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Introduction  
 

Achieving maximal jump height and rapid changes in direction are an integral component of 

many sports (e.g., basketball, volleyball, gymnastics). The ability to jump higher and cut quicker 

is of upmost importance when attempting to outperform the competition. Hoffman and 

colleagues (1996) displayed that Division 1 collegiate basketball players with the highest vertical 

jump receive more playing time than the players that could not jump as high. In order to 

maximize athletic movement, we must understand where movement originates. Before 

movement can occur, the core musculature needs to stabilize the body’s center of gravity over 

the base of support and generate force through the transfer of segmental angular momentum 

(Kibler et al., 2006). Throughout the literature, there are a variety of descriptions or definitions 

for the core musculature.  

Core musculature 

Anatomy of core 
 

The literature provides a variety of definitions and descriptions for the core musculature. Behm 

and colleagues (2010) conducted a review process to precisely distinguish the different aspects 

of the core musculature and function. They concluded that the anatomical core consisted of the 

axial skeleton (which includes the pelvic girdle and shoulder girdles) and all soft tissues (i.e., 

articular and fibro-cartilage, ligaments, tendons, muscles, fascia) with a proximal attachment 

originating on the axial skeleton, regardless of whether the soft tissue terminates on the axial or 

appendicular skeleton (upper and lower extremities). All of these soft tissues and axial skeleton 

work to move in a variety of eccentric, concentric, or isometric motions (Behm et al., 2010).  
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Within the core musculature, there are three active muscle subsystems. These three subsystems 

are divided amongst global, local, and transfer muscle groups. The global core muscles consist 

of: longissimus thorasic, illicostal thorasic, quadratus lumborum, rectus abdominis, external 

obliques, and internal oblique. The local muscle system consists of: intertransversaii, 

interspinalis, multifidus, longissimus lumborum, illiocostal lumborum, quadradus lumborum, 

transversus abdominus, and internal obliques. The transfer muscles consist of: hip flexors, 

extensors, abductors, adductors, scapular stabilizers, and muscles that act on the glenohumeral 

joint (Colston, 2012). The groups work together to provide multi-segmental stiffness over a large 

range and act as prime movers during dynamic activities (Behm et al., 2010).  

 

The local core musculature (e.g., multifidus, rotators, interspinalis, intertransversalis) is 

responsible to provide inter-segmental stiffness between adjacent vertebrae. Additional local 

axial skeleton stabilizers include the transverse abdominis, internal oblique abdominis, quadratus 

lumborum, diaphragm, and the levator ani. These six muscles work together to increase intra-

abdominal pressure. The importance of increasing the intra-abdominal pressure protects the spine 

from compressive forces and increases core stiffness to reduce perturbations caused from 

opposing forces acting on the body (e.g., opposing player, impact from landing, a strike from 

combat sport). Another key function of the core musculature is to coordinate and control 

movement (Colston, 2012). The global core musculature is the largest mass of the trunk and its 

main responsibility is to maximize force production. Finally, the axial-appendicular (transfer 
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muscles) work to transfer forces /momentum to the limbs to move or initiate throwing 

movements.  

Core stability 
 

In addition to the anatomy of the core, the concept of core stability also needs to be understood. 

Once again, there is no universally-accepted definition of core stability. Kibler et al. (2006) 

defined core stability as "The ability to control the position and motion of the trunk over the 

pelvis and legs to allow optimum production, transfer, control of force and motion to the 

terminal segment in integrated kinetic chain activities." The importance of the core musculature 

in human movement is to provide a foundation for the transfer of angular momentum to the 

limbs and to maintain balance through postural adjustments to keep one’s center of gravity over 

the base of support (Stranget al., 2009). Pre-programmed muscle activation (feedforward 

programs) allow for efficient local and distal function.  

Dysfunction of core 
 

Furthermore, understanding dysfunction of the core can also provide further insights in terms of 

performance and health. One function of the core is to stabilize the spine and protect against 

lower back injuries. Lower back injuries represent 10 to 15% of all athletic injuries in the United 

States (Colston, 2012). Correspondingly, the pain and discomfort caused by lower back pain 

affects postural stability and impairs balance (Woon Ham et al., 2010). In addition, there is 

evidence for proprioceptive deficits among patients with recurrent lower back pain related to 

postural balance and neuromuscular performance (Woon Ham et al., 2010). In fact, it has been 

shown that having a strong and endurant core can reduce the likelihood of hip, pelvis, thigh, knee 

and ankle injuries (Colston, 2012). In essence, it is widely accepted that having a strong and 
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healthy core is of upmost importance for all individuals (Kibler et al., 2006; Behm et al, 2010; 

Sandrey and Mitzel, 2013).  

 

However, a review conducted by Hibbs and colleagues (2008) suggest that there is a lack of 

research supporting the idea of core stability and the effects on athletic performance. For 

instance, when examining the effects of core stability training in experienced runners, Sato and 

Mokha (2009) could not establish a significant link between core training over six weeks and any 

improvement in lower limb stability or ground reaction forces. They suggested that the 

mechanics of running were not affected with experienced runners when core musculature 

conditioning is improved. Conversely, a study that investigated the throwing velocity of female 

handball players following a 6-week core stabilizing regime, reported a significant increase in 

throwing velocity (Saterbakken et al., 2011). This investigation suggested that a high level of 

core stability and strength is required for generating force in multi-segmental movements.  

Stages of core training 
 

When designing or applying a specific training program to an individual, it is important to 

address individual needs. Depending on the condition and experience of the individual, tapering 

should be taken into account before jumping into potentially dangerous movements. Colston, 

(2012.) separated core-training programs into three subgroups  

I. Cognitive phase – cognitive-oriented problems: contract deep muscles to increase 

precision and skill. Essentially, learning how to turn on and off the global core muscles. 

i.e., practicing abdominal bracing through planks and other stationary exercises.  
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II. Associative phase – progression to more challenging positions. Improve on consistency 

of performance, success, and refinement. This would involve the integration of both 

global and local muscles groups. i.e., medicine ball throws and other dynamic exercises 

that focus on contraction and relaxation of the core musculature under control.  

III. Autonomic phase – tasks become habitual. Concentration is placed on the task at hand 

and not the activation of the core musculature. i.e., sports specific movements, such as 

throwing a baseball, kicking a soccer ball, swinging a baseball bat. This phase should 

incorporate the athlete’s ability to increase power and speed of movement by increasing 

the contribution from the core. It is one thing to work on core endurance and strength, but 

it takes practice to transfer this additional strength to a sports specific movement.  

 

Hence, the more experienced an athlete is, the less likely they are to be affected by exogenous 

variables. However, studies that have shown a decrease or no change in core muscle activation in 

unstable environments typically used a trained group of subjects (Wahl & Behm, 2008; Bressels 

et al., 2009). The more training experience a group of subjects has, the less likely there will be 

differences in muscle activation and performance in an unstable environment.  

 

Training the Core 
 

A review conducted by Behm and colleagues (2010) outlined specification for training the core 

musculature for athletic and non-athletic populations. In terms of training the core, it is important 

to distinguish between three groups: (i) athletes that want to improve athletic performance, (ii) 

those that want to maintain health, and (iii) those in need of rehabilitation.  
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(i) Athletes that are training for maximal strength, power, and velocity of movement 

should emphasize high-intensity closed kinetic movements such as Olympic lefts, 

squats, and deadlifts (Behm et al., 2010).   

(ii) For fitness and health conscious individuals, ground-based free weightlifts (e.g., back 

squats, dead lifts, Olympic lifts, and lifts that involve trunk rotation) should form the 

foundation of exercises to train the core musculature. These closed kinetic chain 

movements allow for moderate levels of instability that allow for the simultaneous 

development of upper and lower extremity strength, thereby addressing all links in 

the kinetic chain (Behm et al., 2010).  

(iii) For individuals that are in need for rehabilitation, instability devices are becoming 

increasing popular in order to reduce load on joints and increase muscle activation. 

Additionally, such training may enhance co-activation between agonist and antagonist 

muscles. This allows for stiffening of joint complexes and may enhance rate of 

recovery of an injury to the core or elsewhere (Behm et al., 2010).  

Hence according to the aforementioned review specifications, the use and advantages of core 

training may be population specific. There are a number of studies demonstrating instability-

induced changes in muscle activation with untrained or recreationally trained individuals 

(Vera-Garcia et al., 2007; Arjmand et al., 2005). On the contrary, there are a number of 

studies indicating a lack of instability-induced changes in core or trunk muscle activation 

with highly resistance-trained individuals (Wahl ant Behm, 2008; Bressels et al., 2009). Most 

of these studies involve slow or moderate speed movements (e.g. bench press, chest press, 

shoulder press, squats, curl-ups) upon a stationary unstable or stable platform or device. 

