-3), it is clear that the addition of 40% cement to HOFA 

is adequately safe for the environment. 

Table 5-4 Permissible limits of heavy metals in drinking water and leachates 

 
Heavy metals 

(mg/L) 

USEPA
a 

limit, 

maximum 

Leachates
b
 Landfill drainage

c
 

As 0.01 0.01 0.2-1.0 

Cd 0.005 0.001 0.1-0.5 

Cr 0.1 0.05 0.1-0.5 

Cu 1.3 0.02 2-10 

Hg 0.002 0.001 0.02-0.10 

Ni - 0.05 0.4-2.0 

Pb 0.0 0.05 0.4-2.0 

Zn 5.00b - 2-5 
aUSEPA (1993); bDWT (2001); cCEC (1991) 

 

In addition, the metals’ LCs for this stabilized material is well below the landfill drainage 

standard set by CEC as reported in Table 5-4. Based on the comparative results, the 

stabilized material prepared from HOFA with 40% Portland cement would not be classified 

as a hazardous waste. The results of this study indicate that the use of HOFA with 40% 

cement as fill material has no significant impact on the environment, as most of the toxic 

metals present in the HOFA may not leach beyond threshold limits.  

5.3 Use of HOFA as a colour ingredient in concrete mortar 

The objective of this experiment is to investigate the use of HOFA (i.e., sample FA-NB) as a 

black pigment in ornamental concrete. Due to its naturally black colour, the FA sample (i.e., 

sample FA-NB) has the potential to be used as a black pigment in ornamental concrete. 

Ornamental concrete can be used in landscaping, driveways, walkways, patios, planters, and 
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retaining walls. Since HOFA contains a significant amount of leachable metals, the use of 

HOFA mixed concrete in the landscape may leach toxic elements into the environment 

through rainwater or acid rain. Therefore, leaching tests were conducted to evaluate the 

environmental impact associated with the use of HOFA in concrete.   

5.3.1 Preparation of concrete samples 

To evaluate the compressive strength of concrete when HOFA is added as a colour 

ingredient, 50 mm concrete mortar cubes were prepared by mixing Portland cement, sand, 

and HOFA at different ratios according to a standard method (i.e., ASTM C109). The cubes 

were prepared by mixing one part Portland cement to 2.75 parts of graded standard sand by 

weight. The HOFA was mixed with mortar at 0% (reference sample), 2%, 5%, 10%, 20%, 

30%, and 50% by weight. The water to cement ratio was maintained at 0.45 for all cases. 

Different groups of cube samples were prepared: OC0, OC2, OC5, OC10, OC20, OC30, and 

OC50 (four in each group, a total of 28 cubes prepared).  

Table 5-5 Variations of compressive strength of different concrete cubes 

 
% HOFA 

  

Compressive strength after 28 days (MPa) 

Sample 1 Sample 2 Sample 3 Average 

2 41.15 40.95 42.59 41.56 

5 38.75 37.95 39.82 38.84 

10 28.63 28.49 29.02 28.71 

20 24.07 25.02 24.00 24.36 

30 8.24 8.89 9.15 8.76 

50* NA NA NA NA 

Reference cubes 42.96 41.32 42.59 42.29 

*NA sample OC50  was broken during handling  

The prepared cube specimens were stored into air for 24 hours. After this period each group 

of samples was kept in a separate tray and cured by cotton moistened with distilled water for 
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28 days. Moist cotton was applied in order to minimize the leaching of metals during the 

curing process. After 28 days, three cubes from each group were placed on the Automax 5 

automatic concrete compression test machine to measure the compressive strength. Load was 

applied and gradually increased at a rate of 0.2 Mpa/sec until the specimen failed. The 

remaining one sample from each group was separately placed in the leaching solution 

(mentioned in Table 5-1) in order to perform a BLT. 

5.3.2 Results and discussion  

When considering the use of FA as a black pigment or admixture in concrete, this material 

should possess suitable concrete properties such as compressive strength. To investigate the 

possibility of HOFA use in ornamental concrete, changes in compressive strength are 

measured by making cube blocks. The compressive strength of the study cubes after 28 days 

is shown in Table 5-5. The change of compressive strength of the concrete cubes is shown in 

Figure 5-4. This figure demonstrates that the addition of 2% or 5% HOFA to concrete results 

in no major difference in strength compared to the reference block; but compressive strength 

significantly decreases by adding 10% to 20% HOFA to the mortar. The addition of 30% 

HOFA to the mortar did not provide sufficient compressive strength. The compressive 

strength was dramatically reduced by adding 30% HOFA with the mortar: sample OC50 was 

not hard enough, and broke during handling and processing; for these reasons this sample 

was not considered for further studies. 

The results show that the addition of 2% or 5% HOFA to concrete does not affect its quality.  
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Figure 5-4 Change of compressive strength in concrete cubes 

 

Among the trace metals originally present in HOFA (Chapter 3), only minor concentrations 

were obtained through a batch leaching test (BLT). A BLT (Table 5-2) indicated that the 

toxic elements in HOFA easily leach into the environment through rain water or acid rain. 

The study also pointed out that metal leaching increased with an increase in acidity. To 

evaluate the maximum leach condition only an acidic solution (p
H 

= 3.0 using distilled water 

with HNO3) was used in this test.  The leaching behaviour of the 11 elements from the 

HOFA mixed concrete blocks is shown in Table 5-6. The results indicate that mixing HOFA 

with concrete significantly decreases the LC of most of the elements to below the permissible 

level set by environmental agencies (Table 5-4). The results also show that the quantity of 

FA in the concrete influences the LC. Increasing the percentage of HOFA in the concrete 

increases the LC of the metals. However, the addition of 10% and 20% HOFA to concrete 

shows a higher LC of some metals (i.e., Ni) than the permissible level. 
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Table 5-6 Results of batch experiments of cement mortar with HOFA 

 

Heavy 

metals 

Detection 

limit  

(mg/L) 

Peak Concentration Levels (mg/L) rounded to 3 digits 

OC2 OC5 OC10 OC20 

As 0.001 ND ND 0.001 0.001 

Cd 0.001 ND ND 0.001 0.001 

Co 0 ND ND 0 0 

Cr 0.005 ND ND ND 0.006 

Cu 0 ND 0 0 0.002 

Hg 0 ND ND ND ND 

Ni 0 ND 0.001 0.07 0.091 

Pb 0 ND 0.001 0.003 0.003 

Se 0.027 ND 0.001 0.001 0.001 

V 0.001 ND 0.005 0.086 0.195 

Zn 0.002 ND 0.001 0.003 0.006 

 

Furthermore, by comparing LCs with the environmental standards (Table 5-4), it is clear that 

the use of 2% or 5% HOFA in concrete is adequately safe for the environment. In addition, 

2% or 5% HOFA in concrete does not pose any significant change in its compressive 

strength (Figure 5-4). Based on the comparative results, it can be concluded that 2% or 5% 

HOFA can be added to ornamental concrete as a black pigment. However, further 

experiments with the quality of the concrete colour are recommended. 

5.4 Summary 

Batch and column leaching tests have been carried out in order to evaluate the leaching 

behavior of trace elements within the HOFA and stabilize ash prepared from HOFA mixing 

with cement. The results of this study indicate that the use of HOFA with 40% cement as fill 

material has no significant impact on the environment, as most of the toxic metals present in 

the HOFA may not leach beyond threshold limits. 
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A possible utilization of HOFA as a black pigment for concrete material was also 

investigated. Environmental risk that may pose by concrete made with HOFA was studied by 

laboratory BLT. The results show addition of 2% or 5% HOFA with concrete is adequately 

safe for the environment.  As well, the use of 2% or 5% HOFA in concrete does not pose any 

significant change in the concrete's compressive strength. 
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Chapter 6 

 

Production and Characterization of Fly Ash Activated Carbon  

 

6.1 Introduction 

The characteristics study of HOFA (Chapter 3) showed that Saudi Arabian HOFA has a 

higher percentage of carbon and a lower percentage of pollutants such as heavy metals than 

the FA-NB, which prompted the present study to produce fly ash activated carbon (FAC) from 

Saudi Arabian HOFA. After this point all analysis was conducted with the Saudi Arabian 

HOFA unless otherwise stated. The process involved in FAC production is shown in Figure 

6-1. The cleaning of HOFA and the recovery of unburned carbon are covered the first stage 

of the process. The production and characterization of FAC were discussed in the second 

stage of the experiment.  

6.2 Recovery of unburned carbon 

To recover unburned carbon, raw HOFA was treated by several washing and leaching 

processes to remove impurities. For this study, raw HOFA was treated with an aqueous acid 

solution at a ratio of 10 g of HOFA per 50 ml of nitric acid (28% HNO3) at 60C for 2 hr as 

suggested by Hsieh and Tsai (2003). The mixture was continuously stirred by a PHIPPS & 

BIRD stirrer model 7790-400 at 10 rpm over the test period. The photograph in Appendix B 

shows the HOFA sample cleaning process. During the stirring process, a magnetic bar was 

immersed in the solution to capture those impurities which had magnetic properties.  
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Figure 6-1 General flow diagram for FAC production from HOFA 

 

After filtration, the residues were washed with distilled water several times to eliminate NO3
- 

ions. Subsequently, the filtrate residue was treated with 15% HCl solution at a solid to liquid 

ratio of 1:5 at 60C for 1 hr. The solution was then filtered to obtain a filtered cake. The 

filtered cake was rinsed repeatedly with distilled water to eliminate chloride ions. Finally, the 

filtered cake was dried at 105
o
C for 24 hr to obtain the unburned carbon. Figure 6-1 shows 

the process flow diagram of unburned carbon recovery from HOFA. 
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Table 6-1 Metals found in cleaned HOFA  
 

Metals  Raw HOFA (mg/kg) Cleaned HOFA 

(mg/kg) 

a 
USEPA

 

maximum limit 

Arsenic (As) 2.239 
0.006 0.01 

Bromide (Br) 370.9 
2.5 - 

Cadmium (Cd) 
3.275 ND 0.005 

Cobalt (Co) 
3.28 0.039 - 

Chromium (Cr) 4.056 
0.014 0.1 

Copper (Cu) 170.4 
0.4 1.3 

Iron (Fe) 981 
8.25 - 

Mercury (Hg) 0.245 
Not detectable 0.002 

Manganese (Mn) 20.675 
0.23  

Molybdenum 

(Mo) 

26.047 

0.526  

Nickel (Ni) 1762.22 
1.231  

Lead (Pb) 10.995 
0.014  

Selenium (Se) 11.592 
ND  

Tin (Sn) 17.274 
0.406  

Vanadium (V) 2957.701 
4.53  

Zinc (Zn) 130.84 
0.61 5.00 

aUSEPA (1993) 

 

During the washing process impurities as metals, ash remove from raw HOFA and ncreases 

the pore volume. This is due to the extraction of mineral matter from the carbon structures. 

As shown in Table 6-1, the washing process noticeably reduces metal concentrations but 

increases the pore volume and surface area of the samples.  

6.3 Preparation of FAC by physical activation process 

In physical activation, 10 g of clean unburned carbon from the washing process (Section 6.2) 

was activated under a nitrogen (N2) environment at an average flow rate of 5 ml/ minutes. To 

expedite the burning process a constant flow of CO2 at a ratio of 1:5 (e.g., 1.0 g carbon with 

5 ml/ minutes CO2 STP) was applied to the system. The activation was done in a 
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programmable Lindberg/Blue M tube furnace (Figure 6-2) at 800-900°C with 60-120 

minutes holding time. The furnace was programmed in such a way that the heating rate was 

increased 5°C/ minutes until it reached the final temperature. 

 

 

 

 

 

 

 

 

 

Figure 6-2 Experimental setup used to produce FAC  
 

Table 6-2 Burning temperatures and times used in physical activation process 

 Parameters 
FAC-

P01 

FAC-

P02 

FAC-

P03 

FAC-

P04 

FAC-

P05 

FAC-

P06 

FAC-

P07 

 Activation 
Temperature (ºC) 

900 900 900 900 700 800 850 

Activation Time 

(minutes) 
45 90 120 60 120 120 120 

 

The furnace then remained at final temperature for the desired period. At the end of the 

heating period the furnace was left to cool to room temperature. By changing temperatures 

and burning times as shown in Table 6-2, different sets of FAC, namely FAC-P01, FAC-P02, 

FAC-P03, FAC-P04, FAC-P05, FAC-P06, and FAC-P07, were produced. The produced 

Rubber stopper 

Air cylinder 

Ceramic boat 

containing fly ash 

Tube furnace 

Tubing 
Quartz process tube 1” OD 
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FAC was characterized by iodine number (IN), methylene blue number (MBN), BET surface 

area, and pore volume. 

6.4 Preparation of FAC by NaOH and KOH 

Sodium hydroxide (NaOH) and potassium hydroxide (KOH) were used separately as 

chemical agents. Ten grams of clean unburned carbon (Section 6.2) was mixed with NaOH 

or KOH (40% aqueous solution) at different ratios (5-25% w/w). The mixing process was 

performed at 80°C for 30 minutes. The impregnated sample was dried in an oven at 105°C 

for 24 hrs. The sample was then placed inside a quartz tube and inserted horizontally into the 

middle of a tubular electric furnace (Figure 6-2). The activation was performed at 900°C 

under a nitrogen (N2) gas flow at an average rate of 5 ml/ minutes for 2 hr followed by a CO
2 

gas flow (i.e., average 20 ml/ minutes) for the last 1 hour. The resulting FAC was washed 

with 250 ml 0.5 N HCl at 80°C for 30 minutes followed by distilled water washing until the 

p
H
 of the mixture exceeded 6. During activation the furnace was programmed in such a way 

that the heating rate was increased 5°C/ minutes until reaching the final temperature. It then 

remained at that temperature for the desired period. At the end of the heating period the 

furnace was left to cool to room temperature.  

