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ABSTRACT 

 

Research in the area of power system transient stability has recently focused on dynamic 

state estimation using high rate Phasor Measurement Unit (PMU) data. Several 

mathematical models for synchronous machine are developed and various estimation 

approaches are proposed for this purpose. In this thesis, the mathematical formulation of 

nonlinear state space modeling and the principles of Kalman Filter are explained. 

Extended and Unscented Kalman Filters (EKF and UKF), as two nonlinear estimation 

methods, are applied for state and parameter estimation in an induction motor. In the next 

stage, after presenting a thorough explanation about modeling of the synchronous 

machine, dynamic state estimation is applied on different power system case studies and 

the results of estimation methods are compared. The simulation results provided in this 

thesis show the great potential of the proposed estimation approaches for accurately 

estimating the states of the machine as well as reducing the effect of noise on input 

signals. 
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CHAPTER 1 

1. Introduction 
 

 

 

1-1. Introduction 
 

Many researches in the field of dynamic power system estimation have recently focused 

on Kalman Filter as an efficient recursive estimation approach [1-4]. Before the advent of 

Phasor Measurement Units (PMUs) [7], online state estimation in power systems using 

low rate and non-synchronous data provided by Supervisory Control and Data 

Acquisition (SCADA) measurements was inefficient. But as PMUs are becoming more 

adopted worldwide, real time state estimation in power systems is becoming more 

realizable [2]. PMU is a recently developed power system measurement device that 

samples input three phase voltage and current waveforms, using a common synchronizing 
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signal received by Global Positioning System (GPS), and calculates the phasors 

(magnitudes and angles) of the bus by deploying Discrete Fourier Transform [7]. 

Researchers have used various estimation approaches and case studies to investigate 

dynamic state estimation in power systems. Kalman and particle filters are among the 

most referred estimation approaches. Single-Machine-Infinite-Bus (SMIB) and IEEE 3-

Generator-9-Bus Test System are also referred as the most popular case studies [1-6]. 

Also, several models with different orders used in the estimation process can be found in 

the literature for synchronous machines.  

In this thesis, the mathematical background of the state space modeling and optimal 

estimation using Kalman filters are addressed in detail. Dynamic state and parameter 

estimation using Kalman filter is applied to induction machine at first stage. After 

providing some information about synchrophasors and phasor measurement unit (PMU), 

and deriving and validating the classical and 2-axis fourth order models of the 

synchronous machine, dynamic state estimation using Kalman Filters is applied to SMIB 

and IEEE 3-Generator-9-Bus Test System and the results are compared. Finally, some 

suggestions are proposed for future research in this field.  

 

1-2. Problem Statement 
 

Dynamic state estimation in power system provides accurate and frequent information 

about internal states of the synchronous machines. This information can be used in state 

feedback control of the synchronous generator to improve the control performance; 
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enhance the overall transient stability of the power system; perform real-time analysis of 

angle, voltage, and frequency of the power system; reduce measurement noise, increase 

damping property for the inter-area oscillations; and reach to better rush hour power 

management [8]. Using Kalman Filter, as a powerful recursive estimation method with 

noise elimination property, helps to design an appropriate estimator for a synchronous 

machine in a digital platform.  

 

1-3. Focus of the Thesis 
 

The main focus of this thesis is to use Extended Kalman Filter (EKF) and Unscented 

Kalman Filter (UKF) for dynamic state estimation in different power system case studies, 

using 2-axis fourth order model of the synchronous machine and one input signal (output 

power). Also, an attempt is made to present a complete step-by-step package for 

nonlinear Kalman Filter based estimation methods, synchronous machine state space 

modeling and validation, and dynamic state estimation in power systems. The optimal 

estimation approaches are also used for online states and parameter estimation in 

induction machine and a comprehensive simulation is carried out. 

 

1-4. Thesis Organization 
 

Chapter 2 presents the mathematical background of nonlinear optimal state estimation 

and step-by-step formulation of Extended and Unscented Kalman Filter. 
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Chapter 3 discusses state space model of the induction machine, the developed model 

which includes the main parameters, and applying Kalman Filters for online state and 

parameter estimation. 

Chapter 4 provides a review on synchrophasors, Phasor Measurement Unit (PMU), the 

application of PMUs in dynamic state estimation in power systems, and some advantages 

of Wide Area Monitoring, Protection, and Control (WAMPAC).  

Chapter 5 describes the mathematical formulation of the synchronous machine classical 

and 2-axis modeling and the equal area criterion. The developed models are then 

validated by simulation in MATLAB, using the data provided by PowerWorld Simulator. 

Chapter 6 presents the discretized state space model of the synchronous machine, and 

dynamic state estimation in Single-Machine-Infinite-Bus (SMIB) and IEEE 3-Generator-

9-Bus Test System. Comparison between the performance of EKF and UKF as the 

estimation methods, a suggested application of the dynamic state estimation in power 

systems, and current challenges of dynamic estimation in large power systems are also 

presented. 

Chapter 7 highlights the contribution of this research and discusses future open areas for 

research in this field. 
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CHAPTER 2 

2. Nonlinear State Estimation 

 

 

 

2-1. Introduction 
 

In this chapter, the principles of linear and nonlinear systems, mean and covariance 

propagation, linearization and discretization methods, and linear and nonlinear Kalman 

filtering are explained. 

State space model can be used to describe many physical processes. These processes may 

include different areas such as engineering, economics, physics, chemistry, biology and 

several others. Mathematical models of processes help us to apply mathematical control 

tools and also estimate more information about the systems. This is the main reason that 

state space model is a vital approach in the field of engineering. When the information 
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about the states of a system in current time are available, and also the present and future 

inputs are known, then all of the outputs of the system in future are deducible [9].  

Generally, state space approach can be categorized into linear and nonlinear models. 

Although most real systems are nonlinear in their nature, most of the accessible and well-

defined mathematical tools of estimation and control are linear. This is the main reason 

that nonlinear systems are approximated by linear systems most of the time. By this way, 

the developed estimation and control algorithms for linear systems can be applied to 

nonlinear systems [9]. In this chapter, an overview about linear and nonlinear systems 

will be presented. Then two nonlinear estimation methods: Extended Kalman Filter 

(EKF) and Unscented Kalman Filter (UKF) will be discussed in detail. 

 

 

2-2. Linear Systems 
 

The state space equations of a deterministic linear system are presented as follows: 

 
 �̇� = 𝐴𝑥+ 𝐵𝑢  
 𝑦 = 𝐶𝑥 (2.1) 
 

In this equation, 𝑥, 𝑢, and 𝑦 are the state, control, and output vectors, respectively. The 

dimension of matrices 𝐴, 𝐵, and 𝐶 is related to the number of states, inputs and outputs of 

the system. Matrices 𝐴, 𝐵, and 𝐶 are often called the system, input, and output matrices. 

All of these matrices can be time variant or time invariant, while the system is still linear. 
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Considering 𝐴, 𝐵, and 𝐶 as constant matrices, the solution to Equation (2.1) is expressed 

as [9] 

 
𝑥(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) +� 𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏

𝑡

𝑡0
  

 𝑦(𝑡) = 𝐶𝑥(𝑡) (2.2) 
 

𝑡0 is the initial condition of the system and can be considered as 0 most of the time. 𝑒𝐴𝑡 is 

called the state-transition matrix of the system, because it describes how the states of the 

system start changing from their initial values when no external input is applied to the 

system. If 𝑥 is an n-element vector, the state transition matrix can be calculated with 

Euler's formula or Laplace inverse of the exponential function 𝑒𝐴𝑡 as follows [9]. 

 
𝑒𝐴𝑡 = �

(𝐴𝑡)𝑗

𝑗!

∞

𝑗=0

 
 

 = ℒ−1[(𝑆𝐼 − 𝐴)−1] (2.3) 

 

For better understanding, an example is provided here. 

 

Example 2.1 [9] 

Assume that the angular acceleration of a motor is to be controlled. The derivative of the 

position is the system’s velocity. A simplified model of the motor can be presented as 

 

  �̇� = 𝜔  
 �̇� = 𝑢 + 𝜔1 (2.4) 
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𝜔1 is the acceleration noise and can be attributed to the uncertainties in the applied 

acceleration, motor shaft unusual behaviours, and load fluctuations. The angular position 

of the motor is considered as the single measurement of the system. As a result, the state 

space model of the system can be given by 

 

 � �̇�
�̇�
� = �0 1

0 0� �
𝜃
𝜔� + �01� 𝑢 + � 0

𝜔1
�  

 𝑦 = [1 0]𝑥 + 𝑣 (2.5) 
 

𝑣 is the measurement noise in this equation. Using the first expression for state transition 

matrix in Equation (2.3) and by ignoring higher order terms in the series, it can be written 

as 

 
𝑒𝐴𝑡 = �

(𝐴𝑡)𝑗

𝑗!

∞

𝑗=0

 
 

 
= (𝐴𝑡)0 + (𝐴𝑡)1 +

(𝐴𝑡)2

2!
+

(𝐴𝑡)3

3!
+ ⋯ 

 

       = 𝐼 + 𝐴𝑡 (2.6) 

 

It can be simplified as 

 

 𝑒𝐴𝑡 = �1 0
0 1�+�

0 𝑡
0 0�  

 
       = �1 𝑡

0 1� (2.7) 

 

And based on the second definition in Equation (2.3)  
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 𝑒𝐴𝑡 = ℒ−1[(𝑠𝐼 − 𝐴)−1]  

 
       = ℒ−1 ��𝑠 −1

0 𝑠 �
−1
� 

 

       = ℒ−1 ��1/𝑠 1/𝑠2
0 1/𝑠 ��  

       = �1 𝑡
0 1� 

(2.8) 

 

Using the state transition matrix obtained in Equations (2.7) and (2.8), the complete 

response of the state space model can be obtained, using Equation (2.2). 

 

2-3. Nonlinear Systems 
 

It is not unrealistic to say that all engineering processes are nonlinear. In most cases, we 

consider nonlinear systems as linear only when their behavior can be approximated to a 

linear system in a certain operation range. This is the reason that although linear systems 

do not exist in the real world, the theory of linear systems can be considered as an 

irreplaceable control and estimation tool for nonlinear systems [9].  

A continuous-time nonlinear system can generally be written as the following form.  

 

 �̇� = 𝑓(𝑥,𝑢,𝑤)  

 𝑦 = ℎ(𝑥,𝑦) (2.9) 
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𝑓 and ℎ are arbitrary vectors of functions and 𝑤 and 𝑣 represent process and measurement 

noise, respectively.  It should be noticed that both 𝑓 and ℎ can either be time variant or 

time invariant nonlinear functions. Linear tools are capable of being applied to nonlinear 

systems after being linearized. A linear system that is roughly equal to the nonlinear 

system should be found. One way is to use Taylor series expansion of 𝑓(𝑥) around a 

nominal operating point 𝑥 = �̅�. By defining 𝑥� = 𝑥 − �̅�, the expansion is as follows: 

 

𝑓(𝑥) = 𝑓(�̅�) +
𝜕𝑓
𝜕𝑥
�
�̅�
𝑥� +

1
2!
𝜕2𝑓
𝜕𝑥2

�
�̅�
𝑥�2 +

1
3!
𝜕3𝑓
𝜕𝑥3

�
�̅�
𝑥�3 + ⋯ (2.10) 

 

Considering 𝑥 as a general 𝑛 × 1 vector, Equation (2.10) is expanded below. 

 

 
𝑓(𝑥) = 𝑓(�̅�) + �𝑥�1

𝜕
𝜕𝑥1

+ ⋯+ 𝑥�𝑛
𝜕
𝜕𝑥𝑛

� 𝑓|�̅� + 
 

 1
2!
�𝑥�1

𝜕
𝜕𝑥1

+ ⋯+ 𝑥�𝑛
𝜕
𝜕𝑥𝑛

�
2

𝑓|�̅� + 
 

 1
3!
�𝑥�1

𝜕
𝜕𝑥1

+ ⋯+ 𝑥�𝑛
𝜕
𝜕𝑥𝑛

�
3

𝑓|�̅� + ⋯ 
(2.11) 

 

The higher order derivatives of 𝑓(𝑥) in Equation (2.11) can be ignored when the function 

is smooth around its operating point [9]. These high order derivatives are divided by 

increasingly larger factorials which in case of small 𝑥� with growing power, diminishes the 

magnitude of the higher order terms even more. As a result, the following approximation 

is reasonable.  
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𝑓(𝑥) ≈ 𝑓(�̅�) +

𝜕𝑓
𝜕𝑥
�
�̅�
𝑥� 

 

          ≈ 𝑓(�̅�) + 𝐴𝑥� (2.12) 

 

Nonlinear function presented in Equation (2.9) is able to be expanded around the nominal 

point (�̅�,𝑢� ,𝑤�) as follows: 

 

�̇� = 𝑓(𝑥,𝑢,𝑤)  

≈ 𝑓(�̅�,𝑢� ,𝑤�) +
𝜕𝑓
𝜕𝑥
�
0

(𝑥 − �̅�) +
𝜕𝑓
𝜕𝑢
�
0

(𝑢 − 𝑢�) +
𝜕𝑓
𝜕𝑤

�
0

(𝑤 − 𝑤�) 
 

= �̇̅� + 𝐴𝑥� + 𝐵𝑢� + 𝐿𝑤�  (2.13) 

 

The subscript 0 is used to emphasize that the function is assessed at its nominal 

point (�̅�,𝑢� ,𝑤�). Matrices 𝐴,𝐵, and 𝐿 can be calculated as described in Equation (2.13). 

Substituting �̇̅� from both sides of Equation (2.13) yields the following: 

 

  𝑥�̇ = 𝐴𝑥� + 𝐵𝑢� + 𝐿𝑤�  (2.14) 

 

𝑤 is the process noise and its average 𝑤�  can be considered as 0 because we often consider 

the process noise as white noise with 0 mean and 1 covariance. Replacing 𝑤�  with 𝑤 in 

Equation (2.14) gives  

 

  𝑥�̇ = 𝐴𝑥� + 𝐵𝑢� + 𝐿𝑤 (2.15) 
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Equation (2.15) is a linear function of 𝑥�,𝑢�  and 𝑤. In other words, it is a linear function of 

the deviations of the states and control inputs from their nominal points. This linearization 

will precisely characterize the behavior of the system, as long as the deviations from 

nominal points stay in small region. Also, the nonlinear measurement equation can be 

linearized around operating point 𝑥 = �̅� and 𝑣 = �̅� = 0. The linearization procedure is 

presented as follows [9]: 

 

  
𝑦� =

𝜕ℎ
𝜕𝑥
�
0
𝑥� +

𝜕ℎ
𝜕𝑣
�
0
𝑣�  

    = 𝐶𝑥� + 𝐷𝑣 (2.16) 
 

𝐶 and 𝐷 are defined in Equation (2.16). A complete linearization of a nonlinear system 

describing the deviations of the states, control signals, and outputs around their nominal 

operating point is presented in Equation (2.15) and (2.16). In these equations 

   

 𝑥� = 𝑥 − �̅�  

 𝑢� = 𝑢 − 𝑢�  

 𝑦� = 𝑦 − 𝑦� (2.17) 
 

As all systems considered for dynamic state estimation in this thesis are nonlinear, using 

linearizing techniques is inevitable. The following example clarifies the idea of 

linearizing a nonlinear system.  
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Example 2.2 [9] 

A two-phase permanent magnet synchronous motor can be represented by the following 

mathematical nonlinear model. 

 

 
𝚤̇�̇� = −

𝑅
𝐿
𝑖𝑎 +

𝜔𝜆
𝐿
𝑠𝑖𝑛 𝜃 +

𝑢𝑎
𝐿

  

 
𝚤̇�̇� = −

𝑅
𝐿
𝑖𝑏 −

𝜔𝜆
𝐿
𝑐𝑜𝑠 𝜃 +

𝑢𝑏
𝐿

  

 
�̇� = −

3𝜆
2𝐽
𝑖𝑎𝑠𝑖𝑛 𝜃 +

3𝜆
2𝐽
𝑖𝑏𝑐𝑜𝑠 𝜃 −

𝐹𝜔
𝐽
−
𝑇𝑙
𝐽

  

 �̇� = 𝜔 (2.18) 

 

𝑖𝑎 and  𝑖𝑏 are the two windings currents, 𝑅 and 𝐿 are the resistance and inductance of the 

windings, 𝜃 and 𝜔 are the angular position and motor speed, 𝜆 is the flux constant, 𝑢𝑎 and 

𝑢𝑏 are the voltages applied to the two windings of the motor (inputs), 𝐽 is the moment of 

inertia of the rotor and the connected load, 𝐹 is the viscous friction of the motor, and  𝑇𝑙 is 

the load torque. The model is considered as a time-invariant system. As the system is 

highly nonlinear, it is not possible to apply linear control and estimation tools to this 

model. Nevertheless, it is possible to apply linear approaches to this system by linearizing 

the system around its operating point and assuming small deviations of the states and the 

control inputs from their nominal values. The state vector of this system can be described 

as follows. 

 

 𝑥 = [𝑖𝑎 𝑖𝑏 𝜔 𝜃] (2.19) 
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With this definition, the state space model of the permanent magnet synchronous machine 

can be written as 

 

�̇� = [�̇�1 �̇�2 �̇�3 �̇�4]  

= 𝑓(𝑥,𝑢)  

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

𝑅
𝐿
𝑥1 +

𝑥3𝜆
𝐿
𝑠𝑖𝑛 𝑥4 +

𝑢𝑎
𝐿

−
𝑅
𝐿
𝑥2 −

𝑥3𝜆
𝐿
𝑐𝑜𝑠 𝑥4 +

𝑢𝑏
𝐿

−
3𝜆
2𝐽
𝑥1𝑠𝑖𝑛 𝑥4 +

3𝜆
2𝐽
𝑥2𝑐𝑜𝑠 𝑥4 −

𝐹𝑥3
𝐽
−
𝑇𝑙
𝐽

𝑥3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(2.20) 

 

By taking the partial derivative of 𝑓(𝑥,𝑢) with respect to 𝑥 and 𝑢, the linearized model is 

obtained as follows 

𝐴 =
𝜕𝑓
𝜕𝑥

 
 

 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

𝑅
𝐿

0
𝜆𝑠4
𝐿

𝑥3𝜆𝑐4
𝐿

0 −
𝑅
𝐿

−
𝜆𝑐4
𝐿

𝑥3𝜆𝑠4
𝐿

−
3𝜆𝑠4

2𝐽
3𝜆𝑐4

2𝐽
−
𝐹
𝐽

−
3𝜆(𝑥1𝑐4 + 𝑥2𝑠4)

2𝐽
0 0 1 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝐵 =
𝜕𝑓
𝜕𝑢

  

    = �

1/𝐿 0
0 1/𝐿
0 0
0 0

� 
(2.21) 
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In this equation, 𝑠4 = 𝑠𝑖𝑛 𝑥4 and 𝑐4 = 𝑐𝑜𝑠 𝑥4  

Using Equation (2.21), the linearized model 𝑥�̇ = 𝐴𝑥� + 𝐵𝑢�  can approximately portray the 

small deviation of the state vector 𝑥 from operating points.    

 

2-4. Discretization Method 
 

Most of the systems are presented in continuous-time models like Equations (2.1) and 

(2.9) in the real world [9]. However, micro-processors are the platforms that state 

estimation and control schemes are implemented on. This will lead one to convert 

continuous-time systems to discrete-time systems using available discretization 

approaches. The general principles of discretization are explained in this section, and a 

simple method suitable for this research is then presented. 

 According to Equation (2.2), the solution of a continuous-time linear system is expressed 

as follows: 

 

 
𝑥(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) +� 𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏

𝑡

𝑡0
 (2.22) 

 

If 𝑡 = 𝑡𝑘 (a discrete time point) and the initial time 𝑡0 = 𝑡𝑘−1 (the previous discrete time 

point) and considering 𝐴(𝜏),𝐵(𝜏), and 𝑢(𝜏) approximately fixed in the integration 

interval, Equation (2.2) can be written as 

 

 
𝑥(𝑡𝑘) = 𝑒𝐴(𝑡𝑘−𝑡𝑘−1)𝑥(𝑡𝑘−1) + � 𝑒𝐴(𝑡𝑘−𝜏)𝑑𝜏𝐵𝑢(𝑡𝑘−1)

𝑡𝑘

𝑡𝑘−1
 (2.23) 
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Defining Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 and 𝛼 = 𝜏 − 𝑡𝑘−1 and substituting for 𝜏 in Equation (2.23), it can 

be written as [9] 

 

 
𝑥(𝑡𝑘) = 𝑒𝐴Δ𝑡𝑥(𝑡𝑘−1) + � 𝑒𝐴(Δ𝑡−𝛼)𝑑𝛼 𝐵𝑢(𝑡𝑘−1)

Δ𝑡

0
  

 
            = 𝑒𝐴Δ𝑡�

𝐹𝑘−1

𝑥(𝑡𝑘−1) + 𝑒𝐴Δ𝑡 � 𝑒−𝐴𝛼𝑑𝛼 𝐵
Δ𝑡

0�������������
𝐺𝑘−1

𝑢(𝑡𝑘−1) 

 

 

       𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 (2.24) 
 

𝑥𝑘,𝐹𝑘 ,𝐺𝑘, and 𝑢𝑘 are defined in Equation (2.24) which is a linear discrete-time 

approximation of the continuous-time Equation (2.1). The main challenge in this regard is 

computing the integral in Equation (2.24) or the 𝐺 matrix. If 𝐴 is invertible, the simplified 

expression for the integral can be given by. 