Highly trained athletes rarely move at slow or moderate speeds or remain stationary when 
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competing. Thus, there is a need to expand upon the instability resistance training literature 

with more dynamic activities especially using experienced and/or athletic populations. In 

addition, during training or competition, it is quite likely that an athlete will experience 

fatigue that could affect performance under unstable conditions that might not be evident 

when tested under rested conditions. As previously mentioned, dysfunction of the core can 

lead to injuries of the lower back, hip, pelvis, thigh, knee and ankle injuries. Since fatigue 

reduces force and one’s ability to coordinate, it is reasonable to suggest that trunk fatigue will 

also increase the likelihood of such injuries. Additionally, the unpredictable and unstable 

surfaces in sport can also increase the likelihood of injuries (e.g. stepping on a foot and 

rolling one’s ankle, running on an uneven field, or contact with another player). Thus, 

understanding the interaction of fatigue and sport specific ballistic movements on unstable 

devices warrants further investigation.    

Effects of Fatigue 
 

The immediate effects of fatigue include reductions in force and balance. When balance is 

perturbed, there is a direct correlation with a decrease in athletic performance as well as an 

increase for the probability of injury (Douris et al., 2011). 

Stabilizing and correcting the trunk’s posture allows for one to position their center of gravity 

(COG) over their base of support. When the COG is not over the base of support, there is a loss 

of balance and movement may not be efficiently transferred in the desired plane of motion.  

Research in the area of jumping mechanics demonstrated that in order to maximize jump height, 

that all forces must be transferred into the vertical plane (Bobbert et al., 2011). When postural 

muscles become fatigued, there is a tendency for an increased postural sway and lack of postural 
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control. These mechanisms may cause a subject to displace their center of gravity in a sub-

optimal position and displace ground reaction forces in a more horizontal direction, thus not 

reaching maximal jump height. Kean and Behm (2006) discovered that CMJ height increased 

following a 6-week fixed foot balance training regime and speculated that a balance training-

induced decrease in postural sway may have resulted in reaction forces being applied in a more 

vertical direction. This illustrates the importance of balance in jumping and shows that a 

decrement in balance could cause a decrease in CMJ height. A study by Surenkok and colleagues 

(2008) used an isokinetic machine to induce trunk fatigue and tested for lactate accumulation as 

well as dynamic balance test and found a significant positive correlation with lactate buildup and 

a decrease in dynamic balance. This also agrees with our hypothesis that fatiguing the posterior 

chain does affect a person’s ability to correct posture and maintain balance. In multi-joint 

movements, the activation patterns typically follow a proximal to distal sequence, especially in 

locomotion and jumping movements (Kopper et al., 2012). A disparity amongst control and 

musculoskeletal properties leads to an unbalanced increase in segment angular velocities, 

causing the concentric velocity of some muscles to be disproportionally high and the total work 

produced to be unnecessarily small (Bobbert et al., 2011), basically, making a skilled jumper 

appear to be un-coordinated and unfamiliar with the movement. By inducing trunk fatigue, both 

balance and momentum transfer will be perturbed and thus, jumping performance should be 

affected. Although, some investigators have suggested core stability does not play a significant 

role in athletic performance. For instance, a study that investigated isometric core stability was 

unable to show a significant correlation to functional dynamic movements (Okada et al., 2011). 

Not only would trunk fatigue alter segmental mechanics and balance, but the concept of cross-

over fatigue can also affect the neuromuscular properties of limb movements.  
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Cross-over fatigue  
 

Cross-over fatigue is when a working muscle group causes fatigue in non-working tissue. While 

there are conflicting studies in the literature, a number of studies have documented fatigue of 

non-target or non-localized muscles. Rattey and colleagues (2005) examined the effects of cross-

over fatigue by isometrically fatiguing the dominant leg and proceeded to measure the EMG 

activity. Following the fatiguing protocol, they observed a decrease in voluntary action as well as 

a decrease in iEMG activity. They cited that centrally mediated mechanisms may have been the 

reason for changes in the non-exercised leg. Another study that looked at cross-over fatigue 

discovered a post-fatigue decline in CNS excitability (Post et al., 2008). Furthermore, another 

study that investigated the effects of fatiguing the hand flexors using an isometric handgrip 

contraction showed a temporary decrease in EMG activity in the non-exercised plantar flexor 

muscles (Kennedy et al., 2012). This article also indicated that the detriment in performance in 

the plantar flexors was affected by systemic central fatigue. Ipso facto, if fatigue disrupts one’s 

ability to maintain posture, then the effects of the unstable surface (if any) should be magnified 

by fatigue.   

 

Fatigue of the trunk has been shown in several studies to cause a decrement in balance (Surenkok 

et al., 2008; Parreira et al., 2013; Vuillerme et al., 2007). All three of these studies investigated 

trunk fatigue and the effect on postural sway, static and dynamic balance in a stationary position. 

In many popular athletic competitions (e.g., basketball, soccer, volleyball), little emphasis is put 

on stationary balance. To the authors’ knowledge; there is no study available that examined trunk 

fatigue and jumping/cutting maneuvers on unstable devices. Furthermore the possible 
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detrimental fatigue effects could be exacerbated when attempted to perform athletic maneuvers 

on unstable surfaces. 

 

Effects of instability  
 

Lower limb movements that are ballistic in nature (i.e., cutting and jumping) rely  on the stretch-

shortening cycle for optimal performance. The stretch-shortening cycle (SSC) describes a muscle 

function in which the pre-activated muscle-tendon complex is lengthened in the eccentric phase 

preceding the immediate concentric phase (Taube et al., 2012). In humans, the SSC is important 

for locomotion, hopping, jumping, and throwing motions (Komi, 2000). Basically, the SSC 

mechanism is  important in sport and everyday living. Due to the rapid activation of the SSC, the 

rigidity of the surface plays a significant role in the performance of SSC movements. Notably, 

adjustments in leg stiffness affect the efficiency of the SSC when there is a change in the surface 

stability. Ferris et al., (1998) demonstrated that runners tend to adjust leg stiffness when running 

on compliant surfaces in order to maintain the center of mass displacement on each stride. This 

autonomous process increases contact time and feasibly would decrease performance in jumping 

tasks on unstable surfaces. In cutting, jumping, bouncing, and bounding movements, humans can 

adjust the actions of the body’s many musculoskeletal elements, including muscles, tendons, and 

ligaments (Farley et al., 1998). The interaction between an individual’s leg and surface is similar 

to a simple spring-mass system. Meaning that, when surface compliance changes, over-all leg 

stiffness will increase to match the decrease in surface rigidity (Farley, et al., 1998). The 

autonomous function aims to minimize the change in ground contact time and displacement of 

the COM. 
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Thus, understanding how the lower limbs react under duress and fatigue may shed some light on 

the importance of instability training to enhance performance during jumping and cutting 

maneuvers. In addition to alterations in leg stiffness and the SSC, deviations in posture have 

been shown to increase trunk activation. Thus, when a surface becomes more unstable, the 

greater the  postural adjustments that the trunk needs to make in order to keep the body’s COG 

over the base of support. Several studies have shown an increase in trunk stabilizer muscles 

when comparing stable to unstable environments (Behm et al., 2005; Anderson and Behm, 2005; 

Vera-Garcia et al., 2000). Alternatively, several studies have shown a significant decrease in 

trunk stabilizers when performing dynamic movements on an unstable device (Marshall et al., 

2006; Freeman et al., 2006; Bressels et al., 2009).   

Use of instability devices  
 

The use of instability devices to train the core is becoming increasingly popular despite the 

conflicting findings in the literature. There are several reasons why coaches, trainers, and 

practitioners are encompassing instability devices in their rehabilitation and periodization 

programs. Firstly, researchers have indicated that there is in increase in muscle activation when 

an individual exercises in an unstable environment (Behm et al., 2005; Bressel et al., 2009). 

Additionally, Anderson and Behm (2004) found maintenance of EMG activity with a significant 

decrease in force output when performing closed kinetic chain movements on unstable devices. 

Although this suggests that the use of instability devices produce no discernible benefits for 

strength training, there is some logic to using such devices in a rehabilitation setting or de-

loading phase. In a rehabilitation setting or de-loading phase of an athletic periodization 

program, instability training could be beneficial to maintain a high level of muscle activation, 

while removing compressive forces from the spine and lower limb joints. On the other hand, 
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several studies have shown a decrease in muscle activity when exerting force on unstable 

surfaces, particularly for lower limb exercises (McBride et al., 2006; McBride et al., 2010; 

Bressel et al., 2009). This leaves the question whether or not we should use instability devices or 

should we perform all movements on a stable surface. Anecdotally, it is considerably more 

difficult to run on ice compared to dry land. Yet it would seem illogical to recommend for 

competitive runners to train on ice to enhance dry land running simply because it is more 

difficult. A similar phenomenon exists when using instability devices to train athletes.  

 

The neuromuscular responses have been shown to differ amongst the training status of the 

investigated group. Notably, some conflicting findings in the literature have been due to the 

training status of the subjects investigated. Anderson and Behm (2004) demonstrated an increase 

in activation of the lower limb and trunk musculature when performing squats under unstable 

conditions. Likewise, Behm and colleagues (2004) found an increase in trunk activation when 

performing bench and shoulder press on a Swiss ball. All the aforementioned studies as well as 

other similar studies (Stanforth et al., 1998; Vera-Garcia et al., 2000) have used sedentary, 

elderly, or recreationally active individuals. As previously mentioned, other studies that have 

evaluated instability training with individuals who have trained extensively with relatively 

unstable free weights have shown a decrease in EMG activity (McBride et al., 2010; Bressel et 

al., 2009). 