Table 6-3 Different mixing doses of NaOH and KOH 

Parameters 
KOH NaOH 

FAC-1 FAC-3 FAC-5 FAC-7 FAC-2 FAC-4 FAC-6 FAC-8 

Chemical agents used 

by weight 
25% 15% 10% 5% 25% 15% 10% 5% 

 

To investigate the effects of chemical doses, different sets of FAC were produced by 

changing the dose of NaOH and KOH as shown in Table 6-3. Among them were four sets of 
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FAC (e.g., FAC-2, FAC-4, FAC-6, and FAC-8) produced by NaOH and four sets of FAC 

(e.g., FAC-1, FAC-3, FAC-5, and FAC-7) produced by KOH.  

6.5 Production of FAC by H3PO4 

The dried unburned carbon from the washing processes (Section 6.2) was activated by 

mixing it with H3PO4. The mixing ratio, temperature, and activation times were varied 

according to a factorial design. The unburned carbon and chemicals were stirred 

continuously at 80°C for 30 minutes and dried at 100°C for 24 hrs. After this process, the 

carbonization process was applied to the product obtained. The effect of temperature was 

investigated by varying burning temperatures between 550°C and 800°C. Carbonization was 

conducted in a programmable Lindberg/Blue M tube furnace (Figure 6-2), which provides 

the versatility and control accuracy to meet the critical temperature required for the system. 

The furnace was programmed in such a way that the heating rate was increased 5°C/ minutes 

until reaching the final temperature. It then remained at that temperature for 30 or 60 

minutes, according to Table 6-4. At the end of this period the furnace was left to cool to 

room temperature. During the heating period a constant air flow of 5 ml/ minutes was applied 

to the system to expedite the burning process, as suggested by Rahman et al. (2006). The 

carbonized product was cleaned with 0.5 N HCl by mixing 10 g of carbonized product to 250 

ml acid at 85°C for 30 minutes. The filtered cake was then rinsed with distilled water several 

times until the p
H
 of the mixture exceeded 6. Finally, the FAC was dried at 100°C for 24 h 

and its characteristic properties determined. This experiment was varied according to a two-

level full factorial design (Montgomery, 1997), where the impacts of the following three 

factors were studied based on the surface area (m
2
/g) of the produced FAC. 

a. Effect of temperature  
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b. Impact of reaction time  

c. Impact of chemical reagent (H3PO4) dose  

A two-level factorial design is the most widely used experimental design for estimating the 

main as well as the interaction effects of different variables (Singh et al., 2002).  

Table 6-4 Design parameters for chemical activation process 

Sample  

Coded values Actual Unburned 

carbon (g) 

A B C 

Temperature 

(°C) A1 

Heating time 

(minutes) B1 

H3PO4 (ml) 

C1 

AC1 - - - 550 30 2 10 

AC2 + - - 800 30 2 10 

AC3 - + - 550 60 2 10 

AC4 + + - 800 60 2 10 

AC5 - - + 550 30 5 10 

AC6 + - + 800 30 5 10 

AC7 - + + 550 60 5 10 

AC8 + + + 800 60 5 10 

 

For this study, the effects of three variables on surface area development were quantified 

based on a two-level full 2
3
 factorial design of the experiment suggested by Montgomery 

(1997). The experimental design involved three variables at two levels (i.e., low and high). In 

this case the total 8 experiments were conducted. The variables and levels for the experiment, 

along with actual and coded scales, are given in Table 6-4. The higher level variable was 

designated as +1, the lower level as -1. In Table 6-4, A1, B1, and C1 represent the burning 

temperature, heating time, and the amount of H3PO4 added to a fixed 10 g of unburned 

carbon, respectively, and A, B, and C are the corresponding values in coded forms. The 

maximum and minimum levels are expressed in coded form as +1 and -1, respectively. The 
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coded values are used to convert the absolute quantity into a dimensionless factor, which is 

convenient for handling experimental data. 

6.6 Characterization of FAC 

6.6.1 Surface area and pore volume 

The FAC was characterized by its surface area, porosity, and adsorption capacity of 

methylene blue and iodine. The surface area (m
2
/g) was estimated by the BET equations 

described in Chapter 3. Total pore volume, VT, was obtained from a N2 adsorption isotherm 

at p/p0 = 0.99.   

6.6.2 Measurement of pH  

The pH of FAC was measured according to procedures suggested by Belen et al. (2009) and 

described in Chapter 3.  

6.6.3 Iodine number  

Iodine number (IN) of FAC was determined using the standard method described in Chapter 

3.  

6.6.4 Methylene blue number  

The methylene blue number (MBN) is defined as the maximum amount of dye adsorbed on 1 

g of adsorbent. MBN was determined by the method described by Raposo et al. (2009). In 

this assay, 10 mg of FAC was placed in contact with 10 mL of a methylene blue solution at 

various concentrations (10, 25, 50, 100, 250, 500, and 1000 mg/L) for 24 h at room 

temperature (approximately 22°C). The remaining concentration of methylene blue (MB) 

was analyzed by a UV/Vis spectrophotometer (Hewlett-Packard Model 8453) at 665 nm. 

This wavelength corresponds to the maximum absorption peak of the MB monomer 
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(Bergman and O’Konski, 1963). The amount of MB adsorbed (qeq) from each solution is 

calculated as: 

v
w

CC
q e

eq 






 
 0                                                                                   (6-1) 

where Co (mg/L) is the concentration of the MBsolution at starting time (t = 0),  Ce (mg/L) 

is the concentration of MB solution at equilibrium time, V is the volume of the solution 

treated in L, and w is the amount of FAC used in g.  

A calibration curve (Figure 6-3) was obtained by using standard MB solutions of known 

concentrations at pH 8.5.  The unknown concentration was estimated by using Beer’s law, as 

shown in Equation 6-2. 

 

lcA ..                                                                          (6-2) 

 

where, A is the absorbance, ε is the the molar extinction coefficient, c is the concentration of 

dye (mg/L), l is the path length of the absorbing solution (in cm), the cells used are 1 cm
2 

in 

cross-section, so l is considered 1 cm. 

A calibration curve (Figure 6-3) with a high determination coefficient (R² = 98.7) allows us 

to consider that the molar extinction coefficient is constant over the concentration range 

being investigated. The molar extinction coefficient value obtained from the slope is 7.314 x 

10
+4

; this value lies within the broad range reported in the literature, (3.9-9.5) x 10
+4

 

(Bergman and O’Konski, 1963). 



82 

 

y = 0.107x - 0.313
R² = 0.989

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30

A
b

so
rb

e
n
c
es

Concentration (mg/L)  

Figure 6-3 MB adsorption calibration curve 

6.6.5 Ash content 

Ash content determination was done according to the ASTM D2866-94 method. In this case, 

1.0 g of FAC was dried at 105°C for 24 h and placed in weighed ceramic crucibles. The 

sample was heated in an electric furnace at 1000°C for 1 h after which the crucible and its 

contents were transferred to a desiccator and allowed to cool. The crucible and its contents 

were reweighed and the weight loss recorded as the ash content of the FAC sample. The 

percentage of ash was calculated as follows:  

100  (%)Ash 



i

sfsi

W

WW

                                                                              

(6-3) 

where, WSi (g) is the weight of crucible containing ash, WSf (g) is the weight of the crucible, 

and Wi (g) is the weight of the original FAC used. 
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6.6.6 Bulk density 

The bulk density of the resulting FAC was determined using the method of Ahmedna et al. 

(1997), which consists of placing a known weight of FAC in a 25 ml cylinder to a specified 

volume and tapping the cylinder for at least 1-2 minutes and measuring the volume of 

carbon. The bulk density was determined as: 

s

s

V

W
                                                                                                             (6-4) 

where, ρ is the bulk density in g/cm
3
, Ws is the weight of FAC sample in g, and Vs is the 

volume of packed dry sample in cm
3
. 

6.6.7 Percentage yield 

The percentage yield (%) of FAC was determined by the ratio of weight before and after the 

activation process.  The percentage yield was calculated as follows:  

100  (%) Yield 
i

f

W

W

                                                                              

(6-5) 

where, Wi is the initial weight of HOFA originally used in g, Wf is the weight of FAC finally 

produced in g. 

6.7 Determination of BET surface area and pore volume by using IN and MBN  

The surface area of AC is usually measured by the BET method (Brunauer et al., 1940), 

which employs nitrogen adsorption at different pressures at the temperature of liquid 

nitrogen (77 K). Determination of pore volume also uses nitrogen adsorption isotherm data, 

and the micropore volume is calculated from the nitrogen adsorption isotherms using the 

Dubinin-Radushkevich equation (Blanco et al., 2000). The above methods for surface area 

and pore volume determination are time-consuming and require the use of expensive 
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equipment. However, the adsorption characteristics of FAC for different adsorbates, such as 

methylene blue and iodine, can be used to estimate surface area and pore volume by means 

of statistical models. The MB molecule has an area of 2.08 nm
2
 (Alaya et al., 2000) and can 

only enter large micropores and mesopores (Baçaoui et al., 2001). The iodine molecule is 

relatively small, with an area of 0.4 nm
2
 (Alaya et al., 2000), and can enter smaller 

micropores (Baçaoui et al., 2001). These characteristics present the potential for their use in a 

study of the surface area and pore volume of porous materials. In this section an empirical 

relationship between methylene blue number (MBN), iodine number (IN), and the BET 

surface area of FAC was studied. 

6.7.1 Surface area modeling 

To describe the behaviour of the MBN and IN in relation to the BET surface area, a linear 

model was developed based on information from the 12 FAC samples produced by this study 

(Appendix A). The surface area (m
2
/g) of the samples was estimated by the BET equation 

described in Chapter 3. The BET surface area of 12 FAC samples varied from 2.0 to 161.0 

m
2
/g. The MBN and IN of these samples ranged from 3.5 to 25.5 mg/g and 5 to 110 mg/g, 

respectively. Figure 6-4 shows the interaction of the MBN, IN, and BET surface area of the 

12 samples used in the modeling: both MBN and IN have a positive effect on BET 

development. The maximum set condition can be described by a linear regression model as 

shown in Equation 6-6. 

BET = -5.31939+0.118321*IN+4.03959*MBN            (6-6) 
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Figure 6-4 Interactions between BET, MBN, and IN for FAC 

 

Table 6-5 Analysis of variance for surface area modeling 

Source DF 
Sum of 

squares 

Mean 

squares 
F Pr > F 

R-Sq R-Sq 

(adj) 

Model 2 19464.0 9732.0 840.4 < 0.05 99.47% 99.35% 

Error 9 104.2 11.6     

Corrected total 11 19568.2      

 

The BET surface area prediction by Equation 6-6 was tested. A comparison between 

predicted and experimentally obtained values is shown in Figure 6-5. The model presented a 

high determination coefficient (R² = 0.8798), claiming 87.98% of the variation in surface 

area development can be explained by the independent variables. The analysis of variance 

(Table 6-5) shows that the probability corresponding to the F value is lower than 0.05. 

Therefore, it is concluded with confidence that the developed model can be used to estimate 

an unknown BET surface area when MBN and IN information is given. 
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Figure 6-5 Correlation between measured and predicted BET surface areas (m
2
/g) 

 

 

Figure 6-6 Interactions between TPV, MBN, and IN for FAC 
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6.7.2 Total pore volume modeling 

The relation between MBN and IN and total pore volume (TPV) was established through a 

linear regression model. The model was developed by using the 12 FAC samples described 

in Section 6.7.1. Figure 6-6 shows the interaction of the MBN and IN in relation to the TPV 

of the 12 samples used in the modeling. It can be seen that both MBN and IN have a positive 

effect on TPV development. A linear model regression (Equation 6-7) was developed to 

describe the relation between MBN, IN, and TPV. 

TPV = 5.747681E-03+5.68739E-03*IN-1.324098E-02*MBN                     (6-7) 

Table 6-6 Analysis of variance for TPV modeling 

Source DF Sum of 

squares 

Mean 

squares 

F Pr > F R-Sq R-Sq 

(adj) 

Model 2 0.1 0.1 87.5 < 0.05 95.11% 94.02% 

Error 9 0.0 0.0     

Corrected total 11 0.1      

A comparison of the values predicted by Equation 6-7 and the TPV values experimentally 

obtained is shown in Figure 6-7. The model presented a high determination coefficient (R² = 

0.95.11), claiming 95.11% of the variation in TPV development can be explained by the 

independent variables. The analysis of variance (Table 6-6) shows that the probability 

corresponding to the F value is lower than 0.05. Therefore, the developed model can be used 

to estimate unknown TPV when MBN and IN are known. 
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Figure 6-7 Correlation between measured and predicted TPV  
 

6.7.3 Micropore volume modeling 

Using a linear model, micropore volume (MPV) was estimated as a function of MBN and IN. 

The model was built with the 12 FAC samples described in Section 6.7.1. The MPV of the 

samples was measured from the nitrogen adsorption isotherms described in Chapter 3. Figure 

6-8 shows the interaction of IN and MBN in relation to MPV. It can be seen that both IN and 

MBN have a positive effect on MPV development. A linear model (Equation 6-8) was 

developed to describe the effect of IN and MBN on MPV development. 
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Figure 6-8 Interactions between MPV, MBN, and IN for FAC 

A comparison of the values predicted by Equation 6-8 and the MPV values experimentally 

obtained is shown in Figure 6-9. The model presented a high determination coefficient (R² = 

0.9511), claiming 95.11% of the variation can be explained by the independent variables. 

The analysis of variance (Table 6-7) shows that the probability corresponding to the F value 

is lower than 0.05. Therefore, the model can be used to estimate unknown TPV when IN and 

MBN information is given. 

