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ABSTRACT

Research in the area of power system transient stability has recently focused on dynamic
state estimation using high rate Phasor Measurement Unit (PMU) data. Several
mathematical models for synchronous machine are developed and various estimation
approaches are proposed for this purpose. In this thesis, the mathematical formulation of
nonlinear state space modeling and the principles of Kalman Filter are explained.
Extended and Unscented Kalman Filters (EKF and UKF), as two nonlinear estimation
methods, are applied for state and parameter estimation in an induction motor. In the next
stage, after presenting a thorough explanation about modeling of the synchronous
machine, dynamic state estimation is applied on different power system case studies and
the results of estimation methods are compared. The simulation results provided in this
thesis show the great potential of the proposed estimation approaches for accurately
estimating the states of the machine as well as reducing the effect of noise on input

signals.
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CHAPTER 1

1. Introduction

1-1. Introduction

Many researches in the field of dynamic power system estimation have recently focused
on Kalman Filter as an efficient recursive estimation approach [1-4]. Before the advent of
Phasor Measurement Units (PMUs) [7], online state estimation in power systems using
low rate and non-synchronous data provided by Supervisory Control and Data
Acquisition (SCADA) measurements was inefficient. But as PMUs are becoming more
adopted worldwide, real time state estimation in power systems is becoming more
realizable [2]. PMU is a recently developed power system measurement device that

samples input three phase voltage and current waveforms, using a common synchronizing



signal received by Global Positioning System (GPS), and calculates the phasors
(magnitudes and angles) of the bus by deploying Discrete Fourier Transform [7].
Researchers have used various estimation approaches and case studies to investigate
dynamic state estimation in power systems. Kalman and particle filters are among the
most referred estimation approaches. Single-Machine-Infinite-Bus (SMIB) and IEEE 3-
Generator-9-Bus Test System are also referred as the most popular case studies [1-6].
Also, several models with different orders used in the estimation process can be found in
the literature for synchronous machines.

In this thesis, the mathematical background of the state space modeling and optimal
estimation using Kalman filters are addressed in detail. Dynamic state and parameter
estimation using Kalman filter is applied to induction machine at first stage. After
providing some information about synchrophasors and phasor measurement unit (PMU),
and deriving and validating the classical and 2-axis fourth order models of the
synchronous machine, dynamic state estimation using Kalman Filters is applied to SMIB
and IEEE 3-Generator-9-Bus Test System and the results are compared. Finally, some

suggestions are proposed for future research in this field.

1-2. Problem Statement

Dynamic state estimation in power system provides accurate and frequent information
about internal states of the synchronous machines. This information can be used in state

feedback control of the synchronous generator to improve the control performance;



enhance the overall transient stability of the power system; perform real-time analysis of
angle, voltage, and frequency of the power system; reduce measurement noise, increase
damping property for the inter-area oscillations; and reach to better rush hour power
management [8]. Using Kalman Filter, as a powerful recursive estimation method with
noise elimination property, helps to design an appropriate estimator for a synchronous

machine in a digital platform.

1-3. Focus of the Thesis

The main focus of this thesis is to use Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF) for dynamic state estimation in different power system case studies,
using 2-axis fourth order model of the synchronous machine and one input signal (output
power). Also, an attempt is made to present a complete step-by-step package for
nonlinear Kalman Filter based estimation methods, synchronous machine state space
modeling and validation, and dynamic state estimation in power systems. The optimal
estimation approaches are also used for online states and parameter estimation in

induction machine and a comprehensive simulation is carried out.

1-4. Thesis Organization

Chapter 2 presents the mathematical background of nonlinear optimal state estimation

and step-by-step formulation of Extended and Unscented Kalman Filter.



Chapter 3 discusses state space model of the induction machine, the developed model
which includes the main parameters, and applying Kalman Filters for online state and
parameter estimation.

Chapter 4 provides a review on synchrophasors, Phasor Measurement Unit (PMU), the
application of PMUs in dynamic state estimation in power systems, and some advantages
of Wide Area Monitoring, Protection, and Control (WAMPAC).

Chapter 5 describes the mathematical formulation of the synchronous machine classical
and 2-axis modeling and the equal area criterion. The developed models are then
validated by simulation in MATLAB, using the data provided by PowerWorld Simulator.

Chapter 6 presents the discretized state space model of the synchronous machine, and
dynamic state estimation in Single-Machine-Infinite-Bus (SMIB) and IEEE 3-Generator-
9-Bus Test System. Comparison between the performance of EKF and UKF as the
estimation methods, a suggested application of the dynamic state estimation in power
systems, and current challenges of dynamic estimation in large power systems are also
presented.

Chapter 7 highlights the contribution of this research and discusses future open areas for

research in this field.



CHAPTER 2

2. Nonlinear State Estimation

2-1. Introduction

In this chapter, the principles of linear and nonlinear systems, mean and covariance
propagation, linearization and discretization methods, and linear and nonlinear Kalman
filtering are explained.

State space model can be used to describe many physical processes. These processes may
include different areas such as engineering, economics, physics, chemistry, biology and
several others. Mathematical models of processes help us to apply mathematical control
tools and also estimate more information about the systems. This is the main reason that

state space model is a vital approach in the field of engineering. When the information



about the states of a system in current time are available, and also the present and future
inputs are known, then all of the outputs of the system in future are deducible [9].

Generally, state space approach can be categorized into linear and nonlinear models.
Although most real systems are nonlinear in their nature, most of the accessible and well-
defined mathematical tools of estimation and control are linear. This is the main reason
that nonlinear systems are approximated by linear systems most of the time. By this way,
the developed estimation and control algorithms for linear systems can be applied to
nonlinear systems [9]. In this chapter, an overview about linear and nonlinear systems
will be presented. Then two nonlinear estimation methods: Extended Kalman Filter

(EKF) and Unscented Kalman Filter (UKF) will be discussed in detail.

2-2. Linear Systems

The state space equations of a deterministic linear system are presented as follows:

X =Ax+ Bu

y =Cx 2.1)
In this equation, x, u, and y are the state, control, and output vectors, respectively. The
dimension of matrices 4, B, and C is related to the number of states, inputs and outputs of
the system. Matrices A, B, and C are often called the system, input, and output matrices.

All of these matrices can be time variant or time invariant, while the system is still linear.



Considering A, B, and C as constant matrices, the solution to Equation (2.1) is expressed

as [9]

t
Mﬂ=e““%%@w+feﬂhﬂ&qﬂm
to

y(t) = Cx(t) (2.2)
to is the initial condition of the system and can be considered as 0 most of the time. e“? is
called the state-transition matrix of the system, because it describes how the states of the
system start changing from their initial values when no external input is applied to the
system. If x is an n-element vector, the state transition matrix can be calculated with

Euler's formula or Laplace inverse of the exponential function e4? as follows [9].

e

‘ (4t)/
eAZEIﬂ

j=0

= L7U[(SI — A)~1] 2.3)

For better understanding, an example is provided here.

Example 2.1 [9]

Assume that the angular acceleration of a motor is to be controlled. The derivative of the

position is the system’s velocity. A simplified model of the motor can be presented as

6=w
@ = U+ w, (2.4)



w4 1s the acceleration noise and can be attributed to the uncertainties in the applied
acceleration, motor shaft unusual behaviours, and load fluctuations. The angular position
of the motor is considered as the single measurement of the system. As a result, the state

space model of the system can be given by

6] _ [0 17761, [0 0
[w] =lo ollol*[]u+ [wl]
y=[1 0lx+v (2.5)
v is the measurement noise in this equation. Using the first expression for state transition

matrix in Equation (2.3) and by ignoring higher order terms in the series, it can be written

as

NGO
e’ 22 !
j=0
(A? (Ao°

= (At)° + (A + ——

2! 3!
=1+ At (2.6)
It can be simplified as
e =[o 1o ol
S

And based on the second definition in Equation (2.3)



et = L7 (sI — A)71]
-5 1)
ety )

1

Using the state transition matrix obtained in Equations (2.7) and (2.8), the complete

response of the state space model can be obtained, using Equation (2.2).

2-3. Nonlinear Systems

It is not unrealistic to say that all engineering processes are nonlinear. In most cases, we
consider nonlinear systems as linear only when their behavior can be approximated to a
linear system in a certain operation range. This is the reason that although linear systems
do not exist in the real world, the theory of linear systems can be considered as an
irreplaceable control and estimation tool for nonlinear systems [9].

A continuous-time nonlinear system can generally be written as the following form.

x = f(x,u,w)

y = h(x,y) (2.9)
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f and h are arbitrary vectors of functions and w and v represent process and measurement
noise, respectively. It should be noticed that both f and h can either be time variant or
time invariant nonlinear functions. Linear tools are capable of being applied to nonlinear
systems after being linearized. A linear system that is roughly equal to the nonlinear
system should be found. One way is to use Taylor series expansion of f(x) around a

nominal operating point x = X. By defining X = x — X, the expansion is as follows:

. 10%f
T 210x2

103f
310x3

2

fG) =f@)+--

of .
- X3 4 (2.10)

X X

Considering x as a general n X 1 vector, Equation (2.10) is expanded below.

F) = F@ + (Bt ot Zm) e+
- 1 n X X

0x;

1, @ ~ 2

(B ot Rag) Sl

1/, @ Ay (2.11)
3 (B g Sl

The higher order derivatives of f(x) in Equation (2.11) can be ignored when the function
is smooth around its operating point [9]. These high order derivatives are divided by
increasingly larger factorials which in case of small X with growing power, diminishes the
magnitude of the higher order terms even more. As a result, the following approximation

1s reasonable.
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o ]
O~ F@ += %

X

~ f(%) + A% (2.12)

Nonlinear function presented in Equation (2.9) is able to be expanded around the nominal

point (X, i, w) as follows:

x = f(x,u,w)

=X+ AX + Bli + LW (2.13)

The subscript 0 is used to emphasize that the function is assessed at its nominal
point (X, u, w). Matrices A, B, and L can be calculated as described in Equation (2.13).

Substituting X from both sides of Equation (2.13) yields the following:

(2.14)

w is the process noise and its average w can be considered as 0 because we often consider
the process noise as white noise with 0 mean and 1 covariance. Replacing w with w in

Equation (2.14) gives

(2.15)
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Equation (2.15) is a linear function of X, &i and w. In other words, it is a linear function of
the deviations of the states and control inputs from their nominal points. This linearization
will precisely characterize the behavior of the system, as long as the deviations from
nominal points stay in small region. Also, the nonlinear measurement equation can be
linearized around operating point x = X and v = v = 0. The linearization procedure is

presented as follows [9]:

. _Oh| _  0Oh| _
y_axox avov
=Cx+ Dv (2.16)

C and D are defined in Equation (2.16). A complete linearization of a nonlinear system
describing the deviations of the states, control signals, and outputs around their nominal

operating point is presented in Equation (2.15) and (2.16). In these equations

X=x—Xx
U=u—1u
y=y-y

(2.17)

As all systems considered for dynamic state estimation in this thesis are nonlinear, using
linearizing techniques is inevitable. The following example clarifies the idea of

linearizing a nonlinear system.
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Example 2.2 [9]
A two-phase permanent magnet synchronous motor can be represented by the following

mathematical nonlinear model.

. R WA U,

la=—zla+TSln9+T

. R wih 9+ub

lpy = le L cos 7

W= 2] igSin 2] ipcos 777

0=w (2.18)

iy and i, are the two windings currents, R and L are the resistance and inductance of the
windings, 8 and w are the angular position and motor speed, A is the flux constant, u, and
uy are the voltages applied to the two windings of the motor (inputs), J is the moment of
inertia of the rotor and the connected load, F is the viscous friction of the motor, and T is
the load torque. The model is considered as a time-invariant system. As the system is
highly nonlinear, it is not possible to apply linear control and estimation tools to this
model. Nevertheless, it is possible to apply linear approaches to this system by linearizing
the system around its operating point and assuming small deviations of the states and the
control inputs from their nominal values. The state vector of this system can be described

as follows.

(2.19)
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With this definition, the state space model of the permanent magnet synchronous machine

can be written as

55:[551 Xy X3 J'54]

= f(x,u)

R X34 Uy

—le +Tsmx4 +T

R X34 U,

— —ZXZ—TCOSX4 +T
31 . n 31 FX3 Tl
2] X1SIN Xy 2] X2COS Xy ] ]
X3 i

(2.20)

By taking the partial derivative of f(x,u) with respect to x and u, the linearized model is

obtained as follows

of
A=—
0x
R 0 ASy X3ACy
L L L
0 R Acy X3S,
= L L L
31s, 3Ac, F 3A(x1¢4 + Xx354)
2] 2 J 2]
0 0 1 0
af
B =—
du
1/L 0
_| 0 1/L
0 0
0 0

(2.21)



15

In this equation, s, = sin x4 and ¢, = cos x,
Using Equation (2.21), the linearized model ¥ = A% + Bii can approximately portray the

small deviation of the state vector x from operating points.

2-4. Discretization Method

Most of the systems are presented in continuous-time models like Equations (2.1) and
(2.9) in the real world [9]. However, micro-processors are the platforms that state
estimation and control schemes are implemented on. This will lead one to convert
continuous-time systems to discrete-time systems using available discretization
approaches. The general principles of discretization are explained in this section, and a
simple method suitable for this research is then presented.

According to Equation (2.2), the solution of a continuous-time linear system is expressed

as follows:

t
x(t) = eAlt=tox(¢,) +f eAt=DBy(1)dr (2.22)

to

If t = t, (a discrete time point) and the initial time t, = t;_; (the previous discrete time
point) and considering A(7), B(t), and u(t) approximately fixed in the integration

interval, Equation (2.2) can be written as

2%
x(ty) = eAtk—te-Dx(t,_,) + f eAte=D drBu(ty,_4) (2.23)

tk—1
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Defining At = ¢t — t;,_; and @ = 7 — t;,_; and substituting for 7 in Equation (2.23), it can

be written as [9]

At
x(ty) = eix(ty_y) + f e A= dy Bu(ty_q)
0 At
= e x(ty_) + eAAtf e % a Bu(ty_,)
F_q 0
Gk-1
X = Fr-1Xp-1 + Grq1Ug—1 (2.24)

Xk, Fx, G, and u;, are defined in Equation (2.24) which is a linear discrete-time
approximation of the continuous-time Equation (2.1). The main challenge in this regard is
computing the integral in Equation (2.24) or the G matrix. If A is invertible, the simplified

expression for the integral can be given by.

