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Abstract 

Heat shock protein (Hsp) B8 is highly expressed in smooth muscle, but the 

expression and function in uterine smooth muscle, or myometrium, during pregnancy 

remains unknown. The goal of this project was to characterize the myometrial expression 

of HspB8 protein in pregnant rats during myometrial programming.  

Immunoblot analysis determined that HspB8 and the co-chaperone Bcl2-

associated athanogene (Bag) 3 protein expression was elevated at mid-gestation at day 

(d)15 and d17 (p<0.05; n=4). The intracellular localization of HspB8 and Bag3 has not 

been well characterized; therefore, spatiotemporal expression in pregnant rat 

myometrium was also determined by immunofluorescence analysis. HspB8 and Bag3 

were predominantly localized to the cytoplasm of myometrial cells and were not found in 

nuclei. To determine whether an HspB8-Bag3 complex existed in myometrial cells 

during pregnancy, co-immunoprecipitation assays were performed. The results 

demonstrated that an HspB8-Bag3 complex was present in vitro and in vivo, at non-

pregnant, d15 and d23. This investigation provides valuable insights into the 

spatiotemporal expression of HspB8 and Bag3 and evidence of formation of a 

heteromeric signaling complex, HspB8-Bag3, in uterine musculature during pregnancy. 

With known roles of these proteins in macroautophagy activation, these results suggest 

that HspB8 and Bag3 could have similar function(s) during myometrial hypertrophy. 
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Chapter One 

Introduction 

 

1.1 Preterm Birth: Clinical Significance 

 Preterm labour in humans can be defined as childbirth occurring prior to the 

optimal human gestation period of 37-42 weeks [1]. Currently, there is no diagnostic 

indicator of preterm labour and following initiation there is no effective method to 

significantly inhibit the process [2]. This is of major concern as premature birth is a key 

factor associated with neonatal mortality and morbidity and has serious long-term health-

related consequences [3]. Premature babies are at high risk of life-long developmental 

disabilities, mental retardation, cerebral palsy, cognitive impairment, cardiovascular 

disease, vision impairment, diabetes and early death [4-6]. United States statistics 

indicate that preterm birth contributes to approximately 85 % of all perinatal deaths and 

approximately ten percent of newborns each year are preterm infants, weighing less than 

2500 g [7]. In Canada, premature birth constituted 7.8 % of all births in 2011-2012 [8]. 

Of all provinces, Alberta and Newfoundland and Labrador showed the highest preterm 

birth rates, 8.3 % and 8.2 %, respectively [8]. Multiple-fetus pregnancies are predisposed 

to delivering prematurely; over 52.2 % of multiple births occur prior to 37 weeks and 

10.7 % before 32 weeks of gestation [9].  

 Preterm labour causes substantial economic burdens on families, communities, 

and the health care system. In 2001, a preterm infant required an average hospital stay of 

12.9 days and a cost of $15,100, whereas an uncomplicated newborn remained in hospital 
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for only 1.9 days with a much lower cost of $600 [10]. The total cost due to preterm/low 

birth weight deliveries in 2001 totalled $5.8 billion in the United States. This figure does 

not include any treatments that were required after parturition with respect to 

developmental disabilities or other health concerns [10]. 

 Major causes of preterm birth fall into three main categories: the first is delivery 

for maternal or fetal complications and labour is induced or the infant is delivered by pre-

labour caesarean section; the second is due to premature rupture of the fetal membranes; 

and the final category is termed idiopathic preterm labour and arises from an unknown 

cause [1]. About 30% of preterm births are due to maternal or fetal infections, 25–30% 

follow premature rupture of fetal membranes and 40–45% are idiopathic [11]. Aside from 

the three main categories, there is also evidence indicating that the increased use of 

obstetric interventions (iatrogenic), including both induction of labour and caesarean 

sections, may result in early delivery [4, 9]. 

 Despite intensive research efforts in obstetrics, the mechanisms resulting in 

preterm birth largely remain unknown; however, it is now clear that the causes of preterm 

birth are multifactorial. According to the literature, the fetal genome contributes signals 

that initiate parturition, ultimately leading to phenotypic changes in the uterine smooth 

muscle or myometrium [12]. Throughout most of a normal gestation period, the 

myometrium remains in a quiescent state but at term switches to an active state that is 

capable of producing contractions forceful enough to expel the fetus. This thesis aims to 

increase our understanding of the mechanisms underlying normal labour, including 

myometrial adaptation and function during pregnancy. This knowledge of normal 
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function may help us acquire a more complete comprehension of the causes of signaling 

asynchrony between mother and fetus in pre-term labour. Future research efforts will 

help to develop effective treatment and prevention strategies for preterm birth. 

 

1.2 Uterus: The Myometrium 

The human uterus is a pear-shaped, muscular organ that is composed of smooth 

muscle and is found in the midline between the bladder and rectum of a woman. This 

hollow reproductive organ is unique to viviparous female mammals and is responsible for 

protecting and nourishing the developing embryo and fetus [13]. The uterus undergoes 

extensive physiological changes throughout the gestational period as it accommodates the 

developing fetus, placenta and amniotic fluid [14]. During gestation, the uterus 

dramatically expands superiorly into the abdominal cavity. A 75 g non-pregnant uterus 

may become a 1300 g uterus at term. In comparison to the non-pregnant uterus, which 

typically has a capacity of 10 ml, the uterus at term has an average capacity of 5 L [15].  

The human uterus is composed of three different tissue layers: the serosa, a thin 

outer connective tissue covering; the myometrium, a thick middle layer of smooth 

muscle; and an inner layer known as the endometrium, comprised of epithelial cells and 

an underlying layer of thick connective tissue [16]. Implantation of the multicellular 

blastocyst normally occurs in the body of the uterus, more specifically into the 

endometrium. The rat myometrium is composed of two distinct muscle layers, the outer 

longitudinal layer and the inner circular layer that work together to generate strong waves 

of contraction to expel multiple fetuses at term (Figure 1.1A). When a cross section of the 
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rat myometrium is viewed under a microscope, the longitudinal layer appears as muscle 

bundles that often surround vascular channels whereas the circular layer is found 

circumferentially next to the endometrium [17].  

 The rat is an often-used model for studying the basic cellular mechanisms of 

smooth muscle contraction in the myometrium. The myometrium is easily obtainable 

from pregnant rats and their gestational period is shorter than the human gestational 

period. In addition, the rat can be manipulated endocrinologically and surgically as the rat 

uterus is bilateral with two horns that extend toward the kidneys (Figure 1.1B,C). The 

bicornuate uterus provides the opportunity to treat one horn differently from the other. 

The work presented in this thesis is based upon the rat model of pregnancy and further 

discussion will focus on the phases of rat myometrial differentiation throughout 

pregnancy (Figure 1.2).  

 

1.3 Phases of Myometrial Differentiation 

  Throughout pregnancy the smooth muscle cells of the myometrium differentiate. 

This differentiation is required to activate the tissue and in turn drive the necessary 

myometrial contractions required for delivery of the fetus. Each distinct phase of 

pregnancy is regulated by mechanical (distension) influences, endocrine influences or 

both [1]. 
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Figure 1.1(A) A diagrammatic representation of a cross section of a rat uterine horn. The 

rat myometrium is composed of two muscle layers, the outer longitudinal layer and the 

inner circular layer that work together to generate strong waves of contraction to expel 

the fetus at term. When a cross section of the myometrium is viewed under a microscope, 

the longitudinal muscle layer appears as muscle bundles that often surround vascular 

channels. The circular muscle layer is found circumferentially next to the endometrium. 

(B) A rat uterus dissected from a non-pregnant Sprague Dawley rat. (C) A cartoon image 

of a pregnant rat uterus demonstrating the two horns that extend toward the kidneys. 
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Figure 1.2 The phases of rat myometrial differentiation throughout pregnancy. The initial 

proliferative phase of gestation, from the non-pregnant (NP) state to ~day (d) 14, is 

characterized by hyperplasia. Around d14 of gestation proliferation decreases and it is 

followed by a synthetic phase in which the myocyte growth switches to a phase of 

hypertrophic growth and it is associated with an increase in the extracellular matrix 

(ECM). At ~d21 of pregnancy the myocytes differentiate further to a contractile 

phenotype, which lasts until ~d23. During this time the myometrium becomes 

spontaneously active, excitable, and highly responsive to uterine agonists. Finally, the 

myometrium enters the labour phase, which is marked by an up-regulation of contractile 

associated proteins (CAP) that allow the myometrium to become activated and able to 

generate highly coordinated contractions that are capable of expelling the fetus. PP= post-

partum. 
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1.3.1 Proliferation 

 In the rat model, the initial proliferative phase of gestation is from a non-pregnant 

state to approximately day (d) 14 of gestation. This phase is characterized by an increase 

in cell number in the myometrium, also known as hyperplasia [18]. Initial studies on 

myometrial cell proliferation conducted by Shynlova et al. [19] indicated increased 

incorporation of 5-bromo-2’-deoxyuridine (BrdU), a nonradioactive analogue of 

thymidine and marker of individual cell proliferation, into uterine myocytes at d6 and d12 

of pregnancy. Furthermore, they noted increased expression of proliferating cell nuclear 

antigen between d6 and d15 of pregnancy. Myocyte proliferation occurs very rapidly and 

predominantly in the longitudinal muscle layer in both the non-gravid and gravid horns of 

unilaterally pregnant rats [18]. Therefore, it has been suggested that the initial phase of 

proliferation is primarily under the control of endocrine signals. During this phase there is 

a significant increase in expression of anti-apoptotic factors, such as B-cell lymphoma 2 

(Bcl2), which may contribute to the increase in cell number [19]. More specifically, 

myometrial proliferation is induced by estrogen-regulated growth factors including 

insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) [19]. Shynlova et 

al. found that Igf-1 and Igfbp1 (its associated binding protein) mRNA levels were up-

regulated in the rat myometrium during d6-d12 of gestation [20]. Cell proliferation has 

also been found to be modulated by the PI3K-PKB-mTOR (mammalian target of 

rapamycin) signaling pathway in many tissues, including the myometrium (Figure 1.3) 

[21, 22]. 17β-Estradiol and IGF-1 production result in activation of phosphoinositide-3- 
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Figure 1.3 Cell proliferation modulated by the PI3K-PKB-mTOR (mammalian target of 

rapamycin) signaling pathway. Once insulin or IGFs bind to their appropriate receptors, 

this leads to the recruitment and phosphorylation of the insulin receptor substrate (IRS) 

and successive recruitment of phosphoinositide-3-kinase (PI3K). Subsequent PI3K 

activation is the result of a cascade of phosphorylation reactions but ultimately the most 

prominent effector of PI3K activity is protein kinase B (PKB). PKB promotes target of 

rapamycin complex 1 (TORC1) signaling, by phosphorylating several sites on tumour 

suppressor tuberous sclerosis complex 2 (TSC2), which relieves inhibition of Ras 

homolog enriched in brain (RHEB; a member of the Ras superfamily of GTPases) and 

thus activates TORC1. The two most characterized targets of mTORC1 are eukaryotic 

initiation factor 4E (eIF4E)-binding protein (4EBP1) and ribosomal S6 kinase (SK6). 

4EBP1 is inactivated by mTOR phosphorylation, resulting in the release of eIF4E to 

promote translation. Furthermore, activation of mTORC1 causes initiation of protein 

translation by phosphorylating S6K1. S6K1 then phosphorylates the S6 protein of the 

40S ribosomal subunit and leads to increased ribosomal biogenesis and ultimately 

increased protein synthesis. Adapted from Russell et al., 2011 [22]. P= phosphorylation 
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kinase (PI3K) signaling, which has been found to cause cell proliferation and growth in 

reproductive tissues [20, 23, 24]. Once insulin or IGFs bind to their appropriate receptors, 

this leads to the recruitment and phosphorylation of the insulin receptor substrate (IRS) 

and successive recruitment of PI3K [25, 26]. Subsequent PI3K activation is the result of a 

cascade of phosphorylation reactions but ultimately the most prominent effector of PI3K 

activity is protein kinase B (PKB) [21]. PKB is a serine (Ser)/threonine (Thr) kinase that 

is able to positively regulate mTOR [27-29]. PKB promotes target of rapamycin complex 

1 (TORC1)- one of the two multiprotein complexes formed by mTOR- signaling, by 

phosphorylating several sites on tumour suppressor tuberous sclerosis complex 2, which 

relieves inhibition of Ras homolog enriched in brain (a member of the Ras superfamily of 

GTPases) and thus activates TORC1 [30-32]. Activation of the mTORC1 pathway results 

in activation of protein synthesis, metabolism, ribosome biogenesis and transcription. The 

two most characterized targets of mTORC1 are eukaryotic initiation factor 4E (eIF4E)-

binding protein (4EBP1) and ribosomal S6 kinase (SK6). 4EBP1 negatively regulates the 

assembly of initiation factors as it binds and sequesters eIF4E, which inhibits the 

recruitment of the translation initiation complex required for protein synthesis [33, 34]. 

4EBP1 is inactivated by mTOR phosphorylation, resulting in the release of eIF4E to 

promote translation [35]. Furthermore, activation of mTORC1 causes initiation of protein 

translation by phosphorylating S6K1. S6K1 then phosphorylates the S6 protein of the 

40S ribosomal subunit and leads to increased ribosomal biogenesis and ultimately 

increased protein synthesis [36, 37]. Studies on proliferative uterine myocytes throughout 

gestation indicate that upstream regulators, including IRS-1, PI3K, PKB and downstream 



13 
 

effectors S6K1 and 4EBP1 - which are all involved in activation of mTOR - were 

significantly up-regulated during the proliferative phase of myometrium differentiation 

[21]. mTORC1 pathway activation can be blocked by the m-TOR-specific inhibitor 

rapamycin [25]. When rapamycin was used to inhibit mTOR signaling in pregnant rats 

there was a reduction in the number of proliferating cells in the pregnant myometrium 

[21]. P-mTOR, P-S6K1 and P-4EBP1 protein expression decreased significantly in these 

rapamycin rats, supporting the notion that myometrial hyperplasia is controlled by the 

PI3K-PKB-mTOR signaling pathway [21]. 

1.3.2 The Synthetic Stage 

 At approximately d14 of gestation, proliferation decreases and it is followed by a 

synthetic phase in which myocyte growth switches to a phase of hypertrophic growth 

[38]. Hypertrophy refers to an increase in cell size and it is associated with an increase in 

the synthesis of extracellular matrix (ECM) and cellular growth [38, 39]. The cause of the 

switch in myocyte growth from proliferation to hypertrophy is unknown, but the switch 

coincides with the activation of the apoptotic cascade machinery [18]. There is significant 

up-regulation of specific caspases, such as initiator caspase-9 and effector caspases 3, 6 

and 7 at ~d14 of gestation, which are essential to apoptosis [18]. Even though the 

apoptotic cascade is activated during this window of time there are no physiological 

manifestations of myocyte apoptosis, indicating that it may be modulating other 

physiological processes [18]. Activation of the apoptotic pathway may be due to a period 

of hypoxia around mid-pregnancy in the rat that results from the growing fetus reaching a 
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maximal spherical radius and consequently, impeding maternal blood flow and oxygen 

supply [40]. Once the shape of fetal growth switches to ellipsoid, this relieves the tension 

and restores maternal blood flow throughout the uterus [40]. Evidence of myometrial 

hypoxia is shown by the presence of two different markers, hypoxia-inducible factor-1α 

and the hydroxyprobe pimonidazole hydrochloride, primarily in the circular muscle layer 

of the rat myometrium on d14 of gestation [41].   

 The synthetic phase of myometrial differentiation is characterized by an increase 

in the protein: DNA ratio in the pregnant rat myometrium, and a concomitant increase in 

the synthesis and deposition of interstitial matrix forming the ground substance of the 

myometrium [18]. The synthetic phase is also characterized by a marked increase in 

ECM proteins such as collagen I, collagen III and elastin, and reorganization of the ECM 

to ensure that cells are properly anchored throughout gestation [38, 42]. There is 

significant remodelling of cell matrix contacts through structures known as focal 

adhesions in cultured cells. 

 Focal adhesions are clusters of integrin molecules within the cell membrane that 

have extracellular domains that interact with the ECM surrounding the cell and 

cytoplasmic domains that interact with complexes of cytoplasmic and cytoskeletal 

proteins [43]. Extracellular ligands are coupled to cytoplasmic F-actin, by their integrin 

receptors, and thus mediate cell-matrix adhesions. The intracellular domain of integrin 

proteins interact with the cytoskeleton by adaptor proteins, such as talin, actinin and 

vinculin [44]. Focal adhesions are responsible for sensing mechanical forces and 

facilitating force transmittance generated through contractile proteins to the ECM and 
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muscle bundles [14, 43, 45].	
  Two key players in the focal adhesion signaling network 

include focal adhesion kinase (FAK) and paxillin, as they have been associated with 

turnover and remodelling of focal adhesions. Focal adhesions may allow cells to maintain 

critical cell-matrix interactions as cells increase in size during the synthetic phase of 

myometrial programming, as phosphorylated (activated) FAK, or PTK2, is found in the 

gravid myometrium during the synthetic phase [46]. In the synthetic phase the expression 

of γ-smooth muscle actin and I-caldesmon also begin to increase, a finding characteristic 

of a relatively undifferentiated contractile state [47]. 	
  

 Induction of myometrial hypertrophy requires an increase in uterine tension and 

the presence of progesterone. Progesterone appears to play a key role in pregnancy as it is 

required by almost all species for both the establishment and maintenance of pregnancy 

[48]. The circulating levels of progesterone in rat maternal serum have been found to 

peak specifically between d15-d19 after which there is a dramatic decline until labour 

[49]. Progesterone is known to suppress the initiation of labour as the removal of 

progesterone, via ovariectomy early in pregnancy or administration of a progesterone 

antagonist (mifepristone, RU486), results in early termination of pregnancy [50]. 

Administration of RU486 to pregnant animals on d17 resulted in attenuation of 

hypertrophy, thus indicating that progesterone circulation is essential for cell growth [19]. 

Progesterone is also important in the synthesis of ECM proteins, including collagen I and 

II and elastin. After progesterone levels decreased at term or following administration of 

RU486, the secretion of these proteins decreased significantly. Administration of RU486 
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also results in a premature increase in collagen IV, fibronectin and laminin expression 

[38]. In contrast, administration of exogenous progesterone at d23 delayed the onset of 

labour by reducing the level of fibronectin and laminin mRNA and preventing a decrease 

in collagen III mRNA [19, 38]. Fibronectin and laminin are ECM molecules that 

surround myometrial smooth muscle cells during the contractile stage [14, 38]. 

1.3.3 The Contractile Stage 

 At approximately d21 of pregnancy the myocytes differentiate further to a 

contractile phenotype, which lasts until d23 (labour). During this phase, hypertrophy is 

stabilized and there is a marked increase in the interaction between the myocyte and the 

underlying matrix. At this time, the myometrium becomes spontaneously active, 

excitable and highly responsive to uterine agonists [14]. Instead of synthesis of interstitial 

matrix, which is characteristic of the synthetic phenotype, there is significant up-

regulation of matrix proteins such as fibronectin, laminin β2 and collagen IV, which form 

the basement membrane surrounding each smooth muscle cell [14, 38]. This 

reorganization of uterine tissue architecture is crucial for extensive uterine hypertrophy 

[14]. In order to study the effects of stretch Ou et al. (1997) performed experiments in 

which virgin female rats underwent unilateral tubal ligation and therefore, the rat was 

only able to implant the conceptus in one horn [51]. This procedure provides an internal 

control allowing for separation of hormonal and mechanical influences. In unilaterally 

pregnant animals, the expression of matrix proteins (fibronectin, laminin β2 and collagen 

IV) was only found in the gravid horn, suggesting that uterine distension may be 
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regulating their expression [38]. Furthermore, increased expression of basement 

membrane proteins is associated with decreased levels of progesterone. Administration of 

RU486 to rats on d19 of gestation induced a switch from interstitial to basement 

membrane, as measured by the pre-mature increase in messenger ribonucleic acid 

(mRNA) levels of collagen IV, fibronectin and laminin, normally reached on day 23 

during labour [38]. In the reciprocal experiment, exogenous progesterone was 

administered to pregnant rats to prevent a normal drop in circulating hormone, it was able 

to block changes in matrix synthesis and the transition to the contractile phenotype [38].  