MPV = -1.222681E-03+2.618721E-04*IN+6.905555E-04*MBN    (6-8) 

Table 6-7 Analysis of variance for MPV modeling 

Source DF Sum of 

squares 

Mean 

squares 
F Pr > F R-Sq R-Sq 

(adj) 

Model 2 0.0 0.0 247.1 < 0.05 98.21% 97.81% 

Error 9 0.0 0.0     

Corrected 

total 
11 0.0       
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Figure 6-9 Correlation between measured and predicted MPV  

 

6.8 Characterization of FAC produced by physical activation 

A scanning electron microscope (SEM) study showed that the carbonization process has a 

significant influence on the particle’s porosity development. Figure 6-10 shows that the 

surface porosity of HOFA dramatically increased after activation.  

Bulk density of AC is an important property, especially when used it as an adsorbent. AC 

with a high density is good to use as a filter media . AWWA (1991) suggested that the lower 

limit of bulk density is 0.25 g/cm
3 

for granular activated carbon. The bulk density of all FAC 

produced from physical activation ranged from FAC-P01 (0.325 g/cm
3
) to FAC-P07 (0.285 

g/cm
3
). FAC produced at a higher temperature showed a higher bulk density (Table 6-8).  
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Table 6-8 Characteristics of FAC produced by physical activation 

 Parameters 
FAC-

P01 

FAC-

P02 

FAC-

P03 

FAC-

P04 

FAC-

P05 

FAC-

P06 

FAC-

P07 

BET  surface area 

(m2/g) 4.1266 12.6990 14.0380 10.7370 5.8500 8.7500 10.2300 

Total pore volume, 

(cm3/g) 0.0182 0.0239 0.0221 0.0248 0.0119 0.0250 0.0222 

Micropore volume  

(cm3/g) 0.0019 0.0074 0.0054 0.0039 0.0011 0.0040 0.0029 

Mesopore volume 

(cm3/g) 0.0163 0.0166 0.0167 0.0209 0.0108 0.0210 0.0193 

Meanpore diameter 

(nm) 17.6310 7.5414 6.3060 9.2503 - - - 

Iodine number 6.5200 15.2300 16.2500 13.3000 7.1000 11.2500 13.3000 

Methylene blue 

number 1.8500 3.8200 4.5800 3.0500 2.1000 3.2500 3.8900 

Yield % 65.23 60.36 55.55 62.75 66.21 64.36 60.77 

Ash content (%) 13.75 14.75 15.25 13.12 10.15 11.80 12.10 

Bulk density 

(g/cm3) 0.325 0.315 0.331 0.31 0.322 0.281 0.285 

PH 6.65 6.85 6.80 6.60 6.50 6.50 6.55 

Note: BET, Total pore volume and Mesopore volume of FAC-P05, FAC-P06, FAC-P07 were estimated by developed 

model Equation 6-6 to 6-8 
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(a)                                              (b) 

Figure 6-10 SEM analysis of (a) HOFA (b) after heating at 900C 
 

IN is the amount of iodine, in milligrams, adsorbed per gram of AC at an equilibrium 

concentration (e.g., 0.02 M). It provides an indication of the surface area (m
2
/g) and porosity 

of AC (Gergova et al., 1994; Collin et al., 2008). The IN of FAC prepared by physical 

activation (Table 6-8) ranged from 6.52 mg/g to 16.25 mg/g, which is  generally low and  

indicates low porosity. A lower IN generally represents low porosity with a pore size 

narrower than 1.0 nm (Collin et al., 2008). 

The pH of produced FAC ranged from 6.55 (FAC-P07) to 6.85 (FAC-P02), which is close to 

acidic conditions. The burning temperature and reaction time was found to have an 

insignificant effect on the pH of FAC. The pH of carbon materials ranging from 6 to 8 is 

practical for most industrial applications, especially for the adsorption of pollutants from an 

aqueous solution (Qureshi et al., 2007). Therefore, FAC prepared by physical activation 

could be acceptable in most applications involving adsorption from aqueous solutions.  
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The ash content indicates the quality of the ash in AC. It is the residue that remains when the 

carbonaceous portion is burned off. The ash consists mainly of minerals such as silica and 

oxides of aluminium, iron, magnesium, and calcium (oxides). The ash content of the 

produced FAC ranged from 10.15 (FAC-P05) to 15.25 (FAC-P03). The effect of the 

activation temperature on BET surface area, iodine number (IN), and methylene blue number 

(MBN) was studied. From Figure 6-11 it is clear that BET, IN, and MBN were increased 

gradually by increasing the activation temperature from 700C to 900C.  
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Figure 6-11 Effects of temperature on FAC development (at 120 minutes activation) 

Figure 6-12 shows that BET, IN, and MBN are gradually increased by activation times from 

45 to 90 minutes; after that, a decreasing trend is observed with increasing the activation 

time. Based on this experiment an activation time of 90 minutes could be considered the 

optimum activation time for this case. FAC yield ranged from 60% to 70%. Both temperature 

and heating time have a significant effect on the final yields. The effect of activation 

temperature on the yield was evaluated at an activation time of 120 minutes. This is evidence 

that FAC yield decreases by increasing the activation temperature (Figure 6-13).  
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Figure 6-12 Effects of activation time on FAC development (at 900ºC) 
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Figure 6-13 Effects of activation temperature (at 120 minutes) on FAC yield 
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Figure 6-14 Effects of activation time (at 900ºC) on FAC yield 

The effect of activation time on FAC yield was also evaluated at 900°C.  Figure 6-14 shows 

that the yield decreased by increasing the activation time.  

6.9 Characterization of FAC produced by NaOH and KOH 

The BET surface area of FAC produced by NaOH and KOH was evaluated by N2 adsorption 

isotherms, MBN, and IN (Table 6-9).  FAC prepared by NaOH and KOH (Table 6-9) showed 

a higher surface area than that obtained by physical activation (Section 6.8). This is probably 

due to the development of more pores on the particle surface. The FAC yield was estimated 

by the weight difference of the original materials and the quantity after activation treatment. 

Under test conditions, FAC yield was 60% to 75%. Figure 6-15 shows that the FAC yield 

decreased as the percentage of chemical dose increased. Burn-off is the weight loss of char 

during the activation process (Davini, 2002). Higher burn-off values were observed 

by increasing chemical doses. High burn-off generally provides a better surface area, which 

may lead to a higher adsorption capacity of AC. The burn-off for the produced FAC was 
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between 10% and 25% (Figure 6-15), which could be considered low burn-off compared to 

the reported values (Caramuscio, 2003). 

A high microporosity and a large surface area are the most desired properties of AC. These 

properties may be affected by varying the amounts of activation reagents and other reaction 

parameters such as temperature and reaction time. The effect of chemical agents on the 

surface area development of the produced FAC is shown in Figure 6-16. In this case, adding 

25% by weight chemical agent to HOFA with a reaction time of 2 h at 900
o
C was found to 

be the best condition for surface area development. However, high burn-off values and 

consequently low yields were found at this condition.      
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Figure 6-15 Effect of impregnation type and ratio on the yield of FAC 

The maximum surface areas of FAC were found to be 116.4 and 97.6 m
2
/g respectively with 

25% KOH and NaOH. The BET surface area of the FAC was much lower at a low dose of 

chemical agent, and it increased dramatically with increased chemical doses. However, the 

increment rate of BET surface area was found to be insignificant with a KOH dose between 
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15% and 25%. On the other hand, a larger BET surface area was observed at a higher dose of 

NaOH (Figure 6-16). Micropore volumes also increased by increasing the percentage of 

chemical agents (Table 6-9). Higher INs and MBNs were found for FAC prepared by KOH 

compared to those obtained with NaOH (Table 6-9).  
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Figure 6-16 Effect of chemical dose on the surface area development of FAC 

A high ash content is undesirable for AC since it reduces the mechanical strength of carbon 

and affects the adsorptive capacity.  The ash content of the produced FAC ranges from 12% 

to 14% and indicates good mechanical strength (ASTM D2866-94, 2000). The pH of FAC 

generated by NaOH and KOH ranges from 7.25 to 7.90 as shown in Table 6-9. 
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Table 6-9 Textural properties of fly ash activated carbon 

Parameters KOH NaOH 

FAC-

1 

FAC-3 FAC-

5 

FAC-

7 

FAC-

2 

FAC-

4 

FAC-

6 

FAC-

8 

BET  surface area 

(m2/g) 

116.410 92.9150 13.496 11.864 97.612 15.041 5.390 4.127 

Total pore (cm3/g) 0.313 0.3128 0.026 0.069 0.065 0.041 0.023 0.018 

Micropore (cm3/g) 0.043 0.0434 0.009 0.005 0.038 0.002 0.002 0.002 

Mesopore (cm3/g) 0.269 0.2694 0.017 0.065 0.027 0.040 0.021 0.016 

Meanpore (nm) 13.467 13.4670 7.675 23.367 12.654 10.967 16.722 17.631 

IN 110.59 85.68 15.88 9.56 105.86 18.26 9.52 5.36 

MBN 25.50 18.75 5.12 4.25 22.98 5.75 6.12 3.78 

Yield % 60.32 66.73 72.36 75.2 63.4 70.25 75.67 78.232 

Ash content (%) 14.50 14.20 13.95 13.12 14.10 13.80 13.10 12.75 

Bulk density (g/cm3) 0.35 0.33 0.325 0.321 0.332 0.321 0.295 0.289 

pH 7.90 7.75 7.50 7.20 7.85 7.65 7.30 7.25 

*Note: BET, total pore  volume and mesopore volume of FAC-3, to FAC 8 were estimated by developed model Equation 

6-6 to 6-8 

 

6.10 Characterization of FAC produced by H3PO4 

The carbonization process has a significant influence on the particle’s porosity development. 

A SEM micrograph, as shown in Figure 6-17b, indicates that, compared to clean HOHA, the 

surface porosity of the HOFA is increased by a chemical activation process (Figure 6-17a).  

Table 6-10 shows the different properties of FAC produced by H3PO4. The maximum BET 

surface area (i.e., 144 m
2
/g for AC-8) was achieved at 800°C with 60 minutes reaction time 

by 5 ml H3PO4. The second highes surface area was estimated for AC-6 (i.e., 130 m
2
/g), 

which was produced by 5 ml of H3PO4   at 800°C with a holding time of 30 minutes. It shows 

that heating time has a significant influence on AC yield. For example, the yield of AC-8 and 

AC-1 achieved 66% and 82%, respectively, at 60 minutes and 30 minutes reaction time. 
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(a)                                              (b) 

(a) after washing treatment (b) after heating at 800C (AC-8) 

Figure 6-17 SEM analysis of FAC  

Table 6-10 Properties of FAC produced by H3PO4 

Parameters AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 

BET surface area 

(m2/g) 
75.38 82.674 91.22 123.19 79.48 130.06 102.778 143.888 

TP (cm3/g) 0.1219 0.1329 0.1440 0.2215 0.1285 0.1662 0.2105 0.2326 

MPV  (cm3/g) 0.0536 0.0548 0.0588 0.0976 0.06158 0.05747 0.08699 0.10951 

Mesopore (cm3/g) 0.0682 0.0780 0.08518 0.12389 0.06691 0.10872 0.12350 0.12308 

IN 80.50 95.50 110.20 130.25 90.75 140.45 120.50 160.85 

MBI 19.75 21.48 23.58 31.45 20.71 33.10 26.41 36.36 

% Yield 82.8 78.33 74.32 79.15 78.25 75.22 72.12 66.25 

Ash content (%) 12.75 12.52 13.10 13.02 14.1 13.75 12.81 12.25 

Bulk density (g/cm3) 0.332 0.328 0.315 0.322 0.312 0.321 0.325 0.354 

pH 7.50 7.55 7.35 7.25 6.95 6.75 7.10 6.90 

 

In order to examine the main factors and their interactions for BET surface area 

development, a 2
3
 factorial design was used. The regression analysis was performed to fit the 

experimental data. A Design-Expert version 8 software trial package was used in this case. 

The main interaction effects of each parameter were analyzed and are listed in Table 6-11. In 

this case, all main factors and their interactions have a positive effect on surface area 
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development except BC and ABC (Table 6-11). Among the parameters, temperature has the 

highest effect (about 46% contribution) in surface area development followed by the heating 

time (24% contribution).  

Table 6-11 Contribution of different parameters on surface area development 

 

 

 

 

 

 

 

 

Table 6-12 shows the experimental and predicted values of BET surface area from the 

Design-Expert version 8 trial software.  The normal probability plot of residuals (Figure 6-

18) shows that the residual distribution is approximately normal, and there is no abnormality 

in the data set. Figure 6-19 shows that the distribution residuals are approximately constant. 

All these diagnostic proved that the analysis is satisfactory.  