 

The biomechanical challenge of moving on an unstable device can replicate the unpredictable 

nature of sports. Instability in sport can vary from a multitude of sources; surface instability can 
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range from frozen surfaces in winter sports to uneven fields in soccer and in addition to surface 

instability, athletes also have to cope with perturbations in their center of gravity caused by 

contact from other players. When an athlete loses balance due to contact from other players or 

playing surface, the individual can experience decrement in performance and increase the 

likelihood of injury. The logic behind the decrease in muscle activation is that when you perturb 

the base of support, you must reduce load to a manageable weight. Thus, the reduction in load 

reduces EMG activity further than a stable environment with near maximal load. For instance, 

McBride et al. (2010) showed a decrease in lower limb muscle activity on unstable as compared 

to stable surfaces. However, these studies reported the effects of surface instability during the 

performance of isometric and dynamic squats. During cutting (e.g., lateral jumps) and jumping, it 

seems that EMG activity in lower limb muscles is preprogrammed during the preactivation phase 

(Dyhre-Poulsen et al., 1991; Avela et al., 1996) and affected by stretching loads (Avela et al. 

1996, Komi and Gollhofer 1997, Fleischmann et al., 2010; Hoffrén et al.,  2011) during the 

braking phase. In fact, it has been shown that muscle preactivation is related to the appearance 

and magnitude of spinal stretch reflexes during ground contact of drop jumps (Avela et al. 1996). 

In this regard, jumping and landing on unstable/foam surfaces may dampen the impact at ground 

contact which could reduce both, muscle preactivation and reflex activity. 

 

Conclusion 
 

Throughout the literature, it is evident that there are conflicting findings whether or not the use 

of instability devices are warranted in training. Many studies have used closed kinetic chain 

movements and very few have used ballistic movements such as jumping and cutting maneuvers 
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on unstable devices. In explosive sports (e.g., soccer, volleyball, basketball) the surface 

instability is low to moderate. For this reasons we will use a moderately unstable device for our 

investigation. The effects of instability are more pronounced with untrained individuals due to 

cognitive-inhibition (lack of confidence) and may not be due to physiological reasons (Hoffamn 

et al., 1996). For this reason, we will use experienced jumpers. Additionally in the literature, 

trunk stabilizer activation has both increased and decreased in activation when moving on an 

unstable surface. Fatiguing the core should down-regulate muscle activation in core stabilizers. 

By fatiguing the core, we hope to see a more pronounced difference in performance and muscle 

activation when comparing surfaces.  
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Abstract 
 

Purpose: The purpose of this study was to investigate the effects of back extensor fatigue on 

performance measures and electromyographic (EMG) activity of leg and trunk muscles during 

jumping on stable and unstable surfaces. 

Methods: Before and after a fatigue protocol for the back extensors, countermovement (CMJ) 

and lateral jumps (LJ) were performed on a force plate under stable and unstable (balance pad on 

the force plate) conditions. Performance measures for LJ (contact time) and CMJ height and leg 

and trunk muscles EMG activity were tested in 14 subjects (age: 22.6 ± 5.4 years) during 3 

different time intervals for CMJ (preactivation phase, braking phase, push-off phase) and 5 
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different time intervals for LJ (-30-0 ms, 0–30ms, 30-60ms, 60-90ms, and 90-120ms) in non-

fatigued and fatigued condition. 

Results: A significant main effect of test (p = .007) was found on CMJ height. CMJ analyses did 

not show any statistically significant results for jumping performance × surface interactions. 

Additionally, a significant decrease was observed in EMG activation in biceps femoris (BF) and 

gastrocnemius (GAS) following the fatiguing protocol (p = .008 & p = .03; respectively).  LJ 

contact time was not affected by fatigue or surface interaction. EMG activity was significantly 

lower in the tibialis anterior (TA) following the fatigue protocol (p = .05). 

Conclusion: The present findings suggest that skilled jumpers are not affected by the condition (a 

moderately unstable surface). Additionally, we observed that the main effect of fatigue 

negatively impacts CMJ height. 

 

Key Words: countermovement jump, instability, balance, core, lateral jumps, 

 

Introduction  
 

Achieving maximal jump height and rapid changes in direction are an integral component of 

many sports (e.g., basketball, volleyball, gymnastics). The ability to jump higher and cut quicker 

is of upmost importance when attempting to outperform the competition. Hoffman, et al., (1996) 

displayed that Division 1 collegiate basketball players with the highest vertical jump receive 

more playing time than the players that could not jump as high. In addition to maximal jumping 
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ability, athletes are also challenged to perform in both stable and unstable conditions. Instability 

can vary from a multitude of sources; surface instability can range from frozen surfaces in winter 

sports to uneven fields in soccer and in addition to surface instability, athletes also have to cope 

with perturbations in their center of gravity caused by contact from other players. When an 

athlete loses balance due to contact from other players or playing surface, the individual can 

experience decrement in performance and increase the likelihood of injury. Thus, understanding 

the internal mechanisms and exogenous variables that alter jumping mechanics is of great 

importance to increase performance and reduce the likelihood of injury.  

 

Lower limb movements that are ballistic in nature (i.e., cutting and jumping) rely on the stretch-

shortening cycle for optimal performance. The stretch-shortening cycle (SSC) describes a muscle 

function in which the pre-activated muscle-tendon complex is lengthened in the eccentric phase 

preceding the immediate concentric phase (Taube et al., 2012). In humans, the SSC is important 

for locomotion, hopping, jumping, and throwing motions (Komi, 2000). Due to the rapid 

activation of the SSC, the rigidity of the surface plays a significant role in the performance of 

SSC movements. Consequently, understanding the interaction between surface instability and the 

SCC is pivotal when designing training regimes for athletes and the general population to 

improve performance and to reduce injury.  

 

Notably, a change in surface affects the efficiency of the SSC by adjusting leg stiffness. Ferris et 

al., (1998) demonstrated that runners tend to adjust leg stiffness when running on compliant 

surfaces in order to maintain the center of mass displacement on each stride. This autonomous 
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process increases contact time and feasibly would decrease performance in jumping tasks on 

unstable surfaces. Thus, understanding how the lower limbs react under duress and fatigue may 

shed some light on the importance of instability training to enhance performance during jumping 

and cutting maneuvers.  

 

Postural and core musculature also contribute to the success of efficient athletic movement. 

Throughout the literature there are a variety of descriptions or definitions for the core 

musculature. Behm et al., (2010) suggested that the anatomical core consisted of the axial 

skeleton (which includes the pelvic girdle and shoulder girdles) and all soft tissues (i.e., articular 

and fibro-cartilage, ligaments, tendons, muscles, and fascia) with a proximal attachment 

originating on the axial skeleton, regardless of whether the soft tissue terminates on the axial or 

appendicular skeleton (upper and lower extremities). All of these soft tissues and axial skeleton 

work to move in a variety of eccentric, concentric, or isometric motions (Behm et al., 2010). The 

importance of the core musculature in human movement is to provide a foundation for the 

transfer of angular momentum to the limbs and to maintain balance through postural adjustments 

to keep one’s center of gravity (COG) over the base of support (Strange et al., 2009). Previous 

research has shown that muscle actions during athletic performance on unstable surfaces increase 

electromyographic (EMG) activity in limb and trunk muscles when being compared to stable 

surfaces (Anderson & Behm, 2005). Additionally, a review conducted by The Canadian Society 

for Exercise Physiology indicated that training under unstable conditions can significantly reduce 

force output in lower and upper body movements (Behm et al., 2010). 
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In addition to surface stability, cutting and jumping maneuver are also affected by fatigue. 

Tomazin and colleagues (2002) described fatigue as a disruption from the cortex to the 

contractile mechanisms of a muscle. Several studies have shown a decrement in balance 

following a protocol that fatigues the core musculature. A review conducted by Adlerton et al., 

(2003) concluded that trunk muscle and lower limb fatigue induce postural instability.  Surenkok 

et al., (2008) established that trunk-muscle fatigue has an adverse effect on static and dynamic 

balance. Additionally, Parreira et al. (2013) presented an increase in postural sway immediately 

following a dynamic back extension task. All of the previous studies that measured balance 

following trunk fatigue protocols tested static and dynamics balance tasks. To our knowledge, 

very few or no studies have examined the effects of trunk fatigue and ballistic jumping 

movements.  

 

In terms of muscle activity, it has been suggested that electromyographic (EMG) activity 

increases when moving either isometrically or dynamically on an unstable compared to a stable 

surface (Anderson & Behm 2005). However, the literature is not conclusive in this area. Several 

studies have shown a decrease in muscle activity when exerting force on unstable surfaces, 

particularly for lower limb exercises (Anderson & Behm 2005; McBride et al., 2006; McBride et 

al., 2010; Bressel et al., 2009; Saeterbakken & Fimland, 2013). For instance, McBride et al. 

