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Abstract 

This thesis presents the chararacteristics of eight biomass ash/char samples obtained from 

three pulp and paper mills in Canada. It also discusses the results from the adsorption 

studies conducted using these biomass ash/char to remove sulfur and selenium oxy-anions 

from mining effluent water streams such Acid Mine Drainage (AMD). Chemical, 

physical, thermal and structural characteristics investigated in this study confirmed the 

suitability of using these ash/char as adsorbents in waste water treatment applications. 

Batch equilibrium adsorption experiments were performed using individual solutions of 

thiosulphate, trithionate, tetrathionate, selenite and selenate by varying different 

parameters (ash type, initial pH, adsorbent dose, temperature). Maximum adsorption 

efficiency and adsorption capacity values obtained for sulphur oxy-anions were 35.6% 

and 14.24 mg/g of CBM-W biomass char. For selenium oxy-anions, the maximum 

adsorption efficiency and adsorption capacity values were at 15.2% and 0.211 mg/g of 

CLM2 biomass ash. Thermodynamic parameters were calculated and the data were fitted 

using Langmuir and Freundlich isotherm equations. The results confirmed that sulphur 

and selenium oxy-anions have considerable affinity towards biomass ash/char. However, 

further characterization of spent biomass ash/char needs to be carried out in order to 

identify the adsorption mechanism and also to modify biomass ash/char chemically or 

thermally to yield high removal efficiencies. Therefore, this study substantially 

contributes in assessing the feasibility of using one waste stream to treat another waste 

stream in the field of sustainable waste management. 
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Chapter 1 : Introduction and Overview 

1.1 Introduction 

Biomass ash is generated as a byproduct of combustion of forestry residue and/or fossil 

fuels that are used for energy generation in cogeneration plants. It has been estimated that 

approximately 476 million tons of biomass ash is generated worldwide annually based on 

combustion of 7 billion tons of biomass with 6.8% mean ash yield on dry basis (Vassilev 

et al., 2013a). Ash is generally disposed of in landfills which involve significant costs in 

ash handling and disposal such as fuel, manpower, obtaining permits for the landfill and 

also, heat of ash can cause landfill fires which is a serious environmental and safety 

concern. Due to the limited availability of landfills as well as the strict environmental 

regulations, it has become necessary to find alternative uses for these biomass ashes.  

 

On the other hand, discharge of untreated mining effluent waste streams such as AMD 

can lead to pH reduction, depletion of dissolved oxygen, and dissolution of metals from 

the sediment in the receiving natural water bodies which is extremely harmful to aquatic 

species (Dinardo and Sally, 1998). Sulphur oxy-anions present in mining effluent water, 

also known as thiosalts have relatively low toxicity, however, sulphuric acid formed by 

thiosalt oxidation can cause severe effect to aquatic life along with other adverse effects 

stated above. Selenium, on the other hand, is an essential nutrient for plants, animals and 

humans, however, it is toxic at higher concentrations (Bleiman and Mishael, 2010).  
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1.2 Scope and Objectives 

There are extensive studies done on using coal fly ash for different applications such as 

cement and concrete products, structural fill and cover material, roadway, addition to 

construction materials, infiltration barrier and mine back filling, and soil, water and 

environmental remediation (Ahmaruzzaman, 2010). However, there are no published 

studies to be found on treatment of selenium and sulphur oxy-anions from waste water 

using biomass ash/char obtained from pulp and paper mill boilers. Utilization of biomass 

ash for treatment of sulphur and selenium oxy anions in mining effluent water is a 

beneficial and sustainable approach to waste treatment as one waste stream is used to treat 

another waste stream. Therefore, possibility of using biomass ash as an adsorbent to treat 

sulphur and selenium oxy-anions present in mining effluent water was investigated in this 

study.  

 

The main objectives are; 

 Investigation of past data on adsorption of sulfur and selenium oxy-anions using 

various adsorbents through a comprehensive literature review 

 Chemical, physical, thermal, structural characterization of biomass ash/char 

collected from three pulp and paper mill boilers and determining the suitability of 

using these ash/char to treat sulfur and selenium oxy-anions from effluent water 

streams 
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 Designing and conducting batch equilibrium adsorption tests using individual 

solutions of thiosulphate, trithionate, tetrathionate, selenite and selenate by 

varying different parameters (ash type, initial pH, adsorbent dose, temperature) 

 Determining adsorption efficiencies, adsorption capacities and thermodynamic 

parameters to understand the nature and extent of adsorption 

 Adsorption isotherm modeling to investigate the surface properties and affinity of 

the adsorbent 

 

1.3 Thesis Structure 

This thesis is written in the manuscript format and is divided into seven chapters 

including the Introduction and Overview (Chapter 1) and Summary (Chapter 7) chapters. 

Figure 1-1 illustrates the interdependency of these chapters and each chapter is briefly 

outlined in the following paragraphs. 

 

Chapter 2 provides a comprehensive review on removal of thiosalts and sulphates from 

mining effluent water mainly with reference to adsorption and ion exchange applications. 

Importance of thiosalts, behavior of thiosalts at different temperature and pH as well as 

current thiosalt treatment methods are discussed in this chapter. This paper is being 

considered to be published as a critical review in the Environmental Chemistry journal.  

 

Chapter 3 provides a comprehensive literature review on removal of selenite and selenate 

from aqueous media by adsorption. The areas discussed in this chapter includes chemistry 
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of selenium, batch adsorption studies, list of various adsorbents used and their adsorption 

capacities. Adsorption isotherms, kinetics and thermodynamics are further discussed in 

this chapter. This paper is being submitted as a critical review in the Environmental 

Science and Technology journal. 

 

Chapter 4

Characterization of Biomass Ash/

Char from Pulp and Paper Mill 

Boilers

Chapter 5

Adsorption of  Thiosulphate, 

Trithionate, Tetrathionate Using 

Biomass Ash/Char

Chapter 6

Adsorption of  Selenite and 

Selenate Using Biomas Ash/Char

Chapter 2

Review on Removal of  Thiosalts 

and Sulphates from Mining 

Effluents by Adsorption and Ion 

Exchange

Chapter 3

Review on Removal of Selenite 

and Selenate from Aqueous Media 

by Adsorption 

Chapter 1

Introduction and Overview

Chapter 7

Summary

 

Figure 1-1: Structure of the Thesis 
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Chapter 4 is on characterization of biomass ash/char obtained from three pulp and paper 

mill boilers. Eight ash/char samples were characterized chemically, physically, thermally, 

and structurally by inductively coupled plasma mass spectrometry and optical emission 

spectrometry (ICP-MS, ICP-OES), CNS (carbon, nitrogen, sulfur) elemental analysis, 

mineral liberation analysis (MLA), X-ray diffraction (XRD), Fourier transform infrared 

spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), specific surface area, 

pore volume, bulk density, pH, total alkalinity, thermo-gravimetric analysis (TGA) and 

results are discussed in detail. This paper is being submitted to the Journal of 

Environmental Chemical Engineering. 

 

Chapter 5 is on treatment of sulphur oxy-anions (thiosulphate, trithionate, tetrathionate) 

using biomass ash/char. Batch mixing experiments were conducted with different types of 

ash/char and at different parameters (pH 2, 4, 7, 9; biomass ash/char dose 20, 50, 80 g/L; 

Temperature 5, 21, 35
 o

C). The data were fitted using Langmuir and Freundlich 

adsorption isotherm models. Also, some suggestions for future work are provided. This 

paper will be submitted to the Journal of Hazardous Materials. 

 

Chapter 6 is on treatment of selenium oxy-anions (selenite, selenate) using biomass ash 

(CLM2 sample). Batch mixing experiments were conducted by varying the experimental 

parameters (pH 2, 4, 7, 9; biomass ash dose 20, 50, 80 g/L; Temperature 5, 21, 35 
o
C). 

The thermodynamic parameters were calculated (Gibbs free energy, entropy, enthalpy 
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change) to understand the nature of adsorption. Also, some suggestions for future work 

are provided. This paper will be submitted to the Journal of Hazardous Materials. 
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Abstract 

Thiosalts are generated as intermediate products in the oxidation of sulphide ores in the 

presence of oxygen and water. Although, thiosalts have relatively low toxicity, sulphuric 

acid formed as the final product in the oxidation of these sulphide ores, leads to pH 

depression in the receiving water bodies creating toxic conditions for aquatic plant and 

animal life. Further, these  effluents may even contaminate the groundwater. Therefore, 

proper management and treatment of mining effluent water containing these sulphur 

species is of great importance. This paper discusses the generation and importance of 

Acid Mine Drainage (AMD), different sulphur species present in AMD, mainly, sulphate 

and thiosalts (thiosulphate, trithionate, tetrathionate), behavior of thiosalts at different pH 

(2, 4, 7, 9) and temperature (4, 15, 30 
o
C) and various thiosalt treatment methods such as 

natural degradation, chemical oxidation, biological oxidation. Furthermore, use of various 

carbonaceous adsorbents, ion exchange resins, fly ash and fly ash zeolites used for 

sulphate and thiosalt removal by adsorption and ion exchange are discussed in detail. 
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2.1 Introduction 

Acid Mine Drainage (AMD) is an unintended, yet unavoidable by-product of mining and 

mineral industry. AMD is formed due to oxidation of reactive mine tailings (Hendricks, 

2005). According to estimates by the Government of Canada, the Canadian mining 

industry generates 1 million tonnes of waste rock and 950,000 tonnes of tailings per day 

totaling 650 million tonnes of mine waste per year that have the potential to create AMD 

(MiningWatch Canada, 2003). AMD is generated when sulphide minerals such as pyrite 

(FeS2) found in mines undergo an oxidation process in the presence of water, oxygen and 

bacteria, which results in the generation of weak sulphuric acid (H2SO4) that mobilizes 

heavy metals and other rock compounds (Vadapalli et al., 2012). Pyrite is one of the most 

extensively studied minerals with respect to AMD. Mineralogy and other factors affecting 

AMD production vary from site to site. Iron sulphides are the underlying cause of most 

AMD production (Akcil and Koldas, 2006). Under anoxic and dry conditions sulphide 

minerals are relatively stable, however, exposure to oxygen and water accelerates the 

oxidation of pyrite (FeS2) and other sulphidic minerals. This process is accelerated by a 

factor up to 10
6
 in the presence of chemolithotrophic microorganisms (Johnson, 2003). 

The generation of AMD from metal sulphides (mainly pyrite, pyrrhotite, and marcasite) is 

well established and the overall reaction for pyrite oxidation  is outlined below. 

 

 FeS2 + 7/2 O2 + H2O  Fe
2+

 + 2SO4 
2-

 + 2H
+
    (2-1) 
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It should be noted this is a global reaction equation and the actual mechanism is made up 

of several steps (Miranda-Trevino et al., 2012). 

 

AMD is characterized by high acidity (pH 2–4), high sulphate concentrations (1–20 g/L) 

as well as high concentrations of elements such as Fe, Mn, Al, Cu, Zn, Pb and Cd. Further 

complexation of ferrous and ferric oxidation products dissolved in water gives the 

red/orange colour in AMD streams (Hendricks, 2005; Surender, 2009). The extreme pH 

and high content of dissolved heavy metals make the wastewater highly toxic which leads 

to persistent environmental problems. AMD has a detrimental effect on aquatic plant and 

animal life in receiving water streams if discharged without proper treatment. Further, 

groundwater contamination due to AMD is another very serious concern (Gitari, 2006). 

 

This paper gives an overview on AMD generation and importance with regards to various 

sulphur species present in AMD, mainly sulphates and thiosalts (sulphur oxyanions). 

Thiosalt behaviour at different pH and temperatures and conventional thiosalt treatment 

methods are reviewed. Furthermore, thiosalts and sulphate removal from mining effluent 

water using carbonaceous adsorbents, ion exchange resins, coal fly ash and coal fly ash 

derived zeolites is discussed in detail. 

 

2.2 Thiosalts and Sulphates in AMD  

Inorganic sulphur compounds are present in nature as sulphides, polysulphides, elemental 

sulphur, sulphite, sulphate, thiosulphate, and polythionates (Mohapatra et al., 2008) and 
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also as metal thiosulphate complexes (O’Reilly et al., 2001). Most traditional forms of 

AMD treatment focuses on sulphate as the predominant sulphur species. However, 

several studies have shown that thiosalts, sulphur oxyanions of the form thiosulphate 

(S2O3
2-

) and polythionates (SxO6
2- 
where 3≤x≥10), and polysulphides (Sn

2-
), where n is 

greater than or equal to 2), play an important role in the chemical and biological reactivity 

of mining waters/tailings (Dinardo and Sally, 1998; Miranda-Trevino et al., 2012; 

Wasserlauf and Dutrizac, 1982).  

 

2.2.1 Sulphates 

As stated earlier, oxidation of sulphide minerals leads to formation of weak sulphuric 

acid, and therefore effluent from the mining processes has a high concentration of 

sulphate. Sulphate (SO4
2-

) is a harmful contaminant in aquatic environments due to the 

potential toxicity caused by high acidity as well as due to the resulting metal mobility.  

 

Mining activities are considered to be the primary source of sulphate generation in British 

Columbia, Canada (Meays and Nordin, 2013). The Ministry of Environment of British 

Columbia has set Ambient Water Quality Guidelines for sulphate to protect drinking 

water and freshwater aquatic life. As per the guidelines, dissolved sulphate concentration 

in freshwater should not exceed 100 mg/L at any time to protect aquatic life and the 

sulphate guideline for drinking water is 500 mg/L. AMD data from a South African mine 

shows that, AMD can even contain sulphate concentrations in excess of 20,000 mg/L 

(Surender, 2009). South African National Standard (SANS 241:2006) specifies the 
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sulphate limit for potable water as less than 400 mg/L (Surender, 2009). This requires that 

more than 98% of sulphate to be removed from the typical mining process. Traditional 

systems require significant volumes of chemicals and other treatment agents to meet these 

standards. Ideally, if the amount of sulphate in the wastewater could be reduced through 

sulphur management of the wastewaters, the footprint of treatment systems and associated 

chemicals used would be reduced. 

 

2.2.2 Thiosalts 

Thiosalts occur as intermediates in the oxidation of sulphide ores, such as pyrite. Pyrite 

oxidation occurs via two major oxidants, Ferric ion (Fe
3+

 ) and oxygen (O2) (Miranda-

Trevino et al., 2012). Pyrite oxidation is a complex process and products will depend on 

the conditions of the solution. Thiosalts are also known as polythionates with the 

following general formula, SnOm
2-

. Thiosalt species present in mining effluent water are 

thiosulphate (S2O3
2-

), trithionate (S3O6
2-

), tetrathionate (S4O6
2-

) and also very low 

concentrations of higher polythionates (Dinardo and Sally, 1998; Miranda-Trevino et al., 

2012). Thiosulphate (S2O3
2-

) is considered to be the first thiosalt product of pyrite 

oxidation. Other sulphur species resulting from pyrite oxidation are trithionate (S3O6
2-

), 

tetrathionate (S4O6
2-

) and sulphate (SO4
2-

) (Miranda-Trevino et al., 2012). Several studies 

have identified key factors in the generation of thiosalts in the mining process such as 

sulphur content in the ore, grinding and flotation pH, residence time in the mill, agitation 

rate, temperature, SO2 addition, dissolved oxygen in the grinding solution, air flow in 
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flotation and chemicals used in the system (Miranda-Trevino et al., 2012; Negeri et al., 

1999). 

 

The reactivity of thiosalts is complex and depends on many factors such as temperature, 

pH, dissolved oxygen content, microorganisms and presence of heavy metals. At typical 

tailing pond conditions most sulphur compounds oxidize to sulphate, however, partially 

oxidized species, such as thiosalts are slow to oxidize and can also be present in the 

tailings pond (Miranda-Trevino et al., 2012; Wasserlauf and Dutrizac, 1982). 

 

Although thiosalts have relatively low toxicity (Dinardo and Sally, 1998) and their 

concentrations are not been strictly regulated, sulphuric acid formed by thiosalt oxidation 

can cause severe effect to aquatic life along with other adverse effects like depletion of 

dissolved oxygen, reduction in buffering capacity and dissolution of metals from the 

sediment (Dinardo and Sally, 1998).  

 

The Environmental Code of Practice for Metal Mines in Canada states that proper thiosalt 

management practices should be in place at sites where there is a risk of thiosalts 

occurring in wastewater from ore processing, which are summarized as follows: minimize 

the discharge of thiosalt-bearing wastes to the environment by recycling the water back to 

the ore processing facility; implementing measures to ensure thiosalt degradation on site; 

monitor concentrations of thiosalts in wastewater and also check for pH depression 
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downstream; minimize the concentration of thiosalts in mining effluent before it is 

discharged to the environment (Environment Canada, 2009). 

 

2.2.3 Importance of Thiosalts 

Most of the prevention and remediation techniques used in the treatment of AMD are not 

designed to treat intermediate sulphur species formed during the mining operations or in 

the tailing ponds and these intermediate species can cause serious impact if left untreated. 

For example, a solution with a thiosulphate concentration of 500 ppm could have a 

serious effect resulting in a pH depression of 5 units if oxidized completely (Miranda-

Trevino et al., 2012). 

 

2.2.4 Thiosalt Behaviour at Different pH and Temperature 

Behaviour of thiosulphate, trithionate, tetrathionate at different pH (2, 4, 7, 9) and 

temperature (4, 15, 30 
o
C) is given in Table 2-1. It should be noted these are not mixtures, 

but rather solutions with single thiosalt species. 
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Table 2-1: Thiosalt behaviour at different pH and temperature 

(Modified from Miranda-Trevino et al., 2012; Vongporm, 2008) 

pH Thiosalt species 4
o
C 15

o
C 30

o
C 

 

2 

Thiosulphate S2O3
2-

 Decomposes to S3O6
2-

, SO4
2-

, S4O6
2-

 

Trithionate S3O6
2-

 Stable Decomposes to 

S2O3
2-

, SO4
2-

, S4O6
2-

 

Tetrathionate S4O6
2-

 Stable 

 

4 

Thiosulphate S2O3
2-

 Stable 

Trithionate S3O6
2-

 Stable Decomposes to S2O3
2-

, SO4
2-

, S4O6
2-

 

Tetrathionate S4O6
2-

 Stable 

 

7 

Thiosulphate S2O3
2-

 Stable 

Trithionate S3O6
2-

 Stable Decomposes to S2O3
2-

, SO4
2-

, S4O6
2-

 

Tetrathionate S4O6
2-

 Stable 

 

9 

Thiosulphate S2O3
2-

 Stable Decomposes to 

S3O6
2-

, SO4
2-

, S4O6
2-

 

Trithionate S3O6
2-

 Stable Decomposes to 

S2O3
2-

, SO4
2-

, S4O6
2-

 

Tetrathionate S4O6
2-

 Decomposes to S2O3
2-

, SO4
2-

, S3O6
2-
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2.3 Thiosalt Treatment Methods 

Typical methods to treat thiosalts focus on oxidizing the thiosalts using peroxide and/or 

ferric sulphate and then liming as per AMD treatment, natural degradation, and other 

biological and chemical methods (Miranda-Trevino et al., 2012). Natural degradation is 

limited in cold climates due to reduced bacterial and chemical reactivity in winter months 

due to reduced temperature and sunlight.  The chemical/physical methods and biological 

oxidation could achieve a target concentration of <100 mg/L thiosalts. However, these 

methods are expensive both from a cost and environmental perspective (Dinardo and 

Sally, 1998).  

 

In the following sections, the traditional thiosalt treatment technologies in the mining 

industry are summarized. 

 

2.3.1 Chemical Oxidation  

Chemical oxidation of thiosalts is the most common treatment approach. Hydrogen 

peroxide (H2O2), chlorine (Cl2), ozone (O3), Cu-catalyzed air, SO2-air are typical 

oxidants. The advantages of using chemical oxidation as outlined by Dinardo and Sally 

(1998) include, fast reaction rates with short retention time, dosages can be varied to 

accommodate seasonal and operational caused variations in thiosalts concentration and 

flow rate, potential high treatment efficiencies (depending on the thiosalt species). Some 

disadvantages include, high initial capital investment and costs of chemical oxidants, and 

by-product formation (Dinardo and Sally, 1998). 
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2.3.2 Metal Catalyzed Air Oxidation  

Air oxidation of thiosalts under normal pressures and temperatures is a very slow process 

and it is not practical for thiosalts oxidation from large volumes of effluent. Catalysts 

containing metals such as copper, manganese, nickel, cobalt, tungsten, zirconium, and 

titanium are considered as effective catalysts in oxidizing sulphur compounds contained 

in effluents. Advantages are; low cost method; process does not require reagents; do not 

produce toxic by-products; complete oxidation of thiosalts can be achieved; sulphur 

bonded catalysts (e.g. natural chalcopyrite) have good long term catalytic activity and is 

inexpensive. Disadvantages are; most catalysts require frequent regeneration resulting in 

high operational costs; catalysts are not effective at low temperatures; gypsum 

precipitation on the catalyst may reduce the active surface (Dinardo and Sally, 1998).  

 

2.3.3 Biological Oxidation 

In biological oxidation, bacteria may enhance oxidation of thiosalt to produce elemental 

sulphur, polythionates and sulphate. However, under suitable environmental conditions, 

sulphate is the final end-product. Studies indicate that indigenous Thiobacillus species 

can oxidize thiosalts at a pH of 2. Biological oxidation of thiosalts is site specific and the 

treatment process is mainly a function of temperature and pH. Advantages include the 

process is relatively safe with respect to handling and storage due to non toxic by- 

products, low energy requirements, and the process is simple in design (Abbassi and 

Hawboldt, 2011; Dinardo and Sally, 1998). The disadvantages are, reduced efficiency at 
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low temperatures, ability to treat all species of thiosalt, additional treatment may be 

required (Dinardo and Sally, 1998; Miranda-Trevino et al., 2012).  

 

2.3.4 Reverse Osmosis and Other Membrane Processes  

Reverse Osmosis (RO) is a technically feasible process which has proven to remove 

thiosalts from synthetic solutions. However, the operational and maintenance costs of a 

RO system is very high and extensive pre-treatment is required to prevent membrane 

fouling due to scale formation and growth of bacteria (Dinardo and Sally, 1998). 

 

2.3.5 Electrochemical Oxidation  

Electrochemical oxidation is a technically feasible process for treatment of thiosalts. 

Catalysts could be combined with electro oxidation to improve the efficiency of the cell 

to oxidize thiosalts and reduce power requirement. One disadvantage is that 

electrochemical treatment of effluent is generally limited to specific streams with low 

flows and high concentrations (Dinardo and Sally, 1998). 

 

2.3.6 Natural Degradation  

Natural degradation in the treatment ponds is a conventional method used to treat 

thiosalts in milling effluents. This involves a long retention period in the pond, usually up 

to one year allowing time for bacterial oxidation to happen. Low water temperature, low 

dissolved oxygen and short retention time limit natural oxidation in the ponds. However, 
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in the summer it is an effective and economic method as the rate of oxidation of thiosalts 

increases due to temperature and sunlight. It is not a feasible year-round method due to 

the reduced bacterial activity during autumn and winter seasons particularly in northern 

climates such as Canada (Dinardo and Sally, 1998). 

 

2.4 Adsorption and Ion Exchange Applications 

Adsorption is used in many industries such as chemical, food, petroleum, and 

pharmaceutical for pollution control and it is a well established technology in treating 

industrial wastewaters. In the adsorption process, contaminants are accumulated at a solid 

surface from a liquid or gaseous medium. There are two types of adsorption; physical 

adsorption and chemisorption. In physical adsorption, the bonds between the solid surface 

and the adsorbed molecules are weak van der waals forces which makes it relatively easy 

to reverse the process. In chemisorption, contaminant molecules are adsorbed on to the 

solid surface by forming strong chemical bonds and as such it is more energy intensive to 

reverse the process. In ion exchange, similarly charged ions are exchanged between a 

liquid and a solid phase until equilibrium conditions is achieved and it is a reversible 

process. Ion exchange is a stoichiometric reaction unlike the adsorption process (Gupta et 

al., 2009). 

 

There have not been many studies using ion exchange and adsorption processes for 

thiosalts removal although there are some studies carried out on sulphate removal from 

AMD using adsorbents derived from coal fly ash and fly ash derived zeolites. The 
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following sections will review these literature to understand the application of adsorption 

and ion exchange principles in removing thiosalts and sulphates from laboratory 

synthesized solutions as well as from AMD. 

 

2.4.1 Thiosalts Removal Using Carbonaceous Adsorbents 

A limited number of studies have focused on thiosalt adsorption using different 

adsorbents namely, activated carbon, bone charcoal, activated charcoal, bituminous coal , 

peat, alumina, diatomaceous earth and clay. These studies indicate that only activated 

carbon was able to remove significant quantities of thiosalt. Details of these studies can 

be found in CANMET (Canada Centre for Mineral and Energy Technology) reports by 

Dinardo and Sally (1998), Rolia and Barbeau (1979), Wasserlauf and Dutrizac (1983), 

and Wasserlauf et al. (1985). 

