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Abstract 

 

 

The Fortress of Louisbourg, on the east coast of Cape Breton, played an important role in 

the 18
th

-century colonial history of North America. In 2006, a mass burial was discovered 

on nearby Rochefort Point. From the historical and archaeological evidence, it is believed 

the remains are of New England garrison members who died at the Fortress in the winter 

of 1745-46. To investigate this hypothesis, isotopic analysis was conducted on the 

individuals’ skeletal remains and on faunal remains from the Fortress. While the dietary 

reconstruction revealed a great deal of isotopic variability, most individuals subsisted on 

C3 based foods. The 
87
Sr/

86
Sr analysis was inconclusive, however, the lack of marine diets 

and non-French δ
18
O values suggests the mass burial individuals were not Louisbourg 

residents. Furthermore, the δ
18
O values suggest possible origins in New England which 

lends further support to the hypothesis that the mass burial individuals were members of 

the 1745 New England garrison.  
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Chapter 1 

Introduction 

 

The Fortress of Louisbourg National Historic Site of Canada is on Cape Breton Island, in 

the province of Nova Scotia. Apart from being a prime tourist attraction, the Fortress of 

Louisbourg’s short and turbulent history has also received much attention from 

archaeologists and historians alike. Research on the fortress and its inhabitants has been 

aided by the copious amounts of primary documents concerning Louisbourg’s past (e.g., 

civil records, commercial documents, official correspondence and journals [De Forest ed. 

1932; Johnston 1996, 2001; MacLean 1995; Moore 1982) and by archaeological 

excavation which began in the 1940s and continues to date (O’Shea 1995). Through this 

work, researchers have created a detailed account of the Fortress’s history. Previous 

research has focused on topics including economics (Varkey 2002), religion (Johnston 

1996), family life (Donovan 1995), important events (Baker 1978), fortification 

construction (Fry 1995), and many others. However, there are parts of Louisbourg’s past 

that were never documented and remain a mystery.  

One such mystery concerns an archaeological site discovered after a destructive 

winter storm in 2006. A rescue excavation of a seemingly inconspicuous stone foundation 

revealed a mass burial containing 48 individuals (Duggan 2007, 2010; Parish 2006, 

2007). Historical records in conjunction with archaeological evidence identified the stone 

foundation as a root cellar belonging to a home occupied from 1725 to 1745 by the Ste. 

Marie family (Duggan 2007, 2010). In 1745 the fortress was besieged by New England 

soldiers and the British Navy (Rawlyk 1999), and in preparation for battle, the Ste. 
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Marie’s house was burned down by the French to clear a line of fire for the fortress’s 

cannons (Duggan 2010).  

After almost seven weeks of siege warfare, the French occupants of the fortress 

surrendered and returned to France (Baker 1978; Johnston 1996; McLennan 1918). To 

garrison the fortress, approximately (~) 2000 New England soldiers remained in 

Louisbourg until the following spring (Duggan 2010; McLennan 1918). Throughout this 

period, the garrison experienced substantial difficulties. They were unprepared for a long 

winter stay and suffered from camp diseases such as diphtheria and dysentery (Duggan 

2007, 2010; McLennan 1918). As a result of these harsh conditions, between 900 and 

1200 New England soldiers perished (Duggan 2007). From the historical and 

archaeological evidence it is believed that the New England soldiers used the Ste. Marie’s 

root cellar as a place to inter the dead (Duggan 2010). 

The goal of this thesis was to investigate the hypothesis that the human remains 

within the Ste. Marie’s root cellar were New England soldiers who died in the winter of 

1745-46. This was accomplished by performing isotopic analyses on the individuals’ 

skeletal remains as a means of reconstructing their life histories.  

For the past several decades archaeologists have used stable and radiogenic isotopes 

to reconstruct the diet and origins of past peoples. Carbon and nitrogen isotopic analysis 

allows archaeologists to differentiate between C3 and C4 plant based diets (Vogel and van 

der Merwe 1977), terrestrial and marine diets (Schoeninger et al. 1983), and determine 

the trophic level of a consumer (Richards et al. 2000), while analysis of oxygen and 

strontium isotopes, reflecting meteorologic and geologic conditions, allow researchers to 
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investigate questions relating to origins, residency, mobility, and migration (Bentley 

2006; White et al. 2004a).  

To examine the diet and origins of the Ste. Marie individuals, carbon and nitrogen 

isotopes were analysed from bone collagen, strontium isotopes from tooth enamel and 

dentine, and carbon and oxygen isotopes from the carbonate portion of enamel and 

dentine bioapatite. As part of this methodology, a large sample size of faunal bones and 

teeth was also analysed. These data contribute to a growing isotopic database of human 

and faunal materials from historical and colonial contexts.  

The following is a brief description of the organisation of this thesis. Chapter 2 

includes background information on the Fortress of Louisbourg such as the types of food 

present, the sources of the food, and the origins of the inhabitants. Also included is a brief 

discussion of the conflicts that occurred between the French and British leading up to the 

formation of Louisbourg and the events that took place during and after the 1745 siege. 

An account of the discovery of the Ste. Marie’s root cellar site is given in Chapter 3. This 

includes an overview of the rescue excavation that followed, the hypothesis that was 

developed concerning the group’s origins, and the research questions designed to test this 

hypothesis using isotopic analysis. The basic principles and uses of different isotopic 

analyses are given in Chapter 4. This includes a discussion of how and why isotopes are 

affected by biological, ecological, geographical, and physiological factors, and how these 

factors help archaeologists answer questions relating to diet and origins. Chapter 5 

contains information on the faunal and human materials analysed including pertinent 

information from the osteological analysis of the mass burial remains. Also outlined, are 

the methodologies for sample preparation, the procedures for analysing isotopes, and the 
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methodologies for determining sample preservation. Chapter 6 reports the results of the 

faunal and the Ste. Marie individuals’ isotopic analysis and sample preservation. Chapter 

7 contains a reconstruction of the Ste. Marie individuals’ and faunal specimens’ diets and 

origins utilising the isotopic data from this study, published isotopic data, and 

environmental and historical information. Chapter 8 includes a summary of the study’s 

findings and suggestions for future research.  
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Chapter 2 

The Fortress of Louisbourg 

 

2.1  Colonisation and Conflict 

The Fortress of Louisbourg was an 18
th

-century French fortress located on the east coast 

of Isle Royale, current day Cape Breton Island (Figure 1). As a community and as a 

commercial and military center, the Fortress of Louisbourg was a diverse and successful 

settlement that experienced a swift and unfortunate end. Before European settlement, 

Cape Breton Island was populated by native groups, mainly the Mi’Kmaq of the 

Algonquin speakers (Johnston 2004; McNeill 1985). Shortly after European contact, 

fishermen frequented the island to take advantage of the teeming codfish and whale 

populations (Brown 1979; Vernon 1903). Fishing groups from France, Spain, Portugal, 

and England initially related with one another and local native groups on more or less 

friendly terms, however, in the 17
th

-century, relations between fishermen, merchants, and 

settlers from different nations appear to have gone through a period of unrest (Brown 

1979; Downey 1965; Johnston 2004; Vernon 1903). The commercial potential of the 

island was becoming apparent, and numerous conflicts arose, particularly between the 

English and French (Balcom 1995; Downey 1965). Offshore, these conflicts concerned 

poaching and competition for fishing grounds, while onshore, settlement could be 

described as a veritable tug of war between Anglo and Franco, merchants and settlers, 

regardless of whether these nations were at peace or war (Downey 1965; Vernon 1903). 

Other Cape Breton settlements such as Ste. Anne and Ste. Pierre (Figure 1) were passed 

back and forth between French and English hands, or in some instances, between French 
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commercial rivals (Brown 1979; Johnston 2004; Vernon 1903). Due to numerous attacks 

and logistic struggles, both French bases at Ste. Anne and Ste. Pierre were abandoned, 

and no further attempt at settling Cape Breton was made until the 18
th

-century, however, 

discussions concerning its development continued among French officials (Johnston 

2004; McLennan 1918; Varkey 2002; Vernon 1903).  

Similar conflicts were also common in neighbouring regions (Brown 1979; Rawlyk 

1999; Rowe 1980). On the mainland of current day Nova Scotia, Acadia’s Port Royal 

exchanged hands between France and England on multiple occasions (Brown 1979; 

Graham 1958; Rawlyk 1999). Further north in Newfoundland, the English repeatedly 

attacked the French base at Plaisance (current day Placentia), while frequent attacks by 

the French on English settlements drastically reduced the English population and 

significantly damaged their fishing industry (Rowe 1980).  

Franco-Anglo relations in the New World rose to a dangerous level during the War 

of the Spanish Succession (1701 – 1714) (Brown 1979; Graham 1958; Rowe 1980). This 

war was initially an Old World affair, however, it was not long before the North 

American colonies became involved (Graham 1958; Varkey 2002). In the New World 

theatre, this war was known as ‘Queen Ann’s War’ and took the form of raids on 

settlements and towns, and privateering of ships, their cargo and crew, among other 

aggressions (Graham 1958; Hassler 1982; Leach 1986; Rowe 1980). Relations between 

the English and French were volatile throughout the New World, from Newfoundland to 

the West Indies, and inland to Canada (Brown 1979; Graham 1958; Hassler 1982; Leach 

1986; Rowe 1980). Each side strived to protect their own territories and economies while 

attempting to dislodge their adversaries’ position in the New World.  
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Queen Anne’s War came to an end in 1713 with the signing of the Treaty of Utrecht 

(Brown 1979). The terms of this treaty ceded Acadia and Newfoundland to the British, 

but Cape Breton Island remained under French possession (Rowe 1980; McLennan 1918; 

Vernon 1903). The rest of France’s territory in North America was restricted further 

inland and included three main areas: the Great Lakes, the St. Lawrence, and the 

Mississippi delta, with settlement restricted to the latter two areas (McNeill 1985). British 

territory extended along the coast of North America from Newfoundland to Florida (with 

the exception of Cape Breton) (Vernon 1903), however, British expansion westward was 

blocked by the Appalachian Mountain range, effectively preventing the British access to 

the French interior (McNeill 1985).  

Thus, nearly the entire east coast of North America became British territory which 

made access into the French interior problematic. However, France still retained their last 

coastal territory, Cape Breton Island (Vernon 1903). Because of Cape Breton’s coastal 

location and its placement at the mouth of the Gulf of St. Lawrence (Figure 1), the 

retention of this territory was believed essential for the safe transport of goods and 

people, in and out of the French interior (Graham 1958; McNeill 1985; Vernon 1903). 

Furthermore, the value of Cape Breton Island in relation to broader imperial affairs was 

becoming well known among French officials (McLennan 1918; McNeill 1985; Varkey 

2002).  

 

2.2  The Economic Value of Cape Breton Island 

Cape Breton Island had many important features that made it an ideal port for France’s 

commercial endeavours and a suitable base for the cod fishing industry. The following is 
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a summary of Cape Breton’s beneficial features and why these features were valued by 

French officials.   

 

2.2.1  A Port on Cape Breton Island 

The transatlantic trade industry was important for France, as it created a great deal of 

profit (McLennan 1918; McNeill 1985; Varkey 2002). France’s trade system consisted of 

a triangular network between France, North America, and the French West Indies, 

whereby France exported European goods, the West Indies exported sugar and rum, and 

North America exported fish and wheat (McNeill 1985; Varkey 2002). With the decrease 

in French territory after the Treaty of Utrecht, Cape Breton Island became a strategic 

location from which Canadian and coastal materials could be exported, and French and 

West Indian materials, imported (Balcom 1995; McNeill 1985; Vernon 1903).  

In addition, the geographic location of Cape Breton was a favourable one in terms 

of its position along Atlantic trade routes (McNeill 1985). Trade winds in the Atlantic 

move in a clockwise fashion with the westerly winds crossing the Atlantic at a close 

latitude with Cape Breton Island. Therefore, ships planning to return to Europe from the 

West Indies or New England would sail with the trade winds in a northerly direction as 

far as Cape Breton before crossing the Atlantic via the westerly trade winds (McNeill 

1985). Also, since contemporaneous navigational instruments could determine latitude 

only (and not longitude), it was common practice when making a journey across the 

Atlantic to sail along the coast to the same latitude as your destination before crossing 

(Balcom 1995). Cape Breton Island was roughly on the same latitude as France, making 

crossing between these regions less complicated (Balcom 1995).  
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Furthermore, because of Cape Breton’s placement at the mouth of the Gulf of St. 

Lawrence, a port on the island would be an ideal place to transfer goods from the large 

seafaring ships, to the smaller vessels more appropriate for sailing in the gulf and down 

the St. Lawrence River (Balcom 1995; McNeill 1985). A settlement on Cape Breton 

could also offer a safe anchor where ships could dock, materials could be stored, and the 

crew could rest (Clark 1980). All the above factors illustrate how a port on Cape Breton 

Island could be easily integrated into imperial-colonial trade, and indeed how such a 

settlement could greatly contribute to this system. 

 

2.2.2  Fishing off the Baccalaos 

The loss of Newfoundland to Britain in 1713 created a crisis in French colonial affairs 

(McLennan 1918). Plaisance was the base of the fishing industry in Newfoundland, but 

after the transfer of Newfoundland to British sovereignty, French officials were greatly 

concerned with the continuation of the cod fishing industry (Balcom 1995; Johnston 

1995a; McLennan 1918). French fishermen were given allowance to fish off of 

Newfoundland’s western shores, however, under the terms of the Treaty of Utrecht, 

French fishermen and settlers were not allowed to overwinter or have permanent living 

structures on Newfoundland soil (Varkey 2002; Rowe 1980). The French had found great 

value in the resident fishery, and therefore, a new territory was sought for the 

establishment of a permanent fishing outpost from which the Plaisance population could 

operate (McLennan 1918; Varkey 2002). To this end, French officials turned to their last 

coastal territory, Cape Breton Island (McNeill 1985; Varkey 2002). 



10 
 

Cape Breton Island was an ideal place for a resident fishery, as it held prosperous 

fishing grounds teeming with cod (McNeill 1985). Several hundred kilometers off the 

east coast is a continental shelf named Banquereau Bank (McNeill 1985). This bank was 

an ideal environment for fish to feed and mate, and as such, cod aggregated on 

Banquereau Bank in large numbers (McNeill 1985). Indeed, the early Basque and Breton 

fishermen found the waters off of Cape Breton, Newfoundland, and mainland Nova 

Scotia to be so plentiful with cod they gave the area the name ‘Baccalaos’ (the Basque 

word for cod) (Brown 1979; Vernon 1903). 

Maintaining the cod fishing industry was of vital importance to France since it 

granted significant returns which surpassed even that of the fur trade (Johnston 1995a; 

McLennan 1918; Varkey 2002). The great value of the fishing industry was due to a 

number of factors: cod was easily and reliably caught in large amounts, could be dried 

and preserved with salt or brine for extended periods, could be readily traded for other 

food, products, and materials, and was a cheap high-protein mineral-rich staple food in 

both Old World and New World markets (Balcom 1995; Downey 1965; McNeill 1985; 

Moore 1995; Varkey 2002). 

Considering Cape Breton’s ideal conditions for cod fishing, the island’s valuable 

offshore resources easily surpassed its onshore resources (McNeill 1985). The soil was 

not very supportive of agriculture (with a few exceptions, e.g., Mira, Ste. Anne, and Ste. 

Pierre) (Donovan 1995; McNeill 1985; Vernon 1903). Much of the island’s hardwood 

was in the interior, and most of the accessible wood was stunted pine and spruce (McNeill 

1985). Although coal was utilised by early Cape Breton settlers, the rich coal seams were 
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not exploited in any significant manor until the mid-19
th

-century (Martell 1980; McNeill 

1985).  

It was initially thought that a stronghold on Cape Breton Island could act as a 

barrier against an invading force (Vernon 1903). In truth Cape Breton was not intended as 

being a first line of defense for the interior settlements, nor was it ever outfitted to 

perform such duties (Fry 1995; McNeill 1985; Varkey 2002). Priority among these 

matters was given to the fishing and trading industry (Johnston 1995a). Concerning naval 

affairs, however, the fishing industry was often considered a ‘nursery for seamen’ (Bollan 

1746; Downey 1965; McLennan 1918; Varkey 2002). This factor was not an insignificant 

one considering the French fisheries in North America in the early 18
th

-century included 

400 – 800 ships and employed 16,000 – 30,000 men, any number of which could be 

called to take up arms in times of war (Downey 1965; Varkey 2002). This factor was 

indeed one of the many threats William Shirley, Governor of Massachusetts, heralded as 

motivation for the 1745 capture of Louisbourg (Downey 1965). For the above reasons, 

maintaining the fishing industry was of vital importance not only for colonial matters but 

also imperial affairs.  

 

2.3  The Fortress of Louisbourg 

Having realised the value, and perhaps also the vulnerability of their last coastal territory, 

the island was given the grand name ‘Isle Royale’, and an imposing fortress was devised 

for its capital (McLennan 1918). The harbour formerly known as English harbour (or 

Havre à l’Anglois) was chosen as the site for the town later to be christened ‘Louisbourg’ 

(Johnston 1995a; McLennan 1918). The first settlers arrived in 1713, and construction of 
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the fortifications began in 1720 (Johnston 1995a). Historical writings concerning Isle 

Royal’s Fortress of Louisbourg are varied and copious. Since the basis of this thesis is 

focused on determining the diet and origins of the Ste. Marie mass burial individuals, the 

following contextual summary is focused on the inhabitant’s food, drink, and origins.  

 

2.3.1  Food and Drink 

Apart from small scale agriculture in the Mira area and on Boularderie Island, agriculture 

on Isle Royale was relatively non-existent in comparison to Acadia or other French and 

British colonies (Clark 1980). Louisbourg households had their own backyard vegetable 

gardens and supplemented their diet with occasional hunting and freshwater fishing 

(Downey 1965; Lane Jonah and Véchambre 2012; McNeill 1985; O’Neill 1995), 

however, a Louisbourg inhabitant’s diet, especially during winter months, was based on 

locally baked bread and locally caught cod (Downey 1965; McNeill 1985; Lane Jonah 

and Véchambre 2012).  

In the early 18
th

-century the fishery was the most profitable industry for New 

France (Johnston 1995a; Varkey 2002). In the first five years after the establishment of 

Louisbourg, the colony had produced a total of 156,500 quintals of cod (a quintal = 100 

pounds) (McNeill 1985; Varkey 2002). Leading up to the 1740s, the annual catch was as 

high as 150,000 quintals per year and worth over three million livres back in France 

(Downey 1965; McNeill 1985; Moore 1995). Since codfish was a reliable and nutritious 

food, which could be easily preserved and stored, it was a staple food at the Fortress of 

Louisbourg (Balcom 1995; Downey 1965; McNeill 1985).  
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Following the fishery, the most important industry for the Fortress of Louisbourg 

was trade, both inter-colonial and inter-continental (McNeill 1985; Moore 1995). 

Louisbourg harbour saw over 150 trade ships each year carrying food items, building 

materials, and other goods (Downey 1965). Since Louisbourg’s economy was based on 

fishing and lacked any significant agricultural production, the Fortress relied on the 

importation of almost all of the town’s food supply (Clark 1980; McLennan 1918; Moore 

1995). Much of the imported goods received by Louisbourg were through trade with 

France (Moore 1995; Varkey 2002). Food items imported from the Old World included 

salt, grain, flour, wine, brandy, and salted meat (Varkey 2002). Louisbourg received flour 

and dried vegetables from Canada (Moore 1995; Varkey 2002) and sugar, coffee 

molasses, and rum from the French West Indies (Clark 1980; Varkey 2002; Vernon 

1903). 

Although trade with foreign entities was discouraged by imperial policy, these 

activities still occurred at the Fortress of Louisbourg (Chard 1995; Varkey 2002). Anglo 

and Franco merchants weaved through loopholes in their respective trade regulations and 

effectively intertwined two competing imperial economies (Clark 1980; Varkey 2002). 

Because of this, Louisbourg trade included to a large extent numerous Acadian and New 

England goods (Clark 1980; Rawlyk 1999). Imported foodstuffs from Acadia included 

fish, flour, bread, oats, wheat, peas, and meat (Clark 1980; Moore 1995). Acadia also 

shipped livestock to Louisbourg: ~600 – 700 cattle and ~2000 sheep annually (Clark 

1980; Moore 1995; Rawlyk 1999). Goods imported from New England included, 

livestock (e.g., cattle, oxen, and sheep), meat (e.g., pork and poultry), eggs, butter, cheese, 

flour, corn, wheat, rice, produce (e.g., potatoes, onions, apples, and pears), and cider 
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(Chard 1995; Clark 1980; McLennan 1918). Overall, whether through licit or illicit means 

the Fortress of Louisbourg imported a variety of food items from various regions within 

the transatlantic trade system.  

The food supply at the Fortress of Louisbourg was a reoccurring concern, especially 

during the winter months (McLennan 1918). Approximately half of Louisbourg’s soldiers 

had relocated during the winter of 1718 to avoid starvation (McLennan 1918; McNeill 

1985), and in the winter of 1743-44, on the verge of famine, the town’s officials 

contemplated shipping the entire population of Louisbourg back to France (Downey 

1965). During the winter months, Louisbourg residents relied on those food items that did 

not spoil (e.g., flour, salt fish, hogs lard, and biscuit), and as a result of this low vitamin 

diet, Louisbourg residents regularly suffered from scurvy (McLennan 1918; McNeill 

1985).  

 

2.3.2  The Louisbourg Inhabitants 

The first inhabitants of Louisbourg were the settlers and fishermen expelled from their 

home in Plaisance in 1713 (McLennan 1918). Joining them were a small number of 

Canadians and those Acadians not wishing to remain as neutral French in British owned 

Acadia (Donovan 1995; McLennan 1918). Eventually, the population of Louisbourg grew 

to include a garrison of French, Swiss, and German soldiers, royal and civil officials, 

servants, merchants, tradesmen, fishermen, shore-workers, sailors, proprietors, 

innkeepers, artisans, labourers, and many others (Johnston 1995b, 1995c, 2001). Of those 

individuals involved in trade and fishing, some were permanent inhabitants, while others 

were transient workers (Johnston 1995c, 2001; McLennan 1918).  
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Of the resident population, considering the fort’s military status and its involvement 

in the fishing industry, adult males greatly outnumbered females, at times 8 – 10:1 

(Johnston 1995b). Even without the soldier population, the ratio of adult males to females 

was never below 3:1 (Johnston 1996). In the early years of Louisbourg’s settlement, the 

percentage of children within the town was within the 20% range and eventually grew to 

as high as 45% (Johnston 2001; McNeill 1985). Population characteristics, such as birth 

place, spoken language, and religion, were occasionally recorded in census documents, 

however, concerns have been raised concerning the consistency, reliability, and scope of 

these records (see Johnston 1995b and 2001 for more information). As a result, this 

information must be taken as an approximate description of Louisbourg’s population 

characteristics. Other documents, such as parish records, are also helpful for examining 

birth place, baptisms, marriages, and deaths, but it should be noted that this information 

only covered those parishioners of the Roman Catholic faith and excluded Irish Catholic 

and Protestant residents who made up a small but not insignificant portion of the 

Louisbourg population (Johnston 1995b, 2001). 

Considering these limitations, some rough, yet valuable inferences regarding the 

Louisbourg population can be drawn. Louisbourg inhabitants originated from various 

areas in France, particularly western France (Johnston 1995b, 2001; McNeill 1985). A 

smaller percentage of Louisbourg inhabitants had a place of birth in New France and an 

even smaller percentage from foreign countries (Johnston 1995b, 2001). For example, in 

1734, 21.2% of inhabitants were from New France and 6.2% were from foreign countries 

(Johnston 1995b, 2001). However, the above statistics include only those males or 

females who were heads of households and not those inhabitants who were non-heads of 
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households including wives, children, fishermen, soldiers and servants (Johnston 1995b). 

Since non-heads of households were a significant portion of Louisbourg’s total 

population, accurately determining the origins of all Louisbourg inhabitants is a difficult 

task (Johnston 1995b, 1995c). 

From various other sources, information on brides, fishermen, soldiers, servants, 

and slaves has been compiled. Of those brides whose origins were recorded in parish 

records, most were from New France (e.g., 83.63% between 1722 and 1745, and 59.23% 

between 1749 and 1758) (Johnston 2001). Most of Louisbourg’s fishermen were from 

France (mainly Basque country, Normandy, and Brittany), and some were from Plaisance 

or other areas of New France or foreign countries (Johnston 1995b, 1995c). Almost all of 

Louisbourg’s soldiers were recruited from France with only a few determined by 

historians as having non-French origins (e.g., Irish, Swiss, and Acadian) (Johnston 1995b, 

1995c). Louisbourg also became host to a group of Swiss and German soldiers belonging 

to the Karrer Regiment which made up one-quarter of the total garrison population by 

1741 (Johnston 1995b, 2001). The total garrison population ranged anywhere from one-

quarter to one-half of the total Louisbourg population (Johnston 1995b). Native peoples 

did not reside in the fortress apart from the few who lived as servants or slaves (Johnston 

1995b, 1996, 2001). The Black residents, who are believed to be from Africa or the 

Antilles, were mostly slaves, and few were free individuals (Donovan 1995; Johnston 

1995b, 2001). Overall, the Fortress of Louisbourg was not limited to people of French 

origins but had a varied minority population including Aboriginal, non-French European, 

African and colonial-born individuals.  
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2.4  The Siege of 1745   

By the 1740s, the New England colonies had become uneasy at the growth of Louisbourg 

(Baker 1978, Graham 1958, Rawlyk 1999). Much concern was given to the growth of 

French trade in the Atlantic, their alliance with the Natives, and the ever growing fear of 

attack, but paramount among these concerns was privateering and the prosperity of the 

French fishing industry (Baker 1978; Graham 1958; Leach 1986). The long standing 

competition for fishing rights between France and England had continued into the early 

18
th

-century, and by the 1740s France’s fishing industry in the Atlantic was vastly larger 

than Britain’s (Bollan 1746; McNeill 1985). Massachusetts lawyer and London Colonial 

Agent William Bollan in comparing the French and English Fishing industries stated that 

the French fishery… “amounted (within a Trifle) to a Million, Sterling: Our’s not to one 

Third of that Sum. They employed 27 500 Men: We, at most, 14 or 1500. They, 564 Sail 

of Ships: We about 300, great and small.” (Bollan 1746:91). Thoughts of overthrowing 

the Fortress of Louisbourg began circulating among British and New England officials 

(Baker 1978; McLennan 1918). These deliberations would eventually find a working 

platform when war between British and French colonies was declared in the spring of 

1744.  

Previous to the declaration of war, the town of Louisbourg was in trouble (Downey 

1965; Rawlyk 1999). Fishermen and merchants steered clear of the area around 

Louisbourg to avoid becoming caught in the middle, or be the target of violent outbreaks 

(Rawlyk 1999). As a result, Louisbourg’s food supply was running dangerously low 

(Downey 1965; Rawlyk 1999). This problem led Louisbourg officials to organise an 

attack on Canso, a small British settlement at the northeastern tip of mainland Nova 
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Scotia, south of Isle Royale (Rawlyk 1999). In the eyes of Louisbourg officials, attacking 

Canso would open up trade routes between Louisbourg and Nova Scotia (providing the 

former with provisions for the town’s ailing food supply) and lay the groundwork for the 

capture of the much desired Nova Scotia and the return of the Acadians to French 

sovereignty (Rawlyk 1999). The seizure of Canso and Acadia would also deliver a 

significant blow to the British fisheries which in turn would open up more fishing 

territory for the French (Rawlyk 1999). 

Once war was declared against Britain, Louisbourg sent an expedition to capture 

Canso in May of 1744 (Rawlyk 1999). The fort was quickly capitulated and burned to the 

ground with its inhabitants deported or taken prisoner (Baker 1978; Rawlyk 1999). This 

victory spurred the Louisbourg governor, Du Quesnel, to go one step further and attack 

Annapolis Royal, the British place name for the former French settlement of Port-Royal 

(Rawlyk 1999). A joint French-Native offensive was employed, but the attack was 

eventually withdrawn (McLennan 1918; Rawlyk 1999). In addition, throughout the 

summer of 1744, privateers out of Louisbourg routinely prayed on New England trade 

ships which significantly disrupted the trade industry and irritated New England 

merchants (Baker 1978; Hitsman and Bond 1980; Rawlyk 1999). New England privateers 

responded by attacking French fishing and merchant vessels (Rawlyk 1999). 

In the eyes of New England and British officials, the actions of the French in the 

early months of King George’s War displayed a swift and resolute aggression and 

revealed a disorganised military and an unreliable navy (Baker 1978; Rawlyk 1999). 

Furthermore, prisoners taken from Canso in the spring of 1744, once released, revealed 

valuable information about the dilapidated condition of Louisbourg’s defenses (Baker 
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1978; Hassler 1982; Leach 1986). This information, coupled with past concerns, fueled 

discussions among New England officials regarding offensive and defensive measures 

(Graham 1958; Rawlyk 1999). Massachusetts Governor, William Shirley, formulated a 

proposal for the eradication of the French presence on Isle Royale (Baker 1978; Rawlyk 

1999). Shirley’s proposal eventually gained support in the New England and British 

governments, and by 1745 plans were underway for the capture of the Fortress of 

Louisbourg (Baker 1978; Hassler 1982; Leach 1986; Rawlyk 1999). 

A joint expedition was formulated using New England land troops (led by merchant 

and militia colonel, William Pepperell) supported by the British Navy (led by British 

Commodore, Peter Warren) (Baker 1978; Hassler 1982; Rawlyk 1999). The enlisted 

soldiers were from three New England colonies: 456 men from New Hampshire, 516 

from Connecticut, and 3,300 from Massachusetts (which included current day Maine) 

(Baker 1978; Rawlyk 1999). The soldiers were accompanied by 34 cannons, 115 ships, 

and four British warships (Hassler 1982). The men enlisted for the Louisbourg expedition 

were not trained soldiers but a hodgepodge of tradesmen: fishermen, deckhands, 

longshoremen, farmers, mechanics, and merchants (Baker 1978; Clark 1980; Hassler 

1982). What these men lacked in training and military weapons and accoutrements, they 

made up for with youthful energy (Rawlyk 1999). Most of the soldiers were in their 

twenties, but overall, their ages ranged from 16 – 60 (Baker 1978; Rawlyk 1999). 

A blockade was formed in the spring of 1745 to isolate the Fortress from aid and 

supplies (Rawlyk 1999). The governor of Louisbourg, Du Chambon, was either naive or 

unaware of any pending danger (McLennan 1918; Rawlyk 1999). This changed when a 

French vessel maneuvered its way through the blockade and carried intelligence to 
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Louisbourg officials that a vast British naval presence was gathered off the coast (Rawlyk 

1999). Upon hearing this news, all exterior inhabitants were called to take shelter behind 

the fortress walls, and a total of 590 regular soldiers and ~900 civilians were called into 

action (Rawlyk 1999).  

With Warren’s ships effectively blockading Louisbourg harbour, Pepperell’s troops 

made landfall approximately four miles southwest of Louisbourg on May 11
th

 and slowly 

advanced personnel, provisions, and artillery closer to the Fortress’s western fortifications 

(Leach 1986; McLennan 1918). A measure of success was quickly achieved when the 

New England soldiers occupied the abandoned Royal Battery and outfitted her cannons to 

fire against the Fortress (McLennan 1918; Rawlyk 1999). From this position, the captured 

lighthouse battery, and from numerous other makeshift fascine batteries to the west of 

Louisbourg, the New England artillery rendered significant damage to the Fortress’s 

fortifications (Baker 1978; Rawlyk 1999).  

As the siege continued, the state of Louisbourg slowly declined with no signs of 

relief (Baker 1978). Eventually, Du Chambon, with low provisions, exhausted 

inhabitants, and a ruined fortress, began negotiations for the capitulation of Louisbourg 

(Hassler 1982; McLennan 1918; Rawlyk 1999). Agreeable terms were reached on June 

27
th

, and Louisbourg’s Troops marched out with the honours of war the next day (Baker 

1978). Louisbourg was turned over to its captors, and the town’s occupants were deported 

back to France (Johnston 1996; McLennan 1918). 

To prevent the French from retaking the Fortress, a New England garrison of ~2000 

soldiers occupied Louisbourg until the following spring (Duggan 2007, 2010; McLennan 

1918; Wood 1920). While many studies of Louisbourg’s history quickly glance over this 
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small period of history, there are many that give short accounts of those events that 

occurred between the capture of Louisbourg and the beginning of British occupation in 

the spring of 1746 (e.g., Downey [1965], Duggan [2010], Johnston [1996], Leach [1986], 

McLennan [1918], Rawlyk [1999], and Wood [1920]). Throughout the winter months, the 

New England garrison suffered greatly. The soldiers were unprepared for their stay and 

had an inadequate supply of food and proper clothes (Leach 1986). Lacking in military 

discipline, the garrison had not prepared sufficient shelters, and once the winter cold 

descended on the ruined town, a lack of fuel caused them to dismantle parts of their 

shelters for firewood (Knowles 1746; Leach 1986). To further avoid the cold, it was 

reported that the soldiers “did their filth” indoors (Knowles 1746).  

As a result of these harsh conditions, the soldiers suffered from numerous illnesses 

resulting in epidemic-like casualties (Downey 1965; Johnston 1996; Wood 1920). To 

make matters worse, those who died were not properly disposed of but in some instances 

buried below the floorboards of the same houses the soldiers inhabited (Knowles 1746), 

likely contributing to the spread of illness. By the end of the garrison’s occupation of 

Louisbourg, around 1000 (of the original 2000) New England soldiers perished (Duggan 

2010). Many of the deceased were carried out of town through the Maurepas Gate and 

buried on Rochefort Point (Johnston 1996; Wood 1920), however, exactly where or how 

these individuals were laid to rest is unknown.  
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Chapter 3 

The Ste. Marie Mass Burial 

 

In the winter of 2006, a massive winter storm hit the east coast of Cape Breton and 

damaged numerous archaeological features at the Fortress of Louisbourg (Duggan 2010). 

One area that was substantially damaged was Rochefort Point, a small piece of land 

which extends from the Fortress’s eastern walls toward the entrance of Louisbourg 

harbour (Duggan 2010). Several sections of the point’s bank had ripped away revealing 

important archaeological features (Duggan 2010). One such feature, exposed on the north 

bank of the point ~185 meters (m) outside the Fortress walls (Figure 2), appeared upon 

initial inspection to be a dry laid stone foundation of unknown function (Figure 3) 

(Duggan 2010; Parish 2006).  

In the summer of 2006, small exploratory units were excavated as part of a field 

school led by Rebecca Duggan, site archaeologist and Jean-Pierre Chrétien, from the 

Canadian Museum of Civilisation (Duggan 2010). This excavation uncovered the corners 

of the foundation and revealed that the structure was ~4 x 5 m in size (Duggan 2010). A 

comparison of the feature’s location to 18
th

-century maps of the fortress allowed the 

archaeologists to conclude that the foundation was a root cellar associated with a house 

owned by the Ste. Marie family (Figure 4) (Duggan 2010).  

Within the root cellar were an abundance of 18
th

-century artifacts (Duggan 2010). 

This was expected since the house was occupied between 1725 and 1745 (Duggan 2007). 

However, rather unexpected was the discovery of human remains situated within the root 

cellar ~1 m below the surface (Duggan 2010). At the end of the two-week project, further 
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excavation was put on hold so a field crew could conduct further historical research 

(Duggan 2010). With a field crew assembled (which included Dr. Joseph Parish, physical 

anthropologist and assistant professor at Cape Breton University), excavation resumed in 

the fall of 2006 (Duggan 2010). In the initial stages of the project, it was believed only a 

small number of individuals were interred in the area. However, as excavation continued, 

the minimum number of individuals (MNI) quickly rose, and by the end of the excavation 

(in the fall of 2007) a mass burial of 48 individuals was uncovered (Figure 5) (Duggan 

2010; Parish 2006, 2007).  

Most of the individuals within the Ste. Marie mass burial were anatomically 

articulated, lying on their back, with their hands over their pelvis (Parish 2006, 2007). 

The manner in which they were placed is unique. The skeletal remains were in two layers, 

with the bottom layer oriented east to west and the top layer oriented north to south 

(Duggan 2010; Parish 2006, 2007). Adjacent individuals were mainly laid out opposite 

one another in terms of their head to toe orientation. For example, individual A was laid 

out head to toe (north to south), with adjacent individual B laid out toe to head (north to 

south) (Duggan 2010; Parish 2006, 2007) A detailed description of the skeletal remains 

can be found in Chapter 5.1.  

The burial fill within the root cellar consisted mostly of brick and stone rubble, 

beach gravel, and fossiliferous limestone slabs, the latter two likely acquired from the 

nearby beach and limestone kiln, respectively (Duggan 2010). No personal belongings or 

grave goods were found with the remains, and the only artifacts associated with the burial 

layer were copper alloy shroud pins, indicating that the deceased were likely buried 

without clothes and wrapped in shrouds (Duggan 2010). 
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3.1  The New England Garrison Hypothesis 

Historical records and archaeological evidence identified the root cellar as belonging to a 

house occupied by the Ste. Marie family (Duggan 2007, 2010), but why was the Ste. 

Marie’s root cellar used for a mass burial? As mentioned in Chapter 1, The Ste. Marie 

house was burned down in preparation for the 1745 siege (Duggan 2010). After 

Louisbourg’s capture and over the winter months, the New England garrison sustained 

epidemic-like casualties (Duggan 2007, 2010; McLennan 1918; Rawlyk 1999). It is 

believed that the New England garrison used the burned out foundation of the Ste. 

Marie’s root cellar as a place to inter the dead (Duggan 2010).  

Evidence from the site supports this hypothesis. The use of a root cellar for 

interment indicates that digging a hole in the ground was not preferred or feasible, and the 

fill layer within the root cellar (consisting of loose, available materials) suggests that soil 

for fill was not readily available (Duggan 2010; Parish 2006, 2007). These factors suggest 

that burial took place when the ground was frozen which could range from mid-

December to early April for eastern Cape Breton Island (Duggan 2010; Parish 2006, 

2007). 

Since there was no burial fill between the two layers of remains, it is believed that 

the individuals all died within a very short period of time (Parish 2006, 2007). Thus, the 

high number of deceased from the New England winter occupation may be the origins of 

the Ste. Marie group. A high mortality rate within a short period of time could be the 

result of an epidemic. Louisbourg was host to two small pox epidemics, one in 1732 and 

one in 1755 (Hoad 1976; Johnston 1996; McLennan 1918; McNeill 1985) and the former 

epidemic did indeed result in the use of a mass burial on a harbour front property across 
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from the fortress (Johnston 1996). However, the most telling evidence from the Ste. 

Marie site is the presence of a burn layer and a rubble layer of brick, stone, and mortar 

believed to be related to the destruction of the house before the 1745 siege (Duggan 2007, 

2010; Parish 2007). The placement of the individuals above the rubble and burn layers 

indicates the deceased were interred within the root cellar shortly after this event (Duggan 

2007, 2010; Parish 2007). Considering the short time frame for interment after the 

introduction of the burn layer, and considering historical records of the New England 

occupation give testimony to the use of Rochefort Point as a burial ground (Johnston 

1996; Wood 1920), it is believed that the Ste. Marie remains are that of the deceased New 

England garrison members who died at the Fortress in the winter of 1745-46 (Duggan 

2007, 2010; Parish 2007). 

 

3.2  Research Objectives 

There are a few facts pertaining to the Ste. Marie site that appear to conflict with the New 

England garrison hypothesis. Osteological analysis of the remains indicated that some 

individuals were likely not soldiers: three were female and three were children (Parish 

2006, 2007). Furthermore, there was no mention of the use of a mass grave to bury the 

deceased New England garrison members. Thus, the main objective of this research is to 

contribute to a deeper understanding of the life histories of the Ste. Marie individuals and 

to empirically investigate the New England garrison hypothesis. The specific questions 

outlined are: 
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1. What was the diet of the Ste. Marie individuals? Did they have a diet consisting 

of marine food items, terrestrial food items, or a combination of both? Did they 

eat C3 or C4 plants?  

2. From where did they originate? Did they originate from New England, France, 

or elsewhere? 

3. Are there any correlations between the individuals’ isotopic values and the 

information obtained from the osteological analysis (e.g., age, sex, dental 

health, and pathological conditions)? 

4. Based on the isotopic results, is it possible the Ste. Marie individuals are 

deceased New England garrison members? 

 

To examine the life histories of the Ste. Marie individuals, the well-

established technique of stable (carbon, nitrogen, and oxygen) and radiogenic 

(strontium) isotope analysis was used to reconstruct the individuals’ diet and origins 

(see Chapter 4). This information was used in conjunction with information 

obtained from the osteological analysis of the Ste. Marie remains. This analysis was 

conducted by Dr. Joseph Parish at the Cape Breton University Bioarchaeology 

Laboratory (CBUBL) and included a basic assessment of age, sex, dental health, 

and pathologies (see Chapter 5.1).  
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Chapter 4 

Reconstructing Diet and Origins: An Introduction to Isotope Analysis 

 

Elemental isotopes are present in the environment and passed through the food chain to 

humans (Bentley 2006; Budd et al. 2004; DeNiro 1987). By making comparisons between 

the isotopic values of different foods or environments, and human bone and dental tissues, 

it is possible to uncover certain aspects of an individual’s life history. For example, the 

types of food ingested (Raynor et al. 2008; Schwarcz et al. 1985; Walker and DeNiro 

1986), the trophic level of the consumer (Bocherens et al. 1995; Minagawa and Wada 

1984), origins, residency, mobility, and migration (Evans et al. 2006; Müller et al. 2003; 

Price et al. 2004), as well as societal and cultural aspects related to food and origins such 

as age, status, sex, marriage patterns, body modification, occupation, weaning age, and 

slavery (Bentley et al. 2005; Kusaka et al. 2011; Price et al. 2006; Prowse et al. 2005; 

Reitsema and Vercellotti 2012; Richards et al. 2002). The following outlines the 

principles of carbon, nitrogen, oxygen, and strontium isotopic analysis and the techniques 

used to reconstruct diet and origins.  

 

4.1  What are Isotopes?  

Isotopes are atoms of the same element but with different atomic masses (Hoefs 2004). 

The atomic mass of an element is the sum of the protons and neutrons within the nucleus 

(Hoefs 2004; Sulzman 2007). Isotopes of the same element will always have the same 

number of protons but will vary in the number of neutrons (DeNiro 1987; Sulzman 2007). 

For example, the most common isotope of carbon (C) has an atomic mass of 12 (denoted 
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as 
12
C) since it has six protons and six neutrons within its nucleus (6 + 6 = 12). Another 

isotope of carbon is 
13
C which has six protons and seven neutrons (6 + 7 = 13). The small 

atomic mass variations of different isotopes may seem inconsequential, however, within 

biological and ecological systems these small differences have notable and valuable 

impacts for archaeological research. 

12
C and 

13
C are stable isotopes, meaning they are energetically stable, and their 

abundance remains constant over time, while 
14
C is a radioactive isotope, meaning it is 

unstable and undergoes radioactive decay (Hoefs 2004; Sulzman 2007). Nitrogen isotopes 

14
N and 

15
N, and oxygen isotopes 

18
O and 

16
O, are also stable (Gat et al. 2001; Parwel et 

al. 1956). A radiogenic isotope is produced by the radioactive decay of another isotope 

(Beard and Johnston 2000). Pertinent to this research, 
87
Sr is a radiogenic isotope of 

strontium which is produced when rubidium (Rb) isotope 
87
Rb decays due to radioactive 

activity (Beard and Johnston 2000).  

Isotopic amounts are measured using isotopic ratios expressed in delta (δ) notation 

in units of per mil (‰), whereby an isotopic ratio is the abundance of one isotope 

compared to another isotope of the same element (e.g., 
13
C/

12
C), delta notation is an 

isotopic ratio expressed relative to a standard (denoted as δ
13
C using carbon as an 

example), and per mil indicates the number of parts per thousand (Hoefs 2004; 

Katzenberg 2008; Sulzman 2007). The function used to calculate the delta value of an 

isotopic ratio is shown below (using carbon as an example). 

 

δ
13
C = 

13
C/

12
C sample   13C/12C standard

13
C/

12
C standard

  1000 
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A standard is a material that has a known isotopic ratio. Researchers measure their 

unknowns relative to a standard, which allows for the calibration of isotopic results, as 

well as lab to lab comparisons (Katzenberg 2008; Mariotti et al. 1981). The isotopic 

values of standards fall on isotopic scales. The scale for carbon is Vienna Pee Dee 

Belemnite (VPDB). VPDB is a calcite containing cretaceous fossil called Belemnite 

(Belemnitella americana) from the Pee Dee formation in South Carolina (Craig 1953; 

Katzenberg 2008). The scale for nitrogen is AIR which is essentially the nitrogen isotopic 

ratio present in the atmosphere (Hoering 1955; Sulzman 1997). A positive delta value 

indicates a sample is isotopically heavier than the standard, and a negative value means 

the sample is isotopically lighter than the standard (Sulzman 2007). Furthermore, a delta 

value of +34‰ (for example) indicates that a sample is 3.4% higher than the scale against 

which the sample was compared (Mariotti et al. 1981). 

 

4.2  Carbon and Nitrogen Isotopes: Reconstructing Diet 

Two elements commonly used to reconstruct the diet of past peoples are carbon and 

nitrogen. The most common type of material archaeologists analyse for carbon and 

nitrogen isotopes is bone collagen, however, the carbonate fraction of bone and dental 

tissues are also analysed for carbon isotopes (Harrison and Katzenberg 2003; van der 

Merwe et al. 2003). This study examines carbon and nitrogen isotopes within bone 

collagen and carbon isotopes within tooth dentine and enamel bioapatite carbonate. The 

following sub-chapters summarise the processes by which carbon and nitrogen isotopes 

are passed from the environment through the food chain to humans and the types of 

information retrievable from carbon and nitrogen isotopic analysis.  
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4.2.1  Carbon from the Environment to Plants 

Isotopes 
13
C and 

12
C are available in the atmosphere in the form of carbon dioxide (CO2) 

which becomes incorporated into the cellular structure of plant tissue during the process 

of photosynthesis (Farquhar et al. 1989; Katzenberg 2008). Plants preferentially fix more 

of the lighter isotope (
12
C) than the heavier isotope (

13
C) (Craig 1954; O’Neir and 

Gulbransen 1939; Smith and Epstein 1971), and as a result, the δ
13
C values of most plant 

tissues will be less than the atmospheric δ
13
C values (which has a pre-industrial value of  

-6.5‰ [Marino and McElroy 1991]) (Bender 1971).  

There are three main types of photosynthetic pathways with which terrestrial plants 

fix carbon dioxide. Terrestrial plants that fix carbon into a three-carbon molecule via the 

Calvin-Benson photosynthesis pathway are called C3 plants (Calvin and Benson 1948; 

van der Merwe 1982). Plants that fix carbon into a four-carbon molecule via the Hatch-

Slack photosynthesis pathway are called C4 plants (Hatch and Slack 1966, 1970; van der 

Merwe 1982). C3 plants, which predominate in temperate environments, include grasses 

(e.g., oats, rice, wheat, and barley), beans, trees, and most shrubs, fruits, and vegetables, 

while C4 plants, which typically grow in hot dry conditions, include tropical grasses such 

as maize, sorghum, millet, and sugar cane (Ambrose and Norr 1993; Bender 1968; 

DeNiro 1987; van der Merwe 1982). Comparatively, C3 plants have a lower δ
13
C value 

than C4 plants because C3 plants have a greater discrimination against the heavier 
13
C 

isotope (Katzenberg 2008; Waller and Lewis 1979). The δ
13
C values of C3 plants typically 

range from -35 – -20‰ and average -27‰, and C4 plants typically have values between   

-20 and -6‰ and average -13‰ (Bender 1971; Smith and Epstein 1971; van der Merwe 

1982). Photosynthesis by marine plants can be similar to either the Calvin-Benson or the 
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Hatch-Slack pathway (Reinfelder et al. 2000; Xu et al. 2012) and have δ
13
C values that 

overlap with C3 and C4 terrestrial plants (DeNiro 1977; Schoeninger and DeNiro 1984; 

Smith 1972; Smith and Epstein 1971). 

Terrestrial plants that fix carbon dioxide via Crassulacean acid metabolism are 

called CAM plants and include cacti, agave, pineapple, and other succulents (Ambrose 

and Norr 1993; Osmond et al. 1973). Depending on the growth conditions, CAM plant 

photosynthesis can be similar to C3 plants or to C4 plants, and as a result, the δ
13
C values 

of CAM plants overlap with C3 and C4 values (Osmond et al. 1973). Since these types of 

plants do not grow locally and are not listed on historical foodstuff import records from 

the Fortress of Louisbourg (see Chapter 2.3.1), CAM plants were not considered in this 

study. In summation, there are three types of isotopic information concerning plant carbon 

isotopes considered in this study: C3 terrestrial plants, C4 terrestrial plants, and marine 

plants.  

 

4.2.2  Nitrogen from the Environment to Plants 

Terrestrial plants acquire nitrogen from the atmosphere in the form of nitrogen gas (N2) 

and/or from soil in the form of nitrate (NO3) or ammonium (NH4) (DeNiro 1987; Evans 

and Barber 1977). Nitrogen isotopes 
14
N and 

15
N are present in the air with an overall 

delta value (δ
15
N) value of 0‰ (Parwel et al. 1956), while nitrogen isotopes in the soil 

vary according to geologic material, topography, and various other environmental factors 

(Cheng et al. 1964; Garten 1993; Wada et al. 1975). Those plants that acquire nitrogen 

through both atmospheric and soil sources are called nitrogen fixers (N2-fixers) and 

include some species of shrubs, trees, ferns, lichens, mosses, and legumes such as peas, 
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beans, clover, and alfalfa (DeNiro 1987; Evans and Barber 1977; Virginia and Delwiche 

1982). Non-N2-fixers rely on soil nitrogen only (NO3 and NH4) (Evans and Barber 1977). 

Since atmospheric nitrogen has lower δ
15
N values than most soil nitrogen (Cheng et al. 

1964; Parwel et al. 1956), legumes and other N2-fixers have δ
15
N values that are typically 

isotopically lighter than non-N2-fixers (Virginia and Delwiche 1982; Wada et al. 1975). 

Furthermore, the incorporation of seawater-bound nitrogen by marine plants produces 

δ
15
N values that are typically higher than that of terrestrial plants (Miyake and Wada 

1967; Schoeninger and DeNiro 1984; Waser et al. 1998). This difference allows for the 

discrimination between marine plants from C3 and C4 plants when δ
13
C and δ

15
N values 

are analysed in conjunction with one another (Figure 6). 

 

4.2.3  Carbon and Nitrogen from Plants to Animals and Humans 

When plant tissue is eaten by herbivores and omnivores the carbon and nitrogen isotopic 

values of these plants are passed into the animals’ skeletal tissue (DeNiro and Epstein 

1978, 1981). Since C3 vs. C4 plants and marine vs. terrestrial plants have more or less 

distinct isotopic ranges (Schoeninger and DeNiro 1984; van der Merwe 1982), animals 

eating relatively homogeneous diets of C3 vs. C4 and marine vs. terrestrial plants will 

likewise have more or less distinct δ
13
C and δ

15
N values (Honch et al. 2012; Schoeninger 

et al. 1983).  

In this study, the types of skeletal tissue analysed for diet reconstruction include 

bone collagen, which was analysed for carbon and nitrogen, and the carbonate portion of 

enamel and dentine bioapatite, which was analysed for carbon content. When 

reconstructing diet, it is important to understand the biological processes by which these 
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tissues are formed.  

 

Bone Collagen Carbon and Nitrogen Isotopes: Bones are composed of 24% organic 

material, of which, the protein collagen constitutes 90% (Grant and Prockup 1972; 

International Commission on Radiological Protection [ICRP] 1975). Collagen is often the 

material of choice for isotopic analysis for a number of reasons. First, collagen is resistant 

to degradation (Katzenberg 2008; Nelson et al. 1986; Yoder 2010). Second, any 

degradation that has occurred can be detected by a number of means (see Chapter 5.3.2). 

Third, collagen contains both carbon and nitrogen at ~35% and 11 – 16%, respectively 

(van Klinken 1999) which allows for the analysis of both carbon and nitrogen isotopes 

within the same sample. 

Due to a process called bone remodeling, animal bones are constantly turning over 

(Hadjidakis and Androulakis 2006). Old bone tissue is absorbed by the body and new 

bone tissue is formed (Hadjidakis and Androulakis 2006). When collagen is forming 

within new bone tissue, it utilises pre-existing protein from the animal’s diet, and as a 

result, the isotopic information retrieved from bone collagen reflects the protein portion 

of the consumer’s diet (Ambrose and Norr 1993; Krueger and Sullivan 1984; Tieszen and 

Fagre 1993). 

Furthermore, if one were to analyse the isotopic ratio of carbon and nitrogen along a 

single food chain (plant-herbivore-carnivore), the delta values will be progressively 

shifted (DeNiro 1977; DeNiro and Epstein 1978, 1981; Minagawa and Wada 1984; 

Schoeninger and DeNiro 1984). This phenomenon is possible because isotopes of the 

same element differ in the number of neutrons but will always have the same number of 
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electrons (Hoefs 2004; Sulzman 2007). The difference in the number of neutrons between 

isotopes means they will have different masses (resulting in different reaction rates and 

bond strengths) which will cause isotopes of the same element to behave physically 

different (Bigeleisen 1949; Hoefs 2004). The similarity in the number of electrons 

between isotopes means that they will be able to form the same types of chemical bonds 

which will allow isotopes of the same element to behave chemically similar (Hoefs 2004; 

Sulzman 2007). For example, isotope 
12
C can form the same chemical compounds as 

isotope 
13
C, but since 

12
C is isotopically lighter than 

13
C, 

12
C will more readily form 

chemical reactions because of its faster reaction rate (Bigeleisen 1949). Within the 

biochemical system of animals, the heavier 
13
C and 

15
N isotopes will be preferred over 

the lighter 
12
C and 

14
N isotopes (DeNiro and Epstein 1981; Katzenberg 2008; Michener 

and Kaufman 2007). As a result, the consumer will have slightly higher carbon and 

nitrogen delta values compared to the consumer’s diet (DeNiro 1977; DeNiro and Epstein 

1978, 1981; Minagawa and Wada 1984; Schoeninger and DeNiro 1984). Since the 

heavier isotope is preferred in this instance, the consumer’s cellular tissue can be referred 

to as isotopically heavier than the consumer’s diet which in turn can be referred to as 

isotopically lighter by comparison.  

The above process is called fractionation, and if one were to graph the isotopic 

values of a simple food chain (Figure 7), the δ
13
C and δ

15
N values of consecutive diet 

components will increase in a stepwise fashion (e.g., carnivores will have higher delta 

values than the omnivores which will have higher delta values than the herbivores) 

(Minagawa and Wada 1984; Miyake and Wada 1967; Schoeninger and DeNiro 1984). 

These isotopic shifts, called fractionation factors, have a value of ~1‰ for δ
13
C and ~3‰ 
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for δ
15
N (DeNiro 1977; DeNiro and Epstein 1978, 1981; Minagawa and Wada 1984; 

Schoeninger and DeNiro 1984).  

 

Dental Tissue Bioapatite Carbon Isotopes: Bioapatite comprises 75% and 58% (dry 

weight) of enamel and dentine, respectively (Bowes and Murray 1935). Carbon isotopes 

within the bioapatite portion of enamel and dentine can be measured from the carbonate 

molecule (CO3) which occasionally occupies the hydroxyl (OH) and phosphate (PO) 

position within bioapatite’s chemical formula: Ca10(PO4)6(OH)2 (LeGeros et al. 1969). 

Foreign carbonate is able to absorb into the surface of structural carbonate crystals 

(Krueger 1991), and therefore, any surface carbonate is systematically removed prior to 

analysis by purification procedures (see Chapter 5.3.3).  