(2010) showed a decrease in lower limb muscle activity when performing squats on an  unstable 

as compared to a stable surface. However, these studies reported the effects of surface instability 

during the performance of isometric and dynamic squats. To the authors’ knowledge, there is no 

study available that investigated the influence of unstable surfaces on activity of lower limb as 

well as trunk muscles during maximal jumping and cutting tasks. During cutting (i.e., lateral 
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jumps) and jumping, it seems that EMG activity in lower limb muscles is preprogrammed during 

the preactivation phase (Dyhre-Poulsen et al., 1991; Avela et al., 1996) and affected by 

stretching loads (Avela et al. 1996, Komi & Gollhofer 1997, Fleischmann et al., 2010; Hoffrén et 

al.,  2011) during the braking phase. In fact, it has been shown that muscle preactivation is 

related to the appearance and magnitude of spinal stretch reflexes during ground contact of drop 

jumps (Avela et al. 1996). In this regard, jumping and landing on unstable/foam surfaces may 

dampen the impact at ground contact which could reduce both, muscle preactivation and reflex 

activity. 

 

To the authors’ knowledge, there is no study available that investigated the influence of fatigue 

and the interaction of unstable surfaces on activity of lower limb as well as trunk muscles during 

jumping and cutting maneuvers. Therefore, the objectives of this study were to investigate the 

effects of back extensor fatigue on (a) performance during jumping on stable and unstable 

surfaces and (b) activity of lower limb and trunk muscles. The literature suggests that the core 

musculature plays a major role in controlling posture and balance. Subsequently, performance in 

jumping and cutting maneuvers relies heavy on maintenance of balance. Furthermore, 

performance decrements are often observed on unstable surfaces. Additionally, fatigue has a 

detrimental effect on balance, muscle activity and force output. Thus, we hypothesized that 

performance measures decrease during jumping particularly on unstable surface following a 

fatigue protocol of the back extensors. Further, lower peak leg and trunk muscle activities are 

expected in the fatigued as compared to the non-fatigued condition. 
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Methods 

Participants 
With reference to the study of Wadden et al. (2012), an a priori power analysis (Faul et al. 2007) 

with an assumed Type I error of 0.05 and a Type II error rate of 0.20 (80% statistical power) was 

calculated for measures of isometric squat performance and revealed that 14 participants would 

be sufficient for finding medium surface x test interaction effects. None of the male subjects 

(Age 22.6 ± 5.4, Body mass [kg] 79.1 ± 9.6, height [cm] 178.9 ± 7.6, Body Mass Index [kg/m²] 

24.7 ± 2.7, Sports activity level [h/wk] 10.3 ± 4.0) had an history of musculoskeletal, 

neurological, or orthopedic disorder that might have affected their ability to execute the 

experimental protocol. All participants were classified as physically active according to the 

Freiburg questionnaire for everyday and sports-related activities (Frey et al., 1999) and all had at 

least 5 years of experience participating in jumping sports (volleyball, basketball, soccer). All 

subjects read and signed a consent form prior to experimentation. Memorial University of 

Newfoundland’s Human Investigation Committee provided ethical approval for the study.  

Experimental procedure 
 

A single-group, repeated-measures design was used to assess measures of jumping performance 

on stable and unstable surfaces as well as lower limb and trunk muscle EMG activity pre and 

post fatigue. Following a standardized warm-up protocol for the lower limbs (2 x 10 lateral 

shuffles with 30 seconds between trials), the maximal lateral jumping distance was assessed. To 

assess the lateral jumping distance, subjects jumped off the non-dominant leg and immediately 

upon landing with the dominant leg, jumped laterally back to the starting position with the 

dominant leg (Coren, 1993). Subjects were instructed not to cross their legs at any point and 
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could not stop at the distal landing point. Following the warm-up, maximal vertical 

countermovement jumps and submaximal lateral jumps were performed under stable and 

unstable (i.e., AIREX® balance pad on top of the AMTI force plate) conditions in a randomized 

order. Following the initial CMJs and LJs, the modified Biering-Sørensen test (Pitcher et al., 

2007) was conducted three times until failure. Between the fatigue trials, a 30 s rest period was 

provided. Immediately after the fatigue protocol, participants performed the same sequence of 

jump tests as during the non-fatigued condition. 

 

Assessment of countermovement jump and lateral jump performance 
 

Participants performed maximal vertical countermovement jumps while standing on a three-

dimensional force plate (AMTI, Watertown, MA, USA). In accordance with the Fleischmann et 

al., (2010) protocol, lateral jumps were performed at 85% of the initially determined maximal 

lateral jumping distance. Starting from a stance position with two feet on the ground, subjects 

jumped laterally with their non-dominant leg onto the force plate, landing on their dominant leg 

and as quickly as possible returned back to the starting position. Landing on the force plate was 

performed one-legged (i.e., dominant leg), forefoot first, and oriented on a mark fixed 

perpendicular to the direction of motion onto the force plate. The subjects were instructed to 

jump back from the force plate to their starting position as fast as possible, omitting trunk 

rotations, and to keep the jumping technique similar throughout the measurements. These 

requirements were controlled visually using force plate data.  
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All LJs and CMJs on stable and unstable conditions were performed on a force plate (Three 

dimensional force plate, AMTI, Watertown, MA, USA), which measures vertical ground 

reaction force (GRF). Synchronization of GRF and EMG data was achieved by analog-to-digital 

conversion using a trigger connecting the Biopac EMG hardware (Biopac Systems Inc. DA 100 

and analog to digital converter MPI00WSW) to the force plate A/D board, with a sampling 

frequency of 2000 Hz. Vertical jump height and takeoff velocity was analyzed for jumping and 

landing tasks and normalized to body mass. Regarding lateral jumps, GRF was used to determine 

contact time. In terms of the CMJ task on stable and unstable surfaces, the force time curve was 

used to detect braking phase, push off phase and onset of force to take-off. 

 

Assessment of muscle activity during countermovement jumps and lateral jumps 
 

Circular bipolar surface electrodes (Kendall 133 Foam electrodes with conductive adhesive 

hydrogel, Covidien, Mansfield, MA, USA), 13 mm, center-to-center distance: 25 mm) were used 

to measure EMG activities of 4 leg muscles (vastus medialis [VM], biceps femoris [BF], 

gastrocnemius medialis [GM], tibialis anterior [TA]) and 4 trunk muscles (external oblique,  

internal oblique, erector spinae low (L3 vertebrae), erector spinae upper (T6 vertebrae). The leg 

and trunk muscles were analyzed on the dominant side using the lateral preference inventory 

(Coren, 1993). Electrodes were positioned on the muscle bellies according to the European 

recommendations for surface electromyography (Hermens et al. 1999). The longitudinal axes of 

the electrodes were in line with the direction of the underlying muscle fibers. Inter-electrode 

resistance was kept below 5 kΩ by shaving, slightly roughening, degreasing and disinfecting the 

skin using alcohol wipes. The EMG signals were amplified and recorded with lead cables 
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(Biopac Systems Inc. DA 100 and analog to digital converter MPI00WSW) to a computer at a 

sampling frequency of 2,000 Hz. After removal of heart muscle electrical activity artifacts from 

the trunk muscle signals by combining adaptive filter methods with a pattern recognition mode 

(Konrad 2005), the filtered (10-500 Hz bandwidth), full-wave route mean squared (RMS) signals 

of the investigated leg and trunk muscles were triggered on the instant of ground contact and 

averaged over 2 countermovement jumps and 2 lateral jumps trials respectively. To find out 

differences in muscle activity between test conditions in counter jump performance, mean 

average voltage (MAV; defined as iEMG normalized relative to the integration time) was 

calculated for the breaking phase, push off phase, and onset-of-force to take off (Hoffrén et al. 

2011). Integrated EMG (iEMG) parameters of lateral jumps were analyzed between -30 – 0 ms, 

0-30 ms, 30 – 60 ms, 60-90 ms, and  90-120 ms epochs. All testing was performed in one session 

and electrodes were not removed, therefore normalization of iEMG and MAV was not necessary 

(Fleischmann et al. 2010). 

 

Fatigue protocol 
 

The posture adopted for the test was a variation of the Biering-Sørensen test (Pitcher et al., 

2007). The Beiring-Sørensen test was originally described by the authors as having subjects lay 

prone on an examination table and maintain an unsupported trunk (from the superior border of 

the iliac crest) horizontally until they could no longer hold a horizontal position or for a 

maximum of 240 seconds. The buttocks and legs were fixed to the table with three, three-inch 

canvas straps. Any variations from the described methods are known as modified Beiring-

Sørensen tests. Our tests differ from the original by not stopping the test at the recommended 
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default of 240 seconds. All protocols were held to exhaustion (deviation from the horizontal 

plane). Subjects lay prone on a padded examination table, with the trunk of the body extended 

off the edge of the table at the level of the anterior superior iliac spine of the pelvis. The lower 

legs, thighs and mid-buttocks region were restrained from motion using wide straps attached to 

the examination table.  

