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Abstract

We use several Monte Carlo computer (MC) simulation techniques to calculate the
phase diagram of a system of hard disks interacting through a discrete square-shoulder
square-well potential. The phase diagram shows the gas, liquid and five crystal phases,
and we find that all the melting lines are first-order phase transitions, despite the
system being two dimensional. The melting line of the square crystal exhibits a
temperature maximum, meaning that above a certain pressure P the density of liquid
becomes higher than that of a crystal. The same melting line also exhibits a pressure
maximum that implies inverse melting, meaning that at constant pressure the liquid
crystallizes by heating.

To increase the range of pressure over which inverse melting occurs, we vary the
potential parameters systematically and determine that the extent of the shoulder is
the parameter that has the greatest impact. We calculate the new melting curve for
the new potential parameter set, and we check the accuracy of the calculations by
several methods including the calculation of the Gibbs free energy as a function of
density at conditions of constant P and temperature 7. The melting transition is first
order and to a liquid rather than to a hexatic or to a quasicrystal.

Finally, we perform MC simulations at constant P, T and number of particles
N, to study the high pressure phase behaviour of a model with parameters that

produce pronounced inverse melting. We detect three fascinating behaviours. First,
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the high pressure triple point present in the original model disappears, leaving behind
a “liquid corridor” in the phase diagram for which the liquid appears to retain its
position as the thermodynamically stable phase down to low temperature. However
we find a new crystal that likely usurps the liquid as the stable phase. Second, we find
a particular state point, which we name the “funny point”, at which the free energy
barrier between the liquid and the high density triangular crystal vanishes along their
coexistence line. Although the explanation of this funny point remains a mystery, it
appears to be connected to the third discovery: a transition between low and high
temperature forms of the high density triangular crystal.

The potential studied in this thesis was previously developed to help understand
anomalous behaviour in systems such as water and liquid metals. Moreover similar
potentials have been used to model lipids interacting within bilayer membranes. Thus,
it is possible that some of the phenomenology we observe for the model is relevant in

these or related real systems.
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Chapter 1

Introduction

1.1 The Model

In this thesis, we study the phase behaviour of a system of particles interacting through
a square-shoulder square-well interaction potential (SSSW). This interaction belongs
to the family of so-called core-softened (CS) potentials, which mainly consist of a hard
core at short separation and a penetrable core at larger separation. The motivation
of using CS potentials arises from the desire of having a simple isotropic (radially
symmetric) potential that is able to describe complicated features of systems with
anisotropic interactions, e.g., those with an angular dependence. This can be un-
derstood from the example of water, where orientation-dependent hydrogen bonds
introduce a favoured interaction at a particular separation between molecules but ori-
enting the molecules differently allows them to interpenetrate. The history of these
deceptively simple potentials goes back to the 1970s. The first use of a CS potential
was by Stell, Hemmer and co-workers in a lattice gas system to study the isostruc-
tural solid-solid phase transition that ends in a (second) critical point [1-3], which

was reported previously in some experimental studies, see for example [4]. CS po-



tentials were also used in liquid metal systems [5-12] to explain the deviation of the
structure factor from simpler central force models such as those with a pair interac-
tion potential that varies as u(r) ~ r=%. In the 1990s, CS potentials were used to
study liquid anomalies, such as density, diffusion, and entropy anomalies for water, in
1D [13-15], 2D [16-19] and 3D [16,17,20]. Stillinger et. al. used a statistical mechan-
ical perturbation theory to show that a CS potential can be considered as a realistic
first-order approximation for the real interaction between water molecules resulting
from averaging over relative orientations [21,22], i.e., that the anisotropic interaction
of water molecules can by approximated by a simpler isotropic interaction.
Pioneering experimental work on compressed water at very low temperature re-
ported a first order-like transition from low density amorphous ice (LDA) to a higher
density amorphous one (HDA) [23]. One possible explanation for this behaviour of
the glassy state of water is an underlying first-order transition between two liquids
differing in density that is obscured by glassy dynamics. Indeed, a simulation study
for the ST2 model of water [24] (a five-site model where charges representing protons
and lone electron pairs are placed tetrahedrally around an oxygen atom) suggested
that the anomalies in stable and supercooled water are caused by a second critical
point at temperature (7/,) [25], and that this critical point terminates the transition
between two metastable liquids, HDL and LDL [26,27]. Above T{,, HDL and LDL
become indistinguishable in an analogous way to what happens to the liquid and gas
above their critical temperature (T¢). Proposing T/, in the supercooled liquid was the
starting point for a new research area focusing on the transition between two liquids
of different densities in a single component system. Some of these studies used the
two-liquid model to explain the liquid-liquid (L-L) transition [28-30]. According to
this model the liquid is considered to be a mixture of two different liquids in which the

concentration is altered by changing some external parameters such as temperature



or pressure.

Mishima and Stanley suggested that CS potentials can explain the L-L transition
in the supercooled liquid [31]. To explain the relationship between CS and L-L phase
transition, we follow the discussion presented in Ref. [31]. The minimum in the
generic potential shown in Fig. 1.1(a) is necessary to have a critical point, where at
low temperature (7), and relatively high pressure (P), the system will be influenced
by the potential minimum, and therefore molecules will condense to form a liquid.
At high T', the kinetic energy is large and the system will not be influenced by the
potential minimum, giving rise to a gas.

Suppose now that the potential minimum changes to have a deeper narrow outer
well and a shallower inner well as in Fig. 1.1(b). This two-minima potential is re-
sponsible for the occurrence of the second critical point at low temperature. At high
T, the kinetic energy is large enough so that the two minima do not influence the
system. At low temperature 7" < T/, and comparatively low pressure, the system
explores the outer well, and a low density liquid (LDL) forms. At higher pressure,
the system probes the inner well and a high density liquid (HDL) forms. According
to this picture, there is a L-L phase transition that occurs at low 7" between the HDL
and LDL phases.

