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Abstract 

This thesis examined the effects of partial dietary supplementation with wild- 

zooplankton or fish protein hydrolysate on cod production traits, and how they related to 

the cod’s physiology and the expression of growth and appetite regulating genes. Atlantic 

cod larvae were fed three different diets: enriched rotifers / Artemia (RA); RA + fish 

protein hydrolysate (RA-PH); and RA supplemented with 5-10% wild zooplankton (RA-

Zoo). Partial supplementation with zooplankton significantly improved the dry weight at 

60 dph (by approximately 4-fold), specific growth rate (by 2.5% day
-1

) and the general 

development of cod larvae. In contrast, the protein hydrolysate enrichment did not 

improve growth, had a negative effect on survival, and increased the incidence of external 

deformities in 18 month post-hatch juveniles. Although the zooplankton fed cod were still 

larger at approximately 1.5 years of age, the growth advantage of this group decreased 

with age (the difference in wet mass decreasing from approx. 30% at 0.5 years old to 11% 

at 1.5 years old). Metabolic parameters, and pre- and post-stress cortisol levels, were 

similar in juvenile cod from the RA and RA-Zoo groups. Finally, the growth 

enhancement observed in the zooplankton fed larvae was not related to alterations in the 

mRNA expression of the main growth regulating genes [Insulin-Like Growth Factor 1 

(IGF-1); IGF-2; Growth Hormone (GH); GH Receptor-1 (GHR-1); GHR-2; and 

myostatin] or appetite regulating hormones [(Cocaine and Amphetamine Regulated 

Transcript (CART) and Neuropeptide Y (NPY)]. This latter finding suggests that the 

transcript levels of these hormones and hormone receptors are not a valuable biomarker 

for growth in cod larvae. 
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Introduction 

1.1. Background 

A collapse of the Northern Atlantic cod (Gadus morhua) stocks occurred in 

several countries including Norway (Jakobsen, 1993) and Canada (Myers et al., 1996) 

during the late 1980s-early 1990s, and this had a devastating economic and social impact 

on the cod fishery. In 1992, a total moratorium on fishing was put in place on the 

Northern cod stocks in Canadian waters (NAFO Divisions 3JKL) (Hutchings and Myers, 

1994). As a result, there was increased interest in developing a commercial cod 

aquaculture industry that would satisfy consumer demand while allowing wild stocks to 

recover (Svåsand et al., 2004). The impetus to develop the cod aquaculture industry was 

mainly based on the success of salmon aquaculture and the biological suitability of cod 

for culture (Tilseth, 1990; Brown et al., 2003; Rosenlund and Skretting, 2006). 

The first mass production of Atlantic cod was achieved in 1983, when 75,000 

juveniles were extensively cultivated in marine ponds at the Institute of Marine Research 

in Norway (Øiestad et al., 1985), and this was followed by several operations that used 

seawater enclosures for farming and enhancement of natural stocks (Svåsand, 1998). In 

1989, this production reached a peak when approximately 900,000 juveniles were 

produced in seawater lagoons using extensive and semi-intensive methods (Svåsand et al., 

2004). In the extensive method, the larvae are reared in lagoons or ponds that are first 

cleared of natural predators, and fed entirely on natural plankton that is produced in the 

system. In contrast, in the semi-intensive method, the larvae are reared in large tanks or 

plastic bags, and the food organisms (i.e. mainly copepods) are collected and 
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concentrated from extensive lagoon or pond systems before being fed (Van der Meeren 

and Naas, 1997; Hamre, 2006) (see Figure 1.1). Both of these methods were not 

commercially viable due to several limitations such as: low stocking densities, the 

seasonality of plankton production, and the fact that there is less control over the rearing 

environment (Svåsand et al., 2004; Busch et al., 2010). Therefore, the production of 

juveniles for cod aquaculture shifted to land-based intensive systems. In these production 

systems, there is more precise control over environmental factors that are crucial for 

growth and development (e.g., temperature, photoperiod and light intensity, salinity and 

water oxygen levels), high stocking densities can be achieved, lower volumes of live feed 

are required, and juveniles can be produced year-round (Shields, 2001; Brown et al., 

2003). Intensive cod farming based on hatchery-reared juveniles and sea-cage growout is 

a relatively young industry, only beginning in Norway in the mid-1990s (Howell, 1984; 

Rosenlund et al., 1993). Further, the growth of the industry was slow due to challenges 

such as insufficient numbers of fry and low market prices for cod. It was only in the early 

2000s that the industry gained a foothold, with some 20-30 companies involved in 

juvenile rearing / production at large-scale hatcheries (Rosenlund and Skretting, 2006; 

Gardner Pinfold Report, 2010). The large increase in intensive production was largely 

achieved because of a significant research effort (e.g., in Canada, Norway and Scotland) 

that led to improved production protocols, favourable economic conditions for cod 

(Brown et al., 2003; Puvanendran et al., 2006; Fletcher et al., 2007; Busch et al., 2010), 

and the prevailing view that the key technical factors affecting production economics had 

been / would be resolved in the near future (Gardner Pinfold Report, 2010). 
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Figure 1.1. Schematic illustration of intensive, semi-intensive and extensive rearing methods 

(from Van der Meeren and Naas, 1997). 
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1.1.1. Challenges facing cod aquaculture 

Attempts at commercial-scale cod aquaculture have not been very successful due 

to many factors, including: slow growth (Hamre, 2006); early maturation (Karlsen et al., 

1995; Hansen et al., 2001); infectious diseases (Samuelsen et al., 2006); skeletal 

malformations (Hamre, 2006; Lein et al., 2009); cannibalism during the larval and early 

juvenile stages (Brown et al., 2003; Puvanendran et al., 2008); less than favourable sea-

cage conditions (Pérez-Casanova et al., 2008), and low market price in the past few years 

(Gardner Pinfold Report, 2010). A solution to many of these issues is to identify 

molecular markers that can be used to select broodstock with favourable commercial 

traits such as rapid growth, a robust immune response and resistance to environmental 

stressors. Some progress has been made in this area (Feng et al., 2009; Hori et al., 2012). 

Further, molecular/functional genomics tools [e.g., the 20K microarray (Booman et al., 

2011)] have been developed through the Atlantic Cod Genomics and Broodstock 

Development Project (CGP, http://codgene.ca), and the entire cod genome has now been 

sequenced (Star et al., 2011). These initiatives should lead to further advances in our 

understanding of cod molecular biology, physiology and health, and thus, improve the 

economics of cod aquaculture. However, a major bottleneck to the commercialization of 

cod aquaculture remains the development and optimization of diets to make them cost-

effective (Tilseth, 1990; Rosenlund and Skretting, 2006), reduce mortalities during the 

start-feeding period, and to allow cod to reach their growth potential (Bell et al., 2003; 

Brown et al., 2003; Hamre, 2006). 
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1.1.2. Feeding in the early developmental stages 

Normal rearing protocols at intensive cod hatcheries rely on the use of rotifers, 

followed by Artemia nauplii, as live prey for feeding during the larval stages, as both 

organisms can be cultured all year around and in large quantities (Olsen, 1997; Rosenlund 

and Halldorsson, 2007). However, rotifers and Artemia cannot fulfill all of the known 

nutritional requirements of marine fish larvae and they have to be enriched prior to 

feeding (Dhert et al., 2001; Hamre et al., 2008b). 

Different enrichments and bioencapsulation methods have been used to increase the level 

of essential highly unsaturated fatty acid (HUFA) in these live feeds, including DHA 

(docosahexaenoic acid), EPA (eicosapentaenoic acid) and AA (arachidonic acid) 

(Devresse et al., 1994; Olsen, 1997; Dhert et al., 2001). These HUFA’s are extremely 

important for larval growth, survival and health (Sargent et al., 1999; Bell et al., 2003; 

Faulk et al., 2005). 

 Despite these improvements, these diets still appear to be nutritionally deficient as 

problems such as abnormal pigmentation and deformities are very common (Støttrup, 

2000; Hamre, 2006). In addition, there are large differences in the quality (i.e. incidence 

of deformities), survival rates and growth potential between cod reared at high density in 

tank systems (i.e. intensively) and those reared at low density in ponds or fjords (i.e. 

extensively) (Hamre, 2006; Busch et al., 2010). Further, research suggests that the 

difference in growth rates does not have to do with the rearing environment itself, but 

with the diet of the larvae. In extensive systems, the cod larvae are able to forage on a 

‘natural’ diet including copepods of various life stages (nauplii, copepodites and adults), 
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as opposed to enriched rotifers and Artemia (Rosenlund and Halldorsson, 2007; Busch et 

al., 2010). Earlier studies have shown that the nutritional composition of these copepods 

is different from that of the rotifers and Artemia and more suited to fulfill the nutritional 

demand of cod larvae, especially with regards to the content and ratio of the essential 

fatty acids: DHA, EPA and AA (Sargent et al., 1999; Bell et al., 2003; Van der Meeren et 

al., 2008; Busch et al., 2010) (see Figure 1.2.). In addition, copepods contain a higher 

percentage of these HUFA’s (mainly DHA and EPA) as phospholipids as compared to 

rotifers and Artemia (McEvoy et al., 1998), and it has been shown that when incorporated 

as phospholipids rather than neutral lipids, these HUFA’s enhance the growth, survival 

and general development of cod, mainly due to higher absorption (Kjørsvik et al., 2009; 

Wold et al., 2009).  

1.1.3. The use of zooplankton in aquaculture 

Natural zooplankton has been used as live feed for cod in artificial production 

systems since the 1880s (Rognerud, 1887). These first experiments used natural 

environments such as ponds or lagoons for the purpose of fish stocks enhancement 

(Shelbourne, 1964; Solemdal et al., 1984). During the 1980s, when the first mass 

production of cod juveniles was achieved (i.e. through the use of extensive and semi-

intensive methods), high levels of  larval growth and survival (i.e. over 50% at the 

metamorphosis stage) were achieved, and many believed that this was due to the 

availability of a wide range of planktonic organisms such as copepods, phytoplankton and 

protozoans (Øiestad et al., 1985; Van der Meeren and Næss, 1993; Van der Meeren and 

Naas, 1997; Svåsand et al., 2004). 
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Figure 1.2. Essential fatty acid composition (percent of total fatty acids) in cod larvae, 

unenriched rotifers and Artemia nauplii, and copepods of the species Eurytemora velox, 

Tisbe furcate and Acartia tonsa (from Bell et al., 2003). 
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However, relying on extensive methods was not commercialy viable, mainly due 

to the eventual depletion of live prey and the seasonality of the planktonic organisms 

(Folkvord, 1991; Van der Meeren and Naas, 1997) which led to cannibalism and losses of 

metamorphosed larvae. In order to overcome these problems and to achieve higher and 

more stable production levels, zooplankton (i.e. mainly copepods) were supplemented 

with Artemia and formulated diets as part of semi-intensive systems (Van der Meeren and 

Naas, 1997). However, the growth and survival of fish larvae reared in these systems 

were still not optimal (Berg, 1997; Evjemo et al., 2003), and on several occasions 

parasitic contamination associated with the copepods serving as an intermediate host was 

encountered (Bristow, 1990; Støttrup, 2000). As cod aquaculture production shifted to 

intensive culture on land, the target of producing eggs all year around was achieved, but a 

constant supply of copepods from the natural environment was still not possible (Støttrup, 

2000). To solve the gap between the larvae’s energetic needs and the number of available 

copepods, several attempts have been made to culture zooplankton intensively (Støttrup, 

2003; Peck and Holste, 2006; Støttrup, 2006; Milione and Zeng, 2008), but most of these 

were small scale and of limited duration. Scaling-up of these systems has been very 

difficult and demands high economic investment into the development of methods / 

procedures for algal and copepod culture maintenance, the sorting of the copepods, egg 

harvesting etc.; all of which involve significant investment of human resources. In order 

to achieve large-scale production, it will be essential to use automated techniques / 

procedures and to develop new technologies for mass production (Støttrup, 2000; Drillet 

et al., 2011). 
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1.1.4. The use of fish protein hydrolysate in aquaculture 

Marine fish larvae, including cod, have considerable growth potential (i.e. specific 

growth rates of more than 25% day
-1

 have been reported for cod) (Otterlei et al., 1999; 

Finn et al., 2002; Rosenlund and Halldorsson, 2007). Growth is mainly the result of 

protein synthesis and deposition, and earlier studies have shown that protein digestion and 

amino acid assimilation are extremely important throughout the larval stage to ensure 

optimal growth (Blier et al., 1997). However, larval digestion at first feeding is limited 

due to the lack of a functional stomach (absent until metamorphosis), and the capacity to 

digest complex proteins is restricted during this stage (Segner et al., 1994; Tonheim et al., 

2004; Kvåle et al., 2009). To overcome these limitations, several attempts to replace a 

fraction of the protein content with prehydrolysed (i.e. more digestible) proteins have 

been made. These prehydrolysed proteins (i.e. protein hydrolysates) have been shown to 

have higher absorption efficiency as compared to intact protein (Tonheim et al., 2005) 

and have resulted in improved growth (Kotzamanis et al., 2007; Savoie et al., 2011). In 

addition, they can have beneficial effects on larval development (i.e. skeletal 

development) (Cahu et al., 2003), and for these reasons have potential as dietary additives 

for use in aquaculture production. 

 For example, common carp (Cyprinus carpio) and sea bass (Dicentrarchus 

labrax) larvae fed with a moderate concentration (around 20-25% of protein fraction) of 

fish protein hydrolysate had improved growth and survival (by 55% and 10%, 

respectively), and had higher intestinal digestive enzyme activity (Zambonino Infante et 

al., 1997; Cahu et al., 1999; Carvalho et al., 2004). Pollock protein hydrolysate used as a 
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live feed enrichment stimulated the production of lysozyme and C3 (a key component of 

the complement system) in Atlantic halibut (Hippoglossus hippoglossus L.) 

(Hermannsdottir et al., 2009). Finally, recent trials in Iceland with cod, conducted by our 

NORA (Nordic Atlantic Cooperation) partners, have shown positive results with regards 

to immune function, growth and the incidence of deformities when larvae are fed fish 

protein hydrolysate three days per week (Bjornsdottir et al., 2013).  

1.1.5. Skeletal deformities 

Skeletal malformations are considered a major problem in cod commercial 

hatcheries and often vary between 25 and 85% at the juvenile stage (Lein et al., 2006). 

The main types of vertebral deformations in hatchery-reared fish, including cod, are 

lordosis, kyphosis, scoliosis, fusion and stargazing (Boglione et al., 2001; Lewis et al., 

2004; Lein et al., 2009), and this latter type is considered the most prevalent deformity in 

cod larvae (Hamre, 2006). In addition to the negative influence that deformities have with 

regards to fish welfare, they may also lead to reduced growth, survival and a lower 

market product value (Boglione et al., 2001; Gavaia et al., 2002; Koumoundouros, 2010). 

Earlier studies linked deformities to rearing conditions (Boglione et al., 2001; Cobcroft et 

al., 2001; Boglione et al., 2003; Helland et al., 2009; Georgakopoulou et al., 2010), to 

genetics (Gjerde et al., 2005; Kolstad et al., 2006; Bardon et al., 2009), and to dietary 

factors [e.g., suboptimal lipid (Sargent et al., 1999) and protein content (Cahu et al., 

2003)], or the lack of specific vitamins and minerals (Lall and Lewis-McCrea, 2007; 

Baeverfjord et al., 2009). In addition, research has shown a lower incidence of skeletal 

deformities in fish that are start-fed on zooplankton as compared to rotifers and Artemia 
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(Hamre, 2006; Imsland et al., 2006). These data suggest that zooplankton have a 

nutritional composition that is much better for larval health / development (Hamre et al., 

2002), however, what these factors are is still not fully understood. 

1.1.6. Growth regulation in fish 

Growth in fish is regulated through the integration of external environmental (i.e. 

photoperiod, temperature, season, salinity, etc.), internal (i.e. nutritional state) and 

humoral factors (i.e. neuroendocrine, endocrine, and autocrine-paracrine signals (Duan, 

1997; Wood et al., 2005; Canosa et al., 2007; Chang and Wong, 2009; Reinecke, 2010), 

and results in the secretion of growth hormone releasing or growth hormone release-

inhibiting factors from the hypothalamus. These factors influence the production and 

release of growth hormone (GH) from the pituitary, which binds to its receptor (i.e. 