 The contractile phenotype is also characterized by changes in the expression of 

contractile protein isoforms within smooth muscle cells. There is a transition in the 

expression of α-smooth muscle actin to the γ-actin isoform, which is more characteristic 

of a contractile phenotype, in conjunction with the expression of smooth muscle-specific 

contractile forms of tropomyosin and myosin heavy chain [47]. Lastly, there is a notable 

increase in H-caldesmon expression, an actin binding protein that is capable of inhibiting 

actomyosin interaction in vitro [52, 53]. Li et al., performed immunostaining using a 

phospho-H-caldesmon antibody and noted that phospho- H- caldesmon increased ~40-

fold in staining during labour, compared to little staining of phospho-H- caldesmon in 

nonpregnant myometrium [53]. Thus, as H-caldesmon is involved in increasing smooth 

muscle contractility through thin filament mechanisms, caldesmon phosphorylation may 

reverse the inhibition of acotmyosin interactions by caldesmon which leads to increased 

contractility. [54, 55].  
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1.3.4 The Labour Phase 

 Just prior to d23 of gestation in the rat, the myometrium is activated and able to 

generate highly coordinated contractions that are capable of expelling the fetuses. This 

switch to an active state can occur as a result of signals produced by the maturing fetuses, 

including an up-regulation of corticotrophin-releasing hormone by the placenta, as well 

as an increase in mechanical stretch of the uterus [9]. At this point in gestation uterine 

growth is much slower than fetal growth, ultimately resulting in significant myometrial 

tension. Activation of the myometrium is defined biochemically as an increase in the 

expression of “contraction-associated proteins” (CAPs), such as the sodium channel, 

oxytocin receptor (OTR), prostaglandin F2α receptor and connexin 43 (Cx43; gap 

junction protein) and occurs as a result of the mechanical and endocrine signals [19, 50, 

56, 57]. Ou et al. (1998) determined through semi-quantitative reverse transcription-

polymerase chain reaction (RT-PCR) that OTR expression increases significantly with 

the onset of labour and thus oxytocin is able to stimulate uterine contractions [50]. 

Prostaglandin F2α (PGF2α) receptor is thought to play an important role in myometrial 

contractility as endogenous PGF2α is capable of inducing labour and administration of 

the cyclooxygenase inhibitor, indomethacin, is able to inhibit uterine contractions and the 

onset of labour [56, 57]. To further support the role of prostaglandin F (FP) receptors in 

uterine contractility, there was a significant increase in FP-receptor protein expression 

towards the end of gestation, with a marked increase at the onset of labour [58]. In 

unilaterally pregnant rats, the increase in CAPs is only found in the gravid horn, 
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consistent with the notion that stretch plays an important role in the labour-associated up-

regulation of these genes [50]. However, stretch is not the only requirement for 

expression of these genes as insertion of a polyvinyl tube into the non-gravid horn on d17 

of gestation, a time when the circulating levels of progesterone are high, did not result in 

an increase in CAP gene expression [19]. Therefore, the differentiation of the 

myometrium to the labour phenotype appears to require both mechanical and endocrine 

influences.  

 Stretch of uterine muscle has been found to induce transient myogenic 

contractions. In vitro studies on smooth muscle strips from rat uterus indicate that stretch 

of uterine muscle results in an intracellular influx of Ca2+, promoting stretch-induced 

contractions [59]. The increase in tension also results in an increase of CAPs, which 

results in activation of the myometrium and facilitates the coordinated contractions 

necessary for labour [5, 9].  Ou et al. (1997) found that an up-regulation of CAPs only 

occurred in the gravid (stretched) horns of unilaterally pregnant animals, which suggested 

that stretch had an important role in CAP activation [51]. Work performed by Shynlova 

et al. (2007) that focused on the same stretch model, further supported the role of uterine 

stretch on CAP activation as the artificially stretched horn showed higher OTR, Cx43, 

Cx26 and fibronectin expression in comparison to the non-gravid horn [14].  

Furthermore, Ca2+ influx and PKC translocation from the cytosolic compartment to the 

membrane compartment, as a result of EGF, induced phosphorylation of Cx43 [60]. 

Phosphorylation of connexins is important for proper formation and modulation of 
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function of gap junction channels. Thus, Ca2+ influx, as a result of mechanical distension, 

may regulate Cx43 phosphorylation in the cytoplasmic domain [61]. These experiments 

indicate the importance of uterine distension on activation of the myometrium via 

coordinated expression of CAPs [1, 14]. Through the use of the unilateral pregnant rat 

model, it is evident that mechanical stretch plays a key role in regulating the 

synchronous, high-amplitude, high frequency contractions at labour [62]. In addition to 

animal data, a study on primary cultures of human uterine smooth muscle cells, from 

pregnant women before labour, indicate that stretch results in up-regulation of OTR 

mRNA expression and increased OTR gene promoter activity [63]. Also, prostaglandin I2 

(PGI2), a potent vasodilator has been shown to be a major prostaglandin secreted before 

the onset of labour [64]. The effects of labour-like cyclic mechanical stretch on PGI2 

production has been analyzed in cultured human myometrial cells and the results suggest 

that cyclic mechanical stretch may be responsible for increased PGI2 concentration 

towards the end of gestation. More specifically, cyclic mechanical stretch up-regulated 

prostacyclin synthase (PGIS) expression, a synthase responsible for regulating 

biosynthesis of PGI2, via activation of the transcription factor activator-protein-1 (AP-1) 

[65]. 

 During labour, changes that must occur in the interaction between smooth 

muscles cells and the underlying matrix via focal adhesions. In screening rat myometrial 

stretch samples by anti-phosphotyrosine immunoblotting, Li et al. (2007) show an 

increase in the tyrosine phosphorylated bands identified as FAK, A- rapidly accelerated 
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fibrosarcoma (A-RAF), paxillin and Src in response to stretch [66]. MacPhee & Lye 

however, show a slightly different pattern of phosphorylated FAK expression [46]. 

Although tyrosine phosphorylation (P-Tyr) of myometrial FAK and its downstream 

substrate paxillin increase during late pregnancy (d15-d22), they found that there is a 

significant decrease in P-Tyr on d23 during the onset of labour [46]. Following 

administration of exogenous progesterone, pregnant animals show no decrease in FAK-P-

Tyr enzyme activity on d23 and consequently, the labour process is inhibited. These 

findings indicate that progesterone is involved in modulating FAK activity/focal adhesion 

signaling [46]. The fall in FAK-P-Tyr enzyme activity may allow for stabilization of 

smooth muscle cells and ECM interactions resulting in stable focal adhesions, connecting 

ECM and actin cytoskeleton via integrin molecules [14]. Together these results support 

the notion that focal adhesions are responsible for force transduction and modulation of 

myometrial contractility, ensuring that the myometrium works as a mechanical syncytium 

through each contraction [45]. 

1.3.5 The Involution Phase 

 Following fetal delivery the myometrium undergoes significant tissue remodelling 

as a result of induction of matrix metalloproteinases, ECM degradation, and cell 

apoptosis to return the tissue to the non-pregnant state [18]. This phase, known as the 

involution phase, completes the reproductive cycle following pregnancy. Following 

parturition there is an increase in IGF-I and IGFBP-5 gene expression and IGF-1R, the 

receptor that binds to both IGFs, which may be associated with uterine tissue recovery 
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[20]. Eighty five percent of the collagen of an involuting rat uterus is resorbed in the first 

four days following parturition, representing one of the fastest known rates of collagen 

degradation in any connective tissue [67]. Immune scavenging is an important component 

of myometrial remodelling enhanced by the expression of chemokines. Monocyte 

chemotactic protein-1 and other cytokines such as, monocyte chemotactic protein-3, 

eotaxin, fractalkine, and macrophage inflammatory protein -1β are required for 

postpartum decidual breakdown and myometrial involution [68].  

1.4 Regulation of Myometrial Contraction 

 Two different pathways initiate labour from fetal signals. One pathway is the fetal 

hypothalamic-pituitary-adrenal-placental axis and is primarily an endocrine cascade, 

whereas the other pathway is mechanical as the growing fetus creates tension on the 

uterine wall inducing changes within the uterine smooth muscle cells. As already 

described in section 1.3, it is thought that both of these pathways increase CAPs, as well 

as ECM proteins, cell matrix adhesion complexes, and contractile proteins to control the 

synchronized and temporally coordinated contractions of uterine myocytes at the onset of 

labour [43]. 

 Uterine smooth muscle cells are specialized cells that are packed with contractile 

myofilaments that are ready for contraction [12]. Excitability of uterine myocytes 

ultimately depends on the movement of Na+, Ca2+ and Cl- ions into the cytosolic 

compartment from the extracellular space, and of K+ ions into the extracellular space 
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from the cytosolic compartment. Intracellular Ca2+ concentrations ([Ca2+]i) increase due 

to Ca2+ entry via plasma membrane cation channels, as well as release from intracellular 

stores in the endoplasmic reticulum. Also, a number of myometrial contractants interact 

with a specific G-protein coupled receptor in the myocyte plasma membrane which 

activates a trimeric G-protein containing a Gαq subunit to increase [Ca2+]i [69]. Gαq 

activates phospholipase Cβ isoforms, causing the hydrolysis of phosphatidylinositide 

biphosphate (PIP2) to generate inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) 

[70]. IP3 binds to its receptors on the ER causing an increase in release of ER Ca2+ and a 

subsequent rise in [Ca2+]i [71, 72]. Similar downstream intermediates are also generated 

by an alternative pathway involving receptor tyrosine kinases that activate PLCϒ and 

generate IP3, ultimately increasing [Ca2+]i. [73]. Upon labour, contractant hormones can 

also indirectly cause depolarization of smooth muscle cell plasma membranes leading to 

the entry of extracellular Ca2+ into the myometrial cells via L-type voltage-gated Ca2+ 

channels, resulting in an increase in [Ca2+]i [74, 75]. When the membrane potential is 

depolarized to approximately −40 mV, the L-type voltage-gated Ca2+ channels open 

allowing a substantial influx of Ca2+ into the intracellular space [76]. Calmodulin, a 

calcium binding protein, requires binding of four calcium ions for its activation and thus 

a marked increase in Ca2+ is the key trigger for its activation [77]. The interaction 

between calcium and calmodulin then activates the key enzyme myosin light chain kinase 

(MLCK) by inducing a conformational change [1, 7]. Activation of MLCK results in 

phosphorylation of Ser19 on myosin light chains (MLC20) and causes a conformational 

change, ultimately increasing the angle in the neck domain of the two heavy chains of 
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myosin motor (MII) and the formation of a cross bridge between actin and myosin 

filaments (Figure 1.4). A marked increase in phosphorylation of MLC20 is important for 

activating the contractile machinery of the cell. MII undergoes a conformational change 

from the folded to extended state to become activated, allowing myosin and actin to 

move approximately 10 nm with respect to each other, resulting in a power stroke. 

Phosphorylation of the regulatory light chains of myosin also activates the myosin head 

domain, which constitutes the ATP hydrolysis site, to provide the mechanical energy 

required for contraction [17, 74]. Another mechanism of increasing the ATPase activity 

of MII is through phosphorylation of Thr18 on MLC20 [78-80].  

The force transmission between smooth muscle cells throughout the uterus may 

occur by conduction of action potentials through gap junctions [81]. Gap junctions are 

structurally differentiated areas of the plasma membrane of a cell that are composed of an 

array of small channels formed by proteins termed connexins [82]. Connexins are 

arranged into hexameric hemichannels, which become aligned across adjacent cells to 

form an interconnecting pore that permits electrical or ionic coupling between the cells 

and provides a pathway for small molecules to shuttle from one cell to another, directly 

linking the interior of adjacent cells [83]. Gap junctions allow electrical and metabolic 

coupling among cells as signals initiated in one cell can readily propagate to neighboring 

cells, thus allowing synchronous muscle contractions. Accordingly, during the last 12 

hours (h) of gestation in the rat, gap junctions between myometrial cells increase over 

200-fold creating an electrical syncytium allowing coordinated contraction 
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Figure 1.4 Steps involved in contraction of uterine smooth muscle. A marked increase in 

Ca2+ activates calmodulin, which then allows activation of the key enzyme MLCK by 

inducing a conformational change. Activation of MLCK results in phosphorylation of 

Ser19 on MLC20 and causes a conformational change; ultimately increasing the angle in 

the neck domain of the two heavy chains of myosin motor II (MII) and the formation of a 

cross bridge between actin and myosin filaments. MII undergoes a conformational 

change from the folded to extended state to become activated resulting in a power stroke 

and contraction. Based on figure from Wray, 1993 [75].  
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capable of delivering the fetus [81].  

 Following muscle contraction, in order to induce relaxation of the smooth muscle, 

Ca2+ must be removed from the cytosol. Relaxation occurs by several mechanisms, 

including actions of the plasma membrane (PMCA) and SR/ER (SERCA) Ca2+- ATPases 

and Na/Ca2+ exchangers, activation of K+ channels causing hyperpolarization of the cell 

and decreased voltage-mediated Ca2+ entry [17].  

1.5 Autophagy 

 During myometrial differentiation there is a period when the myometrium 

transitions from a state of hyperplasia to hypertrophy. This transition is associated with 

significant protein turnover. The main pathway for cells to degrade misfolded proteins is 

the ubiquitin-proteasome system. Recent evidence suggests that lysosomal degradation 

pathways (known as ‘autophagy’) also have essential roles in cellular protein quality 

control [84]. Autophagy or “self-eating”, is a ubiquitous and evolutionary conserved 

process and is found in yeast and mammals [85]. Three distinct types of autophagy have 

been described: macroautophagy, microautophagy and chaperone-mediated autophagy 

(CMA). Each autophagy type differs mechanistically from the others, but all types share 

a common role in degrading cytosolic components by lysosomal hydrolases (Figure 1.5) 

[86-88].  

 Macroautophagy refers to a multi-step process in which intact organelles and 

portions of the cytosol are initially sequestered into a phagophore or isolation membrane, 

a crescent shaped double membrane, that expands and fuses to form a double-membrane 
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vesicle known as an autophagosome. The isolation membranes are acquired from various 

intracellular membranes including the endoplasmic reticulum, Golgi apparatus, 

mitochondrial outer membrane and plasma membrane [89-92]. Subsequently, the 

autophagosome matures once the outer membrane of the autophagosome fuses with an 

endosome and/or lysosome, resulting in the formation of an 

autolysosome/autophagolysosome. The autolysosome results in the degradation of the 

luminal material, as well as the internal membrane. The resulting macromolecules are 

then released through membrane permeases and recycled in the cytosol [93]. More 

specifically, initiation of autophagosome formation requires the formation of a Unc-51-

like kinase (ULK) protein complex, which is composed of ULK1, autophagy-related gene 

(Atg)13, FIP200 and Atg101, along with other Atg proteins. mTOR–dependent and 

mTOR-independent pathways are the primary regulators of the assembly of the ULK 

protein complex [94]. mTOR-independent mechanisms alter the transcription of 

macroautophagy genes or they decrease the amount of 1,4,5-triphosphate [95, 96].  The 

next step involves nucleation and elongation of the isolation membranes to generate 

vesicular structures. Nucleation requires the assembly of the Beclin1/class III 

phosphatidylinositol 3-kinase (PI3K) complex [97, 98]. Elongation of the phagophore 

membrane is dependent on the Atg12 and microtubule associated protein light chain 3 

(LC3) conjugation system. A complex comprised of Atg5, Atg12 and Atg16L1 along 

with other autophagy-related genes regulate the conjugation of PE to LC3I to form 

LC3II, resulting in translocation of LC3 from the cytoplasm to the membrane of the pre-

autophagosomes [99-101]. Following nucleation and elongation, autophagosome 
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Figure 1.5 Scheme showing the relationship among the three known types of autophagy: 

Chaperone-Mediated Autophagy, Microautophagy and Macroautophagy. Adapted from 

Crotzer & Blum 2009 [88]. 
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undergo a process termed maturation in which they fuse with late endosomes and 

lysosomes for degradation of their contents [102, 103]. Maturation and degradation have 

been found to require late endosome marker protein Rab7 and lysosomal membrane 

protein LAMP-2 [104-106]. The constitutive or basal level of macroautophagy appears 

crucial for maintaining cellular homeostasis as it is responsible for the removal of 

damaged/old organelles, protein aggregates and the turnover of long-lived proteins. If 

cells encounter environmental stressors then the level of macroautophagy can increase 

significantly as a cytoprotective measure [107]. 

 Microautophagy involves direct sequestration of cytosolic components by 

invagination of the lysosomal membrane in the form of single-membrane vesicles [108]. 

A dynamin-related GTPase Vps1p regulates microautophagic invagination [109]. CMA is 

a selective lysosomal pathway that is responsible for degradation of single soluble 

cytosolic proteins that contain a pentapeptide lysosome-targeting motif, KFERQ. When 

the motif is exposed during protein misfolding or disassembly of protein complexes, it is 

recognized by heat-shock cognate (Hsc)70 and the cytosolic proteins are directly 

translocated into the lysosome after unfolding by a chaperone complex, comprised of 

Hsc70, Bcl2-associated athanogene (Bag)1, Hip, Hop and Hsp40/DNAJB1[110, 111]. In 

order for complete translocation into the lumen to occur the substrate proteins must bind 

to the cytosolic tail of LAMP-2A [112]. Binding of the substrate proteins to monomers of 

LAMP-2A stimulates its multimerization to form the approximately 700-kDa LAMP-2A 

complex necessary for substrate translocation [113]. The LAMP-2A complex is then 

disassembled into monomers in an Hsc70-dependent manner when substrates are no 
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longer available, thus initiating a new cycle of binding and translocation [113]. 

1.6 Small Heat Shock Proteins 

 Heat shock proteins (Hsps) have been found in Prokaryota and Eukaryota and are 

generally classified based on their molecular masses, properties and structures [114]. 

There are five classes of heat shock proteins: Hsp100, Hsp90, Hsp70, Hsp60 and the 

small heat shock proteins [115]. Heat shock proteins are known to act as molecular 

chaperones that block the aggregation of unfolded proteins and have a cytoprotective 

function under stressful situations [116]. The chaperone activities of Hsp100, Hsp90, 

Hsp70 and Hsp60 are regulated by the binding of ATP and subsequent hydrolysis; 

however, small heat shock proteins, in contrast to the major chaperones, show ATP-

independent chaperone-like activity [117]. 

  The human genome encodes ten different small heat shock proteins (sHsps) 

termed HspB1-HspB10 [118]. The sHsps form a ubiquitous family of molecular 

chaperones that have low molecular masses that normally range between 12 and 42 kDa 

[115]. This diverse family of proteins is characterized by a conserved C-terminal region 

consisting of 80-100 amino acids, termed the α-crystallin domain, a more variable N-

terminal sequence, and in most cases a short and variable C-terminal tail [119]. The α-

crystallin domain is often involved in the formation of dimers, whereas the N-terminal 

domain is involved in the formation of stable oligomeric complexes [115, 120-123]. The 

secondary structure of sHsps is a compact β-sheet sandwich composed of two layers of 
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three and five anti-parallel strands that are connected by a short interdomain loop [115, 

124].   

 sHsps are widely expressed chaperone proteins whose two main functions are to 

bind denatured proteins (in order to prevent stress-induced aggregation) and to maintain 

the solubility of denatured proteins until they can refold to their native conformation. 

sHsps are able to help promote the proper folding of these proteins, upon removal of the 

stress, by binding to exposed hydrophobic patches on protein substrates [125-127]. As 

sHsps exist in high molecular mass oligomers, substrate binding sites appear to 

correspond to temperature related exposure of hydrophobic interface sites, following 

dissociation of oligomeric complexes or an increase in subunit exchange between 

complexes [120, 128-130]. Unlike larger stress response chaperones, sHsps are ATP-

independent chaperones and are extremely important under stress conditions when the 

levels of ATP have been significantly depleted [116, 124, 126, 130, 131]. 

 One of the key features of sHsps is their ability to form large oligomeric 

complexes. sHsps may form complexes composed of 2-40 subunits that are either 

homomeric or heteromeric [118, 121, 130-134]. Oligomerization of sHsps is a dynamic 

process that becomes more rapid under stressful conditions [135-137]. The formation of 

oligomeric structures plays an important role in the chaperone functions of sHsps and 

may be a method of storage for inactive or partially active sHsps [126]. Oligomerization 

may also lead to the formation of several different homo- and hetero-oligomers, each 

with different binding properties to chaperone an extensive array of substrates [138-140]. 
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There are several known factors that result in the dissociation of sHsp oligomers 

including: temperature, ionic strength, pH, Ca2+ concentration, tissue age, or protein 

concentration [126, 128, 141-143]. One mechanism of sHsp activation is through 

temperature-dependent dissociation of oligomers [128-130]. Changes in the oligomeric 

organization of αB-crystallin increases the exposure of hydrophobic surface area and 

result in increased chaperone activity [144]. Regulating the exposure of hydrophobic 

surfaces through oligomeric organization may provide the molecular mechanism for sHsp 

regulation [144].  

Many sHsps undergo phosphorylation via various protein kinases and this may 

affect their chaperone activity. Most sHsps have phosphoralatable serine residues and 

phosphorylation has been found to modulate oligomerization and hence the function of 

these proteins within the cell [119, 145-152]. Phosphorylation affects sHsp cellular 

distribution [119, 153, 154]. 

 Expression of sHsp genes depends on the organism and the cell type. Some sHsp 

genes are ubiquitously expressed while others are only expressed in specific tissues. 

sHsps are often induced when cells and tissues respond to various stress signals 

including: heat, oxidative or osmotic stress, cold shock and heavy metals [126, 155-160]. 