A few years later, Franzese et. al. used three-dimensional MD simulations with a
more simplified, shoulder like potential, with two characteristic distances (hard-core
and soft-core). They showed that such a potential can produce a L-L phase transi-
tion, and they located the position of Tf,, but no density anomalies were observed [32].
Another study of a 2D system reproduced the density anomaly, but neither L-L transi-
tion nor T/, were observed [14]. More studies have been done later focusing on density
anomalies and L-L transitions. For example. Ryzhov et. al. tracked the change of

the L-L transition line as a function of the shoulder width in a square-shoulder po-
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Figure 1.1: Panel (a) shows a single minimum pair potential used to produce the
liquid-gas critical potential, while in panel (b), the minimum is modified to contain
two sub-wells to allow for the existence of a second critical temperature.

tential [33]. Gibson et. al. studied a family of ramp potentials, and they found that
T¢, moves systematically from a stable position in the phase diagram to a metastable
one [34]. Other studies used lattice models to gain more insight into the mechanism

of the L-L transition and associated liquid-state anomalies [35, 36].

10 T T T T

r/'c

Figure 1.2: A square-shoulder square-well potential with a hard-core diameter o.
b = /20 is the soft-core distance, and ¢ = /30 is the attractive distance limit. r is
the distance between two particles and € is the bond energy.

Scala et. al. performed MD simulations in 2D of the square-shoulder square-well



(SSSW) model, shown in Fig. 1.2, to test whether a water-inspired CS model can
generate liquid anomalies [19,37]. While the 2D case can be motivated by a desire to
understand phenomena at interfaces, in membranes or systems under confinement, it
also provides a way of more easily visualizing the structures and processes in the sys-
tem. It is this potential that is studied in this thesis. In 2D, this potential describes
disks with a hard-core diameter o and an attractive well extending out to a radial dis-
tance ¢ = v/30. The attractive well itself contains a shoulder, with a pair interaction
energy of —e/2 for ¢ < r < b and energy of —¢ for b < r < c. Making b = /20 allows
for the existence of two crystals, a low density triangular (LDT) and a higher density
square crystal (S), with the same potential energy per particle of —3e¢, see Fig. 1.3.
This value of b is not unique, but is the smallest value which yields the same crystal
energies when the disks are touching. A solid line in the graphs corresponds to an
interaction energy of —e between two particles, while a dashed line corresponds to a
—0.5€ energy. With these parameters values, the two crystal-like environments based
on LDT and S will survive locally in the liquid, providing the basis for the idea for
two liquids of different density coexisting.

This study was continued by Buldyrev et. al. with the same SSSW model in
2D and 3D to study L-L transitions [37]. For the 2D system, they produced a phase
diagram showing liquid anomalies in relation to approximate crystallization lines for
a range in P and T near a potential second critical point, as shown in Fig. 1.4.

The phase diagram shows the gas-liquid coexistence line (h) terminated by a
critical point (C) at high 7', and a hypothetical position of a second critical point
(f). This point coincides with the crossing of the two crystallization lines (d and
e). These two lines were determined from examining the behaviour of the pressure,
structure, and dynamics along isochores. Therefore, they are estimates of the limit of

liquid stability, or more technically of metastability, with respect to the square and
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Figure 1.3: Fig. 1.3(a) shows square crystal and Fig. 1.3(b) shows low-density trian-
gular crystal, both with the same energy per particle (—3¢), where the solid line is a

bond between two particles with energy —e and the dashed line is a bond with energy
—0.5¢.
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Figure 1.4: The P — T phase diagram for the SSSW model as depicted from Ref. [37].
The h-line is the liquid-gas coexistence curve terminated by a critical point (C). The
two thick curves, d and e, are crystallization lines, where their crossing is what thought
to be the hypothetical position of a second critical point (f).



triangular crystals [37].

Initially, our motivation to further study this model was to present the whole phase
diagram for a wide range of 7" and P, and report new features or phases that the model
might have. This is the work presented in Ch. 3. We find two new low-density crystal
phases not previously reported for the model. We find that all the transitions are at
least weakly first order. The crystallization lines reported in Ref. [37] are below our
calculated melting lines, as ought to be the case. Additionally, the S crystal shows
a maximum temperature in its melting curve, as well as a maximum in pressure.
Thus, the present model is a useful one for studying the rare phenomenon of inverse
melting [38], in which the liquid may freeze to the crystal upon heating, and this is

our motivation to do the research reported in Ch. 4.

1.2 Computer Simulation

The history of computer simulation started during and after the Second World War
when electronic computing machines performed extensive calculations to help in the
development of nuclear weapons [39,40]. The electronic computing machines were
simple and large compared to the machines of today, and using these machines was
restricted to the military. In 1952, the electronic computing machines spread to
nonmilitary usage to start a new era of research based on computer algorithms. In
1953, Metropolis et. al. performed the first computer simulation study at Los Alamos
National Laboratory in the United States using the MANIAC computer to study
the equation of state of liquids [39-42]. In this first simulation, Metropolis et. al.
introduced the Monte Carlo (MC) simulation method [41], which later became a
primary research technique in many fields of science and engineering. This method

was given this name because the calculations are based heavily on the use of pseudo



random numbers generated by the computer. The name connects the dependence of
MC on random numbers to one of the great gambling capitals of the world, the city
of Monte Carlo [39,40,43,44]. While today MC refers broadly to techniques based on
the acceptance and rejection of randomly generated states, we employ in this thesis
the original Metropolis algorithm to generate an ensemble of states in the canonical
and isothermal-isobaric ensembles of our model.

In early work, MC simulation was only used to study ideal models such as treating
molecules as hard spheres [41]. Periodic boundary conditions were introduced in
Ref. [41] for the first time, which later became an essential part of simulation when
studying bulk materials. A few years later, Wood and Parker carried out computer
simulations for the Lennard-Jones potential and they obtained results comparable to
experiments for systems such as liquid argon [45].