GHR), and stimulates the synthesis of insulin-like growth factors (IGF) I and II in the 

liver and other tissues, and their release into the blood stream. IGF- I is responsible for 

cell differentiation and proliferation and leads to skeletal elongation and body growth 

(Duan, 1997; Bail et al., 1998), but can also inhibit GH synthesis through a negative 

feedback mechanism (Fruchtman et al., 2000) (see Figure 1.3). The effects of GH and 

IGFs are also mediated by a complex and interactive network of factors and hormones 

such as: GH- and IGF- binding proteins (GHBPs and IGFBPs, respectively) (Duan and 

Xu, 2005; Kelley et al., 2006), IGF receptors (IGFRs) (Gutiérrez et al., 2006), 

somatostatins (Very and Sheridan, 2002; Klein and Sheridan, 2008), and others (Schmid 

et al., 2003; Shved et al., 2008; Gahete et al., 2009). Moreover, it has been shown that 

nutritional status (i.e. quantity and quality of food) is the principal regulator of growth, 
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and that this occurs through direct and indirect effects on the hormones of the GH-IGF 

system (see Figure 1.3) (Beckman et al., 2004; Ayson et al., 2007; Fox et al., 2009). 

Nonetheless, very few studies have investigated the effects of diet optimization on the 

expression of growth-regulating genes, and attempted to develop suitable molecular 

markers for growth in fish (Picha et al., 2008; Kortner et al., 2011a). 

Plasma IGF I levels have been shown to be positively correlated with growth in 

cod (Davie et al., 2007), and GH mRNA levels were significantly increased in cod larvae 

whose diet was supplemented by 70% with copepods (i.e. Acartia tonsa) as compared 

with a rotifer diet (Kortner et al., 2011a). The mRNA expression of IGF I and II 

increased, while that of myostatin (a hormone that inhibits muscle growth) decreased, in 

copepod-fed (i.e. Centropages typicus) vs. enriched rotifer-fed yellowtail clownfish 

(Olivotto et al., 2008a). Finally, changes in the expression of these genes were also 

evident when clownfish were fed copepods (i.e. Tisbe sp.) at a 1:1 ratio with the 

traditional rotifer / Artemia based diet (Olivotto et al., 2008b); i.e. a 50% 

supplementation. 

1.1.7. Appetite regulation in fish 

Appetite in fish is primarily regulated by neuropeptides that are produced in the 

hypothalamus and act as stimulatory (orexigenic) or inhibitory (anorexigenic) factors 

(Schwartz, 2001; Sheridan, 2011). These neuropeptides interact with each other, and their 

production is influenced by factors circulating via the blood and by signals related to 

body energy stores. This allows for an appropriate balance between food intake and 

energy expenditure (Konturek et al., 2003; Wullimann and Mueller, 2004; Strader and 
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Woods, 2005). Several hormones are produced by peripheral tissues such as the gut, 

pancreas, interrenal gland and fat, and all can affect the activity of orexigenic and 

anorexigenic factors, and consequently food intake (Volkoff et al., 2005; Volkoff, 2006; 

Sheridan, 2011) (see Figure 1.4.). Several extrinsic and intrinsic factors such as 

temperature (Bendiksen et al., 2002; Sunuma et al., 2007), photoperiod (Bolliet et al., 

2001), salinity (Imsland et al., 2001), life stage (Pankhurst et al., 2008), sexual maturity 

(Simpson et al., 1996), nutritional status (Boujard et al., 2000; Volkoff et al., 2009), and 

others (Hoskins and Volkoff, 2012), can stimulate or inhibit food intake in fish. 

Furthermore, these orexigenic and anorexigenic factors can regulate the secretion of 

growth hormone (GH) from the pituitary (see Figure 1.4.). Therefore, it is possible that 

somatic growth and development could be enhanced by modifying larval diets, due to 

alterations in the appetite regulatory pathways (MacKenzie et al., 1998; Kortner et al., 

2011a). 

 

Recent research has shown that central and peripheral injections of fish 

neuropeptide Y (NPY) increase food intake in goldfish (De Pedro et al., 2000; Narnaware 

et al., 2000) and channel catfish (Silverstein and Plisetskaya, 2000) in a dose dependent 

manner. In addition, fasting causes an increase in the hypothalamic expression of NPY in 

both goldfish (Narnaware and Peter, 2001) and salmon (Silverstein et al., 1999), and a 

decrease in cocaine and amphetamine regulated transcript (CART) expression in goldfish 

(Volkoff and Peter, 2001a) and cod (Kehoe and Volkoff, 2007), while refeeding reverses 

these effects (Narnaware and Peter, 2001). In cod, mRNA expression of both NPY and 

CART have been shown to undergo peri-prandial changes [(where NPY levels increase 
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during feeding and CART levels decrease at two hours post-feeding (Kehoe and Volkoff, 

2007)], and the NPY mRNA expression of larvae was influenced by first feeding regime 

(Kortner et al., 2011a). This research suggests that the expression of these two 

neuropeptides is indicative of the appetite and energetic status of fishes, including cod, 

and may be useful for evaluating the effectiveness of various diets in improving fish 

growth and production traits. 
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Figure 1.3. Diagram illustrating the growth hormone (GH) - insulin-like growth factor 

(IGF) system in fish (from Picha et al., 2008). Double arrowheads indicate interactions. 

(+) and (-) indicate stimulation and inhibition, respectively. 
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Figure 1.4. Diagram illustrating the current model of appetite regulation in fish (from 

Sheridan, 2011). The solid lines indicate direct actions; dashed lines indicate feedback 

mechanisms; and double arrowheads indicate interactions. NPY, Neuropeptide Y; CART, 

cocaine- and amphetamine- regulated transcript; CCK, cholecystokinin; MSH, 

melanocyte-stimulating hormone; CRH, corticotropin-releasing hormone; GH, growth 

hormone; ACTH, adrenocorticotropic hormone; GLP-1, glucagon-like peptide-1. 
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1.1.8. Fish energy metabolism 

Fish, as is the case for other animals, require chemical energy to fuel numerous 

metabolic functions such as swimming, growth and reproduction. The overall use of 

chemical energy that occurs in living organisms is typically referred to as energy 

metabolism. Adenosine triphosphate (ATP) is the main carrier and source of metabolic 

energy, and is produced by most animals through the oxidation of energy substrates. 

Therefore, energy metabolism can be estimated by monitoring the rate of oxygen 

consumption (Cho et al., 1982; Steffensen, 2005), and using the equation; 

C = (Mr + Ma + SDA) + (F+U) + (Gs + Gr) 

           (Metabolism)      (Waste)    (Growth) 

C = rate of energy consumption 

Mr = standard metabolic rate 

Ma = metabolic rate increase (above the standard rate) due to activity 

SDA = metabolic rate increase due to specific dynamic action, which is the cost of 

digestion, absorption and processing 

F+U = waste losses due to egestion (feces) and excretion (urine) rates 

Gs = somatic growth rate due to protein synthesis and lipid deposition 

Gr = growth rate due to gonad (reproductive) development 

 

Metabolic rate increases with body mass, and the relationship between metabolic 

rate and mass has been described by the allometric equation: y = ax
b
; where y is 

metabolic rate, x is body weight, a is a constant, and b is the scaling exponent or slope of 
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the linearized relationship. The interspecific mass exponent (b) has been found to be in 

the range of 0.66-0.75 in endothermic vertebrates, and 0.80-1.0 in ectotherms, and 

depends on ambient temperature, lifestyle (Bokma, 2004; Glazier, 2005; 2008; Killen et 

al., 2010; Ohlberger et al., 2012), as well as level of metabolic rate [i.e. it has been shown 

that maximum metabolic rate scales with a higher b exponent than standard metabolic 

rate (Killen et al., 2007; Killen et al., 2010)]. For cod, the interspecific mass exponent (b) 

has been found to be 0.8 (Saunders, 1963; Edwards et al., 1972; Reidy et al., 1995). 

Metabolic rate can be divided into three categories:  

 

Basal/standard metabolic rate is defined as the minimum energy expenditure required 

to fuel essential life processes, and is measured in a post-absorptive, resting (inactive) fish 

under minimal stress. 

 

Routine metabolism is measured in fish showing normal / spontaneous activity, and not 

necessarily in a post-absorptive state. 

 

Active metabolism is the highest rate of energy expenditure possible, and usually occurs 

during high-speed sustained swimming. It is often measured in fish forced to swim at a 

maximum sustained (i.e. aerobic) speed using a swim-tunnel respirometer.  

However, one of the most important measures of energy expenditure may be aerobic 

scope, and this parameter is calculated in two different ways:  
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Absolute metabolic scope is defined as the difference between active metabolic rate 

(AMR) and the fish's standard metabolic rate (SMR) (Fry, 1971; Brett, 1972; Brett and 

Groves, 1979; Steffensen, 2005), and is the energy available above that needed to perform 

essential life processes (Priede, 1985). Metabolic scope differs according to species, size, 

temperature and dissolved oxygen level, and limits the capacity of fish to preform vital 

functions such as growth / protein synthesis  (Priede, 1985; Wieser et al., 1988; Wieser 

and Medgyesy, 1990) and digestion (Lucas and Priede, 1992; Blaikie and Kerr, 1996), or 

to deal with less than optimal environmental conditions [e.g., high temperature and 

hypoxia (Claireaux et al., 2000; Chabot and Claireaux, 2008; Petersen and Gamperl, 

2010; Yang et al., 2013]. 

 

Factorial aerobic scope is defined as the ratio between active and standard metabolic 

rate. It is usually within the range of 3-7, with the majority of species lying towards the 

bottom end of this range (Jobling, 1994).  

1.1.8.1. Swimming activity in fish 

Measurements of oxygen consumption do not fully reflect the energetic costs of 

swimming activity since anaerobic metabolism (i.e. production of lactate) can provide a 

significant proportion of the energy consumed at high swimming speeds (Bennett, 1978; 

Priede, 1985). In salmonids and actively foraging species, the muscle begins to utilize 

anaerobic metabolism, and lactate begins to accumulate in the muscle, at swimming 

speeds of 2.0-5.0 bl s
-1

 depending on body size and species (Jobling, 1994). With regards 
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to Atlantic cod, it has been shown that the muscle begins using anaerobic metabolism at a 

swimming speed of 1.2 bl s
-1 

(Dutil et al., 2007). 

Swimming activity has been classified into three categories – sustained, 

prolonged and burst swimming. These categories define the duration over which the 

fish can perform at a given level, and also give an indication of the metabolic pathways 

utilized. Sustained swimming is a term applied to swimming speeds, which can be 

maintained for long periods without resulting in muscular fatigue (usually 200 min or 

longer). Metabolism during sustained swimming is purely aerobic. Prolonged swimming 

is of a shorter duration (20 s – 200 min) than sustained swimming, and results in fatigue. 

The energy supply for prolonged swimming may be provided by both aerobic and 

anaerobic metabolism (Goolish, 1991). A special category of prolonged swimming is the 

critical swimming speed (Ucrit), which indicates the maximum swimming velocity fish 

can maintain over an exact time period, and is used for comparing the swimming abilities 

of different sizes or species of fish (Brett, 1964; Plaut, 2001). By subjecting the fish to 

stepwise increases in swimming speed, and recording the maximum speed achieved prior 

to fatigue, the critical swimming speed can be calculated. The highest swimming speed of 

which fish are capable is termed burst swimming and can be maintained for only a very 

short period of time (less than 20 sec). The energy for burst swimming is provided, 

predominantly, by anaerobic metabolism (Blaxter, 1969; Beamish, 1978; Jobling, 1994; 

Hammer, 1995). 
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1.1.8.2. Dietary effects on metabolism and swimming performance 

Diet quality, particularly the level of certain fatty acids, has been shown to affect 

the aerobic exercise performance of fishes (McKenzie et al., 1998; McKenzie, 2001; 

McKenzie et al., 2008). Fish take up fatty acids from their diet, store them as neutral 

lipids (triacylglycerols) and insert them into membranes as polar phosphoglycerides 

(Sargent et al., 1999; Tocher, 2003). Thus, the fatty acid composition of an animal’s 

tissues appears to reflect that of the diet (McKenzie, 2001; Chatelier et al., 2006). Specific 

importance has been given to the ratio between highly unsaturated fatty acids (n-3 

HUFAs) and saturated fatty acids (SFAs). Earlier studies showed that some HUFA’s, 

specifically EPA and DHA, have beneficial effects on aerobic exercise and metabolic 

capacity.  For example Atlantic salmon (Salmo salar) that were fed with higher levels of 

HUFA’s, demonstrated higher Ucrit values (Wagner et al., 2004). In addition, Adriatic 

sturgeon (Acipenser naccarii) and European eels (Anguilla anguilla) had significantly 

lower standard and routine metabolic rates when fed a diet rich in n-3 HUFA compared to 

a diet rich in saturated fatty acids (SFA) (McKenzie, 2001). In contrast, higher levels of 

SFA compared to n-3 HUFA have been reported to have beneficial effects upon the 

exercise performance and metabolic capacity of fishes (McKenzie et al., 1998; Chatelier 

et al., 2006).  

With regards to nutritional differences in dietary live prey, it has been shown that 

copepods have higher levels of HUFAs (mainly DHA and EPA) compared to enriched 

rotifers /Artemia (Bell et al., 2003; Van der Meeren et al., 2008; Busch et al., 2010). 

However, very few studies have examined what are the effects of the type of live feed 
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used for larval diets on the aerobic and swimming performance of fishes. These 

measurements are valuable, as metabolic scope has been shown to be an important 

mediator of growth in several fish species including cod (Chabot and Dutil, 1999; 

Claireaux et al., 2000), and therefore, could explain whether the enhanced growth of 

copepod-fed cod was mediated by metabolic capacity. Finally, although one publication 

(Koedijk et al., 2010b) suggests that the enhanced growth of juvenile cod resulting from 

feeding larvae with zooplankton, was not associated with changes in metabolic capacity, 

this conclusion was based solely on measurements of metabolic enzyme activity and 

myosin mRNA expression. 

1.1.9. Stress and the stress response in aquaculture 

 In intensive aquaculture operations, activities and conditions such as handling, 

sorting, grading, transport and poor water quality, as well as sudden changes in 

temperature, salinity and oxygen levels, can all impose stress on fish (Schreck, 1982; 

Barton and Iwama, 1991). The stress response is considered to be an adaptive mechanism 

that allows an organism to maintain its homeostatic state when exposed to stressors. 

However, if the stress is severe or long lasting, it may become maladaptive and have 

negative effects on fish growth, condition, resistance to disease, metabolic scope for 

activity, and eventually survival (Selye, 1974; Barton and Iwama, 1991). The 

physiological effects of stress in fish are categorized as primary [i.e. release of the stress 

hormones; catecholamines (epinephrine and norepinephrine) and corticosteroids 

(cortisol)], secondary (metabolic, cardiovascular, hydromineral balance, respiratory and 

immune functions) and tertiary [(whole animal responses that effect growth, disease 



   

23 
 

resistance and survival) (Barton and Iwama, 1991; Iwama, 1998; Barton, 2002; Davis, 

2006; Pottinger, 2008)]. Cortisol is a primary stress hormone that is produced de novo 

from cholesterol in the interrenal cells of the head kidney in response to a hormonal 

cascade (i.e. throughout the hypothalamus-pituitary-interrenal axis) and released into the 

bloodstream (Donaldson, 1981; Mazeaud and Mazeaud, 1981; Sumpter, 1997).  Due to 

many advantages [see review at Ellis at al. (2012)], cortisol has been established as a 

stress indicator and is commonly used in aquaculture (Barton and Iwama, 1991; Pottinger, 

2008) to evaluate the fish’s response to events such as handling (Ellis et al., 2007b), 

transfer (Weber et al., 2002), confinement (Pottinger, 2010), transportation (Barton and 

Peter, 1982), temperature shock (Donaldson, 1981; Barton and Peter, 1982), disease (Ellis 

et al., 2007a) and others (Flos et al., 1988; Tort et al., 2002).  