These stress signals result in increased expression of sHsps through the binding of heat 

shock transcription factors (HSF1-4) to heat shock promoter elements, upstream of sHsp 

genes (Figure 1.6). Therefore there are two mechanisms to activate the Hsp response: 

detachment from oligomeric structures and novel transcription/translation.  
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Figure 1.6 Conditions that induce a heat shock response. Expression of sHsp genes 

depends specifically on the organism and the cell type; however, they are often induced 

when cells and tissues respond to various stress signals including: heat, oxidative or 

osmotic stress, cold shock and heavy metals. These stress signals result in an up-

regulation of sHsps through the binding of HSF-1 to heat shock promoter elements, 

upstream of sHsp genes, resulting in increased gene transcription of Hsps. Adapted from 

Hu et al., 2007 [160]. 
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1.7 HspB8 Protein 

HspB8 (also known as Hsp22, H11 and E2IG1) possesses the structural motif of 

the alpha-crystallin family of Hsps and is considered to be a member of the superfamily 

of sHsps [118, 160, 161]. HspB8 has a very low molecular mass of approximately 21.6 

kDa and consists of 196 amino acids [162]. HspB8 protein is predominantly expressed in 

skeletal and smooth muscles, heart and brain, with moderate expression in cervix, 

prostate, lung, kidneys, heart, placenta and spleen [132, 162]. HspB8 has been found to 

possess two putative HSF1 binding sites (HSEs) 1000 bases upstream of the translation 

start site, suggesting that it may be stress-inducible [132]. 

The secondary structure of HspB8 is randomly coiled, and in vitro is monomeric. 

According to Kim et al. (2004) 36 % of human HspB8 is β-structured, 5 % is alpha 

helices and about 58 % is comprised of turns and unordered structures [163]. HspB8 also 

lacks the β2 strand detected in many sHsps [164, 165]. Thus, HspB8 is a member of the 

group of intrinsically disordered proteins, which are known to play vital roles in 

recognition, regulation and cell signaling [166]. The aromatic amino acids of HspB8 are 

in a chiral environment that is comparable with those of αβ-crystallin and the sequence of 

HspB8 includes three cysteine residues, but no disulphide bonds [132]. HspB8 is resistant 

to thermal denaturation but highly susceptible to proteolysis [164, 165, 167].  

 HspB8, like other intrinsically disordered proteins is phosphorylated by several 

protein kinases. In vitro, protein kinase C phosphorylates Ser14 and Thr63, ERK1 
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phosphorylates Ser27 and Thr87 whereas casein kinase 2 phosphorylates a number of 

unidentified sites [162]. HspB8 is also phosphorylated by cAMP-dependent protein 

kinase at Ser24 and Ser57 in vitro; however, Ser57 is the primary site of phosphorylation 

[148]. Phosphorylation by cAMP-dependent protein kinase affects the structure and 

decreases the chaperone-like activity of HspB8 in vitro [148]. HspB8 is phosphorylated 

at Ser24 and Ser(Thr)87 in vivo [168-170]. Furthermore, HspB8 is phosphorylated at 

Tyr118 in non-small-cell lung cancer cells [171]. Despite this information, the effect of 

phosphorylation on the structure and properties of HspB8 has yet to be fully examined.  

Although HspB8 is highly expressed in muscle, its exact function remains 

unclear. Originally HspB8 was reported to have protein kinase activity but the evidence 

has been inconsistent [172, 173] HspB8 protein kinase activity was analyzed using SDS-

gel electrophoresis with alpha-casein and histone IIIS as the protein substrates [163]. The 

authors found that HspB8 was not capable of phosphorylating alpha-casein or histone 

IIIS; however, the substrates were phosphorylated by purified rat liver casein kinase II 

and by the catalytic subunit of cAMP- dependent protein kinase, respectively [163]. 

Furthermore, HspB8 only contains seven out of eleven motifs that are typically 

characteristic of protein kinases, indicating only weak similarity between the primary 

structure of HspB8 and protein kinase motifs [174]. Kim et al. (2004) attribute the 

previous protein kinase activity to protein kinases tightly bound to HspB8, as a result of 

sample contamination [163].  

HspB8 has chaperone-like activity, similar to many other sHsps. It prevents 
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aggregation of partially unfolded or denatured proteins in vivo [132, 167, 175]. Heating 

results in aggregation of yeast alcohol dehydrogenase (ADH), particularly in the presence 

of reducing agents. Upon addition of HspB8 to ADH there was decreased aggregation 

[163]. A similar result was obtained when bovine liver rhodanese was used as a substrate. 

Thus, HspB8 was capable of preventing heat-induced aggregation of both ADH and 

bovine liver rhodanese, indicating chaperone activity similar to HspB6 [163]. HspB8 also 

prevents the formation of amyloid oligomers and aggresomes formed by the R120G 

mutant of αβ-crystallin, which causes desmin-related cardiomyopathy [176, 177]. 

Overexpression of HspB8 was accompanied by improved cardiac function and survival 

[176]. Furthermore, HspB8 was more effective than HspB1 and αβ-crystallin in 

preventing in vivo aggregation of polyglutamine containing proteins (polyglutamine 

protein Htt43Q and androgen receptor containing 65 glutamine residues). HspB8 also 

maintains Htt43Q in a soluble state allowing for its rapid degradation [178]. Together 

these results demonstrate that HspB8 has chaperone-like activity.  

 sHsps are able to interact with each other to form homo- and hetero-oligomeric 

complexes and suggesting that the formation of these complexes is essential for their 

function [123]. The conserved alpha-crystallin domain is involved in the formation of 

both homo- and hetero- dimers. HspB8 has at least two binding sites that permit 

interaction with itself, HspB7, myotonic dystrophy protein kinase binding protein, 

HspB1, αβ-crystallin and HspB6 [179]. 
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 HspB8 can form homo-dimers, which can subsequently dimerize to form 

tetramers [180]. Yeast tyrosine hydroxylase assays were performed to determine whether 

or not HspB8 was able to interact with itself. Both of the reporter genes (his+, gal+) 

indicated the presence of HspB8 dimers [180]. Size exclusion chromatography and 

chemical cross-linking with dimethylsuberimidate, were performed by Kim et al. (2004) 

and they also found that HspB8 is capable of forming stable dimers [163]. When HspB8 

was incubated with increasing quantities of β- mercaptoethanol there was decreased 

intensity of the putative HspB8 band on immunoblots analogous to an HspB8 dimer 

(~40-45 kDa) and increased intensity of an HspB8 band corresponding to the monomeric 

form of HspB8 (22 kDa). There was also evidence of high molecular mass complexes on 

the top of the gel. Therefore, it was proposed that HspB8 is capable of forming disulfide 

cross-linked dimers, as well as unordered crosslinked oligomers having high molecular 

mass [163]. Following oxidation both the secondary and tertiary structures of HspB8 are 

disrupted, which affects the formation of intermolecular disulfide bonds and thus cross-

linked dimers. To examine the formation of homo-oligomeric complexes Sun et al. 

transfected 293T cells to express FLAG-tagged HspB8 that was treated with different 

concentrations of glutaraldehyde, allowing cross-linking of cell proteins [180]. Bands 

were observed at ~30, 65 and 120 kDa, however, with increased glutaraldehyde 

concentration a band was observed having a molecular mass of 250 kDa [180]. This data 

indicated that HspB8 formed homo-dimers, as well as homo-oligomers [163, 180]. 

 Significant sequence similarity exists between HspB8 and HspB1, which may 

account for their interaction. Human HspB1 has three sites of serine phosphorylation 
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including Ser15, Ser78 and Ser82 [180]. Originally, Benndorf et al. (2001) showed an 

interaction between HspB8 and a mimic of phosphorylated HspB1 (a triple aspartate 

mutant) [162]. However, in recent studies it has been shown that HspB8 weakly interacts 

with HspB1 without the need for HspB1 phosphorylation [180, 181]. The interaction 

between HspB8 and HspB1 involves the C-terminus of HspB1, which must interact with 

full-length HspB8 [179, 180, 182]. Although it is thought that hetero-oligomeric 

complexes are crucial for function, the significance of this interaction is still undefined. 

 Most recently, HspB8 has been found to interact with the adapter protein Bag3, a 

known stimulator of macroautophagy, in human cervical cancer (HeLa) and African 

green monkey kidney (COS-1) cells [183]. Currently there are two proposed methods for 

stimulation of macroautophagy via an HspB8-Bag3 complex. First, HspB8 is part of a 

multiheteromeric complex comprised of HspB8, Bag3, Hsc70 and C-terminus of Hsc70-

interacting protein (CHIP). This complex is then responsible for the removal of misfolded 

proteins through macroautophagy activation [184]. However, there is also evidence that 

HspB8 and Bag3 are working independently of Hsc70 and CHIP to promote 

phosphorylation of the α subunit of translation initiator factor eIF2 and stimulation of 

macroautophagy [185, 186].  

 
1.8 Bag Proteins  

 The human genome encodes six different members of Bag proteins including 

Bag1 (and its various isoforms), Bag2, Bag3 (CAIR-1; Bis), Bag4 (SODD), Bag5 and 

Bag6 (Scythe, BAT3) [187]. The Bag proteins are a family of co-chaperones, which are 
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capable of interacting with the ATPase domain of Hsc70/Hsp70 through their structural 

Bag domain (110-124 residues) [188, 189]. The Bag domain is an evolutionary conserved 

domain consisting of ~110 amino acids and three anti-parallel alpha-helices, each ~30-40 

amino acids in length [190]. The first and second helices interact with the 

serine/threonine kinase RAF-1 and the second and third helices are the sites of the BAG 

domain interaction with the ATPase domain of Hsc70/Hsp70 [190, 191]. The interaction 

between the Bag domain and the ATPase domain of Hsp/Hsc70 is reported to regulate the 

ATP-driven activity of the chaperone complex [192]. All members of this family contain 

one Bag domain, which is located in the C-terminal portion of the molecule, except Bag5, 

which contains five putative Bag domains [188, 190]. The N-terminal regions of the 

family members vary in both length and composition [188, 190]. 

Bag1 has several isoforms which interact with several molecular targets including 

Bcl2 apoptosis regulator, constitutively expressed Hsc70, heat-inducible Hsp70, nuclear 

hormone receptors, the RAF-1 kinase, components of the proteasome machinery and 

DNA [191, 193, 194]. Bag1, along with its binding partners, is involved in diverse 

cellular functions [195, 196]. Bag1 has been found to serve as an anti-apoptotic molecule 

by suppressing apoptosis upstream of caspase activation and thus, is involved in cell 

survival and proliferation [197, 198]. Another key role of Bag1 is to mediate protein 

quality control by targeting selected proteins for proteasome-mediated degradation [199]. 

Bag1 binds to Hsc/Hsp70 via its carboxy-terminal BAG domain and associates with the 

proteasome in an ATP-dependent manner, promoting binding of Hsc70 and Hsp70 to the 
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proteolytic complex [189]. Bag1 is considered a coupling factor between the Hsp70 

chaperone system and the proteolytic complex. Bag1 and Bag3, however, appear to be 

reciprocally regulated during cellular aging and under acute oxidative or proteasomal 

stress (Figure 1.7) [200, 201]. Bag1 maintains protein quality control through Bag1-

dependent proteasomal degradation of polyubiquinated proteins, mediated by the Hsp70 

chaperone system. However, when there is an accumulation of misfolded proteins and a 

decrease in the efficiency of proteasomal degradation, there is an up-regulation of Bag3-

mediated macroautophagy. This is referred to as a Bag1/Bag3 “switch” and is thought to 

be a physiological adaptation to the changing protein degradation demand during cellular 

aging and proteasomal stress [183, 184, 200, 202].  

 Bag 3 is another member of the Bag family co-chaperones and, in addition to the 

Bag domain, it possesses a tryptophan domain (WW) at its N-terminus and a proline-rich 

repeat (PXXP) at its central region [183]. The WW domain is a protein-protein 

interaction domain that has been found to bind to proline-rich ligands, including the 

adenovirus penton base protein and the PDZ domain containing guanine nucleotide-

exchange factor 2 [203, 204]. The only known protein to interact with the Bag3 proline-

rich region is Phospholipase C-gamma 1 (PLCγ-1), an SH3 containing protein involved 

in growth signal transduction [187, 205]. PLCγ-1 interacts with γ-tubulin and modulates 

the assembly of microtubules, which are essential for macroautophagy [206, 207]. The 

BAG domain of Bag3 is required for its interaction with Hsp70/Hsc70 and Bcl2, an anti- 
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Figure 1.7 The Bag1 to Bag3 switch. In order to maintain protein homeostasis in times of 

proteasomal stress there is an increase in the Bag3/Bag1 ratio, resulting in the recruitment 

of the macroautophagy pathway. The Bag1/Bag3 switch is thought to be a physiological 

adaptation to the changing protein degradation demand during cellular aging and 

proteasomal stress. Adapted from Behl, 2011 [201].   
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apoptotic protein [187]. Hsp70/Hsc70 subsequently interacts with co-chaperones such as 

CHIP, an E3 ligase [208]. Bag3 is the only member of this family that can be induced by 

stressful stimuli, as a result of HSF1 binding to heat shock-responsive elements on the 

Bag3 gene promoter [209]. It is known that the full-length product of the Bag3 gene has 

an apparent mass of 74 kDa and is localized to the cytoplasm, however another form of 

Bag3 has also been described [188]. The shorter form of Bag3 (~40 kDa) has been 

characterized by immunoprecipitation and mass spectrometry in neural synaptosome 

homogenates yet it is unclear whether this form is due to alternative splicing or 

proteolytic processing [210].  

 According to Fuchs et al. (2010) two conserved Ile-Pro-Val (IPV) motifs in Bag3, 

located between the WW domain and the proline-rich domain, are crucial for mediating 

binding to HspB8 [211]. Furthermore, HspB8 binds to Bag3 through its hydrophobic 

groove, formed by β4 and β8 strands (Figure 1.8A). A filter-trap assay also determined 

that the HspB8-Bag3 complex is capable of stimulating the clearance of aggregation-

prone Htt43Q (Huntingtin exon 1 fragment with 43 CAG repeats) through stimulation of 

the macroautophagy pathway (Figure 1.8B) [211, 212]. 

 The multichaperone complex (Bag3-HspB8-Hsp70/Hsc70) is thought to mediate 

macroautophagy in cooperation with the macroautophagy receptor protein p62/SQSTM1 

(sequestome 1). This protein is known to be a stress-regulated multi-adaptor protein that 

is capable of binding to ubiquitin and microtubule associated protein light chain 3 II 

(LC3II), the autophagosome membrane-associated protein, simultaneously [213]. p62 
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Figure 1.8 (A) The current model of sHsp structure. In the ribbon diagram of the 

Triticum Aestivum Hsp16.9 monomer N and C indicate the N- and C-terminal domains 

respectively. The amino acid residues that form the hydrophobic groove are shown as 

blue balls on β4 and as red balls on β8. The hydrophobic groove of HspB8 is crucial for 

the interaction between HspB8 and Bag3. Reproduced from Fuchs et al., 2010 [215]. (B) 

Two conserved Ile-Pro-Val (IPV) motifs in Bag 3, located between the WW domain and 

the proline-rich domain, are crucial for mediating binding to HspB8. The HspB8-Bag3 

complex is capable of stimulating the clearance of aggregation-prone Htt43Q protein 

through Bag3-mediated macroautophagy stimulation. Based on figure from McCollum et 

al., 2010 [212]. 
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binds directly to LC3II by its LIR motif (LC3-interacting region), an 11-amino acid long 

linear motif [214, 215]. LC3II has been found to exist on autophagosomes and therefore 

it is often used as a marker for autophagosome accumulation [216, 217]. Nascent LC3 is 

initially processed at its C-terminus by autophagy-related protein (Atg) 4 and becomes 

LC3I, which possesses a glycine residue at its C-terminal end. LC3I is subsequently 

conjugated with phosphatidlyethanolamine, via an ubiquination-like enzymatic reaction, 

to form LC3II. LC3I is known to have cytoplasmic localization, whereas LC3II is 

associated with the outer and inner membranes of the autophagosome [218]. Following 

self-oligomerization of p62/SQSTM1, it is able to sequestrate ubiquinated substrates in 

the form of inclusion bodies, which are then engulfed by the autophagosome membrane 

through recruitment of LC3II [213].  

 Furthermore, Bag3-HspB8-Hsp70/Hsc70 and CHIP bind to mutated superoxide 

dismutase 1 (SOD1) and then target it for degradation through macroautophagy 

stimulation [184]. CHIP serves as a cochaperone, as well as an ubiquitin ligase and it is 

highly expressed in the heart, vascular cells and other cells [219]. CHIP, in possessing E3 

ubiquitin ligase activity, is able to ubiquinate target proteins [220]. Thus, this 

multichaperone complex may ubiquinate-chaperoned substrates and then target them for 

degradation by p62/SQSTM1 and activation of the macroautophagy pathway (Figure 1.9) 

[202, 208, 221].  
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Figure 1.9 HspB8 and the macroautophagy pathway. HspB8 in, interacting with Bag3, is 

part of a multiheteromeric complex comprised of HspB8, Bag3, Hsp70/Hsc70 and CHIP. 

HspB8 is responsible for recognizing the misfolded proteins and subsequently the 

multichaperone complex mediates macroautophagy in cooperation with the 

macroautophagy receptor protein p62. CHIP ubiquinates target proteins and p62 is then 

capable of binding to ubiquitin and LC3II, the autophagosome membrane-associated 

protein, simultaneously. Thus, this multichaperone complex may ubiquinate-chaperoned 

substrates and then target them for degradation by p62 and activation of the 

macroautophagy pathway. Based on figure from Carra et al., 2009 and Mymrikov et al., 

2011 [186, 221]. 
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1.9 Study Rationale and Hypotheses 

 Due to a preliminary immunoblot result in the MacPhee laboratory, which 

indicated that HspB8 may be expressed in the rat myometrium during gestation, the first 

hypothesis for this study was that HspB8 protein expression in rat myometrium will be 

elevated towards mid-gestation coincident with myometrial hypertrophy, as a means to 

regulate protein homeostasis. Throughout the stages of myometrial differentiation the 

myometrium transitions from a state of hyperplasia to hypertrophy. This transition is 

associated with significant protein turnover; thus, the second hypothesis is that HspB8, 

Bag3 and other members of a regulatory pathway, such as macroautophagy, should be 

expressed in the myometrium at this time to help maintain protein homeostasis.  

 To address these two major hypotheses I set out two main goals for this thesis 

project. The first goal was to characterize the expression of HspB8 protein and potentially 

associated autophagy machinery in the rat myometrium during pregnancy compatible 

with a functional significance for the HspB8 protein in myometrial hypertrophy. The 

second goal was to characterize the potential regulation of HspB8 protein expression in 

pregnant rat myometrium during pregnancy as the uterus changes from a quiescent tissue 

to a contractile tissue. In order to achieve these goals, four main experimental objectives 

were proposed: 

 
Objective 1: To determine the spatial and temporal localization of HspB8 protein 

in the rat myometrium throughout pregnancy and labour. 
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Objective 2: To determine whether mechanical stretch, progesterone or a 

functional progesterone withdrawal (RU486) affects HspB8 protein expression in 

the rat myometrium.  

Objective 3: To characterize the expression of proteins associated with HspB8 in 

the process of hypertrophy including: Bag3, Bag1, Hsp70, Hsc70, CHIP, LC3II, 

eIF2α and γ-actin. 

Objective 4: To determine whether HspB8 and Bag3 form a complex during 

myometrial programming, particularly during the synthetic phase. 

Some experiments used uterine tissue lysates and tissue sections which were 

collected by other students in the MacPhee laboratory including: Bryan White, Brandon 

Cross, Joy Williams and Mandy Peach. However, I collected additional samples 

throughout the duration of this thesis project and all experimental findings described in 

this thesis are the result of my own personal work in the laboratory.  
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Chapter Two 

Materials and Methods 

2.1 Animals 

 Sprague Dawley rats were acquired from Mount Scio Vivarium (Memorial 

University of Newfoundland, St. John’s, NL, Canada) and used for all experiments. The 

rats were kept under the supervision of the Animal Care Unit at the Health Sciences 

Centre, Memorial University of Newfoundland and housed under standard environmental 

conditions of 12 h of light and 12 h of darkness. The rats had access to tap water ad 

libitum and were maintained on LabDiet Prolab RMH 3000 (PMI Nutrition International, 

Brentwood, MO, USA). For all experiments, virgin female rats weighing approximately 

220-250 grams were mated with male rats. D1 of the gestational period was designated 

following the observation of a vaginal plug the morning after mating. The time of 

delivery under these standard conditions was d23 of the gestational period. All 

experiments were granted ethical approval by the institutional animal care committee 

under protocols 08-02-DM to 11-02-DM. 

2.2 Experimental Design 

2.2.1 Tissue Collection 

 Each animal was placed in a euthanasia chamber and exposed to increasing 

concentrations of carbon dioxide, resulting in death by asphyxiation within 5-10 minutes 
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(min). Uterine horns were then removed, excised and opened longitudinally, after which 

fetuses and placentae were discarded. Uterine tissue was then placed in ice cold 

phosphate-buffered saline (PBS; pH 7.4) and a scalpel blade was used to gently scrape 

away the endometrial layer [222-224]. All myometrial samples were flash-frozen in 

liquid nitrogen and stored at -80oC. Each set of myometrial samples was composed of 

samples from ten time points throughout gestation including: non-pregnant (NP), d6, d12, 

d15, d17, d19, d21, d22, d23 (labour) and 1 day post-partum (PP). NP samples were not 

standardized to a given time of day or day in the ovarian cycle. Labour samples were 

collected during active labour, following the delivery of 2-3 pups [222-225]. For 

immunofluorescence detection a portion of rat uterine horn was fixed in 4 % 

paraformaldehyde (PFA) in PBS (pH 7.4) while shaking overnight at room temperature 

(RT). Tissues were processed, paraffin embedded, sectioned and mounted on microscope 

slides by the Histology Unit of Memorial University of Newfoundland School of 

Medicine. Cross sections of the uterine horn were used for immunofluorescence 

experiments and both the longitudinal and circular muscle layers of the myometrium 

were included in all sections. For each experiment all sections were treated at the same 

time under identical conditions.  