Table 6-12 Predicted values of BET surface area (m
2
/g) of FAC 

Order Experimental BET Predicted BET 

AC1 75.42 65.15 

AC2 82.58 97.80 

AC3 91.24 88.43 

AC4 123.27 121.08 

AC5 79.41 86.18 

AC6 130.05 118.83 

AC7 102.79 109.46 

AC8 143.46 142.11 

 

Parameters Effects % Contribution 

A (Temperature) 32.65 45.74 

B (Heating time) 23.28 23.26 

C (H3PO4) 21.03 18.97 

AB 3.89 0.65 

AC 13.02 7.27 

BC -4.90 1.03 

ABC -8.45 3.06 
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Figure 6-18 Normal probability plot of residuals 

 

 

Figure 6-19 Residuals vs. predicted plot 
 

In order to determine the optimum value of each variable, 3D plots were generated. Figure 6-

20 shows the interaction of temperature and heating effects on surface area development: 

both factors have a positive effect on the final output. At maximum set conditions, 
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temperature has more influence than heating time. Similarly, if we compare the interaction 

effect of temperature and H3PO4 (Figure 6-21), both have a positive effect and the degree of 

temperature influence is higher than with H3PO4.   
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Figure 6-20 Effect of heating time and temperature on surface area development 

Figure 6-22 shows that heating time and H3PO4 have a positive effect on BET surface area 

development. By analyzing the 3D response plots, it is easy to evaluate the optimum values 

of the variables.  
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Figure 6-21 Effect of temperature and H3PO4 on surface area development 
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Figure 6-22 Effect of heating time and H3PO4 on surface area development 
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Each contour line (e.g., bottom of 3D surface diagram) represents an infinite number of 

combinations of two-test variables. The maximum predicted value can be found by the 

surface confined with the smallest ellipse in the contour. Elliptical contours are obtained 

when there is a perfect interaction between independent variables (Montgomery, 1997). The 

surface plot in Figure 6-20 indicates that BET surface area increased by an increase in 

temperature and time. Similar patterns were observed for Figures 6-21 and 6-22. However, at 

high temperatures cause shrinkage of AC, which may result in poor surface area (Guo and 

Lua, 1998). The higher temperature and holding time also reduced the percentage yield of 

FAC. Thus, increasing the temperature above 800°C may not be feasible for this case. 

6.11 Summary 

Different methods are available to clean the impurities in FA. However, the selection of 

chemicals and its dose depend on the raw material  characteristics. Based on the literature 

and different trial experiments, this study found that 28% HNO3 and 15% HCl treatment 

lowered the metal concentration in HOFA to an acceptable level. A case by case study is 

required in order to develop appropriate washing and cleaning procedures. 

To produce FAC, physical and chemical activation was used in this study. Three different 

types of chemicals, such as NaOH, KOH and H3PO4, were used as chemical agents during 

the chemical activation process of this study. Based on the surface area analysis, it is clear 

that chemical agent has significant influence on the development of  surface area of final 

product. During the activation process the chemical agent react with the impurities present 

the in particle and produce extra pores on the particle surface, which may lead the higher 

surface area of the produce FAC, compared with the physical activation. The produced FAC 

was compared with AC produced from various raw materials (Table 6-13) reported in the 
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literature. Based on a comparative analysis, it can be concluded that HOFA has the potential 

to be used as a raw material for AC production.  

This study revealed that Saudi Arabian HOFA can be used as an effective and inexpensive 

(since the FA is very cheap at generation points)  raw material for AC production, which has 

the potential for various industrial applications, especially in the adsorption process for the 

removal of pollutants with large molecules where a mesopore volume is required. 

Table 6-13 Characteristics of activated carbons obtained from various precursors 
 

Raw Material Activation 

agent 

BET (m
2
/g) Total pore 

volume 

(cm3/g) 

References 

Plum kernels NaOH 113 0.083 Tseng,  2007 

Anthracite NaOH 334 0.140 Lillo-Rodenas et al., 2004 

Corn cob NaOH 446 0.420 Tseng,  2006 

E. rigida NaOH 396 0.202 Kilic et al., 2012 

HOFA NaOH 97.612 0.065 This study (Maximum BET) 

HOFA KOH 116.41 0.191 This study (Maximum BET) 

HOFA H3PO4 143.46 0.439 This study (Maximum BET) 

HOFA Physical 

activation 

14.03 0.0221 This study (Maximum BET) 

Oil FA NH4OH 318.00 - Yaumi et al., 2013 

Indulin lignin KOH 514 - Hayashi et al., 2000 

Lignite KOH 1594 0.71 Lillo-Rodenas et al.,  2007 

Coconut 

shell 

KOH 1740 0.74 Lillo-Rodenas et al.,   2007 

Bagasse fly ash  2316 1.27 Purnomo et al., 2011 
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Chapter 7 

 

Potential Use of Fly Ash Activated Carbon in Wastewater 

Treatment  

 

7.1 Background 

Industrial development and modernization have exerted a significant pressure on water 

demand all over the world, and it is expected to grow at a high rate. Recurring water-related 

problems are becoming even more worrisome. Improved recycling and wastewater reuse 

could be alternative sources to meet future water demands, especially in agriculture, 

landscaping, and aquifer recharge. Due to the presence of significant toxic compounds, pre-

treatment is needed before wastewater is reused.  

Without treatment the direct disposal of wastewater into the environment may have a 

negative impact on ecosystems and human health. Only 42% of the wastewater generated by 

global industries receives some kind of treatment (Doan et al., 2009). The improper 

discharge of wastewater into water bodies over a long period of time can cause the 

deterioration of these environments and liver and kidney damage, diarrhoea, and other 

waterborne diseases in humans and animals (Sarkar and Acharya, 2006).  

A range of wastewater treatment technology is available in the market. However, research is 

being conducted on the development of sustainable and cost-effective technology. The most 

common wastewater treatment systems are biological treatment (Gernjak et al., 2003), 

chemical oxidation (Ahn et al., 1999), biodegradation (Massot et al., 2012), and adsorption 
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(Lin and Juang, 2009; Xue et al., 2009). Of these, the adsorption process is the most 

favourable method for removing pollutants from wastewater due to its simple design and 

easy operation (Ahmed and Dhedan, 2012). With the selection of a proper adsorbent, this 

process could be an alternative and cost-effective technique for wastewater treatment.  

Adsorption techniques can be used in treating dyes, metals, and other organic pollutants in 

wastewater. Activated carbon (AC) is a widely used adsorbent for wastewater treatment 

(Ahmad et al., 2007). However, the use of commercially available activated carbon (CAC) 

for wastewater treatment involves a high treatment cost, which has led researchers to develop 

alternative and cost-effective adsorbents. The use of industrial by-products to treat 

wastewater could be an innovative and sustainable alternative. Many researchers have focused 

on low-cost adsorbents from industrial and or agricultural by-products (Ozcan et al., 2004; 

Suteu and Bilba, 2005; Voudrias et al., 2002). A recent review by Mohan and Pittman (2006) 

showed that low-cost adsorbents can be divided into three categories: (i) biomass, (ii) 

agriculture and industrial wastes, and (iii) nano-sized particles. Recently, FA has gained 

popularity for use in the adsorption of pollutants from waste streams because of its relatively 

low cost, good mechanical stability, and high adsorption capacity. Many researchers have 

investigated the adsorption capacity of FA (Sarkar and Acharya, 2006; Gupta and Ali, 2004). 

Using Turkish coal FA, Bayat (2002) investigated the removal efficiency of aqueous Cr (VI) 

ions. Banarjee et al. (2004) used chemically modified coal FA to remove Cr (VI) from an 

aqueous solution.  Gupta and Ali (2004) used bagasse FA to remove lead and chromium 

from wastewater. All this research has found that the thermal activation of FA offers a 

satisfactory adsorption performance.  
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The study presented in this chapter investigates the possible application of FAC to the 

removal of different pollutants from aqueous solutions. Three separate adsorption 

experiments such as (i) the adsorption of polycyclic aromatics hydrocarbons (PAHs) (e.g., 

naphthalene), (ii) the adsorption of Cr (VI), and (iii) the adsorption of dye from simulated 

wastewater (prepared in the laboratory) were conducted to study the adsorption efficiency of 

the FAC prepared in Chapter 6. 

PAHs, one of the most widespread organic pollutants, are mainly produced by the 

incomplete combustion of carbon-containing fuels such as wood, coal, diesel, fat, and 

tobacco. PAHs are lipophilic: they mix more easily with oil than water (Nagpal, 1993; 

Schwarzenbach et al., 2003). PAHs are found in soil, sediment, and oily substances (Pitt et 

al., 1999). It is considered environmental persistent and is composed of low biodegradable 

compounds (Yuan et al., 2010). Because of their toxicity, the fate of PAHs in the 

environment is of great concern (Maloni and Samara, 1999; Holoubeki et al., 2000). Due to 

its aromatic characteristics, PAH compounds are easily adsorbed on fine carbonic particles 

(Gong et al., 2007). The adsorption capacity depends on the molecular size of the PAH; 

generally, the larger molecular size has less affinity to attach onto particles (Gong et al., 

2007). In wastewater, the presence of PAHs mainly depends on the source of the wastewater. 

PAHs in wastewater may produce a high chemical oxygen demand (COD) and a low 

biological oxygen demand (BOD). The treatment of wastewater containing PAHs is essential 

to preserving the standard quality of the receiving water.  

Various methods are used for the removal of PAHs in water: biodegradation, adsorption, and 

ion exchange resins (Xia et al., 2006; Liu et al., 2011; Sponza and Oztekin, 2010). Among 

others, adsorption provides a simple approach to removing PAHs from aqueous solutions. 
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With the selection of a proper adsorbent, this process can be a viable alternative and cost-

effective technique for the removal of PAHs from wastewater. AC has a proven application 

in environmental purification. It has been broadly applied in different studies to the removal 

of organic pollutants, including PAHs, from wastewater (Qianqian et al. 2012; Yuan et al., 

2010; Gong et al., 2007). 

Heavy metals are considered to be the most toxic environmental pollutants because of their 

non-degradability and their threat to human life and the ecosystem (Ahalya et al., 2003). 

Metals enter the environment when metal-bearing streams are not treated properly. Of the 

heavy metals, chromium (Cr) is one of the most important, as it is widely used in many 

industrial processes. The major sources of Cr in aquatic systems are effluents from 

electroplating, metal finishing and processing, magnetic tapes, pigments, leather tanning, 

wood protection, chromium mining and milling, brass, paint, electrical and electronics 

equipment manufactures, and catalysis (Mohan and Pittman, 2006). Chromate poisoning can 

cause skin disorders and liver damage (Sawyer et al., 2004). The United States 

Environmental Protection Agency (USEPA, 2006) has fixed an enforceable maximum 

contamination level for Cr in drinking water of 0.1 mg/L for public water systems. The 

World Health Organization (WHO) also recommends a maximum allowable Cr (VI) 

concentration in drinking water of 0.05 mg/L (WHO, 2003, 2007). Improper treatment of Cr 

effluents may pose a serious problem to ecosystems and public health. Methods available for 

the removal of metal ions from aqueous solutions include ion exchange, electro dialysis, 

electrochemical precipitation, evaporation, solvent extraction, reverse osmosis, chemical 

precipitation, and adsorption (Patterson, 1985; Mahvi et al., 2005). Most of these methods 

suffer from such disadvantages as high capital and operational costs and are not suitable for 
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small-scale industries. Of these techniques, adsorption seems to be one of the most effective 

methods for removing heavy metals and dyes from wastewater because of its simple 

operation and easy handling (Weng et al., 2000; Sharma and Forster, 1994). With the 

selection of a proper adsorbent, this process can be a viable alternative and cost-effective 

technique for the removal of Cr ions from wastewater (Mor et al., 2007; Tan et al., 1993; 

Gode and Pehlivan, 2006; Mohan et al., 2005). 

Methylene blue (MB) (C16H18N3SCl.3H2O), a dye commonly used in the textile industry, has 

a molecular weight of 373.9 g/mol (Ardizzone et al., 1993). It is mainly discharged from 

textile, rubber, paper, cosmetic, and plastics industries. Because of their poor 

biodegradability and toxicity, dyes may pose a serious environmental concern (Pala and 

Tokat, 2002; Yao et al., 2010). In water, MB, even at very low concentrations, is highly 

visible. Because of reduced light penetration, the presence of MB in water may affect 

photosynthetic activity in aquatic life (Allen and Koumanova, 2005). MB can cause eye 

burns, which may result in permanent injury to the eyes of humans and animals (Ghosh and 

Bhattacharyya, 2002). Therefore, the treatment of effluent containing MB is essential to 

preserving the standard quality of the receiving water. Various methods have been developed 

to remove dyes from wastewaters, including chemical oxidation (Chengtang et al., 2011), 

photo degradation (Fatimah et al., 2011), and adsorption (Vargas et al., 2011). Due to the 

complex nature of organic dyes, the commonly used biological treatment process is not very 

effective in treating them (Pala and Tokat, 2002). Among other techniques, the adsorption 

process is the most favourable method for removing dyes from wastewater (Ahmed and 

Dhedan, 2012). AC is a widely used adsorbent for dye removal from wastewater (Ahmad et 



111 

 

al., 2007). For this study MB was selected because of its known strong adsorption onto 

solids.  

7.2 Adsorption of naphthalene on FAC  

Naphthalene is the simplest and most abundant polycyclic aromatic hydrocarbon (PAH) 

compound found in wastewater. It is a natural constituent of coal and tar, and is commonly 

used as a wood preservative, moth repellent, and synthetic resin (Chang et al., 2004). The 

objective of this experiment is to explore the performance of FAC in removing naphthalene 

from wastewater. Different batch adsorption experiments were conducted by simulated 

wastewater prepared in the laboratory. The equilibrium state of adsorption process was also 

studied to understand  the mechanism of naphthalene adsorption onto FAC. 

7.2.1 Adsorbents used in naphthalene adsorption 

For this experiment FAC-1 and FAC-2 (see Chapter 6 of this thesis) were used as 

representative adsorbents to evaluate the effects of naphthalene adsorption onto FAC. The 

properties of FAC were reported in Chapter 6.  