 

In the study conducted by Rolia and Barbeau, 1979 using activated charcoal, no thiosalt 

removal from synthetic solutions of thiosulphate, tetrathionate and trithionate was 

achieved despite varying the pH, temperature and residence time in the range of  6 to 12, 

20
o
C to 65

o
C and 30 min to 230 min (Rolia and Barbeau, 1979). 

 

Noranda Research Centre conducted laboratory scale studies using activated carbon as an 

adsorbent and had been successful in removing significant quantities of thiosalts. Batch 

tests were done with six commercial activated carbon brands where Calgon Filtrasorb 200 

brand performed the best with a loading capacity of 10 kg thiosalts/100 kg of carbon 
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(Wasserlauf and Dutrizac, 1982). Depending on the extent of removal of thiosalts and 

metal contaminants, the effluent from the columns was either directly discharged or sent 

for further treatment. A number of regeneration options were studied. Alkaline 

regeneration of the carbon bed was found to be uneconomical and thermal regeneration 

was found to be even more expensive. Biological regeneration was suggested as an 

economic alternative. However, the high capital and operational cost involved in 

managing an activated carbon adsorption system was identified as a major limitation in 

implementation (Wasserlauf and Dutrizac, 1982; Wasserlauf et al., 1985). 

 

Activated carbon adsorption can typically meet environmental standards (depending on 

contaminants) with no major health, safety, or environmental issues associated with 

operating the system. However, there is little data on the treatment efficiency using 

activated carbon adsorption for thiosalts, issues around disposal and regeneration of spent 

carbon, suspended solids,  and oil and grease in the effluent, and bacterial growth on the 

bed could reduce the effectiveness of process and regeneration. Also, fine carbon particles 

may be difficult to remove from the treated effluent, and carbon requirements may be 

higher than calculated amounts due to adsorption of other contaminants such as metals 

and sulphate on to carbon which can reduce the available active sites for thiosalt removal 

(Dinardo and Sally, 1998; Wasserlauf et al., 1985). 
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2.4.2 Thiosalts Removal Using Ion Exchange Resins 

There have been several studies on detection of thiosalts by using anion-exchange resins 

mostly on the chromatographic elution of sulphur anions (Aly et al., 1977; Chanda et al., 

1984; Druschel et al., 2003; Iguchi, 1958; Jeffrey and Brunt, 2007; Wolkoff and R. H. 

Larose, 1975).   

 

A detailed study on sorption isotherms and kinetics of ion exchange sorption of thiosalts 

was done by Chanda et al. (1984). In this study, high selectivity of the ion exchanger for 

thiosalts over sulphate was observed. Ion exchange sorption behaviour of thiosuphate 

(S2O3
2-

) and tetrathionate (S4O6
2-

) on two commercially available gel type weak-base 

resins; cross-linked PVP (poly 4-vinyl pyridine) and Amberlite IRA 68 was studied in 

batch equilibrium conditions as well as in a column. The resins were converted to the acid 

form by treatment with excess 0.5 M H2SO4 before use in the ion-exchange study. In the 

batch equilibrium studies, measured amounts of protonated resin were vigorously shaken 

with specific volumes of thiosalt solutions for 15 hours in a tightly sealed flask. The tests 

were carried out with different concentrations of  thiosulphate and tetrathionate solutions 

(Chanda et al., 1984). The ion exchange characteristics of resins after treatment with the 

acid are outlined below in the Table 2-2. 
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Table 2-2: Sorbent details after treatment with excess H2SO4 (Chanda et al., 1984) 

Characteristic PVP - H2SO4 IRA-68 - H2SO4 

Bulk density 0.65 gcm
-3

 0.73 gcm
-3

 

Moisture content 45.6% (by wt.) 57% (by wt.) 

Proton content 3.25 mmol g
-1

 2.07 mmol g
-1

 

 

The sorption of S2O3
2-

 by PVP-H2SO4 occurs due to exchange of counter ions, that is 

exchange of S2O3
2- 

in place of SO4
2-

. The equilibrium data for the sorption of S2O3
2-

 and 

S4O6
2-

 on PVP-H2SO4 and IRA-68-H2SO4 are plotted against the equilibrium solution 

concentrations in Figure 2-1. 

 

Figure  2-1: Sorption isotherms for S2O3
2- 

 and S4O6
2- 

(Chanda et al., 1984)  

Temperature 24 
o
C; pH =7.0-8.5 for S2O3

2-
 and pH = 5.7-6.2 for S4O6

2-
 ; Resin Loading; 

PVP-H2SO4 4 g/L and IRA-68-H2SO4 6 g/L. 
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The equilibrium sorption data of S2O3
2- 

and S4O6
2- 

were fitted to Langmuir and Freundlich 

isotherms. The Langmuir isotherm provided an excellent fit to the equilibrium sorption 

data for both resins and the calculated equation parameters indicated that S4O6
2- 

is more 

strongly bound to both resins than S2O3
2-

 (Chanda et al., 1984). 

 

The effect of change in solution pH on the thiosalt equilibrium sorption capacity on to 

both resins is shown in Figure 2-2.  

 

Figure 2-2: Effect of pH on equilibrium sorption of S2O3
2-

 and S4O6
2-

 by the resins 

(Chanda et al., 1984) 

Temperature 24
o
C; Thiosalt concentration 10 mmol/L; Resin Loading PVP-H2SO4 4 g/L 

and IRA-68-H2SO4 6 g/L. 

 

The sorption capacity is not affected by pH in the range 5-9. There's a small increase in 

sorption of S4O6
2- 

between pH 2-5, as some free basic sites in the resin may be protonated 

and become active due to acidic nature leading to sorption of more ions. This  effect is not 
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observed in S2O3
2-

 adsorption due to the instability of thiosulphate ion at acidic 

conditions. At  pH>9, the sorption capacity with respect to both S2O3
2-

 and S4O6
2- 

 falls 

rapidly (Chanda et al., 1984).  

 

The sorption of S2O3
2-

 and S4O6
2- 

on both resins was measured with time under vigorous 

agitation at ambient temperature to determine kinetics and the results are shown in Figure 

2-3.
 

 

Figure 2-3: Sorption of S2O3
2-

 and S4O6
2- 

by both resins with time under vigorous 

agitation (Chanda et al., 1984) 

Temperature 24 
o
C; pH 7.0 - 7.9 for S2O3

2- 
and pH = 5.8 - 6.3 for S4O6

2-
; Resin Loading: 

PVP-H2SO4 0.4% (w/v) slurry and IRA-68-H2SO4  0.6% (w/v) slurry; Initial 

concentration of thioanion 4 mmol/L (--O), 6 mmol/L (--∆), 8 mmol/L (--□). 

 

The time to equilibrium sorption for both S2O3
2-

 and S4O6
2- 

 appears to be independent of 

the thiosalt concentrations in solution. The ion-exchange sorption processes under the 
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conditions given was concluded to be particle-diffusion controlled. Since the sorbent 

resins have cross-linked matrices, the resin particle size was assumed to remain 

unchanged with sorption (Chanda et al., 1984).  

 

The performance of the ion exchangers in continuous operation in columns was studied 

with the two resins outlined above and a third gel-type strong base resin IRA-458 (in Cl
-
 

form). Figure 2-4 shows the breakthrough curves obtained with the three types of resins. 

The PVP resin provided the sharpest breakthrough (Chanda et al., 1984).
 

 

 

Figure 2-4: Breakthrough curves for S2O3
2-

 obtained by ion exchange (Chanda et al., 

1984) 

Bed height 34 cm;
 
PVP - H2SO4 resin  details: 7 g, column diameter 0.64 cm, influent rate 

1.77 mL/min; IRA-68 - H2SO4  resin details: 17 g, column diameter 0.91 cm, influent rate 

5.6 ml/min;
 
IRA- 458 resin details: 17 g, column diameter 0.91 cm, influent rate 5.6 

mL/min. 
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It was concluded, that thiosulphate and tetrathionate anions in aqueous effluents can be 

removed efficiently by ion exchange on protonated PVP and IRA-68 resins within the 

operating pH range of 3-8. The protonated PVP has a faster rate of thianion sorption than 

the protonated IRA-68. Also, it is concluded that sorption kinetics on both the resins are 

particle-diffusion controlled (Chanda et al., 1984). Trithionate had not been studied, 

which is problematic as trithionate has been proposed as a key intermediate in various 

studies (for a review of these studies see Miranda-Trevino et al., 2012 (Miranda-Trevino 

et al., 2012)). 

 

2.4.3 Sulphate Removal from Aqueous Effluents Using Coal Fly Ash/ Zeolites 

Many of the studies on sulphate adsorption/ion exchange from synthesized solutions, 

mining effluent waters or any other sources focus on coal fly ash and fly ash derived 

zeolites.  

 

The feasibility of treatment of AMD using coal fly ash (from a power plant in South 

Africa) and the creation of a zeolite from the AMD treated adsorbent were studied by 

Gitari et al., 2007; Vadapalli et al., 2012. The impact of pH was analyzed by varying the 

ratio of FA used for treatment with AMD. Initial concentration of sulphate in the AMD 

was approximately 11890 mg/L. After AMD treatment the sulphate concentration was 

reduced to 2414 - 5483 mg/L, depending on AMD:FA ratios. The maximum sulphate 

removal of 79% was achieved using a mixture of AMD: FA ratio 2.5: 1 (Gitari et al., 

2007; Vadapalli et al., 2012). 
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The mechanism of SO4
2-

 removal from AMD using FA treatment was proposed as CaO in 

the FA dissolving due to the AMD and reacting with the SO4
2-

 to form gypsum precipitate 

CaSO4.2H2O, followed by Ba and Sr salts in the FA dissolving and forming barite 

(BaSO4) and celestite (SrSO4) or a mixed (Ba,Sr) SO4 salt by interacting with SO4
2-

. At 

pH 3, Fe
3+

 precipitates as hydroxides and oxyhydroxides which has the potential to 

adsorb SO4
2-

 ions and as the pH rises to about pH 9, a mineral phase known as ettringite 

[Ca6Al2(SO4)3(OH)] precipitates which causes further reduction in SO4
2-

 concentration in 

the effluent (Vadapalli et al., 2008, 2012). 

 

Another study conducted by Surender, 2009 found that the sulphate absorbance by fly ash 

was 98 % in beaker scale experiments with 1:1 fly ash: AMD ratio. This is comparable to 

membrane and ion exchange systems and exceeded the performance of limestone 

treatment (Surender, 2009). 

 

There are large number of other similar studies conducted in the area of sulphate 

treatment using fly ash (Adeoti, 2011; Gitari, 2006; Gitari et al., 2005; Hendricks, 2005; 

Madzivire, 2009; Surender, 2009). 
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2.4.4 Sulphate Removal Using Ion Exchange Resins 

The key issue in using ion exchange resins for AMD treatment is that scale formation and 

fouling of the resins by the calcium sulphate in the neutralized AMD. Several studies 

report regarding a highly efficient ion exchange process called GYP-CIX which can be 

used to treat AMD and is capable of overcoming the above mentioned limitation (Dill et 

al., 2012; Haghsheno et al., 2009; Schoeman and Steyn, 2001; Surender, 2009). 

 

This particular GYP-CIX process utilizes a counter current fluidized bed ion exchange 

method and a single fluidized bed bath regenerator and uses low cost sulphuric acid 

(H2SO4) and lime (Ca(OH)2) to regenerate the cations and anions separately producing 

gypsum as a waste by product. It was applied to treat underground mine water discharged 

at the Grootvlei mines in South Africa. The resultant product is neutralized water, low in 

calcium, sulphate, heavy metals as well as other ions. The GYP-CIX process is best 

suited to waters with sulphate concentrations below 1500 – 2000 mg/L. At higher 

sulphate concentrations, liming is a cheaper treatment option. Large volume of gypsum 

sludge produced during regeneration of the ion exchange resins is one major disadvantage 

of the GYP-CIX system (Surender, 2009). 

 

2.4.5 Sulphate Removal Using Permeable Reactive Barriers (PRB)  

Smyth and Bain (2004) in their study, illustrate (Figure 2-5) how a vertical permeable 

reactive barrier (PRB) can be installed to intercept and treat horizontal plumes of 

contaminated groundwater adjacent to a mining waste management area. Generally a 



30 

 

PRB should have a similar or higher hydraulic conductivity than the surrounding waste 

materials or aquifer system. AMD impacted groundwater may need to reside for more 

than several days within the PRB based on the extent and rates of reaction of contaminant 

removal (Smyth and Bain, 2004). 

 

 

Figure 2-5: PRB application on site (Smyth and Bain, 2004) 

 

In another study by Benner et al., 1999, a PRB was designed and installed into an aquifer 

containing effluent from mine tailings to remove metals and generate alkalinity by 

promoting sulphate reduction and metal sulphide precipitation. Flow of groundwater 

through the barrier resulted in excellent improvement in water quality. There were 

decreases in concentrations of SO4
2-

 (by 2000-3000 mg/L), Fe (by 270-1300 mg/L), and 

increases in alkalinity (by 800-2700 mg/L). However, it was concluded that sulphate 

reduction by the reactive mixture is mainly bacterially mediated (Benner et al., 1999). 
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2.5 Conclusion 

Management and treatment of AMD is a concern of growing importance. Although, 

thiosalt concentrations in these effluent streams are not strictly regulated, the ultimate 

result of oxidation of these intermediate sulphur oxyanions to acidic sulphuric acid has a 

detrimental impact on aquatic species. Thiosalt behaviour is complex at different pH and 

temperature which makes it difficult to implement cost effective and efficient treatment 

methods. Ion-exchange and adsorption systems may be a cheaper alternative for thiosalt 

treatment than chemical oxidation and a faster alternative than natural 

degradation/biological oxidation. Cost of operating such a thiosalt adsorption/ion 

exchange system could possibly be reduced, if industrial by-products such as biomass ash 

can be modified to be used in place of more expensive ion exchange resins or activated 

carbon. However, technical concerns regarding continuous operation, adsorbent 

regeneration and/or disposal of such a system must also be addressed. 
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Abstract 

Adsorption of selenite, Se(IV) and selenate, Se(VI) using various adsorbents is reviewed 

in this paper. Although selenium is an essential nutrient for living organisms, it can be 

toxic at higher concentrations. Adsorption is an effective and economic method of 

selenium treatment among other high cost treatment processes such as chemical 

precipitation, catalytic reduction, membrane filtration. This paper summarizes recent 

work on adsorbent types used in selenium oxy-anions (selenite and  selenate) treatment 

such as activated carbon, biomass, biomass ash, iron oxides, aluminium based adsorbents, 

silica, apatite, rutile etc. The effect of pH (1.5 - 11.5), temperature (18 - 50 
o
C), initial 

concentration of selenium in the solution (0.8 - 100 mg/L), adsorbent dosage(0.5 - 20 g/L) 

on the sorption capacity is reviewed. Monolayer sorption capacities for selenium ranging 

from 0.081 mg/g to 126.99 mg/g of adsorbent have been reported. Further details on 

isotherm models, kinetic models and thermodynamic parameters such as Gibbs free 

energy change, enthalpy change, entropy change as well as techniques used in adsorbent 

characterization (XRD, SEM, FT-IR, BET surface area, point of zero charge pH, and 

analytical determination of selenium are also discussed. 



37 

 

3.1 Introduction 

Selenium is an essential nutrient for plants, animals and humans, but can be toxic at 

higher concentrations. Selenium can exist in inorganic or organic forms (Sheha and El-

Shazly, 2010). Inorganic forms of selenium are selenate, selenite, insoluble elemental 

selenium, selenides (Li et al., 2013). Selenium exists in several oxidation states, (-2, 0, 

+2, +4, +6). The most common selenium species in aqueous systems are selenite (SeO3
2-

) 

and selenate (SeO4
2-

) (Figure 3-1) (Li et al., 2013). Selenium species in the +4 (SeO3
2-

) 

state are considered to be more toxic than the selenium species in their +6 (SeO4
2-

) 

(Jordan et al., 2013b; Tuzen and Sarı, 2010). Mildly oxidizing and neutral pH conditions 

favor the formation of selenites. Acidic and reducing conditions reduce inorganic 

selenites to insoluble elemental selenium.  High pH and oxidizing conditions favor the 

formation of selenates (World Health Organization, 2003) .  

 

 

 

Figure 3-1: Molecular geometry of selenite (SeO3
2-

, Se(IV)) and selenate (SeO4
2-

,Se(VI)) 

in aqueous medium (Aurelio et al., 2010) 
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Selenium is widely used in various industries such as electrolytic copper refining, 

insecticides manufacturing, production of glass, production of rectifiers and 

semiconductors, in xerography, solar cells and also as a catalyst in the synthesis of urea 

and urethane (Sheha and El-Shazly, 2010; Tuzen and Sarı, 2010). Selenium is also found 

in effluents from oil refineries and smelting plants, by products from fossil fuels 

combustion in thermal power stations (El-Shafey, 2007a). In the mining industry, the 

source of selenium is due to mine drainage.  

 

Selenium is generally found in mining effluent waters in concentrations ranging from 3 

μg/L to even above 12,000 μg/L (Envirogen Technologies, 2011). According to the 

guidelines set for selenium by the Ministry of Environment of  British Columbia, Canada, 

the mean concentration of total selenium should not exceed 2 µg/L to protect freshwater 

and marine aquatic life (Environment protection Division Ministry of Environment 

Government of British Columbia, 2001). As per WHO Guidelines for Drinking Water 

Quality, maximum allowable concentration of selenium in drinking water is 10 µg/L 

(World Health Organization, 2003), while the US EPA sets a maximum contaminant level 

(MCL) of selenium in drinking water at 50 µg/L (US EPA, 1992). 

 

3.2 Removal of Selenium from Aqueous Media 

The selenium removal processes from water sources are coagulation, chemical 

precipitation, ion exchange, adsorption, reverse osmosis, catalytic reduction, bacterial 

treatment (El-Shafey, 2007a; Li et al., 2013; Nettem and Almusallam, 2013), evaporation, 
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membrane filtration (Tuzen and Sarı, 2010), phytoremediation (Gonzalez et al., 2010). 

The disadvantages of most popular treatment methods such as chemical precipitation, 

catalytic reduction, coagulation, membrane filtration and reverse osmosis, adsorption by 

activated alumina, are the high cost of reagents used, large volumes of sludge created, 

high membrane process energy consumption, interference of competing anions, low 

removal efficiency under alkaline conditions, need of highly selective materials that 

function across a wide range of pH, long time required for the removal process (El-

Shafey, 2007a; Kongsri et al., 2013).  

 

3.3 Studies on Selenium Removal by Adsorption 

Adsorption by naturally available adsorbents can be a cost effective process in treatment 

of selenium in aqueous media. There have been a number of studies focused on 

adsorbents and selenium adsorption capacity to understand the sorption mechanisms, and 

to assess the ability of using these adsorbents to remove selenium oxyanions from 

industrial effluents. A summary of adsorbents used in the removal of Se(IV) and Se(VI) 

ions is given in the Table 3-1. 

 

Table 3-1: List of different adsorbents used in Se(IV) and Se(VI) adsorption 

Adsorbent Details and Reference 

Activated carbon 

derived adsorbents 

Activated carbon (Bertolino et al., 2006; Kubota et al., 1995)  

Surface modified activated carbon (Tsoi and Leung, 2011) 
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Granular and powdered activated carbon (Wasewar et al., 

2009b) 

Metal loaded activated carbon (Afkhami and Madrakian, 2002; 

Dobrowolski and Otto, 2013; Latva et al., 2003a; Peraniemi 

and Ahlgrén, 1995)  

Iron oxide coated GAC adsorbents (Yan et al., 2011) 

Iron coated GAC adsorbents (Zhang et al., 2008, 2010) 

Biomass and biomass 

ash 

 

Aspergillus sp. J2 microorganism (Li et al., 2013) 

Ganoderma Lucidum Biomass (Nettem and Almusallam, 2013) 

Green algae (Cladophora hutchinsiae) (Tuzen and Sarı, 2010) 

Bagasse Fly Ash (Wasewar et al., 2009a) 

Rice husk ash (Gulipalli et al., 2011) 

Sulphuric acid treated peanut shells (El-Shafey, 2007a) 

Modified rice husk (El-Shafey, 2007b) 

Wheat bran (Hasan and Ranjan, 2010) 

Cellulose coated with 

metal hydroxides 

Cellulose fibre coated with Mg–FeCO3 layered double 

hydroxides (LDHs) (Chen and An, 2012) 

Cellulose coated with lanthanum hydroxide (Chen et al., 2009) 

Iron oxides Maghemite (Jordan et al., 2013b) 

Magnetite (Jordan et al., 2009; Kim et al., 2012; Martínez et 

al., 2006; Missana et al., 2009)  

Iron oxyhydroxides (Parida et al., 1997) 
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Iron oxides and hydroxides (Peak and Sparks, 2002) 

Iron oxide/hydroxide-based nanoparticles (Zelmanov and 

Semiat, 2013) 

Goethite-rich iron ore (Behera et al., 2012)  

Geothite and hydrous ferric oxide (Manceau and Charlet, 1994)  

Geothite (Rahnemaie et al., 2006)  

Geothite and hematite (Rovira et al., 2008) 

Hematite (Duc et al., 2006) 

Iron oxide nanomaterial (Gonzalez et al., 2012) 

Alumina and Al based 

adsorbents 

Alumina (Parida and Gorai, 2010; Wu et al., 2000)  

Aluminum oxide (Peak, 2006) 

Activated alumina (Su et al., 2008) 

Aluminium oxide coated sand (Kuan et al., 1998) 

Aluminum-based water treatment residuals (Ippolito et al., 

2009) 

Silica based adsorbents Silica based nano hybrid maerials (Karatchevtseva et al., 2010) 

Silica (Sahin et al., 2003; Xiong et al., 2008)  

TiO2 based adsorbents TiO2, Rutile (Svecova et al., 2011) 

Nano TiO2 (Zhang et al., 2009) 

Hydrous titanium oxide (Nilore, 1997) 

Anatase (Jordan et al., 2013a) 

Other metal oxide (Mn, Iron oxyhydroxide and Mn-dioxide (Balistrieri and Chao, 
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Mg, Al, Zn, Fe) based 

adsorbents 

1990) 

Fe–Mn hydrous oxides (Szlachta and Chubar, 2013; Szlachta et 

al., 2012)  

Metal oxides (Sheha and El-Shazly, 2010) 

Binary oxide systems (Chan et al., 2009) 

Al-oxides, Fe-oxides (Bleiman and Mishael, 2010) 

Ion exchangers based on double Mg–Al hydrous oxides 

(Chubar, 2011) 

Mg/Fe hydrotalcite-like-compound (Das et al., 2002) 

Manganese nodule leached residues (Dash and Parida, 2007) 

Layered double hydroxides (Goh et al., 2008; Liu et al., 2009; 

Mandal et al., 2009)  

Mg–Al and Zn–Al layered double hydroxides (You et al., 

2001) 

Manganese oxide nanomaterial (Gonzalez et al., 2011) 

Magnetic iron/manganese oxide nanomaterial (Gonzalez et al., 

2010)  

Apatites Apatites and iron oxides (Duc et al., 2003) 

Nanocrystalline hydroxyapatite from fish scale waste (Kongsri 

et al., 2013) 

Hydroxyapatite (Monteil-Rivera et al., 2000) 

Soils, granite, Other Tropical soil (Goh and Lim, 2004) 
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South Dakota Soils (Lee et al., 2011) 

Crushed granite (Jan et al., 2008) 

Thiourea-Formaldehyde Resin (Gezer et al., 2011) 

Mackinawite (FeS) (Han et al., 2011) 

Chitosan-clay composites (Bleiman and Mishael, 2010) 

 

Activated carbon/charcoal is an efficient and economic method for adsorption of trace 

elements from various aqueous media (Latva et al., 2003a). Activated carbons have a 

large specific surface area and microporous structure, high adsorption capacity, surface 

reactivity due to presence of functional groups, and can be easily modified chemically or 

thermally to meet the requirements of a specific application (Dobrowolski and Otto, 

2013). Selective adsorption of various ions by activated carbon occurs through ion 

exchange, precipitation, chelation and electrostatic attraction (coovalent bonds, van der 

waal's bonds etc. ) (Dobrowolski and Otto, 2013). 

 

Adsorption of selenium onto the untreated activated carbons does not give appreciable 

adsorption capacities (Latva et al., 2003a), however, chemically treated activated carbon 

increases adsorption capacities. e.g., (1) L-ascorbic acid can be used to reduce selenite to 

elemental Se and, hydrazine can be used to reduce both selenite and selenate prior to 

activated carbon addition (Bertolino et al., 2006); (2) modification of activated carbon 

surface with complexing reagents such as tetrabutylammonium hydroxide (TBAH) (Tsoi 

and Leung, 2011), and adding complexing reagents such as  3,3-diaminobenzidine (DAB) 
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(Izgi et al., 2006) in to the solution for selenium pre-concentration before adding the 

activated carbon has generated great results; (3) adsorption of selenium species directly 

by complex formation with metal coated/impregnated activated carbon also has been 

reported; Mg and Fe loaded activated charcoal (Latva et al., 2003b), Fe loaded activated 

carbon (Dobrowolski and Otto, 2013), Zr loaded activated charcoal (Peraniemi and 

Ahlgrén, 1995), Fe coated granular activated carbon (Zhang et al., 2008), Activated 

carbon treated with FeCl3 (Wasewar et al., 2009b), Bagasse fly ash treated with FeCl3 

(Wasewar et al., 2009a). 