 

 
� 𝑒−𝐴𝜏𝑑𝜏
Δ𝑡

0
= � �

(−𝐴𝜏)𝑗

𝑗!

∞

𝑗=0
𝑑𝜏

Δ𝑡

0
  

 
                      = � �𝐼 − 𝐴𝜏 +

𝐴2𝜏2

2!
−
𝐴3𝜏3

3!
+ ⋯�

Δ𝑡

0
 

 
 

 
                      = �𝐼𝜏 −

𝐴𝜏2

2!
+
𝐴2𝜏3

3!
−⋯�

Δ𝑡
0

 

 
 

 
                      = �𝐼Δ𝑡 −

𝐴(Δ𝑡)2

2!
+
𝐴2(Δ𝑡)3

3!
−⋯� 

 
 

 
                      = �𝐴Δ𝑡 −

(𝐴Δ𝑡)2

2!
+

(𝐴Δ𝑡)3

3!
−⋯�𝐴−1 

 
 

                       = �𝐼 − 𝑒−𝐴Δ𝑡�𝐴−1 (2.25) 
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Finally, the continuous-time system in Equation (2.1) with matrices 𝐴 and 𝐵 converted to 

a discrete-time system with 𝐹 and 𝐺 can be presented as [9] 

 

 𝐹 = 𝑒𝐴Δ𝑡  
 

𝐺 = 𝐹� 𝑒−𝐴𝜏𝑑𝜏 𝐵
Δ𝑡

0
 

 
 

     = 𝐹�𝐼 − 𝑒−𝐴Δ𝑡�𝐴−1𝐵 (2.26) 
 

Where Δ𝑡 is the time step of discretization. 

It is difficult to use Equation (2.26) for discretizing a nonlinear system. Instead, it might 

be more convenient to use the basic definition of the time derivative of a variable 𝑥 as 

follows:  

 

 �̇� =
𝑥𝑘 − 𝑥𝑘−1

Δ𝑡
 
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 𝑥𝑘 =  �̇� Δ𝑡 + 𝑥𝑘−1 (2.27) 

 

Equation (2.27) can also be used for numerical integration. Using Equation (2.9), it can be 

written 

 𝑥𝑘 =  𝑓𝑘−1(𝑥𝑘−1,𝑢𝑘−1,𝑤𝑘−1)Δ𝑡 + 𝑥𝑘−1 (2.28) 

 

2-5. Optimal State Estimation 
 

Optimal state estimation is key to modern control [9]. The final goal of the state 

estimation is to provide accurate knowledge about some or all of the states of a system to 
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be used for control or monitoring purposes. Basically, it is not possible to measure all of 

the states of a system using sensors because of either high installation and maintenance 

cost or unfeasibility. For example, it might not be cost effective in a certain project to put 

an encoder (speed sensor) for an electrical machine. On the other hand, it is definitely 

impossible to install sensor for measuring flux of the windings. Therefore, the optimal 

state estimation has the following advantages: 

1. Providing information about the immeasurable states of a system 

2. Providing more accurate information about measurable states of a system by 

reducing effect of noise and uncertainty of the installed sensors 

Kalman Filter as a powerful and popular state estimation algorithm for both linear and 

nonlinear systems is chosen for this research. The nature of this mathematical tool is 

based on minimizing the mean of squared error between real states and estimated ones 

[10]. The mathematical foundation of Kalman Filter is to know how the mean and 

covariance of variables propagate through linear and nonlinear systems. To avoid 

complexity, the linear case is explained below and nonlinear propagation is discussed in 

Section 2-5-2 and 2-5-3.  

Suppose that 𝑋~𝑁(𝑥,� 𝜎𝑥2) and 𝑌 = 𝑔(𝑥) = 𝑎𝑋 + 𝑏, it is known from probability theory 

that 

 𝑦� = 𝑎�̅� + 𝑏  

 𝜎𝑌2 = 𝑎2𝜎𝑋2 (2.29) 

 

Using Equation (2.29), consider the linear system provided in the following equation 
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 𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 (2.30) 

 

The equations that govern the propagation of the mean of the states through a linear 

system can be derived as follows: 

 

 �̅�𝑘 = 𝐸(𝑥𝑘)  

       =  𝐹𝑘−1�̅�𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 (2.31) 

 

𝐸 is the expectation value. The covariance expression can be derived as follows [9]: 

 

(𝑥𝑘 − �̅�𝑘)(… )𝑇 = (𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1)(… )𝑇  

 = [𝐹𝑘−1(𝑥𝑘−1 − �̅�𝑘−1) + 𝑤𝑘−1][… ]𝑇  

 = 𝐹𝑘−1(𝑥𝑘−1 − �̅�𝑘−1)(𝑥𝑘−1 − �̅�𝑘−1)𝑇𝐹𝑘−1𝑇 + 𝑤𝑘−1𝑤𝑘−1
𝑇

+ 𝐹𝑘−1(𝑥𝑘−1 − �̅�𝑘−1)𝑤𝑘−1
𝑇

+ 𝑤𝑘−1(𝑥𝑘−1 − �̅�𝑘−1)𝑇𝐹𝑘−1𝑇  
(2.32) 

 

The covariance of 𝑥𝑘 is the expected value of the above expression. Since (𝑥𝑘−1 − �̅�𝑘−1) 

is uncorrelated with 𝑤𝑘−1, it is obtained 

 

 𝑃𝑘 = 𝐸�(𝑥𝑘 − �̅�𝑘)(… )𝑇�  

       =  𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1𝑇 + 𝑄𝑘−1 (2.33) 
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𝑃𝑘−1 and 𝑄𝑘−1 are error covariance and system noise covariance matrices, respectively. 

In the subsequent sections, using the equations derived so far for mean and covariance of 

propagated states of linear systems, the fundamental equations for Kalman Filter which is 

designed for linear systems are derived. In order to extend the idea for nonlinear systems, 

two major nonlinear approaches of Kalman Filter, namely Extended Kalman Filter (EKF) 

and Unscented Kalman Filter (UKF) are explained in details. 

 

 

2-5-1. Kalman Filter 
 

“The Kalman filter in its various forms is clearly established as a fundamental tool for 

analyzing and solving a broad class of estimation problems” [11]. This estimation 

method operates by propagating the mean and covariance of the states of a system 

through time. To derive the equations that govern the discrete-time Kalman Filter, assume 

a linear discrete-time system given as follows [9]: 

 

 𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1  

 𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (2.34) 

 

{𝑤𝑘} and {𝑣𝑘} are process and measurement noises of the system which determine 

covariance matrices. The process and measurement noises are essentially considered as 

white, zero-mean, and uncorrelated with the covariance matrices 𝑄𝑘 and 𝑅𝑘, respectively. 
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  𝑤𝑘~𝑁(0,𝑄𝑘)  

 𝑣𝑘~𝑁(0,𝑅𝑘)  

 𝐸�𝑤𝑘𝑤𝑗𝑇� = 𝑄𝑘𝛿𝑘−𝑗  

 𝐸�𝑣𝑘𝑣𝑗𝑇� = 𝑅𝑘𝛿𝑘−𝑗  

 𝐸�𝑣𝑘𝑤𝑗𝑇� = 0 (2.35) 

 

In Equation (2.35), 𝛿𝑘−𝑗 is the Kronecker delta function in which 𝛿𝑘−𝑗 = 1 if 𝑘 = 𝑗 and            

 𝛿𝑘−𝑗 = 0 if 𝑘 ≠ 𝑗 [9]. The main target here is to estimate the states of the system 𝑥𝑘, 

using the available noisy measurements {𝑦𝑘} and knowledge about the dynamic response 

which is accessible from the differential equations of the system [9]. In this regard, 

different kinds of estimation can be defined. If all of the measurements up to and 

including time 𝑘 are available for the estimate of  𝑥𝑘, then a posteriori estimate can be 

calculated which is normally represented by 𝑥�𝑘+. The “ + ” superscript implies that a 

posteriori estimate is formed. The following equation shows the way to portray the a 

posteriori estimate of  𝑥𝑘 using the expected value of 𝑥𝑘 conditioned on all of the 

measurements up to and including time 𝑘 [9] 

 

 𝑥�𝑘+ = 𝐸[𝑥𝑘|𝑦1,𝑦2,𝑦3, … ,𝑦𝑘] = 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒   (2.36) 

 

A priori estimate denoted by 𝑥�𝑘− can be formed if all of the measurements before and not 

including time 𝑘 are available for the estimation purpose. The following equation 

explains how a priori estimate is calculated [9]: 
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 𝑥�𝑘− = 𝐸[𝑥𝑘|𝑦1,𝑦2,𝑦3, … ,𝑦𝑘−1] = 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒   (2.37) 

 

Although 𝑥�𝑘− and 𝑥�𝑘+ are both estimates of the same quantity, the difference between a 

priori and a posteriori estimate is that 𝑥�𝑘− is the estimate of 𝑥𝑘 before the measurement 𝑦𝑘 

is taken into account, and 𝑥�𝑘+ is the estimate of 𝑥𝑘 after the measurement 𝑦𝑘 has been 

considered [9]. The intuitive expectation here is that 𝑥�𝑘+ would be a better estimation 

than  𝑥�𝑘−, because more information is used for its computation. The first measurement is 

taken at time  𝑘 = 1. Due to the lack of available knowledge from previous measurements 

at this moment, 𝑥�0+ is considered as the expected value of the initial state  𝑥0. 

 

 𝑥�0+ = 𝐸(𝑥0)  (2.38) 

 

The term 𝑃𝑘 is used to denote the covariance of the estimation error [10]. Consequently, 

𝑃𝑘− represents the covariance of the estimation error of 𝑥�𝑘−, and 𝑃𝑘+ represents the 

covariance of the estimation error of 𝑥�𝑘+. These error covariance matrices are defined as 

follows: 

 

 𝑃𝑘− = 𝐸[(𝑥𝑘 − 𝑥�𝑘−)(𝑥𝑘 − 𝑥�𝑘−)𝑇]  

 𝑃𝑘+ = 𝐸[(𝑥𝑘 − 𝑥�𝑘+)(𝑥𝑘 − 𝑥�𝑘+)𝑇] (2.39) 
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The following timeline depicts the relationship between a priori and a posteriori state and 

error covariance estimation. 

 

 

Figure  2-1:Timeline showing a priori and a posteriori state and error covariance estimation [9] 

 

Now, it is possible to write an update equation for the new estimate (a posteriori 

estimate), by combining the previous estimate (a priori estimate) as follows: 

 

 𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘[𝑦𝑘 − 𝐻𝑘𝑥�𝑘−] (2.40) 

 

The matrix 𝐾𝑘 in the above equation is called the Kalman gain and the term 𝑦𝑘 − 𝐻𝑘𝑥�𝑘− is 

known as the innovation or measurement residual [10]. This matrix is chosen such that 

the a posteriori error covariance (𝑃𝑘+) is minimized. The minimization is carried out by 

substituting Equation (2.40) into the second term of Equation (2.39) which is the 

definition for 𝑃𝑘+. Then, the indicated expectation is performed and the derivative of the 

trace of the result with respect to 𝐾 is calculated. By setting the result equal to zero and 

then solving for 𝐾, the final expression for the Kalman gain 𝐾 can be given as [10] 
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 𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇(𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑅𝑘)−1 (2.41) 

 

Considering the dynamic system presented in Equations (2.34) and (2.35), the discrete-

time Kalman filter is summarized here as a recursive algorithm [9]. 

1. The filter is initialized as follows: 

 

𝑥�0+ = 𝐸(𝑥0)  

𝑃0+ = 𝐸[(𝑥0 − 𝑥�0+)(𝑥0 − 𝑥�0+)𝑇] (2.42) 

 

 

2. The prediction step or time update is accomplished as  

 

𝑃𝑘− = 𝐹𝑘−1𝑃𝑘−1+ 𝐹𝑘−1𝑇 + 𝑄𝑘−1  

𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇(𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑅𝑘)−1  

𝑥�𝑘− = 𝐹𝑘−1𝑥�𝑘−1+ + 𝐺𝑘−1𝑢𝑘−1 = 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (2.43) 

 

3. The correction step or measurement update is completed by the following 

equations. 

𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘[𝑦𝑘 − 𝐻𝑘𝑥�𝑘−] = 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒  

𝑃𝑘+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘− (2.44) 

 

The ongoing discrete Kalman filter cycle is presented in the following figure. 

 



25 
 

 

Figure  2-2: The ongoing discrete Kalman filter cycle [10] 

 

2-5-2. Extended Kalman Filter 
 

The discussion hitherto was dedicated to linear systems; however, real systems are 

eventually nonlinear. Even a simple relationship between current and voltage of a resistor 

is not linear for all values and Ohm's Law is only an approximation over a certain linear 

range [9]. This linear function can describe the behavior of a resistor until the voltage 

does not exceed a certain threshold. Although many systems are close enough to linear 

such that linear estimation methods provide satisfactory results, in many others this is not 

true, and some systems are not even linear over a small range of operation. Therefore, the 

use of nonlinear estimators is inevitable.  

Nonlinear estimation is not yet fully developed and there is still a lot of space for research 

in this field. Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and 

particle filter are among the most popular and widespread nonlinear estimation 

approaches developed up to this moment. EKF and UKF are selected for this research and 

explained in detail in the next parts of this chapter. 
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Extended Kalman filter is a nonlinear extension of Kalman filter [9, 10]. It is also 

possible to use linearization method explained in Section 2-3 for a nonlinear system and 

apply linear Kalman filter for state estimation. Nevertheless, the main goal of this section 

is to develop a nonlinear estimation method based on Kalman filter. In the following 

section, the equations of discrete-time Extended Kalman filter are derived. 

Considering a discretized dynamic system, the system model can be written as [9] 

 

𝑥𝑘 = 𝑓𝑘−1(𝑥𝑘−1,𝑢𝑘−1,𝑤𝑘−1)  

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘)  

𝑤𝑘~(0,𝑄𝑘)  

𝑣𝑘~(0,𝑅𝑘) (2.45) 

 

In this equation, 𝑥𝑘 represents the state vector, 𝑢𝑘 is the control input vector, 𝑓 is the 

nonlinear function of the states and inputs, 𝑦𝑘 is the output vector, 𝑤𝑘 and 𝑣𝑘 are the 

process and measurement noise, 𝑄𝑘 and 𝑅𝑘 are the process and measurement noise 

covariance, and 𝑘 is the time step for the discrete model. By performing a Taylor series 

expansion of the state equation around 𝑥𝑘−1 = 𝑥�𝑘−1+  and 𝑤𝑘−1 = 0, Equation (2.45) can 

be written as [9] 

𝑥𝑘 = 𝑓𝑘−1(𝑥�𝑘−1+ ,𝑢𝑘−1, 0) +
𝜕𝑓𝑘−1
𝜕𝑥

�
𝑥�𝑘−1
+

(𝑥𝑘−1 − 𝑥�𝑘−1+ ) +
𝜕𝑓𝑘−1
𝜕𝑤

�
𝑥�𝑘−1
+

𝑤𝑘−1 
 

      = 𝑓𝑘−1(𝑥�𝑘−1+ ,𝑢𝑘−1, 0) + 𝐹𝑘−1(𝑥𝑘−1 − 𝑥�𝑘−1+ ) + 𝐿𝑘−1𝑤𝑘−1  

      = 𝐹𝑘−1𝑥𝑘−1 + [𝑓𝑘−1(𝑥�𝑘−1+ ,𝑢𝑘−1, 0) − 𝐹𝑘−1𝑥�𝑘−1+ ] + 𝐿𝑘−1𝑤𝑘−1  

      = 𝐹𝑘−1𝑥𝑘−1 + 𝑢�𝑘−1 + 𝑤�𝑘−1 (2.46) 
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The definitions of 𝐹𝑘−1 and 𝐿𝑘−1  are presented in Equation (2.46). The known input 

signal 𝑢�𝑘 and the noise signal 𝑤�𝑘 are also expressed by the following equation. 

 

𝑢�𝑘 =  𝑓𝑘(𝑥�𝑘+,𝑢𝑘 , 0) −  𝐹𝑘𝑥�𝑘+  

𝑤�𝑘~(0, 𝐿𝑘𝑄𝑘𝐿𝑘𝑇) (2.47)  

 

The measurement equation linearized around 𝑥𝑘 = 𝑥�𝑘− and 𝑣𝑘 = 0 is presented below. 

 

𝑦𝑘 = ℎ𝑘(𝑥�𝑘−, 0) +
𝜕ℎ𝑘
𝜕𝑥

�
𝑥�𝑘
−

(𝑥𝑘 − 𝑥�𝑘−) +
𝜕ℎ𝑘
𝜕𝑣

�
𝑥�𝑘
−
𝑣𝑘 

 

      = ℎ𝑘(𝑥�𝑘−, 0) + 𝐻𝑘(𝑥𝑘 − 𝑥�𝑘−) + 𝑀𝑘𝑣𝑘  

      = 𝐻𝑘𝑥𝑘 + [ℎ𝑘(𝑥�𝑘−, 0) − 𝐻𝑘𝑥�𝑘−] + 𝑀𝑘𝑣𝑘  

      = 𝐻𝑘𝑥𝑘 + 𝑧𝑘−1 + 𝑣�𝑘 (2.48) 

 

𝐻𝑘 and 𝑀𝑘 are defined by Equation (2.48) and the known signal 𝑧𝑘 and the noise signal 

𝑣�𝑘 are defined as follows. 

 

𝑧𝑘 =  ℎ𝑘(𝑥�𝑘−, 0) −  𝐻𝑘𝑥�𝑘−  

𝑣�𝑘~(0,𝑀𝑘𝑅𝑘𝑀𝑘
𝑇) (2.49)  

 

Using the time and measurement update Equations (2.43) and (2.44) for linear Kalman 

filter and equations derived for EKF up to this point, the discrete-time EKF for a 

nonlinear system presented in Equation (2.45) can be summarized as follows [9, 10]: 
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1. The filter is initialized as follows: 

 

𝑥�0+ = 𝐸(𝑥0)  

𝑃0+ = 𝐸[(𝑥0 − 𝑥�0+)(𝑥0 − 𝑥�0+)𝑇] (2.50) 

 

2. Partial derivative matrices of the system equation are derived using the following 

equation. 

𝐹𝑘−1 =
𝜕𝑓𝑘−1
𝜕𝑥

�
𝑥�𝑘−1
+

  

𝐿𝑘−1 =
𝜕𝑓𝑘−1
𝜕𝑤

�
𝑥�𝑘−1
+

 (2.51) 

 

3. Time update equations of EKF are as follows: 

 

𝑃𝑘− = 𝐹𝑘−1𝑃𝑘−1+ 𝐹𝑘−1𝑇 + 𝐿𝑘−1𝑄𝑘−1𝐿𝑘−1𝑇   

𝑥�𝑘− = 𝑓𝑘−1(𝑥�𝑘−1+ ,𝑢𝑘−1, 0) (2.52) 

 

4. Partial derivative matrices of the output equation are obtained by Equation (2.53). 

 

𝐻𝑘 =
𝜕ℎ𝑘
𝜕𝑥

�
𝑥�𝑘
−

  

𝑀𝑘 =
𝜕ℎ𝑘
𝜕𝑣

�
𝑥�𝑘
−
 (2.53) 
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5. The final step is the measurement update for which the related equations are as 

follows: 

𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇(𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)−1  

𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘[𝑦𝑘 − ℎ𝑘(𝑥�𝑘−, 0)]  

𝑃𝑘+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘− (2.54) 

 

In the above expressions, 𝑥�𝑘− is a priori state estimate at step 𝑘 based on the knowledge of 

the process prior to this step, 𝑥�𝑘+ is a posteriori state estimate at step 𝑘 based on the 

measurement 𝑦𝑘, 𝑃𝑘− and 𝑃𝑘+ is the a priori and a posteriori estimate error covariance, 

𝐹𝑘−1 is the Jacobian matrix of 𝑓 with respect to 𝑥, and 𝐾𝑘 is the Kalman gain that 

minimizes the error covariance.  

One of the interesting and unique features of EKF is its ability for online parameter 

estimation. In other words, the state vector of the system can be augmented to the 

parameters of the system and they become updated in each iteration. This capability has a 

great value for systems with slow changing parameters during operational conditions. An 

example for this physical phenomenon is an electrical machine in different operating 

conditions. The main parameters of the machine like rotor and stator resistances are 

influenced by the frequency and the temperature of the machine. However, as EKF 

linearizes the system equations around each state estimation and deploys only the first 

order term of Taylor series, in systems with high degree of nonlinearity, it might not 

capture the whole nonlinearity of the system and the mean and covariance of the 

estimated states are occasionally different from the real states. This problem may lead us 

to use UKF which approximates mean and covariance of states up to third order. 
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2-5-3. Unscented Kalman Filter 
 

The basis of the unscented transformation is that "it is easier to approximate a probability 

distribution than it is to approximate an arbitrary nonlinear function or transformation" 

[12]. It is worth to investigate how mean and covariance propagate in nonlinear equations 

to understand better the idea of unscented transformation. 