As discussed previously, carbon from bone collagen is acquired from the 

consumer’s protein intake (Ambrose and Norr 1993; Tieszen and Fagre 1993), but carbon 

from bioapatite sources is acquired from bicarbonate in the blood (Lee-Thorp et al. 1989; 

Poyart et al. 1975) which originates from ingested macronutrients: carbohydrates, lipids, 

and proteins (Ambrose and Norr 1993; Krueger and Sullivan 1984; Tieszen and Fagre 

1993). As a result, isotope analysis of bioapatite carbon reflects contributions from an 

animal’s total diet (Ambrose and Norr 1993; Tieszen and Fagre 1993). Since collagen 

isotopic data only reflect information about the protein portion of a consumer’s diet, 

collagen isotopic results can be biased towards diets that are rich in protein (e.g., meat), 

while very low protein food (e.g., plant material) may be relatively imperceptible 

(Ambrose and Norr 1993; Krueger and Sullivan 1984). By analysing carbon isotopes 

from both collagen and bioapatite, it is possible to contrast and compare protein vs. total 
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diet contributions (Ambrose and Norr 1993; Harrison and Katzenberg 2003; Jim et al. 

2004). 

 

As a result of the isotopic variability of different environments and plants, and of 

the chemical, biological, and physiological processes of tissue development within a 

consumer’s body, isotopic analysis of body tissues can reveal interesting information 

concerning a consumer’s diet (C3 vs. C4, marine vs. terrestrial, N2-fixers vs. non-N2-

fixers) and trophic position (herbivore, omnivore, and carnivore). 

A common approach for reconstructing an individual’s diet is to first analyse the 

isotopic values of potential food sources available within the environment relating to the 

context in question (Ambrose 1991; Codron et al. 2007; Tykot et al. 2009). Depending on 

where an individual’s isotopic values fall relative to data from potential food items, it is 

possible to make inferences concerning an individual’s dietary source(s). 

 

4.3  Oxygen Isotopes: Reconstructing Origins 

Oxygen isotopes in bone and dental tissues allow researchers to examine questions 

relating to origin, residency, and the geographical movement of people. This study 

involves the analysis of oxygen isotopes in bioapatite carbonate in tooth dentine and 

enamel. 

 

4.3.1  Oxygen in the Environment 

Oxygen isotopic analysis involves stable isotopes 
16
O and 

18
O. Similar to stable isotopes 

of carbon and nitrogen, oxygen isotope ratios are expressed in delta notation (
18
O) in 
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units of per mil (‰) relative to the scales VPDB or VSMOW (Vienna Standard Mean 

Ocean Water) (Craig 1961). 

Oxygen isotopes are available in abundance in the atmosphere, in precipitation, and 

in groundwater. The main source of atmospheric oxygen is from ocean water (Gat et al. 

2001). As water evaporates from the ocean, there is a preferential loss of the lighter 

isotope 
16
O which creates atmospheric vapor with a lower δ

18
O value than oceanic 

oxygen (Bleeker et al. 1966). With a decrease in temperature within a cloud system, 

atmospheric vapor condenses, and in the transition there is a preferential loss of the 

heavier 
18
O isotope (Bleeker et al. 1966; Dansgaard 1964; Gat et al. 2001). The δ

18
O 

value of precipitation is highest in oceanic equatorial regions, but as atmospheric vapor 

moves inland and to higher altitudes and latitudes (with colder temperatures and varying 

humidity and precipitation amounts), the δ
18
O value of precipitation continues to decrease 

as cloud vapor becomes progressively depleted in 
18
O (Bleeker et al. 1966; Dansgaard 

1953, 1954, 1964; Gat 1996). Considering the relationship between temperature and 

oxygen isotope fractionation, seasonal variations of precipitation δ
18
O values have also 

been observed (Dansgaard 1964; Price et al. 2008). 

The δ
18
O value of groundwater is often found to be similar to the δ

18
O value of 

local precipitation (Aggarwal et al. 2004), while river water is typically reflective of the 

δ
18
O values of precipitation and run-off from the river’s catchment area (Dutton et al. 

2005). Since a catchment area describes an upstream location higher in elevation (with 

lower δ
18
O values) the δ

18
O value of a river is often isotopically lighter than the δ

18
O 

value of local precipitation (Dutton et al. 2005). δ
18
O values in non-oceanic large bodies 

of water, such as lakes and aquifers, are formed from various sources (e.g., precipitation, 
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tributary water, and groundwater) and are subject to various fractionation effects such as 

evaporation and drainage (Dansgaard 1954; Dinçer 1968; Epstein and Mayeda 1953).  

Considering the various climatic and geographic factors that affect oxygen isotopes, 


18
O values around the world are extremely varied. The Global Network for Isotopes in 

Precipitation in co-operation with the International Atomic Energy Agency (IAEA) and 

the World Meteorological Organization (WMO) began documenting meteoric and 

isotopic conditions by analysing and mapping meteoric 
18
O values from hundreds of 

stations around the world (Gat et al. 2001; Price et al. 2008). This research is ongoing and 

has resulted in a detailed database of 
18
O values which has been utilised in this thesis 

and can be accessed via the IAEA/WMO website (IAEA/WMO 2013). 

 

4.3.2  Oxygen from the Environment to Plants, Animals, and Humans 

Oxygen is incorporated into plant tissue largely from meteoric water percolating within 

the soil (Ritchie 1998; Tang and Feng 2001). Animals ingest oxygen isotopes from 

drinking water, food-bound water, and to a lesser degree atmospheric O2 (Kohn 1996; 

Longinelli 1984). The oxygen isotopes are then incorporated into the bioapatite portion of 

skeletal tissues (Land et al. 1980). As a result, the isotopic values of skeletal tissue 

bioapatite are largely a reflection of local meteoric water (Longinelli 1984). 

The type of skeletal tissue analysed (bone or enamel) has an impact on the type of 

information received by isotopic analysis. Since enamel forms during childhood and does 

not regenerate, its isotopic values will reflect the juvenile stages of that individual’s life 

(Hillson 1996; Sealey et al. 1995). In contrast, bone tissue regenerates throughout an 
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individual’s development, and as a result, the isotopic information therein represents an 

averaging of isotopes ingested in the more recent stages of an individual’s life (Hadjidakis 

and Androulakis 2006; Sealey et al. 1995). In terms of oxygen isotopes, this study focuses 

on the analysis of dental tissues only.  

There are two types of molecules within dental tissue bioapatite that can be 

analysed for 
18
O content: phosphate (PO4) and carbonate (CO3) (Daux et al. 2008; 

Harrison and Katzenberg 2003). The chemical formula for bioapatite is Ca10(PO4)6(OH)2 

(ICRP 1975). Within this formula, carbonate molecules are able to occupy the hydroxyl 

position (OH) and the phosphate position (PO) (LeGeros et al. 1969). The correlation 

between phosphate and carbonate molecule 
18
O values has been determined to be high 

(e.g., Bryant et al. (1996) reports a correlation of r
2
=0.986 with an offset of 8.7‰, and 

Iacumin et al. (1996) reports r
2
=0.98 with an offset of 9.2‰), thus, either molecule can be 

used as a reliable indicator of a consumer’s water intake (Bryant et al. 1996). While it is 

believed that the phosphate molecule is more resistant to digenesis than carbonate, based 

on the superior strength of the P-O chemical bond over the C-O bond, this appears to be 

true for bone and dentine only (Martin et al. 2008; Sponheimer and Lee-Thorp 1999). 

Conversely, carbonate content in enamel bioapatite have been found to be largely 

unaffected by digenetic processes (Chenery et al. 2012; Koch et al. 1997). For more 

information on this, please see Chapter 4.5. 

 In practice, the superior strength of the P-O bond in bioapatite makes the analysis 

of phosphate more difficult and lengthy than the analysis of carbonate (Sponheimer and 

Lee-Thorp 1999). Furthermore, by analysing the carbonate molecule, researchers are able 
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to analyse oxygen and carbon isotopes simultaneously. For these reasons, bioapatite 

carbonate was the molecule of choice for the analysis of 
18
O values in this study. As 

discussed in Chapter 4.2.3, the examination of carbon atoms within bioapatite carbonate 

allows researchers to examine a consumer’s total diet. 

By analysing bioapatite 
18
O values within dental tissues and comparing these with 

local groundwater and precipitation 
18
O values, it is possible to examine questions 

relating to geographic origins, residency, mobility, and migration. For example, If an 

individual’s enamel 
18
O value differs from local 

18
O values, it is likely they did not 

grow up in the local environment (Dupras and Schwarcz 2001; Evans et al. 2006). 

Conversely, if an individual’s enamel 
18
O value matches local δ

18
O values, than it is 

likely that they grew up in the local environment or in an environment with similar 
18
O 

values (Budd et al. 2004; Knudson et al. 2012). Also, by utilising oxygen isotopic data 

from other regions, it is possible to speculate on the origins of a non-local individual 

(Schroeder et al. 2009). 

 

4.4  Strontium Isotopes: Reconstructing Origins 

Similar to oxygen analysis, strontium analysis allows researchers to examine an 

individual’s origins, residency, and geographic movement. This study involves the 

analysis of strontium isotopes from tooth enamel and dentine. Where oxygen isotopes 

reflect local meteoric water, strontium isotopes generally reflect the local geology of an 

individual’s food source.  
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4.4.1  Strontium in the Environment 

Strontium isotopes are present in calcium (Ca) bearing minerals such as apatite, calcite, 

gypsum, plagioclase feldspar, and many others (Bentley 2006; Capo et al. 1998). Within 

geologic materials, strontium isotope 
87
Sr is produced by the radioactive decay of 

rubidium isotope
 87
Rb (half-life 48.8 x 10

9
) which is able to replace potassium in 

potassium feldspar, mica, clay, and many other minerals (Bentley 2006; Capo et al. 

1998). As a rock ages, more and more 
87
Rb decays, thus increasing the rock’s 

87
Sr 

concentration (Capo et al. 1998). The overall amount of 
87
Sr will also be influenced by 

the rock’s original strontium and rubidium concentrations (Budd et al. 2004; Dasch 1969).  

Strontium is represented as a ratio of two isotopes: 
87
Sr and 

86
Sr. If one were to use 

the abundance of 
87
Sr only, such a value would not account for variations in total 

strontium concentration which could drastically skew the results (Beard and Johnston 

2000). To remove this bias and account for overall strontium abundance, 
87
Sr is compared 

to 
86
Sr, a stable isotope whose abundance does not change over time (Beard and Johnston 

2000). By using the ratio 
87
Sr/

86
Sr, any bias created by total strontium variation is 

removed, and the value produced is representative of the decay of 
87
Rb into 

87
Sr 

(reflecting the age of the rock) and of the relative rubidium and strontium composition 

only (Beard and Johnston 2000; Bentley 2006). The overall strontium concentration of 

skeletal materials is represented as a weight percentage in parts per million, meaning the 

number of parts of strontium, per million parts of skeletal material (Schoeninger 1985). 

Considering the long half-life of Rb (48.8 x 10
9 
years) and the different types of 

geologic materials with variable Rb and Sr compositions, 
87
Sr/

86
Sr values are quite 

variable across the Earth (Beard and Johnston 2000) and can even be quite diverse across 
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smaller regions (Sillen et al. 1998). In general, rocks with a high 
87
Sr/

86
Sr value (more 

than ~0.710) will be those that are very old with a high Rb/Sr ratio (e.g., continental crust 

granite), and rocks with a low 
87
Sr/

86
Sr value (less than ~0.704) will be younger with a 

low Rb/Sr ratio (e.g., oceanic basalt) (reviewed in Bentley 2006; Capo et al. 1998). As 

bedrock erodes, the soils produced will have a 
87
Sr/

86
Sr value that reflects the type of 

bedrock, the various erosion rates of different mineral types therein, the age of the 

bedrock, and the strontium and rubidium concentrations within these materials (Bentley 

2006; Price et al. 2002). 

Strontium is also available from other sources. Atmospheric strontium is deposited 

and absorbed on the surface of plant leaves (Graustein and Armstrong 1983). In some 

instances, water sources, such as precipitation, ground, river, and ocean water, can be 

significant contributors and transporters of strontium isotopes (Aubert et al. 2002; Négrel 

et al. 2004; Palmer and Edmond 1992; Whipkey et al. 2000; Xu and Han 2009). The 

87
Sr/

86
Sr ratio of river water ranges from 0.7045 – 0.943 worldwide (Veizer 1989) and 

0.70460 – 0.73844 in Canada’s major rivers (Wadleigh et al. 1985). Modern ocean water 

has a constant 
87
Sr/

86
Sr ratio of 0.70923 (DePaolo and Ingram 1985) since the residence 

time of oceanic strontium far exceeds the mixing time of the ocean (5 million years vs. 

~1000 years) (Hess et al. 1986). Furthermore, in modern contexts strontium can be 

introduced to the area from fertilizers and pollution which can significantly alter the 

natural 
87
Sr/

86
Sr value of an environment (Böhlke and Horan 2000; Hurst et al. 1991; 

Jiang 2011). Overall, strontium isotopes are available from a variety of natural and 

anthropogenic sources. 
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4.4.2  Strontium from the Environment to Plants, Animals, and Humans  

Strontium from the environment is taken up by plants, and when these plants are eaten by 

animals, the strontium is passed along the food chain (Comar et al. 1957). Atmospheric 

and water sources commonly contribute less strontium to plant materials than geologic 

materials (Beard and Johnston 2000; Capo et al. 1998; Price et al. 2002), but depending 

on the environment, atmospheric and water sources may become more significant 

contributors (Graustein and Armstrong 1983; Miller et al. 1993; Whipkey et al. 2000).  

Strontium from an animal’s diet is incorporated into the animal’s skeletal tissue 

because of its chemical similarity to calcium, a common component of bioapatite found in 

bone and dental tissues (MacDonald et al. 1951a, 1951b; Parker and Toots 1970). Unlike 

carbon and nitrogen isotopes, strontium isotopic values do not fractionate as they are 

passed through the food chain (Blum et al. 2000). If any mass-based fractionation did 

occur, this would be corrected during analysis by the normalisation of the ratio of non-

radiogenic isotopes 
86
Sr/

88
Sr to a set value of 0.1194 (Capo et al. 1998). Thus, a 

consumer’s 
87
Sr/

86
Sr value will be similar to the 

87
Sr/

86
Sr value of its diet, and ultimately, 

their local environment (Blum et al. 2000). 

This study only involves the analysis of tooth enamel for the purpose of studying 

strontium isotopes. Since enamel does not turnover once fully developed (Hillson 1996), 

enamel 
87
Sr/

86
Sr values will reflect the individual’s geographic location during childhood 

(Sealey et al. 1995). By analysing bioapatite strontium isotopes within dental tissues and 

comparing these with local strontium values, it is possible to examine questions relating 

to origins, residency, mobility, and migration. For example, if an individual’s enamel 

87
Sr/

86
Sr values match local 

87
Sr/

86
Sr values, then it is likely that they grew up in the local 
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area (or in an area with a similar 
87
Sr/

86
Sr value) (Conlee et al. 2009; Price et al. 2004). 

Conversely, if an individual’s enamel 
87
Sr/

86
Sr values are different from local 

87
Sr/

86
Sr 

values, then it is likely that they did not grow up in the local environment (Kusaka et al. 

2011). In theory, a consumer can be traced back to the geologic environment where they 

grew up, by comparing the consumer’s dental 
87
Sr/

86
Sr value to the 

87
Sr/

86
Sr values of a 

given environment (Oulhote et al. 2010). In practice, determining a consumer’s origin 

becomes complicated by the fact that numerous areas around the world have similar 

87
Sr/

86
Sr values. However, by utilising strontium isotopic research conducted in areas 

around the world, it is possible to speculate on the origins of a consumer (Müller et al. 

2003; Schroeder et al. 2009).  

For such comparisons to be made, it is necessary to know the 
87
Sr/

86
Sr values of the 

environment in question. Since strontium atoms originate from a number of sources (e.g., 

geologic, water, atmospheric, and anthropogenic) with differing strontium values and pass 

through a number of pathways (e.g., weathering and mixing) before uptake and 

incorporation into skeletal tissues, a good approach for strontium analysis as a means for 

determining origins is to first determine the 
87
Sr/

86
Sr ratio that is biologically available 

(Laffoon et al. 2012; Price et al. 2002; Sillen et al. 1998). A common method for 

determining the biologically available strontium of an area is to analyse the strontium 

content of local organisms, ideally from the same location and temporal period as the 

consumer(s) in question (Price et al. 2002). The 
87
Sr/

86
Sr values present in local flora and 

fauna, representing the biologically available strontium of an environment, can then act as 

a baseline against which the human isotopic values can be compared (Bentley et al. 2004; 

Price et al. 2002).   
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4.5  Bone vs. Dental Tissues: Isotopic ‘Visibility’ and Diagenesis 

The interpretation of isotopic values must consider the time ranges that are detectable or 

‘visible’ within different skeletal materials caused by the differential formation periods of 

bone vs. dental tissue. There are also numerous concerns regarding the susceptibility of 

bone and dentine bioapatite to diagenetic alteration, as opposed to the relative impervious 

nature of enamel bioapatite. The following discussion concerns the causes and 

consequences of these issues.   

While enamel remains unchanged from initial formation, and the isotopic values 

therein reflect the consumer’s isotopic intake during their juvenile years, bone tissue 

regenerates throughout an individual’s life, and as a result, the isotopic values of bone 

reflect a consumer’s isotopic intake during more recent years (Hadjidakis and 

Androulakis 2006; Hillson 1996; Lee-Thorp 2002). By using the ‘temporal visibility’ 

differences of bone vs. enamel, it is possible to comment on the geographic movement of 

an individual by comparing the older isotopic values (within enamel), with the more 

recent isotopic values (within bone) (Müller et al. 2003; Price et al. 2004; White et al. 

2004b). A difference between the strontium or oxygen values of enamel vs. bone suggests 

that an individual migrated between two geologic or meteoric areas with differing 

isotopic values between childhood and adulthood, while a similarity of these values 

suggests that the individual remained in the same location since birth (but does not rule 

out the possibility that the individual moved between isotopically similar geologic and 

meteoric areas during their life) (Beard and Johnston 2000; White et al. 2004b). If an 

individual was fairly mobile during life, or ingested food and water originating from 

different regions their skeletal tissue will convey a mixing of various strontium and 
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oxygen values (Bentley 2006; Longinelli 1984). 

There are major issues concerning the susceptibility of bone bioapatite to digenesis. 

Enamel is very resistant to diagenesis because of its high density, large crystal size, low 

porosity, and low organic component, and as a result, the isotopic values within enamel 

are highly biogenic (Hoppe et al., 2003; Koch et al. 1997; Kohn and Cerling 2002; Kohn 

et al. 1999; Lee-Thorp and van der Merwe 1991; Lee-Thorp 2002; Wang & Cerling 

1994). Conversely, because of the high porosity, high organic component, and small 

crystal size of the inorganic portion of bone and dentine, these materials may undergo 

dissolution (causing loss of original isotopes) or mineral absorption or recrystallisation 

(resulting in the incorporation of foreign isotopes) causing the isotopes within bone and 

dentine to be highly diagenetic in origin (Hoppe et al. 2003; Koch et al. 1997; Kohn and 

Cerling 2002; Kohn et al. 1999; Lee-Thorp and van der Merwe 1991; Lee-Thorp 2002; 

Nelson et al.1986; Wang and Cerling 1994). For these reasons, this study excludes the use 

of bone bioapatite for isotopic examinations of an individual’s diet and origins.  

This study includes the analysis of the collagen component of bones. Collagen is 

relatively more impervious to diagenesis than bone bioapatite, but collagen deterioration 

is possible and depends on a number of factors such as time, temperature, and microbial 

action (Collins et al. 2002). Methods to detect diagenesis within bone collagen samples 

have been developed by DeNiro (1985) and van Klinken (1999), and involve examining 

carbon to nitrogen (C/N) atomic ratios and collagen yields, respectively (see Chapter 

5.3.2). 

The isotopic visibility differences between bone and dental tissue are still an issue 

in this study (since the materials analysed in this study include bone collagen and dental 
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bioapatite). These differences were considered when contrasting and comparing the 

isotopic values of each material in making inferences regarding a specimen’s or 

individual’s diet and origins. 

For humans, all permanent teeth (excluding the third molar) are estimated to erupt 

at different stages between the ages of ~6 and ~13 (ICRP 1975). Approximate years of 

tooth development are shown in Table 1. Depending on the tooth analysed, the isotopic 

values will reflect the isotopic intake during development of the enamel. Bone tissue 

turnover varies depending on the bone in question, the bone material (e.g., cortical vs. 

trabecular), and the age and health of the individual (Bryant and Loutit 1964; Jowsey 

1960; Jowsey et al. 1965; Klepinger 1984; Sealey et al. 1995). Bone turnover rates are 

high for young individuals and generally decrease as an individual ages (Jowsey 1960; 

Jowsey et al. 1965). The mean percent turnover rates per year of whole adult bones and 

the number of years required for 100% turnover are shown in Table 2. Depending on the 

bone analysed, the isotopic values will roughly represent the most recent years of an 

individual’s life as calculated from the turnover rate of each bone type. For example, 

isotopic values from whole ribs will represent the individual’s isotopic intake during the 

last 21.3 years of that adult’s life. 

The above values pertain to whole bone. However, the estimated percentage 

turnover for adult cortical and trabecular bone is reported as 2.5 – 4% and 10% per year, 

respectively (ICRP 1973; Klepinger 1984; Manolagas 2000). Since the skeleton is formed 

largely of cortical tissue by weight (Hadjidakis and Androulakis 2006; ICRP 1975), the 

above values are closer to the turnover rates of cortical bone (2.5 – 4%), as opposed to 

trabecular bone (10%). More specifically, bones that are largely cortical tissue (e.g., 
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femur and tibia shaft) have lower % annual turnover rates (1.8, 1.1, and 2.0, respectively) 

and therefore take several decades to remodel (55.6, 90.9, and 50.0 years, respectively), 

while bones that contain less cortical bone and comparatively more trabecular bone (e.g., 

vertebra, rib and iliac crest) have higher % annual turnover rates (8.3, 4.7, and 6.5, 

respectively) and therefore remodel within a couple decades (12.0, 21.3, and 15.4 years, 

respectively) (Bryant and Loutit 1961 in ICRP 1975; Bryant and Loutit 1964; Hadjidakis 

and Androulakis 2006; Jowsey et al. 1965; Spiers 1966). These values pertain to bulk 

bone material (i.e., both cortical and trabecular bone). More suitable for this study is the 

estimated turnover rate of an adult’s cortical bone which is estimated to between ~2.5 and 

4% per year (ICRP 1973; Manolagas 2000). As a result, the δ
13
C and δ

15
N values of 

cortical bone collagen will represent the average carbon and nitrogen intake from the last 

~25 – 40 years of an adult’s life. Overall, inferences concerning diet and origins must 

consider the diagenetic susceptibility of the skeletal tissues examined (bone vs. enamel) 

and the time ranges represented by the materials analysed (e.g., bone vs. teeth, and bone 

element and type). 
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Chapter 5 

Materials and Methods 

 

5.1  Ste. Marie Individuals 

Each set of remains is identified using the Parks Canada provenience system. Using 

individual 55L28F34 as an example: 55L is the site number, wherein 55 represents a 

section of Rochefort Point and L represents the Fortress of Louisbourg. The number 28 

represents the 28
th

 operation within that location, F is the sub-operation or unit, and 34 is 

the lot number (the 34
th

 lot within sub-op F). In this case, 55L28F34 represents a single 

set of human remains. Some individuals’ remains extended across two sub-ops, and as a 

result, were given a double provenience (e.g., 55L28E8/55L28F22). An adult and sub-

adult were given the same sub-op and lot (D7) but are differentiated from one another by 

the letters ‘A’ and ‘B’ where A is the adult and B is the sub-adult. Since all individuals 

begin with the letters/numbers 55L28, each individual will henceforth be referred to by 

their sub-op letter(s) and lot number(s) only (e.g., F34, E8/F22, D7A/F8, and D7B). 

It should also be noted that during the osteological analysis of individual A17, small 

foot bones were found which did not belong to this individual’s skeleton or to the 

neighbouring skeletons. As a result, A17 was given a MNI of two but had not yet been 

divided into A17A and A17B at the time of this study. All data for this study are 

associated with the full skeleton (possibly later to be re-designated as ‘55L28A17A’) and 

not the small foot bones (possibly later to be reassigned as ‘55L28A17B’). No skeletal 

materials were analysed from individual A17B.  
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Once excavated, the human remains were sent to the CBUBL for osteological 

analysis. Analysis was performed by Dr. Joseph Parish, using standard data collection 

record forms developed by Buikstra and Ubelaker (1994). The remains were brushed 

clean of any loose matrix and given a basic assessment of age and sex, as well as a brief 

overview of dental health and visible pathological conditions. Age designations were 

based on such studies by Ïsçan (1985), Ïsçan et al. (1984a, 1984b), Brooks and Suchey 

(1990), Suchey and Katz (1986), Todd (1921a, 1921b), Lovejoy et al. (1985), and Meindl 

and Lovejoy (1989). Sex designations were based on, but not limited to, studies by 

Scheuer and Elkington (1993), Buikstra and Ubelaker (1994), and Phenice (1969). Other 

characteristics, including dental health, pathologies, congenital traits, and ethnicity, were 

based off studies by Mayhall (2000), Buikstra and Ubelaker (1994), Dahlberg (1956), 

Hershey (1979), Ortner (2003), Saunders (1978), and Barnes (1994). 

The Ste. Marie root cellar burial included a total of 48 individuals: 45 adults and 

three sub-adults. A total of three individuals were identified as female, 25 were identified 

as male, and another 20 could not be identified according to sex (Parish 2006, 2007). Also 

uncovered from the Ste. Marie site (and included in this study) was an additional single 

individual (H3) located exterior to the root cellar on the northeast corner. It is believed 

that this burial was re-interred from a previous resting place, a common occurrence at the 

Fortress of Louisbourg (Johnston 1996, 2001; Parish 2007). The dates when this 

individual died or was re-interred, are unknown (Parish 2007). This grave included the 

disarticulated remains of an adult male which brings the total number of individuals 

retrieved from the site up to 49 (with 26 males and 46 adults). 



51 
 

The osteological analysis (Parish 2006, 2007) has resulted in age designations for 

33 of the Ste. Marie individuals. One individual was over 50, 10 individuals were in their 

30s or 40s, 22 individuals were in their 20s or younger, and of these, three were sub-

adults (i.e., less than 15 years old) (Table 3). The dental health of all individuals 

recovered at the Ste. Marie site was worse than expected, with numerous carious lesions 

common on both the young and old, possibly indicating a sweeter than normal diet for 

this time and place in history. The most common pathological conditions observed were 

porotic hyperostosis and periostitis, which are bone conditions caused by a lack of 

essential nutrients, such as iron and vitamin C, likely caused by a poor diet or metabolic 

disorder. Population affinity based on osteological analysis was inconclusive due to the 

damaged state of the cranial and facial bones. Also noted were numerous cases of 

muscular strain in the arms and shoulders suggesting a physically demanding lifestyle, as 

well as pipe smoker wear on many individuals’ teeth indicating a regular habit of pipe 

smoking. 

Parish’s (2006, 2007) osteological analysis also included possible cause of death. 

H3 (male, 18 – 25 years old), found outside the northeast wall of the root cellar, showed 

blunt force trauma to the right cranium from a single pronged instrument less than one 

centimeter in diameter. Sub-adults D7B and F32 (three to four and ~12 years at time of 

death, respectively), showed incomplete fusion of the cervical and thoracic vertebrae, 

respectively, a congenital disorder or genetic defect which may have contributed to their 

young deaths. D12, a male adult 18 – 20 years old at time of death, likely died due to 

complications related to the below-knee amputation of his right leg. Another male 

individual, E8/F22 (over 35 years old), showed possible cause of death indicators 
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consistent with death by hanging. These indicators include complete and incomplete 

greenstick fractures to the C1 – C3 with a wear pattern on the mandible possibly related 

to agitation by the noose’s rope. Other injuries reported include two (possibly three) 

puncture wounds, possibly from a pronged fork, to the right cranium of E7, one of the 

oldest males with an age at time of death of 50 – 55 years. A18, a female adult, had an 

iron fragment (possibly from a pike or bee-de-corbin) impaled in a cranial fragment 

located near the front of her skull. For the other individuals, cause of death could not be 

determined via osteological analysis.  

Concerning the materials and elements analysed in this study, long bones and ribs 

were preferred over other bone elements. Each individual was sampled for bone collagen 

twice to observe the variability of isotopic values within the same bone or within different 

bones from the same individual. For the dentition, molars (excluding third molars) were 

the preferred choice over premolars, canines, or incisors. If possible, enamel and dentine 

samples were taken from the same tooth, but this was not always feasible. Due to 

taphonomic forces, not all individuals from the Ste. Marie site had a full skeleton 

available for isotopic analysis, and not all the materials recovered were suitable for 

analysis. Wave action from the storm had removed the superior portion (including the 

teeth) of some individuals, while extreme bone decomposition rendered isotopic analysis 

of bone impossible for other individuals. As a result, the bone and tooth elements chosen 

to represent each individual for isotopic analysis depended on the availability and state of 

preservation of the preferred elements within each set of remains. The total number of 

individuals sampled was 44. Twenty-nine individuals were sampled for both bone and 
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dental tissues, 11 were sampled for bone only, and four individuals for dental tissues 

only.  

 

5.2  Faunal Specimens 

A total of 58 faunal specimens excavated from the Ste. Marie site were analysed in this 

study. The faunal identification was performed by Dr. Joseph Parish of Cape Breton 

University. A further 51 faunal specimens were selected from faunal identification studies 

performed by Steve Cumbaa and Anne Rick at the Zooarchaeological Identification 

Centre at the Canadian Museum of Nature. Almost all of these specimens came from 

archaeological excavations within Blocks 3 and 4 which are located across from the quay 

wall on the north end of the town. Block 3 held Louisbourg’s first cemetery, a bakery, a 

guardhouse, an inn, a tavern, a pool hall, a large storehouse, a public square, and 

residential homes including a surgeon’s home (Harris 1982). Within Block 4 were a 

number of business establishments, including a bakery, butchery, and an inn, as well as 

many residential homes, some owned by prominent merchant families (Cumbaa 1976).  

The total number of faunal specimens sampled from the Ste. Marie site and the 

town site was 109. Mandible or maxilla elements containing teeth were preferred so 

inferences involving diet and origins could be drawn concerning a single individual. In 

some cases this was not possible. The number of individual specimens sampled for both 

bone collagen and dental tissues was 17. The total number of specimens sampled for bone 

collagen only was 74, and the total number of specimens sampled for dental tissue only 

was 18.  
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The types of faunal species selected were chosen to represent the types of food that 

would have been available to a Louisbourg resident. Codfish was the main protein source, 

followed by cow and sheep (Cumbaa 1976; Lane Jonah and Véchambre 2012). Other 

domestic animals sampled include pigs, goats, horses, chickens, turkeys, and domestic 

geese. Some animals may have been born and raised locally, while others may have been 

raised and butchered elsewhere and imported to Louisbourg as meat. Some animals may 

have been raised elsewhere and imported as livestock which were then living in 

Louisbourg for an unknown duration. Since hunting wild animals was common at 

Louisbourg (Lane Jonah and Véchambre 2012; McNeill 1985), a variety of wild fauna 

were also sampled. Wild specimens include snowshoe hares, red squirrels, beavers, red 

foxes, lynx, deer, moose, caribou, ducks, spruce grouse, and an unidentified avian 

species. It was also documented that Louisbourg inhabitants resorted to pets and rodents 

when food supply was low (Lane Jonah and Véchambre 2012), and cat bones excavated 

from the Fortress showed evidence of butchering and burning (Cumbaa 1976). Therefore, 

mice, rats, doves (possibly robins), and cats were also sampled. 

Faunal remains excavated from soil layers dating to French-only occupation were 

preferred over remains from layers that included New England or British occupation (e.g., 

the New England and British occupation between 1745 and 1749, and the British 

occupation of the Fortress after 1758). This was done to exclude those animals/foods 

brought in by non-French occupants of the Fortress. This restriction was accomplished for 

pigs, cows, and sheep, but could not be achieved for other domestic animals, such as 

goats, horses, and domestic geese. 
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Since it is believed that French vs. New England or British occupation of the 

Fortress would have no substantial influence on the isotopic ratios of wild fauna, and 

since the selection of wild animal remains within the collection available for this study 

was more limiting, faunal remains from New England or British occupation layers were 

not excluded from this study. Wild faunal remains have a date association between 1713 

and 1974, but most fall within a more constrained temporal range beginning with the 

initial occupation of the Fortress in 1713, to the 1780s.  

The isotopic values of the faunal specimens in this study also acted as an indicator 

of local meteoric and geologic conditions and aided in the determination of local vs. non-

local status of the Ste. Marie individuals. Considering the potential for many domestic 

specimens to be imported (either as livestock or pickled meat, and thus harbouring 

foreign isotopes), the faunal specimens used to identify the local oxygen and strontium 

isotopic ranges were those wild specimens that typically have small home ranges and do 

not migrate (Price et al. 2002). 

 

5.3  Isotope Analysis Methodology 

Faunal bone and enamel samples were taken by the author at the Memorial University of 

Newfoundland Bioarchaeology Laboratory (MUNBL) or by Michael O’Dea, a student 

assistant under the direction of Dr. Joseph Parish at the CBUBL. Human bone, enamel, 

and dentine samples were taken by Dr. Joseph Parish and student assistant Stephen 

MacIsaac at the CBUBL. All samples were documented and assigned separate MARC 

(Memorial Archaeology) sample numbers. 
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Standard procedures for both laboratories included photographing all bones and 

teeth prior to sampling (using a digital camera with a scale present) and sampling cortical 

bone from pre-broken ends to minimise damage. Bone and teeth samples collected at the 

MUNBL were cleaned of any macroscopic surface contaminants using air abrasion or 

mechanical abrasion. Mechanical abrasion and cutting were performed using a Grobet 

USA
®
 Micromotor drill. Before and after sampling, all drill burrs and discs were cleaned 

by ultrasonication in deionised water (DI H2O) (17.5 megaohms [MΩ]) for five minutes. 

Samples collected at the CBUBL were cleaned by mechanical abrasion and cut using a 

Dremel
®
 Microdrill. Drill bits were cleaned between sampling with isopropyl rubbing 

alcohol.  

 

5.3.1  Carbon and Nitrogen Analysis of Bone Collagen 

The collagen extraction procedure used in this study was based on those established by 

Longin (1971), Brown et al. (1988), and Semal and Orban (1995), and is an accepted 

procedure within the field of isotope analysis. Collagen extraction was performed at the 

MUNBL and included three main steps: demineralisation (removing the mineral phase of 

the bone), gelatinisation (heating the bone thereby bringing the collagen into solution), 

and lyophilisation (removing the water from the pure collagen). These steps were 

performed as follows: 

 

Demineralisation: Two hundred milligrams (mg) of cortical bone were sampled for 

collagen extraction. Each bone sample was demineralised in ~10 milliliters (ml) of 0.5 

molar (M) hydrochloric acid (HCl) chilled to 4ºC. The acid was regularly changed until 
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the bone turned soft or flexible. This took as little as one day for some samples, or as 

many as 60 days for others, depending on the size, density, and state of preservation of 

the bone. Once demineralisation was complete the acid solution was removed, and the 

demineralised bone was rinsed three times with DI H2O (17.5 MΩ).  

 

Gelatinisation: The demineralised bone was then suspended in DI H2O acidified to a pH 

of three using 0.5M HCl and placed on a heating block for 48 hours at a temperature of 

~70ºC. This process gelatinises the bone and brings the collagen fibrils into the solution. 

The collagen solution was then separated from the bone material using an Elkay Ezee-

filter™
 
Separator.  

 

Lyophilisation: Each collagen solution was frozen for a minimum of 24 hours and 

lyophilised in a VirTis LyoTroll™ freeze dryer for 48 hours. The resulting pure collagen 

was typically a white, light beige, or peach color with a fluffy or slightly flaky texture. 

 

Approximately 1 mg of collagen from each sample was weighed and compressed 

into a 7 x 7 ultrathin tin capsule and analysed on a Carlo Erba NA1500 Series II 

Elemental Analyser (EA) at the Memorial University of Newfoundland Stable Isotope 

Laboratory, under the direction of Lab Co-ordinator Allison Pye. Within the EA, each 

sample was combusted, and the resulting gas divided into separate beams based on 

isotopic mass. These beams were introduced into a ThermoElectron DeltaVPlus Gas 

Source Isotope Ratio Mass Spectrometer which measured the intensity of each beam 

signal. The carbon and nitrogen isotopic values were calculated using lab standards that 
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were calibrated using international reference scales: VPDB for carbon and AIR for 

nitrogen. Table 4 reports the analytical error of the collagen analysis.  

 

5.3.2  Collagen Quality Control 

A great concern for collagen analysis involves the degradation and contamination of 

collagen’s isotopic content. Two methods were used to assess the diagenesis of collagen 

samples in this study. One method was the calculation of each sample’s collagen yield 

(van Klinken 1999). The typical collagen yield from a piece of modern bone is around 

22% (Collins et al. 2002). A yield below 1% indicates that the collagen had degraded in 

the post-mortem environment (van Klinken 1999). The equation to calculate collagen 

yield is as follows: 

 

% Collagen Yield = 
Collagen Mass (mg)

Bone Sample Mass (mg)
  100 

 

Another method used to assess collagen diagenesis was the calculation of each 

sample’s C/N atomic ratio (DeNiro 1985). The mean C/N atomic ratio for modern bone 

collagen is 3.2 (Ambrose 1990). An acceptable ratio between carbon and nitrogen atoms 

within archaeological collagen is between 2.9 and 3.6 (DeNiro 1985). If the C/N atomic 

ratio of a sample falls outside this range it is possible that the carbon and nitrogen 

isotopes may have been diagenetically altered (DeNiro 1985). Thus, if a sample had a % 

yield below 1.0% or a C/N atomic ratio below 2.6 or above 3.6, the sample’s carbon and 



59 
 

nitrogen delta values were regarded as unreliable (DeNiro 1985; van Klinken 1999) and 

were omitted from the study. 

 

5.3.3  Carbonate Analysis of Enamel and Dentine Bioapatite 

Approximately 5 mg of powdered enamel and dentine were sampled for carbonate 

analysis. When possible, the powdered sample was taken along the length of the tooth 

from cementoenamel junction to the occlusal edge so the entire development of the 

tooth’s enamel could be included in the analysis. 

The enamel and dentine powder samples were put through a series of pre-treatment 

steps modified from the methods of Lee-Thorp et al. (1989). The following methodology 

is an accepted and tested procedure within the field of isotope analysis for the extraction 

of bioapatite carbonate within dental tissues.  

Each sample was brought to solution in ~1.8 ml sodium hypochlorite (NaOCl, 

~1.7% volume per volume [v/v]) to oxidise any organic materials. After 30 minutes with 

frequent agitation, the samples were centrifuged and rinsed with DI H2O (17.5 MΩ) three 

times. The DI H2O was removed, and ~1.8 ml of 0.1M acetic acid (CH3COOH) was 

added for a total of 10 minutes to dissolve any absorbed carbonate. The samples were 

again centrifuged and rinsed with DI H2O three times and covered with perforated 

parafilm and left to air dry. The samples were then freeze dried for 24 hours to remove 

any remaining moisture. 

Two mg of powdered material from each sample were weighed into individual glass 

vials at the Memorial University of Newfoundland Stable Isotope Laboratory, under the 

direction of Lab Co-ordinator Allison Pye. The glass vials were capped and placed on a 
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heating block (at 50ºC) on a ThermoElectron Gas Bench II. Each vial was flushed with 

helium and phosphoric acid to dissolve the sample. The resulting gasses were separated 

by an ion source based on isotopic mass. The intensity of the separated gas signals were 

measured by a ThermoElectron DeltaVPlus Gas Source Isotope Ratio Mass Spectrometer, 

and the carbon and oxygen isotopic values were calculated using lab standards that were 

calibrated using international reference scale VPDB. The analytical error of carbonate 

analysis is reported in Table 4. 

 

5.3.4  Strontium Analysis of Enamel and Dentine Bioapatite 

Approximately 20 mg of solid enamel and dentine were sampled for strontium analysis. 

When possible, the samples were taken from the entire longitudinal length of the tooth’s 

cusp. All samples were cleaned by ultrasonication in DI H2O (17.5 MΩ) for five minutes. 

The DI H2O was then removed, and the samples were covered with perforated parafilm 

and placed under a fume hood to air dry.  

Strontium was extracted from dental tissues using the following procedure adapted 

from the work of Daniel and Pin (2001). Figure 8 outlines the steps for this procedure. A 

1 ml column (fashioned from a 1 ml pipette tip with a frit fitted within the tip) was 

prepared by adding ~1 ml of DI H2O to rinse the column and ~1 ml of 6M HCl to remove 

organics. Added to the column was ~200 microliters (µl) of clean Eichrom Sr resin, a 

substance designed to capture and thus extract strontium from a solution. The resin was 

further cleaned with ~1 ml of 6M HCl to remove organic particles and ~1 ml of DI H2O 

to elute any strontium atoms. The resin was then prepped with ~1 ml of 8M nitric acid 

(HNO3).  
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Each sample was placed within a Savillex vial, into which 1 ml of 8M HNO3 was 

added. The vial was then placed on a hotplate to dissolve the sample. The sample solution 

was added to the prepared column, and the solution that passed through the column was 

then reloaded to maximise strontium retention. The Sr imbued resin was rinsed with three 

~1 ml washes of 8M HNO3 to remove any unwanted elements (e.g., calcium and 

rubidium). The strontium was eluted from the resin using 1 ml of DI H2O. The elution 

was then acidified using HNO3 to 0.3M in preparation for analysis.  

All samples were analysed at Memorial University’s Micro Analysis Facility at the 

Inco Innovation Centre, under the direction of Lab Co-ordinator Dr. Rebecca Lam. One 

ml of sample was introduced via an Apex Q inlet system into a Finnigan™ Neptune High 

Resolution Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-

MS). Within the MC-ICP-MS, the sample was introduced to a plasma source which 

produces ions which are then accelerated and focused into a beam. Ions are separated 

from the main beam via a magnetic field based on their mass/charge ratio. Each ion beam 

was measured by a series of collectors which calculates isotopic ratios based on the 

voltage of different ion beams. The accuracy and precision of standard SRM987 (n=12) 

was measured at 0.710214 ± 0.000148 (Table 4). 

 

5.3.5  Bioapatite Quality Control 

Similar to collagen, isotopic preservation of enamel bioapatite is of great concern for 

isotopic analysis. To examine any diagenetic influences on dental tissues, dentine samples 

were taken from six faunal teeth and 10 human teeth. The isotopic values of the dentine 

samples were compared to the isotopic values of the same tooth’s enamel sample. Since 
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dentine is more prone to post-burial uptake and exchange than enamel, the isotopic values 

of a tooth’s dentine will have bioapatite isotopic values that are shifted towards local 

isotopic values (Bocherens et al. 1994a; Budd et al. 2000; Madgwick et al. 2012). A 

difference in the strontium concentration (sometimes accompanied by a shift in isotopic 

value) of dentine, as compared to enamel from the same tooth, is a strong indication that 

diagenesis has occurred within dentine, while a lower concentration and non-shifted 

isotopic value is an indicator that diagenesis has not occurred within enamel (Budd et al. 

2000; Evans et al. 2007).  
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Chapter 6 

Results 

 

6.1  Collagen Preservation 

Of the 91 faunal specimens sampled, 89 yielded an acceptable amount of collagen (above 

1.0%) (Table 5). Two samples (MARC 493 from sheep specimen 55L28E5-3 and MARC 

490 from avian specimen 55L28F16-3) yielded no collagen, likely because of burn 

damage. For those samples that did yield collagen, the % yield was between 1.81% and 

31.08% with a mean of 13.17%. The C/N atomic ratios ranged from 3.10 – 4.09 with a 

mean ratio of 3.32. Four samples yielded C/N atomic ratios outside the accepted range of 

2.9 – 3.6. These samples were MARC 527 (from chicken specimen 55L28E10-11), 

MARC 535 (from fish specimen 55L28E10-12), MARC 502 (from mouse specimen 

55L28E105), and MARC 525 (from hare specimen 55L28E24-4) with values of 4.09, 

3.68, 3.64, and 3.71, respectively. These samples had corresponding low (but acceptable) 

% yields of 8.39, 1.81, 2.97, and 5.28%, respectively. Figure 9a shows the relationship 

between % yield and C/N atomic ratio of all faunal samples which reveals that not all 

samples with low % yields have correspondingly out of range C/N atomic ratios and vice 

versa.  

The above four samples (with C/N atomic ratios outside the accepted range) were 

all from the Ste. Marie site (which includes 58 faunal bone samples in total) as opposed 

those faunal remains excavated from the town site (n=33). This suggests that the 

preservation at the town site was better than the preservation at the Ste. Marie site. This 

may be the result of different soil compositions, waterlogged conditions, or the exposed 
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nature of the Ste. Marie site to sea spray and seasonal wave action. The above mouse, 

hare, and fish samples had isotopic values that were similar to other samples of the same 

species, but the chicken sample (MARC 527) was an outlier with 
13

C and 
15

N values of 

-23.51 and 15.22‰, respectively, possibly caused by diagenetic influences. Since a C/N 

atomic ratio outside the 2.9 – 3.6 range indicates diagenetic changes may have occurred, 

the above four samples were not considered further in this study. The total number of 

specimens included in the following chapters is 85 with a mean C/N atomic ratio of 3.29. 

Of the 79 bone samples, representing 40 individuals, only one sample (MARC 

1071) from A18 failed to yield any collagen (Table 6). All other samples yielded an 

acceptable amount of collagen ranging from 2.28% – 33.85% with a mean of 10.46%. Of 

these samples, the mean C/N atomic ratio is 3.23 and ranges from 2.97 – 4.11. Three 

samples yielded a C/N atomic ratio outside 2.9 – 3.6: MARC 1063, 1072, and 1139 from 

A14, A18, and A12, respectively, with values of 4.11, 3.82, and 3.82, respectively.  

A14’s two samples, MARC 1063 and 1064, came from a humerus fragment and a 

rib fragment, respectively, the former with a C/N atomic ratio of 4.11 and the latter of 

3.22. Since the humerus fragment has likely undergone diagenesis (being outside 

DeNiro’s [1985] range) the isotopic values for A14 will henceforth be represented by the 

rib fragment sample (MARC 1064) only. The first sample (MARC 1071) from A18 did 

not yield any collagen for analysis. The second sample (MARC 1072) yielded 2.28% 

collagen but had a C/N atomic ratio of 3.82, well outside DeNiro’s (1985) established 

range and likely affected by diagenesis. Thus, there are no isotopic data for A18. Only 

one sample (MARC 1139) was analysed from A12 due to its fragmentary and 
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decomposed nature. This sample had a C/N atomic ratio of 3.82 which is outside 

DeNiro’s (1985) range. As a result, sample MARC 1139 was not used further in this 

analysis, resulting in no isotopic data for A12. Figure 9b shows the relationship between 

C/N atomic ratio and % yield.  

All the above human samples believed to be affected by diagenesis (according to 

collagen % yield and C/N atomic ratio) were excavated from sub-op A. This sub-op was 

located on the northeast portion of the root cellar and was heavily affected by erosion. 

The human remains within this sub-op were also the lowest in elevation and within a soil 

that was very wet, a burial condition which is known to alter bone collagen (Von Endt 

and Ortner 1984). Many remains in sub-op A were either partially, or in some cases, 

completely decomposed towards the northern portion of the root cellar. For example, 

A12’s remains consisted of teeth and fragmentary unidentifiable bone fragments (Parish 

2006). The remains for A18 were better preserved than A12’s, while A14 was very badly 

preserved. The northernmost superior portion of A14 was very fragmentary, and in the 

case of the skull, completely disintegrated (Parish 2006). Considering the physical 

condition of the remains from sub-op A, it is not unexpected that many samples yielded 

low % yields and out-of-range C/N atomic ratios.  

Overall, 75 human bone collagen samples (representing 38 individuals) have been 

deemed acceptable according to their collagen % yield and C/N atomic ratio. The isotopic 

values associated with these samples are considered the true biogenic values of the living 

individual. 
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6.2  Bioapatite Preservation 

Although the pre-treatment steps outlined in Chapter 5.3.3 should theoretically remove 

any diagenetic carbonate, it is still important to check the preservation conditions of tooth 

samples. This was done by comparing the enamel and dentine, oxygen and strontium 

values within the tooth of a single specimen/individual (see Chapter 5.3.5). Assuming 

enamel and dentine isotopic values were similar in vivo, dis-similar values between 

enamel and dentine would indicate diagenetic changes (Bocherens et al. 1994a; Budd et 

al. 2000; Evans et al. 2007; Hillson 1996; Madgwick et al. 2012)  

Enamel-dentine values for 
13

C and 
18

O (
13

CE-D and 
18

OE-D, respectively) of six 

faunal specimens (Table 7) have a mean of 0.88 ± 0.66‰ and -0.84 ± 1.44‰, 

respectively, with 
13

CE-D values from 0.22 – 2.27‰, and 
18

OE-D values from -3.31 –  

-0.02‰, respectively, and ranges of 2.05 and 3.29‰, respectively. In all instances, the 

faunal specimens’ dentine 
13

C values were higher, and the dentine 
18

O values lower, 

than the same tooth’s enamel 
13

C and 
18

O values (Figure 10). Since dentine is more 

prone to diagenesis than enamel (see Chapter 4.5), the material causing the large 

differences is likely dentine. These data indicate a diagenetic carbon influence that is 

isotopically heavier, and an oxygen influence that is isotopically lighter than each 

animal’s biogenic values.  

The strontium enamel-dentine values (
87

Sr/
86

SrE-D) for six separate faunal 

specimens (Table 8) have a mean of 0.000010 ± 0.000338 with values from  

-0.000423 – 0.000465 and a range of 0.000887. Three specimens with the highest 

87
Sr/

86
Sr enamel values have associated dentine with lower 

87
Sr/

86
Sr values, while three 
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samples with the lowest 
87

Sr/
86

Sr enamel values have associated dentine with higher 

87
Sr/

86
Sr values (Figure 11). This suggests a diagenetic influence on dentine with a 

87
Sr/

86
Sr value that is intermediary to the six sample’s enamel strontium value.  

The 
13

CE-D and 
18

OE-D values for 10 human teeth (Table 9) have a mean of 1.99 ± 

1.22‰ and 0.33 ± 0.52‰, respectively, with values between -0.23 and 3.37‰ and -0.54 

and 1.19‰, respectively and ranges of 3.60 and 1.73‰, respectively. All teeth have 

enamel 
13

C values greater than dentine values, except C7, who has the lowest enamel 


13

C value with a slightly higher dentine 
13

C value (Figure 12a). This indicates that the 

diagenetic carbon influence is lower than the enamel values of nine of the individuals, 

and higher than the enamel value of C7. Such a clear pattern is not present among the 


18

O values of enamel and dentine pairs. A majority of individuals with the highest 

enamel values have associated dentine with lower 
18

O values, while many of the lowest 

enamel values have associated dentine with higher 
18

O values (Figure 12b). This 

suggests that the 
18

O values of the diagenetic isotopes overlap with the 
18

O values of 

the individuals’ biogenic isotopes. 

The 
87

Sr/
86

SrE-D values for 10 human teeth (Table 10) have a mean of -0.000299 ± 

0.000319 with values between -0.000733 and 0.000196 and a range of 0.000930. Seven 

individuals have enamel values that are higher than their associated dentine, while three 

individuals with the lowest enamel 
87

Sr/
86

Sr values have associated dentine with higher 

87
Sr/

86
Sr values (Figure 13). This indicates a diagenetic influence with a 

87
Sr/

86
Sr value 

lower than the enamel values of the seven individuals and higher than the enamel values 

of the three individuals. 
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Overall, the Ste. Marie individuals’ enamel-dentine isotopic differences were 

greater than the faunal enamel-dentine isotopic differences. This may be because of some 

morphological, biochemical, or other difference whereby human teeth are more prone to 

diagenesis. Alternatively, since all the faunal teeth came from the town site and all the 

human teeth came from the Ste. Marie site on Rochefort Point, the larger enamel-dentine 

differences of the human teeth may be due to greater diagenetic influences on the 

Rochefort Point site. The latter scenario is likely the case since bone collagen 

preservation was also shown to be worse among Rochefort Point faunal bones than town 

site faunal bones (see Chapter 6.1).  

 

6.3  Intra-Bone Element Variation in the Ste. Marie Individuals’ Bone Collagen 

As mentioned previously, each set of human remains was sampled twice (with the 

exception of A12). The sample size of those individuals sampled from different bone 

elements is too small (n=2) to make any definitive conclusions concerning isotopic 

variation of separate bone elements within a single individual (such studies have been 

performed elsewhere, e.g., Balasse et al. [1999] and DeNiro and Schoeninger [1983]). 

However, by comparing the 
13

C and 
15

N values of samples taken from the same bone 

type from a single individual (e.g., D12: both samples taken from the anterior mid-shaft 

portion of the left humerus), it is possible to comment on the isotopic variation within 

single bone elements. 

Upon initial analysis, there was good agreement between 
13

C values for those 

samples taken from the same bone element (with values between 0.02 and 0.62‰), but 
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quite a wide range was observed for 
15

N values (with values between 0.03 and 3.06‰) 

(Table 11). The majority of sample pairs (84.4%) have an absolute 
15

N difference (
15

N) 

between 0.03 and 0.74%. The other 15.6% (consisting of five sample pairs) have a 
15

N 

between 1.01 and 3.06‰ (Table 12). It is unlikely that the intra-bone element variation 

observed in this study was due to a change of diet (behavioral change) since many of the 

samples were not only from the same element type but from adjacent portions of the same 

bone. Such samples would have been formed during the same time and should therefore 

show very similar values. 

To determine if the large 
15

N values were the result of some problem with the 

collagen or due to some error in the capsuling or analysing stage, the five problem sample 

pairs were reanalysed from each sample’s original collagen yield (as were two sample 

pairs with good isotopic agreement and cow sample MARC 1299). Upon reanalysis of 

these samples, smaller 
15

N values were achieved, and ranged from 0.02 – 0.99‰ (Table 

12). It also became apparent that one sample from each sample pair from the original 

analysis had drastically different 
15

N values than the values received from the same 

collagen upon reanalysis. Furthermore, the similarity between the isotopic values of the 

control samples (from E13 and F25, and cow specimen 4L58K14-9) suggests no 

noteworthy changes in the collagen’s isotopic values during the ~11-month period 

between analyses.  

The results reported in Table 12 indicate that the problem was not with the collagen 

itself but in the capsuling or analysing stage. It is possible that there was some form of 

contamination in the capsuling/weighing procedure. It is also possible that there was 
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fractionation during the analysis. Such may be the case for MARC 1081a, whereby an 

adequate amount of sample was believed to be capsuled (1.080 mg), but the peak 

amplitude registered during analysis only reached 2413 and 2666 millivolts (mV) for the 

carbon and nitrogen readings, respectively. This amounts to just over half of the mV 

registered for other samples with a similar weight (Table 13 and Figure 14). Since peak 

amplitude values are a reflection of the amount of sample combusted during analysis, 

these values suggest that either a smaller amount of sample was capsuled or only a 

portion of the sample was combusted and analysed. While the weight/peak amplitude 

values of MARC 1081a were questionable, the other samples with erroneous 
15

N values 

(1105a, 1107a, 1125a, and 1130a) had weight/peak amplitude values that were well in 

line with other sample pairs of similar sample weight. Therefore, the problems with 

weighing and/or analysing may not be the full explanation for the erroneous values of 

these samples. However, because of their questionable nature, samples MARC 1081a, 

1105a, 1107a, 1125a, and 1130a were omitted from further consideration in this study. Of 

the remaining samples (including the reanalysis of the control samples) the 
13

C values 

range from 0.02 – 0.90‰, from D11 and F28, respectively, while the 
15

N values range 

from 0.03 – 0.99‰, from H3 and F28, respectively. These values are deemed adequate 

for the purposes of this study, as a difference <1.00‰ for 
13

C and 
15

N between sample 

pairs is relatively small compared to the isotopic variation that exists as a result of C3 vs. 

C4, N2-fixing vs. non-N2-fixing, and marine vs. terrestrial diets. 
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6.4  13
C and 15

N Results 

This sub-chapter presents the isotopic results pertaining to diet. This includes the carbon 

and nitrogen isotopic values from bone collagen, and the carbon isotopic values from the 

carbonate portion of tooth enamel bioapatite. For those specimens/individuals that were 

analysed more than once, the isotopic values shown represent the mean of all accepted 

data.  

