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Abstract 

 

The island of Newfoundland is an important location for the breeding and 

wintering of millions of subarctic birds. The adjacency of the island to Greenland and 

western Europe indicates the possibility of inter-continental viral transmission by pelagic 

birds. In this thesis, the prevalence and transmission of avian influenza viruses (AIVs) in 

3 major bird groups (duck, gull and murre) were investigated to shed light on AIV 

ecology and evolution at this region.  

The epidemiological study of AIVs in ducks (2008-2011) revealed an overall 

virus detection rate of 7.2%. The viral prevalence differed significantly by bird age and 

sampling season. Although the AIV detection rates were much lower in gulls (1.8%) and 

murres (3.9%) during 2009-2011, virus prevalence also displayed strong variability by 

bird age and season. In addition, serological study revealed a much higher frequency of 

AIV infection in ducks, gulls and murres compared to results by virus detection alone. 

The gene sequences of 30 duck AIVs (2008-2011) in Newfoundland and 79 

reference duck AIVs (2006-2010) from the Atlantic bird flyway of North America were 

analyzed to reveal their genetic structure and the extent of gene flow. The genetic 

structure differed amongst the 8 viral segments with the highest diversity being found in 

the HA and NA segments. These viruses showed rare inter-continental transmission, but 

frequent reassortment, and frequent interspecies and North American inter-flyway 

distribution.  
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The gull AIVs in Newfoundland (2009-2011) showed frequent inter-continental 

and cross-host group transmission. The study also revealed a larger than previously 

detected AIV gene reservoir in gulls in Atlantic Canada. 

The 21 H1N2 AIVs identified from Common Murre in summer 2011 belonged to 

4 genotypes. The major genotype had been circulating in the murre population for a while 

before detection, as indicated by its genetic heterogeneity. The murre viruses displayed a 

mainly waterfowl-related gene pool with considerable inter-continental and avian-gull 

gene reassortments.  

The results of this thesis work provided a profile of AIV prevalence in 

Newfoundland, and increased our understanding of AIV ecology and evolution in wild 

birds of Atlantic Canada. Besides continuing the AIV surveillance in gulls, murres and 

dabbling ducks, future surveillance work should expand to include sea ducks and 

shorebirds, to better reveal the dynamics of AIV evolution and transmission in this region. 
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Chapter 1 - Introduction and Overview 

 

1.1 The classification of avian influenza virus  

Influenza viruses are a group of single-stranded, negative-sense and segmented 

RNA viruses belonging to the family Orthomyxoviridae. There are six viral genera in 

Orthomyxoviridae: Influenzavirus A, Influenzavirus B, Influenzavirus C, Isavirus, 

Thogotovirus and the newly classified Quaranjavirus (Presti, Zhao et al. 2009, King, 

Adams et al. 2012). The three Influenzavirus genera are separated according to the 

antigenic differences in their matrix (M1) and nucleocapsid (NP) proteins (Palese 1977). 

Influenza viruses in different genera have different host ranges. Influenza A virus (IAV) 

has a broad spectrum of hosts including birds and mammals, influenza B virus is detected 

in human infections, while influenza C virus infects humans and pigs (Hinshaw, Naeve et 

al. 1983, Hinshaw, Bean et al. 1984, Hinshaw, Bean et al. 1986, Chambers, Hinshaw et al. 

1991, Webster, Bean et al. 1992, Yoon, Cooper et al. 2005, Ducatez, Webster et al. 2008, 

Smith, Bahl et al. 2009).  

According to the major host taxa, IAV is classified as swine influenza virus, 

human influenza virus, equine influenza virus, etc. Avian influenza viruses (AIVs) are 

IAVs that infect birds. Based on the genetic and antigenic differences of the two surface 

glycoproteins, hemagglutinin (HA) and neuraminidase (NA), IAVs are classified into 18 

HA and 11 NA subtypes, and all viral subtypes have been detected in birds except for the 

newly identified H17N10 and H18N11 viruses from bats (Hinshaw, Air et al. 1983, 

Webster, Bean et al. 1992, Krauss, Walker et al. 2004, Fouchier, Munster et al. 2005, 

Veits, Weber et al. 2012, Tong, Zhu et al. 2013).  
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1.2 The genome, replication and molecular features of avian influenza viruses 

IAV virions are spherical, filamentous or pleomorphic in shape and 80-120 nm in 

size (Webster, Bean et al. 1992). The virus is enveloped by a host-derived membrane, 

with HA, NA and ion channel (M2) proteins embedded in the bi-layer membrane. Matrix 

proteins lie beneath the membrane and determine the structure of the IAV (Figure 1.1) 

(Webster, Bean et al. 1992, Horimoto and Kawaoka 2005).  

The IAV genome has a total size of ~13.5kb and is composed of 8 viral RNA 

(vRNA) segments with lengths ranging from 0.89 to 2.3kb. These are segment 1 or PB2 

gene (polymerase basic protein 2 gene, ~2.3kb), segment 2 or PB1 gene (polymerase 

basic protein 1 gene, ~2.3kb), segment 3 or PA gene (polymerase acid protein gene, 

~2.2kb), segment 4 or HA gene (hemagglutinin gene, ~1.7kb), segment 5 or NP gene 

(nucleoprotein gene, ~1.6kb), segment 6 or NA gene (neuraminidase gene, ~1.4kb), 

segment 7 or M gene (matrix protein gene, ~1.0kb) and segment 8 or NS gene (non-

structural protein gene, ~0.9kb) (Webster, Bean et al. 1992, Horimoto and Kawaoka 

2005). For each of the 8 vRNA segments, there are 12 and 13 conserved nucleotides at 

their 3’ and 5’ ends, respectively, which are partially complementary and form closed 

panhandle structures (Robertson 1979, Desselberger, Racaniello et al. 1980). Each of the 

vRNA segments is associated with multiple copies of the NP monomer, and a single copy 

of the polymerase heterotrimer (PB2, PB1 and PA subunits), comprising the viral 

ribonucleoprotein (vRNP) complex in a helical supercoiled conformation, forming the 

core of the AIV virion (Murti, Webster et al. 1988, Horimoto and Kawaoka 2005).  
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Figure 1.1. Structure of influenza A virus. The cartoon shows a spherical-shaped 

influenza A virus (IAV) particle. The virus is enveloped, with 3 proteins (HA, NA and 

M2) inserted in the lipid bilayer. The M1 protein lies beneath the envelope, and forms the 

shell of the virus. Each of the 8 gene segments is associated with multiple NP monomers 

(not shown) and a copy of RNA dependent RNA polymerase (PB2, PB1 and PA proteins) 

to form the core of the IAV (RNPs). One of the several non-structural proteins of IAV, 

NEP, is also illustrated in this picture. 

 

The viral infection starts from the adsorption and entry of the viruses into target 

cells, a process accomplished by the HA protein (Skehel and Wiley 2000). HA is 

composed of the HA1 and HA2 subunits linked by a disulphide bond. HA binds to sialic 

acid (SA)-terminated cellular receptors in the form of a homotrimer (Wiley and Skehel 

1987, Horimoto and Kawaoka 2005). The globular head of the HA trimer, composed of a 
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component of the HA1 subunit, possesses the receptor binding sites. The stem of the HA 

trimer, composed of the HA2 subunit and part of HA1, participates in the fusion of the 

virus envelope with the host cell membrane in a low pH condition (Wharton, Skehel et al. 

1986, Daniels, Jeffries et al. 1987, Wiley and Skehel 1987, Patterson, Swainsbury et al. 

1999, Skehel and Wiley 2000). 

Once the viral membrane is fused with the endosomal membrane of the host cells, 

M2 proteins participate in the uncoating of IAVs by dissolving the M1 proteins and 

release of the viral core (vRNP polymerase complex) into the cell cytoplasm (Ito, Gorman 

et al. 1991, Horimoto and Kawaoka 2005). The vRNP polymerase complex is then 

transported to the nucleus and initiates the transcription and replication of the vRNAs 

(Coloma, Valpuesta et al. 2009, Resa-Infante, Recuero-Checa et al. 2010). The progeny 

vRNP is exported from the cell nucleus to the cytoplasm, a process mediated by the 

nuclear export protein (NEP, NS2) (Paterson and Fodor 2012). The NS1 protein also 

facilitates the above process through inhibiting the interferon function of the host cells, 

and restraining the nuclear export of host mRNA (Hale, Barclay et al. 2008, Hale, Randall 

et al. 2008, Paterson and Fodor 2012).  

The translation of viral proteins takes place in the cell cytoplasm, while the 

assembly and budding of progeny virions take place on the membrane of the infected 

cells. The ion channel protein (M2) plays a crucial role in AIV budding by mediating the 

scission of the host cell membrane and facilitating the release of the virions (Rossman and 

Lamb 2011). NEP also participates in the viral assembly and budding process, as 

indicated by the interaction of NEP with the M1 protein, and with a cellular ATPase 

(Yasuda, Nakada et al. 1993, Gorai, Goto et al. 2012, Paterson and Fodor 2012). NA, the 
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homotetramized glycoprotein on the surface of the viral particle, also plays an important 

role in viral budding. It has sialidase enzymatic properties, which cleaves sialic acids 

from the viral receptor and releases the progeny virion from the cell surface (Meindl, 

Bodo et al. 1974, Palese, Schulman et al. 1974, Palese, Tobita et al. 1974).  

Besides the 10 AIV proteins mentioned already (PB2, PB1, PA, HA, NP, NA, M1, 

M2, NS1 and NEP), additional proteins encoded by the IAV genome have been identified 

more recently (PB1-F2, PB1-N40, PA-X, PA-N155, PA-N182 and M42). Many IAVs 

express a functional PB1-F2 protein, which is encoded by the +1 open reading frame of 

the PB1 gene and contributes to viral pathogenicity (Chen, Calvo et al. 2001, Conenello, 

Tisoncik et al. 2011, Varga and Palese 2011). N40 is the third protein encoded by the PB1 

gene. It lacks the 39 N-terminal amino acid (aa) of the PB1 protein and its function is yet 

unclear (Wise, Foeglein et al. 2009, Tauber, Ligertwood et al. 2012). Besides PA, the PA 

gene also encodes for the PA-X, PA-N155 and PA-N182 proteins. The PA-X protein (41 

or 61 aa in length in most IAVs) decreased the pathogenicity of the virus during infection 

of mice (Jagger, Wise et al. 2012, Shi, Jagger et al. 2012). PA-N155 and PA-N182 are 

truncated PA proteins lacking the 11 and 13 N-terminal amino acids of PA, respectively. 

The presence of these two proteins facilitated viral replication and increased viral 

virulence in mouse infection models (Muramoto, Noda et al. 2013). Besides the M1 and 

M2 proteins, a third protein (M42), encoded by the M gene of IAVs, was recently 

discovered. It is a variant form of the M2 protein, but its function is not fully understood 

(Wise, Hutchinson et al. 2012).  

 

1.3 The ecology of avian influenza virus  
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1.3.1 The natural reservoir of avian influenza virus 

Previous research has shown that wild aquatic birds are the natural reservoir of 

influenza A virus with the viruses having been detected from at least 105 wild bird 

species globally (Webster, Bean et al. 1992, Olsen, Munster et al. 2006, Munster and 

Fouchier 2009). AIVs in wild birds transmit mainly through the fecal-oral mode and most 

often cause asymptomatic enteric infections (Webster, Bean et al. 1992, Fouchier and 

Munster 2009), but the first AIV isolate from wild birds, from the Common Tern (Sterna 

hirundo), was indeed highly pathogenic (Becker 1966). The distribution of AIVs in wild 

birds is greatly influenced by the birds’ ecology, for example migratory pattern and 

population size (Munster and Fouchier 2009), but abiotic environments, such as water and 

lake sediment, also contribute greatly to the persistence of AIVs (Hinshaw, Webster et al. 

1979, Lang, Kelly et al. 2008, Brown, Goekjian et al. 2009). 

1.3.2 AIV transmission from wild birds to other host groups 

The pathogenicity and transmissibility of AIVs may change during their 

transmission from wild birds to other host groups (e.g. poultry and mammals), which has 

caused great economic losses to the livestock and poultry industries and had negative 

outcomes for human health (Chen, Deng et al. 2004, Watanabe, Ibrahim et al. 2012). AIV 

infection has been frequently detected in domestic poultry (e.g. chickens and turkeys), 

less frequently in domestic mammals (e.g. swine, horses and dogs), sea mammals (e.g. 

seals and whales) and humans (Hinshaw, Naeve et al. 1983, Hinshaw, Bean et al. 1984, 

Hinshaw, Bean et al. 1986, Webster, Bean et al. 1992, Cardona, Xing et al. 2009). Ferrets 

and mice can also be infected by AIVs and are commonly used as experimental models 
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for AIV infection in humans (Matsuoka, Lamirande et al. 2009, Matsuoka, Lamirande et 

al. 2009).  

1.3.3 AIV infection in poultry 

Wild birds may transmit AIVs to domestic waterfowl via shared water use, and 

domestic waterfowl may then transmit the viruses to terrestrial poultry (e.g. chickens and 

turkeys) at farms, through commercial transportation or at live bird markets (Cardona, 

Xing et al. 2009). Direct transmission from wild birds to poultry can also occur. AIV 

infections in chickens and turkeys, of both lowly and highly pathogenic strains, are 

frequently reported (Alexander 2000). AIV infections in ducks and geese are more often 

asymptomatic or only mildly symptomatic, although the viral pathogenicity may change 

through mutation during long-time AIV circulation in bird populations (Webster, Peiris et 

al. 2006, Taubenberger and Kash 2010). Low pathogenic AIV infections in poultry may 

be asymptomatic or produce mild symptoms such as a decreases in activity, feed 

consumption and egg production, as well as respiratory symptoms (Alexander 2000). 

Highly pathogenic AIVs, on the other hand, may cause severe systemic hemorrhagic 

infections resulting in high mortality, which can be devastating for the poultry industry 

(Alexander 2000).   

1.3.4 AIV infection in swine 

Swine influenza is an important infectious disease that is a hazard to the swine 

industry (Van Reeth 2007). More importantly, swine can be infected by both human and 

avian influenza viruses, and may serve as the intermediate host in human infections of 

AIVs (Trifonov, Khiabanian et al. 2009). The viruses responsible for the last 4 influenza 

pandemics in human history, i.e. the H1N1/1918 IAV, H2N2/1957 IAV, H3N2/1968 IAV 
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and novel H1N1/2009 IAV, were all genetically related to contemporary swine influenza 

viruses (Garten, Davis et al. 2009, Smith, Bahl et al. 2009). The transmission of IAVs 

between swine and humans can be bi-directional, as was found in the 2009 pandemic 

H1N1 virus (H1N1/2009) (Nelson, Gramer et al. 2012). At the same time, swine 

influenza viruses with gene segments of avian-origin are commonly detected, and the 

above 4 pandemic influenza viruses all possessed avian-origin gene segments (Horimoto 

and Kawaoka 2005, Garten, Davis et al. 2009, Smith, Bahl et al. 2009). In fact, AIVs of 

subtypes H1, H3, H4, H5, H6 and H9 have been reported to cause infection in swine (He, 

Zhao et al. 2013); (Van Reeth 2007). Experimental study also demonstrated that low 

pathogenic AIVs with subtypes ranging from H4 to H13 could replicate in the respiratory 

tract of pigs and produce high antibody titres detected by the enzyme-linked 

immunosorbent assay (ELISA) and neutralization tests (Kida, Ito et al. 1994). Although 

AIVs are frequently detected in swine, only a few of them have become established in the 

swine population, indicating a host barrier that hinders viral establishment (Van Reeth 

2007). For example, highly pathogenic H5N1 viruses only caused asymptomatic to mild 

infections in pigs with restricted viral replication, mainly in the lungs, and the viruses 

could not efficiently transmit through aerosol among pigs in experiments (Choi, Nguyen 

et al. 2005, Lipatov, Kwon et al. 2008). Epidemiological surveillance in Indonesia and 

China has also detected asymptomatic infection in pigs by highly pathogenic H5N1 AIVs 

(Nidom, Takano et al. 2010, He, Zhao et al. 2013).  

1.3.5 AIV infection in humans 

Human infections with influenza A viruses are zoonotic, directly or indirectly 

linked to viruses in birds or non-human mammals, especially swine. As introduced in 
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Section 1.3.4, swine may work as a “gene mixing vessel” between avian and human 

influenza viruses. In addition, humans can also be infected by AIVs directly from birds. 

Our understanding of this means of transmission started with human infection by the 

highly pathogenic H5N1 AIVs in 1997 in Hong Kong, China (Claas, Osterhaus et al. 

1998, Webster, Peiris et al. 2006). The H5N1 viruses have been endemic since then in 

poultry, and pose great public concern due to their fast evolution and the potential for 

aerosol transmission among humans (Guan, Poon et al. 2004, Watanabe, Ibrahim et al. 

2012).  

AIVs of H5, H6, H7 and H9 subtypes have been reported to cause mild or fatal 

human infections (Subbarao, Klimov et al. 1998, Peiris, Yuen et al. 1999, Fouchier, 

Schneeberger et al. 2004, Tweed, Skowronski et al. 2004, Watanabe, Ibrahim et al. 2012, 

Yuan, Zhang et al. 2013, Yuan, Zhang et al. 2013). Fortunately, persistent human-to-

human transmission of these AIVs has not occurred. However, recent studies showed that 

only several amino-acid changes were needed for a highly pathogenic H5N1 virus to 

acquire aerosol transmission in ferrets (Herfst, Schrauwen et al. 2012, Russell, Fonville et 

al. 2012), a preferred animal model of human IAV infection. 

 

1.4 Evolution of avian influenza virus  

AIVs undergo continuous evolution through time, space and host species 

(Taubenberger and Kash 2010). The mechanisms of AIV evolution include point 

mutation, deletion, insertion, recombination and reassortment. Point mutation and 

reassortment are the most commonly observed causes of AIV evolution.  
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1.4.1 Point mutation 

The RNA-dependent RNA polymerase of IAVs lacks proof-reading activity, 

which causes errors in RNA synthesis and generates substitutions in the AIV genome at a 

rate of of 10
−3

 per site per year (Webster, Bean et al. 1992, Chen and Holmes 2006). Point 

mutation can help the virus respond to the selective pressure from changes in the cellular 

receptors and the activities of extracellular inhibitors (e.g. antibodies and drugs). It may 

also alter the pathogenicity and transmissibility of the viruses, especially during cross-

host transmission. 

1.4.1.1 Point mutations and antigenic drift 

Antigenic drift may occur when mutation takes place in the two major immune-

related proteins of IAVs, HA and NA. Such mutations help the virus to adapt to the 

selective pressure of host immunity generated by previous virus infections or vaccinations. 

Taking the highly pathogenic H5N1 AIV as an example, since its first detection in 1996 

in China, multiple HA phylogenetic and antigenic clades have developed in poultry in 

Eurasia and Africa (Davis, Balish et al. 2010, WHO 2012). In countries that perform 

vaccination to control the H5N1 virus infection in poultry, the vaccine strains have been 

replaced and updated several times in the last decade to ensure their antigenic match to 

the circulating H5N1 viruses (Chen and Bu 2009). This situation poses a great challenge 

to future vaccine design and the formulation of virus control measures (Cattoli, Fusaro et 

al. 2011).  

1.4.1.2 Point mutations and the switch of HA receptor-binding properties  

The change of HA receptor binding affinity from avian α-2, 3 to mammalian α-2, 

6 SA-linked cellular receptors is the prerequisite for AIVs to efficiently transmit among 
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mammals (Harvey, Martin et al. 2004, Taubenberger and Kash 2010). This mechanism 

has contributed to the origin of pandemic influenza strains (Matrosovich, Tuzikov et al. 

2000). Experiments in the ferret model with two H2N2 viruses isolated during the 

1957/1958 influenza pandemic, showed that the HA protein with amino acid combination 

of 226L/228S (H3 numbering) showed binding affinity to both α-2, 3 and α-2, 6 SA-

linked cellular receptors and the IAV displayed efficient aerosol transmission among 

ferrets, while the other virus with the 226Q/228G HA protein preferred binding to α-2,3 

SA-linked cellular receptors and showed inefficient viral transmission through droplets 

(Pappas, Viswanathan et al. 2010). The HA mutations at amino acid positions 190 and 

225 (H3 numbering) of H1N1/1918 virus, changed both the receptor binding preference 

and the airborne transmissibility of the virus, but not the viral pathogenicity in ferrets 

(Pappas, Viswanathan et al. 2010).  

The highly pathogenic H5N1 AIVs endemic in poultry of Eurasia and Africa 

possess HA proteins binding preferentially to α-2, 3 SA-linked cellular receptors 

(Matrosovich, Zhou et al. 1999), which probably explains their inefficient aerosol 

transmission in pig and ferret models (Yen, Lipatov et al. 2007). However, the 

experiment performed in 2012 with A/Indonesia/5/2005 A/H5N1influenza virus showed 

that only 5 amino acid mutations, 4 in the receptor binding sites of HA and 1 in the PB2 

protein, were needed for the virus to gain efficient airborne transmissibility in the ferret 

model (Spekreijse, Bouma et al. 2011). The results reinforced again the pandemic 

potential of the highly pathogenic H5N1 viruses. 

1.4.1.3 Point mutations and the change of viral pathogenicity  
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The HA protein is synthesized as a single polypeptide (HA0) that is then cleaved 

into two parts (HA1 and HA2). Mutation of the HA cleavage site from monobasic to 

polybasic amino acids will change its proteolytic properties and may increase AIV 

pathogenicity in birds, which has been observed in viruses of H5 and H7 subtypes in the 

field (Horimoto and Kawaoka 1994, Rohm, Suss et al. 1996, Selleck, Arzey et al. 2003, 

Duan, Campitelli et al. 2007, Berhane, Hisanaga et al. 2009, Stech, Veits et al. 2009), and 

also in H2, H4, H8, H9 and H14 viruses through experimentation (Gohrbandt, Veits et al. 

2011, Veits, Weber et al. 2012). HA proteins containing monobasic amino acids at their 

cleavage sites can only be cleaved and activated by monobasic-specific trypsin-like 

proteases, which are mainly distributed in the respiratory and intestinal tracts of birds 

(Suarez and Schultz-Cherry 2000, Lebarbenchon and Stallknecht 2011). Consequently, 

these AIVs usually cause limited infection displaying mild or inapparent symptoms. On 

the other hand, if the amino acids at the HA cleavage site are mutated to a polybasic 

pattern, the protein can be cleaved by the ubiquitous protease furin, which will result in 

extensive viral replication and may cause multi-organ systemic infection in birds 

(Stieneke-Grober, Vey et al. 1992, Suarez and Schultz-Cherry 2000).  

1.4.1.4 Point mutations and influenza drug resistance 

Two types of influenza drugs are commercially available, the M2 ion channel 

inhibitors (amantadine and rimantadine) and the neuraminidase inhibitors (oseltamivir 

and zanamivir) (Beigel and Bray 2008). Unfortunately, single amino acid mutation of 

these viral proteins can produce drug-resistant viruses. Viruses containing the L26I, V27I, 

A30P, S31N or G34E mutation in their M2 protein are amantadine-resistant (Deyde, 

Nguyen et al. 2009). For example, the newly emerged novel H7N9 influenza A viruses 
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are resistant to amantadine because of the S31N mutation within the M2 proteins (Hay, 

Wolstenholme et al. 1985, Wang, Wu et al. 2013). In addition, the highly pathogenic 

H5N1 viruses circulating in poultry in Asian countries such as China, Vietnam, Malaysia, 

Indonesia and Cambodia are widely amantadine-resistant, coincident with the extensive 

use of amantadine in these countries (Hurt, Selleck et al. 2007, He, Qiao et al. 2008). 

Point mutation may also cause resistance to neuraminidase inhibitor treatment (Tisoncik-

Go, Cordero et al. 2013). For example, the R292K mutation of the NA protein (N2 

numbering) has been reported to confer resistance to NA inhibitors in N1, N2 and N9 

subtype AIVs (McKimm-Breschkin, Sahasrabudhe et al. 1998, Kiso, Ozawa et al. 2011, 

Yen, McKimm-Breschkin et al. 2013).  

1.4.1.5 Other point mutations during cross-host virus transmission 

Besides the above-described AIV genes, point mutation in other AIV gene 

segments may also facilitate cross-host viral transmission or increase the pathogenicity of 

AIV infection, as reflected in the following examples. The E627K mutation in PB2 of the 

H5N1 AIVs could contribute to systemic infection and impaired T cell activation in mice 

(Hatta, Gao et al. 2001, Fornek, Gillim-Ross et al. 2009). The D701N mutation in PB2 

was a prerequisite for the transmission of H5N1 viruses in a mammalian guinea pig 

model (Li, Chen et al. 2005). The D92E mutation in the NS1 protein is associated with 

increased pathogenicity of an H5N1 AIV in pigs (Seo, Hoffmann et al. 2002). Lastly, the 

N66S mutation in the PB1-F2 protein has been suggested to increase the pathogenesis of 

the H5N1/1997 and H1N1/1918 influenza viruses (Conenello, Zamarin et al. 2007). 
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1.4.2 Reassortment of AIV gene segments and antigenic shift 

When two or more IAVs co-infect the same host cell, the 8 gene segments 

assembled in a progeny viral particle may possibly come from different parental viruses 

(Figure 1.2). 

When this reassortment happens to the 2 surface glycoproteins (HA and NA), 

antigenic shift may occur. The reassortant virus may acquire novel antigenic features to 

facilitate its adaptation and establishment in new host groups (Webster, Bean et al. 1992, 

Greenbaum, Li et al. 2012). Reassortment is a key role in the generation of novel AIVs 

among birds (Dugan, Chen et al. 2008, Deng, Tan et al. 2013). For example, the highly 

pathogenic H5N1 AIVs and the novel H7N9 AIVs endemic in Asia both originated 

through reassortment, with their surface protein genes (HA and NA) emerging from wild 

aquatic birds, and the 6 internal protein genes originating from the co-circulating H9N2 

AIVs in poultry (Guan, Shortridge et al. 1999, Watanabe, Ibrahim et al. 2012, Chen, 

Liang et al. 2013, Gao, Cao et al. 2013, Li, Yu et al. 2013). 

Reassortment can also occur when the viruses transmit from birds to mammals 

(e.g. swine and human). For example, the HA and/or NA gene(s) of the pandemic 

influenza viruses in H2N2/1957, H3N2/1968 and the novel H1N1/2009 originated from 

swine or avian source, which reassorted and replaced the gene segment(s) of the 

circulating human influenza viruses during the epidemics (Webster, Bean et al. 1992, 

Kilbourne 2006, Furuse, Suzuki et al. 2010, Greenbaum, Li et al. 2012).  
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Figure 1.2. Generation of a novel influenza virus through reassortment. When two 

influenza A viruses (A and B) replicate in a single cell, novel viral progeny (C) can be 

generated through gene segment reassortment during viral assembly. The virus C contains 

genes originally from both viruses A and B. 

 

IAV reassortment is restricted by segment mismatch of the different parental 

viruses during co-infection or lower fitness of the resulting reassortants (Li, Hatta et al. 

2008, Greenbaum, Li et al. 2012). The efficiency of AIV reassortment also depends on 

the infection dose of the parental viruses and the timing of infection (Marshall, 

Priyamvada et al. 2013). The reassortment compatibility between different contemporary 

endemic/pandemic IAV strains has been studied in experiments. Octaviani and collegues 
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reported the high level of genetic compatibility between a highly pathogenic H5N1 virus 

and a 2009 pandemic H1N1 virus during co-infection in tissue culture experiments 

(Octaviani, Ozawa et al. 2010). Kimble and co-authors reported the compatibility of the 

surface genes of an H9N2 AIV with the internal genes of the 2009 pandemic H1N1 SIVs 

in reverse genetics experiments (Kimble, Sorrell et al. 2011). Sun and co-authors 

generated 127 H9 reassortants from an avian H9N2 and a pandemic H1N1 virus, and half 

of the hybrid viruses replicated well in tissue culture (Sun, Qin et al. 2011). Kimble’s and 

Sun’s studies also showed that AIV may gain novel properties through reassortment, such 

as higher pathogenicity and more efficient respiratory droplet transmission.  

1.4.3 Other mechanisms of AIV evolution 

Besides the major mutation forms of point mutation and reassortment, deletion and non-

homologous recombination are occasionally detected during the process of cross-host 

AIV transmission. 

1.4.3.1 Deletion 

Different patterns of deletions at the stalk region of the NA gene in AIVs of multiple 

subtypes (N1–N3, N5–N7 and N9) have been detected from avian hosts such as quail, 

duck, chicken and turkey (Guo, Krauss et al. 2000, Spackman, Senne et al. 2003, Li, Zu 

Dohna et al. 2011). The NA stalk deletion is associated with the adaptation and 

transmission of AIVs in terrestrial birds (Baigent and McCauley 2001, Guan, Peiris et al. 

2002, Sorrell, Song et al. 2010). For example, the H7N3 AIVs circulating in turkey in 

Italy during 2002-2003 possessed a 23-aa deletion in the NA stalk in comparison to the 

precursor viruses from wild ducks (Campitelli, Mogavero et al. 2004). The NA proteins 

of the novel H7N9 virus detected in both poultry and human infections in China contain a 
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4-aa deletion at the stalk region, compared to its precursor in wild birds (Gao, Cao et al. 

2013). Research showed that such NA deletions might increase the AIV pathogenicity in 

chickens and mammals (Matsuoka, Swayne et al. 2009). 

1.4.3.2 Non-homologous recombination 

As described above, multi-basic cleavage sites in the HA protein are an important 

molecular signature of highly pathogenic AIVs (Lebarbenchon and Stallknecht 2011, 

Watanabe, Ibrahim et al. 2012). Besides the mechanism of point mutation, H7 subtype 

low pathogenic AIVs could acquire multi-basic cleavage sites through non-homologous 

recombination with either host ribosomal RNA (rRNA) or viral RNA, which is 

accompanied by the increased pathogenicity of the mutant strains (Maurer-Stroh, Lee et 

al. 2013). Viral mutants of this type have been observed during experimentation 

(Khatchikian, Orlich et al. 1989, Orlich, Gottwald et al. 1994) and also in natural 

infections (Suarez, Senne et al. 2004, Maurer-Stroh, Lee et al. 2013). For example, 

compared to its low pathogenic precursor, the highly pathogenic H7N3 AIV that caused 

poultry and human infections in Mexico in 2012, acquired an extended multi-basic 

cleavage site that was derived from a 24-nucleotide insert of chicken 28S rRNA (Lopez-

Martinez, Balish et al. 2013). In addition, the highly pathogenic H7N3 AIVs responsible 

for the infections in chicken and humans in British Columbia, Canada, in 2004 originated 

from a low pathogenic AIV precursor with a 21-nucleotide insert of the NP gene at the 

HA cleavage site (Pasick, Handel et al. 2005).  
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1.5 Epidemiological surveillance of AIVs in wild birds and genetic structure of viral 

populations 

Epidemiological studies of AIVs in wild birds have greatly increased our 

understanding of the infection, transmission and pathogenicity of AIVs in multiple host 

groups, including waterfowl, shorebirds and gulls (Hatchette, Walker et al. 2004, 

Obenauer, Denson et al. 2006, Dugan, Chen et al. 2008, Munster and Fouchier 2009). 

Surveillance of AIVs in wild birds started from the early 1970s through virus isolation 

and HA/NA antibody detection (Slepuskin, Pysina et al. 1972, Slemons, Johnson et al. 

1974). Real-time RT-PCR and NP-antibody ELISA are now commonly used in large-

scale AIV surveillance (Spackman, Senne et al. 2002, Brown, Stallknecht et al. 2009). 

AIVs are most frequently detected from birds in the order Anseriformes such as ducks, 

geese and swans, followed by birds in the order Charadriiformes such as gulls, shorebirds 

and terns (Becker 1966, Hinshaw, Air et al. 1983, Fouchier, Munster et al. 2005, Clark 

and Hall 2006, Maxted, Luttrell et al. 2012). However, seabirds are also hosts of AIVs 

(Wallensten, Munster et al. 2005, Ip, Flint et al. 2008, Granter, Wille et al. 2010, Ramey, 

Pearce et al. 2010). The employment of large-scale AIV genome sequencing and 

phylogenetic analysis has detected extensive reassortment and genetic diversity of AIVs 

in wild birds (Munster and Fouchier 2009). Due to the geographic separation of migratory 

flyways utilized by different bird species in different continents, AIV gene segments in 

wild birds are divided into Eurasian/Australian, North American and South American 

phylogenetic lineages in either waterfowl- or gull-related clades (Obenauer, Denson et al. 

2006, Olsen, Munster et al. 2006, Dugan, Chen et al. 2008, Gonzalez-Reiche, Morales-

Betoulle et al. 2012). However, AIV distribution does not always follow these constraints, 
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and inter-continental and interspecies AIV transmission has been detected from long-

distance migratory bird species, such as shorebirds, gulls and waterfowl (Krauss, Obert et 

al. 2007, Dugan, Chen et al. 2008, Koehler, Pearce et al. 2008, Lee, Lee et al. 2011, Van 

Borm, Rosseel et al. 2012).  

All 8 gene segments of AIVs in wild birds display high nucleotide substitution 

rates with magnitudes of 10
-3

 nucleotide/site/year (Chen and Holmes 2006). However, the 

genetic diversity of HA, NA and NS genes is much higher compared to the other 5 gene 

segments (Dugan, Chen et al. 2008). There are 16 HA and 9 NA subtypes detected in 

wild birds, and the NS gene was classified into 2 different alleles (A and B) (Munster and 

Fouchier 2009); Ludwig et al. 1991). In comparison, the other 5 internal genes showed 

much shallower evolutionary divergence (Obenauer, Denson et al. 2006). The deeper 

divergence in HA, NA and NS may be the outcome of long-term evolution under an 

increased host immunity they encounter (Dugan, Chen et al. 2008). 

 

1.6 Research goal and outline of this thesis 

Despite the extensive surveillance performed in some other areas of North 

America, the prevalence and diversity of AIVs in wild birds at the North Atlantic coast is 

understudied (Webster, Bean et al. 1992, Parmley, Lair et al. 2009). Newfoundland and 

Labrador (NL), Canada, lies at an important location with respect to wild bird 

connections between North America and Europe (Tuck 1971). Millions of subarctic birds 

utilize this province and the surrounding marine region yearly as breeding and/or 

wintering habitat. Previous studies in Atlantic Canada found evidence for inter-

continental reassortant viruses, suggesting movement of viral gene segments by migratory 
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birds and thus a possible entry point for highly pathogenic (HP) Eurasian virus genes and 

potentially entire viruses (Krauss, Obert et al. 2007, Wille, Robertson et al. 2011, Hall, 

Teslaa et al. 2013). However, the prevalence of AIVs, the frequency of inter-continental 

and interspecies viral transmission, and the genetic structure of AIVs in wild birds in NL 

remain unclear. Since 2007, AIV epidemiological surveillance has been conducted in NL. 