Consider the following nonlinear functions [9] 

 

𝑦1 = 𝑟 cos𝜃  

𝑦2 = 𝑟 sin𝜃 (2.55) 

 

Which is a standard polar to rectangular transformation. This coordinate transformation 

can be generally written as follows: 

𝑦 = ℎ(𝑥) (2.56) 

 

 In this equation, 𝑦 is the two-element function of ℎ(𝑥) and the two-element vector 𝑥 is 

defined as 

𝑥 = �𝑟𝜃� 
(2.57) 

 

Suppose that 𝑥1 and 𝑥2 are random variables defined as 

 

𝑥1~(1,𝜎𝑟)  

𝑥1~(𝜋/2,𝜎𝜃) (2.58) 
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Performing a first order linearization of Equation (2.56) and taking the expected value of 

both sides results in 

𝑦� = 𝐸[ℎ(𝑥)]  

   ≈ 𝐸 �ℎ(�̅�) +
𝜕ℎ
𝜕𝑥
�
�̅�

(𝑥 − �̅�)� 
 

   = ℎ(�̅�) +
𝜕ℎ
𝜕𝑥
�
�̅�
𝐸(𝑥 − �̅�) 

 

   = ℎ(�̅�)  

   = �01� 
(2.59) 

 

For more accurate evaluation of the mean through a nonlinear system, 𝑟 and 𝜃 can be 

expressed as  

𝑟 = �̅� + �̃�  

𝜃 = �̅� + 𝜃� (2.60) 

 

Which �̃� and 𝜃� are the deviations of 𝑟 and 𝜃 from their means. A thorough analysis of the 

mean of 𝑦1 can be written as follows [9]: 

 

𝑦�1 = 𝐸(𝑟 cos 𝜃)  

     = 𝐸�(�̅� + �̃�) cos��̅� + 𝜃���  

    = 𝐸�(�̅� + �̃�)�𝑐𝑜𝑠 �̅� cos 𝜃� − sin �̅� sin𝜃��� (2.61) 

 

By performing the multiplication, keeping in mind that �̃� and 𝜃� are independent with 

symmetric probability density functions (pdf), the expected value of 𝑦1 is equal to 
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𝑦�1 = �̅� 𝑐𝑜𝑠 �̅�  

     = 0 (2.62) 

 

The first order approximation of  𝑦�1 is confirmed by Equation (2.62). For 𝑦�2 it can be 

written as [9] 

𝑦�2 = 𝐸(𝑟 sin𝜃)  

     = 𝐸�(�̅� + �̃�) sin��̅� + 𝜃���  

     = 𝐸�(�̅� + �̃�)�𝑠𝑖𝑛 �̅� cos 𝜃� + 𝑐𝑜𝑠 �̅� sin𝜃��� (2.63) 

 

As 𝐸[�̃�] = 0, Equation (2.63) is simplified as follows: 

𝑦�2 = �̅� 𝑠𝑖𝑛 �̅� 𝐸�cos𝜃��  

     = 𝐸�cos 𝜃�� (2.64) 

 

Without assuming the distribution for 𝜃�, it is not possible to simplify this expression 

further. If 𝜃� is uniformly distributed between ±𝜃𝑚, the mean of 𝑦2 is 

 

𝑦�2 =  𝐸�cos𝜃��  

      =
sin𝜃𝑚
𝜃𝑚

 (2.65) 

 

The mean calculated from Equation (2.65) is less than 1, which is different from the mean 

calculated in Equation (2.59). This difference can be seen in the following figure which is 

a plot of 300 randomly generated 𝑟 and 𝜃 values, in which �̃� is uniformly distributed 

between ±0.01, and 𝜃� is uniformly distributed between ±0.35 radians [9].  
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Figure  2-3: Linearized and nonlinear mean of 300 randomly generated points [9]  

 

Based on the complete analysis of the mean propagation in [9], and by defining operator 

𝐷𝑥�𝑘𝑓 as 

𝐷𝑥�𝑘𝑓 = ��𝑥�𝑖
𝜕
𝜕𝑥𝑖

𝑛

𝑖=1

�
𝑘

𝑓(𝑥)|�̅� (2.66) 

 

 and Taylor series expansion of 𝑓(𝑥) as  

 

𝑓(𝑥) = 𝑓(�̅�) + 𝐷𝑥�𝑓 +
1
2!
𝐷𝑥�2𝑓 +

1
3!
𝐷𝑥�3𝑓 + ⋯ (2.67) 

 

𝑦� vector can be written as 

 

𝑦�  = 𝐸 �ℎ(�̅�) + 𝐷𝑥�ℎ +
1
2!
𝐷𝑥�2ℎ +

1
3!
𝐷𝑥�3ℎ + ⋯�  
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     = ℎ(�̅�) + 𝐸 �𝐷𝑥�ℎ +
1
2!
𝐷𝑥�2ℎ +

1
3!
𝐷𝑥�3ℎ + ⋯� (2.68) 

 

It has been shown in [9] that odd orders in Equation (2.68) are equal to zero. Equation 

(2.68) is therefore simplified as follows: 

 

𝑦�  = ℎ(�̅�) + 𝐸 �
1
2!
𝐷𝑥�2ℎ +

1
4!
𝐷𝑥�4ℎ + ⋯� (2.69) 

  

 

Now it is more obvious why the mean calculation in Equation (2.59) is not accurate; it is 

a first order approximation and as the considered system in Equation (2.55) is highly 

nonlinear, a major discrepancy exists between linearized and nonlinear mean. The same 

analysis can be done for variance of the nonlinear system to show the difference between 

linearized and nonlinear covariance. A comparison of the nonlinear and linearized mean 

and covariance of 300 randomly generated points propagated through the nonlinear 

system is presented in Figure 2-4.  
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Figure  2-4: linearized and nonlinear mean and covariance of 300 randomly generated points [9] 

 

It has been shown in [9] that the unscented transformation has the ability to propagate 

mean and covariance of states of a system through nonlinear dynamic model while 

capturing their nonlinearity up to the third order. The unscented transformation procedure 

is as follows: 

 

1. An n-element vector 𝑥 with known mean �̅� and covariance 𝑃 is considered. The 

aim is to estimate the mean and covariance of 𝑦 = ℎ(𝑥) denoted as 𝑦�𝑢 and 𝑃𝑢. 

2. 2𝑛 sigma point vectors 𝑥(𝑖) is formed as follows: 

 

𝑥(𝑖) = �̅� + 𝑥�(𝑖)                     𝑖 = 1, … , 2𝑛  

𝑥�(𝑖) = �√𝑛𝑃�𝑖
𝑇

                     𝑖 = 1, … ,𝑛  
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𝑥�(𝑛+𝑖) = −�√𝑛𝑃�𝑖
𝑇

             𝑖 = 1, … ,𝑛 (2.70) 

Where √𝑛𝑃 is the matrix square root of 𝑛𝑃 such that �√𝑛𝑃�
𝑇
√𝑛𝑃 = 𝑛𝑃 and ��𝑛𝑃𝑘−1+ �

𝑖

𝑇
  

is the 𝑖𝑡ℎ row of the matrix. 

3. The sigma points are transformed as follows: 

 

𝑦(𝑖)  = ℎ�𝑥(𝑖)�            𝑖 = 1, … , 2𝑛 (2.71) 

  

 

4. The mean and covariance of 𝑦 are approximated as follows: 

 

𝑦�𝑢 =
1

2𝑛
�𝑦(𝑖)
2𝑛

𝑖=1

  

𝑃𝑢 =
1

2𝑛
��𝑦(𝑖) − 𝑦�𝑢��𝑦(𝑖) − 𝑦�𝑢�

𝑇
2𝑛

𝑖=1

 (2.72) 

 

The results of the mean and covariance propagation of the 300 randomly generated points 

through the nonlinear system presented in Equation (2.55) using unscented, linearized and 

nonlinear transformation are presented in Figure 2-5. This figure shows clearly the 

difference between EKF and UKF in terms of mean and covariance propagation through a 

nonlinear system. The center point is the nonlinear and unscented mean which are the 

same, while the upper point is the linearized mean which has a considerable discrepancy 

from the true one. The unscented and exact nonlinear covariances have almost the same 

shape; in contrast, the linearized covariance has a totally different shape.     
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Figure  2-5: The comparison among exact, linearized, and unscented mean and covariance of 300 
randomly generated points [9]  

 

Based on the information provided in this section, it can be concluded that since EKF 

uses the first order linearization of the mean and the covariance of the states of a system, 

it is not able to find the exact values of the mean and the covariance of the propagated 

states in a system with high degree of nonlinearity like the system provided in Equation 

(2.55). In contrast, Figure 2-5 reveals the superiority of the unscented transform (UKF) 

over linearization approach (EKF). Using the unscented transform hitherto introduced, the 

Unscented Kalman filter steps can be expressed as follows: 

1. The filter is initialized as follows [9]: 
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𝑥�0+ = 𝐸(𝑥0)  

𝑃0+ = 𝐸[(𝑥0 − 𝑥�0+)(𝑥0 − 𝑥�0+)𝑇] (2.73) 

 

The mean and the covariance of the estimated states at each measurement to the next one 

is propagated through the following time update steps. 

2. As the current best guess for the mean and covariance of 𝑥𝑘 are 𝑥�𝑘−1+   and 𝑃𝑘−1+ , 

sigma points 𝑥𝑘−1
(𝑖)  are derived using the following equations and these sigma 

points are propagated through the nonlinear system from time step (𝑘 − 1) to (𝑘). 

 

𝑥�𝑘−1
(𝑖) = 𝑥�𝑘−1− + 𝑥�(𝑖)                𝑖 = 1,2, … . , 2𝑛  

𝑥�(𝑖) = ��𝑛𝑃𝑘−1+ �
𝑖

𝑇

               𝑖 = 1,2, … . ,𝑛   

𝑥�(𝑛+𝑖) = −��𝑛𝑃𝑘−1+ �
𝑖

𝑇

       𝑖 = 1,2, … . ,𝑛 (2.74) 

 

In this equation, 𝑛 is the number of system's states, and √𝑛𝑃 is the matrix square root of 

𝑛𝑃 such that �√𝑛𝑃�
𝑇
√𝑛𝑃 = 𝑛𝑃 and ��𝑛𝑃𝑘−1+ �

𝑖

𝑇
  is the 𝑖𝑡ℎ row of the matrix.  

3. In this step using the known nonlinear system equation 𝑓, 2𝑛 sigma points created 

in the previous step are propagated through the system and 𝑥�𝑘
(𝑖) which also is a 2𝑛 

vector is obtained as follows: 

 

𝑥�𝑘
(𝑖) = 𝑓�𝑥�𝑘−1

(𝑖) ,𝑢𝑘 , 𝑡𝑘� (2.75) 
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4. The a priori state estimate is obtained by combining all the vectors of 𝑥�𝑘
(𝑖) by 

Equation (2.76). 

 

𝑥�𝑘− =
1

2𝑛
�𝑥�𝑘

(𝑖)
2𝑛

𝑖=1

 (2.76) 

 

5. The a priori estimate for error covariance matrix is derived by Equation (2.77). 

 

𝑃𝑘− =
1

2𝑛
��𝑥�𝑘

(𝑖) − 𝑥�𝑘−��𝑥�𝑘
(𝑖) − 𝑥�𝑘−�

𝑇
+ 𝑄𝑘−1

2𝑛

𝑖=1

 (2.77) 

 

6. The measurement update steps are presented here. The new sigma points are 

selected based on updated 𝑥�𝑘− and 𝑃𝑘−.  

 

𝑥�𝑘
(𝑖) = 𝑥�𝑘− + 𝑥�(𝑖)                𝑖 = 1,2, … . , 2𝑛  

𝑥�(𝑖) = ��𝑛𝑃𝑘−�𝑖
𝑇

               𝑖 = 1,2, … . ,𝑛   

𝑥�(𝑛+𝑖) = −��𝑛𝑃𝑘−�𝑖
𝑇

       𝑖 = 1,2, … . , 𝑛 (2.78) 

 

7. In this step, the sigma points 𝑥�𝑘
(𝑖)  are transformed into 𝑦�𝑘

(𝑖) using the known 

nonlinear output equation ℎ(. ) as follows: 

 

𝑦�𝑘
(𝑖) = ℎ�𝑥�𝑘

(𝑖), 𝑡𝑘� (2.79) 
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8. The prediction for measurement at time step 𝑘 is obtained by Equation (2.80). 

 

𝑦�𝑘 =
1

2𝑛
�𝑦�𝑘

(𝑖)
2𝑛

𝑖=1

 (2.80) 

 

9. In this step, the covariance of the predicted measurement is calculated. 

 

𝑃𝑦 =
1

2𝑛
��𝑦�𝑘

(𝑖) − 𝑦�𝑘��𝑦�𝑘
(𝑖) − 𝑦�𝑘�

𝑇
+ 𝑅𝑘

2𝑛

𝑖=1

 (2.81) 

 

10. The cross covariance between 𝑥�𝑘−  and 𝑦�𝑘 is calculated by Equation (2.82). 

 

𝑃𝑥𝑦 =
1

2𝑛
��𝑥�𝑘

(𝑖) − 𝑥�𝑘−��𝑦�𝑘
(𝑖) − 𝑦�𝑘�

𝑇
2𝑛

𝑖=1

 (2.82) 

 

11. The measurement update of the states estimates of the system calculated in the 

previous steps is performed using Equation (2.83). 

 

𝐾𝑘 = 𝑃𝑥𝑦𝑃𝑦−1  

𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘(𝑦𝑘 − 𝑦�𝑘)  

𝑃𝑘+ = 𝑃𝑘− − 𝐾𝑘𝑃𝑦𝐾𝑘𝑇 (2.83) 

 

For better understanding of the nonlinear estimation methods presented in this chapter, 

EKF and UKF are applied for state and parameter estimation in Induction Motor (IM), 
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Single-Machine-Infinite-Bus (SMIB), and IEEE 3-Generator-9-Bus Test System in the 

subsequent chapters. 

 

2-6. Summary 
 

In this chapter, after a brief explanation about state space modeling of the systems, the 

mathematical principles of linear and nonlinear systems are presented. Different 

approaches for linearization of nonlinear systems and discretization are discussed in 

detail. Kalman filter, as one of the most famous approaches of optimal state estimation for 

linear systems is then presented. Extended Kalman filter, as a developed state estimator 

for nonlinear systems, and the related step by step formulation are presented. Finally, the 

principles of unscented transform and unscented Kalman filter procedure are explained.    
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CHAPTER 3 

3. Dynamic State Estimation in Induction Motor 

 

 

3-1. Introduction 
 

State estimation in Induction Motors (IMs) has been an interesting area of research. 

Estimation of the main states of an IM including speed of the machine results in 

mechanical speed sensors (e.g. tachometer) elimination. EKF and UKF are among the 

most referred estimation methods for this purpose due to the recursive nature which 

makes them suitable for implementation on digital platforms. Reduced order EKF has 

been proposed by some authors to reduce computational efforts [13, 14]. Small range of 

speed and load torque changes can be estimated by this kind of EKF. In [15, 16], to obtain 

a more powerful observer, a full order EKF is deployed for estimating speed as a 
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parameter with small variation. The main drawback of this EKF based estimator is that it 

is not able to follow the states of the system in transient time. In some research, equation 

of motion is added to the state space model to make it more appropriate for dynamic state 

estimation [13, 17]. However, the lack of accurate information about the load torque is 

still a challenge in this approach which encouraged [18] to propose an extended estimator 

with the ability of online load torque estimation. As the rotor and stator resistances are 

highly sensitive to temperature and frequency of the motor, the main goal in [19- 23] is to 

design an EKF based estimator which is capable of estimating parameters of the motor 

along with its main states. As explained in the previous chapter, EKF is able to 

approximate the mean and covariance of the states of a nonlinear transformation only to 

the first order. Thus, UKF is used in [24] for state estimation in an IM to overcome this 

drawback and capture better the nonlinearity of the system.     

In this chapter, several state estimators based on EKF and UKF are designed and 

simulated on an IM and the simulation results are compared. The aim of this chapter is to 

show the strong and weak points of both methods, based on different simulation 

scenarios.  

 

3-2. Induction Motor State Space Model 
 

The state space model of an IM is composed of four independent state variables, namely 

rotor flux components (𝜓𝑞𝑟 , 𝜓𝑑𝑟), stator-current components (𝑖𝑞𝑠 , 𝑖𝑑𝑠), which are the 𝑞 

and 𝑑 axis components obtained by Park transformation. By considering the dynamic 
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motion equation of an IM, the state vector can also be extended to 𝜔𝑚, angular velocity. 

There are also two inputs for this model which are stator-voltage components (𝑣𝑞𝑠 , 𝑣𝑑𝑠) 

[21, 22]. Also, the stator current components are considered as output signals of this 

model. Using the general form of nonlinear systems, Equation (2.9), the state space model 

of an IM extended to speed as a parameter is as follows [21, 22]: 
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(3.1) 

 

In this model, 𝑅𝑠 and 𝑅𝑟 are the stator and rotor resistances; 𝑃𝑝 is the pole pairs; 𝐿𝛿 = 𝛿𝐿𝑠 

is the stator transient inductance; 𝛿 = 1 − (𝐿𝑚2 /𝐿𝑠𝐿𝑟′ ) is the leakage or coupling factor; 

𝐿𝑚 is the mutual inductance;  𝐿𝑠 = 𝐿𝑙𝑠 + 𝐿𝑚 and  𝐿𝑟′ = 𝐿𝑙𝑟′ + 𝐿𝑚 are the inductances of 

the stator and the rotor; and 𝐿𝑙𝑠 and 𝐿𝑙𝑟′  are the leakage inductances of the stator and the 

rotor. For more clarity, the estimation process is presented in Figure 3-1. 
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Figure  3-1: General diagram of state estimation in IM 

 

This diagram shows that a general estimator, which is based on a state space model of the 

motor and an optimal estimation approach such as Kalman filter, is able to estimate all of 

the states of the system (including measurable and immeasurable ones), and eliminate the 

effect of noise. The noise free measurements and estimated states are finally used to 

improve control performance of the system. Another property of this observer is to 

estimate speed of the rotor with high accuracy which is desirable for sensorless motor 

drive systems. 

 

3-3. Applying EKF on Induction Motor for State Estimation 
 

In this section, a complete performance evaluation of different Kalman filter based 

estimators for IM are presented using various practical simulation scenarios. These 

simulation scenarios are as follows:  
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1. In scenario one, speed estimation is performed while speed, load torque and IM 

parameters are considered as constant values.  

2. In scenario two, only the load torque varies with small variations.  

3. In scenario three, both reference speed and load torque vary with small variations.  

4. In scenario four, wide range of changes is considered for reference speed of the 

IM while load torque and the main parameters vary with small variation.  

5. In scenario five speed changes in a wide range but load torque and main 

parameters are considered with small changes.  

6. Finally in scenario six, both reference speed and load torque change in wide 

ranges while the main parameters of IM have small and slow variations.  

In addition, three different state space models are proposed for better evaluation of the 

estimation methods. The first model (IM-Model 1) uses Equation (3.1) where 𝜔𝑚 is 

considered as a parameter. The second model (IM-Model 2) contains equation of 

motion which enriches the dynamic ability of the state space model and also the state 

vector is augmented by 𝑇𝐿 as a parameter. And finally the third state space model 

(IM-Model 3) is similar to the second model, but its state vector is extended to include 

both 𝑅𝑟 and 𝑅𝑠. These two lateral models (IM-Model 2 and IM-Model 3) are 

developed in Section 3.3.2 1nd 3.3.3, respectively. 

The induction motor parameters and initial value of  𝑥,𝑃,𝑄, and 𝑅 as well as other 

consideration of the simulations are listed in Table 3-1.  
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Table  3-1: Motor parameters and initial simulation values of  𝒙,𝑷,𝑸,𝑹 [21] 

 
Parameters Value 

Rated power  2.238 kW 

Rated voltage  230 V 

Rated frequency  60 Hz 

Rated torque  20 N.m 

Rated speed  1800 rpm 

Stator resistance (𝑅𝑠) 0.6619 Ω /ph 

Rotor resistance (𝑅𝑟) 0.7322 Ω /ph 

Stator inductance (𝐿𝑠) 0.0375 H/ph 

Rotor inductance (𝐿𝑟′ ) 0.0376 H/ph 

Magnetizing inductance (𝐿𝑚) 0.0334 H/ph 

Pole Pairs 2 

Initial value of extended state vector 𝑥0 = 𝑑𝑖𝑎𝑔{0,0,0,0,0,0,0,0} 

Initial value of estimation error 

covariance matrix 
𝑃0 = 𝑑𝑖𝑎𝑔{10,10,10,10,10,10,10,10} 

Process noise covariance 

𝑄

= 𝑑𝑖𝑎𝑔{10−8, 10−8, 4

× 10−17, 4 × 10−17, 10−14, 10−15, 10−16, 10−6} 

 

Measurement noise covariance 𝑅 = 𝑑𝑖𝑎𝑔{5,5} 
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An IM model is simulated in SIMULINK, MATLAB [25] with Space Vector 

Modulation (SVM) drive. This model is used to generate data with 𝑇𝑠 = 0.00001 𝑠𝑒𝑐 

sampling time, and it is presented in Figure 3-2. The simulation procedures and 

results are described in the following sections of this chapter, and for brevity, 

discretized equations of IM and calculated Jacobian matrix are presented just in 

Section 3-3-3. 

 

Figure  3-2: Simulink model of IM with SVM controller used for data generation 

 

 

 

 

 



49 
 

3-3-1. Speed Estimation with IM-Model 1  
 

The speed of the IM is estimated using Equation (3.1). The equation of motion is not 

considered in this model and speed is treated as a parameter with slow variations. Figure 

3-3 shows a comparison of the real and estimated speed of IM for scenarios one to four.  