 

6.4.1  Faunal Collagen 13
C and 15

N Results 

The results for 85 faunal specimens are reported in Table 14. These data have a typical 

spread of a mixed terrestrial C3 plant based and marine plant based ecosystem with some 

small contributions from C4 terrestrial plants. Table 15 reports the descriptive statistics 

and Figure 15 shows the mean 
13
C and 

15
N values ± 1 standard deviation (σ) of all 

faunal types. Figure 16 shows a scatterplot of the 
13
C and 

15
N values of all specimens 

sampled.  

A single specimen each of moose and caribou had 
13

C values of -21.99 and            

-20.37‰, respectively, and 
15
N values of 0.77 and 2.80‰, respectively. These 

specimens likely had a diet consisting of N2-fixing plants which are C3 type plants that fix 

atmospheric nitrogen creating low 
15

N values. Sheep (n=4) and goat (n=2) specimens 

had mainly C3 based diets with a
13

C mean of -21.09 ± 0.27‰ and -20.89 ± 0.24‰, 

respectively, and 
15
N values of 5.69 ± 1.20‰ and 6.47 ± 0.79‰, respectively (see 

Figure 17 for all domestic mammalian specimens). Both groups had small ranges (sheep 


13
C range = 0.76‰ and 

15
N range = 2.99‰, goat 

13
C range = 0.47‰ and 

15
N range = 
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1.57‰) indicating isotopically similar diets between specimens. The same is not the case 

for cow (n=5) and deer (n=6) specimens. Although the cow and deer 
15

N values are 

constrained (with ranges of 2.54 and 1.42‰, respectively), the 
13

C values are varied 

with ranges of 6.30 and 5.24‰, respectively. The 
13

C means for cow and deer are -19.67 

± 2.60‰ and -19.88 ± 1.69‰, respectively, and the 
15
N means are 5.56 ± 0.95‰ and 

5.79 ± 0.47‰, respectively, indicating a terrestrial C3 diet for those specimens with lower 


13

C values and a small contribution of C4 plants for those specimens with higher 
13

C 

values. 

Pig specimens (n=5) have a 
13

C mean of -19.18 ± 2.51‰ and a 
15

N mean of 7.99 

± 2.06‰ and have a larger distribution than other domestic fauna with a 
13

C range of 

6.91‰ and a 
15

N range of 5.99‰. The relatively large range values are because of one 

specimen who is isotopically heavier than the rest, likely caused by a marine component 

to its diet. Large isotopic distributions are also shown by hare specimens (n=8) (Figure 

18). The 
13
C range is 9.97‰ and 

15
N range is 14.53‰ with a 

13
C mean of -19.91 ± 

3.97‰ and a 
15
N mean of 7.26 ± 5.76‰. There are three hare specimens that show very 

low 
15

N values indicative of a N2-fixing diet, two others show a non-N2-fixing C3 plant 

diet, and three others show very high 
13

C and 
15

N values indicating a strong marine 

component. The squirrel specimens (n=6) have a 
13

C mean of -15.92 ± 1.37‰ and a 


15

N mean of 11.25 ± 3.33‰, with a 
13

C range of 4.43‰ and a 
15

N range of 8.52‰. 

The distribution of isotopic values suggests an isotopically diverse diet. Four specimens 

show a C3 or mixed C3/C4 diet, while two others exhibit values that suggest a strong 

marine component. Mouse specimens (n=4) show more constrained values with a 
13

C 
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range of 1.85‰ and a 
15
N range of 3.56‰. This indicates that the mouse specimens had 

isotopically similar diets. The 
13

C mean is -15.99 ± 0.78‰ and the 
15

N mean is 13.85 ± 

1.27‰ which suggests a diet of marine resources. The range for the rat specimens (n=10) 

is considerably larger due to an outlier. The 
13

C range is 6.20‰ with a mean of -16.62 ± 

1.51‰, and the 
15
N range is 6.75‰ with a mean of 12.19 ± 1.87‰. The outlier is 

isotopically lighter than the rest, likely due to a C3 terrestrial diet, while the other 

specimens show a marine diet similar to the mouse specimens.  

The group showing the highest amount of isotopic variation is chicken (n=9), with 


13

C and 
15

N ranges of 10.85‰ and 14.97‰, respectively (Figure 19). The mean 
13

C 

and 
15

N values are -17.09 ± 3.41‰, and 11.45 ± 4.60‰, respectively. The distribution of 

isotopic values suggests an isotopically diverse diet. Some specimens show diets 

containing N2-fixing C3 plants, marine foods, herbivore or omnivore meat, or possibly 

freshwater fish. Other domestic bird specimens analysed in this study include goose (n=2) 

and turkey (n=3) specimens. These specimens have similar distributions with relatively 

constrained 
13

C values and varied 
15

N values. The high 
15

N values of some specimens 

suggest a marine component to their diet. The 
13

C ranges for goose and turkey 

specimens are 1.49 and 2.49‰, respectively, while the 
15
N ranges are 7.13 and 8.12‰, 

respectively. The goose and turkey specimens’ 
13

C means are -16.55 ± 0.74‰ and          

-17.37 ± 1.09‰, respectively, and the 
15

N means are 10.42 ± 3.57‰ and 11.05 ± 3.67‰, 

respectively.  

Wild bird specimens are fewer in sample size and include a single duck specimen 

with a 
13

C value of -19.26‰ and a 
15
N value of 7.11‰ suggesting a C3 terrestrial diet, 
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a single spruce grouse specimen with a 
13

C value of -18.04‰ and a 
15

N value of 

9.57‰, indicating a small marine component, and one eider specimen with a 
13

C value 

of -16.45‰ and a 
15
N value of 12.41‰ suggesting relatively greater marine 

contributions. The single avian specimen has an even stronger marine component with a 


13

C value of -16.30‰ and a 
15
N value of 15.10‰. Also showing a strong marine diet 

are the dove/robin specimens (n=4) with a 
13

C mean of -16.28 ± 0.36‰, and a 
15

N 

mean of 13.28 ± 0.92‰. These specimens show a tight isotopic grouping with a 
13

C 

range of 0.93‰ and a 
15
N range of 2.27‰, indicating isotopically similar diets. 

The two fox specimens show consumption of isotopically heavy animals with a 


13

C mean of -16.20 ± 1.83‰ and a range of 3.65‰, and a 
15
N mean of 13.49 ± 1.33‰ 

and a range of 2.66‰. The isotopically lighter fox is comparable to the cat (n=2) and lynx 

(n=1) specimens. The former group has a 
13

C mean of -16.86 ± 0.48‰ and a range of 

0.95‰, and a 
15

N mean of 11.74 ± 0.91‰ with a range of 1.82‰, while the latter has a 


13

C value of -17.09‰ and a 
15
N value of 12.00‰. The heaviest isotopic group is the 

fish specimens (n=6) with a 
13

C mean of -14.41 ± 0.39‰ and a 
15

N mean of 15.14 ± 

0.58‰. This group is also isotopically constrained with a 
13
C range of 1.06‰ and a 

15
N 

range of 1.81‰.  

 

6.4.2  Ste. Marie Collagen 13
C and 15

N Results 

The 
13

C and 
15

N values of the Ste. Marie individuals (n=38) are presented in Table 16. 

The mean 
13

C and 
15

N values are -16.78 ± 1.92‰ and 9.77 ± 1.67‰, respectively, with 
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ranges of 8.48 and 7.32‰, respectively (Figure 20). When compared to the faunal data 

(Figure 15), the 
13

C and 
15

N means are isotopically heavier than the means for 

terrestrial herbivores and omnivores (e.g., cow, deer, and pig) and isotopically lighter 

than the means for the terrestrial carnivores (e.g., fox and lynx) and other isotopically 

heavy animals (e.g., rat, mouse, and fish). The 
15

N mean suggests a terrestrial 

carnivorous diet but not a significant marine protein contribution. The 
13

C mean 

suggests a small C4 contribution to the individuals’ diets, likely in the form of protein 

from terrestrial animals subsisting on C4 plants. The higher 
13

C values of some of the 

individuals may also be from a diet including shellfish or other low trophic level marine 

animals, however, no remains of low trophic level marine animals were analysed in this 

study to allow for a direct assessment. For a comparison between the Ste. Marie group’s 

data from this study and published data on shellfish and other low trophic level marine 

animals, please see Chapter 7.2. 

The total range of 
13

C and 
15

N values is very large. The 
13
C range is 8.48‰ with 

values from -20.75 – -12.27‰ (by A20 and E13, respectively) and a 
15

N range of 7.32‰ 

with values from 7.63 – 14.95‰ (by F29 and F30, respectively). Figure 21 shows a 

scatter plot of the 
13

C and 
15

N values of each individual and faunal specimen. The 

scattering of isotopic values indicates that the diets among the Ste. Marie individuals were 

isotopically diverse.  

A comparison between isotopic results and osteological information (Table 17) 

revealed that no significance was observed between carbon and nitrogen isotopic values 

and age, dental pathologies, muscle attachment stress indicators, or pipe smoking. 
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Significant differences were observed between the 
13

C values of males (n=23) and 

females (n=2) using a t-test for independent samples (t=4.40; df=4; p=0.012) (Figure 22). 

Whether these results reflect a broader trend whereby colonial females ate little or no C4 

based foods is unclear at this time and would require further examination. The 

significance observed here may simply be an artifact of a small sample size of females.  

A significant difference was also observed using a t-test for independent samples 

(t=2.39; df=33; p=0.023) between those individuals illustrating bone pathologies 

(including porotic hyperostosis, periostitis, myositis ossificans, and cribra orbitalia) and 

those showing no evidence of pathological conditions. Individuals exhibiting bone 

pathologies (n=17) had significantly lower 
13

C values than individuals showing no bone 

pathologies (n=21) (Figure 23). This may suggest that those individuals with ill-health 

had diets containing less C4 derived foods, however, it must be considered that the above 

bone conditions are only rough indicators of ill-health of the living individual. These 

conditions may be caused by malnutrition, metabolic disorders, or chronic disease or 

parasitic loads (Parish 2006, 2007). The same conditions experienced by another 

individual may not result in the same, or any bone condition, especially if this condition 

was only experienced for a short time or far enough into the past for the bone to have 

fully healed. Overall, any patterns between isotopic values and health are unclear at this 

time.   

Statistical significance was observed using an independent sample t-test (t=4.01; 

df=6; p=0.007) between those individuals exhibiting deformations on muscle attachment 

areas of bone (indicating muscular strain or injury) and those individuals showing no 
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deformations (n=3 and n=35, respectively). Individuals identified as having muscular 

strain have lower 
15

N values, suggesting a terrestrial diet with no significant marine 

component (Figure 24). A statistical difference was also found concerning these 

individuals in reference to their 
87

Sr/
86

Sr values (Chapter 6.5.4).  

 

6.4.3  Faunal Bioapatite 13
C Results 

A total of 35 faunal enamel samples were analysed for carbon isotopes within the 

carbonate portion of tooth enamel bioapatite. These data (Table 18) are typical of animals 

eating a C3 plant based diet with some contributions from C4 resources. Table 19 reports 

the descriptive statistics, and Figure 25 shows the mean 
13

C values (± 1σ) of all faunal 

types. Figure 26 shows a scatter plot of all faunal specimens grouped by faunal type. 

The mean for all faunal bioapatite 
13

C values is -11.86 ± 2.65‰ with a range of 

11.72‰ with values from -16.37‰ (hare specimen 4L55X99-2) to -4.65‰ (deer 

specimen 4L58K11-7). The lowest 
13

C values are consistent with a strict C3 terrestrial 

diet, while those specimens with the highest 
13

C values had a diet containing relatively 

more C4 resources than C3. 

The hare specimens (n=3) have the lowest 
13

C values with a mean of -15.86 ± 

0.37‰, indicating a strict C3 diet. The isotopic values of the hare specimens have a small 

range of 0.87‰, indicating isotopically similar diets. The beaver specimens’ (n=2) range 

was also small at 0.16‰ and have a 
13

C mean of 14.18 ± 0.08‰, also indicative of a C3 

diet. Sheep (n=3) and goat (n=4) specimens also have low 
13

C values, but both groups 

illustrate wider ranges (5.08 and 5.77‰, respectively) indicating somewhat isotopically 



78 
 

diverse diets. The mean 
13

C values for sheep and goat are -12.63 ± 2.10‰ and -12.41 ± 

2.06‰, respectively. The mean 
13

C for cow (n=5) and horse (n=2) specimens is -10.93 ± 

1.55‰ and -9.99 ±1.94‰, respectively. These values are slightly higher than the sheep 

and goat means, likely due to a greater C4 contribution for some specimens. The ranges 

for cow and horse are 4.20 and 3.88‰, respectively which suggests a measure of isotopic 

diversity among the specimens’ diets.  

The rat specimens (n=3) consist of two specimens with low 
13

C values suggesting 

a C3 diet and one specimen with a higher 
13

C value indicating a small C4 or marine 

contribution. The mean 
13

C for rat specimens is -11.74 ± 2.00‰, with a range of 4.32‰. 

The pig (n=4) and deer (n=5) specimens have 
13

C means of -11.14 ± 3.46‰ and -10.71 

± 3.11‰, respectively, and have the largest ranges (8.60 and 8.24‰, respectively) of all 

faunal groups. This is due to one outlying specimen in each group which have the highest 


13

C values of the Louisbourg fauna. The isotopically lighter pig and deer specimens 

were likely strict C3 eaters, while the outlying specimens likely had a strong C4 

component to their diets, or for the pig, a strong marine component. The single moose 

specimen falls relatively close to the isotopically light deer with a 
13

C value of -11.06‰ 

and likely had a diet of C3 plants only.  

The carnivorous specimens, cat (n=1), fox (n=1), and lynx (n=1), all have 
13

C 

values greater than the hare and beaver specimens (-11.34, -11.24, and -9.99‰, 

respectively) and are comparable to the rat, deer, moose, and many domestic herbivore 

specimens. However, since the isotopic distribution of prey items is varied (and the 

isotopic values of dental tissues represent a mixing of different isotopic values from 
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various diet sources), predicting specific prey items was deemed problematic and was 

therefore not attempted in this study.  

 

6.4.4  Ste. Marie Bioapatite 13
C Results 

A total of 33 individuals were sampled for 
13

C values in the carbonate portion of tooth 

enamel bioapatite. These data (Table 20) indicate a diet of C3 plants with some C4 

contributions. Figure 25 shows the mean 
13

C values (± 1σ) of the Ste. Marie individuals, 

and Figure 26 shows a scatter plot of each individual sampled 

The 
13

C mean for the individuals’ bioapatite is -9.86 ± 3.53‰. When compared to 

the faunal data, the Ste. Marie group’s mean is isotopically heavier and closest to the 

horse mean and single lynx 
13

C value (-9.99 ± 1.94‰ and -9.99‰, respectively). The 

Ste. Marie group’s 
13

C range is 11.34‰ with values from -14.54 – -3.20‰ (from E15 

and E13, respectively). The lowest 
13

C values are isotopically heavier than the hare 

group and two single sheep and goat specimens. Only two individuals (A19 and E13 with 


13

C values of -4.24 and -3.20‰) have higher 
13

C values than the highest faunal 

specimen (deer 4L58K11-7 with a 
13

C of -4.65‰). No statistical correlations exist 

between 
13

C values and observed biological, physiological, behavioral, or health-related 

characteristics. 

 

6.5  18
O and 

87
Sr/

86
Sr Results 

The following sub-chapters report the oxygen and strontium data from the tooth enamel 

of the Louisbourg fauna and the Ste. Marie individuals. The strontium isotopic values 
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were analysed from the tooth enamel and the carbon isotopic values from the carbonate 

portion of tooth enamel bioapatite. 

 

6.5.1  Faunal 18
O Results 

A total of 35 faunal enamel samples were analysed for oxygen isotopes within the 

carbonate portion of enamel bioapatite (Table 18). Table 19 reports the descriptive 

statistics, and Figure 27 shows the mean 
18
O values (± 1σ) of all faunal types. Figure 28 

shows a scatter plot of individual faunal specimens grouped by faunal type. 

The mean 
18

O value of all faunal specimens is -7.57 ± 1.50‰ with a range of 

7.23‰. The lowest 
18

O value is -12.18‰, and the highest 
18

O value is -4.95‰. These 

values are from deer specimens 4L58K11-7 and 3L22N1-8, respectively. The 
18

O 

values, ranges, and distributions for most domestic animals are relatively similar, 

indicating isotopically similar water sources. The cow specimens (n=5) have a mean 
18

O 

value of -8.26 ± 0.81‰ with a range of 2.36‰. The range for pig specimens (n=4) is 

similar at 2.38‰ with a mean 
18

O value of -7.76 ± 1.08‰. Sheep (n=3) have a mean 


18

O value of -7.68 ±1.05‰ with a range of 2.27‰, while the range for goat specimens 

(n=4) is slightly larger at 3.28‰ with a mean 
18

O of -7.57 ± 1.18‰. The two horse 

specimens have a mean 
18

O value of -8.12 ± 0.62‰ and a range of 1.24‰. The single 

cat specimen has a 
18

O value of -5.85‰ which is at the high end of domestic animals. 

The rat specimens (n=3) have similar values with a mean 
18

O of -6.21 ± 0.31 and a range 

of 0.68‰.  
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The hare specimens (n=3) have 
18

O values on the lower end of the scale with a 

mean 
18

O value of -8.61 ± 0.28‰. These specimens also have the smallest range of all 

fauna (0.64‰) which suggests isotopically constrained water sources. Beaver specimens 

(n=2) have a 
18

O value of -8.08 ± 0.84‰ and a range of 1.67‰. The fox (n=1) and lynx 

(n=1) specimens have relatively similar 
18

O values of -6.15 and -6.21‰, respectively. 

The single moose specimen has a slightly lower 
18

O value of -7.04‰. The deer 

specimens (n=5), with a mean 
18

O value of -7.47 ± 2.47‰, have the largest 
18

O range 

at 7.23‰. This is because of one outlying specimen which has the lowest 
18

O value of 

all deer specimens and of all fauna analysed (-12.18‰).  

 

6.5.2  Ste. Marie 18
O Results 

A total of 33 individuals were sampled for oxygen isotopes within the carbonate portion 

of tooth enamel bioapatite (Table 20). Figure 27 shows the mean 
18

O values (± 1σ) of 

the Ste. Marie individuals, and Figure 28 shows the distribution of 
18

O values for each 

individual.  

The overall mean for the individuals’ bioapatite 
18

O values is -5.20 ± 0.76‰. 

When compared to the faunal means, the Ste. Marie group’s mean is isotopically heavier 

and closest to the rat specimens and carnivores (cat, lynx, and fox). The individuals’ 
18

O 

range is 3.86‰ with values from -7.06 – -3.20‰ (A18 and F30, respectively). The lowest 

human 
18

O values are isotopically similar to many specimens in this study, but the 

highest human 
18

O value is higher than the highest faunal specimen (deer 3L22N1-8) by 

1.75‰. The Ste. Marie group’s mean (-5.20 ± 0.76‰, n=33) is significantly higher than 
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the faunal mean (-7.57 ±1.50‰, n=35) using a t-test for independent samples (t=-8.58; 

df=53; p<0.001) and suggests that Ste. Marie individuals as a group ingested water with 

higher 
18

O values than the faunal specimens. 

No correlations exist between 
18

O values and observed biological, physiological, 

behavioral, or health-related characteristics, with the exception of dental pathologies 

(which includes the presence of carious lesions, abscesses, and periodontal disease) 

(Table 17). Using a t-test for independent samples, those individuals with dental 

pathologies (n=25) had 
18

O values that were significantly higher (t=3.02; df=12; 

p=0.011) than those individuals with no apparent dental pathologies (n=8) (Figure 29). 

This suggests a geographic difference between the two groups whereby individuals with 

healthier teeth originated from regions with lower 
18

O values (e.g., further north, higher 

altitude, or inland) than individuals with poor dental health. Whether this indicates a 

broader trend, is unclear, and requires further research.  

 

6.5.3  Faunal 
87

Sr/
86

Sr Results 

A total of 35 faunal enamel samples were analysed for strontium isotopes (Table 18). 

Table 19 reports the descriptive statistics, and Figure 30 shows the mean 
87

Sr/
86

Sr values 

(± 1σ) of all faunal types. Figure 31 shows a scatter plot of individual faunal specimens 

grouped by faunal type. 

The mean 
87

Sr/
86

Sr value for all faunal specimens (n=35) is 0.710666 ± 0.001483 

with a range of 0.005992. The majority of domestic animals have relatively wide ranges. 

The animal type with the largest 
87

Sr/
86

Sr range is cow (n=5) with a range of 0.005260. 
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The mean 
87

Sr/
86

Sr for cow specimens is 0.712169 ± 0.001897. Pig specimens (n=4) and 

goat specimens (n=4) have similar ranges with 0.003014 and 0.002754, respectively, and 

mean 
87

Sr/
86

Sr values of 0.710788 ± 0.001132 and 0.710039 ± 0.001180, respectively. 

The range for sheep specimens (n=3) is smaller at 0.001770. The mean 
87

Sr/
86

Sr value for 

sheep specimens is 0.710104 ± 0.000739. The mean 
87

Sr/
86

Sr value for horse specimens 

(n=2) is 0.710754 ± 0.000267 with a range of 0.000534. The single cat specimen has a 

87
Sr/

86
Sr value of 0.709801. 

The majority of wild specimens have relatively smaller 
87

Sr/
86

Sr ranges. The two 

beaver specimens have the smallest range (0.000237) which suggests that they were 

likely from the same area (or isotopically similar areas). The mean 
87

Sr/
86

Sr value of 

beaver specimens is 0.709819 ± 0.00118. Rat specimens (n=3) have a mean 
87

Sr/
86

Sr of 

0.710351 ± 0.000337 and a range of 0.000790. The range of 
87

Sr/
86

Sr values for hare 

specimens (n=3) is larger than the rat and beaver specimens’ with a range of 0.002460 

and a mean 
87

Sr/
86

Sr of 0.710197 ± 0.001047. The single fox, lynx, and moose specimens 

have 
87

Sr/
86

Sr values of 0.709070, 0.710061, and 0.709133, respectively. The deer 

specimens (n=5) have the largest distribution of 
87

Sr/
86

Sr values among the wild fauna 

with a range of 0.004329. This suggests that some deer specimens were from areas with 

differing 
87

Sr/
86

Sr values. The mean 
87

Sr/
86

Sr value for deer specimens is 0.711595 ± 

0.001800.  
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6.5.4  Ste. Marie 
87

Sr/
86

Sr Results 

A total of 33 enamel samples were analysed for strontium isotopes (Table 20). Figure 30 

shows the mean 
87

Sr/
86
Sr values (± 1σ) of the Ste. Marie individuals, and Figure 31 shows 

the distribution of 
87

Sr/
86

Sr values for each individual. 

The overall mean for the enamel 
87

Sr/
86

Sr values is 0.710784 ± 0.0012815. The Ste. 

Marie individuals’ 
87

Sr/
86

Sr mean is isotopically lighter than the cow and deer means 

(0.712169 ± 0.001897 and 0.711595 ± 0.001800, respectively), isotopically similar to the 

pig and horse means (0.710788 ± 0.001132 and 0.710754 ± 0.000267, respectively), and 

isotopically heavier than all other faunal groups.  

The overall range of 
87

Sr/
86

Sr values is greater than all other faunal groups at 

0.005157 which suggests that the Ste. Marie individuals have varied origins. The 

individuals’ values overlap with all faunal groups, and no significant difference was 

observed between the Ste. Marie individuals and fauna using a t-test for independent 

samples (t=-0.35; df=66; p=0.729). F12 has the lowest 
87

Sr/
86

Sr value (0.708560) of all 

individuals and faunal specimens, while D11/F11 has the highest 
87

Sr/
86

Sr value 

(0.713716) among the Ste. Marie individuals and places third highest among faunal 

specimens, below a cow (1L36B3-1) and deer (3L22N1-8) specimen (0.714752 and 

0.713730, respectively). These values indicate that the Ste. Marie individuals ingested 

isotopically similar foods to many faunal specimens which suggests comparable origins 

between the two groups. 

No correlations exist between 
87

Sr/
86

Sr values and sex, dental pathologies, bone 

pathologies, or pipe smoking (Table 17). However, a statistical significant difference was 

observed between adults (n=31) and sub-adults (n=2) using a t-test for independent 
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samples (t=-8.27; df=30; p<0.001), whereby the sub-adults have a higher 
87

Sr/
86

Sr mean 

(Figure 32). The sub-adults are discussed further in Chapter 7.6.5. The three individuals 

with muscular strains mentioned previously (Chapter 6.4.2) had a significantly higher 

87
Sr/

86
Sr mean (t=3.23; df=4; p=0.032) than those individuals showing no muscular 

strains or injuries (n=30). Although the strontium values of these individuals still overlap 

with the rest of the group (Figure 33), their correspondingly significantly different 
15

N 

mean (see Chapter 6.4.2 and Figure 34) may be additional evidence that these three 

individuals had differing diets and origins than rest of the individuals. This group is 

discussed further in Chapter 7.6.4. 
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Chapter 7 

Discussion 

 

The following is an interpretation of the carbon, nitrogen, oxygen, and strontium results 

reported in Chapter 6. Table 21 contains all data compiled for the Louisbourg fauna, and 

Table 22 contains all data compiled for the Ste. Marie individuals. In this study, bone 

collagen 
13

C (
13

CCol) and 
15

N values reflect the protein portion of the consumer’s diet, 

and tooth enamel carbonate bioapatite (
13

CCarb) reflects total diet (protein, lipid, and 

carbohydrates) (Ambrose and Norr 1993; Tieszen and Fagre 1993). 

 

7.1  Faunal Diet Reconstruction 

The following sub-chapters reference ecological and historical information as well as 

isotopic data and discussions from previous studies to give further detail concerning the 

isotopic placement of animal groups, and in some cases, individual specimens. Where 

applicable, possible causal factors were provided for those data that appear to be atypical. 

Suggestions on areas that may merit further investigation are also discussed. 

 

7.1.1  Moose and Caribou 

Both the collagen and bioapatite 
13

C values of caribou (n=1) and moose specimens (n=2) 

indicate a C3 diet (Table 21). The 
15

N values are much lower than the other herbivorous 

specimens (e.g., sheep, goat, and cow, Figure 16), likely due to a diet based largely on 

N2-fixing plants (DeNiro 1987). N2-fixers have a symbiotic relationship with bacteria and 
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can fix atmospheric nitrogen as well as soil nitrogen, with the result that legumes have 

much lower delta value than other C3 plants, because atmospheric nitrogen is typically 

isotopically lighter than soil nitrogen (Cheng et al. 1964; DeNiro 1987; Parwel et al. 

1956). N2-fixing plants include a wide variety of shrubs, trees, ferns, and lichens, as well 

as mosses and legumes (DeNiro 1987; Evans and Barber 1977; Virginia and Delwiche 

1982) which are common components in the diets of moose and caribou (Crête 1999; 

Peterson1999). Moose generally eat woody plants such as willow, aspen, balsam fir 

(Peterson 1999), while caribou eat leaves, shrubs, grasses, and large quantities of lichen 

(Crête 1999).  

The moose in this study has a 
13

CCol value on the heavier end of isotopic data of 

modern moose (Derbridge 2010; Urton and Hobson 2005) (even after adjusting +1.5‰ 

for the alteration of carbon isotopes in atmospheric CO2 since industrialisation [Marino 

and McElroy 1991]). These differences can likely be attributed to small regional 

variations in the carbon values of N2-fixing plants. The caribou specimens in this study 

are comparable to caribou analysed from Newfoundland colonial sites (Guiry et al. 2012). 

 

7.1.2  Goats, Sheep, Horses, and Cows 

The domestic herbivores analysed in this study include sheep (n=5), goat (n=4), horse 

(n=2) and cow (n=10) (Table 21). The sheep and goat specimens have low 
13

CCol and 


15

N values which suggest a terrestrial diet of C3 plants. The distribution of 
13

CCarb 

values for cow (n=5) sheep (n=3), goat (n=4), and horse (n=2) are relatively similar 

(Figure 26). The lightest specimens likely had a strict C3 diet, while the heaviest 
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specimens likely had a diet containing some C4 plants. The cow specimens’ 
13

CCol 

values are more varied (range = 6.30‰, n=5) than the collagen data for sheep (range = 

0.76‰, n=4) and goat specimens (range = 0.47‰, n=2) (Table 15 and Figure 17). Those 

cow specimens with lower 
13

CCol values likely had a strict C3 plant diet, while those 

specimens with higher 
13

CCol values (specimens 4L50K12-8 and 4L50K16-4) likely had 

C4 components to their diets. The high 
13

CCol values of these two specimens (-16.93‰ 

and -16.20‰, respectively) fall outside the 
13

CCol values of cow, sheep, and goat 

specimens sampled from a Newfoundland colonial site (-22.64 – -18.84‰, n=22 [Guiry 

et al. 2012]). There are a number of possibilities that may explain the difference between 

the 
13

C values of cow specimens, and the sheep and goat specimens in this study. The 

following is a short discussion addressing some potential causes. 

 

Natural grazing habit: Goats, and to a lesser extent sheep, naturally browse/graze on 

leaves from plants (e.g., woody plants such as shrubs and trees), while cows naturally 

graze on a combination of leaves and grasses (Klippel 2001). Woody plants have a C3 

mode of photosynthesis, while grasses can have either a C3 or C4 mode of photosynthesis. 

In a study of grasses in modern Nova Scotia, C4 grasses made up 18% (Roland and Smith 

1969 in Wan and Sage 2001). C4 grasses in Nova Scotia include Spartina alterniflora, S. 

patens (Patriquin 1981; Roland and Smith 1969), Cyperus esculentus, C. filiculmis (Mei-

Rong et al. 1999; Roland and Smith 1969), and Distichlis spicata (Roland and Smith 

1969; Seliskar and Gallagher 2000), among others. Since cows have a tendency to graze 

on grass, the higher 
13

C values of some cow specimens may be the result of ingesting 
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wild C4 grasses, and similar values would not be expected to show up in goat since they 

do not have a natural tendency to browse on grass (Klippel 2001). Although sheep tend to 

have a natural diet consisting of a mix between leaves and grasses (Klippel 2001), the 

sheep in this study do not have high 
13

C values to indicate any C4 plants were consumed. 

Furthermore, the sheep and goat values are not notably different from one another to 

suggest that their diets differed. 

The proportion of C3 to C4 plants in the Louisbourg or Cape Breton coast is 

currently unknown, and future studies of faunal diet would benefit from local 

investigations into the presence and isotopic values of C4 plants. Furthermore, the effects 

of natural browsing/grazing habits on the isotopic values of Louisbourg’s domestic 

animals may be a moot point since their diets may have been subject to considerable 

change due to unnatural grazing or foddering practices imposed by local farmers. Such 

animals’ isotopic values would reflect the isotopic values of the plant material within the 

imposed grazing area or of the foddering material provided.  

 

Imposed grazing: The higher 
13

C values of cow specimens compared to sheep and goat 

could be the result of grazing practices that were not natural for the animal but imposed 

by local farmers. One such practice was to graze cows in salt marshes or along the coast 

to increase the animal’s salt intake, a practice which was not commonly implemented for 

goats and sheep at Louisbourg (A. M. Lane Jonah, personal communication 2012). Since 

C4 plants are common in these environments (Cloern et al. 2002; Seliskar and Gallagher 
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2000; van der Merwe 1982; Wan and Sage 2001), it is possible that this was the cause of 

the high 
13

C values of cow specimens 4L50K12-8 and 4L50K16-4.  

 

Foddering materials: It is also possible that the relatively high 
13

C values of the cow 

specimen (and also the isotopically heavy horse specimen 3L22N1-5 [
13

C = -8.05‰, 

Table 21]) were caused by occasional foddering with maize or other C4 plants. Foddering 

with maize was not uncommon at the Fortress of Louisbourg (A. M. Lane Jonah, personal 

communication 2012). A maize diet does not seem to have been significant for the sheep 

and goat specimens (and isotopically light cow and horse specimens), as evident by their 

low 
13

C values.  

 

New England Origins: Although C4 grasses are found in Nova Scotia, there is a higher 

proportion of wild C4 grasses to C3 grasses further south (Wan and Sage 2001). While C4 

grass species comprise 18% of grasses in Nova Scotia, the C4 abundance in New England 

ranges from 16% in Maine, to as high as 50% in New York (Wan and Sage 2001). 

Furthermore, while C3 plants and products appear to have been dominant at Louisbourg 

(Chard 1995; Clark 1980; Lane Jonah and Véchambre 2012; McLennan 1918; Moore 

1995; Varkey 2002), maize and corn were the staple crops in New England (Fisher et al. 

1997; McMahon 1985; Walcott 1936). Farmers used corn as fodder and were known to 

have sustained their cows on maize products during the winter months (Fisher et al. 1997; 

Klippel 2001; McMahon 1985). Since Louisbourg meat and livestock are known to have 

been imported from New England, it is possible that the two cow specimens and the 
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single horse specimen with higher 
13

C values were imported from these locations where 

they ingested relatively higher portions of C4 fodder or wild C4 grasses. If this is indeed 

the case, there exists the possibility of differentiating between foreign-raised specimens 

and locally raised specimens by their 
13

C values. Unfortunately, there are no oxygen or 

strontium data from the cow specimens to elaborate further on their origins. The horse 

specimen has oxygen and strontium values that fall within the local range (see Chapter 

7.4), but these values could also have been acquired by having New England origins.  

Carbon isotopic values in bovid specimens (e.g., cow, sheep, and goat) have been 

used as a means for identifying origins in a study conducted by Klippel (2001). Bovid 

bones from a 17
th

- to 19
th

-century British West Indies slave site were analysed in an 

attempt to examine the ability of isotopic analysis to identify imported meat vs. locally 

raised meat. Meat raised in the study site in the area of the Caribbean was expected to 

reflect a very high C4 diet (with more positive 
13

C values), whereas meat imported from 

England and North America would have a relatively higher C3 contribution (and more 

negative 
13

C values). From this study, Klippel (2001) concludes that sheep and goats 

(which showed a high C4 intake) were raised locally and that cows (which showed a more 

C3 based diet) were imported from North America. This conclusion agreed with 

conclusions based on number of individual specimen (NISP) counts and skeletal part 

frequency calculations, in consideration with factors involving butchering and shipping 

practices.  

It is possible that a similar study could be conducted on Louisbourg bovids, 

whereby relatively high 
13

C values indicate origins further south and lower 
13

C values 
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indicate local origins. Such a study would also benefit from full isotopic mapping of 

bovid specimens, historical information on the use of C4 products at Louisbourg, and 

investigations into the abundance and isotopic values of local C4 plants. 

 

In addition to the variation in 
13

CCol values of cow specimens, there is also a noted 

difference in 
15

N values, in that one specimen (4L50K16-4) is isotopically heavier than 

the other four cow specimens with a 
15
N value of 7.44‰ (Table 21). The other cow 

specimens have a 
15

N distribution between 4.90 and 5.24‰. Such a distinction does not 

seem to be apparent for other bovids (with 
15

N values equally distributed between 4.40 

and 7.39‰). This outlier may be a reflection of the small sample size (n=5) which may be 

small in comparison to the variety of potential origins and diets of Louisbourg cows. 

However, this specimen also has the highest 
13

CCol and was therefore deemed worthy of 

further discussion.  

If cow specimen 4L50K16-4 was young at time of death, and either still suckling 

from its mother or only recently weaned, the high 
15

N values may simply be the result of 

isotopic enrichment due to a variation of the trophic effect, whereby a calf is essentially a 

carnivore of their mother’s milk (Richards et al. 2002). The distinctly high 
15

N and 


13

CCol value may also be caused by grazing in coastal, salt marsh, or wetland areas. Soils 

from these areas have high 
15

N values due to a number of factors such as contributions 

of isotopically heavy nitrogen via sea spray (Virginia and Delwiche 1982) or as a result of 

biochemical processes such as denitrification (Cloern et al. 2002), a process whereby soil 

bound nitrogen is returned to the atmosphere as gaseous nitrogen via microbial action: 
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NO3
-
  NO2

-
  NO  N2O  N2 (van Spanning et al. 2007). Because of the 

preferential transfer of the lighter nitrogen isotope (
14

N) towards the final nitrogen 

gaseous product (N2), any residual soil NO3 becomes isotopically enriched in the heavier 

nitrogen isotope (
15

N) (Delwiche and Steyn 1970; Wellman et al. 1968). This isotopically 

heavy NO3 is then absorbed by plants with little discrimination against the heavier 
15

N 

isotope (Van Cleemput et al. 2007) and is passed through the food chain to animals 

(Britton et al. 2008). Although denitrification is known to occur in waterlogged areas, 

such as marshes and wetlands (Van Cleemput et al. 2007), it is unclear to what degree 

denitrification occurs in the marshes and wetlands in the area of Louisbourg, and whether 

denitrification and other 
15

N enriching processes have a significant effect on the isotopic 

values of soil NO3 and local flora or fauna. However, many studies on bovids have 

interpreted elevated 
15

N values as evidence of salt marsh (Atahan et al. 2011; Britton et 

al. 2008) or freshwater marsh utilisation (Oelze et al. 2011). It is possible that specimen 

4L50K16-4 received its high 
15

N values from grazing in similar areas.  

As for the elevated 
13

CCol value of specimen 4L50K16-4 (-16.20‰), coastal areas 

and salt marshes (which were common grazing grounds for cows at Louisbourg [A. M. 

Lane Jonah, personal communication 2012]) are also the home of halophytic plants, many 

of which have C4 photosynthetic pathways (Chmura and Aharon 1995; Choi et al. 2001; 

Cloern et al. 2002; Patriquin 1981; Seliskar and Gallagher 2000; van der Merwe 1982; 

Wan and Sage 2001). In addition, wild marsh hay was cut and collected for foddering 

livestock at the Fortress (Clark 1965, 1980). This wild marsh hay likely refers to the wild 

Spartina patens (Nixon 1982; Roland and Smith 1969), a common C4 grass species with a 
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relatively high 
13

C values around -13 and -12‰ (Chmura and Aharon 1995; Choi et al. 

2001; Emery et al. 1967; Stribling and Cornwell 1997). The isotopically heavy cow 

(4L50K16-4) may have ingested local C4 marsh plants which created a relatively high 


13

C value in addition to a high 
15

N value. This may also be true of the isotopically 

heavy horse specimen (3L22N1-5, 
13

CCarb = -8.05‰), unfortunately this specimen had 

no associated bones, and as a result, there is no nitrogen data. 

This argument does not necessarily indicate that such an animal was raised locally. 

Many other contemporaneous communities took advantage of the same environments for 

grazing animals and harvesting hay including the early settlements in New England 

(Nixon 1982), as well as the Acadians who utilised the nutrient rich salt marshes along 

the Bay of Fundy to great effect (Hilchey 1981; Wynn 1979). Whichever location this 

animal was grazed, it is possible that the cow specimen with high 
15

N and 
13

CCol values 

(and possibly the horse specimen with the high 
13

CCarb value) was grazed in, or ate plants 

from a coastal, salt marsh, or wetland environment.  

Another explanation for the high 
13

C and 
15

N value of cow specimen 4L50K16-4 

is the use of seaweed as fodder. The isotopic values of seaweed have been found to be 

extremely varied with 
13

C between -32 and -10‰ (Cloern et al. 2002; Dunton and Schell 

1987; Parker 1963; Smith and Epstein 1971) and 
15

N values between 1‰ and 16‰ 

(Cloern et al. 2002; Miyake and Wada 1967). Since seaweed is higher in protein than 

terrestrial plants (and since collagen tissue reflects dietary protein), the 
13

CCol and 
15

N 

values of an animal eating a mix between isotopically heavier seaweed and isotopically 

lighter terrestrial plants will show a bias towards the isotopic values of seaweed (Stevens 
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et al. 2006). This hypothesis would benefit from historical investigations and isotopic 

analysis of local seaweed.  

As mentioned previously, the practice of grazing in salt marshes was not used for 

sheep and goat specimens at Louisbourg (A. M. Lane Jonah, personal communication 

2012), however, many of these specimens have high 
15

N values (i.e., above 6.00‰, 

Figure 16). This may be due to isotopic enrichment if these specimens were young and 

still suckling, or recently weaned from their mothers (Richards et al. 2002). A high 
15

N 

value may have been obtained by eating C3 flora elevated in 
15

N due to sea spray activity 

(Virginia and Delwiche 1982), denitrification, or other processes that may increase an 

animal’s 
15

N values. A similar conclusion to this one is presented for medieval 

goat/sheep specimens from an archaeological site in Orkney, Scotland (Richards et al. 

2006). It is also possible that the sheep and goat specimens with high 
15

N values 

foddered on salt marsh C3 plants that have low 
13

C values and high 
15

N values, or 

seaweed species that have low 
13

C and 
15

N values (Cloern et al. 2002).  

The possible causal factors presented here in relation to the carbon and nitrogen 

isotopic values of the domestic herbivores in this study, are many, and would greatly 

benefit from further investigation. Not only would such a study benefit from further 

historical investigations but also a more in depth isotopic examination that involved 

creating a full complement of isotopic data for each specimen (including 
18

O and 

87
Sr/

86
Sr data). Such an examination was not the purpose of this study and not possible 

since only some specimens had bone and teeth available and could therefore be analysed 

for those elements that reflect diet and origins). In addition, it is unclear to what degree 
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feeding on local flora (e.g., salt marsh grass, seaweed, or vegetation affected by sea 

spray) would have on the isotopic values of locally raised herbivores. These hypotheses 

would also benefit from a more in depth isotopic analysis of local soil, flora, and fauna. 

 

7.1.3  Deer 

The 
13

CCol spread demonstrated by deer specimens (range = 5.24‰, Table 15) is 

relatively comparable to the cow specimens (Figure 16). A majority of deer specimens 

exhibit 
13

CCol and 
13

CCarb values indicating a C3 diet, while two deer specimens, 

55L28F6-8 and 4L58K11-7, exhibit much higher values: 
13

CCol = -16.58‰ and 
13

CCarb 

= -4.65‰, respectively (Table 21). The former specimen likely had a diet of isotopically 

heavy C3 plants or a small C4 component, while the latter had a mixed C3/C4 plant diet.  

The isotopically light deer specimens likely foraged on C3 varieties of herbaceous 

plants, berries, grasses, seeds, acorns, leaves, and twigs (Laerm 1999). The distributions 

of these specimens (which are likely white-tailed deer) have carbon and nitrogen isotopic 

values that are on the heavy end of isotopic distributions of white-tailed deer observed 

elsewhere (Cormie and Schwarcz 1994; Derbridge 2010; Little and Schoeninger 1995; 

Urton and Hobson 2005). However, similarly high nitrogen values among deer have been 

observed in Ontario (Katzenberg 1989) and Nova Scotia (Cormie and Schwarcz 1994) 

which were likely caused by varying environmental conditions that affect plant or soil 

chemistry (e.g., sea spray [Virginia and Delwiche 1982] or denitrification [Delwiche and 

Steyn 1970]).  
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Of the isotopically heavier deer specimens (55L28F6-8 and 4L58K11-7), the 

associated 
15

N value of the former (6.11‰) is not higher than the nitrogen values of the 

‘C3 deer’, to suggest that the C4 plants originated from salt marsh, wetland, or coastal 

environments. However, without knowing the 
15

N values of local C4 plants in these 

environments, such a possibility cannot be ruled out. The same goes for local seaweed 

species (see Stevens et al. [2006] for information on deer eating seaweed). A more 

plausible explanation that would account for higher 
13

C values with no increase in 
15

N 

values is a diet that included plants from agricultural C4 crops (Cormie and Schwarcz 

1994; Laerm 1999). Since agricultural crops were not common to Cape Breton Island, 

these specimens may have originated from elsewhere. Unfortunately, deer specimen 

4L58K11-7 did not have any associated bone material, and as a result, there are no 

nitrogen data to allow for further speculation on the origin/source of the C4 plants on 

which this specimen subsisted.  

 

7.1.4  Pigs 

The pig specimens’ isotopic range (6.91‰) is larger than ranges for the domestic 

herbivores (Table 15). This was expected since pigs are often fed omnivorously. Three 

specimens have isotopic values comparable to the majority of sheep, goat, and cow 

specimens analysed in this study (Figures 16 and 26). Their collagen and bioapatite data 

suggest a mainly C3 plant diet. Two pig specimens have distinct values. One specimen 

(4L58K14-7) has 
13

CCol and 
13

CCarb values consistent with a C3 diet (-21.47 and             

-12.95‰, respectively, Table 21), but a high 
15

N value (9.46‰). This specimen may 
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have been fed meat from herbivorous animals eating a C3 diet since the isotopic values 

fall approximately one trophic level (~3‰ [DeNiro and Epstein 1981; Mingawa and 

Wada 1984; Schoeninger and DeNiro 1984]) above many herbivore specimens. If this 

specimen was particularly young, then it may have high 
15

N values from the enrichment 

effect of a suckling animal (Richards et al. 2002). An alternative explanation may be that 

the animal was fed freshwater fish since many freshwater specimens are known to have 

low 
13

C values (similar to or even less than C3 herbivores) and high 
15

N values, often 

above 10‰ (Dufour et al. 1999; Müldner and Richards 2005; Schoeninger and DeNiro 

1984). This is only conjecture since the isotopic values of freshwater fish can be 

extremely varied (Dufour et al. 1999), and no freshwater fish specimens were analysed in 

this study.  

The second outlying pig specimen (4L52L12-12) has much higher 
13

CCol, 
15

N, 

and 
13

CCarb values (-14.56, 11.01, and -5.19‰, respectively). This is consistent with a 

diet including marine resources and possibly C4 based resources. Foddering with 

terrestrial grains was believed to result in tastier meat, as opposed to foddering with fish 

scraps which resulted in fishy tasting meat, however, since fish offal was readily available 

at the Fortress, foddering with fish was commonly practiced (A. M. Lane Jonah, personal 

communication 2012). In a study of Newfoundland pigs from French and English 

colonies, it has been suggested that a strong marine diet indicates local origins (where 

pigs were foddered on fish offal), while a terrestrial diet suggests Old World origins 

(where a terrestrial diet was prominent) (Guiry et al. 2012). If this hypothesis can be 

applied to the Fortress of Louisbourg, only one specimen (4L52L12-12) has isotopic 
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values that are similar to the ‘marine pigs’ in Guiry et al.’s (2012) study. All other 

specimens (n=4) have isotopic values that are similar to the ‘terrestrial pigs’ in Guiry et 

al.’s (2012) study. However, within the context of Louisbourg, a terrestrial diet may not 

indicate Old World origins since pig livestock and pork were also imported from several 

other regions (e.g., Acadia and New England, Chapter 2.3.1) where grains may have been 

the preferred foddering material. The oxygen and strontium data from these specimens do 

not help clarify this matter. Only one specimen (with a terrestrial diet) showed potential 

non-local origins (Chapter 7.4), and although all other specimens have isotopic values 

that match Louisbourg, these values are also likely found in regions of New England, 

making definitive conclusions concerning pig origins problematic (see Chapter 7.5.2 for 

more discussion of New England oxygen and strontium isotopes). 

 

7.1.5  Birds  

The isotopic values of the bird specimens in this study are difficult to assess because of 

the small sample sizes of some bird types (n=1 each for duck, eider, spruce grouse, and 

unidentified avian, Table 21). Dietary variation among the wild birds ranges from low 

carbon and nitrogen isotopic values, indicating strict C3 plant diets, to high carbon and 

nitrogen values, indicating marine diets (Figure 16). The unidentified avian, with a 
15
N 

value of 15.10‰, was likely a marine bird since marine birds typically have 
15
N values 

above ~10‰ and terrestrial birds typically have 
15
N values below ~10‰ (Schoeninger 

and DeNiro 1984). A marine diet was also indicated by the high 
13
C and 

15
N values of 

the dove/robin specimens (
13
CCol mean = -16.28 ± 0.36 and 

15
N mean = 13.28 ± 0.92‰, 
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n=4, Table 15). These specimens were not able to be identified as one animal or the other. 

If the specimens are wild robins, it is unclear why they would have very high 
13
C and 


15
N values. However, if these specimens were domesticated doves, then it is likely they 

were foddered on marine products. It seems probable that a high proportion or possibly 

all of these specimens were doves since these bones were excavated from the Ste. Marie 

site which was close in proximity to two dovecots within the nearby Carrarot property.  

There are two distinct groupings concerning the goose and turkey specimens (n=2 

and n=3, respectively), of which, all were domestic varieties. One specimen each of goose 

and turkey (3L6N13-1 and 55L28G7-6, respectively) has 
13
CCol and 

15
N values 

indicative of a terrestrial diet that likely included some C4 plants or grains (Figure 19). 

The other goose and other two turkey specimens have high 
15
N values that indicate a 

high marine component. It is likely that these specimens were foddered with fish offal. 

There is a great deal of isotopic variation among the chicken specimens (
13

CCol 

range = 10.85‰ and 
15

N range =14.97‰, n=9). All samples yielded an appropriate 

amount of collagen (between 11.93% and 25.68% with a mean of 19.14%) and had 

acceptable C/N atomic ratios (between 3.10 and 3.38 with a mean of 3.28) (Table 5). It is 

thus reasoned that the isotopic variation is biogenic in origin. This variation is likely the 

result of isotopically diverse fodder or grazing foods which appear to be more isotopically 

diverse than the diets of other domesticated birds examined in this study (goose, turkey 

and potentially dove/robin, a total of nine specimens) and of the chicken and turkey 

specimens from Dos De Cheval, a French seasonal fishing station in Newfoundland 

(
13

CCol range = 1.02‰, δ
15

N range = 1.68‰, n=6 [Guiry et al. 2012]). 
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Five chicken specimens show consumption of marine resources, one of which 

(55L28E20-51b) has even higher 
13

C values than the fish specimens in this study (Figure 

16). Two chicken specimens (55L28E10-7 and 55L28F6-13) show a mixed C3 plant and 

marine diet. Two others fall greatly outside this distribution. One specimen (55L28E20-

51a) has a relatively low 
13

C value (-21.51‰) indicative of a C3 plant diet but a very 

high 
15
N value (13.86‰) not typical of a terrestrial diet. The placement of this specimen 

may indicate a diet including freshwater fish which can have isotopic values low in 
13

C 

and high in 
15

N (Dufour et al. 1999; Müldner and Richards 2005; Schoeninger and 

DeNiro 1984). The second specimen (55L28F4-3) has 
13

C and 
15

N values of -23.51‰ 

and 0.02‰, respectively, indicating a diet based on N2-fixing plants. It is unclear at this 

time if chickens were foddered on N2-fixers (such as legumes, peas, and beans) at the 

Fortress of Louisbourg. It is also possible that this specimen originated from elsewhere 

(e.g., New England [Chard 1995; McLennan 1918]) where such fodder was used. 

 

7.1.6  Hare 

Similar to the chicken specimens in this study, the 11 hare specimens have large isotopic 

ranges (
13

CCol range = 9.97‰ and 
15

N range = 14.53‰, Table 15). The isotopic 

variation of hare specimens falls into three distinct groupings. One group (n=3) has very 

high 
13

CCol and 
15

N values, the second group (n=2) has isotopically lighter values 

indicative of a C3 diet, and the third group (n=3) has even lower isotopic values that are 

typical of N2-fixing plant eaters (Figure 18). A further three hare specimens analysed for 

bioapatite, have 
13

CCarb values indicative of a C3 plant diet (Figure 26). Hares have a 
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natural diet of various herbs, shrubs, grasses, and woody plants (Murray 1999; Peterson 

ed. 1966). The two ‘C3 hares’ with higher δ
15

N values likely ingested non-N2-fixing 

woody plants such as maples and grasses. The specimens with the lowest δ
15

N values 

likely ingested those N2-fixers common to eastern Cape Breton Island such as birches, 

firs, spruces, and clovers (Bouman et al. 2004). 

The 
13

C values for ‘C3 hares’ in this study overlap with the ranges of hare 

specimens analysed from a coastal archaeological site in Newfoundland (Guiry et al. 

2012) but are somewhat isotopically heavier than modern snowshoe hares from across 

Canada and northern US (Roth et al. 2007; Urton and Hobson 2005) even after adjusting 

for the alteration of carbon isotopes in atmospheric CO2 since industrialisation (modern 

‰ value +1.5‰ [Marino and McElroy 1991]). It should be noted that the data from the 

Roth et al. (2007) and Urton and Hobson (2005) studies were from the analysis of hair, 

however, hair and bone collagen have yielded very similar isotopic values in domestic 

rabbits with consistent diets (Hilderbrand et al. 1996). These differences can likely be 

attributed to isotopic variations between coastal and inland environments.  

The occurrence of three specimens (specimens 55L28G7-2, 55L28E10-9, and 

55L28F6-10) with isotopically heavy values (with 
13

CCol values between -15.93 and       

-14.17‰ and 
15
N values between 13.49 and 15.48‰, Table 21) is surprising, and 

indicates a diet significantly different from the isotopically lighter hare specimens. These 

values are believed to be biogenic in origin since they had acceptable % collagen yields 

between 7.91 and 31.08%) and acceptable C/N atomic ratios (between 3.23 and 3.37) 

(Table 5).  
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One hypothesis involves the ingestion of isotopically heavy seaweed, however, this 

is believed unlikely since hares are not known for eating seaweed. A second hypothesis 

involves the ingestion of local C4 grasses. Although, C4 grasses with 
15

N values as high 

as 16‰ have been reported in San Francisco Bay (Cloern et al. 2002), it is currently 

unknown whether local C4 grass species are elevated enough in 
13

C and 
15

N to produce 

the high values observed in this study. If the isotopic values of C4 grasses were high 

enough, an animal would have to have a diet including relatively very little C3 plant 

species since the animal’s bone collagen would simply average between the two isotopic 

values. Overall, this is believed unlikely considering the low abundance of C4 grasses in 

Nova Scotia (Roland and Smith 1969 in Wan and Sage 2001) and indeed within the 

hare’s natural forest/shrub habitat (Peterson ed. 1966).  

A third hypothesis involves the ingestion of isotopically heavy terrestrial animals. 

These specimens are likely snowshoe hares which are mostly herbivorous animals, but 

snowshoe hares are known to scavenge on the carcasses of caribou and other hares in the 

winter months (Naughton 2012). However, a consumer of caribou or isotopically light 

hare meat would not produce the high isotopic values of the isotopically heavy hares 

(based off the caribou and hare data from this study, see Table 21). To achieve these high 


15

N values, the hares in question may have had a diet that included a high quantity of 

meat from isotopically heavy animals, as is believed to be the case for many of the rodent, 

bird, and carnivore specimens. 

A fourth hypothesis involves the ingestion of fish. While there is no current 

information on snowshoe hare eating fish, the arctic hare has been known to scavenge on 
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frozen fish (as well as meat bait from hunters’ traps) (Best and Henry 1994). However, 

the closest location within the artic hare’s geographic range is Newfoundland (Howell 

1936), and since Newfoundland is not mentioned in historical studies as an exporter to 

Louisbourg (see Chapter 2.3.1), it is unlikely that these specimens are imported arctic 

hares.  

Since snowshoe hares are known to eat meat (Naughton 2012), it is not 

unreasonable to speculate that they would also ingest fish like their arctic hare cousins 

(Best and Henry 1994). Furthermore, it is very likely that any wild scavenger in the area 

would have access to fish or fish offal created by Louisbourg’s involvement in the small 

boat cod fishing industry. In this industry, codfish were brought back to shoreline stages 

for gutting and drying which created copious amounts of fish offal around Louisbourg 

harbour as well as many other locations on Cape Breton Island (A. M. Lane Jonah, 

personal communication 2013). It is very likely that if hares were willing to eat fish, such 

a diet would have been readily available. Furthermore, fish and meat are higher in protein 

than plant matter (fish in particular is very high in protein [McNeill 1985]). Even a small 

amount of these isotopically heavy foods have the potential to strongly shift the 
13

CCol 

and 
15

N values of an animal’s collagen (Ambrose and Norr 1993; Krueger and Sullivan 

1984). If such is the case, then fish does not seem to have been a food item for hares 

excavated from a French cod fishing site in Newfoundland (hare 
15

N maximum = 

4.03‰, n=3Guiry et al. 2012]). 