From more than 5000 swab samples collected from waterfowl, gulls and seabirds, 167 

samples were identified as AIV positive. The aim of my PhD thesis is to investigate the 

prevalence, transmission and evolution of AIVs in 3 major bird groups (ducks, gulls and 

murres) in NL through virological, serological, phylogenetic and genotypic approaches, 

to shed light on the AIV ecology of wild birds in NL, and on the Atlantic coast of North 

America. This will also provide data to allow evaluation of the potential impact of AIVs 

in wild birds on the local poultry industry and human health, and of the risk of the 

introduction of HP AIVs from Eurasia by migratory birds of different bird host groups in 

this area. In chapter 2, the prevalence of AIVs in ducks (2008-2011) was investigated to 

study the infection pattern, subtype distribution and perpetuation of duck AIVs in NL. In 

chapter 3, the genetic structure of contemporary duck AIVs (2006-2012) in the Atlantic 

bird migratory flyway of North America (including 30 viruses from NL) was analyzed to 

increase our understanding of the phylogeny, distribution and transmission of duck AIVs 

at the Atlantic coast of North America. In chapter 4, the prevalence, phylogeny and 

genotype of gull AIVs in NL (from 2009-2011) was studied to shed light on the 

epidemiological dynamics, population structure and transmission of AIVs in gulls in 

Atlantic Canada. In chapter 5, the epidemiology, phylogeny and genotype of murre AIVs 

in NL (from 2009-2011) were analyzed to increase our knowledge on AIV epidemiology 
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and transmission in these understudied seabirds. The overall results presented in chapters 

2 to 5 are summarized in chapter 6.  
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Chapter 2 A four-year study of avian influenza virus prevalence and subtype 

diversity in ducks of Newfoundland, Canada 

 

Abstract 

We report a 4-year avian influenza virus (AIV) epidemiological study in ducks in 

the St. John’s region of Newfoundland, Canada. The overall prevalence of AIV detection 

in ducks during this study was 7.2%, with American Black Ducks contributing the vast 

majority of the collected samples and the AIV positives. The juvenile ducks showed a 

significantly higher AIV detection rate (10.6%) compared with adults (3.4%). Seasonally, 

AIV prevalence rates were higher in the autumn (8.4%), but positives were still detected 

in the winter (4.6%). Preliminary serology tests showed a high incidence of previous AIV 

infection (20/38, 52.6%). A total of 43 viruses were characterized for their HA-NA or HA 

subtypes, which revealed a large diversity of AIV subtypes and little recurrence of 

subtypes from year to year. Investigation of the movement patterns of ducks in this region 

showed that it is a largely non-migratory duck population, which may contribute to the 

observed pattern of high AIV subtype turnover. Phylogenetic analysis of 4 H1 and one 

H5 AIVs showed these viruses were highly similar to other low pathogenic AIV 

sequences from waterfowl in North America and assigned all gene segments into 

American-avian clades. Notably, the H1N1 viruses, which were identified in consecutive 

years, possessed homologous genomes. Such detection of homologous AIV genomes 

across years is rare, but indicates the role of the environmental reservoir in viral 

perpetuation. 
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2.1. Introduction 

 Wild birds such as waterfowl, shorebirds, and gulls are the natural reservoir of 

avian influenza A viruses (AIVs) within the family Orthomyxoviridae (Webster, Bean et 

al. 1992, Olsen, Munster et al. 2006). Most AIV strains show low pathogenicity and are 

generally assumed to cause asymptomatic infections in wild birds (Fouchier and Munster 

2009, Munster and Fouchier 2009), although a recent review of the available evidence 

suggests there are effects on digestive tract function in infected birds (Kuiken 2013). The 

effects in poultry are generally more obvious and AIVs can cause mild to serious disease; 

therefore, these viruses pose a great threat to the poultry industry (Alexander 2007). 

Historically, outbreaks of highly pathogenic (HP) AIV in wild birds have been rare 

(Becker 1966), but in more recent years several H5N1 strains have been associated with 

fatal or subclinical infections in wild birds in Eurasia (Ellis, Bousfield et al. 2004, Chen, 

Smith et al. 2005, Liu, Xiao et al. 2005, Keawcharoen, van Riel et al. 2008). The HP 

H5N1 viruses have also been a significant source of problems in the poultry industry 

(Webster, Peiris et al. 2006) and in human health (Peiris, de Jong et al. 2007). This has 

resulted in concern about the potential risk of transmission of HP H5N1 to the Americas 

through wild bird migration (Krauss, Obert et al. 2007, Peterson, Benz et al. 2007, 

Koehler, Pearce et al. 2008, Ramey, Pearce et al. 2010). Additionally, AIV can be 

involved in the generation of novel strains that circulate in the human population, such as 

the H1N1 virus in the 2009 pandemic (Smith, Vijaykrishna et al. 2009). These wide-

ranging effects make compelling arguments for the value of studying AIV in natural 

reservoir species. 
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 Prior to 2006, wild bird AIV research in Canada was mainly conducted on 

waterfowl in Alberta (Hinshaw, Webster et al. 1978, Hinshaw, Webster et al. 1979, 

Hinshaw, Webster et al. 1980, Hinshaw, Wood et al. 1985, Sharp, Kawaoka et al. 1993, 

Hatchette, Walker et al. 2004, Krauss, Walker et al. 2004, Widjaja, Krauss et al. 2004) 

with fewer studies conducted in other provinces (Boudreault, Lecomte et al. 1980, 

Thorsen, Barker et al. 1980). Most of this work focused on wild waterfowl with a 

generally high prevalence of AIV infection found, especially in dabbling ducks. In 2005, 

Canada started a countrywide inter-agency wild bird influenza survey (Parmley, Bastien 

et al. 2008, Parmley, Lair et al. 2009), which has broadened the geographic scope of 

surveillance efforts although the overall coverage of different regions in Canada remains 

fairly limited. A summary of the survey for 2005-2007 showed that AIVs were detected 

from 30% of live ducks, and all viruses identified to date have been characterized as low 

pathogenic (Parmley, Bastien et al. 2008, Parmley, Lair et al. 2009, Pasick, Berhane et al. 

2010). 

 To date, there has been limited published work on AIV on the island of 

Newfoundland, which represents the most easterly part of North America. The prevalence  

of AIVs in wild birds of different bird host groups in Newfoundland remains unclear. 

Newfoundland is geographically connected with the mainland Atlantic coast of North 

America as well as proximate to Greenland, Iceland and Europe. It is long known that 

migratory birds, from a wide variety of taxa, move between Newfoundland and these 

other locations (Tuck 1971, Bellrose and Kortright 1976) and Eurasian AIV genes have 

been detected on the island (Wille, Robertson et al. 2011). Therefore, performing AIV 

surveillance in Newfoundland is also valuable to monitor for the transmission of AIVs 
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into North America by trans-Atlantic migrants. We have performed an AIV 

epidemiological study from 2008 to 2011 in different duck species in the St. John’s 

region of Newfoundland by approaches of both viral screening and serological tests in 

combination with bird band-recovery data, in order to provide insight into the AIV 

prevalence and subtype diversity in this location. 

 

2.2. Materials and Methods 

2.2.1. Ethics statement 

 This work was carried out under the guidelines specified by the Canadian Council 

on Animal Care with approved protocols 09-01-AL, 10-01-AL, and 11-01-AL from the 

Memorial University Institutional Animal Care Committee, and biosafety permit S-103-

08 from the Memorial University Biosafety Committee. 

2.2.2. Bird sampling, AIV screening, virus subtyping and sequencing 

 Ducks were caught by bait trapping in Quidi Vidi Lake (47°34'42.18"N, 

52°41'59.18"W), Mundy Pond (47°33'8.09"N, 52°44'23.12"W), and Commonwealth 

Pond (47°30'2.54"N, 52°47'22.23"W) in or near to the city of St. John’s, Newfoundland. 

without species priority In the St. John’s region, the duck population is dispersed during 

the spring and summer months for breeding and then congregates to a smaller number of 

water bodies for the late summer, fall and winter months. This makes capture of birds 

most feasible beginning in August. Ducks were banded and evaluated for sex and age 

based on cloacal examination and plumage characters later in the season (Ashley, North 

et al. 2006). We use the terms juvenile to define birds in their first year of life and adult 

for birds older than 1 year. Oropharyngeal and cloacal swabs were collected from each 
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bird, with these paired swabs placed into a single tube of Multitrans viral transport media 

(Starplex Scientific, Etobicoke, Ontario, Canada) and representing a single sample. 

Samples were kept cool in the field for less than 24 hours and then stored at -80°C until 

assayed. RNA was extracted from each sample using the MagMAX-96 viral RNA 

isolation kit (Ambion, Austin, Texas, USA) following the manufacturer’s instructions. 

Screening of the samples for the presence of AIV was performed by real-time RT-PCR 

(rRT-PCR) targeting the M gene as described previously (Spackman, Senne et al. 2002, 

Granter, Wille et al. 2010) with Ct values <35 considered as positive. Hemagglutinin (HA) 

subtyping was performed by RT-PCR using the SuperScript III One-Step RT-PCR 

System with Platinum Taq (Life Technologies, Burlington, Ontario, Canada) and 

subsequent sequencing of the RT-PCR products (Chan, Lin et al. 2006). Neuraminidase 

(NA) subtyping was similarly performed with RT-PCR (Huang, Khan et al. 2010) 

followed by sequencing. 

 To address the public health concern raised by the previous human infections by 

the H1 and H5 influenza A viruses, four samples that were identified to contain H1N1 

viruses and one sample that contained an H5N4 virus were selected for gene sequencing 

and phylogenetic analysis (section 2.2.5). RNA was extracted from the original swab 

samples with Trizol LS reagent (Life Technologies). One-step RT-PCR reactions were 

performed to amplify portions of the 8 AIV genes with segment-specific primers 

(Hoffmann, Stech et al. 2001, Chan, Lin et al. 2006) using the Superscript III One-Step 

RT-PCR System (Life Technologies). PCR products were purified with the QIAquick 

PCR purification kit (Qiagen, Toronto, Ontario, Canada) and sequenced. Sequencing was 

performed at the Centre for Applied Genomics (Hospital for Sick Children, Toronto, 
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Canada). The sequences have been submitted to the GenBank database under accession 

numbers: KC464555-KC464586, KC492275-KC492290 and KC492307-KC492330. 

2.2.3. Serology 

 Between October 2011 and February 2012, blood samples were collected from 

captured individuals to test for previous AIV infection. Approximately 2 ml of blood was 

drawn from the brachial vein. Serum was separated by centrifugation at ~3000 g for 10 

minutes to pellet the red blood cells. The AI MultiS-Screen Ab Test (IDEXX, Westbrook, 

ME) was used to test for anti-nucleoprotein (NP) antibodies, as recommended by the 

manufacturer, where a sample to negative control ratio (S/N) of <0.50 is considered 

positive. 

2.2.4. Bird banding and recovery data 

 To study the influence of duck population structure on the prevalence  and 

subtype pattern of AIVs, recovery data (reporting of a bird band) for hunter-killed ducks 

banded from December 2005 to January 2012 in St. John’s region were obtained from the 

Bird Banding Office, Canadian Wildlife Service, Environment Canada. 

2.2.5. Phylogenetic analysis 

 The H1N1 viruses and the H5N4 virus The nucleotide sequence data were 

compiled and analyzed using the Lasergene v7.1 sequence analysis software package 

(DNASTAR Inc., Madison, WI). The coding regions of each gene used for phylogenetic 

analyses are H1 (1147-1590 bp), H5 (1086-1686 bp), N1 (910-1344 bp), N4 (1004-1392 

bp), PB2 (1804-2256 bp), PB1 (1624-2271 bp), PA (1-528 bp), NP (4-576 bp), M (40-

939 bp) and NS (55-792 bp). Phylogenetic trees were reconstructed with the p-distance 
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based neighbor-joining method (with 1000 bootstrap replicates) in MEGA5 (Tamura, 

Peterson et al. 2011). 

2.2.6. Statistical analysis 

Prevalence rates by bird age, sex and season of sampling were compared using 

Fisher’s Exact tests (Sokal and Rohlf 2012). P values <0.05 were taken to indicate a 

significant difference in the compared rates. 

 

2.3. Results 

2.3.1. AIV surveillance of ducks in the St. John’s region of Newfoundland over four 

years 

 A total of 879 swab samples were collected from ducks between September 2008 

and February 2012 and 7.2% (63 samples) were positive by real-time RT-PCR. Most of 

the samples (694/879, 79.0%) and positives (51/63, 81.0%) came from American Black 

Ducks (Anas rubripes), with an overall prevalence of 7.3% for this species. The other 

positive samples were from Mallard (A. platyrhynchos), Northern Pintail (A. acuta), 

American Black Duck-Mallard hybrids, 2 unidentified (pre-fledgling) ducks in the 

Mallard-American Black Duck complex, and 1 feral domestic duck (Table 2.1). 

 Most of the samples were collected during the late summer and fall months (596 

from August to October), while 283 samples were collected during the winter (November 

to February) (Figure 2.1; Table S2.1). Within our sampling windows, the peaks of AIV-

positive samples were in the fall months (Figure 2.1). Positive samples were also detected 

during November and December (13 positives) but not in January or February. The AIV 
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prevalence was higher (50/596, 8.4%) in the fall compared to winter (13/283, 4.6%) (P = 

0.049). 

 In the 879 samples, 461 were from juvenile ducks, 417 were from adults, and one 

was from a bird of unknown age (Table S2.1). The overall AIV prevalence rate in 

juveniles (49/461, 10.6%) was significantly higher than in the adult ducks (14/417, 3.4%) 

over the period of our study (P < 0.0001). Within age classes, the AIV detection rate in 

adult males (9/282, 3.2%) was similar to that in adult females (4/131, 3.1%) (P = 1.00), 

whereas prevalence was higher in juvenile males (38/288, 13.2%) than in juvenile 

females (11/171, 6.4%) (P = 0.028). One juvenile Mallard was trapped 6 times over a 22-

day period in 2010 (22 and 23 November; 1, 3, 6, and 15 December). This individual was 

AIV positive by rRT-PCR on 23 November but negative at the other samplings, providing 

a duration of detected virus shedding of ≤8 days. 
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Table 2. 1. Surveillance data for AIV infection by rRT-PCR by species, age, gender, and season in ducks in the St. John’s region 

of Newfoundland 

 Species Age Sex Season* 

American 

Black Duck 

Mallard Northern 

Pintail 

Hybrid† Mallard 

type‡ 

Domestic Juvenile Adult Male Female Summer-

Fall 

Winter 

Samples 694 109 43 27 4 2 461 417 571 302 596 283 

Positives 51 3 4 2 2 1 49 14 47 15 50 13 

% 7.3 2.8 9.3 7.4 50 50 10.6 3.4 8.2 5.0 8.4 4.6 

* Summer-Fall, May-October; Winter, November-February 

† American Black Duck x Mallard hybrid 

‡ Pre-fledgling, exact identification not possible; either American Black Duck, Mallard or a hybrid 
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Figure 2. 1. Avian influenza virus (AIV) surveillance data for ducks in the St. John’s 

region of Newfoundland, Canada. Total AIV sample numbers (A) and AIV prevalence 

according to bird age (B) by monthly sampling period. Detailed data are provided in 

Table S1. Dates are formatted as month/year. 
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2.3.2. Serological study of ducks during the 2011 sampling season 

 In the 2011 sampling season, serum samples were collected from 38 birds 

between October 2011 and February 2012. Of these, 20 samples (52.6%) were positive 

for anti-AIV antibodies (Table 2.2), which demonstrated a high frequency of previous 

AIV infection in these ducks. The results by species were 14/23 for American Black 

Duck, 5/8 for Mallard, 0/6 for hybrid American Black Duck-Mallard, and 1/1 for 

Northern Pintail. There do appear to be possible differences when comparing the data by 

bird age and gender, but the sample sizes are limited. One of the 38 birds tested, an adult 

American Black Duck, was positive both by serology and rRT-PCR on the day of sample 

collection. 

 

Table 2. 2. Serological detection of AIV NP-antibodies in ducks in St. John’s, NL 

Month 

Age Gender 

Total 

Juvenile Adult Male Female 

October 2011 1/3 6/9 6/11 1/1 7/12 

November 2011 0/3 5/9 4/10 1/2 5/12 

December 2011 0/2 2/4 2/4 0/2 2/6 

January 2012 NS* 5/7 4/6 1/1 5/7 

February 2012 NS 1/1 1/1 0/0 1/1 

Total 1/8 19/30 17/32 3/6 20/38 

* None sampled. 
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2.3.3. Subtype distribution of the duck AIVs 

 The HA and NA subtypes were determined for 33 of the detected viruses, and HA 

subtypes were also determined for an additional 10 viruses for which we were unable to 

determine the NA subtype (Figure 2.2). There were 8 different HA subtypes (4 H1, 6 H2, 

13 H3, 8 H4, 1 H5, 6 H6, 2 H11, and 3 H12) and 7 different NA subtypes (4 N1, 10 N2, 1 

N3, 4 N4, 9 N6, 4 N8, and 1 N9) identified, resulting in 14 different HA/NA 

combinations. H4N6, H3N2, and H1N1 were the most numerous, and only 3 of the 14 

subtypes, H1N1, H3N8, and H4N6, were detected in more than 1 year. 

2.3.4. Genetic features of the H1 and H5 viruses 

 Phylogenetic trees for each segment of the H1N1 and H5N4 AIVs were 

constructed (Figure 2.3 and Figure S2.1). All gene segments of the viruses were assigned 

to American-avian clades, closely related to genes previously isolated from wild 

waterfowl in North America. Remarkably, each of the 8 gene segments of the 4 H1N1 

viruses shared nucleotide identity of more than 99%, so these viruses could be considered 

homologous. Three of the H1N1 AIVs were isolated from American Black Ducks on 25 

September, 2009 at Mundy Pond, and the other one (A/Domestic 

duck/Newfoundland/MW668/2010) was detected 1 year later (17 September, 2010) from 

a domestic duck at Commonwealth Pond. Comparison of the internal genes of the H1N1 

isolates with those of the H5N4 AIV (A/American black duck/ Newfoundland/1181/2009) 

showed that the PB1 genes had nucleotide homology >99%, the PB2, NP1 and M genes 

had >95% nucleotide identity, while the PA and NS genes were more distantly related 

(<90% nucleotide homology), indicating distinct phylogenetic origin of some of the 

internal genes and suggesting complex past reassortment histories for these viruses. 
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Figure 2. 2. Avian influenza virus subtype detection for ducks in St. John’s region of 

Newfoundland, Canada. Subtypes detected in each sampling year are shaded, with 

numbers of viruses detected for each of the different subtypes indicated. * means that the 

samples were only collected from September and October. 
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Figure 2. 3. Phylogenetic trees of selected genes from the H1N1 and H5N4 viruses 

identified in ducks in Newfoundland. The trees in panels A through D represent analyses 

of the H1, N1, PB2 and PB1 sequences, respectively. The avian influenza viruses in this 
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study (●) are assigned in American avian clades (black branches) with Eurasian-avian 

sequences as the outgroups (grey branches). The trees were constructed with MEGA 5 by 

the neighbour-joining method based on p-distance. Support for the branches is indicated 

as percentages based on 1000 bootstrap replicates, shown only for values ≥60%. The 

scale bars indicate substitutions per site. Analyses of the remaining gene segments are 

provided in Figure S2.1. 

 

2.3.5. Movement patterns of the duck population 

 Over the period of this AIV screening work, 976 American Black Ducks, 126 

Mallards, 99 Northern Pintail, and 32 American Black Duck-Mallard hybrids were 

banded in the St. John’s region. There have been subsequent band recoveries from these 

for 90 American Black Ducks, 12 Mallards, 10 Northern Pintails and 1 American Black 

Duck-Mallard hybrid over this period. The recovered American Black Ducks, Mallard, 

and hybrid individuals have almost exclusively been recovered on the island of 

Newfoundland, and mostly near St. John’s. A single American Black Duck was recovered 

off the island, in New Jersey. In contrast, 4 of 10 Northern Pintail recoveries have been 

off the island, with 1 in Quebec, 1 in Delaware and 2 in North Carolina. 

 

2.4. Discussion 

 The location of the island of Newfoundland is such that it has migratory bird 

connections with both mainland North America and Europe (Tuck 1971, Bellrose and 

Kortright 1976), which makes it a compelling location to study AIV in wild birds. This is 

the first multiyear study on AIV epidemiology in ducks of Newfoundland, Canada, and 
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one of the few in which American Black Ducks are the prominent species. The screening 

of swab samples by rRT-PCR to test for active AIV shedding was also supplemented by a 

preliminary serological study to provide information about previous AIV infection rates. 

The duck population in this area appears to be composed of mostly non-migratory 

American Black Ducks and Mallards, along with a smaller component of more migratory 

Northern Pintails. The non-migratory population allowed sampling to continue into the 

winter, which has also provided valuable insights into the AIV infection dynamics in this 

location. The viruses identified with HA subtypes of high animal or public health concern, 

H1 and H5 in this study, were also analyzed for their genetic features. Further genetic 

characterization of all of the identified viruses is needed to determine how they compare 

with viruses from other regions of North America and from other bird groups. 

 We have found both shared and unique features with respect to studies in other 

locations regarding duck AIV prevalence and diversity. The AIV prevalence was higher 

in juvenile ducks compared with adult ducks, as frequently observed elsewhere (Hinshaw, 

Webster et al. 1980, Olsen, Munster et al. 2006, Munster, Baas et al. 2007, Runstadler, 

Happ et al. 2007, Parmley, Lair et al. 2009, Pasick, Berhane et al. 2010, Wilcox, Knutsen 

et al. 2011) (Figure 2.1; Table 2.1). The serology data also showed a higher prevalence of 

previous infection in older birds in comparison with young birds (Table 2.2), fitting this 

paradigm of increased susceptibility and infection rates in younger immunologically 

naïve birds. The detected AIV prevalence was higher in the later breeding season 

(autumn), as would be expected (Olsen, Munster et al. 2006), but continued sampling into 

the winter months in this study also resulted in positive samples during this period (Figure 

2.1; Table 2.1). Because we do not have consistent sampling of the population throughout 
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the year, we cannot rule out that prevalence is actually higher at other times outside our 

sampling windows. Surveillance of waterfowl in the winter has received less attention 

than during the migratory periods, but several recent studies have also documented active 

winter infections in waterfowl (Munster, Baas et al. 2007, Kleijn, Munster et al. 2010, 

Hoye, Munster et al. 2011, Lewis, Javakhishvili et al. 2013). The number of samples from 

male ducks in this survey is almost double that from females (577 vs. 302), and males 

showed overall higher AIV detection rates compared with females. This likely is a 

reflection of male duck behavior where these individuals are very mobile in their search 

for food and possible mates, which is reflected by the fact that juvenile males are shot at 

higher rates than any other age-sex class (Krementz, Conroy et al. 1987). Increased 

movement would increase the interactions with different birds and the exposure to 

different possible environmental sources of AIV, thereby leading to higher infection rates. 

An increased likelihood of infection for males was also found in a large-scale surveillance 

study in Alaska (Ip, Flint et al. 2008) as well as in a modeling and meta-analysis based on 

widespread surveillance data from the U.S.A. (Farnsworth, Miller et al. 2012). On the 

other hand, the overall AIV detection rate in this study is noticeably lower compared with 

several recent reports from Canada (Parmley, Bastien et al. 2008, Parmley, Lair et al. 

2009, Pasick, Berhane et al. 2010), which might reflect differences in sampling strategy 

where our samples were collected without duck-age bias and sampling continued into the 

winter months. 

 Viruses with H5 and H7 subtypes have caused previous influenza outbreaks in 

poultry and/or humans in the Americas and Eurasia (Claas, Osterhaus et al. 1998, Pasick, 

Handel et al. 2005, Chen, Smith et al. 2006, Spackman, McCracken et al. 2006, Gao, Cao 
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et al. 2013), and the 2009 pandemic H1N1 strain also contained genes of AIV origin 

(Trifonov, Khiabanian et al. 2009). We detected 4 H1N1 viruses, and 1 H5N4 virus but 

no H7 AIVs during this study. The gene segments of these H1N1 and H5N4 viruses all 

fall into low pathogenic American-avian AIV phylogenetic clades. Interestingly, the 4 

H1N1 AIVs are very similar (Figure 2.3 and S2.1). Three of these were found on the 

same day in 2009 and the fourth was found in a domestic duck at another pond the 

following year. This high level of conservation across years is a rare but not 

unprecedented finding (Reeves, Pearce et al. 2011) and may reflect maintenance of the 

virus in the environment as opposed to continual perpetuation among host individuals 

over extended periods because of the high level of sequence conservation across this 

length of time. 

 We repeatedly captured and sampled one individual bird in which the infection 

status changed from negative to positive and then back to negative. This allowed 

estimation of the duration of detectable virus shedding for this individual at ≤8 days, 

which is similar to findings from an extensive field dataset (Latorre-Margalef, 

Gunnarsson et al. 2009) and experimental infection studies (Keawcharoen, van Riel et al. 

2008, Costa, Brown et al. 2011, Hénaux and Samuel 2011). 

 One duck positive for AIV by rRT-PCR was also positive for previous infection 

by serology. This most likely resulted from the duck having been infected by an AIV in 

the past and then infected by a different virus subtype at the time it was swabbed 

(Latorre-Margalef, Grosbois et al. 2013). However, it is also possible that the duck 

exhibited a prolonged virus shedding period (Costa, Brown et al. 2010), while its immune 

system had begun to produce detectable anti-AIV antibodies. Immunologically naïve 
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Mallards were shown to seroconvert to anti-AIV positive within 14 days of release to a 

natural setting where they interacted with wild ducks, and individuals were repeatedly 

infected by different subtypes over the course of a year (Tolf, Latorre-Margalef et al. 

2013). Although serological studies are more labor-intensive and challenging for large-

scale epidemiological surveillance, they are becoming more common in wild bird 

surveillance work (Velarde, Calvin et al. 2010, Lewis, Javakhishvili et al. 2013, Tolf, 

Latorre-Margalef et al. 2013, Wille, Huang et al. 2013, Wilson, Hall et al. 2013). These 

results could help to bridge the gap in information about anti-AIV immune response in 

different host species and the frequency of infection, and could further elucidate the 

dynamics of perpetuation and evolution of different AIVs in these host species. 

Serological data are still likely underestimates of past exposures to influenza in the light 

of studies showing that antibodies can drop to undetectable levels in recently infected 

individuals (Kida, Yanagawa et al. 1980, Tolf, Latorre-Margalef et al. 2013). 

 The banding and recovery data show that the population of American Black 

Ducks in the St. John’s region is largely non-migratory, which is unusual for a population 

in such a northern climate (Diefenbach, Nichols et al. 1988, Zimper and Conroy 2006). 

This is in contrast to Northern Pintails, for which we found a much higher proportion of 

movement off the island of Newfoundland. Considering the number of viruses that were 

characterized, we found a high level of subtype diversity (Figure 2.2). Additionally, there 

was a high subtype turnover over the period of our study, and most subtypes were 

detected in one of the 4 years. We interpret the high level of year-to-year subtype 

turnover in the identified viruses to be a result of the largely non-migratory population 

contributing the majority of our samples and identified viruses. A virus that circulates in 
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this fairly small, local, non-migratory population would have a limited host pool and 

would be removed from circulation because of increased herd immunity, which is 

frequently suggested as the reason for subtype turnover (Dugan, Chen et al. 2008, 

Fouchier and Munster 2009, Munster and Fouchier 2009, Chen and Holmes 2010). This 

also agrees with observations in a repeatedly sampled collection of captive Mallards, in 

which subtypes found the first year were not observed the second year (Tolf, Latorre-

Margalef et al. 2013). The new viruses that appear in this population each year may come 

from local environmental reservoirs or may be introduced via the lower numbers of 

migratory individuals (i.e. Northern Pintails). This is a very different pattern than what 

has been found in multi-year studies conducted on populations that are dominated by 

migratory individuals in which subtype recurrence in consecutive years is more common 

(Hinshaw, Webster et al. 1980, Ramey, Pearce et al. 2010, Wilcox, Knutsen et al. 2011, 

Gunnarsson, Latorre-Margalef et al. 2012).Consistent AIV surveillance in ducks of 

Newfoundland without species bias will increase our understanding of this phenomenon. 
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Chapter 3 Genetic structure of avian influenza viruses from ducks of the Atlantic 

flyway of North America 

 

Abstract 

Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A 

viruses. Despite the increased number of avian influenza virus (AIV) genome sequences 

available, our understanding of AIV genetic structure and transmission through space and 

time in waterfowl in North America is still limited. In particular, AIVs in ducks of the 

Atlantic flyway of North America have not been thoroughly investigated. To begin to 

address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic 

flyway to determine their genetic structure and to document the extent of gene flow in the 

context of sequences from other locations and other avian and mammalian host groups. 

The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008-

2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006-2011. A 

vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic 

structure differed amongst the 8 viral segments with predominant single lineages found 

for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS 

segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA 

and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric 

transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission 

between ducks and other bird groups was investigated, with 57.3% of the genes having 

highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. 
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Transmission between North American flyways has been frequent and 75.8% of the genes 

were highly similar to genes found in other North American flyways. However, the duck 

AIV genes did display spatial distribution bias, which was demonstrated by the different 

population sizes of specific viral genes in one or two neighbouring flyways compared to 

more distant flyways. 

 

3.1. Introduction 

 Epidemiological surveillance of avian influenza viruses (AIVs) has revealed a 

huge and dynamic virus reservoir in wild birds, especially in ducks. The genetic diversity 

of AIVs in wild birds is shaped by many factors such as the high error rate of the 

replicase, the segmented nature of the viral genome, broad host range properties of the 

viruses, and bird migration patterns (Webster, Bean et al. 1992, Olsen, Munster et al. 

2006, Dugan, Chen et al. 2008). Decades of studies in wild birds have revealed seasonal 

patterns of viral prevalence (Olsen, Munster et al. 2006) and the segregation of AIV 

sequences into Eurasian and North American (Figure S3.1) (Olsen, Munster et al. 2006) 

and now also South American geographic phylogenetic lineages (Pereda, Uhart et al. 

2008, Gonzalez-Reiche and Perez 2012). 

 The extensive set of AIV genomes sequences accumulated during recent decades 

has made it possible to study the patterns of intra-continental virus distribution in North 

America. Analysis of the duck AIV genomes available from 1976 to 2005 showed strong 

patterns of AIV distribution by sampling locations and time, but not by duck species 

(Chen and Holmes 2009). A large-scale statistical phylogeographic investigation of AIVs 

demonstrated a strong link between AIV phylogeny, spatial distance and migratory 



 

73 
 

flyway (Lam, Ip et al. 2012). Another recent large-scale analysis did not find that flyway 

separation affected the distribution of AIVs over long periods (Bahl, Krauss et al. 2013), 

supporting extensive movement of viruses among regions in North America.  

Recent work with ducks in Alaska and California has provided important insights into 

AIV ecology at the western edge of North America. Comparison of AIVs from these two 

locations from 2006 to 2008 revealed the transmission of AIVs was strongly associated 

with duck species, locations and sampling times (Girard, Runstadler et al. 2012). 

Comparison of 161 Alaskan dabbling duck AIV genomes from 2005 to 2008 detected 

inter-species transmission of viruses between Northern Pintail (Anas acuta), Mallard (A. 

platyrhynchos), American Green-winged Teal (A. carolinensis) and Northern Shoveler (A. 

clypeata) during all sampling years (Reeves, Pearce et al. 2011). Northern Pintails in 

Alaska have shown a higher inter-continental AIV detection rate compared to other duck 

species in Alaska as well as ducks from other locations of North America (Krauss, Obert 

et al. 2007, Koehler, Pearce et al. 2008, Pearce, Ramey et al. 2009, Ramey, Pearce et al. 

2010). Mallards in Alaska also carry inter-continental AIV reassortants but, unlike 

Northern Pintails that move between Alaska and Asia, these are due to secondary 

infection from other bird species (Pearce, Reeves et al. 2011). 

 In comparison to the large amount of work performed in Pacific North America, 

our knowledge of the ecology of AIVs in ducks in eastern North America and the Atlantic 

flyway, especially at the northern end in Atlantic Canada, is more limited. The province 

of Newfoundland and Labrador, Canada, is located at the northeastern margin of North 

America; yet, the role of ducks from this region, and the Atlantic flyway in general, in 

intra- and inter-continental AIV transmission is understudied. We have analyzed AIV 
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genome sequence data from ducks on the island of Newfoundland, Canada, along with 

available reference Atlantic flyway duck virus sequences from 2006-2011 to increase our 

knowledge of AIV dynamics in this region of North America. Along with available 

sequences from other North American bird flyways. we have used these data to examine 

the genetic structure of these viruses and to determine the amount of gene flow amongst 

different bird groups and North American migratory flyways. 

 

3.2. Materials and methods 

3.2.1. Ethics statement 

 The samples used in this study came from ducks (Anas spp.) that were caught by 

bait trapping and banded under banding permit 10559 from Environment Canada at 

public locations requiring no access permits. This study did not involve endangered or 

protected species. Swabs of the duck oropharyngeal cavity and cloaca were collected. 

This work was carried out under the guidelines specified by the Canadian Council on 

Animal Care with approved protocols 09-01-AL, 10-01-AL, and 11-01-AL from the 

Memorial University Institutional Animal Care Committee, and biosafety permit S-103-

08 from the Memorial University Biosafety Committee. 

3.2.2. Determination of AIV genome sequences from ducks in Newfoundland, 

Canada 

 Genome sequence data were successfully acquired for twenty-five AIVs from 

ducks in the St. John’s region of Newfoundland, Canada, that were identified during AIV 

epidemiological surveillance over 2008-2011 (Huang, Wille et al.) (Table S3.1). RNA 

was extracted from the swabs, which were kept cool in the field after collection and then 
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stored at -80°C until use, with Trizol LS (Life Technologies, Burlington, Canada) and the 

AIV sequences were amplified by RT-PCR using the SuperScript® III One-Step RT-PCR 

System with Platinum Taq (Life Technologies) and previously published primers 

(Hoffmann, Stech et al. 2001, Phipps, Essen et al. 2004, Chan, Lin et al. 2006, Obenauer, 

Denson et al. 2006, Huang, Khan et al. 2013). The resulting PCR products were purified 

with the QIAquick PCR purification kit (Qiagen, Toronto, Canada), and sequenced in 

both directions by Sanger sequencing at the Centre for Applied Genomics (Hospital for 

Sick Children, Toronto, Canada). Samples that showed evidence of mixed sequences 

were excluded from further analysis. The nucleotide sequence data were compiled and 

analyzed using the Lasergene v7.1 sequence analysis software package (DNASTAR Inc., 

Madison, WI). The GenBank accession numbers for the sequences are KC492244-

KC492440. 

3.2.3. Reference AIV genome sequences from ducks in the Atlantic flyway 

 Eighty-four reference AIV genomes, representing all available sequences (as of 

August 2012) from ducks in the Atlantic flyway over the period of 2006 to 2011, were 

downloaded from the NCBI influenza database (Bao, Bolotov et al. 2008). The numbers 

of viruses from different locations were: Newfoundland, 7; Quebec, 20; New Brunswick, 

32; Prince Edward Island, 9; Ontario, 1; Nova Scotia, 2; New York, 4; Pennsylvania, 1; 

Delaware, 1; Maryland, 6; and Florida, 1 (Table S2). 

3.2.4. Reference AIV genome sequences from other North American flyways 

 The genotypes of duck AIVs from 2006 to 2011 from the Pacific, Central and 

Mississippi flyways were analyzed in the Flugenome database 

(http://www.flugenome.org/), which employs a nucleotide difference of 10% (pairwise 
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distance analysis) as the cut-off value for an individual gene lineage, with the genotype of 

a certain AIV determined by the combination of gene lineages for segments 1 to 8 (Lu, 

Rowley et al. 2007). Viral genome sequences from different flyways representing all 

available genotype varieties were downloaded (1 genome per genotype in each bird 

flyway) from the NCBI influenza database for use in comparisons with the Atlantic 

flyway viruses. This provided 141 reference duck AIV genomes, with 102 genotypes 

from the Pacific flyway (35 from Alaska and 67 from California), 13 genotypes from the 

Central flyway, 21 genotypes from the Mississippi flyway, and 5 genotypes from 

Guatemala (a location of overlapping flyways). In addition, AIV gene segments from host 

species other than ducks that were highly related (≥99% nucleotide identity) to those in 

the Atlantic flyway duck AIVs were also downloaded from the NCBI database to study 

the distribution of the viral genes in different host groups. 