MC is a powerful technique for obtaining structural and thermal properties of
model systems interacting through some potential, but it is not as useful in terms of
studying dynamic properties, such as the diffusion coefficient. To address this, Alder
and Wainwright developed a new technique, called Molecular Dynamics (MD) simu-
lations. This method is based on solving the classical equations of motion (Newton’s
equations) for a system of molecules [39,40,42]. Within MD, molecule positions and
velocities change according to the intermolecular forces between individual molecules.
The first MD study was done in 1956 by Alder and Wainwright to study the dy-
namics of hard spheres [46]. Two years later, Gibson et al used MD simulation for
the first time to study a more realistic materials problem, radiation damage in crys-
talline Cu [47]. In 1964, Rahman was the first to use MD simulation for a real liquid
(argon) [48]. Although many developments have refined MC and MD simulations
since those pioneering times, the same basic ideas are still behind today’s simula-

tions of simple fluids, biological molecules and other materials of varying degrees of



complexity [39].

One of the differences between MC and MD simulations is that MC does not
depend on generating physically realistic particle trajectories from a consideration
of forces, but rather samples configurations in a random way. It thus offers the
possibility of reaching equilibrium states in a computationally more efficient manner
if an appropriate algorithm can be found. As an example for spin systems, the Wolff
algorithm allows for clusters of particles to change their states at once, rather than just

particles one at a time, resulting in a faster exploration of system configurations [49].

1.2.1 Computer Simulation: applications and motivations

In our context, computer simulation is a tool whereby a computer program evolves a
model of a system according to often simple rules based on how constituents of the
system interact. Simulation is necessary when it is difficult to determine otherwise,
e.g., through some analytical theory, how the behaviour of the system as a whole
emerges from a consideration of the interaction of its parts. Computer simulation
has become a useful tool to study many systems in physics, chemistry, biochemistry,
biology, drug design, engineering and so on. In physics, a few systems have exact
solutions, such as the ideal gas, Einstein crystal and two-dimensional Ising model.
Other systems require employing some approximations to make the problem analyt-
ically tractable. But most problems in physics can not be solved exactly even after
employing reasonable approximations. Often, the behaviour of systems that have
many interacting particles is difficult to predict. Therefore, computer simulation is
needed to solve problems that involve many particles [39].

For models that are amenable to at least approximate theoretical treatment, com-
puter simulations, which give essentially exact results, provide a check on the accuracy

of the theoretical results and can provide a systematic framework for determining the



range of validity of the assumption inherent in the theory. The line of inquiry can
then proceed to more “realistic” models, i.e., possibly more complex models that aim
to give a more quantitatively accurate description of a physical system. Such models
may be more difficult to treat analytically, but just as easy to simulate. Thus, by
quantitatively validating the theory for a simpler model and validating finer imple-
mentations of the model against experiment, simulation can provide a bridge between

theory and experiment.

1.3 Some Considerations for Phase Transitions

1.3.1 Preliminaries from Statistical Mechanics

Statistical mechanics is a branch of physics that uses some mathematical tools for
dealing with a large number of particles to study the macroscopic properties of a
material. In statistical mechanics, an ensemble is a conceptual collection of many
instances of a system, i.e., imaginary copies of a system where the bulk properties
of each satisfy certain constraints or follow a specified distribution, while the micro-
scopic arrangement of constituent particles is different. Different types of ensembles
are defined by what bulk variables are held fixed. For example, by fixing the num-
ber of particles N, the volume V', and the energy E, we define the microcanonical
ensemble; fixing N, V, and T, we define the canonical ensemble; and finally, if V/,
T, and the chemical potential y are fixed, we are working within the grand canonical
ensemble. Each ensemble is associated with a partition function which can be used to
extract thermodynamic information about the system. For the canonical ensemble,

the partition function Q(N,V,T) is given by [50],

QIN,V,T) = exp(=BE,), (1.1)
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Internal energy U= —%w
Helmholtz free energy A= —kgTIn(Q(N,V,T))
pressure P=- (%)T

Gibbs free energy G=A+PV

Enthalpy H=U+PV

Entropy S=- %>V

Specific heat at constant V' Cy = (%)V

Specific heat at constant P Cp = (%)P

Isothermal compressibility — kp = —% (%)T

Table 1.1: Thermodynamic quantities extracted from the partition function given in
Eq. 1.1 [50].

where the sum is over all microstates with the given V and N, E, is a microstate
energy and 8 = (kgT) ™", where kg is Boltzmann’s constant. Table 1.3.1 shows a list
of thermodynamic quantities that can be extracted from the partition function [50,51].
The derivations of these quantities, for the canonical ensemble and other ensembles,
are available in most statistical mechanics books, e.g., Ref [50].

Phase transitions occur when we encounter a discontinuity or a singularity in
one or more of the thermodynamic functions. Some examples of phase transitions
are condensation of gases, evaporation of liquids, melting of solids, crystallization of
liquids, super-fluid transition from He I to He II, transition from ferromagnetic to
paramagnetic, and transition from normal to superconducting materials [50].

In general, phase transitions come in one of two classes, first-order and continu-
ous. A first order transition exhibits a discontinuity in the first derivative of the free
energy with respect to a thermodynamic variable. For example, in boiling a liquid by
increasing temperature at fixed pressure, there is a discontinuity in the volume, en-

tropy and energy. Familiar phase changes between solid, liquid, and gas are common

11



examples of first-order transitions. Such a transition involves latent heat, where the
system either absorbs or releases energy at constant temperature. This will drive the
system to form coexisting phases before completely transforming to the second phase.
Continuous phase transitions exhibit a discontinuity or singularity in higher-order
derivatives of the free energy, while all first derivatives are continuous. Transitions
with a discontinuous second derivative, such as the divergence of the heat capacity in
a ferromagnet, are often termed second order.