2.2.2 Unilateral Pregnancy Model 

 Tissue samples from a unilateral pregnancy model were collected by Dr. Bryan 

White. Detailed procedures of tissue acquisition for this model are reported elsewhere 

[223]. Briefly, virgin female rats underwent general anesthesia followed by unilateral 
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tubal ligation through a flank incision so the rats were only able to become pregnant in 

one horn [223]. Animals were allowed a 7-day period after which the females were mated 

with male rats. The tissue samples were collected from both non-gravid (NG; empty) and 

gravid uterine horns on d15, d19 and d23 (n=4/day) of gestation. Labour samples (d23) 

were collected during active labour, following the delivery of 2-3 pups. 

2.2.3 Progesterone-delayed Labour 

 The levels of serum progesterone peak between d15-d19, after which there is a 

dramatic decline leading into labour [49]. In order to investigate progesterone regulation 

of HspB8 protein expression, pregnant rats were given either a daily injection of 

progesterone (4 mg subcutaneously (s.c) in 0.2 mL of corn oil) to maintain elevated 

plasma levels of progesterone, or vehicle alone (0.2 mL of corn oil s.c.) beginning on d20 

of gestation. Samples were collected from animals receiving injections of vehicle alone 

on d21, d22 and d23 (during labour), whereas samples from the progesterone-treated rats 

were collected on d21, d22 and d23; however, on d23 the rats were not in labour 

(n=4/day). 

2.2.4 RU486-induced Progesterone Withdrawal 

 RU486 (Mifepristone) is a 19-norsteroid that blocks the action of the hormone 

progesterone, which is crucial for initiating and maintaining pregnancy [226]. Therefore, 

upon administration of RU486 to pregnant rats on d18 of gestation, preterm labour is 

induced within 24 h. On d18 of gestation two groups of rats were treated with either 
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RU486 (10 mg/kg, s.c, in 0.5 mL of corn oil containing 10 % ethanol, Mifepristone; 17β-

hydroxy-11β-[4-dimethylaminophenyl]-17-[1-propynyl]-estra-4, 10-dien-3-one; (Sigma-

Aldrich, St. Louis, MO, USA) or vehicle alone (0.5 mL of corn oil). Myometrial samples 

were collected from both treatment groups on d19 of gestation. RU486 treated rats were 

killed during active labour, following the delivery of 2-3 pups (n=4/day). 

2.3 Immunoblot Analysis 

 Immunoblot analysis was performed for gestational profiles of protein expression 

as well as for stretch, progesterone, RU486 and IP experiments. Four independent sets of 

protein samples (n=4/day; i.e. 4 rats used per gestational time point) were used for all 

studies. Sample sizes of n=4/day are routinely used for immunoblot analysis within the 

field [14, 18, 45]. Frozen rat myometrial samples were pulverized under liquid nitrogen 

and homogenized with a Bead Mill (PreCellys, Markham, ON, Canada) in 

radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCL (pH 7.5), 150 mM 

NaCl, 1 % (vol/vol) Triton X-100, 1 % (wt/vol) sodium deoxycholate, and 0.1 % (wt/vol) 

sodium dodecyl sulfate (SDS)) containing Phosphatase Inhibitor Cocktail and 

CompleteTM Mini Ethylenediaminetetraacetic acid (EDTA)-free protease inhibitors 

(Roche Molecular Biochemicals, Laval, QC, Canada). Samples were centrifuged for 15 

min at 15000 x g at 4 °C and supernatants collected. Protein concentrations of each 

sample were obtained using the Bradford Assay (Bradford, 1976). The Bradford Assay 

involves deducing the concentration of a protein sample from its spectrophotometric 

absorbance (A595) when compared to a standard curve of A595 readings of protein 
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standards of known concentrations. A duplicate set of 7 protein standards (0, 2.5, 5, 10, 

15, 20, 25 mg/ml) were prepared using bovine serum albumin (BSA) diluted in double 

deionized water (ddH2O). One mL of 1X Bio-Rad protein assay dye reagent (Bio-Rad 

Laboratories, Mississauga, ON, Canada) was added to each sample and the absorbance 

was measured at 595 nm with a Shimadzu BioMini spectrophotometer. Samples for 

protein determination were prepared using a similar method. One µL of each protein 

lysate, of unknown concentration, was combined with 24 µL of ddH2O and 1 mL of 1X 

Bio-Rad protein assay dye reagent. All samples were prepared in duplicate. The 

absorbance was measured at 595 nm and compared to the standard curve. Standard 

protein determinations were made according to the manufacturer's instructions (BioRad). 

Myometrial protein samples (40 µg/lane) were then separated by SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE) in 10 %, 12 % or 15 % resolving gels, according to 

Laemmli [227], and proteins were electroblotted to 0.2 µm nitrocellulose membranes 

(BioRad, Mississauga, ON, Canada). A MemCode™ Reversible Protein Stain Kit was 

always used, according to the manufacturer’s instructions, for detection of proteins on 

nitrocellulose membranes to confirm the efficiency and relative homogeneity of protein 

transfer in each lane. 

 After protein transfer, membranes were washed with Tris-buffered saline-Tween-

20 (TBST; 20 mM Tris base, 137 mM NaCl, and 0.1% Tween-20; pH 7.6) followed by a 

1 h block in 5 % milk powder/TBST or 5 % BSA/TBST, depending on antisera 

specifications, in order to prevent any non-specific binding of antibodies. Membranes 
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were probed with appropriate primary antisera (Table 2.1) and then washes (1X 20 min 

and 4X 5 min) were performed with TBST and constant shaking. Following primary 

antibody incubation, blots were probed with the appropriate secondary antisera (Table 

2.2) and washes (1X 20 min and 4X 5 min) were repeated with TBST and constant 

shaking at RT. Protein detection was initiated by incubating the blot for 1 min in the 

Pierce SuperSignal West Pico chemiluminescent substrate detection system (MJS 

Biolynx, Inc., Brockville, Ontario, Canada). Multiple exposures of varying time lengths 

were conducted on Amersham ECL film (GE Healthcare Limited, Little Chalfont, BKM, 

UK) to ensure the film response was in the linear range and then the film was developed 

in an automated X-ray film developer. Calponin protein expression was used as a 

normalization control for rat myometrial tissue lysates, following probing with antisera 

raised against the protein of interest, as this protein is constitutively expressed in both 

pregnant and non-pregnant rat myometrial samples following RIPA lysis buffer protein 

extraction [45, 222]. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein 

expression was used as normalization control for cell lysates, as it is stably and 

constitutively expressed at high levels in most tissues and cells [228]. 

2.4 Immunofluorescence Detection 

 Slide-mounted tissue sections were de-waxed and rehydrated in a graded series of 

xylene (3X 100 % for 5 min each) and ethanol washes (1X 100 %, 95 %, 90 %, 80 %, 70 

% and 50 % for 3 min each). Following rehydration, slides were washed in PBS (3X 7  
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Table 2.1 List of primary antibodies used for this study. 

IF, immunofluorescence; IB, immunoblot; *Dependent on the concentration of the primary antisera used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Antisera Antibody type Method Dilution Incubation Catalogue Number 
 

Bag1 Mouse monoclonal IB 1:1000 1 hr RT LS-C95531 
Lifespan Biosciences, WA, USA 

Bag 3 Mouse monoclonal IB 1:1000 2 hrs RT ALX-803-323 
Enzo Life Science, NY, USA 

Bag 3 Rabbit polyclonal IB 1:10 000 1 hr RT Generous gift from Dr. Jacques 
Landry Laboratory 

Bag 3 Rabbit polyclonal IF 1:100 Overnight 
at 4oC 

Generous gift from Dr. Jacques 
Landry Laboratory 

CHIP (STUB1) Rabbit monoclonal IB 1:1000 1 hr RT LS-C137950 
Lifespan Biosciences, WA, USA 

ChromPure 
rabbit IgG 

N/A IF N/A* N/A 011–000–003 
Jackson ImmunoResearch 

Laboratories, PA, USA 
γ-actin Sheep polyclonal IB 1:2000 1 hr RT AB3265 

Millipore, MA, USA 
GAPDH Rabbit polyclonal IB 1:5000 I hr RT Ab9485 

Abcam Inc., Cambridge, MA, USA 
HspB8 Rabbit polyclonal IB 1:1000 2 hrs RT LS-C81990 

Lifespan Biosciences, WA, USA 
HspB8 Rabbit polyclonal IF 1:400 Overnight at 

4oC 
LS-C81990 

Lifespan Biosciences, WA, USA 
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Table 2.1 (cont.) List of primary antibodies used for this study. 

 
IB, immunoblot; RT, room temperature 

 Antisera Antibody type Method Dilution Incubation Catalogue Number 

HspB8 Rabbit polyclonal IB 1:1000 2 hrs RT #3059 
Cell signalling, ON, CA 

HspB8 Rabbit polyclonal IB 1:1000 1 hr RT Generous gift from Dr. Jacques 
Landry Laboratory 

Hsc70 Rabbit polyclonal IB 1:1000 2 hrs RT ADI-SPA-816 
Enzo Life Sciences, NY, USA 

Hsc70 Rabbit polyclonal IB 1:1000 1 hr RT SPC-102C/D 
StressMarq, BC, CA 

Hsp70 Mouse monoclonal IB 1:1000 2 hrs RT ADI-SPA-810 
Enzo Life Sciences, NY, USA 

LC3II Rabbit polyclonal IB 1:1000 2 hrs RT PA1-46286 
Thermo Scientific, IL, USA 

Myc-tag Rabbit polyclonal IB 1:1000 1 hr RT 06-549 
Millipore, MA, USA 

Phospho-EIF2α 
(Pser51) 

Rabbit polyclonal IB 1:1000 2 hrs RT SAB4300221 
Sigma-Aldrich, MO, USA 

Smooth muscle 
calponin 

Mouse monoclonal IB 1:100 000 1 hr RT C2687 
Sigma-Aldrich, St. Louis, MO, USA 
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Table 2.2 List of secondary antibodies used for this study. 
 

IB, immunoblot; IF, immunofluorescence; IP, immunoprecipitation; FITC, fluorescein isothiocyanate; HRP, horseradish peroxidase; 

RT, room temperature. 

	
  

Antisera Antibody type Method Dilution Incubation Catalogue Number 
 

HRP-conjugated 
goat anti-rabbit 

IgG 

Goat polyclonal IB 1:10 000 1 hr RT W401B 
Promega, Madison,WI, USA 

HRP-conjugated 
goat anti-mouse 

IgG 

Goat polyclonal IB 1:10 000 1 hr RT W402B 
Promega, Madison,WI, USA 

HRP-conjugated 
rabbit anti-sheep 

IgG 

Rabbit polyclonal IB 1:5000 1 hr RT AP147P 
Millipore, MA, USA 

Rabbit IgG 
(whole 

molecule)-FITC 

Sheep polyclonal IF 1:250 30 min RT F7512 
Sigma-Aldrich, MO, USA 

Rabbit TrueBlot: 
Anti-Rabbit IgG 

HRP 

Goat polyclonal IP 1:2000 1 hr RT 18-8816 
eBioscience, CA, USA 
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min each) and then heat-induced epitope retrieval was performed using 0.01 M sodium 

citrate buffer (SC), pH 6.0. SC buffer was heated in a water bath at 95 °C, after which 

slides were immersed in the hot solution for 10 min and then transferred to a fresh 

solution at 95°C. Heat-induced epitope retrieval was repeated 4 times. Slides were air 

dried for 5 min then washed in PBS followed by a 15 minute incubation of sections in 1 

mg/mL trypsin (4mM CaCl2, 200mM Tris, pH 7.7; Sigma; Cat# T7168) at RT. Slides 

were rinsed with PBS. Tissue sections were blocked with 5 % normal goat serum/1 % 

horse serum in PBS for 1 h and incubated overnight with an HspB8 or Bag3 specific 

antibody, with agitation at 4 °C (Table 2.1). Both antibodies were diluted in blocking 

solution for all experiments and a non-specific IgG of the appropriate species, at the same 

effective concentration, served as a negative control (Table 2.1). Following incubation, 

sections were washed in PBS and incubated with fluorescein isothiocyanate (FITC)-

conjugated sheep anti-rabbit IgG while shaking at RT for 30 min (Table 2.2). Sections 

were washed 3 times with cold PBS, which contained 0.02 % Tween-20, and mounted 

with Vectashield containing 4', 6-diamidino-2-phenylindole (DAPI) for nuclear staining 

(Vector Laboratories; Cat# H-1200 Burlington, ON, Canada). A Leica DMIRE2 

microscope (Leica Microsystem (Canada) Inc., Richmond Hill, ON, Canada) equipped 

with epi-fluorescence optics and a QImaging Retiga EXi Camera (QImaging, Surrey, BC, 

Canada) was used to view sections and collect images. Images were collected and 

analyzed with Improvision Openlab 5 software (PerkinElmer, Waltham, MA, USA). 
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2.5 Immunoprecipitation (IP) Analysis 

 Human Telomerase Reverse Transcriptase- Human myometrial (hTERT-HM) cell 

lysates or rat myometrial tissue lysates from NP, d15 and d23 of gestation were diluted in 

RIPA buffer (containing Phosphatase Inhibitor Cocktail and Complete and Mini EDTA-

free protease inhibitors) to a final concentration of 1 µg/µl. The lysates were then pre-

cleared using 20 µl of Protein-A Sepharose 4B for 1 h at 4 °C.  Following centrifugation 

at 200 rcf for 1 min, the pellets were discarded and 3 µl of a HspB8 or Bag3 specific 

antibody (generous gifts from Dr. Jacques Landry Laboratory; [178, 183]) were added to 

each sample. The lysates were incubated on a nutator overnight at 4 °C. Twenty 

microlitres of Protein-A Sepharose 4B was added to each antibody-lysate mixture and 

incubated overnight at 4 °C. Following centrifugation at 500 rcf for 5 min, the 

supernatants were discarded and the pellets were washed 4 times with RIPA buffer 

(containing Phosphatase Inhibitor Cocktail and Complete and Mini EDTA-free protease 

inhibitors), with repeated centrifugations at 500 rcf. Finally each pellet was resuspended 

in 4X SDS PAGE buffer, heated at 95 °C for 5 min and centrifuged at 1200 rcf. Samples 

were analyzed by SDS-PAGE and immunoblot analysis. Blots were processed using the 

immunoblot technique previously described (Section 2.3) with one exception: following 

primary antibody incubation blots were probed with TrueBlotTM HRP-conjugated Anti-

rabbit IgG for 1 h with shaking at RT (Table 2.2). 
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2.6 Cell Culture 

2.6.1 Human Myometrial Cell Line hTERT-HM 

 An immortalized human myometrial cell line, hTERT-HM, was a very generous 

gift from Dr. Ann Word (Southwestern Medical Center, Dallas, TX, USA) and was used 

for cell experiments. This line was derived from myometrial tissue of women undergoing 

hysterectomy. Retroviral infection was used to express the catalytic subunit of telomerase 

in these myometrial cells. The hTERT-HM cells retain morphological characteristics of 

proliferating smooth muscle cells in culture including: elongated cell shape with a central 

nucleus, a sheetlike growth pattern at confluence and expression of smooth muscle-

specific actin [229]. This cell line expresses markers of uterine smooth muscle such as, 

the OTR, PR, calponin, caldesmon and smooth muscle α-actin and it maintains 

responsiveness to 17β-estradiol. The expression of these markers indicates that the 

hTERT-HM cell line retains the phenotypic characteristics of human myometrial smooth 

muscle cells and may serve as a useful model to study human myometrial function [229]. 

 Cells were cultured in 75 cm2 flasks at 37 °C under a 5 % CO2 in air environment 

with Dulbecco’s modified Eagle’s medium (DMEM) nutrient mixture F-12 (Ham) 1X 

(DMEM/F12 1:1; (Invitrogen, Burlington, ON, Canada) which was supplemented with 

10 % fetal bovine serum (FBS; PAA Laboratories, Etobicoke, ON, Canada) and 1 % 

pen/strep (100 U/ml penicillin, 100 µg/ml streptomycin; Invitrogen, Burlington, ON, 

Canada). Cells were cultured until they were 70-80 % confluent then used for various 
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experiments.  

2.6.2 Collection of Cell Protein Lysates 

 Cells were washed in 5 mL of PBS and subsequently placed on ice. Nonidet-P40 

(NP-40) lysis buffer (containing Phosphatase Inhibitor Cocktail and CompleteTM Mini 

EDTA-free protease inhibitors; Roche Molecular Biochemicals, Laval, Quebec, Canada; 

Cat# 04906837001, 12454800) were added to each dish and left on ice for ~2 min. Cells 

were removed from the dish using a cell scraper and placed into a 1.5 mL microfuge tube. 

Samples were then homogenized in NP-40 buffer using a bead mill and centrifuged at 

11000 rcf for 15 min at 4 oC. Supernatants were collected and the protein concentrations 

of these samples were obtained using the Bradford Assay [230]. Samples were then 

stored at -80 oC.	
  

2.6.3 Angiotensin II-induced Hypertrophy Experiment  

Angiotensin II has been found to induce hypertrophy of human airway smooth 

muscle cells, vascular smooth muscle cells and cultured rat aortic smooth muscle cells 

[231-233]. For Angiotensin II (Ang II) experiments ~2.0 x 104 hTERT-HM cells were 

each seeded in four 25 cm2 flasks. For the first night, cells were cultured in a 5 % CO2 in 

air incubator at 37 °C in normal media supplemented with 10 % FBS and 1 % pen/strep. 

After 24 h, all cells were cultured in serum free media supplemented with 1 % pen/strep. 

After an additional 24 h, two flasks were cultured in serum free media supplemented with 

1000 nM Ang II (05-23-0101, Calbiochem, San Diego, CA, USA) and 1 % pen/strep, 
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while the two vehicle control flasks were cultured in serum free media supplemented 

with an equivalent volume of ultrapure distilled water (DNAse, RNAse free; Invitrogen, 

Burlington, ON, Canada) and 1 % pen/strep. After an additional 24 h of culture in Ang II 

supplemented medium, protein lysates were collected (Section 2.6.2). 

2.6.4 Plasmids 

 A mammalian expression vector encoding a myc-tagged human HspB8 cDNA 

construct (pCImycHspB8) and a mammalian expression vector encoding a myc-tagged 

human Bag3 cDNA construct (pCImycBag3) were very generous gifts from the 

laboratory of Dr. Jacques Landry [178, 211].  

 To cultivate the acquired plasmids, 50 µL of DH5α competent cells were thawed 

on ice and transferred to a 15 mL Falcon tube. Plasmid (25 ng) was added to the DH5α 

cells and the mixture was incubated on ice for 30 min. The mixture was heated at 42 °C 

for 90 s and subsequently incubated on ice for 2 min. One mL of pre-warmed cell culture 

media (without antibiotic) was added to the mixture and the culture agitated at 220 rpm 

for 1 h at 37 °C. The culture was spread on pre-warmed agar plates containing ampicillin 

(100 µg/mL) and plates were inverted and incubated overnight at 37 °C. Single colonies 

were selected for inoculation of 3 mL mini-cultures containing ampicillin and were left 

shaking overnight at 220 rpm at 37 °C. Plasmid DNA was purified using a PureLink 

Quick Plasmid Miniprep Kit (Invitrogen, Burlington, ON, Canada) according to the 

manufacturer’s instructions and then the DNA concentrations of all samples were 
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determined using a NanoDrop Spectrophotometer. After determining the DNA 

concentration, samples were prepared for restriction endonuclease digestion. Each 

digestion contained 1 µg DNA, 1 µL 10X buffer (depending on restriction enzymes), 10 

µg/µL restriction enzyme and had a total volume of 10 µL, made up with water. 

Restriction endonuclease digestions of DNA were conducted at 37 °C for 1 h, except for 

the uncut plasmids. Before loading samples on to an agarose gel, 1 µL of 6X loading dye 

was added to each sample. Digestions were analyzed on a 1% agarose gel prestained with 

SYBR safe by electrophoresis at 100 V for approximately 40 min. Next, a GeneElute HP 

Plasmid Midiprep Kit (Sigma-Aldrich, MO, USA) was used to purify the plasmid DNA 

in larger scale according to the manufacturer’s instructions and restriction endonuclease 

digestion of all samples was conducted as described above. 

 The cDNA of myc-tagged human HspB8 was inserted at the EcoRI/XbaI 

restriction sites of pCI (Promega) (Figure 2.1). Therefore, following purification of the 

plasmid DNA the plasmid was verified by restriction endonuclease digestion using 

restriction enzymes EcoRI, NotI, and BamHI (Invitrogen, Burlington, ON, Canada). 