It is important to note that the hares with marine-like isotopic values and the 

isotopically heavy C3 hares came from the Rochefort Point site (proveniences start with 



105 
 

55L28), whereas the three lightest specimens came from the town site (proveniences start 

with 4L and 3L) (Table 21). This may be hinting towards a distinction between the types 

of hares sourced by the inhabitants of Rochefort point vs. the inhabitants of the town, 

whereby the hares sourced by the different inhabitant groups had different diets. Further 

examination (possibly including a re-assessment of the morphological identification) is 

needed to investigate the existence of such a phenomenon and understand the causal 

factors behind the isotopic variations observed in this study.  

 

7.1.7  Red Squirrels 

There is likewise a scattering of isotopic values for red squirrel specimens (n=6, Figure 

18). This was likely caused by the varied food items that are eaten by red squirrels which 

include conifer seeds, nuts, berries, fungi, insects, and small vertebrates (Peterson ed. 

1966; Young 1999). Red squirrels are also known to prey on juvenile snowshoe hares and 

are referred to as the main predators of songbird chicks and eggs (reviewed in Callahan 

1993; Peterson ed. 1966; Tewksbury et al. 1998; Young 1999). The varied diet of red 

squirrels was likely the cause of the isotopic variation observed in this study.   

Two specimens (55L28E23-25 and 55L28E19-4) have very high 
15

N values (15.60 

and 16.13‰, respectively, Table 21). The placement of these specimens is comparable to 

the three isotopically heavy hare specimens discussed previously. As such, the hypotheses 

in reference to the diets of the ‘marine-like’ hares may also apply to these two 

isotopically heavy squirrel specimens: isotopically heavy seaweed, salt marsh, coastal or 

wetland C4 grasses, terrestrial animals, and fish or fish offal. Considering the possibility 
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of predation on juvenile snowshoe hares, the hypothesis concerning terrestrial animals 

may well include the ingestion of isotopically heavy hares.  

The other red squirrel specimens (n=4) (with lower 
15

N values), still have carbon 

and nitrogen values higher than, or on the high end of isotopic data reported in other 

studies (Rosing et al. 1998; Roth et al. 2007). The tissue analysed in the former study was 

muscle and the latter was hair, however, previous research illustrates that an animal’s 

hair, and to a lesser extent muscle, is similar in isotopic value to the same animal’s bone 

collagen (Fox-Dobbs et al. 2007; Hilderbrand et al. 1996). The 
13

C values in Rosing et 

al. (1998) and Roth et al. (2007) place within the C3 plant range, while many of the 

specimens in this study have values which suggest diets that range from isotopically 

heavy C3 plants, to C4 plants. Specimen 55L28F12-3 has a 
13

CCol value of -13.93‰, the 

highest 
13

CCol value of any mammal in this study. This specimen may have been eating 

wild C4 grasses local to the area, scavenging on maize (or other C4 products) used as 

fodder by local farmers, or stealing the inhabitants’ C4 grain stores. Also, considering the 

high 
15
N values of these specimens (between 7.62 and 9.65‰) and considering the 

omnivorous diet of squirrels is potentially driven by the need/desire for high protein foods 

(Callahan 1993), it cannot be ruled out that these specimens were also ingesting such high 

protein foods as marine invertebrates or seaweed, (for isotopic data on marine 

invertebrates and seaweed see Lesage et al. [2001], Mateo et al. [2008], Miyake and 

Wada [1967], Parker [1963], Smith and Epstein [1971], and Stapp [2002]).  

Overall, it must be noted that all of these specimens were excavated from the root 

cellar on Rochefort Point. If these specimens lived on the point, they would have been out 
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of their natural coniferous forest habitat (Peterson ed. 1966) and may have adjusted their 

dietary habits towards foods that were available on the grassy point, resulting in very 

different isotopic values. If this was the case, such a diet may well have included C4 

grasses and grains, fish offal, marine invertebrates, or seaweed.  

 

7.1.8  Mice and Rats 

A majority of mouse (n=4) and rat specimens (n=11) group tightly with one another and 

have relatively high 
13
CCol, 

15
N, and 

13
CCarb values (Table 21) that place slightly lower 

than the fish specimens (Figure 18). This indicates that these specimens supplemented 

their diet with fish, likely scavenged from local codfish processing activities. Overall, rats 

and mice have various diets of mosses, seeds, nuts, fruits, worms, insects, marine 

invertebrates, and rats in particular are known to eat fish and scavenge/prey on seabird 

adults, chicks, and eggs, as well as juvenile sea turtles (Caut et al. 2008; Handley 1999; 

Pisanu et al. 2011; Stapp 2002; Whitaker 1999). 

Two rat specimens (17L45A4-12 and 4L19D7-1) are isotopically lighter than the 

rest and likely had mainly herbivorous diets of C3 plants. It is important to note that these 

specimens are the only rodent specimens retrieved from excavations from within the 

fortress, rather than from the Ste. Marie site on Rochefort point. This may be hinting 

towards a diet variation between town site rodents vs. Rochefort point rodents (see also 

the discussion of hare diet variation in Chapter 7.1.6). It is very likely that a mouse living 

on Rochefort point would have greater access to marine products, especially fish since 

Rochefort point was a common area where the near shore fishermen gutted their fish and 
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laid out the filets to dry. Such a diet distinction between the two sites is possible since 

mice and rats have small home ranges (Davis et al. 1948; Handley 1999; Quadango 

1968).  

It is also important to note that, whereas all the Rochefort point rats date to around 

the time of occupation, the town site rat 17L45A4-12 is from a layer dated between 1751 

and 1784 (Table 21). It is possible that this rat lived after the French occupation (which 

ended in 1758) and during a point in Louisbourg’s history when the fishing industry had 

ceased and fish as a food item was less available. If this is the case, the isotopic values of 

this rat may be reflecting a more natural C3 diet. Unfortunately, the other town site rat 

(4L19D7-1) is undated. Overall, these hypotheses would require further investigation and 

indeed a greater sample number of specimens from within the town site or from post-

occupation layers. 

 

7.1.9  Beavers 

The two beaver specimens have very similar 
13
CCarb values of -14.26 and -14.10‰ 

which suggests a C3 diet (Table 21 and Figure 26). Beaver collagen data from other 

studies also suggest a C3 diet (Derbridge 2010, Derbridge et al. 2012; Fox-Dobbs et al. 

2007; Guiry et al. 2012; Katzenberg 1989; Urton and Hobson 2005). Beavers typically eat 

the wood, bark, and leaves of evergreen and deciduous trees (such as aspen and willow) 

as well as various aquatic plants (Jenkins and Smith 1999).  
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7.1.10  Red Foxes 

The carbon and nitrogen isotopic values of red fox specimens (n=2) in this study are 

comparable or higher than red fox specimens from other isotopic studies (Rick et al. 

2011; Urton and Hobson 2005). Compared to the isotopic data from prey items in this 

study, the red fox specimens’ diets likely included animals that had high 
13

C and 
15

N 

values such as fish or isotopically heavy animals (e.g., hares, squirrels, and birds, Figure 

16). This is very possible since red foxes are known to have a varied diet that includes 

rodents, rabbits, birds, fruit, and small invertebrates (Meckstroth et al. 2007; 

Seidensticker 1999). Foxes are also scavengers (Conteese et al. 2004) and will eat marine 

foods (Meckstroth et al. 2007; Roth 2003). Furthermore, foxes have been known to adjust 

their dietary habits when living around humans. This includes scavenging on refuse and 

preying on livestock and pets (Conteese et al. 2004; Meckstroth et al. 2007; Seidensticker 

1999). Thus, along with a diet of wild animals, it is also possible that these specimens 

(specimen 4L20F11-3 in particular) scavenged on discarded fish scraps produced by local 

processing activities and on isotopically heavy domestic animals (Figure 16).  

In reference to the distinct isotopic values between the two specimens in this study, 

this may be a reflection of the degree of contact that these specimens had with humans 

and the by-products and side effects of fishing activities. The isotopically heavier red fox 

(4L20F11-3, 
13

C -‰ and
15

N = 14.82‰) came from an excavation level dating 

between 1713 and 1731 (Table 21), a time when the French were actively exploiting the 

fishing industry, and fish and fish offal would have been readily available to a wild 

scavenger. The isotopically lighter red fox (3L6N10-9, 
13

C = -‰ and
15

N = 
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12.16‰) came from a stratigraphic layer with a date range between 1774 and 1784. This 

date range was during a time when large scale fishing had long since ended, and the area 

had been significantly de-populated. During this period, fish by-products would have 

been less available to a scavenger and human refuse and isotopically heavy domestic 

animals less abundant than they may have been in the past. Therefore, the lighter isotopic 

values of 3L6N10-9 may reflect a natural diet in the absence of isotopically heavy 

anthropogenic food. A study aimed at investigating the impact of the Louisbourg 

population on 18
th

-century fauna would necessitate larger sample sizes with distinct 

occupation vs. pre- or post-occupation date ranges.  

 

7.1.11  Lynx 

Similar to the red fox specimens, the two lynx specimens in this study are isotopically 

heavy compared to other lynx data (Bocherens et al. 1994b; Urton and Hobson 2005) The 

main source of food for Canadian lynx is snowshoe hare, and to a lesser extent, red 

squirrel (Parker et al. 1983; Roth et al. 2007), but lynx will also prey on other small 

mammals as well as birds, frogs, and invertebrates (Peterson ed. 1966). Lynx specimen 

4L51M11-9 has very high isotopic values (
13

C = -‰ and
15

N = 12.00‰, Table 

21). This specimen likely did not subsist solely on isotopically light hares but also 

isotopically heavy hares, squirrels, and other isotopically heavy animals (Figure 18). 

Unlike red fox, lynx are not scavengers and typically stay away from human populated 

areas, making it unlikely that these specimens ingested fish offal or isotopically heavy 

domestic animals.  
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7.1.12  Cats 

The isotopic values of cat specimens (n=2) from Louisbourg are similarly high, indicating 

a carnivorous diet. Considering the domestic nature of cats, these specimens’ diets could 

have consisted of table scraps of terrestrial animals and fish, as well as natural prey items 

such as mice, rats, and birds. The cat specimen with the lowest 
13
CCol and 

15
N values 

(specimen 3L21E3-3, 
13
C = -‰ and

15
N = 10.83‰,Table 21) may have had a diet 

of mainly terrestrial animals since the isotopic values are not much higher than one 

trophic level above many domestic herbivores from this study (Figure 16). The other cat 

specimen (1L34D5-39, 
13
C = -‰ and

15
N = 12.65‰) has relatively higher 

isotopic values than the former, and likely ate a higher proportion of isotopically heavier 

foods such as fish, mice, rats, chicken, and squirrels. 

 

7.1.13  Fish 

The heaviest isotopic grouping in this study belongs to the fish specimens (Figure 16). 

This grouping is very tight (
13
C range ‰ and

15
N range = 1.81‰, Table 15), 

indicating a similar diet. However, since the majority of specimens (five out of six) came 

from the same provenience it cannot be ruled out that they came from the same animal 

(Table 21). These specimens were not identified further, but their isotopic values are very 

similar to archaeological cod specimens from Newfoundland (Guiry et al. 2012) and 

modern cod specimens from the St. Lawrence (Lesage et al. 2001) (after adjusting for 

post-industrial 
13
C values [Marino and McElroy 1991]). Furthermore, considering the 

context surrounding the site (wherein the codfish industry was the basis of the economy) 
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and the location wherein these specimens were found (on Rochefort point where codfish 

were processed and dried), it is likely that these specimens are Atlantic cod (Gadus 

morhua). 

 

7.1.14  Conclusion 

The faunal data in this study have revealed a number of noteworthy characteristics. There 

appears to have been a variety of foddering materials and grazing habits among the 

domestic animals, from terrestrial products (mostly C3 but some C4 products), to marine 

and possibly freshwater resources. C3 and C4 grains were both used as foddering material 

at the Fortress, as was fish offal (A. M. Lane Jonah, personal communication 2012). The 

use of fish materials is evident in the isotopic values of many domestic animals such as 

the chicken, pig, and possibly the dove/robin specimens. Another interesting factor is the 

likely influence of cod fishing on the isotopic values of not only the domestic animals but 

also the wild fauna. Many specimens have extremely marine-like isotopic values, 

indicating that fish (or isotopically similar items) featured strongly in some specimens’ 

diets.  

It must be noted that many of the specimens in this study may have been from 

animals or preserved meat imported from other areas via trade with other colonial towns 

or with Native peoples. Thus, the 
13
C and 

15
N values may be reflecting those isotopic 

values of non-local areas.  
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7.2  Ste. Marie Diet Reconstruction 

In comparison with the Louisbourg faunal data (Figure 21), and considering a 
15

N 

trophic shift between diet and consumer of ~3‰ (DeNiro and Epstein 1981; Mingawa 

and Wada 1984; Schoeninger and DeNiro 1984), a majority of the individuals (n=28, 

74%) have isotopic values that are approximately one trophic level above the domestic 

herbivores (i.e., no higher than 10.44‰). Thus, these individuals’ dietary protein likely 

came from animals that subsisted on terrestrial foods. Those individuals with 
15

N values 

above one trophic level of the herbivores (i.e., above 10.44‰, n=10, 26%), likely had a 

diet consisting mainly of omnivores or some marine foods. Considering a 
13

C trophic 

shift of ~1‰ (DeNiro 1977; DeNiro and Epstein 1978), and the ~5‰ shift between a 

herbivore and their diet (Ambrose and Norr 1993), the individuals with the lowest 
13

CCol 

values likely obtained their dietary protein from animals that subsisted on C3 resources, 

and the individuals with the highest 
13

CCol values likely obtained their dietary protein 

from animals with a mixed C3/C4 diet (Bender 1971; Smith and Epstein 1971; van der 

Merwe 1982). Those individuals with the lowest 
13

CCarb values (Figure 26) likely had 

diets of C3 based resources, and those individuals with the highest 
13

CCarb values likely 

had diets of mixed C3/C4 based resources or some marine foods (Kohn and Cerling 2002).  

Although few herbivores have high 
13

CCol values, many individuals have high 


13

CCol and low 
15

N values (Figure 21, Table 22) which may have been from a diet 

consisting of low trophic level marine animals. Marine shellfish and oysters in particular 

were a common food item at the Fortress of Louisbourg, especially during periods of low 

food supply (Lane Jonah and Véchambre 2012; McLennan 1918). Oysters have 
13

C 



114 
 

values of -18.6‰ and 
15

N values of 2.8‰ (Little and Schoeninger 1995), and if eaten in 

high amounts, may be the cause of some individuals’ high carbon and low nitrogen 

values. Unfortunately, there are no marine invertebrates analysed in this study (although 

marine invertebrate materials are present in the Fortress of Louisbourg collection).  

Carbon and nitrogen isotopic values of plants and animals can vary from one region 

to another (Ambrose 1991; Heaton 1999; Virginia and Delwiche 1982). Since it is 

possible that these individuals did not originate from Louisbourg, the Ste. Marie 

individuals are also compared to ‘benchmark’ human groups with diets that were well 

studied and are isotopically and compositionally distinct. 

Compared to the human diet groups reported in Honch et al.’s (2012) study, most of 

the Ste. Marie individuals fall closely around those human groups that subsisted on 

terrestrial C3 diets or between C3 and C4 diet groups (Figure 35). The terrestrial C3 groups 

in Honch et al.’s (2012) study are from various Neolithic sites in Bulgaria, Serbia, and 

Romania, and the terrestrial C4 groups are from numerous sites in Belize and Guatemala. 

None of the Ste. Marie individuals fall within the human groups with high marine protein 

(HMP) diets from Greenland and Japan. A few individuals from the Ste. Marie group fall 

between Honch et al.’s (2012) C3 and HMP groups, and close to the freshwater protein 

diet groups (from Romania and Serbia) and may have subsisted on a mixture of C3, 

marine, and freshwater based foods. One individual from the Ste. Marie group falls 

between HMP and C4 groups and likely had a mixed marine-C4 diet. 

Overall, comparisons between the Ste. Marie data, and the Louisbourg faunal data 

and data from human groups with well-studied diets (Honch et al. 2012) have resulted in 
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a single conclusion: most of the Ste. Marie individuals subsisted on terrestrial animals and 

plants (mostly C3 based and some mixed C3/C4 based), while a few individuals subsisted 

on a mixed marine/terrestrial diet.  

 

7.2.1  Does a Low Marine Contribution Mean Non-Local Origins? 

Historical literature concerning Louisbourg subsistence describes numerous protein 

sources including domestic animals (e.g., pigs, bovids, and domestic birds), wild animals 

(e.g., hare, fowl, and deer), and marine foods (e.g., oysters and muscles) (Cumba 1976; 

Downey 1965; Lane Jonah and Véchambre 2012; McNeill 1985). However, codfish was 

the staple at Louisbourg more so than any other food item (Cumba 1976; Downey 1965; 

Lane Jonah and Véchambre 2012). Codfish was a reliable food since it did not need to be 

imported and could be salted and dried or kept in brine for long periods of time (Balcom 

1995). This was especially important when provisions were low or when food shipments 

were halted which was a common occurrence in the late winter, early spring, or in times 

of warfare (Cumbaa 1976; McLennan 1918). Codfish was consumed by both the rich and 

poor. The lower classes ate filets of poor quality, and the upper classes ate well-cured 

codfish cooked in fancy dishes (Lane Jonah and Véchambre 2012). Furthermore, fish was 

a common item on days when eating meat was prohibited by the Catholic church which 

included a total of 150 days a year (Lane Jonah and Véchambre 2012; Varkey 2002). 

It must also be considered that codfish has a higher protein content than meat, with 

~250% more protein per calorie than beef (McNeill 1985). As a result, the isotopic values 

of fish would be expressed to a greater degree than terrestrial meat within a consumer’s 

bone collagen (Ambrose and Norr 1993; Krueger and Sullivan 1984). Codfish express 
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very high 
13

C and 
15

N values (Guiry et al. 2012), similar to the marine fish analysed in 

this study (Table 21). If the Ste. Marie individuals were from Louisbourg, it would be 

expected that a greater number of individuals would express values consistent with a diet 

of marine fish. Because a majority of the Ste. Marie individuals show isotopic ratios 

consistent with a terrestrial diet, it is believed that they were not locals. The Ste. Marie 

individuals likely had origins in a location where high 
15

N marine products were not 

readily available or where terrestrial meat was the preferred protein source.  

If these individuals were from New England, it is likely that a majority lived inland 

or in rural areas where agriculture and animals provided the main subsistence, and marine 

foods were less common in comparison to the coastal and urban areas where fish was a 

more significant food item (Landon 1996). Although fish was available and plentiful in 

New England, it may not be surprising to find that most individuals show a terrestrial diet 

since the English preferred beef over the fish and poultry preferred by the French (Lane 

Jonah and Véchambre 2012). However, it is unclear the degree to which this preference 

would influence the actual diets (and isotopic values) of New Englanders vs. 

Louisbourgeois. 

It must be noted that there is no control group for this study (i.e., individuals who 

lived at Louisbourg and subsisted on a Louisbourg diet) against which the results of this 

study could be compared. Such a study would provide a more comprehensive 

understanding of the influence marine foods had on the diets and isotopic values of 

Louisbourg inhabitants (see Chapter 7.7.2 for further discussion of a control group). 

Furthermore, there are no isotopic dietary studies of New England inhabitants to which 



117 
 

the Ste. Marie data can be compared. However, previous to this study, a single individual 

excavated from the Fortress of Louisbourg had been isotopically analysed from a hair 

sample (Schwarcz 2010). From the presence of British coins found over the individual’s 

eyes, it is believed they were from Britain or New England. The isotopic values of this 

individual (
13

C = -18.8‰ and 
15

N = 10.4‰) are similar to those Ste. Marie individuals 

with the lowest carbon and nitrogen isotopic values (Schwarcz 2010). Since this is only 

one individual, and it is not known whether they were from Britain or New England or 

how long they resided at Louisbourg, these data are somewhat limited for the purpose of 

dietary comparisons with the Ste. Marie individuals.  

 

7.2.2  Isotopic Visibility 

It is important to note the time span that is visible via isotopic analysis. Over half (n=23, 

61%, Table 23) of the individuals analysed in this study are represented by rib samples, 

while approximately one-quarter (n=10, 26%) are represented by isotopic data from long 

bones of the arm or leg. A further two individuals (5%) have isotopic values averaged 

from one sample each of rib and arm long bone, and three individuals (8%) are 

represented by unidentified bone fragments. Due to bone turnover, analysis of rib bones 

will represent isotopic intake in the last ~20 years of an individual’s life, and long bones 

of the arm or leg will represent over 50 years of an individual’s life (Table 2). Because of 

this, it is theoretically possible that the Ste. Marie individuals were indeed Louisbourg 

inhabitants who were recent immigrants (e.g., within the last 10 years), whose original 

terrestrial isotopic values were not yet rewritten via bone turnover to their new high 
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marine diet. However, since a majority of the individuals (n=23, 61%) were sampled from 

ribs (which have a relatively quicker turnover rate), and a majority of these (n=17, 74%, 

Table 23) still have isotopic values indicating a strict terrestrial diet (i.e., lower than 10‰ 

[Richards and Hedges 1999; Schoeninger et al. 1983; Walker and DeNiro 1986], Figure 

36), it is still believed unlikely that these individuals were Louisbourg inhabitants. These 

results would benefit from further investigation, for example, the analysis of collagen 

containing different/shorter temporal visibilities.  

 

7.2.3  Isotopic Variation  

The 
13

C and 
15

N isotopic ranges observed among the Ste. Marie group (
13

CCol range = 

8.48‰, 
15
N range = 7.32‰, Table 16, and 

13
CCarb range = 11.34‰, Table 20) are larger 

than the ranges observed from other contexts. The C and N isotopic ranges of other 

community groups are often smaller (e.g., 
13

CCol range = 2.7‰, 
15

N range = 9.20‰, 

and 
13

CCarb range = 7.50‰, n=89 [Keenleyside et al. 2009], and 
13

CCol range = 2.30‰ 

and 
15

N range = 3.4‰, n=46 [Müldner and Richards 2005]), and if large ranges are 

observed, there is often a linear distribution between two isotopically different dietary 

sources (Crowe et al. 2010; Richards et al. 2006). In comparison, the isotopic values of 

the Ste. Marie individuals show a somewhat diffuse spread between C3, mixed C3/C4 

resources, and mixed terrestrial/marine resources (Figures 21, and 26). The following is a 

discussion concerning potential causes of the Ste. Marie group’s isotopic variation.  
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The New England Garrison Hypothesis: If the Ste. Marie individuals are deceased 

members of the New England garrison, the varied life histories of the recruited soldiers 

may be the cause of the isotopic variation observed. Those involved in the campaign 

against Louisbourg were recruited from a variety of areas in New England. From a 

recorded total of 4272 recruited, 11% were from New Hampshire, 12% were from 

Connecticut, and 77% from Massachusetts and Maine (Baker 1978; Rawlyk 1999). In the 

18
th

-century, these regions were also the home of a small number of immigrants from 

European countries (Greene 1988). The original occupation of the recruited was 

documented as fishermen, deckhands, longshoremen, farmers, mechanics, and merchants 

(Baker 1978; Clark 1965; Hassler 1982).  

The availability of C3 vs. C4 grains, produce, and meat varied across colonial New 

England (Fisher et al. 1997). Some areas were self-sufficient when it came to food 

production, while others relied on the importation of food from the Old World and other 

New World colonies. Thus, the isotopic values of New England food may vary 

significantly from region to region. An individual’s occupation may also affect their diet 

(Crowe et al. 2010; Kusaka et al. 2011). For example, a farmer or lumberjack from inland 

areas of New England would be expected to have a terrestrial diet and less of a marine 

protein component than a fisherman living on the coast. Indeed, expansion and settlement 

inland was up to 70 miles by the early 18
th

-century (Greene 1988), making such a 

distinction a possibility. Overall, the isotopic variation observed in the Ste. Marie group 

may be the result of the variation in life histories and lends a measure of support to the 

hypothesis that the Ste. Marie individuals were from the New England garrison of 1745. 
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Soldier Groups: The isotopic variation observed in the Ste. Marie group is relatively large 

compared to other groups and may be the result of variation in diet and life histories of 

the New England garrison. Isotopic comparisons with groups with similar contexts are 

valuable and may further illuminate such a possibility. Comparisons with other soldier 

groups may seem a likely route considering the hypothesis that the Ste. Marie individuals 

were New England soldiers, however, this must be taken under careful consideration 

since the Ste. Marie individuals were not a typical soldier group but were recruited from 

other occupations only shortly before their death.  

Soldiers were typically recruited from various regions and backgrounds and would 

therefore initially hold various isotopic values, but the relatively homogeneous nature of a 

military diet may result in a shifting or muting of the soldiers’ original isotopic values 

towards a different or more constrained grouping. This change would necessitate a 

homogeneous diet being consumed over long periods of time, such that the new isotopic 

values would replace the old, via bone turnover.   

A study by Roberts et al. (2012) investigated this phenomenon by analysing the 

isotopic ratios of servicemen from Nelson’s Navy excavated from naval hospital burial 

grounds in southern England dating from the late 18
th

-century to the early 19
th

-century. 

This study investigated each individual’s isotopic intake during different stages of their 

life (by analysing dentine, femora, and ribs), and thus, the change in diet from 

preadolescence to what the authors of this study call a ‘naval average’. The study found 

that a diet change was isotopically visible, but the expression of this change depended on 

the naval posting and the types of food available at that location (e.g., C4 grains on the 
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east coast of North America). It was also shown that the soldiers’ diets before their 

recruitment were indeed more varied than after their recruitment.   

This phenomenon would not affect the New England soldiers from the 1745 

campaign to capture Louisbourg since these individuals were not long term soldiers but 

recruited the summer previous to their death. The soldiers’ diet consumed during this 

period (less than a year) was too short relative to the turnover time of bone (over a 

decade) to be reflected in the isotopic values of their bone collagen (Table 2). As a result, 

the Ste. Marie group’s isotopic values, potentially illustrating their various life histories, 

would remain largely unchanged rather than muted or shifted.  

For these reasons, the isotopic variation observed in the Ste. Marie group may be 

more extreme than the variation observed in other soldier groups. An example of this is 

the Snake Hill group investigated by Katzenberg (1991). A total of 29 soldiers were 

excavated from a War of 1812 site in Fort Erie, Ontario and analysed for bone collagen 

isotopic content (Katzenberg 1991). The Snake Hill group had 
13

C values that ranged 

from ~-18.5 – -12.5‰ and 
15

N values from ~8.5 – 13‰ (Katzenberg 1991). The soldiers 

had varied origins and likely isotopically varied diets as a result (Katzenberg 1991). 

These ranges are indeed smaller than the Ste. Marie individuals (with 
13

C values from    

-20.75 – -12.27‰ and 
15

N values from 7.63 – 14.95‰, Table 22). However, the Snake 

Hill soldiers’ original diets may have been muted due to long term ingestion of a more 

homogeneous diet. It is unclear at this time how long these individuals were soldiers. It is 

possible that the original diet of the Snake Hill group may have compared to the variation 

seen in the Ste. Marie group, but this remains to be seen. Overall, since a change from a 
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civilian’s diet to a soldier’s diet would not be apparent for the New England soldiers, the 

isotopic variation of the Ste. Marie group is better compared to a non-service group. 

 

Colonial Origins: An alternative hypothesis for the Ste. Marie’s isotopic variation is that 

the individuals were affected by the colonial nature of the contexts under study. Isotopic 

variability within a colonial community may be caused by the availability of isotopically 

varied foods, the importation of foreign foods, and the immigration of people who contain 

isotopic values from their place of origin. 

A valuable comparison for such a hypothesis is the isotopic study performed by 

Ubelaker and Owsley (2003) of 27 cemetery burials from a 17
th

-century Chesapeake Bay 

colonial site. The values observed ranged from -20.51 – -10.52‰ for 
13

CCol, 9.94 – 

14.40‰ for 
15

N, and -12.51 – -5.11‰ for 
13

CCarb. The isotopic ranges were 9.99‰ for 


13

CCol, 4.46‰ for 
15

N, and 7.40‰ for 
13

CCarb. The Ste. Marie group in comparison 

express more constrained 
13

CCol values (range = 8.48‰ with values from -20.75 –           

-12.27‰), likely due to fewer C4 based protein contributions, more varied 
15

N values 

(range = 7.32‰ with values from 7.63 – 14.95‰), likely caused by a higher reliance on 

isotopically lighter terrestrial foods, and more varied 
13

CCarb values (range = 11.34‰ 

with values from -14.54 – -3.20‰), likely because of a reliance on both C3 and C4 based 

lipids, carbohydrates, and proteins.  

While the Chesapeake Bay group’s isotopic values express a degree of variation, as 

with other studies (Crowe et al. 2010; Richards et al. 2006), the distribution is relatively 

linear, whereas the Ste. Marie’s isotopic variation is spread out and much more diffuse 
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(Figure 37). If the isotopic variation in the Ste. Marie group was the result of some type 

of colonial characteristic, the same effect does not seem to have the same degree of 

influence on the Chesapeake Bay group. It may be that the Chesapeake Bay area, 

although colonial in essence, may not have seen as many isotopically varied food imports 

as the Fortress of Louisbourg or New England.  

The Fortress of Louisbourg was a colonial town that was deeply involved in trans-

Atlantic trade and had a population of individuals from various regions from around the 

Atlantic. Food was imported from France, Britain, and other areas of Europe as well as 

the West Indies, New England, Acadia, Canada, and other parts of North America (see 

Chapter 2.3.1). Although locally caught codfish provided the main protein source (Cumba 

1976; Downey 1965; Lane Jonah and Véchambre 2012; McNeill 1985), and locally made 

bread, the main calorie source (Donovan 2006; Lane Jonah and Véchambre 2012), the 

Fortress saw a variety of meat, vegetables, and grains (see Chapter 2.3.1). 

As discussed in Chapter 2.3.1, few animals were raised locally, and livestock and 

meat were imported from a variety of areas. Bread for the wealthy was made from refined 

wheat flour, while the lower classes ate bread made from whole wheat or rye flour or a 

mixture of both (Lane Jonah and Véchambre 2012). Another common C3 grain was rice 

which was imported from Italy and South Carolina (Lane Jonah and Véchambre 2012). A 

variety of fruits and vegetables were imported from all corners of the Atlantic (including 

some rare items such as grapes from Europe), while some items were transported from 

locations closer to home such as apples, wheat, peas, beans, and other vegetables from 

nearby Ste. Anne and Mira River (Donovan 2006; Lane Jonah and Véchambre 2012). All 

of these varieties are C3 plants, although corn (a C4 plant) was mentioned as being 
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imported from New England (McLennan 1918). While much of Louisbourg’s produce 

was imported, many inhabitants gathered local fruits including wild strawberries, 

cranberries, raspberries, and blueberries (Donovan 2006). Furthermore, every house 

within the town had a garden which typically held vegetables, beans, peas, and herbs 

(Donovan 2006; Lane Jonah and Véchambre 2012).  

The variety of isotopically different foods, and the varied origins of these foods, 

would likely create isotopic variation among Louisbourg inhabitants, however, since cod 

was the main protein source (Cumba 1976; Downey 1965; Lane Jonah and Véchambre 

2012; McNeill 1985), marine isotopic values should play a strong role in the isotopic 

variation of Louisbourg inhabitants. Such values are not seen among the Ste. Marie 

group, as discussed in Chapter 7.2.1.  

If the Ste. Marie individuals were recent immigrants who did not reside in 

Louisbourg long enough to retain strong marine values (via bone turnover, see Chapters 

4.5 and 7.2.2), the foods of their homeland may explain some of the isotopic variation 

observed. Indeed, most of the Fortress’s inhabitants were not born in the New World but 

originated from a number of areas. Of the military men, most were from France with a 

minority from Switzerland and Germany, and the fishermen were mostly from western 

France with less from Newfoundland and other areas of New France (see Chapter 2.3.2). 

Most of the townsfolk were from France, with less from New France and fewer still from 

foreign countries such as Ireland or Germany. Depending on residence time and the tissue 

in question, a new immigrant’s skeletal tissue has the potential to hold a large variety of 

isotopic values reflecting the different types of food available in their homeland.  
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Although lacking in marine isotopic values, the variation observed in the Ste. Marie 

group could be a result of the entrepôt status and colonial nature of the Fortress of 

Louisbourg. However, until further isotopic examinations can be performed (see Chapter 

7.7.2), this remains to be seen. Furthermore, this does not rule out the possibility that the 

mass burial individuals were from New England since New England as a British colony 

would be influenced by similar factors.  

The colonies of New England boasted a variety of different foods which were 

locally produced, hunted, or imported (Fisher et al. 1997). Domestic meats (salted or 

fresh) and poultry was an important staple food, and both pork and beef were plentiful 

and available to all socioeconomic groups (Fisher et al. 1997). Hunting local deer, rabbit, 

and fowl was also a common practice, especially in the 17
th

-century (Fisher et al. 1997; 

McMahon 1985). Shellfish was a common food item in New England (Fisher et al. 1997), 

as was fish which included both marine and freshwater varieties (Fisher et al. 1997; 

Landon 1996; McMahon 1985) 

Grains, nuts, and cereals were available, and after 1650, maize became the staple 

crop above rye, wheat, barley, and oats (Fisher et al. 1997; McMahon 1985; Walcott 

1936). Maize was a popular ingredient in cakes and porridge-like dishes and was 

commonly used as fodder for domestic mammals and birds (Fisher et al. 1997). All types 

of vegetables, fruits, beans, and peas were available in New England, some known to the 

Old World and others introduced to the colonists by the local natives (Fisher et al. 1997; 

McMahon 1985). Alcohol consumption was also prevalent among all classes and 

included beer, cider, and rum, both imported and locally made from varieties of grains, 

fruit, vegetables, and molasses (Fisher et al. 1997; McMahon 1985).  
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During the 18
th

-century, a New Englander’s diet was subject to seasonal variations 

in abundance and quality as well as an individual’s preference and socioeconomic class. 

In the winter when food stores were low, colonists supplemented their diet with wild 

game, salted meat, and fish (Fisher et al. 1997; McMahon 1985). Produce, legumes, and 

grain of all kinds were also stored to support families until the following spring 

(McMahon 1985; Walcott 1936). Social class did not significantly affect an individual’s 

diet, however, wealthier families were more likely to have better varieties of grain, 

beverages, and fish and larger quantities of meat especially during the winter months, 

while families with lesser means were more likely to rely on preserved goods (Fisher et 

al. 1997; McMahon 1985).  

Compared to the Fortress of Louisbourg and the Chesapeake Bay colonies, the 

dietary isotopes of New England inhabitants may be less affected by immigration factors. 

New England experienced an immigration boom prior to 1642 which thereafter fell into 

decline (Greene 1988). By the 18
th

-century, the New England population had expanded 

predominantly from the initial influx of immigrants (Greene 1988), but the Chesapeake 

colonies experienced a constant inflow of immigrants throughout the colonial period 

(Ubelaker and Owsley 2003). Therefore, while immigration would have influenced the 

diversity of the Chesapeake Bay group’s diet (Ubelaker and Owsley 2003) the 

‘immigration effect’ may have had less influence on the diet of New England inhabitants. 

If the Ste. Marie individuals were New England inhabitants (see Chapter 7.5 for further 

discussion on the group’s origins), considering the higher proportion of colonial-born 

individuals, the isotopic variation of carbon and nitrogen isotopes observed in this study 

may be more of a reflection of food type and food origin rather than isotopic variation 
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from an immigrant’s diet of Old World foods. Such deduction is important for 

understanding the isotopic variation of the Ste. Marie group and the degree of influence a 

society’s colonial status has on the isotopic values of its inhabitants. 

Overall, the diet in New England included a large variety of different foods from 

both the Old and New World. The consumption of these goods was influenced by an 

individual’s preference or socioeconomic class, and the availability of these foods 

depended on a colony’s access to market items, their interactions with native groups, and 

their ability to grow crops and raise animals locally. Although a diverse diet was 

obviously not unique to New England, this summary shows that such a location, hosting a 

vast variety of food items, has the potential to cause the isotopic variation observed 

among the Ste. Marie group. Currently, there are no known isotopic studies on New 

England inhabitants that involve dietary reconstruction to allow for a direct comparison.  

 

Overall, three possibilities remain concerning the isotopic variation of the Ste. 

Marie individuals. If the Ste. Marie individuals were Louisbourg inhabitants, the isotopic 

variation may be the result of the colonial nature of the town, whereby the transportation 

and variety of foodstuffs meant that individual inhabitants could have isotopically diverse 

diets, and the transportation of people meant that new immigrants could have foreign 
13

C 

and 
15

N values from their homeland. If these individuals were New England garrison 

members, the isotopic variation may be due to the ‘colonial influence’ or due to the varied 

life histories of the recruited soldiers (or a combination of both). It is believed that if the 

mass burial individuals were Louisbourg inhabitants marine isotopic values would be 
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more strongly represented, even when considering bone turnover rates and the town’s 

immigrant status (see Chapter 7.2.2). Without control data from a group of known 

Louisbourg inhabitants, this remains a tentative conclusion (see Chapter 7.7.2). It is 

believed more likely that the Ste. Marie group was of New England origin, and while the 

isotopic variation may be caused by the colonial nature of New England, it is believed 

that the major factor causing the variation observed in this study is the varied New World 

origins of the New England soldiers. This factor would likely amplify the amount of 

isotopic variation possible from a single New England location alone.  

 

7.2.4  Conclusion 

In conclusion, The Ste. Marie individuals exhibit various diets. Most individuals have a 

terrestrial diet of C3 foods, few individuals show a mixed C3/C4 terrestrial diet, and fewer 

still show a mixed marine/terrestrial diet. Furthermore, it is believed that the isotopic 

variation is a strong indication that the Ste. Marie individuals are deceased New England 

garrison members, whereby the soldiers’ various origins and occupations created a 

diversity of isotopic values. It is likely that the colonial nature of the New World also 

played a role in the group’s isotopic variation, and while the large scale movement of 

food and people was a prominent feature of the town of Louisbourg, the lack of marine 

values is believed to be an indicator of the group’s non-local origins. It should be noted 

that this is not a conclusive interpretation, and furthermore, the determination of local vs. 

non-local origins is not best accomplished by examining diet but is better achieved by 

examining those isotopes that directly reflect some aspect of a geographic location (e.g., 

geology and climate).  
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7.3  Determining Local Isotopic Ranges for Reconstructing Origins 

One of the best methodologies for determining the biologically available strontium values 

of an area is through the analysis of local fauna (Laffoon et al. 2012; Price et al. 2002). 

The animals chosen to identify the local isotopic values were based on the animals’ 

natural behavior as well as their relationship to humans. Since many domestic animals 

may have foreign origins because of the importation of livestock and meat, domestic 

animals were not used to define Louisbourg’s local isotopic values. However, not all wild 

animals were appropriate either. The bedrock and surficial geologies of Cape Breton 

Island are quite complex and varied. The geologic materials span from the Precambrian to 

the Carboniferous, and the water sources are variable (Barr et al. 1996; Grant 1988; 

Keppie 2000). These factors have the potential to create a variety of 
87

Sr/
86

Sr and δ
18

O 

values across the island. Therefore, the wild animals chosen to define local isotopic 

values needed to be those non-migratory animals with small home ranges, so that the end 

result is an isotopic range that is more or less specific to the general area of Louisbourg. 

As a result, deer, moose, and lynx, with home ranges typically much greater than 11 

square kilometers (km
2
) (Cederlund and Sand 1994; Lesage et al. 2000; Parker et al. 

1983) were excluded from this selection.  

The bedrock geology of the Louisbourg area is mainly volcanic and sedimentary 

rocks from the late-Proterozoic (Fry 1995; Keppie 2000). The bedrock is composed of 

volcanic tuffs, basalt, rhyolite, sandstone, siltstone, and chert and is described as the 

Kennington Cove member of the Forchu group (Barr et al. 1996; Keppie 2000). The 

surficial geology of Louisbourg is mainly soil developed from a parent material of glacial 

till deposited by the retreat of the last glaciation (Fry 1995). The origin of the glacial till 
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was from Mississippian and Pennsylvanian rocks from the Carboniferous period (359 – 

299 million years ago) (Cumbaa 1976). In the immediate area of Louisbourg, the 

deposited glacial till is a sandy loam with silt and clay till along the west and north shore 

of Louisbourg harbour and areas of wetland to the west and south of the fortress (Grant 

1988). To determine the biologically available strontium values of Louisbourg’s local 

geology, wild specimens with small home ranges were used. This includes rats, hares, 

beavers, and foxes, all of which have home ranges typically no greater than 5 km
2
 (Ables 

1969; Bloomquist et al. 2012; Davis et al. 1948; Handley 1999; Quadango 1968; 

reviewed in Sievert and Keith 1985).  

Rats are not wild in the strictest senses but are invasive animals introduced by 

human activity. However, while the first generation of rats would exhibit the isotopic 

values of their birthplace, their descendants would exhibit local values. Since the odds of 

sampling a first generation rat is less likely than sampling a descendant (considering the 

reproductive capabilities of rats), the rat specimens included in this study were assumed 

to be local specimens. Furthermore, since rats were not imported for food and the isotopic 

values of all rat specimens grouped closely with other wild small home-range specimens, 

the rat specimens in this study were included in the selection of fauna that defined 

Louisbourg’s local isotopic values.  

Overall, a total of nine fauna were selected to define the biologically available 

isotopic values of the Louisbourg area. This includes three rats, two hares, two beavers, 

and one fox specimen (Table 24). A methodology commonly used to define a location’s 

strontium variation, is to calculate a range of two standard deviations (2σ) from the mean 

of all selected fauna (Price et al. 2002). This range is meant to describe the isotopic 
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variability around a location’s biologically available 
87

Sr/
86

Sr values and was developed 

by Price et al. (2002) using field mice strontium isotopes in comparison to the known 

proportions of local to non-local humans (derived from archaeological evidence). This 

methodology has been used elsewhere and is believed to constitute a conservative 

estimate of an areas isotopic variation (Conlee et al. 2009; Giblin 2009; Nafplioti 2008; 

Shaw et al. 2009). 

The 
87

Sr/
86

Sr mean ± 2σ for these fauna is 0.710039 ± 0.001499, and the 2σ range is 

0.002999 with 
87

Sr/
86

Sr values from 0.708540 – 0.711539 (Table 24). Materials with 

87
Sr/

86
Sr values within this range were considered local in origin, while materials with 

87
Sr/

86
Sr values outside this range were considered non-local in origin. The same 

technique has been utilised in this study to define the local oxygen ranges (the mean ± 2σ 

is 7.42 ± 2.41‰ and the range is 4.81‰, with values from -9.83 – -5.01‰, Table 24). 

However, since the use of local faunal 
18

O values as a method for analysing human 

origins has raised concerns (White et al. 2004a) because of the small differences in 

oxygen fractionation that exist among different animals (Kohn 1996), local/non-local 

status was also examined using drinking water calculations (Chenery et al. 2012; Coplen 

et al. 1983) in comparison to regional precipitation 
18

O values accessed from published 

data. Although one does not have the same concerns with 
87

Sr/
86

Sr values (since 

strontium isotopes do not fractionate as they pass from the environment and through the 

food chain [Blum et al. 2000]), the Ste. Marie group’s strontium isotopic values were also 

compared to published data. 
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The 2σ ranges place within expected strontium and oxygen values for the 

Louisbourg area. Within Louisbourg’s strontium range is the 
87

Sr/
86

Sr value of seawater 

(0.70923, [DePaolo and Ingram 1985]). This is expected because Louisbourg is a coastal 

site and may be subject to significant contributions of marine strontium to the soil via sea 

spray (Whipkey et al. 2000). A diet containing marine products would also contribute 

marine strontium to skeletal tissue (Nelson et al. 1986; Price and Gestsdóttir 2006; Wright 

2005), as could the use of seaweed as a fertilizer (Montgomery et al. 2007) which was a 

common practice among local farmers (Lane Jonah and Véchambre 2012). 

While no data exist on the 
87

Sr/
86

Sr values of Louisbourg soil or bedrock, local 

strontium is often diagenetically absorbed by archaeological tooth dentine, and the values 

of which are often used to identify the 
87

Sr/
86

Sr values of labile strontium (Budd et al. 

2000; Madgwick et al. 2012). The dentine values reported in this study (n=16, see 

Chapter 6.2 and Tables 8 and 10) have 
87

Sr/
86

Sr values that range from 0.709649 – 

0.711834. While the latter value falls 0.000295 above the 2σ local strontium range 

defined by select wild fauna (Figure 38), it is possible that the dentines’ biogenic values 

have not been completely exchanged with available soil and water strontium (Budd et al. 

2000). This may indeed be the case since the associated enamel of the two dentine 

samples that fall outside the local strontium range have even greater values (Figure 38). It 

is likely that the dentines’ biogenic isotopic values were in the process of shifting towards 

local values. Perhaps with more time or worse diagenetic conditions the 
87

Sr/
86

Sr values 

of the dentine would have shifted further towards the local strontium range. Overall, the 

dentine values in this study may not represent 100% 
87

Sr/
86

Sr exchange and as a result 

may not fully match local strontium values, however, the closeness of the dentine values 
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to the 2σ range of select wild fauna gives support to the local strontium range defined in 

this study.  

The local oxygen range can be examined in a similar fashion. The dentine 
18

O 

values reported in Chapter 6.2 have minimum and maximum values of -7.85 and -4.65‰, 

respectively (Tables 7 and 9). The latter value is 0.36‰ above the 2σ local oxygen range 

defined by select fauna (Figure 39). Again it is possible that the dentine has not 

completely equilibrated with available water oxygen. However, the closeness of the 

dentine values to the values of local small home-range fauna gives support to the local 

oxygen range defined in this study.  

Further support for the local oxygen range is determined via comparisons with the 


18

O value of local precipitation as documented in the IAEA and WMO database 

(IAEA/WMO 2013). The closest collection station to Louisbourg is Truro (which is ~266 

kilometers (km) west-southwest from Louisbourg on the mainland of Nova Scotia) and 

should experience relatively similar precipitation 
18

O values. The annual weighted mean 

precipitation 
18

O value (
18

OPPT) of rainwater samples collected from 1975 – 1983 is      

-9.23‰ (VSMOW) (IAEA/WMO 2013).  

To account for the fractionation that occurs between precipitation/drinking water 

and tooth enamel, 9.23‰ (VSMOW) was translated using the following equation:  

 


18

OE(VSMOW) = 0.629 
18

ODW(VSMOW) + 30.587 
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The above equation was rearranged from the following equation from Chenery et al. 

(2012):  

 


18

ODW(VSMOW) = 1.590 
18

OE(VSMOW) – 48.634 

 

The 
18

OE(VSMOW) value was then converted from VSMOW to VPDB using the following 

equation from Coplen et al. (1983):  

 


18

O(VPDB) = 0.97002 
18

O(VSMOW) – 29.98 

 

The 
18

OE(VPDB) value calculated from the 
18

OPPT value of Truro is -5.94‰ which means 

that in theory, a human residing in the local area drinking local precipitation should have 

a 
18

OE(VPDB) value around -5.94‰. This value falls well within the 2σ range of the 

selected fauna (between -7.85 and -4.65‰) and gives further support to the use of the 

local oxygen range defined in this study for examining the Ste. Marie group’s origins. 

Overall, nine specimens qualified for identifying the local isotopic values of the 

Louisbourg area. Any animal or human with 
87

Sr/
86

Sr values between 0.708540 and 

0.711539, and (with a lesser degree of certainty) 
18

O values between -9.83 and -5.01‰, 

were interpreted as having local origins (or origins in an area with similar 
87

Sr/
86

Sr and 


18

O values). These data, as well as data from published studies, were used to interpret 

the origins of the Louisbourg fauna and the Ste. Marie individuals in the following sub-

chapters.  
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7.4  Faunal Origins Reconstruction 

Figure 40 shows a scatter plot of 
18

O and 
87

Sr/
86

Sr data for all specimens sampled (n=35, 

Table 25) as well as the local oxygen and strontium ranges described previously (Chapter 

7.3). Since different species fractionate water slightly differently (Kohn 1996), 

comparisons of 
18

O values between species and indeed with the local oxygen range 

defined by select species, must be considered with a measure of uncertainty. Therefore, 

the following is an approximate interpretation of each specimen’s origins.  

In total, 27 specimens (77%) fall within the Louisbourg strontium and oxygen 

ranges (Table 25). This includes all nine wild specimens (26%) that were used to define 

the 2σ local range, four of the wild specimens (11%) with large home ranges, and 14 

domestic specimens (40%). The large home-range wild specimens that show local oxygen 

and strontium isotopic values include the single lynx and moose specimens, as well as 

two deer specimens. The domestic specimens that fall within Louisbourg’s isotopic 

ranges include the cat specimen, both horse specimens, two cow specimens, and three 

each of goat, sheep, and pig. Because these specimens’ place within the local range, they 

are believed to have lived in the Louisbourg area or possibly from an area with similar 


18

O and 
87

Sr/
86

Sr values.  

A total of eight specimens (23%) fall outside both the strontium and the oxygen 

range. Most (n=6, 17%) had 
18

O values within Louisbourg’s oxygen range but 
87

Sr/
86

Sr 

values that were higher (i.e., above 0.711539). These specimens include most of the cow 

specimens (n=3) and one specimen each of pig, goat, and deer. These animals likely had 

origins from an area with a similar water 
18

O value as Louisbourg but with a biologically 
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available 
87

Sr/
86

Sr value that was more radiogenic. A single deer specimen (3%) had a 

87
Sr/

86
Sr value within Louisbourg’s strontium range but a 

18
O value that was out of 

range and lower than the 
18

O local minimum of -9.83‰. It is likely that this deer grew 

up on soil with a similar strontium value but drank water that was isotopically lighter than 

water from the Louisbourg area. This specimen (4L58K11-7), with a 
18

O value of           

-12.18‰, is 2.35‰ below the Louisbourg oxygen range and very likely originated either 

further north, further inland towards Canada, from an area of higher altitude, or some 

combination of these factors. Considering this in conjunction with the relatively high 


13

CCarb value (-4.65‰, Chapter 7.1.3) indicative of a mixed C3/C4 diet, it is possible that 

this specimen originated from an inland area where C4 crops were grown (e.g., southern 

Ontario [Katzenberg et al. 1995]). One other specimen (3%) is outside both the 
18

O and 

87
Sr/

86
Sr ranges defining the Louisbourg area. Deer specimen 3L22N1-8 is only 0.06‰ 

above Louisbourg’s oxygen range (a minor difference) but is well above (0.002191) the 

87
Sr/

86
Sr range. It is likely that this specimen did not originate from Louisbourg but from 

an area with much higher 
87

Sr/
86

Sr values. 

Of the wild fauna (n=16), only three specimens fell outside Louisbourg’s isotopic 

ranges and are therefore identified as having non-local origins. All of these specimens 

were deer. Two deer specimens (4L19A5-7 and 3L22N1-8) have very high 
87

Sr/
86

Sr 

values, while one deer (4L58K11-7) has a very low 
18

O value. These data suggest that 

deer utilised by Louisbourg inhabitants have origins from various locations which were 

isotopically distinct from the Louisbourg area. Although moose and lynx typically have 

large home ranges (Cederlund and Sand 1994; Parker et al. 1983), their ‘in-range’ 
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isotopic values do not suggest that they lived in an area with a differing isotopic value 

than Louisbourg. It is possible that the non-local deer came to Louisbourg via trade with 

Native peoples or other colonies.  

Of the domestic animals (n=19), a total of five specimens do not fall within 

Louisbourg’s isotopic ranges, and are therefore identified as having non-local origins. 

This includes three cows and one each of goat and pig. The greater proportion of cow 

specimens of non-local vs. local origins (3 vs. 2) may suggest that cows or their meat 

were more likely to be imported rather than raised locally, while horses and cats and to a 

lesser extent pigs, goats, and sheep may have been more likely to have been raised in the 

Louisbourg area. This conclusion is hampered by the small sample sizes. A study of 

larger sample sizes may discover that cows, pigs, goats, and sheep would be more likely 

to have non-local origins, while horses, cats, doves, and dogs would be more likely to 

exhibit local isotopic values. This hypothesis is based on the idea that animals, such as 

cows, pigs, goats, and sheep, served the purpose of feeding and clothing Louisbourg’s 

inhabitants, while horses, cats, doves, and dogs were more often a luxury item/service 

animal. The former group of animals would need to be imported in high quantities in 

order to support the increasing non-self-sufficient population, and the latter group of 

animals would initially have been imported but not used for food (unless necessary). 

These animals would be allowed to mate producing generations of locally raised animals. 

This hypothesis would benefit from historical research and further isotopic analysis which 

would expand on our knowledge of livestock/food importation and animal rearing at the 

Fortress of Louisbourg.  
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Many specimens in this study fall very close to the 
87

Sr/
86

Sr value of seawater: 

0.70923 (DePaolo and Ingram 1985). This includes several wild and domestic specimens, 

but in particular three of the four goat specimens fall very close to the 
87

Sr/
86

Sr value of 

seawater with values from 709329 – 709418. These specimens may have ingested plants 

highly influenced by sea spray (Whipkey et al. 2000) or marine products (Nelson et al. 

1986; Turner et al. 2009). One of these specimens (3L22N1-6) has a 
15

N value of 7.25‰ 

which is on the higher end of a typical terrestrial diet. This value does not indicate 

consumption of fish, but it may have been attained from consumption of seaweed (Cloern 

et al. 2002; Miyake and Wada 1967). Indeed, the use of seaweed as foddering materials 

for goats was proposed for an archaeological site in Scotland (Balasse et al. 2006). At this 

site, it was believed that the use of seaweed fodder was a response to a reduction of 

suitable terrestrial pastures during the winter months (Balasse et al. 2006). It is possible 

that local seaweed was used as foddering material at Louisbourg during the harsh winter 

months. Further investigation into the foddering habits of goats may benefit from 

historical research, isotopic analysis of serial sectioned goats’ teeth (Balasse et al. 2006), 

and isotopic analysis of local seaweed for comparison purposes.  

It should be noted that these discussions are only rough conclusions regarding local 

vs. non-local origins. This is because isotopic values are not exclusive to one area, and 

Louisbourg imported a great deal of their livestock and meat.  
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7.5  Ste. Marie Origins Reconstruction 

The 
18

O and 
87

Sr/
86

Sr values of select wild fauna described in Chapter 7.3 were utilised 

in this sub-chapter to examine local vs. non-local origins of the Ste. Marie mass burial 

individuals. Individuals with isotopic values between both ranges were interpreted as 

having originated from the Louisbourg area (or from an area with similar isotopic values), 

while individuals with values outside the above ranges were interpreted as having non-

local origins. Since the 
18

O values of animals are not the best analogs for interpreting 

human 
18

O values (White et al. 2004a), further analysis is presented in the form of 

comparisons between calculated drinking water 
18

O values (using equations developed 

by Chenery et al. [2012] and Coplen et al. [1983]) and regional precipitation water 
18

O 

values (using published data [IAEA/WMO 2013; Jamieson and Wadleigh 1999; Lee et al. 

2006]). Comparisons were also made between the Ste. Marie individuals’ 
87

Sr/
86

Sr values 

and published strontium data. 

 

7.5.1  Ste. Marie Data and Local Faunal Data Comparison 

Figure 41 shows a scatter plot of the 
18

O and 
87

Sr/
86

Sr data of all individuals examined 

(n=33), as well as the isotopic ranges that define the Louisbourg area (reported in Chapter 

7.3). A total of 16 individuals (48%) fall within the Louisbourg range (Table 26). A 

majority of these individuals have 
18

O and 
87

Sr/
86

Sr values on the higher end of both 

ranges. The lowest 
18

O value is from A18 with a value of -7.06‰, while the highest 


18

O value is from F24 with a value of -5.02‰ (only 0.01‰ below the upper limit of 

Louisbourg’s oxygen range, a minor difference). The lowest 
87

Sr/
86

Sr value is from 
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A15/F23 with a value of 0.709257, while the highest 
87

Sr/
86

Sr value among the group is 

from F29 with a value of 0.711344 (only 0.000195 below the upper limit of Louisbourg’s 

strontium range). Overall, the 16 individuals that fall within the Louisbourg range could 

have originated from the Louisbourg area or from an area with similar oxygen and 

strontium isotopic values.  