3.2.5. Phylogenetic analysis of the Atlantic flyway duck AIVs 

 Two sets of phylogenetic trees were constructed for each segment. The first set 

included 250 duck AIV genome sequences, 109 from the Atlantic flyway and 141 from 

other bird flyways in North America and Guatemala, to compare the phylogenetic 

features of the Atlantic flyway sequences to those from the other flyways. The second set 

was performed to determine the occurrence of the Atlantic flyway genes in non-duck 

(avian and mammal) host species. The nucleotide sequence alignments and pairwise 

distance analyses were performed with the Jotun Hein method in Lasergene v7.1 

(DNAStar, Inc., Madison, WI). Phylogenetic trees were constructed with the neighbour-

joining method with bootstrap value of 1000 in MEGA5 (Tamura, Peterson et al. 2011). 

The nucleotide ranges of the coding regions used for each gene were: PB2, 1804-2256 bp; 
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PB1, 1624-2271 bp; PA, 1-528 bp; NP, 4-576 bp; M, 40-939 bp; NS, 55-792 bp; H1, 

1147-1590 bp; H2, 1180-1689 bp; H3, 1102-1680 bp; H4, 1120-1659 bp; H5, 1086-1686 

bp; H6, 1018-1665 bp; H7, 691-1659 bp; H11, 1087-1656 bp; H12, 1123-1662 bp; H13, 

493-1695 bp; H16, 13-1668 bp; N1, 910-1344 bp; N2, 1102-1410 bp; N3, 760-1347 bp; 

N4, 1004-1392 bp; N6, 904-1383 bp; N8, 856-1404 bp; N9, 844-1395 bp. 

3.2.6. Gene lineage and genotype assignments of the Atlantic flyway duck AIVs 

 On the basis of the phylogenetic trees, the 109 Atlantic flyway duck AIVs were 

analyzed to categorize their gene lineages and genotypes following the nomenclature of 

the Flugenome database (Lu, Rowley et al. 2007). The sequences were also classified by 

geographic and host group lineage (i.e. North American avian, Eurasian avian, North 

American gull or Eurasian gull) according to the origins of the reference sequences in the 

same phylogenetic clades. To study the genetic structure of the Atlantic flyway duck AIV 

population at an even finer level, gene sub-lineages were further determined with the 

criterion of ≥95% nucleotide identity (pairwisedistance) for a sub-lineage. Sub-genotypes 

of the viruses were then determined accordingly. We employed the Flugenome gene 

lineage and genotype determination approach in this study because it works well as a 

universal phylogenetic classification method for AIV genes and virus genotyping (Lu, 

Rowley et al. 2007, Ramey, Pearce et al. 2010). This was chosen to allow representation 

of the genetic structure of the viruses in a standardized way that also makes it easier to 

directly compare between different studies. 
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3.2.7. Identification of highly similar genes and genomes among the Atlantic flyway 

duck AIVs 

 To study the patterns of distribution and maintenance of the Atlantic flyway duck 

AIVs, highly related genes and genomes were identified within the identified gene sub-

lineages and virus sub-genotypes. Sequences with nucleotide identity of ≥99% 

(pairwisedistance) were considered as highly similar genes or the same gene type. Viruses 

with nucleotide identities ≥99% for all 8 segments were considered as homologous 

genomes (Reeves, Pearce et al. 2011). The identified highly similar genes and genomes 

were analyzed for their spatial and temporal patterns of detection. 

3.2.8. Investigation of the distribution of Atlantic flyway duck AIVs through space, 

time and host species 

 Each of the 248 gene types identified in the Atlantic flyway duck AIVs was used 

to search the NCBI database for highly related reference genes by BLAST (nucleotide 

identity ≥99% and coverage ≥95%) (Altschul, Madden et al. 1997). The longest gene 

sequence of the same gene type was chosen as the query sequence when applicable. The 

sequences highly related to the Atlantic flyway sequences were categorized for detection 

date, location and host species. 

 Differences among proportions of gene types detected for >5 and >10 years for 

the eight segments were analysed using standard χ
2
 contingency table tests. Individual 

contributions of each segment to the overall χ
2
 test were examined, and deemed to be 

significantly different from the overall proportion when the χ
2
 was greater than the critical 

χ
2
 value for α, where α was set to 0.05 and adjusted downward for multiple comparisons 
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(0.05/8 segments = 0.0063). All tests were 2-tailed and statistics were calculated using R 

3.0.1 (www.R-project.org/). 

 

3.3. Results 

3.3.1. Phylogenetic analysis, gene typing and genotyping of the Atlantic flyway duck 

AIVs 

 Phylogenetic trees of the 250duck AIV genome sequences were constructed 

(Figure S3.2). This allowed delineation of the Atlantic flyway sequences into 34 gene 

lineages, 76 sub-lineages and 248 different gene types (summarized in Table 3.1; full 

details provided in Table S3.2). Of the 248 gene types, 235 (95.5%) were of North 

American avian origin. The other 13 gene types, from 6 different viruses, represented 11 

gull-related genes and 2 Eurasian avian genes (Table 3.2). At the genomic level, 43 

different genotypes and 70 sub-genotypes were identified amongst the 109 viruses (Table 

S3.2). These high levels of diversity were not artifacts of the large geographical 

representation over the flyway because diverse gene types (Table S3.3) and genotypes 

(Table S3.4) were also observed in the individual locations that contributed ≥20 AIVs 

(Newfoundland, Quebec and New Brunswick; Table S3.4). 

3.3.2. Genetic features of each gene segment of the Atlantic flyway duck viruses 

 All 8 segments of the 109 Atlantic flyway viruses had diverse gene types, but their 

genetic structures had pronounced differences (Table 3.1; Figure 3.1). Predominantly 

single lineages and sub-lineages were found in the PB2, PB1 and M genes. The NP 

segments were represented by a single dominant lineage, with a number of different sub-

lineages within this lineage. The PA segments were from 2 main lineages, each with very 
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different sub-lineage structures. The NS segments were from 2 main lineages, with a 

major sub-lineage for each. The HA and NA segments had the highest diversity, with 

multiple lineages and sub-lineages identified. Investigation of the phylogenetic and 

epidemiological features of the 109 Atlantic flyway duck AIVs revealed the following 

information for each gene segment. 

PB2. The PB2 sequences belonged to 2 gene lineages, J and C, with a single J sub-lineage 

and 5 C sub-lineages (Figures 3.1 and S3.2; Table S3.2). The 2 genes in the J-1 lineage 

were of Eurasian gull origin, and this lineage has also been detected in shorebirds and 

gulls of the Atlantic flyway (Figure 3.2). The remaining 106 genes were classified in C 

lineages, with the predominant C-2 sub-lineage detected in 79 viruses with 17 different 

gene types. In general, the C lineage of the PB2 segment is abundant in birds (waterfowl, 

gulls and poultry) of North America, but it has also been found in Eurasian ducks and 

seabirds, and in the 2009 H1N1 pandemic virus (Flugenome database). 

 

Table 3.1. Summary of gene lineage and gene type diversity by segment for the 109 

Atlantic flyway duck AIVs from 2006-2011. 

Category
a
 HA NA PB2 PB1 PA NP M NS Total 

Gene lineages 12 9 2 1 2 3 2 3 34 

Gene sub-lineages 19 20 6 8 7 9 3 4 76 

Gene types 38 38 29 31 34 32 23 23 248 

Gene types identified in species other 

than ducks 

14 14 14 18 22 19 22 18 141 

a
 Gene lineages, sub-lineages and types are defined as sharing ≥90%, ≥95% and ≥99% 

nucleotide identity, respectively. 
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Table 3.2. Inter-continental reassortants identified in the 109 Atlantic flyway duck AIVs 

Virus PB2 PB1 PA HA NP NA M NS 

A/mallard/Maryland/802/2007(H5N1) C-2.7 F-7.1 H-1.13 5C-1.2 F-1.1
a
 1E- 2.1 E-1.5 1D-1.7 

A/hooded merganser/New 

Brunswick/03750/2009(H13N6) 

J-1.1
b
 F-8.1

c
 E-6.1

c
 13A-1.1

c
 D-1.1

c
 6A-1.2 J-1.1

b
 1C-1.1

c
 

A/mallard/Quebec/02916-1/2009(H16N3) J-1.2
b
 F-8.1

c
 E-6.2

c
 16D-1.1

b
 D-1.1

c
 3D-1.1

b
 J-1.1

b
 1C-1.1

c
 

A/American black 

duck/Newfoundland/MW733/2010(H6N6) 

C-2.3 F-3.1 H-1.4 6B-1.1
a
 H-1.3 6A-3.2 E-1.1 1D-1.4 

A/American black 

duck/Newfoundland/PR007/2010(H6N6) 

C-2.1 F-3.1 H-1.5 6B-1.1
a
 H-1.1 6A-2.1 E-1.6 1D-1.5 

A/duck/Newfoundland/MW721/2010(H6N8) C-2.1 F-3.1 H-1.4 6B-1.1
a
 H-1.3 8A-1.3 E-1.1 1D-1.4 

a 
Eurasian avian origin 

b
 Eurasian gull origin

 

c
 North American gull origin 
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Figure 3.1. Genetic structure of the gene lineages and sub-lineages of the Atlantic flyway 

duck AIVs. The numbers of genes in each detected sub-lineage for each of the segments 

of the 109 Atlantic flyway duck AIVs are shown in the pie charts. AIV genes with ≥95% 

nucleotide identity by pairwise distance analysis were assigned in a sub-lineage. For the 

HA genes, sub-lineages 7F-1, 7F-2, 11C-2, 12A-1, 13A-1 and 16D-1 were each detected 

once and are not labelled. Similarly for the NA genes, sub-lineages 2G-1, 3A-1, 3D-1, 

8A-3, 9A-2 and 9A-3 were each detected once and are not labelled. 
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Figure 3.2.Phylogenetic analysis demonstrating the presence in Atlantic flyway ducks of 

non-duck AIV lineages. The phylogenetic tree contains representative sequences from the 

Atlantic flyway duck AIVs for each of the 6 PB2 sub-lineages, with sub-lineages 

indicated on the right. The 5 sub-lineages (C-2 through C-5 and J-1) that contained genes 

detected from non-duck host species are displayed with black branches. The sub-lineage 

C1, which did not contain genes from non-duck host species, is displayed with grey 

branches. The neighbour-joining tree was constructed with MEGA 5 and support values 

based on 1000 bootstrap replicates are shown as percentages where ≥70%. The scale bar 

indicates nucleotide substitutions per site. 
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PB1. All of the PB1 sequences belonged to the F lineage, with 8 sub-lineages (Figure 3.1). 

The F-3 sub-lineage was predominant and comprised of 12 gene types from 62 viruses 

(Figure S3.2; Table S3.2). In general, the F lineage of the PB1 gene is common in birds of 

North America, and has spilled over to swine (1999-2002) and humans (2003-2004). 

Several F-lineage genes have also been detected in Eurasian ducks and seabirds 

(Flugenome database). 

PA. The PA sequences fell within 2 lineages (E and H; Figure 3.1) with 34 different gene 

types (Table S3.2). Browsing through the Flugenome database, the H lineage is common 

in birds of North America, but several genes of this lineage have been reported in Eurasia. 

The PA gene of the 2009 H1N1 pandemic virus is also assigned to the H lineage. E-

lineage PA genes are common in birds from both North America and Eurasia. 

HA. There were 11 subtypes found in the HA genes, with 4 H1, 8 H2, 51 H3, 23 H4, 11 

H5, 3 H6, 2 H7, 4 H11, 1 H12, 1 H13 and 1 H16 categorized into 12 gene lineages and 19 

sub-lineages (Figures 3.1 and S3.2; Table S3.2). The 4 H1 genes belonged to the 1D 

lineage, which is abundant in waterfowl in North America and distinct from the 1A 

lineage often found in poultry in North America and found in the 2009 H1N1 pandemic 

strain (Flugenome database). The H2 genes all belonged to the 2H lineage, which is 

distinct from the 2D lineage that invaded North America from Eurasia (Makarova, 

Kaverin et al. 1999, Lu, Rowley et al. 2007). All of the H3 and H4 genes of the Atlantic 

flyway duck AIVs were from lineages typically identified in waterfowl in North America 

(Figure S3.2). The 11 H5 genes all belonged to the 5C lineage, which is abundant in 

waterfowl and poultry of North America and distinct from the H5 genes of the highly 

pathogenic H5N1 viruses in Eurasia, which belong to the 5J lineage (Flugenome 
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database). The 3 H6 genes belonged to the 6B lineage of Eurasian-avian origin, which is 

known to have become the predominant H6 lineage in North America in the last decade 

(zu Dohna, Li et al. 2009). The 2 H7 genes were classified in the 7F lineage (Figure S3.3; 

Table S3.2), which is abundant in waterfowl and poultry of North America with several 

genes detected from European poultry, while most H7 genes from waterfowl and poultry 

in Eurasia belonged to 7A lineage (Flugenome database). The 4 H11 genes belong to the 

11C lineage (Table S3.2), which is abundant in waterfowl of North America and 

occasionally detected from shorebirds and poultry (Flugenome database). Several 11C-

lineage genes were also detected from storks and ducks in Eurasia, although most H11 

genes detected in Eurasia belonged to 11A lineage (Flugenome database). The H12 gene 

in this study belongs to the 12A lineage (Table S3.2) and the most similar sequences in 

the NCBI Influenza database (~98% nucleotide identity) were from shorebirds of New 

Jersey and Delaware in 2008 (Figure S3.3). HA genes in the 12A lineage were detected 

from waterfowl, shorebirds, gulls and murres in North America, while those from Eurasia 

are mainly in the 12B lineage (Flugenome database). The one H13 gene belonged to the 

13A lineage and may have recently been transmitted from gulls to ducks because the 

same gene type was detected in gulls from Quebec in the same year (2009) and these 

genes are closely related to an H13 gene found in a Newfoundland gull in 2008 (Figure 

S3.3). The one H16 gene was of Eurasian-gull origin and related to genes detected in 

shorebirds and gulls in Delaware and gulls in Europe (Figure S3.3). There are 3 lineages 

of H16 genes in the Flugenome database (16A, 16B and 16C) but the H16 gene from the 

Atlantic flyway duck in this study was divergent from these (≤90% nucleotide identity) 

and we therefore assigned it as the 16D lineage (Figure S2). 
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NP. The 109 NP sequences belonged to 3 lineages (F, H and D) but almost all (106/109) 

were from the H lineage (Figures 3.1 and S3.2; Table S3.2), which is the predominant 

lineage in birds of North America (Flugenome database). NP genes of this lineage have 

also been detected in humans and swine, and 8 Eurasian H-lineage genes from Asia were 

found in the Flugenome database. The 2 NP genes in the D lineage were of American-gull 

origin (Table S3.2). Several D-lineage NP genes were also detected from gulls of Eurasia 

(Flugenome database). The single NP gene we found in the F lineage was of Eurasian-

avian origin, and this lineage is common in Eurasian waterfowl and poultry (Flugenome 

database). Phylogenetic analyses indicated that these genes might have been brought to 

North America by ducks in the Pacific flyway (Figure S3.2), which is also supported by 

the epidemiological data because 49 of the 53 F-lineage NP genes in the Flugenome 

database from North America are from Pacific flyway waterfowl. The NP genes from 

some human AIV infections (H5N1 and H9N2 subtypes) in Asia also belong to the F 

lineage. 

NA. The 108 NA sequences available from the 109 Atlantic flyway viruses grouped into 

7 NA subtypes with 9 gene lineages and 20 sub-lineages (Figures 3.1 and S3.1; Table 

S3.2). The 6 N1 genes belonged to 2 sub-lineages of the 1E lineage, which is common in 

waterfowl and shorebirds of North America (Flugenome database). Most of the N2 genes 

(26/27) belonged to the 2D lineage, which is mainly found in waterfowl of North 

America and occasionally in other bird species such as chickens, seabirds and gulls. One 

N2 gene belonged to the 2G lineage, which is common in birds of North America but 

which has also been found in human AIVs in North America (Flugenome database). The 

6 N3 genes were from 2 lineages, 3A and 3D. The 3A lineage is common in birds of 
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North America and sometimes also detected in swine and human AIV viruses. The gene 

from the 3D lineage was of Eurasian-gull origin (Table S3.2). The 4 N4 genes belonged 

to the 4A lineage, which is mainly found in waterfowl of North America. The 26 N6 

genes are from 4 sub-lineages of the 6A lineage, which is abundant in waterfowl and 

shorebirds in North America and occasionally detected in birds in Eurasia (Flugenome 

database). The gene type 6A-1.2 was also detected in gulls from Quebec in 2009 (Figure 

S3.3). Considering the predominance of the 6A-lineage NA genes in ducks of North 

America, this likely represents a recent cross-species transmission of this gene from 

ducks to gulls. There were 34 N8 genes and all belonged to the 8A lineage (Figure S2). In 

general, the 8A lineage is abundant in waterfowl, shorebirds and gulls of North America 

but also occasionally detected in aquatic birds in Asia (Flugenome database). The 5 N9 

genes belonged to 3 sub-lineages of the 9A lineage, which has mainly been detected in 

waterfowl, shorebirds and gulls of North America but there were also 33 NA genes of 9A 

lineage from Eurasia in the Flugenome database. 

M. The M sequences belonged to the E and F lineages. The E-1 sub-lineage was 

predominant and included 106 of the viruses (Figure S3.2; Table S3.2). The E-lineage is 

common in birds of North America with several genes detected in human and swine cases 

of AIV infection. Thirteen E-lineage genes from birds and swine in Asia were also found 

in the Flugenome database. The M gene of the F-1 sub-lineage was of Eurasian gull 

origin, which has previously been detected in American gulls and shorebirds, and has 

now also been detected in Atlantic flyway ducks (Figure S3.3). 

NS. Both alleles 1 and 2 (allele A and B by conventional nomenclature) were detected in 

the Atlantic flyway duck AIVs. There were 77 genes from lineage 1, with 75 genes from 
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lineage 1D and 2 from lineage 1C (Figures 3.1 and S3.2; Table S3.2). The 1D lineage is 

abundant in waterfowl and shorebirds of North America, and has also been detected in 

poultry, seabirds, gulls, swine and humans in North America (Flugenome database). The 

2 genes from the 1C lineage were of American gull origin (Figure S3.2). The remaining 

32 NS genes belonged to lineage 2B, which is common in waterfowl and poultry of North 

America and also has been detected in other hosts (Flugenome database). 

3.3.3. Spatial and temporal detection of AIV genes and genomes within Atlantic 

flyway ducks 

 The 248 Atlantic flyway gene types were sorted according to year and location of 

detection (Figures S3.4 and S3.5). Circulation of the genes in the Atlantic flyway through 

space and time was common, with 81 of the 248 gene types (32%) detected in more than 

one year or at different locations over 2006-2011, and 22 gene types (9%) were 

maintained in Atlantic flyway ducks for 3 to 6 years during 2006-2011 (Table S3.5). For 

example, the NA gene type 2D-1.1 was found in several locations of the Atlantic flyway 

over the 6 years and the HA gene type 3D-1.1 was perpetuated in Newfoundland over 4 

years (2007-2011) (Table S3.5). Different locations possessed both unique and shared 

gene types. For example, amongst the 78 total gene types from Newfoundland, 18 were 

also detected elsewhere in the Atlantic flyway and 60 were restricted to Newfoundland. 

This was different than what was observed for the viruses from Quebec, where 30 of the 

51 identified gene types were also detected at other locations in the Atlantic flyway 

during 2006-2011 and 21 genes were exclusively found in that province. However, the 

limited number of AIV reference sequences in Atlantic flyway ducks could cause under-

estimation of virus transmission within Atlantic flyway, because searching of the NCBI 
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database showed that 69 of the 78 gene types from Newfoundland have also been found 

in other bird flyways (Table S3.6 and S3.7). 

 

 

 

 

Figure 3.3. Spatial distribution of detections of the Atlantic flyway duck AIV sub-

lineages in North American flyways. The box plots show the proportions of detections in 

each of the flyways for the gene sub-lineages that were identified in the 2006-2011 

Atlantic flyway duck AIVs. The solid line in the box is the median. The top and bottom 

of the box are the first and third quartiles, respectively. The upper and lower horizontal 

lines represent 1.5X the difference between the first and third quartiles and any values 

falling outside of those are plotted as points. The detailed results for the each segment are 

provided in Figure S3.6. 

 

 At the genomic level, 12 homologous genomes were detected more than once 

(Table S3.2). Distinct from the long perpetuation of individual gene segments, most (9/12) 
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of the homologous genomes were detected during the same year and from the same 

location. The exceptions to this were H1N1 viruses detected in consecutive years (both 

2009 and 2010 in Newfoundland), H3N8 viruses detected in multiple locations (2009 in 

Nova Scotia, New Brunswick and Prince Edward Island), and H4N6 viruses detected in 

multiple locations (2007 in New Brunswick and Prince Edward Island). 

3.3.4. Spatial and temporal detection of the Atlantic flyway duck AIV genes in 

different North American flyways 

 Highly similar reference gene sequences (≥99% identical) from North America 

were identified for the 248 Atlantic flyway duck AIV gene types by BLAST, which 

totaled >9,000 sequences. These were categorized by year (Table S3.6) and migratory 

flyway of detection (Table S3.7). Extensive exchanges of the 248 Atlantic flyway AIV 

genes through space and time were detected, with 188 gene types (75.8%) identified in 

other flyways, while 42 of the gene types (16.9%) were identified only in the Atlantic 

flyway before 2006. The remaining 18 gene types (7.3%), of which 11 were HA genes, 

were only detected in Atlantic flyway ducks from 2006 to 2011 (Table S3.5). 

 Despite the frequent transmission of viruses among different bird flyways, the 

overall detection of genes highly similar to those from the 2006-2011 Atlantic flyway 

duck AIVs was most frequent in other viruses from the Atlantic flyway and decreased 

moving west across the different flyways (Figure 3.3). The majority of the 248 gene types 

displayed spatial distribution biases, as reflected by the larger numbers of detections of 

specific genes in one or two neighbouring flyways compared to the other flyways (Figure 

S3.6). For example, the HA genes of 3D-1, 4A-1 and 7F-2 sub-lineages were abundant in 

the Atlantic flyway, whereas the 4A-3 lineage was more abundant in the Mississippi and 
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Central flyways (Figure S3.6). In contrast, the 1D-1 HA lineage was more evenly 

detected in the four flyways. Similarly for the NP genes, the H-4 and H-7 sub-lineages 

were more abundant in the Atlantic flyway, the H-1 and H-2 lineages were more widely 

detected, and the F-1 sub-lineage was mainly detected in the Pacific flyway (Figure S3.6). 

The NP F-1 sub-lineage was the most Pacific-biased of any sub-lineage (top point on 

Pacific flyway plot in Figure 3.3) and this may indicate it was recently transmitted from 

the Pacific flyway into eastern North America. 

3.3.5. Perpetuation of the AIV genes through years 

 The perpetuation of the AIV segments was evident after comparing them with all 

highly similar genes available in the NCBI database. This showed that 175 of the 248 

gene types (70.6%) have persisted for >3 years, and 112 of the 248 gene types (45.1%) 

have been maintained for >5 years, while 40 of the 248 gene types (16.1%) have 

circulated for >10 years (Table S3.6). Eleven of the gene types could be traced to more 

than 20 years ago, with the oldest detection from 1978 (Table S3.6). When the 8 AIV 

gene segments were compared for their maintenance across the years (Figure 3.4), the M 

and NS segments had the highest >5-year perpetuation detections, at 82.6% and 95.7%, 

respectively, whereas the HA segment had the lowest proportion of maintenance for >5 

years (18.4%). Similarly, the M and NS segments had the highest >10-year perpetuation 

detections, at 56.5% and 52.1%, respectively, whereas no HA segment was maintained 

for >10 years (Figure 4). These differences were significant for both the >5 year (χ
2
 = 

53.1, df = 7, P < 0.0001) and >10 year (χ
2
 = 66.5, df = 7, P < 0.0001) data. 
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Figure 3.4. Perpetuation of Atlantic flyway duck AIV gene types for >5 and >10 years . 

The proportions of gene types identified in the Atlantic flyway viruses that were detected 

for >5 and >10 years in North America are shown for each segment. There were 

significant differences among the proportions for the HA, M and NS segments relative to 

the other segments for >5 years (χ
2
 = 53.1, df = 7, P < 0.0001) and >10 years (χ

2
 = 66.5, 

df = 7, P < 0.0001). Statistically different proportions for the segments are indicated with 

different letters (a, b and c). 
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3.3.6. Identification of Atlantic flyway duck AIV genes in other hosts 

 Of the 248 AIV gene types identified in the 109 Atlantic flyway duck viruses, 142 

(57.3%) were also detected in hosts other than ducks (Table S3.8). These included 

shorebirds, poultry, gulls, murres, other waterfowl, and swine (Table S3.9). The detection 

frequency of the Atlantic flyway duck AIV genes in different host groups varied, with 82 

of the gene types found in shorebirds, 41 in geese, 39 in turkeys, 37 in chickens, 19 in 

gulls, 13 in swans, 9 in seabirds and 9 in swine (Table S3.9). 

 

3.4. Discussion 

 Current attempts to characterize AIV genetic structure and fully understand virus 

ecology are limited by the under-representation of sequence information from viruses 

across spatial, temporal, and host species scales, especially in the American portion of the 

Central flyway and the Canadian portion of the Atlantic flyway (Lam, Ip et al. 2012). 

There is clearly an enormous virus reservoir maintained in both bird hosts (Webster, Bean 

et al. 1992, Olsen, Munster et al. 2006) and the natural environment (Ito, Okazaki et al. 

1995, Lang, Kelly et al. 2008, Hénaux, Samuel et al. 2012) and we have discovered only 

a fraction of this diversity. To better resolve the dynamics of AIV transmission and 

distribution, it is critical to examine available sequences in the context of broader time 

scales, host species and geographic locations. In this study, 109 Atlantic flyway duck AIV 

genomes from 2006-2011 were analyzed for their genetic structure to provide insight into 

AIV evolution and ecology on the east coast of North America. Extensive diversity was 

detected in the AIV genes and genomes from the Atlantic flyway ducks in this study, 

similar to reports performed in waterfowl at other locations of North America (e.g. 
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(Spackman, Stallknecht et al. 2005, Reeves, Pearce et al. 2011, Bahl, Krauss et al. 2013)). 

The analysis of the AIV genetic structure identified limited numbers of predominant gene 

lineages and sub-lineages for the internal protein genes, distinct from what was found for 

the surface protein genes. Restricted inter-continental AIV exchange was found in the 

Atlantic flyway ducks, in sharp contrast to the extensive intra-continental transmission 

among bird flyways and bird species. 

 The host sources of the AIVs analyzed in this study (Table S3.2) generally 

reflected duck distribution patterns in North America. However, the spatial distribution of 

duck species does not lead to the geographic distributions of AIV genes as shown by the 

identification of homologous genes in different duck species (Figure S3.2 and Table S3.2). 

This agrees with previous work, which also found no distinct AIV phylogenetic 

separation in dabbling duck species (Chen and Holmes 2009, Reeves, Pearce et al. 2011). 

We detected a high proportion (＞50%; Table S8) of the Atlantic flyway duck AIV gene 

types in bird groups other than ducks, reflecting frequent interspecies transmission of 

AIVs in birds. The duck gene types were detected more often in shorebirds than other 

wild bird groups such as gulls and seabirds. This variation in detection frequency of the 

Atlantic flyway duck AIV genes in different bird groups could be caused by multiple 

factors, including differences in virus sequence availability, bird habitat use and 

migratory behaviors, bird population structure, AIV subtype prevalence, host AIV 

infection history and cellular receptor properties. The Atlantic flyway duck AIV gene 

types were also detected in domestic poultry (Table S3.9), reflecting the infection of 

domestic birds by wild bird viruses. Similarly, some of the gene types were identified in 
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swine viruses (Table S3.9). This movement of AIV genes amongst wild birds and 

domestic animals is an important aspect of influenza dynamics as related to the evolution 

of new strains and the potential for negative impacts on human society in terms of 

agriculture and health. Continual surveillance of the wild bird AIV reservoir is especially 

valuable to monitor virus transmission to domestic animals and/or the human population. 

 Many AIV genes in our study were detected in more than one North American 

bird flyway, but the detections were biased by geographic locations (Figure 3.3). Most 

AIV gene sub-lineages were detected more often under one or several neighbouring 

flyways relative to other flyways (Figure S3.6). It should be noted that there are 

differences in the numbers of duck virus sequences available from the different flyways, 

which could bias these results. However, we do not believe this pattern is caused by an 

over-representation of sequences from the Atlantic flyway because recent work has 

increased the sequences available for multiple regions of North America, particularly in 

the Pacific flyway. Furthermore, differential gene distributions by flyway were also found 

in a previous study (Lam, Ip et al. 2012). Gene flow among flyways is presumably 

mediated by interactions of long-distance migrants on wintering grounds and some east-

west bird movements (Lam, Ip et al. 2012, Bahl, Krauss et al. 2013). At the genomic level, 

highly similar viruses were mostly detected in adjacent locations and within short time 

spans (Table S3.2), reflecting frequent viral reassortment (Hatchette, Walker et al. 2004, 

Reeves, Pearce et al. 2011). The between-year detection of the 4 H1N1 viruses may 

reflect the maintenance of AIVs in the abiotic reservoir (Huang, Wille et al. 2013). 

Among the 8 AIV gene segments, the HA gene displayed the lowest maintenance time 

with less than 20% of the gene types maintained for >5 years and none retained >10 years 
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(Figure 3.4), which is not surprising considering that the HA protein is targeted by host 

immune responses. Along with the lowest lineage diversity in the Atlantic flyway ducks 

(Figure 3.1), the M and NS segments showed the most prolonged maintenance, with >80% 

of the identified gene types maintained for >5 years and >50% maintained for >10 years 

(Figure 3.4). This likely resulted from differences in the selective pressures on the 

different segments, and it was previously found that the M and NS (allele A) segments 

showed the lowest nucleotide substitution rates (Bahl, Vijaykrishna et al. 2009). 

Prolonged prevalence of the same gene types may result in part from maintenance of 

viruses in the environment (Hinshaw, Webster et al. 1979, Ito, Okazaki et al. 1995, Lang, 

Kelly et al. 2008, Roche, Lebarbenchon et al. 2009, Nazir, Haumacher et al. 2011, 

Lebarbenchon, Sreevatsan et al. 2012) because the high mutation rate for these RNA 

viruses and the constant immune pressure from the hosts make it unlikely for the same 

AIV genes to be maintained solely in birds across many years (Holland, Spindler et al. 

1982, Chen and Holmes 2006). 

 The detection frequency of inter-continental AIV reassortants is higher at the 

continental margins than inland (Peterson, Benz et al. 2007, Koehler, Pearce et al. 2008). 

Compared to the amount of inter-continental reassortment detected in AIVs from 

Northern Pintails in Alaska (Koehler, Pearce et al. 2008, Ramey, Pearce et al. 2010), 

fewer inter-continental AIV genes (2%) were identified in Atlantic flyway ducks in our 

analysis. Limited inter-continental reassortants were also detected in Atlantic flyway 

shorebirds (Krauss, Obert et al. 2007). This could be due to the larger distance between 

eastern North America and Europe compared to that between Alaska and Russia, leading 

to more restricted movements of birds between the regions, especially ducks. Therefore, 
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our study suggests there is a lower likelihood of AIV introduction from Eurasia to North 

America through ducks of the Atlantic flyway, compared to those of the Pacific flyway, 

which has implications for the potential transmission of highly pathogenic AIVs, such as 

H5N1, to North America through Atlantic Canada. There is currently no evidence that 

Atlantic flyway ducks move across the Atlantic Ocean and therefore the Eurasian 

sequences detected may result from the interaction of these ducks with other hosts such as 

gulls, which do move across the Atlantic (Wille, Robertson et al. 2011) and which contain 

inter-continental reassortant viruses with high frequency (Wille, Robertson et al. 2011, 

Van Borm, Rosseel et al. 2012, Hall, TeSlaa et al. 2013). Continued AIV surveillance in 

multiple bird groups in different regions will further increase our understanding of AIV 

ecology in North America and virus movement between regions. 
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Chapter 4 Perpetuation and reassortment of gull influenza A viruses in Atlantic 

Canada 

 

Abstract 

Gulls are important hosts of avian influenza A viruses (AIVs) and gull AIVs often 

contain gene segments of mixed geographic and host lineage origins. In this study, the 

prevalence of AIV in gulls of Newfoundland, Canada from 2008-2011 was analyzed. 

Overall prevalence was low (30/1645, 1.8%) but there was a distinct peak of infection in 

the fall. AIV seroprevalence was high in Newfoundland gulls, with 50% of sampled gulls 

showing evidence of previous infection. Sequences of 16 gull AIVs were determined and 

analyzed to shed light on the transmission, reassortment and persistence dynamics of gull 

AIVs in Atlantic North America. Intercontinental and waterfowl lineage reassortment was 

prevalent. Of particular note were a wholly Eurasian AIV and another with an 

intercontinental reassortant waterfowl lineage virus. These patterns of geographic and 

inter-host group transmission highlight the importance of characterization of gull AIVs as 

part of attempts to understand global AIV dynamics. 

 

4.1. Introduction 

 Influenza A viruses are eight-segmented, negative-sense, single-stranded RNA 

viruses belonging to the virus family Orthomyxoviridae (Kawaoka, Cox et al. 2005). 

These viruses infect numerous hosts, including birds and mammals. The natural reservoir 

of avian influenza A viruses (AIVs) are wild aquatic birds, especially the orders 



 

105 
 

Anseriformes (ducks, geese and swans) and Charadriiformes (auks, terns, gulls and 

shorebirds)  (Webster, Bean et al. 1992, Olsen, Munster et al. 2006). AIV infection in 

wild birds usually appears to be asymptomatic, but some strains may cause fatal infection 

(Becker 1966, Chen, Smith et al. 2005, Liu, Xiao et al. 2005). AIVs are also a great 

hazard to the poultry industry (Webster, Peiris et al. 2006, Alexander 2007), and some 

strains also pose public health risk (Claas, Osterhaus et al. 1998, Peiris, de Jong et al. 

2007, Cardona, Xing et al. 2009, Gao, Cao et al. 2013). 

 The sequences of AIV genes generally divide into distinct phylogeographic 

lineages due to the partial separation of birds by continental regions (Olsen, Munster et al. 

2006). They also segregate into waterfowl-dominated phylogenetic clades (usually 

referred to as avian) and shorebird/gull-dominated clades (usually referred to as gull) 

(Olsen, Munster et al. 2006), and the hemagglutinin subtypes H13 and H16 also appear to 

be specifically adapted to gulls (Hinshaw, Air et al. 1982, Fouchier, Munster et al. 2005). 

This segregation is presumably caused by biological and ecological differences amongst 

host bird taxa. However, some gull AIVs show limited replication in other bird hosts 

(Kawaoka, Chambers et al. 1988, Tonnessen, Valheim et al. 2011, Brown, Poulson et al. 

2012), AIV has been transmitted from gulls to poultry (Sivanandan, Halvorson et al. 