At At > —A7)
f e ATdr =f Z( .|T) dt
0 o = J:

At AZTZ A3T3

B At? A% At
ol TR TR I
[ A(A)2 A%(A)3
= |18t - — = =
N (AAt)?  (AAD)3 .
= |AAt — 2 + TR A

= [1 — e48t]41 (2.25)
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Finally, the continuous-time system in Equation (2.1) with matrices A and B converted to

a discrete-time system with F and G can be presented as [9]

F = eAAt

At
G = Ff e 4%dt B
0

=F[I — e *A|47'B (2.26)

Where At is the time step of discretization.
It is difficult to use Equation (2.26) for discretizing a nonlinear system. Instead, it might
be more convenient to use the basic definition of the time derivative of a variable x as

follows:

. Xy — Xp—1 yields .
X = At X = XAt + x4

(2.27)

Equation (2.27) can also be used for numerical integration. Using Equation (2.9), it can be

written

X = fk_l(xk—p Uk-1, Wk—l)At + Xk—1 (228)

2-5. Optimal State Estimation

Optimal state estimation is key to modern control [9]. The final goal of the state

estimation is to provide accurate knowledge about some or all of the states of a system to
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be used for control or monitoring purposes. Basically, it is not possible to measure all of
the states of a system using sensors because of either high installation and maintenance
cost or unfeasibility. For example, it might not be cost effective in a certain project to put
an encoder (speed sensor) for an electrical machine. On the other hand, it is definitely
impossible to install sensor for measuring flux of the windings. Therefore, the optimal
state estimation has the following advantages:

1. Providing information about the immeasurable states of a system

2. Providing more accurate information about measurable states of a system by

reducing effect of noise and uncertainty of the installed sensors
Kalman Filter as a powerful and popular state estimation algorithm for both linear and
nonlinear systems is chosen for this research. The nature of this mathematical tool is
based on minimizing the mean of squared error between real states and estimated ones
[10]. The mathematical foundation of Kalman Filter is to know how the mean and
covariance of variables propagate through linear and nonlinear systems. To avoid
complexity, the linear case is explained below and nonlinear propagation is discussed in
Section 2-5-2 and 2-5-3.
Suppose that X~N(X,02) and Y = g(x) = aX + b, it is known from probability theory
that
y=ax+b
2 _

2.2
Oy = A" 0x (2.29)

Using Equation (2.29), consider the linear system provided in the following equation
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X = Fro1Xp—1 + Gr—qUp—1 + Wi—q (2.30)
The equations that govern the propagation of the mean of the states through a linear

system can be derived as follows:

X = E(xx)
= Fk—lfk—l + Gk—luk—l + Wi (231)

E is the expectation value. The covariance expression can be derived as follows [9]:

O = %) ()T = (FeoqXpemq + Groqtgemg + wie—) ()7
= [Fr—1 (ko1 — K1) + wie—q ][ ]7
= Fre—q (g1 — Xpe—1) (ko1 — Tp—1) T Fip—q + Wiema W4
+ Fpe_1 (g—1 — Xm1)Wi—q
+ Wit (Kpem1 — Fpe—1) " Fi—4
(2.32)
The covariance of xj, is the expected value of the above expression. Since (Xj_; — X—1)

is uncorrelated with wy,_4, it is obtained

Pk = E((xk — fk)()T)

= Fk—lpk—lFIZ—l + Qk—l (233)
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P,_; and Qj_; are error covariance and system noise covariance matrices, respectively.
In the subsequent sections, using the equations derived so far for mean and covariance of
propagated states of linear systems, the fundamental equations for Kalman Filter which is
designed for linear systems are derived. In order to extend the idea for nonlinear systems,
two major nonlinear approaches of Kalman Filter, namely Extended Kalman Filter (EKF)

and Unscented Kalman Filter (UKF) are explained in details.

2-5-1. Kalman Filter

“The Kalman filter in its various forms is clearly established as a fundamental tool for
analyzing and solving a broad class of estimation problems” [11]. This estimation
method operates by propagating the mean and covariance of the states of a system
through time. To derive the equations that govern the discrete-time Kalman Filter, assume

a linear discrete-time system given as follows [9]:

X = Fr1Xp—1 + Gr—qUp—1 + Wi—q
Yk = Hixp + vy (2.34)
{w,} and {v,} are process and measurement noises of the system which determine
covariance matrices. The process and measurement noises are essentially considered as

white, zero-mean, and uncorrelated with the covariance matrices Qj, and Ry, respectively.
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wi~N (0, Qi)
vr~N(0, Ry)
Elwiew)] = Qi
E[viv]] = Rip—j

Elvew]] =0 (2.35)

In Equation (2.35), 8y_; is the Kronecker delta function in which 6,_; = 1 if k = j and
Ok—j = 0if k # j [9]. The main target here is to estimate the states of the system x,
using the available noisy measurements {y; } and knowledge about the dynamic response
which is accessible from the differential equations of the system [9]. In this regard,
different kinds of estimation can be defined. If all of the measurements up to and
including time k are available for the estimate of xj, then a posteriori estimate can be

”

calculated which is normally represented by %;. The “+ " superscript implies that a
posteriori estimate is formed. The following equation shows the way to portray the a

posteriori estimate of x;, using the expected value of x; conditioned on all of the

measurements up to and including time k [9]

Ry = E[xk|y1, Y2, Y3, -, Vi| = a posteriori estimate (2.36)

A priori estimate denoted by X; can be formed if all of the measurements before and not

including time k are available for the estimation purpose. The following equation

explains how a priori estimate is calculated [9]:
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Xr = Elxk|y1, Y2, Y3 -» Yi—1] = a priori estimate (2.37)

Although X, and X;% are both estimates of the same quantity, the difference between a
priori and a posteriori estimate is that X is the estimate of x;, before the measurement y;
is taken into account, and ®; is the estimate of x; after the measurement y, has been
considered [9]. The intuitive expectation here is that X7 would be a better estimation
than X, because more information is used for its computation. The first measurement is
taken at time k = 1. Due to the lack of available knowledge from previous measurements

at this moment, £§ is considered as the expected value of the initial state x,.

2 = E(x,) (2.38)

The term Py, is used to denote the covariance of the estimation error [10]. Consequently,
P, represents the covariance of the estimation error of X, and P; represents the
covariance of the estimation error of X;. These error covariance matrices are defined as

follows:

Py = E[(x — %) (i — %)

P¢ = E[(xx — %) (e — 2271 (2.39)
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The following timeline depicts the relationship between a priori and a posteriori state and

error covariance estimation.

»

K—-1 K time

Figure 2-1:Timeline showing a priori and a posteriori state and error covariance estimation [9]

Now, it is possible to write an update equation for the new estimate (a posteriori

estimate), by combining the previous estimate (a priori estimate) as follows:

R = X + K lyx — Hexi ] (2.40)

The matrix K in the above equation is called the Kalman gain and the term y,, — H X}, is
known as the innovation or measurement residual [10]. This matrix is chosen such that
the a posteriori error covariance (Py) is minimized. The minimization is carried out by
substituting Equation (2.40) into the second term of Equation (2.39) which is the
definition for P;. Then, the indicated expectation is performed and the derivative of the
trace of the result with respect to K is calculated. By setting the result equal to zero and

then solving for K, the final expression for the Kalman gain K can be given as [10]
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K, = P HI (H P  HI + Ry)™! (2.41)

Considering the dynamic system presented in Equations (2.34) and (2.35), the discrete-
time Kalman filter is summarized here as a recursive algorithm [9].

1. The filter is initialized as follows:

553- = E(x)

P = E[(xo — £5) (xo — 25)"] (2.42)

2. The prediction step or time update is accomplished as

Pk_ = Fk-1P;\T-1FkT-1 + Qx-1
Ky = Py HY (H Py HY + Ry) ™t

Ri = Fy_1X¢_ + Gy_1uy_, = a priori state estimate (2.43)

3. The correction step or measurement update is completed by the following
equations.
i = % + K¢y — HeX; ] = a posteriori state estimate

P = - KyH )P, (2.44)

The ongoing discrete Kalman filter cycle is presented in the following figure.
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Time Update Measurement Update
(“Predict™) (“Correet™)

Figure 2-2: The ongoing discrete Kalman filter cycle [10]

2-5-2. Extended Kalman Filter

The discussion hitherto was dedicated to linear systems; however, real systems are
eventually nonlinear. Even a simple relationship between current and voltage of a resistor
is not linear for all values and Ohm's Law is only an approximation over a certain linear
range [9]. This linear function can describe the behavior of a resistor until the voltage
does not exceed a certain threshold. Although many systems are close enough to linear
such that linear estimation methods provide satisfactory results, in many others this is not
true, and some systems are not even linear over a small range of operation. Therefore, the
use of nonlinear estimators is inevitable.

Nonlinear estimation is not yet fully developed and there is still a lot of space for research
in this field. Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and
particle filter are among the most popular and widespread nonlinear estimation
approaches developed up to this moment. EKF and UKF are selected for this research and

explained in detail in the next parts of this chapter.
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Extended Kalman filter is a nonlinear extension of Kalman filter [9, 10]. It is also
possible to use linearization method explained in Section 2-3 for a nonlinear system and
apply linear Kalman filter for state estimation. Nevertheless, the main goal of this section
is to develop a nonlinear estimation method based on Kalman filter. In the following
section, the equations of discrete-time Extended Kalman filter are derived.

Considering a discretized dynamic system, the system model can be written as [9]

Xk = fr—1 (X1, Ug—1, Wk—1)
Vi = hy (X, vi)
Wk~(0) Qk)

Uk"‘(o, Rk) (245)

In this equation, xj, represents the state vector, u; is the control input vector, f is the
nonlinear function of the states and inputs, y; is the output vector, wy, and v}, are the
process and measurement noise, Q, and Rj are the process and measurement noise
covariance, and k is the time step for the discrete model. By performing a Taylor series
expansion of the state equation around x,_; = X{_; and wy_, = 0, Equation (2.45) can

be written as [9]

0fr—1 0fr-1
X1 — Xp_q)+ Wi _
ox 2;_1( k-1 k-1) ow ot k-1

X = froe1 (Rib_1, Ug—1,0) +

= fr-1(Rf_1, Up-1,0) + Femq (g — R5_1) + Lg—1Wi—1
= Fr_q1Xg—1 + [fk—1(3?l-cl-—1'uk—1' 0) — Fk—lf;—ﬂ + Lg_1Wi—q

= Fy_1Xpg—1 + Ug—q + W4 (2.46)
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The definitions of Fj,_; and L,_; are presented in Equation (2.46). The known input

signal 1i;, and the noise signal W, are also expressed by the following equation.

iy = fi(®F, ux, 0) — FiXyf

Wi~(0, L Qi LY) (2.47)

The measurement equation linearized around x, = X;, and v, = 0 is presented below.

- dhy . dhy
Yk = he (X, 0) +g - (xx — X3) +W - Vg

= hx (R, 0) + Hi(x — X)) + Myvy
= Hyxy + [he (X, 0) — He X ] + My

= Hkxk + Zi-1 + ﬁk (248)

H, and M, are defined by Equation (2.48) and the known signal z; and the noise signal

Uy, are defined as follows.

z = he (R, 0) — He Xy

Uy~ (0, MR My,) (2.49)

Using the time and measurement update Equations (2.43) and (2.44) for linear Kalman
filter and equations derived for EKF up to this point, the discrete-time EKF for a

nonlinear system presented in Equation (2.45) can be summarized as follows [9, 10]:
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1.

The filter is initialized as follows:

J?(J)r = E(xq)
(2.50)

Py = E[(xg — 25) (xo — £5)"]

2. Partial derivative matrices of the system equation are derived using the following

equation.
F—q = a];kx_l ot
L = ag,: e @2.51)
3. Time update equations of EKF are as follows:
Pi = Feoa Pé_ Foq + L1 Qg1 Lie—y
(2.52)

X = fk—l(fl—:—lruk—lr 0)

4. Partial derivative matrices of the output equation are obtained by Equation (2.53).

_ahk
k™ ox

Xje

oh
i (2.53)

Xy
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5. The final step is the measurement update for which the related equations are as

follows:

Ky = P Hg (Hy P He + MR M) ™!
g = X + Kielyre — e (2, 0)]

In the above expressions, X, is a priori state estimate at step k based on the knowledge of
the process prior to this step, X; is a posteriori state estimate at step k based on the
measurement y, P, and Pj is the a priori and a posteriori estimate error covariance,
Fy_, is the Jacobian matrix of f with respect to x, and K}, is the Kalman gain that
minimizes the error covariance.

One of the interesting and unique features of EKF is its ability for online parameter
estimation. In other words, the state vector of the system can be augmented to the
parameters of the system and they become updated in each iteration. This capability has a
great value for systems with slow changing parameters during operational conditions. An
example for this physical phenomenon is an electrical machine in different operating
conditions. The main parameters of the machine like rotor and stator resistances are
influenced by the frequency and the temperature of the machine. However, as EKF
linearizes the system equations around each state estimation and deploys only the first
order term of Taylor series, in systems with high degree of nonlinearity, it might not
capture the whole nonlinearity of the system and the mean and covariance of the
estimated states are occasionally different from the real states. This problem may lead us

to use UKF which approximates mean and covariance of states up to third order.
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2-5-3. Unscented Kalman Filter

The basis of the unscented transformation is that "it is easier to approximate a probability
distribution than it is to approximate an arbitrary nonlinear function or transformation"
[12]. It is worth to investigate how mean and covariance propagate in nonlinear equations
to understand better the idea of unscented transformation.

Consider the following nonlinear functions [9]

y, =rcosf

Y, =1rsinf (2.55)

Which is a standard polar to rectangular transformation. This coordinate transformation

can be generally written as follows:

y =h(x) (2.56)

In this equation, y is the two-element function of h(x) and the two-element vector x is

defined as

ng] (2.57)

Suppose that x; and x, are random variables defined as

x1~(1) O-r)

x1~(1/2,09) (2.58)
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Performing a first order linearization of Equation (2.56) and taking the expected value of

both sides results in

y = E[h(x)]

_ [o (2.59)

For more accurate evaluation of the mean through a nonlinear system, r and 6 can be

expressed as

<
Il
=i
+
=

S
Il
D
+
™

(2.60)

Which 7 and @ are the deviations of 7 and 6 from their means. A thorough analysis of the

mean of y; can be written as follows [9]:

¥, = E(rcos8)
= E[(F+7) cos(6 + 8)]

= E[(F + 7)(cos O cos § — sinHsinf)] (2.61)

By performing the multiplication, keeping in mind that # and 8 are independent with

symmetric probability density functions (pdf), the expected value of y; is equal to
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=0 (2.62)

The first order approximation of y; is confirmed by Equation (2.62). For y, it can be

written as [9]
y, = E(rsinf)
= E[(F + ) sin(6 + )]

= E[(F + #)(sin 6 cos § + cos Gsind)] (2.63)

As E[7] = 0, Equation (2.63) is simplified as follows:

y, =7 sin§ E(cos )

= E(cos 0) (2.64)

Without assuming the distribution for 8, it is not possible to simplify this expression

further. If 0 is uniformly distributed between +86,,,, the mean of y, is

¥, = E(cos0)

sin 6,,
= 2.65
™ (2.65)

The mean calculated from Equation (2.65) is less than 1, which is different from the mean
calculated in Equation (2.59). This difference can be seen in the following figure which is
a plot of 300 randomly generated r and 6 values, in which 7 is uniformly distributed

between +0.01, and 8 is uniformly distributed between +0.35 radians [9].
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Figure 2-3: Linearized and nonlinear mean of 300 randomly generated points [9]

Based on the complete analysis of the mean propagation in [9], and by defining operator

DEf as
n P k
ke _ -
DEf = (Z 5 ) F@ls (2.66)
and Taylor series expansion of f(x) as
f(x)—f(x)+Dxf+ D2f+ 1D3f+ - (2.67)

y vector can be written as

1 1
lD h+—D3h+ -

y =E h(x)+Dh+2 T
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_ 1 1
=h(x)+E th+zD§h+§D§’h+--- (2.68)

It has been shown in [9] that odd orders in Equation (2.68) are equal to zero. Equation

(2.68) is therefore simplified as follows:

1 1
y =h(x)+E ED§h+ZD;‘h+--- (2.69)

Now it is more obvious why the mean calculation in Equation (2.59) is not accurate; it is
a first order approximation and as the considered system in Equation (2.55) is highly
nonlinear, a major discrepancy exists between linearized and nonlinear mean. The same
analysis can be done for variance of the nonlinear system to show the difference between
linearized and nonlinear covariance. A comparison of the nonlinear and linearized mean
and covariance of 300 randomly generated points propagated through the nonlinear

system is presented in Figure 2-4.
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Figure 2-4: linearized and nonlinear mean and covariance of 300 randomly generated points [9]

It has been shown in [9] that the unscented transformation has the ability to propagate
mean and covariance of states of a system through nonlinear dynamic model while

capturing their nonlinearity up to the third order. The unscented transformation procedure

is as follows:

1. An n-element vector x with known mean X and covariance P is considered. The
aim is to estimate the mean and covariance of y = h(x) denoted as y,, and B,.