7.2.2 Naphthalene adsorption experiments 

Adsorption experiments were performed at room temperature in a stirred batch system. In 

this study naphthalene (C10H8) with a molecular weight of 128.16 was used. To prepare a 

naphthalene stock solution 200 mg of naphthalene was dissolved in reagent grade ethanol, 

the mixture was carefully swirled together for approximately 15 to 20 min to allow proper 

dissolution, and subsequently diluted with distilled water to make total volume of 1000 ml as 

suggested (Cabal et al., 2009; Owabor et al., 2012). The ethanol concentration in the stock 

solution was maintained approximately 3% of the volume. A series of naphthalene solutions 

with concentrations ranging from 25 mg/L to 120 mg/L was prepared by diluting stock 
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solutions with distilled water. Batch experiments investigated the effects of such parameters 

as FAC dose, initial naphthalene concentration, temperature, and pH. The experiments were 

performed in a series of 250 ml Erlenmeyer flasks, where 50 ml of naphthalene solutions 

with known initial concentrations (i.e., 25-120 mg/L) were agitated at a constant rate (i.e., 

120 rpm) by 0.025-0.15 g of FAC. An equilibrium contact time was selected based on kinetic 

studies. In this case, 50 ml of naphthalene solution of known concentration (i.e., 50 mg/L) 

and pH (6.5) was agitated by 0.1 g of FAC on a Fisher stirrer model 11-500-7SH at a rate of 

120 rpm. At given time intervals, the solutions were filtered on Whatman No. 42 filter paper. 

The naphthalene concentration in each solution was measured by a UV-visible spectrometer 

(Hewlett-Packard Model 8453) at a wavelength of 276 nm (Qianqian et al., 2012; Belen et 

al., 2009). To eliminate error due to the adsorption of naphthalene onto the filter paper, a 

parallel control set (without FAC) was run in an identical manner. To evaluate the effect of 

pH on the adsorption process, the original pH
 
of the naphthalene solution was adjusted to the 

desired value by adding the required quantities of 0.5 N NaOH or 0.5 N HCl solutions. At 

equilibrium, the amount of naphthalene adsorbed on FAC (i.e., qe, mg/g), was calculated as 

follows: 

 

v
w

CC
q t

e 






 
 0

                                                                                       (7-1) 

where, Co (mg/L) is the initial naphthalene concentration, Ct (mg/L) is the equilibrium 

naphthalene concentration in the solution, V is the volume of the naphthalene solution in 

litres, and w is the amount of FAC used in g. The percentage removal of naphthalene (Rcn) 

from the solution was calculated as follows: 
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The effects of pH and temperature on the adsorption process were also investigated by 

varying the temperature and pH in the fixed equilibrium experiments.  

7.2.3 Adsorption isotherm models 

Freundlich and Langmuir models were used to study the adsorption process of naphthalene 

onto FAC. The method of least squares was used for finding the parameters of the isotherm 

models. The Freundlich model (Freundlich, 1906) (Table 5-1) represents the relation 

between the amount of ions adsorbed per unit mass of adsorbent and the equilibrium 

concentration of ions in solution. The Freundlich constant, Kf, which indicates the relative 

adsorption capacity of the adsorbent related to the bonding energy, qe, is the amount 

adsorbed per unit mass of the adsorbent (mg/g), Ce, equilibrium concentration (mg/L), and 

1/n a factor representing the deviation of the absorption process from its linearity.  

Table 7-1 Isotherms and their linear forms 
 

Isotherm  Linear form Plot 

Freundlich n
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The Freundlich coefficients can be determined from a plot of log (qe) versus log (Ce), which 

has a slope of 1/n, and an intercept of log Kf.  The value of 1/n < 1 indicates positive 

adsorption, while high Kf  values indicate greater adsorption intensity. n < 1 represents 

unfavourable conditions, and 1<n<10 represents favourable conditions for adsorption. 

The Langmuir isotherm (Langmuir, 1916) is valid for a monolayer adsorption process. It can 

be linearized as different types, and the parameter estimates may differ in each case 

(Kinniburgh, 1986). To evaluate model uncertainty, the three most popular linear forms of 

Langmuir isotherm (Table 7-1) were used in this study.  

Langmuir isotherm parameters α (L/mg) and β (mg/g) are constants related to the apparent 

energy of adsorption and the adsorption capacity, respectively. The constants α and β can be 

determined from the intercept and slope of the plot of (i) (Ce/qe) versus Ce for Langmuir-1, 

(ii) (1/qe) vs. (1/Ce) for Langmuir-2, and (ii) qe/ Ce vs qe for Langmuir-3. The essential 

characteristic of the Langmuir isotherms can be expressed in terms of the dimensionless 

parameter (Weber and Chackravorti, 1974) as:  

01

1

C


                                                                                            (7-3) 

where, Δ is indicative of the isotherm shape. Δ > 1.0 indicates that an adsorption system is 

unfavourable, whereas a favourable adsorption take place within 0< Δ <1.0.   

7.2.4 Effect of contact time and concentration on naphthalene removal 

In order to establish the time needed to reach equilibrium and to find the kinetic properties, 

the adsorption of naphthalene on FAC was studied as a function of contact time. The results 

are shown in Figure 7-1. 
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Figure 7-1 Effect of contact time on naphthalene removal (Co = 50 mg/L, adsorbent dosage 

= 0.1 g/50 ml, pH = 6.5 at room temperature T = 22±1
o
C) 

Table 7-2 Pseudo-first- and second-order constants for naphthalene removal 
 

FAC 

qe, 

experimental 

(mg/g) 

Pseudo-first-order model Pseudo-second-order model 

k1 (per 

minutes) 
qe R

2
 

k2 (g/mg. 

minutes) 
qe R

2
 

FAC-1 20.221 0.013 14.498 0.987 0.0014 22.222 0.999 

FAC-2 19.220 0.011 17.921 0.986 0.0006 23.256 0.996 

 

Based on the kinetics study (Figure 7-1), the required time for equilibrium adsorption was 

selected as 300 minutes. This equilibration time was used for all other experiments. The 

study shows that the rate of naphthalene uptake is high at the beginning: about 50% of the 

adsorption was completed within the first 2 hr. 

Pseudo-first- and pseudo-second-order models were used to analyze the kinetics of 

naphthalene adsorption on the FAC. The linear form of pseudo-first-order equation is 

generally expressed (Lagergren, 1898) as: 
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where, qe and qt (mg/g) are the amounts of naphthalene adsorbed at equilibrium, respectively 

at time t (minutes), and K1 (L/ minutes) is the adsorption rate constant. The values of ln (qe − 

qt) were linearly correlated with t. The plot of ln(qe − qt) vs. t (Figure 7-2) provided a linear 

relationship. The factors k1 and qe were determined from the slope and intercept of this plot, 

respectively. The conformity between the experimental data and the model predicted values 

was expressed by correlation coefficients (R
2
). Least-squares regression was used to fit these 

models to the experimental data. A relatively high R
2
 value indicates that the model 

successfully describes the kinetics of naphthalene adsorption. 
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Figure 7-2 Pseudo-first-order kinetics plots for naphthalene adsorption (Co = 50 mg/L, 

adsorbent dosage = 0.1 g/50 ml, pH = 6.5 at room temperature T = 22±1
o
C; ln(qt-qe) = 0.012t 

+ 2.599 for FAC-1& ln(qt-qe) = -0.009t + 2.805  

The pseudo-second-order equation is based on the adsorption equilibrium. The linear form of 

this equation can be expressed as (Ho and Mckay, 1999): 
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where, K2 (g/mg. minutes) is the rate constant of the second-order equation. The plot of (t/qt) 

vs. t (Figure 7-3) given a linear relationship. The factors qe and k2 were determined from the 

slope and intercept of this linear plot, respectively.  
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Figure 7-3 Pseudo-second-order kinetics plots for the removal of naphthalene (Co = 50 

mg/L, adsorbent dosage = 0.1 g/50 ml, pH
 
= 6.5 at room temperature T = 22±1

o
C; (t/qt = 

0.045t + 1.433 for FAC-1&   t/qt = 0.043t + 3.217 for FAC-2) 

The different factors obtained from the pseudo models are reported in Table 7-2. It can be 

observed (Table 7-2) that regression correlation coefficient R
2
 is smaller for the pseudo-first-

order equation compared to pseudo-second order equation. These results indicate that the 

adsorption of naphthalene on FAC better follows pseudo-second-order model. 
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When compared with other non-conventional adsorbents (Table 7-3), the results of the 

present study indicates that FAC has a promising adsorption capacity compared to other AC 

prepared from different raw materials.  

Table 7-3 Summary of naphthalene adsorption capacity of various adsorbents 
 

Raw Material Maximum adsorption  

capacity (mg/g) 

References 

Biomass-derived carbons 300.000 Belen et al., 2009 

Biomass-derived carbons 85.000 Belen et al., 2009 

Flamboyant pod 294.118  

 

Alade et al., 2012 

Milk bush kernel shell 21.692  

 

Alade et al., 2012 

HOFA 20.221 This study 

Activated carbon 200.200 Alina et al., 2011 

Charcoal 1.700 Tryba et al., 2003 

 

 

7.2.5 Analysis of naphthalene adsorption isotherms  

The effects of the equilibrium concentration on adsorption are presented in Figure 7-4. The 

initial concentration varied from 25 mg/L to 120 mg/L at a pH of 6.5. The isotherms showed 

an upward trend when the equilibrium concentration was increased. The adsorption of 

naphthalene on FAC follows the Freundlich model, with correlation coefficients greater than 

0.97 (Table 7-4). The values of n did not change significantly for FAC-1 and FAC-2. It is 

obvious that this model represents a good fit with the highest R
2
. In the case of Langmuir 

models, the parameter (Δ) was found to be less than 1 and greater than 0 in all cases, which 

proved a favourable adsorption process. 
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Figure 7-4 Adsorption of naphthalene onto FAC  

Table 7-4 Isotherm constants and correlation coefficients for naphthalene adsorption 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pH of the naphthalene solution can influence the adsorption progress by changing the 

solubility of the adsorbate (Ania et al., 2007). To evaluate the effects of pH, batch 

experiments were carried out by varying the pH of the solution. The results show that pH has 

Models Parameters FAC-1 FAC-2 

Freundlich coefficients  1/n 0.485 0.437 

kf 2.226 2.192 

R2 0.980 0.972 

Langmuir-1 α (L/mg) 0.081 0.083 

β (mg/g) 47.619 40.000 

R2 0.999 0.999 

Langmuir-2 α (L/mg) 0.083 0.087 

β (mg/g) 46.434 38.563 

R2 0.995 0.994 

Langmuir-3 

 

 

 

 

 

α (L/mg) 0.087 0.089 

β (mg/g) 45.455 38.462 

R2 0.999 0.997 



120 

 

no remarkable effect on naphthalene adsorption, except for minor variations over a range of 

pH 3 to pH 11 (Figure 7-5). 
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Figure 7-5 pH effects on naphthalene removal  

(Co = 50 mg/L, adsorbent dosage = 0.2 g/50 ml, at room temperature T = 22±1
o
C) 

7.2.6 Regeneration of FAC saturated by naphthalene 

The spent FAC saturated by naphthalene was taken out and immersed in absolute ethanol for 

90 minutes at a dosage of 1.3 g/L as suggested by Qianqian et al. (2012). After filtration, 

FAC was washed twice by distilled water and dried at 105ºC for 12 hr. Subsequently, the 

naphthalene adsorption experiment was carried out as described in Section 7.2.2. The 

regeneration of FAC was repeated twice. At equilibrium, the amount of naphthalene 

adsorbed on the regenerated FAC was estimated. Results show that after regeneration the 

adsorption efficiency of FAC was reduced. According to the experimental conditions, 

naphthalene adsorption was reduced about 15.0% and 20.0%, respectively, for first- and 

second-cycle regeneration (Figure 7-6). 
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Figure 7-6 Regeneration effects on naphthalene removal (Co = 50 mg/L, adsorbent dosage = 

0.1 g/50 ml, pH = 6.5 at room temperature T = 22±1
o
C) 

7.3 Adsorption of heavy metals onto FAC  

The objective of this study is to investigate the use of FAC as an adsorbent for removing Cr 

(VI) ions from aqueous solutions. For this experiment a response surface methodology 

(RSM) was used to determine the optimal Cr (VI) adsorption on FAC. The effects of various 

parameters such as FAC dose, initial Cr (VI) concentration, and pH
 
of the solution were 

studied. 

A well-known tool, RSM is used to identify the response of a process as a function of 

independent variables (Montgomery, 1997). This methodology is particularly applicable in 

situations where several input variables potentially influence the performance of the process.  

7.3.1 Design of Cr (VI) adsorption experiments 

A three-level factorial design was established using Design Expert software (8.0 trial 

version) following the Box-Behnken methodology (Montgomery, 1997). Three independent 
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variables were designated: A (dose of FAC, g), B (initial Cr (VI) concentration, mg/L), and 

C (pH). Low, middle, and high levels of each variable are designated as -1, 0, + 1. The range 

and levels used in the experiment are listed in Table 7-5. 

Table 7-5 Experimental factor levels used in the metal adsorption tests 

Variables Factor Coded levels 

  + 0 - 

FAC dose (g) A 2 1 0.5 

Initial Cr (VI) 
concentration (mg/L) 

B 150 100 25 

pH C 9 5.5 2 

 

In order to understand the process, some preliminary experiments were conducted to 

determine the contact time and other conditions used in this investigation. The Box-Behnken 

method was selected for this experiment as it requires relatively few combinations of the 

variables to estimate the response function. A total of 17 experiments were found to be 

sufficient for calculating the coefficients of the second-order polynomial regression model. 

Employing RSM, the second-order polynomial equation that fits the experimental data can 

be written as: 

     jiijiiiiii xxxxY 2

0                                             (7-6) 

where, Y is the predicted response, i.e., percent of Cr (VI) adsorption by the FAC, λ0 is the 

constant coefficient, λi is the 1
st
 linear coefficient of the input factor xi, λii is the i

th
 quadratic 

coefficient of the input factor xi, λij is the interaction coefficients between the input factors xi 

and xj, and ε is the error of the model. 
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7.3.2 Adsorbents used in Cr (VI) adsorption 

For this experiment AC-4 (see Chapter 6 of this thesis) was used as the representative 

adsorbent to evaluate the effects of Cr (VI) adsorption. The properties of AC-4 were also 

reported in Chapter 6. 