 

  
(a) (b) 

  
(c) (d) 

Figure  3-3: Speed estimation with IM-Model 1: (a) Scenario 1 (b) Scenario 2                   (c) Scenario 3 
(d) Scenario 4 

 

In scenario four, the IM is driven with 200-rpm reference speed and after a transient time, 

at 𝑡 = 1 𝑠𝑒𝑐, the speed reference is increased to 500-rpm. At 𝑡 = 2 𝑠𝑒𝑐, the reference 

speed is reduced to 50-rpm to investigate a wide range of speed variation. The load torque 
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is 20 ± 1 𝑁.𝑚, and the variation is considered slow through the time. All simulation 

scenarios are designed in such a way that provides better overview on the tracking ability 

of the designed observer in practical conditions. Based on simulation results, for 

applications with almost constant value of speed and small variation of load torque and 

parameters (Figure 3-3-a, b, and c), this kind of estimator might be acceptable. Otherwise, 

if the IM is driven with a wide range of speed variation as presented in Figure 3-3-d, the 

model does not yield accurate results. 

 

3-3-2. Speed Estimation with IM-Model 2 
 

Due to the simulation results of the previous section, for accurate estimation of speed 

over a wide range of speed variation, the equation of motion in state space model is 

necessary. Since the load torque is one of the parameters of motion equation, it must also 

be estimated as an unknown parameter in the estimation process; otherwise, a new input 

should be added to the model which is not desirable. Thus, the state space model of IM 

with the above extensions is as follows.  
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Note that assuming load torque as a slow changing parameter may be a correct hypothesis 

for many but not all applications. Therefore, in this part, the IM is simulated under 

scenarios four and five. The real and estimated speed and the estimated load torque of the 

IM are illustrated in Figure 3-4.  

 

  

(a) (b) 

  

(c) (d) 

Figure  3-4: State estimation with IM-Model 2: (a) Speed, scenario 4; (b) Speed, scenario 5; (c) Load 
torque, scenario 4; (d) Load torque, scenario 5 

 

Figure 3-4-b shows that the designed observer based on Equation (3.2) has steady state 

error in tracking the real speed in scenario five, because assuming the main parameters of 
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IM (rotor/stator resistances) as constant parameters is not a practical postulate . However, 

the estimator is able to accurately estimate speed and load torque while the main 

parameters of the system (rotor and stator resistances) are constant (Figure 3-4 a and b). 

Therefore, for more reliable estimation, these parameters are added to the state vector and 

updated during the estimation process, in the next section. 

 

3-3-3. Speed Estimation with IM-Model 3 
 

Based on [21], the rotor and stator resistances are not constant parameters and start 

changing with variation in motor temperature and speed. In this section, the state vector is 

extended to these parameters for more precise estimation. The state space model while 

include 𝑅𝑟 and 𝑅𝑠 as state variables is given as: 
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The IM state space model presented above, is discretized as Equation (3.4) where 𝑇𝑠 is the 

sampling time.  
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The Jacobian matrix can be calculated Using Equation (2.51) as follows:  
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Considering the discretized state space model of the IM and Jacobian matrix presented in 

Equations (3.4) and (3.5), EKF based estimation is carried out under scenario 5 and the 

results are presented in Figure 3-5.  

  

(a) (b) 

  

(c) (d) 

Figure  3-5: State estimation with IM-Model 3 under scenario 5: (a) Speed; (b) Rotor resistance; (c) 
Stator resistance; (d) Load torque 

 

The results prove that the designed observer in this section has the ability to estimate 

speed in a wide range without sensitivity to the small variations of the IM's main 

parameters and the load torque. Comparing Figure 3-5-a and Figure 3-4-b, it can be 
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concluded that the estimator based on IM-Model 3 has more accurate speed estimation 

than the previous models. This accuracy is the direct result of estimating load torque and 

main parameters of the motor along with the primary states of the machine.  

Scenario six which is a more complicated operational condition is used to show the ability 

of EKF for online state and parameter estimation. The time and reference speed vector 

applied to the motor drive in this simulation scenario is given below. 

 

 𝑡 = [0 1 2 3 4 5] 𝑠𝑒𝑐         𝑤𝑚,𝑟𝑒𝑓 = [50 150 450 750 950 80] 𝑟𝑝𝑚.  

 

Also, the time and load torque vector of this simulation scenario is considered as follows:  

 

𝑡 = [0 1.5 2.5 3.5 4.5 5.5] 𝑠𝑒𝑐         𝑇𝑙,𝑟𝑒𝑓 = [8 20 14 16 20 24] 𝑁.𝑚  

 

The simulation results for this scenario are presented in Figure 3-6. Figure 3-6-a shows 

that except for the transient times, the estimator has accurately followed the real speed of 

the rotor in a wide range of variation through a short period of time. Figures 3-6-b and    

3-6-c reveal the ability of the EKF based estimator designed in this part to reject noise on 

the measurement signals. Figures 3-6-d and 3-6-e show the variations of the estimated 

rotor and stator resistances during the motor operation. The EKF based estimator 

designed in this part using the extended model presented in Equation (3.4) is also able to 

track load torque with acceptable accuracy based on the results presented in Figure 3-6-f, 

which results to high accuracy speed estimation in dynamic operation. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure  3-6: State estimation with IM-Model 3 under scenario 6: (a) Speed; (b) Q-axis current 
component 𝒊𝒒𝒔; (c) D-axis current component 𝒊𝒅𝒔; (d) Rotor resistance; (e) Stator resistance; (f) load 
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It is obvious that the value of the main parameters of the IM (𝑅𝑟 ,𝑅𝑠 and 𝑇𝑙) are not 

provided for the estimator and they are estimated in each iteration. The simulation results 

of this section show that the designed EKF based estimator using IM-Model 3 is able to 

estimate speed with acceptable error in a wide range of reference speed variations, while 

load torque has large changes through the time, and the main parameters of IM are not 

constant.   

 

3-4. Applying UKF on Induction Motor for State Estimation 
 

Although UKF has valuable characteristic of third order estimation of mean and 

covariance of states of nonlinear models, it has not been completely developed for online 

parameter estimation and there is lack of literature in this regard. Therefore, the state 

space model of IM is changed in this part and load torque is considered as an input value. 

This model is presented below. 
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The simulation scenario 5 is considered in this section to evaluate the performance of 

UKF based estimator for IM. For better understanding, the estimation results are 

compared with EKF estimation results. This comparison is presented in Figure 3.7 

 

Figure  3-7: Comparison of speed estimation between EKF and UKF, scenario 5 

 

The speed estimation error variances of these approaches are as follows. 

EKF Error Variance =    0.4871                            UKF Error Variance =    0.0047 

Estimation results of 𝑖𝑑𝑠 by both methods are also presented in Figure 3.8. 
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Figure  3-8: Comparison between real and estimated 𝒊𝒅𝒔 using EKF and UKF 

 
 
Considering the estimation results presented in Figure 3-8 and the performed error 

analysis presented in Table 3.2, it can be stated that UKF has better performance. 

However, the UKF requires that the load torque is injected as an extra input into the 

model as expressed in the state space model presented in Equation (3.6). This is a 

considerable drawback, since torque sensor installation is a hard task and imposes more 

cost on the drive system. As a result, it can be concluded that EKF and its ability to 

estimate online parameters is a better solution for this case. A comprehensive comparison 

among all estimators designed in this chapter for state estimation in an IM using EKF and 

UKF is provided in Table 3-2. 
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Table  3-2: Performance comparison among the designed estimators 

 
UKF Estimator EKF based Estimators 

 
Simulation Scenarios 

 
[𝑖𝑑𝑠 𝑖𝑞𝑠 𝜓𝑑𝑟 𝜓𝑞𝑟 𝜔𝑚] [𝑖𝑑𝑠 𝑖𝑞𝑠 𝜓𝑑𝑟 𝜓𝑞𝑟 𝜔𝑚 𝑇𝐿 𝑅𝑟 𝑅𝑠] [𝑖𝑑𝑠 𝑖𝑞𝑠 𝜓𝑑𝑟 𝜓𝑞𝑟 𝜔𝑚 𝑇𝐿] [𝑖𝑑𝑠 𝑖𝑞𝑠 𝜓𝑑𝑟 𝜓𝑞𝑟 𝜔𝑚] 

Speed estimation 
error variance: 

0.0006 

Speed estimation error 
variance: 0.0037 

Speed estimation error  
variance: 0.0037 

Speed estimation 
error variance: 

21.03 

Scenario 1: 
 Constant reference 

speed and load 
torque 

 Constant main 
parameters  

Speed estimation 
error variance: 

0.0028 

Speed estimation error 
variance: 0.024 

Speed estimation error 
variance: 0.12 

Speed estimation 
error variance: 

28.08 

Scenario 2: 
 Constant reference 

speed   
 Small variations of 

load torque   
 Constant main 

parameters  

Speed estimation 
error variance: 0.021 

Speed estimation error 
variance: 0.154 

Speed estimation error 
variance: 2.34 

Speed estimation 
error variance: 

35.05 

Scenario 3: 
 Small variations of 

reference speed and 
load torque    

 Constant main 
parameters 

Speed estimation 
error variance: 0.123 

Speed estimation error 
variance: 0.352 

Speed estimation error 
variance: 4.43 Filter diverges 

Scenario 4: 
 Large variations of 

reference speed  
 Small variations of  

load torque    
 Constant main 

parameters 

Speed estimation 
error: 0.0047 

Speed estimation error 
variance: 0.4871 

Speed estimation error 
variance: 8.96 Filter diverges 

Scenario 5: 
 Large variations of 

reference speed  
 Small variations of  

load torque and main 
parameters  

Filter diverges Speed estimation error 
variance: 2.87 

Speed estimation error 
variance: 18.96 Filter diverges 

Scenario 6: 
 Large variations of 

reference speed and 
load torque  

 Small variation of 
main parameters 
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Considering the whole simulation results of this chapter, it can be concluded that EKF 

based estimator has more acceptable performance for induction motor, based on its ability 

for concurrent state and parameter estimation. Designing an accurate speed estimator is 

the first step to reach a sensorless control scheme for an induction motor. Sensorless 

control improves the control performance, reduces the total wiring of the drive system, 

and eliminates mechanical speed sensors such as tachogenerator and encoder. As the 

main parameters of IM such as stator and rotor resistances are not constant during 

operation, and load torque experiences changes that are slow in terms of time but large in 

amplitude, an estimator with the ability to estimate the parameters of the IM will be 

desirable. Nevertheless, it is possible to inject load torque as an extra input to the drive 

system and use UKF based estimator with higher order of mean and covariance 

estimation. The main question here can be considered as a trade off: an EKF based 

estimator with linearized first order approximation and online parameter estimation or a 

UKF based estimator with third order approximation but one more input and lack of 

parameter estimation ability. 

 

3-5. Summary 
 

In this chapter, a history of the recent research in state and parameter estimation in 

induction motor is provided. The mathematical foundations of the state space modeling of 

induction motor for state and parameter estimation are developed. Following a discussion 

of the different simulation scenarios, the Extended Kalman Filter is applied for state and 
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parameter estimation in induction motor. Using an appropriate state space model, the 

Unscented Kalman Filter is used for state estimation and a comprehensive comparison 

among all simulation results is finally presented.  
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CHAPTER 4 

4. Synchrophasor Applications in Power Systems 
 

 

 

4-1. Introduction 
 
In this chapter, the principles of Synchrophasors and their applications for Wide Area 

Monitoring, Protection, and Control (WAMPAC) in large power systems are explained. 

The mathematical formulation of the phasor measurement, the general block diagram of 

the Phasor Measurement Unit (PMU), and the Phasor Data Concentrator (PDC) are 

presented. The merits for synchronized data gathering in large interconnected power 

systems and advantages of the dynamic state estimation in power systems are also 

addressed in this chapter. 
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Nowadays our daily lives depend heavily on smart supervision and reliable performance 

of the important infrastructures, like electric power systems, telecommunication 

networks, and water distribution systems. Because of the continuous increase in their size, 

network complexity, inherent uncertainty, random nature of changing loads, and mutual 

interactions, it has become a demanding task to design, monitor, and control such systems 

[26]. In terms of power systems, the safe and dependable operation has become a difficult 

task due to the daily-increasing demand for electric power, the ever-increasing number of 

the power system interconnections, higher penetration percentage of the various forms of 

renewable energies, and new regulations of the power market. These are the main 

motivations for power companies all around the world to invest in a real-time WAMPAC 

system. Synchronized measurement technology (SMT) can be considered as the central 

supporting part of this system [26]. 

Synchrophasors are essentially accurate power grid measurements provided by PMUs 

installed all over a large scale power system. The measurements are taken at high rate 

compared to the conventional technologies and are synchronized using a common time 

reference signal. The synchronized data provided by PMUs helps to better detect stresses 

on a power grid and improve the accuracy of the corrective decisions to maintain stability 

of the power system. In 1986, phasor measurements were introduced as a new 

measurement approach in power systems [27]. The PMU prototype produced by Virginia 

Tech was used by American Electric Power and Bonneville Power Administration (BPA) 

in that year. These utilities tested and used the initial versions of the PMUs until the 

introduction of the first commercial unit in 1991, the Macrodyne 1690 [27].  BPA 

reconfigured this system into a true real-time, wide area measurement system in 1997, 
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using commercial PMUs and a customized PDC. Since that time, many newer models of 

the PMUs have become available with developed ranges of features. Also, several 

versions of PDC units have been developed with various monitoring, analysis, and control 

schemes [27]. 

The major advantages of using synchronized measurement technology in power systems 

are that measurements from widely spread spots can be synchronized with a signal 

received by the Global Positioning System (GPS) clock. The direct measurement of the 

voltage phase angles can be realized and the precision and rapidity of the energy 

management system applications, e.g. dynamic state estimation, can be increased 

dramatically [26]. Based on the ability of WAMPAC systems to capture dynamic state 

information, the state estimators can generate dynamic states of major components of the 

power system. For example, for the synchronous generator the rotor angle and speed, 

instead of the static values of the voltage magnitudes and phase angles can be estimated    

[2, 28]. 

 

4-2. Principles of the Phasor Measurement 
 

A phasor is a mathematical representation of a sinusoidal waveform as shown in       

Figure 4-1.  
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Figure  4-1: Phasor representation of a sinusoidal waveform [27] 

 

The magnitude can be either a peak or RMS value of the signal and the phase angle can 

be determined by the given sinusoidal frequency and an arbitrary time reference. 

Synchrophasors are phasor values, representing sinusoidal signals of a power system 

which are compared to the nominal frequency of the power system and time reference 

provided by GPS [27]. The introduction of the GPS has made it simply possible to create 

a universal accurate time reference signal with reasonable cost. 

The time domain formula of a waveform can describe the instantaneous phasor value of a 

sinusoidal signal in each moment. However, it might be a difficult task to find the phasor 

equivalent of an arbitrary sinusoidal waveform which contains different frequencies. A 

series of samples captured at certain moments with appropriate time intervals and over a 

specified period is required to determine the main parameters of a sinusoidal signal [27]. 

The sampling frequency and phasor estimation method along with the signal content of 

the waveform are key factors that specify the quality of the estimated phasor. The 

predominant phasor estimation approach is the Discrete Fourier Transform (DFT) [7]. In 

this technique, the standard Fourier Transform is applied over one or more cycles at the 
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nominal system frequency. For better understanding, the details of using DFT for phasor 

extraction are presented below. Consider, the time representation of a sinusoidal signal as 

 

𝑥(𝑡) = 𝑋𝑚cos (𝑤𝑡 + 𝜙) (4.1) 

 

𝑋𝑚 is the peak value of the signal and 𝜙 is the phase angle in radian. The phasor 

representation of the signal in Equation (4.1) is as follows: 

 

𝑋 = (𝑋𝑚/√2)𝑒𝑗𝜙 (4.2) 

 

DFT is accomplished by using discrete steps through a finite window in frequency 

domain. Suppose the signal shown in Figure 4-1 is sampled at sampling angle 𝜃 = 2𝜋/𝑁, 

where 𝑁 is the number of samples during one finite window. The Fourier representation 

of the signal 𝑥(𝑡) is as follows [7]: 

 

𝑥(𝑡) = 𝑎0 + 𝑎𝑘 cos(2𝜋𝑘𝑓0𝑡) + 𝑏𝑘sin (2𝜋𝑘𝑓0𝑡) (4.3) 

 

𝑎𝑘 and 𝑏𝑘 are the Fourier series coefficients and 𝑓0 is the fundamental frequency. Based 

on the periodic property of DFT, the coefficients of the Fourier series can be derived from 

the sampling data as follows: 

𝑎0 = 2𝑋0  

𝑎𝑘 = 2𝑅𝑒𝑎𝑙(𝑋𝑘)  

𝑏𝑘 = 2𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝑋𝑘) (4.4) 
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𝑋𝑘 represents the DFT samples of the signal in complex mode. An example is provided 

below to clarify the procedure. 

 

Example 4.1 

Consider the following Fourier series representation of a signal. 

 

𝑥(𝑡) = 9 + 16 cos(2𝜋𝑓0𝑡 + 40°) + 5 cos(4𝜋𝑓0𝑡 + 60°) + 3 cos(6𝜋𝑓0𝑡 + 65°) (4.5) 
 

𝑓0 is assumed to be 60𝐻𝑧. The signal is shown below in time and frequency domain. 

 

 

Figure  4-2: Signal in frequency and time domain 

 
The first plot in Figure 4-2 shows amplitude of the signal in frequency range of 

0~1000 𝐻𝑧, and the second plot demonstrates the amplitude in time frame of 

0~0.016 𝑠𝑒𝑐. Using the Fourier Transform command in Matlab, the DFT coefficients can 

be obtained for the signal as presented in Table 4.1.  
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Table  4-1: Sampled data and Fourier transform of the signal 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟(𝑘) 𝑥(𝑡) 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑋𝑘 = 𝐷𝐹𝑇/16 
0 25.02 0 9.0047 
1 13.06 𝑓0 6.1276 + 5.1470j 
2 3.24 2𝑓0 1.2478 + 2.1659j 
3 -0.7727 3𝑓0 0.6314 + 1.3589j 
4 -1.0656 𝑓40 0.0003 - 0.0020j 
5 -1.6879 5𝑓0 0.0007 - 0.0011j 
6 -3.6376 6𝑓0 8.1406e-04 - 6.1875e-04j 
7 -4.4259 7𝑓0 8.6681e-04 - 2.8785e-04j 
8 -2.0177 - 8.8192e-04 
9 2.3535 −7𝑓0 8.6681e-04 + 2.8785e-04j 
10 6.1014 −6𝑓0 8.1406e-04 + 6.1875e-04j 
11 9.1211 −5𝑓0 0.0007 + 0.0011j 
12 14.0837 −4𝑓0 0.0003 + 0.0020j 
13 22.3008 −3𝑓0 0.6314 - 1.3589j 
14 30.3135 −2𝑓0 1.2478 - 2.1659j 
15 32.077 −𝑓0 6.1276 - 5.1470j 

 

Using Equation (4.4) to calculate the Fourier series coefficients, the recreated signal is as 

follows: 

𝑥�(𝑡) = 9.00479 + 15.987 cos(2𝜋𝑓0𝑡 + 39.2°) + 5.001 cos(4𝜋𝑓0𝑡 + 58.73°)
+ 3.001 cos(6𝜋𝑓0𝑡 + 64.87°) (4.6) 

 

The comparison between the real and estimated signal is presented in Figure 4-3. 

 

 

Figure  4-3: Comparison between the real and estimated signal 
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Figure 4-3 shows that the estimated signal agrees with the real signal. The 𝑘𝑡ℎ component 

of the phasor representation of 𝑥(𝑡) can be obtained as follows [7]: 

𝑋𝑘 =
1
√2

2
𝑁
� 𝑥(𝑛Δ𝑇)𝑒−

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

 (4.7) 

 

𝑛 represents the 𝑛𝑡ℎ sample. The representation of Equation (4.7) in the form of sine and 

cosine is given below [7]. 

 

𝑋𝑘 =
√2
𝑁
� 𝑥(𝑛Δ𝑇)[𝑐𝑜𝑠 �

2𝜋𝑘𝑛
𝑁

� − 𝑗𝑠𝑖𝑛(
2𝜋𝑘𝑛
𝑁

)]
𝑁−1

𝑛=0

 (4.8) 

 

Using the expression 𝑥(𝑛Δ𝑇) = 𝑥𝑛, and 2𝜋
𝑁

= 𝜃 (𝜃 is the sampling angle measured based 

on the period of the fundamental frequency component), Equation (4.8) cab be written as 

 

𝑋𝑘 =
√2
𝑁
� 𝑥𝑛[𝑐𝑜𝑠(𝑘𝑛𝜃) − 𝑗𝑠𝑖𝑛(𝑘𝑛𝜃)]
𝑁−1

𝑛=0

 (4.9) 

 

The cosine and sine expressions of Equation (4.9) are defined as 

 

𝑋𝑘𝑐 =
√2
𝑁
� 𝑥𝑛𝑐𝑜𝑠(𝑘𝑛𝜃)
𝑁−1

𝑛=0

  

𝑋𝑘𝑠 =
√2
𝑁
� 𝑥𝑛𝑠𝑖𝑛(𝑘𝑛𝜃)
𝑁−1

𝑛=0

 (4.10) 

 

Therefore, the phasor 𝑋𝑘 can be written as  
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𝑋𝑘 = 𝑋𝑘𝑐 − 𝑗𝑋𝑘𝑠 (4.11) 

 

Using this equation, the phasor of a signal can be calculated. Two methods have been 

developed for this purpose in recent years: non-recursive and recursive updates [7]. The 

first approach is the easiest one since in this method, each estimation is accomplished for 

all of the process through N samples. One window could estimate one phasor and the next 

phasor will use the samples from the next window. This approach is very stable because 

the new estimation process would not use the previous samples; however, its calculation 

needs lots of memory space. In recursive method, in contrast, the new phasor is estimated 

using 𝑁 − 1 samples from the previous window and one new sample. This method is 

much faster and uses less space for computation [7]. The sample window for non-

recursive method is shown in Figure 4-4 

 

Figure  4-4: Sampling window [7] 

 
The recursive method is currently the most common approach for phasor estimation. For 

example, the phasor estimation of the 60 𝐻𝑧 signal 𝑥(𝑡) = 100cos (120𝜋𝑡 + 𝜋/4) 
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sampled at 12 samples per cycle using both recursive and non-recursive approaches are 

presented in Table 4-2.  