 Major efforts have been made to improve the ability of fish to tolerate stress by 

selecting for broodstock with low responsiveness to stressors in aquaculture (Pottinger 

and Carrick, 1999; Fevolden et al., 2002; Pottinger, 2003; Hori et al., 2012). In addition, 

diet appears to play an important part in stress sensitivity. For example, several studies 

have shown that adding highly unsaturated fatty acids [e.g., DHA (docosahexaenoic acid), 

EPA (eicosapentaenoic acid) and AA (arachidonic acid)] to larval diets can improve the 

larvae’s ability to tolerate stress (Koven et al., 2001; Vagelli, 2004). Furthermore, 

improved stress resistance has been reported in larval mahimahi (Euterpina acutifrons) 

fed a copepod diet, compared to enriched Artemia (Kraul et al., 1993).  
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1.2. Rationale for study 

In Newfoundland, at present, it is taking approx. 40 – 42 months to grow cod to 

the preferred market size of 3-4 kg, which is significantly longer than the 30-36 months 

that the industry has set as a target to ensure profitability (Clift Report, 2005; Gardner 

Pinfold Report, 2010). Many in the cod aquaculture industry believe that this slow growth 

is related to less than optimal diets, and have identified diet development as a research 

priority. 

Recent studies show that feeding Atlantic cod (Gadus morhua) wild zooplankton, 

as opposed to enriched rotifers for even a short period (e.g., 2 weeks) can provide a better 

scope for growth and general development (i.e. a significantly lower incidence of skeletal 

deformities) during the larval period. Further, this improved larval growth has been 

shown to translate into significantly larger juveniles by 20-25% (Imsland et al., 2006; 

Busch et al., 2010; Koedijk et al., 2010a). While the window for feeding zooplankton 

appears to have been identified (Koedijk et al., 2010a), it is still not known whether 

feeding small amounts of zooplankton will achieve similar results (with regards to larval 

growth, skeletal deformities and survival) to those seen in earlier studies (i.e. Imsland et 

al., 2006; Busch et al., 2010; Koedijk et al., 2010a), or how / why feeding zooplankton vs. 

rotifers / Artemia, or adding protein hydrolysates to larval diets, improves cod growth 

performance. This information is required before current commercial enrichments can be 

effectively modified to achieve the growth rates required by the industry. To address this 

issue, a large multi-disciplinary project titled “Diet and the Early Development of 

Atlantic Cod” was funded. My M.Sc. thesis research is a component of this project, and 
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focuses on the physiology and production traits of cod as affected by three diets: Enriched 

rotifers / Artemia (RA); RA + protein hydrolysate (RA-PH); and RA supplemented with 

wild caught zooplankton (RA-Zoo).  

1.3. Research objectives 

 

1- Examine whether partial dietary supplementation with zooplankton (5 – 10% 

of total prey items) or protein hydrolysate (three days per week) improves 

Atlantic cod production traits such as survival, growth, and the degree / types 

of deformities.  

Trials were conducted on a Newfoundland cod population, and the growth and 

production traits of fish fed the three diets were monitored for 18 months post-

hatch. These results were then compared with those previously obtained in 

Norway / Iceland. 

2- Determine whether changes in growth associated with feeding zooplankton / 

protein hydrolysate are related to alterations in the expression of growth and 

appetite-regulating genes.  

The mRNA expression of the main growth-regulating hormones [insulin-like 

growth factors (IGF) I and II and growth hormone (GH)], GH receptors I and II 

and the growth inhibiting / suppressing hormone myostatin were measured in the 

three dietary groups in order to identify biomarkers for growth in cod larvae. In 

addition, in order to determine whether the growth enhancement seen in the 
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zooplankton fed larvae may be related to changes in food intake, we measured the 

mRNA expression of the appetite regulating genes NPY and CART.  

 

3- Examine whether feeding zooplankton / protein hydrolysate affects the basal 

metabolism, metabolic scope and swimming performance of juvenile cod. 

These measurements are valuable as they might explain whether any growth 

enhancement observed in the zooplankton group was associated with changes in 

basal energy expenditure or metabolic capacity. 

 

4- Examine whether these diets influence the stress (cortisol) response of 

juvenile cod. 

Early juvenile cod were exposed to a handling stress plus confinement, and the 

pre-and post-stress cortisol levels in fish from the three experimental groups were 

compared for 12 h post-stress.  
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2. Materials and Methods 

Atlantic cod (Gadus morhua) broodstock, eggs and larvae were housed at the Dr. 

Joe Brown Aquatic Research Building (JBARB) at the Ocean Sciences Centre of 

Memorial University. The experiment was conducted until the cod reached 1.5 years of 

age (October 2011 to April 2013) and in accordance with the guidelines of the Canadian 

Council on Animal Care, and approved by the Institutional Animal Care Committee of 

Memorial University of Newfoundland (protocol # 11-30-KG). 

2.1. Fish and experimental design 

Broodstock were wild-caught fish from Smith Sound (Newfoundland) and held in 

a 37.7 m
3 

flow through tank for several years prior to this study. The tank was supplied 

with aerated/oxygenated, UV-treated, and filtered seawater at 6.5-7 °C, and kept on a six 

month advanced photoperiod. The broodstock were fed mackerel and herring with a 

vitamin supplement twice a week. Eggs for this study were collected from these 

communally spawning broodstock at 9:00 AM on October 4, 2011, disinfected with 

ozone, and placed into two 0.3 m
3
 cone shaped incubators with 32 ppt seawater at 6-7 °C 

until they reached 100% hatch. These eggs had an average diameter of 1.6 mm, a 95% 

fertilization rate and 91% of them had symmetrical cleavage; based on these metrics these 

eggs were considered to be high quality. At 93.4 degree days (October 19
th

, 2011) the 

larvae were transferred to 16, 400 L flow-through tanks at a density of 50 larvae l
-1

. These 

tanks were then divided randomly into three different treatments based on feeding regime 

/ diet (see Figure 2.1). 
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Treatment 1 (6 replicate tanks): 

Rotifers/Artemia with Ori-Green enrichment (RA) three feedings per day (9 am, 3 pm and 

9 pm). This is the standard larval feeding regime used in the JBARB and at many other 

commercial cod rearing facilities. Initial rotifer and Artemia prey densities during feeding 

ranged from 800 - 9000 and 1200-5400 l
-1

 (depending on larval age), respectively. 

Treatment 2 (4 replicate tanks): 

Rotifers/Artemia with Ori-Green enrichment, supplemented with 5-10% wild caught 

zooplankton (RA-Zoo) (see Section 2.3.3). This treatment had four replicates because the 

quantities of zooplankton that could be collected at the time of the study were limited. 

The larval diet was supplemented with zooplankton until 30 days post-hatch (dph) (see 

Figure 2.1). The numbers of rotifers/Artemia fed to each tank was reduced according to 

the amount of zooplankton that was added (~ 250,000 per feeding). . This ensured that the 

number of prey items was consistent between tanks. 

Treatment 3 (6 replicate tanks): 

Rotifers/Artemia with Ori-Green enrichment four days per week (Tuesday, Thursday, 

Saturday and Sunday) and Rotifers/Artemia with Protein Hydrolysate (RA-PH) 

enrichment three days per week (Monday, Wednesday and Friday).This feeding protocol 

was based on that used in previous experiments conducted by our NORA partners 

(Bjornsdottir et al., 2013). The fish (Pollock; Pollachius virens) protein hydrolysate was 

purchased from IceProtein Ltd. (Iceland) and fed to the rotifers or Artemia at a 

concentration of 0.1 g liter
-1 

for two hours prior to these live feeds being offered to the 

cod larvae.  
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 All groups were fed rotifers from 2 days post-hatch (dph) until they reached 9 mm 

in length, Artemia from 9 mm in length to 13 mm long (length was based on 

measurements obtained for each tank), and weaned onto a commercial micro-diet 

(Gemma micro W 0.2, Skretting, Vervins, France) with a co-feeding period of 10 days, 

thereafter (Figure 2.1.). When the larvae were fully weaned, each tank was fed with the 

micro-diet at a ration of approx. 10-12% body weight day
-1

. 

2.2. Larval rearing and water quality 

 Potters clay (400 ml) was added to all the tanks, twice a day, to increase tank 

turbidity and reduce bacterial numbers within the tanks (Prickett et al., 2010). Rearing 

temperature was increased from 6-7 °C  (incubation temperature) to 10.5 °C over a period 

of 10 days, and water flow rate was gradually increased from 0.8 l min
-1

 (at 0 dph) to 4.5 l 

min
-1

 at 35 dph. The seawater supplied to the tanks was filtered through sand filters down 

to 30 µm, and went through ultraviolet sterilization, degassing, foam fractionation, and 

oxygenation prior to delivery to the larval tanks. This ensured high water quality and a 

pathogen free environment. Dissolved oxygen levels in the tanks were measured daily 

(YSI, ProODO, OH, USA) and kept at an average value of 117% saturation to alleviate 

any possible issues with nitrogen super-saturation. To ensure optimal growing conditions, 

regular maintenance was carried out on the tanks and included: vacuuming the tank 

bottom, and cleaning of the surface skimmers and center drains.  



   

30 
 

 

 

 

 

Figure 2.1. Schematic diagram of the feeding protocol used to investigate the effect of dietary 

supplementation with wild zooplankton or protein hydrolysate on cod production traits and 

physiology. The three diets fed to the cod larvae were, from top to bottom: RA, rotifers and 

Artemia enriched with Ori-Green; RA-PH, rotifers and Artemia enriched with fish protein 

hydrolysate three days per week; RA-Zoo, rotifers and Artemia supplemented with wild caught 

zooplankton. The top axis indicates developmental stage (length in mm) of the dietary groups 

[e.g., The three dietary groups were sampled at 35 days post-hatch (dph) or when the RA and  

RA-PH groups reached 11mm and RA-Zoo reached 13 mm in length]. 
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2.3. Live feed 

2.3.1. Cultivation, harvesting and enrichment of rotifers (Brachionus 

plicatilis) 

The rotifers (B. plicatilis) were cultivated in four stagnant cone shaped culture tanks (1 x 

300 l and 3 x 600 l) during October-November, 2011 (October 7 to Nov 25). Rotifer 

density was measured daily and kept between 500-2600 rotifers ml
-1

. Rearing conditions 

were as follows: temperature, 25-28 °C; salinity, 30 ppt; oxygen saturation, 150-300%. 

Each culture tank was supplemented with Ori-culture (ORI-GO, Skretting, Vervins, 

France) (0.25-0.35 g million rotifers
-1

) for four days, and on the fifth day the rotifers were 

concentrated, washed and stocked into two 300 l enrichment cones. 

The rotifers were harvested from these cones using a 50 µm screen collector/concentrator 

and further enriched with Ori-green (ORI-GO, Skretting, Vervins, France) at a 

concentration of 0.15-0.25 g million rotifers
-1

. The density during enrichment was 500-

1000 rotifers ml
-1

 and the rotifers were enriched for approx. two hours before being 

washed and fed to the cod larvae.  

2.3.2. Cultivation of Artemia sp. 

The decapsulation of the Artemia cysts (from INVE, Great Salt Lake, UT, USA) 

was done according to Schumann (2000) in a 20 liter decapsulation cone, during 

November 2011. After decapsulation, the Artemia were collected in a 50 µm nitex bag 

and washed in 20 °C seawater to remove all chemicals from the decapped cysts. Then, 

they were placed in a 300 l cone-shaped hatching tank until 100% hatch was achieved. 

Eight hours after hatching, the Artemia were fed Ori-Culture for 8 h. Then, they were 
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enriched with Ori-green in a 300 l cone-shaped tank for 12 h, and washed again with 

seawater before being fed to the cod larvae. Seawater for the rotifers and Artemia was 

filtered to 0.35 µm before use.  

2.3.3. Zooplankton collection, species identification and feeding 

The zooplankton was collected from Conception Bay, Newfoundland, by towing a 

100 m mesh plankton net with a 1 m diameter mouth behind the Ocean Science Centre’s 

(OSC) Boston Whaler. Zooplankton tows were conducted from early September to mid 

October 2011, to optimize collection methods/location in advance of the hatching of the 

cod larvae. To get the required numbers of zooplankton, 6 - 8 tows of 20 – 30 minutes in 

duration were required and continued until November 17, 2011; when the larvae were 30 

dph. The number of copepods collected varied between days (see Table 2.1.). Once 

collected, the zooplankton were kept in an aerated cooler on the boat, and then 

transported to the OSC where they were passed through a 400 m mesh filter and 

counted. The zooplankton were then kept in aerated, and chilled, containers for up 36-48 

hours so that tows only had to be done every 2 - 3 days. 

The zooplankton collected consisted primarily of copepods (Temora sp., Oithona 

sp. and Pseudocalanus sp.) (> 90%). However, a significant amount of the phytoplankton 

Ceratium was also collected (see Figure 2.2.), and could not be separated from the 

zooplankton. These organisms were fed to the cod larvae once per day for the first week 

(2 – 9 dph) and twice a day until 30 dph. Each feeding consisted of 250,000 zooplankton 

per tank, and this represented approx. 5-10% of the total prey items available. The 

feedings were at 9:00 PM during the first week and at 9:00 AM and 3:00 PM thereafter. 
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At all feedings, the larvae were allowed to feed exclusively on the zooplankton for one 

hour prior to adding the required number of enriched rotifers or Artemia. Gut squashes 

were conducted periodically, and these confirmed that the larvae were feeding on the 

zooplankton, but also ingesting some Ceratium. 

2.4. Larval sampling and research methods 

The larvae were randomly collected from each tank, anaesthetized in MS-222 

(tricaine methane-sulphonate; 0.05 g liter
-1

; Syndel Laboratories, B.C., Canada), and 

rinsed in UV sterilized seawater before being processed further. 

Standard length (SL): 20 larvae were sampled at 0 dph, 24 larvae per treatment at 10, 20, 

30 and 40 dph, and 40 larvae per treatment were collected at 60 dph. The larvae were 

individually photographed using a photomicroscope (Wild M420, ON, Canada) 

connected to a camera (Infinity 2-2c, ON, Canada), and measured from the tip of the 

snout to the end of the hypurals using a calibrated ocular micrometer. 

Dry weight (DW): 8 samples of 30 larvae were collected at 0 dph and 12 samples per 

treatment were obtained at 10, 20, 30, 40 and 60 dph. The number of larvae per sample 

varied between 5 and 20 from 10 to 60 dph (as larvae size increased, fewer were needed 

per sample). Each sample was washed with isotonic ammonium formate three times, 

placed on Whatman filter paper that was under slight vacuum, and then rinsed three times 

with distilled water. The larvae and filter paper were then transferred to pre-weighed 

aluminum weigh boats and dried at 80 °C for a minimum 24 hours before being weighed 

on an analytical balance (Denver Instrument APX-60, Arvada, Co, USA). 
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Survival: Percent survival was calculated by subtracting the total number of sampled 

larvae from the initial number (i.e. at 0 dph) and dividing by the number of fish remaining 

at the time of grading. 

Specific growth rate (SGR) was calculated according to the formula of Elliott (1975):  

Gw= 100 [ln (Wt / W0)]/t], where (W) was weight at the beginning (W0) and end (Wt) of a 

growth period of (t) days. Growth rate was calculated using dry weight during the larvae 

stages and wet weights during the juvenile stages. 

Condition factor (K) was calculated according to the formula of Fulton (1904): 

K= W / (L
3
), where (W) is dry weight and (L) is standard length. 
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Table 2.1. Number of zooplankton < 400 µm collected from Conception Bay, Newfoundland, and used to feed cod larvae from hatch to 30 

dph. 

 

 

 

 

 

 

 

Date 
October November 

21 23 25 28 30 2 3 8 9 10 13 14 17 

Vol. (L) 87 85 94 96 72 86 93 22 100 103 68 78 80 

Count/ml 30.4 28.4 29.3 44.3 34.7 41.8 47.7 35.5 39.9 40.7 33.4 53.5 47.2 

Total x 10
6
 2.6 2.4 2.8 4.3 2.5 3.6 4.4 0.8 4.0 4.2 2.3 4.2 3.8 
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Figure 2.2. Pictures of the most prevalent zooplankton and phytoplankton collected in 

Conception Bay, Newfoundland during the plankton tows; A) copepods of the species 

Pseudocalanus, Oithona and Temora; and B) the phytoplankton Ceratium. 
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2.5. Larval bone deformities and skeletal malformation 

To examine the incidence and type of deformities in the different treatments, 40 

larvae per treatment were sampled at 60 dph, anaesthetized in MS-222 (tricaine methane-

sulphonate; 0.05g liter
-1

), stored in 4% formalin, and then stained with Alizarin Red 

according to Kjorsvik et al. (2009) (Figure 2.3). These fish were then placed in 40% 

glycerol for two days prior to being photographed using a photomicroscope (Wild M420, 

ON, Canada) connected to a camera (Infinity 2-2c, ON, Canada). The mean dry weights 

of the fish at 60 dph were: 14.30 ± 1.30 mg, 13.42 ± 1.07 mg and 57.95 ± 2.30 mg, 

respectively, for the RA, RA-PH and RA-Zoo groups, and their standard lengths were: 

20.66 ± 0.23 mm, 21.12 ± 0.36 mm and 28.05 ± 0.60 mm, respectively.  