Approximately half of the Ste. Marie individuals (n=17, 52%) have isotopic values 

outside Louisbourg’s isotopic ranges. Five individuals (15%) have 
18

O values that fall 

within Louisbourg’s oxygen range but have 
87

Sr/
86
Sr values that fall above Louisbourg’s 

strontium range. It is believed that these individuals did not have local origins. They 

likely consumed water with a similar 
18
O value as Louisbourg’s water but originated in 

an area with higher 
87

Sr/
86

Sr value. Nine individuals (27%) fell within Louisbourg’s 

strontium range but had 
18

O values that were higher than Louisbourg’s oxygen range. 

The lowest 
18

O value is from F33 with a 
18

O value of -4.99‰, only 0.02‰ above the 

limit of Louisbourg’s oxygen range. The highest 
18

O value is from F30 with a 
18

O 

value of -3.20 which is 1.81‰ outside Louisbourg’s oxygen range. These individuals 

were likely not born and raised at Louisbourg but in an area with a more positive 
18

O 

value (e.g., further south). Three individuals (9%) had isotopic values that did not overlap 

with either of Louisbourg’s oxygen or strontium ranges. Their isotopic values suggest 

origins southward on geology that was more radiogenic.  

Using the Louisbourg oxygen and strontium isotopic ranges defined by select wild 

fauna, approximately half of the Ste. Marie individuals have been identified as having 

possible local origins (n=16, 48%). However, it must be remembered that the Louisbourg 
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population was made up of many non-locals (see Chapter 2.3.2). While much of the 

town’s population resided at Louisbourg for many years, the oxygen and strontium values 

presented in this study are all from enamel which reflects each individual’s childhood 

residency. In terms of origins, by 1734 most of Louisbourg’s heads of households were 

from various regions of France (73%), particularly the western regions of France (47%), 

with fewer from New France (21%), or Foreign countries (6%) (Johnston 2001). 

Louisbourg’s brides were mainly from New France (84% between 1722 and 1745 

[Johnston 1995b, 2001]), the fishermen were mainly from the coastal territories of France 

(Basque country, Normandy, and Brittany), but a small number were from New France 

(mainly Plaisance) (Johnston 1995b, 1995c). Most soldiers (which made up 27% of the 

total population by 1737) were from France, but around one-fifth were from Switzerland 

or Germany (Johnston1995b, 2001). 

Therefore, it would be expected that only a minority of Louisbourg’s inhabitants 

would have local values, and a high majority would exhibit non-local values (if these 

locations had isotopic values that were different from Louisbourg’s isotopic values). 

While it is difficult to assess the true percentage of individuals who were born and raised 

at Louisbourg (based on the demographic information), it is believed that locals would 

constitute less than 50% of Louisbourg’s total population. However, because the sample 

size in this study is small (n=33) and may not reflect the true proportions of locals to non-

locals, and because the census and parish records are not considered a comprehensive 

description of the total Louisbourg population, it cannot be ruled out that the Ste. Marie 

individuals were not Louisbourg inhabitants based on local vs. non-local proportions 

alone.  
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It is important to note that this discussion is only accurate if the local area is 

isotopically distinct from non-local areas, which is not the case. It is very possible that 

individuals with foreign origins have similar isotopic values to the Louisbourg area, 

making it seem as though there are more locals than there really were. As a result of this 

phenomenon, further evidence is required before a final conclusion can be made. 

 

7.5.2  Ste. Marie Data and Published Data Comparison 

Overall, if the Ste. Marie individuals were Louisbourg residents, a large majority of their 

isotopic values should match the isotopic values of France (especially western France), 

while fewer should match the isotopic values of Louisbourg, Switzerland, Germany, and 

New France.  

Unfortunately, the strontium isotopic values in the above areas are too similar to 

allow for speculation concerning the origins of the Ste. Marie group (Bentley and Knipper 

2005; Britton et al. 2011; Chiaradia et al. 2003; Kelly 2007). The strontium range 

observed among the Ste. Marie individuals overlaps with ranges observed in eastern 

France (Britton et al. 2011, Kelly 2007), southwest Germany (Bentley and Knipper 2005), 

southwest Switzerland (Chiaradia et al. 2003), and likely many other areas.  

Clearer results are found when observing precipitation 
18

O values (
18

OPPT) of 

these regions using the IAEA/WMO database (2013) and data from Jamieson and 

Wadleigh’s study (1999). For comparison with these data, the 
18

O of drinking water 

(
18

ODW) was calculated for each individual (Table 27) using the following equations: 


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
18

O(VSMOW) = 1.03091 
18

O(VPDB) + 30.91 (Coplen et al. 1983) 




18

ODW(VSMOW) = 1.590 
18

OE(VSMOW) – 48.634 (Chenery et al. 2012) 

 

The collection sites selected for this comparison were Dax and Breast in France (Table 

28), the former representing Basque country and the latter representing Brittany and 

Normandy. The weighted mean 
18

OPPT values were calculated from rainwater samples 

taken from 1999 – 2005 and 1996 – 2002, respectively. A more interior region of France 

is represented by 
18

OPPT data of Orléans rainwater collected from 1996 – 2005 

(IAEA/WMO 2013). Switzerland and Germany are represented by data from Bern and 

Berlin, respectfully. Rainwater samples were collected between 1969 and 2008 for Bern 

and 1978 – 2005 for Berlin (IAEA/WMO 2013). New France in the 18
th

-century 

describes numerous areas including, but not limited to, Acadia, Canada, and Plaisance. 

Acadia, being on the mainland of current day Nova Scotia is represented by the Truro site 

mentioned in Chapter 7.3. Canada in the 18
th

-century is described by a large region, 

however, a majority of Canadian French settlements were along the St. Lawrence 

(McNeill 1985). The collection site used to represent this area is in Ste. Agathe, Quebec 

which is ~79 km northwest of Montreal and ~250 km west-southwest of Quebec City. 

Weighted mean 
18

OPPT values were calculated from rainwater samples collected between 

1975 and 1982 (IAEA/WMO 2013). Plaisance (current day Placentia) is represented by 

St. John’s (which is ~101 km to the east-northeast of Placentia). The annual weighted 
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mean 
18

OPPT value for St. John’s was calculated from intermittent samples of rainwater 

collected between May 1994 and May 1995 by Jamieson and Wadleigh (1999).  

Figure 42 shows the calculated 
18

ODW values (and 
87

Sr/
86

Sr values) of all 

individuals and the 
18

OPPT in the areas mentioned above. A majority of individuals have 


18

ODW values that cluster around Truro, St. John’s, and Berlin 
18

OPPT values which 

suggests that a majority of the Ste. Marie individuals may have origins in these regions. 

The intra-population variation that is typically reported for static UK populations is ± 

2.8‰ around a location’s 
18

OPPT mean (Evans et al. 2006), and using this value as a 

rough indicator of isotopic variation among local individuals, some of the Ste. Marie 

individuals may also have had origins in Switzerland and central or eastern areas of 

France. A single individual (A18) has values that may indicate origins further north or 

inland, due to their low 
18

ODW value and their relative closeness to the 
18

OPPT value of 

Ste. Agathe, Quebec. A18 is discussed further in Chapters 7.6.6 and 7.6.7. Only a small 

number of individuals from the Ste. Marie group (n=13, 39%) exhibit 
18

ODW values that 

could be derived from areas in western France. Almost all of these have isotopic values 

within the lower range from the mean 
18

OPPT value of Dax, France, and could potentially 

have origins in Britain, New England, and New France.  

The 
18

ODW values observed among the Ste. Marie group would be unexpected of a 

selection of the Louisbourg population. Most of Louisbourg’s inhabitants had origins in 

France, especially western France. If the Ste. Marie individuals were Louisbourg 

inhabitants, it would be expected that most would have 
18

OPPT values that group within 

or around the values for western France (e.g., Dax and Breast) and to a lesser extent 
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around central France (e.g., Orléans). Such a pattern is not observed among the Ste. Marie 

individuals. While it is still theoretically possible that the Ste. Marie individuals could be 

composed of local, New French, and German inhabitants (and possibly Swiss or 

central/eastern French inhabitants), this is believed not to be the case since it is very 

unlikely that such a small subsection of Louisbourg’s population could all have died 

within a short period of time (as is believed to be the case for the Ste. Marie mass burial 

[Parish 2006, 2007]). Overall, while a few French individuals may be included within this 

study, these data support the belief that the Ste. Marie individuals were not Louisbourg 

residents.  

Since these individuals are not believed to be Louisbourg inhabitants, the next line 

of inquiry is investigating the possibility that these individuals are the deceased members 

of the New England garrison. If this is true, then the oxygen and strontium values of the 

Ste. Marie individuals should correspond to the isotopic values of areas in New England.  

As was the case for France, Germany, Switzerland, and New France, the 

methodology of matching the 
87

Sr/
86

Sr values observed in this study to 
87

Sr/
86

Sr values 

present in New England, is not feasible. First, the recruitment areas for the Louisbourg 

expedition were many and spanned across a vast geographic range including Connecticut, 

New Hampshire, Massachusetts, and Maine (Baker 1978; Rawlyk 1999). These regions 

have bedrock geologies containing a variety of igneous, metamorphic, and sedimentary 

materials, surficial geologies containing glacial, and riverine deposits, geologic ages 

spanning from the Precambrian to the Mesozoic, and coastal soils that may hold strontium 

contributions from marine sources (Billings 1980; Crosby 1876; Marvinney 2002, 2003; 

Rodgers 1985; Stone et al. 1992). As a result, New England would hold a variety of 
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87
Sr/

86
Sr values, such that any one 

87
Sr/

86
Sr values could be present in a number of 

different geographic areas. Second, even if these values could be predicted (based on 

mineral content, geologic age, etc.), such predictions would describe only the 
87

Sr/
86

Sr 

values of each individual source and not the 
87

Sr/
86

Sr values that are biologically 

available. Indeed, biologically available strontium values are an averaging of a number of 

different materials from various sources and have often been found to be very different 

from bedrock 
87

Sr/
86

Sr values alone (Laffoon et al. 2012). What can be said is that the 

87
Sr/

86
Sr values of the Ste. Marie individuals are typically equal to or higher (more 

radiogenic) than the Louisbourg area which indicates that for some individuals, the 

biologically available strontium of their place of origin is derived from older geologic 

materials, or materials that had a higher Sr/Rb ratio. Materials of this description are 

found in Connecticut, New Hampshire, Massachusetts, and Maine (and likely in a number 

of other areas). 

The more telling evidence again comes from the oxygen values of the Ste. Marie 

individuals. Each individual’s calculated 
18

ODW values are reported in Table 27. 
18

OPPT 

datasets available for New England regions include a collection site in Hanover, New 

Hampshire which is geographically central to the four recruitment areas of the New 

England soldiers (New Hampshire, Connecticut, Massachusetts, and Maine). Rainwater 

samples from Hanover were taken bimonthly between 1997 and 1998 (IAEA/WMO 

2013, Table 28). Additional New England data come from a study by Lee et al. (2006) of 

precipitation in New Haven, Connecticut. The geographic position of New Haven 

represents the southernmost region of recruitment for the Louisbourg expedition. Annual 



147 
 


18

OPPT values for New Haven are averaged from samples taken between 2003 and 2004 

(Lee et al. 2006). To account for potential British origins among the New England 

population, 
18

OPPT data were also included for two sites in Britain, one in Wallingford, 

England and the other in Inchnadamph, Scotland (IAEA/WMO 2013). 
18

OPPT values 

were averaged from monthly samples taken between 1979 and 2007 for the former 

location and between 2003 and 2005 for the latter location (IAEA/WMO 2013). 

Wallingford is a relatively south central location in England, and Inchnadamph is in the 

Scottish highlands.  

Figure 43 shows the calculated 
18

ODW values (and 
87

Sr/
86

Sr values) for the Ste. 

Marie individuals and the 
18

OPPT values for the areas mentioned above. A majority of the 

Ste. Marie individuals cluster around and between Hanover and New Haven 
18

OPPT 

values, while fewer individuals cluster around Wallingford and Inchnadamph 
18

OPPT 

values. This suggests that these individuals were potentially from New England and fewer 

were from Britain. A small number of individuals from Britain would be expected since 

by the 18
th

-century most people within the New England population were descendants of 

immigrants rather than first generation immigrants (Greene 1988). Furthermore, all 

individuals fall within a ± 2.8‰ range around the Hanover and New Haven 
18

OPPT 

values with the exception of F30, who exhibits the lowest 
18

ODW value of the group. 

However, this individual does fall within range of the 
18

OPPT values of Wallingford and 

Inchnadamph, making British origins a possibility. F30 is discussed further in Chapter 

7.6.2. 
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7.5.3  Conclusion 

While it is expected that a high majority of Louisbourg inhabitants would have origins in 

France (especially western France), few individuals exhibited matching 
18

ODW values. 

Considering this (and the diet information in Chapter 7.2.4), it is believed unlikely that 

the Ste. Marie group were Louisbourg inhabitants. The 
18

ODW data suggest that the Ste. 

Marie individuals could have origins in New England and possibly Britain. However, the 

data presented by the 
18

O comparisons are not exclusively indicative of such origins 

since many individuals’ 
18

O values could also have been obtained by German, New 

French, and Swiss origins. Unfortunately, the strontium data were largely inconclusive for 

determining the group’s birthplace. Overall, these results do not confirm New England 

origins for the Ste. Marie individuals but lend further support to the theory.  

 

7.6  The Ste. Marie Individuals: Reconstructing Life Histories 

An examination of all the isotopic evidence (
13

CCol, 
15

N, 
13

CCarb, 
18

O, and 
87

Sr/
86

Sr, 

Table 22) showed intermittent statistical significance in correlation to information 

retrieved via osteological analysis (e.g., sex, age, dental pathologies, bone pathologies, 

muscular strain, and pipe smoking) as reported in Chapters 6.4 and 6.5. However, by 

taking an alternative approach that combines the quantitative and the qualitative, a 

number of trends became apparent. The following is a selection of individuals who by 

some combination of isotopic, osteological, or other characteristic, stand out. Rough 

interpretations are made from the perspective that the Ste. Marie mass burial individuals 

were New England garrison members from the siege of 1745. All information regarding 
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an individual’s sex and age or evidence pertaining to smoking habits, pathological 

conditions, muscular strains, or cause of death is referenced from Parish’s (2006, 2007) 

osteological reports. 

 

7.6.1  H3 

As mentioned previously, while 48 individuals at the site were contained within the root 

cellar, one individual, H3, was excavated from outside the cellar wall on the northeast 

corner. Osteological analysis indicated that H3 was a male adult likely between the ages 

of 18 and 25 and may have had scurvy. He also suffered a blunt force trauma to the right 

side of the head from a single pronged instrument. Because of the pit style of H3’s burial 

and un-articulated nature of his remains, it is believed that this individual was reinterred 

from another grave. The French relocated many burials from within the town to Rochefort 

Point (Johnston 1996, 2001), making it likely that this individual was a Louisbourg 

inhabitant, or at the very least, died at Louisbourg during French occupation. The date of 

this individual’s death and re-interment is unknown.  

The isotopic evidence suggests that this individual had a terrestrial C3 based diet 

with contributions from C4 based foods and possibly a small contribution from marine 

foods. H3’s oxygen and strontium isotopes fall within Louisbourg’s local isotopic ranges. 

Furthermore, the closeness of H3’s calculated 
18

ODW oxygen value (Table 27) to the 


18

OPPT value of Truro (Figure 44) makes it possible that this individual was an inhabitant 

of Louisbourg during childhood, however, the small (possibly nonexistent) amount of 
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marine foods in this individual’s diet may indicate otherwise. Further research on H3 

would be required before a definitive conclusion could be drawn. 

 

7.6.2  F30 

Over 45 Louisbourgeois were not deported with the rest of the Louisbourg’s population 

when the Fortress was capitulated in 1745. These individuals stayed at Louisbourg during 

the New England and British occupation (Johnston 1996, 2001). Furthermore, a journal 

account of the New England garrison’s winter occupation, taken by Chaplain Stephen 

Williams, mentions a number of French men and a French child among the dead (De 

Forest ed. 1932). Considering the numerous deaths and burials taking place at the time, it 

is possible that French individuals were buried alongside the soldiers. Thus, it may be 

possible that some of the Ste. Marie individuals were inhabitants of Louisbourg. Of the 

Ste. Marie group, one individual may indeed be of French origin and possibly a 

Louisbourg inhabitant or transient worker. This individual is F30, a 40 – 45 year old pipe 

smoker of unknown sex who may have had difficulty walking due to odd bone formations 

on the distal ends of their tibiae and fibulae. As discussed in Chapter 7.5.2, F30 has a 


18

ODW value that is outside the expected isotopic range of a New England inhabitant. 

The calculated 
18

ODW value of F30 (-4.73‰, Figure 44) is very close to the 
18

OPPT 

values of Breast and Dax (-4.84 and -4.92‰, Table 28) which suggests origins on 

France’s west coast. Furthermore, this individual had the highest 
15

N value of the Ste. 

Marie group (14.95‰, Table 22) which suggests a diet containing a large amount of 

marine foods. Such values would be expected of a Louisbourg inhabitant (and possibly a 
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fisherman). However, F30’s 
18

ODW value could also be the result of origins in Britain or 

colonies south of New England (e.g., Virginia), making it still possible for this individual 

to be a member of the New England garrison.  

 

7.6.3  D7A/F8, D11/F11, E8/F22, E12/F26, and E16 

Also worthy of note is a small group of individuals that appear to have similar diets and 

origins. These individuals are D7A/F8, D11/F11, E8/F22, E12/F26, and E16. This group 

of individuals have 
18

O values between -5.27 and -3.95‰, and 
87

Sr/
86

Sr values between 

0.712269 and 0.713716 (Table 22). The 
87

Sr/
86

Sr values of this small group are almost 

exclusively the highest 
87

Sr/
86

Sr values among the entire Ste. Marie group (Figure 45a) 

and are indeed outside Louisbourg’s strontium range. These individuals all had diets 

containing low (or no) marine consumption and strongly based on C3 resources (with 


15

N values between 7.91 and 8.72‰ [except E16 with a 
15

N value of 11.26‰], 
13

CCol 

values between -19.80 and -17.63‰, and 
13

CCarb between -13.80 and -11.08‰) (Figure 

45b). Although the above values are not exclusive to this group (e.g., F33, an adult male 

with similar 
13

C and
15

N values, Figure 45b), the consistency of their isotopic values 

may indicate a commonality, perhaps origins in the same region where a strict terrestrial 

diet was prominent.  

Osteological analysis had revealed a great deal of information concerning these 

individuals. D11/F11 was a 20 – 23 year old male, possibly of mixed 

Aboriginal/Caucasian ancestry, with multiple wormian bones and bone pathologies 

suggesting long-term illness. E12/F26 was a male between the ages of 15 and 20 at time 
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of death, had a number of bone pathologies, and showed osteological indications that he 

performed a repetitive motion of the arms. D7A/F8 was a tall 15 – 18 year old female 

who was buried with a child (D7B) in her lap. Although there are no teeth available for 

D7B (and thus no oxygen or strontium data) child D7B does have a similar diet to female 

D7A/F8 and the other individuals within this small group (
13

CCol = -19.62‰ and 
15

N = 

8.95‰, Table 22) (Figure 45b) and may be another member of this proposed group. 

D7A/F8 and D7B are discussed further in Chapter 7.6.5. D3, of unknown sex and age, is 

another individual for whom there are no oxygen and strontium data that exhibits similar 

carbon and nitrogen values as the others (
13

CCol = -18.21‰ and 
15

N = 8.72‰, Table 22 

and Figure 45b) and may be an additional member of this group.  

E8/F22 was an adult male (likely over 35) who smoked a pipe and showed 

indications of death by hanging (fractures to cervical vertebrae and mandible, and 

possible noose wear). Attempts were made to find a potential identity for this individual 

by examining council of war documents (Massachusetts Historical Society 1899). While a 

number of crimes and breach of orders were committed during the winter months of the 

garrison’s stay, there is no mention of any executions (Massachusetts Historical Society 

1899). However, in De Forest’s (1932) compiled book of various journals from the 

Louisbourg expedition, the first anonymous journal gives mention of a “Swister” (i.e., a 

Swiss man) that was found trying to desert the city and flea to the English Army carrying 

a letter. The man was hanged the next day (De Forest ed. 1932). Unfortunately no further 

information could be uncovered. 
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It is possible that with further historical research and possibly DNA analysis, this 

individual can be given a positive identification. Such an identification would not only be 

valuable in of itself, but any records of the execution may also give a date which would 

correspond roughly to the creation of the mass burial. Coupling this information with 

available documents containing the dates and names of other deceased may allow for 

further identifications to be made.  

 

7.6.4  F29, F32, and E12/F26 

Another curiosity worthy of note is those individuals who showed indications of stress 

and straining of muscles within the arm and/or shoulder. These are individuals F29, F32, 

and E12/F26 (Table 17). As mentioned in Chapters 6.4.2 and 6.5.4, statistical significance 

was found between the mean nitrogen (t=4.01; df=6; p=0.007) and strontium (t=3.23; 

df=4; p=0.032) values of these individuals compared to the rest of the Ste. Marie group. 

More specifically, the dietary information for these individuals indicate that F29 and E32 

had a similar diet, mainly mixed C3 and C4 terrestrial foods, while E12/F26 showed little 

or no C4 based contributions (Figure 46a). However, all three have 
87

Sr/
86

Sr and 
18

O 

values that suggest similar origins (Figure 46b). It may be that these individuals represent 

a small group who originated from a common location and took part in the same activities 

involving repetitive stress and strain of their arm muscles. E12/F26 (the young male 

discussed in Chapter 7.6.3) had muscular strain indications involving muscular 

attachment sites on the humeri and clavicle, while F29 (a muscularly robust 30 – 40 year 

old pipe smoking male) and F32 (a sub-adult) both showed muscular strain indications on 
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their humeri. It is possible that these three were involved in the same or similar 

occupation.  

 

7.6.5  Women and Sub-Adults 

Another interesting feature of the Ste. Marie site concerns the burial arrangement of the 

three women and the three sub-adults. Although the presence of women and children 

among a garrison group may seem unlikely, journals written by New Englanders during 

their occupation of Louisbourg mention the presence of women and children, and that 

women and children became ill (De Forest ed. 1932). 

Sub-adult F32 (mentioned in Chapter 7.6.4) was buried directly adjacent to the 40 – 

49 year old female, F12. Sub-adult A3 (possibly of Aboriginal or Asian descent) was 

buried adjacent to adult female A18 (a pipe smoking adult), and sub-adult D7B was 

buried in the lap of female D7A/F8. The question that has arisen is: what were the 

relationships between the sub-adult/female pairs (if any existed)? Were they biologically 

related or from the same household and therefore buried together? Is it possible that the 

children were placed next to the women out of some superstition, burial custom, or belief 

that the women’s spirit would guide the child in the afterlife? Or was this arrangement 

purely coincidental?  

Although any similarities between the isotopic values of sub-adult/women pairs 

would result in very speculative inferences concerning relationships, comparisons were 

made for the sake of inquiry, with the reasoning that similar oxygen and strontium values 

may suggest origins from the same region, and similar carbon and nitrogen values could 

be caused by origins from the same household. Child and female pair F32 and F12 likely 
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had very different origins (Figure 47a) with absolute differences of 1.21‰ for 
18

O and 

0.004007 for 
87

Sr/
86

Sr. These data do not support the idea that they had a childhood in the 

same region, however, since large scale movement of people was common during this 

time, a possible relationship between the two cannot be ruled out. For example, a mother 

may move to a new location before having a child, and the two individuals’ 
18

O and 

87
Sr/

86
Sr values could be different as a result. The diet of these individuals (Figure 47b) 

was also different (with absolute differences of 5.29‰ for 
13

CCol, 6.59‰ for 
13

CCarb, 

and 1.66‰ for 
15

N), suggesting that they ate different diets which loosely suggests they 

did not live in the same household in the recent years of their lives. Sub-adult A3 and 

female A18 do not have diet information, however, the large differences between their 


18

O and 
87

Sr/
86
Sr values (1.66‰ and 0.001919, respectively) do not suggest they were 

raised in the same area. D7A/F8 and D7B do not have oxygen and strontium data, but 

their relatively similar 
13

CCol and 
15

N values (with absolute differences of 0.98 and 

0.92‰, respectively) indicate they consumed isotopically similar diets and may have 

lived in the same household. Interestingly, sub-adults A3 and F32 have very similar 

oxygen and strontium values with absolute differences of 0.39‰ and 0.000038. These 

sub-adults may have come from the same area, but they may have come from different 

areas that have similar oxygen and strontium values. Unfortunately, there are no carbon 

and nitrogen data available for A3 for a dietary comparison between the two. Overall 

these data do not lend themselves to any conclusion regarding potential relationships 

between the sub-adults and females excavated from the Ste. Marie site. More conclusive 

results could be obtained from nuclear or mitochondrial DNA analysis. 
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7.6.6  Women 

All the women in this study, A18, D7A/F8, and F12 are noteworthy, in that they all have 

strontium and oxygen isotopic values that place them as outliers relative to the rest of Ste. 

Marie individuals (Figure 47a). D7A/F8, the young female buried with a child, has the 

third highest strontium value, the third highest oxygen value, and is relatively separated 

from the other individuals analysed. F12, the older female, has the lowest 
87

Sr/
86

Sr of any 

human or animal analysed in this study. A18, an adult of unknown age, has the lowest 


18

O value of the group and falls well inside the Louisbourg range, identifying her as a 

possible Louisbourg inhabitant. These values suggest that these women may not have 

come from the same locations as the rest of the Ste. Marie group. D7A/F8 and A18 in 

particular have very distinct isotopic values compared to the others.  

Questions that have arisen are: who were these women, and what was their 

relationship to the garrison or to the overall Louisbourg campaign? Were they traveling 

with the soldiers, as women did during the 1758 siege of Louisbourg (Lane Jonah and 

Véchambre 2012)? Unfortunately, there is scant information on women’s involvement 

with these campaigns. The few mentions of women in contemporaneous documents 

include a woman named Catherine Farrell who was accused of adultery in a Council of 

war document dating to December 6
th

 1745 (Massachusetts Historical Society 1899), and 

the arrival of Shirley’s and Warren’s wives and other women in a journal entry made in 

September of 1745 by Private George Mygate (De Forest ed. 1932). Whether these 

women stayed at Louisbourg over the winter and became sick and perished is unknown.  
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7.6.7  A18 

A18 has the lowest oxygen value among the Ste. Marie individuals (see Chapter 7.5.2), 

with a 
18

ODW value that falls between precipitation data from Ste. Agathe, Quebec and 

Truro, Nova Scotia (Figure 44). It is possible that this woman belonged to the small group 

of over 45 individuals known to have stayed at/around Louisbourg throughout the New 

England and British occupation (Johnston 1996, 2001). Of this group, only a small 

number were women (Johnston 2001: n.114). From the historical information available, 

the only female known to have been present during the New England occupation that fits 

A18’s description is Anne-Madeleine LaChaume, Madame Guyon (or Dyon), who was 

born at Port Royal in 1707 and was the daughter of an Acadian woman and a soldier (A. 

M. Lane Jonah, personal communication 2013). Anne-Madeleine married in 1725 at 

Louisbourg to Jean-Baptiste Guyon (or Dyon) (A. M. Lane Jonah, personal 

communication 2013). They lived much of their lives a short way down the coast at 

Havre St. Esprit and had many children, the last of which was a son born in 1744 (A. M. 

Lane Jonah, personal communication 2013). Some point after this, Anne-Madeleine died 

(A. M. Lane Jonah, personal communication 2013). During the English occupation of 

Louisbourg, Jean-Baptiste worked as a pilot, and he remarried in the fall of 1746 (A. M. 

Lane Jonah, personal communication 2013; Johnston 1996; Moore 1982). It may be that 

Anne-Madeleine was living at the Fortress with the New Englanders, died of the diseases 

spreading there, and was buried with the New Englanders in the root cellar of the Ste. 

Marie house. At this juncture the identity of A18 is unknown and the discussion offered 

here is only speculative since it is possible that A18’s low 
18

ODW value could have been 
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attained in other areas (e.g., Newfoundland or in northern or inland areas of Europe) and 

also because of the likelihood that other local women perished in the winter of 1745-46 

that were not documented. However, such examinations offer an insight into the kind of 

information that can be combined with isotopic data to help reconstruct the life histories 

of the deceased.  

 

7.7  Closing Remarks 

7.7.1  Utilising Published Data 

The results of this thesis support the use of published isotopic data in addition to isotopic 

data from local fauna. In theory, while an isotopic similarity between local fauna and the 

Ste. Marie individuals supports a determination of local origins, it does not rule out the 

possibility that they originated from an area with similar isotopic values. Utilising 

published data from areas of the individuals’ suspected origins give further information 

on such a possibility. Concerning oxygen comparisons, this is especially important since 

local fauna may have slightly different 
18

O values than local humans (Kohn 1996; White 

et al. 2004a). Along with concerns over oxygen fractionation, there is also an issue of 

differential water sources utilised between fauna and humans. The specimens used in this 

study to define the local oxygen range were wild and may differ from humans in that they 

are more likely to ingest water from streams, rivers, lakes, food, etc., while humans may 

be more reliant on imported drink, locally made beverages, milk, well water, etc., (A. M. 

Lane Jonah, personal communication 2013). The differential ingestion of isotopically 

varied water sources between fauna and humans is another reason why faunal oxygen 
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isotopic data may not be the best proxy for local human oxygen values (White et al. 

2004a). Although isotopic data of fauna are very valuable, and should be given a degree 

of consideration in the examination of human origins, greater emphasis should be placed 

on comparisons between calculated human 
18

ODW values and published data of regional 


18

OPPT values.  

 

7.7.2  Control Group 

Another topic that has been raised throughout this thesis is the absence of a control group. 

Data from a control group would not only benefit further investigations into the origins of 

the Ste. Marie individuals but would also be of great use for any future isotopic studies 

examining the origins of Louisbourg inhabitants. Such a control group would need to 

include Louisbourg inhabitants only and exclude any possible deceased from the New 

England or British occupations. For example, skeletal remains from Rochefort Point 

would not make for a good control group since both the French and New 

Englanders/British used the point for a burial site (Johnston 1996). A good candidate for a 

control group may be those burials within the first parish cemetery located within the 

town site in Block 3 (Jerkic 1974; Johnston 1996, 2001). In 1722-23 this cemetery was 

reinterred to another site, however, many graves were left behind (Johnston 1996, 2001). 

Twenty-three of these graves were excavated in 1974 (Jerkic 1974). The use of Block 3 as 

a cemetery site ceased before the New Englanders or British occupied Louisbourg, 

making it an ideal candidate for a control group. However, it is possible that this cemetery 

was limited to individuals of the Catholic faith. A control group including only these 
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individuals would not account for those Louisbourg inhabitants who were Protestant, etc., 

who made up a small, but not an insignificant portion of the Louisbourg population. The 

possibility of this requires further historical investigation.  

 

7.7.3  The Possible Influence of Foreign Food and Drink 

Isotopic data from a control group would also help to define the degree of influence 

foreign food and drink had on the strontium and oxygen isotopic values of colonial 

peoples. The Fortress of Louisbourg in particular was a colonial site wherein much of the 

food and drink was imported. Even soil for backyard gardens was brought in from 

elsewhere (Donovan 2006; Lane Jonah and Véchambre 2012; O’Neill 1995). These items 

would carry foreign isotopes that would then be ingested and incorporated into a 

consumer’s skeletal tissue. Could these foreign isotopes significantly shift an individual’s 

isotopic values, or completely overwrite local values? Such influences could result in an 

under-estimation of local status determinations. Concerning this study, it is believed that 

since imported drink was of an alcoholic variety, which was unlikely to have been 

ingested by children (with the possible exception of diluted low alcohol drinks, e.g., cider 

or beer [A. M. Lane Jonah, personal communication 2013]), the 
18

O values of enamel 

(which forms during childhood [Hillson 1996]) are unlikely to be affected by imported 

drink, and more likely to have been influenced by local milk and well water. Thus, the 

conclusions in this study concerning oxygen isotopes are believed to be unaffected and 

accurate.  
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However, imported food would have been ingested at any age, making it possible 

for foreign strontium isotopes to affect the 
87

Sr/
86
Sr values of an individual’s enamel. 

Indeed, the 
87

Sr/
86

Sr values of many domestic animals in this study exhibited a wide 

range (Figure 31), greater than the strontium range of select (local) fauna. These (likely 

foreign) 
87

Sr/
86

Sr values may have had the potential to significantly shift a Louisbourg 

inhabitant’s 
87

Sr/
86

Sr values away from the local strontium range. These issues are rarely 

addressed in the published literature (some exceptions include studies by Kendall et al. 

[2013], Turner et al. [2009] and Wright [2005]), and since Louisbourg is something of an 

extreme example of a town reliant on imported food, an isotopic study of Louisbourg 

inhabitants has the potential to contribute greatly to our understanding of the effects of 

foreign foods on the isotopic values of local inhabitants. Overall, there is great potential 

for future research to greatly enhance our current knowledge of the Fortress of 

Louisbourg and our understanding of the uses and shortcomings of isotopic analysis 

within colonial and historical contexts.  
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Chapter 8 

Conclusions and Suggestions for Future Research 

 

The primary goal of this thesis was to empirically investigate the hypothesis that the Ste. 

Marie mass burial individuals are deceased members of the New England garrison from 

the winter of 1745-46. This goal was accomplished by reconstructing the diet and origins 

of the Ste. Marie individuals using stable and radiogenic isotopic analysis of their skeletal 

remains. These data were compared to published data of other human groups as well as 

faunal data from this study and others and has resulted in a detailed interpretation of the 

individuals and specimens sampled.  

 

The Ste. Marie Individuals: The dietary reconstruction of the Ste. Marie individuals 

revealed a diverse diet. While most individuals subsisted on C3 foods, fewer had a mixed 

C3/C4 based diet, and only a small number had a mixed marine/terrestrial diet. The lack of 

marine foods is believed to be an indication of the group’s non-local origins. It is also 

suggested that the individuals’ diverse diets may be the result of the New England 

soldiers’ varied origins and original occupations. However, it is also believed possible that 

such diversity could also have been obtained from a colonial diet which could be 

achieved from either Louisbourg or New England. 

The strontium and oxygen isotopes revealed that, in comparison to the faunal data, 

approximately half of the Ste. Marie individuals had non-local origins. This is believed to 

be too low for the largely European-born population. By calculating the individuals’ 

drinking water 
18
O values, few individuals were identified as having possible French 
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origins. This would indeed be unexpected of a group of Louisbourg inhabitants since the 

Fortress’s population was largely French in origin. These conclusions further suggest non-

local origins for the Ste. Marie group. The Ste. Marie individuals’ drinking water 
18
O 

values, in comparison to New England precipitation 
18
O values, show good agreement. 

This suggests that the Ste. Marie individuals may have originated from New England 

which further supports the archaeologically and historically founded hypothesis. In 

conclusion, it is believed very likely that the Ste. Marie individuals are deceased members 

of the New England garrison. 

No conclusions could be drawn regarding correlations between the individuals’ 

isotopic values and sex, age, dental health and pathological conditions. There are many 

avenues through which these individuals can be studied further. Given the amount of 

historical records concerning the siege and the New England occupation, the short time 

frame for the creation of the mass burial, and the fact that the siege was only 269 years 

ago, there is promise for genealogical investigations to reveal possible descendants which 

may lead to positive identifications via DNA analysis. Such investigations may lead to a 

positive identification for F30, the possible French man, A18, the possible local woman, 

or E8/F22, the hanged man. Genetic comparisons among the Ste. Marie individuals may 

help identify potential relationships, for example, between sub-adults and women, among 

those individuals with muscular strain, and among those individuals whose isotopic 

values group closely together. Overall, there is great potential for historical research, 

genetic analyses, or other methodologies to further illuminate the lives of the Ste. Marie 

individuals.  
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Future investigations into Louisbourg inhabitants (or indeed the Ste. Marie 

individuals) could involve the analysis of bioapatite from bone elements as well as tooth 

enamel which will allow for the investigation of residency, mobility, and migration. This 

type of analysis may involve oxygen and strontium isotopes but can also involve carbon 

isotopes since it has been suggested that the appearance and amount of C4 to the diet may 

reflect the time that an immigrant spent in the New World, where C4 resources were more 

common (Ubelaker and Owsley 2003). Bone bioapatite analysis was not attempted in this 

study due to logistic and time restraints as well as concerns over bone bioapatite 

preservation. However, since the Ste. Marie and town site bones are young and in 

relatively good condition, they may retain their biogenic isotopic values (Kohn and 

Cerling 2002). If this can be determined by analytical means (Nelson et al. 1986), 

valuable information on the movement of Louisbourg inhabitants can be attained.  

Considering the theory by Ubelaker and Owsley (2003), it is also proposed that by 

analysing collagen nitrogen isotopes from different skeletal elements reflecting different 

time periods, it may be possible to observe the appearance of a high marine diet, as would 

be expected of a European immigrant to the Fortress of Louisbourg (where fish 

consumption was high). This technique would have to assume that fish consumption at 

the immigrants’ previous home was lower, however, such an investigation may yield 

further information regarding the mobility and migration of Louisbourg residence. 

 

The Louisbourg Fauna: The aim of the faunal analysis was to outline the type of food 

items and isotopic values available to Louisbourg inhabitants, however, these data have 

also exhibited a number of noteworthy patterns and characteristics. There were many 



165 
 

different types of grazing habits and foddering materials used for domestic animals. 

These include terrestrial C3 and C4 products as well as marine and possibly freshwater 

resources. Marine products also appear to have substantially affected many of 

Louisbourg’s wild fauna. These materials were likely obtained as a result of the local cod 

fishing practices.  

It is possible that many of the faunal specimens sampled came from areas outside of 

Louisbourg. This was especially true for domestic animals since Louisbourg imported 

much of their meat and livestock. Few animals were identified as having non-local 

origins, however, it is important to note that an isotopic similarity between a specimen 

and the Louisbourg area suggests local origins, but does not rule out the possibility that 

the animal originated in a non-local area with similar isotopic values. Furthermore, since 

Louisbourg’s strontium and oxygen isotopic ranges can be similar to the isotopic values 

of New England or New France, the use of isotopic analysis for identifying a specimen’s 

origins is somewhat limited. Future studies aimed at reconstructing the origins of 

Louisbourg fauna should take this into account. 

Potential avenues for future research concerning Louisbourg fauna include the 

possible isotopic distinction between the diet of local vs. non-local cows, the apparent 

dietary diversity among chickens, hares, and red squirrels, the possible distinction 

between natural and anthropogenic diets of foxes, hares, rats, and mice, and the 

possibility of examining local vs. non-local differences between food animals and 

luxury/service animals. For these studies, it may also be pertinent to conduct historical 

research, analyse local flora (e.g., grasses and seaweed), local isotopic values (in soil or 
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well water) and environmental influences (e.g., sea spray) which will allow for more 

accurate interpretations.  

 

The secondary goal of this thesis was to contribute to a growing database of 

isotopic information from colonial and historical contexts. This thesis has culminated in a 

large isotopic dataset of human and faunal materials from the Fortress of Louisbourg, has 

raised a number of questions and concerns related to the use of isotopic analysis for diet 

and origin reconstruction within colonial contexts, and has also illuminated many possible 

avenues for future research. It is believed that the best approach, as was used in this study, 

is a multi-isotopic and multi-disciplinary approach which provides a more comprehensive 

and dependable platform for interpreting archaeological information. Concerning this 

study, no single type of analysis could have led to a definitive conclusion concerning the 

Ste. Marie individuals’ origins. It was only by a combination of different isotopic 

analyses, and indeed a combination of historical, archaeological, and isotopic evidence, 

that a confident interpretation was established.  
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Tables  

 

Table 1. Permanent dentition enamel development. Revised after Schour and 

Massler (1940) in Hillson (1996). 

 

Tooth Range in Years 

1
st

 Incisor 4 – 5 

2
nd

 Incisor 4 – 5 

Canine 6 – 7 

1st Premolar 5 – 6 

2nd Premolar 6 – 7 

1
st

 Molar 2.5 – 3 

2
nd

 Molar 7 – 8 

3rd Molar 12 – 16 

 

 

 

 

Table 2. Annual turnover rates and the number of years for 100% turnover (turnover 

= 100/mean) for different bones from a study group of adults from the United 

Kingdom. Revised after Bryant and Loutit (1964) and Bryant and Loutit (1961) in 

ICRP (1975). 

 

Bone Type Mean (%) Number of years for 100% turnover 

Skull 1.8 55.6 

Vertebra 8.3 12.0 

Rib 4.7 21.3 

Ilium 6.5 15.4 

Tibia (shaft) 1.1 90.9 

Femur (shaft) 2.0 50.0 
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Table 3. Sex, age at time of death, dental pathologies, bone pathologies and other information on the 49 individuals excavated 

from the Ste. Marie site paraphrased from the osteological reports (Parish 2006, 2007).  

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

X99 
    

 

A3 ? 
12 ± 3 
years 

Dental caries including large caries 
on LP4.  

 

A12 ? ? 
  

 

A13/F19 Male 23 – 24 
  

 

A14 Male 20 – 21 
  

 

A15/F23 Male >35 
Dental wear moderate to severe. 
Carries on LP4 and LM1. Low 
calculus on half of teeth. 

 
 

A16 ? ? 
  

 

A17’A’ ? ? 
Linear enamel hypoplasias (LEHs) 
present. Light to medium wear. 
Several carious lesions. 

Severe periosteal reactive bone on right 
tibia. 

 

A17’B’

 ? ? 

  
 

A18 Female ? LEHs present. 
 

Pipe wear on all 
canines. Iron fragment 
in cranial fragment 
near front of skull. 

A19 Male ? 
Medium wear on all teeth. Very 
little disease.   

Pipe wear on LC1 and 
LI2. 

A20/F20 ? ? 
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Table 3. Continued. 

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

C7 Male ?    

D3 ? ? 
  

 

D4 ? ? 
  

 

D5 ? 
15.5 –  
21.5  

Non-specific periostitis on tibiae and 
fibulae likely caused by nutritional 
deficiencies or chronic disease loads. 

 

D6 Male 
24 ± 3 
years 

Minimal amounts of wear, with 
massive wear on all four first 
molars. Abscess on LM1. 

 
 

D7A/F8 Female 15 – 18 
Considerable amounts of wear 
possibly due to carious lesions. 
Many LEHs. 

Bony enthesopathy on left humerus   

D7B ? 3 – 4 
  

Possible congenital 
disorder involving 
incomplete fusion of 
cervical vertebrae 
possibly related to 
death. 
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Table 3. Continued. 

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

D8 ? >21 
 

Abnormal periosteal and cortical bone 
loss on the right patella (cause 
unknown). Reactive woven or fibre 
bone formation on right femur and right 
tibia possibly caused by nutritional 
deficiencies or chronic disease loads. 

 

D9 ? >18 
Moderate wear. A few carious 
lesions. Several LEHS.  

 

D10 ? ? 
  

 

D11/F11 Male 20 – 23 

High amount of dental wear 
considering individuals age. Wear 
was caused by or was the cause of 
large carious lesions. Calculus 
present. 

Active and healed porotic hyperostosis 
in parietals possibly caused by iron 
deficiency, nutrition deficiencies, 
infectious disease, or parasitic load. 

 

D12/F9 Male 18 – 20 
Slight dental wear. Light to 
moderate calculus. Large caries 
present in five teeth. 

 

Below-knee 
amputation on the 
right leg likely related 
to cause of death. 

D13 ? ? 
Moderate dental wear. Small black 
pits on LM1 and LP4.  

 

D14 ? >20 
 

Porosity on vertebral centra.  

E6 Male 25 – 30 
Three carries in two teeth. Low 
calculus on most teeth, moderate 
on LC1. Eight abscesses. 
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Table 3. Continued. 

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

E7 Male 50 – 55 

Tooth wear variable from severe to 
mild/moderate in posterior 
dentition. Several carious lesions. 
Many LEHs.  

Schmorl’s nodes on T6 – T10 and L3 
vertebrae. 

Pipe wear on right 
canines and lateral 
incisors. Two (possibly 
three) puncture 
wounds to right side 
of cranium.  

E8/F22 Male >35 
Antemortem loss of all molars. 
Dental wear from moderate to 
severe. LEHs present. 

 

Pipe wear on 
mandibular canines, 
LC1, and LI1. Greenstick 
fractures on C1 – C3 
and wear pattern and 
fracture on right side 
of mandible indicating 
possible death by 
hanging.  

E9 Male 20 – 24 

Poor dental health considering age. 
Low to moderate calculus 
throughout. Caries on maxillary 
dentition, one large. 

Extensive periostitis and porotic 
hyperostosis on leg bones. Healed 
porosity on frontal and both parietal 
bones. Both likely caused by continual 
generalised nutritional stress, 
malnutrition, metabolic disorders, or 
chronic disease loads. 

 

E11 ? ? 
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Table 3. Continued. 

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

E12/F26 Male 15 – 20 
Bad dental health for his age. Six 
carries. Calculus low to moderate. 

Diffuse bone loss on femur. Bone loss 
on left clavicle and myositis ossificans 
on humerus likely caused by ligament 
and muscular stress involving repetitive 
motion of arms. Periostitis on femora 
and tibiae. Active and healed porotic 
hyperostosis and cribra orbitalia lesions 
on cranium. 

 

E13 Male 30 – 40 
Moderate to severe tooth wear 
with low calculus. Five abscesses. 

Bone loss and cavitation on left radius 
with minimal remodelling. Porotic 
osteoblastic bone deposit on T1 and C6. 

 

E15 Male 35 – 50 

Dental wear moderate and 
consistent with age. Mostly 
moderate calculus, but also low and 
severe calculus present. Three 
absences. One carries.  

Porotic hyperostosis and osteomyelitis 
on the frontal, parietals, and occipitals. 
Cribra orbitalia present. Coalescing 
foramina on frontal. The latter two with 
lesions active at time of death and likely 
caused by severe anemia. 

Pipe wear pattern 
between right incisors 
and also right lateral 
incisor and canine.  

E16 Male 33 – 44 

One abscess. Low to severe calculus 
throughout dentition, most with 
low calculus. Several carious lesions 

on ⅔
rds

 of dentition. Antemortem 
tooth loss of five teeth with partial 
or full resorption.  

Leg bones had periostitis and sclerotic 
bone deposits likely caused by 
malnutrition or nutritional stress. 

Pipe wear pattern on 
RI2 and RC1. 
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Table 3. Continued. 

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

E18 Male 17 – 19 

Low to moderate dental wear 
higher than expected for age. Free 
of calculus and caries except for low 
level calculus on LI2. Two lingual 
abscesses. 

Periostitis and sclerotic deposits on 
femora and tibiae. Right eye orbit had 
active cribra orbitalia at time of death. 

 

F12 Female 40 – 49 

Severe dental wear consistent with 
her age. Antemortem tooth loss at 
12.5%. Remaining teeth have many 
carious lesions. Low calculus on 
anterior mandibular dentition and 
right premolars. Several abscesses. 

 
 

F18 Male 20 – 26 

Moderate dental wear, heavier 
than expected for his age. Fourteen 
carries on nine teeth. Low to 
moderate calculus on 14 of 32 
teeth. Many abscesses present. 

Periostitis on humerus, femora and 
tibiae. Fovea on proximal humerus at 
muscle attachment site indicating that 
muscle may have been pulled and 
healed improperly. Sclerotic reaction 
and reactive woven bone on lower legs. 
Schmorl's nodes on T8, T9, T13, and L3. 

 

F24 Male 
25 ± 2 
years 

Low to moderate dental wear 
(consistent with age). Fourteen 
carious lesions. Low calculus in six 
teeth. 

Sclerotic periostitis on femora.  

F25 Male 16 – 19 
 

Periostitis on femora and tibiae. 
Schmorl's nodes on T1 – L5 vertebrae. 
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Table 3. Continued. 

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

F28 Male >35 

Low to severe dental wear. Six 
carious lesions on five teeth. Low 
calculus on five teeth. Three 
abscesses.  

 
Pipe smoker's wear on 
LC1, LI2, and RI2.  

F29 Male 30 – 40 

Dental health fairly good 
considering age. Antemortem tooth 
loss of RI1 and RI2. Low to moderate 
wear. Eleven carious lesions on 
seven teeth. Low level calculus on 
half of the teeth. Brown staining on 
15 teeth. 

Focal bone loss on right calcaneus. 
Periostitis, bone loss and/or breakage 
on tibiae. Sclerotic reaction on right 
tibia. Schmorl's nodes on T6 to L4 
vertebrae.  

Pipe smoker's wear on 
two spots involving 
LC1, LI1, LP3, and LC1, 
and LI1, LI2, LC1, and 
LI2. Muscular 
insertions on humeri 
are robust indicating 
repeated stress and 
strain of arms. 

F30 ? 40 – 45 

Good dental health for individual's 
age. Moderate wear. Severe 
periodontal disease especially in 
maxillary dentition. Low levels of 
calculus. 

Focal bone loss and porotic 
hyperostosis on inner table of frontal. 
Active and healed porotic hyperostosis 
on outer table of frontal parietals and 
occipital. Bone loss on clavicles. 
Sclerotic and woven bone on tibiae and 
fibulae (likely made walking difficult). 
Moderate expressions of Schmorl's 
nodes on T3, L1, T8, L4, vertebra. 

Pipe wear on RI1. 
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Table 3. Continued. 

 

Individual 
(55L28…) 

Sex Age Dental Pathologies Bone Pathologies Other Information 

F32 ? 
12 ± 3 
years  

Woven and pitted bone at muscle 
insertion sites on humeri indicating 
heavy strain and stress of arm muscles. 

Congenital or genetic 
defect of incomplete 
fusion of thoracic 
vertebrae, possibly 
related to death. 

F33 Male 33 – 42 
Moderate dental wear. One lesion 
and low calculus. Suspected 
abscesses. 

Schmorl’s nodes on L3 vertebra.   

F34 Male 18 – 25 
  

 

H3 Male 18 – 25 

Low dental wear. No carious 
lesions. Low calculus. Periodontal 
disease in all dentition and 
prominent in maxillary teeth. 

Odd expression of porotic hyperostosis 
on frontal and left parietal possibly 
caused by scurvy or similar condition. 
Bone loss on right temporal. Roof of 
maxilla is heavily pitted. 

Blunt force trauma to 
right parietal causing 
death. 

Unp.


 ? ?    

Dis.


 ? ?    


Individual could not be sampled.


Unprovenienced remains within 55L28A. Remains do not belong to adjacent individuals. MNI of 1. 


Disassociated remains within 55L28A. Remains do not belong to adjacent individuals. MNI of 1.
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Table 4. Known/accepted and measured carbon, nitrogen, oxygen, and strontium isotopic data of standards used in analysis.  

 

 
13C ‰ VPDB 

15N ‰ AIR 
18O ‰ VPDB 87Sr/86Sr 

Standard ID Known Measured Known Measured Known Measured Known Measured 

MUN-CO-2 (CaCO3) 
-40.11 ± 

0.15 
-40.11 ± 

0.07 (n=35) 
      

D-Fructose

 

-10.53 ± 
0.11 

-10.53 ± 
0.12 (n=7) 

      

IAEA-CH-6 (sucrose) 
-10.45 ± 

0.13 
2
 

-10.45 ± 
0.04 (n=28) 

      

B2155 (protein)

 

-27.03 ± 
0.13 

-27.22 ± 
0.12 (n=25) 

+5.97 ± 
0.08 

+5.85 ± 
0.08 (n=25) 

    

IAEA-N-1 ((NH4)2SO4)   
+0.43 ± 

0.07 1 

+0.47 ± 
0.10 (n=33) 

    

IAEA-N-2 ((NH4)2SO4)   
+20.32 ± 

0.09 
1
 

+20.24 ± 
0.20 (n=35) 

    

CBM (CaCO3)

 

+0.75 ±  
0.06 

+0.68 ± 
0.05 (n=11) 

  -8.58 
-8.60 ± 0.11 

(n=11) 
  

NBS-19 (CaCO3)

 +1.95


 

+1.95 ± 
0.03 (n=11) 

  -2.20

 

-2.20 ± 0.05 
(n=11) 

  

MUN-CO-1 (CaCO3)

 

-21.02 ± 
0.10 

-21.02 ± 
0.02 (n=11) 

  
-13.40 ± 

0.12 
-13.40 ± 

0.04 (n=11) 
  

SRM987       0.71024 
0.710214 ± 
0.000148 

(n=12) 


Used in collagen isotopic analysis. 


Used in carbonate isotopic analysis. 


 Exact, defines VPDB scale. 

1 
Coplen et.al. 2002: USGS WRIR 01-4222. 

2
 Coplen et.al. 2006: New guidelines for 

13
C measurements Analytical Chemistry.


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Table 5. Faunal bone collagen δ
13
C and δ

15
N values, % collagen yield and C/N atomic ratios. Rejected samples are positively 

indicated with a star (*). Any letters (a, b, c, etc.) at the end of proveniences were added by the author (for the purposes of this 

thesis only) to differentiate between different specimens from the same provenience. 

 

Provenience Animal Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR
C/N atomic 

ratio 
Rejected 
Samples 

3L20E5-7 Cow L radial carpal 1295 15.17 -20.77 5.24 3.29  

4L50K12-8 Cow R rib 1296 16.97 -16.93 5.23 3.21  

4L50L16-4 Cow unidentified 1297 10.75 -22.50 4.90 3.28  

4L50K16-4 Cow unidentified 1298 9.31 -16.20 7.44 3.29  

4L58K14-9 Cow R rib 
1299a 

23.85 
-21.90 5.06 3.20  

1299b -21.97 4.91 3.19  

55L28E16-4 Pig atlas 501 10.89 -18.70 7.17 3.34  

4L52L12-12 Pig R maxilla 1300 12.30 -14.56 11.01 3.29  

4L50M14-7 Pig L mandible 1301 20.07 -19.96 7.29 3.25  

4L58K14-7 Pig R maxilla 1302 18.24 -21.47 9.46 3.24  

4L50N15-10 Pig R maxilla 1303 19.14 -21.22 5.02 3.24  

55L28E5-3 Sheep metatarsal 493 0 - - - * 

4L58K14-8 Sheep R humerus 1304 18.05 -20.70 4.73 3.22  

3L19D5-3 Sheep L radius 1305 13.67 -21.15 4.40 3.24  

4L58K14-6 Sheep R maxilla 1306 16.06 -21.46 7.39 3.28  

4L22C7-1 Sheep L mandible 1307 14.92 -21.05 6.24 3.29  

3L22N1-6 Goat R mandible 1308 7.69 -21.12 7.25 3.44  

3L17Y3-3 Goat R mandible 1309 6.60 -20.65 5.68 3.39  

3L21E3-3 Cat tibia 1315 18.94 -17.33 10.83 3.27  
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Table 5. Continued. 

 

Provenience Animal Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR
C/N Atomic 

Ratio 
Rejected 
Samples 

1L34D5-39 Cat mandible 1316 24.00 -16.38 12.65 3.22  

55L28F6-13 Chicken radius 497 13.70 -18.13 9.73 3.31  

55L28G7-1 Chicken scapula 506 20.89 -14.97 14.14 3.33  

55L28G7-3 Chicken tibiotarsus 508 20.39 -14.16 13.40 3.31  

55L28E10-7 Chicken coracoid 510 20.86 -17.14 8.28 3.29  

55L28E10-4 Chicken humerus 512 25.68 -17.79 14.99 3.23  

55L28E19-5 Chicken coracoid 515 23.59 -13.95 13.83 3.30  

55L28F4-3 Chicken tibiotarsus 522 11.93 -23.51 0.02 3.38  

55L28E20-51a Chicken tibiotarsus 526 20.88 -21.51 13.86 3.10  

55L28E10-11 Chicken tibiotarsus 527 8.39 -23.51 15.22 4.09 * 

55L28E20-51b Chicken tibiotarsus 538 14.30 -12.66 14.82 3.25  

55L38G7-5 Turkey tarsometatarsus 489 14.40 -18.88 14.00 3.39  

55L28E10-8 Turkey femur 503 9.38 -16.39 13.26 3.39  

55L28G7-6 Turkey radius 507 18.57 -16.83 5.88 3.19  

4L50M14-5 Goose L carpometacarpus 1310 21.69 -17.29 13.98 3.25  

3L6N13-1 Goose sternum 1311 22.97 -15.80 6.85 3.28  

4L22C7-2 Duck L ulna 1312 20.53 -19.26 7.11 3.23  

4L50M14-6 Eider sternum 1313 20.55 -16.45 12.41 3.23  

4L51N12-10 Spruce Grouse sternum 1314 20.25 -18.04 9.57 3.25  

55L28F16-3 Avian radius 490 0 - - - * 

55L28E4-17 Avian carpometacarpus 504 13.37 -16.30 15.10 3.37  
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Table 5. Continued. 