Table  4-2: Phasor estimation of the signal [7] 

Sample number Sample 𝑥𝑛 Non-recursive phasor estimation Recursive phasor estimation 
0 70.71   
1 25.88   
2 -25.88   
3 -70.71   
4 -96.59   
5 -96.59   
6 -70.71   
7 -25.88   
8 25.88   
9 70.71   
10 96.59   
11 96.59   
12 70.71 70.701∠45° 70.701∠45° 
13 25.88 70.701∠75° 70.701∠45° 
14 -25.88 70.701∠105° 70.701∠45° 
15 -70.71 70.701∠135° 70.701∠45° 
16 -96.59 70.701∠165° 70.701∠45° 
17 -96.59 70.701∠195° 70.701∠45° 

 

The phase shift in the non-recursive method is related to the shift of the sampling 

window, while there is no phase shift for the recursive method. 

 

4-3. Phasor Measurement Unit 
 

A Phasor Measurement Unit (PMU) is an electronic device that deploys concept of digital 

signal processing for measuring 50/60 Hz AC voltages or currents typically at a sampling 

rate of 48 samples per cycle. This phasor technology provides time synchronized data 
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typically at a rate of 240 samples/second [4].  The general block diagram of a PMU is 

presented in Figure 4-5. 

 

Figure  4-5: Block diagram of a PMU [26] 

 
The analog AC waveforms are sampled by an analog to digital converter. A phase-locked 

loop oscillator and the GPS clock create a high speed synchronized signal with one 

microsecond accuracy, while is used for time stamping of all measured data. The detailed 

function of each block of the PMU can be described as follows: 

• The main purpose of the anti-aliasing unit is to avoid samples from measurement 

aliasing. In other words, if the sampling frequency is not more than two times of 

the analyzed frequency, there is a possibility of signal overlapping in a specific 

zone. This phenomenon is called aliasing. The anti-aliasing filter avoids this event 

by satisfying Nyquist criterion [7]. 

• The A/D converter is used to convert the signal from the anti-aliasing filter to 

digital signal which can be used by the phasor micro-processor. 

• The GPS receiver is able to collect ceaseless rhythmic time signals sent by the 

satellite every second.  
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• The sampling interval is controlled with a phase-locked oscillator which is phase-

locked with the GPS clock pulse.  

• The phasor micro-processor calculates the phasors of the signals using a specific 

algorithm. 

Typically PMUs are located at various important substations to obtain real-time data of 

the system and send them to the Phasor Data Concentrator (PDC) normally placed at 

utility centers, where the data from all PMUs are accumulated. Due to the various 

distances, available communication technologies, and time delay for data transmission of 

each device, measurement streams of a certain moment cannot be received by the 

destination at the same time [27]. Therefore, the early data should be stamped and stored 

in a mass storage and wait till the other related data is received by the system. However, 

because of the quite high refresh time of the data, this waiting time cannot be very long. 

The process of waiting for and sorting measurements is named as “phasor data 

concentration” which is mainly carried out by a PDC [27]. This aggregated data can be 

used for monitor and control software which provides frequencies, primary voltages, 

currents, and output active and reactive powers for system operators. In addition, many 

PDCs which belong to different utility companies can be a part of a larger PDC or Super 

PDC to accumulate the information of a large power system and also draw an accurate 

general picture of the system [8].  
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Figure  4-6: Super PDC configuration using different communication infrastructure [8] 

 
Figure 4-6 shows that the data provided by PMUs are transferred to the related utility 

PDCs through different communication facilities such as power lines, phone lines, fiber 

optic, Ethernet, and microwave. The accumulated data is then sent to the super PDC by 

Internet or Virtual Private Network (VPN). The data server placed at the super PDC uses 

the accumulated data for real time monitoring, wide area protection and control, dynamic 

state estimation, and data archiving. General applications of WAMPAC system are 

presented in the Table 4-3, and some of these applications are explained in detail in 

Section 4-4. 
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Table  4-3: Applications of WAMPAC [8] 

Dynamic state estimation 

Real-time rush hour power management 

Real time envision of a large power system 

Complicated system modeling and validation 

Better control of generating units 

Design of adaptive models for the system control and protection 

Development of a sophisticated early warning centers 

Analysis of the reasons for major system blackout 

Progress in the damping property of the inter-area oscillations 

Real-time angle, voltage, and frequency stability 

 

4-4. Dynamic State Estimation Advantages in Large Power Systems 
 

At the present time, phasor estimation has been essentially performed using steady state 

measurements. Phasor systems are typically faster than the dynamics of most power 

systems; therefore, this kind of estimation has been rational and sufficient. Nevertheless, 

power systems are changing daily and more accurate methods might be needed for 

difficult operational situations [27]. Data communication systems have also evolved 

dramatically in recent years. Most of the utilities are equipped with a broadband at 1MB/s 

and higher for their data communication and the remaining ones at least have plans to do 

so [27]. LAN and WAN supporting equipments are prevalent and easy to install these 

days. This progress has been a stimulus to change minimal data sets to more complete 
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data packages. Based on all these reasons, many institutes all around the world are doing 

research on dynamic measurement of the power systems. Particularly, an IEEE working 

group has recently been revising C37.118 to add dynamic performance requirements 

while paying attention to not invalidating current ones [27]. Recent experiences have 

proved that synchronized wide area system history of the dynamic events are key in the 

analysis and understanding of the system performance, behavior, and the types of control 

decisions made for large scale power system contingencies [8]. It is a time consuming 

effort to analyze and determine the main reason of major contingencies in a power system 

without the time-stamped PMU data or the related PDC [8]. For example, the January 23, 

2007 recording of the contingency in Western Electricity Coordinating Council (WECC) 

reveals the value of a wide-area PMU-based monitoring and event recording procedure 

[8]. The purpose of these systems installed in 1990s has been to capture real-time network 

state information in the WECC region. The PMU real-time data of the 2007 contingency 

assists the operators of the system to immediately figure out what happened to the grid 

and carry out necessary actions to prevent the propagation of the instability [8]. 

Developing smart centers which can send warnings ahead of a major contingency is one 

of the greatest applications of WAMPAC.  

Dynamic state estimation in a power system provides accurate and synchronized 

information about the main states of the generating unit which are working in an 

interconnected large power system. In addition to the noise elimination on measurement 

signals provided by PMUs, dynamic state estimation provides high rate information of the 

immeasurable states of the synchronous generators which are advantageous in better 

control of the power stations; real-time angle, voltage, and frequency transient stability 
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analysis of the power system; improved damping property for the inter-area oscillations; 

and better rush hour power management. 

In chapter 6 of this thesis, the high rate data provided by PMU is used for dynamic state 

estimation in different power system case studies. As real power systems equipped with 

PMUs on high voltage bus were not accessible for this research, PowerWorld Simulator 

[29] is used for this purpose. Since this software is able to simulate transient stability of 

the power systems with predetermined faults and desired afterwards resolutions, it is 

assumed that the outputs of the PMUs installed on the buses of a system are accessible 

from the PowerWorld simulator. The sampling rate of the present commercialized PMUs 

are near 240 frames per second. Therefore, different sampling rates are considered in the 

simulation procedure to evaluate the effect of this factor on the accuracy of the estimation 

results, and also to examine whether the whole idea of the dynamic state estimation in 

power systems using existing PMU’s technology is realizable. The diagram presented in 

Figure 4-7 clearly shows the idea being used in this research to generate accurate data for 

modeling, validation, and dynamic state estimation. 
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Figure  4-7: Using PowerWorld Simulator instead of real PMU to generate synchronized data for 
power system case studies 

 

This diagram shows that by designing a desired power system case study in PowerWorld 

and providing information about steady state active and reactive power of the generators; 

transient parameters of the generators; parameters and characteristics of the transmission 

lines; fault location, moment, duration, and afterwards resolutions; simulation time and 

sampling frequency; and states of the systems to be sampled during the simulation 
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procedure; synchronized high rate information about the power system can be generated. 

This data is then used to validate the classical and 2-axis models developed for the 

synchronous generator. The validated models are then used for dynamic state estimation 

in different power system case studies. The measurement data provided by PowerWorld 

are disturbed by a white Gaussian noise to be more similar to the real case. 

 

 4-5. Summary 
 

The principals of phasor measurements and the associated benefits for power systems are 

discussed in this chapter. Brief explanations about Wide Area Monitoring, Protection, and 

Control (WAMPAC) system are presented. The principles of the phasor measurement and 

related formulations are explained. Next, the block diagram of the Phasor Measurement 

Unit (PMU) and function of each part are discussed in detail, and the benefits of the 

Phasor Data Concentrator (PDC) and the general structure of a Super PDC are explained. 

Finally, brief explanations about the final aim of the PMU recording data and its 

application for dynamic state estimation are discussed, and the procedure of data 

generation for modeling, validation, and state estimation in this research is presented in a 

complete diagram. 
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CHAPTER 5 

5. Synchronous Generator Mathematical Description and Model 
Verification 

 

 

 

5-1. Introduction 
 

Developing a proper model for the synchronous generator is the first step for any kind of 

analysis in power systems. In the first section of this chapter, a simple RLC circuit is used 

to explain the procedure for modeling and validation that will be used for different power 

system case studies in the subsequent sections. After explaining the mathematical 

foundations of a synchronous machine, the classical model is derived and formulated. A 

two-axis fourth order model of the machine is then developed using the mathematical 
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description of the synchronous generator. The last part of this chapter is dedicated to 

multi-machine transient stability analysis. Each of these sections discusses the model 

validation, and the obtained results are compared with the data generated by PowerWorld 

Simulator for better evaluation of the developed model accuracy. The models obtained in 

this chapter are used in Chapter 6 for more studies on dynamic state estimation in power 

systems. 

 

5-2. Series RLC Circuit 
 

In this section, an RLC circuit is used as a simple case study to explain the procedure of 

the modeling and validation being used in this research for synchronous machine. 

Consider the following RLC circuit with the specified parameters.  

 

Figure  5-1: Series RLC circuit, 𝒗𝒔 = 𝟏𝟎 𝒄𝒐𝒔(𝟐𝒕), 𝑹 = 𝟒.𝟓Ω, 𝑳 = 𝟎.𝟓 𝑯, and 𝑪 = 𝟎.𝟏 𝑭 

 

The KVL expression for this circuit is as follows:  
 

𝑣𝑠(𝑡) = 𝑣𝑅(𝑡) + 𝑣𝐿(𝑡) + 𝑣𝐶(𝑡) = 𝑅𝑖𝑙(𝑡) + 𝐿
𝑑𝑖𝑙(𝑡)
𝑑𝑡

+
1
𝐶
� 𝑖𝑙(𝑡)𝑑𝑡  

𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 10cos (2𝑡) = 4.5𝑖𝑙(𝑡) + 0.5

𝑑𝑖𝑙(𝑡)
𝑑𝑡

+
1

0.1
�𝑖𝑙(𝑡) 𝑑𝑡 (5.1) 
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By differentiating Equation (5.1), the second order differential equation of the circuit can 

be obtained as: 

𝑑2𝑖𝑙(𝑡)
𝑑𝑡2

+ 9
𝑑𝑖𝑙(𝑡)
𝑑𝑡

+ 20𝑖𝑙(𝑡) = −40sin (2𝑡) (5.2) 

 

Equation (5.2) is a second order linear nonhomogeneous differential equation, the general 

and specific results for 𝑖𝑙(𝑡) is as follows: 

 

𝑖𝑙(𝑡) = 𝐶1𝑒−4𝑡 + 𝐶2𝑒−5𝑡 + 𝐴 sin(2𝑡) + 𝐵cos (2𝑡) (5.3) 

 

The voltage source 𝑣𝑠(𝑡) is applied at 𝑡 = 0. Assume that the initial conditions of the 

inductor current 𝑖𝑙(0) and capacitor voltage 𝑣𝐶(0) are equal to zero. Another initial 

condition (𝑑𝑖𝑙(0)
𝑑𝑡

) is required to solve Equation (5.3), which can be calculated by equating 

𝑡 = 0 in Equation (5.1) as follows: 

 

10 = 0.5
𝑑𝑖𝑙(0)
𝑑𝑡

    
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯�     

𝑑𝑖𝑙(0)
𝑑𝑡

= 20 (
𝐴
𝑠𝑒𝑐

) (5.4) 

 

Using the initial conditions, 𝑖𝑙(0) = 0 and 𝑑𝑖𝑙(0)
𝑑𝑡

= 20, the coefficients of the above 

equation can be calculated and the results are as follows: 

 

𝐶1 = 16, 𝐶2 = −17.24, 𝐴 = −1.1, 𝐵 = 1.24 (5.5) 
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Therefore, considering the principal equation for capacitor voltage in this circuit, 

𝐶 𝑑𝑣𝑐(𝑡)
𝑑𝑡

= 𝑖𝑙(𝑡), the following equations can be obtained as the analytical solution of the 

inductor current and the capacitor voltage. 

 

𝑖𝑙(𝑡) = 16𝑒−4𝑡 − 17.24𝑒−5𝑡 − 1.1 sin(2𝑡) + 1.24cos (2𝑡)  

𝑣𝑐(𝑡) =
1
𝐶
� 𝑖𝑙(𝑡)
𝑡

0
𝑑𝑡 = −40𝑒−4𝑡 + 34.48𝑒−5𝑡 + 5.5 cos(2𝑡) + 6.2sin (2𝑡) (5.6) 

 

Using the second order differential equation of the system, a numerical approach for 

integration of the differential equation based on the state space model is explained. 

Equation (5.2) can be separated into two first order differential equations as follows: 

 

𝑑𝑖𝑙(𝑡)
𝑑𝑡

= −9𝑖𝑙(𝑡) − 2𝑣𝑐(𝑡) + 20cos (2𝑡)  

𝑑𝑣𝑐(𝑡)
𝑑𝑡

= 10𝑖𝑙(𝑡) (5.7) 

 

By considering the inductor current and the capacitor voltage as two independent states of 

the systems, 𝑥1 and 𝑥2, the following state space model can be developed for the circuit. 

 

𝑥1̇ = −9𝑥1 − 2𝑥2 + 20cos (2𝑡)  

𝑥2̇ = 10𝑥1 
(5.8) 
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Using Equation (2.27) and based on the basic definition of the time derivative of a state 

variable 𝑥, the state space model of the circuit can be discretized as follows: 

 

𝑥1𝑘+1 = 𝑥1𝑘 + 𝑇𝑠�−9𝑥1𝑘 − 2𝑥2𝑘 + 20cos (2𝑘𝑇𝑠)�  

𝑥2𝑘+1 = 𝑥2𝑘 + 10𝑇𝑠𝑥1𝑘 
(5.9) 

 

 

Where 𝑇𝑠 is the sampling time for the numerical solution. The comparison between the 

numerical solution of Equation (5.9), which is the numerical integration of Equation (5.8), 

and the analytical solution of the circuit (Equation (5.6)) are presented in the following 

figure. 

 

  

Figure  5-2: Comparison between model integration and analytical solution for the series RLC circuit 

 

Figure 5-2 shows clearly that the results of the numerical solution are the same as the 

analytical solution for the RLC case study. In the next section, after deriving the model of 

the synchronous machine, the same approach is used to validate the model and the 

numerical solution.  
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5-3. Mathematical Description of the Synchronous Machine and the Classical Model 
[30] 
 

Based on Newton's second law, the rotor motion of a synchronous generator can be 

expressed by the following equation 

 

𝐽𝛼𝑚(𝑡) = 𝑇𝑚(𝑡) − 𝑇𝑒(𝑡) (5.10) 

 

𝐽 is the total moment of inertia of the rotor and the other rotating parts in 𝐾𝑔−𝑚2; 𝛼𝑚 is 

the rotor angular acceleration in 𝑟𝑎𝑑/𝑠2; 𝑇𝑚 is the mechanical torque provided by the 

prime mover excluding the retarding torque of mechanical losses in 𝑁.𝑚; and 𝑇𝑒 is the 

electrical torque, which the related per-unit value is equal to the total per-unit three-phase 

output electrical power of the generator including electrical losses [30]. 𝛼𝑚(𝑡) is also 

defined as 

 

𝛼𝑚(𝑡) =
𝑑𝜔𝑚(𝑡)
𝑑𝑡

=
𝑑2𝜃𝑚(𝑡)
𝑑𝑡2

 (5.11) 

𝜔𝑚(𝑡) =
𝑑𝜃𝑚(𝑡)
𝑑𝑡

 (5.12) 

 

𝜔𝑚(𝑡) is the angular velocity in 𝑟𝑎𝑑/𝑠𝑒𝑐 and 𝜃𝑚 is the angular position with respect to a 

stationary axis (stator) in 𝑟𝑎𝑑𝑖𝑎𝑛. 𝑇𝑚 and 𝑇𝑒 are normally equal in steady state, resulting 

in zero rotor acceleration and a constant rotor speed known as synchronous speed. As the 

generator inductances are functions of 𝜃𝑚, for more convenient and less complexity of the 
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equations, the rotor angular position is defined with respect to a synchronously rotating 

reference frame as follows [30]: 

 

𝜃𝑚(𝑡) = 𝜔𝑚0𝑡 + 𝛿𝑚(𝑡) (5.13) 

 

Where 𝜔𝑚0 is the synchronous angular velocity of the rotor in 𝑟𝑎𝑑/𝑠𝑒𝑐, and 𝛿𝑚(𝑡) is the 

angular position of the rotor compared to this new defined reference frame. Equations 

(5.11) and (5.13) are inserted into (5.10) to obtain 

 

𝐽
𝑑2𝜃𝑚(𝑡)
𝑑𝑡2

= 𝐽
𝑑2𝛿𝑚(𝑡)
𝑑𝑡2

= 𝑇𝑚(𝑡) − 𝑇𝑒(𝑡) (5.14) 

 

Equation (5.14) is multiplied by 𝜔𝑚(𝑡) and divided by apparent power 𝑆𝑟𝑎𝑡𝑒𝑑 which 

results in  

𝐽𝜔𝑚(𝑡)
𝑆𝑟𝑎𝑡𝑒𝑑

𝑑2𝛿𝑚(𝑡)
𝑑𝑡2

=
𝜔𝑚(𝑡)𝑇𝑚(𝑡) −𝜔𝑚(𝑡)𝑇𝑒(𝑡)

𝑆𝑟𝑎𝑡𝑒𝑑

=
𝑃𝑚(𝑡) − 𝑃𝑒(𝑡)

𝑆𝑟𝑎𝑡𝑒𝑑
= 𝑃𝑚𝑃.𝑈(𝑡) − 𝑃𝑒𝑃.𝑈(𝑡) 

(5.15) 

 

The normalized inertia constant, called the H constant, is defined for more simplicity as 

follows:  

𝐻 =
1
2 𝐽𝜔𝑚0

2

𝑆𝑟𝑎𝑡𝑒𝑑
                         

𝑗𝑜𝑢𝑙𝑒𝑠
𝑉𝐴

𝑜𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 − 𝑠𝑒𝑐𝑜𝑛𝑑 (5.16) 
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The 𝐻 constant is normally a value between 1 and 10 𝑝.𝑢 − 𝑠 while 𝐽 varies widely with 

different generators physical characteristics [30]. Using Equation (5.16), Equation (5.15) 

can be written as follows: 

2𝐻
𝜔𝑚(𝑡)
𝜔𝑚02

𝑑2𝛿𝑚(𝑡)
𝑑𝑡2

= 𝑃𝑚𝑃.𝑈(𝑡) − 𝑃𝑒𝑃.𝑈(𝑡) (5.17) 

 

The per-unit rotor angular velocity is defined as follows: 

 

𝜔𝑃.𝑈(𝑡) =
𝜔𝑚(𝑡)
𝜔𝑚0

 (5.18) 

 

Therefore, Equation (5.17) becomes 

 

2𝐻
𝜔𝑚0

𝜔𝑃.𝑈(𝑡)
𝑑2𝛿𝑚(𝑡)
𝑑𝑡2

= 𝑃𝑚𝑃.𝑈(𝑡) − 𝑃𝑒𝑃.𝑈(𝑡) (5.19) 

 

The electrical angular acceleration, electrical radian frequency, power angle, and 

synchronous electrical radian frequency for a synchronous generator with 𝑃 number of 

poles are defined as follows [30]: 

𝛼(𝑡) =
𝑃
2
𝛼𝑚(𝑡) (5.20) 

𝜔(𝑡) =
𝑃
2
𝜔𝑚(𝑡) (5.21) 

𝛿(𝑡) =
𝑃
2
𝛿𝑚(𝑡) (5.22) 
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𝜔0 =
𝑃
2
𝜔𝑚0 (5.23) 

 

The per-unit electrical frequency is also expressed as follows: 

 

𝜔𝑃.𝑈(𝑡) =
2
𝑃𝜔(𝑡)

2
𝑃𝜔0

=
𝜔𝑚(𝑡)
𝜔𝑚0

 (5.24) 

 

Equation (5.19) is then modified using Equations (5.20) - (5.24), adding the term that 

represents a damping torque, as follows: 

 

2𝐻
𝜔0

𝜔𝑃.𝑈(𝑡)
𝑑2𝛿(𝑡)
𝑑𝑡2

= 𝑃𝑚𝑃.𝑈(𝑡) − 𝑃𝑒𝑃.𝑈(𝑡) −
𝐷
𝜔0

𝑑𝛿(𝑡)
𝑑𝑡

 (5.25) 

 

Considering Equation (5.25) as two first order equations, the classical model of the 

synchronous generator is 

 

𝑑𝛿(𝑡)
𝑑𝑡

= 𝜔(𝑡) − 𝜔0 (5.26) 

2𝐻
𝜔0

𝜔𝑃.𝑈(𝑡)
𝑑𝜔(𝑡)
𝑑𝑡

= 𝑃𝑚𝑃.𝑈(𝑡) − 𝑃𝑒𝑃.𝑈(𝑡) −
𝐷
𝜔0

𝑑𝛿(𝑡)
𝑑𝑡

 (5.27) 

 

𝐷 is the damping factor which is normally a small positive value between 0 and 2 [30]. 