In addition to discontinuities in bulk thermodynamic quantities, phase transitions
are accompanied by a qualitative change in an order parameter. Broadly speaking,
an order parameter is a quantity that vanishes in one phase, i.e., has a value of zero,
and has a non-zero value in the other phase. Examples of order parameters include
the magnetization in a paramagnetic to ferromagnetic transition and the height of a
peak in the structure factor for a structural change in a material.

Various MC simulation algorithms exist to evolve the system from a non-equilibrium
state to the equilibrium state under different statistical ensembles. At equilibrium we
save many independent configurations, i.e., coordinates of all the particles in the sys-
tem, to use in calculating quantities that are useful in describing the phase transition
of interest. Structural quantities such as the radial distribution function, structure
factor, measures of local crystallinity, orientational correlational function and trans-
lational correlational function are useful for determining the type of phase and the
degree ordering present in the system. The last two quantities are particularly useful

when considering transitions in two dimensions.

1.3.2 Radial Distribution Function

The radial distribution function g(r) is defined as the probability of finding a particle

at distance r away from a reference particle relative to the probability expected for

12



a completely random distribution (ideal gas state) at the same density. According to
this definition, g(r) will be equal to unity for an ideal gas (strictly speaking, 1—1/N),
and any deviation of ¢g(r) from unity reflects correlations between particles [52]. The
formula of g(r) for the canonical ensemble can be determined by integrating the
configurational distribution function over the positions of all particles in the system

except two [39)],

N(N —1)

P2 ZNvT

— =

g(ri,73) = /dr}’, dry ... dryexp(—=8 U(r1,73,... 7N)), (1.2)

where N is the total number of particles, p is the number density, U is the potential

energy of the system, and
ZNvT = /dr_i drs ... dryexp(—p U(ri,73, ... TN)), (1.3)

is the configurational integral (similar to the canonical partition function, except that
velocities are not considered). For a system of spherically symmetric interactions,
g(r1,75) depends only on the distance between particles r = |r] — 73|, and hence the

definition in Eq. 1.2 can be expressed as,

1) = (X X 6 a5 -1) = 45 (X T dr-r)). (0

i g i jF
where (.) denote an ensemble average (an average over all possible states), and 7;; is
the displacement vector pointing from particle ¢ to particle j.
The regular distribution of particles in a crystal gives the characteristic pattern
of the g(r) with high, sharp peaks. For liquids, g(r) has regions of high and low

intensity but no sharp peaks. g(r) can be measured experimentally or calculated by

computer simulation to distinguish the liquid from the crystal. It also can be used for

13



calculating some thermodynamic quantities, such as energy and pressure for a system

of interacting particles from the general relation,

(A) = <ZZa(rlj)> = ;Np/ooo a(r)g(r)dmridr, (1.5)

i >
where a(r) is a quantity that depends only on the distance between two particles, and
(A) is the expectation value of a(r). For example, the total internal energy (potential

and kinetic) of the system can be expressed as [39)],
E = §Nk‘BT+ 27TNp/ r u(r)g(r)dr, (1.6)
0

where u(r) is the pair interaction energy and the first term is the ideal gas contribution.

The pressure can be calculated by [39],

21 o du(r
P = pkpT — ?p2/0 7 dg’ )g(r)dr, (1.7)
where the integral is related to the average of the pair virial function rdqzl—(:).

1.3.3 Structure Factor

The structure factor S(¢) is a quantity that describes how the material scatters in-
cident waves, where the argument ¢ is a vector in reciprocal space which is equal to
the difference between the scattered and the incident wave vectors. S(¢) is commonly
obtained in neutron and X-ray scattering experiments to study the structure of mate-
rials. S(g) is derived by using both Bragg and Laue conditions, and the final formula
is [39,53],

S = {3 eslia (17 - 7). (18)



In case of isotropic liquids, the system does not have long range-order and after
averaging over directions in Eq. 1.8, the structure factor becomes a function of ¢ = |¢]
rather than ¢ [54]. S(q) is directly related to ¢g(r) and it can be obtained simply by

taking the Fourier transform of g(r) as in the following for a 2D liquid system [39],

o gin kr
r
kr

S(q) =1+ 27rp/0 g(r)dr. (1.9)

One restriction that must be taken into account when calculating S(q) for a square
system with periodic boundaries is that ¢ must equal 27w(n,,n,)/L, where L is the

simulation box length and n,, are integers [39,55,56].

1.3.4 Identification of Crystal-like and Liquid-like Particles

When performing a simulation, the results sometimes show a crystal with some defects
or a liquid with some crystalline local environments. Therefore, to distinguish the
crystal and liquid phases, it becomes important to identify each particle in the system
individually as being in a crystal-like or liquid-like environment. To do so, we follow
the approach developed by Frenkel and co-workers [57], based on the local bond-order
analysis that was originally introduced in Ref. [58]. According to this method, we

calculate a complex quantity ¢, for each particle as,

1 Ny (7)
Ny(2)

Yim(Fi5), (1.10)

=1

QZm<i> -

where Ny (i) is the number of neighbours of particle ¢ within a specific distance, and
Yim(7i;) is the spherical harmonic function calculated for angles defined by the unit
vector 7;; pointing from particle ¢ to neighbour j. The unit vector 7;; determines
the polar angle 6,;(= 7/2 in 2D) and azimuthal angle ¢;;. The integer [ is chosen to

be equal to 4 for crystals with square symmetry and 6 for triangular symmetry, and
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the integer m takes values in the range € [—[,1]. We then calculate the correlation

between each pair of neighbouring particles ¢ and j as,

!
Cij = Z @lm(i)cﬁm(j)’ (1-11)

m=—I
where
~ . le(z)
qim\?) = . s
) = S g

m=—1

(1.12)

and ¢* is the complex conjugate of g. The correlation between two neighbours is high if
their bonding environments are aligned. If the correlation between the two neighbours
7 and j is greater than a threshold value, then the two particles are considered to be
connected. A particle ¢ is considered to be a solid-like particle if it has at least
three connected particles for the square crystal and five connected particles for the

triangular crystal.