2. 2n sigma point vectors x( is formed as follows:

x® =x 4+ x® i=1,..,2n

%O = (VnP), i=1,..,n



36

£ = —(VnP)  i=1,..,n (2.70)
T
Where vnP is the matrix square root of nP such that (\/ nP)T\/nP = nP and (w/nP,:'_l)i

is the it" row of the matrix.

3. The sigma points are transformed as follows:

y® = h(x®) i=1,..,2n (2.71)

4. The mean and covariance of y are approximated as follows:

1 2n
o= (i)
i=1
2n
1 @ — 5 Vv® —5 )
Pi=2 > (VO =7) 0O - 7) @72)
i=1

The results of the mean and covariance propagation of the 300 randomly generated points
through the nonlinear system presented in Equation (2.55) using unscented, linearized and
nonlinear transformation are presented in Figure 2-5. This figure shows clearly the
difference between EKF and UKF in terms of mean and covariance propagation through a
nonlinear system. The center point is the nonlinear and unscented mean which are the
same, while the upper point is the linearized mean which has a considerable discrepancy
from the true one. The unscented and exact nonlinear covariances have almost the same

shape; in contrast, the linearized covariance has a totally different shape.
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Figure 2-5: The comparison among exact, linearized, and unscented mean and covariance of 300
randomly generated points [9]

Based on the information provided in this section, it can be concluded that since EKF
uses the first order linearization of the mean and the covariance of the states of a system,
it is not able to find the exact values of the mean and the covariance of the propagated
states in a system with high degree of nonlinearity like the system provided in Equation
(2.55). In contrast, Figure 2-5 reveals the superiority of the unscented transform (UKF)
over linearization approach (EKF). Using the unscented transform hitherto introduced, the
Unscented Kalman filter steps can be expressed as follows:

1. The filter is initialized as follows [9]:
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26‘- = E(xo)

Py = E[(xo — %5)(xo — 5)"] (2.73)

The mean and the covariance of the estimated states at each measurement to the next one
is propagated through the following time update steps.
2. As the current best guess for the mean and covariance of x, are £;_; and P;_,,
®

sigma points x,”, are derived using the following equations and these sigma

points are propagated through the nonlinear system from time step (k — 1) to (k).

20 =2, +x0 i=12,...,2n
T
£ = < /np,j_l> i=12,..,n

1

FH) = —< /np,j_l> i=12,..,n (2.74)

1

In this equation, n is the number of system's states, and VnP is the matrix square root of
T T
— + . ith .
nP such that (VnP) VnP = nP and (,/nPk_l)l, is the i*" row of the matrix.
3. In this step using the known nonlinear system equation f, 2n sigma points created

in the previous step are propagated through the system and f,gi) which also is a 2n

vector is obtained as follows:

20 = £(20, we ty) (2.75)
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4. The a priori state estimate is obtained by combining all the vectors of 3?,(;) by

Equation (2.76).

2n

1 .
2 = _Z 20 (2.76)

2n ¢
=1

5. The a priori estimate for error covariance matrix is derived by Equation (2.77).

2n

P = %;(fi" -57)(20 - %) + Qs 2.77)

6. The measurement update steps are presented here. The new sigma points are

selected based on updated X, and Py, .

O = ( /npk—)i i=12,...,n
£ = —(fnPg)  i=12..m (2.78)

7. In this step, the sigma points f,((i) are transformed into 37,50 using the known

nonlinear output equation h(.) as follows:

5 = h(20, t) (2.79)
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8. The prediction for measurement at time step k is obtained by Equation (2.80).

1 2n
e =— > PP 2.80
Ve =5~ Z Vi (2.80)
=1
9. In this step, the covariance of the predicted measurement is calculated.

2n

B, = %Z(ylgo - ?k)(ff,ﬁ” - )A’k)T + Ry (2.81)

i=1

10. The cross covariance between X, and y; is calculated by Equation (2.82).

2n

Poy = %Z(ﬁff’ %) (59 - 9:) (2.82)

i=1

11. The measurement update of the states estimates of the system calculated in the

previous steps is performed using Equation (2.83).

Ky = PP, "
flt =X, + Kk()’k - 37k)

P¢ = Py — KkP Ky, (2.83)

For better understanding of the nonlinear estimation methods presented in this chapter,

EKF and UKF are applied for state and parameter estimation in Induction Motor (IM),
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Single-Machine-Infinite-Bus (SMIB), and IEEE 3-Generator-9-Bus Test System in the

subsequent chapters.

2-6. Summary

In this chapter, after a brief explanation about state space modeling of the systems, the
mathematical principles of linear and nonlinear systems are presented. Different
approaches for linearization of nonlinear systems and discretization are discussed in
detail. Kalman filter, as one of the most famous approaches of optimal state estimation for
linear systems is then presented. Extended Kalman filter, as a developed state estimator
for nonlinear systems, and the related step by step formulation are presented. Finally, the

principles of unscented transform and unscented Kalman filter procedure are explained.
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CHAPTER 3

3. Dynamic State Estimation in Induction Motor

3-1. Introduction

State estimation in Induction Motors (IMs) has been an interesting area of research.
Estimation of the main states of an IM including speed of the machine results in
mechanical speed sensors (e.g. tachometer) elimination. EKF and UKF are among the
most referred estimation methods for this purpose due to the recursive nature which
makes them suitable for implementation on digital platforms. Reduced order EKF has
been proposed by some authors to reduce computational efforts [13, 14]. Small range of
speed and load torque changes can be estimated by this kind of EKF. In [15, 16], to obtain

a more powerful observer, a full order EKF is deployed for estimating speed as a
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parameter with small variation. The main drawback of this EKF based estimator is that it
is not able to follow the states of the system in transient time. In some research, equation
of motion is added to the state space model to make it more appropriate for dynamic state
estimation [13, 17]. However, the lack of accurate information about the load torque is
still a challenge in this approach which encouraged [18] to propose an extended estimator
with the ability of online load torque estimation. As the rotor and stator resistances are
highly sensitive to temperature and frequency of the motor, the main goal in [19- 23] is to
design an EKF based estimator which is capable of estimating parameters of the motor
along with its main states. As explained in the previous chapter, EKF is able to
approximate the mean and covariance of the states of a nonlinear transformation only to
the first order. Thus, UKF is used in [24] for state estimation in an IM to overcome this
drawback and capture better the nonlinearity of the system.

In this chapter, several state estimators based on EKF and UKF are designed and
simulated on an IM and the simulation results are compared. The aim of this chapter is to
show the strong and weak points of both methods, based on different simulation

scenarios.

3-2. Induction Motor State Space Model

The state space model of an IM is composed of four independent state variables, namely
rotor flux components (Vg , Yqr), stator-current components (i4s , Lqs), Which are the g

and d axis components obtained by Park transformation. By considering the dynamic



44

motion equation of an IM, the state vector can also be extended to w,,, angular velocity.
There are also two inputs for this model which are stator-voltage components (vys , Vgs)
[21, 22]. Also, the stator current components are considered as output signals of this
model. Using the general form of nonlinear systems, Equation (2.9), the state space model

of an IM extended to speed as a parameter is as follows [21, 22]:

RS +R:L7211 0 R:Lm Lm O
a— ——— a) —

L, LL, P R SN B T
1 i N

® R, R L R/L @ Ly
i'Y 0 _ S + 1”2}‘)1 _ m,ppa)m )2 m 0 l.v 1 B

q', Ly L7L, LsL, L7L; ! 0 —vy
l//dr = R: 0 R: O (//dr + L(Y v +Wt
v, L L ~PpOn Ve g 8 —
’ R! R!
£:n__/ 0 . m ppa)m -— £/m_/_ 0 0

Y L L — L J

i 0 0 0 0 0] 5
A
T

i, _{1 0 0 0], )

. - t

i,| [0 10 0]y, (3.1)
— —

¥ c (//qr

R

In this model, R and R, are the stator and rotor resistances; P, is the pole pairs; Ls = &L
is the stator transient inductance; § = 1 — (L3,/L¢L’.) is the leakage or coupling factor;
L, is the mutual inductance; Lg = L + L,,, and Lj. = L}, + L, are the inductances of
the stator and the rotor; and L;; and L), are the leakage inductances of the stator and the

rotor. For more clarity, the estimation process is presented in Figure 3-1.
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Figure 3-1: General diagram of state estimation in IM

This diagram shows that a general estimator, which is based on a state space model of the
motor and an optimal estimation approach such as Kalman filter, is able to estimate all of
the states of the system (including measurable and immeasurable ones), and eliminate the
effect of noise. The noise free measurements and estimated states are finally used to
improve control performance of the system. Another property of this observer is to
estimate speed of the rotor with high accuracy which is desirable for sensorless motor

drive systems.

3-3. Applying EKF on Induction Motor for State Estimation

In this section, a complete performance evaluation of different Kalman filter based
estimators for IM are presented using various practical simulation scenarios. These

simulation scenarios are as follows:
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1. In scenario one, speed estimation is performed while speed, load torque and IM
parameters are considered as constant values.

2. In scenario two, only the load torque varies with small variations.

3. In scenario three, both reference speed and load torque vary with small variations.

4. In scenario four, wide range of changes is considered for reference speed of the
IM while load torque and the main parameters vary with small variation.

5. In scenario five speed changes in a wide range but load torque and main
parameters are considered with small changes.

6. Finally in scenario six, both reference speed and load torque change in wide
ranges while the main parameters of IM have small and slow variations.

In addition, three different state space models are proposed for better evaluation of the

estimation methods. The first model (IM-Model 1) uses Equation (3.1) where w,, is

considered as a parameter. The second model (IM-Model 2) contains equation of

motion which enriches the dynamic ability of the state space model and also the state

vector is augmented by T; as a parameter. And finally the third state space model

(IM-Model 3) is similar to the second model, but its state vector is extended to include

both R, and R;. These two lateral models (IM-Model 2 and IM-Model 3) are

developed in Section 3.3.2 1nd 3.3.3, respectively.

The induction motor parameters and initial value of x, P, Q,and R as well as other

consideration of the simulations are listed in Table 3-1.
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Table 3-1: Motor parameters and initial simulation values of x, P, Q, R [21]

Parameters Value
Rated power 2.238 kW
Rated voltage 230V

Rated frequency 60 Hz

Rated torque 20 N.m
Rated speed 1800 rpm
Stator resistance (Ry) 0.6619 a/ph
Rotor resistance (R,) 0.7322 a/ph
Stator inductance (L) 0.0375 H/ph
Rotor inductance (L;.) 0.0376 H/ph
Magnetizing inductance (L,;,) 0.0334 H/ph
Pole Pairs 2

Initial value of extended state vector

x, = diag{0,0,0,0,0,0,0,0}

Initial value of estimation error

covariance matrix

P, = diag{10,10,10,10,10,10,10,10}

Process noise covariance

Q
= diag{107%,1078,4

x 10717,4 x 10717,10714,10715,10716,107¢}

Measurement noise covariance

R = diag{5,5}
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Speed reference

An IM model is simulated in SIMULINK, MATLAB [25] with Space Vector
Modulation (SVM) drive. This model is used to generate data with T; = 0.00001 sec
sampling time, and it is presented in Figure 3-2. The simulation procedures and
results are described in the following sections of this chapter, and for brevity,
discretized equations of IM and calculated Jacobian matrix are presented just in

Section 3-3-3.
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Stator current
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= Mctor J Motor i a
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Figure 3-2: Simulink model of IM with SVM controller used for data generation
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3-3-1. Speed Estimation with IM-Model 1

The speed of the IM is estimated using Equation (3.1). The equation of motion is not

considered in this model and speed is treated as a parameter with slow variations. Figure

3-3 shows a comparison of the real and estimated speed of IM for scenarios one to four.

—Real Rotor Speed
-~ Estimated Rotor Speed
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40+

30

20

Time (Sec)

(a)

—Real Rotor Speed
- Estimated Rotor Speed

\
0.5 1 15 2 2.5 3
Time (sec)

(©)

Figure 3-3: Speed estimation with IM-Model 1: (a) Scenario 1 (b) Scenario 2
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(d) Scenario 4
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—Real Rotor Speed
- Estimated Rotor Speed

1.5
Time (Sec)
(d)

(c¢) Scenario 3

In scenario four, the IM is driven with 200-rpm reference speed and after a transient time,

at t = 1 sec, the speed reference is increased to 500-rpm. At t = 2 sec, the reference

speed is reduced to 50-rpm to investigate a wide range of speed variation. The load torque
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is 20 £ 1 N.m, and the variation is considered slow through the time. All simulation
scenarios are designed in such a way that provides better overview on the tracking ability
of the designed observer in practical conditions. Based on simulation results, for
applications with almost constant value of speed and small variation of load torque and
parameters (Figure 3-3-a, b, and ¢), this kind of estimator might be acceptable. Otherwise,
if the IM 1is driven with a wide range of speed variation as presented in Figure 3-3-d, the

model does not yield accurate results.

3-3-2. Speed Estimation with IM-Model 2

Due to the simulation results of the previous section, for accurate estimation of speed
over a wide range of speed variation, the equation of motion in state space model is
necessary. Since the load torque is one of the parameters of motion equation, it must also
be estimated as an unknown parameter in the estimation process; otherwise, a new input
should be added to the model which is not desirable. Thus, the state space model of IM

with the above extensions is as follows.

R, RIL, . RIL, . 0 o
Ls L£2L§ L:’-ZLJ LsL; Prn M1 T
R, R L, RIL, i |z °
. 0 o e — ~-D,0, ~ 0 0 . 5
I Ly L7L; LL; L"Lg Lys 0 1
: R, R, v
dr .y 0 7 -p @ 0 0 |Ya 5 || Vas
’- = L,, m L,, p]J m v —+ 0 0 v vJ‘FW,‘ (3'2)
@ ' ' ar L as
R R, 0 0=~
' 0 L, p,®, - 0 0 |o i
m L L m 0 0
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= , L , L L |
3P "y, 37, L, " 0 0 0 _1 — |0 0]
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Note that assuming load torque as a slow changing parameter may be a correct hypothesis

for many but not all applications. Therefore, in this part, the IM is simulated under

scenarios four and five. The real and estimated speed and the estimated load torque of the

IM are illustrated in Figure 3-4.
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Figure 3-4: State estimation with IM-Model 2: (a) Speed, scenario 4; (b) Speed, scenario 5; (c) Load
torque, scenario 4; (d) Load torque, scenario 5

Figure 3-4-b shows that the designed observer based on Equation (3.2) has steady state

error in tracking the real speed in scenario five, because assuming the main parameters of
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IM (rotor/stator resistances) as constant parameters is not a practical postulate . However,
the estimator is able to accurately estimate speed and load torque while the main
parameters of the system (rotor and stator resistances) are constant (Figure 3-4 a and b).
Therefore, for more reliable estimation, these parameters are added to the state vector and

updated during the estimation process, in the next section.

3-3-3. Speed Estimation with IM-Model 3

Based on [21], the rotor and stator resistances are not constant parameters and start
changing with variation in motor temperature and speed. In this section, the state vector is
extended to these parameters for more precise estimation. The state space model while

include R, and R; as state variables is given as:
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The IM state space model presented above, is discretized as Equation (3.4) where T is the

sampling time.