 The stained larvae from each of the three experimental groups were assessed for 

the following skeletal malformations (Lein et al., 2009): stargazer, lordosis, kyphosis, 

corkscrew, fused vertebrae and not fully ossified. 

2.6. Juvenile rearing and sampling for growth and production traits 

The experimental groups were hand graded according to size at 63 dph in order to 

minimize cannibalism and maximize survival in each group. RA were graded into groups 

of large, medium and small, and RA-Zoo were graded into groups of large and small. RA-

PH were not graded due to their low survival (see Section 3.1.2), and to minimize stress 

to the remaining fish from that group. Automatic feeders were used after the fish were 

graded and they were fed with dry feed (Gemma Diamond, Skretting, Vervins, France) at 
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a ration of 8-3% body weight day
-1 

depending on size/age. The pellet size increased from 

0.3 to 1.2 mm as the fish grew larger. All fish were kept in 400 l flow through tanks at   

10 
o
C and 8 l min

-1
 water flow, and photoperiod was maintained at 12 hours light: 12 

hours dark. 

When the fish reached an average weight of 15 g (~ 192 dph) they were PIT-tagged 

[Passive Integrated Transponder (PIT) tags; Easy AV, Avid Identification Systems, 

Norco, CA, USA], and combined into two 3000 l tanks. The stocking density of each tank 

was 7 kg m
-3

, and the fish were fed on 2 mm dry pellets (Gemma Diamond, Vervins, 

France) at a ration of 2% body weight day
-1

. The feed ration from 6-18 months post-hatch 

was 1.5 - 1.0% body weight day
-1

 (depending on size/age) and pellet size was increased 

from 3 to 6 mm as the fish grew. Standard length (SL) and body wet-weight (VIC-6kg, 

Acculab, NY, U.S.A) were measured on all fish after they had been anaesthetized in MS-

222 (tricaine methane-sulphonate; 0.1 g liter 
-1

). These measurements were carried out 

every 3 months on 6 - 18 month old fish (192-558 dph).  

2.6.1. External deformities 

Externally visible deformities (lordosis, scoliosis, stargazer and deformed lower 

jaw) were also measured on each fish (n=562 vs. n=444 vs. n=66 in the RA, RA-Zoo and 

RA-PH groups) when the juveniles were PIT-tagged (192 dph) and when they reached 18 

months post-hatch (588 dph).  
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Figure 2.3. Photograph of 60 dph cod larvae stained with Alizarin Red. The scale bar is 3 mm. 
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2.7. Neuroendocrine regulation of growth and appetite 

2.7.1. Animals and sampling regime 

Larvae were collected from all tanks when they reached 9 mm (26-30 dph; i.e. 

prior to the start of feeding with Artemia), when the RA-Zoo group reached 13 mm (35 

dph; prior to weaning onto microdiet) and when the RA-PH and RA groups reached 11 

mm (35 dph) and 13 mm (44-50 dph) in length. At all these sampling points eight larvae 

per treatment were sampled. Fish dry weights at the 9, 11 and 13 mm sampling points 

were: 0.48 ± 0.04, 1.41 ± 0.26 and 4.31 ± 0.50 mg, respectively, in the RA group and 0.62 

± 0.04, 1.49 ± 0.19 and 3.75 ± 0.37 mg, respectively, in the RA-PH group. In the RA-Zoo 

group, fish dry weights at the 9 and 13 mm sampling points were 0.74 ± 0.04 and 2.75 ± 

0.29 mg, respectively. 

 The sampled larvae were briefly anaesthetized in MS-222 (tricaine methane-

sulphonate; 0.05g liter
-1

), rinsed in UV sterilized seawater and transferred to 

RNase/DNase-free 1.5 ml Eppendorf tubes. They were then snap frozen in liquid nitrogen 

and immediately stored at -80 °C until homogenization and RNA extraction. 

2.7.2. RNA extraction 

Total RNA was extracted from frozen whole larvae using TRIzol reagent (Life 

Technologies, Burlington, ON). Samples were homogenized in 1.5 ml Eppendorf tubes 

with disposable plastic Kontes RNase-free Pellet pestles (Kimble Chase, Vineland, NJ), 

using a battery operated driver (VWR, Mississauga, ON) in 300 µl of TRIzol until no 
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visible solids remained. Then, an additional 450 µl of TRIzol was added, the samples 

were mixed by pipetting, and they were immediately stored at -80 °C. To finish the RNA 

extraction protocol the samples were thawed on ice and further disrupted using 

QIAshredder (QIAGEN, Mississauga, ON) spin columns following the manufacturer’s 

instructions and refrozen. The TRIzol extracted RNA was then cleaned using column 

purification (RNeasy MinElute Column Cleanup kit, QIAGEN) and treated with DNAse-I 

according to the manufacturer's (QIAGEN) instructions. Briefly, TRIzol-extracted total 

RNA (45 µg) was incubated in a 100 µl reaction containing RDD DNA digest buffer (1x 

final concentration) and 6.8 Kunitz units of DNase-I (RNase-free DNase set, QIAGEN) at 

room temperature for 10 min. to degrade any residual genomic DNA. The entire reaction 

was then column cleaned according to the manufacturer's instructions.  

 For both the crude and column-purified RNA extracts, RNA quantity was assessed 

using A260 NanoDrop UV spectrophotometry. RNA purity was evaluated by A260/280 

and A260/230 NanoDrop UV spectrophotometry and RNA integrity was verified using 

1% agarose gel electrophoresis. The RNA in the gel was compared to a DNA size marker 

(1 kb plus ladder, Life Technologies) and the running buffer was 1x TAE; ethidium 

bromide (1 µg ml
-1 

final concentration) was added to the gel in order to visualize the RNA 

when exposed to UV light. 

2.7.3. First strand cDNA synthesis 

First strand cDNA was synthesized by reverse-transcribing 1 µg of DNAse-

treated, column-purified total RNA using Moloney murine leukemia virus (M-MLV) 
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reverse transcriptase (Life Technologies) according to the manufacturer’s instructions. 

Briefly, 1 µg of RNA, 1 µl of random hexamers (250 ng µl
-1

), 1 µl of dNTPs (10 mM) 

and nuclease-free water (Life Technologies) (to a total reaction volume of 13 µl) were 

combined, mixed by pipetting and then heated at 65 °C for 5 min. The samples were 

subsequently placed on ice for 2 min and then, 4 µl of 5X manufacturer’s first strand 

buffer, 2 µl of DTT (0.1 M), and 1 µl of M-MLV (200 U µl
-1

) were added to a final 

reaction volume of 20 µl. All concentrations indicated are stock solution concentrations. 

Finally, samples were incubated at room temperature for 10 min at 37 °C for 50 min and 

then at 70 °C for 15 min. 

2.7.4. Primer design for quantitative reverse transcription – polymerase chain 

reaction (QPCR) 

 Primers for QPCR were designed using Primer3 software 

(http://frodo.wi.mit.edu/primer3), and based on cDNA sequences for the genes of interest 

and the normalizer that were available for Gadus morhua in GenBank or ENSEMBL. 

Two primer sets were synthesized (by Integrated DNA Technologies, Coralville, Iowa) 

for each gene and tested for quality before use. In the case of gene isoforms (IGF-1 and 

IGF-2, and GHR-1 and GHR-2), cDNA sequences were aligned using AlignX (Vector 

NTI Advance 11, Life Technologies) to ensure that the primer sequences were isoform 

specific. The primer test included calculating amplification efficiencies (Pfaffl, 2001) for 

both a 9 mm and a 13 mm individual fish from the RA group. Briefly, a 5-point 1:3 

dilution series starting with cDNA (corresponding to 10 ng of input total RNA) was 

http://frodo.wi.mit.edu/primer3
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performed for each sample (i.e. 9 and 13 mm) and the reported efficiencies are an average 

of the two values. Amplification efficiencies were required to be between 80 and 110%. 

Melting curves were also analyzed in order to verify that the primers amplified a single 

product and that there were no primer-dimers or amplification in the no-template control. 

Lastly, the PCR products were electrophoresed on a 1.5% agarose gel with ethidium 

bromide staining alongside a DNA size marker (1 kb plus ladder, Life Technologies) to 

verify amplicon size. The primer set that met these parameters and had the best 

amplification efficiency, was chosen for each gene. Primer sequences, amplification 

efficiencies and amplicon sizes are shown in Table 2.2. 

2.7.5. QPCR 

QPCR reactions and analyses of transcript (mRNA) levels were performed using 

the 7500 Fast Real-Time PCR System (Life Technologies) with SYBR Green I dye 

chemistry. Transcript expression levels of the genes of interest were normalized to 

C3_RNA polymerase II elongation factor ELL2. This gene was chosen as the endogenous 

control (i.e. normalizer) gene based on its very stable expression profile in microarray 

studies (Jennifer Hall, personal communication) and in the following QPCR assessment. 

The florescence threshold cycle (CT) values of the 24 samples from the different 

experimental groups [3 from each of the RA and RA-PH (9, 11 and 13 mm) groups and 

RA-Zoo (9 and 13 mm) groups] were stable; the average CT value was 28.2 and all 24 

samples were within 0.3 cycles of this value.  
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PCR amplification was performed in a 13 µl reaction using 1 x (final 

concentration) Power SYBR Green PCR Master Mix (Life Technologies), 50 nM (final 

concentration) of each forward and reverse primer, and cDNA corresponding to 5 ng of 

input total RNA. The QPCR cycling parameters consisted of 1 cycle of 50 °C for 2 min, 1 

cycle of 95 °C for 10 min, and 40 cycles of 95 °C for 15 sec and 60 °C for 1 min, and 

melt curve analysis was performed at the end of each reaction. On each 96-well plate, for 

every sample, target and normalizer genes were run in triplicate.  

The CT values were determined automatically using the 7500 Software Relative 

Quantification Study Application (Version 2.0) (Life Technologies). When a CT value 

within a triplicate was greater than 0.7 cycles different from the other two technical 

replicate CT values, it was considered to be an outlier, discarded and the average CTvalue 

was calculated using the remaining two CT values. The relative quantity (RQ) of each 

transcript was then calculated with this software using the 2
-∆∆CT 

relative quantification 

method (Livak and Schmittgen, 2001) and the amplification efficiencies for the gene of 

interest and normalizer. For each target gene, the individual with the lowest normalized 

expression (mRNA level) was set as the calibrator sample (assigned an RQ value = 1). 

Gene expression data are presented as means (+ 1 standard error). 
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Table 2.2. Primer sequences, amplification efficiencies and amplicon sizes for all the genes used 

in the QPCR studies 

Gene name  

1(Accession  number) 

2Primer name Nucleotide sequence (5'-3') 
Efficiency 

(%) 

Amplicon 

size (bp) 

CART 

(DQ167209) 

CART_2 - F CGTCCATGGAGCTGATCTTT 

91.2 106 

CART_2 - R CTGCCTCTCGTTGGTCAAGT 

NPY 

(AY822596) 

NPY_2 - F ACTCCGCATTGAGGCACTAT 

92.3 108 

NPY_2 - R TTTCCTTCAGCACCAGCTCT 

Myostatin 

(ENSGMOT00000013879) 

MYO_1 - F GACGGAGACGATCATGTTGA 

102.9 112 

MYO_1 - R GATGCGATTGGCTTGAATCT 

IGF-1 

(HQ259081) 

IGF-1_2 - F ACACGCTGCAGTTTGTGTG 

84.3 118 

IGF-1_2 - R ATCTGGAAGCAGCACTCGTC 

IGF-2 

(HQ263172) 

IGF-2_2 - F CCGAGAGGAGCATAATGACG 

93.5 122 

IGF-2_2 - R CTCTCCTCCGCACAGAGTTT 

GHR-1 

(ENSGMOT00000008443) 

GHR-1_1- F GCTGGATGAGTCTGGCCTAC 

92.1 110 

GHR-1_1 - R GCGGATATGCACCTCGTACT 

GHR-2 

(ENSGMOT00000011011) 

GHR-2_1 - F GTGGACCACGAGGTCAGAGT 

97.0 124 

GHR-2_1 - R TCAAGAGGATGGCAATAGGG 

GH 

(EU676171) 

GH_2 - F CCTACGGGGGCTACTACCAG 

93.6 145 

GH_2 - R CAGTTGTCCTCAGGGGAGAG 

C3_RNA polymerase II 

elongation factor ELL2 

(FF416208) 

ELL2_2 - F GCTTCCGCATAAAGACAAGG 

93.8 150 
ELL2_2 - R GGATAACAGCGGCGTGTACT 

  

1
Accession numbers starting with ENSGMOT are from ENSEMBL; the rest are from GenBank. 

2
F is forward and R is reverse direction. 
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2.8. Metabolic physiology 

2.8.1. Animals and sampling regime 

Measurements of oxygen consumption (MO2; in mg O2 kg
-0.8

 hr
-1

) and critical 

swimming speed (Ucrit; in cm sec
-1

) were performed on 5 months old juveniles from the 

RA (n = 13) and RA-Zoo groups (n = 14) within the size range of 5 to 11 g. This study 

was not performed on the RA-PH fish due to the low survival, and that these individuals 

were needed for the monitoring of long-term growth in this group. 

2.8.2. Experimental protocol 

Each juvenile cod was placed in a floating container (3.8 l volume) that was 

immersed in the holding tanks for 24 hours. Thereafter, they were lightly anaesthetized in 

seawater containing MS-222 (tricaine methane-sulphonate; 0.07 g liter
-1

), and carefully 

placed into the swim-tunnel (see below) for a 24 hour acclimation period at a temperature 

of 10 – 10.5 ˚C. During this time, the water velocity in the swim tunnel was set to approx. 

1 cm sec
-1

 and water was supplied to the tunnel using a peristaltic pump (Masterflex L/S 

Easy-load II, Cole-Parmer, IL, USA) at 15 – 20 ml min
-1

. The floating container and the 

24 hour recovery period were used to ensure that the juveniles had an empty gut (i.e. were 

in a post-absorptive state) at the time of MO2 measurements.  

After the acclimation period, two measurements of resting oxygen consumption 

were made over a 20 min period. The water velocity in the tunnel was then increased in 

approx. 3 cm sec
-1

 increments every 15 min and MO2 measurements were made at each 
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swimming speed. Each 15 min cycle consisted of a 7 min measurement period (where 

water flow into the swim tunnel was stopped) followed by an 8 min flushing period. 

Swimming velocity was increased until the fish were exhausted. Exhaustion was 

determined as the point at which the fish rested on / could not free themselves from the 

grid at the back of the tunnel for 10 seconds. Using this protocol, there were no 

experiments in which water O2 levels decreased below 90% of air saturation. After the 

fish were exhausted, they were removed from the swim tunnel, anaesthetized in MS-222 

(tricaine methane-sulphonate; 0.2 g liter
-1

), and several morphometric measurements were 

recorded:  wet weight (g), total length (cm), depth (cm), width (cm), and condition factor 

(K). The liver and heart were also removed and used to calculate Hepatosomatic Index 

(HSI) and Relative Ventricular Mass (RVM) using the following formulas: 

                                  HSI = (Liver weight (g) / Fish weight (g)) × 100,   

                                  RVM = (Ventricular weight (g) / Fish weight (g)) × 100. 

 

2.8.3. Oxygen consumption (MO2) and Critical Swimming Speed (Ucrit) 

measurements 

Oxygen consumption and critical swimming speed (Ucrit) were measured using a 

Blazka-type swim-tunnel (approx. 200 ml volume) (Loligo Systems, ApS; Tjele, 

Denmark), and a fiber-optic oxygen meter (model FIBOX 3 LCD, PreSens, Germany) 

with a pre-calibrated dipping probe at a temperature of 10 – 10.5 ˚C. The swim tunnel 

was covered with black foam in order to minimize disturbance to the fish while 
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swimming. Oxygen consumption (MO2) was measured by turning off the inflow of water 

to the respirometer, and measuring the fall in water oxygen content (in mg O2 l
-1

) using 

the oxygen meter, which was connected to a computer that was running OxyView 

software (LCDPSTE V2.01). This data was then downloaded into Logger Pro (Version 

3.4; Vernier Software and Technology; Beaverton, OR, USA) for the determination of 

MO2 in mg O2 l
-1 

min
-1

 by fitting a linear regression to the O2-time data. Finally, MO2 was 

converted into mass specific values using the fish’s body weight and a weight exponent of 

0.8 (Edwards et al., 1972), and was calculated using the formula:   

MO2 (mg O2 kg
-0.8

 hr
-1

) = (rate of decline in [O2] × (Vt - Vw) × 60 min) / W 
0.8

× h 

 

Where rate of decline in O2 was measured as the slope of the linear regression between 

time and water oxygen level; Vt is the tunnel volume in liters; Vw is the weight (volume) 

of the fish, assuming that 1 g is equal to 1 ml of sea water; W is the weight of the fish in 

kg; and h is hour. 