 

Provenience Animal Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR
C/N Atomic 

Ratio 
Rejected 
Samples 

55L28F13-1a Dove/Robin L pelvis 531 7.08 -16.03 13.73 3.24  

55L28E4-20a Dove/Robin R pelvis 532 10.50 -16.43 12.30 3.24  

55L28F13-1b Dove/Robin R pelvis 539 6.63 -15.87 14.57 3.32  

55L28E4-20b Dove/Robin L pelvis 540 6.29 -16.80 12.52 3.35  

55L28E7-3 Fish vertebra 514 5.72 -13.98 15.31 3.36  

55L28E10-12a Fish vertebra 535 1.81 -15.72 16.00 3.68 * 

55L28E10-12b Fish vertebra 541 6.78 -14.70 15.38 3.22  

55L28E10-12c Fish vertebra 542 6.83 -15.00 14.74 3.22  

55L28E10-12d Fish unidentified 543 9.50 -13.94 16.20 3.23  

55L28E10-12e Fish unidentified 544 12.17 -14.24 14.39 3.15  

55L28E10-12f Fish unidentified 545 5.31 -14.58 14.80 3.26  

55L28F6-9 Rat humerus 495 7.40 -15.99 14.02 3.44  

55L28F6-11 Rat ulna 496 17.14 -15.84 13.03 3.30  

55L28E4-21 Rat humerus 500 8.59 -16.64 12.61 3.44  

55L28E4-16a Rat L mandible 509 6.16 -17.01 12.27 3.47  

55L28F6-12 Rat femur 511 5.94 -16.16 13.72 3.38  

55L28E4-23a Rat L tibia 517 4.89 -17.58 10.69 3.41  

55L28E4-19 Rat femur 524 7.54 -14.17 12.19 3.19  

55L28E4-16b Rat R mandible 536 13.64 -16.06 12.55 3.19  

55L28E4-23b Rat L tibia 537 3.84 -16.40 13.57 3.33  

17L45A4-12 Rat skull  1317 19.60 -20.37 7.27 3.20  
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Table 5. Continued. 

 

Provenience Animal Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR
C/N Atomic 

Ratio 
Rejected 
Samples 

55L28E4-22 Mouse ulna 499 18.11 -14.64 15.64 3.32  

55L28E10-5 Mouse femur 502 2.97 -16.57 13.81 3.64 * 

55L28F13-3 Mouse  scapula 518 7.23 -16.49 13.63 3.36  

55L28E4-18 Mouse ulna 528 14.88 -16.47 12.08 3.24  

55L28F13-2 Mouse atlas 533 7.48 -16.34 14.06 3.34  

55L28G7-2 Hare humerus 519 8.72 -14.17 13.79 3.37  

55L28E10-9 Hare vertebra 520 31.08 -15.93 13.49 3.25  

55L28E10-6 Hare pelvis 521 15.83 -21.51 6.64 3.32  

55L28E24-4 Hare vertebra 525 5.28 -15.93 11.92 3.71 * 

55L28F6-10 Hare calcaneus 534 7.91 -14.70 15.48 3.23  

55L28F4-2 Hare scapula 546 13.33 -21.92 5.09 3.37  

4L55X99-2 Hare mandible 1318 17.99 -23.87 1.27 3.27  

4L55X99-1 Hare mandible 1319 8.50 -23.06 1.33 3.30  

3L17H1-1 Hare R mandible 1320 8.03 -24.14 0.95 3.31  

55L28E23-25 Red squirrel tibia 492 10.36 -15.32 15.60 3.39  

55L28E19-3 Red squirrel ulna 494 15.65 -16.26 9.65 3.30  

55L28E19-4 Red squirrel ulna 505 16.17 -15.17 16.13 3.37  

55L28F12-3 Red squirrel radius 513 26.85 -13.93 9.48 3.23  

55L28E4-15 Red squirrel tibia 523 29.37 -16.49 9.02 3.26  

55L28E10-10 Red squirrel tibia 
529a 

10.98 
-18.33 7.64 3.27  

529b -18.38 7.59 3.28  
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Table 5. Continued. 

 

Provenience Animal Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR
C/N Atomic 

Ratio 
Rejected 
Samples 

4L20F11-3 Red Fox R humerus 1321 17.16 -14.37 14.82 3.23  

3L6N10-9 Red Fox R mandible 1322 9.31 -18.02 12.16 3.57  

4L51M11-9 Lynx R femur 1323 10.19 -17.09 12.00 3.28  

55L28G7-4 Deer trapezoid magnum 491 11.49 -21.82 5.69 3.38  

55L28F6-8 Deer ulna 498 8.24 -16.58 6.11 3.40  

55L28E9-3 Deer metatarsal 516 11.22 -20.15 6.40 3.25  

55L28E9-4 Deer metatarsal 530 3.61 -19.13 6.06 3.29  

4L51J12-3 Deer L mandible 1324 9.39 -20.67 5.48 3.30  

4L19A5-7 Deer L mandible 1325 8.80 -20.94 4.98 3.29  

4L20A2-14 Moose phalanx 1326 7.09 -21.99 0.77 3.36  

3L33D3-55 Caribou L radius distal end 1327 6.97 -20.37 2.80 3.30  
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Table 6. Ste. Marie individuals’ bone collagen δ
13
C and δ

15
N values, % collagen yield and C/N atomic ratios. Rejected samples 

are positively indicated with a star (*). 

 

Individual 
(55L28…) 

Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR 
C/N Atomic 

Ratio 
Rejected 
Samples 

A12 bone fragment 1139 2.92 -16.65 9.69 3.82 * 

A13/F19 
rib fragment, middle 1061 10.37 -15.78 9.44 3.14  

rib fragment, middle 1062 30.00 -16.11 9.73 3.18  

A14 
humerus fragment 1063 3.52 -18.38 8.17 4.11 * 

rib fragment 1064 7.49 -17.43 9.36 3.22  

A15/F23 
rib fragment 1065 4.48 -17.32 13.61 3.29  

R. humerus, mid-shaft, anterior 1066 14.68 -16.99 13.72 3.26  

A16 
R. femur, mid-shaft, anterior 1067 16.47 -14.28 10.84 3.20  

R. femur, mid-shaft, anterior 1068 15.50 -14.00 10.71 3.28  

A17 
R. femur, mid-shaft 1069 18.44 -13.56 8.97 3.21  

L femur, mid-shaft, anterior 1070 22.18 -13.52 8.93 3.15  

A18 
clavicle fragment 1071 0 - - - * 

clavicle fragment 1072 2.28 -18.50 7.91 3.82 * 

A20/F20 
R fibula, mid-shaft, posterior 1073 8.91 -20.71 9.52 3.07  

R fibula, mid-shaft, posterior 1074 19.30 -20.79 9.80 3.10  

C7 
unidentified bone fragment 1075 8.57 -17.35 12.33 3.18  

unidentified bone fragment 1076 10.96 -17.55 12.21 3.16  

D3 
unidentified bone fragment 1079 10.22 -19.62 9.55 3.14  

unidentified bone fragment 1080 5.58 -16.79 7.89 3.00  
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Table 6. Continued. 

 

Individual 
(55L28…) 

Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR 
C/N Atomic 

Ratio 
Rejected 
Samples 

D4 
unidentified bone fragment 1077 7.28 -15.12 8.84 3.25  

unidentified bone fragment 1078 17.14 -16.24 8.43 3.44  

D5 

R fibula, mid-shaft, anterior 
1081a 

11.67 
-15.81 5.50 2.97  

1081b -15.91 9.47 3.35  

R fibula, mid-shaft, anterior 
1082a 

6.54 
-15.43 8.56 3.14  

1082b -15.21 9.41 3.29  

D6 
rib fragment, middle posterior 1083 8.33 -19.38 11.28 3.08  

rib fragment, middle posterior 1084 7.41 -19.50 11.01 3.10  

D7A/F8 
rib fragment, middle posterior 1085 6.88 -18.60 8.17 3.12  

rib fragment, middle posterior 1086 4.39 -18.67 7.89 3.07  

D7B 
rib fragment, middle anterior 1288 10.37 -19.66 9.32 3.29  

rib fragment, middle anterior 1088 14.58 -19.57 8.58 3.08  

D8 
R femur, mid-shaft, anterior 1089 20.43 -17.38 10.77 3.17  

R femur, mid-shaft, anterior 1090 14.23 -17.55 11.27 3.18  

D10 
R fibula, mid-shaft, anterior 1091 11.62 -16.42 11.01 3.17  

R fibula, mid-shaft, anterior 1092 7.87 -16.74 10.85 3.21  

D11/F11 
rib fragment, middle posterior 1093 13.01 -19.79 8.15 3.20  

rib fragment, middle posterior 1094 4.55 -19.81 7.66 3.16  

D12/F9 
L humerus, mid-shaft, posterior 1095 2.71 -15.93 8.89 3.17  

L humerus, mid-shaft, posterior 1096 7.17 -16.12 9.16 3.21  
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Table 6. Continued. 

 

Individual 
(55L28…) 

Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR 
C/N Atomic 

Ratio 
Rejected 
Samples 

D14 
ulna shaft fragment, anterior 1097 4.07 -18.05 9.94 3.18  

rib fragment 1098 8.52 -14.29 10.83 3.15  

E6 
rib fragment, middle posterior 1099 5.20 -18.22 11.50 3.13  

rib fragment, middle posterior 1100 9.43 -18.73 11.98 3.15  

E7 
rib fragment, middle posterior 1101 12.45 -16.57 10.43 3.05  

rib fragment, middle posterior 1102 13.75 -17.04 10.22 3.05  

E8/F22 
rib fragment, middle posterior 1103 8.88 -17.97 8.31 3.11  

rib fragment, middle posterior 1104 7.91 -18.11 8.69 3.14  

E9 
L humerus mid-shaft, anterior 1109 13.82 -16.10 9.33 3.07  

L humerus mid-shaft, anterior 1110 4.48 -15.96 9.99 3.15  

E12/F26 

1st half of rib fragment 
1105a 

10.08 
-17.72 6.94 3.13  

1105b -17.63 8.78 3.33  

2nd half of rib fragment 
1289a 

9.16 
-17.65 8.74 3.33  

1289b -17.62 8.64 3.29  

E13 

rib fragment, middle posterior 
1111a 

14.34 
-12.14 12.95 3.22  

1111b -12.32 13.72 3.26  

rib fragment, middle posterior 
1112a 

8.85 
-12.16 12.84 3.16  

1112b -12.47 13.22 3.23  

E15 
1st half of rib fragment 1291 33.85 -15.42 8.99 3.22  

2nd half of rib fragment 1114 19.03 -15.66 8.42 3.15  

 



185 
 

Table 6. Continued. 

 

Individual 
(55L28…) 

Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR 
C/N Atomic 

Ratio 
Rejected 
Samples 

E16 

rib fragment, middle posterior 
1107a 

7.05 
-18.96 10.25 3.13  

1107b -19.19 11.26 3.27  

rib fragment, middle posterior 
1292a 

9.74 
-18.38 11.38 3.29  

1292b -18.39 11.13 3.28  

E18 
rib fragment, middle posterior 1115 5.45 -16.62 7.88 3.28  

rib fragment, middle posterior 1116 5.17 -16.44 7.78 3.37  

F12 
rib fragment, middle posterior 1117 8.43 -19.59 10.10 3.26  

rib fragment, middle posterior 1118 4.82 -19.26 9.67 3.27  

F18 
rib fragment, middle posterior 1119 7.48 -15.47 9.80 3.32  

rib fragment, middle posterior 1120 3.13 -15.68 9.16 3.28  

F24 
1st half of rib fragment 1121 18.97 -15.59 8.19 3.16  

2nd half of rib fragment 1122 11.84 -15.93 8.05 3.20  

F25 

R humerus, mid-shaft, anterior 
1123a 

17.12 
-13.08 8.68 3.20  

1123b -13.02 8.49 3.21  

R humerus, mid-shaft, anterior 
1124a 

21.27 
-13.21 8.55 3.18  

1124b -13.11 8.60 3.21  

F28 

1st half of R tibia fragment 
1125a 

10.68 
-16.72 7.78 3.35  

1125b -17.00 8.76 3.38  

2nd half of R tibia fragment 
1126a 

7.57 
-16.10 9.32 3.32  

1126b -16.15 9.75 3.32  
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Table 6. Continued. 

 

Individual 
(55L28…) 

Element MARC Yield (%) 
13C ‰ VPDB 

15N ‰ AIR 
C/N Atomic 

Ratio 
Rejected 
Samples 

F29 
rib fragment, middle posterior 1127 11.74 -14.88 7.80 3.26  

rib fragment, middle posterior 1128 2.53 -15.03 7.45 3.20  

F30 

rib fragment, middle posterior 
1290a 

11.64 
-16.69 15.11 3.30  

1290b -16.96 14.86 3.29  

rib fragment, middle posterior 
1130a 

6.73 
-16.60 14.10 3.21  

1130b -16.63 14.88 3.25  

F32 
rib fragment, end 1131 8.00 -14.08 8.51 3.26  

rib fragment, end 1132 5.13 -14.20 7.94 3.25  

F33 
1st half of rib fragment 1133 6.80 -19.48 8.99 3.29  

2nd half of rib fragment 1134 4.76 -19.23 8.65 3.36  

F34 
rib fragment 1135 10.76 -16.25 8.14 3.21  

rib fragment, end 1136 13.12 -16.19 8.40 3.22  

H3 
1st half of rib fragment 1293 10.37 -16.39 9.85 3.35  

2nd half of rib fragment 1294 13.30 -16.53 9.82 3.42  

 

 



187 
 

Table 7. Enamel and dentine carbonate 
13

C and 
18

O results of six faunal specimens.  

 

Provenience Animal 
Enamel 
MARC 

Dentine 
MARC 

Enamel 


13C 

Dentine 


13C 


13CE-D 

Enamel 


18O 

Dentine 


18O 


18OE-D 

4L58K14-10 Cow 1333 1736 -12.11 -12.33 0.22 -7.71 -7.32 -0.39 

3L17Y3-3 Goat 1342 1737 -9.62 -11.89 2.27 -9.13 -5.82 -3.31 

3L22N1-5 Horse 1345 1738 -8.05 -8.84 0.79 -8.74 -7.85 -0.89 

3L6N10-9 Fox 1356 1739 -11.24 -11.63 0.39 -6.15 -5.85 -0.30 

3L22N1-4 Deer 1360 1740 -12.68 -13.42 0.74 -6.62 -6.60 -0.02 

4L20A2-11 Moose 1363 1741 -11.06 -11.95 0.89 -7.04 -6.90 -0.14 

  

 

 

 

Table 8. Enamel and dentine 
87

Sr/
86

Sr results of six faunal specimens.  

 

Provenience Animal 
Enamel 
MARC 

Dentine 
MARC 

Enamel 
87Sr/86Sr 

Dentine 
87Sr/86Sr 

87Sr/86SrE-D 

4L50K16-3 Cow 1365 1606 0.710683 0.710270 0.000413 

4L52L12-12 Pig 1370 1607 0.709526 0.709655 -0.000130 

3L22N1-7 Horse 1382 1608 0.710487 0.710436 0.000051 

3L19C2-6 Beaver 1391 1609 0.709938 0.710257 -0.000319 

3L19B4-3 Lynx 1393 1610 0.710061 0.710484 -0.000423 

3L22N1-4 Deer 1396 1611 0.711345 0.710880 0.000465 
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Table 9. Enamel and dentine carbonate 
13

C and 
18

O results of 10 individuals.  

 

Individual 
(55L28…) 

Enamel 
MARC 

Dentine 
MARC 

Enamel 


13C 

Dentine 


13C 


13CE-D 

Enamel 


18O 

Dentine 


18O 


18OE-D 

A3 1424 1685 -9.29 -11.46 2.17 -5.40 -5.26 -0.14 

C7 1430 1686 -14.11 -13.88 -0.23 -6.23 -5.69 -0.54 

D13 1436 1693 -6.24 -7.18 0.94 -4.82 -5.80 0.98 

E8/F22 1439 1696 -11.30 -11.77 0.47 -5.27 -5.45 0.18 

E13 1443 1698 -3.20 -6.54 3.34 -5.06 -5.41 0.35 

E18 1445 1702 -4.79 -7.37 2.58 -4.13 -4.65 0.52 

F18 1447 1704 -6.47 -9.50 3.03 -4.90 -4.87 -0.03 

F24 1448 1705 -7.75 -10.66 2.91 -5.02 -5.84 0.82 

F25 1449 1706 -5.41 -8.78 3.37 -6.26 -6.18 -0.08 

F28 1450 1707 -11.02 -12.32 1.30 -3.88 -5.07 1.19 

 

 

 

 

Table 10. Enamel and dentine 
87

Sr/
86

Sr results of 10 individuals.  

 

Individual 
(55L28…) 

Enamel 
MARC 

Dentine 
MARC 

Enamel 
87Sr/86Sr 

Dentine 
87Sr/86Sr 

87Sr/86SrE-D 

D12/F9 1663 1725 0.710335 0.710261 -0.000074 

E7 1666 1726 0.709653 0.709849 0.000196 

E8/F22 1667 1727 0.712269 0.711644 -0.000625 

E13 1670 1728 0.709646 0.709649 0.000003 

E18 1673 1729 0.710981 0.710410 -0.000571 

F18 1675 1730 0.711469 0.711205 -0.000264 

F25 1677 1731 0.710842 0.710222 -0.000620 

F32 1681 1732 0.712567 0.711834 -0.000733 

F34 1683 1733 0.710868 0.710478 -0.000391 

H3 1684 1734 0.709741 0.709826 0.000085 
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Table 11. Ste. Marie individuals’ intra-bone element carbon and nitrogen isotopic data.  

 

Individual 
(55L28…) 

Element MARC 
13C 

15N 
13C 

15N 

A13/F19 
rib fragment, middle 1061 -15.78 9.44 

0.33 0.29 
rib fragment, middle 1062 -16.11 9.73 

A16 
R. femur, mid-shaft, anterior 1067 -14.28 10.84 

0.28 0.13 
R. femur, mid-shaft, anterior 1068 -14.00 10.71 

A17 
R. femur, mid-shaft 1069 -13.56 8.97 

0.04 0.04 
L femur, mid-shaft, anterior 1070 -13.52 8.93 

A20/F20 
R fibula, mid-shaft, posterior 1073 -20.71 9.52 

0.08 0.28 
R fibula, mid-shaft, posterior 1074 -20.79 9.80 

D5 
R fibula, mid-shaft, anterior 1081 -15.81 5.50 

0.38 3.06 
R fibula, mid-shaft, anterior 1082 -15.43 8.56 

D6 
rib fragment, middle posterior 1083 -19.38 11.28 

0.12 0.27 
rib fragment, middle posterior 1084 -19.50 11.01 

D7A/F8 
rib fragment, middle posterior 1085 -18.60 8.17 

0.07 0.28 
rib fragment, middle posterior 1086 -18.67 7.89 

D7B 
rib fragment, middle posterior 1288 -19.66 9.32 

0.09 0.74 
rib fragment, middle posterior 1088 -19.57 8.58 

D8 
R femur, mid-shaft, anterior 1089 -17.38 10.77 

0.17 0.50 
R femur, mid-shaft, anterior 1090 -17.55 11.27 

D10 
R fibula, mid-shaft, anterior 1091 -16.42 11.01 

0.32 0.16 
R fibula, mid-shaft, anterior 1092 -16.74 10.85 

D11/F11 
rib fragment, middle posterior 1093 -19.79 8.15 

0.02 0.49 
rib fragment, middle posterior 1094 -19.81 7.66 

D12/F9 
L humerus, mid-shaft, posterior 1095 -15.93 8.89 

0.19 0.27 
L humerus, mid-shaft, posterior 1096 -16.12 9.16 

E6 
rib fragment, middle posterior 1099 -18.22 11.50 

0.51 0.48 
rib fragment, middle posterior 1100 -18.73 11.98 

E7 
rib fragment, middle posterior 1101 -16.57 10.43 

0.47 0.21 
rib fragment, middle posterior 1102 -17.04 10.22 

E8/F22 
rib fragment, middle posterior 1103 -17.97 8.31 

0.14 0.38 
rib fragment, middle posterior 1104 -18.11 8.69 

E9 
L humerus mid-shaft, anterior 1109 -16.10 9.33 

0.14 0.66 
L humerus mid-shaft, anterior 1110 -15.96 9.99 
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Table 11. Continued. 

 

Individual 
(55L28…) 

Element MARC 
13C 

15N 
13C 

15N 

E12/F26 
1st half of rib fragment 1105 -17.72 6.94 

0.07 1.80 
2nd half of rib fragment 1289 -17.65 8.74 

E13 
rib fragment, middle posterior 1111 -12.14 12.95 

0.02 0.11 
rib fragment, middle posterior 1112 -12.16 12.84 

E15 
1st half of rib fragment 1291 -15.42 8.99 

0.24 0.57 
2nd half of rib fragment 1114 -15.66 8.42 

E16 
rib fragment, middle posterior 1107 -18.96 10.25 

0.58 1.13 
rib fragment, middle posterior 1292 -18.38 11.38 

E18 
rib fragment, middle posterior 1115 -16.62 7.88 

0.18 0.10 
rib fragment, middle posterior 1116 -16.44 7.78 

F12 
rib fragment, middle posterior 1117 -19.59 10.10 

0.33 0.43 
rib fragment, middle posterior 1118 -19.26 9.67 

F18 
rib fragment, middle posterior 1119 -15.47 9.80 

0.21 0.64 
rib fragment, middle posterior 1120 -15.68 9.16 

F24 
1st half of rib fragment 1121 -15.59 8.19 

0.34 0.14 
2nd half of rib fragment 1122 -15.93 8.05 

F25 
R humerus, mid-shaft, anterior 1123 -13.08 8.68 

0.13 0.13 
R humerus, mid-shaft, anterior 1124 -13.21 8.55 

F28 
1st half of R tibia fragment 1125 -16.72 7.78 

0.62 1.54 
2nd half of R tibia fragment 1126 -16.10 9.32 

F29 
rib fragment, middle posterior 1127 -14.88 7.80 

0.15 0.35 
rib fragment, middle posterior 1128 -15.03 7.45 

F30 
rib fragment, middle posterior 1290 -16.69 15.11 

0.09 1.01 
rib fragment, middle posterior 1130 -16.60 14.10 

F32 
rib fragment, end 1131 -14.08 8.51 

0.12 0.57 
rib fragment, end 1132 -14.20 7.94 

F33 
1st half of rib fragment 1133 -19.48 8.99 

0.25 0.34 
2nd half of rib fragment 1134 -19.23 8.65 

F34 
rib fragment 1135 -16.25 8.14 

0.06 0.26 
rib fragment, end 1136 -16.19 8.40 

H3 
1st half of rib fragment 1293 -16.39 9.85 

0.14 0.03 
2nd half of rib fragment 1294 -16.53 9.82 
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Table 12. Isotopic values from the original analysis (Table 11) and reanalysis of samples with large 
15

N values and control 

samples. 

 

Individual (55L28…) MARC 
13C 

15N 
13C 

15N MARC 
13C 

15N 
13C 

15N 

D5 
1081a -15.81 5.50 

0.38 3.06 
1081b -15.91 9.47 

0.70 0.06 
1082a -15.43 8.56 1082b -15.21 9.41 

E12/F26 
1105a -17.72 6.94 

0.07 1.80 
1105b -17.63 8.78 

0.01 0.14 
1289a -17.65 8.74 1289b -17.62 8.64 

E16 
1107a -18.96 10.25 

0.58 1.13 
1107b -19.19 11.26 

0.80 0.13 
1292a -18.38 11.38 1292b -18.39 11.13 

F28 
1125a -16.72 7.78 

0.62 1.54 
1125b -17.00 8.76 

0.85 0.99 
1126a -16.10 9.32 1126b -16.15 9.75 

F30 
1290a -16.69 15.11 

0.09 1.01 
1290b -16.96 14.86 

0.33 0.02 
1130a -16.60 14.10 1130b -16.63 14.88 

E13 
1111a -12.14 12.95 

0.02 0.11 
1111b -12.32 13.72 

0.15 0.50 
1112a -12.16 12.84 1112b -12.47 13.22 

F25 
1123a -13.08 8.68 

0.13 0.13 
1123b -13.02 8.49 

0.09 0.11 
1124a -13.21 8.55 1124b -13.11 8.60 

Cow 1299a -21.90 5.06 - - 1299b -21.97 4.91 0.07 0.15 




13
C and 

15
N values not derived from the absolute differences between sample pairs but from the absolute differences between the 

isotopic values of the original analysis and the reanalysis.  



192 
 

Table 13. Peak amplitude (mV) and EA-IRMS sample weight (mg) of the Ste. Marie 

individuals’ samples. 

 

Individual 
(55L28…) 

MARC 
EA-IRMS Sample 

Weight (mg) 
Carbon Peak 

Amplitude (mV) 
Nitrogen Peak 

Amplitude (mV) 

A12 1139 1.048 3473 3135 

A13/F19 
1061 1.055 4417 4712 

1062 1.095 4462 4701 

A14 
1063 1.060 3398 2758 

1064 1.041 4442 4659 

A15/F23 
1065 1.072 4439 4553 

1066 1.098 4594 4930 

A16 
1067 1.097 4958 5246 

1068 1.049 4547 4847 

A17 
1069 1.029 4472 4867 

1070 1.075 4503 4986 

A18 1072 1.027 3357 2936 

A20/F20 
1073 1.049 4057 4445 

1074 1.086 4211 4543 

C7 
1075 1.021 4396 4678 

1076 1.047 4430 4712 

D3 
1079 1.065 4367 4686 

1080 1.076 2935 3236 

D4 
1077 1.062 4402 4548 

1078 1.077 4296 4210 

D5 

1081a 1.080 2413 2666 

1081b 0.975 1647 1849 

1082a 1.098 4037 4344 

1082b 1.003 2738 3225 

D6 
1083 1.101 4362 4768 

1084 1.039 4114 4458 

D7A/F8 
1085 1.059 4246 4580 

1086 1.051 4057 4438 

D7B 
1288 1.078 4433 4616 

1088 1.052 4296 4666 
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Table 13. Continued. 

 

Individual 
(55L28…) 

MARC 
EA-IRMS Sample 

Weight (mg) 
Carbon Peak 

Amplitude (mV) 
Nitrogen Peak 

Amplitude (mV) 

D8 
1089 1.080 4771 5271 

1090 1.055 4640 5121 

D10 
1091 1.075 4030 4263 

1092 1.039 3823 4001 

D11/F11 
1093 1.021 3963 4137 

1094 1.002 3736 3950 

D12/F9 
1095 1.051 3686 3882 

1096 1.031 3447 3582 

D14 
1097 1.098 3966 4192 

1098 1.080 4676 5027 

E6 
1099 1.074 3972 4232 

1100 1.094 4066 4314 

E7 
1101 1.031 4143 4535 

1102 1.079 4306 4739 

E8/F22 
1103 1.089 4402 4775 

1104 1.080 4536 4864 

E9 
1109 1.055 4109 4511 

1110 1.075 4394 4689 

E12/F26 

1105a 1.070 3908 4195 

1105b 1.069 2885 3384 

1289a 1.017 3601 3675 

1289b 0.940 2706 3189 

E13 

1111a 1.048 4002 4261 

1111b 1.052 3108 3745 

1112a 1.055 4331 4728 

1112b 0.992 3174 3868 

E15 
1291 1.044 4409 4750 

1114 1.044 4391 4823 

E16 

1107a 1.047 4126 4425 

1107b 1.029 3071 3686 

1292a 1.046 4212 4390 

1292b 0.970 3037 3623 
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Table 13. Continued. 

 

Individual 
(55L28…) 

MARC 
EA-IRMS Sample 

Weight (mg) 
Carbon Peak 

Amplitude (mV) 
Nitrogen Peak 

Amplitude (mV) 

E18 
1115 1.061 4447 4717 

1116 1.015 4183 4315 

F12 
1117 1.057 4147 4425 

1118 1.081 4490 4784 

F18 
1119 1.092 3954 4142 

1120 1.060 4462 4740 

F24 
1121 1.032 4388 4839 

1122 1.039 4476 4867 

F25 

1123a 1.069 4782 5238 

1123b 1.055 3631 4514 

1124a 1.056 4544 4952 

1124b 0.948 3188 3914 

F28 

1125a 1.063 4381 4559 

1125b 0.980 3113 3614 

1126a 1.048 4149 4351 

1126b 0.993 3062 3611 

F29 
1127 1.006 3764 3997 

1128 1.061 3780 4081 

F30 

1290a 1.036 4029 4168 

1290b 0.999 3193 3823 

1130a 1.034 4380 4749 

1130b 1.034 3301 4004 

F32 
1131 1.040 4309 4580 

1132 1.079 4484 4833 

F33 
1133 1.026 3946 4156 

1134 1.012 4001 4135 

F34 
1135 1.096 4636 5025 

1136 1.097 4632 5046 

H3 
1293 1.068 3871 3956 

1294 1.091 3945 3982 
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Table 14. Bone collagen 
13

C and 
15

N values of fauna (n=85) with accepted collagen 

yields and C/N atomic ratios (Table 5). For those specimens analysed from multiple bone 

samples, the isotopic values presented are averaged from all accepted samples.  

 

Provenience Animal Element MARC 
13C ‰ VPDB 

15N ‰ AIR 

3L20E5-7 Cow L radial carpal 1295 -20.77 5.24 

4L50K12-8 Cow R rib 1296 -16.93 5.23 

4L50L16-4 Cow unidentified 1297 -22.50 4.90 

4L50K16-4 Cow unidentified 1298 -16.20 7.44 

4L58K14-9 Cow R rib 1299 -21.94 4.99 

55L28E16-4 Pig atlas 501 -18.70 7.17 

4L52L12-12 Pig R maxilla 1300 -14.56 11.01 

4L50M14-7 Pig L mandible 1301 -19.96 7.29 

4L58K14-7 Pig R maxilla 1302 -21.47 9.46 

4L50N15-10 Pig R maxilla 1303 -21.22 5.02 

4L58K14-8 Sheep R humerus 1304 -20.70 4.73 

3L19D5-3 Sheep L radius 1305 -21.15 4.40 

4L58K14-6 Sheep R maxilla 1306 -21.46 7.39 

4L22C7-1 Sheep L mandible 1307 -21.05 6.24 

3L22N1-6 Goat R mandible 1308 -21.12 7.25 

3L17Y3-3 Goat R mandible 1309 -20.65 5.68 

3L21E3-3 Cat tibia 1315 -17.33 10.83 

1L34D5-39 Cat mandible 1316 -16.38 12.65 

55L28F6-13 Chicken radius 497 -18.13 9.73 

55L28G7-1 Chicken scapula 506 -14.97 14.14 

55L28G7-3 Chicken tibiotarsus 508 -14.16 13.40 

55L28E10-7 Chicken coracoid 510 -17.14 8.28 

55L28E10-4 Chicken humerus 512 -17.79 14.99 

55L28E19-5 Chicken coracoid 515 -13.95 13.83 

55L28F4-3 Chicken tibiotarsus 522 -23.51 0.02 

55L28E20-51a Chicken tibiotarsus 526 -21.51 13.86 

55L28E20-51b Chicken tibiotarsus 538 -12.66 14.82 

55L38G7-5 Turkey tarsometatarsus 489 -18.88 14.00 

55L28E10-8 Turkey femur 503 -16.39 13.26 

55L28G7-6 Turkey radius 507 -16.83 5.88 

4L50M14-5 Goose L carpometacarpus 1310 -17.29 13.98 

3L6N13-1 Goose sternum 1311 -15.80 6.85 
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Table 14. Continued. 

 

Provenience Animal Element MARC 
13C ‰ VPDB 

15N ‰ AIR 

4L22C7-2 Duck L ulna 1312 -19.26 7.11 

4L50M14-6 Eider sternum 1313 -16.45 12.41 

4L51N12-10 Spruce Grouse sternum 1314 -18.04 9.57 

55L28E4-17 Avian carpometacarpus 504 -16.30 15.10 

55L28F13-1a Dove/Robin L pelvis 531 -16.03 13.73 

55L28E4-20a Dove/Robin R pelvis 532 -16.43 12.30 

55L28F13-1b Dove/Robin R pelvis 539 -15.87 14.57 

55L28E4-20b Dove/Robin L pelvis 540 -16.80 12.52 

55L28E7-3 Fish vertebra 514 -13.98 15.31 

55L28E10-12b Fish vertebra 541 -14.70 15.38 

55L28E10-12c Fish vertebra 542 -15.00 14.74 

55L28E10-12d Fish unidentified 543 -13.94 16.20 

55L28E10-12e Fish unidentified 544 -14.24 14.39 

55L28E10-12f Fish unidentified 545 -14.58 14.80 

55L28F6-9 Rat humerus 495 -15.99 14.02 

55L28F6-11 Rat ulna 496 -15.84 13.03 

55L28E4-21 Rat humerus 500 -16.64 12.61 

55L28E4-16a Rat L mandible 509 -17.01 12.27 

55L28F6-12 Rat femur 511 -16.16 13.72 

55L28E4-23b Rat L tibia 517 -17.58 10.69 

55L28E4-19 Rat femur 524 -14.17 12.19 

55L28E4-16b Rat R mandible 536 -16.06 12.55 

55L28E4-23a Rat L tibia 537 -16.40 13.57 

17L45A4-12 Rat skull  1317 -20.37 7.27 

55L28E4-22 Mouse ulna 499 -14.64 15.64 

55L28F13-3 Mouse scapula 518 -16.47 12.08 

55L28E4-18 Mouse ulna 528 -16.34 14.06 

55L28F13-2 Mouse atlas 533 -16.49 13.63 

55L28G7-2 Hare humerus 519 -14.17 13.79 

55L28E10-9 Hare vertebra 520 -15.93 13.49 

55L28E10-6 Hare pelvis 521 -21.51 6.64 

55L28F6-10 Hare calcaneus 534 -14.70 15.48 

55L28F4-2 Hare scapula 546 -21.92 5.09 

4L55X99-2 Hare mandible 1318 -23.87 1.27 
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Table 14. Continued. 

 

Provenience Animal Element MARC 
13C ‰ VPDB 

15N ‰ AIR 

4L55X99-1 Hare mandible 1319 -23.06 1.33 

3L17H1-1 Hare R mandible 1320 -24.14 0.95 

55L28E23-25 Red squirrel tibia 492 -15.32 15.60 

55L28E19-3 Red squirrel ulna 494 -16.26 9.65 

55L28E19-4 Red squirrel ulna 505 -15.17 16.13 

55L28F12-3 Red squirrel radius 513 -13.93 9.48 

55L28E4-15 Red squirrel tibia 523 -16.49 9.02 

55L28E10-10 Red squirrel tibia 529 -18.36 7.62 

4L20F11-3 Red Fox R humerus 1321 -14.37 14.82 

3L6N10-9 Red Fox R mandible 1322 -18.02 12.16 

4L51M11-9 Lynx R femur 1323 -17.09 12.00 

55L28G7-4 Deer trapezoid magnum 491 -21.82 5.69 

55L28F6-8 Deer ulna 498 -16.58 6.11 

55L28E9-3 Deer metatarsal 516 -20.15 6.40 

55L28E9-4 Deer metatarsal 530 -19.13 6.06 

4L51J12-3 Deer L mandible 1324 -20.67 5.48 

4L19A5-7 Deer L mandible 1325 -20.94 4.98 

4L20A2-14 Moose phalanx 1326 -21.99 0.77 

3L33D3-55 Caribou L radius, distal end 1327 -20.37 2.80 

   Mean -17.77 10.03 

   Standard Deviation 2.84 4.35 

   Range 11.48 16.18 
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Table 15. Descriptive statistics of faunal 
13

C and 
15

N values (n=85, Table 14).  

 

  
13C ‰ VPDB 

15N ‰ AIR 

Animal Group n= Mean 
Standard 
Deviation 

Range Mean 
Standard 
Deviation 

Range 

Cow 5 -19.67 2.60 6.30 5.56 0.95 2.54 

Pig 5 -19.18 2.51 6.91 7.99 2.06 5.99 

Sheep 4 -21.09 0.27 0.76 5.69 1.20 2.99 

Goat 2 -20.89 0.24 0.47 6.47 0.79 1.57 

Cat 2 -16.86 0.48 0.95 11.74 0.91 1.82 

Chicken 9 -17.09 3.41 10.85 11.45 4.60 14.97 

Turkey 3 -17.37 1.09 2.49 11.05 3.67 8.12 

Goose 2 -16.55 0.74 1.49 10.42 3.57 7.13 

Duck 1 -19.26 - - 7.11 - - 

Eider 1 -16.45 - - 12.41 - - 

Spruce Grouse 1 -18.04

 - - 9.57


 - - 

Avian 1 -16.30

 - - 15.10


 - - 

Dove/Robin 4 -16.28 0.36 0.93 13.28 0.92 2.27 

Fish 6 -14.41 0.39 1.06 15.14 0.58 1.81 

Rat 10 -16.62 1.51 6.20 12.19 1.87 6.75 

Mouse 4 -15.99 0.78 1.85 13.85 1.27 3.56 

Hare 8 -19.91 3.97 9.97 7.26 5.76 14.53 

Red Squirrel 6 -15.92 1.37 4.43 11.25 3.33 8.52 

Red fox 2 -16.20 1.83 3.65 13.49 1.33 2.66 

Lynx 1 -17.09

 - - 12.00


 - - 

Deer 6 -19.88 1.69 5.24 5.79 0.47 1.42 

Moose 1 -21.99 - - 0.77 - - 

Caribou 1 -20.37 - - 2.80 - - 


 Value does not represent the animal group’s mean value but the single isotopic value for the 

animal type. 
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Table 16. Bone collagen 
13

C and 
15

N values of the Ste. Marie individuals (n=38) with 

accepted collagen yields and C/N atomic ratios (Table 6). For those individuals analysed 

from multiple bone samples, the isotopic values presented are averaged from all accepted 

samples.   

 

Individual (55L28…) Sex Age 
13C ‰ VPDB 

15N ‰ AIR 

A13/F19 Male Adult -15.95 9.59 

A14 Male Adult -17.43 9.36 

A15/F23 Male Adult -17.16 13.67 

A16 ? ? -14.14 10.78 

A17 ? ? -13.54 8.95 

A20/F20 ? ? -20.75 9.66 

C7 Male ? -17.45 12.27 

D3 ? ? -18.21 8.72 

D4 ? ? -15.68 8.64 

D5 ? Adult -15.52 9.15 

D6 Male Adult -19.44 11.15 

D7A/F8 Female Adult -18.64 8.03 

D7B ? Sub-adult -19.62 8.95 

D8 ? ? -17.47 11.02 

D10 ? ? -16.58 10.93 

D11/F11 Male Adult -19.80 7.91 

D12/F9 Male Adult -16.03 9.03 

D14 ? Adult -16.17 10.39 

E6 Male Adult -18.48 11.74 

E7 Male Adult -16.81 10.33 

E8/F22 Male Adult -18.04 8.50 

E9 Male Adult -16.03 9.66 

E12/F26 Male Adult -17.63 8.72 

E13 Male Adult -12.27 13.18 

E15 Male Adult -15.54 8.71 

E16 ? Adult -18.65 11.26 

E18 Male Adult -16.53 7.83 

F12 Female Adult -19.43 9.89 

F18 Male Adult -15.58 9.48 

F24 Male Adult -15.76 8.12 

F25 Male Adult -13.11 8.58 
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Table 16. Continued. 

 

Individual (55L28…) Sex Age 
13C ‰ VPDB 

15N ‰ AIR 

F28 Male Adult -16.42 9.28 

F29 Male Adult -14.96 7.63 

F30 ? Adult -16.76 14.95 

F32 ? Sub-adult -14.14 8.23 

F33 Male Adult -19.36 8.82 

F34 Male Adult -16.22 8.27 

H3 Male Adult -16.46 9.84 

  Mean -16.78 9.77 

  Standard Deviation 1.92 1.67 

  Range 8.48 7.32 
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Table 17. Osteological information (Parish 2006, 2007) and 
13

CCol, 
15

N, 
13

CCarb, 
18

O, and 
87

Sr/
86

Sr data for the Ste. Marie 

Individuals. Dental pathologies reported include carious lesions, abscesses, and periodontal disease. Bone pathologies include 

porotic hyperostosis, periostitis, myositis ossificans, and cribra orbitalia. Indications of muscular strain include bone loss, bone 

buildup, and woven bone at muscle attachment/insertion sites. Indications of smoking were based on the appearance of pipe wear 

on teeth. The presence of dental and bone pathologies and indications of muscular strain and smoking for each individual is 

positively indicated by a star (*).  

 

Individual 
(55L28…) 

Sex Age 
Dental 

Pathology 
Bone 

Pathology 
Muscular 

Strain 
Smoker 


13CCol 

‰ VPDB 


15N ‰ 
AIR 


13CCarb 

‰ VPDB 


18O ‰ 
VPDB 

SrSr 

X99 ? ?     - - - - - 

A3 ? Sub-adult * 
   

-15.95 9.59 -9.29 -5.40 0.712529 

A12 ? ?     - - -6.67 -5.96 0.711672 

A13/F19 Male Adult     -15.95 9.59 - - - 

A14 Male Adult 

    

-17.43 9.36 - - - 

A15/F23 Male Adult * 
   

-17.16 13.67 -14.17 -5.11 0.709257 

A16 ? ? 

    

-14.14 10.78 - - - 

A17 ? ? * * 
  

-13.54 8.95 -6.29 -5.73 0.711164 

A18 Female ?    * - - -6.21 -7.06 0.710610 

A19 Male ? *   * - - -4.24 -6.07 0.710140 

A20/F20 ? ? 

    

-20.75 9.66 - - - 

C7 Male ? 

    

-17.45 12.27 -14.11 -6.23 0.710195 

D3 ? ?     -18.21 8.72 - - - 

D4 ? ? 

    

-15.68 8.64 - - - 

D5 ? Adult 

 
* 

  

-15.52 9.15 - - - 

D6 Male Adult * 
   

-19.44 11.15 -13.71 -5.42 0.709956 

D7A/F8 Female Adult * 
   

-18.64 8.03 -13.80 -3.95 0.712987 
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Table 17. Continued. 

 

Individual 
(55L28…) 

Sex Age 
Dental 

Pathology 
Bone 

Pathology 
Muscular 

Strain 
Smoker 


13CCol 

‰ VPDB 


15N ‰ 
AIR 


13CCarb 

‰ VPDB 


18O ‰ 
VPDB 

SrSr 

D7B ? Sub-adult 

    

-19.62 8.95 - - - 

D8 ? ? 

 
* 

  

-17.47 11.02 - - - 

D9 ? Adult *    - - -7.65 -5.60 0.709574 

D10 ? ? 

    

-16.58 10.93 - - - 

D11/F11 Male Adult * * 
  

-19.80 7.91 -13.44 -4.72 0.713716 

D12/F9 Male Adult * 
   

-16.03 9.03 -8.60 -5.67 0.710335 

D13 ? ?     - - -6.24 -4.82 0.710770 

D14 ? Adult 

 
* 

  

-16.17 10.39 - - - 

E6 Male Adult * 
   

-18.48 11.74 -13.93 -5.97 0.710295 

E7 Male Adult * 
  

* -16.81 10.33 -13.86 -4.90 0.709653 

E8/F22 Male Adult 

   
* -18.04 8.50 -11.30 -5.27 0.712269 

E9 Male Adult * *   -16.03 9.66 -9.06 -5.35 0.712546 

E11 ? ?     - - - - - 

E12/F26 Male Adult * * *  -17.63 8.72 -11.08 -5.03 0.713015 

E13 Male Adult * *   -12.27 13.18 -3.20 -5.06 0.709646 

E15 Male Adult * *  * -15.54 8.71 -14.54 -4.39 0.710135 

E16 ? Adult * * 
 

* -18.65 11.26 -13.12 -4.98 0.709159 

E18 Male Adult * * 
  

-16.53 7.83 -4.79 -4.13 0.710981 

F12 Female Adult * 
   

-19.43 9.89 -14.02 -4.58 0.708560 

F18 Male Adult * * 
  

-15.58 9.48 -6.47 -4.90 0.711469 

F24 Male Adult * * 
  

-15.76 8.12 -7.75 -5.02 0.710985 

 



203 
 

Table 17. Continued. 

 

Individual 
(55L28…) 

Sex Age 
Dental 

Pathology 
Bone 

Pathology 
Muscular 

Strain 
Smoker 


13CCol 

‰ VPDB 


15N ‰ 
AIR 


13CCarb 

‰ VPDB 


18O ‰ 
VPDB 

SrSr 

F25 Male Adult 

 
* 

  

-13.11 8.58 -5.41 -6.26 0.710842 

F28 Male Adult * 
  

* -16.42 9.28 -11.02 -3.88 0.710467 

F29 Male Adult * * * * -14.96 7.63 -6.26 -5.23 0.711344 

F30 ? Adult * * 
 

* -16.76 14.95 -13.24 -3.20 0.709219 

F32 ? Sub-adult 

  
* 

 

-14.14 8.23 -7.43 -5.79 0.712567 

F33 Male Adult * 
   

-19.36 8.82 -13.96 -4.99 0.709208 

F34 Male Adult 

    

-16.22 8.27 -9.16 -5.38 0.710868 

H3 Male Adult * * 
  

-16.46 9.84 -11.43 -5.57 0.709741 
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Table 18. Faunal 
13

C and 
18

O bioapatite values and 
87

Sr/
86

Sr values (n=35).  

 

Provenience Animal Tooth MARC 
13C ‰ VPDB 

18O ‰ VPDB Tooth MARC SrSr 

4L50K16-3 Cow LI1 1329 -8.85 -7.12 LI1 1365 0.710683 

4L18B9-1 Cow RM1 1330 -11.04 -8.27 RM1 1366 0.712368 

3L18D3-1 Cow RM3 1331 -13.05 -9.48 RM3 1367 0.709491 

1L36B3-1 Cow RM2 1332 -9.59 -8.73 RM2 1368 0.714752 

4L58K14-10 Cow LM1 1333 -12.11 -7.71 LM1 1369 0.713552 

4L52L12-12 Pig RM2 1334 -5.19 -6.72 RM2 1370 0.709526 

4L50M14-7 Pig LM3 1335 -12.64 -8.59 LM3 1371 0.712540 

4L58K14-7 Pig RM3 1336 -12.95 -6.67 RM3 1372 0.710128 

4L50N15-10 Pig RM2 1337 -13.79 -9.05 RM2 1373 0.710960 

4L58K14-6 Sheep LM2 1338 -14.95 -9.16 LM2 1374 0.709883 

4L22C7-1 Sheep LP4 1339 -13.06 -6.89 LP4 1375 0.711099 

3L20C2-4 Sheep M2 1340 -9.87 -6.99 M2 1376 0.709329 

3L22N1-6 Goat RM? 1341 -15.39 -7.92 RM? 1377 0.709418 

3L17Y3-3 Goat RM? 1342 -9.62 -9.13 RM? 1378 0.712082 

4L20F11-4 Goat LM2 1343 -12.66 -7.36 LM2 1379 0.709329 

3L17Y3-4 Goat LM3 1344 -11.96 -5.85 LM3 1380 0.709329 

3L22N1-5 Horse RI1 1345 -8.05 -8.74 RI1 1381 0.711021 

3L22N1-7 Horse LI1 1346 -11.93 -7.50 LI1 1382 0.710487 

1L34D5-39 Cat LP4 & LM1 1347 -11.34 -5.85 LM1 1383 0.709801 

17L45A4-12 Rat RI1 1348 -13.06 -6.45 LI1 1384 0.709888 

4L19D7-1 Rat I1 1349 -13.24 -5.77 I1 1385 0.710679 

55L28E4-16b Rat RI1 1350 -8.92 -6.42 LI1 1386 0.710487 
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Table 18. Continued. 

 

Provenience Animal Tooth MARC 
13C ‰ VPDB 

18O ‰ VPDB Tooth MARC SrSr 

4L55X99-2 Hare many 1351 -16.37 -8.76 many 1387 0.710613 

4L55X99-1 Hare many 1352 -15.50 -8.86 many 1388 0.711220 

3L17H1-1 Hare many 1353 -15.72 -8.22 many 1389 0.708759 

3L17F2-7 Beaver RP4 1354 -14.26 -7.24 RP4 1390 0.709701 

3L19C2-6 Beaver many 1355 -14.10 -8.91 many 1391 0.709938 

3L6N10-9 Fox RM1 1356 -11.24 -6.15 RM1 1392 0.709070 

3L19B4-3 Lynx C 1357 -9.99 -6.21 C 1393 0.710061 

4L51J12-3 Deer LP4 1358 -12.45 -7.14 LP4 1394 0.709401 

4L19A5-7 Deer LP3 1359 -12.89 -6.46 LP3 1395 0.713583 

3L22N1-4 Deer RM3 1360 -12.68 -6.62 RM3 1396 0.711345 

4L58K11-7 Deer RM2 1361 -4.65 -12.18 RM2 1397 0.709917 

3L22N1-8 Deer LM1 or 2 1362 -10.87 -4.95 LM1 or 2 1398 0.713730 

4L20A2-11 Moose LP2 1363 -11.06 -7.04 LP2 1399 0.709133 

   Mean -11.86 -7.57   0.710666 

  Standard Deviation 2.65 1.50   0.001483 

   Range 11.72 7.23   0.005992 
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Table 19. Descriptive statistics of faunal 
13

C and 
18

O bioapatite values and 
87

Sr/
86

Sr values (n=35, Table 18). 

 


Value does not represent the animal group’s mean but the single isotopic value for the animal type. 

 

 

  

  
13C ‰ VPDB 

18
O ‰ VPDB 87

Sr/
86

Sr 

Animal 
Group 

n= Mean 
Standard 
Deviation 

Range Mean 
Standard 
Deviation 

Range Mean 
Standard 
Deviation 

Range 

Cow 5 -10.93 1.55 4.20 -8.26 0.81 2.36 0.712169 0.001897 0.005260 

Pig 4 -11.14 3.46 8.60 -7.76 1.08 2.38 0.710788 0.001132 0.003014 

Sheep 3 -12.63 2.10 5.08 -7.68 1.05 2.27 0.710104 0.000739 0.001770 

Goat 4 -12.41 2.06 5.77 -7.57 1.18 3.28 0.710039 0.001180 0.002754 

Horse 2 -9.99 1.94 3.88 -8.12 0.62 1.24 0.710754 0.000267 0.000534 

Cat 1 -11.34 - - -5.85 - - 0.709801 - - 

Rat 3 -11.74 2.00 4.32 -6.21 0.31 0.68 0.710351 0.000337 0.000790 

Hare 3 -15.86 0.37 0.87 -8.61 0.28 0.64 0.710197 0.001047 0.002460 

Beaver 2 -14.18 0.08 0.16 -8.08 0.84 1.67 0.709819 0.000118 0.000237 

Fox 1 -11.24

 - - -6.15


 - - 0.709070


 - - 

Lynx 1 -9.99 - - -6.21 - - 0.710061 - - 

Deer 5 -10.71 3.11 8.24 -7.14 -7.47 2.47 0.711595 0.001800 0.004329 

Moose 1 -11.06

 - - -7.04 - - 0.709133 - - 
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Table 20. 
13

C and 
18

O bioapatite values and 
87

Sr/
86

Sr values of the Ste. Marie individuals (n=33).  

 

Individual (55L28…) Tooth MARC 
13C ‰ VPDB 

18O ‰ VPDB Tooth MARC 87Sr/86Sr 

A3 LM1 1424 -9.29 -5.40 LC1 1652 0.712529 

A12 M2 OR 3 1425 -6.67 -5.96 LM3 1653 0.711672 

A15/F23 RM3 1426 -14.17 -5.11 RM3 1654 0.709257 

A17 RM3 1427 -6.29 -5.73 RM1 1655 0.711164 

A18 RM1 1428 -6.21 -7.06 LM2 1656 0.710610 

A19 RM1 1429 -4.24 -6.07 RM2 1657 0.710140 

C7 RI1 1430 -14.11 -6.23 RI1 1658 0.710195 

D6 LM1 1431 -13.71 -5.42 LP3 1659 0.709956 

D7A/F8 LM1 1432 -13.80 -3.95 LM1 1660 0.712987 

D9 RI1 1433 -7.65 -5.60 RM1 1661 0.709574 

D11/F11 RI1 1434 -13.44 -4.72 RM3 1662 0.713716 

D12/F9 RM3 1435 -8.60 -5.67 RM2 1663 0.710335 

D13 RC1 1436 -6.24 -4.82 RM1 1664 0.710770 

E6 RM1 1437 -13.93 -5.97 RM1 1665 0.710295 

E7 RM2 1438 -13.86 -4.90 RM2 1666 0.709653 

E8/F22 LP4 1439 -11.30 -5.27 RM2 1667 0.712269 

E9 RM3 1442 -9.06 -5.35 LM3 1668 0.712546 

E12/F26 LM2 1440 -11.08 -5.03 LM2 1669 0.713015 

E13 LM2 1443 -3.20 -5.06 LM2 1670 0.709646 

E15 LP3 1444 -14.54 -4.39 RM3 1671 0.710135 

E16 RM2 1441 -13.12 -4.98 LM1 1672 0.709159 

E18 LM1 1445 -4.79 -4.13 RM1 1673 0.710981 
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Table 20. Continued. 

 

Individual (55L28…) Tooth MARC 
13C ‰ VPDB 

18O ‰ VPDB Tooth MARC 87Sr/86Sr 

F12 LI1 1446 -14.02 -4.58 RI1 1674 0.708560 

F18 RP4 1447 -6.47 -4.90 LM3 1675 0.711469 

F24 RM2 1448 -7.75 -5.02 RM2 1676 0.710985 

F25 LM1 1449 -5.41 -6.26 LM2 1677 0.710842 

F28 RM3 1450 -11.02 -3.88 LM1 1678 0.710467 

F29 RC1 1451 -6.26 -5.23 LM1 or 2 1679 0.711344 

F30 RI1 1452 -13.24 -3.20 LM3 1680 0.709219 

F32 RM1 1453 -7.43 -5.79 RM1 1681 0.712567 

F33 RM3 1454 -13.96 -4.99 RM2 1682 0.709208 

F34 RM2 1455 -9.16 -5.38 RM2 1683 0.710868 

H3 RM1 1456 -11.43 -5.57 RM1 1684 0.709741 

 Mean -9.86 -5.20   0.710784 

 Standard Deviation 3.53 0.76   0.001281 

 Range 11.34 3.86   0.005157 
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Table 21. 
13

CCol, 
15

N, 
13

CCarb, 
18

O, and 
87

Sr/
86

Sr data and date associations of all faunal specimens (n=102, Tables 14 and 

18). 