R R'L R*L L
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Considering the discretized state space model of the IM and Jacobian matrix presented in
Equations (3.4) and (3.5), EKF based estimation is carried out under scenario 5 and the

results are presented in Figure 3-5.
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Figure 3-5: State estimation with IM-Model 3 under scenario 5: (a) Speed; (b) Rotor resistance; (c)
Stator resistance; (d) Load torque

The results prove that the designed observer in this section has the ability to estimate
speed in a wide range without sensitivity to the small variations of the IM's main

parameters and the load torque. Comparing Figure 3-5-a and Figure 3-4-b, it can be
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concluded that the estimator based on IM-Model 3 has more accurate speed estimation
than the previous models. This accuracy is the direct result of estimating load torque and
main parameters of the motor along with the primary states of the machine.

Scenario six which is a more complicated operational condition is used to show the ability
of EKF for online state and parameter estimation. The time and reference speed vector

applied to the motor drive in this simulation scenario is given below.

t=[0 1 2 3 4 5]sec Wmrer =[50 150 450 750 950 80]rpm.

Also, the time and load torque vector of this simulation scenario is considered as follows:

t=[0 15 25 3.5 4.5 55]sec Tires,=[8 20 14 16 20 24]N.m

The simulation results for this scenario are presented in Figure 3-6. Figure 3-6-a shows
that except for the transient times, the estimator has accurately followed the real speed of
the rotor in a wide range of variation through a short period of time. Figures 3-6-b and
3-6-c reveal the ability of the EKF based estimator designed in this part to reject noise on
the measurement signals. Figures 3-6-d and 3-6-¢ show the variations of the estimated
rotor and stator resistances during the motor operation. The EKF based estimator
designed in this part using the extended model presented in Equation (3.4) is also able to
track load torque with acceptable accuracy based on the results presented in Figure 3-6-f,

which results to high accuracy speed estimation in dynamic operation.
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Figure 3-6: State estimation with IM-Model 3 under scenario 6: (a) Speed; (b) Q-axis current
component i ; (c) D-axis current component i ,; (d) Rotor resistance; (e) Stator resistance; (f) load
torque
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It is obvious that the value of the main parameters of the IM (R,, Ry and T;) are not
provided for the estimator and they are estimated in each iteration. The simulation results
of this section show that the designed EKF based estimator using IM-Model 3 is able to
estimate speed with acceptable error in a wide range of reference speed variations, while
load torque has large changes through the time, and the main parameters of IM are not

constant.

3-4. Applying UKF on Induction Motor for State Estimation

Although UKF has valuable characteristic of third order estimation of mean and
covariance of states of nonlinear models, it has not been completely developed for online
parameter estimation and there is lack of literature in this regard. Therefore, the state
space model of IM is changed in this part and load torque is considered as an input value.

This model is presented below.
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The simulation scenario 5 is considered in this section to evaluate the performance of
UKF based estimator for IM. For better understanding, the estimation results are

compared with EKF estimation results. This comparison is presented in Figure 3.7

60
— 50r :': ‘
Q 407 :' 1
o 30- / \
% 4 %
8 207 f.n S— - J
()
= o \
D 0F #7 — Real Rotor Speed .
g oy Estimated Rotor Speed with EKF '
14 Estimated Rotor Speed with UKF
-10F
) \ \ \ \ \ |
% 0.5 1 1.5 2 25 3

Time(sec)

Figure 3-7: Comparison of speed estimation between EKF and UKF, scenario 5

The speed estimation error variances of these approaches are as follows.
EKF Error Variance = 0.4871 UKEF Error Variance = 0.0047

Estimation results of i;; by both methods are also presented in Figure 3.8.
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Figure 3-8: Comparison between real and estimated i;; using EKF and UKF

Considering the estimation results presented in Figure 3-8 and the performed error
analysis presented in Table 3.2, it can be stated that UKF has better performance.
However, the UKF requires that the load torque is injected as an extra input into the
model as expressed in the state space model presented in Equation (3.6). This is a
considerable drawback, since torque sensor installation is a hard task and imposes more
cost on the drive system. As a result, it can be concluded that EKF and its ability to
estimate online parameters is a better solution for this case. A comprehensive comparison
among all estimators designed in this chapter for state estimation in an IM using EKF and

UKEF is provided in Table 3-2.



60

Table 3-2: Performance comparison among the designed estimators

Simulation Scenarios

EKF based Estimators

UKF Estimator

[ias igs Yar WYgr ©m] [ias igs WYar WYgr wm Ti] [ias igs Yar Yo ©m To Ry R

[ids iqs Ipdr Iqu wm]

Scenario 1:
v" Constant reference
speed and load Speed estimation o o Speed estimation
. Speed estimation error Speed estimation error .
torque error variance: variance: 0.0037 variance: 0.0037 error variance:
v Constant main 21.03 e T 0.0006
parameters
Scenario 2:
v" Constant reference
Speed Speed estimati Speed estimati
v Small variations of peed estimation Speed estimation error Speed estimation error peed estumation
error variance: ; ) error variance:
load torque variance: 0.12 variance: 0.024
. 28.08 0.0028
v Constant main
parameters
Scenario 3:
v' Small variations of
reference speed and Speed estimation . . . . . .
P P . Speed estimation error Speed estimation error Speed estimation
load torque error variance: . : ;
. variance: 2.34 variance: 0.154 error variance: 0.021
v Constant main 35.05
parameters
Scenario 4:
v Large variations of
reference speed
v Small variations of . . Speed estimation error Speed estimation error Speed estimation
) Filter diverges . . .
oad torque variance: 4.43 variance: 0.352 error variance: 0.123
v' Constant main
parameters
Scenario 5:
v Large variations of
reference speed . . . . . .
P . . Speed estimation error Speed estimation error Speed estimation
v Small variations of Filter diverges . :
. variance: 8.96 variance: 0.4871 error: 0.0047
load torque and main
parameters
Scenario 6:
v Large variations of
reference speed and . . . .
. . Speed estimation error Speed estimation error . .
load torque Filter diverges . . Filter diverges
. variance: 18.96 variance: 2.87
v Small variation of

main parameters
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Considering the whole simulation results of this chapter, it can be concluded that EKF
based estimator has more acceptable performance for induction motor, based on its ability
for concurrent state and parameter estimation. Designing an accurate speed estimator is
the first step to reach a sensorless control scheme for an induction motor. Sensorless
control improves the control performance, reduces the total wiring of the drive system,
and eliminates mechanical speed sensors such as tachogenerator and encoder. As the
main parameters of IM such as stator and rotor resistances are not constant during
operation, and load torque experiences changes that are slow in terms of time but large in
amplitude, an estimator with the ability to estimate the parameters of the IM will be
desirable. Nevertheless, it is possible to inject load torque as an extra input to the drive
system and use UKF based estimator with higher order of mean and covariance
estimation. The main question here can be considered as a trade off: an EKF based
estimator with linearized first order approximation and online parameter estimation or a
UKF based estimator with third order approximation but one more input and lack of

parameter estimation ability.

3-5. Summary

In this chapter, a history of the recent research in state and parameter estimation in
induction motor is provided. The mathematical foundations of the state space modeling of
induction motor for state and parameter estimation are developed. Following a discussion

of the different simulation scenarios, the Extended Kalman Filter is applied for state and
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parameter estimation in induction motor. Using an appropriate state space model, the
Unscented Kalman Filter is used for state estimation and a comprehensive comparison

among all simulation results is finally presented.
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CHAPTER 4

4. Synchrophasor Applications in Power Systems

4-1. Introduction

In this chapter, the principles of Synchrophasors and their applications for Wide Area
Monitoring, Protection, and Control (WAMPAC) in large power systems are explained.
The mathematical formulation of the phasor measurement, the general block diagram of
the Phasor Measurement Unit (PMU), and the Phasor Data Concentrator (PDC) are
presented. The merits for synchronized data gathering in large interconnected power
systems and advantages of the dynamic state estimation in power systems are also

addressed in this chapter.
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Nowadays our daily lives depend heavily on smart supervision and reliable performance
of the important infrastructures, like electric power systems, telecommunication
networks, and water distribution systems. Because of the continuous increase in their size,
network complexity, inherent uncertainty, random nature of changing loads, and mutual
interactions, it has become a demanding task to design, monitor, and control such systems
[26]. In terms of power systems, the safe and dependable operation has become a difficult
task due to the daily-increasing demand for electric power, the ever-increasing number of
the power system interconnections, higher penetration percentage of the various forms of
renewable energies, and new regulations of the power market. These are the main
motivations for power companies all around the world to invest in a real-time WAMPAC
system. Synchronized measurement technology (SMT) can be considered as the central
supporting part of this system [26].

Synchrophasors are essentially accurate power grid measurements provided by PMUs
installed all over a large scale power system. The measurements are taken at high rate
compared to the conventional technologies and are synchronized using a common time
reference signal. The synchronized data provided by PMUs helps to better detect stresses
on a power grid and improve the accuracy of the corrective decisions to maintain stability
of the power system. In 1986, phasor measurements were introduced as a new
measurement approach in power systems [27]. The PMU prototype produced by Virginia
Tech was used by American Electric Power and Bonneville Power Administration (BPA)
in that year. These utilities tested and used the initial versions of the PMUs until the
introduction of the first commercial unit in 1991, the Macrodyne 1690 [27]. BPA

reconfigured this system into a true real-time, wide area measurement system in 1997,
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using commercial PMUs and a customized PDC. Since that time, many newer models of
the PMUs have become available with developed ranges of features. Also, several
versions of PDC units have been developed with various monitoring, analysis, and control
schemes [27].

The major advantages of using synchronized measurement technology in power systems
are that measurements from widely spread spots can be synchronized with a signal
received by the Global Positioning System (GPS) clock. The direct measurement of the
voltage phase angles can be realized and the precision and rapidity of the energy
management system applications, e.g. dynamic state estimation, can be increased
dramatically [26]. Based on the ability of WAMPAC systems to capture dynamic state
information, the state estimators can generate dynamic states of major components of the
power system. For example, for the synchronous generator the rotor angle and speed,
instead of the static values of the voltage magnitudes and phase angles can be estimated

[2, 28].

4-2. Principles of the Phasor Measurement

A phasor is a mathematical representation of a sinusoidal waveform as shown in

Figure 4-1.
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Figure 4-1: Phasor representation of a sinusoidal waveform [27]

The magnitude can be either a peak or RMS value of the signal and the phase angle can
be determined by the given sinusoidal frequency and an arbitrary time reference.
Synchrophasors are phasor values, representing sinusoidal signals of a power system
which are compared to the nominal frequency of the power system and time reference
provided by GPS [27]. The introduction of the GPS has made it simply possible to create
a universal accurate time reference signal with reasonable cost.

The time domain formula of a waveform can describe the instantaneous phasor value of a
sinusoidal signal in each moment. However, it might be a difficult task to find the phasor
equivalent of an arbitrary sinusoidal waveform which contains different frequencies. A
series of samples captured at certain moments with appropriate time intervals and over a
specified period is required to determine the main parameters of a sinusoidal signal [27].
The sampling frequency and phasor estimation method along with the signal content of
the waveform are key factors that specify the quality of the estimated phasor. The
predominant phasor estimation approach is the Discrete Fourier Transform (DFT) [7]. In

this technique, the standard Fourier Transform is applied over one or more cycles at the
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nominal system frequency. For better understanding, the details of using DFT for phasor

extraction are presented below. Consider, the time representation of a sinusoidal signal as

x(t) = Xpcos(wt + ¢) 4.1)

X 1s the peak value of the signal and ¢ is the phase angle in radian. The phasor

representation of the signal in Equation (4.1) is as follows:

X = (X,n/V2)ei® (4.2)

DFT is accomplished by using discrete steps through a finite window in frequency
domain. Suppose the signal shown in Figure 4-1 is sampled at sampling angle 8 = 2m/N,
where N is the number of samples during one finite window. The Fourier representation

of the signal x(t) is as follows [7]:

x(t) = ag + a, cos(2mk fyt) + bysin(2mk fyt) 4.3)

a, and by, are the Fourier series coefficients and f;, is the fundamental frequency. Based
on the periodic property of DFT, the coefficients of the Fourier series can be derived from

the sampling data as follows:
ag = 2X0

a, = 2Real(Xy)

b, = 2Imaginary(Xy) (4.4)
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Xy represents the DFT samples of the signal in complex mode. An example is provided

below to clarify the procedure.

Example 4.1

Consider the following Fourier series representation of a signal.

x(t) =9+ 16 cos(2mfyt + 40°) + 5 cos(4mfyt + 60°) + 3 cos(b6mfyt + 65°) 4.5)

fo 1s assumed to be 60Hz. The signal is shown below in time and frequency domain.

Signal in Time and Frequency Domain
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Figure 4-2: Signal in frequency and time domain

The first plot in Figure 4-2 shows amplitude of the signal in frequency range of
0~1000 Hz, and the second plot demonstrates the amplitude in time frame of
0~0.016 sec. Using the Fourier Transform command in Matlab, the DFT coefficients can

be obtained for the signal as presented in Table 4.1.
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Table 4-1: Sampled data and Fourier transform of the signal

Sample Number (k) x(t) Frequency X, = DFT/16
0 25.02 0 9.0047
1 13.06 fo 6.1276 + 5.1470j
2 3.24 2fo 1.2478 +2.1659j
3 -0.7727 3fo 0.6314 + 1.3589;
4 -1.0656 4 0.0003 - 0.0020j
5 -1.6879 5fo 0.0007 - 0.0011j
6 -3.6376 610 8.1406e-04 - 6.1875e-04;
7 -4.4259 7fo 8.6681e-04 - 2.8785e-04]
8 -2.0177 - 8.8192¢-04
9 2.3535 —7f 8.6681e-04 + 2.8785e-04;
10 6.1014 -6/ 8.1406e-04 + 6.1875¢-04;
11 9.1211 =5/, 0.0007 + 0.0011;j
12 14.0837 —4f, 0.0003 + 0.0020;
13 22.3008 =3/, 0.6314 - 1.3589j
14 30.3135 —2f5 1.2478 - 2.1659j
15 32.077 —fo 6.1276 - 5.1470j

Using Equation (4.4) to calculate the Fourier series coefficients, the recreated signal is as

follows:

£(t) = 9.00479 + 15.987 cos(2nf,t + 39.2°) + 5.001 cos(47f,t + 58.73°)

+ 3.001 cos(6mfyt + 64.87°)

(4.6)

The comparison between the real and estimated signal is presented in Figure 4-3.

Real and Estimated Signal

40 ‘ ‘ : ,
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o Estimated Signal with DFT
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2 o, o
o0 O 4
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_1 0 | | | | | | |
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Time (sec)

Figure 4-3: Comparison between the real and estimated signal
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Figure 4-3 shows that the estimated signal agrees with the real signal. The k‘* component
of the phasor representation of x(t) can be obtained as follows [7]:

N-1
1 2 j2mkn

X, = ﬁﬁnzo x(nAT)e N 4.7)

n represents the nt" sample. The representation of Equation (4.7) in the form of sine and

cosine is given below [7].