 

Statistical analyses 
 

Data are presented as group mean values ± standard error (SE). After normal distribution was 

examined (i.e., Kolmogorov-Smirnov-Test), a separate 2 (surface: stable, unstable) × 2 (tests: 

pre, post fatigue) analysis of variance (ANOVA) with test as repeated within-subject factor was 

used to analyze performance and muscle activation parameters. Post-hoc tests (paired t tests)  

were conducted to identify the comparisons that were statistically significant. The classification 

of effect sizes (f) was determined by calculating partial eta-squared (ƞp²). The effect size is a 

measure of the effectiveness of a treatment and it helps to determine whether a statistically 

significant difference is a difference of practical concern. Effect sizes can be classified as small 

(0.00 ≤ f ≤ 0.24), medium (0.25 ≤ f ≤ 0.39), and large (f ≥ 0.40) (Cohen 1988). The significance 

level was set at p< 0.05. Tendencies towards significance were denoted as 0.051 ≤ p < 0.1. All 

analyses were performed using Statistical Package for Social Sciences (SPSS) version 22.0.  
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Results 

Countermovement jump performance  
Results for CMJ and lateral jumping performance are presented in Table 2. CMJ analyses did not 

show any statistically significant results for test × condition. However, a main effect of test did 

significantly decrease jump height by 3.6% (p = 0.007, f = 0.57, figure 1).  

 

Muscle activity during CMJ 
EMG analysis showed that fatigue down regulated muscle activation 43.4 % and 15.7% in both 

the biceps femoris (p = 0.008, f = 0.58, figure 2a) and the gastrocnemius (p = 0.045, f = 0.422, 

figure 2b) respectively during the push-off phase with the gastrocnemius between the NFS and 

NFU.  

A significant (p = .04, f = .438) main effect of surface  was observed in the gastrocnemius. The 

non-fatigued unstable CMJ gastrocnemius EMG activity was 13.8% lower than the non-fatigued 

stable condition during the onset of force phase.  

 

Later jump performance 
There were no significant differences observed in lateral jump performance from main effect of 

test or main effect of surface.  

Muscle activity during lateral jumps 
 Fatigue down regulated muscle EMG activity by 28.3 % in the tibialis anterior (p = .05, f = .405, 

figure 4b) during phase 1 (-30 – 0 ms) of the lateral jump. Additionally, co-activation increased 

by 34.0 % (p = .03, f = .526, figure 4c) when comparing stable to unstable lateral jumps. 

Although non-significant (p = .06, f = .385; p = .08, f = .353), a notable trend of test x condition 

interaction was observed in phase 1 and phase 3 of the lateral jump for the BF. The BF increased 
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muscle activity during phase 1 by 39.9% and 40.0% during phase 3, when comparing non-

fatigued unstable to fatigued unstable (figure 4a). Additionally, the tibialis anterior muscle 

activity was significantly lower (28.3%, p = .05) in phase 1 (-30 – 0 ms) following the fatiguing 

protocol (Figure 4b). 

 

A significant increase of 34.0% (p = .03, f = .526, figure 3b) indicating a main effect for stability 

was found in the co-activation of the anterior tibialis/gastrocnemius. Additionally, a significant 

(p = .01, f = .548) test x condition interaction was observed in the IO. During phase 5 of the 

fatigued unstable lateral jump the IO was 49.1 % higher compared to the fatigued stable 

condition. The BF showed a near significant (p = .06, .385) increased in muscle activity by 

31.6% in the FU compared to the FS condition.   

Discussion  

Jumping performance affected by fatigue  
 

The purpose of the present study was to investigate the relationship between fatiguing muscles of 

the posterior chain of both the trunk and leg muscles and compare muscle activity/performance 

on stable and unstable surface. The most unique finding observed was the significant decrease in 

the CMJ height following fatigue. Stabilization of the trunk plays a significant role in the transfer 

of forces and angular momentum. In multi-joint movements, the activation patterns typically 

follow a proximal to distal sequence, especially in locomotion and jumping movements (Kopper 

et al., 2012). Stabilizing and correcting the trunk’s posture allows for one to position their center 

of gravity over their base of support. When the COG is not over the base of support, there is a 

loss of balance and movement may not be efficiently transferred in the desired plane motion.  
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Research in the area of jumping mechanics demonstrated that in order to maximize jump height, 

that all forces must be transferred into the vertical plane (Bobbert et al., 2011). When postural 

muscles become fatigued, there is a tendency for an increased postural sway and lack of postural 

control.  These mechanisms may cause a subject to displace their center of gravity in a sub-

optimal position and displace ground reaction forces in a more horizontal direction, thus not 

reaching maximal jump height. Kean and Behm (2006) discovered that CMJ height increased 

following a 6-week fixed foot balance training regime and speculated that a balance training-

induced decrease in postural sway may have resulted in reaction forces being applied in a more 

vertical direction. This illustrates the importance of balance in jumping and supports our findings 

that a decrement in balance could cause a decrease in CMJ height. A study by Surenkok and 

colleagues (2008) used an isokinetic machine to induce trunk fatigue and tested for lactate 

accumulation as well as dynamic balance test and found a significant positive correlation with 

lactate buildup and a decrease in dynamic balance. This also agrees with our findings that 

fatiguing the posterior chain does affect a person’s ability to correct posture and maintain 

balance. Additionally, a disparity amongst control and musculoskeletal properties leads to an 

unbalanced increase in segment angular velocities, causing the concentric velocity of some 

muscles to be disproportionally high and the total work produced to be unnecessarily small 

(Bobbert et al., 2011), basically, making a skilled jumper appear to be un-coordinated and 

unfamiliar with the movement.    

Effects of fatigue on muscle activity  
 

The other main finding from this study was that, a decrease in lower limb muscle activation was 

observed with trunk fatigue. These findings comply with the literature. Many studies have shown 

that fatiguing activities have a down regulating effect on EMG activity in the affected or target 
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muscle (Oliver et al., 2008; Chan et al., 2014; Gutierrez et al., 2011). There are a number of 

possible mechanisms that can provide insight into the down regulation of muscle activation 

following back extensors fatigue. Firstly, the modified Biering-Sørensen test used in the 

fatiguing protocol was designed to fatigue the lower back extensors muscles. However, the 

method of lying prone on the table with the anterior superior portion of the iliac crest protruding 

over the edge, forced the participants to contract more of the muscles within the posterior chain 

than simply the lower back extensors. With straps, padding and support over the hamstrings and 

ankle, the hamstrings as well as the anterior tibialis were contracted to maintain the desired 

position (no deviation of the trunk from the horizontal plane). These limb contractions could 

potentially explain the decreased activation of both the GAS and TA following the fatigue 

protocol. Secondly, the build-up of lactate and other metabolites due to fatigue could also create 

fatiguing effects in neighboring muscles by shuttling metabolites to non-active tissue (we did not 

test for lactate in this investigation). This could also explain why muscles of the lower limbs 

were affected by a protocol that was meant to primarily fatigue the lower back extensors. Finally, 

the test included three repetitions to exhaustion, perhaps causing general fatigue in the central 

nervous system. While there are conflicting studies in the literature, a number of studies have 

documented fatigue of non-target or non-localized muscles. Rattey and colleagues (2005) 

examined the effects of cross-over fatigue by isometrically fatiguing the dominant leg and 

proceeded to measure the EMG activity. Following the fatiguing protocol, they observed a 

decrease in voluntary action as well as a decrease in iEMG activity. They cited that centrally 

mediated mechanisms may have been the reason for changes in the non-exercised leg. Another 

study that looked at cross-over fatigue discovered a post-fatigue decline in CNS excitability 

(Post et al., 2008). Thus, explaining a possible physiological mechanism that contributes to 
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fatigue in a non-exercise muscle. Furthermore, another study that investigated the effects of 

fatiguing the hand flexors using an isometric handgrip contraction showed a temporary decrease 

in EMG activity in the non-exercised plantar flexor muscles (Kennedy et al., 2012). This article 

also indicated that the detriment in performance in the plantar flexors affected by systematic 

central fatigue. These articles support our findings that fatigue in one area muscle group can 

negatively affect performance and contractile properties in another. Unfortunately, we did not 

use any neuromuscular tests during this investigation to verify changes in contractile properties.  