 

Biomass ash and charcoal which obtained as byproducts from combustion of wood 

residue and other carbonaceous fuels in boilers at cogeneration plants in the pulp and 

paper industry may be a suitable adsorbent for Se(IV) and Se(VI) removal from aqueous 

media. Application of adsorbents derived from these waste biomass ash/char for selenium 

removal can be considered a very economical and eco-friendly method of treatment, if 

proven effective/successful.  

 

3.4 Batch Equilibrium Studies on Se(IV) and Se(VI) Removal by Adsorption 

This section reviews a number of batch equilibrium adsorption studies in detail to 

understand the effect of change in different conditions such as adsorbent dosage, solution 

pH, initial concentration of selenium, contact time and temperature on the removal of 

selenite/ selenate by different types of adsorbents. 
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Adsorption percentage and adsorption capacity have been calculated using following 

equations. 

 

         (3-1) 

    

   (3-2) 

  

 Ci  = Initial concentration of adsorbate (mg/L) 

 Ce  = Equilibrium adsorbate concentration (mg/L) 

 V  = Volume of the solution (L) 

 m  = Mass of the adsorbent(g) 

 

3.4.1 Selenite, Se(IV)  

In Nettem, 2013, Ganoderma lucidum biomass was used as an adsorbent (Nettem and 

Almusallam, 2013). The experimental conditions covered pH 2-8 (solution), adsorbent 

dosage 1- 10 g/L, initial selenite concentration 100 mg/L, contact time 5-180 minutes, 

temperature 293 K, mixing speed 250 rpm, 100 mL solutions. The adsorption increased 

with solution pH from 2 to 5 and then decreased with further increase in pH up to 8 

(Figure 3-2). An optimum pH was selected as pH 5. As the biosorbent dosage was 

increased from 1 to 7 g/L at 293 K sorption increased from 19.9 % to 97.13%. Beyond 

this dose there were no noticeable increase in biosorption percentage (Figure 3-2). 

Equilibrium was achieved at 90 minutes at all temperatures (293, 303, 313 K). As 
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temperature increased from 293 to 303 K, the biosorption decreased from 97% to 74%. 

This confirms that biosorption by Ganoderma lucidum biomass is kinetically controlled 

by an exothermic process. 

 

   

Figure 3-2: Effect of pH and biosorbent dosage on biosorption of selenite on to 

Ganoderma lucidum biomass (Nettem and Almusallam, 2013) 

 

Li et al., (2013) investigated Aspergillus sp. J2 microorganism as sorption medium. 

Solution pH was varied from 2 - 11, adsorbent dosage 20 g/L, initial selenite 

concentration 5 mg/L, contact time 18 h, temperature 28 
o
C, and mixing speed 120 rpm. 

Selenite sorbed (mg/g) was not affected by the initial solution pH in the range 4 - 10.7, 

hence electrostatic attraction is not the adsorption mechanism in this range. Sorption of 

selenite decreased when initial pH was less than 3.8 and when initial pH is greater than 

10.7. Therefore, pH 5.5 was selected as the optimum pH for further experiments. 

Equilibrium sorption increased when the initial selenite concentration was increased from 

5 mg/L to 10 mg/L and equilibrium was reached after 15 h. Biosorption increased with 
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temperature (18, 28, 38 
o
C). The higher uptake at higher temperature indicates the 

selenium biosorption by Aspergillus sp. J2 is endothermic in nature (Li et al., 2013). 

 

In Tuzen and Sarı (2010) dead green algae (cladophora hutchinsiae) biomass was tested at 

solution pH of 2 - 8, adsorbent dosage 1-20 g/L, initial selenite concentration 10 mg/L, 

contact time 5 - 120 min, temperature 20 
o
C, mixing speed 120 rpm. The maximum 

sorption of 96% was achieved at pH 5 and lowest (70%) at pH=2 (Figure 3). The high 

sorption at pH of 5 is due to the abundance of protons allowing more reduction of  Se(IV) 

to  elemental selenium on the adsorbent surface. Below pH 3.5, selenius acid dominates 

(H2SeO3) and this neutral species cannot undergo electrostatic interaction with the 

biosorbent, hence the low sorption at pH 2. Sorption significantly increases with the 

increase in biomass dose up to 8 g/L due to availability of more sorption sites (sorption at 

a dose of 8 g/L was 96% and at 20 g/L it increased to 98%) (Figure 3-3). The sorption 

was fast, equilibrium was achieved in 60 min of contact time at the studied temperatures 

(20, 30, 40, 50 
o
C). Sorption decreased from 96% to 60% with the increase in temperature 

from 20 to 50 
o
C. The decrease in adsorption with increase in temperature may be due to, 

exothermic nature of selenium biosorption onto C.hutchinsiae biomass; tendency of 

selenium ion escaping from solid phase to the bulk phase; destructing the active sites or 

deactivating the adsorbent surface at high temperature; weakness of biosorptive forces 

between the active sites on the adsorbent and the adsorbate (Tuzen and Sarı, 2010). 
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Figure 3-3: Effect of pH and adsorbent dose (biomass concentration) on sorption of 

selenite onto Cladophora hutchinsiae biomass (Tuzen and Sarı, 2010) 

 

Sheha and El-Shazly (2010) used metal oxides, iron and silicon oxides (Fe2O3 and SiO2) 

as sorbents. The pH was varied from 2-11, adsorbent dosage 10 g/L, initial selenite 

concentration 20 mg/L, contact time 6 h, temperature 29 +/- 1 
o
C , 100 mL solutions. 

Over a pH range of 2-8 high removal efficiency was achieved and the efficiency 

decreased at pH values higher than 8 (Figure 3-4). Therefore, pH value of  4 +/- 0.5 was 

selected for further experiments. The adsorption process was very fast and more than 90% 

sorption was achieved after 3 h (89% using SiO2 and 94% using Fe2O3). The adsorption 

capacity decreased with the increase in temperature (303, 313, 323 K). This was due to 

change in surface properties of the adsorbent, solubility of the solute species, exothermic 

nature of the adsorption process (Sheha and El-Shazly, 2010). 
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Figure 3-4: Effect of pH on sorption of selenite on to iron and silicon oxides (Fe2O3 and 

SiO2) (Sheha and El-Shazly, 2010) 

 

El-Shafey (2007) treated peanut shells with sulphuric acid and tested sorption over a pH 

range of 1.5-7, adsorbent dosage 2 g/L, initial selenite concentration 25-250 mg/L, 

contact time 330 h, temperature 25 
o
C, mixing speed 100 rpm, 50 mL solutions. Se(IV) 

sorption increased at low pH values but decreased with increase in initial Se(IV) 

concentration. Using wet sorbent at 50 mg/L initial concentration, Se(IV)  sorption % was 

41.7% at pH 1.5 and 21% at pH 5 and, at 100 mg/L initial concentration, sorption % was 

31.9% at pH 1.5 and 17% at pH 5. Dry sorbent gives less sorption % of Se(IV) at the 

same conditions. The maximum sorption was achieved by the wet sorbent at 25 mg/L 

initial concentration which was 58.2% at 25 
o
C and increased up to 62.5 % at 45

o
C. At 

100 mg/L Se(IV) concentration and a pH of 1.5, equilibrium was reached within 260 h for 

wet sorbent and within 330 h for dry sorbent. Increased adsorption with increase in 

temperature from 25 - 45 
o
C was noticed, which may be due to the expansion of 
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adsorption sites with temperature (El-Shafey, 2007a). In a related study (El-Shafey, 

2007b), carbonaceous sorbent was prepared from rice husk via sulphuric acid treatment. 

The pH was varied from 1.5-7, adsorbent dosage 2 g/L, initial selenite concentration 100 

mg/L, contact time 200 h, temperature 25 
o
C, mixing speed 100 rpm, 50 mL solutions. As 

in the previous work, the sorption was high at low pH values, 1.5  and decreased with 

increase in pH until pH of 7. The final pH of the solutions increased which may be due to 

the proton consumption during the adsorption process. In general the wet adsorbent 

performed better than the dry adsorbent  and the  uilibrium sorption was reached within    

200 h at pH 1.5. Higher sorption was associated with increases in temperature (25,35,45 

o
C). 

 

In Kongsri et al. (2013), nanocrystalline hydroxyapatite from fish scale waste (FHAp) 

was used as an adsorbent. pH was varied from 3 to 10, adsorbent dosage 4 g/L, 25 mL 

solutions, initial selenite concentration 0.01 mg/L, contact time 90 mins, temperature 30 

o
C, and mixing speed 250 rpm. Adsorption decreased at pH above 6. The pH at the point 

of zero charge was determined as 7.86, hence the surface becomes positively charged at 

pH below this pH and negatively charged above this pH. Adsorption decreases at high 

pH, due to repulsion forces between the negatively charged surface of FHAp 

nanopowders. As dosage was changed from 0.02-0.1 g the adsorption increased rapidly 

and came to a maximum at 0.1 g. This may be due to the increase in the number of 

adsorption sites with the increase in the dosage. The maximum value of equilibrium 

sorption capacity was at 0.02 mg/L initial selenite concentration at pH 5 and 0.08 g 
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adsorbent dosage which was 1.58 mg/g. At 0.01 mg/L initial selenium concentration, 

adsorption reached equilibrium at 90 mins for FHAp, the rate of adsorption was very fast 

initially and decreased gradually until equilibrium. This is likely due to selenium being 

adsorbed on exterior surfaces of the adsorbent initially and then diffusion of selenium into 

the pores and adsorption at the interior surface of the adsorbents (Kongsri et al., 2013). 

 

3.4.2 Selenate, Se(VI) 

Recently, Dobrowolski and Otto (2013) used activated carbon impregnated with iron(III) 

nitrate(V) for Se(VI) adsorption. The pH was varied from 1.3 to 11.5, adsorbent dosage 1- 

10 g/L, initial selenite concentration 100 mg/L, contact time 20 minutess, temperature 25 

+/- 1 
o
C, mixing speed 250 rpm. The sorption capacity increased with pH until a pH of 

4.8 and decreased as pH exceeded 5.0. pH 3.2 was selected as optimum for activated 

carbon sample labelled 10C which was prepared by impregnating with 10% Fe(NO3)3 

solution and heating at 200 
o
C. Equilibrium was achieved after 20 min at a pH 3.2 and 25 

o
C with 20.96 mg/L initial concentration for 10C activated carbon (Dobrowolski and 

Otto, 2013). 

 

Jordan et al. (2013), studied anatase TiO2 at a solution pH range of 3.5 - 7 (Figure 3-5), 

adsorbent dosage 0.5 g/L, an initial selenate concentration  of 10
-5

  mol/L (0.8 mg/L), 

contact time 48 h, and range of temperature 293- 333 K. Se(VI) sorption was maximized 

at acidic conditions and decreased as solution pH was increased. The isoelectric point 

(pHIEP) of anatase at 298 K is at pH 6.3 and decreased with temperature (to pH 5.5 at 333 
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K).  At a pH lower than the pHIEP, sorption of negatively charged Se(VI) ions on to 

positively charged surface groups of anatase is promoted. Sorption decreased with an 

increase in temperature therefore the process is exothermic (Jordan et al., 2013a).  

 

 

Figure 3-5: Effect of pH on sorption of selenate, Se(VI) on to anatase (Jordan et al., 

2013a) 

 

The results of these equilibrium studies indicate the type and composition of the 

adsorbent is critical in the sorption capacity and operating conditions (e.g. pH and 

temperature). However, it is clear that pH, electrostatic properties, mineral compositions 

etc. of the adsorbent are critical factors in designing an adsorbent process. 
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3.5 Adsorbent Characterization 

Physicochemical characterization of adsorbents before and after selenium adsorption have 

been carried out using the following techniques in the above discussed studies; BET 

specific surface area and total pore volume (Jordan et al., 2013a; Kongsri et al., 2013), 

point of zero charge pH (pHPZC ) (Sheha and El-Shazly, 2010), SEM-EDX (Scanning 

Electron Microscopy with Energy Dispersive X-Ray detector) (Dobrowolski and Otto, 

2013; El-Shafey, 2007a, 2007b; Kongsri et al., 2013; Nettem and Almusallam, 2013), FT-

IR(Fourier Transform Infrared Spectroscopy) (Jordan et al., 2013a; Kongsri et al., 2013; 

Li et al., 2013; Nettem and Almusallam, 2013; Tuzen and Sarı, 2010), XRD (X-ray 

Diffraction) (El-Shafey, 2007a, 2007b; Jordan et al., 2013a; Kongsri et al., 2013), TGA 

(Thermal Gravimetric Analysis) (Kongsri et al., 2013) and  XPS (X-ray Photoelectron 

Spectroscopy) (Dobrowolski and Otto, 2013). The results of the characterizations are 

outlined in subsequent sections. 

 

3.6 Sorption Mechanism 

Biosorption of Se(IV) ions on to Aspergillus sp. J2 microorganism was slow which may 

be due to intra-particle diffusion. FT-IR results indicate that sulfonyl and sulfonamide 

groups present in the bioadsorbent may have been affected by Se(IV)  ions. Since, sulphur 

and selenium compound ions have similar chemical properties and binding behaviour, 

they can isomorphously replace each other (Li et al., 2013). 
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SEM (Figure 3-6) and FT-IR analysis confirmed that presence of amino, carboxyl, 

hydroxyl and carbonyl groups in the Ganoderma lucidum biomass. These groups are 

responsible for Se(IV)  removal. The isoelectric point of the treated biomass shifted to pH 

4.7 from pH 4.2. This shift can be attributed to the fact that at pH 4.7 specific sorption of 

selenite occurs on the biosorbent (Nettem and Almusallam, 2013). 

 

    

Figure 3-6: SEM images of (a) original samples of Ganoderma lucidum biomass (b) 

Se(IV) loaded Ganoderma lucidum biomass (Nettem and Almusallam, 2013) 

 

Marine algae (seaweeds) have been reported to have high metal binding capacities due to 

the presence of polysaccharides, proteins or lipid on the cell wall which contains 

functional groups such as amino, hydroxyl, carboxyl and sulphate. These functional 

groups can act as binding sites for metals. FT-IR analysis was used to understand the 

nature of possible cell-metal ion interactions in the adsorption of Se(IV) ions onto dead 

green algae (cladophora hutchinsiae) biomass. The resulting shifts in stretching vibration 

bands of carboxyl, hydroxyl and amide groups after biosorption indicate that biosorption 

may have been occurred due to the chemical interactions between the metal ions and the 
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hydrogen atoms of carboxyl, hydroxyl and amide groups of biomass (Tuzen and Sarı, 

2010). 

 

Ligand-exchange interations and/or inner sphere complexation (covalent binding) was 

considered as the method of Se(IV) immobilization onto the surface of iron and silicon 

oxides (Fe2O3 and SiO2) in the study conducted by Sheha and El-Shazly(2010). The 

specific surface areas of SiO2 and Fe2O3 are 198.5 and 98.2 m
2
/g respectively. Generally, 

the surface of silica is very acidic and has very low point of zero charges (pHPZC of 2 - 3), 

therefore below this low pH, ionized surface sites of silica are positive. Iron oxides are 

also good adsorbents for selenite and selenate as their pHPZC is generally around pH 8 - 10 

making them positively charged over a wide range of pH. Measured pHPZC values in this 

study for SiO2, Fe2O3 are 3.1 and 6.4 respectively. Therefore, the surface sites are highly 

protonated at low pH which favors adsorption of Se(IV) and Se(VI) anions (Sheha and 

El-Shazly, 2010). 

 

In the study of Se(IV) ions sorption onto sulphuric acid treated peanut shell, the sorbent 

acidity, cation exchange capacity (CEC) and surface functionality (by Boehm titrations) 

increased after the reaction with the Se(IV) in the solution. This indicates oxidation 

processes taking place on the sorbent surface. The surface area of the dry sorbent was 72 

m
2
/g and the pH of the sorbent before reaction was pH 2.4. SEM and XRD studies 

confirmed the presence of elemental selenium particles on the sorbent surface as a result 

of Se(IV) reduction into Se(0) which is accompanied by the surface oxidation (Figure 3-
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7) (El-Shafey, 2007a). In the study of Se(IV) ions sorption onto carbonaceous sorbents 

prepared from rice husk via sulphuric acid treatment, similar results were reported. The 

surface area of the dry sorbent (modified rice husk) was 66 m
2
/g and  pH of the sorbent 

before reaction was pH 2.65 (El-Shafey, 2007b). 

 

                 

Figure 3-7: SEM images of precipitated elemental selenium on the sulphuric acid treated 

peanut shell and modified rice husk adsorbents
 
(El-Shafey, 2007a, 2007b)

. 

 

In sorption onto nanocrystalline hydroxyapatite from fish scale waste (FHAp) the BET 

specific surface area of FHAp was 110.56 m
2
/g. In the acidic solution, adsorbent surface 

is positively charged, hence adsorption is promoted by ligand exchange. The possible 

interactions between selenite and FHAp can be surface complexation, dissolution and 

precipitation, ion exchange, electrostatic interaction (Kongsri et al., 2013). 

 

When 10C activated carbon impregnated with 10% Fe(NO3)3 solution is heated at 200 
o
C, 

the resulting adsorbent had a BET surface area of 1170 m
2
/g and point of zero charge 
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(pHPZC) is 4.07. Adsorption reactions of selenate with iron oxide minerals and amorphous 

iron hydroxide coatings which are naturally occurring may be significant in soils that are 

slightly acidic (with pHPZC of 6-7) (Dobrowolski and Otto, 2013). 

 

ATR (Attenuate Total Reflectance)-FTIR results confirmed the formation of outer sphere 

complexes with no significant structural changes in the study of Se(VI) sorption onto 

Anatase (TiO2). BET surface area of anatase was 267 m
2
/g. At pH lower than the 

isoelectric point(pHIEP), the positively charged surface groups of anatase and negatively 

charged selenate ions enhances adsorption zeta potential and the isoelectric point of 

anatase were shifted to lower values at higher temperatures, which may have caused the 

decrease in selenium(VI) adsorption. This decrease in adsorption may also be due to 

changes in the speciation of selenium in the aqueous solution; exothermic nature of the 

sorption process; instability of complexes formed in adsorption of selenate onto anatase at 

high temperatures hence releasing the selenate ions into the solution; decrease of 

available absorption sites on anatase due to changes in the adsorbent such as dissolution 

(Jordan et al., 2013a). 
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3.7 Thermodynamic Parameters 

The ∆G (Gibbs free energy change of adsorption), ∆H (enthalpy change), ∆S (entropy 

change) are typically assessed in all processes to determine the thermodynamic nature of 

the process (e.g. tendency to occur at given conditions).  

 

The Distribution Coefficient at different temperatures can be calculated using the 

following relations; 

 

       
  

  
    (3-3) 

 

 KD  = Distribution coefficient 

 qe  = Amount of selenium adsorbed by the adsorbent at equilibrium  

 Ce  = Equilibrium concentration of selenium in the solution  

 

The values of free energy change (∆G) at different temperatures can be calculated from 

the following relation: 

 

                    (3-4) 

 

 R  = Universal gas constant (8.314 Jmol
-1

K
-1

) 

 T  = Temperature(K) 

 KD  = Distribution coefficient 
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Van’t Hoff e uation can be applied to calculate the enthalpy change (∆H) and entropy 

change (∆S).  ∆S and ∆H can be calculated from the intercept and slope of the linear plot 

of ln KD versus 1/T . 

 

          
  

 
  

  

 
   

 

 
   (3-5) 

 

When Ganoderma lucidum was used as an adsorbent (Nettem and Almusallam, 2013), the 

∆G at 293 K was -3.728 kJmol
-1

 indicating the adsorption process will occur at these 

condition. Positive ∆G values obtained at 303, 313 K of 0.224 kJ/mol and 2.308 kJ/mol 

indicate the process is not thermodynamically favored. Overall for the adsorption on iron 

and silicon oxide the ∆G were negative, however the values increased from -17.61 to -

15.88 kJ/mol for iron oxide and from -16.76 to -15.56 kJ/mol for silicon oxide as 

temperature increases, which indicates that lower temperatures favors Se(IV) adsorption 

(Sheha and El-Shazly, 2010). In sorption using anatase, ∆G values increased with 

increasing pH and temperature which indicates that at high pH and temperature values 

adsorption process is less favorable and less feasible (Jordan et al., 2013a). 

 

In all three studies discussed above, calculated ∆H values were negative which indicates 

the exothermic nature of adsorption. The calculated ∆S values were also negative which 

indicates the reduced degree of randomness at the adsorbent/solution interface. 
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3.8 Adsorption Isotherm Modelling 

Isotherm constants indicate the surface properties and affinity of the adsorbent. These 

constants can be used to compare sorption capacities of different adsorbents. The 

equilibrium sorption behaviour can be characterized via different isotherm models 

including; Langmuir isotherm model, Freundlich isotherm model and Dubinin-

Radushkevich isotherm model. The basic assumption of the Langmuir model is that 

sorption takes place at specific homogeneous sites within the sorbent. The Freundlich 

model assumes a heterogeneous adsorption surface and active sites with different energies 

while the Dubinin–Radushkevich isotherm model is used to determine the nature of 

adsorption process as physical or chemical. 

 

Langmuir isotherm model                
      

      
     (3-6) 

 

qe  = Amount of metal adsorbed per unit weight of adsorbent (mg/g dry weight) 

Ce  = Equilibrium Se(IV) concentration in the solution (mg/L) 

KL  = Langmuir constant related to the affinity of the binding sites (L/mg)  

qm  = Maximum metal uptake or monolayer biosorption capacity of the sorbent (mg/g) 

 

Freundlich isotherm model         

 

     (3-7) 

 

Kf  = Constant relating to biosorption capacity 
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1/n  = Empirical parameter relating to biosorption intensity, varies with the 

 heterogeneity of material 

 

Dubinin-Radushkevich isotherm model                                 (3-8) 

  

qed  = Amount of metal ions sorbed per unit weight of biomass (mol/g) 

qmax  = Maximum biosorption capacity (mol/g) 

   = Activity coefficient related to biosorption mean free energy(mol
2
/J

2
) 

ε  = Polanyi potential ; ε=RT ln(1+1/Ce) 

 

Both the Langmuir and Freundlich isotherm models were very good fits for adsorption 

onto Ganoderma lucidum biomass. Monolayer adsorption capacity from Langmuir 

isotherm was 126.99 mg/g. The 1/n value calculated from the Freundlich isotherm model 

was 0.599, which indicates that biosorption is favorable (Nettem and Almusallam, 2013). 

The Langmuir model gives a better fit than the Freundlich model for the investigation of 

Aspergillus sp J2 as an adsorbent. Sorption capacity increased with the concentration and 

reached a plateau at the initial selenite concentration of 8 mg/L. Maximum uptake 

capacities from Langmuir model (qm) at 18, 28, 38 
o
C were 4.14 mg/g, 5.33 mg/g, 5.67 

mg/g respectively. KL values increased with temperature which indicates the strong 

affinity of Aspergillus sp. J2 for selenite at higher temperatures (Li et al., 2013). The 

Langmuir isotherm model was also a good fit for sorption onto C.hutchinsiae biomass. 

The maximum biosorption capacity (qm) was 74.9 mg/g. The 1/n value was found to be 
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0.53 which indicates favorable biosorption at the studied conditions. The Dubinin-

Radushkevich isotherm model also showed a good fit to the equilibrium data. Calculated 

mean biosorption energy value of 10.9 kJ/mol from the D-R model indicates the 

involvement of  chemical ion-exchange (chemisorption) in the sorption of C.hutchinsiae 

biomass (Tuzen and Sarı, 2010). 

 

The Langmuir isotherm constants (qm and KL ) for the sorption onto iron oxide and silicon 

oxide were 8.47 mg/g Fe2O3 and 7.06 mg/g SiO2 at 303 K. The Langmuir constants 

decreased with increase in temperature indicating the exothermic nature of adsorption 

process. The calculated separation factor values are less than unity indicating adsorption 

is favoured. This was further strengthened by the fact the 1/n values were between 0.69 

and 0.99. The Kf  values of adsorption of Se(IV) ions onto iron oxide are higher than the 

values obtained for silicon oxide. i.e. iron oxide has greater adsorption tendency than the 

silicon oxide. The mean free energy of adsorption (E), calculated from the Dubinin-

Radushkevich isotherm model was in the range 5.72 - 7.29 kJ/mol for both metal oxides. 

Since the values are less than 8 kJ/mol, it can be concluded that the overall adsorption 

mechanism is physical (Sheha and El-Shazly, 2010). 