EcoRI and NotI were used to verify that the plasmid was present, as NotI is also found in 

the multiple cloning site. Finally, to verify that the plasmid was the correct size and to 

verify the orientation of the insert, BamHI was used as the restriction enzyme. BamHI 
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Figure 2.1 pCI mammalian expression vector encoding cDNA of human myc-tagged 

HspB8 or Bag3. The cDNA was inserted at the EcoRI/XbaI restriction sites of pCI 

(Promega).   
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cuts both the insert and the vector once and the expected band for the cDNA insert was 

465 base pairs (bp).    

 The cDNA of myc-tagged human Bag3 was inserted at the EcoRI/XbaI restriction 

sites of pCI (Promega) (Figure 2.1). Therefore, following purification of the plasmid it 

was verified by restriction endonuclease digestion using the restriction enzymes EcoRI 

and XbaI (Invitrogen, Burlington, ON, Canada). As the cDNA was inserted at the 

EcoRI/Xba1 restriction sites of pCI initially, the restriction enzymes XbaI and EcoRI 

were appropriate for verification.  

2.6.5 Optimization of Cell Transfection 

 pEGFP-C3 expression vectors were transiently transfected into hTERT-HM cells 

using an Amaxa basic nucleofector kit for primary smooth muscle cells (Lonza, 

Mississauga, ON, Canada; Cat# VPI-1004). First, cells were cultured until approximately 

70-80 % confluent, then washed in 5 mL of PBS followed by addition of 1 mL of trypsin 

to each 75 cm2 dish for 5 min at 37°C. One mL of media was then added to each dish to 

inactivate the trypsin and cells from all dishes were pooled into a single 15 mL centrifuge 

tube. Cells were counted and approximately 1 x 106 cells were added to different 15 mL 

tubes. Each tube was centrifuged at 700 rpm for 10 min and the excess media was 

removed. The pellet was resuspended with 100 µL Nucleofector solution (82 µL 

Nucleofector solution + 18 µL Supplement) and 4 µL of pEGFP-C3 expression vector 

was added. The solution was then transferred to a cuvette and a Lonza nucleofector was 
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used to transfect the cells using the appropriate program (A-033, D-033, P-013, P-042, U-

025, B-017) or no program to serve as a control. Following transfection, 0.5 mL of pre-

warmed media was added to the cuvette and the entire solution then subsequently 

transferred to 6 mL of pre-warmed culture media in a 25 cm2 tissue culture flask. Each 

flask was incubated for 10 min at 37 oC in a tissue culture incubator. Finally, the contents 

of each 25 cm2 flask were equally distributed among each well of a 6 well plate (~2 mL 

per well) and placed in a tissue culture incubator, containing 5 % CO2 in air, at 37 oC for 

72 h. Cells were photographed at 24 h and 48 h under brightfield and epi-fluorescence 

illumination for assessment of transfection efficiency and cell numbers. 

2.6.6 Transfection of cells 

 pCImycHspB8, pCImycBag3 and pEGFP-C3 expression vectors were transiently 

co-transfected into hTERT-HM cells, using an Amaxa basic nucleofector kit for primary 

smooth muscle cells, in order to assess their sufficiency to induce cellular hypertrophy. 

Following transfection optimization, program A-033 was utilized for all transfection 

experiments. Three 75 cm2 tissue culture dishes of hTERT-HM cells were used for each 

transfection experiment, using the methods described above (section 2.6.5). For co-

transfection experiments of a single expression vector and transfection indicator plasmid, 

a total of 2 µg of plasmid DNA was added to each cell sample. For co-transfection 

experiments with two transfection vectors (pCImycHspB8 and pCImycBag3) and 

transfection indicator plasmid, a total of 2.5 µg of plasmid DNA were added to each cell 
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sample. After transfection, cells were cultivated for 72 h followed by collection of protein 

lysates.  

2.7 Flow Cytometry 

 Cells to be analyzed by flow cytometry (see Sections 2.6.3 and 2.6.6) were 

labeled with far-red fluorescent reactive dye (Cy5) using a LIVE/DEAD® Fixable Dead 

Cell Stain Kit (L10120, Invitrogen, Burlington, ON, Canada) according to the 

manufacturers’ instructions. This assay is based on the reaction of a fluorescent reactive 

dye with cellular amines. The reactive dye can permeate the compromised membranes of 

necrotic cells and react with free amines in the interior and on the cell surface, resulting 

in intense fluorescent staining. However, the reactive dye can only react with the cell-

surface amines of viable cells, resulting in dim fluorescent staining. The difference in 

intensity between live and dead cell populations is usually greater than 50-fold. Briefly, 

cells were trypsinized and then a sample of cells in suspension containing at least 1 x 106 

cells was centrifuged, washed and resuspended in PBS. One microlitre of reconstituted 

fluorescent reactive dye (far red fluorescent reactive dye) was then added to 1 mL of the 

cell suspension and incubated on ice for 30 min, protected from light. Subsequently, cells 

were washed in PBS and resuspended in 900 µl of PBS and 100 µl of 37 % 

formaldehyde. Cells were incubated at RT for 15 min and then washed in PBS with 1 % 

BSA. Finally, cells were resuspended in 1 mL of PBS with 1 % BSA and then analyzed 

by flow cytometry using a BD FACSCalibur™ flow cytometer (far red fluorescent 

reactive dye: 633/635 nm excitation and ~665 nm emission). 
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2.8 Protein/DNA ratio 

 Protein/DNA ratios were determined using a SurePrepTM RNA/DNA/Protein 

Purification Kit (Fisher BioReagents, Fairlawn, NJ USA) according to the manufacturer’s 

instructions. This kit allowed for isolation of both proteins and purification of genomic 

DNA. Briefly, 0.8 x 106 hTERT-HM cells were used for cell lysate preparation. Initially, 

total RNA was purified using RNA wash solution/RNA elution buffer and the 

flowthrough, containing total protein, was retained. Subsequently, genomic DNA from 

the flowthrough was purified using genomic DNA wash solution and genomic DNA 

elution buffer. DNA (A260) and protein (A280) concentrations were determined with a 

Nanodrop Spectrophotometer. 

2.9 Data Analysis 

 Densitometric analysis was performed on immunoblots using ImageJ software 

(National Institutes of Health, USA). Densitometric measurements of the protein of 

interest were normalized to the loading control calponin or GAPDH and presented as the 

mean ± standard error of the mean (SEM). GraphPad Instat version 3.0 (GraphPad 

Software, San Diego, CA, USA, www.graphpad.com) was used to perform statistical 

analysis and graphs were prepared using GraphPad Prism version 5.0 (GraphPad 

Software). Data from normal gestational profiles and progesterone experiments were 

subjected to a one-way analysis of variance (ANOVA) or a two-way ANOVA, 

respectively. Data that was found to have significance from a one- way or two-way 
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ANOVA was then subjected to Newman-Keuls post-hoc test to determine pair wise 

significance. Data from unilateral pregnancy and RU486 experiments were subjected to a 

student t-test. The differences were considered significant if the p-value was less than 

0.05.  
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Chapter Three 

Results 

3.1 Expression of HspB8 During Normal Pregnancy and Labour 

3.1.1 Immunoblot Analysis of HspB8 Protein 

 Immunoblot analysis was performed to characterize HspB8 protein expression in 

non-pregnant and pregnant rat myometrium throughout the gestational period. HspB8 and 

calponin protein were detected at their predicted molecular weights, 22 kDa and 34 kDa 

respectively (Figure 3.1.1A). Following densitometric analysis of immunoblots, a one-

way ANOVA revealed that HspB8 protein expression changed significantly over 

gestation (p< 0.05; n=4/day). HspB8 protein expression was particularly elevated at d15, 

d17 and d19 compared to expression at NP and d6. These results were confirmed by 

additional immunoblot analysis using a second HspB8 specific antibody from Cell 

Signaling (2.1; Figure 3.1.1C). The two antibodies utilized were polyclonal antisera; 

however, the antibody from LifeSpan BioSciences was designed to recognize the N- 

terminus of HspB8 whereas the antibody from Cell Signaling detected endogenous levels 

of total HspB8 protein. 

3.1.2 Immunofluorescence Detection of HspB8 Protein 

 
 To determine the spatial localization of HspB8 protein in the myometrium 

throughout gestation, immunofluorescence detection was completed. Detection of HspB8 
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Figure 3.1.1 Immunoblot analysis of HspB8 protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of HspB8 protein and calponin are shown. 

Analysis was performed using a HspB8 specific antibody (LifeSpan BioSciences). (B) 

The relative protein expression of HspB8 was analyzed using densitometric analysis. The 

data were presented as the mean ± SEM of the relative optical density of HspB8 

normalized to the optical density of calponin. Values are from four independent 

experiments. One-way ANOVA revealed that HspB8 protein expression changed 

significantly overall. HspB8 protein expression was significantly elevated at d15, d17 and 

d19 compared to expression at NP and d6 (*, p< 0.05; Newman-Keuls, post-hoc test; 

n=4/day). Days 6, 12, 15, 17, 19, 21, 22, and 23 represent gestational time points. NP, 

non-pregnant; PP, 1 day postpartum. (C) Representative immunoblots of HspB8 protein 

and calponin are shown. Analysis was performed using a HspB8 specific antibody (Cell 

Signaling). Results further confirm those received using the other commercially available 

antibody purchased from LifeSpan Biosciences. 
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protein in the circular and longitudinal muscle layers revealed that it was primarily 

localized in the cytoplasm of cells throughout gestation (Figure 3.1.2- 3.1.5). At higher 

magnification, it was confirmed that HspB8 protein was localized in the cytoplasm and 

there was an absence of any nuclear staining (Figure 3.1.6). It was also noted that there 

was particularly intense cytoplasmic staining on d15 and d17 of gestation, indicating 

concentrated subcellular localization of HspB8 protein.  

3.2 Immunofluorescence Detection of HspB8 Protein in Rat Heart Tissue 

Although immunoblot analysis demonstrated significant changes in HspB8 

protein expression throughout gestation, there was only a slight apparent increase in 

immunofluorescence detection of HspB8 protein. Thus, as a means to assess the quality 

of the HspB8 specific antibody for immunofluorescence procedures, immunolocalization 

of HspB8 protein was examined in rat heart tissue. Depre et al. (2006) reported HspB8 

protein expression in heart muscle particularly in the cytoplasm of myocytes [234]. 

Detection of HspB8 protein was localized to the cytoplasm of rat myocytes (Figure 3.2.1) 

as previously reported, confirming the specificity of the antisera used. 

 
3.3 Analysis of Proteins Associated with HspB8 during Pregnancy 

3.3.1 Expression of Bag3 protein 

 Immunoblot analysis was performed to characterize Bag3 protein expression in 

non-pregnant and pregnant rat myometrium throughout the gestation period. 
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Figure 3.1.2 Immunofluorescence detection of HspB8 protein in the circular muscle 

layer of NP rat myometrium and myometrium from d6 to d17 of gestation. The images 

demonstrate mainly cytoplasmic localization of the protein and an absence of nuclear 

staining (n=3/day) using a HspB8-specific antibody (Lifespan BioSciences). Ctrl = 

control, rabbit IgG. Scale bar = 50 µm. 
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Figure 3.1.3 Immunofluorescence detection of HspB8 protein in the circular muscle 

layer of rat myometrium at d19 to d23 of gestation and PP. The images demonstrate 

mainly cytoplasmic localization of the protein and an absence of nuclear staining 

(n=3/day) using a HspB8 specific antibody (LifeSpan BioSciences). Ctrl = control, rabbit 

IgG. Scale bar = 50 µm. 
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Figure 3.1.4 Immunofluorescence detection of HspB8 protein in the longitudinal muscle 

layer of NP rat myometrium and d6 to d17 of gestation. Detection of HspB8 protein, 

using a HspB8 specific antibody (LifeSpan Biosciences), in the longitudinal muscle layer 

demonstrated that it was primarily and readily localized in the cytoplasm of myometrial 

cells and there was an absence of nuclear staining (n=3/day). Arrows indicate blood 

vessels. Ctrl = control, rabbit IgG. Scale bar = 50 µm. 
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Figure 3.1.5 Immunofluorescence detection of HspB8 protein in the longitudinal muscle 

layer of rat myometrium at d19 to d23 of gestation and PP. Detection of HspB8 protein, 

using a HspB8 specific antibody (LifeSpan BioSciences), in the longitudinal muscle layer 

demonstrated that it was primarily localized in the cytoplasm of myometrial cells and 

there was an absence of nuclear staining (n=3/day). Ctrl = control, rabbit IgG. Scale bar = 

50 µm. 
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Figure 3.1.6 Immunofluorescence detection of HspB8 protein in the cytoplasm of 

longitudinal muscle cells of rat myometrium. Sections were probed with a HspB8 

specific antibody (LifeSpan BioSciences). The image (d15+ Dapi) demonstrates that 

there was no nuclear staining (arrows indicate the nucleus); thus, indicating cytoplasmic 

localization of the protein within myometrial cells (n=3/day). Ctrl = control, rabbit IgG. 

Scale bar = 50 µm. 
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Figure 3.2.1 Immunofluorescence detection of HspB8 protein in rat heart tissue sections. 

Analysis was conducted using a HspB8 specific antibody (LifeSpan BioSciences). The 

images demonstrate cytoplasmic localization of the protein within heart myocytes, 

detection near cell membranes and the absence of any nuclear staining. Based on 

previous studies, the expected staining for the heart was clear localization in the 

cytoplasm. Arrows on the control indicate red blood cells. Ctrl = control, rabbit IgG. 

Scale bar = 50 µm. 

  



91

Ctrl

HspB8



92 
 

Immunoblot analysis was carried out with a Bag3 specific antibody at the time points 

previously described (Table 2.1; Section 2.2.1). Bag3 and calponin protein were detected 

at their predicted molecular weights, 74 kDa and 34 kDa respectively (Figure 3.3.1). 

Following densitometric analysis, one-way ANOVA revealed that Bag3 protein 

expression changed significantly over gestation (p< 0.05; n=4/day). Bag3 protein 

expression was significantly elevated at d15, compared to expression at NP, and at d17 

compared to NP, d6, d23 and PP. Following immunoblot analysis it was noted that 

additional protein bands were detected at different molecular weights, possibly 

representing cleavage products of Bag3 (Figure 3.3.2). 

3.3.2 Immunofluorescence Detection of Bag3 Protein 

To determine the spatial localization of Bag3 protein throughout gestation, 

immunofluorescence detection was completed. Detection of Bag3 protein in the circular 

and longitudinal muscle layers of rat myometrium indicated that it was homogeneously 

distributed in the cytoplasm of myometrial cells. Specifically, there was perinuclear 

localization of Bag3 protein in addition to general cytoplasmic localization, and an 

absence of nuclear staining (Figure 3.3.3-3.3.6). Immunostaining was more homogeneous 

and slightly more intense around d15 and d17 in comparison to early time points.  

3.3.3 Expression of Bag1 Protein 

 One important function of Bag1 is to mediate protein quality control by targeting 

selected proteins for proteasome-mediated degradation, likely also an essential process  
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Figure 3.3.1 Immunoblot analysis of Bag3 protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of Bag3 protein and calponin are shown. 

(B) The relative expression of Bag3 was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of Bag3 normalized to 

the optical density of calponin. Values are from four independent experiments. One-way 

ANOVA revealed that Bag3 protein expression changed significantly overall. Bag3 

protein expression was significantly elevated at d15 compared to expression at NP (*, p< 

0.05; Newman-Keuls, post-hoc test; n=4/day). Bag3 protein expression was also 

significantly elevated at d17 compared to NP, d6, d23 and PP (**, p< 0.05). Days 6, 12, 

15, 17, 19, 21, 22, and 23 represent gestational time points. NP, non-pregnant; PP, 1 day 

postpartum.  
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Figure 3.3.2 Expression of potential Bag3 cleavage products in rat myometrium during 

gestation. Representative immunoblot probed with a Bag3 specific antibody. Full-length 

Bag3 protein has a molecular weight of approximately 74 kDa however, additional bands 

were also detected at approximately 40 kDa and 25 kDa between NP and ~ d19 of 

gestation. These bands may represent possible cleavage products of Bag3 protein. Arrows 

indicate the unknown bands recognized by the Bag3 specific antibody. 
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Figure 3.3.3 Immunofluorescence detection of Bag3 protein in the circular muscle layer 

of NP rat myometrium and d6 to d17 of gestation. The images demonstrate mainly 

cytoplasmic localization of the protein, as well as an absence of nuclear staining 

(n=3/day). Arrows indicate perinuclear localization. Ctrl = control, rabbit IgG. Scale bar 

= 50 µm. 
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Figure 3.3.4 Immunofluorescence detection of Bag3 protein in the circular muscle layer 

of rat myometrium at d19 to d23 of gestation and PP. The images demonstrate mainly 

cytoplasmic localization of the protein, as well as an absence of nuclear staining 

(n=3/day). Arrows indicate perinuclear localization. Ctrl = control, rabbit IgG. Scale bar 

= 50 µm. 
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Figure 3.3.5 Immunofluorescence detection of Bag3 protein in the longitudinal muscle 

layer of NP rat myometrium and myometrium from d6 to d17 of gestation. Detection of 

Bag3 protein in the longitudinal muscle layer demonstrated that it was primarily and 

readily localized in the cytoplasm of myometrial cells. There was also an absence of 

nuclear staining (n=3/day). Ctrl = control, rabbit IgG. Scale bar = 50 µm. 
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Figure 3.3.6 Immunofluorescence detection of Bag3 protein in the longitudinal muscle 

layer of rat myometrium at d19 to d23 of gestation and PP. Detection of Bag3 protein in 

the longitudinal muscle layer demonstrated that it was primarily localized in the 

cytoplasm of myometrial cells. There was also an absence of nuclear staining (n=3/day). 

Ctrl = control, rabbit IgG. Scale bar = 50 µm. 
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for the maintenance of pregnancy [199]. Immunoblot analysis was performed to 

characterize Bag1 protein expression in non-pregnant and pregnant rat myometrium 

throughout the gestational period. Immunoblot analysis was carried out with a Bag1 

specific antibody at the time points previously mentioned (Table 2.1; Section 2.2.1). 

Bag1 and calponin protein were detected at their predicted molecular weights, 38 kDa 

and 34 kDa respectively (Figure 3.3.7). Following immunoblot analysis it was noted that 

a doublet protein was visible on immunoblots, representing a possible phosphorylated 

form of Bag1. Previously published results also suggested the presence of a doublet band 

of ~38 kDa in peripheral blood mononuclear cells and tonsil as evidence of a 

phosphorylated form of Bag1 [235]. One-way ANOVA of both bands revealed that Bag1 

protein expression changed significantly over gestation (p< 0.05; n=4/day). Bag1 protein 

expression was significantly expressed at NP, d6 and d12 compared to d21, d22 and at 

d12 compared to d15, d19, d21, d22, d23, PP.  

 
3.3.4 Expression of Hsp70 and Hsc70 Protein 
 

 It is well known that the Bag proteins are a family of co-chaperones that are 

capable of interacting with the ATPase domain of Hsc70/Hsp70 through their structural 

Bag domain [188, 189]. Therefore, to determine the levels of Hsp70 protein throughout 

normal pregnancy and labour in the rat myometrium, immunoblot analysis was 

performed. Immunoblot analysis was carried out with an Hsp70 specific antibody 

throughout gestation (Table 2.1). Hsp70 and calponin protein bands were detected at their 

predicted molecular weights, 70 kDa and 34 kDa respectively (Figure 3.3.8). Following 
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Figure 3.3.7 Immunoblot analysis of Bag1 protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of Bag1 protein and calponin are shown. 

(B) The relative expression of Bag1 was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of Bag1 normalized to 

the optical density of calponin. Values are from four independent experiments. One-way 

ANOVA revealed that Bag1 protein expression changed significantly overall. Bag1 

protein expression was significantly elevated at NP, d6 and d17 compared to d21 and d22 

(*, p< 0.05; Newman-Keuls, post-hoc test; n=4/day).. Bag1 protein expression was also 

significantly elevated at d12 compared to d15, d19, d21, d22, d23 and PP (**, p< 0.05). 

Days 6, 12, 15, 17, 19, 21, 22, and 23 represent gestational time points. NP, non-

pregnant; PP, 1 day postpartum. 
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Figure 3.3.8 Immunoblot analysis of Hsp70 protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of Hsp70 protein and calponin are shown. 

(B) The relative expression of Hsp70 was analyzed using densitometric analysis. The 

data were presented as the mean ± SEM of the relative optical density of Hsp70 

normalized to the optical density of calponin. Values are from four independent 

experiments (n=4/day). One-way ANOVA revealed that Hsp70 protein expression 

changed significantly overall. Hsp70 protein expression was significantly elevated at 19, 

21, 22, 23 and PP ccompared to expression at NP and d6 (*, p< 0.05; Newman-Keuls, 

post-hoc test; n=4/day). Furthermore, Hsp70 protein expression on d23 and PP was 

significantly higher than d12 and d15 (**, p< 0.05). Days 6, 12, 15, 17, 19, 21, 22, and 23 

represent gestational time points. NP, non-pregnant; PP, 1 day postpartum. 
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immunoblot and densitometric analysis, one-way ANOVA revealed that Hsp70 protein 

expression changed significantly over gestation (p< 0.05; n=4/day). Protein expression 

was significantly elevated at d19, d21, d22 and d23 compared to expression at NP and d6. 