 

Effects of surface instability on muscle activity and performance 
 

One main finding observed in this study was that back extensor fatigue equally affected jump 

performance and trunk and lower limb muscle activities while performing on stable and unstable 

surfaces. In addition, irrespective of muscle fatigue, there was an absence of change in 

performance (CMJ and LJ) and muscle activation with experienced jump-trained individuals in 

response to a moderately unstable foam pad. This finding applied to both jumping activities: 

CMJ and LJ. The findings of this investigation were similar to previous research. Prior research 

has shown that athletes with greater training experience will be affected to a lesser degree by an 

unstable surface (Wahl & Behm, 2008). Additionally, a review article concluded that athletes 

have better dynamic and static balance compared to the non-athletic population (Hrysomallis, 

2011). Hrysomallis (2011) suggests that the improvement in performance could be a greater 

proprioceptive sense or simply that athletes become more skilled at focusing and attending to 

important sensory cues with training. Another study reported no significant stability-related 

differences in activation of the trunk musculature during bilateral dynamic chest press and 

shoulder press (Behm et al., 2005). Furthermore, Anderson and Behm (2004) were unable to 
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show a distinction in muscle activation between stable and unstable bench press in resistance 

trained men. Some investigations have found little or no difference in muscle activity when 

comparing movement on stable to unstable surfaces for several reasons. Firstly, a moderately 

compliant surface allows for the elastic recoil of energy and has a trampoline-like effect 

(Arampatzis et al., 2004). Secondly, with skilled jumpers, a moderately unstable surface may not 

change the jumping strategy and thus not affect performance (Ferris & Farley, 1997). When 

examining the effects of core stability training in experienced runners, Sato and Mokha (2009) 

could not establish a significant link between core training over six weeks and any improvement 

in lower limb stability or ground reaction forces. They suggested that the mechanics of running 

were not affected with experienced runners when core musculature conditioning is improved. 

However, there is not unanimity in the literature. For instance, the throwing velocity of female 

handball players following a 6-week core stabilizing regime, was reported to significantly 

increase (Saterbakken et al., 2011) suggesting that a high level of core stability and strength may 

be required for generating force in multi-segmental movements. Although Saterbakken and 

colleagues were able to show differences in performance from training the trunk, their study was 

a training study that used upper body movements, whereas our investigation only consisted of 

one session and investigate lower body movements. However, other studies have been able to 

show a change in muscle activity due to unstable surfaces. For instance, a study that investigated 

muscle activity when performing isometric squats on unstable surfaces showed 37.3% and 34.4% 

decreases in the vastus lateralis and vastus medialis muscles (McBride et al., 2006). Another 

recent study that examined the effects of instability and drop jumping performance displayed a 

decrease in muscle activity in the gastrocnemius, vastus medialis, and biceps femoris when 

jumping on an unstable foam pad (Prieske, et al., 2013). Conversely, Anderson and Behm (2005) 
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and Bressel et al. (2009) observed increased muscle activity during the performance of dynamic 

lower body exercises on unstable devices (e.g., squats). On the other hand, in agreement with the 

reported studies investigating muscle activity with instability, it appears reasonable to argue that 

the studies of Anderson and Behm (2005) and Bressel et al. (2009) could have had 

methodologically limitations by using the same absolute weight for the stable and unstable 

surface condition. This argument is supported by findings from McBride et al. (2010), who 

reported similar activity for the spinal erector muscle during dynamic squats on stable and 

unstable surfaces when the same relative load was used.  

 

Test x surface 
 

There was no significant interaction between test and surface. The reason for the missing 

interaction effect was that there was no main effect for surface amongst the group.   

 

Limitations 
 

The level of stability was low to moderate and may not have provided sufficient perturbation to 

affect the experienced jumpers. However, the unstable foam pad used is frequently used in 

training and rehabilitation.  

Conclusions 
 

The main finding of this study was that back extensor fatigue can significantly impact jumping 

performance. By improving back extensor endurance and strength, individuals may be able to 
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increase/maintain jump height in their respective competitions. As previously mentioned, due to 

the experienced jumping group used, there was no impact of surface stability on jumping 

performance. The robust fatiguing protocol used fatigued did effect performance in counter 

movement jump height. To investigate the phenomenon of trunk fatigue and surface instability 

further, a more compliant instability device could be used. Alternatively, using a non-

experienced group or more robust cutting maneuver (i.e. T-Test agility run) might be used.  

 

References 
 

Adlerton, A.K., Moritz, U., Moe-Nilssen, R., (2003). Forceplate and accelerometer measures for 
evaluating the effect of muscle fatigue on postural control during one-legged stance. 
Physiotherapy Respiratory International, 2003, 8:187-99. 

 

Anderson, K.G., and Behm, D.G. (2004). Maintenance of EMG activity and loss of force output 
with instability. Journal of Strength and Conditioning Research, 18: 637–640. 

 

Anderson K., Behm D., (2005). Trunk muscle activity increases with unstable squat movements. 
Canadian Journal of Applied Physiology, 30:33–45. 

 

Arampatzis, A., Stafilidis, S., Morey-Klapsing, G., and Brüggemann, G., (2004) Interaction of 
the Human Body and Surfaces of Different Stiffness during Drop Jumps. Medicine and 
Science in Sports and Exercise, 36:451–459. 

 

Avela, J., Santos, P.M. and Komi, P.V., (1996). Effects of differently induced stretch loads on 
neuromuscular control in drop jump exercise. European Journal of Applied Physiology 
and Occupational Physiology, 72:553–562. 

 

39 
 



Behm, D.G., Drinkwater, E.J., Willardson, J.M., and Cowley, P.M., (2010). The use of instability 
to train the core musculature. Applied Physiology, Nutrition, and Metabolism, 35(1): 91–
108. 

 

Behm, D.G., Drinkwater, E.J., Willardson, J.M., and Cowley, P.M., (2010). Canadian Society 
for Exercise Physiology position stand: The use of instability to train the core in athletic 
and nonathletic conditioning. Applied Physiology of Nutrition and Metabolism, 35: 109–
112. 

 

Behm, D., Leonard, M., Young, W., Bonsey, A., and MacKinnon, S., (2005). Trunk muscle 
electromyographic activity with unstable and unilateral exercises. Journal of Strength 
and Conditioning Research, 19: 193–201. 

 

Bobbert, M. F., van der Krogt, M. M., van Doorn, H., & de Ruitter, C. J. (2011). Effects of 
Fatigue of Plantarflexors on Control and Performance in Vertical Jumping. Medicine 
and Science in Sports and Exercise, 43(4), 673-684. 

 

Bobbert, M. F., Casius, L., Sijpkens, I. T., & Jaspers, R. T. (2008). Humans adjust control to 
initial squat depth in vertical squat jumping. Journal of Applied Physiology, 105(5), 
1428-1440. 

 

Bressel, E., Willardson, J., Thompson, B., Fontana F., (2009). Effect of instruction, surface 
stability, and load intensity on trunk muscle activity. Journal of Electromyography in 
Kinesiology 19:500-504. 

 
Cohen, J., (1988.) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, 

Hillsdale. 
 
Dyhre-Poulsen ,P., Simonsen, E.B., Voigt, M., (1991). Dynamic control of muscle stiffness and 

H reflex modulation during hopping and jumping in man. Journal of Physiology, 
437:287–304. 

 

40 
 



Farley, C. T., Houdijk, H. P., Van Strien, C. C., & Louie, M. M. (1998). Mechanism of leg 
stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of Applied 
Physiology, 85(3), 1044-1055. 

 
Ferris, D. P., and C. T. Farley, (1997). Interaction of leg stiffness and surface stiffness during 

human hopping. Journal of Applied Physiology, 82:15–22. 
 
Ferris, D.P., Louie, M., Farley, C.T., (1998). Running in the real world: adjusting leg stiffness 

for different surfaces. Proceedings of the Royal Society of Biological Sciences, 265:989–
994. 

 
Fleischmann, J., Gehring, D., Mornieux, G., and Gollhofer, A., (2010). Load-dependent 

movement regulation of lateral stretch shortening cycle jumps. European Journal of 
Applied Physiology, 110:177–187. 

 
Frey, I., Berg, A., Grathwohl, D., Keul, J., (1999). Freiburg Questionnaire of physical activity- 

development, evaluation and application. 44:55–64. 
 
Gutierrez, G. M., Jackson, N. D., Dorr, K. A., Margiotta, S. E., & Kaminski, T. W. (2007). Effect 

of Fatigue on Neuromuscular Function at the Ankle. Journal of Sport 
Rehabilitation, 16(4), 295-306. 

 
Hermens HJ, Merletti R, Freriks B (1999) SENIAM: European recommendations for surface 

electromyography results of the SENIAM project, 2nd edn. Roessingh Research and 
Development, Enschede. 

 
Hoffman J. R., Tenenbaum G., Maresh C. M. and Kraemer W. J. (1996) Relationship between 

athletic performance tests and playing time in elite college basketball players. Journal of 
Strength and Conditioning Research, 10: 67–71. 

 
Hoffrén, M., Ishikawa, M., Rantalainen, T., Avela J., and Komi, P.V., (2011). Age-related 

muscle activation profiles and joint stiffness regulation in repetitive hopping. Journal of 
Electromyography in Kinesiology, 21:483–491. 

 
Hrysomallis, C., (2011). Balance and Athletic Performance. Sports Medicine, 41:221-232. 
 

41 
 



Kean, C.O., Behm, D.G, and Young, W.B., (2006). Fixed foot balance training increases rectus 
femoris activation during landing and jumping height in recreationally active women. 
Journal of Sports Science and Medicine, 5:138-148. 