 

The Langmuir isotherm model was the best fit for Se(IV) sorption to sulphuric acid 

treated peanut shell with a maximum sorption capacity for 42.96 mg/g for wet sorbent 

and 32.15 mg/g for dry sorbent at 45
o
C. Separation factor values were within 0.11 - 0.66 

indicating good adsorption (El-Shafey, 2007a). The sorption of Se(IV) onto modified rice 
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husk also fitted well with the Langmuir isotherm model. Higher sorption was achieved 

with an increase in temperature. Monolayer sorption capacity (qm) was 34.13 mg/g for dry 

sorbent and 40.92 mg/g for wet sorbent at 45 
o
C. The 1/n values calculated from the 

Freundlich isotherm model vary between 0.4 - 0.5 which indicates a favourable 

adsorption (El-Shafey, 2007b). 

 

Se(IV) sorption onto FHAp (Fish scale hydroxyapapite) followed the Freundlich isotherm 

model. The monolayer adsorption capacity for FHAp was 1.94 mg/g and 1/n values for 

was 0.32 which indicates high affinity of Se(IV) towards the FHAp nanocrystals (Kongsri 

et al., 2013). 

 

Activated Carbon sample labeled 10C impregnated by iron(III) nitrate(V) follows the 

Langmuir isotherm. The maximum adsorption capacity was 21 mg/g (Dobrowolski and 

Otto, 2013). 

 

The monolayer sorption capacities (qm)  of Se(IV) and Se(VI) sorption onto various 

adsorbents are listed in Table 3-2 with the specific experimental conditions (pH, 

Temperature). 

 

Table 3-2: Se(IV) and Se(VI) monolayer sorption capacities (qm) of various adsorbents  

Selenium species  Adsorbent qm (mg/g) pH, Temperature 

Selenite, Se (IV)  Ganoderma lucidum 126.99 
 

pH 5, 20 
o
C 
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(Nettem and 

Almusallam, 2013) 

biomass  

Selenite, Se (IV) 

(Li et al., 2013)  

Aspergillus sp. J2 

microorganism 

4.14  pH 5.5, 18 
o
C 

Selenite, Se (IV) 

(Li et al., 2013)  

Aspergillus sp. J2 

microorganism 

5.67  pH 5.5, 38 
o
C 

Selenite, Se (IV)  

(Tuzen and Sarı, 2010) 

dead green algae 

(cladophora hutchinsiae) 

biomass 

74.9  pH 5, 20 
o
C 

Selenite, Se (IV)  

(Sheha and El-Shazly, 

2010) 

Metal oxides -Fe2O3  8.47  pH 4+/- 0.5, 30 
o
C 

Selenite, Se (IV)  

(Sheha and El-Shazly, 

2010) 

Metal oxides - SiO2 7.06  pH 4+/- 0.5, 30 
o
C 

Selenite, Se (IV)  

(El-Shafey, 2007a) 

Sulphuric acid treated 

peanut shell, wet sorbents 

42.96  pH 1.5, 45
o
C 

Selenite, Se (IV)  

(El-Shafey, 2007a) 

Sulphuric acid treated 

peanut shell, dry sorbents 

32.15  pH 1.5, 45
o
C 

Selenite, Se (IV)  

(El-Shafey, 2007b) 

Modified rice husk, wet 

sorbent 

40.92  

 

pH 1.5, 45
o
C 

Selenite, Se (IV)  Modified rice husk, dry 34.13  pH 1.5, 45
o
C 
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(El-Shafey, 2007b) sorbent 

Selenite, Se (IV)  

(Kongsri et al., 2013) 

nanocrystalline 

hydroxyapatite from fish 

scale waste(FHAp)  

1.94  pH 5, 30 
o
C 

 

Selenite, Se (IV)  

(Kuan et al., 1998) 

Aluminium oxide coated 

sand 

1.08  pH 4.8 

Selenite, Se (IV)  

(Lo and Chen, 1997) 

Iron oxide coated sand 1.32  

 

pH 4 

Selenite, Se (IV)  

(Hasan and Ranjan, 

2010) 

Wheat bran 0.089  pH 2, 20 
o
C 

Selenite, Se (IV)  

(Zhang et al., 2008) 

iron-coated granular 

activated carbons 

2.58  pH 5+/- 0.3 , 25 
o
C 

Selenite, Se (IV)  

(Gulipalli et al., 2011) 

FeCl3 coated rice husk ash 0.28  pH 2 - 3, 20 
o
C 

Selenate, Se (VI)  

(Dobrowolski and Otto, 

2013) 

AC impregnated by iron(III) 

nitrate(V) -10C 

21  pH 3.2, 25 
o
C 

Selenate, Se (VI)  

(Kuan et al., 1998) 

Aluminium oxide coated 

sand 

0.92  pH 4.8 

Selenate, Se (VI)  

(Lo and Chen, 1997) 

Iron oxide coated sand 1.11  pH 6.5 
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Selenate, Se (VI)  

(Hasan and Ranjan, 

2010) 

Wheat bran 0.081  pH 2, 20 
o
C 

 

3.9 Adsorption Kinetic Modelling 

The rate of adsorption is typically determined by comparing experimental data to the 

following models: pseudo first order kinetic model (Lagrangian), pseudo second order 

kinetic model, intra-particle diffusion model (Webber-Morris) and liquid film diffusion 

model. The models are outlined below: 

 

Pseudo first order kinetic model                       
   

     
            (3-9) 

Pseudo second order kinetic model  
 

  
  

 

    
   

 

  
        (3-10) 

Intra-particle diffusion model          
               (3-11) 

Liquid film diffusion model               
    

     
        (3-12) 

 

qe  = Metal adsorbed on the surface at equilibrium (mg/g) 

qt  = Metal adsorbed on the surface at time t (mg/g) 

K1  = First order rate constant of adsorption (1/min)  

K2  = Pseudo-second order rate constant. (g/mg min) 

Kid  = Rate constant of intra particle diffusion(mg/g.min0.5) 

h  = Initial adsorption rate K2qe in the pseudo second order model 
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C  = Constant of intra-particle diffusion model relating to boundary layer effect. 

F  = Fractional attainment of equilibrium (qt/ qe) 

Kfd  = Film diffusion rate constant 

 

Li et al. (2013) conducted kinetic studies with Se(IV) concentrations of 5 mg/L and 10 

mg/L. Both pseudo first and second order kinetic models mentioned to have given good 

fits to the data. Calculated equilibrium adsorption values with 5 and 10 mg/L initial 

selenite concentrations were 4.03 and 4.84 mg/g based on the pseudo first order model 

and 5.32 and 6.31 mg/g based on the pseudo second order model. Experimental 

equilibrium sorption data at 5 and 10 mg/L initial selenite concentrations were not given 

(Li et al., 2013). 

 

When Ganoderma lucidum biomass was used as adsorbent,  a pseudo first order kinetic 

model gave the best fit (highest correlation coefficients, R
2
) compared to the pseudo 

second order and the intra-particle diffusion models at all three temperatures studied 293, 

303, 313 K (Nettem and Almusallam, 2013). 

 

In a study of C.hutchinsiae biomass, the pseudo second order kinetic model provided a 

good correlation than the pseudo first order kinetic model. Experimental values for 

equilibrium sorption capacities obtained at 20, 30, 40, 50 
o
C was 3.08, 2.88. 2.76, 2.54 

mg/g and the equilibrium sorption values calculated based on the pseudo second order 
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model were 3.02, 2.85, 2.70 and 2.50 respectively at each temperature (Tuzen and Sarı, 

2010).  

 

Sorption kinetic data from the study of Se(IV) adsorption onto carbonaceous sorbent 

prepared from rice husk via sulphuric acid treatment also followed the pseudo second 

order model (El-Shafey, 2007b). 

 

The equilibrium sorption capacity (qe) for sorption of Se(IV) with SiO2 was 1.796 mg/g 

and with Fe2O3 was 1.853 mg/g. A pseudo second order model was a very good fit and 

suggested that chemisorption, through sharing or exchange of electrons between Se(IV) 

species and the metal oxides, is the rate limiting step. Analysis using the liquid film 

diffusion model confirmed that the sorption process was not solely controlled by diffusion 

through the liquid film surrounding the solid adsorbents due to the non zero intercepts 

from the model graph for both oxides (Sheha and El-Shazly, 2010). 

 

Fish scale hydroxyapapite (FHAp) as an adsorbent showed pseudo second order kinetics. 

Experimental equilibrium sorption capacity was 1.59 mg/g and calculated sorption 

capacity from the pseudo second order kinetic model was 1.61 mg/g. The intra-particle 

diffusion plot showed that both surface adsorption (boundary layer effect) and the intra-

particle diffusion (pore diffusion) impacted adsorption of Se(IV) on to FHAp. Also, the 

value of intra particle diffusion constant (C) was higher for FHAp which indicates that the 

surface sorption of selenium on the adsorbent is significant (Kongsri et al., 2013).  
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Activated carbon sample labeled 10C, impregnated by iron(III) nitrate(V) also showed a 

good fit to the pseudo second order model (Dobrowolski and Otto, 2013). 

 

3.10  Analytical Determination of Selenium in Aqueous Media 

The key in determining the effectiveness of the adsorption of selenium is analyzing the 

treated effluent and/or the adsorbent material. This is challenging given both the low 

levels of Se in mining wastewaters and the regulatory limit. Hydride generation - atomic 

absorption spectrometry (HG-AAS) is a widely used method in analytical determination 

of Se(IV) and Se(VI) in aqueous media (Nettem and Almusallam, 2013; Sheha and El-

Shazly, 2010; Tuzen and Sarı, 2010). Kongsri et al., 2013 used  flow injection-hydride 

generation equipped with quartz tube furnace atomic absorption spectrometry (QTFAAS) 

with AAWinlab software for Se(IV) determination (Kongsri et al., 2013). Carbon slurry 

sampling graphite furnace atomic absorption spectrometry technique (GFAAS) and 

standard calibration method has been used for Se(VI) determination (Dobrowolski and 

Otto, 2013). Ion chromotography has also been used in Se(IV) and Se(VI) determination 

(Kuan et al., 1998). UV-visible spectrophotometry is another commonly used method that 

can be used for Se(IV) determination (El-Shafey, 2007a, 2007b; Li et al., 2013). Analyses 

using Inductively coupled plasma mass spectrometry (ICP-MS) (Gonzalez et al., 2010) 

and inductively coupled plasma optical emission spectrometry (ICP-OES) (Szlachta and 

Chubar, 2013) have also been reported in the literature. 
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3.11 Conclusion 

This review gives an overall understanding on the different types of adsorbents used in 

batch equilibrium studies for treatment of selenite, Se(IV) and selenate, Se(VI) in aqueous 

solutions.  Published work on selenate is not as abundant as the study of selenite. High 

selenium removal was achieved at low pH values and removal amount decreased with 

increase in pH for both selenite and selenate in a temperature range of 20 oC - 50 oC. On 

a selenium species basis, high monolayer adsorption capacities were observed in the 

selenite adsorption studies while monolayer capacities obtained for selenate were 

comparatively low. Overall, biomass derived adsorbents have shown greater adsorption 

capacities than other adsorbents like metal oxide coated sand, metal oxide coated 

activated carbon.  Also, kinetic data from most of the studies followed pseudo second 

order kinetics and, isotherm data in general followed Langmuir isotherm model. 
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Abstract 

Combustion of forestry residue and other plant biomass in power boilers is gaining 

increasing interest as a low cost method of energy generation. In this process, carbon rich 

ash is produced as a by-product which can represent a disposal issue. The chemical 

makeup of the ash may make it reusable for a number of applications from adsorbents to 

concrete amendment. Characterization of these ash/char plays an important role as it is 

necessary to understand the properties of  biomass ash/char in order to find possible 

applications. In this study, biomass ash/char collected from three pulp and paper mill 

boilers are characterized chemically, physically, thermally, and structurally by inductively 

coupled plasma mass spectrometry and optical emission spectrometry (ICP-MS, ICP-

OES), CNS elemental analysis, mineral liberation analysis (MLA), X-ray diffraction 

(XRD), Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron 

microscopy (SEM), specific surface area, pore volume, bulk density, pH, total alkalinity, 

thermo-gravimetric analysis (TGA).   
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4.1 Introduction 

Low cost fuel sources such as coal, heavy oils, forestry residue and other plant biomass 

are burned in furnaces to produce heat to drive steam turbines in thermal power plants, 

utility and steam plants. In the process, ash is generated as a combustion by-product. The 

pulp and paper industry use cogeneration plants where power boilers utilize a significant 

percentage of forest residue (wood refuse) and/or fossil fuels as a heat source. The wood 

refuse, commonly referred to as hog fuel, consists of wood wastes such as saw dust, 

sticks, wood chips, cut offs, bark as well as wood harvest residues (Adeoti, 2011).  Two 

kinds of ash are produced during the combustion process: fly ash and bottom ash. Fly ash 

is generally trapped by electrostatic precipitators before they are released to the 

environment. Bottom ash is collected as residue in the boiler bottom. The relative 

amounts of fly and bottom ash generated depend on the type of boiler used and fuel 

source (e.g. power boiler, fluidized boiler, grate boiler) (Berra et al., 2011). Ash is also 

generated in coal power plants as a by-product of combustion of pulverized coal, 

incinerator ash produced from burning garbage and municipal solid wastes, and tire ash 

generated by pyrolysis/combustion of waste tires (Adeoti, 2011). 

 

It is estimated that approximately 476 million tons of biomass ash is generated worldwide 

annually based on burning 7 billion tons of biomass with 6.8% mean ash yield on dry 

basis, which is more than half of the quantity of coal ash produced per year (780 million 

tons) (Vassilev et al., 2013a). Generally, these biomass ash/char are sent to landfills for 

disposal, however, due to the limited availability of landfills as well as the strict 
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environmental regulations, it has become necessary to find alternative uses for these 

ashes.  

 

Table 4-1 summarizes the literature on characterization of biomass ash/char with details 

on the different techniques used for characterization. Methods/techniques used for 

characterization of biomass ash/char include: chemical composition analysis by XRF; 

elemental analysis by ICP-MS, ICP-OES and CHN elemental analyzer; morphology and 

microstructure by SEM; specific surface area, pore volume, average pore diameter by 

BET method; functional groups by FT-IR; minerals/phases by XRD; pH; porosity; 

density. 

 

Table 4-1: Literature related to characterization of biomass ash/char  

Reference Ash/char details 

Vassilev et al., 2013 Biomass ash from beech wood chips, corn cobs,  marine 

macroalgae, weathered plum pits,  rice husks, switchgrass, 

sunflower shells, walnut shells  

Berra et al., 2010, Berra et 

al., 2011 

Woody biomass fly ash from Italian chipped-wood burning 

plant 

Adeoti, 2011  Pulp and paper mill boiler ash  

Pan and Eberhardt, 2011 Carbon-rich fly ash from southern yellow pine wood chips: 

wood ash; combusted fly ash; and fly ash 

Gupta and Sharma, 2003; Bagasse fly ash 
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Tailor et al., 2012 

Sasithorn et al., 2010 Rice husk fly ash 

Pengthamkeerati et al., 

2008, 2010 

Biomass fly ash from combustion of Eucalyptus trims and 

chips and rice husks  

Chowdhury et al., 2011 Oil palm ash 

Giro et al., 2012 Biomass fly ash from Eucalyptus bark 

Eberhardt and Pan, 2012 Chars isolated from carbon rich ash from gasification of 

pinewood chips 

Liu et al., 2011 Biochars derived from corncobs and rice  

Li et al., 2010 

 

Range of biochars derived from rosewood, pinewood, 

bamboo, rice husk, rice straw 

Shang et al., 2012 Biochar from camphor tree  

Arami-Niya et al., 2012 Biochar from palmshell 

Zheng et al., 2010 Greenwaste biochar samples 

Liu et al., 2010 Char from pinewood pyrolysis and hydrothermal treatment  

 

Biomass ash is a heterogeneous multi-component mixture of inorganic and organic 

compounds. The compositions of these biomass ashes vary depending on several factors: 

source of biomass; combustion conditions of biomass; particle size of biomass; 

combination of fuels burned etc. Major elements and phases identified in a biomass ash 

system may include: glass, silicates and oxyhydroxides containing Si–Al–Fe–Na–Ti; 

carbonates, oxyhydroxides, glass, silicates phosphates and sulphates containing Ca–Mg–
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Mn; phosphates, sulphates, chlorides, glass, silicates and carbonates  containing K–P–S–

Cl (Vassilev et al., 2013a). Biomass char has a high carbon content, low density, high 

porosity, high specific surface area and char extracted from combustion residue is less 

expensive than activated carbon. Due to the large surface area and the surface chemistry, 

char is widely used as a low cost adsorbent in wastewater treatment and gas purification 

applications (Pastor-Villegas et al., 2006). 

 

In this study, biomass ash/char was obtained from three different pulp and paper mills. 

These ash/char was characterized to determine physical, chemical and thermal properties. 

The characterization methodology and results from the analyses are detailed in 

subsequent sections. 

 

4.2 Biomass Ash/Char Samples Used in This Study 

4.2.1 Source Information 

The biomass ash samples characterized in this study were obtained from three pulp and 

paper mills located in Quebec, British Columbia and Corner Brook in Canada. 

 

4.2.1.1 Kruger Brompton Mill (KBM) 

Kruger Brompton Mill is located in Sherbrooke, Quebec, Canada. This mill has a 23 MW 

biomass cogeneration plant. It has a secondary effluent treatment system to ensure its 

compliance with environmental laws and regulations. The hog fuel boiler burns about 600 
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dry metric tons of  paper mill sludge, bark, other wood residue per day (Kruger Inc., 

2013a). The ash sample used for characterization was collected in January 2012.  

 

4.2.1.2 Corner Brook Mill (CBM) 

Corner Brook Pulp and Paper Limited (CBPPL) is located in Corner Brook, NL Canada. 

This mill has a 15 MW biomass cogeneration plant.  This mill also has a secondary 

effluent treatment system to ensure its compliance with environmental laws and 

regulations (Kruger Inc., 2013b). 

 

The CBPPL Ash Diversion Project Report (November 2010) indicates the plant burns a 

mix of biomass and waste oil, approximately 90% biomass (75-80% hog fuel, 10-15% 

dried secondary sludge) and 10% waste oil. Hog fuel consists of bark, wood, construction 

wood waste and saw mill waste. CBPPL's goal is to divert as much ash as possible from 

the landfill site. The mill is collecting 10,000 - 15,000 tonnes of total ash each year. The 

majority of this ash is fly ash (60-70%). The ash is disposed at the Wild Cove Landfill 

site at an approximate annual cost of $250,000 (Churchill and Kirby, 2010).  

 

Three samples were collected from CBPPL. The first sample (CBM) was collected from 

the Corner Brook mill's boiler in January 2012. The second sample (CBM-D) was 

collected from the cogeneration plant in dry form before it was impounded in water. The 

third char sample (CBM-W) was collected from the top of the water impounded conveyor 

where char floats on top of water.  
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4.2.1.3 Zelstoff Celgar Mill (CLM) 

Zellstoff Celgar Limited Partnership (ZCLP) is located in Castlegar, BC Canada. Figure 

4-1 gives an overview of their products, production process and raw materials. 

 

 

Figure 4-1: Overview of products, production process and raw materials of ZCLP  

(Zellstoff Celgar Limited Partnership, 2013)  

 

Ash is generated as an unwanted combustion by-product of burning hog fuel in their 

power boiler. Hog fuel consists of wood particles (sawdust and pine chips), bark, sludge 

from the effluent bio-treatment facility and other impurities. The sludge from the effluent 

bio-treatment facility is primarily made of  organic matter, fibre, and lime. Ash is the 

single largest contributor of material that goes into the mill's landfill which was estimated 

at 6500 m
3
/year (Personal communication). Finding alternative uses for these ash is 

beneficial to the ZCLP as it may reduce the costs involved in ash handling and disposal 
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such as fuel, manpower, and obtaining permits for the landfill and it will also address the 

safety concerns such as landfill fires that may be caused due to the heat of the ash. The 

ash sample (CLM) used in this study was collected from the bunker below power boiler 

in January 2013.  

 

4.2.2 Sample Details 

All samples (CBM, KBM, CBM-D, CBM-W, CLM) were dried at 105
o
C for 24 hours 

and sieved using a W.S. Tyler 8570 Ro-Tap sieve shaker with USA standard testing 

sieves (ASTM E-11 specification). The fraction of the CLM sample that was retained in 

the 1.18 mm sieve was crushed again to obtain only two size fractions (CLM1: d < 500 

µm and CLM2: 500 µm < d < 1.18 mm). Very small amounts of CBM, CBM-W and 

KBM2 samples were retained in the 4 mm mesh size and this retained fraction composed 

mainly of unburned wood particles and was not further analyzed. The details of the 

samples that were characterized in this study are given in Table 4-2 and the images of the 

samples are given in Figure 4-2. 

 

Table 4-2: Sample details (source and size fractions) 

Sample Name Description Sieve mesh size 

CBM   Corner Brook Mill first sample  1.18 mm < d < 4 mm 

KBM2   Kruger Brompton Mill sample  1.18 mm < d < 4 mm 

KBM1   Kruger Brompton Mill sample  d < 1.18 mm 
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CBM-D2  Corner Brook Mill second sample  500 µm < d < 1.18 mm 

CBM-D1  Corner Brook Mill second sample  d < 500 µm  

CBM-W  Corner Brook Mill third sample  1.18 mm < d < 4 mm 

CLM2    Zelstoff Celgar Mill sample 500 µm < d < 1.18 mm 

CLM1   Zelstoff Celgar Mill sample d < 500 µm 

 

 

 

CBM 

 

 

KBM2 

 

 

KBM1 

 

CBM-D2 

 

CBM-D1 

 

CBM-W 
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CLM2 

 

CLM1 

 

Figure 4-2: Images of the biomass ash/char samples used in this study 

 

4.3 Biomass Ash/Char Characterization Methodology  

4.3.1 Elemental Composition Using ICP-OES and ICP-MS  

Elemental analysis of the ash/char samples were done at TERRA (The Earth Resources 

Research and Analysis) Facility at Memorial University. Samples dissolution procedure is 

as described in the next paragraphs. 

 

Sample dissolution procedure for ICP-OES analysis: All the samples were finely 

ground and 0.1000 g of each sample was weighed into a clean dry teflon screw cap jar 

and weight was recorded. 2 mL of clean 8 N HNO3 and 1 mL of HF was added. The 

capped teflon jars were heated on a hot plate at 70 
o
C for 24 hours followed by the 

addition of 4 mL of aqua regia (3:1 conc. HCl:HNO3) to each sample and jars were 

heated for another 48 hours. 10 mL of saturated boric acid was added to the solution in 

the jars. The contents were then transferred into a clean 50 mL graduated tube and 
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nanopure water was added to make the solution up to 50 mL mark. The solution was 

filtered into another clean tube using a funnel and No.01 Whatman filter paper and 

analyzed by ICP-OES instrument. 

 

Sample dissolution procedure for ICP-MS analysis: All the samples were finely 

ground and 0.1000 g of sample was weighed into a clean dry teflon screw cap jar and 

weight was recorded. 2 mL of clean 8 N HNO3 and 1 mL of HF were added and the 

samples were heated on a hot plate at 70 
o
C for 48 hours. The cover was removed and 

rinsed with 8N HNO3 into the teflon jar and the sample was evaporated to dryness at 100 

o
C. Then, 3 mL of aqua regia (3:1 conc. HCl:HNO3) was added to each sample and the 

capped jars were heated for another 48 hours. The cap was removed and again rinsed with 

8N HNO3 into the teflon jar and evaporated to dryness. Then, 2 mL of 8N HNO3 was 

added and evaporated to remove traces of HCl and HF. After adding another 2 mL of 8N 

HNO3, the covered sample was heated for 5 more hours. The jar was then cooled before 

adding 1 mL of H2O2. Heating was continued until bubbling stopped and another 1 mL of 

H2O2 was added after cooling. After heating the sample for couple of more hours the 

contents were transferred into a clean dry labeled 120 mL snap seal container. Nanopure 

water was added until the solution weight was 30 g and the weight was recorded. Then 

the solution was filtered using a funnel and a No. 01 Whatman filter paper into another 

clean dry labeled 120 mL snap seal container. Then, 0.5 g of the solution was diluted with 

9.5 g of 0.2 N Nitric acid in a centrifuge tube and analyzed by the ICP-MS instrument. 
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The samples were analyzed using ELAN-DRC-II (ICP-MS) and Perkin Elmer Optima 

5300DV (ICP-OES) Instruments. 

 

4.3.2 C, N, S Elemental Analysis 

Ash/Char samples were analyzed in the Stable Isotope Lab at the TERRA Facility at 

Memorial University.  

 

Analysis of Carbon (C) and Nitrogen (N): Carbon and Nitrogen percentages of the 

samples were analyzed using Carlo-Erba NA1500 Elemental Analyzer. The Carlo-Erba 

NA1500 Elemental Analyzer (EA) consists of an autosampler, oxidation and reduction 

ovens, water trap, gas chromatographic (GC) column and a thermal conductivity meter 

(TCD).  