) ~ 2mkn
jsin( N

\/EN_l 2mkn
Xy = N z x(nAT)[cos ( N )] (4.8)

Using the expression x(nAT) = x,, and %ﬂ = 0 (0 is the sampling angle measured based

on the period of the fundamental frequency component), Equation (4.8) cab be written as

\/—N
Xy = N Z [cos(knB) — jsin(kn@)] (4.9)

The cosine and sine expressions of Equation (4.9) are defined as

\/EN—l
Xye = N Z Xncos(knf)
n=0

\/EN—I
Xys = N Z X, Sin(kno) (4.10)
n=0

Therefore, the phasor X; can be written as
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X = Xie — JXks (4.11)

Using this equation, the phasor of a signal can be calculated. Two methods have been
developed for this purpose in recent years: non-recursive and recursive updates [7]. The
first approach is the easiest one since in this method, each estimation is accomplished for
all of the process through N samples. One window could estimate one phasor and the next
phasor will use the samples from the next window. This approach is very stable because
the new estimation process would not use the previous samples; however, its calculation
needs lots of memory space. In recursive method, in contrast, the new phasor is estimated
using N — 1 samples from the previous window and one new sample. This method is
much faster and uses less space for computation [7]. The sample window for non-

recursive method is shown in Figure 4-4

n=0

\ n=N-1
- u Iy

Figure 4-4: Sampling window [7]

The recursive method is currently the most common approach for phasor estimation. For

example, the phasor estimation of the 60 Hz signal x(t) = 100cos(120xt + /4)
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sampled at 12 samples per cycle using both recursive and non-recursive approaches are

presented in Table 4-2.

Table 4-2: Phasor estimation of the signal [7]

Sample number | Sample x,, | Non-recursive phasor estimation | Recursive phasor estimation
0 70.71

1 25.88

2 -25.88

3 -70.71

4 -96.59

5 -96.59

6 -70.71

7 -25.88

8 25.88

9 70.71

10 96.59

11 96.59

12 70.71 70.7012£45° 70.7012£45°
13 25.88 70.701275° 70.7012£45°
14 -25.88 70.701£105° 70.7012£45°
15 -70.71 70.701£135° 70.7012£45°
16 -96.59 70.701£165° 70.7012£45°
17 -96.59 70.7012£195° 70.7012£45°

The phase shift in the non-recursive method is related to the shift of the sampling

window, while there is no phase shift for the recursive method.

4-3. Phasor Measurement Unit

A Phasor Measurement Unit (PMU) is an electronic device that deploys concept of digital

signal processing for measuring 50/60 Hz AC voltages or currents typically at a sampling

rate of 48 samples per cycle. This phasor technology provides time synchronized data
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typically at a rate of 240 samples/second [4]. The general block diagram of a PMU is

presented in Figure 4-5.

Measurement GPs

from Receiver

Instrument
Transformer Modems
Phasor Locked
U Oscillator
Antialiasing | | 16bAD Phasor
Filters Converter Microprocessor

Figure 4-5: Block diagram of a PMU [26]

The analog AC waveforms are sampled by an analog to digital converter. A phase-locked
loop oscillator and the GPS clock create a high speed synchronized signal with one
microsecond accuracy, while is used for time stamping of all measured data. The detailed
function of each block of the PMU can be described as follows:

e The main purpose of the anti-aliasing unit is to avoid samples from measurement
aliasing. In other words, if the sampling frequency is not more than two times of
the analyzed frequency, there is a possibility of signal overlapping in a specific
zone. This phenomenon is called aliasing. The anti-aliasing filter avoids this event
by satisfying Nyquist criterion [7].

e The A/D converter is used to convert the signal from the anti-aliasing filter to
digital signal which can be used by the phasor micro-processor.

e The GPS receiver is able to collect ceaseless rhythmic time signals sent by the

satellite every second.
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e The sampling interval is controlled with a phase-locked oscillator which is phase-
locked with the GPS clock pulse.
e The phasor micro-processor calculates the phasors of the signals using a specific
algorithm.
Typically PMUs are located at various important substations to obtain real-time data of
the system and send them to the Phasor Data Concentrator (PDC) normally placed at
utility centers, where the data from all PMUs are accumulated. Due to the various
distances, available communication technologies, and time delay for data transmission of
each device, measurement streams of a certain moment cannot be received by the
destination at the same time [27]. Therefore, the early data should be stamped and stored
in a mass storage and wait till the other related data is received by the system. However,
because of the quite high refresh time of the data, this waiting time cannot be very long.
The process of waiting for and sorting measurements is named as “phasor data
concentration” which is mainly carried out by a PDC [27]. This aggregated data can be
used for monitor and control software which provides frequencies, primary voltages,
currents, and output active and reactive powers for system operators. In addition, many
PDCs which belong to different utility companies can be a part of a larger PDC or Super
PDC to accumulate the information of a large power system and also draw an accurate

general picture of the system [8].
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Figure 4-6: Super PDC configuration using different communication infrastructure [8]

Figure 4-6 shows that the data provided by PMUs are transferred to the related utility
PDCs through different communication facilities such as power lines, phone lines, fiber
optic, Ethernet, and microwave. The accumulated data is then sent to the super PDC by
Internet or Virtual Private Network (VPN). The data server placed at the super PDC uses
the accumulated data for real time monitoring, wide area protection and control, dynamic
state estimation, and data archiving. General applications of WAMPAC system are
presented in the Table 4-3, and some of these applications are explained in detail in

Section 4-4.
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Table 4-3: Applications of WAMPAC [8]

Dynamic state estimation

Real-time rush hour power management

Real time envision of a large power system

Complicated system modeling and validation

Better control of generating units

Design of adaptive models for the system control and protection

Development of a sophisticated early warning centers

Analysis of the reasons for major system blackout

Progress in the damping property of the inter-area oscillations

Real-time angle, voltage, and frequency stability

4-4. Dynamic State Estimation Advantages in Large Power Systems

At the present time, phasor estimation has been essentially performed using steady state
measurements. Phasor systems are typically faster than the dynamics of most power
systems; therefore, this kind of estimation has been rational and sufficient. Nevertheless,
power systems are changing daily and more accurate methods might be needed for
difficult operational situations [27]. Data communication systems have also evolved
dramatically in recent years. Most of the utilities are equipped with a broadband at 1MB/s
and higher for their data communication and the remaining ones at least have plans to do
so [27]. LAN and WAN supporting equipments are prevalent and easy to install these

days. This progress has been a stimulus to change minimal data sets to more complete
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data packages. Based on all these reasons, many institutes all around the world are doing
research on dynamic measurement of the power systems. Particularly, an IEEE working
group has recently been revising C37.118 to add dynamic performance requirements
while paying attention to not invalidating current ones [27]. Recent experiences have
proved that synchronized wide area system history of the dynamic events are key in the
analysis and understanding of the system performance, behavior, and the types of control
decisions made for large scale power system contingencies [8]. It is a time consuming
effort to analyze and determine the main reason of major contingencies in a power system
without the time-stamped PMU data or the related PDC [8]. For example, the January 23,
2007 recording of the contingency in Western Electricity Coordinating Council (WECC)
reveals the value of a wide-area PMU-based monitoring and event recording procedure
[8]. The purpose of these systems installed in 1990s has been to capture real-time network
state information in the WECC region. The PMU real-time data of the 2007 contingency
assists the operators of the system to immediately figure out what happened to the grid
and carry out necessary actions to prevent the propagation of the instability [8].
Developing smart centers which can send warnings ahead of a major contingency is one
of the greatest applications of WAMPAC.

Dynamic state estimation in a power system provides accurate and synchronized
information about the main states of the generating unit which are working in an
interconnected large power system. In addition to the noise elimination on measurement
signals provided by PMUs, dynamic state estimation provides high rate information of the
immeasurable states of the synchronous generators which are advantageous in better

control of the power stations; real-time angle, voltage, and frequency transient stability
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analysis of the power system; improved damping property for the inter-area oscillations;
and better rush hour power management.

In chapter 6 of this thesis, the high rate data provided by PMU is used for dynamic state
estimation in different power system case studies. As real power systems equipped with
PMUs on high voltage bus were not accessible for this research, PowerWorld Simulator
[29] is used for this purpose. Since this software is able to simulate transient stability of
the power systems with predetermined faults and desired afterwards resolutions, it is
assumed that the outputs of the PMUs installed on the buses of a system are accessible
from the PowerWorld simulator. The sampling rate of the present commercialized PMUs
are near 240 frames per second. Therefore, different sampling rates are considered in the
simulation procedure to evaluate the effect of this factor on the accuracy of the estimation
results, and also to examine whether the whole idea of the dynamic state estimation in
power systems using existing PMU’s technology is realizable. The diagram presented in
Figure 4-7 clearly shows the idea being used in this research to generate accurate data for

modeling, validation, and dynamic state estimation.
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Figure 4-7: Using PowerWorld Simulator instead of real PMU to generate synchronized data for

power system case studies

This diagram shows that by designing a desired power system case study in PowerWorld

and providing information about steady state active and reactive power of the generators;

transient parameters of the generators; parameters and characteristics of the transmission

lines; fault location, moment, duration, and afterwards resolutions; simulation time and

sampling frequency; and states of the systems to be sampled during the simulation
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procedure; synchronized high rate information about the power system can be generated.
This data is then used to validate the classical and 2-axis models developed for the
synchronous generator. The validated models are then used for dynamic state estimation
in different power system case studies. The measurement data provided by PowerWorld

are disturbed by a white Gaussian noise to be more similar to the real case.

4-5. Summary

The principals of phasor measurements and the associated benefits for power systems are
discussed in this chapter. Brief explanations about Wide Area Monitoring, Protection, and
Control (WAMPAC) system are presented. The principles of the phasor measurement and
related formulations are explained. Next, the block diagram of the Phasor Measurement
Unit (PMU) and function of each part are discussed in detail, and the benefits of the
Phasor Data Concentrator (PDC) and the general structure of a Super PDC are explained.
Finally, brief explanations about the final aim of the PMU recording data and its
application for dynamic state estimation are discussed, and the procedure of data
generation for modeling, validation, and state estimation in this research is presented in a

complete diagram.
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CHAPTER 5

5. Synchronous Generator Mathematical Description and Model
Verification

5-1. Introduction

Developing a proper model for the synchronous generator is the first step for any kind of
analysis in power systems. In the first section of this chapter, a simple RLC circuit is used
to explain the procedure for modeling and validation that will be used for different power
system case studies in the subsequent sections. After explaining the mathematical
foundations of a synchronous machine, the classical model is derived and formulated. A

two-axis fourth order model of the machine is then developed using the mathematical
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description of the synchronous generator. The last part of this chapter is dedicated to
multi-machine transient stability analysis. Each of these sections discusses the model
validation, and the obtained results are compared with the data generated by PowerWorld
Simulator for better evaluation of the developed model accuracy. The models obtained in
this chapter are used in Chapter 6 for more studies on dynamic state estimation in power

systems.

5-2. Series RLC Circuit

In this section, an RLC circuit is used as a simple case study to explain the procedure of
the modeling and validation being used in this research for synchronous machine.

Consider the following RLC circuit with the specified parameters.

i Ve . g Yo
Y
A'A'A%
R >
_,'
L n
Vs ofgw—

Figure 5-1: Series RLC circuit, vy, = 10 cos(2t), R =4.5Q0,L =0.5H,andC = 0.1 F

The KVL expression for this circuit is as follows:

di;(t) 1.
yields dil(t) 1

= 4.5] ) — | i 5.1
— 10cos(2t) = 4.5{;(t) + 0.5 It +0.1 i (t)dt (5.1)

vs(8) = vg(8) + v (6) + v (8) = Riy(¢) + L
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By differentiating Equation (5.1), the second order differential equation of the circuit can

be obtained as:

d*i,(t) _di(t) . .
T+ 9+ 20i(t) = —40sin(2t) (5.2)

Equation (5.2) is a second order linear nonhomogeneous differential equation, the general

and specific results for i;(t) is as follows:

i,(t) = Cie ™t + C,e™ 5 + Asin(2t) + Bcos(2t) (5.3)

The voltage source vg(t) is applied at t = 0. Assume that the initial conditions of the

inductor current i;(0) and capacitor voltage v.(0) are equal to zero. Another initial

aiy (0)

condition ( "

) is required to solve Equation (5.3), which can be calculated by equating

t = 0 in Equation (5.1) as follows:

di;(0) yietas di;(0) A
= = — 5.4
10 = 05— o 20(566) (5.4)
dij(0) _

Using the initial conditions, i;(0) = 0 and pra 20, the coefficients of the above

equation can be calculated and the results are as follows:

C; = 16, C, = —17.24, A=-11, B =1.24 (5.5)
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Therefore, considering the principal equation for capacitor voltage in this circuit,

C d%(t) = [;(t), the following equations can be obtained as the analytical solution of the

inductor current and the capacitor voltage.

i(t) = 16e™4 — 17.24e75¢ — 1.1 sin(2t) + 1.24cos(2t)

t

1
v.(t) = Ef i;(t) dt = —40e~*" + 34.48e75¢ + 5.5 cos(2t) + 6.2sin(2t) (5.6)
0

Using the second order differential equation of the system, a numerical approach for
integration of the differential equation based on the state space model is explained.

Equation (5.2) can be separated into two first order differential equations as follows:

diczlit) = —9i,(t) — 2v,(t) + 20cos(2t)
dv, .
Udft) =104,(0) =

By considering the inductor current and the capacitor voltage as two independent states of

the systems, x; and x,, the following state space model can be developed for the circuit.

X1 = —9x; — 2x, + 20cos(2t)

5.8
.X:Z S 10x1 ( )
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Using Equation (2.27) and based on the basic definition of the time derivative of a state

variable x, the state space model of the circuit can be discretized as follows:

xf+ = x¥ + To(—9xF — 2xK + 20cos(2kTy))

(5.9)
XK+l = xK + 10T, xk

Where T is the sampling time for the numerical solution. The comparison between the
numerical solution of Equation (5.9), which is the numerical integration of Equation (5.8),
and the analytical solution of the circuit (Equation (5.6)) are presented in the following

figure.