1991), and there is also evidence gull AIVs could pose human risk (Lindskog, Ellstrom et 

al. 2013). Despite these general phylogenetic divisions, reassortants containing segments 

of different continental and/or bird host origins are detected [e.g. (Widjaja, Krauss et al. 

2004, Spackman, Stallknecht et al. 2005, Krauss, Obert et al. 2007, Kishida, Sakoda et al. 

2008, Koehler, Pearce et al. 2008, Chen and Holmes 2009, Lomakina, Gambaryan et al. 

2009, Ramey, Pearce et al. 2010, Wille, Robertson et al. 2011, Van Borm, Rosseel et al. 
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2012)]. This is particularly common in AIVs from gulls, which is presumably driven by 

gull ecology in terms of habitat usage and migratory behaviour, and suggests gulls play 

an important role in AIV transmission between regions and among different host taxa 

(Ramey, Pearce et al. 2010, Wille, Robertson et al. 2011, Van Borm, Rosseel et al. 2012). 

However, the number of gull AIV genome sequences remains limited, especially in 

comparison to the data available for waterfowl viruses. 

 Oceanic coasts are useful locations for studies of gull AIVs because of abundant 

gull populations and increased chances of inter-continental bird movements. The northern 

Atlantic coast of North America is one such location, with gull movements to Europe 

documented (Wille, Robertson et al. 2011) and inter-continental reassortant gull viruses 

found (Krauss, Obert et al. 2007, Wille, Robertson et al. 2011, Hall, TeSlaa et al. 2013). 

In this study, we conducted surveillance for AIV infection in gulls on the island of 

Newfoundland, Canada over 2008-2011, and  analyzed 16 of the detected gull AIVs for 

their phylogeny and genotype to shed light on the transmission, reassortment and 

perpetuation of AIVs in gulls in this region of North America. Time of most recent 

common ancestors for the eight segments of the predominant viruses were also 

determined to reveal the emerging time of the genes in gulls in Atlantic Canada. 

 

4.2. Materials and Methods 

4.2.1. Ethics statement 

 This work was carried out under the guidelines specified by the Canadian Council 

on Animal Care with approved protocols 09-01-AL, 10-01-AL and 11-01-AL from the 
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Memorial University Institutional Animal Care Committee or under the authority of the 

Director of the Newfoundland and Labrador Animal Health Division. Pre-fledged young 

birds were caught by hand, while flight-capable birds were caught in noose carpet traps or 

by an air-propelled net launcher. Birds were banded under banding permit 10559. Swabs 

of the cloaca and oropharyngeal cavity were collected as samples for virus screening, and 

blood samples were also taken from the brachial vein of some birds to detect the anti-AIV 

antibodies in gulls. Eggs were collected under permit SP2782 from Canadian Wildlife 

Service to test the maternal antibody against AIVs. The sampling was either done at 

locations where no access permits were required (public areas around the City of St. 

John’s) or with the permission of the relevant authorities in the cases of the St. John’s 

regional landfill and the Witless Bay Seabird Ecological Reserve. This research was also 

approved under Memorial University biosafety permit S-103-08. 

4.2.2. Sampling and surveillance for AIV 

 Live gulls were captured at a variety of locations, mainly in eastern 

Newfoundland, but also in other locations across the province. Dead gulls brought to 

provincial or federal facilities were also sampled opportunistically. The sampling period 

for swabbing spanned May 2008 to December 2011. The total number of gulls sampled 

was 1350. Blood samples, 2.0-2.5 ml from the brachial vein, were collected between 

October 2011 and September 2012. Gulls were aged based on their age-specific plumages, 

which are reliable until their second to fourth year, depending on the species. We 

classified all gulls in their first year of life (<12 months old), including pre-fledged young, 

as juveniles and all others as adult birds even though the adult category includes sexually 

immature birds that are not yet capable of breeding. Months of the year were grouped into 
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four unequal periods reflective of the annual life history of the birds: May-August: 

summer (breeding season), September-October: fall (post-fledging dispersal and 

migration), November-February: winter (non-breeding season), March-April: spring 

(spring migration). In addition to sampling birds, fresh fecal samples were collected from 

roost sites. Only samples than could be confirmed as coming from gulls were collected, 

although no species information. 

 Swab samples were kept cool in the field for less than 24 hours before being 

stored at -80°C until processed. Samples were screened for the presence of AIV by real 

time RT-PCR targeting the M gene using previously published methods (Spackman, 

Senne et al. 2002, Granter, Wille et al. 2010). Positive samples were identified as those 

with Ct values <35. Prevalence was compared across years and season using log-

likelihood ratio tests (LRT) in R 3.0.1 (www.R-project.org/). 

 Blood samples were allowed to coagulate before centrifugation to separate the 

serum. Serum was tested for the presence of anti-AIV NP antibodies using the AI MultiS-

Screen Ab Test (IDEXX, Westbrook, Maine) as recommended by the manufacturer. 

4.2.3. Virus sequencing 

 RNA was extracted from positive swab samples with Trizol LS reagent (Life 

Technologies, Burlington, Canada) and subjected to RT-PCR using previously published 

primers (Hoffmann, Stech et al. 2001, Phipps, Essen et al. 2004, Chan, Lin et al. 2006, 

Obenauer, Denson et al. 2006, Huang, Khan et al. 2013) and the Superscript III One-Step 

RT-PCR System (Life Technologies). The resulting RT-PCR products were purified with 

QIAquick PCR purification kit (Qiagen, Toronto, Canada) and sequenced at the Center 
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for Applied Genomics (Toronto, Canada). The sequence data was compiled and analyzed 

using Lasergene v7.1 (DNASTAR Inc., Madison, WI). 

4.2.4. Phylogenetic analyses 

 The AIV sequences obtained in this study and reference AIV sequences from the 

NCBI influenza database (Bao, Bolotov et al. 2008) and the GISAID epiFlu database 

(http://platform.gisaid.org) were subjected to phylogenetic analysis. Two rounds of 

phylogenetic analyses were performed. In the first round of analysis, available AIV 

reference sequences from gulls, ducks and shorebirds in North America and Eurasia were 

included. We used at least 20 sequences closely related to each gull AIV sequence from 

our study, which were identified by BLAST searches (Altschul, Madden et al. 1997), in 

these analyses. On the basis of these results, the second set of phylogenetic analyses was 

limited by inclusion of only the phylogenetic clades closely related to the 2009-2011 

Newfoundland gull AIV sequences. The nucleotide ranges of the coding sequence regions 

for each segment used in the phylogenetic trees were: PB2, 1804-2256; PB1, 1624-2271; 

PA, 1-528; NP, 4-576; M, 40-939; NS, 55-792; H1, 1147-1590; H9, 1183-1662; H13, 

1090-1638; H16, 1087-1698; N3, 625-1350; N6, 904-1383; and N9, 844-1395. The 

nucleotide sequence alignments and pairwise-distance analyses were performed with the 

Jotun Hein method in Lasergene v7.1 (DNAStar, Inc., Madison, WI). Phylogenetic trees 

were constructed with the maximum likelihood method in MEGA5 (Tamura, Peterson et 

al. 2011) with 1000 bootstrap replicates. The maximum likelihood topologies were then 

confirmed by comparison to neighbour-joining trees constructed in MEGA5 and 

maximum clade credibility trees constructed using BEAST v1.7.5 (Drummond, Suchard 

et al. 2012). 
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 The times of most recent common ancestor (tMRCA) were estimated for the 

predominant Atlantic Canada gull clades with BEAST v1.7.5 (Drummond, Suchard et al. 

2012). A lognormal relaxed clock (unrelated) model was used to infer the phylogenetic 

timescale, and the analysis was performed with the GMRF Bayesian skyride model and 

time-aware smoothing (10
8
 steps with sampling every 10

4
 steps). The convergence was 

assessed in Tracer v1.5 (http://tree.bio.ed.ac.uk/software/tracer/), and maximum clade 

credibility trees were summarized with 10% of the input file excluded. 

4.2.5. Virus gene lineage and genotype assignments 

 Continental and host taxa affiliations were assigned to the virus segments based 

on the origins of the reference sequences within their associated phylogenetic clades. 

These included North American gull (AG), North American avian (AA), Eurasian gull 

(EG) and Eurasian avian (EA). Sequences within a lineage were determined as those had 

90% nucleotide identity, and sequences within a clade had 95% nucleotide identity. 

Serial numbers were assigned to the lineages and clades for each segment. Where there 

was only a single clade within a lineage, the lineage number is the clade number. 

Genotypes were then assigned by the compilation of the assigned clades of the different 

segments. 

 

4.3. Results 

4.3.1. Prevalence of AIV infection in gulls 

 Between May 2008 and December 2011, 20 AIV positive samples were identified 

in 1350 paired (oral and cloacal) swab samples collected from gulls (1.5%). Most samples 
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and positives were from the two species that are present on the island of Newfoundland 

year-round: American Herring Gull (Larus smithsonianus; 13/1083) and Great Black-

backed Gull (Larus marinus; 6/200). The remaining positive sample was from a juvenile 

Ring-billed Gull (Larus delawarensis) captured in the fall of 2010 (1/21 total for species). 

Other species sampled were Black-headed Gull (Chroicocephalus ridibundus; 0/1), 

Glaucous Gull (Larus hyperboreus; 0/24), Iceland Gull (Larus glaucoides; 0/19) and 

Mew Gull (Larus canus; 0/2). Another 10 positive samples were identified in the 295 

fecal samples with the gull species undetermined (3.4%). 

 A peak in AIV infection occurred in the fall (Table 4.1) and was detected in both 

Herring and Great Black-backed Gulls (LRT, χ
2
 = 53.0, df = 3, P < 0.0001) and the fecal 

samples (LRT, χ
2
 = 10.7, df = 3, P < 0.0001). Both Herring and Great Black-backed Gull 

chicks were heavily sampled in the summer when they were 3-6 weeks of age, but only 

one positive was detected in 792 samples (Table 4.1). 

 All blood-samples from the four species sampled and tested for anti-AIV 

antibodies showed evidence of previous infection: Great Black-backed Gull (2/10, 20%), 

Herring Gull (33/63, 52%), Ring-billed Gull (5/7, 71.4%) and Iceland Gull (4/8, 50%), 

for an overall rate of 50% (44/88) across all species. 
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Table 4.1. Seasonality of AIV prevalence in juvenile and adult Great Black-backed and 

Herring Gulls in Newfoundland and Labrador, 2008-2011 

 Summer Fall Winter Spring 

Great Black-backed Gull     

Juvenile
a
 0/107 (0%) 5/31 (16.1%) 0/4 (0%) 0/5 (0%) 

Adult 0/2 (0%) 0/12 (0%) 1/32 (3.1%) 0/7 (0%) 

Herring Gull     

Juvenile 1/685 (0.1%) 7/83 (8.4%) 0/7 (0%) 0/3 (0%) 

Adult 0/17 (0%) 5/89 (5.6%) 0/85 (0%) 0/109 (0%) 

Fecal samples 0/66 (0%) 8/109 (7.3%) 2/96 (2.1%) 0/24 (0%) 

a
 Juveniles are birds less than 12 months old. 

 

4.3.2. Sequences obtained from gull AIVs 

 Sequences were successfully determined for 16 of the 28 AIV-positive samples 

detected from gulls on the island of Newfoundland during 2009-2011 (the positive 

samples from 2008 were previously studied (Wille, Robertson et al. 2011). Among the 16 

viruses, 15 were detected around the City of St. John’s (47°56'N, 52°71'W) in eastern 

Newfoundland and 1, A/Great black-backed gull/Newfoundland/AB001/2011(H9N9), 

was from Corner Brook (48°96'N, 57°93'W) in western Newfoundland. Sequences were 

obtained from 123 segments, which represented all 8 segments of 13 viruses, and 6 or 7 

segments for the other 3 viruses. The sequences were submitted to the GenBank database 

under accession numbers KC845024-KC845145. 
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4.3.3. Phylogenetic analyses 

 The Newfoundland and reference gull AIV sequences were used for phylogenetic 

analyses together with closely related reference genes identified in the sequence databases. 

The lineage assignments from the maximum likelihood trees matched those on the 

neighbor-joining and the maximum clade credibility trees. A large genetic diversity was 

revealed in the AIVs that were circulating in the Newfoundland gulls and multiple 

lineages were identified for each gene segment of these viruses, as detailed below. 

4.3.4. Surface protein segments 

 The HA subtypes were determined for 14 of the 16 viruses, and those were 

identified one H1, one H9, eight H13 and four H16 viruses (Figure 4.1A and B). The H1 

and H9 sequences belonged to North American avian lineages (Figure 4.1A and B). The 

H1 sequence was very closely related to a gene detected from a shorebird in Delaware in 

2009, with the remaining sequences in the lineage coming from duck viruses. The eight 

H13 sequences belonged to a North American gull lineage, closely related to four H13 

genes detected in 2009 elsewhere in Atlantic Canada, three from gulls in Quebec and one 

from a sea duck in New Brunswick, as well as another gull virus from Newfoundland 

from 2008 (Figure 4.1C). There were also numerous gull H13 sequences in the database 

from other locations in eastern North America and Alaska, but these were assigned in 

distinct lineages. The four H16 sequences were assigned in a Eurasian gull lineage, 

clustered together with virus sequences that mostly originated from other Northern 

Atlantic locations such as Iceland, Sweden, and Norway (Figure 4.1D). 
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Figure 4.1. Phylogenetic trees for the Newfoundland gull virus HA sequences from 2009-

2011. Individual trees are shown for the H1 (A), H9 (B), H13 (C) and H16 (D) sequences. 

The gull AIV sequences from Newfoundland (from 2009-2011) are labelled according to 

the geographic and host group affiliation of their clades: yellow circle for North 

American gull (AG), red circle for North American avian (AA) and grey circle for 

Eurasian gull (EG). Reference gull AIV sequences from Atlantic and Pacific North 

America are labelled with black and open circles, respectively, while those from Eurasia 

are labelled with open squares. Gene lineages and clades were assigned with serial 

numbers as described in the Material and Method section. Phylogenetic maximum 

likelihood (ML) trees were constructed using MEGA5 with 1000 bootstrap replicates and 

bootstrap values ≥70% are given at the nodes. The scale bars indicate substitutions per 

site. 
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 The NA subtypes were determined for 14 of the 16 viruses, which identified three 

N3, nine N6 and two N9 viruses. The three N3 sequences belonged to a Eurasian gull 

lineage that also included sequences from shorebirds in Delaware and several gulls in 

Alaska, but they were most similar to a duck virus sequence (A/mallard/Quebec/02916-

1/2009(H16N3)) (Figure 4.2A). Two other gull-dominated N3 lineages were identified in 

gulls, with one from North America and one from Eurasia. All of the N6 sequences 

belonged to a North American avian lineage, and several closely related sequences were 

identified in a shorebird virus in New Jersey, three gull viruses in Quebec and two duck 

viruses in New Brunswick (Figure 4.2B). In comparison, five N6 sequences from Alaskan 

gulls were classified in a different lineage (Figure 4.2B). The two N9 genes were assigned 

to the same lineage, but were separated into distinct North American avian and North 

American gull clades (Figure 4.2C). The two available reference N9 sequences from gulls 

in Alaska belonged to a third North American avian clade within this lineage. 

4.3.5. Internal protein segments 

 Similar to the findings for the HA and NA segments, more than one lineage was 

detected for each of the six internal protein segments amongst the 16 viruses. Simplified 

topology trees are shown in Figure 4.3, and trees with detailed virus information labels 

are available in Figure S4.1. 

 The 16 PB2 genes in NL gulls belonged to two phylogenetic lineages (Figures 

4.3A and S4.1). Four sequences belonged to a North America avian clade in lineage 1, 

while the gull reference sequences in the same lineage from Delaware and New Jersey 

(from 1988-1989) and Alaska (from 2006) formed two independent clades. The other 12 

PB2 sequences belonged to a Eurasian gull clade in lineage 2, closely related to  
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Figure 4.2. Phylogenetic trees for the Newfoundland gull virus NA sequences from 2009-

2011. Individual trees are shown for the N3 (A), N6 (B) and N9 (C) sequences. The gull 

AIV sequences from Newfoundland (from 2009-2011) are labelled according to the 

geographic and host group affiliation of their clades: yellow circle for North American 

gull (AG), red circle for North American avian (AA) and grey circle for Eurasian gull 

(EG). Reference gull AIV sequences from Atlantic and Pacific North America are 

labelled with black and open circles, respectively, while those from Eurasia are labelled 

with open squares. Gene lineages and clades were assigned with serial numbers as 

described in the Material and Method section 4.2.5. Phylogenetic maximum likelihood 

(ML) trees were constructed using MEGA5 with 1000 bootstrap replicates and bootstrap 

values ≥70% are given at the nodes. The scale bars indicate substitutions per site. 
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sequences from ducks, gulls and shorebirds from other locations in Atlantic North 

America. 

 The PB1 sequences were classified in two lineages, with 13 genes in lineage 1 and 

3 genes in lineage 2 (Figures 4.3B and S4.1). Six of the sequences in lineage 1 were 

separated in three North American avian clades, while the other seven genes in lineage 1 

belonged to a North American gull clade, closely related to several genes from ducks and 

gulls in Atlantic Canada from 2008-2009. The three NL sequences in lineage 2 were 

assigned in a Eurasian gull-dominated clade, while the gull reference genes from Alaska 

in 2009 belonged to another Eurasian avian clade in lineage 2. 

 The 16 PA sequences were assigned in four lineages (Figures 4.3C and S4.1). 

Thirteen were in lineage 1, separated into North American and Eurasian gull clades. The 

other three sequences were classified in three other lineages, a Eurasian avian clade and 

two North American avian clades. 

 The 15 NP sequences belonged to two phylogenetic lineages (Figures 4.3D and 

S4.1). Among the 14 sequences in lineage 1, two belonged to a Eurasian gull clade, while 

the other 12 were in a North American gull clade, closely related to several viruses from 

gulls, shorebirds and ducks of Atlantic North America. The only NP sequence in lineage 

2, from A/Great black-backed gull/Newfoundland AB001/2011(H9N9), was of North 

American avian origin. There were also two other North American avian clades 

containing sequences from gulls (in Delaware from 2005-2006) in lineage 2. 

 The 16 M sequences belonged to two lineages (Figures 4.3E and S4.1). Fourteen 

of them belonged to the Eurasian gull lineage 1, together with several genes from gulls, 

ducks and shorebirds in Atlantic North America. 
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Figure 4.3. Phylogenetic topology trees for Newfoundland gull AIV internal protein gene 

segments. The trees show the lineage distribution patterns for the PB2 (A), PB1 (B), PA 

(C), NP (D), M (E) and NS (F) segments. Trees with full virus labels are provided in 

Figure S1. The gull AIV sequences from Newfoundland (from 2009-2011) are labelled 

according to the geographic and host group affiliation of their clades: yellow circle for 
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grey circle for Eurasian gull (EG) and blue circle for Eurasian avian (EA). Reference gull 

AIV sequences from Atlantic and Pacific North America are labelled with black and open 

circles, respectively, while those from Eurasia are labelled with open squares. Gene 

lineages and clades were assigned with serial numbers as described in the Material and 

Method section. Phylogenetic maximum likelihood (ML) trees were constructed using 

MEGA5 with 1000 bootstrap replicates and bootstrap values ≥70% are given at the nodes. 

The scale bars indicate substitutions per site. 

 

Table 4.2. Phylogenetic clade assignments for the 8 gene segments of the 16 

Newfoundland gull AIVs from 2009-2011 

Clade Number of viruses Total  

(percentage) PB2 PB1 PA HA NP NA M NS 

North American gull 0 7 10 8 12 1 0 12 50 (40.6%) 

North American avian 4 6 2 2 1 10 2 2 29 (23.6%) 

Eurasian gull 12 3 3 4 2 3 14 2 43 (35%) 

Eurasian avian 0 0 1 0 0 0 0 0 1 (0.8%) 

Total 16 16 16 14 15 14 16 16 123 
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The other two sequences belonged to a North American avian clade in lineage 2, which 

also contained several viruses from gulls in Delaware and New Jersey (from 2005-2006). 

 The 16 NS sequences were all allele A and belonged to two lineages (Figures 4.3F 

and S4.1). Among the 14 genes in lineage 1, twelve of them were classified in a North 

American gull clade, together with several genes from gulls and shorebirds in Atlantic 

North America. The other two sequences in lineage 1 belonged to a Eurasian gull clade, 

which included several viruses from Alaskan gulls in 2009. Two of the NS sequences 

were classified in a North America avian clade in lineage 2. 

4.3.6. Genetic structure of the gull AIVs 

 The continental and host taxa affiliations for the 16 Newfoundland gull AIV 

segments, as identified by the phylogenetic clade assignments, are summarized in Table 

4.2. This revealed the AIV gene pool was dominated by gull lineage sequences (75.6%), 

but frequent inter-continental (35.8%) and considerable inter-host group (24.4%) segment 

transmission was found. Among the 123 sequences, 50 were classified in North American 

gull clades (40.6%), 43 were in Eurasian gull clades (35%), 29 were in North American 

avian clades (23.6%), and the other 1 was in a Eurasian avian clade (0.8%). 

4.3.7. Genome dynamics in gull AIVs 

 The genotype assignments based on the combination of lineages for the 8 

segments showed that 15 of the gull AIVs were inter-continental reassortants and 

contained Eurasian lineage genes, while 12 viruses were interspecies reassortants and 

contained avian lineage genes (Figure 4.4). Of particular note, all 8 gene segments of 

A/Herring gull/Newfoundland/YH019/2010(H16N3) were assigned in Eurasian gull 
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clades. Another virus of note was A/Great black-backed 

gull/Newfoundland/AB001/2011(H9N9), which had a genome comprised of solely 

waterfowl-related segments, with a PA gene of Eurasian avian origin and the other genes 

of North American avian origin. 

 Based on the phylogenetic clades for each segment (Figures 4.1, 4.2 and 4.3), the 

thirteen gull viruses with sequence information available for all eight segments were 

classified in 10 genotypes (A to I; Figure 4.4). Genotype I was the predominant genotype, 

found in three of the 13 AIV genomes. In comparison, eight other genotypes (all except F) 

were different reassortants relative to genotype I. Genotype F and G were genotype I 

reassortants with different lineage HA and PA segments, respectively. Genotype A 

contained different HA and NA segments and genotype D had different PB2 and PB1 

segments compared to genotype I. Furthermore, genotype C was a genotype I reassortant 

with different HA, NA and PB1 segments. Five additional highly related H13N6 AIVs, 3 

gull viruses from Quebec and 2 duck viruses from New Brunswick in 2009 (Hall, TeSlaa 

et al. 2013), also had genotype I (the 3 gull viruses are included in Figures 4.1, 4.2 and 

S4.1). A previously described Newfoundland gull AIV, A/Great black-backed 

gull/Newfoundland/296/2008(H13N2), contained all segments except PA and NA 

classified in the same clades (Figures 4.1, 4.2 and S4.1). Time of most recent common 

ancestor analyses for the eight segments of these genotype I viruses showed they emerged 

in gulls in Atlantic Canada between 2001 and 2008 (Figure 4.5). 
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Figure 4.4. Newfoundland gull AIV genotypes from 2009-2011. The viruses are listed in 

chronological order with the sample collection dates indicated. The phylogenetic clade 

numbers correspond to those on Figures 1, 2 and 3 for each of the 8 segments. The 

colours of the boxes indicate the continental and host group affiliation for the segment’s 

clade: yellow, North American gull; grey, Eurasian gull; red, North American avian; blue, 

Eurasian avian. Ten genotypes (A to I) were defined according to the combination of the 

clade numbers for the segments. A white box with a dash indicates no sequence was 

obtained for the segment. 
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Figure 4.5. Emergence dates for the gene segments found in a predominant genotype 

identified in gulls in Atlantic Canada since 2009 (next page). The red branches represent 

the Newfoundland gull sequences from this study, the blue branches represent other gull 

viruses from Atlantic Canada, and the black branches represent other viruses. The grey 

boxes delineate the relevant clades, which are labeled according to the phylogenetic trees 

in Figures 1, 2 and S1. For the M sequences, the two viruses from before 1990 were 

excluded from the analysis. The phylogenetic trees were generated using maximum clade 

credibility method in BEAST v1.7.5, and most recent common ancestor dates were 

calculated with a lognormal relaxed clock (unrelated) model and the dates are indicated 

for the estimated emergence times of the Atlantic Canada gull virus segments. The time 

scale is indicated at the bottom and emergence dates are marked with a black circle and 

indicated for each segment. The sampling time of all viruses was specified to year. 

 

4.4. Discussion 

 Our surveillance for AIV infection in gulls on the island of Newfoundland, 

Canada has shown that it is predominantly birds in their first year that are identified as 

infected, and this is occurring primarily in the fall season (Table 4.1). Based on the 

surveillance with captured birds, we would predict that the positive fecal samples also 

came largely from juvenile birds. Almost no positive juveniles were detected at the 

breeding colony (1/792), which is very different from a previously observed high 

prevalence (>20%) in juvenile Ring-billed Gulls at breeding colonies in Ontario, Canada 

(Velarde, Calvin et al. 2010). Maternal transfer of anti-AIV antibodies via eggs has been 

found in gulls, at 14% in one study of eggs from Yellow-legged Gulls (Larus michahellis) 
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(Pearce-Duvet, Gauthier-Clerc et al. 2009), and was also proposed to be the cause of 

observed seroprevalence in young birds in another study (Lewis, Javakhishvili et al. 

2013). Any possible relationship between these observations and differences in 

prevalence in juvenile birds on breeding colonies remains to be determined. Despite low 

prevalence of active AIV infection, the serology data indicate that half of the tested birds 

were infected within the previous period, allowing for detection of circulating anti-AIV 

antibodies. Most other studies with gulls have found infection prevalence values of <5% 

(Munster, Baas et al. 2007, Hanson, Luttrell et al. 2008, Ip, Flint et al. 2008, Buscaglia 

2012, Hulsager, Breum et al. 2012, Marchenko, Alekseev et al. 2012, Sivay, Sayfutdinova 

et al. 2012, Lewis, Javakhishvili et al. 2013), but it has also been found to be as high as 15% 

(Velarde, Calvin et al. 2010, Toennessen, Germundsson et al. 2011). A study in Georgia 

(Asia) with one of the larger gull data sets (~2500 samples) also found an increased fall 

prevalence of infection in a large gull species, Armenian Gull (Larus armenicus), but an 

increased prevalence in the spring in a small gull species, Black-headed Gull (Lewis, 

Javakhishvili et al. 2013). The 50% value we found for seroprevalence is comparable to 

most other studies. The Georgian study (Lewis, Javakhishvili et al. 2013) reported 56% 

seroprevalence for Armenian Gulls, while another study in North America found 45% 

overall (when using the same detection method we employed) for 5 gull species (Brown, 

Luttrell et al. 2010). Higher rates were found in Black-legged Kittiwakes in Norway, at 

71% (Toennessen, Germundsson et al. 2011), and in Ring-billed Gulls in Ontario, Canada, 

at 80% and 92% in two different years (Velarde, Calvin et al. 2010). 

 We analyzed sequence information for 16 of the detected gull AIVs. We classified 

the sequences into gene lineages according to the criteria of ≥90% nucleotide identity for 
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within a lineage, as described previously (Lu, Rowley et al. 2007, Ramey, Pearce et al. 

2010), and clades within lineages based on ≥95% nucleotide identity. This revealed gulls 

in Atlantic Canada as a large and host diverse genetic reservoir with multiple lineages 

present for each gene segment (Figures 4.1-4.3) and ten different genotypes were 

assigned to these viruses (Figure 4.4). This also revealed that some predominant gene 

lineages have been perpetuated through years in Atlantic Canada gulls and these genes 

and viruses were likely circulating in Atlantic Canada for some time before their 

widespread was detected beginning in 2008. 

 Overall, the viruses predominantly contained sequences from gull-related 

phylogenetic clades (93/123, 75.6%), but twelve of the viruses contained at least one 

segment of avian origin. For virus, A/Great black-backed 

gull/Newfoundland/AB001/2011(H9N9), all 8 segments were in avian virus clades, and 

for another virus, A/Great black-backed gull/Newfoundland/MW174/2010(H1), all 6 

segments for which we obtained sequence data were in avian clades. These viruses 

presumably represent recent transmission events from waterfowl to gulls. Detection of 

avian lineage genes in gull viruses has been common (Kawaoka, Chambers et al. 1988, 

Widjaja, Krauss et al. 2004, Lomakina, Gambaryan et al. 2009, Toennessen, 

Germundsson et al. 2011, Wille, Robertson et al. 2011, Van Borm, Rosseel et al. 2012, 

Hall, TeSlaa et al. 2013), but not universal (Lewis, Javakhishvili et al. 2013). Frequent 

AIV transmission involving gulls and waterfowl is likely driven by the broad habitat 

usage of gulls, ranging from aquatic to terrestrial environments (Olsen and Larsson 2003). 

This transmission frequency may vary by location and sampling time, which will affect 

the degree of interaction between these groups, and others such as shorebirds. 
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Interestingly, waterfowl-related genes dominated in the only 2 AIVs detected during 

winter (both from February) in this study, which were distinct from the remaining viruses 

from autumn (Figure 4.4). This presumably resulted from increased interaction among 

gulls and waterfowl at reduced winter habitat such as areas with remaining open water. 

 Fifteen of the viruses contained at least one segment that fell within clades we 

defined as Eurasian. Inter-continental reassortant AIVs have been identified in gulls in 

high proportions on both coasts of North America (Wille, Robertson et al. 2011, Hall, 

TeSlaa et al. 2013) and in Europe (Van Borm, Rosseel et al. 2012). One of the gull 

viruses within them, A/Herring gull/Newfoundland/YH019/2010(H16N3), had all 8 

segments in Eurasian gull clades (Figure 4.4). This, to our knowledge, represents the first 

completely Eurasian influenza virus found in North America and presumably reflects a 

recent transmission of the virus from Eurasia to North America. However, it is worth 

noting that this is based on employing a 95% cut-off value for clade definition. A recent 

study in Iceland (Dusek, Hallgrimsson et al., 2014) is of great interest in this respect; both 

wholly Eurasian and wholly North American gull AIVs were found in this location, 

suggesting it is an important location for mixing of viruses between the two regions. 

The phylogenetic trees for the NP, M and NS segments (Figure 4.3D, E and F, 

respectively) shows that they show very similar topology at the “top” portion of the trees, 

each with two clusters of sequences where one is largely from gulls in North America and 

the other is largely from gulls in Eurasia.  

 Amongst the 16 viruses we characterized, three were found to possess the same 

genotype (I) and nine other viruses were reassortants relative to this genotype (Figures 
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4.1-4.4). The three genotype I viruses were found in three Herring Gulls on the same day 

(4 October 2011) and at the same location. The detection of “identical” AIV genomes is 

most often reported from samples with greater temporal and spatial proximity (Reeves, 

Pearce et al. 2011, Huang, Wille et al. 2013, Huang, Wille et al. 2014). Viruses with 

segments closely related to those from the genotype I viruses were also detected 

previously in Atlantic Canada over 2008-2009 (Figures 4.1-4.3) (Wille, Robertson et al. 

2011, Hall, TeSlaa et al. 2013). This provides insight into the evolution and perpetuation 

of AIVs through years in the gull population because the dominance of genotype I and its 

reassortants over 2008-2011 in Atlantic Canada indicates it was mostly a single group of 

highly related viruses circulating in the gulls in this region over this period. Specific 

reassortment events can be observed within these gull viruses, as well as what appear to 

be spillover events to non-gull hosts (Hall, TeSlaa et al. 2013). Molecular dating indicated 

emergence times of 2001-2008 in gulls for the genes in these viruses (Figure 4.5). 

However, as noted above, other viruses were also detected in these birds over this period. 

 Notably, the genotypes of the gull AIVs in 2011 in this study are less diverse 

compared to that in 2009 and 2010.  The change of gull capture methods may partially 

explain the varied diversity of the AIV genotypes between years in our study. Noose 

carpet was used to capture gulls during 2009 and 2010, which is substituted by “net-gun” 

method, a method that could efficiently capture a flock of gulls at the same habitat 

compared to noose carpet. This may have led to the detection of AIVs with similar 

evolution background in 2011. 

The phylogenetic analyses in this study included gull AIV genes from both 

Atlantic and Pacific North America, and from Eurasia, which showed that most gene 
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lineages displayed spatial distribution bias. The viral genes in Newfoundland gulls were 

most frequently similar to those genes from birds at other locations in Atlantic North 

America and Western Europe (Figures 4.1, 4.2 and S4.1). More research is required to 

better understand the distribution of gull AIVs through space, time and species in North 

America because of limited viral genome sequences across these variables. 
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Chapter 5 Diverse inter-continental and host lineage reassortant avian influenza A 

viruses in pelagic seabirds 

 

Abstract  

 Avian influenza A viruses (AIVs) often infect waterfowl, gulls and shorebirds, but 

other bird groups including pelagic seabirds also serve as hosts. In this study, we analyzed 

21 AIVs found in two distant breeding colonies of Common Murre (Uria aalge) in 

Newfoundland and Labrador, Canada, during 2011. Phylogenetic analyses and genotype 

assignments were performed for the 21 Common Murre viruses together with all 

Common and Thick-billed Murre (U. lomvia) AIV sequences available in public sequence 

databases. All fully characterized viruses from the Common Murres in 2011 were H1N2 

subtype, but the genome sequences revealed greater diversity and the viruses belonged to 

four distinct genotypes. The four genotypes shared most segments in common, but 

reassortment was observed for PB2 and M segments. This provided direct genetic data of 

AIV diversification through segment reassortment during an outbreak of AIV infection in 

high-density breeding colonies. Analysis of the total collection of available murre viruses 

revealed a diverse collection of subtypes and gene lineages with high similarity to those 

found in viruses from waterfowl and gulls, and there was no indication of murre-specific 

AIV gene lineages. Overall, the virus gene pool in murres was predominantly made up of 

AIV lineages associated with waterfowl, but also featured considerable inter-continental 

and gull lineages. In particular, all but one of the 21 Common Murre viruses from 2011 in 

Newfoundland contained 1 or 2 Eurasian segments and 16 contained 1 gull lineage 

segment. This mosaic nature of characterized murre AIV genomes might reflect an under-
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recognized role of these pelagic seabirds in virus transmission across space and between 

bird host taxa. 

 

5.1. Introduction 

 Epidemiological studies of avian influenza A viruses (AIVs) in wild birds have 

greatly improved our understanding of influenza A virus evolution and distribution. 

Previous research has shown that wild aquatic birds of the orders Anseriformes (ducks, 

geese and swans) and Charadriiformes (gulls, shorebirds and terns) are the natural 

reservoir of AIVs (Stallknecht and Shane 1988, Webster, Bean et al. 1992, Olsen, 

Munster et al. 2006). Phylogenetic analyses of AIVs from wild birds have generally 

separated each of the eight gene segments into North American avian, North American 

gull, Eurasian avian and Eurasian gull lineages (Olsen, Munster et al. 2006), although 

recent work indicates independent lineages also exist in South America (Pereda, Uhart et 

al. 2008, Gonzalez-Reiche and Perez 2012). However, individual AIVs may comprise 

genes from different host and geographic lineages (Widjaja, Krauss et al. 2004, 

Spackman, Stallknecht et al. 2005, Krauss, Obert et al. 2007, Koehler, Pearce et al. 2008, 

Chen and Holmes 2009, Ramey, Pearce et al. 2010, Ramey, Pearce et al. 2010, Lee, Lee 

et al. 2011, Wille, Robertson et al. 2011). 