From now on, for more simplicity, the variable 𝑡 is eliminated from all functions while 
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keeping in mind that all variables and functions defined up to the present are functions of 

time (t). Therefore, the classical model presented in Equations (5.26) and (5.27) can be 

written as follows: 

𝑑𝛿
𝑑𝑡

= 𝜔 − 𝜔0 (5.28) 

2𝐻
𝜔0

𝜔𝑃.𝑈
𝑑𝜔
𝑑𝑡

= 𝑃𝑚𝑃.𝑈 − 𝑃𝑒𝑃.𝑈 −
𝐷
𝜔0

𝑑𝛿
𝑑𝑡

 (5.29) 

 

It is more convenient to develop the model based on the speed deviation from 

synchronous speed in per unit and change the other variables to per unit, as well. It can be 

written from Equation (5.24) that 

𝜔𝑃.𝑈 =
𝜔
𝜔0

 →  𝜔 = 𝜔𝑃.𝑈𝜔0  

𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝜔0 𝑓𝑟𝑜𝑚 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  𝜔 −  𝜔0 = 𝜔𝑃.𝑈𝜔0 − 𝜔0 = 𝜔0(𝜔𝑃.𝑈 − 1) 

(5.30) 

 

Δ𝜔 is then defined as follows:    

Δ𝜔 = 𝜔𝑃.𝑈 − 1 (5.31) 

 

Using Equation (5.31), Equation (5.30) can be written as 

 

𝜔 −  𝜔0 = 𝜔0Δ𝜔 (5.32) 

 

Therefore, using Equation (5.32), Equation (5.28) can be expressed as follows:  
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𝑑𝛿
𝑑𝑡

= 𝜔0Δ𝜔 (5.33) 

 

Using Equation (5.24) and (5.33), Equation (5.29) can be written as 

 

2𝐻
𝜔0

𝜔
𝜔0

𝑑𝜔
𝑑𝑡

= 𝑃𝑚𝑃.𝑈 − 𝑃𝑒𝑃.𝑈 −
𝐷
𝜔0

𝜔0Δ𝜔 (5.34) 

 

By differentiating Equation (5.32), following equation can be derived. 

 

𝑑𝜔
𝑑𝑡

= 𝜔0
𝑑Δ𝜔
𝑑𝑡

 (5.35) 

 

Using Equation (5.33) and keeping in mind that the term  𝜔
𝜔0
≅ 1  is normally negligible, 

Equation (5.34) is modified as follows: 

 

2𝐻
𝑑Δ𝜔
𝑑𝑡

= 𝑃𝑚𝑃.𝑈 − 𝑃𝑒𝑃.𝑈 − 𝐷Δ𝜔 (5.36) 

 

Therefore, the classical dynamic model of the synchronous machine is as follows: 

 

𝑑𝛿
𝑑𝑡

= 𝜔0Δ𝜔  

𝑑Δ𝜔
𝑑𝑡

=
1

2𝐻
(𝑃𝑚 − 𝑃𝑒 − 𝐷Δ𝜔) (5.37) 
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Since all of the parameters of Equation (5.37) are in per unit; therefore, 𝑝.𝑢 subscript is 

also eliminated from the equations of the model for more simplicity.  

 

 

5-3-1. Classical Model Validation 
 

The best way to validate the model is to integrate it over a period of time with 

predetermined initial conditions. Figure 5-3 shows a simplified equivalent model of a 

general power system which is a single generator connected through a transformer and 

parallel transmission lines to an infinite bus. The so called Single-Machine-Infinite-Bus 

(SMIB) shown in this figure can be considered as the basis for developing and validating 

the models in this chapter. This model is simulated in PowerWorld Simulator [29] in 

order to generate data to validate the model. The data generated by this reliable software 

is compared with the outputs of the classical model developed in the previous section,        

(Equation (5.37)) to verify the accuracy of the model. The PowerWorld schematic of 

SMIB with parallel transmission line is presented in Figure 5-4. The simulation scenario 

is a symmetrical permanent three-phase-to-ground bolted short circuit which occurs on 

the middle of the second transmission line at 𝑡 = 0.5 𝑠𝑒𝑐, cleared at 𝑡 = 0.6 𝑠𝑒𝑐 by 

opening the circuit breakers at the ends of this transmission line. 
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Figure  5-3: Diagram of SMIB connected to the infinite bus through a parallel transmission lines [2] 

 
 

 

Figure  5-4: SMIB model in PowerWorld Simulator 

 

The main parameters of the simulated system are presented in Table 5.1.  

 

Table  5-1: Main parameters of the simulated synchronous generator [2, 30] 

𝐷,𝐻 Damping factor and inertia constant, per unit 0.05, 5 
�́�𝑑 Direct axis transient reactance, per unit 0.37 
𝑇𝑚 Mechanical input, per unit 1 
𝑃𝑏𝑎𝑠𝑒 Generator base power 100 MVA 
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Before integrating the Equation 5.37, the initial conditions of the system and equations 

describing the generator power in pre-fault, during-fault, and after-fault periods should be 

derived. Considering the steady state power delivered by the generator to the infinite bus 

as 100 𝑀𝑊 with 0.95 lagging power factor, the internal voltage of the generator would 

be as follows: 

 

𝐼 =
𝑃

𝑉𝑡ℎ × 𝑃𝐹
= 1.05263 ∠ − 18.192°   𝑝𝑒𝑟 − 𝑢𝑛𝑖𝑡 (5.38) 

𝐸′∠𝛿 = 𝑉𝑡ℎ + 𝑗𝑋𝑡ℎ𝐼 = 1.3317∠26.29°
= 1∠0 + 𝑗0.59 × 1.05263 ∠ − 18.192°  𝑝𝑒𝑟 − 𝑢𝑛𝑖𝑡  

 

𝑉𝑡ℎ and 𝑋𝑡ℎ are the equivalent Thevenin voltage and reactance as seen from the internal 

voltage of the generator. The initial states of the system are expressed as follows: 

 

𝛿0 = 26.29° Δ𝜔0 = 0 (5.39) 

 

The electrical power delivered by the generator to the infinite bus can be expressed as 

follows: 

  

𝑃𝑒 =
𝐸′𝑉𝑡ℎ
𝑋𝑡ℎ

sin (𝛿) (5.40) 

 

Three equivalent circuits are presented in Figure 5-5 for the SMIB facing a three-phase-

to-ground bolted short circuit. 
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Figure  5-5: Thevenin equivalent of the SMIB facing a short circuit on bus 3, a: before-fault, b: 
during-fault, c: after-fault 

 
Using Equation (5.40) and by considering the internal voltage of the generator (𝐸′) 

constant during the fault, the following equations can be obtained for the electrical power 

of the generator.  

𝑃𝑒1 =
1.3317 × 1.000

0.59
sin(𝛿) = 2.2571 sin (𝛿)  

𝑃𝑒2 =
1.3317 × 0.333

0.536
sin(𝛿) = 0.8264 sin (𝛿)  

𝑃𝑒3 =
1.3317 × 1.000

0.67
sin(𝛿) = 1.9870 sin (𝛿) (5.41) 
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The denominators in Equation (5.41) are the Thevenin reactance (𝑋𝑡ℎ) of the three 

circuits presented in Figure 5-5, as seen from the internal voltage of the generator. 𝑃𝑒1, 

𝑃𝑒2, and 𝑃𝑒3 are pre-, during-, and post-fault power of the generator, respectively. 

Performing the integration with the initial conditions, a comparison of the outputs of the 

model and the data generated by PowerWorld Simulator are provided in the following 

figures. 

 

 

Figure  5-6: Synchronous generator classical model verification of rotor angle. Fault applied at 
𝒕 = 𝟎.𝟓 𝒔𝒆𝒄 and cleared at 𝒕 = 𝟎.𝟔 𝒔𝒆𝒄 

 

 

Figure  5-7: Synchronous generator classical model verification of rotor frequency. Fault applied at 
𝒕 = 𝟎.𝟓 𝒔𝒆𝒄 and cleared at 𝒕 = 𝟎.𝟔 𝒔𝒆𝒄 
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Figure  5-8: Synchronous generator classical model verification of output power. Fault applied at 
𝒕 = 𝟎.𝟓 𝒔𝒆𝒄 and cleared at 𝒕 = 𝟎.𝟔 𝒔𝒆𝒄 

 

The validation results show the accuracy of the generator classical model and the 

numerical integration approach which have been used in this research. 

 

5-3-2. The Equal Area Criterion and Critical Fault Clearing Time 
 

The equal area criterion is a direct method to determine the stability of a power system 

without solving the nonlinear swing Equation (5.37). This method can be used for SMIB 

or two machine system [30]. The equal area criterion can be represented by the following 

equation. 

 

� (𝑃𝑚 −  𝑃𝑒)
𝛿1

𝛿0
𝑑𝛿

�����������
𝐴1

=  � (𝑃𝑒 −  𝑃𝑚)
𝛿2

𝛿1
𝑑𝛿

�����������
𝐴2

 (5.42) 
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In the above equation, δ0 is the initial rotor angle before fault, δ1 is the rotor angle when 

the fault is cleared, and δ2 is the maximum rotor angle which the machine reaches after 

clearing the fault. The system will remain stable if  δ2 does not exceeds 180 − δ0. 

Therefore, critical fault clearing time can be obtained by the following equation 

 

� �𝑃𝑚 −  𝑃𝑒,𝑑𝑢𝑟𝑖𝑛𝑔 𝑓𝑎𝑢𝑙𝑡�
𝛿𝑐𝑟

𝛿0
𝑑𝛿 =  � �𝑃𝑒,𝑎𝑓𝑡𝑒𝑟 𝑓𝑎𝑢𝑙𝑡 −  𝑃𝑚�

𝜋−𝛿0

𝛿𝑐𝑟
𝑑𝛿 (5.43) 

 

The critical fault clearing time for the SMIB case study presented in Section 5-3-1 is 

calculated here, where 𝑃𝑒,𝑑𝑢𝑟𝑖𝑛𝑔 𝑓𝑎𝑢𝑙𝑡 = 𝑃𝑒2 and  𝑃𝑒,𝑎𝑓𝑡𝑒𝑟 𝑓𝑎𝑢𝑙𝑡 = 𝑃𝑒3 in Equation (5.41) 

� �1 −  0.8264 𝑠𝑖𝑛(𝛿)�
𝛿𝑐𝑟

0.4589
𝑑𝛿 =  � (1.987 𝑠𝑖𝑛(𝛿) − 1)

2.6826

𝛿𝑐𝑟
𝑑𝛿 (5.44) 

 

Calculating the above integration, the critical fault clearing angle is obtained as 

 

𝛿𝑐𝑟 = 104.2° (5.45) 

 

Using δcr and from the solution to Equation (5-37), the critical fault clearing time is 

obtained as 

𝑡𝑐𝑟 = 0.89 𝑠𝑒𝑐 (5.46) 

 

The simulation results of the developed model and PowerWorld simulator for fault 

clearing time less and greater than 0.89 𝑠𝑒𝑐 are presented in Figure 5.9.  
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a) 𝒕𝒇𝒂𝒖𝒍𝒕−𝒄𝒍𝒆𝒂𝒓𝒊𝒏𝒈 = 𝟎.𝟖𝟕 𝒔𝒆𝒄 b) 𝒕𝒇𝒂𝒖𝒍𝒕−𝒄𝒍𝒆𝒂𝒓𝒊𝒏𝒈 = 𝟎.𝟖𝟗𝟐 𝒔𝒆𝒄 

Figure  5-9: Rotor angle, rotor frequency, and output power of the SMIB for fault clearing times: a) 
less than 𝒕𝒄𝒓 = 𝟎.𝟖𝟗 𝒔𝒆𝒄 (stable mode); b) greater than 𝒕𝒄𝒓 = 𝟎.𝟖𝟗 𝒔𝒆𝒄 (unstable mode) 
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𝛿2 = 

 
𝛿0 = 

Figure 5-9 shows that the fault clearing time should be less than 0.89 𝑠𝑒𝑐 to ensure 

stability of the system. This figure also shows the accuracy of the model and numerical 

integration approach used in this study. For better visual presentation, the 𝑃 − 𝛿 curves of 

the simulated system in both stable and unstable modes are presented here. 

 

 

(a) 

 

 

(b) 

Figure  5-10: 𝑷 − 𝜹 curves of the simulated system for the stable mode. a) Power-angle curve, b) equal 
area criterion: 𝑨𝟏 = 𝑨𝟐 
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(a) 

 

 
 

(b) 

Figure  5-11:  𝑷 − 𝜹 curves of the simulated system for the unstable mode. a) Rotor-angle curve, b) 
equal area criterion: 𝑨𝟏 > 𝑨𝟐 

 

The during-fault and post-fault areas (A1 and A2), calculated by Equation (5.42), and the 

values of 𝛿0, 𝛿1, and  𝛿2  are separately specified on each figure. 
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5-4. 2-Axis Fourth Order Model of the Synchronous Generator 
 

The next step is to develop the fourth order model of the synchronous generator which 

includes 𝑒𝑞′  and 𝑒𝑑′ , the 𝑞 and 𝑑 axis components of the generator internal voltage. Based 

on the phasor diagram of the synchronous machine presented in Figure 5-12, equations 

describing the 𝑞 and 𝑑 axis components of the generator internal voltage and their first 

order differential equations are given below [30]. 

 

Figure  5-12: Phasor diagram of the synchronous machine [31] 

 

𝑒𝑞′ = 𝑒𝑞 + 𝑅𝑎𝑖𝑞 + 𝑥𝑑′ 𝑖𝑑 (5.47) 

𝑒𝑑′ = 𝑒𝑑 + 𝑅𝑎𝑖𝑑 − 𝑥𝑞′ 𝑖𝑞 (5.48) 

𝑑𝑒𝑞′

𝑑𝑡
=

1
�́�𝑑
�𝐸𝑓𝑑 − 𝑒𝑞′ − (𝑥𝑑 − 𝑥𝑑′ )𝑖𝑑� (5.49) 

𝑑𝑒𝑑′

𝑑𝑡
=

1
�́�𝑞𝑜

�−𝑒𝑑′ + �𝑥𝑞 − 𝑥𝑞′ �𝑖𝑞� (5.50) 
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𝑥𝑑 and 𝑥𝑞 are the direct- and quadrature-axis reactance, and 𝑥𝑑′  and 𝑥𝑞′  are the direct and 

quadrature axis transient reactance, all in per unit. Also, �́�𝑑𝑜 and �́�𝑞𝑜 are the direct and 

quadrature axis transient open circuit time constants in second. 𝛿 is defined as the angle 

such that 𝑒𝑞′ , the q axis component of voltage behind transient reactance 𝑥𝑑′ , leads the 

terminal bus 𝐸𝑡 or 𝑉𝑡. Considering Figure 5-12, the d-axis and q-axis voltages (𝑒𝑑 ,  𝑒𝑞) 

can be expressed as [2, 31]  

�
𝑒𝑑 = 𝑉𝑡 𝑠𝑖𝑛 (𝛿)
𝑒𝑞 = 𝑉𝑡 𝑐𝑜𝑠 (𝛿)    

𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔
������    𝐸𝑡 = 𝑉𝑡 = �𝑒𝑑2 + 𝑒𝑞2 (5.51) 

 

In addition, the d-axis and q-axis currents (𝑖𝑑, 𝑖𝑞) are [2, 31] 

 

�
𝑖𝑑 = 𝐼𝑡 𝑠𝑖𝑛 (𝛿 + 𝜙)
𝑖𝑞 = 𝐼𝑡 𝑐𝑜𝑠 (𝛿 + 𝜙)    

𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔
������    𝐼𝑡 = �𝑖𝑑2 + 𝑖𝑞2 (5.52) 

 

Using Equations (5.47), (5.48) and (5.51) and by neglecting the stator resistance (𝑅𝑎 =

0), Equation (5.52) can be written as 

 

𝑖𝑑 =
𝑒𝑞′ − 𝑉𝑡 𝑐𝑜𝑠 (𝛿) 

𝑥𝑑′
 (5.53) 

𝑖𝑞 =
𝑉𝑡 𝑠𝑖𝑛 (𝛿) − 𝑒𝑑′  

𝑥𝑞′
 (5.54) 

 

The air gap torque 𝑇𝑒 of the generator in per unit is equal to the terminal power 𝑃𝑒 or 𝑃𝑡 

(generator terminal electrical power) [2]. Therefore, it is obtained as 
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𝑇𝑒 = 𝑃𝑡 + 𝑅𝑎𝐼𝑡2      
𝑅𝑎=0�⎯⎯�   𝑇𝑒 ≅ 𝑃𝑡 = 𝑒𝑑𝑖𝑑 + 𝑒𝑞𝑖𝑞 (5.55) 

 

Equations (5.51), (5.53), and (5.54) are inserted into Equation (5.55) to obtain 

 

𝑇𝑒 ≅ 𝑃𝑡 =
𝑉𝑡
𝑥𝑑′
𝑒𝑞′  𝑠𝑖𝑛(𝛿) −

𝑉𝑡
𝑥𝑞′
𝑒𝑑′  𝑐𝑜𝑠(𝛿) +

𝑉𝑡2

2
�

1
𝑥𝑞′

−
1
𝑥𝑑′
� 𝑠𝑖𝑛(2𝛿) (5.56) 

 

Using Equations (5.37), (5.49), (5.50), (5.53), (5.54), and (5.56), the fourth order model 

of a synchronous generator is derived as follows: 

 

𝑑𝛿
𝑑𝑡

= 𝜔0Δ𝜔  

𝑑Δ𝜔
𝑑𝑡

=
1

2𝐻
�𝑃𝑚 −

𝑉𝑡
𝑥𝑑′
𝑒𝑞′  𝑠𝑖𝑛(𝛿) +

𝑉𝑡
𝑥𝑞′
𝑒𝑑′  𝑐𝑜𝑠(𝛿) −

𝑉𝑡2

2
�

1
𝑥𝑞′

−
1
𝑥𝑑′
� 𝑠𝑖𝑛(2𝛿) − 𝐷Δ𝜔�  

𝑑𝑒𝑞′

𝑑𝑡
=

1
�́�𝑑𝑜

�𝐸𝑓𝑑 − 𝑒𝑞′ − (𝑥𝑑 − 𝑥𝑑′ )�
𝑒𝑞′ − 𝑉𝑡 𝑐𝑜𝑠 (𝛿) 

𝑥𝑑′
��  

𝑑𝑒𝑑′

𝑑𝑡
=

1
�́�𝑞𝑜

�−𝑒𝑑′ + �𝑥𝑞 − 𝑥𝑞′ � �
𝑉𝑡 𝑠𝑖𝑛 (𝛿) − 𝑒𝑑′  

𝑥𝑞′
�� (5.57) 

 

For numerical integration of Equation (5.57) with initial condition, accurate information 

about the voltage of the terminal bus is necessary which is not available all the time. 

Since the voltage phasor of the infinite bus is assumed as 1∠0° and is constant during 

simulation, it might be a good practice to express Equation (5.57) by infinite bus voltage 

 



105 
 

and define 𝛿 as the angle such that 𝑒𝑞′  leads the infinite bus voltage 𝑉∞. Therefore, this 

equation is modified as given below. 

  

𝑑𝛿
𝑑𝑡

= 𝜔0Δ𝜔  

𝑑Δ𝜔
𝑑𝑡

=
1

2𝐻
�𝑃𝑚 −

𝑉𝑡ℎ
𝑥𝑑′ + 𝑥𝑡ℎ

𝑒𝑞′  𝑠𝑖𝑛(𝛿) +
𝑉𝑡ℎ

𝑥𝑞′ + 𝑥𝑡ℎ
𝑒𝑑′  𝑐𝑜𝑠(𝛿) −

𝑉𝑡ℎ
2

2
�

1
𝑥𝑞′ + 𝑥𝑡ℎ

−
1

𝑥𝑑′ + 𝑥𝑡ℎ
� 𝑠𝑖𝑛(2𝛿)

− 𝐷Δ𝜔� 

𝑑𝑒𝑞′

𝑑𝑡
=

1
�́�𝑑𝑜

�𝐸𝑓𝑑 − 𝑒𝑞′ − (𝑥𝑑 − 𝑥𝑑′ )�
𝑒𝑞′ − 𝑉𝑡ℎ 𝑐𝑜𝑠 (𝛿) 

𝑥𝑑′ + 𝑥𝑡ℎ
��  

𝑑𝑒𝑑′

𝑑𝑡
=

1
�́�𝑞𝑜

�−𝑒𝑑′ + �𝑥𝑞 − 𝑥𝑞′ � �
𝑉𝑡ℎ 𝑠𝑖𝑛 (𝛿) − 𝑒𝑑′  

𝑥𝑞′ + 𝑥𝑡ℎ
�� 

 

(5.58) 

 

 

𝑉𝑡ℎ  and 𝑥𝑡ℎ are the Thevenin voltage and reactance as seen from the generator terminal. 