7.3.3 Cr (VI) adsorption experiments 

A series batch experiment was carried out in 250 ml conical Erlenmeyer flasks by agitating a 

pre-weighed amount (0.5-2.0 g) of FAC with 50 ml of an aqueous solution containing Cr 

(VI) concentrations ranging from 25 mg/L to 150 mg/L at a pH range of 2-9. A 

predetermined contact time of 120 minutes was selected based on kinetic studies. All flasks 

were maintained at room temperature (22±1°C) and a continuous shaking of 100 rpm was 

provided by a Fisher stirrer model 11-500-7SH. A chromium (VI) stock solution (500 mg/L) 

was prepared by dissolving 1.4144 g of 99.9% potassium dichromate (K2Cr2O7) in 1 L of 

distilled water. This solution was diluted as required to obtain 25-150 mg/L Cr (VI) standard 

solutions. The pH
 
of the Cr (VI) standard solutions was adjusted by using 0.5 N NaOH or 0.5 

N HCl solutions. All chemicals used for this study were analytical grade. After the required 

contact time, the solutions were filtered on Whatman No. 42 filter paper, and the residual 

concentrations of Cr (VI) in the filtrate solution were determined.  

A UV-visible spectrophotometer (Hewlett-Packard Model 8453) was used following the 

standard Gilcreas et al. (1965) method to determine Cr (VI) concentrations in the filtrate 

solution. The absorbance of the purple-violet-coloured solution was recorded at a wavelength 

of 540 nm. In order to eliminate error due to the adsorption of Cr (VI) on the filter paper, a 

parallel control set of experiments (without FAC) was run in an identical manner. The 
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amount of Cr (VI) adsorbed in mg/g at contact time t was calculated by Equation 7-1 and the 

percentage removal of Cr (VI) (Rcr) from the solution was calculated by Equation 7-2. 

To study the effect of temperature and contact time, a series of batch experiments were 

conducted in a 250 ml conical Erlenmeyer flask with 50 ml of the aqueous solution 

containing 150 mg/L Cr (VI) concentration at pH 2. One gram of FAC was added at room 

temperature (22±1ºC) to each flask and allowed to agitate by the magnetic stirrer on Fisher 

stirrer model 11-500-7SH at a rate of 100 rpm. At a given time interval, the solutions were 

filtered and analyzed by a UV-visible spectrophotometer for Cr (VI) concentrations. Similar 

experiments were conducted at four different temperatures (25, 30, 40, and 50ºC) to 

investigate the effect of temperature.  

7.3.4 Analysis of Cr (VI) adsorption isotherms 

Adsorption models like those of Freundlich and Langmuir-1 (Table 7-1) were used to explain 

the process of Cr (VI) adsorption on FAC. 
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Figure 7-7 Effect of contact time on Cr (VI) adsorption  

(At initial concentration 150 mg/L, pH 2, and 1 g of FAC at room temperature) 
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The contact time was found to be an important parameter for Cr (VI) adsorption on FAC. At 

the initial stage of the experiment, the rate of Cr (VI) adsorption was very high: about 

68.00% of the adsorption occurred within the first hour of the experiment. However, some Cr 

(VI) adsorption (slow rate) was observed until 120 minutes, and reached up to 84.83% 

(Figure 7-7). A further increase in the contact time had a negligible effect on Cr (VI) 

adsorption. Therefore, a contact time of 120 minutes was selected as the equilibrium contact 

time for all other batch studies. The temperature effects on the Cr (VI) adsorption onto FAC 

were also studied by varying the temperature from  20 to 50ºC. In this case, 1 g FAC was 

dissolved  in 50 ml of aqueous solution containing 150 mg/L Cr (VI) at a pH
 
of 2. After 120 

minutes contact time the results showed that temperature has a negligible effect on Cr (VI) 

adsorption. Therefore, room temperature was selected for all batch experiments. 
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Figure 7-8 Adsorption isotherms for Cr (VI) removal ( FAC equal to 0.5, 1.0, 1.50, 2.0 g/50 

ml), initial concentration (150 mg/L), pH 2 and a contact time of 120 minutes 
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7.3.5 Cr (VI) adsorption modeling 

 The adsorption isotherm was used to determine the equilibrium between the concentration of 

Cr (VI) in the aqueous solution (Ce) and the amount of Cr (VI) adsorbed on FAC (e.g., qe, 

mass of Cr (VI) per unit mass of FAC). This isotherm (Figure 7-8) was developed by varying 

the dose of FAC from 0.5 g to 2.0 g and maintaining the initial concentration of Cr (VI) at 

150 mg/L at a pH of 2.0. Figure 7-8 shows that the adsorption capacity (mg/g) increased 

rapidly from 3.55 mg/g to 4.58 mg/g within equilibrium Cr (VI) concentrations of 7.66 mg/L 

to 12.50 mg/L; after that, the adsorption capacity eventually attained a constant value. In 

order to model the adsorption behaviour of Cr (VI) on FAC, Langmuir and Freundlich 

isotherm models were used. The isotherm data was linearized using the Langmuir equation 

shown in Figure 7-9.  

Ce/qe = 0.116Ce + 1.171

R² = 0.998
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Figure 7-9 Langmuir isotherms for adsorption of Cr (VI) by FAC (0.5, 1.0, 1.50, 2.0 g/50 ml) 

at initial concentration 150 mg/L, pH 2 and contact time 120 minutes 

The regression constants for the Langmuir model are tabulated in Table 7-6. A high 

correlation coefficient (R
2
 = 0.998) indicated a good agreement between parameters. The 
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constant β, which is a measure of the adsorption capacity of a monolayer, was 9.091 mg/g. 

The constant α, which denotes adsorption energy, was determined to be equal to 0.094 L/mg. 

log (qe) = 0.324log (Ce) + 0.300

R² = 0.902
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Figure 7-10 Freundlich isotherms for adsorption of Cr (VI) by FAC (0.5, 1.0, 1.50, 2.0 g/50 

ml) at initial concentration 150 mg/L, pH 2 and contact time 120 minutes. 

The adsorption data was also fit the Freundlich equation shown in Figure 7-10. The 

Freundlich regression constants are listed in Table 7-6. The correlation coefficient (R
2
 = 

0.902) indicated that the data conform well to the Freundlich equation. A Freundlich constant 

1/n < 1 indicated that favourable adsorption occurred during the batch experiments. 

Table 7-6 Isotherm constants for adsorption of chromium (VI) on FAC 
 

Langmuir Isotherm 

 

 

α  β R
2
 

0.094 9.091 0.998 

Freundlich Isotherm KF 1/n R2 

1.995 0.324 0.902 
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When compared with other non-conventional adsorbents (Table 7-7), the present study’s 

result indicate that FAC has a better Cr (VI) adsorption capacity than biomass residual slurry, 

Fe (III)/Cr (III) hydroxide, and walnut shells (Table 7-7).  

Table 7-7 Summary of Cr (VI) adsorption capacity of various adsorbents 

Adsorbents Maximum adsorption 

capacity (mg/g) 

Reference 

Saw dust 15.823 Dakiky et al., 2002 

Almond shells 10.616 Dakiky et al., 2002 

Olive cake 33.44 Dakiky et al., 2002 

Pine needles 21.50 Dakiky et al., 2002 

Fly ash impregnated with iron 1.700 Banarjee et al., 2004 

Fly ash impregnated with aluminium 1.800 Banarjee et al., 2004 

Fly ash 1.400 Banarjee et al., 2004 

Palm pressed-fibers 15.000 Tan et al., 1993 

Maize cob 13.800 Sharma and Forster, 1994 

Sugar cane bagasse 13.400 Sharma and Forster, 1994 

Sugarbeet pulp 17.200 Sharma and Forster, 1994 

Activated charcoal 12.870 Mor et al., 2007 

FAC prepared from HOFA 9.092 Present study 

Activated alumina 7.440 Mor et al., 2007 

Activated carbon from coconut 

fibers 

15.990 Mohan et al., 2005 

Brown coal 50.950 Gode and Pehlivan, 2006 

Activated Carbon (Filtrasorb-400) 57.70 Huang and Wu, 1997 

 

7.3.6 RSM analysis of Cr (VI) adsorption 

The Box-Behnken design of the experiments carried out in this study is presented in Table 7-

8. Regression analysis was performed to fit the response functions, i.e., percentage 

adsorption of Cr (VI) by FAC. The empirical relationship (with coded values) between the 

response and input variables such as FAC dose (A), initial concentration of Cr (VI) (B), and 
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pH (C) are presented by the quadratic model shown in Equation 7-7. The insignificant terms 

were not considered in this model development. 

% RCr(VI)  = +55.51+51.30 * A
-0.069

 * B
-12.203

 * C +0.045 * A * B+0.377 * A * C+0.018 B * 

C-13.800 *A
2
+3.32E-4 * B

2
+0.500 * C

2                          (7-7) 

Table 7-8 Adsorption experiments scheme  

Standard 

order 

Run FAC dose 

(g) 

Initial concentration 

(mg/L) 

pH % removed 

(experiment) 

% removed 

(predicted) 

1 15 0.5 25 5.5 28.35 28.39 

2 9 2 25 5.5 58.59 58.41 

3 8 0.5 150 5.5 42.46 42.75 

4 1 2 150 5.5 81.48 81.33 

5 14 0.5 100 2 59.08 58.07 

6 12 2 100 2 91.51 91.25 

7 11 0.5 100 9 25.02 25.70 

8 10 2 100 9 62.26 62.84 

9 2 1 25 2 71.32 71.90 

10 6 1 150 2 80.16 80.85 

11 7 1 25 9 31.38 30.94 

12 4 1 150 9 57.25 56.42 

13 13 1 100 5.5 50.24 54.38 

14 3 1 100 5.5 55.24 54.38 

15 5 1 100 5.5 53.74 54.38 

16 17 1 100 5.5 54.88 54.38 

17 16 1 100 5.5 57.78 54.38 
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Figure 7-11 Actual and predicted values of % removal of Cr (VI) 
 

The significance of the model terms included in the regression analysis (Equation 7-7) was 

evaluated by the F-test. Analysis of variance (ANOVA) for the responses (% removal Cr 

(VI)) is shown in Table 7-9. 

Prob > F value less than 0.05 and F-value of 122.01, respectively, indicated that the model 

terms and the model are statistically significant. In this case A, B, C, BC, A
2
, and C

2
 are 

significant model terms. A lack of fit F-value of 0.17 implies that the lack of fit is not 

significant relative to pure error. A non-significant lack of fit is good and represents the 

model’s robustness. The actual and predicted values of Cr (VI) adsorption are shown in 

Figure 7-11. Actual values were measured for a particular experiment, whereas predicted 

values were generated by using an approximating function (e.g., Equation 7-7). The values of 

pred R
2
 of 0.9802 is in reasonable agreement with the Adj R

2
  of 0.9855, which advocates a 

high correlation between actual and predicted values.  
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The perturbation plot (Figure 7-12) was developed to analyze the individual effect of a factor 

in coded form such as FAC dose (A), initial Cr (VI) concentration (B), and pH (C). This plot 

helps to compare the effects at a particular point in the design space. In a perturbation plot, a 

downward curvature of factor C indicates that the responses increased with decreased pH 

values. Similarly, responses increased with an increased FAC dose and initial concentration.  

In order to determine the optimum values of each independent variable, 3D response surface 

plots (Figure 7-13) were developed. These plots help in understanding both the main and 

interaction effects of the factors involved. The contour plots projecting the response surfaces 

in the x–y plane (bottom of 3D surface diagram), provided the effects of different variables 

on Cr (VI) adsorption.  

Table 7-9 Analysis of variance (ANOVA) for response surface analysis 

Source Sum of squares DF Mean square F value Prob > F 

Model 5304.24 9 589.36 122.01 < 0.0001significant 

A-Dose 2310.60 1 2310.60 478.36 < 0.0001 

B-initial concentration 660.88 1 660.88 136.82 < 0.0001 

C- pH 1910.44 1 1910.44 395.52 < 0.0001 

AB 19.69 1 19.69 4.08 0.0832 

AC 4.13 1 4.13 0.86 0.3858 

BC 69.59 1 69.59 14.41 0.0068 

A2 189.40 1 189.40 39.21 0.0004 

B2 6.39 1 6.39 1.32 0.2878 

C2 157.97 1 157.97 32.70 0.0007 

Residual 33.81 7 4.83   

Lack of Fit 3.74 3 1.25 0.17 0.9143 not significant 

Pure Error 30.08 4 7.52   

R-Squared 0.9937     

Adj R-Squared 0.9855     

Pred R-Squared 0.9802     

Adeq Precision 38.883     
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Figure 7-12 Perturbation plots for Cr (VI) removal by FAC 

 

The maximum predicted values are indicated by the smallest ellipse in the contour diagram. 

A perfect interaction between independent variables formed an elliptical contour shape 

(Montgomery, 1997). Figure 7-13a shows that initial concentration and FAC dose have a 

positive effect on Cr (VI) removal. At a maximum set condition, the FAC dose has more 

influence than the initial concentration. Significant interaction effects were observed for pH 

and FAC dose. Figure 7-13b shows that the highest  removal happened at a maximum FAC 

dose with a minimum pH. Similarly, the highest Cr (VI) adsorption was observed at a 

maximum initial concentration with a minimum pH
 
(Figure 7-13c).  
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Figure 7-13 Effect of Cr (VI) removal by FAC (a) initial concentration and FAC dose (b) pH 

and FAC dose (c) initial concentration and pH
 

 

By analyzing the 3D response surface plots, it is easy to evaluate the optimum values of the 

variables. In this case the optimal Cr (VI) adsorption was predicted to be 91.25% at pH 
 
2 

with an initial concentration of 100 mg/L. 