 

According to the analysis procedure, the entire EA system is continuously flushed with 

He (carrier gas) at a rate of 90 mL/min. The sample, sealed in a tin capsule, is loaded into 

the autosampler. The autosampler drops the capsule into the oxidation reactor (1050C) 

just as a pulse of oxygen, flushed by He, arrives. Reaction of O2 with the tin creates a 

flash combustion which totally oxidizes the sample into combustion products. The 

combustion gases pass through catalysts to ensure complete oxidation of the sample and 

also, to remove halides and SO2. The gas mixture passes through the reduction reactor 

(650C) which reduces nitrogen oxides to N2 and also absorbs excess O2. The gases pass 

through a water trap and the remaining gases (N2, CO2) enter the chromatographic 
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column. The individual gases are separated as they pass through the column and when 

they reach the TCD, they are detected as separate gas peaks: first N2, then CO2. The TCD 

output signal for each is proportional to the concentration of each combustion gas which 

allows elemental determination (%N, %C) based on sample weight.   

 

Analysis of Sulphur (S): Sulphur percentages (by weight) of the samples were analyzed 

using Carlo-Erba NA1500 Series 2 Elemental Analyzer with ConFloII Interface and 

Finnigan MAT252 Isotope Ratio Mass Spectrometer. 

 

4.3.3 Mineral Liberation Analysis (MLA) 

Mineral Liberation Analyzer (MLA 650 FEG) is a Scanning Electron Microscope (SEM) 

based automated image analyzer based on FEI’s Quanta platform and with a Field 

Emission Gun (FEG) source system (“FEI website”, 2013). The Mineral Liberation 

Analysis of the samples using SEM allows inspection of samples in Backscattered 

Electron Emission (BSE) imaging mode and collection of Energy Dispersive X-ray-

Spectra (EDS) of  the particles. MLA uses DataView image analysis software to analyze 

the resulting data and it automatically identifies minerals and phases under the electron 

beam (energy 25 kV, current 10 nA) by using an X-ray spectral pattern matching 

algorithm to compare the x-ray spectrums to a library of reference spectra. However, 

MLA cannot provide a completely true identification of the actual compounds present in 

the analyzed areas and it's a semi quantitative analysis method. 
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CBM and KBM1 samples were further categorized for MLA, as listed in the Table 4-3. 

These were the first received samples. Hence, they were categorized into three more size 

fractions to understand the effect of mineral composition with change in particle size. 

 

Table 4-3: Details of the samples used for MLA 

Sample name (MLA) Main sample 

description 

Size fraction 

CB 3 CBM  1.18 mm < d < 4 mm 

CB 2 500 μm < d < 1.18 mm 

CB 1 < 500 μm 

KM 3 (same as KBM2) KBM  1.18 mm < d < 4 mm 

KM 2 500 μm < d < 1.18 mm 

KM 1 < 500 μm 

CBM-D2  CBM-D  500 µm < d < 1.18 mm 

CBM-D1  d < 500 µm  

CBM-W CBM-W 1.18 mm < d < 4 mm 

CLM2    CLM  500 µm < d < 1.18 mm 

CLM1   d < 500 µm 

 

The samples were analyzed at the CREAIT (Core Research Equipment & Instrument 

Training) Network's Micro-analysis Facility at Memorial University. Epoxy blocks were 

used to prepare the grain mounts. The regular epoxy resin used for mounting particles 
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contains carbon and hence accurate identification of minerals in carbon rich particles is 

difficult. Therefore, a brominated epoxy resin was prepared by mixing Kukdo brominated 

epoxy resin with Jeffamine hardener obtained from Hunstsman Corporation, Texas, USA. 

Analysis was done using both regular and brominated epoxy resins. The analytical 

surface of the epoxy block was grinded and polished to prepare the samples for the 

analysis. The minerals/phases of these samples were determined using the MLA 650 FEG 

instrument. 

 

4.3.4 XRD Analysis 

XRD (powder X-ray Diffraction) analysis was carried out at the TERRA facility at 

Memorial University. A small amount of sample was mounted on the aluminum plate 

trough and X-ray diffraction patterns were obtained using a Rigaku Ultima-IV X-ray 

diffractometer with Cu- Kα radiation (40 kV,44 mA) with 0.02
o 

step (angle 5
o 

- 100
o
). 

Data were recorded and X-ray patterns were matched with ICSD-All and ICSD-Min 

databases (as a source of reference data) using Materials Data Inc.'s (MDI) Jade software. 

 

4.3.5 ATR- FTIR Analysis 

ATR-FTIR (Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy) 

analysis was done at the Centre for Chemical Analysis, Research and Training (C-CART) 

at Memorial University. Samples were finely ground to obtain a powder and analyzed 

using Bruker Tensor 27 FTIR spectrometer with OPUS data collection and analysis 
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program. ATR assembly uses a ZnSe crystal for reflection. IR spectrum is obtained in the 

wavelength range of 4000 cm
-1

 to 650 cm
-1

. 

 

4.3.6 SEM Analysis 

SEM (Scanning Electron Microscopy) analysis was done at the CREAIT Network's 

Micro-analysis Facility. All the ash/char samples were mounted on double sided tape on 

SEM stub samplers. These samples were analyzed using Quanta scanning electron 

microscope with FEG source system and Large Field Detector (LFD). Recorded SEM 

micrographs are analyzed in detail in the results section. 

 

4.3.7 Specific Surface Area, Pore Volume and Mean Pore Diameter 

All the samples were analyzed using the Belsorp-max instrument (by BEL Japan Inc.) at 

the Material Surface Characterization Laboratory in the Department of Chemical 

Engineering at University of New Brunswick.  

 

The Belsorp-max (used for BET surface area measurement) is an automatic gas 

adsorption/desorption measuring unit and measures adsorption isotherm in the relative 

pressure (P/P0) range of 10
-8 

- 0.997. Liquid nitrogen (77 K) is used to determine the 

specific surface area and pore size distribution of samples. The samples were pre-treated 

for 4 hours using a furnace at 200 
o
C (Personal communication). Pre-treatment is 

important to remove moisture, gases or contaminants from the surface and pores of 
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samples before starting the measurement. Analysis software by BEL Japan Inc. is used to 

analyze the data measured by the Belsorp adsorption apparatus, and  the BET plot was 

used to evaluate the specific surface area and pore size distribution.  

 

CLM1 and CBM-D2 samples were also analyzed at Micromeritics Analytical Services, 

Particle testing authority, Georgia, USA (www.particletesting.com). The samples were 

pre-treated under vacuum for 240 minutes and analyzed using Micromeritics ASAP 2020 

(Accelerated Surface Area and Porosimetry) system. Analysis adsorptive used in this 

testing was CO2 at 273 K. The specific surface area and pore volumes were calculated 

using Density Functional Theory, Dubinin-Radushkevich method and Dubinin-Astakhov 

method. 

 

BET (Brunauer, Emmett and Teller) is the best-known and most commonly used method 

for evaluating specific surface areas of porous materials. Although, it is easy to apply and 

widely accepted, accurate measurement of the true surface area of microporous materials  

is not possible by this method (Quantachrome Instruments, 2013). On the other hand, 

application of methods derived from the Dubinin - Radushkevich approach and methods 

based on Density Functional Theory are more useful when determining the surface area 

of microporous carbons (Tascon, 2012). Dubinin equations are based on micropore 

volume filling theory and characteristic energy of adsorption. Dubinin-Radushkevich 

equation generally applies only to solids with a uniform micropore structure where as 

Dubinin-Astakhov equation applies to non-homogenous microporous structures (e.g. 
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carbon) (Gil and Grange, 1996). Density Functional Theory (DFT) looks at sorption 

phenomena in micro and mesopores at a molecular level using statistical mechanics.  DFT 

uses complex mathematical modeling of gas-solid interations plus pore geometry to 

develop density profiles of adsorbed fluids as a function of pressure or temperature. From 

these density profiles, the amount adsorbed can be calculated (Quantachrome 

Instruments, 2013). 

 

Further, CO2 at 273 K (0
o
C) is a more suitable adsorptive than N2 at 77 K (-196

o
C) for 

surface area and pore volume analysis of microporous materials. The diffusion rate of N2 

molecules into micropores of char at -196
o
C is extremely slow and these pores are 

inaccessible to N2 molecules. On the other hand, the CO2 molecules at 0
o
C can easily 

access the micropores of the same material. Therefore, CO2 at 0
o
C is a better adsorbent 

for highly microporous carbons, providing more reliable measurements than N2 at -196
o
C 

because of higher testing temperature (McLaughlin et al., 2012) 

 

4.3.8 Bulk Density  

True density of a porous solid is the ratio of the mass to the volume occupied by that 

mass. Therefore, when measuring true density, volume of pores and inter-particle spaces 

must be excluded. Helium pycnometry is generally used as a method for true density 

measurement of porous solids as helium is a non interactive fluid which is able to 

completely fill the pores.  
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Bulk density includes both volume of pores and inter-particle spaces and it is calculated 

as follows. Bulk density of the dried samples were measured using a 100 mL (V) 

measuring cylinder. First step is to measure the weight of the empty measuring cylinder 

(M1) using a digital balance. It was then filled with the closely packed sample up to the 

100 mL mark and the weight was measured again (M2). Sample weight (M2 - M1) was 

divided by the volume (V) to calculate the bulk density.  

 

4.3.9 pH Values 

The pH of the ash/char samples was measured by mixing them with de-ionized water at 

1:20 (kg/L) solid/solution ratio and taking the pH reading from a Oakton pH 2100 bench 

top meter using a combined pH electrode after 10 minutes of initial mixing at 180 rpm in 

a VWR shaker (Luo et al., 2011). A 3-point calibration was performed using pH buffer 

solutions at pH 4.0, 7.0 and 10.0 before taking the pH measurements. 

 

4.3.10 Total Alkalinity 

Total Alkalinity is a measure of  resistance of water to change in pH. It can also be called 

as buffering capacity of water. Materials such as carbonate, bicarbonate, hydroxides can 

contribute towards increased alkalinity in water. Total Alkalinity is defined as the amount 

of acid required to lower the pH of the sample to a pH value of 4.5 (endpoint) at which all 

carbonate and bicarbonate ions are converted to carbonic acid (H
2
CO

3
). Total alkalinity can 

be measured by titrating a water sample with HCl or H2SO4 acid of known concentration.   
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Analysis procedure: Fly ash leaching tests were performed at a liquid to solid ratio of 20 

L/kg. 10 g of solid sample and 200 mL of de-ionized water was mixed in a 250 mL 

Erlenmeyer flask. The flasks were then agitated by using a VWR series shaker for 24 

hours at 10 rpm. The mixtures were then filtered through a Whatman No 42 filter paper. 

50 mL of the sample was titrated with 0.2 N H2SO4 solution, leaving sufficient time for 

the neutralization reaction to happen and a Oakton pH 2100 bench top meter was used to 

monitor and record pH. The volume of H2SO4 needed for the pH of the solution to drop to 

4.5 was recorded at three replicate titrations. Then the total alkalinity is calculated as 

follows. 

 

Alkalinity, mg/L CaCO3  = (mL titrant* normality of acid* 50000)/ mL of sample 

    = mL of H2SO4 acid used* 0.2 N*50000/ 50 mL 

 

4.3.11 Thermal Analysis by TGA 

Thermal properties of the samples were analyzed using the Thermo Gravimetric Analyzer 

(TGA Q500 V20.10 Build 36) at the Centre for Chemical Analysis, Research and 

Training (C-CART) at Memorial University. Samples were dried at 105
o
C overnight and 

finely ground. A very small quantity of the sample (<15 mg) was placed in the platinum 

pan and loaded into tarred equipment. Samples were heated to 1000
o
C at the ramping rate 

of 20
o
C/min under inert (N2) atmosphere at 50 mL/min sample gas flow. Balance gas 

flow was maintained at 40 mL/min sample gas flow. Weight percentage and the 

derivative weight percentage with temperature was analyzed. 
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4.4 Biomass Ash/Char Characterization Results and Discussion 

4.4.1 Elemental Composition from ICP-OES and ICP-MS Analysis  

Table 4-4 summarizes the results from the elemental analysis of the ash/char samples. 

The actual concentration of the elements in ash/char samples may be slightly higher than 

the mentioned values as the samples were not completely dissolved in the solution. K, Na, 

Si were analyzed using ICP-OES while Mg, Al, P, Ca, Ti, Fe, Mn were analyzed using 

both ICP-OES and MS. The values obtained from the ICP-OES analysis are given in the 

table. All the other elementals present in concentrations less than 100 ppm were analyzed 

using ICP-MS. Elements such as Be, Se, Ag, Cd, Cs, Hg, Tl, Bi, U were present in 

concentrations less than 5 ppm and these values are not given in the table.  

 

Major elements present in the analyzed eight ash/char samples are Ca, Si, Al, Na, K, Fe, 

Mn, Mg, P, Ti. Very high Ca and Si elemental compositions are recorded in most of the 

samples; KBM1 sample has the highest Si content of 225,333 ppm and highest Ca content 

of 124,500 ppm. CBM-D2 and CBM-W samples have low Ca, K, Mg, Na values 

compared to other samples. Compounds rich in Ca, Na, K, Mg can be used to neutralize 

and increase pH of acidic effluent water streams such as AMD (Vassilev et al., 2013b). 

KBM1 and CBM-D1 samples contain the highest amount of Si and Al which is an 

important factor for zeolite synthesis (Adeoti, 2011; Vadapalli et al., 2012). Maximum 

concentrations of Ba, Sr, Cu, Zn, Pb, B in the samples are less than 2000 ppm. Heavy 

metal concentrations in the CBM-D2 and CBM-W samples are very low compared to 

other samples. 
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Table 4-4: Elemental analysis using ICP-MS and ICP-OES techniques 

Element 

(ppm) 

CBM 

 

KBM2 

 

KBM1 

 

CBM-

D2 

 

CBM-

D1 

 

CBM-

W 

 

CLM2 

 

CLM1 

 

K 5,650 15,195 19,430 8,985 31,405 4,260 29,045 31,395 

Na 1,400 6,750 18,443 1,263 15,008 993 50,083 55,820 

Si 9,515 105,440 225,333 4,050 179,967 5,042 60,535 91,570 

Mg 1,965 12,672 14,817 1,417 19,762 1,353 8,017 12,208 

Al 3,333 34,838 69,655 1,490 45,455 2,085 14,903 21,210 

P 2,370 938 1,748 1,290 29,048 1,043 4,355 5,678 

Ca 110,575 45,998 124,500 18,395 124,300 22,610 75,168 101,325 

Ti 233 6,608 10,712 112 3,197 125 527 833 

Fe 3,663 14,934 20,158 1,514 49,530 1,833 6,854 11,264 

Mn 3,880 615 1,117 2,875 36,363 2,825 4,923 7,242 

Ba 713 765 852 226 1,943 232 817 1,138 

Sr 129 485 554 61 484 71 461 612 

Cu 23 524 564 16 174 18 46 57 

Zn 265 966 1,701 42 563 72 347 489 

Pb 12 411 527 2 17 5 24 31 

Cr 21 236 206 7 164 5 101 64 

As 1 139 106 0 4 0 3 3 

B 36 340 799 22 70 22 89 86 

Li 2 22 29 1 14 2 5 7 

V 13 55 74 4 118 4 14 21 

Co 1 16 16 1 17 1 2 3 

Ni 10 47 43 6 93 5 60 18 

Rb 15 73 67 21 70 11 74 84 
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Mo 12 3 3 1 11 1 4 3 

Sn 6 20 36 5 10 5 9 11 

Sb 1 33 43 0 3 0 1 2 

La 3 18 27 1 28 1 7 11 

Ce 4 45 63 2 41 2 13 20 

 

 

4.4.2 C, N, S Elemental Composition 

According to Table 4-5, CBM-D2 and CBM-W samples have the highest carbon content 

(%wt) of 77.47% and 79.47%. CBM-D1 sample has the lowest carbon of 3.61%. 

Nitrogen content is highest in the CBM-D2 sample. It is important to note that the sulphur 

percentages in CLM1 and CLM2 samples are higher than the other samples and some 

published data in literature (Li et al., 2010). 

Table 4-5: C, N and S percentages in the samples by EA 

Sample %C %N %S 

CBM 61.32 0.15 0.15 

KBM2 53.60 0.16 0.19 

KBM1 26.65 0.16 0.19 

CBM-D2 77.47 0.22 0.04 

CBM-D1 3.61 0.03 0.11 

CBM-W 79.47 0.16 0.39 

CLM2 40.79 0.09 0.99 

CLM1 32.30 0.08 1.21 
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4.4.3 MLA Results 

A list of the minerals/phases identified by MLA is given in Table 4-6. CB1, CB2, CB3 

samples mainly consist of char, calcium carbonate, calcium rich slag, calcium rich char 

and slag rich in Ca-S-Al-Mg. CBM-D1 and KM2 samples were rich in SiO2 and KM3 

and KM1 samples were rich in carbon/char. It is interesting to note that main phase in 

both CBM-W and CBM-D2 samples is carbon; slag rich in Ca-S-Al-Mg and SiO2 were 

identified as the other two main phases in these two samples. CLM1, CLM2 samples 

were similar to each other and the main minerals/phases present were alkali-feldspar, 

SiO2, Ca-rich slag, Char, Ca-rich char, Ca-carbonate. 

 

Table 4-6: Minerals/Phases identified in the samples by MLA 

Sample name Main mineral/phases Other significant 

minerals/phases 

CB 3 Char 

Calcium rich slag 

Calcium rich char 

Calcium carbonate 

Slag Ca-S-Al-Mg 

Na-K chloride, Slag Ca-Fe-

Mn-K-Si-Al-P-Ti, Slag Ca-

P rich, Slag Ca-Si-Fe-P  

CB 2 Char 

Calcium rich slag 

Calcium rich char 

Calcium carbonate 

Al metal, Na-K chloride, 

Si-rich char, Slag Ca-rich 

silicate, Slag Si-Al-Ca-Fe-

K, Silicon metal, SiO2, Slag 
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Slag Ca-S-Al-Mg Pb-Zn-rich alkali, Slag Si-

Al-K, Slag Ca-Si-Fe-P-Mn, 

Alkali silicate 

CB 1 Char 

Calcium rich slag 

Calcium rich char 

Calcium carbonate 

Slag Ca-S-Al-Mg  

Slag Ca-Si-Fe-P, SiO2, Slag 

Ca-P rich, Slag Ca-Fe-Mn-

K-Si-Al-P-Ti, Na-K 

chloride, Al-Silicate + Ca, 

Slag Si-Al-K, Slag Fe-Ca-

P-K-Mn, Slag Si-rich alkali 

KM 3 (same as KBM2) Char 

Ca-rich char 

Na-K chloride 

Alkali-feldspar 

SiO2-Muscovite 

Slag Si-Al-Ti 

SiO2, Muscovite-SiO2, Slag 

Si-Al-K, Slag Ca-S-Al-Mg, 

Ti-oxide, Ca-rich slag, Slag 

Si-Al-Ca-Fe-K 

KM 2 Alkali-feldspar 

Slag Si-Al-K 

SiO2 

Slag Ca-rich slicate 

Slag Si-Al-Ca-Fe-K, SiO2-

Muscovite, Ca-rich slag, 

Slag Ca-S-Al-Mg, Ca-Mg 

rich carbonate, Mg-

carbonate, Al-Silicate+Ca, 

Char, Epidote, Slag Ca-Si-

Fe-P slag, Alkali silicate, 
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Ca-rich char, Mg-rich clay, 

Ca-carbonate, Slag Si-Al-

Fe-Mn-K-Ca, Slag Ca-Na 

silicate, Ca-rich slag, 

Plagioclase-feldspar, Fe-

oxide 

KM 1 Ca-rich slag 

Char 

Al-Silicate+Ca 

Ca-rich char 

Ca-carbonate 

Slag Ca-rich slicate, SiO2, 

Alkali-feldspar, Epidote, 

Slag Ca-Si-Fe-P slag, Mg-

rich clay 

CBM-D2  Char 

SiO2 

Slag Ca-S-Al-Mg 

Alkali-feldspar, SiO2-

Muscovite, Ca-rich slag, 

Slag Ca-Fe-Mn-K-Si-Al-P-

Ti, Slag Si-Al-K, Si-Al rich, 

Slag Ca-Fe-Mn-K-Si-Al-P, 

Slag Ca-Si-Fe-P slag, Al-

Silicate+Ca, Slag Si-Al-Ca-

Fe-K, Muscovite-SiO2, Slag 

Ca-P rich, Ca-rich char, Si-

rich char, Alkali silicate, 

Silicon metal, Ca-
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carbonate, Slag Si-rich 

alkali, Slag Ca-rich slicate 

CBM-D1  SiO2 

Alkali-feldspar 

Slag Ca-Fe-Mn-K-Si-Al-P-Ti 

Slag Ca-Si-Fe-P slag 

Char, Ca-rich slag, Slag Ca-

Fe-Mn-K-Si-Al-P, Slag Si-

Al-K, Slag Ca-S-Al-Mg, 

SiO2-Muscovite, Si-Al rich, 

Slag Si-Al-Ca-Fe-K, Slag 

Ca-Fe-Mn rich. Plag-

feldspar, Slag Si-Al-Fe-Mn-

K-Ca, Slag Ca-P rich, Slag 

Si-rich alkali, Slag Ca-Fe-

Mn rich, Ca-carbonate 

CBM-W Char 

Slag Ca-S-Al-Mg 

SiO2 

Ca-rich slag, Na-K chloride, 

Alkali-feldspar, Slag Ca-Fe-

Mn-K-Si-Al-P-Ti, Silicon 

metal, Alkali silicate, Ca-

rich char, Ca-carbonate 

CLM2    Alkali-feldspar 

SiO2 

Ca-rich slag 

Char 

Ca-rich char 

Plagioclase-feldspar, Slag 

Ca-Si-Fe-P slag, Slag Si-

Mg-Al-Mn-Fe-Ca, Slag Ca-

Si-Fe-Na-P-Mn-Mg, Slag 

Si-Mg-Al-Mn-Fe, Fe-oxide, 
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Ca-carbonate Si-rich char, Slag Si-Al-Fe-

Mn-K-Ca, Slag Ca-Na 

silicate 

CLM1   Alkali-feldspar 

SiO2 

Ca-rich slag 

Char 

Ca-rich char 

Ca-carbonate 

 

Slag Ca-S-Al-Mg, Plag-

feldspar, Slag Si-Mg-Al-

Mn-Fe-Ca, Slag Ca-Si-Fe-P 

slag, Slag Ca-Si-Fe-Na-P-

Mn-Mg, Slag Si-Mg-Al-

Mn-Fe, Al-Silicate+Ca, 

Slag Si-Al-Ca-Fe-K, Slag 

Na-K-rich, Si-rich char, Na-

K chloride, Slag Ca-Fe-Mn-

K-Si-Al-P-Ti 

 

 

4.4.4 XRD Results 

Table 4-7 shows results from the XRD analysis. XRD patterns (Appendix C) show that 

these samples are partially crystalline (Berra et al., 2010) and these results are in 

agreement with the results (elements/minerals/phases)  obtained from elemental analysis 

(ICP-MS, ICP-OES, CHN Elemental Analysis) and MLA. The XRD spectra for each 

sample is given in Appendix C. 
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 Table 4-7: XRD results  

Sample  Mineral/Phase Chemical Formula 

CBM 

  

  

Calcite 

Portlandite 

Graphite 

Ca(CO3) 

Ca(OH)2 

C 

KBM2 

  

 

Lead Bismuth Vanadium Oxide 

Calcite 

Barium Copper Oxide 

Biotite 

Pb4BiVO8 

Ca(CO3) 

Ba2Cu2O5 

KFeMg2(AlSi3O10)(OH)2 

KBM1 

  

 

Quartz 

Strontium Sulphide 

Strontium Silicate 

Vanadium Oxide 

Anglesite 

Semseyite 

Calcium Arsenide Bromide 

Lead Magnesium Carbonate 

SiO2 

SrS 

SrSiO3 

VO2 

PbSO4 

9PbS.4Sb2S3 

Ca2AsBr 

PbMg(CO3)2 

CBM-D2

  

Calcium Carbonate 

Graphite 2H 

Ca(CO3) 

C 

CBM-D1

  

 

Silicon Dioxide - Quartz 

Cu-Ni-Co-Mn Oxide 

Albite 

SiO2 

(Cu0.1Ni0.61Co0.2Mn2.09)O4 

Na(AlSi3O3) 
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Lime 

Calcium Catena-silicate 

Anorthite 

Iron Sulphate(IV) 

CaO 

Ca(SiO3) 

Ca(Al2Si2O8) 

Fe(SO3) 

CBM-W

  

Calcium Carbonate 

Graphite 2H 

Ca(CO3) 

C 

CLM2  

  

 

Calcite 

Aluminium Arsenic Nickel 

Copper Arsenide 

Graphite 

Lithium Titanium Oxide 

Manganese Cobalt Silicon 

La-Sr-Mn-Ni Oxide 

Cadmium Zinc Sulphide 

Ca(CO3) 

(AlAsNi3)0.8 

CuAs 

C 

(Li2TiO3)1.333 

Mn2CoSi 

(La1.5Sr1.5)(Mn1.25Ni0.75)O6.67 

(Cd0.15 Zn1.85)S2 

CLM1  

 

Calcite 

Silicon Dioxide - Alpha 

Aluminium Arsenic Nickel 

Copper Arsenide 

Graphite 

Vanadium(III) Phosphate 

Hydroxide Hydrate 

Aluminium Phosphate 

Ca(CO3) 

SiO2 

(Al2As2Ni7)0.36 

CuAs 

C 

V1.23(PO4)(OH)0.69(H2O)0.64 

 

AlPO4 
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Vanadium(IV) Oxide 

Cerium Oxide 

VO2 

Ce2O3 

 

4.4.5 Functional Groups from ATR- FTIR  

FTIR analysis helps to identify the functional groups present in the ash/char samples. The 

ATR-FTIR spectrums in Appendix A show how the percentage transmittance varies with 

the frequency of the infra-red radiation for each ash/char sample. Table 4-8 identifies the 

possible functional groups that can be present in these samples based on the prominent 

stretch bands. XRD study confirms the presence of calcite, which is the potential source 

of C-O stretching in CBM, CLM2 and CLM1 samples. It also confirms the presence of 

SiO2 in KBM1, CBM-D1, CLM1 which is the potential source of Si-O and Si-O-Si 

stretching. These explanations can be further validated using the results from MLA and 

elemental composition analysis. KBM2, CBM-D2 and CBM-W samples do not seem to 

contain any oxygen containing functional groups; hence, these samples are of 

hydrophobic nature (Liu et al., 2011, 2010).  