1.3.5 Melting in 2D Systems

Crystals in 3D have long range translational order, while crystals in 2D have quasi-
long range translational order meaning that the translational order decays as a power
law with distance. This is because long wavelength fluctuations in 2D are low in
energy, i.e., the energy of a fluctuation does not diverge as its wavelength increases,
and therefore it is easy to destroy the long range translational order [59,60]. The
dependence of the translational order on the system dimensionality introduces differ-
ent scenarios of crystal melting. In 3D systems, melting occurs through a first order
phase transition, while for 2D systems, the prevailing thought is that melting occurs
continuously and follows KTHNY theory [61,62] developed in 1970s by Kosterlitz,
Thouless, Halperin, Nelson, and Young.

According to this theory, bound pairs of dislocations appearing spontaneously
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in the crystal near melting undergo unbinding at the melting transition. The un-
binding of dislocations produces the hexatic phase, for which translational order is
reduced from quasi-long-range to short range (decaying exponentially with distance)
and reduces long range orientational order to quasi-long range [55,56,60]. Further
disordering, e.g., by heating or decompression, results in the unbinding of the two
particles identified with a single dislocation to form disclinations. This produces the
liquid, which is characterized by short range orientational and translational order.
Thus, KTHNY-theory predicts three distinct equilibrium phases in 2D: crystal, liquid
and hexatic, each with its own characteristics. The transitions from crystal to hexatic
and then from hexatic to liquid are both continuous transitions, which means the two
phases do not coexist under any condition.

Several experimental and computer simulation studies validated KTHNY theory,
see for example Ref. [63-65]. In contrast, a recent study of hard disks showed that
the transition between the liquid and the hexatic phase is a first order transition [66].
In our work in Ref. [67], we see that melting in the 2D SSSW model is consistent
with a conventional first order transition. This picture of the 2D transition was also
reported in other studies as in Refs. [68-71]. In Ch. 4 we perturb the SSSW model
by changing the potential parameters to increase the range of inverse melting, and we
find that melting remains first order, at least for the square crystal near the region of

inverse melting.

1.3.6 Translational Correlation Function

In 2D, fluctuations with long wavelength destroy the long range translational order

of the crystal [60,72]. The usual measure of translational correlation within KTHNY
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theory is the correlation function defined as [55, 60,73, 74],

o) = St 7)) (1.13)

J

where ¢ is a reciprocal lattice vector, 7; is the position of particle j relative to an
origin taken to be one of the particle positions, and the sum is over all particles j with
|7;| = r, and < . > indicates an ensemble average over origins and configurations. For
2D crystals, G5(r) is expected to decay algebraically with distance, G3(r) ~ r~", with
nr < 1/3, while for hexatic and isotropic liquid phases, G(r) decays exponentially.
It is expected that as the transition to the hexatic phase is approached from within

the crystal phase, nr approaches 1/3 from below.

1.3.7 Orientational Correlation Function

The orientational correlation function for 2D systems with hexagonal symmetry is

measured by [55,60,66,73,74],

Golr) = <q6<f>q;<6>> (1.14)

1

N;
q6(75) = ﬁzexp(e’wjk)’ (1.15)
J k=1

where N; is the number of nearest neighbours of particle j, 0;; is the angle made by
the bond with respect to an arbitrary but fixed axis between particle j and neighbour
k, and ¢ is the complex conjugate of gs. KTHNY theory suggests that Gg(r) for a
crystal does not decay with distance. Instead, it saturates to a constant value. For the
hexatic phase, Gg(r) decays as a power law with distance, Gg ~ r~", with ng < 1/4,
while Gg(r) decays exponentially in the liquid. For the square crystal, we use G4(r)

with ¢4 (7) = N% Z,ivil exp(4i6;i), where for the hexatic phase, we expect that G4(r)
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also decays as a power law with an exponent 74 < 1/4.

1.4 Outline

The remainder of this thesis is organized as follows. In Ch. 2 we give a brief history
of computer simulations and provide an overview of the simulation techniques used
in subsequent chapters. In Ch. 3 we calculate and present the phase diagram for the
SSSW model for a wide range of T" and P and equivalently in the T-p plane. The
phase diagram includes five crystals in addition to the liquid and gas. We also report
in this chapter our findings for inverse melting, in which the liquid freezes to the
crystal upon heating. In Ch. 4 we optimize the parameters of the SSSW potential to
increase the range of pressures over which inverse melting is observed, and we find
that melting remains first order, at least for the square crystal near the region of
inverse melting. We further explore and find new behaviour for the optimized SSSW
model at high pressure in Ch. 5. In Ch. 6 we summarize our results and discuss future

work.
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Chapter 2

Methodology

2.1 Basics of Monte Carlo Method

We perform MC simulations to model a 2D system of interacting particles. With MC
simulations, we start from an initial, often random, state which usually happens to be
a non-equilibrium state, and then we follow a Markov process, where the generation
of a new state depends only on the current state, i.e., does not depend on previous
states. Different MC algorithms exist to produce different random walks, but the
goal is to reach a steady state in which states are sampled according to a statistical
mechanical ensemble. For example, to generate states in the grand canonical ensemble
the random walk is generated not only by displacing particles, but by their insertion
and deletion. Although the method seems to be simple, there are several details that

we would like to discuss in the following subsections.

2.1.1 Reduced Units

It is very convenient in simulation studies to report all quantities in terms of reduced

units. The basic units in simulations are mass (m), length (o) and energy (e), and
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quantity quantity in reduced units

Density p* = pa® (3D), p* = po? (2D)
Temperature T = kpT/e

Energy E*=FE/e

Pressure P* = Po3/e (3D), P* = Po?/e (2D)
Time t* = (e/ma?)'/?t

Surface tension ~v* =~0%/e (3D), v* = vo /e (2D)

Table 2.1: Reduced units of some physical and thermodynamic quantities.

then all the other quantities can be expressed in terms of these basic units as explained
in the following table [1,2].