 The majority of previous wild bird AIV research has focused on waterfowl, gulls 

and shorebirds, although pelagic seabirds have received increased attention (Wallensten, 

Munster et al. 2005, Ip, Flint et al. 2008, Granter, Wille et al. 2010, Ramey, Pearce et al. 

2010, Lebarbenchon, Jaeger et al. 2013, Wille, Huang et al. 2014). Pelagic seabirds spend 

most of their lives in offshore marine environments and are generally challenging to study 
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because of their largely pelagic existence outside of the breeding season and the relative 

isolation of their breeding habitats. As a consequence, the present knowledge of the 

ecology of AIVs in seabirds is limited. Within seabirds, the clearest indication that this 

group might be important for AIV dynamics comes from murres (Uria spp.), with 

evidence of current and/or past infections found in both the Atlantic and Pacific Oceans 

and in both North America and Eurasia (Wallensten, Munster et al. 2005, Ip, Flint et al. 

2008, Granter, Wille et al. 2010, Ramey, Pearce et al. 2010, Wille, Huang et al. 2014). 

However, few murre AIV genome sequences are available in the public databases. The 

involvement of other species of seabirds is less clear, with fewer studies conducted, 

samples collected, and AIV positives found. Sampling efforts with murres in 

Newfoundland and Labrador, Canada from 2007-2010 resulted in 6 AIV-positive samples 

by real-time RT-PCR from Thick-billed and Common Murres (Uria lomvia and U. aalge, 

respectively) (Wille, Huang et al. 2014). Continued surveillance during the summer of 

2011 detected an increased rate of virus infection in two Newfoundland Common Murre 

breeding colonies, Gull Island and Cabot Island, with all successfully subtyped viruses 

being H1N2 (Wille, Huang et al. 2014). In this study sequence data were collected for 21 

of these viruses and these sequences were analyzed together with all other available 

murre AIVs to increase our understanding of the genetic structure and inter-specific 

and/or inter-continental transmission of AIVs in these seabirds. Time of most recent 

common ancestors of the murre viruses were also determined to reveal the emerging time 

in Atlantic Canada. 
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5.2. Materials and Methods 

5.2.1. Virus sequencing 

 Paired oropharyngeal and cloacal swabs were previously collected from breeding 

Common Murres between June and August 2011 at 3 breeding colonies near the island of 

Newfoundland, Canada (Figure S5.1) and screened for the presence of AIV by real-time 

RT-PCR (Wille, Huang et al. 2014). Twenty-two of the AIV-positive samples were 

selected for attempted sequencing and phylogenetic analysis to represent the different 

colonies and sampling dates. These included the one positive sample from 9 July on Gull 

Island, 17 collected on 21 July on Gull Island and 4 positive samples collected on 2 

August on Cabot Island (Table 5.1). RNA was extracted with Trizol LS reagent (Life 

Technologies, Burlington, Canada) from either the swab samples or allantoic fluid of 

specific pathogen-free (SPF) embryonated chicken eggs at 9-11 days old inoculated with 

0.2 ml of swab sample medium 3 days prior. Virus sequences were amplified by RT-PCR 

using previously published primers (Hoffmann, Stech et al. 2001, Phipps, Essen et al. 

2004, Chan, Lin et al. 2006, Obenauer, Denson et al. 2006, Huang, Khan et al. 2013) and 

the Superscript III One-Step RT-PCR System (Life Technologies). The PCR products 

were purified using the QIAquick PCR purification kit (Qiagen, Toronto, Canada) and 

sequenced at the Center for Applied Genomics (Toronto, Canada). The nucleotide 

sequence data were compiled and analyzed using Lasergene v7.1 (DNASTAR Inc., 

Madison, WI). The sequences were submitted to the GenBank database (accession 

numbers KC895594-KC895752). 
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Table 5.1. AIV surveillance results from three Newfoundland Common Murre breeding 

colonies in 2011 

Date Location
a
 AIV prevalence 

9 June Gull Island (East) 0/24 

27 June Great Island 0/22 

29 June Gull Island (Finger) 0/16 

30 June Great Island 0/20 

4 July Gull Island (Finger) 0/18 

7 July Gull Island (Finger) 1/28 

12 July Gull Island (South) 0/20 

14 July Gull Island (South) 0/66 

18 July Gull Island (South) 0/10 

21 July Gull Island (North) 60/67 

2 August Cabot Island 7/141 

19 August Great Island 0/20 

Total  68/452 

a
 For Gull Island, the general area of the island indicated is as described (Robertson, 

Fifield et al. 2001). 
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5.2.2. Phylogenetic analyses 

 The Common Murre AIV sequences obtained here, in combination with all 

available Common and Thick-billed Murre AIV sequences (17 whole or partial genomes; 

Table S5.1) in the NCBI influenza database (Bao, Bolotov et al. 2008), were used for 

phylogenetic analyses. Two sets of phylogenetic analyses were performed. First, each 

murre AIV segment was used for BLAST searches (Altschul, Madden et al. 1997) to 

identify the 20 most similar sequences. In addition, outgroup reference sequences were 

used in the HA and NA trees to improve the resolution of the murre virus-containing 

phylogenetic clades. All resulting sequences (excluding repeated sequences) were then 

used to construct phylogenetic trees to provide the overall phylogenetic topology and 

identify the host and continental origins of the clades based on the sources of the 

reference sequences. Based on this analysis, sequences from the phylogenetic clades 

closest to the murre viruses were then used to construct a second set of phylogenetic trees. 

The nucleotide ranges of the coding regions used for each gene were: PB2, 1804-2256 bp; 

PB1, 1624-2271 bp; PA, 1-528 bp; NP, 4-576 bp; M, 40-939 bp; NS, 55-792 bp; HA, 

1147-1590 bp; NA, 34-513 bp. The nucleotide sequence alignments and pairwise-distance 

analyses were performed with Lasergene v7.1 (DNAStar, Inc., Madison, WI). 

Phylogenetic trees were constructed with the maximum likelihood method in MEGA5 

(Tamura, Peterson et al. 2011) with 1000 bootstrap replicates. These topologies were then 

confirmed by comparison to neighbour-joining trees constructed in MEGA5 and 

maximum clade credibility trees constructed using BEAST v1.7.5 (Drummond, Suchard 

et al. 2012). 
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 Most recent common ancestor dates were estimated for the predominant 2011 

murre AIV-containing clades with BEAST v1.7.5 (Drummond, Suchard et al. 2012). A 

lognormal relaxed clock (unrelated) model was used to infer the phylogenetic timescale. 

The analysis was run with the GMRF Bayesian skyride model (10
8
 steps with sampling 

every 10
4
 steps) and the convergence was assessed in Tracer v1.5 

(http://tree.bio.ed.ac.uk/software/tracer/). Maximum clade credibility trees were 

summarized with 10% of the input file excluded. 

5.2.3. Gene lineage and genotype assignment of the murre AIVs 

 The genetic structure of the murre viruses was analyzed based on the results of the 

two rounds of phylogenetic tree construction.. The 8 virus segments were classified by 

phylogenetic lineages, with serial numbers assigned to different lineages. AIV genes 

classified in the same phylogenetic lineage usually had 90% nucleotide identity (Ramey, 

Pearce et al. 2010, Reeves, Pearce et al. 2011). Viral genotypes were then determined by 

the combination of lineage numbers for the eight segments. We also differentiated bird 

host clades within lineages with serial numbers (1, 2, 3, etc.), where genes within a clade 

usually had 95% nucleotide identity and were differentiated with numbers in 

parentheses. 
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5.3. Results 

5.3.1. Epidemiological dynamics of AIV infections in Common Murres during the 

2011 breeding season 

 Analysis of the AIV surveillance data for the Common Murre samples collected in 

Newfoundland and Labrador during 2011 (Table 5.1) showed that most of the positive 

samples (60) were detected on a single day, 21 July, at Gull Island. Another AIV-positive 

individual was detected earlier on that island, on 9 July. There were no samples collected 

from Gull Island after 21 July, but no AIV infection was detected at the adjacent Great 

Island on 19 August (Table 5.1). Infection was detected on 2 August at Cabot Island, 

which is ~250 km over water from Gull and Great Islands. 

5.3.2. Phylogenetic analysis and the genetic structure of murre AIVs 

 Common Murre viruses from both Gull and Cabot Islands were selected for 

genome sequencing and phylogenetic analysis. We obtained sequence data from 21 of the 

22 selected viruses. This resulted in sequence information for all 8 gene segments for 18 

viruses and 6 or 7 segments for 3 viruses. The earliest AIV-positive sample, from 9 July 

on Gull Island, failed in RT-PCR. Partial or whole genome sequences of 17 previously 

characterized Common and Thick-billed Murre viruses (1 from Sweden, 1 from 

Newfoundland and Labrador, 3 from Oregon and 12 from Alaska) were found in the 

public sequence database, downloaded and included in phylogenetic analyses. The 

lineage assignments from the maximum likelihood trees matched those on the neighbour-

joining and the maximum clade credibility trees. The classifications of lineages by 

continental and host affiliations (e.g. North American avian and Eurasian gull) are 

indicated on the trees (Figures 5.1-4 and S5.2). The murre viruses showed extensive 
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genetic diversity, as indicated by the multiple lineages found for each of the 8 segments. 

Inter-continental reassortants were most frequently identified for the PB2 (18/21; Figure 

5.1) and M (17/21; Figure 5.2) segments and gull lineage sequences were most common 

for the M segment (17/21; Figure 5.2). These patterns were largely driven by the 2011 

Newfoundland viruses, almost all of which (19/21) contained one or both of the Eurasian 

avian PB2 and Eurasian gull M genes. Although the sequences for both segments 

clusteredwithin North American avian lineages, the 2011 Newfoundland viruses 

contained novel H1 and N2 sequences that formed independent clades with no closely 

related sequences (i.e. ≥99% nucleotide identity) identified in previously characterized 

viruses (Figures 5.3 and 5.4). 

 On the basis of the phylogenetic analyses, the genetic structure of the 38 murre 

AIVs was summarized according to geographic and host group lineage (Table S5.2). This 

revealed that the gene pool was mostly related to waterfowl viruses (93.4%), but 

considerable inter-continental avian lineages, while only 1 of the 109 segment sequences 

belonged to a gull lineage. For the 22 murre AIVs from Atlantic North America, 79.5% of 

the 171 segment sequences were classified as North American avian, 10.5% as Eurasian 

avian, and 9.9% as Eurasian gull. The only murre virus genome from Atlantic Eurasia 

contained 1 North American gull, 4 North American avian, and 3 Eurasian avian gene 

segments. 
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Figure 5.1. Phylogenetic analysis of murre AIV PB2 sequences. The filled and open 

circles indicate the Common Murre viruses from Newfoundland in 2011 from the Gull 

and Cabot Island colonies, respectively. Filled and open triangles represent other murre 

viruses available in the sequence database from North America and Eurasia, respectively. 

The lineages are labeled as AA for North American avian and EA for Eurasian avian. 

Phylogenetic trees were constructed with the maximum likelihood method using MEGA5, 

and bootstrap values are shown as percentages based on 1000 replicates where support 

was ≥70%. The scale bars indicate the number of substitutions per site. 
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Figure 5.2. Phylogenetic analysis of murre AIV M sequences (next page). The filled and 

open circles indicate the Common Murre viruses from Newfoundland in 2011 from the 

Gull and Cabot Island colonies, respectively. Filled and open triangles represent other 

murre viruses available in the sequence database from North America and Eurasia, 

respectively. The lineages are labeled as AA for North American avian, EA for Eurasian 

avian and EG for Eurasian gull. Phylogenetic trees were constructed with the maximum 

likelihood method using MEGA5, and bootstrap values are shown as percentages based 

on 1000 replicates where support was ≥70%. The scale bars indicate the number of 

substitutions per site. 
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Figure 5.3. Phylogenetic analysis of murre AIV H1 sequences. The filled and open 

circles indicate the Common Murre viruses from Newfoundland in 2011 from the Gull 

and Cabot Island colonies, respectively. Filled triangles represent other murre viruses 

from North America available in the sequence database. The lineages are labeled as AA 

for North American avian and EA for Eurasian avian. Phylogenetic trees were 

constructed with the maximum likelihood method using MEGA 5, and bootstrap values 

are shown as percentages based on 1000 replicates where support was ≥70%. The scale 

bars indicate the number of substitutions per site. 
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Figure 5.4. Phylogenetic analysis of murre AIV N2 sequences. The filled and open 

circles indicate the Common Murre viruses from Newfoundland in 2011 from the Gull 

and Cabot Island colonies, respectively. Filled and open triangles represent other murre 

viruses in the sequence database from North America and Eurasia, respectively. The 

lineages are labeled as AA for North American avian and EA for Eurasian avian. 

Phylogenetic trees were constructed with the maximum likelihood method using MEGA5, 

and bootstrap values are shown as percentages based on 1000 replicates where support 

was ≥70%. The scale bars indicate the number of substitutions per site.  
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5.3.3. Genotype diversity in murre AIVs 

 Compilation of the individual lineage assignments for the 8 segments delineated 

15 different genotypes, designated as A through O, in the 32 murre viruses with sequence 

data available for all segments (Figures 5.5 and S5.2). Four genotypes (A through D) 

were identified within the 2011 H1N2 murre viruses from Newfoundland. Genotype A 

was the main genotype detected, represented by 15 viruses, and was found at both the 

Gull and Cabot Island colonies. Genotype A was an inter-continental and host lineage 

reassortant, with a PB2 segment of Eurasian avian origin, an M segment of Eurasian gull 

origin, and the other 6 segments in American avian lineages. Highly related sequences (i.e. 

≥99% nucleotide identity) were found in the NCBI influenza database for five segments 

of the genotype A (PB1, PA, NP1, M and NS), whereas the HA, NA and PB2 genes were 

novel and showed only ~97% nucleotide identity to the most similar previously reported 

genes. Comparison of the pairwise distances of the segments of the 15 genotype A viruses 

revealed genetic diversity within these viruses. Sequences with ≤99% nucleotide identity 

were identified amongst the 15 viruses for all segments except PB2 and PB1 (Figure 

S5.4). The most recent common ancestor dating analyses provided estimates between 

2007 and 2009 for the origins of the clades containing the genotype A viruses (Figure 5.6). 

The three other genotypes from Newfoundland in 2011 resulted from reassortment of the 

PB2 and/or M segments (Figure 5.5) relative to genotype A. The previously characterized 

reference murre viruses also showed extensive genomic diversity, with 11 genotypes (E 

through O) assigned to the 14 viruses with sequences available for all 8 gene segments 

(Figures 5.5 and S5.3). 
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Figure 5.5. Genomic diversity of AIVs from murres. Fifteen genotypes (designated A 

through O) were assigned to the 32 murre viruses with sequences available for all 8 

segments based on the phylogenetic analyses (Figures 1-4 and S1). The location where 

the virus(es) with each genotype originated are indicated: GI, Gull Island, Newfoundland; 

CI, Cabot Island, Newfoundland; AK, Alaska; OR, Oregon; SWE, Sweden; NL, 

Newfoundland. Sequences classified within the same phylogenetic lineage for a given 

segment are shaded alike (white, light grey or dark grey), except for the HA and NA 

segments that are distinguished by their subtype number. Segments that were classified in 

lineages other than American avian are indicated: EA, Eurasian avian; AG, American gull; 

EG, Eurasian gull. Genotype A was represented by 15 viruses, genotypes F and O were 

represented by 2 viruses, and all other genotypes were represented by 1 virus. The full 

information for the viruses represented within each genotype is provided in Figure A.3. 
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Figure 5.6. Emergence dates for the predominant 2011 Common Murre virus segment 

lineages. The analyses were run in BEAST v1.7.5 and the most recent common ancestor 

dates were calculated with a lognormal relaxed clock (unrelated) model. The time scale is 

indicated at the bottom and emergence times for the lineages of interest are marked with a 

black circle and indicated for each segment. The sampling times for the 2011 Common 

Murre viruses were specified to July (17 viruses) and August (4 viruses), while reference 

viruses without information of sampling month were assigned as July. 

 

5.4. Discussion 

 Common and Thick-billed Murres are pelagic seabirds that spend most of the year 

offshore and only come to land to breed, which they often do at very high densities 

(Cramp, Brooks et al. 1985). Surveillance for AIV in Newfoundland and Labrador, 

Canada, identified increased prevalence in Common Murres in 2011 (Wille, Huang et al. 

2014). The epidemiological dynamics observed during the 2011 breeding season (Table 

5.1) indicated there was widespread AIV infection that spanned two distant breeding 

colonies, which was presumably caused by a single AIV strain because preliminary 

characterization of the viruses indicated that all were subtype H1N2 (Wille, Huang et al. 

2014). However, our detailed phylogenetic analyses and genotype classifications of 21 of 

these viruses revealed surprising genetic heterogeneity within these H1N2 viruses. We 

identified four distinct genotypes within the 18 viruses for which sequence data were 

obtained for all 8 segments (Figure 5.5). These genotypes all shared 6 or 7 segments in 

common, but different PB2 and/or M gene lineages were introduced into some of the 

viruses by reassortment. 
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 Most of the characterized viruses belonged to one genotype (A), which was 

detected at both breeding colonies. The foraging ranges of birds breeding on Gull and 

Cabot Islands do not overlap (Davoren, Montevecchi et al. 2003) because these two 

colonies are ~250 km apart over water and breeding Common Murres forage within tens 

of km from their colonies (Cairns, Bredin et al. 1987). However, birds from these 

colonies share wintering and staging areas on the eastern Grand Banks of Newfoundland 

(McFarlane Tranquilla, Montevecchi et al. 2013). Therefore, the genotype A viruses may 

have been circulating in the birds before they segregated into different breeding colonies 

in April, which would have been at least 2 months before the detection of infection in 

both colonies. If this holds true, it will also indicate that infection and transmission on 

wintering areas is important for the maintenance of AIVs in these pelagic seabirds. 

Unfortunately, our knowledge of AIV prevalence in murres outside the breeding season 

and its impact on viral epidemiology is limited due to the difficulty to access these birds 

while they are at sea. However, we also cannot rule out that the genotype A viruses were 

transmitted to the murres from other bird species foraging between the islands and then 

amplified in the murres population prior to our sampling. The logistical realities of 

working with these birds on their island colonies lead to gaps between sample collection 

days and an inability to equally sample all parts of a colony over a season. Murres on 

Cabot Island breed in a single cluster at the centre of the island, but its relatively remote 

location results in a single sampling event each year. Gull Island is much larger and 

murres breed along the periphery in isolated sub-colonies, which are separated by 50-500 

m and range in size from tens to thousands of pairs. Unlike Cabot Island, this colony is 

easily visited multiple times over the breeding season, but sampling in each area needs to 
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be limited to avoid excessive disturbance. The emergence dating of the predominant 

genes from the 2011 Newfoundland Common Murres suggested these genes emerged 

during 2007-2009 (Figure 5.6), which indicates they have been circulating for several 

years before this widespread infection event in Common Murres was detected. This also 

explains the observed genetic heterogeneity within the genotype A viruses (Figure S5.4). 

 The high prevalence of AIV infection in Common Murres in the late summer of 

2011 was unexpected considering the low virus detection rate in this species in previous 

years (Wille, Huang et al. 2014). The finding of 60 infected birds out of 67 sampled on 

one day in a small section of one colony (Table 5.1) demonstrates that AIV can transmit 

quickly and widely in a dense breeding colony under the proper conditions, as predicted 

by modeling (Clancy, O’Callaghan et al. 2006). Several factors may have contributed to 

the widespread infection detected in 2011. The Common Murre population at the Gull 

Island colony has been increasing in recent years (Regular, Montevecchi et al. 2013) and 

many birds now nest on previously unoccupied flat areas because of the limited 

availability of ledges on the cliff faces. The breeding season in 2011 also featured cooler 

temperatures and higher than normal rainfall, which may have facilitated AIV 

transmission through moistened and more easily distributed feces. Therefore, an increased 

breeding population with poor hygienic conditions and cold, wet weather could have been 

contributing factors to the increased virus infection. Links between climate and AIV 

dynamics are of increasing interest because of suspected involvement of such links in the 

generation of novel human pandemic influenza viruses (Mazzarella, Giuliacci et al. 2011, 

Shaman and Lipsitch 2013). 
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 Although waterfowl and gulls are considered the major AIV reservoir, there has 

also been detection of AIV in Common and Thick-billed Murres around the globe 

(Sazonov, Lvov et al. 1977, Wallensten, Munster et al. 2005, Ip, Flint et al. 2008, Granter, 

Wille et al. 2010, Ramey, Pearce et al. 2010, Wille, Huang et al. 2014). However, there 

are still a limited number of available AIV genome sequences from murres and the 

genetic structure and gene flow of AIVs in these species are poorly understood. The 

subtype variety and genetic features of the 38 murre AIVs analyzed in this study (Figures 

5.5 and S5.3) indicated that waterfowl-related lineage genes predominate in murre AIVs. 

However, both inter-continental and gull-related gene reassortants were common in the 

murre viruses. In particular, 20 of the 21 viruses characterized in this study contained at 

least one segment of Eurasian origin, which is generally a rare phenomenon in Atlantic 

North America outside of gulls (Krauss, Obert et al. 2007), and 16 of the 21 viruses also 

contained one gull lineage segment, which is generally rare to find outside of gulls and 

shorebirds (Olsen, Munster et al. 2006). These reassortments could result from the 

migratory behavior of these murre species, which has Atlantic North American and 

Eurasian breeding populations sharing wintering areas, and they also have contact with 

gulls on shared breeding colonies such as Gull Island. Fifteen distinct virus genotypes 

were identified in the 32 viruses with sequences available for all 8 segments, and there 

were also additional gene lineages and combinations identifiable in the incomplete 

viruses (Figure S5.3). This large genetic diversity found in murre viruses so far provides 

no indication of murre-specific genes or subtype restrictions. The chimeric nature of the 

viral genomes characterized from these hosts, in terms of inter-continental and host 
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lineage reassortants, indicates these pelagic seabirds need to be further considered with 

respect to global AIV transmission. 
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Chapter 6 - Summary 

 

6.1. Summary 

The Island of Newfoundland, Canada, is at the eastern edge of North America and 

has migratory bird connections with the continental mainland as well as across the North 

Atlantic Ocean (Tuck 1971, Bellrose and Kortright 1976). Despite increased research into 

avian influenza virus (AIV) in other areas of North America, our understanding of AIV 

ecology and evolution in birds at the Atlantic coast of North America, especially in 

Atlantic Canada, is still limited (Parmley, Lair et al. 2009, Lam, Ip et al. 2012). During 

my thesis work, I analyzed and integrated data for the epidemiology, phylogeny and 

genotypes of AIVs from ducks, gulls and murres in Newfoundland to increase our 

knowledge of AIV ecology and transmission in wild birds in this region. The results 

provided data to improve the future AIV surveillance in wild birds in Newfoundland, and 

to evaluate the risk of AIV infections of poultry and humans from wild birds. The thesis 

work also has implications on the entry of highly pathogenic (HP) AIVs from Eurasia into 

North America via birds utilizing trans-Atlantic flyways. 

6.1.1 AIV prevalence in ducks, gulls and murres in Newfoundland 

One clear finding from the surveillance work presented in my thesis is that the 

virus detection frequency varies greatly by bird taxa in Newfoundland. The overall AIV 

prevalence rate in ducks in Newfoundland (2008-2011) was 7.2% (63/879). The virus 

detection rate in gulls of Newfoundland (2008-2011) was 1.8% (30/1645). The overall 

AIV rate in murres (2009-2011) was 3.9% (72/1837), but most positive samples (68/72) 

were detected in summer 2011, and the yearly AIV detection rate was 0.0% (0/620) in 
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2009, 1.0% (4/405) in 2010 and 8.4% (68/812) in 2011 (Table S6.1). Comparing by bird 

taxa, the multi-year AIV prevalence rate in ducks was much higher than that in gulls and 

murres, which agrees with previous research that waterfowl are the major reservoir of 

AIV (Webster, Bean et al. 1992, Olsen, Munster et al. 2006). The overall virus prevalence 

in murres was higher than gulls in this study. However, considering the low AIV 

detection rate in other years, the extraordinarily high prevalence rate of murre AIVs in 

2011 in Newfoundland may be a rare event (Table S6.1) (Wille, Huang et al. 2014). 

Continued epidemiological surveillance in Newfoundland will be needed to prove this. 

Interestingly, highly similar H1N1 viruses were detected through years from a back-yard 

duck and wild ducks (chapter 2), which revealed the on-going AIV transmission between 

wild and domesticated ducks through shared water habitat in Newfoundland. Future 

surveillance work should continue to pay attention to ducks, due to their higher AIV 

prevalence and frequent interaction with domestic ducks and humans. 

Another pattern observed in the epidemiological data related to seasonal patterns 

of AIV prevalence in ducks, gulls and murres in Newfoundland. The AIV detection rate 

in ducks was significantly higher during summer and autumn (May to October) (50/596, 

68.4%) compared with winter in Newfoundland (November to February) (13/283, 4.6%), 

but we did not collect swab samples from ducks in spring (March to April). Similarly, the 

detection frequency of murre AIVs in summer and autumn (71/1140, 6.2%) during 2009 

and 2011 was much higher than that in winter and spring (November to April) (1/696, 

0.1%) (Table S6.1). In addition, AIVs showed the highest detection rate in both Herring 

Gull (Larus smithsonianus) and Great Black-backed Gull (Larus marinus) and gull fecal 

samples during autumn (September and October) (25/324, 7.7%) in comparison to spring 
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(0/148, 0%), summer (May to August) (1/877, 0.1%) and winter (3/224, 1.3%). Higher 

AIV prevalence will cause increased chance of AIV transmission and outbreak. The 

seasonal pattern of viral detection in Newfoundland suggested that future surveillance of 

AIVs in wild birds in this region should put more efforts on birds during their breeding 

and migratory seasons. 

Bird age also influenced the AIV prevalence in ducks, gulls and murres in 

Newfoundland, which is expected considering that juvenile birds have no established 

immunity and are more susceptible to AIV infection. Juvenile ducks showed a 

significantly higher AIV detection rate (10.6%, 49/461) compared to adults (14/417. 3.4%) 

during 2008 and 2011. The AIV prevalence of the 2011 Common Murre samples on Gull 

Island was significantly different for adult birds (33/216, 15.3%) compared to chicks 

(28/33, 8.5%), but not Cabot Island (4/101, 4.0% versus 3/40, 7.5%) (Wille, Huang et al. 

2014). Also, juvenile gulls showed a higher virus prevalence rate (9/849, 1.1%) than adult 

gulls (0/368, 0.0%) during 2009-2011. However, another 15 AIVs detected from 316 

feces samples of gulls during the same period did not have the gull age determined, which 

may have influenced the analytic resolution. The bias of AIV prevalence by bird age 

indicated that the sampling priority should be put on juvenile birds to make the future 

AIV epidemiological study in Newfoundland more effective and informative.  

6.1.2 Serology study in ducks, gulls and murres in Newfoundland 

Despite different virus detection rates in ducks, gulls and murres in Newfoundland, 

the serology tests in the 3 bird taxa all showed very high incidence of previous AIV 

infection. Serology tests in ducks between October 2011 and February 2012 showed an 

antibody-positive rate of 52.6% (20/38). The study in murres during summer 2011 and 
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summer 2012 revealed 44% (51/115) and 69% (27/39) seroprevalence, respectively 

(Table S6.2). The AIV seroprevalence in gulls of Newfoundland during October 2011 and 

September 2012 was 50% (44/88). The pattern of high serological prevalence versus 

lower rate of AIV detection in wild birds is more likely a common phenomenon, as also 

found in breeding Black-legged Kittiwakes (Rissa tridactyla) in Norway during June 

2009 (Toennessen, Germundsson et al. 2011), in Ring-billed Gulls (Larus delawarensis) 

at several breeding colonies in Ontario, Canada in the years of 2000 and 2004 (Velarde, 

Calvin et al. 2010), in experimentally infected Ruddy Turnstone (Arenaria interpres) in 

Delaware Bay (Maxted, Luttrell et al. 2012), in Red Knot (Calidris canutus) and Ruddy 

Turnstone in Africa (Gaidet, Ould El Mamy et al. 2012), and particularly in multiple bird 

species including waterfowl and gulls in Alaska during 1998-2010 (Wilson, Hall et al. 

2013).  

6.1.3 HA subtypes of AIVs in ducks, gulls and murres 

AIVs in Newfoundland displayed a large diversity of HA variety. The 43 duck 

AIVs had 8 HA subtypes (H1, H2, H3, H4, H5, H6, H11 and H12). Phylogenetic analysis 

of the 4 H1 AIVs and the H5 duck virus showed that they were highly related to other low 

pathogenic AIV sequences from waterfowl in North America. Multiple murre AIVs of 

H1N2 subtypes were detected in 2011, whereas the murre virus detected in 2007 in 

Newfoundland was classified as H11N2 subtype (Granter, Wille et al. 2010). The HA and 

NA genes detected from ducks and murres in Newfoundland to date all belonged to North 

American avian phylogenetic lineages. In comparison, HA and NA genes of both avian-

related H1 and H9 lineages and gull-related H13 and H16 lineages (Hinshaw, Air et al. 

1983, Fouchier, Munster et al. 2005) have been found in gull AIVs in Newfoundland. I 
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hypothesize that AIVs of gull–related H13 and H16 subtypes may also be detected from 

ducks in Newfoundland, more likely at wintering areas of wild birds, when ducks and 

gulls aggregate and mix together. Therefore, future AIV surveillance should focus some 

swab sample collections from birds at shared wintering areas (e.g. Quidi Vidi Lake in St. 

John’s) to better study the transmission of AIVs between waterfowl and gulls.  

6.1.4 Gene flow and genetic structure of AIVs in duck, gull and murre 

For duck AIVs, 109 contemporary duck AIV genome sequences (2006-2011) in 

the Atlantic bird migratory flyway, including sequences of 30 viruses from ducks in 

Newfoundland acquired during this thesis work were analyzed for their population 

structure. A vast diversity of viral genes was identified in the 109 viruses, and the 8 gene 

segments of these viruses were classified in 34 phylogenetic lineages. The genetic 

structure differed amongst the 8 viral segments with predominant single lineages found 

for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS 

segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA 

and NA segments (12 and 9 lineages, respectively). Forty-three different genotypes were 

identified amongst the 109 duck viruses, indicating extensive virus reassortment. 

Identification of inter-continental transmission in these duck AIVs was rare and all gene 

segments of the 30 duck AIVs in Newfoundland were of American-avian origin. This is 

distinct from what has been found for duck AIVs in Alaska, especially in Northern 

Pintails, from which inter-continental AIV reassortants were frequently detected (Koehler, 

Pearce et al. 2008, Ramey, Pearce et al. 2010). The rare inter-continental transmission of 

AIVs detected in ducks of Newfoundland indicates that ducks should not be used as the 

sentinel birds to monitor for the possible HP AIV transmission from Eurasia to North 
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America through trans-Atlantic bird flyways. On the other hand, virus transmission 

between ducks and other bird host groups has been frequent with 57.3% of the AIV genes 

in the analyzed Atlantic bird flyway duck viruses having highly similar genes (≥99% 

nucleotide identity) detected in birds other than ducks. Transmission between North 

American flyways has also been frequent and 75.8% of the genes were highly similar to 

genes found in other North American flyways. However, the duck AIV genes did display 

spatial distribution bias, which was demonstrated by the different population sizes of 

specific viral genes in one or two neighboring flyways compared to more distant flyways. 

The frequent inter-specific and intra-continental transmission of AIVs detected in 

Newfoundland ducks also indicated increased chance of AIV transmission to poultry 

from ducks compared to other wild birds, indicating that the study of wild duck AIVs is 

essential to monitor for the emergence of AIV infection in poultry, and to disclose the 

evolution of AIVs during inter-specific transmission. 

The genetic structure of the gull AIVs in Newfoundland revealed frequent inter-

continental and considerable interspecies virus transmission, similar to what was found in 

gull AIVs at other locations (Ramey, Pearce et al. 2010, Wille, Robertson et al. 2011, Van 

Borm, Rosseel et al. 2012). In particular, an AIV with a whole Eurasian gull-related 

genome and a virus with an inter-continental waterfowl-related genome were both 

detected in Newfoundland. Fifteen of the AIVs were inter-continental reassortants, 

distinct from the purely North American origin duck AIVs detected in Newfoundland. 

This indicated much higher chance of the entry of Eurasian AIVs into Atlantic North 

America through gulls compared to migratory ducks, and gulls in Newfoundland could 

work as sentinel birds to trace the possible invasion of HP AIVs into North America from 
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Eurasia. Ten different AIV genotypes were detected in the 13 gull AIVs with sequence 

information available for all eight segments. The predominant viral genotype and its 

related reassortants have been circulating in Atlantic Canada since 2008, showing that 

gull-involved AIV transmissions have taken place in a wide geographic area of this 

region including Newfoundland and Labrador, New Brunswick and Quebec (Wille, 

Robertson et al. 2011, Hall, Teslaa et al. 2013). 

The H11N2 AIV isolate from Thick-billed Murre in Newfoundland in 2007 was 

identified to have an entirely waterfowl-related genome (Granter, Wille et al. 2010). 

However, 21 H1N2 AIVs detected from Common Murre (Uria aalge) in summer 2011 at 

2 distant breeding colonies off the shore of Newfoundland showed inter-continental and 

interspecies phylogenetic features in their genes. Similar to the 21 murre viruses in this 

study, the genetic structure of 17 reference murre AIVs also displayed a mainly 

waterfowl-related gene pool with considerable inter-continental and avian-gull lineage 

reassortments (Wallensten, Munster et al. 2005, Ramey, Pearce et al. 2010, Van Borm, 

Rosseel et al. 2012). Analyzing all genes of the 38 murre AIVs by host group, 93.4% 

genes clustered with avian-related lineages and 6.6% belonged to gull lineages. Analyzed 

by continent, 19.4% genes of the viruses were inter-continental reassortants. The mosaic 

nature of these murre AIVs might reflect an under-recognized role of murres in AIV 

transmission across space and between bird host taxa. The 21 murre viruses belonged to 4 

different viral genotypes, and a major genotype was represented by 15 of the 21 murre 

viruses in July and August 2011 from both Gull Island and Cabot Island. This helps to 

trace the possible origin of the major viral genotype back to their wintering area on the 

eastern Grand Banks of Newfoundland (McFarlane Tranquilla, Montevecchi et al. 
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2013McFarlane Tranquilla, Montevecchi et al. 2013), the only location where murres 

from the 2 colonies could have mingled. The major genotype of the murre AIVs have 

been circulating in the birds for several months before they segregated to different 

breeding colonies in April, which also explained the genetic heterogeneity of the 15 

viruses belonging to the major genotype. My study for the first time provided genetic data 

supporting frequent segment reassortment and efficient transmission during murre AIV 

infection in high-density bird breeding colonies. 

Based on the findings in this thesis, juvenile birds during the breeding and fall 

migratory seasons may be considered a priority for future epidemiology research to 

ensure the highest rates of AIV detection. Wild ducks will be the targeted bird groups to 

monitor the AIV transmission for the concerns of poultry industry and human health, 

while gulls are suggested as sentinel bird groups to detect cross-Atlantic transmission of 

AIVs from Eurasia to North America. Besides the 3 bird groups studied in this thesis, 

future epidemiological studies should also pay attention to shorebirds to increase our 

understanding of this bird group in AIV transmission in this region. In summary, my 

thesis work provided a profile of AIV epidemiology, phylogeny and transmission in 

multiple bird taxa in Newfoundland, which helps to increase our understanding of AIV 

ecology and evolution at the Atlantic coast of Canada and North America. 
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Supplementary documents 

 

Table S2.1. AIV prevalence by sampling month, age and gender. 