 

Table 4-8: ATR - FTIR analysis results 

Sample Infra- red 

bands cm
-1

 

Possible functional groups (Smidt et al., 2011) 

CBM 1400, 800 C-O stretching (carbonate at 1450-1410 and 875) 

KBM2 - No prominent stretch bands 
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KBM1 1400, 1000-

800 

C-O stretching (carbonate at 1450-1410 and 875) 

Si-O and Si-O-Si stretching(clay minerals and silica at 1030) 

CBM-D2 - No prominent stretch bands 

CBM-D1 1100 Si-O stretching (clay minerals and and quartz at 1080) 

Si-O-Si stretching (silica at 1030) 

CBM-W - No prominent stretch bands 

CLM2 1400,1100, 

800 

C-O stretching (carbonate at 1450-1410 and 875, 713) 

S-O stretching (sulphate at 1140-1080) 

Si-O stretching (quartz at 1080) 

CLM1 1400,1100, 

800 

C-O stretching (carbonate at 1450-1410 and 875, 713) 

S-O stretching (sulphate at 1140-1080) 

Si-O stretching (quartz at 1080) 

 

4.4.6 SEM Results 

Scanning electron micrographs of the eight samples are given below (Figures 4-3 to 4-

10). KBM2, CBM-W, CBM-D2 samples mainly contain meso/macro porous carbon 

particles (Adeoti, 2011). A honeycomb structure is clearly visible in the images of CBM-

W sample. The images also show the presence of a large number of fine particles on the 

carbon surface which may be a result of condensation of trace elements (amorphous slag 

caused during combustion and cooling) or due to the deposition of different species of 

alkali and other elements (Li et al., 2012). This can be further confirmed by the results 
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from the MLA which confirms the presence of calcium rich char, alkali-feldspar, silica, 

slag rich in Si, Al, Mg, S, Ca, Ti in these samples. 

 

CBM, KBM1 and CBM-D1 samples are more heterogeneous. Both CBM and KBM1 

samples contain carbon particles, silica and amorphous slag. KBM1 and CBM-D1 

samples contain small irregular and skeletal shaped particles. Silica (quartz) in the CBM-

D1 sample can be easily identified because of their low reflectance (Li et al., 2012). 

 

CLM2 and CLM1 samples contain carbon particles rich in alkali species. Image of the 

CLM2 sample clearly shows alkali species (calcium rich slag and other species) deposited 

on carbon surface. 

 

 

Figure 4-3: CBM (1.18 mm < d < 4 mm) SEM images 
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Figure 4-4: KBM2 (1.18 mm < d < 4 mm) SEM images 

 

Figure 4-5: KBM1 (d<1.18 mm) SEM images 

 

Figure 4-6: CBM-D2 (500 µm < d < 1.18 mm) SEM images 
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Figure 4-7: CBM-D1 (d < 500 µm) SEM images 

 

Figure 4-8: CBM-W (1.18mm < d < 4mm) SEM images 

 

Figure 4-9: CLM2 (500 µm < d < 1.18 mm) SEM images 
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Figure 4-10: CLM1(d < 500 µm) SEM images 

 

4.4.7 Specific Surface Area, Pore Volume and Mean Pore Diameter Results 

KBM2, CBM-D2, CBM-W and CBM samples have high specific surface areas compared 

to other samples which can be attributed to the high carbon content in these samples 

(Table 4-9). Measured surface areas for CBM-D1 and CLM1 with CO2 are higher than 

the values measured with N2. The results are similar to Yao et al., 2011 and the reason is 

that micro pores are also taken into account with CO2 measurement. Both specific surface 

area and pore volume values obtained for KBM1 and CBM-D1 samples are low 

compared to other six samples and similar to results obtained by (Adeoti, 2011; Li et al., 

2010; Liu et al., 2010).  
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Table 4-9: Specific surface area, pore volume and mean pore diameter values 

Results from University of New Brunswick (With N2) 

Sample  Specific surface area 

(BET) [m
2 

/g] 

Total pore volume 

[cm
3
/ g] 

Mean pore 

diameter [nm] 

CBM 361.480 0.1938 2.1440 

KMB2 592.150 0.2974 2.0090 

KMB1 41.456 0.0255 2.4649 

CBM-D2 498.560 0.2150 1.7252 

CBM-D1 17.842 0.0123 2.7668 

CBM-W 425.330 0.1820 1.7114 

CLM2 281.480 0.1667 2.3694 

CLM1 178.170 0.1153 2.5877 

 

Results from Micromeritics Analytical Services (With CO2) 

Sample  Method Specific surface 

area [m
2 

/g] 

Pore volume [cm
3
/ 

g] 

Mean pore 

diameter [nm] 

CBM-D1  43.946 0.0031 - 

  80.749 0.0323 - 

  231.942  0.1462 2.5212 

CLM1  247.522 0.0428 - 

  240.8768 0.0965 - 
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  348.6429 0.1564 1.7949 

Notes:  Density Functional Theory,  Dubinin-Radushkevich method,  Dubinin-

Astakhov method  

 

4.4.8 Bulk Density  

The highest bulk density values are obtained for CBM-D1 sample which contains smaller 

but heavy particles (Table 4-10). CBM-D2 and CBM-W samples with larger particles of 

mostly unburned carbon gave the lowest bulk density values. 

 

Table 4-10: Bulk density of ash/char samples 

Sample Bulk density (g/cm
3
) 

CBM-D2 0.101 

CBM-D1 0.956 

CBM-W 0.101 

CLM2 0.263 

CLM1 0.448 

 

4.4.9 pH Values  

Typically, high pH values are obtained for biomass ash than for char derived from 

biomass (Adeoti, 2011; Liu et al., 2010; Pan and Eberhardt, 2011; Shang et al., 2012). All 
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the samples analyzed are highly alkaline and the lowest pH obtained was for CBM-W 

char sample at pH 9.6 (Table 4-11). 

 

Table 4-11: pH of ash/char samples 

Sample pH at 25
o
C 

CBM 11.6 

KBM2 10.7 

KBM1 11.6 

CBM-D2 11.4 

CBM-D1 12.0 

CBM-W 9.6 

CLM2 11.1 

CLM1 11.2 

 

4.4.10 Total Alkalinity Values 

Total alkalinity of CLM2 and CLM1 samples are high which explains that these samples 

have a higher ability than CBM-D2 or CBM-W samples to increase the pH and reduce the 

acidity of effluent water streams such as AMD (Table 4-12). 
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Table 4-12: Total alkalinity of ash/char samples 

Samples Volume of H2SO4 

(endpoint pH=4.5) 

Total Alkalinity 

(mg/L CaCO3) 

CBM-D2 2.1 mL 420 

CBM-D1 5 mL 1000 

CBM-W 0.5 mL 100 

CLM2 13.6 mL 2720 

CLM1 11.8 mL 2360 

 

4.4.11 TGA Results 

Thermo gravimetric Analysis (TGA) determines the presence of unburned carbon (weight 

loss in the range of 300–500 
o
C) and inorganic carbon (weight loss in the range of 630–

750 
o
C) in the ash/char samples (Berra et al., 2011). Weight % and Derivative weight 

(%/
o
C) vs. Temperature graphs from TGA are given in Appendix B. The residual weight 

percentages of CBM-D2 and CBM-W are the lowest showing more than 90% weight loss 

when heated up to 1000
o
C under inert atmosphere (Table 4-13). This can be related to the 

high carbon content present in these samples as per the results from the CNS elemental 

analysis. Residual weight percentage of CBM-D1 and KBM1 samples are very high at 

approximately 95% with about 5% weight loss occurring in the temperature range of 450 

o
C to 700 

o
C. It is important to note that during 650

 o
C - 850 

o
C, rate of weight loss 

increased significantly for  CLM2, CLM2 samples which may be due to decomposition of 

calcite in this temperature range (Rajamma et al., 2009). 
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Table 4-13: Residue weight percentages from TGA 

Sample Residue weight % 

CBM 28.05 

KBM2 21.79 

KBM1 94.56 

CBM-D2 8.69 

CBM-D1 93.94 

CBM-W 7.24 

CLM2 33.51 

CLM1 45.26 

 

4.5 Conclusion 

From the characterization analysis, it can be concluded that the behavior of CBM, KBM2, 

CBM-D2, CBM-W is similar to typical biomass derived char; KBM1 and CBM-D1 

samples have characteristics similar to typical biomass derived ash; CLM2, CLM1 

samples are complex mixtures of both ash and small particles of unburned carbon, thus 

have moderate characteristics compared to all other analyzed samples.  

 

Major elements present in the eight samples analyzed were Ca, Si, Al, Na, K, Fe, Mn, 

Mg, P, Ti. CBM-D2 and CBM-W had low concentrations of most elements analyzed by 

the ICP-MS and ICP-OES techniques compared to other six samples. However, these two 
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samples had the highest C percentages (77.47 and 79.47%). CLM1 and CLM2 samples 

have considerably high sulphur percentages. MLA results showed that these samples 

mainly consist of char, silica, alkali-feldspar, calcium carbonate, aluminium silicate, slag 

rich in various elements like Ca, S, Ti, Al, Fe, Mn, S, P, Na, K,Mg. Results from the 

XRD analysis were in agreement with the MLA results. Although, ATR-FTIR analysis 

showed no prominent stretch bands for CBM-D2, KBM2, CBM-W samples, the 

following functional groups were found to be present in other samples: Si-O (quartz), S-O 

(sulphate), C-O (carbonate) in CLM2 and CLM1 samples; C-O (carbonate) in CBM 

sample; Si-O (quartz), Si-O-Si (silica), C-O (carbonate) in KBM1 sample; Si-O (quartz), 

Si-O-Si (silica) in CBM-D1 sample. SEM micrographs were useful in understanding the 

morphology of these samples. Highest BET specific surface area was obtained  for KMB2  

sample (592.150 m
2
/g) and the lowest BET surface area was found in CBM-D1 sample 

(17.842 m
2
/g). 

 

CBM-D1 sample had the highest bulk density value (0.956 g/cm
3
) where as CBM-W and 

the CBM-D2 samples had the lowest bulk density (0.101 g/cm
3
). CBM-W sample had the 

lowest pH value (pH 9.6) and CBM-D1 sample gave the highest pH value (pH 12). Total 

alkalinity of CBM-W (100 mg/L CaCO3) and CBM-D2 (420 mg/L CaCO3) samples were 

very low compared to high total alkalinity of CLM1 and CLM2 samples, 2360 and 2720 

mg/L CaCO3 respectively. High weight loss % given by the TGA analysis for CBM-D2 

and CBM-W samples confirmed that the high unburned carbon content in CBM-D2 and 
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CBM-W samples is the reason for  high BET surface area and low density of these 

samples. 

 

The next step after characterization is to identify utilization options for these ash/char 

samples. Potential utilization directions for these biomass ash/char based on 

characterization results are: soil amendment (liming, neutralization, stabilization) and 

fertilization; adsorbents for water treatment and gas purification; mine backfilling and 

excavation work, neutralization of acid water and waste; recovery of char; recovery of Fe 

fraction enriched in some trace elements; recovery of other valuable elements and 

compounds; refractory materials (silica minerals, calcium silicates, lime); synthesis of 

zeolites; construction materials (Vassilev et al., 2013b). However, preliminary tests need 

to be carried out in order to confirm the suitability of using these ash/char sample for any 

specific application in order to understand the feasibility, cost implications and other 

environmental concerns. 
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Abstract 

Thiosalts (sulphur oxy-anions) are generated in the process of mining of sulphide ores 

such as pyrite. Although thiosalts have relatively low toxicity, Sulphuric acid formed as 

the final product in the oxidation of these sulphide ores, leads to pH depression in the 

receiving water bodies creating toxic conditions for aquatic plant and animal life. In the 

present study, suitability of using biomass ash/char as an adsorbent to remove three 

thiosalt species, thiosulphate (S2O3
2-

), trithionate (S3O6
2-

) and tetrathionate (S4O6
2-

) from 

aqueous solutions was investigated.  The biomass ash used in this study was obtained 

from two pulp and paper mills and physico-chemical, mineralogical and thermal 

properties were determined as outlined in Chapter 4. Batch mixing experiments were 

conducted with three different types of biomass ash/char (CBM-D1, CBM-W, CLM1) 

where initial solution pH (2, 4, 7, 9), adsorbent dose (20, 50, 80 g/L) and temperature (5, 

21, 35 
o
C) were varied. The highest adsorption capacities were recorded at the highest 

adsorption dose (80 g/L) which were 10.82, 10.29, 14.24 mg/g of CBM-W char for 

thiosulphate, trithionate and tetrathionate respectively. Variation in pH and temperature 

did not have a measureable effect on sulphur adsorption. The biomass had a moderate 
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neutralization effect on solutions as the final pH ranged from 6.6 - 9.4 depending on 

dosage and initial pH. The Freundlich isotherm equation was found to be a better fit than 

the Langmuir isotherm equation in modeling the experimental isotherm data at the given 

experimental conditions. 

 

5.1 Introduction 

Partially oxidized sulphur compounds which are also known as thiosalts are formed 

during mining and mineral processing activities during oxidation of sulphide ores (e.g. 

pyrite, pyrrhotite) (Negeri et al., 1999). The thiosalts generated and dissolved in 

wastewater during mineral processing can further oxidize to form sulphuric acid leading 

to low pH values in natural water bodies, impacting aquatic plants and animals (Chanda 

et al., 1984). Some of the other adverse effects include depletion of dissolved oxygen, 

reduction of buffering capacity and dissolution of metals from the sediment (Dinardo and 

Sally, 1998). Thiosalt species identified in mining effluent water include thiosulphate 

(S2O3
2-

), trithionate (S3O6
2-

), tetrathionate (S4O6
2-

) and also low concentrations of higher 

polythionates (Dinardo and Sally, 1998; Miranda-Trevino et al., 2012). The reactivity of 

thiosalts is complex and depends on many factors such as temperature, pH, dissolved 

oxygen content, microorganisms and presence of heavy metals. At typical tailing pond 

conditions most sulphur compounds oxidize to sulphate, however, thiosalts are slow to 

oxidize and are present in the tailings pond (Miranda-Trevino et al., 2012; Wasserlauf and 

Dutrizac, 1982). 
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The Environmental Code of Practice for Metal Mines in Canada states that thiosalt 

management practices should be in place at sites where there is a risk of thiosalts 

occurring in wastewater from ore processing. These include minimizing the concentration 

of thiosalts in the discharged wastewater from the mining site, ensuring degradation of 

thiosalts on site, monitoring concentrations of thiosalts in wastewater and checking for 

pH depression downstream to avoid harmful effects on aquatic species and drinking water 

(Environment Canada, 2009). 

 

Treatment of mining effluent streams by adsorption could be a cost effective method if 

combustion by-products such as biomass ash and char are used as adsorbents. The pulp 

and paper industry has cogeneration plants where power boilers utilize a significant 

percentage of forestry residue (wood refuse) and/or fossil fuels as a heat source. In this 

process, carbon rich ash is generated as a combustion by-product. If the ash can be used 

as an adsorbent to treat thiosalts, it would reduce the demand for landfill space required 

for ash disposal. It will also address other concerns such as cost of transportation and 

manpower required for ash handling and landfill fires which can occur due to heat of ash. 

Using these ash as adsorbents is a sustainable approach to waste handling as one waste 

stream is used to treat another waste stream. Therefore, in this study, we investigate the 

possibility of using biomass ash/char from pulp and paper mill boilers to treat three 

thioslat species: thiosulphate (S2O3
2-

), trithionate (S3O6
2-

), tetrathionate (S4O6
2-

).  
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5.2 Sulphur Pourbaix (Eh-pH) Diagrams 

Pourbaix or Eh-pH diagrams developed by the Belgian Chemist, Marcel Pourbaix, depict 

the thermodynamic stability of an element as a function of electrode potential and pH in 

an aqueous electrochemical system.  These diagrams illustrate the oxidizing and reducing 

abilities of the major stable species of an element and are widely used in corrosion, 

geochemical, environmental applications (McCafferty, 2010). However, these diagrams 

do not provide information on chemical kinetics. In a Pourbaix diagram, there are three 

possible straight lines: horizontal lines which are for reactions involving electrode 

potential; vertical lines which are for reactions involving only pH; and slanted lines which 

are for reactions including both electrode potential and pH. The regions between various 

lines represents where specific species are thermodynamically stable (McCafferty, 2010). 

Understanding the form in which an element is present at a certain pH/ potential is very 

useful in designing treatment processes for removal of these elements from effluent water 

systems. 

 

The following Eh-pH diagram (Figure 5-1), generated by HSC Chemistry 7.1 software, 

shows the thermodynamic stability areas of different sulphur species that may be present 

in the solutions of sodium thiosulphate (Na2S2O3), sodium trithionate (Na2S3O6), 

potassium tetrathionate (K2S4O6)  used in this study at 21 
o
C. Sulphur species considered 

in this Eh-pH analysis are elemental sulphur (S), H2S(a), HS
-
(a), S

2-
(a), HSO3

-
(a), HSO4

-

(a), H2SO4(a), H2SO3(a), SO4
2-

(a), SO3
2-

(a), S2O3
2-

(a), S3O6
2-

(a), and S4O6
2-

(a). The region 

in between the dotted lines in the diagrams are the stability area for water (H2O). 



130 

 

 

 

Figure 5-1: Pourbaix diagram for the S-O-H system at temperature 21 
o
C, molality 0.25 

mol/kg H2O, pressure 1 atm   

 

5.3 Materials and Experimental Methodology 

5.3.1 Characterization of Biomass Ash/Char 

Three biomass ash/char samples were used in this study; CBM-D1, CBM-W and CLM1. 

CBM-D1 and CBM-W samples were obtained from Corner Brook Pulp and Paper 

Limited (CBPPL) located in Corner Brook, NL Canada. CLM1 sample was obtained from  

Zellstoff Celgar Limited Partnership (ZCLP) located in Castlegar, BC Canada. The CBM-

D1 sample was collected from CBPPL's cogeneration plant in dry form prior to water 

impoundment. CBM-W was collected from the water impounded conveyor where char 
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floats on top of water. CLM1 was collected from ZCLP's power boiler and it is the ash 

residue left in the boiler after combustion. All the samples were dried at 105 
o
C for 24 

hours and sieved to obtain the required size fractions as given in Table 5-1 (Please refer 

Chapter 4 for more details on samples). 

 

Table 5-1: Sample details (source and size fractions) 

Sample name Description Sieve mesh size 

CBM-D1  Corner Brook Mill dry sample  d < 500 µm  

CBM-W  Corner Brook Mill wet sample  1.18 mm < d < 4 mm 

CLM1   Zelstoff Celgar Mill sample d < 500 µm 

 

The biomass ash/char samples were characterized by: inductively coupled plasma and 

optical emission spectrometry (ICP-MS, ICP-OES), CNS (carbon, nitrogen, sulphur) 

analysis, mineral liberation analysis (MLA), X-ray diffraction (XRD), Fourier transform 

infrared spectroscopy (ATR-FT-IR), scanning electron microscopy (SEM) analysis, 

specific surface area, pore volume, bulk density, pH, total alkalinity, thermo-gravimetric 

analysis (TGA).  

 

The complete characterization methodology and discussion of results for the three 

ash/char samples (CBM-D1, CBM-W and CLM1) is outlined in Chapter 4. Initial 

adsorption tests indicated that the highest sulphur adsorption percentage/capacity 

occurred with CBM-W as an adsorbent in all three solutions (i.e. thiosulphate, trithionate 
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and tetrathionate) and therefore, CBM-W sample was selected for further adsorption 

experiments. The properties of CBM-W samples are briefly outlined in the 'Results and 

Discussion' section in this chapter. 

 

5.3.2 Materials/ Chemicals 

Sodium thiosulphate (Reagentplus 99%) Na2S2O3 and potassium tetrathionate, K2S4O6, 

were ordered from Sigma-Aldrich Canada Co. Sodium trithionate, Na2S3O6 was 

synthesized in the laboratory using the method followed by Vongporm, 2008. The method 

is outlined below. 

 

Trithionate Synthesis Methodology: 15.6 g of sodium thiosulphate pentahydrate was 

weighed and dissolved in 9 mL of deionized water with the aid of a sonicator. The 

solution was then placed in ice and cooled to 1 
o
C with continuous stirring. 14 mL of  

30% (w/v) hydrogen peroxide was added to the cold thiosulphate solution dropwise by 

using a dropping pipette while maintaining continuous stirring and not letting the 

temperature rise above 20 
o
C. Stirring was stopped after all the hydrogen peroxide was 

added and the solution was maintained in ice for 2 more hours. Sodium sulphate that was 

crystallized during this period, was removed by suction filtration and the crystals were 

washed with 10 mL ethanol (95%) which was added to the filtrate. The filtrate was then 

transferred to a 200 mL beaker and cooled to 3 
o
C and then 25 mL of ice-cold ethanol was 

added and the mixture was left for another 1 hour at 0 - 3 
o
C. Sodium sulphate crystals 

formed, were again removed by suction filtration and washed with 20 mL of ice-cold 
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ethanol which also joined the filtrate. The filtrate and additional 10 mL of ethanol which 

was used to rinse the flask was transferred to another beaker containing 100 mL of cold 

ethanol. This mixture was stirred and left at 3 
o
C for another 2 hours. During this time, 

sodium trithionate crystallizes and is isolated by suction filtration. The solid was washed 

with 5 mL of ethanol, 5 mL of acetone and dried in a desiccator (Vongporm, 2008). The 

purity was determined to be 96 - 100 % by characterizing with UV-Visible spectrometry 

and X-ray Diffraction (XRD). 

 

5.3.3 Batch Adsorption Experiments 

Batch experiments were conducted by mixing (at 120 rpm) different doses of ash/char  

samples (20, 50, 80 g/L) with 100 mL of individual thiosulphate, trithionate and 

tetrathionate at different pH (2, 4, 7, 9)  and temperature (5, 21, 35 
o
C) until equilibrium is 

achieved (24 hrs). The total sulphur concentrations in the solutions were 2000 mg/L with 

initial concentrations of 3500 mg/L S2O3
2-

 , 4000 mg/L S3O6
2-

 , 3500 mg/L S4O6
2-

   in the 

individual solutions. Batch isotherm adsorption experiments were conducted by changing 

the initial concentration of individual thiosalt solutions; thiosulphate (175 - 3500 mg/L 

S2O3
2-

); trithionate (200 - 4000 mg/L S3O6
2-

) and; tetrathionate (175 - 3500 mg/L S4O6
2-

).  

at 21
o
C (room temperature) and pH 2 (to represent pH of acidic mining effluent waters). 

Solution pH values were adjusted by using dilute HNO3 acid before mixing the ash.  After 

mixing for 24 hours, all the samples were filtered through No 42 Whatman filter papers 

and the spent adsorbent samples were completely dried (at 60
o
C for 48 hours), crushed 

and sent to the Stable Isotopes for Innovative Research Lab of Department of Geological 
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Sciences at University of Manitoba for elemental analysis (total sulphur percentage 

analysis). The sulphur percent adsorbed onto ash and the equilibrium sulphur 

concentration in the solution was calculated from the results. Although, the standard 

deviation of sulphur elemental analysis measurements was less than 0.05wt% (or +/- 25 

mg sulphur/L or +/- 1.25% of 2000 mg sulphur/L) at a biomass ash dose of 50 g/L, due to 

the heterogeneous nature of the ash/char samples used as the adsorbent, the error can be 

higher than this. Use of other sulphur analytical techniques such as inductively coupled 

plasma mass spectrometry (ICP-MS), iodine titration for thiosulphate and capillary 

electrophoresis for analytical determination of thiosalts were considered, but found to be 

challenging mainly due to the matrix effect. Matrix effect is the combined effect of all the 

components of the aqueous sample (e.g. dissolved components from biomass ash) other 

than the analyte (sulphur species) on the measurement of the quantity (IUPAC, 2009). 