 
 
Kennedy, A., Hug, F., Sveistrup, H., and Guevel, A., (2013). Fatiguing handgrip exercises alters 

maximum force-generating capacity of plantar-flexors. European Journal of Applied 
Physiology, 113:559-566. 

 
Komi, P.V. and Gollhofer, A. (1997). Stretch reflexes can have an important role in force 

enhancement during SSC exercise. Journal of Applied Biomechanics, 13:451–459. 
 
Komi, P.V., (2000). Stretch-shortening cycle: a powerful model to study normal and fatigued 

muscle. Journal of  Biomechanics, 33:1197–1206. 
 
Konrad, P. (2005) ABC of EMG. A practical introduction to kinesiological electromyography. 
 
Kopper, B., Ureczky, D., Tihanyi, J., (2011). Trunk position influences joint activation pattern 

and physical performance during vertical jumping. Acta Physiologica Hungarica, 
99:194-205.  

 
McBride, J.M., Cormie P., Deane R., (2006). Isometric squat force output and muscle activity in 

stable and unstable conditions. Journal of Strength and Conditioning Research, 20:915–
918. 

 
McBride JM, Larkin TR, Dayne AM, Haines TL, Kirby TJ (2010). Effect of absolute and 

relative loading on muscle activity during stable and unstable squatting. International 
Journal of Sports Physiology Performance, 5:177–183. 

 
Okada, T., Huxel, K.C., and Nesser, T.W., (2011). Relationship between core stability, 

functional movement, and performance. Journal of Strength and Conditioning Research, 
25:252-261. 

 
Oliver, J.L., Armstrong, N., Williams, C.A. (2008). Changes in jump performance and muscle 

activity following soccer specific exercise. Journal of Sports Sciences, 26(2), 141-148. 
 

42 
 



Parreira, R. B., Cesar, A.F., Gil, A.W., Teixeira, T.C., Bilodeau, M., da Silva, R.A., (2012). 
Effect of trunk extensor fatigue on the postural balance of elderly and young adults 
during unipodal task. European Journal of Applied Physiology. 113:1989-1996 

 
Pitcher, M. J., Behm, D. G., & Scott N., M. (2007). Neuromuscular fatigue during a modified 

Biering-Sørensen test in subjects with and without low back pain. Journal of Sports 
Science & Medicine, 6(4), 549-559. 

 
Post, M., Bayrak, S., Kernell, D., & Zijdewind, I. (2008). Contralateral muscle activity and 

fatigue in the human first dorsal interosseous muscle. Journal of Applied 
Physiology, 105(1), 70-82. 

 
Prieske, O., Muehlbauer, T., Mueller, S., Krueger, T., Kibele, A., Behm, D., Granacher, U. 

(2013). Effects of surface instability on neuromuscular performance during drop jumps 
and landings. European Journal of Applied Physiology. 

 
Rattey, J., Martin, P.G., Kay, D., Cannon, J., and Marino, F., (2006). Contralateral muscle 

fatigue in human quadriceps for a centrally mediated fatigue response and cross-over 
effect. European Journal of Applied Physiology. 452:199-207. 

 
Saterbakken, A.H., Van Den Tillaar, R., and Seiler, S., (2011). Effects of core stability training 

on throwing velocity in female handball players. Journal of Strength and Conditioning 
Research. 25:712-718.  

 
Sato, K. and Mokha, M., (2009). Does core strength training influence running kinematics, 

lower-extremity stability, and 5000-m performance in runners? Journal of Strength and 
Conditioning Research. 23:133-140.  

 
Strang, A., Berg, W., and Hieronymus, M., (2009). Fatigue-induced early onset of anticipatory 

postural adjustments in non-fatigued muscles: support for a centrally mediated 
adaptation.  Experimental Brain Research, 197:245–254.  

 
Surenkok, O., Kin-Isler, A., Aytar, A., and Gültekin, Z., (2008).  Effect of Trunk-Muscle Fatigue 

and Lactic Acid Accumulation on Balance in Healthy Subjects. Journal of Sports 
Rehabilitation, 17:380-386. 

 

43 
 



Taube, W., Leukel, C., and Gollhofer, A., (2012). How neurons make us jump: The neural 
control of stretch-shortening cycle movements. Exercise and Sport Science Review, 40, 2, 
102-115. 

 

Wahl, M. J., and Behm, D. G., (2008). Not all instability training devices enhance muscle 
activation in highly resistance-trained individuals. Journal of Strength and Conditioning 
Research. 22:1360-1370.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Appendix – figures and tables  
Table 1 - Means and standard errors of the EMG activity, measured in millivolts, for upper body muscles in the lateral 
jumping task. Lateral jump is broken down into 5 phases: phases 1 (-30-0ms) phase 2 (0-30ms), phase 3 (30-60ms), phase 4 
(60-90ms), and phase 5 (90-120ms). NF = non-fatigue and F = fatigued 

 

Phases of jump (30 ms epochs) 
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Lateral jump Upper Body  1 2 3 4 5 

Stable  M SE M SE M SE M SE M SE 

Internal oblique (NF) 0.2122 0.038 0.2140 0.046 0.2115 0.031 0.1789 0.028 0.1555 0.028 

Internal oblique (F) 0.1760 0.029 0.1869 0.029 0.1694 0.022 0.1704 0.031 0.1063 0.012 

External oblique (NF) 0.0262 0.004 0.0246 0.003 0.0272 0.004 0.0299 0.004 0.0306 0.004 

External oblique (F) 0.0238 0.004 0.0226 0.004 0.0242 0.004 0.0229 0.003 0.0261 0.005 

Erector spinae low (NF) 0.0969 0.016 0.1106 0.016 0.1116 0.012 0.1290 0.022 0.1220 0.021 

Erector spinae low (F) 0.1112 0.038 0.1126 0.033 0.1455 0.049 0.1122 0.021 0.1215 0.035 

Erector spinae high (NF) 0.0558 0.011 0.0973 0.015 0.1034 0.021 0.1153 0.023 0.1121 0.015 

Erector spinae high (F) 0.0768 0.016 0.1005 0.014 0.1003 0.011 0.0926 0.017 0.1116 0.014 

                      

Unstable                      

Internal oblique (NF) 0.1512 0.032 0.1815 0.033 0.2184 0.038 0.2002 0.040 0.1202 0.014 

Internal oblique (F) 0.2119 0.042 0.2250 0.043 0.2486 0.044 0.2085 0.039 0.1867 0.036 

External oblique (NF) 0.0267 0.005 0.0225 0.003 0.0238 0.003 0.0249 0.003 0.0321 0.005 

External oblique (F) 0.0290 0.005 0.0244 0.004 0.0265 0.003 0.0278 0.003 0.0294 0.003 

Erector spinae low (NF) 0.0685 0.018 0.0697 0.015 0.0886 0.016 0.0846 0.009 0.0836 0.017 

Erector spinae low (F) 0.0633 0.017 0.0803 0.024 0.1036 0.017 0.1210 0.021 0.1126 0.016 

Erector spinae high (NF) 0.0479 0.009 0.0702 0.015 0.0845 0.014 0.1261 0.024 0.1089 0.018 

Erector spinae high (F) 0.0738 0.013 0.1266 0.026 0.1202 0.014 0.1268 0.016 0.1180 0.016 
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Table 1b - Means and standard errors of the EMG activity, measured in millivolts, for the lower body muscles in the lateral 
jumping task. Lateral jump is broken down into 5 phases: phases 1 (-30-0ms) phase 2 (0-30ms), phase 3(30-60ms), phase 4 
(60-90ms), and phase 5 (90-120ms). NF = non-fatigue and F = fatigued 

 

Table 1b
Lateral jump lower body 
Stable M SE M SE M SE M SE M SE
Vastus medialis (NF) 0.1314 0.029 0.1673 0.032 0.2195 0.042 0.2281 0.042 0.2775 0.066
Vastus medialis (F) 0.1221 0.025 0.2005 0.068 0.2278 0.079 0.2128 0.058 0.1934 0.029
Biceps Femoris (NF) 0.0805 0.014 0.0936 0.015 0.0871 0.013 0.0894 0.021 0.0834 0.014
Biceps Femoris (F) 0.0608 0.012 0.0723 0.013 0.0746 0.014 0.0814 0.017 0.0878 0.026
Tibialis Anterior (NF) 0.2551 0.024 0.2869 0.054 0.2626 0.030 0.2596 0.039 0.3592 0.065
Tibialis Anterior (F) 0.1755 0.027 0.2165 0.050 0.2443 0.051 0.2673 0.058 0.3156 0.084
Gastrocnemius (NF) 0.2519 0.043 0.2303 0.041 0.2093 0.036 0.1608 0.034 0.1598 0.036
Gastrocnemius (F) 0.2134 0.046 0.2236 0.047 0.1652 0.040 0.0988 0.018 0.0910 0.017

Unstable
Vastus medialis (NF) 0.1336 0.041 0.1501 0.051 0.1892 0.050 0.2284 0.062 0.2734 0.056
Vastus medialis (F) 0.1969 0.087 0.2210 0.084 0.2730 0.099 0.3290 0.127 0.3599 0.115
Biceps Femoris (NF) 0.0678 0.012 0.0861 0.014 0.0781 0.014 0.0703 0.012 0.0911 0.013
Biceps femoris (F) 0.0948 0.018 0.1059 0.018 0.1090 0.016 0.0844 0.014 0.0794 0.014
Tibialis Anterior (NF) 0.2204 0.047 0.2648 0.035 0.3489 0.061 0.3465 0.048 0.3656 0.065
Tibialis Anterior (F) 0.1953 0.033 0.2648 0.037 0.3120 0.063 0.3260 0.084 0.3041 0.059
Gastrocnemius (NF) 0.2290 0.035 0.1956 0.027 0.1664 0.028 0.1368 0.032 0.1223 0.035
Gastrocnemius (F) 0.1958 0.030 0.1776 0.029 0.1558 0.029 0.1388 0.045 0.1325 0.039

1 2 3 4 5
Phases of jump (30 ms epochs)
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Table 1c - Means and standard errors of the EMG activity, measured in millivolts, for the upper body muscles in the CMJ task. 
CMJ is broken down into 3 phases: Breaking phase (BP), push-off phase (PP), and the onset of force (OF). NF = non-fatigue 
and F = fatigued. 