Ve

—<—Model Integration
—Analytical Solution

Inductor Current (A)
Capacitor Voltage (V)
o

Time (sec) Time (sec)

Figure 5-2: Comparison between model integration and analytical solution for the series RLC circuit

Figure 5-2 shows clearly that the results of the numerical solution are the same as the
analytical solution for the RLC case study. In the next section, after deriving the model of
the synchronous machine, the same approach is used to validate the model and the

numerical solution.
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5-3. Mathematical Description of the Synchronous Machine and the Classical Model
[30]
Based on Newton's second law, the rotor motion of a synchronous generator can be

expressed by the following equation

Jam(t) = T (8) — Te(8) (5.10)

J is the total moment of inertia of the rotor and the other rotating parts in Kg—m?; a,, is
the rotor angular acceleration in rad/s?; T,, is the mechanical torque provided by the
prime mover excluding the retarding torque of mechanical losses in N.m; and T, is the
electrical torque, which the related per-unit value is equal to the total per-unit three-phase
output electrical power of the generator including electrical losses [30]. a,,(t) is also

defined as

dwy(t) _ d*60m(6)

an(t) =——=—13 (5.11)
_ a6 (1)
W () = — (5.12)

wm(t) is the angular velocity in rad/sec and 6,, is the angular position with respect to a
stationary axis (stator) in radian. T,, and T, are normally equal in steady state, resulting
in zero rotor acceleration and a constant rotor speed known as synchronous speed. As the

generator inductances are functions of 6,,,, for more convenient and less complexity of the
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equations, the rotor angular position is defined with respect to a synchronously rotating

reference frame as follows [30]:

O (t) = Wmot + 5 (1) (5.13)

Where w,, is the synchronous angular velocity of the rotor in rad/sec, and &,,(t) is the
angular position of the rotor compared to this new defined reference frame. Equations

(5.11) and (5.13) are inserted into (5.10) to obtain

d*0, () _ d*8m() _
dt2 dt2 T (t) — Te (1) (5.14)

Equation (5.14) is multiplied by w,,(t) and divided by apparent power S,;:.q Which

results in

]wm(t) d25m(t) _ wm(t)Tm(t) - wm(t)Te(t)

Srated dtz a Srated (5 15)
Pn(t) — P, :

= M = Pppy(t) — Pepy(2)

Srated

The normalized inertia constant, called the H constant, is defined for more simplicity as

follows:

1. 2 .
_ 5] ®Wmo joules (5.16)

H or per unit — second
Srated VA
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The H constant is normally a value between 1 and 10 p.u — s while J varies widely with
different generators physical characteristics [30]. Using Equation (5.16), Equation (5.15)

can be written as follows:

W (t) d?8p (1)
H Wi, di? = Prp.y(t) — Pepy(t) (5.17)

The per-unit rotor angular velocity is defined as follows:

Wy, (t
wpy(t) = m(£) (5.18)
mo
Therefore, Equation (5.17) becomes
2H d%6,,(t)
wp y(t) d—mz = Ppp.y(t) = Pepy () (5.19)
Wmo t

The electrical angular acceleration, electrical radian frequency, power angle, and
synchronous electrical radian frequency for a synchronous generator with P number of

poles are defined as follows [30]:

a(t) = gam(t) (5.20)
w(t) = gwm(t) (5.21)

6(t) = §6m(t) (5.22)
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w0 = 3 wmo (5.23)

wpy(t) = (5.24)

Equation (5.19) is then modified using Equations (5.20) - (5.24), adding the term that

represents a damping torque, as follows:

2H d?s(t) D dé(t)

w_O(UP.U(t)F = Ppy(t) — Pepy(t) — w_o dt

(5.25)

Considering Equation (5.25) as two first order equations, the classical model of the

synchronous generator is

do(t)

© _ o) — g (5.26)
2H dw(t) D dé(0) 5.27
w_OwP'U(t) T - mP.U(t) - PBP.U(t) - w_O dt ( ) )

D is the damping factor which is normally a small positive value between 0 and 2 [30].

From now on, for more simplicity, the variable t is eliminated from all functions while
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keeping in mind that all variables and functions defined up to the present are functions of
time (t). Therefore, the classical model presented in Equations (5.26) and (5.27) can be

written as follows:

dé

E = w — w, (5.28)
2H dw D dé

w_O(UP.UE = Pupy — Pepv — w_oa (5.29)

It is more convenient to develop the model based on the speed deviation from
synchronous speed in per unit and change the other variables to per unit, as well. It can be

written from Equation (5.24) that

w
Wpy = o = W= WpyWo

0 (5.30)

Subtracting wg from both sides

W — Wy = WpyWy— Wy = wWo(wpy — 1)

Aw 1s then defined as follows:

Using Equation (5.31), Equation (5.30) can be written as

w— wy= woAw (5.32)

Therefore, using Equation (5.32), Equation (5.28) can be expressed as follows:
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ds
o = ol (5.33)

Using Equation (5.24) and (5.33), Equation (5.29) can be written as

2H w dw

we wOE = Pupy — Pepv — w_OCUOACU (5.34)

By differentiating Equation (5.32), following equation can be derived.

dw dAw

- = 5.35
ar Y07 dar (5:35)

Using Equation (5.33) and keeping in mind that the term wi = 1 is normally negligible,

0

Equation (5.34) is modified as follows:

ZH_t = Pmpy — Pepy — DAw (5.36)

Therefore, the classical dynamic model of the synchronous machine is as follows:

ds
P wolAw
dAw 1
=—(Pn — P, — DAw) (5.37)

dt  2H
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Since all of the parameters of Equation (5.37) are in per unit; therefore, p.u subscript is

also eliminated from the equations of the model for more simplicity.

5-3-1. Classical Model Validation

The best way to validate the model is to integrate it over a period of time with
predetermined initial conditions. Figure 5-3 shows a simplified equivalent model of a
general power system which is a single generator connected through a transformer and
parallel transmission lines to an infinite bus. The so called Single-Machine-Infinite-Bus
(SMIB) shown in this figure can be considered as the basis for developing and validating
the models in this chapter. This model is simulated in PowerWorld Simulator [29] in
order to generate data to validate the model. The data generated by this reliable software
is compared with the outputs of the classical model developed in the previous section,
(Equation (5.37)) to verify the accuracy of the model. The PowerWorld schematic of
SMIB with parallel transmission line is presented in Figure 5-4. The simulation scenario
is a symmetrical permanent three-phase-to-ground bolted short circuit which occurs on
the middle of the second transmission line at t = 0.5 sec, cleared at t = 0.6 sec by

opening the circuit breakers at the ends of this transmission line.
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Figure 5-3: Diagram of SMIB connected to the infinite bus through a parallel transmission lines [2]

1,095 pu ¥13 =0.10 Bus 3 X

Speed [He): l I
P:100.00 MW  Angle = .59 Deg {\

Infinite Bus

Angle = 0.00 Deg

3=020

Figure 5-4: SMIB model in PowerWorld Simulator

The main parameters of the simulated system are presented in Table 5.1.

Table 5-1: Main parameters of the simulated synchronous generator [2, 30]

D, H Damping factor and inertia constant, per unit 0.05, 5

Xq Direct axis transient reactance, per unit 0.37

Ty Mechanical input, per unit 1

Ppase Generator base power 100 MVA
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Before integrating the Equation 5.37, the initial conditions of the system and equations
describing the generator power in pre-fault, during-fault, and after-fault periods should be
derived. Considering the steady state power delivered by the generator to the infinite bus
as 100 MW with 0.95 lagging power factor, the internal voltage of the generator would

be as follows:

P
=—0n=1 ¢ —18.192° — uni :
I Vo X PF 1.05263 18.192° per — unit (5.38)

E'28 = Vi + jXnl = 1.3317226.29°
=140 + j0.59 x 1.05263 £ — 18.192° per — unit

Vin and Xy, are the equivalent Thevenin voltage and reactance as seen from the internal

voltage of the generator. The initial states of the system are expressed as follows:

8y = 26.29° Awy =0 (5.39)

The electrical power delivered by the generator to the infinite bus can be expressed as

follows:

E'Vy,
P =
€ X

sin(8) (5.40)
th

Three equivalent circuits are presented in Figure 5-5 for the SMIB facing a three-phase-

to-ground bolted short circuit.
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©

Figure 5-5: Thevenin equivalent of the SMIB facing a short circuit on bus 3, a: before-fault, b:
during-fault, c: after-fault

Using Equation (5.40) and by considering the internal voltage of the generator (E')
constant during the fault, the following equations can be obtained for the electrical power

of the generator.

~ 13317 x1.000

P, = 059 sin(§) = 2.2571 sin(d)
p. 1.3317 x 0.333 . (6) = 0.8264 sin(6
oy = 0536 sin(6) = 0. sin(6)

1.3317 x 1.000
Pes = 0.67

sin(8) = 1.9870 sin(4) (5.41)
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The denominators in Equation (5.41) are the Thevenin reactance (X;,) of the three
circuits presented in Figure 5-5, as seen from the internal voltage of the generator. P,q,
P,,, and P,; are pre-, during-, and post-fault power of the generator, respectively.
Performing the integration with the initial conditions, a comparison of the outputs of the
model and the data generated by PowerWorld Simulator are provided in the following

figures.

Delta =~ Model Integration
501 —Power World

Electrical Degree
w EN
S <)

N
[=)

-
o

1.5 2 25 3
Time (sec)

o
o
13}
-

Figure 5-6: Synchronous generator classical model verification of rotor angle. Fault applied at
t = 0.5 sec and cleared at t = 0.6 sec
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>
[$]
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L L L L L I}
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Figure 5-7: Synchronous generator classical model verification of rotor frequency. Fault applied at
t = 0.5 sec and cleared att = 0.6 sec
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Figure 5-8: Synchronous generator classical model verification of output power. Fault applied at
t = 0.5 sec and cleared att = 0.6 sec

The validation results show the accuracy of the generator classical model and the

numerical integration approach which have been used in this research.

5-3-2. The Equal Area Criterion and Critical Fault Clearing Time

The equal area criterion is a direct method to determine the stability of a power system
without solving the nonlinear swing Equation (5.37). This method can be used for SMIB
or two machine system [30]. The equal area criterion can be represented by the following

equation.

81 &2

P,— P)dé = P,— PB,)dé

LO ( m e) Ll ( e m) (542)
A1 AZ
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In the above equation, §, is the initial rotor angle before fault, 6, is the rotor angle when
the fault is cleared, and &, is the maximum rotor angle which the machine reaches after
clearing the fault. The system will remain stable if &, does not exceeds 180 — §,.

Therefore, critical fault clearing time can be obtained by the following equation

Scr =8
f (Pm - Pe,during fault) dé = f (Pe,after fault — Pm) dsé (5-43)
é

0 SCT

The critical fault clearing time for the SMIB case study presented in Section 5-3-1 is

calculated here, where P gyring fauie = Pez and P gfter fauir = Pes in Equation (5.41)

Scr 2.6826
f (1 - 0.8264sin(8))ds = j (1.987 sin(8) — 1) dé (5.44)
0

4589 Ser

Calculating the above integration, the critical fault clearing angle is obtained as

8. = 104.2° (5.45)

Using 6. and from the solution to Equation (5-37), the critical fault clearing time is

obtained as

ter = 0.89 sec (5.46)

The simulation results of the developed model and PowerWorld simulator for fault

clearing time less and greater than 0.89 sec are presented in Figure 5.9.
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Figure 5-9: Rotor angle, rotor frequency, and output power of the SMIB for fault clearing times: a)

less than .. = 0.89 sec (stable mode); b) greater than t.,. = 0.89 sec (unstable mode)
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Figure 5-9 shows that the fault clearing time should be less than 0.89 sec to ensure
stability of the system. This figure also shows the accuracy of the model and numerical
integration approach used in this study. For better visual presentation, the P — § curves of

the simulated system in both stable and unstable modes are presented here.

Power-Angle Curve, Stable System
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S o
) »

1
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~ 2+ — During-fault
q;’ — Post-fault
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§. Fault Clearing Angle ‘
> \
O bk~
—
2
o
@ 0.5
8 ‘Critical Fault Clearing Angle ‘
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8y = 26.29 Rotor Angle (Electrical Degree) §, = 126.39
(b)

Figure 5-10: P — & curves of the simulated system for the stable mode. a) Power-angle curve, b) equal
area criterion: A; = A,
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Power-Angle Curve, Unstable system
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Figure 5-11: P — § curves of the simulated system for the unstable mode. a) Rotor-angle curve, b)
equal area criterion: 4; > 4,

The during-fault and post-fault areas (A1 and A2), calculated by Equation (5.42), and the

values of 8, §;, and &, are separately specified on each figure.
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5-4. 2-Axis Fourth Order Model of the Synchronous Generator

The next step is to develop the fourth order model of the synchronous generator which
includes e, and ey, the q and d axis components of the generator internal voltage. Based
on the phasor diagram of the synchronous machine presented in Figure 5-12, equations
describing the q and d axis components of the generator internal voltage and their first

order differential equations are given below [30].

A d-axis
Eq I
[} [
c}-afcis
0 : -
) Iq“x;)fq"
. o1
) e f Tyl
" i !(cylindrical
& = q . e
Pia I Vi i (s;lfent pole) Tgiq 10t:0r)
Gea] TNy T .
O N G |1
T S0 e CIER TAY
it (24 ) () -
Tig 1 Tyl-7d) ’
L= == === == xd(mfd) ------- ——E
Figure 5-12: Phasor diagram of the synchronous machine [31]
eq = eq + Raig + x4i4 (5.47)
eq = eq + Ryig — xgiq (5.48)
de, 1
q ’ N
— =—\Erqg — €5 — (xg —x4)i 5.49
de; 1
_ 1 AY
dr T (—ea + (xg —x)iq) (5.50)

qo
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xq and x, are the direct- and quadrature-axis reactance, and x,; and x, are the direct and
quadrature axis transient reactance, all in per unit. Also, T, and qu are the direct and
quadrature axis transient open circuit time constants in second. § is defined as the angle
such that eg, the q axis component of voltage behind transient reactance x,;, leads the
terminal bus E; or V;. Considering Figure 5-12, the d-axis and g-axis voltages (eq4, €4)

can be expressed as [2, 31]
eq = V;sin (§) vielding T P
{eq =V, cos (6) = E=V,= |ej+eg (5.51)

In addition, the d-axis and g-axis currents (ig4, iy) are [2, 31]

id == It SlTl (5 + ¢) yleldlng _ ) )
{iq =1I,cos (§ + ¢) le=Jtati (-32)

Using Equations (5.47), (5.48) and (5.51) and by neglecting the stator resistance (R, =

0), Equation (5.52) can be written as

'V, cos (8
i, = Ca=Vecos () (5.53)

(5.54)

The air gap torque T, of the generator in per unit is equal to the terminal power P, or P;

(generator terminal electrical power) [2]. Therefore, it is obtained as
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Rg=0
T, =P+ Ry — T,=P,=eqiy+eqyi, (5.55)

Equations (5.51), (5.53), and (5.54) are inserted into Equation (5.55) to obtain

Vv v Vi1 1
T, = Py = ¢ sin(8) = ej cos(8) + = <— - x—> sin(26) (5.56)

’
d q 2 q d

Using Equations (5.37), (5.49), (5.50), (5.53), (5.54), and (5.56), the fourth order model

of a synchronous generator is derived as follows:

dé
i woAw
ddw 1 Ve , . Ve |, Vi1 o1\ |
Wzﬁ Pm—zeq sm(5)+ged 605(5)—7 E—g sin(26) — DAw
de 1 e, — V; cos (6)
q _ ’ ’ q t
W—T—d(,(’ffd‘eq‘(’“d"‘ﬂ( ) ))
de; 1 ) o~ [Vesin (8) —eg
& TF\ e + (x, — xz) x& (5.57)

For numerical integration of Equation (5.57) with initial condition, accurate information
about the voltage of the terminal bus is necessary which is not available all the time.
Since the voltage phasor of the infinite bus is assumed as 1£0° and is constant during

simulation, it might be a good practice to express Equation (5.57) by infinite bus voltage
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and define § as the angle such that e; leads the infinite bus voltage V. Therefore, this

equation is modified as given below.

dé

P wolAw

ddw 1 v v Vi 1 1

—= —(Pm — ——"—ey sin(8) + ————-e} cos(8) — —”l< ; - )Sin<25>
dt 2H X} + Xep Xy + Xen 2 \Xg +Xtn  Xg t Xen

- DAw)
de, 1 eq — Vi cos (6)
— = E _ ! _ _ !
dt Ty, < fa ~ €q = (¥a = Xa) ( Xl + Xep

dea _ 1 (—e; + (x, - ) (Vth sin (6) — eq )) (5.58)

dt Ty, Xg + Xen

Vin and x;p, are the Thevenin voltage and reactance as seen from the generator terminal.
The Thevenin equivalent circuits of the SMIB case study of this chapter related to the

pre-fault, during-fault, and post-fault situations are presented in Figure 5-13.

bus4 bus1 j0.2 bus 2

e Mmj—‘
s jo.1 j0.2 1,0°

1.3317426.29°@ bus 3

Thevenin
(@)
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Figure 5-13: Thevenin equivalent of the SMIB case study, a: before-fault, b: during-fault, c: after-
fault

The Thevenin voltage and reactances of the circuits are presented in the following table.