 

The percentage of sulphur absorbed and adsorption capacity were calculated using the 

following equations. 

 

        (5-1) 

        (5-2) 

 

Ci  = Initial concentration of sulphur in the individual solutions of   

 thiosulphate,  trithionate and tetrathionate (mg/L) 
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Ce  = Equilibrium sulphur concentration (mg/L) 

V  = Volume of the solution (L) 

m  = Mass of the biomass ash/char used as the adsorbent(g) 

 

5.3.4 Adsorption Isotherm Studies 

The equilibrium sorption behavior can be characterized via different isotherm models and 

in this study experimental data were compared to Langmuir and Freundlich isotherm 

equations.  For design and optimization of an adsorption process, it is important to 

establish the most appropriate adsorption equilibrium correlation (Monier et al., 2012) as 

isotherm constants indicate the surface properties and affinity of the adsorbent. These 

constants can also be used to compare sorption capacities of different adsorbents.  

 

The basic assumption of the Langmuir model is that sorption takes place at specific 

homogeneous sites within the sorbent with no interaction between adsorbate molecules 

(Monier et al., 2012).  

 

Langmuir isotherm model       
      

      
     (5-3)          

 

qe  = Amount of S adsorbed per unit weight of adsorbent (mg/g dry weight) 

Ce  = Equilibrium S concentration in the solution (mg/L) 

KL  = Langmuir constant related to the affinity of the binding sites (L/mg)  
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qm  = Maximum S uptake or monolayer biosorption capacity of the sorbent (mg/g) 

 

The dimensionless parameter RL defined below, gives information on the nature of 

adsorption according to the Langmuir isotherm. Co is the initial adsorbate concentration. 

 

    
 

      
                                                                           (5-4) 

 

If RL is within 0 and 1 adsorption is considered favorable (Karagozoglu et al., 2007; 

Nethaji and Sivasamy, 2011). If RL values are greater than 1, adsorption is unfavorable. If 

RL equal to 0 adsorption is irreversible and if it is equal to 1 adsorption is linear (El-

Shafey, 2007a). 

 

The Freundlich model assumes a heterogeneous adsorption surface and active sites with 

different energies where as Langmuir isotherm assumes that the surface is homogenous 

where each site can hold one molecule (mono layer adsorption) having no interactions 

with the adjacent sites (Monier et al., 2012). Therefore, Freundlich isotherm may be more 

suitable for modelling with highly heterogeneous adsorbents (Nethaji and Sivasamy, 

2011). 

 

Freundlich isotherm model                 

 

                                     (5-5) 

 

qe  = Amount of S adsorbed per unit weight of adsorbent (mg/g dry weight) 
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Ce  = Equilibrium S concentration in the solution (mg/L) 

Kf  = Constant relating to sorption capacity 

1/n  = Empirical parameter relating to biosorption intensity, varies with the 

 heterogeneity of material 

 

The data were fitted to linear forms of Langmuir (Ce/qe vs Ce plot) and Freundlich 

isotherms (ln  qe vs ln Ce plot) to determine which isotherm best fits the data. Linear form 

of the two equations are given below. 

 

Langmuir isotherm equation      
  

  
 

  

  
 

 

    
   (5-6) 

 

Freundlich isotherm equation           
 

 
            (5-7) 

 

Thermodynamic parameters (∆G, ∆H, ∆S) were calculated using equations (5-8), (5-9) 

and (5-10). The Distribution Coefficients at different temperatures were calculated using 

the following relation; 

 

         (5-8) 

 

 KD  = Distribution coefficient (mL/g) 

 qe  = Amount of selenium adsorbed by the adsorbent at equilibrium (mg/g)  
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 Ce  = Equilibrium concentration of selenium in the solution (Ce in mg/mL only 

  for this equation) 

 

The free energy change (∆G) at different temperatures were calculated from the following 

relation: 

      (5-9) 

 

 R = Universal gas constant (8.314 Jmol
-1

K
-1

) 

 T  = Absolute temperature (K) 

 

The Van’t Hoff e uation was applied to calculate the enthalpy change (∆H) and entropy 

change (∆S). ∆S (Jmol
-1

K
-1

) and ∆H (Jmol
-1

) can be calculated from the intercept and 

slope of the linear plot of ln KD versus 1/T . 

 

 (5-10) 
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5.4 Results and Discussion 

5.4.1 Biomass Ash/Char Characteristics (CBM-W Sample) 

Major elements present in the CBM-W sample were Ca (22,610 ppm), Si (5,042 ppm) 

and K (4,260 ppm). Mg, Al, Fe, Mn concentrations vary between 1000 to 3000 ppm. 

CBM-W sample has the ability to neutralize and increase pH of acidic effluent water 

streams such as AMD due to presence of Ca, K, Na, Mg (Vassilev et al., 2013b). Carbon, 

nitrogen and sulphur percentages (by weight) were 79.47 %, 0.16% and 0.39% 

respectively.  

 

The main minerals/phases identified by MLA were mainly char and also SiO2, calcium 

rich char, Na-K chloride and slag rich in Ca, S, Al, Mg were present. The XRD patterns 

indicated the presence of calcium carbonate, graphite (carbon) and these results are in 

agreement with the results (elements/minerals/phases) obtained from elemental analysis 

(ICP-MS, ICP-OES, CNS Elemental Analysis) and MLA. However, prominent stretch 

bands relating to specific functional groups were not identified in the ATR-FTIR analysis 

of CBM-W sample. If there are functional groups present, they may contribute towards 

the adsorption (chemi-sorption) process. 

 

An image taken from SEM of CBM-W sample is given in Figure 5-2. The sample mainly 

contain carbon particles. A honeycomb structure is clearly visible in the second image 

which confirms the presence of graphite (Adeoti, 2011). The image also shows the 

presence of fine foreign particles on the carbon surface which may have been caused as a 
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result of condensation of trace elements (slag) or due to the deposition of alkali species 

(calcite) and other elements (Li et al., 2012).  

 

 

Figure 5-2: CBM-W (1.18mm < d < 4mm) SEM images 

 

Nitrogen gas adsorption measurement at liquid nitrogen temperature (77 K) was used to 

determine the BET surface area and pore size distribution of the CBM-W sample. The 

BET surface area was 425.330 m
2 

/g, total pore volume was 0.1820 cm
3
/ g and the mean 

pore diameter was 1.7114 nm. Bulk density of a porous solid is the ratio of the bulk mass 

to the bulk volume. The low bulk density value of 0.101 g/cm
3
 of CBM-W sample is 

mainly due to the presence of large char particles in the samples. Typically, biomass 

derived ash/char is alkaline in nature (Adeoti, 2011; Liu et al., 2010; Pan and Eberhardt, 

2011; Shang et al., 2012) and CBM-W samples were also found to be alkaline with a pH 

value of 9.6 at 25 
o
C. 
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Total alkalinity (buffering capacity) is a measure of the ability of a solution to resist 

changes in pH. Materials such as carbonate, bicarbonate, hydroxides can contribute 

towards increased alkalinity in water. The total alkalinity of CBM-W sample was found 

to be lower (100 mg/L CaCO3) than the CBM-D1 (1000 mg/L CaCO3)  and CLM1 (2360 

mg/L CaCO3) samples indicating that the ash has low potential to reduce the acidity in 

effluent streams such as AMD compared to the other two samples. 

 

Thermal properties of the samples were analyzed by heating the sample to 1000 
o
C under 

inert (N2) atmosphere. Weight loss (%) with  increase in temperature was analyzed. 

Thermo gravimetric analysis (TGA) determines unburned carbon (weight loss in the 

range of 300 - 500 
o
C)  and inorganic carbon (weight loss in the range of 630 - 750 

o
C) in 

the ash samples (Berra et al., 2011). Residue weight percentage for CBM-W was 7.24% 

with a large weight loss (approximately 80%) during the temperature range, 450 - 650 
o
C 

which is due to decomposition of char in the sample. 

 

5.4.2 Effect of Different Ash/Char Samples  

Batch mixing experiments were conducted using the three ash/char samples (CBM-D1, 

CBM-W, CLM1) to select the sample which has the highest affinity towards sulphur. 10 g 

of CBM-D1 and CLM1 samples and 5 g of CBM-W sample was mixed with 100 mL 

solutions of 5,000 mg/L Sodium Thiosulphate Na2S2O3, Potassium Tetrathionate, K2S4O6, 

Sodium Trithionate, Na2S3O6 in Erlenmeyer flasks.  Initial total sulphur (S) 

concentrations in the three solutions were  2025 mg/L, 2017 mg/L and 2119 mg/L 
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respectively. These sulphur concentrations were selected to represent the actual 

concentrations of sulphur oxy-anions present in mining effluent streams. All the flasks 

were covered with black rubber stoppers and mixed for 24 hours until equilibrium at 

room temperature (21
o
C). 

 

Table 5-2: Sulphur adsorption on to different biomass ash/char samples  

Ash/Char 

sample 

Adsorbent 

dose (g/L) 

Thiosalt 

species 

Initial S 

conc. 

(mg/L) 

S 

removed 

(mg/L) 

S 

adsorption 

(%) 

S adsorption 

capacity 

(mg/g) 

CBM-D1 100 Thiosulphate 2025 77.07 3.8 0.77 

100 Tetrathionate 2119 129.86 6.1 1.30 

CBM-W 50 Thiosulphate 2025 250.78 12.4 5.02 

50 Trithionate 2017 288.97 14.3 5.78 

50 Tetrathionate 2119 311.72 14.7 6.23 

Note: Standard deviation of sulphur elemental analysis measurements was less than 

0.05wt%  (i.e +/- 25 mg sulphur/L with CBM-W sample, +/- 50 mg/L with CBM-D1 

sample)  

 

CBM-W sample gave the highest sulphur removal in all three solutions (thiosulphate, 

trithionate, tetrathionate) as presented in Table 5-2. The particle size of CBM-W sample 

was larger (1.18 - 4 mm) compared with the particle size of CBM-D1 and CLM1 samples 

(0.5 mm seive size) (Table 5-1).  Therefore, only 50 g/L dose of CBM-W sample was 
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used to enable effective mixing and the used dose of other samples were 100 g/L. CLM1 

sample is not a suitable adsorbent as sulphur present in this ash sample appeared to be 

leaching in to the solution and not removing sulphur from the solution. The sulphur 

percentage in the original sample was 1.21 wt% and the sulphur percentage in the treated 

CLM1 samples were 0.35-0.45 wt%. sulphur adsorption capacity of CBM-D1 sample was 

lower than the CBM-W sample. Therefore, CBM-W carbon-rich sample was selected for 

further experiments. The low removal efficiency may be due to the reason that all the 

waste biomass ash/char samples used in this study were not pretreated and and used as 

received without any chemical/thermal modification. 

 

5.4.3 Effect of pH 

The next set of experiments were conducted to determine if there is an optimum pH to 

maximize sulphur adsorption from the three individual solutions of thiosalt species 

(thiosulphate, trithionate, tetrathionate). The solutions were prepared with an initial 

sulphur (S) concentration of 2000 mg/L and CBM-W char dose was kept constant at 50 

g/L to ensure proper mixing and contact. Batch mixing experiments were initially 

conducted at room temperature (21 
o
C). Initial solution pH was adjusted (pH 2, 4, 7, 9) 

using dilute HNO3 acid before mixing the ash. 
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Table 5-3 shows the percentages of sulphur adsorbed from the three thiosalt solutions at 

different pH values. Although, adsorption of sulphur from thiosulphate and tetrathionate 

solutions at pH 2 is higher than the adsorption values at other pH values, considering the 

standard deviation in measurement of +/- 25 mg sulphur/L, the difference in amount of 

adsorption is not significant (Figure 5-4). There appears to be very little effect of pH on 

sulphur adsorption from trithionate solutions. Given the minimal impact of pH and that 

most mining effluents are acidic in nature, the initial solution pH was maintained at pH 2 

for further experiments. 

 

Table 5-3: Effect of pH on sulphur adsorption on to CBM-W from thiosalt solutions 

Sample Initial 

pH 

Final pH S removed 

(mg/L) 

S adsorption 

(%) 

S adsorption 

capacity(mg/g) 

Thiosulphate 

S2 - PH2 2.1 8.4 251.42 12.6 5.03 

S2 - PH4 4.0 9.3 214.08 10.7 4.28 

S2 - PH7 7.0 9.4 207.33 10.4 4.15 

S2 - PH9 9.0 9.4 230.82 11.5 4.62 

Trithionate 

S3 - PH2 2.0 7.4 206.70 10.3 4.13 

S3 - PH4 4.0 8.0 219.28 11.0 4.39 

S3 - PH7 7.1 8.0 223.40 11.2 4.47 

S3 - PH9 9.1 8.1 200.05 10.0 4.00 
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Tetrathionate 

S4 - PH2 2.0 7.5 271.86 13.6 5.44 

S4 - PH4 3.9 8.4 245.63 12.3 4.91 

S4 - PH7 6.5 8.4 238.65 11.9 4.78 

S4 - PH9 9.0 8.5 236.26 11.8 4.73 

Note: Standard deviation of sulphur elemental analysis measurements was less than 

0.05wt%  (Same as +/- 25 mg sulphur/L or +/- 1.25% of 2000 mg sulphur/L solution) 

 

Figure 5-3 shows the initial and final pH values of thiosalt solutions. It is important to 

note that, at initial pH values of 4, 7, 9 the final pH of  all three solutions tend to move 

towards constant pH value and stabilize: pH 9.4 for thiosulphate; pH 8.1 for trithionate, 

pH 8.5 for tetrathionate.  
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Figure 5-3: Initial pH vs. Final pH 

 

Also, sulphur adsorption capacities from all three thiosalt solutions fall in the range, 4.00 

- 5.43 mg/g of biomass char (Table 5-3, Figure 5-4). 



147 

 

 

Figure 5-4: Amount of sulphur adsorbed (mg/g of CBM-W) at different initial pH  

 

5.4.4 Effect of Adsorbent Dose 

The next set of experiments were performed with varying adsorbent (CBM-W sample) 

dose (20, 50, 80 g/L). A maximum of 80 g/L char dose was selected, as at higher doses, 

mixing of the adsorbent in the thiosalt solutions was difficult. The char floats on top due 

to low density where most of the particles were not making proper contact with the 

thiosalt solutions. The results are given in the Table 5-4 and the results indicate that 

sulphur adsorption percentage and adsorption capacity increase with increasing adsorbent 

dose (Figure 5-5). At 80 g/L, sulphur adsorption percentages and adsorption capacities 

from thiosulphate, trithionate and tetrathionate solutions were 27.1, 25.7, 35.6% and 

10.82, 10.29, 14.24 mg/g of char respectively. Further, final pH value of the solution 
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(filtrate) was in the range pH 6.6 - 8 where at high adsorbent doses the final pH of the 

solution was slightly higher than at low adsorbent doses.  

 

Table 5-4: Effect of adsorbent dose on sulphur adsorption from thiosalt solutions 

Sample Adsorbent 

dose (g/L) 

S removed 

(mg/L) 

S adsorption 

(%) 

S adsorption 

capacity (mg/g) 

Thiosulphate 

S2 - 20D 20 202.29 10.1 4.05 

S2 - 50D  50 342.54 17.1 6.85 

S2 - 80D 80 541.11 27.1 10.82 

Trithionate 

S3 - 20D 20 131.79 6.6 2.64 

S3 - 50D 50 269.98 13.5 5.40 

S3 - 80D 80 514.55 25.7 10.29 

Tetrathionate 

S4 - 20D 20 140.43 7.0 2.81 

S4 - 50D  50 306.95 15.3 6.14 

S4 - 80D 80 711.76 35.6 14.24 

Note: Standard deviation of sulphur elemental analysis measurements was less than 

0.05wt% . Same as +/- 0.5% of 2000 mg sulphur/L solution for 20g/L dose, +/- 1.25% for 

50g/L dose and +/- 2% for 80g/L dose 
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Figure 5-5: Biomass ash dose (g/L) vs. amount of sulphur adsorbed (mg/g of char)  

 

5.4.5 Effect of Temperature 

The experiments were run at different temperatures (5, 21, 35
 o

C) maintaining the 

adsorbent dose and the initial sulphur concentration at 50 g/L and 2000 mg/L 

respectively. Although, slightly higher adsorption percentages from thiosulphate and 

trithionate solutions were recorded at 35 
o
C (Table 5-5, Figure 5-6), the values are well 

within the measurement error values (+/- 1.25%). Therefore, it is difficult to arrive at a 

conclusion regarding the effect,  increasing temperature has on adsorption of sulphur onto 

CBM-W sample. For future work, it is recommended to conduct experiments representing 

a wide temperature range or use another method of sulphur analysis with less 
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experimental error, so that the effect of temperature on thiosalt adsorption can be 

evaluated. 

 

Table 5-5: Effect of temperature on sulphur adsorption from thiosalt solutions  

Sample Temperature 

(
o
C) 

S removed 

(mg/L) 

S adsorption 

(%) 

S adsorption 

capacity (mg/) 

Thiosulphate 

S2 - 35C 35 356.42 17.8 7.13 

S2 - 21C 21 342.54 17.1 6.85 

S2 - 5C 5 296.88 14.8 5.94 

Trithionate 

S3 - 35C 35 317.16 15.9 6.34 

S3 - 21C 21 269.98 13.5 5.40 

S3 - 5C 5 289.15 14.5 5.78 

Tetrathionate 

S4 - 35C 35 318.66 15.9 6.37 

S4 - 21C 21 306.95 15.3 6.14 

S4 - 5C 5 343.21 17.2 6.86 

Note: Standard deviation of sulphur elemental analysis measurements was less than 

0.05wt%  (Same as +/- 25 mg sulphur/L or +/- 1.25% of 2000 mg sulphur/L solution) 
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Figure 5-6: Temperature (
o
C) vs. amount of sulphur adsorbed (mg/g of char)  

 

5.4.6 Adsorption Isotherms 

The experimental data were fitted to linear equations of Langmuir isotherm (equation 5-6) 

and Freundlich isotherm (equation 5-7) by plotting Ce/qe against Ce (Figure 5-9) and ln qe 

against ln Ce (Figure 5-10) for thiosulphate, trithionate and tetrathionate solutions 

separately. The isotherms constants calculated from the linear regression equations and 

regression coefficients (R
2
) generated for Langmuir and Freundlich isotherms are also 

given in Table 5-6 and Table 5-7 respectively.  
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Figure 5-7: Langmuir isotherms for S adsorption onto biomass char at 21 
o
C and pH 2 

 

The regression coefficients (R
2
) are very poor for the Langmiur isotherm. The regression 

values for S adsorption from thiosulphate and trithionate solutions are 0.2744 and 0.5060 

respectively. Although, the regression coefficient for sulphur adsorption from 

tetrathionate solutions is high (0.9577), the negative values obtained for Langmuir 

constants (qm and KL) confirm that the Langmuir model does not give a good fit to the 

sorption data and it is not a suitable model when compared to the Freundlich isotherm. 

Further, calculated RL (separation factor) values are greater than 1, which means the 

adsorption process is not favorable. 
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Table 5-6: Langmuir isotherm constants at 21 
o
C and pH 2 

S species qm (mg/g) KL (L/mg) R
2
 RL values 

Thiosulphate -25.374 -1.49 x 10
-4

  0.2744 1.11 - 1.42 

Trithionate -3.300 -4.11 x 10
-4

  0.5060 1.40 - 5.59 

Tetrathionate -3.464 -4.16 x 10
-4

 0.9577 1.26 - 5.93 

 

 

Figure 5-8: Freundlich isotherms for S adsorption onto biomass char at 21 
o
C and pH 2 

 

The Freundlich isotherm is a better fit for experimental isotherm data than the Langmuir 

isotherm. The regression coefficients (R
2
) obtained for sulphur adsorption onto biomass 

char from all three solutions are greater than 0.80; 0.9298 for thiosulphate, 0.8257 for 

trithionate, 0.9949 for tetrathionate (Table 5-7). Generally, for the adsorption process to 
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be favorable, value of n should fall within 1 and 10 (or 1/n value should fall in between 0 

and 1) (Nettem and Almusallam, 2013; Sharma and Sanghi, 2013). 1/n values obtained in 

this study fall between 1.2 - 2.1 which means that the interaction between the adsorbent 

(biomass ash) and the adsorbate (sulphur species) is not very strong. When the 1/n values 

are very small (<1), it indicates that there is a strong interaction between the adsorbent 

and the adsorbate (Sharma and Sanghi, 2013). In conclusion, Freundlich isotherm is a 

better representative of the experimental data. However, it may not be the best model to 

follow in understanding and predicting the behavior of sorption of sulphur onto biomass 

ash from thiosulphate, trithionate and tetrathionate solutions as the calculated 1/n values 

are greater than one.  

 

Table 5-7: Freundlich isotherm constants at 21
 o
C and pH 2 

S species 1/ n Kf R
2
 

Thiosulphate 1.234 8.86 x 10
-4

 0.9298 

Trithionate 2.002 2.35 x 10
-6

 0.8257 

Tetrathionate 2.088 1.34 x 10
-6

 0.9949 

 

5.4.7 Thermodynamic Parameters  

Thermodynamic parameters (∆G : Gibbs free energy change of adsorption, ∆H: enthalpy 

change, ∆S: entropy change) are typically assessed in all processes to determine the 

thermodynamic nature of the process (e.g. tendency to occur at given conditions). KD 

(distribution coefficient) vs. the inverse absolute temperature (1/T) graphs can generally 
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be used to determine ∆H and ∆S values for sulphur adsorption from thiosulphate, 

trithionate and tetrathionate solutions. In this case, however, a noticeable trend in sulphur 

adsorption with increase in temperature was not identified for sulphur adsorption from all 

three solutions. To illustrate this point, KD vs. (1/T) graph (Figure 5-9) obtained for 

trithionate is shown below (R-squared = 0.4575). Conducting the experiments at a wider 

temperature range (5, 40, 75 
o
C instead of 5, 21, 35 

o
C) might address this concern. 

 

 

Figure 5-9: ln KD vs. I/ T(K
-1

) plot for trithionate 

 

5.5 Conclusion and Recommendations 

CBM-W biomass char sample obtained from Corner Brook Pulp and Paper Mill was 

selected as the best adsorbent from the three biomass ash/char samples used in this study, 
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giving the following characteristics: high specific surface area; low density; high carbon 

content; presence of minerals favorable to be used as adsorbents and neutralizing agents 

such as char, silica and calcium carbonate. Initial results confirmed that CBM-W biomass 

char sample is a more suitable adsorbent for removal of sulphur from aqueous solutions 

of thiosulphate, trithionate and tetrathionate than the CLM1 and CBM-D1 biomass ash 

samples. 

 

The adsorption experiments were carried out using synthesized solutions of thiosulphate, 

trithionate, tetrathionate at varying pH, biomass ash dose and temperature. Variation in 

pH and temperature didn't have a significant effect on sulphur adsorption from all three 

thiosalt solutions where the sulphur removal percentage was 10 - 13.6 % within the pH 

range of 2 - 9 and sulphur removal percentage was 13.5 - 17.8 % within the temperature 

range of 5 - 35 
o
C. To represent the acidic conditions present in the mining effluent water, 

the pH was maintained at 2 for further experiments. An increase in biomass char dose 

from 20 g/L to 80 g/L significantly increased the percentage adsorption of sulphur from 

all three solutions: 10.1 - 27.1 % for thiosulphate; 6.6 - 25.7 % for trithionate; 7 - 35.6 % 

for tetrathionate. The highest adsorption capacities were recorded at the maximum dose 

used (80 g/L) which are 10.82, 10.29, 14.24 mg/g of biomass char for thiosulphate, 

trithionate and tetrathionate respectively. Moderate neutralization capacities were 

recorded where final pH values of all the solutions fall  in the range 6.6 - 9.4. 
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In understanding and predicting the nature of adsorption of sulphur species onto biomass 

ash, the Freundlich isotherm equation was found to be a better representative than the 

Langmuir isotherm equation. Freundlich isotherm gave a better fit for experimental data 

where the regression coefficients were determined to be 0.9298 for thiosulphate, 0.8257 

for trithionate and 0.9949 for tetrathionate. Negative values of mono-layer sorption 

capacities (qm) and separation factor values (RL>1) obtained from Langmuir isotherm 

equation indicated that the assumptions of Langmuir equation were not satisfied by the 

adsorption process at the experimental conditions under consideration (Temperature 

21
o
C, pH 2, initial S concentration 2000 mg/L, biomass ash/char dose 50 g/L). Therefore, 

Langmuir isotherm is not suitable to model the adsorption of sulphur species on to 

biomass ash. Even though, 1/n values obtained from the Freundlich isotherm equation 

were not less than 1, it could still be concluded that there is considerable interaction 

between the adsorbent (biomass ash) and the adsorbate (sulphur species).  

 

Recommendations for future work include; 

 Characterization of spent adsorbents from these experiments to understand which 

specific properties may have involved in sulphur removal and to understand the 

adsorption mechanism.  