The Thevenin equivalent circuits of the SMIB case study of this chapter related to the 

pre-fault, during-fault, and post-fault situations are presented in Figure 5-13. 
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Figure  5-13: Thevenin equivalent of the SMIB case study, a: before-fault, b: during-fault, c: after-
fault 

 

 

The Thevenin voltage and reactances of the circuits are presented in the following table. 

 
Table  5-2: Thevenin equivalent of the SMIB case study for short circuit applied at Bus 3 

 
SMIB case study 𝑉𝑡ℎ (𝑝.𝑢) 𝑥𝑡ℎ(𝑝.𝑢) 

Before fault 1 0.22 
During fault 0.333 0.16 
After fault 1 0.3 
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5-4-1. Model Validation 
 

The main parameters of the power system case study used in this part are presented in the 

following table. The contingency scenario considered for this case is similar to the one 

used for the validation of the classical model in the previous section. 

 

Table  5-3: Parameters of the simulated synchronous generator 

𝐷,𝐻 Damping factor and inertia constant, per unit 0.05, 5 
𝑥𝑑 , 𝑥𝑞  Direct and Quadratic axis reactance, per unit 2.06, 1.21 
�́�𝑑 , �́�𝑞 Direct and Quadratic axis transient reactance, per unit 0.37, 0.37 
�́�𝑑𝑜 , �́�𝑞𝑜 Direct and Quadratic axis open circuit time constant, sec 7, 0.75 
𝑇𝑚 Mechanical input, per unit 1 
 

The only remaining part before performing the integration of the Equation (5.58) is to 

obtain the initial conditions of the four states of the 2-axis model. Equation (5.38) in 

complex form is as follows: 

 

𝐼 = 𝐼𝑟 + 𝑗𝐼𝑖 = 1.05263 ∠ − 18.192° = 1 − 𝑗0.3287 𝑝𝑒𝑟 − 𝑢𝑛𝑖𝑡 (5.59) 

 

Therefore, the terminal voltage before fault is obtained as 

 

𝑉𝑇 = 𝑉∞ + 𝑗𝑋𝑡ℎ𝐼 = 1∠0° + (𝑗0.22) × (1.05263 ∠ − 18.192°)
= 1.0723 + 𝑗0.22 = 𝑉𝑟 + 𝑗𝑉𝑖 𝑝𝑒𝑟 − 𝑢𝑛𝑖𝑡 (5.60) 

 

The internal voltage of the generator is obtained as 
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�́� = 𝑉𝑇 + 𝑗𝑥𝑞𝐼 = 𝐸0∠𝛿0 = 2.05∠44.26° (5.61) 

 

The equations for transforming the network quantities to 𝑑 − 𝑞 reference frame and 

reverse for voltage and current are given below [30]. 

 

�𝑉𝑟𝑉𝑖
� = � 𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿

−𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝛿� �
𝑉𝑑
𝑉𝑞
� �𝐼𝑟𝐼𝑖

� = � 𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿
−𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝛿� �

𝐼𝑑
𝐼𝑞
�  

�
𝑉𝑑
𝑉𝑞
� = �𝑠𝑖𝑛𝛿 −𝑐𝑜𝑠𝛿

𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝛿 � �𝑉𝑟𝑉𝑖
� �

𝐼𝑑
𝐼𝑞
� = �𝑠𝑖𝑛𝛿 −𝑐𝑜𝑠𝛿

𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝛿 � �𝐼𝑟𝐼𝑖
� (5.62) 

 

Using Equation (5.61) in Equation (5.62), the initial values of the voltages and currents 

are obtained as  

  

�
𝑉𝑑0
𝑉𝑞0

� = �0.589
0.921� �

𝐼𝑑0
𝐼𝑞0
� = �0.9328

4875 � (5.63) 

 

Using Equations (5.47), (5.48), and (5.63), the initial values of the generator internal 

voltage are obtained as 

 

𝐸𝑞0′ = 1.266 𝑝𝑒𝑟 − 𝑢𝑛𝑖𝑡 𝐸𝑑0′ = 0.4092 𝑝𝑒𝑟 − 𝑢𝑛𝑖𝑡 (5.64) 

 

Now, after calculating all of the initial conditions, the integration can be performed. A 

comparison among the outputs of the model and the data generated by PowerWorld 

Simulator are provided in the following figures. Figure 5-14 shows that the 2-axis fourth 
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order model developed in this part and the linearized numerical integration approach used 

in this study have adequate accuracy. 

 

 

Figure  5-14: Synchronous generator 2-axis model validation  
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5-5. Multi-Machine Modeling and Stability Analysis 
 

In this section, multi-machine modeling is explained and transient stability analysis is 

performed. The case study considered for this part is IEEE 3-Generator-9-Bus Test 

System which is shown in Figure 5-15. 

 

Figure  5-15: IEEE 3-Generator-9-Bus Test System simulated in PowerWorld [29] 

 

All generators are represented by the classical model of the synchronous generator as 

explained in Section 5-3. The first step for transient stability analysis of a multi-machine 

system is to find the initial conditions of the generators and buses. The steady state 

voltages and angles of the buses can be easily obtained by power flow solution. These 

initial conditions along with the main parameters of the generators are presented in   

Table 5-4.  
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Table  5-4: Parameters and initial conditions of the IEEE 3-Generator-9-Bus Test System 

𝐷1,𝐷2,𝐷3 Damping factor, per unit 0, 0, 0 
𝐻1,𝐻2,𝐻3 Inertia constant, per unit 23.64, 6.4, 3.01 
�́�𝑑1, �́�𝑑2, �́�𝑑3 Direct axis transient reactance, per unit 0.0608, 0.1198, 0.1813 
𝑇𝑚1,𝑇𝑚2,𝑇𝑚3 Mechanical input, per unit 0.7164, 1.63, 0.85 
𝑃𝑏𝑎𝑠𝑒 System base power 100 MVA 

𝑉1,𝑉2,𝑉3,𝑉4 Bus voltages, per unit 
1∠0°   1.025∠9.28° 1.025∠4.66° 

1.0258∠ − 2.22° 

𝑉5,𝑉6,𝑉7,𝑉8,𝑉9 Bus voltages, per unit 0.995∠ − 3.99° 1.012∠ − 3.69° 1.025∠3.72° 
1.015∠0.73° 1.0323∠1.97°  

 

The initial internal voltages of the generators can be calculated using the following 

equation [30]. 

𝐸𝑖′ = 𝑉𝑖 + 𝑗𝑥𝑑′ 𝐼𝑖 = 𝐸𝑖′∠𝛿𝑖 (5.65) 

 

Where 𝑉𝑖 and 𝐼𝑖 are the voltages and currents of the generators main bus. Also 𝐼𝑖 can be 

calculated using the following equation [30]. 

𝐼𝑖 =
𝑃𝑖 − 𝑗𝑄𝑖
𝑉𝑖∗

 (5.66) 

 

Using Equations (5.65) and (5.66), the internal voltages of the generators are as follows: 

 

𝐸1′ = |𝐸1′|∠𝛿1 = 1.0558 + 𝑗0.0421 = 1.0566∠2.283°  

𝐸2′ = |𝐸2′ |∠𝛿2 = 0.9887 + 𝑗0.3546 = 1.0502∠19.73°  

𝐸3′ = |𝐸3′ |∠𝛿3 = 0.9900 + 𝑗0.2315 = 1.0169∠13.16° (5.67) 
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The general equation relating the voltages and currents of a multi-machine system is 

given below [32].  

𝐼𝑏𝑢𝑠 = 𝑌𝑏𝑢𝑠 𝑉𝑏𝑢𝑠 (5.68) 

 

𝐼𝑏𝑢𝑠 and 𝑉𝑏𝑢𝑠 are the vector of the injected bus currents and bus voltages. Therefore, 

separating 𝑌𝑏𝑢𝑠 to submatrices in a meaningful way leads to 

 

�0𝐼𝑖
� = �

𝑌11 𝑌12
𝑌12𝑇 𝑌22

� �
𝑉𝑖
𝐸𝑖′
� (5.69) 

 

𝑌11 is similar to the conventional 𝑌𝑏𝑢𝑠 used for power flow analysis, except that the 

diagonal elements of 𝑌11 include the load admittances and inverted generator transient 

reactance. The load admittance is calculated by the following equation.  

 

𝑌𝐿𝑜𝑎𝑑,𝑘 =
𝑃𝐿,𝑘 − 𝑗𝑄𝐿,𝑘

𝑉𝑘2
 (5.70) 

 

Also, the 𝑘𝑡ℎ element of 𝑌12 is [30] 

 

𝑌12𝑘𝑚 = �
−1
𝑗𝑥𝑑𝑛′

       𝑖𝑓 𝑘 = 𝐺𝑛 𝑎𝑛𝑑 𝑚 = 𝑛

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.71) 
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𝑌22 is considered in the general bus matrix of the system (𝑌𝑏𝑢𝑠) in such a way that 

Equation (5.68) includes internal voltages of the generators. This matrix can be written as 

follows: 

𝑌22 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑗𝑥𝑑1′

0 … 0

0
1
𝑗𝑥𝑑2′

0 ⋮

⋮ 0 ⋱ 0

0 0 …
1

𝑗𝑥𝑑𝑚′ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.72) 

 

𝑚 is the number of generators. Equation (5.69) can be written as 

 

0 = 𝑌11𝑉𝑖 + 𝑌12𝐸𝑖′  

𝐼𝑖 = 𝑌12𝑇 𝑉𝑖 + 𝑌22𝐸𝑖′ (5.73) 

 

Therefore, calculating 𝑉𝑖 from the first expression of the above equation and inserting in 

the second one, leads to 

𝐼𝑖 = [𝑌22 − 𝑌12𝑇 𝑌11−1𝑌12]𝐸𝑖′ = 𝑌𝑏𝑢𝑠𝑟𝑒𝑑 𝐸𝑖′ (5.74) 

 

Considering each element of 𝑌𝑏𝑢𝑠𝑟𝑒𝑑 as 𝑌𝑖𝑗 = �𝑌𝑖𝑗�∠𝜃𝑖𝑗, 𝑃𝑒𝑖 in each time step can be 

expressed by the following equation [32]. 

 

𝑃𝑒𝑖 = �|𝐸𝑖′|
𝑚

𝑗=1

�𝐸𝑗′��𝑌𝑖𝑗� cos�𝜃𝑖𝑗 − 𝛿𝑖 − 𝛿𝑗� (5.75) 
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Similar to Equation (5.72), 𝑚 is the number of generators. The classical model of the 

multi-machine system based on Equation (5.37) is represented as follows: 

𝑑𝛿1
𝑑𝑡

= 𝜔0Δ𝜔1  

𝑑Δ𝜔1

𝑑𝑡
=

1
2𝐻1

(𝑃𝑚1 − 𝑃𝑒1 − 𝐷Δ𝜔1)  

𝑑𝛿2
𝑑𝑡

= 𝜔0Δ𝜔2  

𝑑Δ𝜔2

𝑑𝑡
=

1
2𝐻2

(𝑃𝑚2 − 𝑃𝑒2 − 𝐷Δ𝜔2)  

𝑑𝛿3
𝑑𝑡

= 𝜔0Δ𝜔3  

𝑑Δ𝜔3

𝑑𝑡
=

1
2𝐻3

(𝑃𝑚3 − 𝑃𝑒3 − 𝐷Δ𝜔3) (5.76) 

 

In each time step, 𝑃𝑒𝑖 is calculated using Equation (5.75) and inserted in Equation (5.76) 

to find 𝛿𝑖+1 and Δ𝜔𝑖+1. The absolute values of 𝐸𝑖′ and 𝑃𝑚𝑖 are considered constant during 

numerical integration and 𝛿𝑖 is updated during each time step simulation.  

The fault scenario considered for this case is a balanced three-phase to ground fault on 

Bus 7 at 𝑡 = 0.5𝑠𝑒𝑐 which is cleared at 𝑡 = 0.6𝑠𝑒𝑐 for the first simulation and              

𝑡 = 0.7 𝑠𝑒𝑐 for the second one to include both stable and unstable analysis. The 𝑌𝑏𝑢𝑠 of 

the system before and after fault are the same. During-fault period, the 7𝑡ℎ row and 

column of 𝑌11 are eliminated, and the 𝑌𝑏𝑢𝑠 is calculated using Equation (5.74). The 

simulation results of this part are presented in Figure 5.16 and Figure 5.17. These results 

show clearly that the procedure being used in this section for multi-machine modeling 

and fault analysis are valid and have acceptable accuracy. 
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(a) 
 

 

(b) 
 

 

(c) 

Figure  5-16: IEEE 3-Generator-9-Bus Test System transient stability analysis in stable operation; 
fault applied at 𝒕 = 𝟎.𝟓 𝒔𝒆𝒄 and cleared at= 0.6 sec: a) Rotor angle  b) Rotor frequency  c) Generator 

output power 
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(a) 
 

 

(b) 
 

 

(c) 

Figure  5-17: IEEE 3-Generator-9-Bus Test System transient stability analysis in unstable operation; 
fault applied at 𝒕 = 𝟎.𝟓 𝒔𝒆𝒄 and cleared at= 0.7 sec: a) Rotor angle  b) Rotor frequency  c) Generator 

output power 

0.5 1 1.5 2 2.5 3
0

200

400

600

800

Delta

Time (sec)

El
ec

tri
ca

l D
eg

re
e

 

 

G1, Model
G1, Power World
G2, Model
G2, Power World
G3, Model
G3, Power World

0 0.5 1 1.5 2 2.5 3 3.559

60

61

62

63
Rotor Frequency

Time (sec)

R
ot

or
 F

re
qu

en
cy

 (H
z)

 

 

G1, Model
G1, Power World
G2, Model
G2, Power World
G3, Model
G3, Power World

0 0.5 1 1.5 2 2.5 3 3.5-3

-2

-1

0

1

2

3

4
Pt

Time (sec)

G
en

er
at

or
 O

ut
pu

t P
ow

er
 (p

.u
)

 

 

G1, Model
G1, Power World
G2, Model
G2, Power World
G3, Model
G3, Power World

 



117 
 

Figure 5.16 shows the simulation results for multi-machine system in stable mode and 

Figure 5.17 corresponds to the simulation results for unstable multi-machine power 

system. In both figures, results of the model integration are compared with the data 

provided by PowerWorld simulator. The multi-machine model presented in Equation 

(5.76) cannot be used for dynamic state estimation in the IEEE 3-Generator-9-Bus 

System, because the optimal estimation approaches used in this study are developed 

based on the fourth order model of the machine. However, as it is assumed that online 

information of the main buses of the system are provided by PMU data, the fourth order 

model which is validated for SMIB, is applicable for online state estimation in multi-

machine system, without the need for further validation for such a large system. 

 

5-6. Summary 
 

In this chapter, a simple RLC example is presented to clarify the idea of state space 

modeling and numerical integration. The mathematical description of a synchronous 

generator is then presented and used for the classical model of the machine. After 

validating the classical model, the equal area criterion along with two examples and 

related figures are explained in detail. The 2-axis fourth order model of a synchronous 

generator is then derived and validated. The multi-machine modeling and transient 

stability analysis are developed and used for fault analysis of the IEEE 3-Generator-9-Bus 

Test System. In all the simulations, results of the developed models are compared with 

the results obtained by PowerWorld Simulator to validate the models.  
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CHAPTER 6 

6. Dynamic State Estimation in Power Systems 
 

 

 

6-1. Introduction 
 
In this chapter the nonlinear estimation methods proposed in Chapter 2, EKF and UKF, 

are applied for dynamic state estimation in the power system case studies discussed in 

Chapter 5. The first case study is a Single-Machine-Infinite-Bus (SMIB) which can be 

considered as the smallest part of an interconnected large power system, and the second 

one is the IEEE 3-Generator-9-Bus Test System. Dynamic state estimation of power 

systems is necessary for wide area control purposes. Precise, accurate, and well-timed 

information about rotor angle and speed deviation, among the states of the synchronous 

machine, have precious value to enhance power system reliability and stability [2, 28]. 
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Therefore, the aim of this chapter is to design suitable estimators using Kalman Filter to 

estimate the main states of a synchronous machine in the two power system case studies.  

In recent years, many researches in the field of dynamic power system estimation have 

focused on Kalman Filter as an efficient recursive estimation approach [1- 4]. Before the 

advent of Phasor Measurement Units (PMUs) [7], online state estimation in power 

systems using low rate and non-synchronous data provided by Supervisory Control and 

Data Acquisition (SCADA) measurements was inefficient. As PMUs are becoming more 

adopted worldwide, real time state estimation in power systems is becoming more 

realizable [2]. As mentioned in Chapter 4, PMU is a recently developed power system 

measurement device that samples input three phase voltage 𝑉𝑎𝑏𝑐 and current 𝐼𝑎𝑏𝑐 

waveforms, using a common synchronizing signal received by Global Positioning System 

(GPS), and calculates the phasors (magnitudes and angles) of the bus by deploying 

Discrete Fourier Transform [7].  

Researchers have used various estimation approaches and case studies to investigate 

dynamic state estimation in power systems. In [1], feasibility studies of applying 

Extended Kalman Filter (EKF) to IEEE 3-Generator-9-Bus Test System using second 

order model of the synchronous generator are investigated. SMIB is the case study for 

evaluating an EKF based estimator in [2], considering lack of field voltage. Also, UKF is 

the main approach in [28] to design an observer for SMIB using PMU installed on the 

main bus of the generator. Both of these articles have used 2-axis fourth order state space 

model of the synchronous machine. References [3, 4] have applied UKF to different 

power system case studies using second order synchronous generator model while 

considering speed and electrical output power of the machine as available measurements. 
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In [5], a divide-by-difference-filter based algorithm is proposed for dynamic estimation of 

the generator rotor angle in a large power system. The results of state estimation in a 

SMIB using extended particle filter are also presented in [6]. 

In this chapter, EKF and UKF based estimators are used for dynamic state estimation in 

SMIB and IEEE 3-Generator-9-Bus Test System case studies. The two-axis fourth order 

model of the synchronous machine is used in the estimation process, and the obtained 

simulation results are compared. 