Table 5-2: Thevenin equivalent of the SMIB case study for short circuit applied at Bus 3

SMIB case study Vin (p.u) Xen(p-w)
Before fault 1 0.22
During fault 0.333 0.16
After fault 1 0.3
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5-4-1. Model Validation

The main parameters of the power system case study used in this part are presented in the
following table. The contingency scenario considered for this case is similar to the one

used for the validation of the classical model in the previous section.

Table 5-3: Parameters of the simulated synchronous generator

D,H Damping factor and inertia constant, per unit 0.05,5

Xq, Xgq Direct and Quadratic axis reactance, per unit 2.06, 1.21

Xg, X Direct and Quadratic axis transient reactance, per unit 0.37,0.37
dr»*q p

Tior Tq . | Direct and Quadratic axis open circuit time constant, sec | 7, 0.75

T, Mechanical input, per unit 1

The only remaining part before performing the integration of the Equation (5.58) is to
obtain the initial conditions of the four states of the 2-axis model. Equation (5.38) in

complex form is as follows:

[ =1, +jI; = 1.05263 £ — 18.192° = 1 — j0.3287 per — unit (5.59)

Therefore, the terminal voltage before fault is obtained as

Vi = Vo + jXenl = 120° + (j0.22) x (1.05263 £ — 18.192°)
= 1.0723 +j0.22 = V, + jV; per — unit (5.60)

The internal voltage of the generator is obtained as
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E =Vr+jx, = Eg28, = 2.05244.26° (5.61)

The equations for transforming the network quantities to d — g reference frame and

reverse for voltage and current are given below [30].

[Vr] = [ sing 0055] [Vd] [Ir] — [ sind cos6] [Id]
Vi —cosé  sindl Vg I —cos§  sindl 1
Val _ [sin6 —cosé [Vr] Id] _[sind —cosd [Ir]
[Vq] B [0055 sind ] V; I| = [6055 sins ] I (5.62)

Using Equation (5.61) in Equation (5.62), the initial values of the voltages and currents

are obtained as

Vao 0.589 Ido] 0.9328
- = 5.63
[qu] [0.921 I 4875 ] (5.63)

Using Equations (5.47), (5.48), and (5.63), the initial values of the generator internal

voltage are obtained as

Ego = 1.266 per — unit Ej;, = 0.4092 per — unit (5.64)

Now, after calculating all of the initial conditions, the integration can be performed. A
comparison among the outputs of the model and the data generated by PowerWorld

Simulator are provided in the following figures. Figure 5-14 shows that the 2-axis fourth
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order model developed in this part and the linearized numerical integration approach used

in this study have adequate accuracy.
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Figure 5-14: Synchronous generator 2-axis model validation
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5-5. Multi-Machine Modeling and Stability Analysis

In this section, multi-machine modeling is explained and transient stability analysis is

performed. The case study considered for this part is IEEE 3-Generator-9-Bus Test

System which is shown in Figure 5-15.

Bus 7 Bus 8 Bus 9 Bus 3
" " " ' . ’. '. @
1.016 pu | {\
85 MW
1.026 1.032 1.025
e . B PU 11 Mvar
K
Bus 5 0.996 pu 100 MW  Bus6 1.013 pu
35 Mvar
125 MW
50 Mvar
Bus 4 1.026 pu 90 MW
30 Mvar
Busl 1.040 pu
27 Mvar

Figure 5-15: IEEE 3-Generator-9-Bus Test System simulated in PowerWorld [29]

All generators are represented by the classical model of the synchronous generator as

explained in Section 5-3. The first step for transient stability analysis of a multi-machine

system is to find the initial conditions of the generators and buses. The steady state

voltages and angles of the buses can be easily obtained by power flow solution. These

initial conditions along with the main parameters of the generators are presented in

Table 5-4.



111

Table 5-4: Parameters and initial conditions of the IEEE 3-Generator-9-Bus Test System

Dy, Dy, Ds Damping factor, per unit 0,0,0
H,,H,, H; Inertia constant, per unit 23.64,6.4,3.01
Xa1, Xa2, X3 Direct axis transient reactance, per unit 0.0608, 0.1198, 0.1813
Toni» Tz Tz | Mechanical input, per unit 0.7164, 1.63, 0.85
Pyase System base power 100 MVA
) 120° 1.02529.28° 1.02524.66°
Vi, Vo, V3, Vy Bus voltages, per unit 10258/ — 2.22°
Ve, Vi, Vs, Vo, Vo | Bus voltages, per unit 0.9952 —3.99° 1.0122£—3.69° 1.0252£3.72°
1.01520.73° 1.0323£1.97°

The initial internal voltages of the generators can be calculated using the following

equation [30].

Where V; and I; are the voltages and currents of the generators main bus. Also I; can be

calculated using the following equation [30].

P — jO:
I == V,*] @ (5.66)
l

Using Equations (5.65) and (5.66), the internal voltages of the generators are as follows:

E; = |E{|£6; = 1.0558 4+ j0.0421 = 1.056622.283°
E; = |E;|4£6, = 0.9887 + j0.3546 = 1.0502219.73°

E; = |E5|465 = 0.9900 + j0.2315 = 1.0169213.16° (5.67)
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The general equation relating the voltages and currents of a multi-machine system is

given below [32].

Ipus = Yous Vius (5.68)

Iy,s and V,, are the vector of the injected bus currents and bus voltages. Therefore,

separating Y}, s to submatrices in a meaningful way leads to

0 Yi1 le] [Vi]
[Ii] [Y1Tz Y2, Ei ( )

Y;, is similar to the conventional Y, used for power flow analysis, except that the
diagonal elements of Y;; include the load admittances and inverted generator transient

reactance. The load admittance is calculated by the following equation.

P —JjQuk

5.70
% (5.70)

YLoad,k =

Also, the k" element of Y;, is [30]

if k= Gnand m =
Vigim =47 nanam=n (5.71)

0 otherwise
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Y,, is considered in the general bus matrix of the system (Yj,s) in such a way that

Equation (5.68) includes internal voltages of the generators. This matrix can be written as

follows:
r 1
— 0 0
JXa1
0 L 0 :
Y2 = jxXl, ‘ (5.72)
: 0 : 0
1
0 0 —
]xdm

m is the number of generators. Equation (5.69) can be written as

0 = Y11Vi + leEl:,

I; = YLV, + Yy, E| (5.73)

Therefore, calculating V; from the first expression of the above equation and inserting in

the second one, leads to

I; = [Yzz - Y1T2Y1_11Y12]Ei’ = Ybrzfg Ei, (5.74)

Considering each element of Y¢¢ as Y = |Yl-j|49ij, P,; in each time step can be

expressed by the following equation [32].

m
Py = ZlEi'l |E{||Y;| cos(6;; — 6; — &) (5.75)
=1
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Similar to Equation (5.72), m is the number of generators. The classical model of the

multi-machine system based on Equation (5.37) is represented as follows:

ds,
E —_ (UoA(Ul
dAw, 1

dt = 2_1-11(Pm1 — Pey — DAw,)
ds,
E = (UoA(Uz
dAw, 1

dt = Z_HZ(sz — Pe; — DAw,)
dé,
E —_ 0)0A0)3
dAws 1

In each time step, P,; is calculated using Equation (5.75) and inserted in Equation (5.76)
to find &;41 and Aw;;. The absolute values of E; and P,,; are considered constant during
numerical integration and 6; is updated during each time step simulation.

The fault scenario considered for this case is a balanced three-phase to ground fault on
Bus 7 at t =0.5sec which is cleared at t = 0.6sec for the first simulation and
t = 0.7 sec for the second one to include both stable and unstable analysis. The Y}, of
the system before and after fault are the same. During-fault period, the 7" row and
column of Y;; are eliminated, and the Y, is calculated using Equation (5.74). The
simulation results of this part are presented in Figure 5.16 and Figure 5.17. These results
show clearly that the procedure being used in this section for multi-machine modeling

and fault analysis are valid and have acceptable accuracy.
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Figure 5-16: IEEE 3-Generator-9-Bus Test System transient stability analysis in stable operation;
fault applied at t = 0.5 sec and cleared at= 0.6 sec: a) Rotor angle b) Rotor frequency c) Generator
output power
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Figure 5-17: IEEE 3-Generator-9-Bus Test System transient stability analysis in unstable operation;
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output power
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Figure 5.16 shows the simulation results for multi-machine system in stable mode and
Figure 5.17 corresponds to the simulation results for unstable multi-machine power
system. In both figures, results of the model integration are compared with the data
provided by PowerWorld simulator. The multi-machine model presented in Equation
(5.76) cannot be used for dynamic state estimation in the IEEE 3-Generator-9-Bus
System, because the optimal estimation approaches used in this study are developed
based on the fourth order model of the machine. However, as it is assumed that online
information of the main buses of the system are provided by PMU data, the fourth order
model which is validated for SMIB, is applicable for online state estimation in multi-

machine system, without the need for further validation for such a large system.

5-6. Summary

In this chapter, a simple RLC example is presented to clarify the idea of state space
modeling and numerical integration. The mathematical description of a synchronous
generator is then presented and used for the classical model of the machine. After
validating the classical model, the equal area criterion along with two examples and
related figures are explained in detail. The 2-axis fourth order model of a synchronous
generator is then derived and validated. The multi-machine modeling and transient
stability analysis are developed and used for fault analysis of the IEEE 3-Generator-9-Bus
Test System. In all the simulations, results of the developed models are compared with

the results obtained by PowerWorld Simulator to validate the models.
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CHAPTER 6

6. Dynamic State Estimation in Power Systems

6-1. Introduction

In this chapter the nonlinear estimation methods proposed in Chapter 2, EKF and UKF,
are applied for dynamic state estimation in the power system case studies discussed in
Chapter 5. The first case study is a Single-Machine-Infinite-Bus (SMIB) which can be
considered as the smallest part of an interconnected large power system, and the second
one is the IEEE 3-Generator-9-Bus Test System. Dynamic state estimation of power
systems is necessary for wide area control purposes. Precise, accurate, and well-timed
information about rotor angle and speed deviation, among the states of the synchronous

machine, have precious value to enhance power system reliability and stability [2, 28].
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Therefore, the aim of this chapter is to design suitable estimators using Kalman Filter to
estimate the main states of a synchronous machine in the two power system case studies.
In recent years, many researches in the field of dynamic power system estimation have
focused on Kalman Filter as an efficient recursive estimation approach [1- 4]. Before the
advent of Phasor Measurement Units (PMUSs) [7], online state estimation in power
systems using low rate and non-synchronous data provided by Supervisory Control and
Data Acquisition (SCADA) measurements was inefficient. As PMUs are becoming more
adopted worldwide, real time state estimation in power systems is becoming more
realizable [2]. As mentioned in Chapter 4, PMU is a recently developed power system
measurement device that samples input three phase voltage V,,. and current [,
waveforms, using a common synchronizing signal received by Global Positioning System
(GPS), and calculates the phasors (magnitudes and angles) of the bus by deploying
Discrete Fourier Transform [7].

Researchers have used various estimation approaches and case studies to investigate
dynamic state estimation in power systems. In [1], feasibility studies of applying
Extended Kalman Filter (EKF) to IEEE 3-Generator-9-Bus Test System using second
order model of the synchronous generator are investigated. SMIB is the case study for
evaluating an EKF based estimator in [2], considering lack of field voltage. Also, UKF is
the main approach in [28] to design an observer for SMIB using PMU installed on the
main bus of the generator. Both of these articles have used 2-axis fourth order state space
model of the synchronous machine. References [3, 4] have applied UKF to different
power system case studies using second order synchronous generator model while

considering speed and electrical output power of the machine as available measurements.
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In [5], a divide-by-difference-filter based algorithm is proposed for dynamic estimation of
the generator rotor angle in a large power system. The results of state estimation in a
SMIB using extended particle filter are also presented in [6].

In this chapter, EKF and UKF based estimators are used for dynamic state estimation in
SMIB and IEEE 3-Generator-9-Bus Test System case studies. The two-axis fourth order
model of the synchronous machine is used in the estimation process, and the obtained

simulation results are compared.

6-2. SMIB State Space Model

In this section, the fourth order state space model of a synchronous generator is described,
and discretized equations suitable for recursive methods are developed. Four states of a
synchronous machine, namely rotor angle §, rotor speed deviation Aw, and internal
voltages €, and €, are estimated simultaneously in the estimation process. In order to
reach a noise free output power signal, P; as the only measurement of the system is also
estimated along with the other states. The general block diagram of the dynamic state

estimator for SMIB is presented in Figure 6-1.
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Figure 6-1: General diagram of the online state estimator for SMIB using PMU signal [28]

It is assumed that a PMU is installed on the main bus of the generator; therefore, the

2-axis model presented in Equation (5.57) is used in this part for the dynamic state

estimation. V; is considered as the reference phasor, and the synchronous generator can be

represented in the dqo reference frame by the following fourth order nonlinear state space

model [2]

X = [6 Aw e,q e,d]T = [x1 Xy X3 x4_]T

U = [Pm Efd]T = [u1 uZ]T

( X:1 = (1)0X2
. 1
Xy = ﬁ(% — P, — Dx3)
< . 1 ! .
X3 = 7— Uy — x3 — (x4 — x3)ig)
Tdo
1
X4 = T_(—x4 + (xq = xq)iq)

\ qo

(6.1)
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In Equation (6.1) wo = 27f, is the rated synchronous frequency (elec.rad/sec), B, the
mechanical input power from the prime mover (pu), P, the air gap electrical output power
(pu), Erq the exciter or field voltage as seen from the armature (pu), and § the rotor angle

in (electrical radian) [2]. Using the fourth order model presented in Equations (5.57)
and (6.1) and by including V; in input vector U, the state space model of the synchronous

generator can be expressed as follows:

X = [5 Aw e,q e,d]T = [x1 X, X3 x4_]T

WoXy
1 v, V, VA1 1) .
T P, — | —x3sin(xq) — —x4 cos(xy) + S\ sin(2x;) | — Dx,
. Xq Xq Xq Xg
X1
X2 = 1 i\ [x3 — Vicos(xq)
x'3 T_ Efd — X3 — (xd - xd) <—,>
x74 do xd
1 i« [ Vesin(xq) — x
B A bt
qu Xq
Vi . Vi ! 1)\
[yi] = [P¢] = |+ x3sin(xy) — — x4 cos(xy) + S\ sin(2x;) (6.2)
X4 Xq Xqg Xg

This model is suitable for discrete-time nonlinear state estimation with the electrical
output power as the single measurement signal. However, according to Figure 6-1, V;, P,

and Q. are also accessible signals from the PMU installed on the generator terminal bus
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which are not used for this study. The discretized state space model of the system using

the first order approximation of Taylor Series is given by

T
Xk =[6% Awk € €] =[xk xk b X7

x{‘ + Tswoxé‘

T Vk Vk 2 1 1 DT
Is Pk —x—tx3sm(x1)+ .X'4 COS(xl) _u(——;) Sl‘l’l(le) < S)xg
d

2H 2 \xq d ]
= T, xX — Vkcos(xf) T,
—| EX, - — X, +(1—=—=)xk
Tdo T (xd xd) ( xtli Tdo .
|4 T
(xq — x4) ( : Sm(xl) ) + <1 — —S> x¥
q qu
vk vk (v ")2 11
yE = —fxé‘sin(x ) - x4 cos(x )+ (— - —) sin(2xf) (6.3)
Xy Xg Xy

In the above equation, Ty is the sampling time. Using this model and deploying the high
rate data provided by the PMU, designing an online state estimator for SMIB is
realizable. In the next section, the Jacobian matrices of the system model and the output

equation are calculated.
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6-3. SMIB Dynamic State Estimation Using EKF and UKF

The partial derivative matrices of the system and the output equations, necessary for the

recursive EKF algorithm, are calculated in this section. These derivatives are performed

as follows [2]:

_ i _ 0K
0X 0X

Fy

I:ax{c+1 ax£c+1 ax§+1
~Laxk Taxk  Taxk

(6.4)

OX{H-l [ax{c+1 ax{c+1

axe dxk  oxk

= [F11 Fi; Fi3

ax:l))c+1 axéc+1 ax§+1
oxk

= K K
0x; 0x;

= [F31 F3;,  F33

k+1 k+1 k+1 k+1 k+1
0x; _[axz x5 0x; dx; l

axk dxk  oxk  axk  oxk

:[F21 Fyy  Fag F24]

axic+1 Iaxic+1 axic+1 axic+1 axic+1l

axE axk  axk  axk  oxk

= [F41 Fup  Fas F44]

Therefore, using Equations (6.3) and (6.4), the elements of the Jacobian matrix can be

calculated as follows:

F11:1

Fi; = Tswy
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T, (VEF Vi
Fpi = ——| —x3 cos(xf) + —x4 Sln(xl) + (Vtk) (— - _> COS(le)
2H xd q
~(1-2% R Fov = 2 cos(at)
Fpy = ( 2H> g = —ﬁ—sm(x ) 2= cos(x
T, VEksin(x
F3 = _E(xd Xq) ! xd( 1) Fz2 =0
Ty, T -
F33=1 7 (1 + - ) F3,=0
T VEkcos(x¥
- B ()
qo q

T. Xg — X,
Fu=1-—= 1+<q, ") (6.5)
qu xq

The partial derivative of the output equation is calculated using Equation (2.53) and is

presented here.