 

Provenience Animal 
Date 

Association 


13CCol ‰ VPDB 
15N ‰ AIR 

13CCarb ‰ VPDB 
18O ‰ VPDB 87Sr/86Sr 

3L20E5-7 Cow 1720 - 1724 -20.77 5.24 - - - 

4L50K12-8 Cow 1744 -16.93 5.23 - - - 

4L50L16-4 Cow 1744 -22.50 4.90 - - - 

4L50K16-4 Cow 1744 -16.20 7.44 - - - 

4L58K14-9 Cow 1713-1728 -21.94 4.99 - - - 

4L50K16-3 Cow 1744 - - -8.85 -7.12 0.710683 

4L18B9-1 Cow 1713 - 1731 - - -11.04 -8.27 0.712368 

3L18D3-1 Cow 1725 - 1734 - - -13.05 -9.48 0.709491 

1L36B3-1 Cow 1713 - 1745 - - -9.59 -8.73 0.714752 

4L58K14-10 Cow 1713 - 1728 - - -12.11 -7.71 0.713552 

55L28E16-4 Pig <1745 -18.70 7.17 - - - 

4L52L12-12 Pig 1744 -14.56 11.01 -5.19 -6.72 0.709526 

4L50M14-7 Pig 1715 - 1718 -19.96 7.29 -12.64 -8.59 0.712540 

4L58K14-7 Pig 1713 - 1728 -21.47 9.46 -12.95 -6.67 0.710128 

4L50N15-10 Pig 1715 - 1724 -21.22 5.02 -13.79 -9.05 0.710960 

4L58K14-8 Sheep 1713 - 1728 -20.70 4.73 - - - 

3L19D5-3 Sheep 1723-1724 -21.15 4.40 - - - 

4L58K14-6 Sheep 1713-1718 -21.46 7.39 -14.95 -9.16 0.709883 

4L22C7-1 Sheep 1713 -21.05 6.24 -13.06 -6.89 0.711099 

3L20C2-4 Sheep 1719 - 1725 - - -9.87 -6.99 0.709329 
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Table 21. Continued. 

 

Provenience Animal 
Date 

Association 


13CCol ‰ VPDB 
15N ‰ AIR 

13CCarb ‰ VPDB 
18O ‰ VPDB 87Sr/86Sr 

3L22N1-6 Goat 1725-1767 -21.12 7.25 -15.39 -7.92 0.709418 

3L17Y3-3 Goat 1725-1767 -20.65 5.68 -9.62 -9.13 0.712082 

4L20F11-4 Goat 1713 - 1731 - - -12.66 -7.36 0.709329 

3L17Y3-4 Goat 1725 - 1767 - - -11.96 -5.85 0.709329 

3L22N1-5 Horse 1725 - 1767 - - -8.05 -8.74 0.711021 

3L22N1-7 Horse 1725 - 1767 - - -11.93 -7.50 0.710487 

3L21E3-3 Cat 1713 - 1725 -17.33 10.83 - - - 

1L34D5-39 Cat - -16.38 12.65 -11.34 -5.85 0.709801 

55L28F6-13 Chicken <1745 -18.13 9.73 - - - 

55L28G7-1 Chicken <1745 -14.97 14.14 - - - 

55L28G7-3 Chicken <1745 -14.16 13.40 - - - 

55L28E10-7 Chicken <1745 -17.14 8.28 - - - 

55L28E19-5 Chicken <1745 -13.95 13.83 - - - 

55L28F4-3 Chicken <1745 -23.51 0.02 - - - 

55L28E20-51a Chicken <1745 -21.51 13.86 - - - 

55L28E10-4 Chicken <1745 -17.79 14.99 - - - 

55L38G7-5 Turkey <1745 -18.88 14.00 - - - 

55L28E10-8 Turkey <1745 -16.39 13.26 - - - 

55L28G7-6 Turkey <1745 -16.83 5.88 - - - 

4L50M14-5 Goose 1715 - 1718 -17.29 13.98 - - - 

3L6N13-1 Goose 1725 - 1758 -15.80 6.85 - - - 
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Table 21. Continued. 

 

Provenience Animal 
Date 

Association 


13CCol ‰ VPDB 
15N ‰ AIR 

13CCarb ‰ VPDB 
18O ‰ VPDB 87Sr/86Sr 

4L22C7-2 Duck 1713 -19.26 7.11 - - - 

4L50M14-6 Eider 1715 - 1718 -16.45 12.41 - - - 

4L51N12-10 Spruce Grouse 1715 - 1718 -18.04 9.57 - - - 

55L28E4-17 Avian <1745 -16.30 15.10 - - - 

55L28F13-1a Dove/Robin <1745 -16.03 13.73 - - - 

55L28E4-20a Dove/Robin <1745 -16.43 12.30 - - - 

55L28F13-1b Dove/Robin <1745 -15.87 14.57 - - - 

55L28E4-20b Dove/Robin <1745 -16.80 12.52 - - - 

55L28E7-3 Fish <1745 -13.98 15.31 - - - 

55L28E10-12b Fish <1745 -14.70 15.38 - - - 

55L28E10-12c Fish <1745 -15.00 14.74 - - - 

55L28E10-12d Fish <1745 -13.94 16.20 - - - 

55L28E10-12e Fish <1745 -14.24 14.39 - - - 

55L28E10-12f Fish <1745 -14.58 14.80 - - - 

55L28F6-9 Rat ~<1745 -15.99 14.02 - - - 

55L28F6-11 Rat ~<1745 -15.84 13.03 - - - 

55L28E4-21 Rat ~<1745 -16.64 12.61 - - - 

55L28E4-16a Rat ~<1745 -17.01 12.27 - - - 

55L28F6-12 Rat ~<1745 -16.16 13.72 - - - 

55L28E4-19 Rat ~<1745 -14.17 12.19 - - - 

55L28E4-16b Rat ~<1745 -16.06 12.55 -8.92 -6.42 0.710487 
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Table 21. Continued. 

 

Provenience Animal 
Date 

Association 


13CCol ‰ VPDB 
15N ‰ AIR 

13CCarb ‰ VPDB 
18O ‰ VPDB 87Sr/86Sr 

55L28E4-23a Rat ~<1745 -16.40 13.57 - - - 

55L28E4-23b Rat ~<1745 -17.58 10.69 - - - 

17L45A4-12 Rat 1751 - 1784 -20.37 7.27 -13.06 -6.45 0.709888 

4L19D7-1 Rat - - - -13.24 -5.77 0.710679 

55L28E4-22 Mouse ~<1745 -14.64 15.64 - - - 

55L28F13-3 Mouse ~<1745 -16.47 12.08 - - - 

55L28E4-18 Mouse ~<1745 -16.34 14.06 - - - 

55L28F13-2 Mouse ~<1745 -16.49 13.63 - - - 

55L28G7-2 Hare <1745 -14.17 13.79 - - - 

55L28E10-9 Hare <1745 -15.93 13.49 - - - 

55L28E10-6 Hare <1745 -21.51 6.64 - - - 

55L28F6-10 Hare <1745 -14.70 15.48 - - - 

55L28F4-2 Hare <1745 -21.92 5.09 - - - 

4L55X99-2 Hare 1713 - 1787 -23.87 1.27 -16.37 -8.76 0.710613 

4L55X99-1 Hare 1713 - 1787 -23.06 1.33 -15.50 -8.86 0.711220 

3L17H1-1 Hare 1784 - 1974 -24.14 0.95 -15.72 -8.22 0.708759 

3L17F2-7 Beaver 1784 - 1974 - - -14.26 -7.24 0.709701 

3L19C2-6 Beaver 1774 - 1778 - - -14.10 -8.91 0.709938 

55L28E23-25 Red squirrel <1745 -15.32 15.60 - - - 

55L28E19-3 Red squirrel <1745 -16.26 9.65 - - - 

55L28E19-4 Red squirrel <1745 -15.17 16.13 - - - 

 



213 
 

Table 21. Continued. 

 

Provenience Animal 
Date 

Association 


13CCol ‰ VPDB 
15N ‰ AIR 

13CCarb ‰ VPDB 
18O ‰ VPDB 87Sr/86Sr 

55L28F12-3 Red squirrel <1745 -13.93 9.48 - - - 

55L28E4-15 Red squirrel <1745 -16.49 9.02 - - - 

55L28E10-10 Red squirrel <1745 -18.36 7.62 - - - 

4L20F11-3 Red Fox 1713 - 1731 -14.37 14.82 - - - 

3L6N10-9 Red Fox 1774 - 1784 -18.02 12.16 -11.24 -6.15 0.709070 

4L51M11-9 Lynx <1745 -17.09 12.00 - - - 

3L19B4-3 Lynx 1758 - 1785 - - -9.99 -6.21 0.710061 

55L28G7-4 Deer <1745 -21.82 5.69 - - - 

55L28F6-8 Deer <1745 -16.58 6.11 - - - 

55L28E9-4 Deer <1745 -19.13 6.06 - - - 

55L28E9-3 Deer <1745 -20.15 6.40 - - - 

4L51J12-3 Deer 1744 -20.67 5.48 -12.45 -7.14 0.709401 

4L19A5-7 Deer 1758 - 1784 -20.94 4.98 -12.89 -6.46 0.713583 

3L22N1-4 Deer 1725 - 1767 - - -12.68 -6.62 0.711345 

4L58K11-7 Deer 1744 - 1758 - - -4.65 -12.18 0.709917 

3L22N1-8 Deer 1725 - 1767 - - -10.87 -4.95 0.713730 

4L20A2-14 Moose 1745 - 1784 -21.99 0.77 - - - 

4L20A2-11 Moose 1745 - 1784 - - -11.06 -7.04 0.709133 

3L33D3-55 Caribou 1758 - 1784 -20.37 2.80 - - - 
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Table 22. 
13

CCol, 
15

N, 
13

CCarb, 
18

O, and 
87

Sr/
86

Sr values of all individuals sampled 

(n=44, Tables 16 and 20). 

 

Individual 
(55L28…) 

Sex 
Age 

Group 


13CCol ‰ 
VPDB 


15N ‰ 
AIR 


13CCarb ‰ 

VPDB 


18O ‰ 
VPDB 

87Sr/86Sr 

A3 ? Sub-adult - - -9.29 -5.40 0.712529 

A12 ? ? - - -6.67 -5.96 0.711672 

A13/F19 Male Adult -15.95 9.59 - - - 

A14 Male Adult -17.43 9.36 - - - 

A15/F23 Male Adult -17.16 13.67 -14.17 -5.11 0.709257 

A16 ? ? -14.14 10.78 - - - 

A17 ? ? -13.54 8.95 -6.29 -5.73 0.711164 

A18 Female ? - - -6.21 -7.06 0.710610 

A19 Male ? - - -4.24 -6.07 0.710140 

A20/F20 ? ? -20.75 9.66 - - - 

C7 Male ? -17.45 12.27 -14.11 -6.23 0.710195 

D3 ? ? -18.21 8.72 - - - 

D4 ? ? -15.68 8.64 - - - 

D5 ? Adult -15.52 9.15 - - - 

D6 Male Adult -19.44 11.15 -13.71 -5.42 0.709956 

D7A/F8 Female Adult -18.64 8.03 -13.80 -3.95 0.712987 

D7B ? Sub-adult -19.62 8.95 - - - 

D8 ? ? -17.47 11.02 - - - 

D9 ? Adult - - -7.65 -5.60 0.709574 

D10 ? ? -16.58 10.93 - - - 

D11/F11 Male Adult -19.80 7.91 -13.44 -4.72 0.713716 

D12/F9 Male Adult -16.03 9.03 -8.60 -5.67 0.710335 

D13 ? ? - - -6.24 -4.82 0.710770 

D14 ? Adult -16.17 10.39 - - - 

E6 Male Adult -18.48 11.74 -13.93 -5.97 0.710295 

E7 Male Adult -16.81 10.33 -13.86 -4.90 0.709653 

E8/F22 Male Adult -18.04 8.50 -11.30 -5.27 0.712269 

E9 Male Adult -16.03 9.66 -9.06 -5.35 0.709646 

E12/F26 Male Adult -17.63 8.72 -11.08 -5.03 0.712546 

E13 Male Adult -12.27 13.18 -3.20 -5.06 0.710135 

E15 Male Adult -15.54 8.71 -14.54 -4.39 0.709159 

E16 ? Adult -18.65 11.26 -13.12 -4.98 0.713015 
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Table 22. Continued. 

 

Individual 
(55L28…) 

Sex 
Age 

Group 


13CCol ‰ 
VPDB 


15N ‰ 
AIR 


13CCarb ‰ 

VPDB 


18O ‰ 
VPDB 

87Sr/86Sr 

E18 Male Adult -16.53 7.83 -4.79 -4.13 0.710981 

F12 Female Adult -19.43 9.89 -14.02 -4.58 0.708560 

F18 Male Adult -15.58 9.48 -6.47 -4.90 0.711469 

F24 Male Adult -15.76 8.12 -7.75 -5.02 0.710985 

F25 Male Adult -13.11 8.58 -5.41 -6.26 0.710842 

F28 Male Adult -16.42 9.28 -11.02 -3.88 0.710467 

F29 Male Adult -14.96 7.63 -6.26 -5.23 0.711344 

F30 ? Adult -16.76 14.95 -13.24 -3.20 0.709219 

F32 ? Sub-adult -14.14 8.23 -7.43 -5.79 0.712567 

F33 Male Adult -19.36 8.82 -13.96 -4.99 0.709208 

F34 Male Adult -16.22 8.27 -9.16 -5.38 0.710868 

H3 Male Adult -16.46 9.84 -11.43 -5.57 0.709741 
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Table 23. 
13

C and 
15

N values of the Ste. Marie individuals (n=38) and the sample pair 

bone elements analysed (Table 11). The bone elements analysed are positively indicated 

with a star (*). 

 

   Sample Pair Bone Elements 

Individual 
(55L28…) 


13C ‰ 
VPDB 


15N ‰ 
AIR 

Ribs 
Long Bones 

of Arm 
and/or Leg 

Rib and 
Arm/Leg Long 

Bone 

Unidentified 
Fragments 

A13/F19 -15.95 9.59 * 
   A14 -17.43 9.36 * 
   A15/F23 -17.16 13.67 

  
* 

 A16 -14.14 10.78 

 
* 

  A17 -13.54 8.95 

 
* 

  A20/F20 -20.75 9.66 

 
* 

  C7 -17.45 12.27 

   
* 

D3 -18.21 8.72    * 

D4 -15.68 8.64 

   
* 

D5 -15.52 9.15 

 
* 

  D6 -19.44 11.15 * 
   D7A/F8 -18.64 8.03 * 
   D7B -19.62 8.95 * 
   D8 -17.47 11.02 

 
* 

  D10 -16.58 10.93 

 
* 

  D11/F11 -19.80 7.91 * 
   D12/F9 -16.03 9.03 

 
* 

  D14 -16.17 10.39 

  
* 

 E6 -18.48 11.74 * 
   E7 -16.81 10.33 * 
   E8/F22 -18.04 8.50 * 
   E9 -16.03 9.66  *   

E12/F26 -17.63 8.72 * 
   E13 -12.27 13.18 *    

E15 -15.54 8.71 *    

E16 -18.65 11.26 * 
   E18 -16.53 7.83 * 
   F12 -19.43 9.89 * 
   F18 -15.58 9.48 * 
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Table 23. Continued. 

 

   Sample Pair Bone Elements 

Individual 
(55L28…) 


13C ‰ 
VPDB 


15N ‰ 
AIR 

Ribs 
Long Bones 

of Arm 
and/or Leg 

Rib and 
Arm/Leg Long 

Bone 

Unidentified 
Fragments 

F24 -15.76 8.12 * 
   F25 -13.11 8.58 

 
* 

  F28 -16.42 9.28 

 
* 

  F29 -14.96 7.63 * 
   F30 -16.76 14.95 * 
   F32 -14.14 8.23 * 
   F33 -19.36 8.82 * 
   F34 -16.22 8.27 * 
   H3 -16.46 9.84 * 
     n= 23 10 2 3 

  % 61 26 5 8 
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Table 24. 
18

O and 
87

Sr/
86

Sr values of wild fauna (n=9, Table 21) used to define the 

Louisbourg oxygen and strontium ranges. Also shown are the descriptive statistics 

including the 
18

O and 
87

Sr/
86
Sr 2σ ranges. 

 

Provenience Animal 
18O ‰ VPDB 87Sr/86Sr 

17L45A4-12 Rat -6.45 0.709888 

4L19D7-1 Rat -5.77 0.710679 

55L28E4-16b Rat -6.42 0.710487 

4L55X99-2 Hare -8.76 0.710613 

4L55X99-1 Hare -8.86 0.711220 

3L17H1-1 Hare -8.22 0.708759 

3L17F2-7 Beaver -7.24 0.709701 

3L19C2-6 Beaver -8.91 0.709938 

3L6N10-9 Fox -6.15 0.709070 

 Mean -7.42 0.710039 

 2σ 2.41 0.001499 

 2σ range 4.81 0.002999 

 2σ minimum -9.83 0.708540 

 2σ maximum -5.01 0.711539 
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Table 25. Faunal 
18

O and 
87

Sr/
86

Sr values (n=35, Table 21) and their isotopic orientation 

relative to the oxygen and strontium 2σ ranges (Figure 40 and Table 24). Specimens 

within the 2σ ranges vs. outside the 2σ ranges are indicated with a star (*). Also shown 

are those specimens with A: 
87

Sr/
86

Sr values within the strontium 2σ range but with 
18

O 

values lower than the oxygen 2σ range, B: 
18
O values within the oxygen 2σ range but 

with 
87

Sr/
86
Sr values higher than the strontium 2σ range and, C: 

18
O and 

87
Sr/

86
Sr values 

higher than the oxygen and strontium 2σ ranges. 

 

Provenience Animal 


18O ‰ 
VPDB 

87Sr/86Sr 
Within 2σ 

Ranges 
Outside 2σ 

Ranges 
A B C 

4L50K16-3 Cow -7.12 0.710683 *     

4L18B9-1 Cow -8.27 0.712368  *  *  

3L18D3-1 Cow -9.48 0.709491 *     

1L36B3-1 Cow -8.73 0.714752  *  *  

4L58K14-10 Cow -7.71 0.713552  *  *  

4L52L12-12 Pig -6.72 0.709526 *     

4L50M14-7 Pig -8.59 0.712540  *  *  

4L58K14-7 Pig -6.67 0.710128 *     

4L50N15-10 Pig -9.05 0.710960 *     

4L58K14-6 Sheep -9.16 0.709883 *     

4L22C7-1 Sheep -6.89 0.711099 *     

3L20C2-4 Sheep -6.99 0.709329 *     

3L22N1-6 Goat -7.92 0.709418 *     

3L17Y3-3 Goat -9.13 0.712082  *  *  

4L20F11-4 Goat -7.36 0.709329 *     

3L17Y3-4 Goat -5.85 0.709329 *     

3L22N1-5 Horse -8.74 0.711021 *     

3L22N1-7 Horse -7.50 0.710487 *     

1L34D5-39 Cat -5.85 0.709801 *     

17L45A4-12 Rat -6.45 0.709888 *     

4L19D7-1 Rat -5.77 0.710679 *     

55L28E4-16b Rat -6.42 0.710487 *     

4L55X99-2 Hare -8.76 0.710613 *     

4L55X99-1 Hare -8.86 0.711220 *     

3L17H1-1 Hare -8.22 0.708759 *     

3L17F2-7 Beaver -7.24 0.709701 *     

3L19C2-6 Beaver -8.91 0.709938 *     
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Table 25. Continued. 

 

Provenience Animal 


18O ‰ 
VPDB 

87Sr/86Sr 
Within 2σ 

Ranges 
Outside 2σ 

Ranges 
A B C 

3L6N10-9 Fox -6.15 0.709070 *     

3L19B4-3 Lynx -6.21 0.710061 *     

4L51J12-3 Deer -7.14 0.709401 *     

4L19A5-7 Deer -6.46 0.713583  *  *  

3L22N1-4 Deer -6.62 0.711345 *     

4L58K11-7 Deer -12.18 0.709917  * *   

3L22N1-8 Deer -4.95 0.713730  *   * 

4L20A2-11 Moose -7.04 0.709133 *     

   n= 27 8 1 6 1 

   % 77 23 3 17 3 
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Table 26. 
18

O and 
87

Sr/
86

Sr values for the Ste. Marie individuals (n=33, Table 22) and 

their isotopic orientation relative to the oxygen and strontium 2σ ranges (Figure 41 and 

Table 24). Individuals within the 2σ ranges vs. outside the 2σ ranges are indicated with a 

star (*). Also shown are those individuals with A: 
87

Sr/
86

Sr values within the strontium 2σ 

range but with 
18
O values lower than the oxygen 2σ range, B: 

18
O values within the 

oxygen 2σ range but with 
87

Sr/
86
Sr values higher than the strontium 2σ range and, C: 

18
O 

and 
87

Sr/
86
Sr values higher than the oxygen and strontium 2σ ranges. 

 

Individual 
(55L28…) 


18O ‰ 
VPDB 

87Sr/86Sr 
Within 2σ 

Ranges 
Outside 2σ 

Ranges 
A B C 

A3 1424 0.712529  * *   

A12 1425 0.711672  * *   

A15/F23 1426 0.709257 *     

A17 1427 0.711164 *     

A18 1428 0.710610 *     

A19 1429 0.710140 *     

C7 1430 0.710195 *     

D6 1431 0.709956 *     

D7A/F8 1432 0.712987  *  *  

D9 1433 0.709574 *     

D11/F11 1434 0.713716  *  *  

D12/F9 1435 0.710335 *     

D13 1436 0.710770  *   * 

E6 1437 0.710295 *     

E7 1438 0.709653  *   * 

E8/F22 1439 0.712269  * *   

E9 1442 0.712546 *     

E12/F26 1440 0.713015  * *   

E13 1443 0.709646 *     

E15 1444 0.710135  *   * 

E16 1441 0.709159  *  *  

E18 1445 0.710981  *   * 

F12 1446 0.708560  *   * 

F18 1447 0.711469  *   * 

F24 1448 0.710985 *     

F25 1449 0.710842 *     
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Table 26. Continued. 

 

Individual 
(55L28…) 


18O ‰ 
VPDB 

87Sr/86Sr 
Within 2σ 

Ranges 
Outside 2σ 

Ranges 
A B C 

F28 1450 0.710467  *   * 

F29 1451 0.711344 *     

F30 1452 0.709219  *   * 

F32 1453 0.712567  * *   

F33 1454 0.709208  *   * 

F34 1455 0.710868 *     

H3 1456 0.709741 *     

  n= 16 17 5 3 9 

  % 48 52 15 9 27 
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Table 27. Calculated drinking water 
18

O values of the Ste. Marie individuals (n=33, 

Table 22). 

 

Individual (55L28…) 87Sr/86Sr 
18OE ‰ VPDB 

18ODW ‰ VSMOW 

A3 0.712529 -5.40 -8.34 

A12 0.711672 -5.96 -9.26 

A15/F23 0.709257 -5.11 -7.86 

A17 0.711164 -5.73 -8.88 

A18 0.710610 -7.06 -11.06 

A19 0.710140 -6.07 -9.44 

C7 0.710195 -6.23 -9.70 

D6 0.709956 -5.42 -8.37 

D7A/F8 0.712987 -3.95 -5.96 

D9 0.709574 -5.60 -8.67 

D11/F11 0.713716 -4.72 -7.22 

D12/F9 0.710335 -5.67 -8.78 

D13 0.710770 -4.82 -7.39 

E6 0.710295 -5.97 -9.27 

E7 0.709653 -4.90 -7.52 

E8/F22 0.712269 -5.27 -8.13 

E9 0.712546 -5.35 -8.26 

E12/F26 0.713015 -5.03 -7.73 

E13 0.709646 -5.06 -7.78 

E15 0.710135 -4.39 -6.68 

E16 0.709159 -4.98 -7.65 

E18 0.710981 -4.13 -6.26 

F12 0.708560 -4.58 -6.99 

F18 0.711469 -4.90 -7.52 

F24 0.710985 -5.02 -7.72 

F25 0.710842 -6.26 -9.75 

F28 0.710467 -3.88 -5.85 

F29 0.711344 -5.23 -8.06 

F30 0.709219 -3.20 -4.73 

F32 0.712567 -5.79 -8.98 

F33 0.709208 -4.99 -7.67 

F34 0.710868 -5.38 -8.31 

H3 0.709741 -5.57 -8.62 
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Table 28. Precipitation 
18

O values for areas of Canada, France, Switzerland, Germany, 

USA, England, and Scotland. Cited from the IAEA/WMO (2013) database unless 

otherwise indicated.  

 

Site Location 
18OPPT ‰ VSMOW Sampling Period 

Truro, Nova Scotia, Canada -9.23 1975 – 1983 

Dax, France -4.92 1999 – 2005 

Breast, France -4.84 1996 – 2002 

Orléans, France -6.17 1996 – 2005 

Bern, Switzerland -9.94 1969 – 2008 

Berlin, Germany -7.97 1978 – 2005 

Ste. Agathe, Quebec, Canada -12.66 1975 – 1982 

St. John's, Newfoundland, Canada -8.38 1994 – 1995 

Hanover, New Hampshire, USA -8.83 1997 – 1998 

New Haven, Connecticut, USA -7.63 2003 – 2004 

Wallingford, England -6.67 1979 – 2007 

Inchnadamph, Scotland -6.53 2003 – 2005 


 Jamieson and Wadleigh 1999. 


 Lee et al. 2006. 
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Figures  

 

 
 

Figure 1. The location of the Fortress of Louisbourg on Cape Breton Island, Nova Scotia, 

Canada. Adapted from Google™ Earth by the author. 
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Figure 2. Aerial photograph of the Fortress of Louisbourg and Rochefort Point showing 

the location of the feature. (Duggan 2010). 

 

 

 

 
 

Figure 3. Exposed corner of dry laid stone feature on Rochefort Point. Trowel indicates 

north. (Duggan 2010). 
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Figure 4. Plan of Louisbourg in 1744 (Fry 1984) with the Ste. Marie property indicated. 

Ste. Marie Property
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Figure 5. Plan view drawing of skeletal remains within the root cellar (Duggan 2007). 

 

 

 

 

 

 

 

 

 

 

 



 
229 

 

 

Figure 6. Approximate 
13
C and 

15
N values for C3, C4, and marine plants.  

 

 

 

 

 
 

Figure 7. Theoretical trophic levels for C3, C4, and marine environments.  
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Weigh enamel sample into clean Savillex 

vial 

 

 

Add 1 ml 8M HNO3 into Savillex vial to 

dissolve enamel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rinse column with ~1 ml DI H2O 

 

 

Rinse column with ~1 ml 6M HCl 

 

 

Add ~200 µl Sr resin to column 

 

 

Rinse resin twice with ~1 ml 6M HCl 

 

 

Rinse resin once with ~1 ml DI H2O 

 

 

Rinse resin twice with ~1 ml 8M HNO3 

 

 

Load 1 ml of sample into column 

(capture in clean vial) 

 

 

Reload sample from capture vial 

 

 

Wash resin thrice with ~1 ml 8M HNO3 

 

 

Elute Sr with 1 ml of DI H2O 

(capture in clean vial) 

 

 

Figure 8. Flow chart of the procedure for extracting strontium from tooth enamel. 
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Figure 9. Percent collagen yield and C/N atomic ratio of (a) all faunal samples (Table 5) 

and (b) of all individuals sampled (Table 6). 
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Figure 10. Enamel and dentine (a) 
13
C values and (b) 

18
O values of six faunal 

specimens (Table 7). Enamel is represented by a diamond (♦), and dentine is represented 

by an x mark (x). 
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Figure 11. Enamel and dentine 
87
Sr/

86
Sr values from six fauna specimens (Table 8). 

Enamel is represented by a diamond (♦), and dentine is represented by an x mark (x). 
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Figure 12. Enamel and dentine (a) 
13

C values and (b) 
18

O values from 10 individuals 

(Table 9). Enamel is represented by a diamond (♦), and dentine is represented by an x 

mark (x). 
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Figure 13. Enamel and dentine 
87
Sr/

86
Sr values from 10 individuals (Table 10). Enamel is 

represented by a diamond (♦), and dentine is represented by an x mark (x). 
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Figure 14. Peak amplitude (mV) and EA-IRMS sample weight (mg) for (a) carbon 

isotopic analysis and (b) nitrogen isotopic analysis of all individuals sampled (Table 13).
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Figure 15. The mean 
13
C and 

15
N values ± 1σ of faunal groups (Table 15) and the Ste. Marie individuals (n=38, Table 16). 

0

2

4

6

8

10

12

14

16

-25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13


1

5
N

 ‰
 A

IR
 

13C ‰ VPDB 

Cow  n=5

Pig  n=5

Sheep  n=4

Goat  n=2

Chicken  n=9

Turkey  n=3

Goose  n=2

Duck  n=1

Eider  n=1

Grouse  n=1

Dove/Robin  n=4

Avian  n=1

Fish  n=6

Cat  n=2

Rat  n=10

Mouse  n=4

Hare  n=8

Squirrel  n=6

Fox  n=2

Lynx  n=1

Deer  n=6

Moose  n=1

Caribou  n=1

Human  n=38



 
238 

 

 
 

Figure 16. Scatter plot of 
13

C and 
15

N values of faunal specimens (n=85, Table 14).  
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Figure 17. Scatter plot of 
13

C and 
15

N values of domestic mammals (Table 14). 

 

 

 
 

Figure 18. Scatter plot of 
13

C and 
15

N values of wild fauna (Table 14).  
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Figure 19. Scatter plot of 
13

C and 
15

N values of all bird specimens (Table 14). 
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Figure 20. Scatter plot of 
13

C and 
15
N values and the mean ± 1σ of the Ste. Marie 

individuals (n=38, Table 16). 
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Figure 21. Scatter plot of 
13

C and 
15

N values of fauna (n=85,
 
Table 14) and the Ste. Marie individuals (n=38, Table 16).  
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Figure 22. 
13

C and 
15

N values of males (n=23), females (n=2), and individuals of 

unknown sex (n=14, Table 17). 

 

 

 

 
 

Figure 23.
13

C and 
15

N values of individuals exhibiting bone pathologies (n=17) and 

individuals exhibiting no bone pathologies (n=21, Table 17). 
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Figure 24. 
13

C and 
15

N values of individuals exhibiting evidence of muscular strain 

(n=3) and individuals not showing evidence of muscular strain (n=35, Table 17). 
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Figure 25. Mean 
13

C bioapatite values ± 1σ of fauna (n=35, Table 19) and the Ste. Marie 

individuals (n=33, Table 20). 
 

 

 
 

 

Figure 26. Scatter plot of 
13

C bioapatite values of fauna (n=35, Table 18) and the Ste. 

Marie individuals (n=33, Table 20). 
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Figure 27. Mean 
18

O bioapatite values ± 1σ of fauna (n=35, Table 19) and the Ste. Marie 

individuals (n=33, Table 20). 

 

 

 
 

Figure 28. Scatter plot of 
18

O bioapatite of fauna (n=35, Table 18) and the Ste. Marie 

individuals (n=33, Table 20). 
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Figure 29. 
18

O and 


Sr


Sr values of individuals with dental pathologies (n=25) and 

individuals with no dental pathologies (n=8, Table 17). 
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Figure 30. Mean 

87
Sr/

86
Sr values ± 1σ of fauna (n=35, Table 19) and the Ste. Marie 

individuals (n=33, Table 20). 

 

 

 
 

Figure 31. Scatter plot of 
87

Sr/
86

Sr of fauna (n=35, Table 18) and the Ste. Marie 

individuals (n=33, Table 20). 
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Figure 32. 
18

O and 
87

Sr/
86

Sr values of adults (n=31) and sub-adults (n=2, Table 17). 
 

 

 

 

 
 

Figure 33. 
18

O and 
87

Sr/
86

Sr values of individuals with evidence of muscular strain (n=3) 

and individuals with no evidence of muscular strain (n=30, Table 17). 
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Figure 34. 
15

N and 
87

Sr/
86

Sr values of individuals with evidence of muscular strain (n=3) 

and individuals with no evidence of muscular strain (n=24, Table 17). 
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Figure 35. 
13

C and 
15

N values of the Ste. Marie individuals (Table 16) and human groups from the Honch et al. (2012) study.
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Figure 36. Scatter plot of the 
13

C and 
15

N values of the Ste. Marie individuals (n=38) by bone element(s) analysed (Table 23).  
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Figure 37. Scatter plot of (a) 
13

C and 
15

N bone collagen values and (b) 
13

C enamel 

bioapatite values of the Ste. Marie individuals and the Chesapeake Bay individuals 

(Ubelaker and Owsley 2003). 
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Figure 38. Enamel and dentine 

87
Sr/

86
Sr values of six faunal specimens (Table 8) and 10 

Ste. Marie individuals (Table 10) in comparison to the strontium 2σ range. Enamel is 

represented by a diamond (♦), and dentine is represented by an x mark (x).  

 

 

 

Figure 39. Enamel and dentine 
18

O values of six faunal specimens (Table 7) and 10 Ste. 

Marie individuals (Table 9) in comparison to the oxygen 2σ range. Enamel is represented 

by a diamond (♦), and dentine is represented by an x mark (x).  
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Figure 40. 
18

O and 
87

Sr/
86

Sr values for fauna (n=35, Table 21) and the 
18

O and 
87

Sr/
86
Sr 2σ ranges.
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Figure 41. 
18

O and 
87

Sr/
86

Sr values for the Ste. Marie individuals (n=33, Table 22) with 

(a) the fauna from this study (n=35, Table 21) and the 
18

O and 
87

Sr/
86
Sr 2σ ranges and 

(b) with the 
18

O and 
87

Sr/
86
Sr 2σ ranges only.  
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Figure 42. 
18

ODW and 
87

Sr/
86

Sr values for the Ste. Marie individuals (n=33, Table 27) 

and 
18

OPPT values for areas of Canada, France, Switzerland, and Germany (Table 28). 

Also shown are the 
18

O and 
87

Sr/
86
Sr 2σ ranges. 
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Figure 43. 
18

ODW and 
87

Sr/
86

Sr values for the Ste. Marie individuals (n=33, Table 27) 

and 
18

OPPT values for areas of Canada, New England, and Britain (Table 28). Also 

shown are the 
18

O and 
87

Sr/
86
Sr 2σ ranges. 
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Figure 44. 
18

ODW and 
87

Sr/
86

Sr values for the Ste. Marie individuals (n=33, Table 27) 

with individuals H3, F30, and A18 identified and 
18

OPPT values for areas of Ste. Agathe 

and Truro, Canada and Dax and Breast, France (Table 28). Also shown are the 
18

O and 
87

Sr/
86
Sr 2σ ranges. 
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Figure 45. (a) 
18

O and 
87

Sr/
86

Sr values and (b) 
13

C and
15

N values for the Ste. Marie 

individuals (Table 22) with individuals from Chapter 7.6.3 identified.  
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Figure 46. (a) 
13

C and
15

N values and (b) 
18

O and 
87

Sr/
86

Sr values for the Ste. Marie 

individuals (Table 22) with individuals with indications of muscular strain identified 

(n=3, Table 17) (see Chapter 7.6.4). 
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Figure 47. (a) 
18

O and 
87

Sr/
86

Sr values and (b) 
13

C and
15

N values for the Ste. Marie 

individuals (Table 22) with sub-adults (solid markers) and women (open markers) 

identified (see Chapters 7.6.5 and 7.6.6).  

0.708

0.709

0.710

0.711

0.712

0.713

0.714

-8 -7 -6 -5 -4 -3 -2

8
7
Sr

/8
6
Sr

 

18O ‰ VPDB 

A3

A18

F32

F12

D7A/F8

Other Individuals  n=28

a. 

5

7

9

11

13

15

17

-24 -22 -20 -18 -16 -14 -12


1

5
N

 ‰
 A

IR
 

13C ‰ VPDB 

D7A/F8

D7B

F12

F32

Other Individuals  n=34

b. 



 
263 

 

Bibliography 

 

 

Ables, E. D. 1969 Home-Range Studies of Red Fox (Vulpes vulpes). Journal of 

Mammology 50(1):108-120. 

 

Aggarwal, P. K., Froehlich, K. and Kulkarni, K. M. 2004 Environmental Isotopes in 

Groundwater Studies, pp. 69-92. Groundwater-Encyclopedia of Life Support System, vol. 

2. 

 

Ambrose, S. H. 1990 Preparation and Characterization of Bone and Tooth Collagen for 

Isotopic Analysis. Journal of Archaeological Science 17:431-451. 

 

Ambrose, S. H. 1991 Effects of Diet, Climate and Physiology on Nitrogen Isotope 

Abundances in Terrestrial Foodwebs. Journal of Archaeological Science 18:293-317. 

 

Ambrose, S. H. and Norr, L. 1993 Experimental Evidence for the Relationship of the 

Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and 

Carbonate. In Prehistoric Human Bone: Archaeology at the Molecular Level, edited by 

Joseph B. Lambert and Gisela Grupe, pp.1-38. Springer-Verlag, New York. 

 

Atahan, P., Dobson, J., Li X., Zhou, X., Hu, S., Chen, L., Bertuch, F. and Grice, K. 2011 

Early Neolithic Diets at Baijia, Wei River Valley, China: Stable Carbon and Nitrogen 

Isotope Analysis of Human Faunal Remains. Journal of Archaeological Science 38:2811-

2817. 

 

Aubert, D., Probst, A., Stille, P. and Viville, D. 2002 Evidence of Hydrological Control of 

Sr Behavior in Stream Water (Stengbach Catchment, Vosges Mountains, France). Applied 

Geochemistry 17:285-300. 

 

Baker, R. F. 1978 A Campaign of Amateurs: The Siege of Louisbourg 1745. In Canadian 

Historic Sites, pp. 5-58. National Historic Parks and Sites Branch, Ottawa. 

 

Balasse, M., Bocherens, H. and Mariotti, A. 1999 Intra-Bone Variability of Collagen and 

Apatite Isotopic Composition Used as Evidence of Change of Diet. Journal of 

Archaeological Science 26:593-598. 

 

Balasse, M., Tresset, A. and Ambrose, S. H. 2006 Stable Isotope Evidence (δ
13
C, δ

18
O) 

for Winter Feeding on Seaweed by Neolithic Sheep of Scotland. Journal of Zoology 

270:170-176. 

 

Balcom, B. A. 1995 The Cod Fishery of Ile Royale, 1713-1758. In Aspects of Louisbourg, 

edited by Eric Krause, Carol Corbin and William O'Shea, pp.169-197. The University 

College of Cape Breton Press, Sydney. 

 



 
264 

 

Barnes, E. 1994 Developmental Defects of the Axial Skeleton in Paleopathology. 

University Press of Colorado, Boulder. 

 

Barr, S. M., White, C. E. and MacDonald, A. S. 1996 Geology, Southeastern Cape Breton 

Island, Nova Scotia. Geological Survey of Canada. Map 1853A, scale 1:100 000. 

Electronic Document, http://geogra tis.gc.ca/api/en/nrcan-rncan/ess-sst/551ba4c3-58dc-

546d-a187-bdea67935938.html, accessed June 27, 2013. 

 

Beard, B. L. and Johnston, C. M. 2000 Strontium Isotope Composition of Skeletal 

Material can Determine the Birth Place and Geographic Mobility of Humans and 

Animals. Journal of Forensic Sciences 45(5):1049-1061. 

 

Bender, M. M. 1968 Mass Spectrometric Studies of Carbon 13 Variations in Corn and 

Other Grasses. Radiocarbon 10(2):468-472. 

 

Bender, M. M. 1971 Variations in the 
13
C/

12
C Ratios of Plants in Relation to the Pathway 

of Photosynthetic Carbon Dioxide Fixation. Phytochemistry 10:1239-1244. 

 

Bentley, R. A. 2006 Strontium Isotopes from the Earth to the Archaeological Skeleton: A 

Review. Journal of Archaeological Method and Theory 13(3):135-187. 

 

Bentley, R. A. and Knipper, C. 2005 Geographical Patterns in Biologically Available 

Strontium, Carbon and Oxygen Isotope Signatures in Prehistoric SW Germany. 

Archaeometry 47(3):629-644. 

 

Bentley, R. A., Price, T. D. and Stephan, E. 2004 Determining the ‘Local’ 
87
Sr/

86
Sr Range 

for Archaeological Skeletons: A Case Study from Neolithic Europe. Journal of 

Archaeological Science 31:365-375. 

 

Bentley, R. A., Pietrusewsky, M., Douglas, M. T. and Atkinson, T. C. 2005 Matrilocality 

During the Prehistoric Transition to Agriculture in Thailand? Antiquity 79(306):865-881. 

 

Best, T. L. and Henry, T. H. 1994 Lepus Arcticus. Mammalian Species 457:1-9. 

 

Bigeleisen, J. 1949 The Relative Reaction Velocities of Isotopic Molecules. The Journal 

of Chemical Physics 17(8)675-678. 

 

Billings, M. P. 1980 The Geology of New Hampshire. New Hampshire Department of 

Resources and Economic Development, Concord. 

 

Bleeker W., Dansgaard, W. and Lablans, W. N. 1966 Some Remarks on Simultaneous 

Measurements of Particulate Contaminants Including Radioactivity and Isotopic 

Composition of Precipitation. Tellus 18(4):773-785. 

 

Bloomquist, C. K., Nielsen, C. K. and Shew, J. J. 2012 Spatial Organization of 



 
265 

 

Unexploited Beavers (Castor canadensis) in Southern Illinois. The American Midland 

Naturalist 167(1):188-197. 

 

Blum, J. D., Taliaferro, E. H., Weisse, M. T. and Holmes, R. T. 2000 Changes in Sr/Ca, 

Ba/Ca and 
87
Sr/

86
Sr Ratios Between Trophic Levels in Two Forest Ecosystems in the 

Northeastern U.S.A. Biogeochemistry 49:87-101. 

 

Bocherens, H., Brinkman, D. B., Dauphin, Y. and Mariotti, A. 1994a Microstructural and 

Geochemical Investigations on Late Cretaceous Archosaur Teeth from Alberta, Canada. 

Canadian Journal of Earth Science 31:783-792. 

 

Bocherens, H., Fizet, M. and Mariotti, A. 1994b Diet, Physiology and Ecology of Fossil 

Mammals as Inferred from Stable Carbon and Nitrogen Isotope Biogeochemistry: 

Implications for Pleistocene Bears. Palaeogeography, Palaeoclimatology, Palaeoecology 

107:213-225.  

 

Bocherens, H., Fogel, M. L., Tuross, N. and Zedner, M. 1995 Trophic Structure and 

Climatic Information from Isotopic Signatures in Pleistocene Cave Fauna of Southern 

England. Journal of Archaeological Science 2:327-340. 

 

Böhlke, J. K. and Horan, M. 2000 Strontium Isotope Geochemistry of Groundwaters and 

Streams Affected by Agriculture, Locust Grove, MD. Applied Geochemistry 15:599-609. 

 

Bollan, W. 1746 The Importance and Advantage of Cape Breton. S.R. Publishers Limited, 

Toronto. 

 

Bouman, O. T., Vaninetti, N., Williams, G. E. M. and McCorquodale, D. B. 2004 

Ecological and Historical Evidence of Anthropogenic Forest Transformations in Eastern 

Cape Breton Island. Journal of Sustainable Forestry 19(4):49-76. 

 

Bowes, J. H. and Murray, M. M. 1935 The Chemical Composition of Teeth: The 

Composition of Human Enamel and Dentine. Biochemical Journal 29(12):2721-2727. 

 

Britton, K., Müldner, G. and Bell, M. 2008 Stable Isotope Evidence for Salt-Marsh 

Grazing in the Bronze Age Severn Estuary, UK: Implications for Palaeodietary Analysis 

at Coastal Sites. Journal of Archaeological Science 35:2111-2118. 

 

Britton, K., Grimes, V., Niven, L., Steele, T. E., McPherron, S., Soressi, M., Kelly, T. E., 

Jaubert, J., Hublin, J. and Richards, M. P. 2011 Strontium Isotope Evidence for Migration 

in Late Pleistocene Rangifer: Implications for Neanderthal Hunting Strategies at the 

Middle Palaeolithic Site of Jonzac, France. Journal of Human Evolution 61:176-185. 

 

Brooks, S. T. and Suchey, J. M. 1990 Skeletal Age Determination Based on the Os Pubis: 

A Comparison of the Acsàdi-Nemekéri and Suchey-Brooks methods. Human Evolution 

5:227-238. 



 
266 

 

 

Brown, R. 1979 A History of the Island of Cape Breton. Mika Publishing Company, 

Belleville. 

 

Brown, T. A., Nelson, D. E., Vogel, J. S. and Southon, J. R. 1988 Improved Collagen 

Extraction by Modified Longin Method. Radiocarbon 30(2):171-177. 

 

Bryant, F. J. and Loutit, J. F. 1961 Human Bone Metabolism Deduced from Strontium 

Assays. AERE-R 3718. 

 

Bryant, F. J. and Loutit, J. F. 1964 The Entry of Strontium-90 Into Human Bone. 

Proceedigs of the Royal Society of London. Series B, Biological Sciences 159(976):449-

465. 

 

Bryant, J. D., Koch, P. L., Froelich, P. N., Showers, W. J. and Genna, B. J. 1996 Oxygen 

Isotope Partitioning Between Phosphate and Carbonate in Mammalian Apatite. 

Geochimica et Cosmochimica Acta 60(24):5145-5148. 

 

Budd, P., Montgomery, J., Barreiro, B. and Thomas, R. G. 2000 Differential Diagenesis of 

Strontium in Archaeological Human Dental Tissues Applied Geochemistry 15:687-694. 

 

Budd, P., Millard, A., Chenery, C., Lucy, S. and Roberts, C. 2004 Investigating Population 

Movements by Stable Isotope Analysis: A Report from Britain. Antiquity 78(299):127-

141. 

 

Buikstra, J. E. and Ubelaker, D. H. 1994 Standards for Data Collection from Human 

Skeletal Remains. Fayetteville, AK: Arkansas Archaeological Survey Research Series no. 

44. 

 

Callahan, J. R. 1993 Squirrels as Predators. Great Basin Naturalist 53(2):137-144. 

 

Calvin, M. and Benson, A. A. 1948 The Path of Carbon in Photosynthesis. Science 

107(2784):476-480. 

 

Capo, R. C., Stewart, B. W. and Chadwick, O. A. 1998 Strontium Isotopes as Tracers of 

Ecosystem Processes: Theory and Methods. Geoderma 82:197-225. 

 

Caut, S., Angulo, E. and Courchamp, F. 2008 Dietary Shift of an Invasive Predator: Rats, 

Seabirds and Sea Turtles. Journal of Applied Ecology 45:428-437. 

 

Cederlund, G. and Sand, H. 1994 Home-Range Size in Relation to Age and Sex in Moose. 

Journal of Mammology. 75(4):1005-1012 

 

Chard, D. F. 1995 Price and Profits of Accommodation: Massachusetts - Louisbourg 

Trade, 1713-1744. In Aspects of Louisbourg, edited by Eric Krause, Carol Corbin and 



 
267 

 

William O'Shea, pp. 209-227. The University College of Cape Breton Press, Sydney. 

 

Chenery, C. A., Pashley, V., Lamb, A. L., Sloane, H. J. and Evans, J. A. 2012 The Oxygen 

Isotope Relationship Between the Phosphate and Structural Carbonate Fractions of 

Human Bioapatite. Rapid Communications in Mass Spectrometry 26:309-319. 

 

Cheng, H. H., Bremner, J. M. and Edwards, A. P. 1964 Variations of Nitrogen-15 

Abundance of Soils. American Association for the Advancement of Science 

146(3651):1574-1575. 

 

Chiaradia, M., Gallay, A. and Todt, W. 2003 Different Contamination Styles of Prehistoric 

Human Teeth at a Swiss Necropolis (Sion, Valais) Inferred from Lead and Strontium 

Isotopes. Applied Geochemistry 18:353-370. 

 

Chmura, G. L. and Aharon, P. 1995 Stable Carbon Isotope Signatures of Sedimentary 

Carbon in Coastal Wetlands as Indicators of Salinity Regime. Journal of Coastal 

Research 11(1):124-135. 

 

Choi, Y., Wang Y., Hsieh, Y. and Robinson, L. 2001 Vegetation Succession and Carbon 

Sequestration in a Coastal Wetland in Northwest Florida: Evidence from Carbon Isotopes. 

Global Biogeochemical Cycles 15(2):311-319. 

 

Clark, A. H. 1965 New England’s Role in the Underdevelopment of Cape Breton Island 

During the French Regime, 1713-1758. The Canadian Geographer 9(1):1-12. 

 

Clark, A. H. 1980 New England’s Role in the Underdevelopment of Cape Breton Island 

During the French Regime 1713 – 1758. In Cape Breton Historical Essays, edited by Don 

Macgillivray and Brian Tennyson, pp.1-10. Collage of Cape Breton Press, Sydney. 

 

Cloern, J. E., Canuel, E. A. and Harris, D. 2002 Stable Carbon and Nitrogen Isotope 

Composition of Aquatic and Terrestrial Plants of the San Francisco Bay Estuarine System. 

Limnology and Oceanography 47(3):713-729. 

 

Codron, D., Lee-Thorp, J. A., Sponheimer, M. and Codron, J. 2007 Stable Carbon Isotope 

Reconstruction of Ungulate Diet Changes Through the Seasonal Cycle. South African 

Journal of Wildlife Research 37(2):117-125. 

 

Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. 

V., Wess, T. J., Csapὸ, J., Millard, A. R. and Turner-Walker, G. 2002 The Survival of 

Organic Matter in Bone: A Review. Archaeometry 44(3):383-394. 

 

Comar, C. L., Russell, R. S. and Wasserman, R. H. 1957 Strontium-Calcium Movement 

from Soil to Man. Science 126(3272):485-492. 

 

Conlee, C. A., Buzon, M. R., Gutierrez, A. N., Simonetti, A. and Creaser, R. A. 2009 



 
268 

 

Identifying Foreigners Versus Locals in a Burial Population From Nasca, Peru: An 

Investigation using Strontium Isotope Analysis. Journal of Archaeological Science 

36:2755-2764. 

 

Conteese, P., Hegglin, D., Gloor, S., Bontadina, F. and Deplazes, P. 2004 The Diet of 

Urban Foxes (Vulpes vulpes) and the Availability of Anthropogenic Food in the City of 

Zurich, Switzerland. Mammalian Biology 69(2):81-95. 

 

Coplen, T. B., Kendall, C. and Hopple, J. 1983 Comparison of Stable Isotope Reference 

Samples. Nature 302(17):236-238. 

 

Coplen, T.B., Hopple, J. A., Böhlke, J. K., Peiser, H. S., Rieder, S. E., Krouse, H. R., 

Rosman, K. J. R., Ding, T., Vocke, R. D. Jr., Révész, K. M., Lamberty, A., Taylor, P. and 

De Bievre, P. 2002 Compilation of Minimum and Maximum Isotope Ratios of Selected 

Elements in Naturally Occurring Terrestrial Materials and Reagents, USGSWater-

Resources Investigation Report 01– 4222. 

 

Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B. and 

Verkouteren, R. M. 2006 New guidelines for 
13

C measurements. Analytical Chemistry 

78:2439–2441. 

 

Cormie, A. B. and Schwarcz, H. P. 1994 Stable Isotopes of Nitrogen and Carbon of North 

American White-Tailed Deer and Implications for Paleodietary and Other Food Web 

Studies. Palaeogeography, Palaeoclimatology, Palaeoecology 107:227-241. 

 

Craig, H. 1953 The Geochemistry of the Stable Carbon Isotopes. Geochimica et 

Cosmochimica Acta 3:53-92. 

 

Craig, H. 1954 Carbon 13 in Plants and the Relationships Between Carbon 13 and Carbon 

14 Variations in Nature. The Journal of Geology 62(2):115-149. 

 

Craig, H. 1961 Isotopic Variations in Meteoric Waters. Science 133(3465):1702-1703. 

 

Crête, M. 1999 Caribou Rangifer tarandus. In The Smithsonian Book of North American 

Mammals, edited by Don E. Wilson and Sue Ruff, pp. 336-338. Smithsonian Institute 

Press, Washington and London. 

 

Crosby, W. O. 1876 Report on the Geological Map of Massachusetts. Press of A. A. 

Kingman, Boston. 

 

Crowe, F., Sperduti, A., O’Connell, T. C., Craig, O. E., Kirsanow, K., Germoni, P., 

Macchiarelli, R., Garnsey, P. and Bondioli, L. 2010 Water-Related Occupations and Diet 

in Two Roman Coastal Communities (Italy, First to Third Century AD): Correlation 

Between Stable Carbon and Nitrogen Isotope Values and Auricular Exostosis Prevalence. 

American Journal of Physical Anthropology 142:355-366. 



 
269 

 

 

Cumbaa, S. L. 1976. A Dietary Reconstruction of Louisbourg: La Cousine Haute et Basse 

on Isle Royale in the Eighteenth Century. Fortress of Louisbourg In-House Report. 

Fortress of Louisbourg National Historic Site of Canada, Louisbourg. 

 

Daniel, C. and Pin, C. 2001 Single-Stage Method for the Simultaneous Isolation of Lead 

and Strontium from Silicate Samples for Isotopic Measurement. Analytica Chimica Acta 

426:95-103. 

 

Dansgaard, W. 1953 The Abundance of O
18 
in Atmospheric Water and Water Vapour. 

Tellus V 4:461-469. 

 

Dansgaard, W. 1954 Oxygen-18 Abundance in Fresh Water. Nature 174:234-235. 

 

Dansgaard, W. 1964 Stable Isotopes in Precipitation. Tellus XVI 4:436-468. 

 

Dasch, J. E. 1969 Strontium Isotopes in Weathering Profiles, Deep-sea Sediments, and 

Sedimentary Rocks. Geochimica et Cosmochimica Acta 33:1521-1552. 

 

Daux, V., Lécuyer, C., Héran, M., Amiot, R., Simon, L., Fourel, F., Martineau, F., 

Lynnerup, N., Reychler, H. and Escarguel, G. 2008 Oxygen Isotope Fractionation 

Between Human Phosphate and Water Revisited. Journal of Human Evolution 55:1138-

1147. 

 

Davis, D. E., Emlen, J. T. Jr. and Stokes, A. W. 1948 Studies of Home Range in the 

Brown Rat. Journal of Mammalogy 29(3):207-225. 

 

De Forest, L. E. (editor) 1932 Louisbourg Journals 1975. The Vail-Ballou Press, Inc., 

Binghamton. 

 

Delwiche, C. C. and Steyn, P. L. 1970 Nitrogen Isotope Fractionation in Soils and 

Microbial Reactions. Environmental Science and Technology 4(11):929-935. 

 

DeNiro, M. J. 1977 Carbon Isotope Distribution in Food Chains. II. Mechanism of 

Carbon Isotope Fractionation Associated with Lipid Synthesis. Unpublished Ph.D. 

dissertation, Department of Geochemistry, California Institute of Technology, Pasadena.  

 

DeNiro, M. J. 1985 Postmortem Preservation and Alteration of in vivo Bone Collagen 

Isotope Ratios in Relation to Palaeodietary Reconstruction. Nature 317(31):806-809. 

 

DeNiro, M. J. 1987 Stable Isotopy and Archaeology. American Scientist 75(2):182-191. 

 

DeNiro, M. J. and Epstein, S. 1978 Influence of Diet on the Distribution of Carbon 

Isotopes in Animals. Geochimica et Cosmochimica Acta 42:495-506. 

 



 
270 

 

DeNiro, M. J. and Epstein, S. 1981 Influence of Diet on the Distribution of Nitrogen 

Isotopes in Animals. Geochimica et Cosmochimica Acta 45:341-351. 

 

DeNiro, M. J. and Schoeninger, M. J. 1983 Stable Carbon and Nitrogen Isotope Ratios of 

Bone Collagen: Variations Within Individuals, Between Sexes, and Within Populations 

Raised on Monotonous Diets. Journal of Archaeological Science 10:199-203. 

 

DePaolo, D. J. and Ingram, B. L. 1985 High-Resolution Stratigraphy with Strontium 

Isotopes. Science 227(4689):938-941. 

 

Derbridge, J. J. 2010 Summer Wolf Diet in Northwestern Montana. Master’s thesis, 

Department of Wildlife Biology, University of Montana, Missoula. 

 

Derbridge, J. J, Krausman, P. R. and Darimont, C. T. 2012 Using Bayesian Stable Isotope 

Mixing Models to Estimate Wolf Diet in a Multi-Prey Ecosystem. Journal of Wildlife 

Management 76(6):1277-1289. 

 

Dahlberg, A. A. 1956 Materials for the Establishment of Standards for Classification of 

Tooth Characteristics, Attributes, and Techniques in Morphological Studies of the 

Dentition. Zoller Laboratory of Dental Anthropology, University of Chicago, Chicago.  

 

Dinçer, T. 1968 The Use of Oxygen 18 and Deuterium Concentrations in the Water 

Balance of Lakes. Water Resources Research 4(6):1289-1306. 

 

Donovan, K. 1995 Communities and Families: Family Life and Living Conditions in 

Eighteenth-Century Louisbourg. In Aspects of Louisbourg, edited by Eric Krause, Carol 

Corbin and William O'Shea, pp. 117-149. The University College of Cape Breton Press, 

Sydney. 