7.4  Adsorption of Methylene Blue by FAC  

To conduct a methylene blue (MB) adsorption experiment, two types of adsorbent, FAC-P03 

and HOFA-01, were used. Adsorbent FAC-P03 was prepared by physical activation (Chapter 

6) and HOFA-01 as clean unburned carbon generated from the washing process (Chapter 6). 

The aim of this experiment was to evaluate the MB adsorption capacity of clean HOFA (i.e., 
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HOFA-01) and FAC generated from HOFA (i.e., FAC-P03).  The characteristics analysis of   

FAC-P03 and HOFA-01 were reported in Chapter 6 of this thesis. 

7.4.1 Preparation of MB stock solution 

A stock solution of 1000 mg/L was prepared by dissolving the required quantity (i.e., 1.0 g) 

of MB powder in 1000 ml distilled water (methylene blue, C16H18N3SCl.3H2O; molecular 

weight 373.9 g/mol). The initial pH of the stock solution was 9.5. The experimental solution 

was prepared by diluting the stock solution with distilled water as necessary. 

7.4.2 Experiments for MB adsorption 

Batch experiments were conducted to investigate the effects of FAC dose, initial MB 

concentration, and pH. The experiments were performed in a series of Erlenmeyer flasks of 

250 ml capacity, where 50 ml of MB solutions with known initial concentrations (i.e., 20, 40, 

50, 60, 80, and 100 mg/L) were agitated at a constant 120 rpm by 0.1-0.3 g of FAC at 

different temperatures and pH
 
levels. The original pH

 
of the dye solution was adjusted to the 

desired value by adding quantities of 0.5 N NaOH or 0.5 N HCl solutions. An equilibrium 

contact time was selected based on the series of batch experiments. In this case, 50 ml of an 

MB solution of known concentration (i.e., 20, 40, 50, 60, 80, and 100 mg/L) was kept in 250 

ml Erlenmeyer flasks. At room temperature (21ºC±1), 0.2 grams of FAC was added to each 

flask and agitated by magnetic bars at a rate of 120 rpm on a Fisher stirrer model 11-500-

7SH. At given time intervals, the solution was filtered on Whatman No. 42 filter paper. The 

residual dye concentration in each solution was measured by a UV-visible spectrometer 

(Hewlett-Packard Model 8453) at a wavelength of 665 nm. In order to eliminate errors due to 

the adsorption of MB on filter paper, a parallel control set (without fly ash) experiment was 

run in an identical manner. Individual experiments were conducted to evaluate the effects of 
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temperature and pH. Equations 7-1 and 7-2 were used to calculate the adsorption of MB 

(mg/g) and the removal efficiency, respectively. 

7.4.3 Effect of contact time on MB removal 

To determine the equilibrium time, the adsorption experiments were carried out at different 

time intervals (e.g., 10-140 minutes); the results are plotted in Figure 7-14. The effect of 

contact time was studied at a pH of 8.5. This test revealed that MB uptake was rapid in the 

initial stage of the experiment (e.g., 10-30 minutes) but slowed near the equilibrium. The 

reason for the higher adsorption rate initially is probably due to the large number of surface 

sites available for adsorption. Both adsorption isotherms (i.e., HOFA-01 and FAC-P03) 

followed the same pattern. However, the higher surface area of FAC-P03 adsorbed more MB 

than HOFA-01. Based on the isotherm study, the equilibrium time for MB adsorption was 

selected as 120 minutes; this time was used for all other experiments. 
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Figure 7-14 Effect of contact time on the removal of MB 
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(Amount of adsorbent 0.2 g/50 ml of MB solution and concentration 150 mg/L) 

7.4.4 Effect of pH on MB adsorption 

The effect of pH on MB adsorption was analyzed by 0.2 g/50 ml of MB solution with a 

concentration of 150 mg/L and a contact time of 120 minutes. When the initial pH of the dye 

solution was increased from 4.5 to 11.5, the adsorption increased from 75% to 90% (Figure 

7-15). This study revealed that pH has a significant influence on MB adsorption, in this case 

around 30% more adsorption occurs at pH 10.5 compared to pH 4.5.   
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Figure 7-15 Effect of pH on MB removal 

(Amount of adsorbent 0.2 g/50 ml of MB solution and contact time 120 minutes) 

7.4.5 Effect of temperature on MB removal 

The effect of temperature on MB adsorption was studied by varying the temperature during 

batch experiments. The isotherm at different temperatures (22, 25, 40, and 50°C) is shown in 
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Figure 7-16. The experiment was conducted on 0.2 g/50 ml of MB solution with a 

concentration of 150 mg/L at pH 8.5 and a contact time of 120 minutes. The results indicate 

that the effect of temperature on MB adsorption is negligible (Figure 7-16). For this reason, a 

room temperature of 22±1°C was used throughout this work. 
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Figure 7-16 Effect of temperature on MB adsorption  

(pH 8.5 and contact time 120 minutes) 

7.4.6 Effect of FAC dose on MB adsorption 

The effect of adsorbent dose on the removal of MB was studied by five different doses: 0.10, 

0.15, 0.20, 0.25, and 0.3 g/50 ml. The results proved that the adsorbent dose has a significant 

influence on MB adsorption (Figure 7-17). The dye adsorbed increased from 77% to 94% as 

the adsorbent dose was increased from 0.1 g/50 ml to 0.3 g/50 ml. The initial concentration 

of the MB solution was 150 mg/L and the pH 8.5. At higher doses more surface area is 

available for adsorption, which may lead to higher adsorption.  
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Figure 7-17 Effect of adsorbent dose on MB adsorption 

7.4.7 Effect of initial concentration on MB adsorption 

The effect of the initial concentration on MB adsorption was evaluated by varying the initial 

concentrations (i.e., 20, 40, 50, 60, 80, and 100 mg/L). In this case, an adsorbent dose (e.g., 

0.2 g) and pH
 
(e.g., 8.5) remained constant. Results show that removal efficiency decreased 

with an increase in initial concentration (Figure 7-18). For HOFA-01 about 81% and 60% of 

MB was removed at initial concentrations of 20 mg/L and 100 mg/L, respectively. Similar 

results were observed for FAC-P03. In this case, about 85% and 71% of MB was removed at 

initial concentrations of 20 mg/L and 100 mg/L, respectively. 



139 

 

40.0

50.0

60.0

70.0

80.0

90.0

0 20 40 60 80 100 120

D
y

e
 r

e
m

o
v

al
 (

%
) 

Initial concentration of MB (mg/L)

HOFA-01 FAC-P03 

 

Figure 7-18 Effect of initial concentration on MB adsorption  

7.4.8 Analysis of MB adsorption isotherm  

Adsorption isotherms were used to determine the equilibrium between the concentration of 

MB in aqueous solution (Ce) and the amount of MB adsorbed on the adsorbent (qe) (i.e., 

mass of MB per unit mass of adsorbent). The adsorption isotherm (Figure 7-19) was 

developed by varying the initial concentration of MB solution from 20 mg/L to 100 mg/L 

and maintaining an adsorbent dose of 0.2 g/50 ml at pH
 
8.5. Figure 7-19 shows that the 

adsorption capacity (mg/g) increased from 4.25 mg/g to 15.50 mg/g with an increase in MB 

equilibrium concentration of 3.01 mg/L to 17.97 mg/L (e.g., FAC-P03). With a further 

increase in equilibrium concentration, the adsorption capacity eventually attained a constant 

value. Langmuir and Freundlich isotherm models were used to model the adsorption 

behaviour of MB. 
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Figure 7-19 Adsorption isotherms for MB adsorption  

Table 7-10 Isotherm constants for adsorption of MB on FAC 

Langmuir Isotherm 

 

 

 HOFA-01 FAC-P03 

α  0.117 0.109 

β 14.493 21.277 

R2 0.991 0.971 

Freundlich Isotherm KF 1.557 1.589 

1/n 0.412 0.541 

R2 0.883 0.874 

 

The isotherm data was linearized using the Langmuir-1 equation shown in Table 7-1. A high 

correlation coefficient (R
2
 = 0.97 to 0.99) indicated a good agreement between the 

parameters (Figure 7-20). The constant β, which is a measure of the adsorption capacity of a 

monolayer, was found to be 21.277 mg/g for FAC-P03 and 14.493 mg/g for HOFA-01 at a 

pH of 8.5. The constant α, which denotes adsorption energy, was determined to be equal to 

0.109 and 0.117 L/mg, respectively, for HOFA-01 and FAC-P03. The regression constants of 

the Langmuir model parameters are tabulated in Table 7-10. The Langmuir model parameter 
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(Δ) found to be in the range of 0.078-0.314 confirmed that the adsorption process was 

favourable.  

FAC-P03: y = 0.047x + 0.432

R² = 0.971

HOFA-01:  y = 0.069x + 0.590

R² = 0.991
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Figure 7-20 Langmuir isotherms for adsorption of MB  

(Dose 0.2 g/50 ml, p
H
 8.5, and contact time 120 minutes) 

 

 

FAC-P03: y = 0.541x + 0.463

R² = 0.874

HOFA-01: y = 0.412x + 0.443
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Figure 7-21 Freundlich isotherm for MB adsorption 

(Dose 0.2 g/50 ml, pH 8.5, and contact time 120 minutes) 
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The data also fit the Freundlich equation (Table 7-1) and is represented in Figure 7-21. The 

Freundlich regression constants are listed in Table 7-10. A high correlation coefficient 

confirmed that the Freundlich equation fits MB adsorption process. The constant values of 

1/n <1 indicated that favourable adsorption occurred during the batch experiments.  

When compared with other non-conventional adsorbents (Table 7-11), the present study’s 

results indicate that adsorbent prepared from HOFA has the very good capacity to adsorb 

MB. 

Table 7-11 Summary of MB adsorption capacity of various adsorbents 

Adsorbent Maximum MB 

adsorption 

capacity (mg/g) 

Reference 

Activated carbon (olive stones) 303 Voudrias et al., 2002 

Cotton waste 240 Weber and Chackravorti, 1974 

Date pits 80.3 Suteu and  Bilba, 2005 

Perlite 162.3 Stephenson and Sheldon, 1996 

Zeolite 53.1 Stephenson and Sheldon, 1996 

FAC-P03 21.277 Present study 

HOFA-01 14.493 Present study 

Fly ash 53.84 Ozcan et al., 2004 

Neem leaf powder 

 

8.76 Bhattacharyya and Sarma, 2004 

Wheat shells 
 

16.56 Bulut  and Aydin, 2006 

Rice husk 40.58 Vadivelan and Kumar, 2005 

Teak tree bark powder 333.33 Patil et al., 2011 

Bamboo based activated carbon 454.20 Kannan and Sundaram, 2001 

Bamboo dust activated carbon 143.20 Kannan and Sundaram, 2001 

Coconut shell activated carbon 277.90 Kannan and Sundaram. 2001 

Groundnut shell activated carbon 164.90 Kannan and Sundaram, 2001 

Rice husk activated carbon 343.50 Kannan and Sundaram, 2001 

 

7.4.9 Regeneration of MB saturated FAC  

The FAC saturated by MB was washed with hot water at 100
o
C for 90 minutes at a dosage of 

1.0 g/10 ml water. The washing process was repeated until clean water was observed (e.g., 3 
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to 4 times repetition). Finally, filtrated FAC was dried at 105ºC for 12 hr. Subsequently, the 

MB adsorption experiments were carried out. The regeneration of FAC was repeated three 

times. At equilibrium, the amount of MB adsorbed on regenerated FAC was estimated. 

Figure 7-22 shows that regeneration processes reduced the adsorption efficiency of FAC. 

According to experimental conditions, the MB adsorptions were reduced about 10%, 14.5%, 

and 25.5% respectively for first-, second-, and third-cycle regeneration. 
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Figure 7-22 Regeneration effects on MB removal  

(Co = 50 mg/L, adsorbent dosage = 0.2 g/50 ml, pH = 8.5 at room temperature) 

 

7.5 Summary 

In this chapter the adsorption efficiency of produced FAC was investigated. Different batch 

adsorption experiments confirmed that produced FAC has a notable adsorption capacity, for 

example, 85% naphthalene, 91.0% Cr (VI), and 82% MB. In conclusion, the present study 

showed that HOFA can be used effectively as a raw material in the development of AC. The 
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produced AC can be used to treat wastewater. It is well known that the production costs of 

AC depend on the cost of raw materials. Since HOFA is very cheap (almost zero cost) at the 

generation point, the production of AC from HOFA is expected to be inexpensive. Finally, 

the results of this study advocated that HOFA can be used as an effective and economically 

feasible raw material for AC, which can be used to treat various wastewater pollutants. 
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Chapter 8 

 

Conclusions and Recommendations 

 

8.1 Conclusions 

During this research HOFA samples were collected directly from an electrostatic precipitator 

(ESP) at two different power plants: the first HOFA sample (e.g., FA-SA) was collected 

from a power plant in Saudi Arabia; the second (e.g., FA-NB) was collected from a power 

plant in New Brunswick. Various management and reuse options of HOFA such as a natural 

adsorbent, fill/stabilized material for construction use, and a colour ingredient for ornamental 

concrete were investigated. 

A detailed HOFA characteristics study was conducted and reported in Chapter 3. The 

physical, chemical, and mineralogical properties of two HOFA samples were examined. 

Standard batch leaching tests were conducted to identify the mobility of potential hazardous 

elements within HOFA. The results showed that most of the toxic elements in HOFA can 

easily leach into the environment, which could result in toxicity to ecosystems and humans 

through the contamination of surface and underground water.  