T
ahk ah1 ah’f ah’f ah’f ah’fl
[ lax{‘ dxk oxk  oxk i iz His Hig]

Vi Vi
Hi, = 7 — X3 cos(xl) + —x4 sm(xl) + (Vt") (— - —) cos(2x1)
d Xq

H,=0 Hy; = —sm(xl) Hyy — —cos(xl) (6.6)
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6-3-1. Simulation Results

In this part EKF and UKF are employed for dynamic state estimation in SMIB using
discrete state space model presented in Equation (6.3). Original data obtained from the
contingency analysis of the system in PowerWorld Simulator [29] is injected into the
designed estimators in MATLAB [25] to have a reliable simulation results. The first
simulation scenario is a symmetrical permanent three-phase-to-ground bolted short circuit
which occurs on the middle of the second transmission line at t = 0.5 sec. The fault is
cleared after 0.1 sec by opening the circuit breakers at the ends of this transmission line,
and the system retains its stability after clearing the fault. The parameters of the SMIB are
the same as the ones presented in Table 5-3. As shown in Figure 6-1, P; and V; (phasor)
are accessible from the PMU which is installed on Bus-4. E¢4 and Ty, are also measurable
signals from the synchronous generator terminal [2]. Measurement and process noise
covariance are considered as R, = 0.0002 X I and Q = 0.072 X I, respectively [2]. The
simulation results for the main states and the single output of the system are presented in
Figure 6-3 to Figure 6-6. These figures provide the estimated states of the system plus the
measurement estimation with EKF and UKF under different sampling rates. In each
figure, the real data obtained from PowerWorld Simulator is also shown to provide better

evaluation for the accuracy of the estimation.
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Figure 6-2: Rotor angle estimation using EKF and UKF with different PMU sampling rate (Electrical
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Figure 6-3: Rotor speed estimation using EKF and UKF with different PMU sampling rate (Hz)
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Figure 6-6: Terminal power estimation using EKF and UKF with different PMU sampling rate (per
unit)

Simulation results provided in Figure 6-2 to Figure 6-6 show that both methods are
capable of capturing the transient and steady state responses of the states and the only
output of the SMIB which is facing a major contingency, using data provided by the
PMU. UKF diverges with low data sampling rate (1000 and 100 samples/sec) and cannot
accurately estimate the states in the transient time. In addition, the simulation time of
EKF is much less than that of UKF which might be a major factor for online
implementations.

In the next simulation scenario, the output power of the synchronous generator is
increased to 200 MW. Similar to the previous simulation, symmetrical permanent three-
phase-to-ground bolted short circuit is applied on the middle of the second transmission
line att = 0.5 sec and the fault is cleared after 0.1 sec by opening the circuit breakers at

the ends of this transmission line. The system will be unstable after clearing the fault
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because of the higher output power. The results of the output power estimation using EKF

and UKF for this operational condition are also presented in Figure 6-7 to Figure 6-11.
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Figure 6-7: Rotor angle estimation using EKF and UKF in unstable mode (Electrical Degree)
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Figure 6-8: Rotor speed estimation using EKF and UKF in unstable mode (Hz)
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Figure 6-11: Terminal power estimation using EKF and UKF in unstable mode (per unit)

These figures show the estimated states and single output of the machine in comparison
with the real data provided by PowerWorld Simulator in unstable mode. Based on the
simulation results, it can be concluded that in the unstable mode, EKF is capable of
capturing the transient response of the states and rejecting the noise effect on the power
signal from the PMU. In contrast, the results of UKF for this mode of operation are not

satisfactory.

6-4. Dynamic State Estimation in IEEE 3-Generator-9-Bus Test System Using EKF
and UKF

In this section, IEEE 3-Generator-9-Bus Test System model is considered as a simulation
case study to evaluate the ability of the designed EKF and UKF based estimators for state
estimation in a larger power system, facing a major contingency. The PowerWorld

diagram of the system is presented in Figure 6-12.
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Figure 6-12: IEEE 3-Generator-9-Bus Test System PowerWorld model

It is assumed that three PMUs are installed on bus 1, bus 2, and bus 3, and the data
provided by PMUs is received at the same time by an assumed PDC. All three
synchronous generators are considered with 2-axis fourth order model and have the same
characteristics as presented previously in Table 5-3. The simulation scenario is a
symmetrical three phase fault at t = 0.5 sec on bus 8 which is cleared after 0.1 sec. The
results of dynamic state estimation for each generator in this stable case study are
presented in Figure 6-13 to Figure 6-15. It should be noted that Equation (6.3) is the
discrete state space model considered for each synchronous generator. In other words, 12
state variables and 3 measurements are estimated in each iteration. Although models of
the exciters and governors are not validated in Chapter 5 of this thesis, all of the
generators of this case study are controlled by an exciter and a governor. As it is assumed
that the PMUs are installed on the main buses of the generators, it is not theoretically
necessary to validate models of the exciter and governor for dynamic state estimation;

however, it can be a separate field of study for further investigation in this area.
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Figure 6-14: States and output estimation of Generator 2 using EKF and UKF
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Simulation results, presented in Figure 6.13 to Figure 6.15, reveal the ability of both EKF
and UKF based observers for tracking and noise rejection of output power signals of the
generators during transient and steady state response. However, in terms of accuracy of
the estimation, EKF based estimator is more accurate than UKF. In addition, EKF is able
to track states of the system with PMU data rate of 100 samples/sec, while UKF diverges

with low data rate.

6-5. Applications of Dynamic State Estimation in Power Systems

The procedure of designing an estimator for a synchronous machine which can be used
for dynamic state estimation in a power system is explained in the previous sections of
this chapter in detail. In this section, a possible application of dynamic state estimation in
power system is discussed. Figure 6.16 shows the complete idea of a Kalman Filter based

estimator designed in this study for a synchronous machine.
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Figure 6-16: Complete diagram of a KF based estimator for a synchronous machine
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Figure 6-16 shows that the basic model simulated in PowerWorld simulator is being
controlled by two separate control feedback loops for the exciter and governor. Some of

the outputs of the simulator (B, Ef4, V;, and P;) are used as inputs for the optimal
estimator block, and the others (§, Aw, e(’], e;) are obtained to be compared with the
estimated states. It is clear from this figure that the observer is designed to accurately
estimate the main states of the synchronous machine (6, Aw, ec’l, e;), and eliminate the
effect of noise on the measurement signal, which in this case is externally added to this
signal (P;) before injecting to the observer block. This is done to make the case study
much more similar to a practical case. The estimated power is also used to evaluate the
ability of the estimator block for eliminating noise of input signals.

A practical application of dynamic state estimation for a power system is to put the
estimator block in the feedback loop of the governor of the machine. This can be
considered as a sensorless control of the machine where the input signal of the governor
(Aw) is not provided by a physical sensor and is actually the estimated speed provided by
the KF based estimator. The complete diagram of this application is presented in
Figure 6-17. The main advantage of this control approach is its sensorless property which
eliminates the speed sensor and the related physical wiring. In addition, it is capable of
input signal noise rejection which enhances the total reliability of the decision made by

N

the control block. Also, the other estimated states of the synchronous machine (4, éq. €4

can be effectively used in more complicated control schemes.
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Figure 6-17: Block diagram of the sensorless control of a synchronous machine using Kalman Filter
estimator

6-6. Dynamic State estimation: Main challenges for a Large Power System

The main current challenges of dynamic state estimation in large scale power systems are
the inadequate number of the installed PMUs and the quite low data rate. Although the
number of installed PMUs in large interconnected power systems is gradually increasing,
it is not still adequate to implement dynamic state estimation. In addition, the data rate of
the PMU s is still low which decreases the accuracy of the estimation to some extent. A
complete advanced dynamic control system for a large scale power grid needs a
movement from conventional SCADA to PMU based system, which needs huge

investment in power systems, communication infrastructure, and more advanced PMU
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technology. However, it might be possible to implement a complete local dynamic control
system based on PMU measurement in a small area of a large power system. The block
diagram for this purpose is presented in Figure 6-17. The fourth or higher order of the
synchronous generator which is used for dynamic state estimation needs powerful
processors for online application which makes the implementation more expensive.
Nevertheless, there are numerous other models for synchronous machine with higher
degree of accuracy which may have better performance than the model used in this study.
The accurate models of the exciter and governor are also needed for state feedback
control of the synchronous machine; therefore, these models should be derived and
validated by real data, which might be a challenging task. In Chapter 7, some future
works for dynamic state estimation in a large power system are proposed and the

corresponding block diagrams are presented.

6-5. Summary

In this chapter, after a brief introduction about the dynamic state estimation in power
systems, the state space model of the Single-Machine-Infinite-Bus (SMIB) is derived, and
the discretized model of the system is presented. After deriving the Jacobian matrix, EKF
and UKF are applied for dynamic state estimation in a SMIB for stable and unstable
modes, and the simulation results are presented. The dynamic state estimation in a larger
power system, represented by the IEEE 3-Generator-9-Bus Test System, and the

simulation results of fault analysis are presented. Simulation results reveal the capability
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of the proposed estimators for dynamic state estimation and measurement noise rejection
in power systems using PMU high rate data. Although UKF is theoretically able to
propagate the mean and covariance of the states through a nonlinear model up to the third
order, the simulation results of EKF are more accurate in low rate PMU data stream (less
than 200 frame/sec), which makes it more practical for the present large scale
interconnected power systems. A possible application of the dynamic state estimation in
power system is discussed, and a block diagram is presented for this purpose. Finally,
some major current challenges of dynamic state estimation in large power grids are

addressed.
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CHAPTER 7

7. Conclusion and Future Works

7-1. Conclusions

Dynamic system modeling and state estimation is necessary for optimal control of
complicated systems. Beside the noise rejection capability, an estimator uses the state
space model of a system to provide information about the states of the system which are
in some cases immeasurable. In this research, the mathematical background of the state
space modeling and the principles of optimal state estimation using nonlinear Kalman
Filters (Extended and Unscented) are explained in detail. Then, different state space
models and nonlinear Kalman Filter based state and parameter estimators are designed

and applied for estimation process in an induction motor. The simulation results of this
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section show the capability of the extended model and estimation approaches in
complicated operational conditions of the machine. The principles of synchrophasors,
phasor measurement unit and internal blocks, and the advantages of Wide Area
Monitoring, Protection, and Control are then explained to provide a background for the
later chapters of the thesis which are dedicated to dynamic state estimation in power
systems. The mathematical description of a synchronous generator is then presented, and
classical and 2-axis model of the machine are derived and validated. The Equal Area
Criterion is explained and simulated to provide an overview for transient stability in
power systems. The classical model of the machine is also used to model a large multi-
machine power system (IEEE 3-Generator-9-Bus Test System). The algorithm of
sequential integration of the differential equations of the system is explained in detail.
The results of the model integration are compared with data provided by PowerWorld
Simulator to evaluate the accuracy of the model and the numerical integration method.
The validated model is then used for dynamic sate estimation in a Single-Machine-
Infinite-Bus (SMIB) and the large power system (IEEE 3-Generator-9-Bus Test System)
in both stable and unstable modes to effectively evaluate the capability of the Kalman
Filter based estimators for this purpose. A practical application of the dynamic state
estimation in a power system is also proposed in this study which can be used for further

investigation in this field of study.
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7-2. Contributions of the Thesis

The main contribution of this research is the design and simulation of the fourth order
UKF and EKF based estimator for the IEEE 3-Generator-9-Bus Test System model and
comparing the simulation results of the estimators. In addition, a step-by-step state space
modeling and validation procedure is presented to provide a complete modeling package
for synchronous machines. The simulation results reveal the accuracy of the developed
state space model and capability of the proposed estimation approaches for dynamic state
estimation which can be used for transient stability analysis and control purposes in
power systems. The simulation scenarios are also designed to cover both the simplest
model of a power system (Single-Machine-Infinite-Bus) and a large power system (IEEE
3-Generator-9-Bus Test System) in either stable or unstable operational conditions.

Also, a comprehensive simulation is provided for the dynamic state and parameter
estimation in an induction machine, and the results of EKF and UKF based estimators are
compared through several simulation scenarios. The simulation scenarios designed in this
study cover almost all real operational conditions of an induction motor in different
applications. The basic state space model of the induction motor is gradually extended to
the other states and parameters of the machine, and the drawbacks of each model are
shown by different simulation scenarios. This effort is done to reasonably justify the need

for more accurate modeling of the induction motor.
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7-3. Future Works

Dynamic state estimation has recently been among the popular fields of research in power
system studies. Different estimation approaches are applied to various models of the
synchronous machine to evaluate the feasibility of the dynamic estimation in power
systems. Nevertheless, little literature is available on the application of this idea. One
open research area in this regard can be the study of sensorless control of a synchronous
generator using Kalman Filter based estimators. Another challenging subject can be the
closed loop state feedback control of a large power system, as for the example 3-
Gnerator-9-Bus system. A complete block diagram for this topic is proposed in Figure 7-
1. The first step for this work is to develop and validate appropriate models for exciter
and governor of the machine. Then, the estimator can be inserted into the feedback path
of the closed loop system and the reliability and accuracy of this control scheme can be
compared with conventional control systems. The state feedback control proposed in this
figure is based on a simple control block for the exciter and governor. More complicated
control systems can be designed for the synchronous machine using the other states of the
machine provided by the estimator.

In addition, most of the papers in dynamic state estimation in power systems, including
the investigation in this thesis, have used simulation tools to generate real data which is
then used in the evaluation of the proposed models and control algorithms. Therefore, the
lack of practical works in this area is noticeable. Design and validation of power system
models with real data provided by PMU and applying a state feedback control to a real

synchronous machine is another interesting field of research.



146

Another interesting research in this field is the online state and parameter estimation for a
synchronous machine. An EKF based estimator extended to the parameters of the
synchronous machine can be designed for this purpose. The updated parameters can be
used in the feedback loop to enhance the control performance. A block diagram is

proposed for this purpose which is presented in Figure 7-2.
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