By working with reduced units we simplify the equations of motion and interac-
tion potentials since the basic units are not written explicitly. If we work with the
SI system, some quantities will be either very small or very large, and if we have
a multiplication operation between such quantities, we might end up with a numer-
ical overflow. With reduced units, all quantities will be typically in the range of
(1073,103) [2]. Errors in this case will be easier to detect because if we obtain a very
small or a very large number, most probably it will be due to an error. Using reduced
units underlines the idea that we can simulate a single model to study different sys-
tems; the simulation results can be rescaled to different sets of physical units through
the law of corresponding states, where different sets belong to different systems with

qualitatively identical interactions, such as Ne, Ar and Kr [2].

2.1.2 Periodic Boundary Conditions

The aim of many computer simulation studies is to provide information about bulk

properties of materials. With today’s best computers, we can run simulations for
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system sizes of up to a billion particles, but this number is still very far from the
thermodynamic limit, and therefore surface effects can not be neglected. The problem
of surface effects can be eliminated by implementing periodic boundary conditions. In
periodic boundary conditions, the cubic simulation box is replicated in all directions
to create a conceptually infinite lattice of identical boxes. When a particle moves in
the original box, its image in each box, and particularly in each of the neighbouring
boxes, moves in exactly the same way. Therefore, when a particle leaves the original
box, an image will enter the original box from the opposite face. In this way, the walls

are removed, and there are no surface objects [1,2].

O
<
O
T -
O
< -

O¢ O'O«g OO,, 0

Figure 2.1: An example of a 2D boundary system as adapted from [1]. Each object
can enter and leave any box across one of the four walls.

In Fig. 2.1 the grey box is the original box of length L, while the white boxes are

the duplicated images for the grey box in all directions. As the dashed particle leaves
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the original box, its images move across their corresponding boundaries. Hence, the
number of particles in each box will be conserved. Practically speaking, using periodic
boundary conditions does not require storing the coordinates of all images during the
simulation [1,2]; they can be reconstructed if need be. It is also worth mentioning
that periodic boundary conditions can be applied to any box shape, but it would
not be as direct as in the case of a cubic box. For example, in Chs. 3 and 5 we
start with a square box and we implement anisotropic MC simulations, where we
allow for each box edge to change independently and the angle to change as well.
During the simulation, the square box becomes a parallelogram. Before we apply
periodic boundary conditions, we rescale particle coordinates 7 = (R, R,) in the
parallelogram to fill a square box of unit length with scaled coordinates S = (Sz,Sy)

using the following matrix representation,

-1

This can be implemented with the following pseudocode,

det = A, B, — Ay x B,

Tv, = B,/det
Ty = —B,/det
Ty = —A,/det
Toy = Ay /det
dol=1N

Sy(I) = Ty % Ro(I) + Tio Ry (1)
Sy<[) = T21 * RI<I) + T22 * Ry([)
enddo
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where A, and A, are the x and y components of one of the vectors defining the
simulation cells, and B, and B, are the components of the other vector. det is the
determinant of the matrix formed from A,, A,, B,, and B,. The inverse of this matrix
has elements Ty, T2, T5; and T5. R, and R, are particle coordinates in real space,
Sy and S, are the scaled coordinates in the square box of unit length, and N is the
number of particles. After we apply the periodic boundary conditions, we can rescale

the particles back to fill the parallelogram box.

2.1.3 Minimum Image Convention

In MC simulations, calculating the contribution to the potential energy due to a
specific particle requires including the interactions between this particle and all other
particles in the simulation box. In principle, we also must add the interaction between
the particle and all other particles in the surrounding images. Since we have an
infinite array of images, then we are talking about an infinite number of interactions
and the calculation is impossible in practice. The minimum image convention was
introduced to solve this problem, and in the following we will explain how this can be
implemented. For particle 1 in Fig. 2.2, we construct an imaginary box, the dashed
square box in the figure, which is centered on particle 1 and has the same size and
shape as the original box. Particle 1 is then allowed to interact with all other particles
located inside the imaginary box, 5g, 25, 4g, and 3. In this case particle 1 interacts
with only N — 1 particles instead of an infinite number of particles, and by applying
this method to all other particles in the original box we will have %N (N — 1) terms
due to pairwise interactions [1,2].

To obtain the distance r between particle 2 and j in the minimum image convention
for non-cubic boxes, we rescale the particles as in the previous section and we then

use the following pseudocode, where nint(z) returns the nearest integer to z.
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Figure 2.2: The minimum image convention for a 2D system, as adapted from [1].
The dashed square is the new box constructed for particle 1 using the minimum image
convention. The new box contains the same number of particles as the original box.
The dashed circle represents a potential cutoff.

dS, = Sy(J) — Su(I) — nint(So(.J) — S, (1))
4S, = S,(J) = S,(I) = nint(S,(J) — S,(I))
dv = A, dS, + B, dS,
dy = A, dS, + B, dS,

r =

(dz)? + (dy)?
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2.1.4 Potential Truncation

Although our potential is zero beyond the attractive well, in general truncating poten-
tials has an effect on the quantities calculated. The necessity of truncating potentials
arises from the fact that with the minimum image convention, the total number of
interactions is reduced from an infinite number to N (N — 1), but this number is still
too large for a system of number of particle > 1000. For short range interactions, the
total potential energy is dominated by the interaction between the particle of interest
and neighbouring particles. Hence, to reduce the number of interactions, we apply a
spherical cutoff (r.) and we only consider the interactions between the particle of in-
terest and other particles within r.. In this case we are making an error by neglecting
the interactions with the particles outside r.. We can reduce the error by applying
a bigger r., but we should restrict r. to be less than half the box length to prevent
interactions with duplicate images [1,2].