 

Donovan, K. 2006 Imposing Discipline Upon Nature: Gardens, Agriculture and Animal 

Husbandry in Cape Breton, 1713-1758. Material Culture Review 64:20-37. 

 

Downey, F. 1965 Louisbourg: Key to a Continent. Prentice-Hall, Inc., Englewood Cliffs. 

 

Dufour, E., Bocherens, H. and Mariotti, A. 1999 Palaeodietary Implications of Isotopic 

Variability in Eurasian Lacustrine Fish. Journal of Archaeological Science 26:617-627. 

 

Duggan, R. 2007 Discovery of Eroding 18th Century Mass Burial Site at the Fortress of 

Louisbourg National Historic Site of Canada. Report presented at the 2007 meeting of the 

Nova Scotia Archaeology Society. 

 

Duggan, R. 2010 Skeletons in the Cellar. In Underground Nova Scotia: Stories of 

Archaeology, edited by Paul Erickson and Jonathan Fowler, pp.83-92. Nimbus 

Publishing, Halifax. 

 



 
271 

 

Dunton, K. H. and Schell, D. M. 1987 Dependence of Consumers on Macroalgal 

(Laminaria solidungula) Carbon in an Arctic Kelp Community: δ
13
C Evidence. Marine 

Biology 93:615-625. 

 

Dupras, T. L. and Schwarcz, Henry P. 2001 Strangers in a Strange Land: Stable Isotope 

Evidence for Human Migration in the Dakhleh Oasis, Egypt. Journal of Archaeological 

Science 28:1199-1208. 

 

Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J. and Lohmann, K. C. 2005 

Spatial Distribution and Seasonal Variation in 
18
O/

16
O of Modern Precipitation and River 

Water Across the Conterminous USA. Hydrological Processes 19:4121-4146. 

 

Emery, K. O., Wigley, R. L., Barlett, A. S., Rubin, M. and Barghoorn, E. S. 1967 

Freshwater Peat on the Continental Shelf. Science 158(3806):1301-1307. 

 

Epstein, S. and Mayeda, T. 1953 Variation of O
18
 Content of Waters from Natural 

Sources. Geochimica et Cosmochimica Acta 4:213-244. 

 

Evans, H. J. and Barber, L. E. 1977 Biological Nitrogen Fixation for Food and Fiber 

Production. Science 197(4301):332-339. 

 

Evans, J., Stoodley, N. and Chenery, C. 2006 A Strontium and Oxygen Isotope 

Assessment of a Possible Fourth Century Immigrant Population in a Hampshire 

Cemetery, Southern England. Journal of Archaeological Science 33:265-272. 

 

Evans, J. A., Tatham, S., Chenery, S. R. and Chenery, C. A. 2007 Anglo-Saxon Animal 

Husbandry Techniques Revealed Through Isotope and Chemical Variations in Cattle 

Teeth. Applied Geochemistry 22:1994-2005. 

 

Farquhar, G. D., Ehleringer, J. R. and Hubick, K. T. 1989 Carbon Isotope Discrimination 

and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 

40:503-537. 

 

Fisher, J. B., McArthur, L. H. and Petersen, J. B. 1997 Continuity and Change in the Food 

Habits of the Seventeenth-Century English Colonists in Plymouth and Massachusetts 

Bay. Ecology of Food and Nutrition 36:65-93. 

 

Fox-Dobbs, K., Bump, J. K., Peterson, R. O., Fox, D. L. and Koch, P. L. 2007 Carnivore-

Specific Stable Isotope Variables and Variation in the Foraging Ecology of Modern and 

Ancient Wolf Populations: Case Studies from Isle Royale, Minnesota, and La Brea. 

Canadian Journal of Zoology 85:458-471. 

 

Fry, B. W. 1984. “An Appearance of Strength”: The Fortifications of Louisbourg. Vol. 2. 

Parks Canada, Ottawa. 

 



 
272 

 

Fry, B. W. 1995 “An Appearance of Strength”: The Fortifications of Louisbourg. In 

Aspects of Louisbourg, edited by Eric Krause, Carol Corbin and William O'Shea, pp. 19-

69. The University College of Cape Breton Press, Sydney. 

 

Garten, C. T. 1993 Variation in Foliar 
15
N Abundance and the Availability of Soil 

Nitrogen on Walker Branch Watershed. Ecological Society of America 74(7):2098-2113. 

 

Gat, J. R. 1996 Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annual Review 

of Earth and Planetary Sciences 24:225-262. 

 

Gat, J. R., Mook, W. G. and Meijer, H. A. J. 2001 Atmospheric Water. Environmental 

Isotopes in the Hydrological Cycle Vol. II, No. 39, edited by W. G. Mook. International 

Hydrological Programme, Paris. 

 

Giblin, J. I. 2009 Strontium Isotope Analysis of Neolithic and Copper Age Populations on 

the Great Hungarian Plain. Journal of Archaeological Science 36:491-497. 

 

Graham, G. S. 1958 Empire of the North Atlantic: The Maritime Struggle for North 

America. University of Toronto Press, London. 

 

Grant, D. R. 1988 Surficial Geology, Cape Breton Island, Nova Scotia. Geological Survey 

of Canada. Map 1631A. scale 1:125 000. Electronic Document, http://geogratis.gc.ca/api/ 

en/nrcan-rncan/ess-sst/e399210a-889f-5055-ab0f8759a2821af9. html, accessed June 27, 

2013. 

 

Grant, M. E. and Prockup, D. J. 1972 The Biosynthesis of Collagen (First of Three Parts). 

The New England Journal of Medicine 286(4):194-199. 

 

Graustein, W. C. and Armstrong, R. L. 1983 The Use of Strontium-87/Strontium-86 

Ratios to Measure Atmospheric Transport Into Forested Watersheds. Science 

219(4582):289-292. 

 

Greene, J. 1988 Recent Developments in the Historiography of Colonial New England. 

Acadiensis 17(2):143-177. 

 

Guiry, E. J., Noël, S., Tourigny, E. and Grimes, V. 2012 A Stable Isotope Method for 

Identifying Transatlantic Origin of Pig (Sus Scrofa) Remains at French and English 

Fishing Stations in New England. Journal of Archaeological Science 39:2012-2022. 

 

Hadjidakis, D. J. and Androulakis, I. I. 2006 Bone Remodeling. Annals New York 

Academy of Sciences 1092:385-396. 

 

Handley, C. O. Jr. 1999 Deer Mouse, Peromyscus maniculatus. In The Smithsonian Book 

of North American Mammals, edited by Don E. Wilson and Sue Ruff, pp. 575-576. 

Smithsonian Institute Press, Washington and London. 



 
273 

 

 

Harris, D. A. 1982 A Summary of the Archaeology of the Town Site of Louisbourg 1959-

79. Fortress of Louisbourg In-House Report. Fortress of Louisbourg National Historic 

Site of Canada, Louisbourg.  

 

Harrison, R. G. and Katzenberg, M. A. 2003 Paleodiet Studies Using Stable Carbon 

Isotopes from Bone Apatite and Collagen: Examples from Southern Ontario and San 

Nicholas Island, California. Journal of Anthropological Archaeology 22:227-244. 

 

Hassler, W. W. Jr. 1982 With Shield and Sword: American Military Affairs, Colonial 

Times to the Present. Iowa State University Press, Ames. 

 

Hatch, M. D. and Slack, C. R. 1966 Photosynthesis by Sugar-Cane Leaves. Biochemical 

Journal 101:103-111. 

 

Hatch, M. D. and Slack, C. R. 1970 Photosynthetic CO2-Fixation Pathways. Annual 

Review of Plant Physiology 21:141-162. 

 

Heaton, T. H. E. 1999 Spatial, Species, and Temporal Variations in the 
13
C/

12
C Ratios of 

C3 Plants: Implications for Palaeodiet Studies. Journal of Archaeological Science 26:637-

649. 

 

Hershey, S. E. 1979 Morphology of the Wainwright Eskimo Dentition: Caribelli’s 

Structures. Ossa 6:115-124. 

 

Hess, J., Bender, M. L. and Schilling, J. 1986 Evolution of the Ratio of Strontium-87 to 

Strontium-86 in Seawater from Cretaceous to Present. Science 231(4741):979-984. 

 

Hilchey, J. D. 1981 Agricultural Usage of Dyked Salt Marshes: The Agricultural Future of 

Dyked Land in Nova Scotia. In Salt Marshes in Nova Scotia, edited by A. Hatcher and 

David G. Patriquin, pp. 44-52. Institute for Resource and Environmental Studies, 

Dalhousie University, Halifax. 

 

Hilderbrand, G. V., Farley, S. D., Robbins, C. T., Hanley, T. A., Titus, K. and Servheen, C. 

1996 Use of Stable Isotopes to Determine Diets of Living and Extinct Bears. Canadian 

Journal of Zoology 74:2080-2088.  

 

Hillson, S. 1996 Dental Anthropology. Cambridge University Press, Cambridge. 

 

Hitsman, J. M. and Bond, C. C. J. 1980 Louisbourg: A Foredoomed Fortress. In Cape 

Breton Historical Essays, edited by Don MacGillivray and Brian Tennyson, pp. 11-17. 

College of Cape Breton Press, Sydney. 

 

Hoad, L. M. 1976 Surgeons and Surgery in Isle Royale. Parks Canada, Ottawa. 

 



 
274 

 

Hoefs, J. 2004 Stable Isotope Geochemistry. Springer-Verlag, Berlin. 

 

Hoering, T. 1955 Variations of Nitrogen-15 Abundance in Naturally Occurring 

Substances. Science 122(3182):1233-1234. 

 

Honch, N. V., McCullagh, J. S. O. and Hedges, R. E. M. 2012 Variation in Bone Collagen 

Amino Acid δ
13
C Values in Archaeoogical Humans and Fauna with Different Dietary 

Regimes: Developing Frameworks of Dietary Discrimination. American Journal of 

Physical Anthropology 148:495-511. 

 

Hoppe, K. A., Koch, P. L. and Furutani, T. T. 2003 Assessing the Preservation of Biogenic 

Strontium in Fossil Bones and Tooth Enamel. International Journal of Osteoarchaeology 

13:20-28. 

 

Howell, A. H. 1936 A Revision of the American Arctic Hares. Journal of Mammalogy 

17(4):315-337. 

 

Hurst, R. W., Davis, T. E. and Elseewi, A. A. 1991 Strontium Isotopes as Tracers of Coal 

Combustion Residue in the Environment. Engineering Geology 30:59-77. 

 

Iacumin, P., Bocherens, H., Mariotti, A. and Longinelli, A. 1996 Oxygen Isotope Analyses 

of Co-existing Carbonate and Phosphate in Biogenic Apatite: A Way to Monitor 

Diagenetic Alteration of Bone Phosphate? Earth and Planetary Science Letters 142:1-6. 

 

International Atomic Energy Agency/World Meteorological Organization 2013 Global 

Network of Isotopes in Precipitation. The GNIP Database Accessible at: http://www.iaea. 

org/water.  

 

International Commission on Radiological Protection 1973 Alkaline Earth Metabolism in 

Adult Man. Pergamon Press, Oxford. 

 

International Commission on Radiological Protection 1975 Report of the Task Group on 

Reference Man. Pergamon Press, Oxford. 

 

Ïsçan, M. Y. 1985 Age Estimation from the Rib by Phase Analysis: White Females. 

Journal of Forensic Science 32:425-456. 

 

Ïsçan, M. Y., Loth, S. R. and Wright, R. K. 1984a Metamorphosis at the Sternal Rib End: 

A New Method to Estimate Age at Death in White Males. American Journal of Physical 

Anthropology 65:147-156. 

 

Ïsçan, M. Y., Loth, S. R. and Wright, R. K.1984b. Age Estimation for the Rib by Phase 

Analysis: White Males. Journal of Forensic Science 29:1094-1104. 

 

Jamieson, R. E. and Wadleigh, M. A. 1999 A Study of the Oxygen Isotopic Composition 



 
275 

 

of Precipitation Sulphate in Eastern Newfoundland. Water, Air, and Soil Pollution 

110:405-520. 

 

Jenkins, S. H. and Smith, D. W. 1999 American Beaver, Castor canadiensis. In The 

Smithsonian Book of North American Mammals, edited by Don E. Wilson and Sue Ruff, 

pp. 548-552. Smithsonian Institute Press, Washington and London. 

 

Jerkic, S. 1974 Excavations at Fort Louisbourg of Human Skeletons in the Summer of 

1974. Fortress of Louisbourg In-House Report. Fortress of Louisbourg National Historic 

Site of Canada, Louisbourg. 

 

Jiang, Y. 2011 Strontium Isotope Geochemistry of Groundwater Affected by Human 

Activities of Nandong Underground River System, China. Applied Geochemistry 26:371-

379. 

 

Jim, S., Ambrose, S. H. and Evershed, R. P. 2004 Stable Carbon Isotopic Evidence for 

Differences in the Dietary Origin of Bone Cholesterol, Collagen and Apatite: Implications 

for their use in Paleodietary Reconstruction. Geochimica et Cosmochimica Acta 68(1):61-

72. 

 

Johnston, A. J. B. 1995a From Port de Peche to Ville Fortifiee: The Evolution of Urban 

Louisbourg, 1713-1758. In Aspects of Louisbourg, edited by Eric Krause, Carol Corbin 

and William O'Shea, pp. 3-18. The University College of Cape Breton Press, Sydney. 

 

Johnston, A. J. B. 1995b The People of Eighteenth-Century Louisbourg. In Aspects of 

Louisbourg, edited by Eric Krause, Carol Corbin and William O'Shea, pp.150-161. The 

University College of Cape Breton Press, Sydney. 

 

Johnston, A. J. B. 1995c The Fishermen of Eighteenth-Century Cape Breton: Numbers 

and Origins. In Aspects of Louisbourg, edited by Eric Krause, Carol Corbin and William 

O'Shea, pp. 198-208. The University College of Cape Breton Press, Sydney. 

 

Johnston, A. J. B. 1996 Life and Religion at Louisbourg 1713-1758. McGill-Queen’s 

University Press, Montreal and Kingston.  

 

Johnston, A. J. B. 2001 Control and Order in French Colonial Louisbourg, 1713-1758. 

Michigan State University Press, East Lansing. 

 

Johnston, A. J. B. 2004 Storied Shores. University College of Cape Breton Press, Sydney. 

 

Jowsey, J. 1960 Age Changes in Human Bone. Clinical Orthopaedics 17:210-218. 

 

Jowsey, J., Phil, D., Kelly, P. J., Riggs, B. L., Bianco, A. J. Jr., Scholz, D. A. and Gershon-

Cohen, J. 1965 Quantitative Microradiographic Studies of Normal and Osteoporotic 

Bone. The Journal of Bone and Joint Surgery 47A(4):785-872. 



 
276 

 

 

Katzenberg, A. M. 1989 Stable Isotope Analysis of Archaeological Fauna Remains from 

Southern Ontario. Journal of Archaeological Science 16:319-329. 

 

Katzenberg, A. M. 1991 Analysis of Stable Isotopes of Carbon and Nitrogen. In Snake 

Hill: An Investigation of Military Cemetery from the War of 1812, edited by Susan 

Pfeiffer and Ronald F. Williamson, pp. 247-255. Dundurn Pr Ltd. 

 

Katzenberg, A. M. 2008 Stable Isotope Analysis: A Tool for Studying Past Diet, 

Demography and Life History. In Biological Anthropology of the Human Skeleton, edited 

by M. Anne Katzenberg and Shelly R. Saunders, pp. 411-441. John Wiley and Sons, Inc., 

Hoboken. 

 

Katzenberg, M. A., Schwarcz, H. P., Knyf, M. and Melby, F. J. 1995 Stable Isotope 

Evidence for Maize Horticulture and Paleodiet in Southern Ontario, Canada. American 

Antiquity 60(2):335-350. 

 

Keenleyside, A., Schwarcz, H., Sterling, L. and Lazreg, N. B. 1996 Stable Isotopic 

Evidence for Diet in a Roman and Late Roman Population from Leptiminus, Tunisia. 

Journal of Archaeological Science 36:51-63. 

 

Kelly, T. E. 2007 Strontium Isotope Tracing in Animal Teeth at the Neanderthal Site of 

Les Pradelles, Charante, France. Honors thesis. Department of Earth and Marine 

Sciences. The Australian National University. 

 

Kendall, E. J., Montgomery, J., Evans, J. A., Stantis, C. and Mueller, V. 2013 Mobility, 

Mortality, and the Middle Ages: Identification of Migrant Individuals in a 14
th
 Century 

Black Death Cemetery Population. American Journal of Physical Anthropology 150:210-

222. 

 

Keppie, J. D. (compiler) 2000 Geological Map of the Province of Nova Scotia. Nova 

Scotia Department of Natural Resources, Minerals and Energy Branch, Map ME 2000-1, 

scale 1:500 000. Electronic Document, http://www.gov.ns.ca/natr/meb/download/mg/map 

/htm/map_2000-001.asp, accessed June 27, 2003. 

 

Klepinger, L. L. 1984 Nutritional Assessment of Bone. Annual Review of Anthropology 

13:75-96. 

 

Klippel, W. E. 2001 Sugar Monoculture, Bovid Skeletal Part Frequencies, and Stable 

Carbon Isotopes: Interpreting Enslaved African Diet at Brimstone Hill, St Kitts, West 

Indies. Journal of Archaeological Science 28:1191-1198. 

 

Knowles, C. 1746 History of Nova Scotia: Knowles’ Disparaging Letter. Electronic 

Document, http://www.blupete.com/Hist/NovaScotiaBk1/Part5/KnowlesLetter.htm, 

accessed June 26, 2013. 



 
277 

 

 

Knudson, K. J., O’Donnabhain, B., Carver, C., Cleland, R. and Price, T. D. 2012 

Migration and Viking Dublin: Paleomobility and Paleodiet Through Isotopic Analyses. 

Journal of Archaeological Science 39:308-320. 

 

Koch, P. L., Tuross, N. and Fogel, M. L. 1997 The Effects of Sample Treatment and 

Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite. Journal of 

Archaeological Science 24:417-429. 

 

Kohn, M. J. 1996 Predicting Animal δ
18
O: Accounting for Diet and Physiological 

Adaptation. Geochimica et Cosmochimica Acta 60(23):4811-4829. 

 

Kohn, M. J. and Cerling, T. E. 2002 Stable Isotope Compositions of Biological Apatite. 

Reviews in Mineralogy and Geochemistry 48(1):455-488. 

 

Kohn, M. J., Schoeninger, M. J. and Barker, W. W. 1999 Altered States: Effects of 

Diagenesis on Fossil Tooth Chemistry. Geochimica et Cosmochimica Acta 63(18):2737-

2747. 

 

Krueger, H. W. 1991 Exchange of Carbon with Biological Apatite. Journal of 

Archaeological Science 18:355-361. 

 

Krueger, H. W. and Sullivan, C. H. 1984 Models for Carbon Isotope Fractionation 

Between Diet and Bone. In Stable Isotopes in Nutrition, vol. 258, edited by Judith R. 

Turnlynd and Phyllis E. Johnson, pp. 205-220. American Chemical Society, Washington. 

 

Kusaka, S., Nakano, T., Yumoto, T. and Nakatsukasa, M. 2011 Strontium Isotope 

Evidence of Migration and Diet in Relation to Ritual Tooth Ablation: A Case Study from 

the Inariyama Jomon Site Japan. Journal of Archaeological Science 38:166-174. 

 

Laerm, J. 1999 White-Tailed Deer, Odocoileus virginianus. In The Smithsonian Book of 

North American Mammals, edited by Don E. Wilson and Sue Ruff, pp. 331-333. 

Smithsonian Institute Press, Washington and London. 

 

Laffoon, J. E., Davies, G. R., Hoogland, M. L. P. and Hofman, C. L. 2012 Spatial 

Variation of Biologically Available Strontium Isotopes (
87
Sr/

86
Sr) in an Archipelagic 

Setting: A Case Study from the Carribean. Journal of Archaeological Science 39:2371-

2834. 

 

Land, L. S., Lundelius, E. L. Jr. and Valastro, S. Jr. 1980 Isotopic Ecology of Deer Bones. 

Palaeogeography, Palaeoclimatology, Palaeoecology 32:143-151. 

 

Landon, D. B. 1996 Feeding Colonial Boston: A Zooarchaeological Study. Historical 

Archaeology 30(1):1-153. 

 



 
278 

 

Lane Jonah, A. M. and Véchambre, C. 2012 French Taste in Atlantic Canada 1604 – 

1758: A Gastronomic History. Cape Breton University Press, Sydney. 

 

Leach, D. E. 1986 Roots of Conflict: British Armed Forces and Colonial Americans, 

1677-1763. The University of North Carolina Press, Chapel Hill and London. 

 

Lee, X., Smith, R. and Williams, J. 2006 Water Vapor 
18
O/

16
O Isotope Ratio in Surface 

Air in New England, USA. Tellus 58B(4):293-304. 

 

Lee-Thorp, J. 2002 Two Decades of Progress Towards Understanding Fossilization 

Processes and Isotopic Signals Calcified Tissue Minerals. Archaeometry 44(3):435-446. 

 

Lee-Thorp, J. A. and van der Merwe, N. J. 1991 Aspects of the Chemistry of Modern and 

Fossil Biological Apatites. Journal of Archaeological Science 18:343-354. 

 

Lee-Thorp, J. A., Sealey, J. C. and van der Merwe, N. J. 1989 Stable Carbon Isotope 

Ratio Differences Between Bone Collagen and Bone Apatite, and their Relationship to 

Diet. Journal of Archaeological Science 16:585-599. 

 

LeGeros, R. Z., Trautz, O. R., Klein, E. and LeGeros, J. P. 1969 Two Types of Carbonate 

Substitution in the Apatite Structure. Experientia 25(1):5-7. 

 

Lesage, L., Créte, M., Huot, J., Dumont, A. and Ouellet, J. 2000 Seasonal Home Range 

Size and Philopatry in Two Northern White-Tailed Deer Populations. Canadian Journal 

of Zoology 78:1930-1940. 

 

Lesage, V., Hammill, M. O. and Kovacs, K. M. 2001 Marine Mammals and the 

Community Structure of the Estuary and Gulf of St Lawrence Canada: Evidence from 

Stable Isotope Analysis. Marine Ecology Progress Series 210:203-221. 

 

Little, E. A. and Schoeninger, M. J. 1995 The Late Wodland Diet on Nantucket Island and 

the Problem of Maize in Coastal New England. American Antiquity 60(2):351-368. 

 

Longin, R. 1971 A New Method for Collagen Extraction for Radiocarbon Dating. Nature 

230:241-242. 

 

Longinelli, A. 1984 Oxygen Isotopes in Mammal Bone Phosphate: A New Tool for 

Paleohydrological and Paleoclimatological Research? Geochimica et Cosmochimica Acta 

48:385-390. 

 

Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R. and Mensforth, R. P. 1985 Chronological 

Metamorphosis of the Auricular Surface of the Ilium: A New Method for the 

Determination of Age at Death. American Journal of Physical Anthropology 68:15-28. 

 

MacDonald, N. S., Nusbaum, R. E., Stearns, R., Ezmirlian, F., McArthur, C. and Spain, P. 



 
279 

 

1951a The Ultimate Site of Skeletal Deposition of Strontium and Lead. The Journal of 

Biological Chemistry 189:387-399. 

 

MacDonald, N. S., Nusbaum, R. E., Stearns, R., Ezmirlian, F., McArthur, C. and Spain, P. 

1951b The Skeletal Deposition of Non-Radioactive Strontium. The Journal of Biological 

Chemistry 188:137-143. 

 

MacLean, T. 1995 Louisbourg Heritage: From Ruins to Reconstruction. University 

College of Cape Breton Press, Sydney. 

 

Madgwick, R., Mulville, J. and Evans, J. 2012 Investigating Diagenesis and the 

Suitability of Porcine Enamel for Strontium (
87
Sr/

86
Sr) Isotope Analysis. Journal of 

Analytical Atomic Spectrometry 27:733-742. 

 

Manolagas, S. C. 2000 Birth and Death of Bone Cells: Basic Regulatory Mechanisms and 

Implications for the Pathogenesis and Treatment of Osteoporosis. Endocrine Reviews 

21(2):115-137. 

 

Marino, B. D. and McElroy, M. B. 1991 Isotopic Composition of Atmospheric CO2 

Inferred from Carbon in C4 Plant Cellulose. Nature 349:127-131. 

 

Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A. and Tardieux, 

P. 1981 Experimental Determination of Nitrogen Kinetic Isotope Fractionation: Some 

Principles; Illustration for the Denitrification and Nitrification Processes. Plant and Soil 

62:413-430. 

 

Martell, J. S. 1980 Early Coal Mining in Nova Scotia. In Cape Breton Historical Essays, 

edited by Don Macgillivray and Brian Tennyson, pp. 41-53. College of Cape Breton 

Press, Sydney. 

 

Martin, C., Bentaleb, I., Kaandorp, R., Iacumin, P. and Chatri, K. 2008 Intra-tooth Study 

of Modern Rhinoceros Enamel δ
18
O: Is the Difference Between Phosphate and Carbonate 

δ
18
O a Sound Diagenetic Test? Palaeogeography, Palaeoclimatology, Palaeoecology 

266:183-189. 

 

Marvinney, R. G. 2002 Simplified Bedrock Geologic Map of Maine. Department of 

Conservation, Maine Geological Survey. Electronic Document, http://www.maine.gov/do 

c/nrimc/mgs/pubs/online/be 

drock/bedrock11x17.pdf, accessed June 27, 2013. 

 

Marvinney, R. G. 2003 Simplified Surficial Geologic Map of Maine. Department of 

Conservation, Maine Geologic Survey. Electronic Document, http://www.maine.gov/doc/ 

nrimc/mgs/pubs/online/surficial/surficial11x17.pdf, accessed June 27, 2013. 

 

Massachusetts Historical Society 1899 The Pepperell Papers, vol. 60. Collections of the 



 
280 

 

Massachusetts Historical Society, Boston.  

 

Mateo, M. A., Serrano, O., Serrano, L. and Michener, R. H. 2008 Effects of Sample 

Preparation on Stable Isotope Ratios of Carbon and Nitrogen in Marine Invertebrates: 

Implications for Food Web Studies Using Stable Isotopes. Oecologia 157:105-115. 

 

Mayhall, J. T. 2000 Dental Morphology: Techniques and Strategies. In Biological 

Anthropology of the Human Skeleton, edited by M. A. Katzenberg and S. R. Saunders, pp. 

103-134. Wiley-Liss Inc., New York. 

 

McLennan, J. S. 1918 Louisbourg: From its Foundation to its Fall: 1713-1758. 

MacMillan and Co., Limited, London. 

 

McMahon, S. F. 1985 A Comfortable Subsistence: The Changing Composition of Diet in 

Rural New England, 1620-1840. The William and Mary Quarterly 42(1):26-65. 

 

McNeill, J. R. 1985 Atlantic Empires of France and Spain: Louisbourg and Havana, 

1700-1763. The University of North Carolina Press, Chapel Hill and London. 

 

Meckstroth, A. M., Miles, A. K. and Chandra, S. 2007 Diets of Introduced Predators 

Using Stable Isotopes and Stomach Contents. The Journal of Wildlife Management 

71(7):2387-2392. 

 

Meindl, R. S. and Lovejoy, C. O. 1989 Ectocranial Suture Closure: A Revised Method for 

the Determination of Skeletal Age at Death Based on the Lateral-Anterior Sutures. 

American Journal of Physical Anthropology 68:57-66. 

 

Michener, R. H. and Kaufman, L. 2007 Stable Isotope Ratios as Tracers in Marine Food 

Webs: An Update. In Stable Isotopes in Ecology and Environmental Science, edited by 

Robert Michener and Kate Lajtha, pp. 238-279. Blackwell publishing, Oxford. 

 

Miller, E. K., Blum, J. D. and Friedland, A. J. 1993 Determination of Soil Exchangeable-

Cation Loss and Weathering Rates Using Sr Isotopes. Nature 362:438-441. 

 

Mingawa, M. and Wada, E. 1984 Stepwise Enrichment of 
15
N along Food Chains: Further 

Evidence and the Relation Between δ
15
N and Animal Age. Geochimica et Cosmochimica 

Acta 48:1135-1140. 

 

Miyake, Y. and Wada, E. 1967 The Abundance Ratio of 
15
N/

14
N in Marine Environments. 

Records of Oceanographic Works 9(2):37-53. 

 

Montgomery, J., Evans, J. A. and Cooper, R. E. 2007 Resolving Archaeological 

Populations with Sr-Isotope Mixing Models. Applied Geochemistry 22:1502-1514. 

 

Moore, C. 1982 Louisbourg Portraits. McMillan of Canada, a Devision of Gage 



 
281 

 

Publishing Limited, Toronto.  

 

Moore, C. 1995 The Other Louisbourg: Trade and Merchant Enterprise in Ile Royale, 

1713-1758. In Aspects of Louisbourg, edited by Eric Krause, Carol Corbin and William 

O'Shea, pp. 228-252. The University College of Cape Breton Press, Sydney. 

 

Müldner, G. and Richards, M. P. 2005 Fast or Feast: Reconstructing Diet in Later 

Medieval England by Stable Isotope Analysis. Journal of Archaeological Science 32:39-

48. 

 

Müller, W., Fricke, H., Halliday, A. N., McCulloch, M. T. and Wartho, J. 2003 Origin and 

Migration of the Alpine Iceman. Science 302:862-866. 

 

Murray, D. 1999 Snowshoe Hare, Lepus americanus. In The Smithsonian Book of North 

American Mammals, edited by Don E. Wilson and Sue Ruff, pp. 695-697. Smithsonian 

Institute Press, Washington and London. 

 

Nafplioti, A. 2008 “Mycanean” Political Domination of Knossos Following the Late 

Minoan IB Destructions on Crete: Negative Evidence from Strontium Isotope Ratios 

Analysis (
87
Sr/

86
Sr). Journal of Archaeological Science 35:2307-2317. 

 

Naughton, D. 2012 The Natural History of Canadian Mammals. University of Toronto 

Press, Toronto. 

 

Négrel, P., Petelet-Giraud, E. and Widory, D. 2004 Strontium Isotope Geochemistry of 

Alluvial Groundwater: A Tracer of Groundwater Resources Characterization. Hydrology 

and Earth System Sciences 8(5):959-972. 

 

Nelson, B. K., DeNiro, M. J., Schoeninger, M. J. and DePaolo, D. J. 1986 Effects of 

Diagenesis on Strontium, Carbon, Nitrogen and Oxygen Concentration and Isotopic 

Composition of Bone. Geochimica et Cosmochimica Acta. 50:1941-1949. 

 

Nixon, S. W. 1982 The Ecology of New England High Salt Marshes: A Community 

Profile. Fish and Wildlife Service, Washington. 

 

Oelze, V. M., Siebert, A., Nicklisch, N., Meller, H., Dresely, V. and Alt, K. W. 2011 Early 

Neolithic Diet and Animal Husbandry: Stable Isotope Evidence from Three 

Linearbandkeramik (LBK) Sites in Central Germany. Journal of Archaeological Science 

38:270-279. 

 

O’Neill, A. 1995 The Gardens of 18
th

-Century Louisbourg. In Aspects of Louisbourg, 

edited by Eric Krause, Carol Corbin and William O'Shea, pp. 162-168. The University 

College of Cape Breton Press, Sydney.  

 

O’Neir, A. O. and Gulbransen, E. A. 1939 Variations in the Relative Abundance of the 



 
282 

 

Carbon Isotopes. Journal of the American Chemical Society 61:697-698. 

 

Ortner, D. J. 2003 Identification of Pathological Conditions in Human Skeletal Remains. 

Academic Press, New York.  

 

O’Shea W. A. 1995 Forward. In Aspects of Louisbourg, edited by Eric Krause, Carol 

Corbin and William O'Shea, pp. iii-vi. The University College of Cape Breton Press, 

Sydney.  

 

Osmond, C. B., Allaway, W. G., Sutton, B. G., Troughton, J. H., Queiroz, O., Lüttge, U. 

and Winter, K. 1973 Carbon Isotope Discrimination in Photosynthesis of CAM Plants. 

Nature 246:41-42. 

 

Oulhote, Y., Le Bot, B., Deguen, S. and Glorennec, P. 2010 Using and Interpreting 

Isotope Data for Source Identification. Trends in Analytical Chemistry 30(2):302-312. 

 

Palmer, M. R. and Edmond, J. M. 1992 Controls Over the Strontium Isotope Composition 

of River Water. Geochimica et Cosmochimica Acta 56:2099-2111. 

 

Parish, J. M. 2006 Physical Anthropology Report on the Rochefort Point Rescue 

Excavation 2006, Fotress of Louisbourg National Historic Site of Canada. Fortress of 

Louisbourg In-house Report, Fortress of Louisbourg National Historic Site of Canada, 

Louisbourg. 

 

Parish, J. M. 2007 Physical Anthropology Report on the Rochefort Point Rescue 

Excavation 2007 – Phase 2, Fortress of Louisbourg National Historic Site of Canada. 

Fortress of Louisbourg In-house Report, Fortress of Louisbourg National Historic Site of 

Canada, Louisbourg. 

 

Parker, P. L. 1963 The Biogeochemistry of the Stable Isotopes of Carbon in a Marine Bay. 

Geochimica et Cosmochimica Acta 28:1155-1164. 

 

Parker, R. B. and Toots, H. 1970 Minor Elements in Fossil Bone. Geological Society of 

America Bulletin 81:925-932. 

 

Parker, G. R., Maxwell, J. W., Morton, L. D. and Smith, G. E. J. 1983 The Ecology of the 

Lynx (Lynx canadensis) on Cape Breton Island. Canadian Journal of Zoology 61:770-

786. 

 

Parwel, A., Ryhage, R. and Wickman, F. E. 1956 Natural Variations in the Relative 

Abundances of the Nitrogen Isotopes. Geochimica et Cosmochimica Acta 11:165-170. 

 

Patriquin, D. G. 1981 The General Biology of Salt Marshes. In Salt Marshes in Nova 

Scotia, edited by A. Hatcher and David G Patriquin, pp. 4-27. Institute for Resource and 

Environmental Studies, Dalhousie University, Halifax. 



 
283 

 

 

Peterson, R. L. (editor) 1966 The Mammals of Eastern Canada. Oxford University Press, 

Toronto. 

 

Peterson, R. O. 1999 Moose, Alces alces. In The Smithsonian Book of North American 

Mammals, edited by Don E. Wilson and Sue Ruff, pp. 334-336. Smithsonian Institute 

Press, Washington and London. 

 

Phenice, T. 1969 A Newly Developed Visual Method for Sexing in the Os Pubis. 

American Journal of Physical Anthropology 30:297-301. 

 

Pisanu, B., Caut, S., Gutjahr, S., Vernon, P. and Chapuis, J. 2011 Introduced Black Rats 

Rattus rattus on Ile de la Possession (Iles Crozet, Subantarctic): Diet and Trophic Position 

in Food Webs. Polar Biology 34:169-180. 

 

Poyart, C. F., Fréminet, A. and Bursaux, E. 1975 The Exchange of Bone CO2 In Vivo. 

Respiration Physiology 25:101-107. 

 

Price, D. T. and Gestsdóttir, H. 2006 The First Settlers of Iceland: An Isotopic Approach 

to Colonisation. Antiquity 80:130-144. 

 

Price, T. D., Burton, J. H. and Bentley, R. A. 2002 The Characterization of Biologically 

Available Strontium Isotope Ratios for the Study of Prehistoric Migration. Archaeometry 

44(1):117-135. 

 

Price, D. T., Knipper, C., Grupe, G. and Smrcka, V. 2004 Strontium Isotopes in 

Prehistoric Human Migration: The Bell Beaker Period in Central Europe. European 

Journal of Archaeology 7(1):9-40. 

 

Price, D. T., Tiesler, V. and Burton, J. H. 2006 Early African Diaspora in Colonial 

Campeche, Mexico: Strontium Isotopic Evidence. American Journal of Physical 

Anthropology 130:485-490. 

 

Price, D. T., Burton, J. H., Fullagar, P. D., Wright, L. E., Buikstra, J. E. and Tiesler, V. 

2008 Strontium Isotopes and the Study of Human Mobility in Ancient Mesoamerica. 

Latin American Antiquity 19(2):167-180. 

 

Prowse, T. L., Schwarcz, H. P., Saunders, S. R., Macchiarelli, R. and Bondioli, L. 2005 

Isotopic Evidence for Age-Related Variation in Diet From Isola Sacra, Italy. American 

Journal of Physical Anthropology 128:2-13. 

 

Quadango, D. M. 1968 Home Range Size in Feral House Mice. Journal of Mammalogy 

49(1):149-151. 

 

Rawlyk, G. A. 1999 Yankees at Louisbourg: A Story of the First Siege 1745. Breton 



 
284 

 

Books, Wreck Cove. 

 

Raynor, L. A., Kennett, D. J. and Pfeiffer, S. 2008 Dietary Variability Among a Sample of 

United States Soldiers During the War of 1812. Historical Archaeology 42(2):76-87. 

 

Reinfelder, J. R., Kraepiel, A. M. L. and Morel, F. M. M. 2000 Unicellular C4 

Photosynthesis in a Marine Diatom. Nature 407:996-999. 

 

Reitsema, L. J. and Vercellotti, G. 2012 Stable Isotope Evidence for Sex- and Status-

Based Variations in Diet and Life History at Medieval Trino Vercellese, Italy. American 

Journal of Physical Anthropology 148:589-600. 

 

Richards, M. P. and Hedges, R. E. M. 1999 Stable Isotope Evidence for Similarities in the 

Types of Marine Foods Used by Late Mesolithic Humans at Sites Along the Atlantic 

Coast of Europe. Journal of Archaeological Science 26:717-772. 

 

Richards, M. P., Pettitt, P. B., Trinkaus, E., Smith, F. H., Paunovic, M. and Karavanic, I. 

2000 Neanderthal Diet at Vindija and Neanderthal Predation: The Evidence from Stable 

Isotopes. PNAS 97(13):7663-7666. 

 

Richards, M. P., Mays, S. and Fuller, B. T. 2002 Stable Carbon and Nitrogen Isotope 

Values of Bone and Teeth Reflect Weaning Age at the Medieval Wharram Percy Site, 

Yorkshire, UK. American Journal of Physical Anthropology 119:205-210. 

 

Richards, M. P., Fuller, B. T. and Molleson, T. I. 2006 Stable Isotope Palaeodietary Study 

of Humans and Fauna from Multi-Period (Iron Age, Viking and Late Medieval) site of 

Newark Bay, Orkney. Journal of Archaeological Science 33:122-131. 

 

Rick, T. C., Culleton, B. J., Smith, C. B., Johnson, J. R. and Kennett, D. J. 2011 Stable 

Isotope Analysis of Dog, Fox, and Human Diets at a Late Holocene Chumash Village 

(CA-SRI-2) on Santa Rosa Island, California. Journal of Archaeological Science 

38:1385-1393. 

 

Ritchie, J. T. 1998 Soil Water Balance and Plant Water Stress. Understanding Options for 

Agricultural Production 7:41-54. 

 

Roberts, P., Weston, S., Wild, B., Boston, C., Ditchfield, P., Shortland, A. J. and Pollard, 

A. M. 2012 The Men of Nelson’s Navy: A Comparative Stable Isotope Dietary Study of 

Late 18
th
 Century and Early 19

th
 Century Servicemen from Royal Naval Hospital Burial 

Grounds at Plymouth and Gosport, England. American Journal of Physical Anthropology 

148(1):1-10. 

 

Rodgers, J. (compiler) 1985 Bedrock Geological Map of Conneticut. Conneticut 

Geological and Natual History Survey, Natural Resources Center, Department of 

Environmental Protection. Electronic Document, http://ngmdb.usgs.gov/Prodesc/proddes 



 
285 

 

c_54245.htm, accessed June 27, 2013. 

 

Roland, A. E. and Smith, E. C. 1969 The Flora of Nova Scotia. The Nova Scotia 

Museum, Halifax. 

 

Rosing, M. N., Ben-David, M. and Berry, R. P. 1998 Analysis of Stable Isotope Data: A K 

Nearest-Neighbors Randomization Test. The Journal of Wildlife Management 62(1):380-

388. 

 

Roth, J. D. 2003 Variability in Marine Resources Affects Arctic Fox Population 

Dynamics. Journal of Animal Ecology 72:668-676. 

 

Roth, J. D., Marshall, J. D., Murray, D. L., Nickerson, D. M. and Steury, T. D. 2007 

Geographical Gradients in Diet Affect Population Dynamics of Canada Lynx. Ecology 

88(11):2736-2743. 

 

Rowe, F. W. 1980 A History of Newfoundland and Labrador McGraw-Hill Ryerson 

Limited, Toronto. 

 

Saunders, S. R. 1978 The Development and Distribution of Discontinuous Morphological 

Variation in the Human Infracranial Skeleton. Archaeological Survey of Canada, Paper 

81. National Museum of Man, Ottawa. 

 

Scheuer, J. L. and Elkington, M. 1993 Sex Determination from Metacarpals and the First 

Proximal Phalanx. Journal of Forensic Sciences 38:769-778. 

 

Schoeninger, M. J. 1985 Trophic Level Effects on 
15
N/

14
N and 

13
C/

12
C Ratios in Bone 

Collagen and Strontium Levels in Bone Mineral. Journal of Human Evolution 14:515-

525. 

 

Schoeninger, M. J. and DeNiro, M. J. 1984 Nitrogen and Carbon Isotopic Composition of 

Bone Collagen from Marine and Terrestrial Animals. Geochimica et Cosmochimica Acta 

48:625-639. 

 

Schoeninger, M. J., DeNiro, M. J. and Tauber, H. 1983 Stable Nitogen Isotope Ratios of 

Bone Collagen Reflect Marine and Terrestrial Components of Prehistoric Human Diet. 

Science 220(4604):1381-1383. 

 

Schour, I. and Massler, M. 1940 Studies in Tooth Development: the Growth Pattern of 

Human Teeth. Journal of the American Dental Association 27:1778-1792. 

 

Schroeder, H., O’Connell, T. C., Evans, J. A., Shuler, K. A. and Hedges, R. E. M. 2009 

Trans-Atlantic Slavery: Isotopic Evidence for Forced Migration to Barbados. American 

Journal of Physiological Anthropology 139:547-557.  

 



 
286 

 

Schwarcz H.P. 2010 Report on Analyses of Hair Sample from Louisbourg. In Analysis of 

an 18
th
 Century Hair Sample from the Fortress of Louisbourg, edited by Joy M. Moyle, 

Appendix B. Parks Canada, Analytical Services, Ontario Service Center. Fortress of 

Louisbourg In-House Report. Fortress of Louisbourg National Historic Site of Canada, 

Louisbourg. 

 

Schwarcz, H. P., Melbye, J., Katzenberg, M. A. and Knyf, M. 1985 Stable Isotopes in 

Human Skeletons of Southern Ontario: Reconstructing Palaeodiet. Journal of 

Archaeological Science 12:187-206. 

 

Sealey, J., Armstrong, R. and Schrire, C. 1995 Beyond Lifetime Averages: Tracing Life 

Histories Through Isotopic Analysis of different Calcified Tissues from Archaeological 

Human Skeletons. Antiquity 69(263):290-298. 

 

Seidensticker, J. 1999 Red Fox, Vulpes vulpes. In The Smithsonian Book of North 

American Mammals, edited by Don E. Wilson and Sue Ruff, pp. 150-152. Smithsonian 

Institute Press, Washington and London. 

 

Seliskar, D. M. and Gallagher, J. L. 2000 Exploiting Wild Poulation Diversity and 

Somaclonal Variation in the Salt Marsh Grass Distichlis spicata (Poaceae) for Marsh 

Creation and Restoration. American Journal of Botany 87(1):141-146. 

 

Semal, P. and Orban, R. 1995 Collagen Extraction from Recent and Fossil Bones: 

Quantitative and Qualitative Aspects. Journal of Archaeological Science 22:463-467. 

 

Shaw, B. J., Summerhayes, G. R., Buckley, H. R. and Baker, J. A. 2009 The Use of 

Strontium Isotopes as an Indicator of Migration in Human and Pig Lapita Populations in 

the Bismarck Archipelago, Papau New Guinea. Journal of Archaeological Science 

36:1079-1091. 

 

Sievert, P. R. and Keith, L. B. 1985 Survival of Snowshoe Hares at a Geographic Range 

Boundary. The Journal of Wildlife Management 49(4):854-866. 

 

Sillen, A., Hall, G., Richardson, S. and Armstrong, R. 1998 
87
Sr/

86
Sr Ratios in Modern 

and Fossil Food-Webs of the Sterkfontein Valley: Implications for Early Hominid Habitat 

Preference. Geochimica et Cosmochimica Acta 62(14)2463-2473. 

 

Smith, B. N. 1972 Natural Abundance of Stable Isotopes of Carbon in Biological 

Systems. BioScience 22(4):226-231. 

 

Smith, B. N. and Epstein, S.1971 Two Categories of 
13
C/

12
C Ratios for Higher Plants. 

Plant Physiology 47(3):380-384. 

 

Spiers, F. W. 1966 Dose to Bone from Strontium-90: Implications for the Setting of the 

Maximum Permissible Body Burden. Radiation Research 28(3):624-642. 



 
287 

 

 

Sponheimer, M. and Lee-Thorp, J. A. 1999 Oxygen Isotopes in Enamel Carbonate and 

their Ecological Significance. Journal of Archaeological Science 26:723-728. 

 

Stapp, P. 2002 Stable Isotopes Reveal Evidence of Predation by Ship Rats on Seabirds on 

the Shiant Islands, Scotland. Journal of Applied Ecology 39:831-840. 

 

Stevens, R. E., Lister, A. M. and Hedges, R. E. M. 2006 Predicting Diet, Trophic Level 

and Palaeoecology from Bone Stable Isotope Analysis: A Comparative Study of Five Red 

Deer Populations. Oecologia 149(1):12-21. 

 

Stone, J. R., Schafer, J. P., London, E. H. and Thompson, W. B. 1992 Surficial Materials 

Map of Conneticut. US Geologcial Survey, scale 1:125 000. Electronic Document, http:// 

ngmdb.usgs.gov/Prod esc/proddesc_34876.htm, accessed June 27, 2013. 

 

Stribling, J. M. and Cornwell, J. C. 1997 Identification of Important Primary Producers in 

a Chesapeake Bay Tidal Creek System Using Stable Isotopes of Carbon and Sulfur. 

Estuaries 20(1):77-85. 

 

Suchey, J. M. and Katz, D. 1986 Skeletal Age Standards Derived from an Extensive 

Multiracial Sample of Modern Americans. Abstract. American Journal of Physical 

Anthropology 69:269. 

 

Sulzman, E. W. 2007 Chapter 1: Stable Isotope Chemistry and Measurement: A Primer. In 

Stable Isotopes in Ecology and Environmental Science. Second Edition, edited by Robert 

Michener and Kate Lajtha, pp. 1-21. Blackwell Publishing, Oxford. 

 

Tang, K. and Feng, X. 2001 The Effects of Soil Hydrology on the Oxygen and Hydrogen 

Isotopic Compositions of Plant’s Source Water. Earth and Planetary Science Letters 

185:355-367. 

 

Tewksbury, J. J., Hejl, S. J. and Martin, T. E. 1998 Breeding Productivity Does Not 

Decline with Increasing Fragmentation in a Western Landscape. Ecology 79(8):2890-

2903. 

 

Tieszen, L. L. and Fagre, T. 1993 Effect of Diet Quality and Composition on the Isotopic 

Composition of Respiratory CO2, Bone Collagen, Bioapatite, and Soft Tissues. In 

Prehistoric Human Bone: Archaeology at the Molecular Level, edited by Joseph B. 

Lambert and Gisela Grupe, pp. 121-292. Springer-Verlag, New York. 

 

Todd, T. W. 1921a Age Changes in the Pubic Bone I: The Male White Pubis. American 

Journal of Physical Anthropology 3:285-334. 

 

Todd, T. W. 1921b Age Changes in the Pubic Bone III: The Pubis of the White Female IV: 

The Pubis of the Female White-Negro Hybrid. American Journal of Physical 



 
288 

 

Anthropology 4:1-70. 

 

Turner, B. L., Kamenov, G. D., Kingston, J. D. and Armelagos, G. J. 2009 Insights into 

Immigration and Social Class at Machu Picchu, Peru Based on Oxygen, Strontium, and 

Lead Isotopic Analysis. Journal of Archaeological Science 36:317-332. 

 

Tykot, R. H., Falabella, F., Planella, M. T., Aspillaga, E., Sanhueza, L. and Becker, C. 

2009 Stable Isotopes and Archaeology in Central Chile: Methodological Insights and 

Interpretive Problems for Dietary Reconstruction. International Journal of 

Osteoarcaeology 19:156-170. 

 

Ubelaker, D. H. and Owsley, D. W. 2003 Isotopic Evidence for Diet in the Seventeenth-

Century Colonial Chesapeake. American Antiquity 68(1):129-139. 

 

Urton, E. J. M. and Hobson, K. A. 2005 Intrapopulation Variation in Gray Wolf Isotope 

(δ
15
N and δ

13
C) Profiles: Implications for the Ecology of Individuals. Oecologia 145:317-

326. 

 

Van Cleemput, O., Boeckx, P., Lindgren, P. and Tonderski, K. 2007 Denitrification in 

Wetlands. In Biology of the Nitrogen Cycle, edited by H. Bothe, S. J. Ferguson and W. E. 

Newton, pp. 359-368. Elsevier, New York.  

 

van der Merwe, N. J. 1982 Carbon Isotopes, Photosynthesis, and Archaeology: Different 

Pathways of Photosynthesis Cause Characteristic Changes in Carbon Isotope Ratios that 

Make Possible the Study of Prehistoric Human Diets. American Scientist 70(6):596-606. 

 

van der Merwe, N. J., Williamson, R. F., Pfeiffer, S., Thomas, S. C. and Allegretto, K. O. 

2003 The Moatfield Ossuary: Isotopic Dietary Analysis of an Iroquoian Community, 

Using Dental Tissue. Journal of Anthropological Archaeology 22:245-261. 

 

van Klinken, G. J. 1999 Bone Collagen Quality Indicators for Palaeodietary and 

Radiocarbon Measurements. Journal of Archaeological Science 26:687-695. 

 

van Spanning, R. J. M., Richardson, D. J. and Ferguson, S. J. 2007 Introduction to the 

Biochemistry and Molecular Biology of Denitrification. In Biology of the Nitrogen Cycle, 

edited by H. Bothe, S. J. Ferguson and W. E. Newton, pp. 3-20. Elsevier, New York.  

 

Varkey, J. 2002 The French Seaboard Empire and Colonial Louisbourg, 1713-1758. 

IRISH, Tillicherry. 

 

Veizer, J. 1989 Strontium Isotopes in Seawater Through Time. Annual Review of Earth 

Planetary Science 17:141-167. 

 

Vernon, C. W. 1903 Cape Breton Canada. Nation Publishing Co., Toronto. 

 



 
289 

 

Virginia, R. A. and Delwiche, C. C. 1982 Natural 
15
N Abundance of Presumed N2-Fixing 

and Non-N2-Fixing Plants from Selected Ecosystems. Oecologia 54(3):317-325. 

 

Vogel, J. C. and van der Merwe, N. J. 1977 Isotopic Evidence for Early Maize Cultivation 

in New York State. American Antiquity 42(2):238-242. 

 

Von Endt, D. W. and Ortner, D. J. 1984 Experimental Effects of Bone Size and 

Temperature on Bone Diagenesis. Journal of Archaeological Science 11:247-253. 

 

Wada, E., Kadonaga, T. and Matsuo, S. 1975 
15
N Abundance in Nitrogen of Naturally 

Occurring Substances and Global Assessment of Denitrification from Isotopic Viewpoint. 

Geochemical Journal 9:139-148. 

 

Wadleigh, M. A., Veizer, J. and Brooks, C. 1985 Strontium and Its Isotopes in Canadian 

Rivers: Fluxes and Global Implications. Geochimica et Cosmochimica Acta 49:1727-

1736. 

 

Walcott, R. R. 1936 Husbandry in Colonial New England. The New England Quarterly 

9(2):218-252. 

 

Walker, P. L. and DeNiro, M. J. 1986 Stable Nitrogen and Carbon Isotope Ratios in Bone 

Collagen as Indices of Prehistoric Dietary Dependence on Marine and Terrestrial 

Resources in Southern California. American Journal of Physical Anthropology 71:51-61. 

 

Waller, S. S. and Lewis, J. K. 1979 Occurrence of C3 and C4 Photosynthetic Pathways in 

North American Grasses. Journal of Range Management 32(1):12-28. 

 

Wan, C. S. M. and Sage, R. F. 2001 Climate and the Distribution of C4 Grasses Along the 

Atlantic and Pacific Coasts of North America. Canadian Journal of Botany 79:474-486. 

 

Wang, Y. and Cerling, T. E. 1994 A Model of Fossil Tooth and Bone Diagenesis: 

Implications for Paleodiet Reconstruction from Stable Isotopes. Palaeogeography, 

Palaeoclimatology, Palaeoecology 107:281-289. 

 

Waser, N. A. D., Harrison, P. J., Neilsen, B., Calvert, S. E. and Turpin, D. H. 1998 

Nitrogen Isotope Fractionation During the Uptake and Assimilation of Nitrate, Nitrite, 

Ammonium, and Urea By a Marine Diatom. Limnology and Oceanography 43(2):215-

224. 

 

Wellman, R. P., Cook, F. D. and Krouse, H. R. 1968 Nitrogen-15: Microbiological 

Alteration of Abundance. Science 161(3838):269-270. 

 

Whipkey, C. E., Capo, R. C., Chadwick, O. A. and Stewart, B. W. 2000 The Importance 

of Sea Spray to the Cation Budget of a Coastal Hawaiian Soil: A Strontium Isotope 

Approach. Chemical Geology 168:37-48.  



 
290 

 

 

Whitaker, J. O. Jr. 1999 Meadow Jumping Mouse, Zapus hudsonius. In The Smithsonian 

Book of North American Mammals, edited by Don E. Wilson and Sue Ruff, pp. 666-667. 

Smithsonian Institute Press, Washington and London. 

 

White, C. D., Spence, M. W., Longstaffe, F. J. and Law, K. R. 2004a Demography and 

Ethnic Continuity in the Tlailotlacan enclage of Tiotihuacan: The Evidence from Stable 

Oxygen Isotopes. Journal of Anthropological Archaeology 23:385-403. 

 

White, C., Longstaffe, F. J. and Law, K. R. 2004b Exploring the Effects of Environment, 

Physiology and Diet on Oxygen Isotope Ratios in Ancient Nubian Bones and Teeth. 

Journal of Archaeological Science 31:233-250. 

 

Wood, W. 1920 The Great Fortress: A Chronicle of Louisbourg 1720-1760. University of 

Toronto Press, Toronto. 

 

Wright, L. E. 2005 Identifying Immigrants to Tikal, Guatemala: Defining Local 

Variability in Strontium Isotope Ratios of Human Tooth Enamel. Journal of 

Archaeological Science 32:555-566. 

 

Wynn, G. 1979 Late Eighteenth-Century Agriculture on the Bay of Fundy Marshlands. 

Acadiensis 8(2):80-89. 

 

Xu, J., Fan, X., Zhang, X., Xu, D., Mou, S., Cao, S., Zeng, Z., Miao, J. and Ye, N. 2012 

Evidence of Coexistence of C3 and C4 Photosynthetic Pathways in a Green-Tide-Forming 

Alga, Ulva prolifera. PLos ONE 7(5):1-10. 

 

Xu, Z. and Han, G. 2009 Chemical and Strontium Isotope Characterization of Rainwater 

in Beijing, China. Atmospheric Environment 43:1954-1961. 

 

Yoder, C. 2010 Diet in Medieval Denmark: A Regional and Temporal Comparison. 

Journal of Archaeological Science 37:2224-2236. 

 

Young, P. J. 1999 Red Squirrel, Tamiasciurus hudsonicus. In The Smithsonian Book of 

North American Mammals, edited by Don E. Wilson and Sue Ruff, pp. 460-461. 

Smithsonian Institute Press, Washington and London. 

 