Furthermore, Hsp70 protein expression was significantly higher on d23 and PP compared 

to d12 and d15.  

Immunoblot analysis was also performed to characterize Hsc70 protein 

expression in non-pregnant and pregnant rat myometrium throughout the gestational 

period. Immunoblot analysis was carried out with an Hsc70 specific antibody throughout 

gestation (Table 2.1). Hsc70 and calponin protein bands were detected at their predicted 

molecular weights, 73 kDa and 34 kDa respectively (Figure 3.3.9). Following 

immunoblot and densitometric analysis one-way ANOVA revealed that Hsc70 protein 

expression did not change significantly throughout gestation (p> 0.05; n=4/day). Hsc70 

protein was constitutively expressed throughout pregnancy.  

 
3.3.5 Expression of CHIP Protein 
 

HspB8 has been found to be part of a multi-heteromeric complex, comprised of 

HspB8, Bag3, Hsc70 and CHIP, which is responsible for the removal of misfolded 

proteins through macroautophagy activation. Therefore, immunoblot analysis was 

performed to characterize CHIP protein expression in non-pregnant and pregnant rat 

myometrium throughout the gestational period. Immunoblot analysis was carried out with 

a CHIP specific antibody throughout gestation (Table 2.1). CHIP and calponin protein  
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Figure 3.3.9 Immunoblot analysis of Hsc70 protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of Hsc70 protein and calponin are shown. 

(B) The relative expression of Hsc70 was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of Hsc70 normalized to 

the optical density of calponin. Values are from four independent experiments. One-way 

ANOVA revealed that Hsc70 expression did not change significantly overall (p >0.05; 

n=4/day). Hsc70 protein is constitutively expressed throughout gestation. Days 6, 12, 15, 

17, 19, 21, 22, and 23 represent gestational time points. NP, non-pregnant; PP, 1 day 

postpartum. 
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bands were detected at their predicted molecular weights, 39 kDa and 34 kDa 

respectively (Figure 3.3.10). Following immunoblot and densitometric analysis, one-way 

ANOVA revealed that CHIP protein expression did not change significantly throughout 

gestation (p> 0.05; n=4/day); CHIP protein was constitutively expressed throughout 

pregnancy.  

3.3.6 Expression of LC3II Protein 

 Thus far, the only known protein found on autophagosomes is LC3II and as a 

result, it is widely used as a marker for autophagosomes and the process of 

macroautophagy [218]. As a means to assess autophagosome accumulation, immunoblot 

analysis was performed to characterize LC3II protein expression in non-pregnant and 

pregnant rat myometrium throughout gestation. Immunoblot analysis was carried out 

with a LC3II specific antibody throughout gestation (Table 2.1). LC3II and calponin 

protein bands were detected at their predicted molecular weights, 16 kDa and 34 kDa 

respectively (Figure 3.3.11). Following immunoblot and densitometric analysis, one-way 

ANOVA revealed that LC3II protein expression changed significantly over gestation. 

LC3II protein expression was significantly elevated at PP compared to expression at NP, 

d6 and d12 (p<0.05; n=4/day). 

3.3.7 Expression of Pser51-eIF2α Protein 

 Carra et al. (2009) suggest that HspB8 and Bag3 induce phosphorylation of the α-

subunit of the translation initiator factor eIF2 in HEK-293 cells which ultimately results 



114 
 

 

 

 

 

 

Figure 3.3.10 Immunoblot analysis of CHIP protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of CHIP protein and calponin are shown. 

(B) The relative expression of CHIP was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of CHIP normalized to 

the optical density of calponin. Values are from four independent experiments. One-way 

ANOVA revealed that CHIP expression did not change significantly throughout gestation 

(p> 0.05; n=4/day). CHIP protein is constitutively expressed throughout gestation. Days 

6, 12, 15, 17, 19, 21, 22, and 23 represent gestational time points. NP, non-pregnant; PP, 

1 day postpartum. 
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Figure 3.3.11 Immunoblot analysis of LC3II protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of LC3II protein and calponin are shown. 

(B) The relative expression of LC3II was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of LC3II normalized to 

the optical density of calponin. Values are from four independent experiments. One-way 

ANOVA revealed that LC3II protein expression changed significantly overall. LC3II 

protein expression was significantly elevated at PP compared to expression at NP, d6 and 

d12 (*, p< 0.05; Newman-Keuls, post-hoc test; n=4/day). Days 6, 12, 15, 17, 19, 21, 22, 

and 23 represent gestational time points. NP, non-pregnant; PP, 1 day postpartum. 
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in translational shut-down and activation of the macroautophagy process [186]. To begin 

assessing whether HspB8 and Bag3 could be inducing phosphorylation of the α-subunit 

of eIF2 in a temporal-specific manner within the myometrium, immunoblot analysis was 

performed to characterize Pser51-eIF2α protein expression in non-pregnant and pregnant 

rat myometrium throughout gestation. Immunoblot analysis was carried out with a 

Pser51-eIF2α specific antibody throughout gestation (Table 2.1). Pser51-eIF2α and 

calponin proteins were detected at their predicted molecular weights, 36 kDa and 34 kDa 

respectively (Figure 3.3.12). Following immunoblot and densitometric analysis, one-way 

ANOVA revealed that Pser51-eIF2α protein expression did not change significantly 

throughout gestation (p> 0.05; n=4/day). Pser51-eIF2α protein was constitutively 

expressed throughout pregnancy and post-partum. 

 
3.4 The Effect of Uterine Distension on HspB8 Expression: Unilateral Pregnancy 

Model 

3.4.1 Expression of HspB8 Protein 

As immunoblot analysis demonstrated an increase in HspB8 protein expression at 

d15, d17 and d19 of gestation, a period of stretch-induced hypertrophy, the role of uterine 

distension on regulating HspB8 protein expression was assessed using a unilateral 

pregnancy model [14]. Immunoblot analysis was performed using protein lysates from 

the stretched (gravid) and non-stretched (non-gravid) uterine horns at d15, d19 and d23 

and an HspB8 specific antibody (Table 2.1). There were no statistically significant 
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Figure 3.3.12 Immunoblot analysis of Pser51-eIF2α protein expression in pregnant rat 

myometrium. (A) Representative immunoblots of Pser51-eIF2α protein and calponin are 

shown. (B) The relative expression of Pser51-eIF2α was analyzed using densitometric 

analysis. The data were presented as the mean ± SEM of the relative optical density of 

Pser51-eIF2α normalized to the optical density of calponin. Values are from four 

independent experiments. One-way ANOVA revealed that Pser51-eIF2α expression did 

not change significantly overall (p> 0.05; n=4/day). Pser51-eIF2α protein is 

constitutively expressed throughout gestation. Days 6, 12, 15, 17, 19, 21, 22, and 23 

represent gestational time points. NP, non-pregnant; PP, 1 day postpartum. 
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changes in the level of detection of HspB8 protein between the non-gravid and gravid 

samples at any of the time points examined (Figure 3.4.1).   

3.4.2 Immunofluorescence Detection of HspB8 Protein 

To determine if the spatial localization of HspB8 protein changed due to uterine 

stretch, immunofluorescence detection was performed. Detection of HspB8 protein in the 

circular and longitudinal muscle layers at d19 and d23 of gestation demonstrated that 

HspB8 protein was primarily localized to the cytoplasm of myometrial cells and that 

there was an absence of nuclear staining in both the non-gravid and gravid uterine 

samples (Figure 3.4.2- 3.4.3). In addition, there were no marked differences in the level 

of detection of HspB8 protein between the non-gravid and gravid samples at the two time 

points analyzed.  

 
3.5 The Effect of Progesterone on HspB8 Expression 
 

3.5.1 Progesterone-induced Delayed Labour: Expression of HspB8 Protein 

 As HspB8 protein expression was elevated during this d15-d19 window of 

gestation compared to earlier time points (Figure 3.1.1), it was hypothesized that the 

observed pattern of HspB8 expression was under the influence of progesterone. Thus, 

administration of exogenous progesterone may further induce HspB8 protein expression.  
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Figure 3.4.1 HspB8 protein expression is not influenced by uterine stretch. 

Representative immunoblots of HspB8 protein and calponin detection are shown for three 

gestational time points, d15 (A), d19 (B) and d23 (C). Analysis was performed using a 

HspB8 specific antibody (Cell Signaling). Densitometric analysis revealed that there 

were no statistically significant differences in HspB8 protein expression between the non-

gravid and gravid samples at the time points examined (paired t-test; p> 0.05). Values are 

from 4 independent experiments (n=4/day) ± SEM. 
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Figure 3.4.2 Immunofluorescence detection of HspB8 protein in the circular muscle 

layer of rat myometrium in gravid (G) and non-gravid (NG) uterine horns. Sections were 

probed with a HspB8 specific antibody (LifeSpan BioSciences). Two representative time 

points of pregnancy are shown, d19 and d23. The images demonstrate cytoplasmic 

localization of the protein in myometrial cells; however, there was no visible marked 

change in the level of detection of HspB8 protein between the non-gravid and gravid 

samples at either time point (n=2/day). Ctrl = control, rabbit IgG. Scale bar = 50 µm. 
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Figure 3.4.3 Immunofluorescence detection of HspB8 protein in the longitudinal muscle 

layer of rat myometrium in gravid (G) and non-gravid (NG) uterine horns. Sections were 

probed with a HspB8 specific antibody (LifeSpan BioSciences). Two representative time 

points of pregnancy are shown, d19 and d23. The images demonstrate cytoplasmic 

localization of the protein in myometrial cells; however, there was no visible marked 

change in the level of detection of HspB8 between the non-gravid and gravid samples at 

either time point (n=2/day). Ctrl = control, rabbit IgG. Scale bar = 50 µm. 
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Animals were administered progesterone beginning on d20 of gestation and did not go 

into labour on d23 of gestation. Immunoblot analysis of HspB8 protein expression in 

myometrial tissue collected from vehicle and progesterone-treated rats indicated that 

progesterone administration significantly affected HspB8 protein expression (p<0.05; 

n=4/day; Table 2.1; Figure 3.5.1A). HspB8 and calponin protein bands were detected at 

their predicted molecular weights, 22 kDa and 34 kDa respectively. Densitometric 

analysis of immunoblot data and two-way ANOVA indicated that HspB8 protein 

expression at d23 in rats administered progesterone was significantly lower compared to 

expression in rats at d23 administered vehicle. Immunoblot analysis of the two treatment 

groups was also performed using another commercially available antibody (Cell 

Signaling) to further confirm the results (p<0.05; n=4/day; Table 2.1; Figure 3.5.1C). 

Overall, immunoblot analysis indicated that progesterone might have an inhibitory effect 

on HspB8 protein expression.  

 
3.5.2 RU486-induced Progesterone Withdrawal: Expression of HspB8 Protein 
 

 Upon administration of the progesterone receptor antagonist RU486 to pregnant 

rats on d18 of gestation, preterm labour is induced within 24 h. Immunoblot analysis of 

HspB8 protein expression in myometrial tissue collected from vehicle and RU486-treated 

rats indicated that a functional progesterone withdrawal significantly affected HspB8 

protein expression (p<0.05; n=4/day; Figure 3.5.2). HspB8 protein expression was 

significantly increased following administration of RU486. This result further suggests 

that progesterone may negatively regulate HspB8 gene expression.  
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Figure 3.5.1 Immunoblot analysis of HspB8 protein expression in a delayed-labour 

model following administration of progesterone (P4) or corn oil (O; vehicle control) to 

pregnant rats. (A) Representative immunoblots of HspB8 protein and calponin are shown. 

Analysis was performed using a HspB8 specific antibody (LifeSpan BioSciences). (B) 

The relative protein expression of HspB8 was analyzed using densitometric analysis. The 

data were presented as the mean ± SEM of the relative optical density of HspB8 

normalized to the optical density of calponin. Values are from four independent 

experiments. Two-way ANOVA revealed that HspB8 protein expression changed 

significantly between the two treatment groups (p< 0.05; n=4/day). All data indicated 

with symbols are significantly different (paired t-test; p< 0.05). HspB8 protein expression 

at d23-P4 was significantly lower compared to expression at d23-O (*, p< 0.05). O, oil; 

P4, progesterone. Designations 21-O, 22-O, 23-O, 21-P4, 22-P4, 23-P4 represent 

gestational time points in the two treatment groups. (C) Representative immunoblots of 

HspB8 protein and calponin are shown. Analysis was performed using a HspB8 specific 

antibody (Cell Signaling). Results further confirm those received using the other 

commercially available antibody from LifeSpan BioSciences. 
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Figure 3.5.2 Immunoblot analysis of HspB8 protein expression in rat myometrium in a 

preterm labour model, following administration of RU486 or corn oil (vehicle control) to 

pregnant rats. Treatment was administered on d18 and samples were collected on d19 of 

gestation. (A) Representative immunoblots of HspB8 protein and calponin are shown. (B) 

The relative expression of HspB8 was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of HspB8 normalized to 

the optical density of calponin. Values are from four independent experiments. Paired t-

test revealed that HspB8 protein expression changed significantly overall (*, p< 0.05; 

n=4/day). O, Oil (vehicle control); T, RU486. 
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3.5.3 Immunofluorescence Detection of HspB8 Protein 

To determine if the spatial localization of HspB8 protein changed due to RU486 

administration, immunofluorescence detection was conducted. Detection of HspB8 

protein in the circular and longitudinal muscle layers demonstrated that HspB8 was 

primarily localized to the cytoplasm of myometrial cells and that there was an absence of 

nuclear staining in both treatment groups (RU486 or vehicle alone) (Figure 3.5.3). There 

was a notable decrease in HspB8 protein in the circular muscle layer of rat myometrium 

following RU486 administration; however, there was an apparent small increase in the 

level of HspB8 protein in the longitudinal muscle layer following RU486 administration 

(n=2/day). This indicates that there may be myometrial layer-specific up- 

regulation of HspB8 protein expression as a result of functional progesterone withdrawal.  
 

3.5.4 Expression of Bag3 Protein 

 RU486 treated rat myometrial samples were also used to study the effects of 

progesterone on Bag3 protein expression. Immunoblot analysis of Bag3 protein 

expression in myometrial tissue collected from vehicle and RU486-treated rats indicated 

that a functional progesterone withdrawal did not significantly affect Bag3 protein 

expression (p>0.05; n=4/day; Figure 3.5.4). This result suggests that progesterone is not a 

major regulator of Bag3 protein expression.  
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Figure 3.5.3 Immunofluorescence detection of HspB8 protein in the longitudinal and 

circular muscle layers of rat myometrium, using a HspB8 specific antibody (LifeSpan 

BioSciences), following treatment of pregnant rats with RU486 (486) or corn oil (vehicle 

control). Treatment was administered on d18 and samples were collected on d19 of 

gestation. The images demonstrate mainly cytoplasmic localization of HspB8 protein and 

an absence of nuclear staining. There was a notable decrease in HspB8 protein in the 

circular muscle layer and an apparent small increase in HspB8 protein in the longitudinal 

muscle layer, following RU486 administration (n=2/day). Ctrl = control, rabbit IgG. 

Scale bar = 50 µm. 
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Figure 3.5.4 Immunoblot analysis of Bag3 protein in the rat myometrium in a preterm 

labour model, following administration of RU486 or corn oil (vehicle control) to 

pregnant rats. Treatment was administered on d18 and samples were collected on d19 of 

gestation. (A) Representative immunoblots of Bag3 protein and calponin are shown. (B) 

The relative expression of Bag3 was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of Bag3 normalized to 

the optical density of calponin. Values are from four independent experiments. Paired t-

test revealed that Bag3 protein expression did not change significantly overall (p> 0.05; 

n=4/day). O, Oil (vehicle control); T, RU486. 
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3.5.5 Expression of LC3II Protein 

 RU486 treated myometrial samples were also used to study the effects of 

progesterone on LC3II protein expression. Immunoblot analysis of LC3II protein 

expression in myometrial tissue collected from vehicle and RU486-treated rats indicated 

that a functional progesterone withdrawal results in a small, but statistically significant 

increase in LC3II protein expression (p>0.05; n=4/day; Figure 3.5.5).  

3.6 Exogenous Expression of HspB8 in hTERT-HM Cells 

3.6.1 Optimization of Transfection Efficiency of hTERT-HM Cells 

Experiments were conducted in triplicate to optimize the transfection efficiency of 

hTERT-HM cells with expression vectors using an Amaxa Nucleofector system. pEGFP-

C3 expression vector was transiently transfected into hTERT-HM cells using Amaxa 

basic nucleofector kit for primary smooth muscle cells (Lonza). Transfection of the cells 

was conducted using the programs A-033, D-033, P-013, P-042, U-025, B-017 or no 

program (control). Optimization of transfection was repeated with a focus on Lonza 

nucleofector programs A-033 and U-025 as they had the highest transfection efficiency 

and the least amount of cell loss in the initial experiment. Consultation with the company 

Lonza also resulted in the testing of the program B-017 (Figure 3.6.1- 3.6.2). The results 

indicated that Program A-033 had the highest transfection efficiency and the least amount 

of cell loss for hTERT-HM cells. Thus, Program A-033 was utilized for all further 

transfection experiments.  
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Figure 3.5.5 Immunoblot analysis of LC3II protein expression in rat myometrium in a 

preterm labour model, following administration of RU486 or corn oil (vehicle control) to 

pregnant rats. Treatment was administered on d18 and samples were collected on d19 of 

gestation. (A) Representative immunoblots of LC3II protein and calponin are shown. (B) 

The relative expression of LC3II was analyzed using densitometric analysis. The data 

were presented as the mean ± SEM of the relative optical density of LC3II normalized to 

the optical density of calponin. Values are from four independent experiments (n=4/day). 

Paired t-test revealed that LC3II protein expression changed significantly overall (*, p< 

0.05). O, Oil (vehicle control); T, RU486. 
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Figure 3.6.1 Micrographs of hTERT-HM cells 24 h post-transfection with programs A-

033, U-025 and B-017. Images on the left represent phase contrast micrographs 24 h after 

transfection while immunofluorescence micrographs on the right demonstrate the same 

cells that have been transiently transfected with pEGFP-C3 expression vector. Scale bar = 

100 µm. 
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Figure 3.6.2 Micrographs of hTERT-HM cells 48 h post-transfection with programs A-

033, U-025 and B-017. Images on the left represent phase contrast micrographs 48 h after 

transfection while immunofluorescence micrographs on the right indicate cells that have 

been transiently transfected with pEGFP-C3 expression vector 48 h after transfection. 

Scale bar = 100 µm. 
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3.6.2 Transfection of hTERT-HM Cells with pCImycHspB8 Vector 

   Initially hTERT-HM cells were transiently transfected with pEGFP-C3 expression 

vector or co-transfected with pCImycHspB8 and pEGFP-C3 expression vectors. hTERT-

HM cells that were not transfected (No Program) served as a negative control. Seventy 

two hours post-transfection of hTERT-HM cells with pCImycHspB8 expression vector, 

protein lysates were collected and immunoblot analysis was performed using a myc-tag 

specific antibody (Table 2.1). Immunoblot analysis demonstrated that myc-tagged HspB8 

protein was present at ~25 kDa (Figure 3.6.3A). Subsequently, immunoblot analysis was 

performed using an HspB8 specific antibody (Table 2.1). A band was detected at ~22 

kDa, representing endogenous expression of HspB8 protein, and at ~25 kDa representing 

myc-tagged HspB8 protein (Figure 3.6.3B). 

3.6.3 Transfection of hTERT-HM Cells with pCImycBag3 Vector 

   Initially hTERT-HM cells were transiently transfected with pEGFP-C3 expression 

vector or co-transfected with pCImycBag3 and pEGFP-C3 expression vectors. hTERT-

HM cells that were not transfected (No Program) served as a negative control.  Following 

transfection of hTERT-HM cells with pCImycBag3 expression vector, protein lysates 

were collected and immunoblot analysis was performed using a myc-tag specific 

antibody (Table 2.1). Immunoblot analysis demonstrated that myc-tagged Bag3 protein 

was detected at the expected ~74 kDa demonstrating exogenous Bag3 expression (Figure 

3.6.4A). Subsequently, immunoblot analysis was performed using a Bag3 specific  
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Figure 3.6.3(A) Immunoblot analysis of myc-HspB8 expression. Following transfection 

of hTERT-HM cells with pCImycHspB8 expression vector, protein lysates were 

collected and immunoblot analysis was performed using an a myc-tag specific antibody 

(Millipore). Lane 1 represents No program (cells were not transfected), Lane 2 represents 

cells that have been transiently transfected with pEGFP-C3 expression vector and Lane 3 

represents cells that have been transiently transfected with pCImycHspB8 expression 

vector. Following immunoblot analysis a band is detected in lane 3 at ~25 kDa indicating 

the presence of myc-tagged HspB8, suggesting that the transfection was successful. (B) 

Following immunoblot analysis using a HspB8 specific antibody, a band is detected in 

lanes 1 2 and 3 at ~22 kDa, representing endogenous expression of HspB8 protein. In 

lane 3 a band is also detected at ~25 kDa representing myc-tagged HspB8 protein.  
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Figure 3.6.4 Immunoblot analysis of myc-Bag3 expression in hTERT-HM cells. 