 

6-2. SMIB State Space Model 
 

In this section, the fourth order state space model of a synchronous generator is described, 

and discretized equations suitable for recursive methods are developed. Four states of a 

synchronous machine, namely rotor angle 𝛿, rotor speed deviation ∆𝜔, and internal 

voltages 𝑒�́� and 𝑒�́� are estimated simultaneously in the estimation process. In order to 

reach a noise free output power signal, 𝑃𝑡 as the only measurement of the system is also 

estimated along with the other states. The general block diagram of the dynamic state 

estimator for SMIB is presented in Figure 6-1. 
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Figure  6-1: General diagram of the online state estimator for SMIB using PMU signal [28] 

 

It is assumed that a PMU is installed on the main bus of the generator; therefore, the       

2-axis model presented in Equation (5.57) is used in this part for the dynamic state 

estimation. 𝑉𝑡 is considered as the reference phasor, and the synchronous generator can be 

represented in the 𝑑𝑞𝑜 reference frame by the following fourth order nonlinear state space 

model [2] 

 
𝑋 = [𝛿 ∆𝜔 𝑒�́� 𝑒�́�]𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇  

 𝑈 = [𝑃𝑚 𝐸𝑓𝑑]𝑇 = [𝑢1 𝑢2]𝑇  

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑥1̇ = 𝜔0𝑥2

𝑥2̇ =
1

2𝐻
(𝑢1 − 𝑃𝑒 − 𝐷𝑥2)

𝑥3̇ =
1
�́�𝑑𝑜

(𝑢2 − 𝑥3 − (𝑥𝑑 − 𝑥𝑑′ )𝑖𝑑)

𝑥4̇ =
1
�́�𝑞𝑜

�−𝑥4 + �𝑥𝑞 − 𝑥𝑞′ �𝑖𝑞�

 (6.1) 

 



122 
 

 

In Equation (6.1) 𝜔0 = 2𝜋𝑓0 is the rated synchronous frequency (𝑒𝑙𝑒𝑐. 𝑟𝑎𝑑/𝑠𝑒𝑐), 𝑃𝑚 the 

mechanical input power from the prime mover (𝑝𝑢), 𝑃𝑒 the air gap electrical output power 

(𝑝𝑢), 𝐸𝑓𝑑 the exciter or field voltage as seen from the armature (𝑝𝑢), and 𝛿 the rotor angle 

in (𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑛) [2]. Using the fourth order model presented in Equations (5.57) 

and (6.1) and by including 𝑉𝑡 in input vector 𝑈, the state space model of the synchronous 

generator can be expressed as follows: 

 

 
𝑋 = [𝛿 ∆𝜔 𝑒�́� 𝑒�́�]𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇  

 

𝑈 = [𝑇𝑚 𝐸𝑓𝑑 𝑉𝑡]𝑇 = [𝑢1 𝑢2 𝑢3]𝑇  

 

�

𝑥1̇
𝑥2̇
𝑥3̇
𝑥4̇

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜔0𝑥2

1
2𝐻

�𝑃𝑚 − �
𝑉𝑡
𝑥𝑑′
𝑥3𝑠𝑖𝑛(𝑥1) −

𝑉𝑡
𝑥𝑞′
𝑥4 𝑐𝑜𝑠(𝑥1) +

𝑉𝑡2

2
�

1
𝑥𝑞′

−
1
𝑥𝑑′
� 𝑠𝑖𝑛(2𝑥1)�− 𝐷𝑥2�

1
�́�𝑑𝑜

�𝐸𝑓𝑑 − 𝑥3 − �𝑥𝑑 − 𝑥𝑑′ � �
𝑥3 − 𝑉𝑡𝑐𝑜𝑠(𝑥1)

𝑥𝑑′
��

1
�́�𝑞𝑜

�−𝑥4 + �𝑥𝑞 − 𝑥𝑞′ � �
𝑉𝑡𝑠𝑖𝑛(𝑥1) − 𝑥4

𝑥𝑞′
��

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

 
[𝑦1] = [𝑃𝑡] = �

𝑉𝑡
𝑥𝑑′
𝑥3𝑠𝑖𝑛(𝑥1)−

𝑉𝑡
𝑥𝑞′
𝑥4 𝑐𝑜𝑠(𝑥1) +

𝑉𝑡2

2
�

1
𝑥𝑞′

−
1
𝑥𝑑′
� 𝑠𝑖𝑛(2𝑥1)� (6.2) 

 

This model is suitable for discrete-time nonlinear state estimation with the electrical 

output power as the single measurement signal. However, according to Figure 6-1, 𝑉𝑡,𝑃𝑡 , 

and 𝑄𝑡 are also accessible signals from the PMU installed on the generator terminal bus 
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which are not used for this study. The discretized state space model of the system using 

the first order approximation of Taylor Series is given by  

 

𝑋𝑘 = �𝛿𝑘 ∆𝜔𝑘 𝑒�́�
𝑘 𝑒�́�

𝑘�
𝑇

= [𝑥1𝑘 𝑥2𝑘 𝑥3𝑘 𝑥4𝑘]𝑇 
 

⎣
⎢
⎢
⎢
⎡𝑥1

𝑘+1

𝑥2𝑘+1

𝑥3𝑘+1

𝑥4𝑘+1⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥1𝑘 + 𝑇𝑠𝜔0𝑥2𝑘

𝑇𝑠
2𝐻

�𝑃𝑚𝑘 −
𝑉𝑡𝑘

𝑥𝑑′
𝑥3𝑘𝑠𝑖𝑛�𝑥1𝑘� +

𝑉𝑡𝑘

𝑥𝑞′
𝑥4𝑘 𝑐𝑜𝑠�𝑥1𝑘� −

�𝑉𝑡𝑘�
2

2
�

1
𝑥𝑞′
−

1
𝑥𝑑′
� 𝑠𝑖𝑛�2𝑥1𝑘�� + �1 −

𝐷𝑇𝑠
𝐽
� 𝑥2𝑘

𝑇𝑠
�́�𝑑𝑜

�𝐸𝑓𝑑𝑘 − (𝑥𝑑 − 𝑥𝑑′ ) �
𝑥3𝑘 − 𝑉𝑡𝑘𝑐𝑜𝑠�𝑥1𝑘�

𝑥𝑑′
�� + �1 −

𝑇𝑠
�́�𝑑𝑜

� 𝑥3𝑘

𝑇𝑠
�́�𝑞𝑜

��𝑥𝑞 − 𝑥𝑞′ � �
𝑉𝑡𝑘𝑠𝑖𝑛�𝑥1𝑘� − 𝑥4𝑘  

𝑥𝑞′
�� + �1 −

𝑇𝑠
�́�𝑞𝑜

� 𝑥4𝑘

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑦1𝑘 =
𝑉𝑡𝑘

𝑥𝑑′
𝑥3
𝑘𝑠𝑖𝑛�𝑥1

𝑘� −
𝑉𝑡𝑘

𝑥𝑞′
𝑥4
𝑘 𝑐𝑜𝑠�𝑥1

𝑘� +
�𝑉𝑡𝑘�

2

2 �
1
𝑥𝑞′
−

1
𝑥𝑑′
� 𝑠𝑖𝑛�2𝑥1𝑘� (6.3) 

 

In the above equation, 𝑇𝑠 is the sampling time. Using this model and deploying the high 

rate data provided by the PMU, designing an online state estimator for SMIB is 

realizable. In the next section, the Jacobian matrices of the system model and the output 

equation are calculated. 
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6-3. SMIB Dynamic State Estimation Using EKF and UKF 
 

The partial derivative matrices of the system and the output equations, necessary for the 

recursive EKF algorithm, are calculated in this section. These derivatives are performed 

as follows [2]: 

 

𝐹𝑘 =
𝜕𝑓𝑘
𝜕𝑋

=
𝜕𝑋𝑘+1
𝜕𝑋

 
 

(6.4) 

      = �𝜕𝑥1
𝑘+1

𝜕𝑋𝑘
𝜕𝑥2𝑘+1

𝜕𝑋𝑘
𝜕𝑥3𝑘+1

𝜕𝑋𝑘
𝜕𝑥4𝑘+1

𝜕𝑋𝑘
�
𝑇
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𝜕𝑥2𝑘
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𝜕𝑥3𝑘
𝜕𝑥1𝑘+1

𝜕𝑥4𝑘
� 

 

𝜕𝑥2𝑘+1

𝜕𝑋𝑘
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𝜕𝑥2𝑘+1

𝜕𝑥1𝑘
𝜕𝑥2𝑘+1
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𝜕𝑥3𝑘
𝜕𝑥2𝑘+1

𝜕𝑥4𝑘
� 

 

             = [𝐹11 𝐹12 𝐹13 𝐹14] 
 

             = [𝐹21 𝐹22 𝐹23 𝐹24] 
 

𝜕𝑥3𝑘+1

𝜕𝑋𝑘
= �

𝜕𝑥3𝑘+1

𝜕𝑥1𝑘
𝜕𝑥3𝑘+1

𝜕𝑥2𝑘
𝜕𝑥3𝑘+1

𝜕𝑥3𝑘
𝜕𝑥3𝑘+1

𝜕𝑥4𝑘
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𝜕𝑥1𝑘
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𝜕𝑥2𝑘
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𝜕𝑥3𝑘
𝜕𝑥4𝑘+1

𝜕𝑥4𝑘
� 

 

             = [𝐹31 𝐹32 𝐹33 𝐹34] 
              = [𝐹41 𝐹42 𝐹43 𝐹44] 

 

Therefore, using Equations (6.3) and (6.4), the elements of the Jacobian matrix can be 

calculated as follows: 

 

𝐹11 = 1 𝐹12 = 𝑇𝑠𝜔0 𝐹13 = 𝐹14 = 0 
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𝑇𝑠
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𝑉𝑡𝑘
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𝑥𝑞′
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The partial derivative of the output equation is calculated using Equation (2.53) and is 

presented here. 
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6-3-1. Simulation Results 
 

In this part EKF and UKF are employed for dynamic state estimation in SMIB using 

discrete state space model presented in Equation (6.3). Original data obtained from the 

contingency analysis of the system in PowerWorld Simulator [29] is injected into the 

designed estimators in MATLAB [25] to have a reliable simulation results. The first 

simulation scenario is a symmetrical permanent three-phase-to-ground bolted short circuit 

which occurs on the middle of the second transmission line at 𝑡 = 0.5 𝑠𝑒𝑐. The fault is 

cleared after 0.1 𝑠𝑒𝑐 by opening the circuit breakers at the ends of this transmission line, 

and the system retains its stability after clearing the fault. The parameters of the SMIB are 

the same as the ones presented in Table 5-3. As shown in Figure 6-1, 𝑃𝑡 and 𝑉𝑡 (phasor) 

are accessible from the PMU which is installed on Bus-4. 𝐸𝑓𝑑 and 𝑇𝑚 are also measurable 

signals from the synchronous generator terminal [2]. Measurement and process noise 

covariance are considered as 𝑅𝑘 = 0.0002 × 𝐼 and 𝑄 = 0.072 × 𝐼, respectively [2]. The 

simulation results for the main states and the single output of the system are presented in 

Figure 6-3 to Figure 6-6. These figures provide the estimated states of the system plus the 

measurement estimation with EKF and UKF under different sampling rates. In each 

figure, the real data obtained from PowerWorld Simulator is also shown to provide better 

evaluation for the accuracy of the estimation.  
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Figure  6-2: Rotor angle estimation using EKF and UKF with different PMU sampling rate (Electrical 
Degree) 

 

 

Figure  6-3: Rotor speed estimation using EKF and UKF with different PMU sampling rate (Hz) 
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Figure  6-4: Q-axis internal voltage estimation using EKF and UKF with different PMU sampling rate 
(per unit) 

 
 

 
Figure  6-5: D-axis internal voltage estimation using EKF and UKF with different PMU sampling rate 

(per unit) 
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Figure  6-6: Terminal power estimation using EKF and UKF with different PMU sampling rate (per 
unit) 
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because of the higher output power. The results of the output power estimation using EKF 

and UKF for this operational condition are also presented in Figure 6-7 to Figure 6-11.  

  

 

Figure  6-7: Rotor angle estimation using EKF and UKF in unstable mode (Electrical Degree) 

 

 

Figure  6-8: Rotor speed estimation using EKF and UKF in unstable mode (Hz) 
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Figure  6-9: Q-axis internal voltage estimation using EKF and UKF in unstable mode (per unit) 

 

 
 

Figure  6-10: D-axis internal voltage estimation using EKF and UKF in unstable mode (per unit) 
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Figure  6-11: Terminal power estimation using EKF and UKF in unstable mode (per unit) 

 

These figures show the estimated states and single output of the machine in comparison 

with the real data provided by PowerWorld Simulator in unstable mode. Based on the 

simulation results, it can be concluded that in the unstable mode, EKF is capable of 

capturing the transient response of the states and rejecting the noise effect on the power 

signal from the PMU. In contrast, the results of UKF for this mode of operation are not 

satisfactory.  

 

6-4. Dynamic State Estimation in IEEE 3-Generator-9-Bus Test System Using EKF 
and UKF 
 

In this section, IEEE 3-Generator-9-Bus Test System model is considered as a simulation 

case study to evaluate the ability of the designed EKF and UKF based estimators for state 

estimation in a larger power system, facing a major contingency. The PowerWorld 

diagram of the system is presented in Figure 6-12.  
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Figure  6-12: IEEE 3-Generator-9-Bus Test System PowerWorld model 
 

It is assumed that three PMUs are installed on bus 1, bus 2, and bus 3, and the data 

provided by PMUs is received at the same time by an assumed PDC. All three 

synchronous generators are considered with 2-axis fourth order model and have the same 

characteristics as presented previously in Table 5-3. The simulation scenario is a 

symmetrical three phase fault at 𝑡 = 0.5 𝑠𝑒𝑐 on bus 8 which is cleared after 0.1 𝑠𝑒𝑐. The 

results of dynamic state estimation for each generator in this stable case study are 

presented in Figure 6-13 to Figure 6-15. It should be noted that Equation (6.3) is the 

discrete state space model considered for each synchronous generator. In other words, 12 

state variables and 3 measurements are estimated in each iteration. Although models of 

the exciters and governors are not validated in Chapter 5 of this thesis, all of the 

generators of this case study are controlled by an exciter and a governor. As it is assumed 

that the PMUs are installed on the main buses of the generators, it is not theoretically 

necessary to validate models of the exciter and governor for dynamic state estimation; 

however, it can be a separate field of study for further investigation in this area. 
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Figure  6-13: States and output estimation of Generator 1 using EKF and UKF 
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Figure  6-14: States and output estimation of Generator 2 using EKF and UKF 
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Figure  6-15: States and output estimation of Generator 3 using EKF and UKF 
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Simulation results, presented in Figure 6.13 to Figure 6.15, reveal the ability of both EKF 

and UKF based observers for tracking and noise rejection of output power signals of the 

generators during transient and steady state response. However, in terms of accuracy of 

the estimation, EKF based estimator is more accurate than UKF. In addition, EKF is able 

to track states of the system with PMU data rate of 100 samples/sec, while UKF diverges 

with low data rate.  

 

6-5. Applications of Dynamic State Estimation in Power Systems 
 

The procedure of designing an estimator for a synchronous machine which can be used 

for dynamic state estimation in a power system is explained in the previous sections of 

this chapter in detail. In this section, a possible application of dynamic state estimation in 

power system is discussed. Figure 6.16 shows the complete idea of a Kalman Filter based 

estimator designed in this study for a synchronous machine.   

 

Figure  6-16: Complete diagram of a KF based estimator for a synchronous machine 
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Figure 6-16 shows that the basic model simulated in PowerWorld simulator is being 

controlled by two separate control feedback loops for the exciter and governor. Some of 

the outputs of the simulator (𝑃𝑚, 𝐸𝑓𝑑, 𝑉𝑡, and 𝑃𝑡) are used as inputs for the optimal 

estimator block, and the others (𝛿, Δ𝜔, 𝑒𝑞′ , 𝑒𝑑′ ) are obtained to be compared with the 

estimated states. It is clear from this figure that the observer is designed to accurately 

estimate the main states of the synchronous machine (𝛿, Δ𝜔, 𝑒𝑞′ , 𝑒𝑑′ ), and eliminate the 

effect of noise on the measurement signal, which in this case is externally added to this 

signal (𝑃𝑡) before injecting to the observer block. This is done to make the case study 

much more similar to a practical case. The estimated power is also used to evaluate the 

ability of the estimator block for eliminating noise of input signals.  

A practical application of dynamic state estimation for a power system is to put the 

estimator block in the feedback loop of the governor of the machine. This can be 

considered as a sensorless control of the machine where the input signal of the governor 

(Δ𝜔) is not provided by a physical sensor and is actually the estimated speed provided by 

the KF based estimator. The complete diagram of this application is presented in      

Figure 6-17. The main advantage of this control approach is its sensorless property which 

eliminates the speed sensor and the related physical wiring. In addition, it is capable of 

input signal noise rejection which enhances the total reliability of the decision made by 

the control block. Also, the other estimated states of the synchronous machine (�̂�, �̂�𝑞′ , �̂�𝑑′ ) 

can be effectively used in more complicated control schemes. 
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Figure  6-17: Block diagram of the sensorless control of a synchronous machine using Kalman Filter 
estimator 

 

6-6. Dynamic State estimation: Main challenges for a Large Power System 
 

The main current challenges of dynamic state estimation in large scale power systems are 

the inadequate number of the installed PMUs and the quite low data rate. Although the 

number of installed PMUs in large interconnected power systems is gradually increasing, 

it is not still adequate to implement dynamic state estimation. In addition, the data rate of 

the PMUs is still low which decreases the accuracy of the estimation to some extent. A 

complete advanced dynamic control system for a large scale power grid needs a 

movement from conventional SCADA to PMU based system, which needs huge 

investment in power systems, communication infrastructure, and more advanced PMU 
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technology. However, it might be possible to implement a complete local dynamic control 

system based on PMU measurement in a small area of a large power system. The block 

diagram for this purpose is presented in Figure 6-17. The fourth or higher order of the 

synchronous generator which is used for dynamic state estimation needs powerful 

processors for online application which makes the implementation more expensive.  

Nevertheless, there are numerous other models for synchronous machine with higher 

degree of accuracy which may have better performance than the model used in this study. 

The accurate models of the exciter and governor are also needed for state feedback 

control of the synchronous machine; therefore, these models should be derived and 

validated by real data, which might be a challenging task. In Chapter 7, some future 

works for dynamic state estimation in a large power system are proposed and the 

corresponding block diagrams are presented.  

 

6-5. Summary 
 

In this chapter, after a brief introduction about the dynamic state estimation in power 

systems, the state space model of the Single-Machine-Infinite-Bus (SMIB) is derived, and 

the discretized model of the system is presented. After deriving the Jacobian matrix, EKF 

and UKF are applied for dynamic state estimation in a SMIB for stable and unstable 

modes, and the simulation results are presented. The dynamic state estimation in a larger 

power system, represented by the IEEE 3-Generator-9-Bus Test System, and the 

simulation results of fault analysis are presented. Simulation results reveal the capability 
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of the proposed estimators for dynamic state estimation and measurement noise rejection 

in power systems using PMU high rate data. Although UKF is theoretically able to 

propagate the mean and covariance of the states through a nonlinear model up to the third 

order, the simulation results of EKF are more accurate in low rate PMU data stream (less 

than 200 frame/sec), which makes it more practical for the present large scale 

interconnected power systems. A possible application of the dynamic state estimation in 

power system is discussed, and a block diagram is presented for this purpose. Finally, 

some major current challenges of dynamic state estimation in large power grids are 

addressed. 
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CHAPTER 7 

7. Conclusion and Future Works 
 

 

7-1. Conclusions 
 

Dynamic system modeling and state estimation is necessary for optimal control of 

complicated systems. Beside the noise rejection capability, an estimator uses the state 

space model of a system to provide information about the states of the system which are 

in some cases immeasurable. In this research, the mathematical background of the state 

space modeling and the principles of optimal state estimation using nonlinear Kalman 

Filters (Extended and Unscented) are explained in detail. Then, different state space 

models and nonlinear Kalman Filter based state and parameter estimators are designed 

and applied for estimation process in an induction motor. The simulation results of this 
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section show the capability of the extended model and estimation approaches in 

complicated operational conditions of the machine. The principles of synchrophasors, 

phasor measurement unit and internal blocks, and the advantages of Wide Area 

Monitoring, Protection, and Control are then explained to provide a background for the 

later chapters of the thesis which are dedicated to dynamic state estimation in power 

systems. The mathematical description of a synchronous generator is then presented, and 

classical and 2-axis model of the machine are derived and validated. The Equal Area 

Criterion is explained and simulated to provide an overview for transient stability in 

power systems. The classical model of the machine is also used to model a large multi-

machine power system (IEEE 3-Generator-9-Bus Test System). The algorithm of 

sequential integration of the differential equations of the system is explained in detail. 

The results of the model integration are compared with data provided by PowerWorld 

Simulator to evaluate the accuracy of the model and the numerical integration method. 

The validated model is then used for dynamic sate estimation in a Single-Machine-

Infinite-Bus (SMIB) and the large power system (IEEE 3-Generator-9-Bus Test System) 

in both stable and unstable modes to effectively evaluate the capability of the Kalman 

Filter based estimators for this purpose. A practical application of the dynamic state 

estimation in a power system is also proposed in this study which can be used for further 

investigation in this field of study.  
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7-2. Contributions of the Thesis 
 

The main contribution of this research is the design and simulation of the fourth order 

UKF and EKF based estimator for the IEEE 3-Generator-9-Bus Test System model and 

comparing the simulation results of the estimators. In addition, a step-by-step state space 

modeling and validation procedure is presented to provide a complete modeling package 

for synchronous machines. The simulation results reveal the accuracy of the developed 

state space model and capability of the proposed estimation approaches for dynamic state 

estimation which can be used for transient stability analysis and control purposes in 

power systems. The simulation scenarios are also designed to cover both the simplest 

model of a power system (Single-Machine-Infinite-Bus) and a large power system (IEEE 

3-Generator-9-Bus Test System) in either stable or unstable operational conditions.  

Also, a comprehensive simulation is provided for the dynamic state and parameter 

estimation in an induction machine, and the results of EKF and UKF based estimators are 

compared through several simulation scenarios. The simulation scenarios designed in this 

study cover almost all real operational conditions of an induction motor in different 

applications. The basic state space model of the induction motor is gradually extended to 

the other states and parameters of the machine, and the drawbacks of each model are 

shown by different simulation scenarios. This effort is done to reasonably justify the need 

for more accurate modeling of the induction motor.  
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7-3. Future Works 
 

Dynamic state estimation has recently been among the popular fields of research in power 

system studies. Different estimation approaches are applied to various models of the 

synchronous machine to evaluate the feasibility of the dynamic estimation in power 

systems. Nevertheless, little literature is available on the application of this idea. One 

open research area in this regard can be the study of sensorless control of a synchronous 

generator using Kalman Filter based estimators. Another challenging subject can be the 

closed loop state feedback control of a large power system, as for the example 3-

Gnerator-9-Bus system. A complete block diagram for this topic is proposed in Figure 7-

1. The first step for this work is to develop and validate appropriate models for exciter 

and governor of the machine. Then, the estimator can be inserted into the feedback path 

of the closed loop system and the reliability and accuracy of this control scheme can be 

compared with conventional control systems. The state feedback control proposed in this 

figure is based on a simple control block for the exciter and governor. More complicated 

control systems can be designed for the synchronous machine using the other states of the 

machine provided by the estimator.    

In addition, most of the papers in dynamic state estimation in power systems, including 

the investigation in this thesis, have used simulation tools to generate real data which is 

then used in the evaluation of the proposed models and control algorithms. Therefore, the 

lack of practical works in this area is noticeable. Design and validation of power system 

models with real data provided by PMU and applying a state feedback control to a real 

synchronous machine is another interesting field of research. 
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Another interesting research in this field is the online state and parameter estimation for a 

synchronous machine. An EKF based estimator extended to the parameters of the 

synchronous machine can be designed for this purpose. The updated parameters can be 

used in the feedback loop to enhance the control performance. A block diagram is 

proposed for this purpose which is presented in Figure 7-2.  
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Figure  7-1: Closed loop state feedback control scheme for the IEEE 3-Generator-9-Bus Test System 
using Kalman Filter 
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Figure  7-2: Closed loop state feedback control scheme for a synchronous machine using EKF state 
and parameter estimator 
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