Sampling 

month 

AIV % prevalence (ratio) according 

to age 

AIV % prevalence (ratio) according to 

gender 

Juvenile Adult Unknown Male Female Unknown 

09/2008 8.5 (6/71) 0 (0/24) NS* 10.5 (6/57) 0 (0/38) NS 

10/2008 4.4 (4/90) 0 (0/28) NS 5.6 (4/72) 0 (0/44) 0 (0/2) 

01/2009 0 (0/10) 0 (0/30) NS 0 (0/29) 0 (0/11) NS 

09/2009 20.0 (4/20) 
14.3 

(2/14) 

NS 
15.4 (4/26) 14.3 (1/7) 100 (1/1) 

10/2009 12.5 (1/8) 0 (0/15) 0 (0/1) 7.1 (1/14) 0 (0/10) NS 

09/2010 13.8 (8/58) 4 (2/50) NS 5.6 (4/72) 16.7 (6/36) NS 

10/2010 13.3 (2/15) 9.5 (2/21) NS 16.7 (4/24) 0 (0/11) 0 (0/1) 

11/2010 12.0 (6/50) 
10.0 

(5/50) 

NS 
14.3 (8/56) 6.8 (3/44) NS 

12/2010 0 (0/27) 
3.45 

(1/29) 

NS 
2.9 (1/34) 0 (0/22) NS 

01/2011 0 (0/1) 0 (0/24) NS 0 (0/21) 0 (0/4) NS 

02/2011 NS 0 (0/12) NS 0 (0/7) 0 (0/5) NS 

08/2011 28.6 (2/7) 0 (0/9) NS 15.4 (2/13) 0 (0/3) NS 

09/2011 
15.0 

(12/80) 
1.8 (1/55) 

NS 
10.8 (9/83) 8.0 (4/50) 0 (0/2) 

10/2011 25.0 (4/16) 0 (0/14) NS 14.8 (4/27) 0 (0/3) NS 

11/2011 0 (0/5) 8.3 (1/12) NS 0 (0/12) 20.0 (1/5) NS 

12/2011 0 (0/2) 0 (0/4) NS 0 (0/4) 0 (0/2) NS 

01/2012 0 (0/1) 0 (0/26) NS 0 (0/20) 0 (0/7) NS 

Total 
10.6 

(49/461) 

3.4 

(14/417) 

0 (0/1) 
8.2 (47/571) 5.0 (15/302) 16.7 (1/6) 

* None sampled. 
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Figure S2.1. Phylogenetic trees of genes from the H1N1 and H5N4 viruses identified in 

ducks in Newfoundland. The trees in panels A through F represent analyses of the H5, N4, 
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PA, NP, M and NS genes, respectively. The AIVs from this study (indicated with solid 

circles) are assigned in American avian clades (black branches) with Eurasian-avian 

sequences as the outgroups (grey branches). The trees were constructed with MEGA 5 by 

the neighbour-joining method. Support for the branches is indicated as percentages based 

1000 bootstrap replicates where support was ≥60%. The scale bars indicate substitutions 

per site. 
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Table S3.1. The 25 duck AIVs from Newfoundland, Canada, sequenced in this study. 

HA Virus Abbreviation Date 

(mm/dd/yy) 

Site 

H2 A/Northern pintail/Newfoundland/GR683/2011(H2N2) NOPI NL GR683 2011 10/13/11 Commonwealth Pond 

 A/Mallard/Newfoundland/GR475/2011(H2N2) MALL NL GR475 2011 09/14/11 Quidi Vidi Lake 

 A/American black duck/Newfoundland/836/2008(H2N4) ABDU NL 836 2008 10/08/08 Mundy Pond 

 A/American black duck/Newfoundland/840/2008(H2N4) ABDU NL 840 2008 10/15/08 Mundy Pond 

 A/American black duck/Newfoundland/812/2008(H2N6) ABDU NL 812 2008 09/26/08 Mundy Pond 

H3 A/American black duck/Newfoundland/GR252/2011(H3N2) ABDU NL GR252 2011 08/31/11 Mundy Pond 

 A/American black duck/Newfoundland/GR490/2011(H3N2) ABDU NL GR490 2011 09/17/11 Commonwealth Pond 

 A/American black duck/Newfoundland/GR256/2011(H3N2) ABDU NL GR256 2011 08/31/11 Mundy Pond 

 A/American black duck/Newfoundland/GR396/2011(H3N2) ABDU NL GR396 2011 0912/11 Commonwealth Pond 

 A/American black duck/Newfoundland/MW662/2010(H3N6) ABDU NL MW662 2010 09/17/10 Commonwealth Pond 

 A/American black duck/Newfoundland/732/2008(H3N8) ABDU NL 732 2008 09/15/08 Mundy Pond 

 A/American black duck/Newfoundland/734/2008 H3N8) ABDU NL 734 2008 09/19/08 Mundy Pond 

 A/Northern pintail /Newfoundland/GR679/2011(H3N2) NOPI NL GR679 2011 10/12/11 Commonwealth Pond 

H4 A/American black duck/Newfoundland/807/2008(H4N4) ABDU NL 807 2008 10/01/08 Mundy Pond 

 A/American black duck/Newfoundland/819/2008(H4N6) ABDU NL 819 2008 09/26/08 Mundy Pond 

 A/American black duck/Newfoundland/826/2008(H4N6) ABDU NL 826 2008 10/08/08 Mundy Pond 

 A/American black duck/Newfoundland/MW609/2010(H4N6) ABDU NL MW609 2010 09/16/10 Mundy Pond 

 A/American black duck/Newfoundland/MW861/2010(H4N6) ABDU NL MW861 2010 12/01/10 Commonwealth Pond 

 A/Mallard/Newfoundland/PR021/2010(H4N6) MALL NL PR021 2010 10/14/10 Commonwealth Pond 

H6 A/American black duck/Newfoundland/MW733/2010(H6N6) ABDU NL MW733 2010 10/14/10 Commonwealth Pond 

 A/American black duck/Newfoundland/PR007/2010(H6N6) ABDU NL PR007 2010 10/15/10 Commonwealth Pond 

 A/Mallard and American Black Duck Hybrid 

/Newfoundland/MW721/2010(H6N8) 

M-A Hybrid MW721 NL 

2010 

09/30/10 Quidi Vidi Lake 

H11 A/American black duck/Newfoundland/MW819/2010(H11N3) ABDU NL MW819 2010 11/22/10 Commonwealth Pond 

 A/American black duck/Newfoundland/MW774/2010(H11N9) ABDU NL MW774 2010 11/08/10 Commonwealth Pond 

H12 A/Northern pintail/Newfoundland/GR495/2011(H12) NOPI NL GR495 2011 09/19/11 Mundy Pond 
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Table S3.2. Genetic analysis of the 109 Atlantic flyway duck AIVs (from 2006 to 2011). 

HA Virus identification information Genotype Sub-genotypeb Gene type by segmentc 

PB2 PB1 PA HA NP NA M NS 

H1 A/American black 

duck/Newfoundland/1146/2009(H1N1)a 

CFE1DH1EE2B CFE1DH1EE2B-1 C-2.1 F-3.1 E-1.1 1D-1.1 H-4.1 1E-1.1 E-1.1 2B-1.1 

 A/American black 

duck/Newfoundland/1148/2009(H1N1)a 

 CFE1DH1EE2B-1 C-2.1 F-3.1 E-1.1 1D-1.1 H-4.1 1E-1.1 E-1.1 2B-1.1 

 A/American black 

duck/Newfoundland/1150/2009(H1N1)a 

 CFE1DH1EE2B-1 C-2.1 F-3.1 E-1.1 1D-1.1 H-4.1 1E-1.1 E-1.1 2B-1.1 

 A/domestic 

duck/Newfoundland/MW668/2010(H1N1)a 

 CFE1DH1EE2B-1 C-2.1 F-3.1 E-1.1 1D-1.1 H-4.1 1E-1.1 E-1.1 2B-1.1 

H2 A/Northern 

pintail/Newfoundland/GR683/2011(H2N2) 

CFE2HH2DE2B CFH2HH2DE2B-1 C-2.2 F-4.1 E-2.1 2H-1.1 H-2.1 2D-1 E-1.2 2B-1.2 

 A/mallard/Newfoundland/GR475/2011(H2N2)  CFH2HH2DE2B-2 C-2.2 F-4.1 E-1.2 2H-1.1 H-2.1 2D-1 E-1.2 2B-1.2 

 A/mallard/Quebec/10969/2006(H2N3) CFE2HH3AE1D CFE2HH3AE1D-1 C-2.11 F-4.6 E-5.1 2H-2.1 H-1.2 3A-2.2 E-1.14 1D-1.7 

 A/mallard/Quebec/11063/2006(H2N3)  CFE2HH3AE1D-2 C-3.2 F-1.3 E-5.1 2H-2.1 H-3.3 3A-2.2 E-1.13 1D-1.10 

 A/mallard/Quebec/11281/2006(H2N3)  CFE2HH3AE1D-2 C-3.2 F-1.3 E-5.1 2H-2.1 H-3.3 3A-2.2 E-1.13 1D-1.10 

 A/American black 

duck/Newfoundland/836/2008(H2N4) 

CFE2HH4AE1D 

 

CFE2HH4AE1D-1 

 

C-2.2 F-4.2 E-2.1 2H-1.2 H-3.1 4A-1.1 E-1.3 1D-1.1 

 A/American black 

duck/Newfoundland/840/2008(H2N4) 

CFE2HH4AE1D-1 

 

C-2.2 F-4.2 E-2.1 2H-1.2 H-3.1 4A-1.1 E-1.3 1D-1.1 

 A/American black 

duck/Newfoundland/812/2008(H2N6) 

CFH2HH6AE1D CFH2HH6AE1D-1 C-1.1 F-3.2 H-1.1 2H-1.3 H-3.1 6A-1.1 E-1.3 1D-1.1 

H3 A/American black 

duck/Newfoundland/GR252/2011(H3N2) 

CFE3CH2DE2B 

 

 

 

CFE3CH2DE2B-1 C-2.2 F-2.1 E-2.1 3C-1.1 H-2.1 2D-1 E-1.4 2B-1.2 

 A/American black 

duck/Newfoundland/GR256/2011(H3N2) 

 CFE3CH2DE2B-2 C-2.2 F-2.1 E-2.1 3C-1.1 H-5.1 2D-1.2 E-1.4 2B-1.2 

 A/American black 

duck/Newfoundland/GR490/2011(H3N2) 

 CFE3CH2DE2B-? C-2.2 F-2.1 E-2.1 3C-1.1 H-2.1 2D E-1.4 2B-1.2 

 A/American black 

duck/Newfoundland/GR396/2011(H3N2) 

CFH3CH2DE2B 

 

 

 

CFH3CH2DE2B-1 C-2.2 F-1.1 H-1.2 3C-1.1 H-2.1 2D-1.1 E-1.4 2B-1.2 

 A/American black 

duck/Newfoundland/GR679/2011(H3N2) 

 CFH3CH2DE2B-2 C-2.5 F-4.1 H-1.5 3C-1.1 H-5.1 2D E-1.6 2B-1.2 

 A/American black duck/Newfoundland and 

Labrador/26516/2007(H3N2) 

CFH3DH2DE1D CFH3DH2DE1D-1 C-2.10 F-3.2 H-1.6 3D-1.1 H-2.3 2D-1.1 E-l.12 1D-1.1 

 A/American black duck/Newfoundland and 

Labrador/26553/2007(H3N2) 

 CFH3DH2DE1D-2 C-2.10 F-3.2 H-1.6 3D-1.1 H-3.2 2D-1.1 E-1.12 1D-1.1 
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 A/American black 

duck/Quebec/11235/2006(H3N2) 

CFH3CH2DE1D CFH3CH2DE1D-1 C-3.2 F-3.4 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11040/2006(H3N2)  CFH3CH2DE1D-2 C-2.12 F-3.4 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11045/2006(H3N2)  CFH3CH2DE1D-2 C-2.12 F-3.4 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11121/2006(H3N2)  CFH3CH2DE1D-2 C-2.12 F-3.4 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11020/2006(H3N2)  CFH3CH2DE1D-2 C-2.12 F-3.4 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11247/2006(H3N2)  CFH3CH2DE1D-3 C-3.3 F-4.6 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11194/2006(H3N2)  CFH3CH2DE1D-3 C-3.3 F-4.6 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11093/2006(H3N2)  CFH3CH2DE1D-3 C-3.4 F-4.6 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11221/2006(H3N2)  CFH3CH2DE1D-4 C-2.7 F-2.2 H-1.7 3C-2.1 H-6.2 2D-2.1 E-1.3 1D-1.7 

 A/American black 

duck/Newfoundland/MW662/2010(H3N6) 

CFE3CH6AE1D CFE3CH6AE1D-1 C-2.4 F-4.3 E-1.1 3D-1.1 H-1.1 6A-3.1 E-1.1 1D-1.5 

 A/American black duck/New 

Brunswick/25182/2007(H3N6) 

CFE3CH6AE2B CFE3CH6AE2B-1 C-2.7 F-6.1 E-1.3 3C-2.3 H-2.4 6A-4.2 E-1.5 2B-1.4 

 A/mallard/Maryland/1235/2006(H3N6) CFH3CH6AE1D CFH3CH6AE1D-1 C-2.7 F-5.1 H-1.10 3C-2.2 H-3.4 6A-4.3 E-1.15 1D-1.12 

 A/blue-winged teal/New 

Brunswick/03757/2009(H3N6) 

 CFH3CH6AE1D-2 C-2.2 F-3.12 H-1.15 3C-2.3 H-1.1 6A-3.2 E-1.20 1D-1.7 

 A/American black 

duck/Newfoundland/732/2008(H3N8) 

CFE3DH8AE1D CFE3DH8AE1D-1 C-1.1 F-3.2 E-2.1 3D-1.1 H-3.1 8A E-1.3 1D-1.1 

 A/mallard/Nova Scotia/03271/2009(H3N8)  CFE3DH8AE1D-2 C-3.5 F-4.5 E-2.1 3D-1.2 H-4.6 8A-2.1 E-1.19 1D-1.13 

 A/ring-necked duck/Nova 

Scotia/03378/2009(H3N8) 

 CFE3DH8AE1D-2 C-3.5 F-4.5 E-2.1 3D-1.2 H-4.6 8A-2.1 E-1.19 1D-1.13 

 A/ring-necked duck/New 

Brunswick/03400/2009(H3N8) 

 CFE3DH8AE1D-2 C-3.5 F-4.5 E-2.1 3D-1.2 H-4.6 8A-2.1 E-1.19 1D-1.13 

 A/green-winged teal/New 

Brunswick/03483/2009(H3N8) 

 CFE3DH8AE1D-2 C-3.5 F-4.5 E-2.1 3D-1.2 H-4.6 8A-2.1 E-1.19 1D-1.13 

 A/northern pintail/New 

Brunswick/03547/2009(H3N8) 

 CFE3DH8AE1D-2 C-3.5 F-4.5 E-2.1 3D-1.2 H-4.6 8A-2.1 E-1.19 1D-1.13 

 A/blue-winged teal/Prince Edward 

Island/03912/2009(H3N8) 

 CFE3DH8AE1D-2 C-3.5 F-4.5 E-2.1 3D-1.2 H-4.6 8A-2.1 E-1.19 1D-1.13 

 A/green-winged teal/New 

Brunswick/02586/2007(H3N8) 

CFH3DH8AE1D CFH3DH8AE1D-1 C-2.19 F-3.6 H-1.17 3D-2.1 H-4.7 8A-2.2 E-1.18 1D-1.9 

 A/green-winged teal/New 

Brunswick/02587/2007(H3N8) 

 CFH3DH8AE1D-1 C-2.19 F-3.6 H-1.17 3D-2.1 H-4.7 8A-2.2 E-1.18 1D-1.1 

 A/green-winged teal/New 

Brunswick/02588/2007(H3N8) 

 CFH3DH8AE1D-1 C-2.19 F-3.6 H-1.17 3D-2.1 H-4.7 8A-2.2 E-1.18 1D-1.1 

 A/green-winged teal/New 

Brunswick/02590/2007(H3N8) 

 CFH3DH8AE1D-1 C-2.19 F-3.6 H-1.17 3D-2.1 H-4.7 8A-2.2 E-1.18 1D-1.1 
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 A/green-winged teal/New 

Brunswick/02591/2007(H3N8) 

 CFH3DH8AE1D-1 C-2.19 F-3.6 H-1.17 3D-2.1 H-4.7 8A-2.2 E-1.18 1D-1.1 

 A/green-winged teal/New 

Brunswick/02592/2007(H3N8) 

 CFH3DH8AE1D-1 C-2.19 F-3.6 H-1.17 3D-2.1 H-4.7 8A-2.2 E-1.18 1D-1.1 

 A/American black 

duck/Newfoundland/734/2008(H3N8) 

 CFH3DH8AE1D-2 C-1.1 F-3.2 H-1.1 3D-1.1 H-3.1 8A-2.1 E-1.3 1D-1.1 

 A/blue-winged teal/Nova 

Scotia/03971/2009(H3N8) 

 CFH3DH8AE1D-3 C-2.2 F-3.11 H-1.17 3D-1.3 H-4.5 8A-2.2 E-1.21 1D-1.13 

 A/blue-winged teal/Prince Edward 

Island/03927/2009(H3N8) 

 CFH3DH8AE1D-4 C-2.18 F-3.6 H-1.17 3D-2.1 H-1.6 8A-2.2 E-1.18 1D-1.13 

 A/mallard/Quebec/11082/2006(H3N8) CFE3CH8AE2B CFE3CH8AE2B-1 C-2.7 F-3.7 E-3.1 3C-1.2 H-2.3 8A-1.4 E-1.14 2B-1.3 

 A/American black duck/New 

Brunswick/19350/2006(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04487/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04488/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04489/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04490/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04491/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04492/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04493/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04494/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04497/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American wigeon/New 

Brunswick/04500/2007(H3N8) 

 CFE3CH8AE2B-2 C-2.6 F-3.5 E-4.1 3C-1.2 H-1.8 8A-1.1 E-1.10 2B-1.6 

 A/American black duck/Prince Edward 

Island/14228/2006(H3N8) 

CFH3CH8AE2B CFH3CH8AE2B-1 C-4.1 F-3.6 H-1.1 3C-1.2 H-1.2 8A-1.2 E-1.10 2B-1.6 

 A/American black duck/Prince Edward 

Island/14230/2006(H3N8) 

 CFH3CH8AE2B-2 C-2.9 F-3.6 H-1.1 3C-1.2 H-1.2 8A-1.2 E-1.10 2B-1.6 

 A/mallard/Maryland/807/2007(H3N8) CFH3CH8AE1D CFH3CH8AE1D-1 C-2.7 F-5.2 H-1.12 3C-1.3 H-1.7 8A-3.1 E-1.9 1D-1.7 
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H4 A/blue-winged teal/New 

Brunswick/03756/2009(H4N2) 

CFH4AH2DE2B CFH4AH2DE2B-1 C-2.8 F-2.1 H-1.16 4A-3.1 H-1.1 2D-1.1 E-1.5 2B-1.7 

 A/American black 

duck/Newfoundland/807/2008(H4N4) 

CFH4AH4AE1D CFH4AH4AE1D-1 C-1.1 F-3.2 H-1.1 4A-1.1 H-1.2 4A-1.1 E-1.3 1D-1.1 

 A/American black 

duck/Newfoundland/819/2008(H4N6) 

CFH4AH6AE1D CFH4AH6AE1D-1 

 

C-1.1 F-3.2 H-1.1 4A-1.1 H-1.2 6A-1.1 E-1.3 1D-1.1 

 A/American black 

duck/Newfoundland/826/2008(H4N6) 

 CFH4AH6AE1D-1 

 

C-1.1 F-3.2 H-1.1 4A-1.1 H-1.2 6A-1.1 E-1.3 1D-1.1 

 A/American black 

duck/Newfoundland/MW861/2010(H4N6) 

 CFH4AH6AE1D-2 

 

C-2.3 F-1.1 H-1.5 4A-2.1 H-1.1 6A-2.1 E-1.5 1D-1.5 

 A/mallard/Newfoundland/PR021/2010(H4N6)  CFH4AH6AE1D-2 

 

C-2.4 F-1.1 H-1.5 4A-2.1 H-1.1 6A-2.1 E-1.6 1D-1.5 

 A/American black duck/Prince Edward 

Island/14235/2006(H4N6) 

 CFH4AH6AE1D-3 C-4.1 F-3.2 H-1.1 4A-1.5 H-4.3 6A-1.2 E-1.11 1D-1.6 

 A/American black duck/Prince Edward 

Island/02708/2007(H4N6) 

 CFH4AH6AE1D-3 C-4.1 F-3.6 H-1.1 4A-1.5 H-4.3 6A-1.3 E-1.11 1D-1.6 

 A/mallard/Quebec/11182/2006(H4N6)  CFH4AH6AE1D-4 C-2.12 F-3.2 H-1.9 4A-1.4 H-1.5 6A-3.4 E-1.3 1D-1.9 

 A/mallard/Quebec/11189/2006(H4N6)  CFH4AH6AE1D-4 C-2.12 F-3.4 H-1.7 4A-1.4 H-1.5 6A-4.2 E-1.3 1D-1.9 

 A/American black 

duck/Newfoundland/MW609/2010(H4N6) 

CFE4AH6AE1D CFE4AH6AE1D-1 C-2.1 F-3.1 E-1.1 4A-1.2 H-2.1 6A-2.1 E-1.1 1D-1.2 

 A/American black duck/New 

Brunswick/19347/2006(H4N6) 

 CFE4AH6AE1D-2 C-2.10 F-3.3 E-3.1 4A-1.4 H-2.3 6A-1.1 E-1.8 1D-1.8 

 A/American black duck/New 

Brunswick/19497/2006(H4N6) 

 CFE4AH6AE1D-3 C-2.7 F-5.1 E-3.2 4A-1.6 H-6.1 6A-4.1 E-1.3 1D-1.7 

 A/American black duck/New 

Brunswick/19502/2006(H4N6) 

 CFE4AH6AE1D-3 C-2.7 F-5.1 E-3.2 4A-1.6 H-6.2 6A-4.1 E-1.3 1D-1.7 

 A/mallard/Quebec/11106/2006(H4N6)  CFE4AH6AE1D-4 C-2.12 F-3.4 E-5.2 4A-1.4 H-1.5 6A-4.2 E-1.3 1D-1.9 

 A/mallard/Quebec/11103/2006(H4N6)  CFE4AH6AE1D-4 C-2.12 F-3.4 E-5.2 4A-1.4 H-1.5 6A-4.2 E-1.3 1D-1.9 

 A/mallard/Quebec/11102/2006(H4N6)  CFE4AH6AE1D-4 C-2.12 F-3.4 E-5.2 4A-1.4 H-1.5 6A-4.2 E-1.13 1D-1.9 

 A/American black duck/Prince Edward 

Island/02662/2007(H4N6) 

 CFE4AH6AE1D-5 C-4.1 F-3.6 E-3.1 4A-1.5 H-1.5 6A-1.3 E-1.8 1D-1.6 

 A/green-winged teal/New 

Brunswick/02426/2007(H4N6) 

 CFE4AH6AE1D-5 C-4.1 F-3.6 E-3.1 4A-1.5 H-1.5 6A-1.3 E-1.8 1D-1.6 

 A/mallard/Maryland/965/2006(H4N6) CFE4AH6AE2B CFE4AH6AE2B-1 C-2.13 F-6.2 E-2.2 4A-1.3 H-2.4 6A-3.3 E-1.4 2B-1.5 

 A/American black duck/New 

Brunswick/19389/2006(H4N8) 

CFE4AH8AE2B CFE4AH8AE2B-1 C-2.6 F-3.5 E-4.1 4A-1.6 H-6.1 8A-1.1 E-1.3 2B-1.6 

 A/American black duck/New 

Brunswick/19392/2006(H4N8) 

 CFE4AH8AE2B-2 C-2.6 F-5.1 E-4.1 4A-1.6 H-6.1 8A-1.1 E-1.10 2B-1.6 
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 A/blue-winged teal/Prince Edward 

Island/03910/2009(H4N9) 

CFE4AH9AE1D CFE4AH9AE1D-1 C-2.18 F-1.2 E-2.1 4A-3.2 H-1.6 9A-1.2 E-1.3 1D-1.13 

H5 A/American black 

duck/Newfoundland/1181/2009(H5N4)a 

CFH5CH4AE1D CFH5CH4AE1D-1 C-2.4 F-3.1 H-1.3 5C-1.1 H-4.2 4A E-1.7 1D-1.5 

 A/mallard/Maryland/802/2007(H5N1) CFH5CF1EE1D CFH5CF1EE1D-1 C-2.7 F-7.1 H-1.13 5C-1.2 F-1.1 1E- 2.1 E-1.5 1D-1.7 

 A/mallard/Ontario/26078/2007(H5N1) CFH5CH1EE1D CFH5CH1EE1D-1 C-3.2 F-4.7 H-1.14 5C-1.4 H-1.6 1E- 2.2 E-1.16 1D-1.7 

 A/mallard/Maryland/182/2006(H5N2) CFH5CH2DE1D CFH5CH2DE1D-1 C-2.14 F-3.7 H-1.11 5C-1.2 H-5.2 2D-1.1 E-1.3 1D-1.10 

 A/Muscovy duck/New York/62095-

1/2006(H5N2) 

CFE5CH2DE1D CFE5CH2DE1D-1 C-2.12 F-1.4 E-1.5 5C-1.3 H-4.4 2D-1.3 E-1.3 1D-1.1 

 A/duck/New York/445743/2006(H5N2)  CFE5CH2DE1D-1 C-2.12 F-1.4 E-1.5 5C-1.3 H-4.4 2D-1.3 E-1.3 1D-1.1 

 A/duck/New York/465571/2006(H5N2) CFE5CH2GE1D CFE5CH2GE1D-1 C-2.15 F-5.1 E-5.1 5C-1.2 H-4.3 2D-3.1 E-1.5 1D-1.7 

 A/northern pintail/Florida/480645-

5/2007(H5N2) 

 CFE5CH2GE1D-2 C-3.3 F-3.8 E-3.4 5C-1.2 H-6.1 2G-2.1 E-1.16 1D-1.7 

 A/duck/Pennsylvania/446080-6/2006(H5N2) CFE5CH2DE1D CFE5CH2DE1D-1 C-2.16 F-1.4 E-1.5 5C-1.3 H-4.4 2D-1.3 E-1.3 1D-1.1 

 A/green winged teal/Delaware/458672-

5/2006(H5N2) 

 CFE5CH2DE1D-2 C-2.17 F-3.9 E-3.5 5C-1.5 H-2.5 2D-1.3 E-1.16 1D-1.10 

 A/mallard/Maryland/792/2007(H5N9) CFH5CH9AE1D CFH5CH9AE1D C-2.7 F-5.2 H-1.13 5C-1.2 H-1.7 9A-3.1 E-1.5 1D-1.7 

H6 A/American black 

duck/Newfoundland/MW733/2010(H6N6) 

CFH6BH6AE1D 

 

CFH6BH6AE1D-1 C-2.3 F-3.1 H-1.4 6B-1.1 H-1.3 6A-3.2 E-1.1 1D-1.4 

 A/American black 

duck/Newfoundland/PR007/2010(H6N6) 

CFH6BH6AE1D-2 C-2.1 F-3.1 H-1.5 6B-1.1 H-1.1 6A-2.1 E-1.6 1D-1.5 

 A/duck/Newfoundland/MW721/2010(H6N8) CFH6BH8AE1D CFH6BH8AE1D-1 C-2.1 F-3.1 H-1.4 6B-1.1 H-1.3 8A-1.3 E-1.1 1D-1.4 

H7 A/American black 

duck/NB/2538/2007(H7N3) 

CFE7FH3AE1D CFE7FH3AE1D-1 C-2.6 F-4.5 E-1.4 7F-1.1 H-1.5 3A-2.1 E-1.10 1D-1.9 

 A/Muscovy duck/New York/19495-

7/2006(H7N2) 

CFH7FH2GE2B CFH7FH2GE2B-1 C-5.1 F-3.10 H-1.8 7F-2.1 H-7.1 2G-1.1 E-2.1 2B-2.1 

H11 A/American black 

duck/Newfoundland/MW819/2010(H11N3) 

CFH11CH3AE1D CFH11CH3AE1D-1 C-2.5 F-1.2 H-1.4 11C-1.1 H-2.2 3A-1.1 E-1.5 1D-1.5 

 A/American black 

duck/Newfoundland/MW774/2010(H11N9) 

CFH11CH9AE1D CFH11CH9AE1D-1 C-2.3 F-1.2 H-1.4 11C-1.1 H-2.2 9A-1.1 E-1.5 1D-1.5 

 A/mallard/Quebec/11111/2006(H11N9) CFE11CH9AE1D CFE11CH9AE1D-1 C-2.6 F-3.7 E-3.3 11C-2.1 H-4.5 9A-2.1 E-1.3 1D-1.11 

 A/ring-necked duck/New 

Brunswick/03449/2009(H11N9) 

CFH11CH9AE2B CFH11CH9AE2B-1 C-3.5 F-3.12 H-1.15 11C-1.2 H-1.9 9A-1.3 E-1.17 2B-1.8 

H12 A/Northern 

pintail/Newfoundland/GR495/2011(H12) 

CFE12AH?E1D CFE12AH?E1D-1 C-3.1 F-4.4 E-2.1 12A-1.1 H-1.4 - E-1.7 1D-1.3 

H13 A/hooded merganser/New 

Brunswick/03750/2009(H13N6) 

JFE13AD6AF1C JFE13AD6AF1C-1 J-1.1 F-8.1 E-6.1 13A-1.1 D-1.1 6A-1.2 F-1.1 1C-1.1 
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H16 A/mallard/Quebec/02916-1/2009(H16N3) JFE16DD3DF1C JFE16DD3DF1C-1 J-1.2 F-8.1 E-6.2 16D-1.1 D-1.1 3D-1.1 F-1.1 1C-1.1 

Totals 109 43 70         

Gene lineages 2 1 2 12 3 9 2 3 

Gene sub-lineages 6 8 7 19 9 20 3 4 

Gene types 29 31 34 38 32 38 23 23 
 

a
 The 4 H1N1 viruses and the H5N4 virus from Newfoundland were sequenced previously (accession numbers KC464555-

KC464586, KC492275-KC492290 and KC492307-KC492330). 

b
 Repeatedly detected homologous genomes are shaded in grey. 

c
 AIV genes of origin other than North American avian are highlighted in colour: Eurasian avian, blue; Eurasian gull, yellow; 

North American gull, green. 
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Table S3.3. AIV gene typing summary for Atlantic flyway locations with 20 or more 

viruses. 

Location Category
a
 HA NA PB2 PB1 PA NP M NS Total 

Newfoundland Gene lineages 9 7 1 1 2 1 1 2 24 

 Sub-lineages 10 10 3 4 3 5 1 2 38 

 Gene types 13 12 8 9 9 12 8 7 78 

Quebec Gene lineages 4 5 1 1 2 1 1 2 17 

 Sub-lineages 6 7 3 5 4 6 2 3 36 

 Gene types 6 7 8 7 7 6 4 6 51 

New Brunswick Gene lineages 3 5 2 1 2 2 2 3 19 

 Sub-lineages 6 8 4 6 6 5 2 3 40 

 Gene types 8 12 9 9 9 11 9 10 81 

a
 Gene lineages, sub-lineages and gene types are defined as sharing ≥90%, ≥95% and  

≥99% nucleotide identity, respectively. 

 

Table S3.4. AIV genotyping for Atlantic flyway locations with 20 or more viruses. 

Location Viruses Genotypes Sub-

genotypes 

Repeatedly detected sub-

genotypes 

Newfoundland 32 19 24 3 

Quebec 20 6 10 4 

New Brunswick 32 11 14 3 
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Table S3.5. Repeated gene type detections across space and time in ducks of the Atlantic 

flyway over 2006-2011. 

Segment Gene type Detection year/location
a
 

Duration 

(years) 

PB2 C-2.1 2009/NL, 2010/NL 2 

 C-2.2 2008/NL, 2009/NB, 2011/NL 3 

 C-2.4 2009/NL, 2010/NL 2 

 C-2.5 2010/NL, 2011/NL 2 

 C-2.6 2006/QC, 2006/NB, 2006/NB, 2007/NB 2 

 C-2.7 

2006/QC, 2006/MD, 2006/NB, 2007/MD, 

2007/NB 

2 

 C-2.8 2007/MD, 2007/NB, 2009/NB 3 

 C-2.10 2006/NB, 2007/NL 2 

 C-3.2 2006/QC, 2007/ON 2 

 C-3.3 2006/QC, 2007/FL 2 

 C-3.5 2009/PEI, 2009/NS, 2009/QC 1 

 C-4.1 2007/NB, 2007/PEI 1 

PB1 F-1.1 2010/NL, 2010/NL, 2011/NL 2 

 

F-3.1 2009/NL, 2010/NL 2 

 

F-3.2 2006/PEI, 2007/NL, 2008/NL 3 

 

F-3.5 2006/NB, 2007/NB 2 
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F-3.6 2007/PEI, 2009/PEI 3 

 

F-3.8 2006/QC, 2007/FL 2 

 

F-3.12 2009/PEI, 2009/NB 1 

 

F-4.5 2007/NB, 2009/NS, 2009/NB 3 

 

F-5.1 2006/NB, 2006/NY, 2006/MD, 2007/MD 2 

 

F-8.1 2009/QC, 2009/NB 1 

PA E-1.1 2009/NL, 2010/NL 2 

 E-1.5 2006/NY, 2006/PA 1 

 E-2.1 

2008/NL, 2009/PEI, 2009/NS, 2009/NB, 

2011/NL 

4 

 E-3.1 2006/QC, 2006/PEI 1 

 E-5.1 2006/QC, 2006/NY, 2006/NB 1 

 H-1.1 2006/PEI, 2008/NL 3 

 H-1.5 2010/NL, 2011/NL 2 

 H-1.15 2009/PEI, 2009/NB 1 

 H-1.17 2007/NB, 2009/NB, 2009/PEI 3 

 E-4.1 2006/NB, 2007/NB 2 

NP H-1.1 2009/PEI, 2009/NB, 2010/NL 2 

 

H-1.2 2006/QC, 2006/PEI, 2008/NL 3 

 H-1.5 2006/QC, 2006/NB, 2007/NB 2 

 H-1.8 2006/NB, 2007/NB 2 

 H-2.1 2010/NL, 2011/NL 2 
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 H-2.3 2006/QC, 2007/NL 2 

 H-2.4 2006/MD, 2007/NB 2 

 H-4.3 2006/PEI, 2006/NY 1 

 H-4.4 2006/NY, 2006/PA 1 

 H-4.6 2009/PEI, 2009/NS, 2009/NB 1 

 H-6.1 2006/NB, 2007/FL 2 

 H-6.2 2006/QC, 2006/NB 1 

M E-1.1 2009/NL, 2010/NL 2 

 E-1.3 

2006/QC, 2006/MD, 2006/NB, 2006/NY, 

2006/PA, 2008/NL, 2009/PEI 

4 

 E-1.5 

2006/NY, 2007/MD, 2007/NB, 2009/NB, 

2010/NL 

5 

 E-1.6 2010/NL, 2011/NL 2 

 E-1.7 2009/NL, 2011/NL 3 

 E-1.8 2006/NB, 2007/NB, 2007/PEI 2 

 E-1.10 2006/NB, 2007/NB 2 

 E-1.16 2006/DE, 2007/ON, 2007/FL 2 

 E-1.18 2007/NB, 2009/PEI 3 

 E-1.19 2009/PEI, 2009/NS, 2009/NB 1 

 J-1.1 2009/QC, 2009/NB 1 

NS 1D-1.1 2006/NY, 2007/NL, 2008/NL 3 

 1D-1.5 2009/NL, 2010/NL 2 
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 1D-1.6 2006/PEI, 2007/NB, 2007/PEI 2 

 1D-1.7 

2006/QC, 2006/NB, 2007/FL, 2007/ON, 

2009/PEI 

4 

 1D-1.9 2006/QC, 2006/PA, 2007/NB 2 

 1D-1.10 2006/QC, 2006/MD, 2006/DE 1 

 1D-1.13 2009/PEI, 2009/NS, 2009/NB 1 

 1C-1.1 2009/QC, 2009/NB 1 

 2B-1.6 2006/NB, 2006/PEI, 2007/NB 2 

HA 3C-1.2 2006/QC, 2006/NB, 2006/PEI, 2007/NB 2 

 3C-2.3 2007/NB, 2009/PEI 3 

 3D-1.1 2007/NL, 2008/NL, 2010/NL 4 

 3D-1.2 2009/PEI, 2009/NS, 2009/NS 1 

 3D-2.1 2007/NB, 2009/PEI 3 

 4A-1.4 2006/QC, 2006/NB 1 

 4A-1.5 2006/PEI, 2007/NB, 2007/PEI 2 

 5C-1.2 2006/MD, 2007/MD, 2007/FL 2 

 5C-1.3 2006/NY, 2006/PA 1 

NA 2D-1.1 2006/MD, 2007/NL, 2009/NB, 2011/NL 6 

 2D-1.3 2006/NY, 2006/PA, 2006/DE 1 

 6A-1.1 2006/NB, 2008/NL 3 

 6A-1.2 2006/PEI, 2009/NB 4 

 6A-3.2 2009/PEI, 2010/NL 2 
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 6A-4.2 2006/QC, 2007/NB 2 

 8A-2.1 2008/NL, 2009/NS, 2009/NB 2 

 8A-2.2 2007/NB, 2009/PEI, 2009/NB 3 

a
 NL, Newfoundland; QC, Quebec; MD, Maryland; NB, New Brunswick; PEI, Prince 

Edward Island; NY, New York; PA, Pennsylvania; DE, Delaware; ON, Ontario; FL, 

Florida; NS, Nova Scotia 
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Table S3.6. Detection of the 248 Atlantic flyway AIV gene types through years in North 

American flyways. 