To illustrate this point, the dashed circle in Fig. 2.2 is the cutoff circle for particle
1. According to the cutoff criteria, only particles 3 and 5p are interacting with particle
1, while particles 2g and 45 do not contribute because their centres are located outside
the circle.

The potential energy contribution that is neglected for r > r. is (for 2D system) [2,3],
Uit = Nrp [ ru(r)g(r)dr, (2.1

where p is the number density, u(r) is the interaction potential and g(r) is the radial
distribution function. In practice, for a liquid there is very little correlation between

particles at long distances, i.e., to a good approximation g(r) = 1 for r > r.. We also
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can calculate the pressure tail correction for the 2D system via [2, 3],
Puoa =2 /OO 22 (1) (2.2)
wil = —— r—gq(r)dr. .
bail 2 Te d'f‘g

It is obvious from Egs. 2.1 and 2.2 that the tail corrections diverge unless u(r)
decays more rapidly than r=2 in 2D (or r—2 in 3D). However, Coulomb and dipo-

Land 773, respectively, and hence are problematic. In

lar interactions decay as r~
this case, a common approach to make the energy calculation tractable is to apply
Ewald summation techniques, which involve calculating contributions from long range
interactions in reciprocal space [4-7].

Although the cutoff radius reduces the number of interactions contributing to the
system energy, we still need to compute all the %N (N — 1) pair distances to decide
which pairs interact. For big systems (N > 1000), truncation by itself is not efficient,
and therefore we need to adopt tricks to speed up the calculations, such as Verlet
neighbour list and cell list [2,8,9]. In the Verlet neighbour list method, a second
cutoff radius r, > r. is introduced, and a list is made for each particle to include all
particles within a radius r,. We calculate only the distances between a particle and
those in its own list, and once a particle is displaced a distance greater than (r,—r.)/2
we update the lists of all particles. This method is expected to reduce the time needed
to finish the simulations from ~ N? to ~ N. However, constructing the list is still of
order ~ N? and therefore r, should not be so small that the neighbour list is updated
frequently.

In the cell list method, the simulation box is divided into cells of size slightly
bigger than r.. Each particle is allowed to interact only with those particles in its
own or neighbouring cells. This method also reduces the simulation time from ~ N?

to ~ N.
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2.1.5 Metropolis MC

The Metropolis algorithm is the original algorithm used in the first MC simulations.
The dynamics of generating a new configuration stems from considering an ensemble
of particle configurations or microstates in equilibrium. In equilibrium, the number
of ensemble members N(x) in a given microstate z is stationary: the distribution is
in balance. Let K(o — n) be the flow of ensemble members from microstate o to
microstate n, i.e., the number of ensemble members in state o that convert to state n

in one step of the evolution algorithm. Balance can be achieved globally through,

Y K(o—xz)=Y K(z— o), (2.3)

that is, the flow out of state o (to all other possible states) is balanced by the flow
into state o from all other states.
The Metropolis algorithm is based on maintaining equilibrium through detailed

balance,

K(o—n)=K(n— o) (2.4)

that is, the flow between every pair of states is balanced. This more restrictive
condition is more straightforward to use in generating an algorithm. We continue
by writing K(o — n) as a product N(o)a(o — n)acc(o — n), where a(o — n)
is the probability of attempting to generate state n given the current state o, and
acc(o — n) is the probability of accepting the proposed move from o to n. Thus we
arrive at,

N(o)a(o — n)acc(o — n) = N(n) a(n — o) acc(n — o). (2.5)

By choosing the condition

alo —n) =a(n — o), (2.6)
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which is achieved by generating new random states in a non-biased way (and which can
be broken inadvertently by subtle effects when implementing the code), the detailed

balance condition then reduces to,

N(o)acc(o — n) = N(n)acc(n — o). (2.7)

At this point enters statistical mechanics. For the canonical ensemble, the distribution

of states follows the Boltzmann distribution,

N (o) o exp(—fU(0)), (2.8)

where U (0) is the potential energy of microstate o (assuming independence of velocities

and spatial coordinates), and we arrive at a condition on the acceptance probabilities,

= exp(=p(U(n) = U(0))). (2.9)

A definition of the acceptance probability that satisfies this relation is,

1 for U(o) > U(n)
acc(o = n) = (2.10)
exp(—B(U(n) —U(o)))  otherwise
For other statistical ensembles, the acceptance probability is determined by the dis-
tribution function appropriate to that ensemble, but the idea is the same.

The Metropolis algorithm can be implemented practically in the following way.
We start by moving a randomly chosen particle a uniform random displacement along
each of the coordinate axes. In passing we note that selecting particles sequentially
breaks the detailed balance condition explicit in Eq. 2.6. The maximum displacement

that the particle can move is 07,4, in either z and y. The new position of the particle
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(Cnew) 1s determined by Eq. 2.11 [1,2],

Crew = Cota + (2.0 % rand — 1.0) * 6700, (2.11)

where ¢ = z, y and z and rand is a uniform random number on (0,1). We then
calculate the total interaction energy of the system for both cases, before moving the
particle (V;) and after moving the particle (Vy). If (6Vy; = Vy —V; < 0), we accept
the first particle move. But if (6V}; > 0), the move is accepted with a probability
exp(—f 6Vy;). The exp(—f 6Vy;) quantity is the Boltzmann factor of the energy
difference, which has a value in the range (0, 1). We simply compare the Boltzmann
factor with rand, and then we accept the move if exp(—f 0V;) > rand, otherwise we
reject the move.

If the particle move is accepted, we then update the particle configuration to
include the new position of the particle (z; = o, z;41 = n), but if the move is rejected
we recover the previous configuration (z; = o, ;11 = 0). In the SSSW model, we deal
with a system of hard particles, thus any attempted move that generates an overlap
will be rejected and no energy criterion need be tested. By repeating this method
millions of times on average per particle, the system is driven from the initial non-
equilibrium state to steady state where it samples states according to an equilibrium
distribution, i.e., it achieves the equilibrium macrostate.