 

Critical Swimming Speed (Ucrit) was calculated using the formula: 

Ucrit = v + ((tf  / ti) × vi) 

Where v is the highest velocity at which the fish swam for the entire time increment (cm 

sec
-1

); Vi is velocity increment (cm sec
-1

); tf is time elapsed from the last change in 

current velocity to fatigue (min); and ti is the time between step increases in velocity (15 

min). 
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The velocity at which the juveniles were swimming in the swim tunnel was 

corrected for the solid blocking effect using the equation of Bell and Terhune (1970):   

VF = VT [(1+ (Ґλ) (A0/At )
1.5

],  

Where VF= corrected velocity, VT= test velocity, Ґ=0.8, λ= 0.7 fish length/thickness, A0 = 

maximum cross-sectional area of fish, At= cross-sectional area of tunnel [ (radius)
2
], 

and thickness = [(fish width + fish depth)/4]. 

To eliminate / account for bacterial O2 consumption the respirometer was cleaned 

daily with fresh water and 70% ethanol. In addition, weekly ‘blank measurements’ with 

an empty seawater-filled chamber were made. Under these conditions, oxygen 

consumption was always negligible (< 1%). 

2.9. Stress response 

2.9.1. Experimental design 

To study the effect of the RA and RA-Zoo diets on the stress (cortisol) response, 

fish from these two treatments were sampled at 82 dph (i.e. when they were early 

juveniles) at rest (pre-stress) and at 1, 3, 6 and 12 hours post-stress, and whole body 

cortisol levels were measured. Again, this analysis was not performed on the RA-PH fish, 

given the limited survival in this group (see Section 3.1.2), and that these fish were 

needed for the monitoring of long-term growth. 

The pre-stress samples were collected at 09:00 h, and all the fish were stressed 

before the fish in the tanks were fed. The fish were stressed by netting them, holding them 

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0426.2011.01882.x/full#b3
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out of the water for 30 sec., and then confining them in small floating containers with 

mesh sides (250 ml volume) until sampling. At rest, and at each post-stress sampling 

point, nine and ten juveniles were quickly netted from the RA and RA-Zoo treatments, 

respectively, and immediately euthanized with an overdose of MS-222 (tricaine methane-

sulphonate; 0.4 g liter
-1

). Once the juveniles were immobilized, they were blotted dry on a 

mesh screen, quickly measured for wet weight and standard length, transferred to 2 ml 

Eppendorf tubes or sterile Whirl-Pak
®
 bags (in cases when the juveniles were too big to 

fit the 2 ml tubes), and snap frozen in liquid nitrogen. This entire procedure took less than 

3 minutes. Finally, the fish were then transferred to a - 80 °C freezer until 

homogenization and cortisol extraction. 

2.9.2. Cortisol extraction and ELISA 

 Extraction of the samples was done by modifying the procedures of Hiroi et al. 

(1997). Briefly, ice-cold phosphate-buffered saline (0.1 M PBS + 140 nM NaCl, pH 7.6) 

was added to 15 ml or 50 ml conical tubes (depending on fish size) to a maximal initial 

volume of 4.5 or 20 ml, respectively. Frozen juvenile cod (weighing 0.2-2.7 g) were then 

quickly cut into a number of small pieces, transferred into the tubes, and immediately 

homogenized using a Polytron PT 10-35 homogenizer (KINEMATICA, Bohemia, NY, 

USA). The samples were homogenized for 1-1.5 min (depending on fish size) at a dial 

setting 5 until no visible tissue remained, and then placed on ice. Once all the samples 

were homogenized, they were sonicated (Branson Sonifier W-150; Branson Ultrasonics 

Corp. Danbury, CT, USA) on ice at 20 Watts for 30 sec. or until completely liquified, 

placed on ice for 30 sec., and sonicated for an additional 30 sec.  
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PBS was then added to each sonicated sample to obtain a final tissue concentration of 50 

mg wet weight (ww) ml
-1 

of PBS, and 1.8 ml of each sonicated sample was centrifuged 

for 5 min at 3000x g. Finally, 1.5 ml of the sample was pipetted into a clean 1.5 ml 

microfuge tube, being careful not to transfer any of the pelleted insoluble material. These 

clear aliquots were then stored at - 80 °C. 

After thawing the aliquots on ice, 250 µl of each sample were pipetted into a 12 x 

75 mm glass culture tube and double extracted with ether as follows. Approximately 1.5 

ml of ether was added to each glass tube and vortexed for 30 sec. The tube was then 

submerged in a dry ice- methanol bath for 60 sec, and immediately thereafter, the ether 

layer was poured into a second 12 x 75-glass culture tube and a second extraction 

performed. The two resulting ether extracted samples were pooled, and the aqueous layer 

from the second extraction was removed and again frozen in a dry ice-methanol bath.  

Any remaining ether from this final extraction was added to the pool as well. The ether 

was then evaporated under a gentle stream of nitrogen, and the dry extracts re-suspended 

in 300 µl of extraction buffer (prepared from the cortisol assay kit; NEOGEN Corp., 

Lexington, KY, USA). The extracts were then allowed to settle for a few minutes, and 

pipetted into fresh 1.5 ml microfuge tubes, which were stored at – 80 °C until the ELISA 

assay. 

 The ELISA assay was performed using a commercially available ELISA kit 

(NEOGEN Corp., Lexington, KY, USA), and according to the manufacturer’s 

instructions. Briefly, serial dilutions of a 1 µg ml
-1 

of cortisol standard were made to 

create a standard curve of seven concentrations (0.04, 0.1, 0.2, 0.4, 1, 2 and 10 ng ml
-1

). 
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Fifty µl of each of these standards and the extracted samples were added to the antibody 

(rabbit-anti cortisol) coated plate in duplicate. Fifty µl of enzyme conjugate (cortisol 

horseradish peroxidase) were then quickly added to each well using a repeater pipette, the 

plate was shaken for 20 sec., and the plate incubated in the dark for 1 h at room 

temperature. After the incubation period, the contents of the plate were discarded and 

each well washed three times using a wash buffer. One hundred and fifty µl of substrate 

(stabilized 3, 3’, 5, 5’ tetramethylbenzidine, TMB plus hydrogen peroxide, H2O2) were 

then added to each well using a multi-channel pipettor, and the plate was covered, mixed 

for 20 sec., and incubated in the dark for 30 min at room temperature. After the second 

incubation, the bottom of the plate was cleaned using a lint-free towel, the plate cover 

was removed, and the plate was shaken and read on a microplate reader (SpectraMax 

M5e, Molecular Devices, Sunnyvale, CA, USA) at an absorbance of 650 nm. Intra- and 

inter-assay variation did not exceed 10%. 

2.10. Statistical and data analyses 

2.10.1. Larval growth 

The residuals of the data were tested for normality and homogeneity using the 

Shapiro-Wilk and Bartlett tests, respectively. Differences in growth between the groups 

were then examined using a Randomized Complete Block (RCB) one-way ANOVA [with 

treatments as the main effect and tank as the blocked factor] followed by Tukey’s 

multiple comparisons of means test. A similar analysis was performed at each 

measurement point (10, 20, 30, 40 and 60 dph) for fish dry weight and standard length. 
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Due to uncertainly in pairing length (n=24) and weight (n=12) measurements, a 

randomization routine was employed to calculate 100 possible condition factors from 

randomly drawn length and weight pairs. From this distribution of condition factors, a 

mean and standard error were calculated, which reflected the uncertainty in the dataset. 

2.10.2. Skeletal malformations 

 

Significant differences in the frequency of each deformity type between groups 

were identified using Pearson’s Chi-square test and Fisher’s exact test for count data. 

These data are presented as a percentage of fish per treatment with a specific type of 

deformity.  

2.10.3. Survival 

Significant differences in total percent survival between the groups during the 

larval stage (i.e. up to grading), and during the juvenile stage from 6 (192 dph) to 18 (588 

dph) months post-hatch, were identified using Pearson’s Chi-square test and Fisher’s 

exact test for count data.  

2.10.4. Juvenile growth 

The residuals of the data were tested for normality and homogeneity using the 

Shapiro-Wilk and Bartlett tests, respectively. When a data set was found to violate these 

assumptions, a non-parametric Kruskal-Wallis test was performed. Differences in growth 

(i.e. wet weight and standard length) between groups were examined using repeated 
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measures two-way ANOVAs with treatment and time as the main effects. However, a 

significant interaction between the main effects was found. Therefore, this analysis was 

followed by separate one-way ANOVAs and Tukey’s post-hoc (HSD) tests at each time 

point to examine treatment effects. 

2.10.5. Neuroendocrine regulation of growth and appetite 

Prior to analyses, outliers were identified and removed using the ESD (extreme 

studentized deviate) method. Two-way ANOVAs were initially used to examine the 

effect of treatment and size on the RQ values of each gene of interest. This analysis was 

normally followed by separate one-way ANOVAs and Tukey’s post-hoc (HSD) tests to 

examine the effects of: 1) age/developmental stage (9, 11 and 13 mm) within a treatment 

(RA, RA-PH, RA-Zoo); and 2) treatment within a particular age/developmental stage.  

However, in cases when there was significant interaction between the two main effects, 

only the latter analysis was performed. The residuals were tested for normality and 

homogeneity using the Kolmogorov Smirnov and Levene tests, respectively. When a data 

set was found to violate these assumptions, a non-parametric Kruskal-Wallis test was 

performed.  

2.10.6. Metabolic physiology 

Repeated measures two-way analysis of covariance (ANCOVA), with weight as 

the covariate, was first used to examine the effects of diet and swimming speed on MO2. 

Then, separate one-way ANCOVAs were performed at each swimming speed to examine 
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the effect of diet on MO2. Neither diet or weight significantly affected MO2 at a particular 

swimming speed. Analysis of covariance (ANCOVA) was also used to examine the effect 

of diet on resting metabolic rate, maximum metabolic rate, absolute metabolic scope, 

factorial metabolic scope and Ucrit. For all metabolic parameters, statistical analysis was 

performed before the data were weight corrected. The residuals in both analyses were also 

tested for normality and homogeneity using the Shapiro-Wilk and Bartlett tests, 

respectively. Morphometric parameters were compared between RA-Zoo and RA fish 

using un-paired t-tests.  

2.10.7. Stress response 

Initially, two-way analysis of covariance (ANCOVA) was used to examine the 

effects of diet and sampling point on the cortisol levels, with weight as the covariate. This 

analysis revealed a significant interaction between the two main effects, and therefore, we 

used: 1) One-way analysis of covariance (ANCOVA) followed by Dunnett’s post-hoc 

tests to identify significant differences in cortisol levels between the control value (0 hr) 

and post-stress values (1, 3, 6 and 12 hr) within each diet group (RA, RA-Zoo); and 2) 

One-way analysis of covariance (ANCOVA) to examine the effect of diet at each time 

point (0, 1, 3, 6 and 12 hr), again with weight as the covariate. The residuals were tested 

for normality and homogeneity using the Shapiro-Wilk and Bartlett tests. 

For all analyses, P < 0.05 was used as the level of statistical significance. Data in 

the text, in Figures and in Tables are presented as means ± 1 standard error of the mean 

(S.E.)
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3. Results 

3.1. Growth and production traits during the larval stage 

3.1.1. Morphometric parameters and growth rate 

 

Partially supplementing the larvae’s diet with wild zooplankton (i.e. by 5-10%) 

dramatically enhanced growth (Figures 3.1 and 3.2), with the first appearance of a 

difference in larval dry weight and length occurring at 30 dph; the dry weights of the 

three groups at this time point were RA 0.6 ± 2*10
-5 

mg, RA-PH 0.7 ± 4*10
-5

 mg, and 

RA-Zoo 1.3 ± 1*10
-4

 mg. By the end of the larval stage (60 dph), the cod from the RA-

Zoo group were approximately four fold heavier (57.9 ± 2.3 mg vs. 14.3 ± 1.3 mg and 

13.4 ± 1.0 mg in the RA and RA-PH groups, respectively) and 30% longer (28 ± 0.6 mm 

vs. 20.7 ± 0.2 mm and 21.1 ± 0.3 mm in the RA and RA-PH groups, respectively). 

Condition factor (K) showed a similar trend, with the first appearance of a difference 

occurring at 30 dph; K of RA-Zoo being 62% and 84% greater as compared to the RA 

and RA-PH groups, respectively. Specific growth rate between 0 and 60 dph was approx. 

2.5% day
-1

 higher in the zooplankton fed cod (10.4% body weight day
-1

) as compared 

with the RA and RA-PH groups (approx. 8% body weight day
-1

). Throughout this part of 

the experiment, there were no significant differences in morphometric parameters or 

growth between the RA and RA-PH fish, with the exception of K at 10 and 30 dph. 
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3.1.2. Survival 

The number of fish remaining at the time of grading was quite low (see Table 

3.1.) due to the large number of fish removed as part of the extensive sampling program, 

and likely, the stress induced by sampling. However, it was clear that the RA-PH 

treatment resulted in the poorest survival. Two of the 6 RA-PH tanks crashed (i.e. 

survival was 0) during the larval rearing period, and in total there were only 123 fish left 

at the time of grading. In contrast, there were 1267 fish left in the 6 RA tanks, and 587 

fish left in the 4 RA-Zoo tanks. This latter difference was statistically significant (χ
2
 = 

955, P < 0.05). 

3.1.3. Skeletal malformations 

The incidence of the skeletal malformations of stargazer, lordosis, kyphosis, 

corkscrew, fused vertebrae and not fully ossified were recorded in alizarin stained 60 dph 

cod in each of the three dietary groups (RA, RA-PH and RA-Zoo). The deformities of 

stargazer, kyphosis and corkscrew were not encountered in any of the groups at 60 dph. 

The RA-Zoo group also had no occurrence of lordosis (0%) (Figure 3.3), but this 

deformity was found in 2.8 and 8.1% of the RA and RA-PH fish, respectively (Figure 

3.4). However, this difference in occurrence between the RA and RA-PH groups was not 

statistically significant (χ
2
 = 3.7, P > 0.05). 

The occurrence of skeletal elements that were not fully ossified (see Figure 3.3) 

was significantly lower in the RA-Zoo fish (2.5%) than in the RA and RA-PH (31.4% and 
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40.5%, respectively) groups at 60 dph (χ
2
 = 16.7, P< 0.05) (Figure 3.4). In contrast, the 

degree of ossification between the RA and RA-PH groups was not statistically different. 

3.2. Growth and production traits during the juvenile stage 

3.2.1. Morphometric parameters and growth rate 

The zooplankton fed fish were significantly longer (by 4-8%) as compared to the other 

two groups at 192 dph, and this difference was maintained until 588 dph (Figure 3.5). In 

contrast, while the zooplankton fish were always heavier than the other two groups during 

the juvenile period, this difference diminished with time (Figure 3.5). The RA-Zoo fish 

were significantly heavier at 192 dph by 30% (24.1 ± 0.4 g vs. 18.7 ± 0.2 g vs. 18.6 ± 0.9 

g in the RA and RA-PH, respectively), but only by 11-14% from 368-558 dph. This 

decreasing treatment effect on body weight was also reflected in the growth rates for the 

three groups. The growth rates of the RA-Zoo and RA-PH were significantly lower (1.5% 

and 1.4% wet weight day
-1

, respectively) than the RA group (1.57% wet weight day
-1

) 

from 192-278 dph, and the growth rate of the RA-Zoo fish was significantly lower at 278-

368 dph and 368-467 dph (0.99 and 0.59% wet weight day
-1

, respectively) than measured 

in the RA (1.04 and 0.62% wet weight day
-1

) and RA-PH (1.1% and 0.64% wet weight 

day
-1

, respectively) groups (Figure 3.6). Furthermore, the overall growth rate of the 

zooplankton fed fish (0.89% wet weight day
-1

) from 192-558 dph was significantly lower 

than the RA group (0.93% wet weight day
-1

). No statistical differences were observed in 

length and weight between the RA and RA-PH groups at any of the sampling points.   
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Figure 3.1. Changes in Atlantic cod morphometric parameters during the larval phase of rearing. 