Segment Gene type Detection in 

NCBI database 

Detection of the 

Newfoundland AIV gene 

types over 2007-2011 

Total period Duration 

(years) 

PB2 C-1.1 No 2008 2008 1 

C-2.1 2005-2010 2009-2010 2005-2010 6 

C-2.2 2004-2009 2008-2011 2004-2011 8 

C-2.3 2003-2009 2010 2003-2010 8 

C-2.4 No 2009-2010 2009-2010 2 

C-2.5 2000-2010 2010-2011 2000-2011 12 

C-2.6 2003-2007 No 2003-2007 5 

C-2.7 2003-2009 No 2003-2009 7 

C-2.8 2007-2009 No 2007-2009 3 

C-2.9 2003-2006 No 2003-2006 4 

C-2.10 2002-2007 2007 2002-2007 6 

C-2.11 2005-2007 No 2005-2007 3 

C-2.12 2005-2007 No 2005-2007 3 

C-2.13 1985-2007 No 1985-2007 23 

C-2.14 2005-2006 No 2005-2006 2 

C-2.15 2006-2009 No 2006-2009 4 

C-2.16 2005-2007 No 2005-2007 3 

C-2.17 2000-2006 No 2000-2006 7 

C-2.18 2005-2009 No 2005-2009 5 
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C-2.19 2004-2007 No 2004-2007 4 

C-3.1 1983-2010 2011 1983-2010 29 

C-3.2 2005-2007 No 2005-2007 3 

C-3.3 2006 No 2006 1 

C-3.4 2005-2008 No 2005-2008 4 

C-3.5 2006-2009 No 2006-2009 4 

C-4.1 2005-2007 No 2005-2007 3 

C-5.1 2003-2006 No 2003-2006 4 

J-1.1 2009 No 2009 1 

J-1.2 2005-2009 No 2005-2009 5 

PB1 F-1.1 2006-2010 2010-2011 2006-2011 6 

F-1.2 2006-2009 2010 2006-2010 5 

F-1.3 2006-2009 No 2006-2009 4 

F-1.4 2004-2007 No 2004-2007 4 

F-2.1 2003-2010 2011 2003-2011 9 

F-2.2 2006 No 2006 1 

F-3.1 2006-2009 2009-2010 2006-2010 5 

F-3.2 2003-2008 2007-2008 2003-2008 6 

F-3.3 2002-2009 No 2002-2009 8 

F-3.4 2002-2008 No 2002-2008 7 

F-3.5 2003-2007 No 2003-2007 5 

F-3.6 2002-2009 No 2002-2009 8 

F-3.7 2002-2009 No 2002-2009 8 

F-3.8 2006-2008 No 2006-2008 3 
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F-3.9 2002-2008 No 2002-2008 7 

F-3.10 2005-2006 No 2005-2006 2 

F-3.11 2002-2009 No 2002-2009 8 

F-3.12 2006-2009 No 2006-2009 4 

F-4.1 1999-2008 2011 1999-2011 13 

F-4.2 2007-2009 2008 2007-2009 3 

F-4.3 2009 2010 2009-2010 2 

F-4.4 2009-2010 2011 2009-2011 3 

F-4.5 2006-2009 No 2006-2009 4 

F-4.6 2006-2010 No 2006-2010 5 

F-4.7 1997-1010 No 1997-1010 14 

F-5.1 2005-2009 No 2005-2009 5 

F-5.2 2006-2009 No 2006-2009 4 

F-6.1 2005-2008 No 2005-2008 4 

F-6.2 2003-2007 No 2003-2007 5 

F-7.1 2005-2007 No 2005-2007 3 

F-8.1 2008-2009 No 2008-2009 2 

PA H-1.1 2002-2009 2010 2002-2010 9 

H-1.2 2006-2010 2008 2006-2010 5 

H-1.3 2005-2009 2009 2005-2009 5 

H-1.4 2002-2009 2010 2002-2010 9 

H-1.5 2009-2010 2010-2011 2009-2011 3 

H-1.6 2005-2009 2007 2005-2009 5 

H-1.7 2000-2006 No 2000-2006 7 
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H-1.8 2004-2006 No 2004-2006 3 

H-1.9 2005-2010 No 2005-2010 6 

H-1.10 2006-2009 No 2006-2009 4 

H-1.11 1999-2009 No 1999-2009 11 

H-1.12 2003-2009 No 2003-2009 7 

H-1.13 2005-2007 No 2005-2007 3 

H-1.14 2006-2008 No 2006-2008 3 

H-1.15 1997-2010 No 1997-2010 14 

H-1.16 2006-2009 No 2006-2009 4 

H-1.17 2005-2009 No 2005-2009 5 

E-1.1 2006-2009 2009-2010 2006-2010 5 

E-1.2 2006-2010 2011 2006-2011 5 

E-1.3 2006-2009 No 2006-2009 4 

E-1.4 2006-2008 No 2006-2008 3 

E-1.5 2005-2010 No 2005-2010 6 

E-2.1 2007-2009 2008-2011 2007-2011 5 

E-2.2 1998-2008 No 1998-2008 11 

E-3.1 2004-2010 No 2004-2010 7 

E-3.2 2002-2007 No 2002-2007 6 

E-3.3 2004-2009 No 2004-2009 6 

E-3.4 2006-2009 No 2006-2009 4 

E-3.5 2000-2006 No 2000-2006 7 

E-4.1 2005-2007 No 2005-2007 3 

E-5.1 2002-2008 No 2002-2008 7 
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E-5.2 2002-2007 No 2002-2007 6 

E-6.1 2006-2009 No 2006-2009 4 

E-6.2 1998-2009 No 1998-2009 12 

HA 1D-1.1 2007-2009 2009 2007-2009 3 

2H-1.1 2008-2009 2011 2008-2011 4 

2H-1.2 2007 2008 2007-2008 2 

2H-1.3 2008 2008 2008 1 

2H-2.1 2006 2006 2006 1 

3C-1.1 2004-2011 2011 2004-2011 8 

3C-1.2 2005-2007 No 2005-2007 3 

3C-1.3 2006-2009 No 2006-2009 4 

3C-2.1 2005-2006 No 2005-2006 2 

3C-2.2 2002-2008 No 2002-2008 7 

3C-2.3 2007-2009 No 2007-2009 3 

3D-1.1 2007-2009 2007-2010 2007-2010 4 

3D-1.2 2008-2009 No 2008-2009 2 

3D-1.3 2005-2009 No 2005-2009 5 

3D-2.1 2007-2009 No 2007-2009 3 

4A-1.1 NO 2008 2008 1 

4A-1.2 NO 2010 2010 1 

4A-1.3 2002-2006 No 2002-2006 5 

4A-1.4 2002-2008 No 2002-2008 7 

4A-1.5 2002-2007 No 2002-2007 6 

4A-1.6 2006 No 2006 1 
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4A-2.1 2008-2009 2010 2008-2010 3 

4A-3.1 2005-2009 No 2005-2009 5 

4A-3.2 2007-2009 No 2007-2009 3 

5C-1.1 NO 2009 2009 1 

5C-1.2 2004-2009 No 2004-2009 6 

5C-1.3 2004-2007 No 2004-2007 4 

5C-1.4 2004-2009 No 2004-2009 6 

5C-1.5 2004-2009 No 2004-2009 6 

6B-1.1 2008 No 2008 1 

7F-1.1 2005-2008 No 2005-2008 4 

7F-2.1 2004-2006 No 2004-2006 3 

11C-1.1 NO 2010 2010 1 

11C-1.2 2007-2009 No 2007-2009 3 

11C-2.1 2002-2006 No 2002-2006 5 

12A-1.1 NO 2011 2011 1 

13A-1.1 2009 No 2009 1 

16D-1.1 2009 No 2009 1 

NA 1E-1.1 2007-2009 2009 2007-2009 3 

1E-2.1 2006-2009 No 2006-2009 4 

1E-2.2 2006-2009 No 2006-2009 4 

2D-1.1 2006-2009 2007-2011 2006-2011 6 

2D-1.2 No 2011 2011 1 

2D-1.3 2000-2009 No 2000-2009 10 

2D-2.1 2003-2006 No 2003-2006 4 



 

199 
 

2D-3.1 2001-2009 No 2001-2009 9 

2G-1.1 2005-2006 No 2005-2006 2 

2G-1.2 2001-2010 No 2001-2010 10 

3A-1.1 1978 2010 1978-2010 33 

3A-2.1 2003-2007 No 2003-2007 5 

3A-2.2 2004-2008 No 2004-2008 6 

3D-1.1 2009 No 2009 1 

4A-1.1 2008 2008 2008 1 

6A-1.1 1999-2007 2008 1999-2008 10 

6A-1.2 2009 No 2009 1 

6A-1.3 2005-2007 No 2005-2007 3 

6A-2.1 2007-2009 2010 2007-2010 4 

6A-3.1 2006-2009 2010 2006-2010 5 

6A-3.2 2004-2009 2010 2004-2010 7 

6A-3.3 2006 No 2006 1 

6A-3.4 2004-2009 No 2004-2009 6 

6A-4.1 1998-2008 No 1998-2008 11 

6A-4.2 2002-2009 No 2002-2009 8 

6A-4.3 2002-2007 No 2002-2007 6 

8A-1.1 2005-2007 No 2005-2007 3 

8A-1.2 2005-2007 No 2005-2007 3 

8A-1.3 2005-2006 2010 2005-2010 6 

8A-1.4 2005-2007 No 2005-2007 3 

8A-2.1 2006-2009 2008 2006-2009 4 
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8A-2.2 2007-2009 No 2007-2009 3 

8A-3.1 2005-2009 No 2005-2009 5 

9A-1.1 2007-2009 No 2007-2009 3 

9A-1.2 2007-2010 No 2007-2010 4 

9A-1.3 2007-2010 No 2007-2010 4 

9A-2.1 2005-2006 No 2005-2006 2 

9A-3.1 2006-2009 No 2006-2009 4 

NP F-1.1 2001-2011 No 2001-2011 11 

H-1.1 2006-2009 2010 2006-2010 5 

H-1.2 2001-2009 2008 2001-2009 9 

H-1.3 No 2010 2010 1 

H-1.4 2005-2009 2011 2005-2011 7 

H-1.5 1985-2007 No 1985-2007 23 

H-1.6 2003-2009 No 2003-2009 7 

H-1.7 1999-2009 No 1999-2009 11 

H-1.8 2006-2007 No 2006-2007 2 

H-1.9 2006-2009 No 2006-2009 4 

H-2.1 2008-2009 2010-2011 2008-2011 4 

H-2.2 2006-2007 2010 2006-2010 5 

H-2.3 2005-2008 2007 2005-2008 4 

H-2.4 2006-2010 No 2006-2010 5 

H-2.5 2005-2009 No 2005-2009 5 

H-3.1 2006-2009 2008 2006-2009 4 

H-3.2 2006-2007 2007 2006-2007 2 
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H-3.3 2006-2007 No 2006-2007 2 

H-3.4 2006-2007 No 2006-2007 2 

H-4.1 2003-2009 2009 2003-2009 7 

H-4.2 2004-2009 2009 2004-2009 6 

H-4.3 2005-2007 No 2005-2007 3 

H-4.4 2003-2009 No 2003-2009 7 

H-4.5 2004-2009 No 2004-2009 6 

H-4.6 2003-2009 No 2003-2009 7 

H-4.7 2004-2009 No 2004-2009 6 

H-5.1 2009 2011 2009-2011 3 

H-5.2 2004-2006 No 2004-2006 3 

H-6.1 2001-2009 No 2001-2009 9 

H-6.2 2002-2009 No 2002-2009 8 

H-7.1 2005-2006 No 2005-2006 2 

D-1.1 1999-2009 No 1999-2009 11 

M E-1.1 2006-2010 2009-2010 2006-2010 5 

E-1.2 2006-2009 2011 2006-2011 6 

E-1.3 1985-2009 2008 1985-2009 25 

E-1.4 2006 No 2006 1 

E-1.5 1998-2009 2010 1998-2010 13 

E-1.6 2004-2010 2010-2011 2004-2011 8 

E-1.7 2005-2010 2009-2011 2005-2011 7 

E-1.8 1998-2009 No 1998-2009 12 

E-1.9 1996-2009 No 1996-2009 14 
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E-1.10 1998-2009 No 1998-2009 12 

E-1.11 1996-2007 No 1996-2007 12 

E-l.12 1998-2010 2007 1998-2010 13 

E-1.13 2002-2010 No 2002-2010 9 

E-1.14 1998-2009 No 1998-2009 12 

E-1.15 1998-2007 No 1998-2007 10 

E-1.16 2001-2007 No 2001-2007 7 

E-1.17 1998-2009 No 1998-2009 12 

E-1.18 1996-2009 No 1996-2009 14 

E-1.19 1987-2009 No 1987-2009 13 

E-1.20 1991-2010 No 1991-2010 20 

E-1.21 1986-2009 No 1986-2009 24 

E-2.1 2005-2006 No 2005-2006 2 

J-1.1 2005-2009 No 2005-2009 4 

NS 1D-1.1 2003-2010 2007-2008 2003-2010 8 

1D-1.2 2005-2010 2010 2005-2010 6 

1D-1.3 2005-2010 2011 2005-2011 7 

1D-1.4 1987-2010 2010 1987-2010 24 

1D-1.5 1999-2010 2009-2010 1999-2010 12 

1D-1.6 1998-2007 No 1998-2007 10 

1D-1.7 1988-2009 No 1988-2009 22 

1D-1.8 1995-2010 No 1995-2010 16 

1D-1.9 2002-2009 No 2002-2009 8 

1D-1.10 1999-2007 No 1999-2007 9 
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1D-1.11 2002-2009 No 2002-2009 8 

1D-1.12 1998-2006 No 1998-2006 9 

1D-1.13 1999-2010 No 1999-2010 12 

1C-1.1 1999-2009 No 1999-2009 11 

2B-1.1 1998-2009 2009 1998-2009 12 

2B-1.2 1985-2009 2009-2011 1985-2011 27 

2B-1.3 1985-2009 2011 1985-2011 27 

2B-1.4 1998-2008 No 1998-2008 11 

2B-1.5 1998-2008 No 1998-2008 11 

2B-1.6 2000-2007 No 2000-2007 8 

2B-1.7 2002-2009 No 2002-2009 8 

2B-1.8 1991-2009 No 1991-2009 19 

2B-2.1 2004-2006 No 2004-2006 3 

Total 248 1978-2011 2007-2011 1978-2011 34 
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Table S3.7. Detection of the 248 identified Atlantic flyway AIV gene types in the North 

American flyways. 

Gene type Flyway 

PB2 Atlantic Mississippi Central Pacific 

C-1.1 6 0 0 0 

C-2.1 8 16 14 2 

C-2.2 33 18 0 0 

C-2.3 26 49 4 9 

C-2.4 3 0 0 0 

C-2.5 10 20 15 16 

C-2.6 41 12 4 0 

C-2.7 53 20 3 0 

C-2.8 1 3 0 0 

C-2.9 2 2 3 0 

C-2.10 10 0 1 0 

C-2.11 7 2 0 0 

C-2.12 32 2 2 0 

C-2.13 19 4 1 0 

C-2.14 2 0 0 0 

C-2.15 22 26 17 4 

C-2.16 27 2 1 0 

C-2.17 1 1 0 0 
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C-2.18 6 1 0 0 

C-2.19 14 1 3 1 

C-3.1 18 62 17 63 

C-3.2 11 1 0 0 

C-3.3 2 0 0 0 

C-3.4 1 2 0 0 

C-3.5 9 11 1 4 

C-4.1 12 0 0 0 

C-5.1 99 0 0 0 

J-1.1 4 0 0 0 

J-1.2 13 0 0 0 

Total 492 255 86 99 

PB1 Atlantic Mississippi Central Pacific 

F-1.1 3 1 7 2 

F-1.2 4 1 2 9 

F-1.3 4 6 8 5 

F-1.4 36 7 0 0 

F-2.1 4 47 11 21 

F-2.2 1 0 0 0 

F-3.1 8 39 0 0 

F-3.2 39 1 0 0 

F-3.3 54 45 0 0 
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F-3.4 16 28 0 0 

F-3.5 22 6 0 0 

F-3.6 54 45 0 0 

F-3.7 32 41 0 0 

F-3.8 1 2 1 4 

F-3.9 18 35 0 0 

F-3.10 128 0 0 0 

F-3.11 1 1 0 0 

F-3.12 1 2 3 0 

F-4.1 5 25 0 0 

F-4.2 2 28 1 0 

F-4.3 1 2 0 0 

F-4.4 1 2 4 3 

F-4.5 9 3 1 0 

F-4.6 9 19 15 5 

F-4.7 1 5 4 24 

F-5.1 35 54 6 6 

F-5.2 35 53 2 4 

F-6.1 24 0 0 0 

F-6.2 35 4 1 0 

F-7.1 4 4 0 0 

F-8.1 6 0 0 0 
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Total 593 506 66 83 

PA Atlantic Mississippi Central Pacific 

H-1.1 86 23 11 24 

H-1.2 1 1 7 15 

H-1.3 11 1 1 1 

H-1.4 77 17 9 2 

H-1.5 10 1 2 0 

H-1.6 4 2 0 0 

H-1.7 10 0 2 0 

H-1.8 131 0 0 0 

H-1.9 6 12 4 30 

H-1.10 2 1 0 0 

H-1.11 13 5 16 12 

H-1.12 16 36 11 27 

H-1.13 3 1 1 1 

H-1.14 27 39 4 6 

H-1.15 4 7 13 16 

H-1.16 6 9 4 33 

H-1.17 72 7 3 4 

E-1.1 6 78 16 2 

E-1.2 3 27 10 8 

E-1.3 1 78 16 2 
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E-1.4 2 1 32 0 

E-1.5 14 19 6 49 

E-2.1 35 24 2 0 

E-2.2 18 19 2 1 

E-3.1 22 49 15 0 

E-3.2 52 12 0 0 

E-3.3 21 48 11 0 

E-3.4 1 4 4 0 

E-3.5 7 6 1 1 

E-4.1 12 0 0 0 

E-5.1 76 6 2 0 

E-5.2 47 9 0 0 

E-6.1 7 0 0 0 

E-6.2 4 0 0 0 

Total 807 542 205 234 

HA Atlantic Mississippi Central Pacific 

1D-1.1 3 11 5 3 

2H-1.1 2 6 0 0 

2H-1.2 2 1 0 0 

2H-1.3 1 0 0 1 

2H-2.1 3 0 0 0 

3C-1.1 6 15 3 0 
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3C-1.2 8 0 0 0 

3C-1.3 1 7 2 0 

3C-2.1 9 0 0 0 

3C-2.2 5 14 0 0 

3C-2.3 2 0 0 0 

3D-1.1 23 0 0 0 

3D-1.2 16 0 0 0 

3D-1.3 7 0 0 0 

3D-2.1 8 0 0 0 

4A-1.1 3 0 0 0 

4A-1.2 1 0 0 0 

4A-1.3 9 3 1 0 

4A-1.4 36 5 0 0 

4A-1.5 4 1 0 0 

4A-1.6 4 0 0 0 

4A-2.1 2 2 1 2 

4A-3.1 1 0 1 0 

4A-3.2 7 93 43 1 

5C-1.1 4 3 0 2 

5C-1.2 63 37 5 0 

5C-1.3 15 8 1 0 

5C-1.4 44 15 1 0 
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5C-1.5 47 38 5 0 

6B-1.1 3 0 0 0 

7F-1.1 1 0 0 0 

7F-2.1 76 0 0 0 

11C-1.1 2 0 0 0 

11C-1.2 1 10 0 0 

11C-2.1 16 4 0 0 

12A-1.1 1 0 0 0 

13A-1.1 4 0 0 0 

16D-1.1 1 0 0 0 

Total 441 273 68 9 

NP Atlantic Mississippi Central Pacific 

F-1.1 3 1 1 75 

H-1.1 8 14 17 4 

H-1.2 42 34 30 11 

H-1.3 2 0 0 0 

H-1.4 14 23 9 13 

H-1.5 32 1 0 1 

H-1.6 4 8 3 24 

H-1.7 21 16 18 2 

H-1.8 4 0 0 0 

H-1.9 2 4 0 0 
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H-2.1 6 1 0 3 

H-2.2 4 10 6 2 

H-2.3 15 4 4 7 

H-2.4 4 12 7 7 

H-2.5 9 12 4 31 

H-3.1 7 2 0 1 

H-3.2 2 1 0 1 

H-3.3 2 2 0 1 

H-3.4 5 1 0 1 

H-4.1 7 7 0 0 

H-4.2 8 1 0 0 

H-4.3 30 3 1 0 

H-4.4 21 10 0 0 

H-4.5 21 12 0 0 

H-4.6 17 3 0 0 

H-4.7 29 11 0 0 

H-5.1 2 1 0 0 

H-5.2 18 3 0 0 

H-6.1 34 29 5 5 

H-6.2 42 43 6 19 

H-7.1 94 0 0 0 

D-1.1 7 0 0 0 
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Total 516 269 111 208 

NA Atlantic Mississippi Central Pacific 

1E-1.1 5 31 1 7 

1E- 2.1 7 16 6 30 

1E- 2.2 7 15 6 21 

2D-1.1 5 19 1 18 

2D-1.2 1 0 0 0 

2D-1.3 17 16 0 0 

2D-2.1 10 0 0 0 

2D-3.1 39 34 4 0 

2G-1.1 98 0 0 0 

2G-1.2 10 31 1 2 

3A-1.1 1 0 1 0 

3A-2.1 6 0 0 0 

3A-2.2 10 4 2 15 

3D-1.1 1 0 0 0 

4A-1.1 5 0 0 0 

6A-1.1 14 1 0 0 

6A-1.2 4 0 0 0 

6A-1.3 10 0 0 0 

6A-2.1 23 0 0 0 

6A-3.1 3 1 4 0 
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6A-3.2 22 8 27 19 

6A-3.3 4 2 0 0 

6A-3.4 8 6 19 15 

6A-4.1 16 7 5 0 

6A-4.2 16 7 1 0 

6A-4.3 5 6 0 0 

8A-1.1 8 0 0 0 

8A-1.2 8 0 0 0 

8A-1.3 4 0 0 0 

8A-1.4 7 0 0 0 

8A-2.1 10 8 0 0 

8A-2.2 10 0 0 0 

8A-3.1 3 18 12 2 

9A-1.1 4 12 0 0 

9A-1.2 4 20 0 0 

9A-1.3 4 22 0 0 

9A-2.1 6 0 0 0 

9A-3.1 1 1 0 0 

Total 416 285 90 129 

M Atlantic Mississippi Central Pacific 

E-1.1 9 16 12 14 

E-1.2 6 7 1 3 
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E-1.3 115 23 2 25 

E-1.4 3 0 0 0 

E-1.5 135 80 16 22 

E-1.6 7 20 9 40 

E-1.7 11 57 16 109 

E-1.8 33 46 20 5 

E-1.9 138 78 15 19 

E-1.10 115 87 22 26 

E-1.11 11 9 2 3 

E-l.12 121 76 27 28 

E-1.13 12 52 34 143 

E-1.14 59 52 16 24 

E-1.15 6 1 2 4 

E-1.16 6 6 6 0 

E-1.17 102 81 24 18 

E-1.18 69 15 10 6 

E-1.19 21 1 9 18 

E-1.20 2 17 13 16 

E-1.21 11 2 7 0 

E-2.1 107 0 0 0 

J-1.1 10 0 0 0 

Total 1109 726 263 523 
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NS Atlantic Mississippi Central Pacific 

1D-1.1 52 10 6 7 

1D-1.2 3 31 6 17 

1D-1.3 1 12 3 3 

1D-1.4 60 35 9 16 

1D-1.5 20 15 6 23 

1D-1.6 30 26 3 0 

1D-1.7 90 52 10 8 

1D-1.8 91 54 13 8 

1D-1.9 44 11 7 8 

1D-1.10 10 7 8 26 

1D-1.11 13 11 0 2 

1D-1.12 2 6 1 0 

1D-1.13 12 18 6 37 

1C-1.1 6 0 0 0 

2B-1.1 8 15 28 0 

2B-1.2 22 27 36 10 

2B-1.3 15 16 4 38 

2B-1.4 6 17 0 0 

2B-1.5 9 14 2 38 

2B-1.6 10 7 2 37 

2B-1.7 14 4 0 0 
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2B-1.8 7 4 14 25 

2B-2.1 97 0 0 0 

Total 622 392 164 303 
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Table S3.8. Summary of detections of the Atlantic Flyway duck AIV genes in non-duck 

hosts. 

Sub-lineage Number of 

gene types 

Gene types found outside ducks 

PB2 

C-1 1 ND
a
 

C-2 19 C-2.2, 2.3, 2.5, 2.7, 2.12, 2.13, 2.15, 2.16, 2.19 

C-3 5 C-3.1, 3.5 

C-4 1 C-4.1 

C-5 1 C-5.1 

J-1 2 J-1.1 

Total 29 14 

PB1 

F-1 4 F-1.3, 1.4 

F-2 2 F-2.1 

F-3 12 F-3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.9, 3.10 

F-4 7 F-4.5, 4.7 

F-5 2 F-5.1, 5.2 

F-6 2 F-6.1, 6.2 

F-7 1 ND 

F-8 1 F-8.1 

Total 31 18 
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PA 

H-1 17 H-1.1, 1.5, 1.8, 1.9, 1.11, 1.12, 1.13, 1.14, 

1.16, 1.17 

E-1 5 E-1.1, 1.4, 1.5 

E-2 2 E-2.1, 2.2 

E-3 5 E-3.1, 3.2, 3.3 

E-4  1 ND 

E-5 2 E-5.1, 5.2 

E-6 2 E-6.1, 6.2 

Total 34 22 

HA 

1D-1 1 1D-1.1 

2H-1 3 2H-1.2 

2H-2 1 ND 

3C-1 3 3C-1.2 

3C-2 3 ND 

3D-1 3 3D-1.1 

3D-2 1 ND 

4A-1 6 4A-1.1, 1.4 

4A-2 1 ND 

4A-3 2 4A-3.2 

5C-1 5 5C-1.2, 1.3, 1.4, 1.5 
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6B-1 1 6B-1.1 

7F-1 1 ND 

7F-2 1 7F-2.1 

11C-1 2 ND 

11C-2 1 ND 

12A-1 1 ND 

13A-1 1 13A-1.1 

16D-1 1 ND 

Total 38 14 

NP 

F-1 1 F-1.1 

H-1 9 H-1.2, 1.4, 1.5, 1.6, 1.7 

H-2 5 H-2.3, 2.4, 2.5 

H-3 4 H-3.1, 3.4 

H-4 7 H-4.3, 4.4, 4.5, 4.6 

H-5 2 H-5.2 

H-6 2 H-6.2 

H-7 1 H-7.1 

D-1 1 D-1.1 

Total 32 19 

NA 

1E-1 1 ND 
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1E-2 2 1E -2.1, 2.2 

2D-1 3 2D-1.1, 1.3 

2D-2 1 2D-2.1 

2D-3 1 2D-3.1 

2G-1 2 2G-1.1, 1.2 

3A-1 1 ND 

3A-2 2 3A-2.1, 2.2 

3D-1 1 ND 

4A-1 1 4A-1.1 

6A-1 3 6A-1.1, 1.2 

6A-2 1 ND 

6A-3 4 6A-3.2 

6A-4 3 ND 

8A-1 4 ND 

8A-2 2 ND 

8A-3 1 ND 

9A-1 3 ND 

9A-2 1 ND 

9A-3 1 ND 

Total 38 14 

M 

E-1 21 E-1.1, 1.2, 1.3,1.5 to 1.21 
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E-2 1 E-2.1 

J-1 1 E-3.1 

Total 23 22 

NS 

1D-1 13 1D-1.1, 1.2, 1.4, 1.5, 1.7, 1.8, 1.9, 1.10, 1.12 

1C-1 1 1C-1.1 

2B-1 8 2B-1.1 to 1.8 

2B-2 1 2B-2.1 

Total 23 18 

Overall totals 248 142 

a
 Not detected 
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Table S3.9. Identification of Atlantic Flyway duck AIV gene types in hosts other than 

ducks. 

Segment Gene type Hosts 

PB2 C-2.2 Shorebird 

C-2.3 shorebird, goose, turkey, chicken 

C-2.5 Goose 

C-2.7 Shorebird 

C-2.12 Chicken 

C-2.13 Shorebird 

C-2.15 turkey, quail 

C-2.16 Chicken 

C-2.19 Shorebird 

C-3.1 shorebird, goose, turkey, swan 

C-3.5 Shorebird 

C-4.1 Murre 

C-5.1 chicken, guinea fowl, pheasant 

J-1.1 Gull 

PB1 F-1.3 shorebird, goose 

F-1.4  shorebird, chicken, gull 

F-2.1  turkey, dove 

F-3.2 Shorebird 

F-3.3  Shorebird 
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F-3.4 Shorebird 

F-3.5 Shorebird 

F-3.6  Shorebird 

F-3.7 Shorebird 

F-3.9 shorebird, turkey 

F-3.10 turkey, chicken, guinea fowl, pheasant, quail 

F-4.5  Goose 

F-4.7 goose, grebe 

F-5.1  shorebird, turkey, quail 

F-5.2 shorebird, turkey, quail 

F-6.1  shorebird, swan 

F-6.2 turkey, swan 

F-8.1 Gull 

PA H-1.1 shorebird, chicken, gull, murre 

H-1.4 shorebird, gull 

H-1.8 turkey, chicken, guinea fowl, pheasant, quail 

H-1.9 goose, swan 

H-1.11 Shorebird 

H-1.12 goose, swan 

H-1.13 Goose 

H-1.14 shorebird, goose 

H-1.16 Goose 
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H-1.17 Shorebird 

E-1.1 Dove 

E-1.4 goose, chicken, coot 

E-1.5 goose, chicken 

E-2.1 Shorebird 

E-2.2 shorebird, goose 

E-3.1 shorebird, gull, murre 

E-3.2 shorebird, turkey 

E-3.4 Shorebird 

E-5.1 shorebird, turkey, quail 

E-5.2 shorebird, turkey 

E-6.1 Gull 

E-6.2 shorebird, gull 

HA 1D-1.1 dove, dunlin 

2H-1.2 Chicken 

3C-1.2 Shorebird 

3D-1.1 Shorebird 

4A-1.1 Shorebird 

4A-1.4 Shorebird 

4A-3.2 Shorebird 

5C-1.2 goose, turkey, swan 

5C-1.3 Chicken 
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5C-1.4 goose, turkey, swan 

5C-1.5 goose, turkey 

6B-1.1 Shorebird 

7F-2.1 turkey, chicken, guinea fowl, quail 

13A-1.1 Gull 

NA 1E- 2.1 shorebird, goose 

1E- 2.2 shorebird, goose 

2D-1.1 Dove 

2D-1.3 goose, chicken 

2D-2.1 Shorebird 

2D-3.1 shorebird, goose, turkey 

2G-1.1 turkey, chicken, guinea fowl, pheasant, chukar 

2G-1.2 shorebird, goose, turkey 

3A-2.1 Shorebird 

3A-2.2 Chicken 

4A-1.1 Shorebird 

6A-1.1 Swine 

6A-1.2 Gull 

6A-3.2 Shorebird 

NP F-1.1 Swine 

H-1.2 shorebird, goose, turkey, chicken, chukar 

H-1.4 shorebird, goose, chicken 
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H-1.5 shorebird, goose 

H-1.6 goose, chicken, swan 

H-1.7 shorebird, goose, turkey, chicken 

H-2.3 Shorebird 

H-2.4 goose, dove 

H-2.5 shorebird, goose, swan 

H-3.1 Shorebird 

H-3.4 Shorebird 

H-4.3 turkey, quail 

H-4.4 Chicken 

H-4.5 Chicken 

H-4.6 Chicken 

H-5.2 Shorebird 

H-6.2 shorebird, grebe 

H-7.1 chicken, guinea fowl, pheasant 

D-1.1 shorebird, gull 

M E-1.1 Dove 

E-1.2 Cormorant 

E-1.3 shorebird, turkey, chicken 

E-1.5 goose, chicken 

E-1.6 shorebird, turkey, gull, grebe, cormorant 

E-1.7 shorebird, turkey, cormorant 
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E-1.8 shorebird, goose, murre, swine 

E-1.9 shorebird, turkey, chicken, gull, quail, swine 

E-1.10 shorebird, turkey, murre 

E-1.11 shorebird, chicken, pheasant 

E-1.13 shorebird, goose, turkey, grebe, cormorant 

E-l.12 shorebird, chicken, murre, swine 

E-1.14 shorebird, swine 

E-1.15 Shorebird 

E-1.16 turkey, swan, dunlin 

E-1.17 shorebird, turkey, quail, murre, swine 

E-1.18 shorebird, goose 

E-1.19 shorebird, turkey, chicken, guinea fowl, rhea 

E-1.20 Goose 

E-1.21 turkey, chicken 

E-2.1 turkey, chicken, guinea fowl, pheasant, quail 

J-1.1 shorebird, gull 

NS 1D-1.1 shorebird, turkey, chicken, coot 

1D-1.2 goose, coot 

1D-1.4 shorebird, chicken 

1D-1.5 goose, chicken 

1D-1.7 shorebird, goose, turkey, swan, swine 

1D-1.8 shorebird, goose, turkey, guinea fowl, swine 
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1D-1.9 shorebird, goose, turkey, chicken 

1D-1.10 Shorebird 

1D-1.12 Shorebird 

1C-1.1 Gull 

2B-1.1 Gull 

2B-1.2 shorebird, goose, murre 

2B-1.3 shorebird, gull 

2B-1.4 Gull 

2B-1.5 Gull 

2B-1.6 goose, guinea fowl, murre 

2B-1.7 Shorebird 

2B-1.8 shorebird, swan 

2B-2.1 turkey, chicken, guinea fowl, pheasant, quail 
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Figure S3. 1. Major international bird migratory flyways. The routes of major migration flyways are illustrated in different 

colors. Among these flyways, three in North America are illustrated: the Atlantic flyway (AF) in light green, the Mississippi 

flyway (MF) in grey, and the Pacific Flyway (PF) in blue. The picture is downloaded under permission from Wikimedia 

Commons.
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Figure S3. 2. Phylogenetic analysis of the 8 segments of the 2006-2011 Atlantic flyway 

duck AIVs (starting from next page). Phylogenetic trees are shown for each segment of 

the 109 Atlantic flyway duck AIVs (indicated with red circles), with separate trees for the 

different HA and NA subtypes. The sub-lineages (≥95% nucleotide identity within a sub-

lineage) of the AIV genes from the Atlantic flyway are labelled on the right. The 

neighbour-joining trees were constructed with MEGA5 and support values based on 1000 

bootstrap replicates are shown as percentages where ≥70%. The scale bars indicate 

nucleotide substitutions per site. The full identification information for the Atlantic 

flyway viruses is provided in Table S2. Abbreviations: ABDU, American Black Duck; 

RNDU, Ring-necked Duck; GWTE, Green-winged Teal; BWTE, Blue-winged Teal; 

AMWI, American Widgeon; NOPI, Northern Pintail; NL, Newfoundland; QC, Quebec; 

NS, Nova Scotia; NB, New Brunswick; NY, New York; PEI, Prince Edward Island; NS, 

Nova Scotia; PA, Pennsylvania; DE, Delaware; MD, Maryland; FL, Florida; AK, Alaska; 

CA, California; MN, Minnesota; MS, Missouri; SK, Saskatchewan. 
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Figure S3. 3. Identification of Atlantic flyway duck AIV genes in other bird hosts (the 

following). Phylogenetic trees were constructed to highlight the distribution of the genes 

found in the 109 Atlantic flyway duck AIVs in non-duck host species. The neighbour-

joining trees were constructed with MEGA5 and support values based on 1000 bootstrap 

replicates are shown as percentages where ≥70%. The sub-lineages are labelled on the 

right of the phylogenetic trees. Black branch lines indicate detection of the sub-lineage in 

non-duck species, whereas grey branch lines indicate the detection of the sub-lineage only 

in ducks. For the H16 tree, the 3 gull-related lineages (H16A to C) established in the 

Flugenome database were labelled in red. 
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Figure S3. 4. Gene type categorization of the Atlantic flyway duck AIVs by year and 

location (the following). Gene typing was done as described in the Materials and Methods 

section such that sequences with nucleotide identity of ≥99% are considered as 

homologous genes or the same gene type. Sequences from different locations within the 

Atlantic bird flyway are shown in different colours, as indicated in the legend. The 

locations are abbreviated as follows: NL, Newfoundland; QC, Quebec; MD, Maryland; 

NB, New Brunswick; PEI, Prince Edward Island; NY, New York; PA, Pennsylvania; DE, 

Delaware; ON, Ontario; FL, Florida; NS, Nova Scotia. 