Following transient transfection of hTERT-HM cells with pCImycBag3 expression 

vector, protein lysates were collected and immunoblot analysis was performed using a 

myc-tag specific antibody (Millipore). Lane 1 represents No program (cells were not 

transfected), Lane 2 represents cells that have been transiently transfected with pEGFP-

C3 expression vector and Lane 3 represents cells that have been transiently transfected 

with pCImycBag3 expression vector. (A) Following immunoblot analysis a band is 

detected in lane 3 at ~74 kDa indicating the presence of myc-tagged Bag3 protein, 

suggesting that the transfection was successful. (B) Following immunoblot analysis, 

using a Bag3 specific antibody, a band is detected in lanes 1 2 at ~74 kDa, representing 

endogenous expression of Bag3 protein. In lane 3 a band is also detected at ~74 kDa, 

representing both endogenous expression of Bag3 protein and myc-tagged Bag3 protein. 
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antibody (Table 2.1). A band was detected at ~74 kDa representing endogenous 

expression of Bag3 protein (Figure 3.6.4B).  

3.6.4 Transfection of hTERT-HM Cells with pCImycHspB8, pCImycBag3 and pEGFP-C3 

Vectors 

   Initially hTERT-HM cells were transiently transfected with pEGFP-C3 expression 

vector or co-transfected with pEGFP-C3, pCImycHspB8, and pCImycBag3 expression 

vectors. hTERT-HM cells that were not transfected (No Program) served as a negative 

control. Seventy-two hours following transfection of hTERT-HM cells with expression 

vectors, protein lysates were collected and immunoblot analyses were performed using 

myc-tag specific antisera (Table 2.1). Immunoblot analysis demonstrated that myc-tagged 

HspB8 protein and myc-tagged Bag3 protein were present as described in sections 3.6.4 

and 3.6.5 (Figure 3.7.5A). Subsequently, immunoblot analysis was performed using an 

HspB8 specific antibody or a Bag3 specific antibody (Table 2.1). Appropriate proteins 

were detected (Figure 3.7.5 B, C) as described previously in sections 3.6.4 and 3.6.5. 

3.6.5 Protein/DNA ratios and Flow Cytometric Analysis of Transfected hTERT-HM Cells 

Protein/DNA ratios were calculated using an RNA/DNA/Protein Purification Kit. 

Following isolation of proteins and purification of genomic DNA no significant increase 

in the protein to DNA ratio was found to occur following transfection of hTERT-HM 

cells with expression vectors (Table 3.1). In order to further assess any exogenous 

protein-induced hypertrophy in hTERT-HM cells, flow cytometric analysis was  
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Figure 3.6.5 Immunoblot analysis of myc-HspB8 and myc- Bag3 in co-transfected 

hTERT-HM cells. Following transient transfection of hTERT-HM cells with 

pCImycHspB8, pCImycBag3 and pEGFP-C3 expression vectors, protein lysates were 

collected and immunoblot analysis was performed using a myc-tag specific antibody 

(Millipore). (A) Lane 1 represents No program (cells were not transfected), Lane 2 

represents cells that have been transiently transfected with pEGFP-C3 expression vector 

and Lane 3 represents cells that have been transiently co-transfected with pCImycHspB8 

and pCImycBag3 expression vectors. Following immunoblot analysis two bands are 

detected in lane 3 at ~75 kDa and ~25 kDa indicating the presence of myc-tagged Bag3 

protein and myc-tagged HspB8 protein respectively, signifying that the transfection was 

successful. (B) Following immunoblot analysis, using a HspB8 specific antibody, a band 

is detected in lanes 1 2 and 3 at ~22 kDa, representing endogenous expression of HspB8 

protein. In lane 3 a band is also detected at ~25 kDa, representing myc-tagged HspB8 

protein. (C) Following immunoblot analysis, using a Bag3 specific antibody, a band is 

detected in lanes 1 2 at ~74 kDa, representing endogenous expression of Bag3 protein. In 

lane 3 a band is also detected at ~74 kDa, representing myc-tagged Bag3 protein. 
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Table 3.1 Protein/DNA ratios of transfected hTERT-HM cells. 

hTERT-HM, Human Telomerase Reverse Transcriptase- Human Myometrial Cells 

 

Sample ID [DNA] 
µg/µl 

[Protein] 
µg/µl [Protein]/[DNA] Average 

(1&2) 
No Program 1 0.22335 1.61 7.21 4.68 No Program 2 0.63503 1.36 2.14 
pEGFP-C3 1 0.29311 0.77 2.63 3.29 pEGFP-C3 2 0.22297 0.88 3.95 

pCImycHspB8 1 0.31706 0.83 2.62 2.68 pCImycHspB8 2 0.30825 0.84 2.73 
pCImycBag3 1 0.25737 0.76 2.95 2.74 pCImycBag3 2 0.26203 0.92 3.51 

pCImycHspB8/Bag3 1 0.31982 0.81 2.53 2.57 pCImycHspB8/Bag3 2 0.28701 0.75 2.61 
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performed. hTERT-HM cells were transiently transfected with pEGFP-C3 expression 

vector or co-transfected with pCImycHspB8 and pEGFP-C3 expression vectors as 

previously described. Following transfections all cells were labeled with far-red 

fluorescent reactive dye (Cy5) using a LIVE/DEAD® Fixable Dead Cell Stain Kit 

(Invitrogen, Burlington, ON, Canada). Subsequently, hTERT-HM cells were analyzed 

using a BD FACSCalibur™ flow cytometer. hTERT-HM cells were gated on the basis of 

forward scatter (FSC) and side scatter (SSC) and cy5 and GFP positivity, respectively 

(Figure 3.6.6A-C and D-F). hTERT-HM cells labeled with both Cy5 and GFP were 

compared to those labeled with only Cy5, using a gating strategy. Double-labeled cells 

appear in the upper right quadrant of the bivariate correlation plot (Figure 3.6.6 D-F). 

Forward scatter analysis was then used as an indicator of cell size, as shown in the graph 

representing an overlay of No Program Control (Cy5), pEGFP-C3 (Cy5), pEGFP-  

C3 (Cy5/GFP), pCImycHspB8/pEGFP-C3 (Cy5) and pCImycHspB8/ pEGFP-C3 

(Cy5/GFP) (Figure 3.6.6G). As there was little variance in the forward scatter, transient 

transfection of hTERT-HM cells with pCImycHspB8 expression vector was not  

sufficient to induce cellular hypertrophy. Flow cytometric analysis was then repeated, in 

a similar manner, for hTERT-HM cells that had been co-transfected with pCImycBag3 

and pEGFP-C3 expression vector or pCImycHspB8, pCImycBag3 and pEGFP-C3 

expression vectors. hTERT-HM cells were again gated on the basis of forward scatter 

(FSC) and side scatter (SSC) and cy5 and GFP positivity, respectively (Figure 3.6.7A-C, 

Figure 3.6.8A-C; Figure 3.6.7D-F, Figure 3.6.8D-F). Subsequently, forward scatter 

analysis was used as an indicator of cell size, as shown in the graph representing an  
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Figure 3.6.6 Flow cytometric analysis of hTERT-HM cells transiently transfected with 

pEGFP-C3 expression vector or co-transfected with pCImycHspB8 and pEGFP-C3 

expression vectors. hTERT-HM cells were gated on the basis of forward scatter (FSC) 

and side scatter (SSC) (A-C) and cy5 and GFP positivity (D-F). hTERT-HM cells labeled 

with both Cy5 and GFP were compared to those labeled with only Cy5, using a gating 

strategy. Double-labeled cells appear in the upper right quadrant of the bivariate 

correlation plot (D-F). FSC analysis was used as an indicator of cell size as shown in the 

graph, which represents an overlay of No Program Control (Cy5), pEGFPC-3 (Cy5), 

pEGFP-C3 (Cy5/GFP), pCImycHspB8/pEGFP-C3 (Cy5) and pCImycHspB8/ pEGFP-C3 

(Cy5/GFP) (G).  
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Figure 3.6.7 Flow cytometric analysis of hTERT-HM cells transiently transfected with 

pEGFP-C3 expression vector or co-transfected with pCImycBag3 and pEGFP-C3 

expression vectors. hTERT-HM cells were gated on the basis of forward scatter (FSC) 

and side scatter (SSC) (A-C) and cy5 and GFP positivity (D-F). hTERT-HM cells labeled 

with both Cy5 and GFP were compared to those labeled with only Cy5, using a gating 

strategy. Double-labeled cells appear in the upper right quadrant of the bivariate 

correlation plot (D-F). FSC analysis was used as an indicator of cell size as shown in the 

graph, which represents an overlay of No Program Control (Cy5), pEGFPC-3 (Cy5), 

pEGFP-C3 (Cy5/GFP), pCImycBag3/pEGFP-C3 (Cy5) and pCImycBag3/ pEGFP-C3 

(Cy5/GFP) (G).  
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Figure 3.6.8 Flow cytometric analysis of hTERT-HM cells transiently transfected with 

pEGFP-C3 expression vector or co-transfected with pCImycHspB8, pCImycBag3 and 

pEGFP-C3 expression vectors. hTERT-HM cells were gated on the basis of forward 

scatter (FSC) and side scatter (SSC) (A-C) and cy5 and GFP positivity (D-F). hTERT-

HM cells labeled with both Cy5 and GFP were compared to those labeled with only Cy5, 

using a gating strategy. Double-labeled cells appear in the upper right quadrant of the 

bivariate correlation plot (D-F). FSC analysis was used as an indicator of cell size as 

shown in the graph, which represents an overlay of No Program Control (Cy5), pEGFPC-

3 (Cy5), pEGFP-C3 (Cy5/GFP), pCImycHspB8/pCImycBag3/pEGFP-C3 (Cy5) and 

pCImycHspB8/pCImycBag3/pEGFP-C3 (Cy5/GFP) (G).  
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overlay of all hTERT-HM cells being analyzed (Figure 3.6.7G, Figure 3.6.8G). Once 

again transient transfection of hTERT-HM cells, with pCImycBag3 or pCImycHspB8 

and pCImycBag3 expression vectors, was not sufficient to induce cellular hypertrophy. 

3.7 Expression of HspB8 in hTERT-HM Cells Following Ang II Treatment 

  hTERT-HM cells were administered 1000 nM of Ang II for 72 h as described in 

section 2.6.3. Observation of hTERT-HM cells following 72 h of Ang II administration 

indicated that there was no visible increase in cell size (Figure 3.7.1- 3.7.2). Immunoblot 

analysis was then performed to determine if Ang II administration had any effect on 

HspB8 or Bag3 protein expression. Seventy two hours of Ang II administration to 

hTERT-HM cells did not significantly increase HspB8 or Bag3 protein expression 

(Figure 3.7.3). Protein/DNA ratios were calculated using an RNA/DNA/Protein 

Purification Kit as described in section 2.8. Following isolation of proteins and 

purification of genomic DNA there was no significant increase in the protein to DNA 

ratio of hTERT-HM cells following Ang II administration (Table 3.2). To fully assess 

hypertrophy in hTERT-HM cells following Ang-II administration, flow cytometric 

analysis was performed following 72 h of Ang II (1000 nM) administration. hTERT-HM 

cells were gated on the basis of forward scatter (FSC) and side scatter (SSC) and SSC and 

cy5 positivity (Figure 3.7.4A,B). FSC analysis was used as an indicator of cell size which 

represents an overlay of hTERT-HM control cells (0 nM Ang II) and hTERT-HM cells 

administered 1000 nM Ang II (Figure 3.7.4C). There was little variance in the FSC 

suggesting that Ang II administration was not sufficient to induce cellular hypertrophy of  
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Figure 3.7.1 Representative images from phase contrast micrographs of hTERT-HM 

cells following administration of Ang II (1000 nM). Images on the left represent hTERT-

HM control cells that were not administered Ang II. Images on the right represent 

hTERT-HM cells that were administered Ang II for 24, 48 or 72 h. Scale bar = 100 µm. 

Ang II = Angiotensin II. 
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Figure 3.7.2 Magnification of representative images from phase contrast micrographs of 

hTERT-HM cells following administration of Ang II (1000 nM). The image on the top 

represents control cells that were not administered Ang II, after 48 h. The image on the 

bottom represents cells administered 1000 nM Ang II for 48 h. Scale bar = 100 µm. Ang 

II = Angiotensin II. 
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Figure 3.7.3 Immunoblot analysis of HspB8, Bag3 and GAPDH in hTERT-HM cells 

following Ang II (0 nM versus 1000 nM) administration for 72 h. Representative 

immunoblots are shown. Analysis was performed using HspB8 and Bag3 specific 

antibodies (Dr. Jacques Landry). Ang II= Angiotensin II. 
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Table 3.2 Protein/DNA ratios of hTERT-HM cells following Ang II administration. 
 
hTERT-HM, Human Telomerase Reverse Transcriptase- Human Myometrial Cells; Ang 

II, Angiotensin II 

	
  

Sample ID [DNA] 
µg/µl 

[Protein] 
µg/µl [Protein]/[DNA] Average  

(1&2) 
0 nM Ang II 1 0.13083 0.64 4.89 4.62 0 nM Ang II 2 0.17527 0.76 4.34 
1000 nM AngII 

1 0.12673 0.71 5.60 
4.67 1000 nM AngII 

2 0.20078 0.75 3.74 
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Figure 3.7.4 Flow cytometric analysis of hTERT-HM cells following 72 h of Ang II 

(1000 nM) administration. hTERT-HM cells were gated on the basis of forward scatter 

(FSC) and side scatter (SSC) and SSC and cy5 positivity (A, B). FSC analysis was used 

as an indicator of cell size as shown in the graph, which represents an overlay of hTERT-

HM control cells (0 nM Ang II) and hTERT-HM cells administered 1000 nM Ang II (C). 

Ang II = Angiotensin II. 
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hTERT-HM cells within the timeframe utilized in the experiments.  

3.8 Assessment of HspB8 and Bag3 Protein Association in Myometrial Cell and 

Tissue Lysates by Immunoprecipitation 

 Utilizing HeLa (human cervical cancer) and COS-1 (African green monkey 

kidney) cells, Carra et al. (2008) have suggested a new chaperone complex that is 

comprised of HspB8 and Bag3 proteins [236]. To determine the interaction, if any, 

between HspB8 and Bag3 in uterine smooth muscle, IP experiments were conducted on 

hTERT-HM protein lysates, as well as myometrial tissue homogenates from NP, d15, and 

d23 of rat pregnancy. IP of HspB8 protein, myc-tagged HspB8 protein and Bag3 protein 

in hTERT-HM cells was followed by immunoblot analysis using HspB8, Bag3, and myc-

specific antibodies (Table 2.1). HspB8 protein was detected at ~22 kDa in all three pull 

downs (Figure 3.8.1A). It is important to note that IP of myc-tagged HspB8 protein 

resulted in detection of HspB8 protein at a slightly higher molecular weight due to the 

added myc tag. Conversely, after IP of HspB8, myc-HspB8 and Bag3 proteins and 

subsequent immunoblot analysis with a Bag3 specific antibody, Bag3 protein was 

detected at ~74 kDa in all three pull downs (Figure 3.8.1B). These results suggested that 

HspB8 and Bag3 are interacting with one another to form a complex in hTERT-HM cells.  

To confirm whether HspB8 and Bag3 were interacting in vivo, IP experiments 

were conducted on myometrial tissue homogenates from the following time points: NP, 

d15 and d23 of rat pregnancy. IP of HspB8 or Bag3 in tissue lysates was followed by 

immunoblot analysis using HspB8 and Bag3 specific antibodies (Table 2.1). After IP and 
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Figure 3.8.1 Immunoprecipitation (IP) and immunoblot analyses (IB) of HspB8, myc-

tagged HspB8 and Bag3 proteins in hTERT-HM cells. (A) Lane 1, input, represents a 

hTERT-HM lysate (1/10th), lane 2 represents IP of HspB8 protein, lane 3 represents IP of 

myc-tagged HspB8 protein, lane 4 represents IP of Bag3 protein and lane 5 represents IP 

with Rabbit IgG (control). Figure A indicates that following IP there was detection of 

HspB8 protein at ~22 kDa or myc-tagged HspB8 protein at ~25 kDa. (B) Conversely, 

Figure B indicates that following IP there was detection of Bag3 at ~74 kDa. These 

results demonstrate that HspB8 and Bag3 form a complex in hTERT-HM cells. 
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subsequent immunoblot analysis, Bag3 protein was detected at ~74 kDa in all HspB8 and 

Bag3 pull downs (Figure 3.8.2A). After IP and immunoblot analysis, HspB8 protein was 

also detected at ~22 kDa in all HspB8 and Bag3 pull downs (Figure 3.8.2B). Together 

these results demonstrated that HspB8 and Bag3 were associating with one another in 

vitro and in vivo.  
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Figure 3.8.2 Immunoprecipitation (IP) and immunoblot analysis (IB) of HspB8 and Bag3 

proteins in rat myometrial tissue lysates (NP, d15, d23). Following IP there was detection 

of HspB8 protein at ~22 kDa and Bag3 protein at ~74 kDa at all three gestational time 

points (n=3/day). These results demonstrate that HspB8 and Bag3 form a complex in rat 

myometrium during pregnancy. 
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Chapter Four 

Discussion 

4.1 Analysis of HspB8 and Bag3 Protein Expression in Myometrium during 

Pregnancy and Labour 

 Our lab previously reported that HspB8 mRNA levels were initially low and then 

expression began to increase significantly between d17 and PP (with the exception of 

d22) [237]. We therefore hypothesized that HspB8 protein expression would be elevated 

towards mid-pregnancy. In this study, HspB8 protein expression was significantly 

elevated at d15, d17 and d19 compared to NP and d6 time points. 

Significantly increased HspB8 protein expression beginning at d15 of gestation 

was in contrast to the observed significant increase in HspB8 mRNA expression 

beginning at d17. As mRNA is normally translated to form protein a greater correlation 

of mRNA and HspB8 expression was expected. It is possible that there was sufficient 

mRNA available for protein translation during early pregnancy and that the increased 

HspB8 mRNA expression at d17 and later reflects a need for increased HspB8 

translation. Furthermore, the variation in gestational timing when tissues were collected 

(± 12 hours) may serve as a small contributing factor to the poor correlation in mRNA 

and protein expression. As both HspB8 mRNA and protein expression began to increase 

after mid-gestation, our results indicate that HspB8 may play an important role during 

this time in pregnancy. 
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 Immunoblot analysis was also performed to determine the expression pattern for 

Bag3 protein in pregnant rat myometrium. Bag3 protein expression was significantly 

elevated at d15, compared to expression at NP, and at d17 compared NP, d6, d23 and PP. 

During immunoblot analysis, it was noted that in addition to the band representing full-

length Bag3 protein (~74 kDa), other bands (~40kDa/~25kDa) were detected 

representing possible cleavage products of Bag3. A smaller form of Bag3 (~40 kDa), in 

neural synaptosomes homogenates, has been analyzed by IP and mass spectrometry 

[210]. Furthermore, published reports indicate that Bag3 is cleaved during apoptosis. 

Bag3 is efficiently cleaved by caspase-3, to a smaller extent by caspases-1 and -8, and 

relatively inefficiently by caspase-9 [238]. More specifically, caspase-3 is able to cleave 

Bag3 into 2 smaller fragments in pancreatic cancer cells resulting in products of ~40 kDa 

and ~25 kDa similar to results presented in this thesis [238, 239]. As it is known that 

caspase-3 is up-regulated between the proliferative and synthetic phase of myometrial 

differentiation [41], the ~40 kDa and ~25 kDa bands recognized by the Bag3 antibody 

may be cleavage products of Bag3. 

 The up-regulation of HspB8 and Bag3 at mid-gestation coincides with the 

differentiation of the myometrium from a state of hyperplasia to hypertrophy (Figure 

4.1A). As they show similar patterns of expression this suggests that they may interact or 

play similar roles during pregnancy.  
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Figure 4.1 Representative patterns of HspB8 and Bag3 protein expression during the 

phases of myometrial differentiation. (A) HspB8 protein expression (black curve) was 

found to be significantly elevated at d15, d17 and d19 compared to NP and d6. Bag3 

protein expression (red curve) was significantly elevated at d15, compared to expression 

at NP, and at d17 compared to NP, d6, d23 and PP. The up-regulation of HspB8 and 

Bag3 proteins coincides with differentiation of the myometrium from a state of 

hyperplasia to hypertrophy (B) Hsp70 protein expression (yellow curve) was significantly 

elevated at d19, d21, d22 and d23 compared to NP and d6. Hsc70 protein and CHIP (dark 

blue curve) are constitutively expressed. LC3II protein expression (teal curve) was found 

to be significantly elevated at PP compared to expression at NP, d6 and d12.  
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4.2 Intracellular Localization of HspB8 and Bag3  Proteins in the Myometrium 
during Pregnancy	
  

This is the first report of the intracellular localization of HspB8 and Bag3 in the 

myometrium. The spatiotemporal expression of HspB8 and Bag3 in pregnant rat 

myometrium was determined in situ using rat uterine tissue samples and 

immunofluorescence microscopy. HspB8 was predominantly localized to the cytoplasm 

of cells and there was an absence of nuclear staining. This is consistent with previous 

research on extracts of estrogen receptor-positive breast cancer cells using size-exclusion 

chromatography, indicating that HspB8 was detected primarily in the cell cytoplasm 

[240]. HspB8 was also detected near cell membranes in the rat myometrium. This 

specific cellular localization has also been shown in a human neuroblastoma cell line, 

SK-N-SH [241]. There was intense cytoplasmic staining, particularly on d15, indicating 

concentrated subcellular localization of HspB8 protein. HspB8 has been found to 

colocalize with aggregates formed by misfolded or partially denatured proteins. For 

instance, HspB8 can be trapped within inclusions formed by proteins with polyglutamine 

tails (Htt43Q) in order to prevent the formation of large aggregates [178]. HspB8 has also 

been found in aggregates formed by αB-crystallin mutants, which are involved in 

myofibrillar myopathy [242]. Thus, HspB8 may be responsible for preventing 

aggregation or promoting degradation of misfolded proteins, which may result in 

concentrated subcellular localization.   