The three diets fed to the cod were: RA, rotifers and Artemia enriched with Ori-Green; RA-PH, 

rotifers/Artemia enriched with fish protein hydrolysate three days per week; RA-Zoo, rotifers and 

Artemia supplemented with wild caught zooplankton. Bars represent means + 1 S.E. (n= 24-40 

and n=12 for the length and weight data, respectively). Dissimilar letters within a sampling point 

indicate a significant difference between the three groups (RCB ANOVA followed by Tukey’s 

tests, P < 0.05). 
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Figure 3.2. Growth rate (% body weight day
-1

) of Atlantic cod fed three different diets from 0-60 

dph. RA, rotifers and Artemia enriched with Ori-Green; RA-PH, rotifers/Artemia enriched with 

fish protein hydrolysate three days per week; RA-Zoo, rotifers and Artemia supplemented with 

wild caught zooplankton. Bars represent means + 1 S.E. (n= 60-240). Dissimilar letters indicate a 

significant difference between the three groups (RCB ANOVA, P < 0.05). 
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Table 3.1. Number of larvae sampled and survival (%) throughout early development and at the time of grading. The number of larvae at 

the start of the experiment was different, as the RA-Zoo fish were only stocked into four tanks as compared to six tanks for the other two 

groups. 

 

 

 

 

 

 

 

 

Treatment 

Starting # 

of Larvae 

JBARB 

Sampled  

Sampled for 

Experiments 

Total # 

Sampled 

Total # of Fish 

Graded % Survival 

RA 123500 309 4636 4945 1267 1.07 

RA-Zoo 82600 186 2673 2859 587 0.74 

RA-PH 123500 243 3742 3985 123 0.10 
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Figure 3.3. Pictures of cleared / stained cod larvae. A) Cod larva with no skeletal deformities.    

B) The encircled part shows a larva with mild lordosis of the pre-haemal vertebrae.                      

C) Incompletely stained vertebral column indicating that the ossification process was not 

complete. Bars are 2 mm. 
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Figure 3.4. Percentage of larvae with the skeletal malformation of lordosis and whose skeleton 

was not fully ossified at 60 dph. RA, rotifers and Artemia enriched with Ori-Green; RA-PH, 

rotifers/Artemia enriched with fish protein hydrolysate three days per week; RA-Zoo, rotifers and 

Artemia supplemented with wild caught zooplankton. Bars represent the percentage of fish with a 

particular deformity in each treatment (n=40 per treatment). The asterisk represents a significant 

difference between the three diets for the same type of skeletal malformation (Pearson’s Chi-

square and Fisher tests, χ
2
 = 16.7, P < 0.05). 
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3.2.2. Survival 

Percent survival, measured from PIT-tagging at 192 dph to 588 dph, was 92.9%, 

78.8% and 91.7% in the RA, RA-PH and RA-Zoo groups, respectively. Survival of the 

RA-PH group was significantly lower as compared to the other two groups (χ
2
 = 15.1, P < 

0.05).  

3.2.3. External deformities 

The incidence of externally visible deformities (lordosis, scoliosis, stargazer and 

deformed lower jaw) were recorded in each of the three dietary groups (RA, RA-PH and 

RA-Zoo) when the juveniles were PIT-tagged (192 dph) and when they reached 18 

months post-hatch (588 dph). In almost all cases, the most common deformities were 

lordosis and scoliosis, a pattern that was seen at both measurement points (Table 3.2). 

The only deformity observed in the RA-PH group at 192 dph was lordosis, where overall, 

the RA-PH juveniles had a lower total percentage of deformities as compared to the RA 

and RA-Zoo fish (1.5% vs. 13.5% and 14.9%, respectively). However, at 558 dph large 

increases in the incidence of lordosis (by 35%) and scoliosis (by 23.1%) were evident in 

the RA-PH group, and as a result, the total percentage of deformities was higher in that 

group as compared to the RA and RA-Zoo fish (53.8% vs. 38.3% and 28.7%, 

respectively).  
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Figure 3.5. Changes in Atlantic cod length (SL) and wet weight during the juvenile phase of 

rearing. The three diets fed to the cod were: RA, rotifers and Artemia enriched with Ori-Green; 

RA-PH, rotifers/Artemia enriched with fish protein hydrolysate three days per week; RA-Zoo, 

rotifers and Artemia supplemented with wild caught zooplankton. Bars represent means + 1 S.E. 

(n= 543, 57 and 430 in the RA, RA-PH and RA-Zoo groups, respectively). Dissimilar letters 

within a sampling point indicate a significant difference between the three groups (One-way 

ANOVA followed by Tukey’s multiple comparison tests, P < 0.05). 
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Figure 3.6. Growth rate of Atlantic cod during the larval (0-60 dph; % dry weight day
-1

) and 

juvenile (192-558 dph; % wet weight day
-1

) phases. The three diets fed to the cod were: RA, 

rotifers and Artemia enriched with Ori-Green; RA-PH, rotifers/Artemia enriched with fish protein 

hydrolysate three days per week; RA-Zoo, rotifers and Artemia supplemented with wild caught 

zooplankton. Bars represent means + 1 S.E. (n = 60-240 and 57-543 for the larval and juvenile 

data, respectively). Dissimilar letters represent a significant difference between the three diets 

during the larval (RCB ANOVA) and juvenile phases (Kruskal-Wallis One-way analysis of 

variance). Both analyses were followed by Tukey’s multiple comparison tests, P < 0.05. 
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Table 3.2. Deformity types and occurrence (% of fish) in all three diet groups at PIT-tagging (192 

dph) and at the final sampling point (558 dph). *In some cases more than one type of deformity 

was observed per fish, therefore, the total represents individuals that had one or more deformity. 

 

  

Days Post-Hatch (dph) 
 

Deformity type (%) Group 192 558 

 
Lordosis RA 8.7 21.1 

 
RA-Zoo 12.8 18.7 

 
RA-PH 1.5 36.5 

Scoliosis RA 5.0 15.1 

 
RA-Zoo 1.1 5.2 

 
RA-PH 0 23.1 

Stargazer RA 0 2.1 

 
RA-Zoo 0.2 2.5 

 
RA-PH 0 3.8 

Deformed lower jaw RA 0 4.8 

 
RA-Zoo 0.5 5.9 

  RA-PH 0 3.8 

*Total RA 13.5 38.3 

 
RA-Zoo 14.9 28.7 

 
RA-PH 1.5 53.8 
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3.3. Neuroendocrine regulation of growth and appetite 

3.3.1. Dietary effects on the expression of the main growth-regulating genes 

Insulin-like growth factor (IGF) 1 and 2 and growth hormone (GH) mRNA expression 

levels were not significantly different between diets at the 9 and 11 mm sizes or in the age 

matched (35 dph) comparison. However, at 13 mm, IGF-1 expression levels in the RA-

PH group were significantly lower as compared to the other two groups, whereas, the 

expression levels of IGF-2 and GH showed the opposite trend (Figures 3.7 and 3.8). 

Myostatin mRNA expression was not significantly different between the three dietary 

groups at any fish size (i.e. 9, 11 or 13 mm), but was significantly higher in the RA-Zoo 

group as compared to the RA-PH group in the age-matched comparison (Figure 3.7). 

There were no significant differences in IGF-2 or GH mRNA expression as the fish grew. 

In contrast, IGF-1 mRNA levels increased in the RA-PH and RA groups from 9 to 11 

mm, and then stabilized (RA) or returned to initial (9mm) levels. No significant changes 

in IGF-1 were evident with size in the RA-Zoo group (Figure 3.7). 

3.3.2. Dietary effects on growth hormone receptor (GHR) gene expression 

Diet also had significant effects on the mRNA expression of GHR-1 and GHR-2 

(Figure 3.8). GHR-2 mRNA expression in the RA-PH group was consistently higher than 

measured in one or both of the other two diet treatments. For example, it was significantly 

higher in this group as compared to the RA-Zoo group at 9 mm, and higher than the RA 

group at 11 mm. Additionally, the RA-PH group had significantly higher GHR-2 mRNA 
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expression as compared to the other two groups at both 13 mm and in the age-matched 

comparison. In contrast, the effects of diet on GHR-1 mRNA expression were more 

variable. While GHR-1 expression was significantly higher in the RA-PH group as 

compared to the RA-Zoo group at 9 mm, it was significantly higher in the RA-Zoo group 

as compared to the RA group at 13 mm. Finally, there was no effect of diet on GHR-1 

expression in the age-matched comparison.   

3.3.3. Dietary effects on CART and NPY gene expression 

While the expression levels of neuropeptide Y (NPY) were not significantly 

different between the three dietary groups at 9 mm, significant differences were evident in 

all of the other comparisons. NPY mRNA expression levels were highest in the RA group 

in the age-matched comparison and at 11 mm, whereas the RA-PH group showed the 

greatest expression of NPY mRNA at 13 mm (Figure 3.9). CART mRNA expression was 

significantly higher in the RA group as compared to the other two groups at 9 mm. 

However, this was the only significant difference found (Figure 3.9).  
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Figure 3.7. Insulin-like growth factors (IGF) 1 and 2, and myostatin mRNA expression levels in 

whole cod larvae fed the three diets; RA, rotifers and Artemia enriched with Ori-Green; RA-PH, 

rotifers/Artemia enriched with fish protein hydrolysate three days per week; RA-Zoo, rotifers and 

Artemia supplemented with wild caught zooplankton. RQ (relative quantity) values are 

normalized to C3_RNA polymerase II elongation factor expression, and calibrated to the 

individual with the lowest normalized expression for each gene of interest. Lower-case dissimilar 

letters within an age/developmental stage indicate a significant difference between the three 

groups, and upper-case dissimilar letters within a group indicate a significant difference between 

sizes (Two-way ANOVA, P < 0.05). All values are means + 1 S.E. (n=8). 
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Figure 3.8. Growth hormone (GH) and growth hormone receptor (GHR) 1 and 2 mRNA 

expression levels in whole cod larvae fed the three diets; RA, rotifers and Artemia enriched with 

Ori-Green; RA-PH, rotifers/Artemia enriched with fish protein hydrolysate three days per week; 

RA-Zoo, rotifers and Artemia supplemented with wild caught zooplankton. RQ (relative quantity) 

values are normalized to C3_RNA polymerase II elongation factor expression and calibrated to 

the individual with the lowest normalized expression for each gene of interest. Lower-case 

dissimilar letters within an age/developmental stage indicate a significant difference between the 

three groups, and upper-case letters within a group indicate a significant difference between sizes 

(Two-way ANOVA, P < 0.05). All values are means + 1 S.E. (n=8). 
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Figure 3.9. Neuropeptide Y (NPY) and cocaine and amphetamine regulated transcript (CART) 

mRNA expression in whole cod larvae fed the three diets; RA, rotifers and Artemia enriched with 

Ori-Green; RA-PH, rotifers/Artemia enriched with fish protein hydrolysate three days per week; 

RA-Zoo, rotifers and Artemia supplemented with wild caught zooplankton. RQ (relative quantity) 

values are normalized to C3_RNA polymerase II elongation factor expression, and calibrated to 

the individual with the lowest normalized expression for each gene of interest. RQ values are 

presented as means + 1 S.E. (n=8). Lower-case dissimilar letters within age/developmental stage 

indicate a significant difference between the three groups (One way ANOVA, P < 0.05). 
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3.4. Metabolic physiology 

3.4.1. Morphometric parameters 

Fish weight, length and depth were not significantly different between groups, and 

averaged approx. 8.0 g, 10.3 cm, and 1.7 cm respectively. Ventricle weight and RVM 

were also not significantly different between the two groups (approx. 0.013 g and 0.16%, 

respectively) (see Table 3.3.). However, values of width (cm) (1.19 vs. 1.11 cm), 

condition factor (K) (0.76 vs. 0.70) and HSI (8.2 vs. 6.3 %) were significantly higher in 

the RA group (P < 0.05) (see Table 3.3). 

3.4.2. Metabolic parameters 

Diet during the larval stage (RA vs. RA-Zoo) had no effect on the metabolic 

physiology of juvenile cod. Both groups had similar values for resting metabolic rate 

(67.4 + 3.5 vs. 74.1 + 4.5 mg O2 kg
-0.8

 h
-1

) and maximum MO2 (202.5 + 6.1 vs. 221.5 + 

6.4 mg O2 kg
-0.8

 h
-1

). Further, values of absolute and factorial metabolic scopes were 

comparable; these parameters approx. 140 mg O2 kg
-0.8

 h
-1 

and three-fold, respectively. 

Although more fish from the RA-Zoo group reached the highest swimming speeds (40-46 

cm sec
-1

 depending on fish size) (see Figure 3.10), and the Ucrit values were slightly 

higher for zooplankton fed cod (e.g., 3.76 + 0.2 vs. 3.54 + 0.1 bl s
-1

), there was no 

significant (P > 0.05) difference in Ucrit between the two groups (when measured in 

absolute terms or in bl s
-1

) (Table 3.4.). 
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Table 3.3. Morphometric parameters for the juvenile RA and RA-Zoo (140-180 dph) cod used for 

the metabolic physiology study. Values are means + 1 S.E. (n=13 and n=14 in the RA and RA-

Zoo groups, respectively). Within each row, values without a letter in common are statistically 

different (t-test, P < 0.05). 

 

 RA RA-Zoo 

 

Weight (g) 

 

8.35 + 0.60
a 

 

7.93 + 0.40
a 

 

Total length (cm) 

 

10.25 + 0.22
a 

 

10.34 + 0.20
a 

 

Depth (cm) 

 

1.70 + 0.05
a 

 

 

1.65 + 0.05
a 

Width (cm) 1.19 + 0.03
a 

 

1.11 + 0.02
b 

Condition factor (K) 0.76 + 0.01
a 

0.70 + 0.01
b 

HSI (%) 8.20 + 0.44
a 

6.47 + 0.27
b 

Ventricle weight (g) 0.013 + 0.0007
a 

0.012 + 0.0009
a 

RVM (%) 0.165 + 0.008
a 

0.151 + 0.004
a 
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Figure 3.10. Oxygen consumption (MO2) of 140-180 dph cod juveniles fed with RA or RA-Zoo 

during the larval period:  RA, rotifers and Artemia enriched with Ori-Green; RA-Zoo, rotifers and 

Artemia supplemented with wild caught zooplankton. Values are means + 1 S.E. (n=13 and n=14 

in the RA and RA-Zoo groups, respectively). MO2 was not significantly different at any 

swimming speed (two-way ANCOVA, P > 0.05). Values on the graph represent the number of 

fish remaining at the recorded swimming speed from each group. 
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Table 3.4. Metabolic parameters and critical swimming velocity (Ucrit) of RA and RA-Zoo 

juveniles (140-180 dph). RA, rotifers and Artemia enriched with Ori-Green; RA-Zoo, rotifers and 

Artemia supplemented with wild caught zooplankton. Values are means + 1 S.E. (n=13 and n=14 

in the RA and RA-Zoo groups, respectively). There were no statistically significant differences 

between the treatment groups (One-way ANCOVA, P > 0.05). 

 

 RA RA-Zoo 

Resting Metabolic Rate  

(mg O2 kg
-0.8

 h
-1

) 

 

           67.4 + 3.5
 

             74.1 + 4.5
 

Maximum Metabolic Rate  

(mg O2 kg
-0.8

 h
-1

) 

202.5 + 6.1
 

221.5 + 6.4
 

Absolute Scope 

(mg O2 kg
-0.8

 h
-1

) 

 

135.2 + 7.5
 

147.3 + 7.1
 

Factorial Scope 

 

           3.1 + 0.2
 

             3.1 + 0.1
 

Ucrit (cm sec
-1

) 

 

(body length sec
-1

) 

           36.1 + 1.4
 

 

           3.54 + 0.1
 

             38.6 + 1.9
 

 

             3.76 + 0.2
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3.5. Stress response 

 Resting (pre-stress; 8.0 ± 1.4 and 5.8 ± 0.9 ng g
-1

 wet weight, respectively) and 

maximum (41.1 ± 8.1 and 47.0 ± 10.8 ng g
-1

 wet weight, respectively) cortisol levels were 

not significantly different between the RA and RA-Zoo fish. However, there was a 

difference in the pattern of post-stress cortisol elevation between the two groups (Figure 

3.11). Cortisol levels peaked in the RA cod juveniles at 3 hours post-stress before 

returning to pre-stress levels at 12 h. In contrast, whole body cortisol levels did not 

decrease in the RA-Zoo fish between 3 and 6 hours, and this resulted in significantly 

higher (P < 0.05) cortisol values in RA-Zoo as compared to RA fish at this latter time 

point.  
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Figure 3.11. Pre- and post-stress whole body cortisol levels in 82 dph cod juveniles from the RA 

and RA-Zoo treatments: RA, rotifers and Artemia enriched with Ori-Green and; RA-Zoo, rotifers 

and Artemia supplemented with wild caught zooplankton. Values are means + 1 S.E. (n = 9 and   

n = 10 in the RA and RA-Zoo groups, respectively). Lower and upper case letters indicate 

significant differences in cortisol levels between the control value (0 hr) and the post-stress values 

(1, 3, 6 and 12 hr) within each diet group (RA and RA-Zoo, respectively). The asterisk (with 

underlining) indicates a significant difference between the groups at 6 hours post-stress (One-way 

ANCOVA, P < 0.05). 