In order to quantify the health risk associated with airborne metals released from an FA 

dumping site, a probabilistic risk assessment (PRA) study was conducted in Chapter 4. An 

ISC3 air dispersion model was used to predict the possible risk agent to the nearest receptor 

point. Inhalation pathways for selected airborne metals were considered in order to estimate 

the cancer and non-cancer risk at receptor points. The results demonstrated that FA dust 

released from a landfill could be a potential risk source to the neighbouring population. 
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Although the calculated 95
th

 percentile values of the cancer and non-cancer risks of selected 

metals is likely to be within the regulatory acceptable ranges, possible long-term effects of 

toxic metals are expected from an FA dumping site.  

The possible utilization of HOFA as a stabilizer or fill material for various construction 

activities was examined and reported in Chapter 5. In order to recycle HOFA as fill material, 

it was mixed with Portland cement at different ratios. Laboratory batch and column 

experiments were performed for HOFA and fill materials to investigate the leaching 

behaviour and possible environmental impacts of toxic metals within the HOFA. 

The metal Leachate Concentration (LC) from raw HOFA exhibited potential environmental 

threats; on the other hand, metals leach from the stabilized ash was within permissible limits. 

The leaching tests confirmed that HOFA mixed with 40% cement is environmentally safe 

and can be used for construction purposes.  

Another possible use of HOFA, as a black pigment in concrete material, was investigated 

(Chapter 5). The environmental risk that may be posed by concrete made with HOFA was 

studied by a laboratory batch leaching test (BLT). The results show that the addition of 2% to 

5% HOFA with concrete is safe for the environment; as well, this ratio does not pose any 

significant change in the concrete’s compressive strength. Based on a comparative analysis, 

this study concluded that HOFA can be used as a black pigment in ornamental concrete. 

However, further experiments on the quality and permanence of concrete colour are 

recommended. 

Based on the characteristics study (Chapter 3), the Saudi Arabian HOFA was selected as a 

raw material for FAC production and to treat wastewater. FAC was prepared by two 

activation methods: physical and chemical activation. For physical activation, FAC was 
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prepared at different temperatures and activation times. On the other hand, KOH, NaOH, and 

H3PO4 were used as chemical agents in the chemical activation process.. All activation was 

conducted under a N2 environment. The FAC was characterized according to the BET 

surface area, porosity, and adsorption capacity of methylene blue and iodine. The production 

and characteristics study of the produced FAC was conducted and reported in Chapter 6. 

The adsorption capacity of FAC generated in this study was investigated for the adsorption 

of Cr (IV), naphthalene, and MB. The initial concentration of the pollutants in simulated 

wastewater and the FAC dose, temperature, and pH range of the solutions were investigated 

in the experimental conditions described in Chapter 7. Kinetic experiments were also carried 

out and the data from kinetic adsorption onto FAC were modeled using the Lagergren 

pseudo-first-order/second-order approach (Chapter 7). The relevance of this study is the fact 

that HOFA can be used as an effective and inexpensive raw material for the removal of 

selected pollutants from industrial or municipal wastewater. Although the study found that 

the lower adsorption capacity of FAC compared with that indicated in selected published 

data, further investigation will improve the adsorption capacity of FAC. There are significant 

long-term environmental and economic benefits to reusing HOFA, including a clean 

environment (e.g., reduced environmental pollution), a low adsorbent cost and the possibility 

of the regeneration of spent FAC should also be considered. 

The general conclusions from this research include: 

a. Fly ash from heavy fuel oil burning is recyclable and can be used as construction 

material such as a soil stabilizer or a colour ingredient in ornamental concrete.  

b. HOFA can be used as an effective and inexpensive raw material for AC production. 
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c. Adsorption experiments show that produced AC from HOFA has the potential to 

remove organic and inorganic pollutants (e.g., dyes, naphthalene, and Cr) from 

wastewater.  

d. FAC regeneration and its reuse in wastewater treatment shows potential.. 

8.3 Recommendations for future work 

In the present work several methods and techniques were applied to develop the reuse and 

management options of HOFA. However, further work is required in this direction to find 

feasible HOFA reuse options. The general recommendations for future work can be 

summarized as: 

Recovery of valuable metals 

HOFA contains a high percentage of heavy metals, especially vanadium and nickel. The 

recovery of such valuable metals could be feasible. Procedures should be developed to 

recover valuable metals and to produce clean unburned carbon from HOFA. In this way, the 

production cost of FAC would be reduced significantly and minimize the environmental 

impact due to wastewater generated in the HOFA cleaning process.     

Adsorption capability and surface area improvement of FAC 

Particle size distribution is an important property of FA; smaller particles produce a greater 

surface area. This property is also important during the interaction of the ash with various 

solutions: it affects the mobilization of trace elements on the particle surface. Generally, the 

particle size ranging from 1 µm to 10 µm provides a high surface area of AC. The particle 

size of Saudi Arabia fly ash is is large enough to produce AC with a high surface area like 

commercial AC (e.g., 300-2500 m
2
/g). A process should be developed to segregate HOFA 
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from finer to larger particles. Different types of ESP may be used in a series to collect larger 

to finer particles from the power plant site.  

FAC produced from chemical activation were found to have a better BET surface area 

compared to those from physical activation. However, the BET surface area of produced 

FAC (i.e., 4-143 m
2
/g) was found to be lower than the commercially available AC (i.e., 300-

2500 m
2
/g). Methods to improve the BET surface area need to be explored. Different 

chemicals or combinations of chemicals could be used. 

It is recommended that more work be carried out on how to improve the pollutant adsorption 

capability of FAC. Different physical or chemical treatments of HOFA or FAC may used in 

this case. In addition, a pilot scale experiment using the operating conditions described in this 

thesis (Chapter 7) should be conducted with FAC prior to commercial design. 

Development of a HOFA management system  

To mitigate future environmental challenges linked to HOFA, a Decision Support System 

(DSS) needs to be developed by integrating environmental, economical, cultural, and social 

aspects of HOFA management. Multi-criteria decision-making (MCDM) methodology 

would be capable of integrating various social and environmental parameters. Fuzzy based 

mathematical modeling may be applied to handle uncertainties associated with the 

environmental and social criteria. 

Development of risk management and mitigation plan  

The human health risk assessment methodology presented in this study was developed based 

on the direct inhalation of FA dust released from a dumping area. The deposition of dust is 

another factor that may cause nearby soil and water pollution. A detailed risk assessment is 

recommended and should consider other exposure scenarios such as the ingestion of 
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contaminated soil and home-grown food and skin contact via contaminated soil.  The 

development of risk management and mitigation plans are also recommended. 

Regeneration of spent activated carbon 

As contaminants are adsorbed, the carbon’s adsorptive capacity is gradually exhausted. 

When the carbon’s adsorptive capacity is reached in saturation, it must be regenerated or 

discarded. The regeneration of AC usually involves removing the adsorbed contaminants 

from it without destroying its surface structure. Through this study, two kinds of regeneration 

techniques were tested. A preliminary investigation on regeneration (Chapter 7) determined 

that FAC could be regenerated for further use. However, further studies are necessary in 

order to explore the possible feasible techniques to regenerate spent FAC. 

The effective use of HOFA generated in power plants can have environmental and economic 

benefits. However, reuse methodology may change depending on the chemical composition 

of the fly ash. Each case should be treated independently for possible application of this by-

product. 
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Appendix A   

Experimental Data 

 

Table A-1 Chemical composition of Saudi Arabian heavy oil fly ash (ICPMS study) 

Elements (ppm = 

mg/kg) 

  

Sample 1 Sample 2 

Maximum FA- SA -1 FA- SA -2 

Arsenic (As) 2.239 2.17 2.239 

Bromide (Br) 339 370.9 370.9 

Cadmium (Cd) 0.415 3.275 3.275 

Cobalt (Co) Not detectable Not detectable Not detectable 

Chromium (Cr) 1.286 4.056 4.056 

Copper (Cu) 12.4 170.4 170.4 

Iron (Fe) 981 521 981.0 

Mercury (Hg) 0.177 0.245 0.245 

Manganese (Mn) 9.343 20.675 20.675 

Molybdenum (Mo) 18.368 26.047 26.047 

Nickel (Ni) 1052.78 1762.22 1762.22 

Lead (Pb) 3.996 10.995 10.995 

Selenium (Se) 11.592 9.764 11.592 

Tin (Sn) 0.568 17.274 17.274 

Vanadium (V) 2957.701 1753.889 2957.701 

Zinc (Zn) 63.645 130.84 130.84 

Carbon 85.56% - - 

%S 6.24   
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Table A-2 Chemical composition of NB fly ash (ICPMS study) 

Elements (ppm = mg/kg) FA-NB 

Arsenic (As)    68.281 

Bromide (Br) 124.5 

Cadmium (Cd) 1.588 

 
Cobalt (Co) 247.79 

 
Chromium (Cr) 107.60 

 
Copper(Cu) 120.30 

 
Iron (Fe) 22633 

Mercury (Hg) Not detectable 

Manganese (Mn) 135.385 

Molybdenum (Mo) 398.387 

Nickel (Ni) 11852.93 

 
Lead (Pb) 116.095 

 
Selenium (Se) 13.186 

 
Tin (Sn) 9.556 

Vanadium (V) 34487.12 

 
Zinc (Zn) 592.131 

 
Carbon 51.86% 

 

Table A-3 Characteristics of FAC produced by different activation process 

Activated 

Carbon 

BET  surface 

area (m
2
/g) 

Total 

pore 

volume, 

(cm
3
/g) 

Micropore 

volume  
(cm

3
/g) 

Meanpore 

diameter 

(nm) 

Iodine 

number 

Methylene 

blue 

number 

AC1 75.38 0.1219 0.05364 0.0683 80.50 19.75 

AC2 82.674 0.1329 0.05489 0.0780 95.50 21.48 

AC3 91.22 0.1440 0.058815 0.0852 110.20 23.58 

AC4 123.19 0.2215 0.097609 0.1239 130.25 31.45 

AC5 79.48 0.1285 0.061587 0.0669 90.75 20.71 

AC6 130.06 0.1662 0.057476 0.1087 140.45 33.10 

AC7 102.778 0.2105 0.086994 0.1235 120.50 33.10 

AC8 143.888 0.2326 0.109519 0.1231 160.85 36.36 

FAC-P01 4.1266 0.0182 0.0019 17.631 6.52 1.85 

FAC-P02 12.69 0.0239 0.0074 7.541 15.23 3.82 

FAC-P03 14.038 0.0221 0.0054 6.306 16.25 4.58 

FAC-P04 10.737 0.0248 0.0039 9.25 13.3 3.05 
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Appendix B  
 

Calibration curve for Cr (VI) adsorption process 

A calibration curve (Figure B-1) was obtained by using standard Cr (VI) solutions of known 

concentrations at pH 5.5.  The unknown concentration was estimated by using Beer’s law, as 

shown in Equation B-1. 

lcA ..                                                                          (B-1) 

where, A is the absorbance, ε is the the molar extinction coefficient, c is the concentration of 

dye (mg/L), l is the path length of the absorbing solution (in cm), the cells used are 1 cm
2 

in 

cross-section, so l is considered 1 cm. 

y = 0.020x + 0.259
R² = 0.999
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Figure B-1 Cr (VI)  adsorption calibration curve 

A calibration curve (Figure B-1) with a high determination coefficient (R² = 99.9) allows us 

to consider that the molar extinction coefficient is constant over the concentration range 

being investigated. 

Calibration curve for naphthalene adsorption process 
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A calibration curve (Figure B-2) was obtained by using standard naphthalene solutions of 

known concentrations at pH 6.5. The naphthalene concentration in each solution was 

measured by a UV-visible spectrometer (Hewlett-Packard Model 8453) at a wavelength of 

276 nm (Belen et al., 2009).  The unknown concentration was estimated by using Beer’s law, 

as shown in Equation B-1. 

 

y = 0.008x - 0.026
R² = 0.998
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Figure B-2 naphthalene adsorption calibration curve 

A calibration curve (Figure B-2) with a high determination coefficient (R² = 99.8) allows us 

to consider that the molar extinction coefficient is constant over the concentration range 

being investigated. 

Control Experiments for naphthalene adsorption process 

To eliminate error due to the adsorption of naphthalene onto the filter paper, a parallel 

control set (without FAC) was run in an identical manner. In this case, the solutions with 

known initial concentration were filtered on Whatman No. 42 filter paper. After filtration the 
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naphthalene concentration in each solution was measured by a UV-visible spectrometer 

(Hewlett-Packard Model 8453) at a wavelength of 276 nm (Belen et al., 2009). Finally,  the 

naphthalene adsorbed by the filter paper were calculated by the difference of initial and final 

naphthalene concentration in  the solution. Table B-1 shows the control experiments results 

found from naphthalene adsorption process. 

Table B-1 Control experiments results for naphthalene adsorption process 

Sample # Initial concentration 

(mg/L) 

Final concentration 

(mg/L) 

      

   

#1 25 24.50 

#2 30 29.50 

#3 40 39.55 

#4 50 49.63 

#5 60 59.25 

#6 80 79.50 

Equilibrium contact time = 12 hrs, pH = 6.5 

 
 

 

Figure B-3 Typical batch experiment for naphthalene adsorption process 
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Appendix C   

 
Experiment Photos  

 

 

Figure C-1 Sample cement mortar blocks prepared by mixing HOFA at different ratios 

 

 

 

 

 

 



173 

 

 

 

 

Figure C-2 Sample laboratory setup used to prepare FAC in this research 
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Figure C-3 Sample laboratory setup used to clean HOFA 
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Figure C-4 Leach from HOFA (a) before and (b) after cleaning  

 

 

(a) 
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