The intracellular localization of Bag3 protein was also examined. There was an 

absence of nuclear staining, as well as some perinuclear localization of Bag3 along with 
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the general cytoplasmic localization in myometrial cells. Previous research on HeLa cells 

indicates that when the cells were exposed to cadmium, zinc or to 42°C, the localization 

of Bag3 changed to a reticular, perinuclear localization on a cytosolic background. More 

specifically, co-immunofluorescence experiments demonstrated calreticulin, a protein 

resident in the rough endoplasmic reticulum (ER), co-localized with Bag3 protein in 

cadmium-treated HeLa cells [243]. Reticular, perinuclear localization of Bag3 may have 

a role(s) in the myometrium throughout gestation. The ER is known to be a major point 

of integration of damage-sensing or pro-apoptotic stimuli [244]. Even though Bag3 lacks 

an ER localization signal, it is probable that Bag3 is required in the ER to complex with 

other proteins, as interactions with different proteins play an important role in 

determining the function of Bag3 [245]. Bag3 is capable of interacting with Bcl2, for 

instance, which can result in increased anti-apoptotic activity and a decrease in the 

apoptosis induced via Bax or Fas in HeLa cells [246]. Alternatively, Bag3 may form a 

large multichaperone complex consisting of HspB8-Bag3-Hsp70/Hsc70-CHIP, as a 

means to regulate the degradation of misfolded proteins through the stimulation of the 

macroautophagy pathway [183, 184, 200, 202, 208]. 

Localization of both HspB8 and Bag3 proteins in the cytoplasm of the 

myometrium is consistent with their aggregations in this compartment and with reports 

showing an interaction between the two proteins [183]. 
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4.3 Role of HspB8 and Bag3 as Regulators of Apoptosis 

 There are three major processes that help to maintain homeostasis of the 

myometrium throughout gestation: proliferation, differentiation and apoptosis. Apoptosis, 

also known as programmed cell death, is responsible for eliminating dysfunctional cells 

during development or normal tissue homeostasis. The process of apoptosis can be 

activated via two different pathways: the extrinsic and the intrinsic pathway. Both 

pathways result in activation of a caspase cascade and the effector, caspase-3. Caspase-3 

activation is associated with cleavage of cellular substrates that ultimately results in cell 

death, but it also reduces myocyte contractility in smooth muscle [247, 248]. Caspase-3 

in the myometrium is also hypothesized to act as an anti-contractile agent that is activated 

around d14, between the phases of myometrial hyperplasia and hypertrophy, to help 

maintain uterine quiescence [41]. At this time, Shynlova et al. (2006) found that there 

was also a notable increase in the expression of two anti-apoptotic regulating proteins, 

Bcl2 and Bcl2l1, and as a result there were no physiological manifestations of apoptosis 

in the myometrial cells [18].  

 In this study, the up-regulation of HspB8, at d15, d17 and d19, coincides with the 

increase in expression of caspase-3, as the myometrium differentiates from a state of 

hyperplasia to hypertrophy (Figure 4.1) [41]. HspB8 acts as a regulator of apoptosis and 

therefore it is possible that HspB8 may play such a role during this transition period [249-

252]. Depre et al. (2006) found that HspB8 was able to protect the myocardium against 

apoptosis by binding to PKB and AMPK, resulting in stimulation of survival mechanisms 
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in both the cytosol and nucleus [234]. This included inhibition of pro-apoptotic effectors, 

such as Bad, FOXO and glycogen synthase kinase-3β. Similarly, treatment of human 

breast cancer cell line MCF-7 with 17β-estradiol elevates HspB8 protein expression, and 

protects breast cancer cells from apoptosis [249]. HspB8 is also overexpressed in 

stomach tumors, proliferating human keratinocytes, and rat pheochromocytoma (PC12) 

cells, once again demonstrating anti-apoptotic properties [253].  

 Bag3 also serves as an anti-apoptotic effector. In several published reports Bag3 

silencing or overexpression caused enhanced or inhibited spontaneous or drug-induced 

apoptosis, respectively [188, 192, 254-261]. For example, in 293 cells transfected with a 

Bag3-hyperexpressing construct, apoptosis induced by the glutathione-depriving agent 

diethylmaleate (DEM) + 2-methyoxymethylestradiol (2-ME) was 60 % lower when 

compared to control cultures. Similarly, in human myeloid U937 cells, a decrease in 

Bag3 protein levels by a phosphorothioate antisense oligodeoxynucleotide increased cell 

apoptotic response to DEM by 40 % [262].  

In total, HspB8 as well as Bag3 may play important anti-apoptotic roles by 

promoting cell survival in the rat myometrium near the window of d12-d15 gestation. 

Ultimately, more research must be conducted in this area to further confirm the role of 

HspB8 and Bag3 as anti-apoptotic proteins in smooth muscle, particularly in the 

transition from hyperplasia to hypertrophy. Furthermore, there have been some 

contrasting data suggesting HspB8 may have a role in promoting apoptosis. In one 

experiment performed by Gober et al. (2003) treatment of the tumour cell lines SK-MEL-
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2 (melanoma) and PC-3 (prostate cancer) with the demethylating agent 5-aza-2’-

deoxycytidine to induce HspB8 expression, transient transfection with HspB8 expression 

vectors, or retrovirus-mediated delivery of HspB8 resulted in caspase- and p38MAPK- 

dependent apoptosis [250]. 

4.4 Role of HspB8 and Bag3 as Regulators of Macroautophagy 

Following IP experiments, immunoblot analysis indicated that HspB8 and Bag3 

interacted with one another in vitro in hTERT-HM cells and in vivo in rat myometrium 

during pregnancy. Given that complexing of sHsps is essential for their function, it is 

plausible that the interaction between HspB8 and Bag3 may be important throughout 

pregnancy [123]. sHsps have been found to play key roles in proteostasis, which involves 

modulation of concentration, structure, interactions and cellular localization of proteins. 

Recently, it was reported that muscle tissue relies on an effective proteostasis network in 

which macroautophagy is a critical component [208]. The up-regulation of HspB8 and 

Bag3 just after mid-gestation, as shown by immunoblot analysis, coincides with the 

differentiation of the myometrium from a state of hyperplasia to hypertrophy. This 

transition is associated with significant protein turnover and thus alternative to a role in 

regulating apoptosis. HspB8, Bag3 and a regulatory pathway such as macroautophagy 

may be required to help maintain protein homeostasis in the myometrium during 

pregnancy.  
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The basal level of macroautophagy is a critical regulator of cellular homeostasis 

as it is responsible for the removal of damaged/old organelles (particularly mitochondria), 

protein aggregates, and the turnover of long-lived proteins [93, 107]. Bag3, like all Bag 

family members, is capable of interacting with Hsp70/Hsc70 via its Bag domain, which 

subsequently interacts with a well-known Hsp70/Hsc70 binding co-factor- the ubiquitin 

ligase CHIP. Several recent studies showed that the multichaperone complex, HspB8-

Bag3-Hsp70/Hsc70-CHIP, was able to regulate the degradation of misfolded proteins, 

such as polyQ-expanded huntingtin and mutant SOD1, through the stimulation of the 

macroautophagy pathway [183, 184, 200, 202, 208]. Detection of Hsp70, Hsc70 and 

CHIP proteins, by immunoblot analysis, indicates that some of the key players involved 

in the stimulation of the macroautophagy pathway are present in uterine musculature 

throughout gestation (Figure 4.1B). Thus far, the only known marker for autophagosome 

formation in the macroautophagy pathway is LC3II and therefore detection of LC3II 

protein, by immunoblot analysis, in the myometrium throughout gestation supports the 

notion that macroautophagy may serve as an important homeostatic process during this 

period to help maintain pregnancy [216, 217]. The autophagosome, however, is an 

intermediate structure in the dynamic process of macroautophagy and thus, the presence 

of LC3II in the myometrium does not definitively indicate whether this is due to 

macroautophagy induction or suppression of the pathway downstream of the 

autophagosome [218].  
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As overexpression of HspB8 and Bag3 stimulates phosphorylation of eIF2α, 

resulting in activation of the macroautophagy machinery, Pser51-eIF2α protein 

expression was analyzed in rat myometrium throughout gestation [185]. Pser51-eIF2α 

expression did not increase significantly throughout gestation. This suggests that the up-

regulation of HspB8 and Bag3 during mid-gestation, in rat myometrium, is not likely 

responsible for translational shutdown and subsequent stimulation of the macroautophagy 

machinery through eIF2α. 

4.5 The Effect of Distension on HspB8 Protein Expression  

 Uterine stretch, as a result of growing pups, is an important inducer of gene 

expression in uterine muscle. As increased expression of HspB8 protein in the 

myometrium coincided with a time of increasing distension it was important to determine 

whether uterine distension had any regulatory effect on HspB8 expression. Virgin female 

rats underwent unilateral tubal ligation, through a flank incision, and as a result the rat 

was only able to implant the conceptus in one horn. This procedure isolates the influence 

of stretch while maintaining a consistent endocrinological environment, except for any 

local factors secreted by the placenta or fetus [51]. Tissue samples from three different 

time points in pregnancy, d15, d19 and d23, were examined to determine if uterine 

distension had an effect on HspB8 protein expression. Unexpectedly, immunoblot 

analysis revealed that expression of HspB8 protein was not differentially influenced by 

stretch. Furthermore, immunofluorescence detection demonstrated that there was mainly 

cytoplasmic localization of HspB8 in myometrial cells, as well as detection near cell 
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membranes, but there were no marked changes in the expression of HspB8 protein in the 

gravid uterine horn when compared to the non-gravid horn. Therefore, uterine stretch 

does not appear to play a regulatory role in the expression of HspB8 protein. This is in 

contrast to work by White & MacPhee that demonstrated another Hsp, HspB1 was 

regulated by uterine stretch. In unilaterally pregnant rats, HspB1 mRNA and pSer15-

HspB1 protein expression were significantly elevated in distended gravid uterine horns at 

both d19 and d23 (labour) or gestation compared to non-gravid horns. Both HspB1 

mRNA and pSer15-HspB1 protein expression were also markedly increased in 

ovariectomized, NP rat myometrium distended for 24 h with laminaria tents compared to 

empty horns [223].  

4.6  The Effect of Progesterone on HspB8 Protein Expression and RU486 on HspB8, 

Bag3 and LC3II Protein Expression 

 The circulating levels of progesterone in rat maternal serum peak specifically 

between d15-d19 after which there is a dramatic decline until labour [49]. The peak 

levels coincide with the noted increase in Bag3 and HspB8 protein levels, suggesting that 

progesterone may play a role in regulating Bag3 and HspB8 protein expression in rat 

myometrium. Administration of progesterone to pregnant rats (beginning on d20) did not 

change HspB8 protein expression until d23, at which point expression significantly 

decreased. It is unknown whether or not this decrease in HspB8 protein expression is due 

to the effects of prolonged progesterone levels or an increased stress that is incurred as a 

result of prolonging labour. In order to further analyze the role of progesterone on HspB8 
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protein expression in rat myometrium RU486, a progesterone receptor antagonist, was 

administered to pregnant rats on d18 of gestation. This treatment resulted in preterm 

delivery of the pups within 24 h as previously reported [263]. Progesterone receptor 

antagonism resulted in a significant increase in HspB8 protein expression, as well as a 

change in the spatial localization of this protein within myometrial cells. Following 

treatment of RU486 there was a marked decrease in the detection of HspB8 in the 

circular muscle layer; however, there was a marked increase in detection in the 

longitudinal muscle layer. This indicates that there may be myometrial layer-specific 

regulation of HspB8 expression as a result of functional withdrawal of progesterone. As 

Bag3 protein expression followed a similar pattern to HspB8 it was important to see if 

Bag3 expression was regulated by progesterone. In RU486-administration experiments 

there was no change in Bag3 protein expression suggesting that progesterone was not a 

major regulator of Bag3 expression. 

 As HspB8 protein regulation by progesterone appears to be complex, it was 

important to analyze LC3II protein expression following RU486 treatment to determine if 

RU486 had additional effects on myometrial function. Progesterone receptor antagonism 

by RU486 induced preterm labour and resulted in a significant increase in LC3II protein 

expression, indicating that there was a potential increase in the requirement for 

macroautophagy machinery to maintain protein homeostasis. Therefore, it is unclear 

whether the change in HspB8 protein expression observed upon RU486 administration 

and preterm birth is a result of the functional withdrawal of progesterone or the 
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requirements for preterm delivery. It is probable that the side effects of preterm labour, 

such as increased macroautophagy, may have indirectly led to our observed results. Thus, 

the role of progesterone in regulating HspB8 protein expression in the myometrium still 

remains to be fully clarified. 

4.7 Myometrial Cell Model of Hypertrophy 

Adenoviral-mediated overexpression of HspB8 in neonatal rat cardiac myocytes 

results in cell hypertrophy within 48 h of expression, as shown by an increase in the 

protein/DNA ratio by 37% [172]. Therefore, the hTERT-HM cell line was used to help 

assess the importance of HspB8 and other chaperone machine components in myometrial 

hypertrophy. In order to determine whether HspB8 and/or Bag3 was capable of inducing 

myometrial hypertrophy, pCImycHspB8 and/or pCImycBag3 expression vectors were 

transiently transfected into hTERT-HM cells. Exogenous HspB8 or Bag3 protein 

expression was verified by immunoblot analysis using a myc-tag specific antibody. Cells 

did not appear to increase in cell size when viewed with a Leica DMIRE2 inverted 

microscope equipped with phase contrast optics. Thus, potential hypertrophy of 

transfected hTERT-HM cells was further assessed by flow cytometry and determination 

of protein/DNA ratios. There was no change in cell size between transfected cells and 

control cells and there was no significant increase in protein/DNA ratios between the two 

cell populations. These results suggest that overexpression of HspB8 and/or Bag3 alone 

are not sufficient to induce hTERT-HM cell hypertrophy and may require additional 

protein partners or cell-ECM interactions.  
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 Concentrations of Ang II have been found to increase 4.5-fold over the non-

pregnant level in pregnant sheep [264]. In humans the Ang II level was reported to be 

700 nM in maternal circulation during pregnancy [265]. Thus, Cui et al. (2010) examined 

whether Ang II could induce myometrial protein synthesis in a uterine smooth muscle 

tumor derived cell line (ULTR) [266]. They reported that Ang II was able to induce 

cellular hypertrophy, as determined by 3H-leucine incorporation [266]. To determine if 

Ang II could also induce cellular hypertrophy in hTERT-HM cells, protein/DNA ratios 

were calculated and flow cytometry was performed. There was no change in cell size or 

significant increase in protein/DNA ratios between the two treatment groups. Following 

Ang II administration to hTERT-HM cells, HspB8 and Bag3 protein expression was also 

assessed by immunoblot analysis. Ang II administration had no effect on their protein 

expression. Thus, Ang II is not sufficient for inducing myometrial hypertrophy in 

hTERT-HM cells at the concentration and conditions tested.   

4.8 Future Research 

 The results of this investigation provide valuable insights into the formation of a 

heteromeric complex between HspB8 and Bag3 in uterine musculature. The patterns of 

expression of HspB8 and Bag3 in the myometrium indicate that they could have 

important roles during initiation of myometrial hypertrophy and add to the body of 

knowledge indicating sHsps are uniquely expressed with myometrial programming 

during pregnancy. However, the exact role of HspB8 in uterine muscle remains enigmatic 

and therefore there are many important research avenues left to pursue. 
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 First of all, the hTERT-HM cell line could be helpful in investigating the role of 

HspB8 as a pro- or anti-apoptotic protein throughout gestation. HspB8 could be 

overexpressed using the pCImycHspB8 expression vector used throughout this study and 

subsequently apoptotic activity could be quantified by monitoring caspase 3 activity or 

cell survival by the TUNEL method. This would help determine whether HspB8 has a 

protective function in the cell as an anti-apoptotic protein. As Bag3 has also displayed 

anti-apoptotic activity in published reports, similar experiments and assays with the 

pCIMycBag3 expression vector could also be conducted to help confirm whether Bag3 

plays an anti-apoptotic role in the myometrium. 

 HspB8 and Bag3 have been found to complex with one another in rat 

myometrium throughout pregnancy. Thus, it would also be important to determine 

whether they are part of a multiheteromeric complex comprised of HspB8, Bag3, Hsc70 

and CHIP during myometrial programming, particularly during the synthetic phase. Co-

IP experiments with protein specific antisera and affinity purified IgG (negative control) 

could be conducted to determine any temporal-specific association of Bag3 or HspB8 

with Hsc70 or CHIP. Subsequently, the multichaperone complex (Bag3-HspB8-

Hsp70/Hsc70) is thought to mediate macroautophagy in cooperation with the 

macroautophagy receptor protein p62/SQSTM1. Accordingly, it would be important to 

assess the requirement for macroautophagy in the myometrium throughout pregnancy. In 

order to determine the requirement for macroautophagy the “autophagic flux” or the 

dynamic process of autophagosome synthesis in hTERT-HM cells could be studied. The 
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amount of LC3II increases upon induction of autophagy, however, after prolonged 

autophagy activation it decreases. Therefore, reduction of GFP-labelled LC3II expression 

could be quantitated by flow cytometry in hTERT-HM cells, which inversely correlates 

with autophagic flux [267]. In order to characterize the role of HspB8 and/or Bag3 in the 

myometrium it would be helpful to overexpress HspB8 and/or Bag3 and determine their 

effect on autophagic flux in smooth muscle cells. To fully understand the process of 

macroautophagy it would also be important to look at the inhibition of autophagic 

activity and its effect on hTERT-HM cells. Commonly used PI3-kinase inhibitors such as 

wortmannin, LY294002 or 3-MA could be used to inhibit macroautophagy in vitro in 

order to assess the effects on HspB8 and Bag3, as well as their interaction [97, 268, 269].   

 Despite published reports, HspB8 overexpression in hTERT-HM cells is not 

sufficient to induce cellular hypertrophy. First, it would be important to develop a cell 

model to induce hypertrophy. The use of the ULTR cell line may be warranted. Once 

induced hypertrophy is fully verified it will be helpful to examine HspB8, Hsc70, Hsp70, 

Bag3 and CHIP gene expression, both temporally and spatially, during this process. The 

next essential step would be to use siRNA-specific knockdown of individual mRNA 

species, such as HspB8, Bag3, Hsc/Hsp70 and CHIP, prior to induction of cellular 

hypertrophy, to determine the necessity of these proteins for hypertrophic growth.  

 As previous research has indicated HspB8 may complex with HspB1 [162], 

further verification of this interaction could be important in determining the function of 

HspB8 in the myometrium throughout gestation. Once again, co-IP experiments with 



194 
 

protein specific antisera and affinity purified IgG (negative control) could be conducted 

to determine any temporal-specific association of these proteins. Additionally, a further 

investigation could be a co-immunolocalization experiment to analyze whether both 

HspB8 and HspB1 co-localize in the myometrium. Co-localization could lead to further 

confirmation of the potential interaction between these proteins, perhaps leading to the 

potential function of this heterodimeric complex. 

 HspB8 is highly expressed in mitochondria. For example, Lenne & Douce (1994) 

reported localization of HspB8 to mitochondria in pea plants [270]. Drosophilia 

melanogaster (Dm) Hsp22 was found by Morrow et al. (2000, 2004) to be a 

mitochondrial protein that was localized to the mitochondrial matrix, particularly in 

oligomeric complexes and its high level of expression in aging suggests that is may have 

a protective role during times of oxidative stress [271, 272]. Co-immunofluorescence 

detection with mitochondrial markers and an HspB8 specific antibody could be 

conducted to confirm any mitochondrial specific localization within myometrial cells. 

Human myometrial cell lines could also be used for this analysis, as the various 

organelles, such as the mitochondria, are more visible in cells.  

 Finally, throughout immunofluorescence detection it was noted that there was a 

significant amount of HspB8 expression in the endometrium. This was a novel finding, so 

in the future the expression of HspB8 could be studied throughout pregnancy in the 

endometrium. Perhaps the role of HspB8 in the endometrium would also help reveal its 

function in the uterus throughout pregnancy. 
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All of the future experiments mentioned may help to confirm the exact role of 

HspB8 and Bag3 throughout pregnancy and labour and may provide insight into reducing 

the incidence of preterm birth.   
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