 

 

 

 

0 1 3 6 12
0

20

40

60

80
RA

RA-Zoo

a
A

b
B

b

B

b

B

a A

*
Time Post-Stress (hr)

C
o

rt
is

o
l 
(n

g
 g

-1
 w

e
t 

w
e
ig

h
t)



   

79 
 

4. Discussion 

4.1. Effect of dietary supplementation on larval growth and production 

traits 

4.1.1. Growth and survival 

Zooplankton 

Partial dietary supplementation (i.e. 5-10%) with wild zooplankton significantly 

enhanced the growth of Atlantic cod larvae, as compared to the RA and RA-PH 

treatments (Figure 3.1 and 3.2). This improved growth was detected as early as 30 dph, 

where dry weight (by 2.4 fold), length (by 1.2 fold) and condition factor (by 1.55 and 

1.13 fold compared to the RA and RA-PH treatments, respectively) were all greater in the 

RA-Zoo group, and continued throughout the larval stage. By the end of the larval stage 

(i.e. 60 dph) the zooplankton fed cod were four-fold heavier and 30% longer as compared 

to the other two dietary treatments (Figure 3.1), and this was associated with a 

significantly greater mass specific growth rate between 0 and 60 dph [10.4% body weight 

day
-1

 in the zooplankton fed cod as compared with approx. 8% body weight day
-1

 in the 

RA and RA-PH treatments (Figure 3.2)]. The extent of growth enhancement observed 

with partial zooplankton supplementation is in the range of that observed in earlier 

experiments, where cod (Gadus morhua) larvae were exclusively fed zooplankton for 

varying periods and their growth compared with those given enriched rotifers. Koedijk et 

al. (2010a) fed wild zooplankton (i.e. mainly Temora sp.) until 36 dph and showed a six-

fold greater mass at time of weaning (i.e. 50 dph), whereas Hansen (2011) reported a 1.9-
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fold mass increase at 60 dph in cod that were fed cultivated copepods (Acartia tonsa) 

until 28 dph. Further, the mass specific growth rate in the latter experiment was found to 

be 10.2% day
-1

 in the zooplankton group vs. 9.1% day
-1

 in the enriched rotifer group. 

These growth rate values are very similar to those reported here, and thus, it appears that 

only a small amount of zooplankton is needed to significantly improve the growth of 

larval cod. 

This enhanced growth was likely due to the nutritional benefits associated with 

feeding zooplankton. For example, the zooplankton-fed larvae had the highest levels of 

DHA, EPA and total 3 fatty acids (reflecting levels in the zooplankton themselves), and 

the highest levels of triglycerides (TG) at the 11 mm sampling (i.e. at 35 dph) (Rocha et 

al., unpubl). However, there are several alternative explanations or other factors that need 

to be considered. It is also possible that part of the enhancement in growth and production 

traits was related to a difference in dietary micronutrient levels. Although we do not have 

data on the micronutrient composition of the various diets or larvae from the three 

experimental groups, natural zooplankton have higher levels of iodine, manganese and 

selenium as compared to rotifers, and these elements have beneficial effects on growth, 

survival and the incidence of skeletal deformities in fish larvae (Hamre, 2006; Hamre et 

al., 2008a; Nguyen et al., 2008). With regards to vitamins, vitamin C levels have also 

been found to be higher and less variable in zooplankton as compared to rotifers and 

Artemia (Hamre, 2006; Van der Meeren et al., 2008), and consistently higher levels of the 

pigment astaxanthin, which serves as precursor for Vitamin A (Moren et al., 2005; Palace 

and Werner, 2006), have been reported in copepods. Astaxanthin has profound 
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antioxidant properties, and appears to enhance survival (Okimasu et al., 1992) and play a 

critical role in salmonid growth (Christiansen and Torrissen, 1996). Likewise, we cannot 

eliminate the possibility that some of the growth enhancement was related to prey size 

and/or size variability, or the general appearance and behaviour of the zooplankton (e.g., 

prey movement and swimming speed) (Beck and Turingan, 2007). For example, earlier 

studies have shown that zooplankton swim faster than rotifers and that this has a positive 

effect on their capture by 15 dph fish larvae (Beck and Turingan, 2007), and Hansen et al. 

(2011) reported that zooplankton-fed cod were more active, swam less for each prey item 

caught, and caught significantly more Artemia sp. than fish fed a rotifer (control) diet. 

Finally, the enhanced growth of zooplankton-fed cod could be related to alterations in gut 

microflora (Tang, 2005; Brunvold et al., 2007; Tang et al., 2009; Nayak, 2010). While 

metagenomics analysis by our Icelandic collaborators (Jóhannsdóttir et al., unpubl.) did 

not reveal any overall differences in bacterial species richness (Chao estimate) or 

diversity (using Simpson and Shannon indices), particular bacterial groups (i.e. 

Mycoplasmatales and Vibrionales) were more prevalent in the guts of the zooplankton fed 

fish as compared to the other two dietary groups. 

In earlier studies where wild zooplankton was used as live feed in intensive cod 

culture, Koedijk et al. (2010a) reported similar survival rates at 50 dph for larvae fed 

rotifers (26.4%) vs. those fed zooplankton (25.9%), whereas Busch et al. (2010) only 

achieved a survival rate of 7.1% in both first feeding groups at 41 dph, and Otterlei et al. 

(1999) had a survival rate of 5 to 45% in zooplankton-fed fish at 56 dph. These studies 

suggest two things. First, feeding zooplankton, does not improve survival during the 

larval stage. Second, survival, even within the same experiment, can vary widely. These 
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finding were generally supported by the current study, despite the low survival rates that 

were associated with repeated sampling of the larvae. Survival in the RA-Zoo group was 

0.74% up to grading (63 dph) as compared to 1.07% in the RA group.  

Protein Hydrolysate 

The protein hydrolysate enrichment used in this study did not improve growth and 

had a negative effect on survival as compared to the other two treatments (Figures 3.1, 3.2 

and Table 3.1). These findings are in contrast to other studies on marine finfish species 

which show improved larval performance when fed protein hydrolysates (Zambonino 

Infante et al., 1997; Cahu et al., 1999; Carvalho et al., 2004; Savoie et al., 2011), 

including Bjornsdottir et al. (2013) who also used pollock protein hydrolysate (100 ppm, 

three days per week) to enrich rotifers and reported significantly improved survival in cod 

larvae (18%) as compared to those provided with a standard rotifer diet (12.8%). 

However, they are consistent with Solberg (unpubl.) who showed that cod larvae fed with 

protein hydrolysate enriched rotifers for 5 weeks had a similar mass at 44 dph (approx. 

15.5 mg) as compared to those fed a standard enriched rotifer diet (approx. 14.9 mg).  

In the current study, the RA-PH larvae had triglyceride levels and triglyceride 

sterol (TG:SL) values (approx. 1:10; 0.1) that were only approx. 1/3 of those in the RA 

and RA-Zoo groups at 9 mm (Rocha et al., unpubl). Given that the ratio of TG:SL has 

been used as a condition index for marine larvae (Fraser, 1989), and Håkanson (1993) 

suggests that larvae with a TG:SL value less than 0.2 are in a poor nutritional condition, it 

appears that the poor survival of the RA-PH larvae was diet related. Why the RA-PH 

larvae were in poor nutritional condition is not clear, but could be related to the way in 
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which the protein hydrolysate was processed / prepared. For example, Bjornsdottir et al. 

(2013) used pollock protein hydrolysate that was prepared using freeze-drying, whereas 

the product we were provided with by IceProtein Inc. was heat dried. Heat drying can 

alter the quality of the protein and as a result reduce its digestibility (Lan and Pan, 1993; 

Garcia-Ortega et al., 2000), or have other effects on the protein including denaturation, 

crosslinking or the leaching of soluble nutrients into the water (Klostermeyer and 

Reimerdes, 1976; Boye et al., 1997; Mohammed et al., 2000; Kvåle et al., 2006; 

Nordgreen et al., 2009). The level of hydrolyzed protein (i.e. free amino acids) also 

appears to be an important determinant of how fish larvae respond to feeding with protein 

hydrolysates. However, it does not appear that the level of inclusion (% free amino acids) 

of protein hydrolysates in the current study (39.1%) was responsible for the lower 

survival. It is generally accepted that low to moderate levels of hydrolysed protein (i.e. < 

40 – 50%) improve the survival and growth of marine fish larvae (Zambonino Infante et 

al., 1997; Cahu et al., 1999; Carvalho et al., 2004; Kotzamanis et al., 2007), and cod 

larvae fed protein hydrolysates with an inclusion level of 40% at weaning, had improved 

survival (18%) as compared to lower levels of hydrolysed protein (0-30%) at 41 dph 

(Kvåle et al., 2009). 

4.1.2. Skeletal malformations 

The only deformities recorded in the 60 dph cod were lordosis and the lack of a 

fully ossified skeleton. At this life-history stage, the zooplankton fed fish had no 

occurrence of lordosis (0%), whereas the incidence of this deformity in the RA and RA-

PH groups was 2.8% and 8.1%, respectively (Figure 3.4). The occurrence of skeletal 
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elements that were not fully ossified was also lower in the RA-Zoo fish (2.5%) as 

compared to the RA and RA-PH groups (31.4% and 40.5%, respectively) (Figure 3.4).  

The finding that feeding zooplankton reduces the incidence of skeletal 

malformations and improves ossification is consistent with several previous studies on 

fish larvae. Hansen (2011) reported that 60 dph copepod fed cod had a lower incidence of 

lordosis (12%) and not fully ossified skeletal elements (0%) as compared to fish fed 

enriched rotifers (18% and 22%, respectively). Kjørsvik et al. (2009) showed that cod 

larvae fed with a similar n-3 HUFA composition (i.e. mainly DHA and EPA) and lipid 

source as natural zooplankton had significantly faster ossification of the vertebral column 

as compared with those fed other diets. Hamre et al. (2002) reported a significantly lower 

incidence of developmental disorders (i.e. malpigmentation and impaired eye migration) 

in Atlantic halibut (Hippoglossus hippoglossus, L.) that were start-fed on wild 

zooplankton (32% and 12%) as opposed to enriched Artemia (93% and 90%). Finally, 

Zouiten et al. (2011) showed that the occurrence of skeletal malformations in 37 dph sea 

bass (Dicentrarchus labrax) larvae was lower when reared in natural mesocosms as 

compared with intensive culture systems. Zouiten et al. (2011) suggested that the 

nutritional contribution of wild zooplankton present in the mesocosms had major effects 

on larvae development, and this supports the prevailing view that the nutritional 

composition (mainly lipids, proteins, minerals and vitamins) of copepods is more suitable 

for fulfilling the needs of fish larvae and plays a major role in reducing the extent of 

skeletal malformations (Hamre et al., 2002; Cahu et al., 2003; Hamre, 2006; Imsland et 

al., 2006). Nonetheless, we cannot exclude the possibility that the improved skeletal 
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ossification of RA-Zoo cod at 60 dph was not at least, in part, due to their enhanced 

growth rate, and thus, greater size at the time of sampling.  

 The RA-PH larvae exhibited the highest rate of skeletal malformations, which is 

consistent with the poor survival of this group. It is very possible that the same 

characteristics of the protein hydrolysate (as discussed earlier) that resulted in poorer 

survival were also responsible for the higher incidence of skeletal malformations. 

Interestingly, Hermannsdottir et al. (2009) showed that feeding 300,000 prey liter
-1 

twice 

per day that were enriched with 0.02 g l
-1 

of pollock protein hydrolysate per liter, 

negatively influenced the percentage of halibut larvae that successfully metamorphosed 

(i.e. 72 vs. 92%). This feeding regimen is very similar to that used in this study (i.e. 0.1 g 

liter
-1 

protein hydrolysate with a prey density of 1,000,000 liter
-1

), and thus, may have 

also contributed to the higher incidence of skeletal malformation in the RA-PH group. 

4.2. Effect of dietary supplementation on juvenile growth and 

production traits 

The RA-Zoo fish were longer by 4-8% throughout the period from 6 – 18 month’s 

post-hatch, and heavier by 30% at 192 dph as compared to the other two dietary groups. 

However, this weight difference decreased to 20% by 278 dph and to 11-14% between 

368 and 558 dph, and was concomitant with lower growth rates (Figure 3.6). 

The reported weight differences at 192 – 278 dph are similar to those measured in 

previous experiments where cod larvae were initially fed wild zooplankton. Koedijk et al. 

(2010a) showed that zooplankton-fed fish were heavier than the enriched rotifer group by 
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23% at 253 dph, and Imsland et al. (2006) reported a 17% mass difference in favour of 

the zooplankton group at approx. 7.5 months (~ 225 days) post-hatch. However, the lower 

growth rate of the RA-Zoo cod as compared to the other two groups during the juvenile 

period in the current study, contrasts with these studies, which showed that the higher 

growth rates of zooplankton fed fish were maintained during the juvenile stages. 

Specifically, Koedijk et al. (2010a) and Imsland et al. (2006) showed that the zooplankton 

fed cod had a significantly higher growth rate (by approx. 0.2% day
-1

) as compared to the 

rotifer-fed fish between 169-253 dph and 150-225 dph, respectively. However, the 

accelerated growth of the zooplankton fed cod in Koedijk et al. (2010a) may have been 

due to differences in rearing temperature between the groups during part of the juvenile 

period. We currently have no explanation as to why the zooplankton fed fish in this 

experiment failed to maintain their size difference. However, it is important to mention 

that these fish were fed at a ration of 1.5 - 1.0% body weight day
-1

 during this growth 

period (i.e.
 
6-18 month’s post hatch), and a different response may have been observed if 

they had been fed to satiation.  

Survival and the incidence of deformities were recorded separately during the 

juvenile stage (192-588 dph) in order to examine whether there were long-term treatment 

effects on these parameters. The RA-PH fish continued to have a sigificantly lower rate of 

survival (78.8%) than the other two groups (92.9 and 91.7% in the RA and RA-Zoo, 

respectively). Further, this was concommitant with a higher incidence of external 

deformities [lordosis (36.5%) and scoliosis (23.1%)] at 558 dph (see Table 3.2). Some 

studies have linked skeletal deformities such as lordosis in cod with swim bladder 

abnormalities. Swim bladder abnormalities are characterized by a slight upward tilt of the 
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head and an indented dorsal body contour at the transition between the head and the 

trunk. This is first evident when the cod reach the juvenile stage, and can result in 

impaired swimming and foraging behaviour, and thus, increased mortality (Grotmol et al., 

2005; Hansen et al., 2011). 

When comparing the level of deformities reported in the current study to the 

literature, it appears that values are in the same range. Kolstad et al. (2006) reported that 

the percentage of deformed cod at two years of age ranged from 28-74%, while Fjelldal et 

al. (2009) determined that the incidence of vertebral deformities was 75% in one and two 

year old cod based on radiological examination. These levels are significantly higher than 

that found in other fish species used for aquaculture (e.g., salmon and trout), and thus, 

represent a major bottleneck to the successful commercialisation of cod (Rosenlund and 

Halldorsson, 2007).  