The parameter 67,,,,, which determines the maximum displacement of particle
moves, should be an adjustable parameter during the simulation. If this parameter
is too small, phase space will be explored slowly, even if most particle moves are
accepted. Alternatively, if 07,4, is too large, most of the moves will be rejected and
again the phase space will be explored slowly. Therefore, d7,,.. is typically adjusted

during the simulation so that about half the moves are accepted. In principle, allowing
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0Tmae to fluctuate breaks detailed balance by violating Eq. 2.6 and so it is better to
fix 07,42 once equilibrium is reached. In practice, this is not a large concern since

OTmaz itself equilibrates to a (nearly) constant value.

2.2 Free Energy Techniques

Several computer simulation techniques can be used to study phase behaviour of a
particular system. Determining which technique is required to be used depends on the
character of the phase transition. For example, techniques used to study first order
transitions are different from those used to study second order transitions. In this
section, we will focus on the techniques required to study a first order transition and
to determine the coexistence curve between two different phases. These techniques are
mainly based on free energy calculations. The necessity of developing these techniques
is that the free energy can not be measured directly from simulation, because it is not
an average of functions of the phase space coordinates. Instead it is related to the

volume of the phase space and therefore related directly to the partition function [2].

2.2.1 Thermodynamic Integration

To compute the free energy for a particular system at a given T and V', we should
link the system by a reversible path at constant 7" and V' to a system of known free
energy. The change in the free energy along the path can be calculated by generalized
thermodynamic integration [2]. Some examples on systems with known free energies
are the ideal gas and Einstein crystal.

To find the free energy for a liquid, we link the liquid to the ideal gas by the fact
that above the liquid-gas critical point the free energy of the liquid (fluid, technically)

approaches that of the ideal gas as density approaches zero. Once this identification
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is made, we can use the relation,

A "

to find Helmholtz free energy difference between state points along an isotherm. In
other words, we can integrate the equation of state P(p) from very low density, where
the system behaves as an ideal gas, to arbitrary density, in order to find the Helmholtz

free energy per particle of the liquid [2],

) — p/]{?BT>

510 = o)+ 7 [ a (P 213

where f;q is the Helmholtz free energy of the ideal gas per particle and the numerator
in the integrand represents the excess pressure. When performing this integration, it
is important that the integration path does not cross a first order transition. If the
starting and ending points of the integration are separated by a first order transition,
the integration is done in two steps along a path that avoids the transition by passing
beyond the critical point. First we integrate at T" well above the critical temperature,
and second the system is cooled at constant density to the desired temperature. The

change in free energy in the second step is [2],
1 2
Baf (1) = Buf (1) + - [ (/D) E(V,T), (2.14)
where 3, = 1/(kgT,) and E(V,T) is the total energy.

2.2.2 Frenkel-Ladd Method

For the solid phase, we link the solid to the Einstein crystal, where all atoms are

coupled harmonically to their lattice sites. Calculating the free energy of a solid is
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not as simple as the case of a liquid. A few techniques can be used to calculate the
free energy for a solid, but in this thesis we will discuss only one technique, which is
the Frenkel-Ladd Method.

This technique is well-explained in Chs. 7 and 10 of Ref [2], and the steps of the
algorithm are detailed in Ch. 3 of this thesis. Here, we simply recount a few back-
ground ideas, primarily related to the generalization of thermodynamic integration,
where state points differ not in their pressure or temperature, but in the value of a
parameter that controls the interaction potential governing the system.

For example, we can define a potential energy,
U)\ = Uref + A (Utarget - Uref) ) (215)

where A is a parameter that continuously transforms the system from a reference
system (A = 0), for which the free energy is known, to the target system (A = 1)
for which the free energy is being calculated. Through the fundamental theorem of
calculus, the Helmholtz free energy difference between target and reference systems

can be written as,

L (OF
AF = Fges — Frg = FA=1) — F(A = 0) = /0 d\ <‘989>> . (2.16)
NV, T

The trick is to write the derivative of F' with respect to A in terms of quantities one
can obtain in simulation. This can be accomplished by first writing down an extended

partition function based on U(\),
1 ,,
QIN.V.T.N) = iy [ 47 exp [-BUN)], (2.17)
where A is the thermal wavelength, and hence F(\) = =37 'InQ(N,V,T,\). The
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desired derivative then follows via,

<8F()\)) _ 1 OQ(N,V, T, ) 2.18)

O\ ~ BQ(N,V,T,\) )
J diN ) exp [—BU(N)]
J diN exp [-BU(N)]

_ JOUL)
B o/,
= <Utarget - Uref))\ .

To calculate the last quantity, one first generates an ensemble of configurations using
the interaction potential implicit in Eq. 2.15 at a particular value of A. Then for each
configuration, one calculates the potential energy according to the target interaction
and again according to the reference interaction. The average of this difference is

equal to the integrand in Eq. 2.16 and one obtains,
1
Ftarget(N7 V7 T) = Fref<N7 ‘/7 T) + /0 dA <Utarget - Uref>)\ . (219)

While the above provides a general framework for this type of free energy calcula-
tion, hard particles present an added difficulty in that it is problematic to continuously
switch off the infinite hard core repulsion. Instead of using a potential as in Eq. 2.15,
one defines,

Uy =U)+ XY (7 — 70,)7, (2.20)

where 7; is the position of particle ¢ and 7 ; is its ideal lattice position, and U(7)
is the original (SSSW) potential. This U()\) results in a method based on tracking
the average value of the mean-square displacement as a function of A. Instead of
integrating from A = 0 to 1 (there is nothing special about A = 1), one needs to

obtain data until the system exhibits ideal harmonic behaviour at sufficiently high .
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2.2.3 Gibbs Ensemble

One way to locate the coexistence point between two phases is to perform a 