PB2 

2006 2007 2008 2009 2010 2011 

C-2.6 C-2.7 C-2.6 C-2.7 C-1.1 C-2.1 C-2.1 C-2.2 

C-2.7 C-2.13 C-2.6 C-2.7 C-1.1 C-2.1 C-2.1 C-2.2 

C-2.7 C-2.14 C-2.6 C-2.7 C-1.1 C-2.1 C-2.1 C-2.2 

C-2.11 C-2.6 C-2.6 C-4.1 C-1.1 C-2.4 C-2.3 C-2.2 

C-2.12 C-2.6 C-2.6 C-4.1 C-1.1 C-2.18 C-2.3 C-2.2 

C-2.12 C-2.6 C-2.6 C-2.10 C-1.1 C-2.18 C-2.3 C-2.2 

C-2.12 C-2.7 C-2.6 C-2.10 C-2.2 C-3.5 C-2.4 C-2.5 

C-2.12 C-2.7 C-2.6 C-3.2 C-2.2 C-3.5 C-2.4 C-3.1 

C-2.12 C-2.10 C-2.6 C-3.3 

 

C-3.5 C-2.5 

 

C-2.12 C-2.9 C-2.6 

  

J-1.2 

 

 

C-2.12 C-4.1 C-2.6 

  

C-2.2 

 

 

C-2.12 C-4.1 C-2.7 

  

C-2.2 
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C-2.12 C-2.12 C-2.19 

  

C-2.8 Legend 

C-3.2 C-2.12 C-2.19 

  

C-3.5 NL DE 

C-3.2 C-2.15 C-2.19 

  

C-3.5 QC MD 

C-3.2 C-5.1 C-2.19 

  

C-3.5 NB FL 

C-3.3 C-2.17 C-2.19 

  

C-3.5 NS PA 

C-3.3 C-2.16 C-2.19 

  

J-1.1 PEI NY 

C-3.4 

 

C-4.1 

   

ON  

PB1 

2006 2007 2008 2009 2010 2011 

F-1.3 F-3.2 F-3.5 F-5.2 F-3.2 F-3.1 F-1.1 F-1.1 

F-1.3 F-5.1 F-3.5 F-5.2 F-3.2 F-3.1 F-1.1 F-2.1 

F-2.2 F-6.2 F-3.5 F-7.1 F-3.2 F-3.1 F-1.2 F-2.1 

F-3.4 F-3.3 F-3.5 F-3.6 F-3.2 F-3.1 F-1.2 F-2.1 

F-3.4 F-3.5 F-3.5 F-3.6 F-3.2 F-1.2 F-3.1 F-4.1 

F-3.4 F-3.5 F-3.5 F-3.2 F-3.2 F-3.6 F-3.1 F-4.1 

F-3.4 F-5.1 F-3.5 F-3.2 F-4.2 F-4.5 F-3.1 F-4.1 

F-3.4 F-5.1 F-3.5 F-4.7 F-4.2 F-4.5 F-3.1 F-4.4 

F-3.4 F-5.1 F-3.5 F-3.8 

 

F-4.5 F-4.3 

 

F-3.4 F-3.2 F-3.5 

  

F-8.1 

  

F-3.4 F-3.6 F-3.6 

  

F-2.1 

  

F-3.4 F-3.6 F-3.6 

  

F-3.11 

  

F-3.7 F-1.4 F-3.6 

  

F-3.12 
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F-3.7 F-1.4 F-3.6 

  

F-3.12 

  

F-3.8 F-5.1 F-3.6 

  

F-4.5 

  

F-4.6 F-3.10 F-3.6 

  

F-4.5 

  

F-4.6 F-3.9 F-3.6 

  

F-4.5 

  

F-4.6 F-1.4 F-4.5 

  

F-8.1 

  

F-4.6 

 

F-6.1 

     

PA 

2006 2007 2008 2009 2010 2011 

E-3.1 E-2.2 E-1.3 H-1.12 E-2.1 E-1.1 E-1.1 E-1.2 

E-3.3 H-1.10 E-1.4 H-1.13 E-2.1 E-1.1 E-1.1 E-2.1 

E-5.1 H-1.11 H-1.17 H-1.13 E-2.1 E-1.1 H-1.4 E-2.1 

E-5.1 E-3.2 H-1.17 H-1.1 H-1.1 H-1.3 H-1.4 E-2.1 

E-5.1 E-3.1 H-1.17 E-3.1 H-1.1 E-2.1 H-1.4 E-2.1 

E-5.2 E-3.2 H-1.17 H-1.6 H-1.1 E-2.1 H-1.4 E-2.1 

E-5.2 E-4.1 H-1.17 H-1.6 H-1.1 H-1.17 H-1.5 H-1.2 

E-5.2 E-4.1 H-1.17 H-1.14 H-1.1 E-2.1 H-1.5 H-1.5 

H-1.7 E-4.1 E-3.1 E-3.4 

 

E-2.1 H-1.5 

 

H-1.7 H-1.1 E-4.1 

  

E-6.2 

  

H-1.7 H-1.1 E-4.1 

  

E-2.1 

  

H-1.7 H-1.1 E-4.1 

  

E-2.1 

  

H-1.7 E-1.5 E-4.1 

  

E-2.1 

  

H-1.7 E-1.5 E-4.1 

  

E-6.1 
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H-1.7 E-5.1 E-4.1 

  

H-1.15 

  

H-1.7 H-1.8 E-4.1 

  

H-1.15 

  

H-1.7 E-3.5 E-4.1 

  

H-1.16 

  

H-1.7 E-1.5 E-4.1 

  

H-1.17 

  

H-1.9 

 

E-4.1 

     

HA 

2006 2007 2008 2009 2010 2011 

2H-2.1 3C-2.2 3C-1.2 3C-1.3 2H-1.2 1D-1.1 3D-1.1 2H-1.1 

2H-2.1 4A-1.3 3C-1.2 5C-1.2 2H-1.2 1D-1.1 4A-1.2 2H-1.1 

2H-2.1 5C-1.2 3C-1.2 5C-1.2 2H-1.3 1D-1.1 4A-2.1 3C-1.1 

3C-1.2 3C-1.2 3C-1.2 4A-1.5 3D-1.1 5C-1.1 4A-2.1 3C-1.1 

3C-2.1 4A-1.4 3C-1.2 4A-1.5 3D-1.1 3D-1.2 6B-1.1 3C-1.1 

3C-2.1 4A-1.6 3C-1.2 3D-1.1 4A-1.1 3D-2.1 6B-1.1 3C-1.1 

3C-2.1 4A-1.6 3C-1.2 3D-1.1 4A-1.1 4A-3.2 6B-1.1 3C-1.1 

3C-2.1 4A-1.6 3C-1.2 5C-1.4 4A-1.1 3D-1.2 11C-1.1 12A-1.1 

3C-2.1 4A-1.6 3C-1.2 5C-1.2 

 

3D-1.2 11C-1.1 

 

3C-2.1 3C-1.2 3C-1.2 

  

16D-1.1 

  

3C-2.1 3C-1.2 3C-2.3 

  

3C-2.3 

  

3C-2.1 4A-1.5 3D-2.1 

  

3D-1.2 

  

3C-2.1 5C-1.2 3D-2.1 

  

3D-1.2 

  

4A-1.4 5C-1.3 3D-2.1 

  

3D-1.2 

  

4A-1.4 5C-1.3 3D-2.1 

  

3D-1.3 
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4A-1.4 7F-2.1 3D-2.1 

  

4A-3.1 

  

4A-1.4 5C-1.5 3D-2.1 

  

11C-1.2 

  

4A-1.4 5C-1.3 4A-1.5 

  

13A-1.1 

  

11C-2.1 

 

7F-1.1 

     

NP 

2006 2007 2008 2009 2010 2011 

H-1.2 H-2.4 H-1.5 H-1.7 H-1.2 H-4.1 H-1.1 H-1.4 

H-1.5 H-3.4 H-1.5 H-1.7 H-1.2 H-4.1 H-1.1 H-2.1 

H-1.5 H-5.2 H-1.8 F-1.1 H-1.2 H-4.1 H-1.1 H-2.1 

H-1.5 H-1.8 H-1.8 H-1.5 H-3.1 H-4.2 H-1.1 H-2.1 

H-1.5 H-2.3 H-1.8 H-4.3 H-3.1 H-1.6 H-1.3 H-2.1 

H-1.5 H-6.1 H-1.8 H-2.3 H-3.1 H-1.6 H-1.3 H-2.1 

H-2.3 H-6.1 H-1.8 H-3.2 H-3.1 H-4.6 H-2.1 H-5.1 

H-3.3 H-6.1 H-1.8 H-1.6 H-3.1 H-4.6 H-2.2 H-5.1 

H-3.3 H-6.2 H-1.8 H-6.1 

 

H-4.6 H-2.2 

 

H-4.5 H-1.2 H-1.8 

  

D-1.1 

  

H-6.2 H-1.2 H-1.8 

  

H-1.1 

  

H-6.2 H-4.3 H-1.8 

  

H-1.1 

  

H-6.2 H-4.3 H-2.4 

  

H-1.9 

  

H-6.2 H-4.4 H-4.7 

  

H-4.5 

  

H-6.2 H-4.4 H-4.7 

  

H-4.6 

  

H-6.2 H-7.1 H-4.7 

  

H-4.6 
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H-6.2 H-2.5 H-4.7 

  

H-4.6 

  

H-6.2 H-4.4 H-4.7 

  

D-1.1 

  

H-6.2 

 

H-4.7 

     

NA 

2006 2007 2008 2009 2010 2011 

2D-2.1 2D-1.1 3A-2.1 1E- 2.1 4A-1.1 1E-1.1 3A-1.1 2D 

2D-2.1 6A-3.3 6A-1.3 8A-3.1 4A-1.1 1E-1.1 6A-2.1 2D 

2D-2.1 6A-4.3 6A-4.2 9A-3.1 4A-1.1 1E-1.1 6A-2.1 2D 

2D-2.1 6A-1.1 8A-1.1 6A-1.3 6A-1.1 4A 6A-2.1 2D 

2D-2.1 6A-4.1 8A-1.1 6A-1.3 6A-1.1 8A-2.1 6A-2.1 2D 

2D-2.1 6A-4.1 8A-1.1 2D-1.1 6A-1.1 8A-2.2 6A-3.1 2D-1.1 

2D-2.1 8A-1.1 8A-1.1 2D-1.1 8A 9A-1.2 6A-3.2 2D-1.2 

2D-2.1 8A-1.1 8A-1.1 1E- 2.2 8A-2.1 8A-2.1 8A-1.3 - 

2D-2.1 8A-1.1 8A-1.1 2G-1.2 

 

8A-2.1 9A-1.1 

 

3A-2.2 6A-1.2 8A-1.1 

  

3D-1.1 

  

3A-2.2 8A-1.2 8A-1.1 

  

2D-1.1 

  

3A-2.2 8A-1.2 8A-1.1 

  

6A-1.2 

  

6A-3.4 2D-1.3 8A-1.1 

  

6A-3.2 

  

6A-4.2 2D-1.3 8A-2.2 

  

8A-2.1 

  

6A-4.2 2D-3.1 8A-2.2 

  

8A-2.1 

  

6A-4.2 2G-1.1 8A-2.2 

  

8A-2.1 

  

6A-4.2 2D-1.3 8A-2.2 

  

8A-2.2 
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8A-1.4 2D-1.3 8A-2.2 

  

9A-1.3 

  

9A-2.1 

 

8A-2.2 

     

M 

2006 2007 2008 2009 2010 2011 

E-1.3 E-1.3 E-1.5 E-1.9 E-1.3 E-1.1 E-1.1 E-1.2 

E-1.3 E-1.4 E-1.8 E-1.5 E-1.3 E-1.1 E-1.1 E-1.2 

E-1.3 E-1.15 E-1.10 E-1.5 E-1.3 E-1.1 E-1.1 E-1.2 

E-1.3 E-1.3 E-1.10 E-1.8 E-1.3 E-1.7 E-1.1 E-1.2 

E-1.3 E-1.3 E-1.10 E-1.11 E-1.3 E-1.3 E-1.5 E-1.2 

E-1.3 E-1.3 E-1.10 E-1.12 E-1.3 E-1.18 E-1.5 E-1.2 

E-1.3 E-1.8 E-1.10 E-1.12 E-1.3 E-1.19 E-1.5 E-1.6 

E-1.3 E-1.10 E-1.10 E-1.16 E-1.3 E-1.19 E-1.6 E-1.7 

E-1.3 E-1.10 E-1.10 E-1.16 

 

E-1.19 E-1.6 

 

E-1.3 E-1.10 E-1.10 

  

J-1.1 

  

E-1.3 E-1.10 E-1.10 

  

E-1.5 

  

E-1.3 E-1.11 E-1.10 

  

E-1.17 

  

E-1.3 E-2.1 E-1.10 

  

E-1.19 

  

E-1.3 E-1.3 E-1.18 

  

E-1.19 

  

E-1.13 E-1.3 E-1.18 

  

E-1.19 

  

E-1.13 E-1.5 E-1.18 

  

E-1.20 

  

E-1.13 E-1.16 E-1.18 

  

E-1.21 

  

E-1.14 E-1.3 E-1.18 

  

J-1.1 
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E-1.14 

 

E-1.18 

     

NS 

2006 2007 2008 2009 2010 2011 

2B-1.3 2B-1.5 2B-1.6 2B-1.4 1D-1.1 2B-1.1 1D-1.2 2B-1.2 

1D-1.7 1D-1.10 2B-1.6 1D-1.7 1D-1.1 2B-1.1 1D-1.4 2B-1.2 

1D-1.7 1D-1.12 2B-1.6 1D-1.7 1D-1.1 2B-1.2 1D-1.4 2B-1.2 

1D-1.7 2B-1.6 2B-1.6 1D-1.6 1D-1.1 1D-1.5 1D-1.5 2B-1.2 

1D-1.7 2B-1.6 2B-1.6 1D-1.7 1D-1.1 1D-1.13 1D-1.5 2B-1.2 

1D-1.7 2B-1.6 2B-1.6 1D-1.1 1D-1.1 1D-1.13 1D-1.5 2B-1.2 

1D-1.7 1D-1.7 2B-1.6 1D-1.1 1D-1.1 1D-1.13 1D-1.5 2B-1.3 

1D-1.7 1D-1.7 2B-1.6 1D-1.7 1D-1.1 1D-1.13 1D-1.5 1D-1.3 

1D-1.7 1D-1.8 2B-1.6 1D-1.7 

 

1D-1.13 1D-1.5 

 

1D-1.7 2B-1.6 2B-1.6 

  

1C-1.1 

  

1D-1.7 2B-1.6 1D-1.1 

  

2B-1.7 

  

1D-1.9 1D-1.6 1D-1.1 

  

2B-1.8 

  

1D-1.9 2B-2.1 1D-1.1 

  

1D-1.7 

  

1D-1.9 1D-1.1 1D-1.1 

  

1D-1.13 

  

1D-1.9 1D-1.1 1D-1.1 

  

1D-1.13 

  

1D-1.9 1D-1.7 1D-1.6 

  

1D-1.13 

  

1D-1.10 1D-1.10 1D-1.6 

  

1D-1.13 

  

1D-1.10 1D-1.1 1D-1.9 

  

1C-1.1 

  

1D-1.11 

 

1D-1.9 
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Figure S3. 5. Distribution of the AIV gene types from Atlantic flyway ducks by location 

(starting from the next page). Gene typing was done as described in the Materials and 

Methods section such that sequences with nucleotide identity of ≥99% are considered as 

homologous genes or the same gene type. Sequences from different locations within the 

Atlantic bird flyway are shown in different colours, as indicated in the legend. The 

locations are abbreviated as follows: NL, Newfoundland; QC, Quebec; MD, Maryland; 

NB, New Brunswick; PEI, Prince Edward Island; NY, New York; PA, Pennsylvania; DE, 

Delaware; ON, Ontario; FL, Florida; NS, Nova Scotia. The 18 gene types detected only in 

Newfoundland are labeled with asterisk (*). 
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NL QC NB PEI NS MD NY DE PA ON FL 

PB2 

C-1.1 C-1.1* 

          C-2.1 C-2.1 

          C-2.2 C-2.2 

 

C-2.2 

 

C-2.2 

      C-2.3 C-2.3 

          C-2.4 C-2.4* 

          C-2.5 C-2.5 

          C-2.6 

 

C-2.6 C-2.6 

        C-2.7 

 

C-2.7 C-2.7 

  

C-2.7 

     C-2.8 

  

C-2.8 

        C-2.9 

   

C-2.9 

       C-2.10 C-2.10 

 

C-2.10 

        C-2.11 

 

C-2.11 

         C-2.12 

 

C-2.12 

    

C-2.12 
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C-2.13 

     

C-2.13 

     C-2.14 

     

C-2.14 

     C-2.15 

      

C-2.15 

    C-2.16 

        

C-2.16 

  C-2.17 

       

C-2.17 

   C-2.18 

   

C-2.18 

       C-2.19 

  

C-2.19 

        C-3.1 C-3.1 

          C-3.2 

 

C-3.2 

       

C-3.2 

 C-3.3 

 

C-3.3 

        

C-3.3 

C-3.4 

 

C-3.4 

         C-3.5 

  

C-3.5 C-3.5 C-3.5 

      C-4.1 

  

C-4.1 C-4.1 

       C-5.1 

      

C-5.1 

    J-1.1 

  

J-1.1 
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J-1.2 

 

J-1.2 

         PB1 

F-1.1 F-1.1 

          F-1.2 F-1.2 

  

F-1.2 

       F-1.3 

 

F-1.3 

         F-1.4 

      

F-1.4 

 

F-1.4 

  F-2.1 F-2.1 

 

F-2.1 

        F-2.2 

 

F-2.2* 

         F-3.1 F-3.1 

          F-3.2 F-3.2 

  

F-3.2 

 

F-3.2 

     F-3.3 

  

F-3.3 

        F-3.4 

 

F-3.4 

         F-3.5 

  

F-3.5 

        F-3.6 

  

F-3.6 F-3.6 

       F-3.7 

 

F-3.7 
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F-3.8 

 

F-3.8 

        

F-3.8 

F-3.9 

       

F-3.9 

   F-3.10 

      

F-3.10 

    F-3.11 

    

F-3.11 

      F-3.12 

  

F-3.12 

        F-4.1 F-4.1 

          F-4.2 F-4.2 

          F-4.3 F-4.3 

          F-4.4 F-4.4 

          F-4.5 

  

F-4.5 F-4.5 F-4.5 

      F-4.6 

 

F-4.6 

         F-4.7 

         

F-4.7 

 F-5.1 

  

F-5.1 

  

F-5.1 F-5.1 

    F-5.2 

     

F-5.2 

     F-6.1 

  

F-6.1 
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F-6.2 

     

F-6.2 

     F-7.1 

     

F-7.1 

     F-8.1 

 

F-8.1 F-8.1 

        PA 

H-1.1 H-1.1 

  

H-1.1 

       H-1.2 H-1.2 

          H-1.3 H-1.3 

          H-1.4 H-1.4 

          H-1.5 H-1.5 

          H-1.6 H-1.6 

          H-1.7 

 

H-1.7 

         H-1.8 

      

H-1.8 

    H-1.9 

 

H-1.9 

         H-1.10 

     

H-1.10 

     H-1.11 

     

H-1.11 
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H-1.12 

     

H-1.12 

     H-1.13 

     

H-1.13 

     H-1.14 

         

H-1.14 

 H-1.15 

  

H-1.15 

        H-1.16 

  

H-1.16 

        H-1.17 

   

H-1.17 H-1.17 

      E-1.1 E-1.1 

          E-1.2 E-1.2 

          E-1.3 

  

E-1.3 

        E-1.4 

  

E-1.4 

        E-1.5 

      

E-1.5 

 

E-1.5 

  E-2.1 E-2.1 

 

E-2.1 E-2.1 E-2.1 

      E-2.2 

     

E-2.2 

     E-3.1 

 

E-3.1 E-3.1 E-3.1 

       E-3.2 

  

E-3.2 
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E-3.3 

 

E-3.3 

         E-3.4 

          

E-3.4 

E-3.5 

       

E-3.5 

   E-4.1 

  

E-4.1 

        E-5.1 

 

E-5.1 

    

E-5.1 

    E-5.2 

 

E-5.2 
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Figure S3.6. Spatial distribution of detections of the Atlantic flyway duck AIV gene sub-

lineages in North American flyways (starting from the next page). The numbers of viruses 

identified in each flyway are shown for the indicated gene sub-lineages that were 

identified in the 2006-2011 Atlantic flyway duck viruses. Only sub-lineages with ≥10 

genes detected in at least one flyway are shown. Flyways are shown in different shading: 

Atlantic flyway (AF), black; Mississippi flyway (MF), dark grey; Central flyway (CF), 

light grey; Pacific flyway (PF), white. 
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Figure S4.1. Phylogenetic trees for the internal protein gene segments with virus 

identification information (starting from the next page). The gull AIV sequences from 

Newfoundland (from 2009-2011) are labelled according to the geographic and host group 

affiliation of their clades: yellow circle for North American gull (AG), red circle for 

North American avian (AA), grey circle for Eurasian gull (EG) and blue circle for 

Eurasian avian (EA). Reference gull AIV sequences from Atlantic and Pacific North 

America are labelled with black and open circles, respectively, while those from Eurasia 

are labelled with open squares. Gene lineages and clades were assigned with serial 

numbers as described in the Material and Method section. Phylogenetic maximum 

likelihood (ML) trees were constructed using MEGA5 with 1000 bootstrap replicates and 

bootstrap values ≥70% are given at the nodes. The scale bars indicate substitutions per 

site. 
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Table S5.1. Genbank accession numbers for sequences of the 17 reference murre AIVs analyzed in this study. 

Virus Segment sequence accession number 

PB2 PB1 PA HA NP NA M NS 

A/thick-billed murre/Alaska/ 

44085-108/2006(H1N9) 

HM059937 HM059956 HM059978 HM059985 HM060008 HM060041 HM060056 HM060063 

A/thick-billed murre/Alaska/ 

44088-059/2006(H11N9) 

HM059940 HM059961 HM059984 HM059993 HM060009 HM060040 HM060052 

 

HM060062 

 

A/common murre/Alaska/ 

44085-165/2006(H11N9) 

HM059941 HM059960 HM059968 HM059990 HM060007 HM060033 HM060053 HM060071 

A/common murre/Alaska/ 

44089-066/2006(H10N2) 

HM059933 HM059964 HM059973 HM059986 HM060006 HM060025 HM060060 HM060067 

 

A/thick-billed murre/Alaska/ 

44085-090/2006(H11N9) 

HM059935 HM059935 HM059980 HM059991 HM060010 HM060038 HM060042 HM060069 

 

A/thick-billed murre/Alaska/ 

44086-095/2006(H11N9) 

HM059939 HM059949 HM059969 HM059992 HM060020 HM060039 HM060057 HM060068 

A/thick-billed murre/Alaska/ 

44085-155/2006(H9N2) 

HM059942 HM059963 HM059976 HM060002 HM060021 HM060026 HM060044 HM060077 

A/thick-billed murre/Alaska/ 

44145-186/2006(H9N2) 

HM059946 HM059957 HM059982 HM060003 HM060004. HM060027 HM060048 HM060075 

A/thick-billed murre/Newfoundland/ 

031/2007(H11N2) 

GU826671 GU826672 GU826673 GU826674 GU826675 GU826676 GU826677 GU826678 

A/thick-billed murre/Alaska/ 

44145-199/2006(H2N6) 

HM059929 HM060061 HM059979 HM059999 HM060022 HM060031 HM060058 HM060061 

A/thick-billed murre/Alaska/44085-

040/2006(H10N3) 

HM059943 HM059943 HM059970 HM059989 HM060014 HM060030 HM060050 HM060074 

A/common murre/Oregon/19497-

004/2005(H9N5) 

CY075932 CY075932 CY075930 CY075925 CY075928 CY075927 CY075926 CY075929 

A/common murre/Oregon/20361-

002/2007(H12N5) 

CY076116 CY076115 CY076114 CY076109 CY076112 CY076111 CY076110 CY076113 

A/guillemot/Sweden/3/00(H6N2) AY703829 AY703830 AY703831 AY703832 AY703833 AY703834 AY703836 AY703835 

A/common murre/Oregon/20361-

001/2007(H10N7) 

CY076108 CY076107 CY076107 CY076101 CY076104 CY076103 CY076102 CY076105 

A/murre/Alaska/305/1976(H1N6)   CY015166 CY015163  AY207535 CY015164 CY015165 

A/murre/Alaska/175/1976(H1N2)    CY015167    CY015168 
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Table S5.2. Genetic structure of murre AIVs by location of origin. 

Location (number of viruses) Lineage Segment Total 

PB2 PB1 PA HA NP NA M NS 

Pacific North America (15) American avian 7 13 13 13 13 12 8 14 92 

Eurasian avian 6 0 1 1 0 1 5 1 16 

American gull 0 0 0 1 0 0 0 0 1 

Total 13 13 14 15 13 13 13 15 109 

Atlantic North America (22) American avian 4 21 22 21 20 21 5 22 136 

Eurasian avian 18 0 0 0 0 0 0 0 18 

Eurasian gull 0 0 0 0 0 0 17 0 17 

Total 22 21 22 21 20 21 22 22 171 

Atlantic Eurasia (1) American avian 1 1 0 0 0 0 1 1 4 

Eurasian avian 0 0 1 0 1 1 0 0 3 

American gull 0 0 0 1 0 0 0 0 1 
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Figure S5.1. Geo-locations of the 3 Common Murre breeding colonies (Gull Island, 

Great Island and Cabot Island) in this study. 
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Figure S5.2. Phylogenetic analyses of the 38 AIVs from Common and Thick-billed 

Murres (starting from the next page). The analyses of the PB1, PA, HA (H2, H6, H9, H10, 

H11 and H12), NP, NA (N3, N5, N6, N7 and N9) and NS segment sequences are shown 

and labeled accordingly. The filled and open circles indicate the 21 viruses from 

Newfoundland in 2011 from the Gull and Cabot Island colonies, respectively. Filled and 

open triangles represent murre viruses from North America and Eurasia, respectively, 

available in the sequence database. The lineages are labeled as AA for North American 

avian, EA for Eurasian avian, AG for North American gull and EG for Eurasian gull. The 

trees were constructed with the maximum likelihood method using MEGA 5, and 

bootstrap values are shown as percentages based on 1000 replicates where support was 

≥70%. The scale bars indicate the number of substitutions per site. 
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Genotype Virus PB2 PB1 PA HA NP NA M NS 

A A/Common murre/Newfoundland/AB318/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB319/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB335/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB353/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/HM530/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/HM575/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB438/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB351/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB358/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB341/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB375/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB332/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/HM524/2011(H1N2) EA   1  2 EG  
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A A/Common murre/Newfoundland/AB376/2011(H1N2) EA   1  2 EG  

A A/Common murre/Newfoundland/AB324/2011(H1N2) EA   1  2 EG  

B A/Common murre/Newfoundland/AB331/2011(H1N2) EA   1  2   

C A/Common murre/Newfoundland/AB432/2011(H1N2)    1  2 EG  

D A/Common murre/Newfoundland/AB327/2011(H1N2)    1  2   

E A/Thick-billed murre/AK/44145-199/2006(H2N6)   EA 2 EA  6  EA 

F A/Thick-billed murre/AK/44145-155/2006(H9N2)    9  2   

F A/Thick-billed murre/AK/44145-186/2006(H9N2)    9  2   

G A/Common murre/Oregon/20361-001/2007(H10N7)    10  7   

H A/Thick-billed murre/AK/44085-040/2006/(H10N3)    10  3   

I A/Common murre/Oregon/20361-002/2007(H12N5)    12  5   

J A/Guillemot/Sweden/3/2000/(H6N2)   EA 6 AG EA 2 EA   

K A/Thick-billed murre/St./John's/031/2007(H11N2)    11  2   

L A/Common murre/AK/44089-066/2006(H10N2) EA   10  2 EA  

M A/Thick-billed murre/AK/44085-108/2006(H1N9) EA   1  9 EA  
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N A/Common murre/AK/44085-165/2006/(H11N9) EA   11  9 EA  

N A/Thick-billed murre/AK/44088-059/2006(H11N9) EA   11  9 EA  

O A/Thick-billed murre/AK/44085-090/2006(H11N9) EA   11  9   

O A/Thick-billed murre/AK/44085-095/2006(H11N9) EA   11  9   

- A/Common murre/Newfoundland/AB340/2011(N2)    -  2   

- A/Common murre/Newfoundland/AB364/2011(H1N2) EA   1 - 2   

- A/Common murre/Newfoundland/AB380/2011(H1N2) EA -  1 - 2   

- A/Murre/AK/175/1976/(H1N6) - - - 1 - 6 - - 

- A/Common murre/AK/305/1976/(H1N6)  -  1  6 EA EA  

- A/Common murre/Oregon/19497-004/2005(H9N5)    9 AG  5   

 

Figure S5.3. Genomic diversity of AIVs from murres. Fifteen genotypes (designated A through O) were assigned to the 32 

murre viruses with sequences available for all 8 segments based on the phylogenetic analyses (Figures 1-4 and S1). Sequences 

classified within the same phylogenetic grouping for a given segment are shaded alike (white, light grey or dark grey), except for 

the HA and NA segments that are distinguished by their subtype number. Segments that were classified in lineages other than 

North American avian are indicated: EA, Eurasian avian; AG, North American gull; EG, Eurasian gull. 
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Colony Virus PB2 PB1 PA HA NP NA M NS 

Gull Island A/Common murre/Newfoundland/AB318/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB319/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB335/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB353/2011(H1N2)         

Cabot Island A/Common murre/Newfoundland/HM530/2011(H1N2)         

Cabot Island A/Common murre/Newfoundland/HM575/2011(H1N2)         

Cabot Island A/Common murre/Newfoundland/AB438/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB351/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB358/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB341/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB375/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB332/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/HM524/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB376/2011(H1N2)         

Gull Island A/Common murre/Newfoundland/AB324/2011(H1N2)         

 

Figure S5.4. Sequence diversity within genotype A viruses. Segment sequences with ≤99% nucleotide identity to the other 

viruses are shaded grey. 
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Table S6.1. Cross-year surveillance data for AIV infection by real-time RT-PCR in 

murres in Newfoundland (2009-2011) 

Year Month Samples Positive Total % 

2009 March 216 0 620 0 

 April 2 0   

 June 330 0   

 August 50 0   

 December 22 0   

2010 Feburary 60 1 405 1 

 May 19 0   

 June 27 1   

 July 72 0   

 August 184 2   

 September 1 0   

 November 42 0   

2011 March 136 0 812 8.4 

 May 1 0   

 June 82 0   

 July 209 61   

 August 166 7   

 November 218 0   

Sum up  1837 72 1837 3.9 
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Table S6.2. Avian influenza virus antibody prevalence in Common Murres (Uria aalge) 

at breeding colonies in Newfoundland, Canada in 2011 and 2012. 

 

Location 2011 (June 9
th

 to August 2
nd

 ) 2012 (June 26
th

  and July 9
th

 ) 

Samples Positives % Samples Positives % 

Gull Island 71 31 44 19 14 74 

Great Island 20 9 45 20 13 65 

Cabot Island 24 11 46 - - - 

Total 115 51 44 39 27 69 

Note: 1. The serological study followed the same protocol described in Chapter 2 and 4. 

Approximately 2 ml of blood was drawn from the brachial vein. Serum was separated by 

centrifugation. The AI MultiS-Screen Ab Test (IDEXX, Westbrook, ME) was used to test 

for anti-nucleoprotein (NP) antibodies. 