4.3. Neuroendocrine regulation of growth and appetite  

4.3.1. Dietary effects on the expression of growth regulating genes 

There were several statistical differences in the mRNA expression of growth 

regulating hormones (GH, IGF-1, IGF-2, myostatin) and GH receptors (GHR-1 and 

GHR-2) (Figures 3.7 – 3.8). However, there was no consistent pattern in mRNA 

expression between the groups (with the exception of GHR-2 in RA-PH fish), and the 

data did not reflect the enhanced growth displayed by the RA-Zoo group during the larval 

period. These fish had a 2.5% higher overall growth rate (during 0-60 dph) and a four-

fold greater dry weight by the end of the larval period (Figures 3.1 and 3.2). This lack of a 

clear relationship between growth performance and growth regulating gene expression is 
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in contrast to some studies. Olivotto et al. (2008a) demonstrated that the improved growth 

of copepod (i.e. Centropages typicus) fed clownfish was concomitant with higher IGF-1 

and IGF-2 mRNA expression and a reduction in the expression of myostatin, as compared 

to those fed an enriched rotifer diet. Further, previous studies have shown similar 

relationships between the expression of these genes (i.e. an increase in IGFs and decrease 

in myostatin) and growth in fish that were fed diets rich in HUFAs (Avella et al., 2007; 

Olivotto et al., 2010). In contrast, other studies have failed to see a relationship between 

somatic growth and growth regulating gene expression. For example, Lanes et al. (2012) 

were unable to demonstrate that the improved growth of cod larvae that were fed with 

nucleotide-enriched live feed was related to the expression levels of IGF-1, IGF-2, Fst, 

(activin binding protein that antagonizes the activity of several members of the TGF-β 

superfamily including myostatin) or other key myogenic genes, as compared to the 

unenriched dietary group. Similarly, differences in growth observed in cod and sea bass 

(Dicentrarchus labrax, L.) larvae that were fed different first-feeding diets were not 

related to the mRNA expression of either GH (Kortner et al., 2011a) or myostatin 

(Carnevali et al., 2006),  respectively. 

The hypothalamic-pituitary-growth axis (see section 1.1.6) is a very complex 

system that involves several hormones and other interacting components [e.g., GH and 

IGFs binding proteins (GHBPs and IGFBPs) and their specific proteases, IGF- receptors 

(IGFRs), GH receptors etc.], and is regulated by the integration of many environmental 

factors (e.g., food availability, temperature, salinity, season, photoperiod, osmotic 

pressure) (Duan, 1997; Wood et al., 2005; Kelley et al., 2006; Canosa et al., 2007; Chang 

and Wong, 2009; Reinecke, 2010). Therefore, differences in the fish species examined 
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and in experimental conditions could explain the contrasting results between studies. 

Furthermore, it has been shown that several components of the insulin-like growth factor 

(IGF) system such as IGF-1, IGF-2 (Duan, 1997; Zou et al., 2009), and GHRs (Calduch-

Giner et al., 2001; Canosa et al., 2007) undergo post-translation modification in teleost 

fish. Thus, the mRNA expression of these genes may not be directly related to hormone 

levels or be a valuable biomarker of growth in fishes in all cases (Picha et al., 2008). It is 

unlikely that the use of homogenized whole larvae was responsible for the lack of a clear 

pattern in mRNA expression of growth-regulating genes in this study. This method was 

used in earlier experiments that showed a relationship between growth and the transcript 

levels of these genes (Avella et al., 2007; Olivotto et al., 2008a). 

4.3.2. Ontogenetic effects on the expression of growth regulating genes 

Only one significant difference in mRNA expression was evident with 

development (ontogeny) of the cod larvae. IGF- 1 expression was approx. two-fold higher 

at 11 mm (35 dph) as compared to 9 mm (26 – 30 dph) in the RA and RA-PH groups, 

whereas stable IGF-1 expression was observed in 9 mm (26 – 30 dph) vs. 13 mm (35 dph) 

RA-Zoo larvae (Fig. 3.7). These findings are very similar to Lanes et al. (2012) who 

showed that cod larvae with improved growth had a stable expression pattern for IGF-1 

between 30 to 38 dph, while larvae that grew less demonstrated increasing expression 

levels of these gene over this period. These data may provide some insights into the 

important role played by IGF-1 during these specific developmental stages. However, the 

number of aged-matched samples was very limited in the current study (2 – 3) and this 

could partly explain the lack of significant differences with development in the other 
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growth regulating genes. For example, it has been shown that whole body GH mRNA 

expression levels in cod fluctuates considerably between hatch and 50 dph (Kortner et al., 

2011b). Clearly, additional studies where larvae are frequently sampled are required 

before the temporal dynamics of growth-regulating gene expression can be thoroughly 

understood. 

4.3.3. Dietary effects on CART and NPY gene expression 

It is well established that NPY (Narnaware et al., 2000; Narnaware and Peter, 

2002; MacDonald, 2008) and CART (Volkoff and Peter, 2001b; Kehoe and Volkoff, 

2007) gene expression are influenced by nutrient and diet composition in fishes, including 

cod. However, very little is known regarding the underlying mechanism(s) by which 

dietary regimes cause an increase in somatic growth and the relationship to appetite 

(Volkoff, 2006; Panserat and Kaushik, 2010; Hoskins and Volkoff, 2012). In the current 

study, the dietary treatments resulted in few significant changes in mRNA expression of 

the appetite regulating genes NPY and CART (Figure 3.9). The mRNA expression of the 

anorexigenic neuropeptide CART was significantly lower in the RA-Zoo as compared to 

the RA group at 9 mm (Figure 3.9), and thus, may partially explain the enhanced growth 

of the zooplankton-fed fish. However, NPY mRNA expression levels were not 

significantly different between the RA-Zoo and the RA groups at 9 mm (26-30 dph) 

which is in agreement with Kortner et al. (2011a). Further, Kortner et al. (2011a) showed 

that there was a general increase in NPY transcript levels in zooplankton-fed cod 

throughout early ontogeny (from 8 to 29 dph), and suggested based on this work and that 

of Kortner et al. (2011b) that the endocrine regulation of appetite and digestion in cod are 
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closely linked and influenced by dietary regimes from these early developmental stages. 

Thus, the lack of clear relationships between growth, NPY expression and ontogeny in 

the current study could again be due to the fact that larvae were sampled only between 30 

and 50 dph.   

4.4. Metabolic physiology 

In this study, I measured the metabolic physiology and swimming performance of 

juvenile cod from the RA and RA-Zoo dietary groups, and report that zooplankton 

supplementation during the larval stage had no significant effect on the resting metabolic 

rate (approx. 185 vs. 209 mg O2 kg
-1

 h
-1

, respectively), maximum metabolic rate (approx. 

544 vs. 604 mg O2 kg
-1

 h
-1

, respectively), metabolic scope (approx. 372 vs. 409 mg O2  

kg
-1

 h
-1

, respectively) or critical swimming velocity (Ucrit; approx. 3.6 vs. 3.95 body 

length sec
-1

) of juvenile fish. 

The above values are comparable to some other studies that have investigated the 

metabolic physiology of early juvenile stage (< 10 g) cod. For example, Hansen and von 

Herbing (2009) measured the standard metabolic and active metabolic rates of 2-3 g (wet 

mass) fish at 10 ˚C, and reported values of 184.6 and 645.8 mg O2 kg
-1

 h
-1

, respectively, 

whereas Peck et al. (2003) reported a routine respiration rate of approximately 200 mg O2 

kg
-1

 h
-1 

for cod in the same size range. However, these findings are not comparable to all 

studies on juveniles of this species. For example, Hunt von Herbing and White (2002) 

reported much lower routine and active (maximum) metabolic rate values (76.8-115.2 and 

96-153.6 mg O2 kg
-1

 h
-1

, respectively) for 1-3 g (wet mass) cod juveniles. This latter study 

used the ‘chase’ method to induce exhaustion, and while this might explain the difference 
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in maximum metabolic rate with my research (Reidy et al., 1995), it does not explain the 

discrepancy in resting (routine) metabolism. The Ucrit values for cod are also comparable 

with previous studies on juvenile gadids. For example, Hansen and von Herbing (2009) 

reported values of 2-4 bl s
-1

 for 0.5-3 g Atlantic cod juveniles at 10 ˚C, and Ottmar and 

Hurst (2012) found that the Ucrit for 10 cm Pacific cod juveniles was 3.6 bl s
-1

 at 9 ˚C. 

Metabolic scope is considered to be an important mediator of growth in cod, as a 

direct positive relationship has been observed between metabolic scope (mg O2 kg
-1

 h
-1

) 

and specific growth rate (% body weight day
-1

) (Chabot and Dutil, 1999; Claireaux et al., 

2000). Thus, the similar metabolic scope values in the two dietary groups suggest that 

these fish (RA and RA-Zoo) had comparable growth rates during this life history stage, as 

they did from 192 – 278 dph (1.57 and 1.50% day
-1

, respectively). These results 

complement those of Koedijk et al. (2010b) who found no significant differences in the 

metabolic enzyme [i.e. lactate dehydrogenase (LDH), malate dehydrogenase (MDH) and 

aspartate amino transferrase (AAT)] activity of 10-70 g juvenile cod that were start-fed 

with wild zooplankton as opposed to enriched rotifers. Collectively, these data suggest 

that feeding wild zooplankton during the early life history stages does not result in long-

term changes in the metabolic capacity of Atlantic cod. 

It is worth mentioning that we also attempted to measure the oxygen consumption 

of RA and RA-Zoo larvae between 15 and 30 dph. Measurements of resting metabolic 

rate were made on groups of 10 larvae using small glass respirometers (60 ml) over a 24-

h period. Unfortunately, the larvae were quite ‘fragile’ during this period and only 

survived for approximately 6-8 hours once placed into the respirometers. This indicated 

that the larvae were under severe stress; i.e. measurements of oxygen consumption would 
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not be indicative of a resting animal and make the interpretation of differences in 

metabolism between the groups difficult / impossible. However, these data would be 

extremely valuable to collect, and likely reveal whether enhanced metabolic capacity 

during the larval stages contributed to the enhanced growth of the zooplankton-fed cod. 

4.5. Stress response 

Resting (pre-stress; 8.0 ± 1.4 vs. 5.8 ± 0.9 ng g
-1

 wet weight, respectively) and 

maximum (41.1 ± 8.1 vs. 47 ± 10.8 ng g
-1

 wet weight, respectively) cortisol levels were 

not significantly different between the RA and RA-Zoo early juveniles at 82 dph. 

However, there was a difference in the pattern of post-stress cortisol elevation between 

the two groups (see Figure 3.11). Cortisol levels peaked in the RA cod at 3 hours post-

stress before returning to pre-stress levels at 12 h, whereas whole body cortisol levels in 

the RA-Zoo fish were comparable between 3 and 6 hours and then returned to pre-stress 

levels at 12 h.  

Resting whole body cortisol levels for cod during the late larval and early juvenile 

stages have been reported to be in the range of 2-10 ng g
-1

 wet weight (King and 

Berlinsky, 2006; Westelmajer, 2008). In addition, Westelmajer (2008) showed that whole 

body immunoreactive corticosteroid (IRC) concentration reached a maximum level of ~ 

25 ng g
-1

 wet weight (a 10 fold-increase) in 59 dph larvae at 1 hour after air exposure 

stress, while King and Berlinsky (2006) reported a whole body cortisol level of ~ 68 ng g 

-1 
at 1 hour following a similar stressor, and that it returned to resting levels by 24 hours 

post-stress. These resting levels, the magnitude of the increase in cortisol levels, and the 



   

94 
 

temporal nature of the cortisol response were all quite similar to that observed for the cod 

fed enriched rotifers and Artemia in this study. 

Very few studies have examined the effects of feeding zooplankton on the stress 

response of fishes. However, Kraul et al. (1993) showed that larval mahimahi 

(Coryphaena hippurus) that were fed with copepods had significantly higher post-stress 

survival after an acute 120 sec air exposure, as compared to those fed an enriched Artemia 

diet. Further, Piccinetti et al. (2012) reported that early common sole juveniles that were 

fed with 50% wild zooplankton supplementation during the larvae stages had lower 

resting (by ~ 1.9 fold) and higher maximum post-stress levels (by ~ 1.4) of whole body 

cortisol as compared to those fed a traditional rotifer / Artemia based diet. The difference 

in resting cortisol levels between the dietary treatments in the current study is somewhat 

similar to Piccinetti et al. (2012) (1.4-fold lower levels in the RA-Zoo group). However, if 

anything, the current results suggest that post-stress cortisol levels were similar, if not 

higher (e.g., levels may have still been increasing between 3 and 6 hours post-stress), and 

more prolonged in the RA-Zoo fish. While the reason for the discrepancy in findings 

between this study and Piccinetti et al. (2012) is unknown, it is consistent with 

Westelmajer (2008) who showed that cod fed rotifers and Artemia enriched with high 

levels of the HUFAs DHA, AA and w6DPA (docosapentaenoic acid: 22:5w6), and given 

a 15 sec air exposure stress, had a more prolonged elevation in cortisol as compared to the 

other commercially enriched rotifers and Artemia treatments. These studies, as well as 

others (Kanazawa, 1997; Koven et al., 2001; Vagelli, 2004; Ganga et al., 2006), suggest 

that the nutritional effects associated with feeding zooplankton, such as enhanced level of 
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HUFAs and phospholipids, are reflected in stress tolerance (survival) and the 

corticosteroid response to stress. 

5. Summary and future perspectives 

The present study has several principal findings. 1) Only small amounts of 

zooplankton (i.e. 5-10% of total prey items) are needed to significantly improve the 

growth and general development (i.e. incidence of skeletal malformations) of Atlantic cod 

larvae. This result strongly suggests that the feeding of cultured zooplankton may be a 

viable and cost-effective strategy for increasing the growth (and potentially health) of 

marine finfish produced through intensive culture practices. However, it is also apparent 

from my data that zooplankton feeding alone will not be sufficient to reach the target that 

the Newfoundland aquaculture industry has set to insure profitability (30-36 months to 

reach market size of 3-4 kg) (Clift report, 2005; Gardner Pinfold Report, 2010). This 

standard requires an increase in growth of approx. 20-30%, and at the end of my study 

(18 months), the zooplankton-reared cod were only approx. 11% larger than their RA fed 

counterparts. Clearly, additional improvements in husbandry practices / rearing protocols 

(e.g., the optimization of juvenile and adult diet formulations) or broodstock selection 

will be required to meet this goal.  

2) The impetus to use pollock protein hydrolysate as a live feed enrichment in 

these experiments was based on its previously demonstrated beneficial effects on growth 

and incidence of deformities by our NORA (Nordic Atlantic Cooperation) partners 

(Bjornsdottir et al., 2013; Johannsdottir et al., 2013). However, the protein hydrolysate 

enrichment used in this study did not improve growth, and had a negative effect on 
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survival and skeletal deformities. These contrasting results may be due to the way the 

protein hydrolysate was processed, as these earlier studies used freeze-drying and our 

product was produced by heat-drying. Additional studies must be performed to: 1) assess 

how methods for preparing fish protein hydrolysates as an additive in aquaculture feeds 

influences their ‘quality’ and ability to positively influence production related traits, and 

2) determine the optimal level of inclusion when used in cod live feed diets, given this 

parameters importance (Kvåle et al., 2009; Liu et al., 2010; Mamauag et al., 2011). 

3) The growth enhancement achieved by feeding the cod larvae wild zooplankton 

was not related to alterations in the mRNA expression of the main growth regulating 

hormones (IGF I and II, GH, GH receptors I and II, and myostatin), and this suggests that 

the transcript levels of these hormones / receptors are not valuable biomarkers of growth 

in cod larvae (i.e. between 9 and 13 mm; 26 to 50 dph). This conclusion is supported by 

other studies on cod and various fish species (Carnevali et al., 2006; Kortner et al., 2011a; 

Lanes et al., 2012). mRNA expression of the appetite regulating neuropeptides (NPY and 

CART) was also not related to the growth of the RA-Zoo fish. This result suggests that 

the enhanced growth of this group was not due to higher food intake. However, this will 

have to be investigated further given the lack of a relationship between growth and the 

transcript levels of various growth mediators at this life history stage. 

4) The zooplankton fed fish did not maintain their growth advantage and 

displayed significantly lower growth rates as compared to the RA treatment during the 

juvenile period (6-18 months post-hatch). It is not clear whether this reduced growth rate 

was related to slower growth of the RA-Zoo fish, or enhanced (catch up, compensatory) 

growth in the RA cod during the juvenile stage. Nonetheless, my results suggest that the 
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growth potential of fish is not necessarily determined (set) in the larval stage, and this is 

in contrast to conclusions by other authors (Steinarsson et al., 2012). 
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