 

 

Table 1c
CMJ Upper body Breaking phase Push-off phase Onset of force to take-off
Stable M SE M SE M SE
Internal oblique (NF) 0.092 0.03 0.245 0.05 0.128 0.03
Internal oblique (F) 0.121 0.03 0.213 0.04 0.133 0.03
External oblique (NF) 0.029 0.01 0.058 0.01 0.036 0.01
External oblique (F) 0.039 0.02 0.061 0.02 0.062 0.03
Erector spinae low (NF) 0.192 0.04 0.199 0.03 0.148 0.03
Erector spinae low (F) 0.202 0.04 0.171 0.03 0.160 0.03
Erector spinae high (NF) 0.204 0.03 0.182 0.02 0.134 0.01
Erector spinae high (F) 0.171 0.03 0.152 0.02 0.146 0.02

Unstable 
Internal oblique (NF) 0.088 0.02 0.247 0.05 0.120 0.02
Internal oblique (F) 0.116 0.03 0.237 0.04 0.130 0.02
External oblique (NF) 0.045 0.02 0.093 0.03 0.049 0.02
External oblique (F) 0.048 0.02 0.067 0.02 0.047 0.02
Erector spinae low (NF) 0.161 0.04 0.200 0.03 0.122 0.02
Erector spinae low (F) 0.190 0.04 0.198 0.03 0.140 0.02
Erector spinae high (NF) 0.206 0.03 0.198 0.02 0.139 0.01
Erector spinae high (F) 0.204 0.02 0.190 0.02 0.152 0.02

Phases of jump
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Table 1d - Means and standard errors of the EMG activity, measured in millivolts, for the lower body muscles in the CMJ task. 
CMJ is broken down into 3 phases: Breaking phase (BP), push-off phase (PP), and the onset of force (OF). NF = non-fatigue 
and F = fatigued. 

 

Table 2 - Means and standard errors for CMJ and LJ performance. Results are listed pre fatigue and post fatigue protocol and 
present with percentage differences, significance (p-value) and effect size (f).   

 

Table 1d
CMJ lower body Breaking phase Push-off phase Onset of force to take-off
Stable M SE M SE M SE
Vastus medialis (NF) 0.277 0.04 0.447 0.06 0.238 0.02
Vastus medialis (F) 0.271 0.04 0.374 0.08 0.301 0.06
Biceps Femoris (NF) 0.103 0.02 0.239 0.03 0.110 0.01
Biceps Femoris (F) 0.130 0.04 0.132 0.02 0.103 0.02
Tibialis Anterior (NF) 0.292 0.05 0.185 0.02 0.212 0.03
Tibialis Anterior (F) 0.262 0.07 0.141 0.03 0.207 0.04
Gastrocnemius (NF) 0.077 0.01 0.364 0.03 0.158 0.01
Gastrocnemius (F) 0.098 0.02 0.271 0.05 0.135 0.02

Unstable
Vastus medialis (NF) 0.286 0.05 0.446 0.06 0.236 0.03
Vastus medialis (F) 0.289 0.05 0.425 0.06 0.276 0.05
Biceps Femoris (NF) 0.098 0.02 0.211 0.02 0.097 0.01
Biceps femoris (F) 0.083 0.02 0.182 0.03 0.110 0.01
Tibialis Anterior (NF) 0.281 0.03 0.183 0.01 0.205 0.02
Tibialis Anterior (F) 0.321 0.05 0.174 0.02 0.216 0.03
Gastrocnemius (NF) 0.094 0.01 0.348 0.02 0.139 0.01
Gastrocnemius (F) 0.094 0.01 0.345 0.04 0.149 0.01

Phases of jump

Table 2
Variables Main effect of fatigue

Pre Post (n= 14) Δ (%) p  (effect size)

M SE M SE
CMJ height (cm) 37.480 1.30 36.170 1.24 -3.622 0.007 0.570
Take-off velocity (m/s) 2.712 0.26 2.662 0.25 1.825 0.023 0.470

Lateral jump contact time (s) 0.757 0.03 0.723 0.03 -1.825 0.310
Main effect of condition - Stable vs Unstable

Stable Unstable (n= 14) Δ (%) p  (effect size)

M SE M SE
CMJ height (cm) 37.130 1.34 36.530 1.27 -1.642 0.816 0.040
Take-off velocity (m/s) 2.683 0.24 2.648 0.24 -1.318 0.023 0.470

Lateral jump contact time (s) 0.697 0.02 0.781 0.04 10.818 0.126 0.100
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Figure 1 - Counter movement jump (CMJ) height – pre fatigue versus post fatigue. Error bars represent standard error and 
significant decrease post fatigue indicated by p=.007. X-axis represents CMJ NF (non-fatigued) and CMJ F (fatigued). Y-axis 
represents jump height in meters.  

 

Figure 2a - Effect of fatigue on EMG activity of biceps femoris in CMJ task. Significant decrease in muscle activation observed 
(p =.008) in phase 2 (push-off phase). Y-axis represents amplitude in millivolts. X-axis represents phases of jump: phase 
1(BP), phase 2 (PP), and phase 3 (OF).  
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Figure 2b - Effect of fatigue on EMG activity of gastrocnemius in CMJ task. Significant decrease in muscle activation observed 
(p =.03) in phase 2 (push-off phase) following the fatiguing protocol. Y-axis represents amplitude in millivolts. X-axis 
represents phases of jump: phase 1(BP), phase 2 (PP), and phase 3 (OF).  

 

 

Figure 2c - Effect of test x condition interaction of gastrocnemius in CMJ task. Significant decrease in muscle activation (p = 
.05) was observed in the non-fatigued unstable condition compared to the non-fatigued stable condition. Y-axis represents 
amplitude in millivolts. X-axis represents phases of jump: phase 1(BP), phase 2 (PP), and phase 3 (OF). 
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Figure 3a - Effect of fatigue on EMG activity of tibialis anterior (TA) in LJ task. Significant decrease in muscle activation 
observed (p =.03) in phase 1 (-30-0ms) following the fatiguing protocol. Y-axis represents amplitude in millivolts. X-axis 
represents phases of jump: phase 1 (-30-0ms), phase 2 (0-30ms), phase 3 (30-60ms), phase 4 (60-90ms), phase 5 (90-120ms). 

 

Figure 3b - Effect of surface stability on EMG activity of coactivation between tibialis anterior (TA) and gastrocnemius (GAS) 
in LJ task. Significant increase in muscle activation observed (p =.03) in phase 3 (-30-0ms) under the unstable condition. Y-
axis represents amplitude in millivolts. X-axis represents phases of jump: phase 1 (-30-0ms), phase 2 (0-30ms), phase 3 (30-
60ms), phase 4 (60-90ms), phase 5 (90-120ms). 
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Figure 3c - Effect of test x condition interaction on EMG activity of biceps femoris (BF) in LJ task. Significant increase in 
muscle activation observed (p =.03) in phase 3 (-30-0ms) under the fatigued unstable condition compared to the fatigue 
stable condition. Y-axis represents amplitude in millivolts. X-axis represents phases of jump: phase 1 (-30-0ms), phase 2 (0-
30ms), phase 3 (30-60ms), phase 4 (60-90ms), phase 5 (90-120ms).  

 

Figure 3d - Effect of test x condition interaction on EMG activity of the internal obliques (IO) in LJ task for the Fatigued stable 
(FS) and Fatigued unstable (FU) conditions. Significant increase in muscle activation observed (p =.05) in phase 5 (90-120 ms) 
under the fatigued unstable condition compared to the fatigue stable condition. Y-axis represents amplitude in millivolts. X-
axis represents phases of jump: phase 1 (-30-0 ms), phase 2 (0-30 ms), phase 3 (30-60 ms), phase 4 (60-90 ms), phase 5 (90-
120 ms). 
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