 In this work the sulphur percentage in the spent adsorbent was analyzed and the 

adsorption capacity and percentage removal of sulphur was calculated from that 

value as methods such as ICP-MS, capillary electrophoresis and iodine titration 

was found to be challenging. However, as biomass ash samples are not 
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homogenous, analysis of the solution rather than the spent adsorbent may be more 

accurate. Therefore, a more accurate analytical method to determine the amount of 

sulphur in the solution would aid in analysis. 

 Selection of a narrow size range of the CBM-W sample as well as higher dose 

may provide significant variation in results with varying parameters. 

 FTIR analysis of the CBM-W sample did not show presence of any functional 

groups. If these samples can be chemically modified to have positively charged 

functional groups, the sulphur oxy-anions may be able to remove by ion exchange. 

 Conduct column experiments to obtain more information in designing an 

adsorption process. 

 Perform experiments using simulated effluent streams with various other 

compounds to determine any interference these compounds may have in 

adsorption 

 Conduct kinetic experiments to determine rates for reactor type selection and 

design of the overall selenium treatment process.  

 Assess the leaching characteristics of the spent ash to determine further disposal 

options for these ash (e.g. use as an additive for construction purposes, landfill 

disposal etc.) 
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Abstract 

Selenium is an essential nutrient for plants, animals and humans, but can be toxic at 

higher concentrations. Adsorption of selenium by naturally available adsorbents can be a 

cost effective process in treatment of selenium. Biomass ash is generated as a combustion 

by-product in the pulp and paper industry. In the present study, suitability of using 

biomass ash as an adsorbent to remove selenite and selenate from aqueous solutions is 

analyzed.  Biomass ash used in this study is collected from Zellstoff Celgar Limited 

Partnership (ZCLP), BC, Canada and characterized to understand physical, chemical, 

thermal and structural properties in a previous paper (Chapter 4). Batch experiments were 

conducted by mixing different doses of ash (CLM2) sample (20, 50, 80 g/L) with Se(IV) 

and Se(VI) solutions (50 mg/L Se concentration) at different pH (pH 2, 4, 7, 9)  and 

temperature (5, 21, 35 
o
C) until equilibrium is achieved (24 hrs). Maximum percentage 

removal for Se(IV) and Se(VI) was 10.3% and 15.2% at 35
o
C. When the pH was 

decreased from pH 9 to 2 adsorption percentage increased by 5%. Varying the biomass 

ash dose did not have a significant effect on Se removal percentage. However, high 

adsorption capacities were recorded at lower adsorbent doses (20 g/L). Adsorption 



162 

 

capacities obtained for Se(IV) (0.195 mg/g) and Se(VI) (0.211 mg/g) are similar to 

capacities recorded in (Hasan et al., 2010) and higher than the capacities recorded in 

(Gulipalli et al., 2011). High neutralization capacities were recorded with both Se(IV) and 

Se(VI) solutions where final solution pH of all samples fall within pH 10.5 - 11.4 despite 

the value of initial pH. 

 

6.1 Introduction 

Biomass ash is generated in the pulp and paper industry from the combustion of hog fuel. 

Hog fuel can be a combination of bark and sawdust, forestry residues with petroleum. At 

the Zellstoff Celgar (ZCLP) plant, hog fuel is made up of wood particles (sawdust/pin 

chips), bark, sludge from their bio-treatment facility (organic matter, fibre, and lime), and 

other impurities. Ash is the single largest contributor of material going to the ZCLP 

landfill, at 6500 m
3
/year. Fuel, manpower, and permitting for the landfill are all 

significant costs to the mill. In addition, the heat of the ash may contribute to landfill 

fires, a safety concern. Developing an alternative market for the ash would decrease the 

load on the landfill, reduce safety and environmental concerns, and decrease overall costs.  

As indicated above, the costs associated with disposing of and handling ash for ZCLP are 

significant. However, this is not a company specific problem. It is estimated up to 480 

million tonnes of biomass ash could be generated worldwide annually. This is similar to 

that of coal ash at 780 million tonnes/year (Vassilev et al., 2013a). As biofuel is a carbon 

neutral form of energy, there will be increases in large-scale combustion of biomass and 

co-combustion with contaminated biomass/solid fossil fuels and subsequent increases in 
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biomass ash and risks related to disposal and handling. When compared to the coal ash, 

biomass ash is more heterogeneous and composition is a function of the parent biomass 

and mineralogy/crystallography is a function of combustion (Vassilev et al., 2013a). 

Within woody biomass ash, composition varies depending on species and nature of 

feedstock. The literature and our work demonstrate that ash properties are site specific 

and to determine the best use of the ash, characterization is a necessary and challenging 

step. In this project, we characterized the hog fuel ash and based on this characterization 

we investigated the hog fuel ash as an adsorbent for treatment of selenium oxy-anions in 

mining waste streams.  

 

Selenium is an essential nutrient for plants, animals and humans, but can be toxic at 

higher concentrations. Selenium can exist in inorganic or organic forms (Sheha and El-

Shazly, 2010). Inorganic forms of selenium are selenate, selenite, insoluble elemental 

selenium, selenides (Li et al., 2013). Selenium exists in several oxidation states (-2, 0, +2, 

+4, +6). The most common selenium species in aqueous systems are selenite (SeO3
2-

) and 

selenate (SeO4
2-

) (Li et al., 2013). Selenium is generally found in mining effluent waters 

in concentrations ranging from 3 μg/L to even above 12,000 μg/L (Envirogen 

Technologies, 2011). According to the guidelines set for selenium by the Ministry of 

Environment of  British Columbia, Canada, the mean concentration of total selenium 

should not exceed 2 µg/L to protect freshwater and marine aquatic life (Environment 

protection Division Ministry of Environment Government of British Columbia, 2001). As 

per WHO Guidelines for Drinking Water Quality, maximum allowable concentration of 
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selenium in drinking water is 10 µg/L (World Health Organization, 2003), while the US 

EPA sets a maximum contaminant level (MCL) of selenium in drinking water at 50 µg/L 

(US EPA, 1992). 

 

Adsorption of selenium species by naturally available adsorbents like ash/char can be a 

cost effective process in treatment of selenium in aqueous media. There are a number of 

studies published on using various adsorbents to determine selenium adsorption capacity, 

to understand the sorption mechanism, and most importantly, to assess the overall ability 

of using these adsorbents to remove selenium oxy-anions from industrial effluents. A 

summary of various adsorbents used in the removal of Se(IV) and Se(VI) ions and  

monolayer sorption capacities (qm) of Se(IV) and Se(VI) sorption onto various adsorbents 

calculated by Langmuir isotherm at specific experimental conditions (pH, Temperature) 

are provide in Chapter 3 (Review on Selenium Removal). The utilization of the ash as an 

adsorbent would benefit Canada economically and environmentally in reducing the 

demand for landfill space and reducing the toxicity of mining effluents. This is a 

sustainable approach to waste handling, in that one waste stream is utilized for the 

treatment of another. 

 

In this paper, we investigate the possibility of using biomass ash/char from pulp and 

paper mill boilers to treat two selenium species,  selenite (SeO3
2-

) and selenate (SeO4
2-

). 
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6.2 Selenium Pourbaix (Eh-pH) Diagrams 

Pourbaix or Eh-pH diagrams developed by the Belgian Chemist, Marcel Pourbaix, 

illustrate the thermodynamic stability of an element as a function of electrode potential 

and pH in an aqueous electrochemical system.  These diagrams illustrate the oxidizing 

and reducing abilities of the major stable compounds of an element. However, these 

diagrams do not provide information on chemical kinetics. Eh-pH diagrams are widely 

used in corrosion, geochemical, environmental applications (McCafferty, 2010).  

 

In a Pourbaix diagram, there are 3 possible straight lines: Horizontal lines which are for 

reactions involving electrode potential; Vertical lines which are for reactions involving 

only pH; Graduated lines which are for reactions including both electrode potential and 

pH. The regions or fields in between various lines represents where specific species or 

chemical compounds are thermodynamically stable (McCafferty, 2010). Understanding 

the form in which an element is present at  a certain pH/ electrode potential is very useful 

in designing treatment processes for removal of these elements from effluent water 

systems. 

 

The following Eh-pH-diagram (Figure 6-1) generated by HSC Chemistry 7.1 software, 

shows the thermodynamic stability areas of different selenium species that may be present 

in aqueous solutions at 21 
o
C. Selenium species considered in this Eh-pH analysis are 

elemental selenium(Se), H2Se(a), HSe
-
(a), Se

2-
(a), HSeO3

-
(a), HSeO4

-
(a), H2SeO4(a), 
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H2SeO3(a), SeO4
2-

(a), SeO3
2-

(a). The region in between the dotted lines in the diagrams 

are the stability area for water (H2O). Selenium concentration is 50 mg/L. 

 

 

Figure 6-1: Pourbaix diagram for the Se-O-H system at temperature 21 
o
C, molality 6.332 

x10
-4  

mol/kg H2O, pressure 1 atm   

 

6.3 Materials and Experimental Methodology 

6.3.1 Characterization of Biomass Ash  

The biomass ash sample used for this study was collected from ZCLP, which is located in 

Castlegar, BC Canada.  The Zelstoff Celgar Mill ash sample (CLM) used in this study is 

bottom ash, which is ash residue left in boiler as opposed to fly ash which is a result of 

particulate matter from the flue gas. The sample was dried at 105 
o
C for 24 hours and 
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sieved to obtain only two size fractions (CLM1: d < 500 µm and CLM2: 500 µm < d < 

1.18 mm) and CLM2 sample is used for the batch adsorption experiments.  

 

The CLM2 biomass ash sample was characterized by standard methods: inductively 

coupled plasma and optical emission spectrometry (ICP-MS, ICP-OES), CNS (carbon, 

nitrogen, sulphur) analysis, mineral liberation analysis (MLA), X-ray diffraction (XRD), 

Fourier transform infrared spectroscopy (ATR- FT-IR), scanning electron microscopy 

(SEM) analysis, specific surface area, pore volume, bulk density, pH, total alkalinity, 

thermo-gravimetric analysis (TGA).  

 

The characterization results are briefly described in the Results section and for the 

detailed characterization methodology and discussion on results please refer Chapter 4.  

 

6.3.2 Batch Adsorption Experiments 

Sodium selenite (Na2SeO3) 99%  and sodium selenate (Na2SeO4) ≥95% (Sigma-Aldrich 

Canada Co) were used as the sources of Se(IV) and Se(VI) respectively. Se 

concentrations were determined by ICP-MS technique at TERRA (The Earth Resources 

Research and Analysis) Facility at Memorial University using ELAN-DRC-II (ICP-MS) 

Instrument. 

 

Batch experiments were conducted by mixing (at 120 rpm) different doses of CLM2 

sample (20, 50, 80 g/L) with Se(IV) and Se(VI) solutions (50 mg/L Se concentration) at 
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different pH (pH 2, 4, 7, 9)  and temperature (5, 21, 35 
o
C) until equilibrium is achieved 

(24 hrs). Solution pH values were adjusted by using dilute HNO3 acid before mixing the 

ash.  Samples were filtered through No.42 Whatman filter paper and a 13 mm Nylon 0.2 

µm syringe filter and submitted for ICP-MS analysis. Duplicate samples were run and the 

maximum calculated standard deviation for the results were +/- 2.1%. 

 

Adsorption percentage and adsorption capacity were calculated using the following 

equations. 

 

 (6-1) 

 

 (6-2) 

 

 Ci  = Initial concentration of adsorbate (mg/L) 

 Ce  = Equilibrium adsorbate concentration (mg/L) 

 V  = Volume of the solution (L) 

 m = Mass of the adsorbent(g) 

 

Thermodynamic parameters (∆G, ∆H, ∆S) were calculated using equations (5-3), (5-4) 

and (5-5). The Distribution Coefficient at different temperatures were calculated using the 

following relation; 
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 (6-3) 

 

 KD  = Distribution coefficient (mL/g) 

 qe  = Amount of selenium adsorbed by the adsorbent at equilibrium (mg/g)  

 Ce  = Equilibrium concentration of selenium in the solution (Ce in mg/mL only 

  in this equation) 

 

The free energy change (∆G) at different temperatures were calculated from the following 

relation: 

 (6-4) 

 

 R = Universal gas constant (8.314 Jmol
-1

K
-1

) 

 T  = Absolute temperature (K) 

 

The Van’t Hoff e uation was applied to calculate the enthalpy change (∆H) and entropy 

change (∆S). ∆S (Jmol
-1

K
-1

) and ∆H (Jmol
-1

) can be calculated from the intercept and 

slope of the linear plot of ln KD versus 1/T . 

 

 (6-5) 
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6.4 Results and Discussion 

6.4.1 Biomass Ash Characteristics (CLM2 Sample) 

Major elements present in the analyzed samples are Ca, Si, Al, Na, K, Fe, Mn, Mg, P. 

Very high Ca (75,168 ppm) and Si (60, 535 ppm) elemental compositions are recorded in 

the samples. Compounds rich in Ca, Na (50,083 ppm), K (29,045 ppm), Mg (8,017 ppm) 

are excellent materials that can be used to neutralize and increase pH of acidic effluent 

water streams such as AMD (Vassilev et al., 2013b). Si and Al (14,903 ppm) content is an 

important factor for zeolite synthesis (Adeoti, 2011; Vadapalli et al., 2012).  

 

Carbon, nitrogen and sulphur percentages were 40.79 %, 0.09% and 0.99% respectively 

and sulphur percentage in the CLM2 ash sample is higher than published data for 

different ash in some literature (Li et al., 2010). 

 

The main minerals/phases identified by Mineral Liberation Analyzer were alkali-feldspar, 

SiO2, Ca-rich slag, Char, Ca-rich char, Ca-carbonate. Other phases present included iron 

oxide, slag enriched in Ca, Si, Fe, P,Mg, Al, Fe, Mn, K.  

 

The XRD pattern showed that these samples are partially crystalline (Berra et al., 2010) 

and indicated the presence of calcite, graphite and these results are in agreement with the 

results (elements/minerals/phases)  obtained from elemental analysis (ICP-MS, ICP-OES, 

CNS Elemental Analysis) and MLA.  

 



171 

 

FTIR analysis identifies the functional groups (key to adsorption applications) in the ash 

samples. Based on the prominent stretch bands identified at 1400,1100, 800 cm
-1

 possible 

functional groups that can be present are C-O (carbonate at 1450-1410 and 875, 713), S-O 

(sulphate at 1140-1080) and Si-O (quartz at 1080) (Smidt et al., 2011). 

 

Scanning electron micrographs of CLM2 sample is given in Figure 6-2. The images also 

show the presence of a large number of fine particles on the carbon surface in the CLM2 

sample which may have been caused as a result of condensation of trace elements 

(amorphous slag caused during combustion and cooling) or due to the deposition of 

different species of alkali and other elements (Li et al., 2012). This can be further 

confirmed by the results from the MLA which confirms the presence of calcium rich char, 

alkali-feldspar, silica, slag rich in Si, Al, Mg, S, Ca, Ti in these samples.  

 

 

Figure 6-2: CLM2 (500 µm < d < 1.18 mm) SEM images 
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The nitrogen gas adsorption measurement at liquid nitrogen temperature (77 K) is used to 

determine the BET surface area and pore size distribution of CLM2 sample and the 

sample was pre-treated for 4 hours at 200 
o
C before the measurement. BET surface area 

was 241.480 m
2 

/g, total pore volume was 0.1667 cm
3
/ g and the mean pore diameter was 

2.3694 nm. 

 

Bulk density of a porous solid is the ratio of the bulk mass to the bulk volume. The low 

bulk density value of 0.263 g/cm
3
 of CLM2 sample is a result of presence of char 

particles in the samples. Typically, biomass ash is alkaline in nature (Adeoti, 2011; Liu et 

al., 2010; Pan and Eberhardt, 2011; Shang et al., 2012) and CLM2 samples were also 

found to be highly basic with a pH value of 11.1 at 25
o
C. 

 

Total alkalinity is a measure of  resistance of water to change in pH. It can also be called 

as buffering capacity of water. Materials such as carbonate, bicarbonate, hydroxides can 

contribute towards increased alkalinity in water. Total Alkalinity is defined as the amount 

of acid required to lower the pH of the sample to a pH value of 4.5 (endpoint) at which all 

carbonate and bicarbonate ions are converted to carbonic acid (H2CO3). The total 

alkalinity of CLM2 sample is high at 2720 mg/L CaCO3 indicating that the ash has a great 

potential to reduce acidity in mining effluent water. 

 

Thermal properties of the samples were analyzed by heating the sample to 1000
 o

C under 

inert (N2) atmosphere. Weight percentage and the derivative weight percentage with  
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increase in temperature was analyzed. Thermo gravimetric Analysis (TGA) determines 

the presence of unburned carbon (weight loss in the range of 300 - 500 
o
C)  and inorganic 

carbon (weight loss in the range of 630 - 750 
o
C) in the ash samples (Berra et al., 2011). 

Residue weight percentage for CLM2 was 33.51%. During 650
 o

C - 850 
o
C, the rate of 

weight loss increased significantly for CLM2 which may be due to decomposition of 

calcite in this temperature range (Rajamma et al., 2009). 

 

6.4.2 Effect of pH  

The detailed results from the pH study are shown in Table 6-1. Initial Se concentration is 

50 mg/L and the adsorbent does is 50 g/L. The tests were initially performed at room 

temperature (21 
o
C). As per Figure 5-3, when pH is decreased from 9 to 2, the amount of 

selenium adsorbed increases in both Se(IV) and Se(VI) solutions. Amount of Selenite, 

Se(IV)  adsorbed increased from 0.010 to 0.060 mg of Se/g of CLM2 ash. Amount of 

Selenate, Se(VI)  adsorbed increased from 0.015 to 0.061 mg of Se/g of CLM2 ash (Table 

6-1).  
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Figure 6-3: Amount of selenium adsorbed (mg/g of ash) at different initial pH values 

 

 

Table 6-1: Effect of pH on selenium adsorption  

 Initial pH Final pH Se conc 

(mg/L) 

Se 

removed 

(mg/L) 

Adsorption 

percentage 

(%) 

Adsorption 

capacity 

(mg/g) 

Selenite, Se(IV) 

Se4 - pH2 2.2 10.7 46.566 2.998 6.0 0.060 

Se4 - pH4 4.1 11.2 47.543 2.021 4.1 0.040 

Se4 - pH7 7.1 11.3 48.101 1.462 3.0 0.029 

Se4 - pH9 9.2 11.3 49.072 0.491 1.0 0.010 
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Selenate, Se(VI) 

Se6 - pH2 2.1 10.7 46.846 3.074 6.2 0.061 

Se6 - pH4 4.0 11.3 47.876 2.045 4.1 0.041 

Se6 - pH7 6.3 11.3 48.507 1.414 2.8 0.028 

Se6 - pH9 9.3 11.3 49.194 0.726 1.5 0.015 

Note: Analyzed initial concentrations; 49.564 mg/L Se(IV); 49.920 mg/L Se(VI), 

Standard deviation of +/- 2.1% of adsorption capacity is illustrated in the graphs. 

 

The increase in Se adsorption at low pH may be due the charge at the adsorbent surface 

which becomes positively charged at low pH due to H
+
 ions. The H

+
 ions are actively 

involved in the adsorption of negatively charged selenite and selenate ions onto the 

adsorbent (biomass ash) surface (Kongsri et al., 2013).  Also, as per the Pourbaix diagram 

(Figure 6-1) acidic conditions can reduce the Se(IV) and Se(VI) into elemental selenium, 

Se(0) which would in turn be adsorbed onto the biomass ash surface as outlined by (El-

Shafey, 2007a). However, it should be noted that, the percent increase in adsorption at 

low pH is only 5 %. 

 

As shown in Figure 6-4, despite different initial pH values of the solutions (2, 4, 7, and 9), 

the final pH values of both solutions after mixing with CLM2 ash sample fall within pH 

10.7 - 11.3. This can be attributed to the high total alkalinity of the sample which is 2720 

mg/L CaCO3. 
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Figure 6-4: Initial pH vs. Final pH 

 

The maximum percent adsorption of Se(IV) and Se(VI) on to CLM2 ash sample was 6% 

at room temperature (21
o
C). Hence, solution pH was controlled at pH 2 for further 

experiments which also represents the acidic conditions present in mining effluent water 

streams.  

6.4.3 Effect of Adsorbent Dose  

Batch mixing tests were carried at different CLM2 ash doses of 20, 50, 80 g/L. The 

amount of Se adsorbed (mg/g) at different ash doses are shown in Figure 6-5 and Table 6-

2. Selenite, Se(IV)  adsorption capacity increased from 0.043 mg/g to 0.195 mg/g when 

the dose was decreased from 80 g/L to 20 g/L. Also, selenate, Se(VI) adsorption capacity 

increased from 0.055 mg/g to 0.211 mg/g when the dose was decreased from 80 g/L to 20 
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g/L. Although this seems counter intuitive (increasing adsorption capacity with 

decreasing dosage) it should be noted that the percentage of selenium adsorbed onto 

biomass ash remained the same at all three ash doses. The mixtures, as the ash dosage 

increased became more viscous, and likely resulted in poor mixing of sample and ash 

hence, the lower adsorption capacity. Other possible reasons for the increase in adsorption 

capacity with decrease in dose may be due to the fact that high amount of elements are 

leaching into the solution from the sample with increasing adsorbent dose which in-turn 

compete for the adsorption sites present in the ash samples along with Se(IV) and Se(VI) 

ions. Further, high adsorbent doses with high alkalinity tend to add more hydroxyl ions 

into the solution which increase the pH of the solution and these may also act as 

competing ions causing low amount of Se(IV) and Se(VI) adsorbed per g of ash. At all 

biomass doses, amount of Se(VI) adsorbed was slightly higher than the amount of Se(IV) 

adsorbed. 

 

Table 6-2: Effect of adsorbent dose on selenium adsorption  

 

Initial pH Final pH Se conc 

(mg/L) 

Se 

removed 

mg/L 

Adsorption 

percentage 

(%) 

Adsorption 

capacity 

(mg/g) 

Selenite, Se(IV) 

Se4 - 20D 2.2 10.5 45.319 3.909 7.9 0.195 

Se4 - 50D 2.2 11.2 45.879 3.349 6.8 0.067 

Se4 - 80D 2.2 11.4 45.752 3.476 7.1 0.043 
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Selenate, Se(VI) 

Se6 - 20D 2.2 10.8 45.690 4.220 8.5 0.211 

Se6 - 50D 2.2 11.1 45.384 4.526 9.1 0.091 

Se6 - 80D 2.2 11.4 45.499 4.410 8.8 0.055 

Note: Analyzed initial concentrations: 49.228 mg/L Se(IV); 49.910 mg/L Se(VI), 

Standard deviation of +/- 2.1% of adsorption capacity is illustrated in the graphs. 

 

 

Figure 6-5: Biomass ash dose (g/L) vs. amount of selenium adsorbed (mg/g of ash)  

 

6.4.4 Effect of Temperature  

In the next set of experiments, temperature was varied (5, 21, 35 
o
C) maintaining the 

biomass ash dose at 50 g/L and solution pH at 2. Initial tests were run at room 
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temperature and here, the tests were run at a lower temperature (at 5 
o
C to represent the 

cold climate present in Canada) as well as at a higher temperature (at 35 
o
C to understand 

if high temperatures favor the adsorption). pH 2 was selected as the highest Se removed 

percentage was recorded at that value. 50 g/L dose was maintained for these tests as there 

is little effect on adsorption percent with varying dose. Se adsorption percentage and 

capacity increased with increase in temperature (Figure 6-6). At 5 
o
C, amount of Se(IV) 

adsorbed was 3.7% and 0.037 mg/g of CLM2 ash and Se(VI) adsorbed was 5.9% and 

0.059 mg/g of CLM2 ash. However, at 35 
o
C, amount of Se (IV) adsorbed increased to 

10.3% and 0.101 mg/g of CLM2 ash and Se(VI) adsorbed was 15.2% and 0.152 mg/g of 

CLM2 ash. Also, at all temperatures, amount of Se(VI) adsorbed was slightly higher than 

the amount of Se(IV) adsorbed (Table 6-3). 

 

Figure 6-6: Temperature (
o
C) vs. amount of selenium adsorbed (mg/g of ash) 
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The reasons for the high Se adsorption at high temperature may be due to expansion or 

swelling of adsorption sites in CLM2 sample at high temperatures allowing contact with 

more Se(IV) and Se(VI) ions. Similar results have been recorded in selenium adsorption 

studies done using sulphuric acid treated peanut shell and modified rice husk (El-Shafey, 

2007a, 2007b). 

 

Table 6-3: Effect of temperature on selenium adsorption  

 Initial pH Final pH Se conc 

(mg/L) 

Se 

removed 

(mg/L) 

Adsorption 

percentage 

(%) 

Adsorption 

capacity 

(mg/g) 

Selenite, Se(IV) 

Se4 - 5C 2.2 11.1 47.393 1.836 3.7 0.037 

Se4 - 21C 2.2 11.2 45.879 3.349 6.8 0.067 

Se4 - 35C 2.2 11.3 44.181 5.047 10.3 0.101 

Selenate, Se(VI) 

Se6 - 5C 2.2 11.0 46.962 2.947 5.9 0.059 

Se6 - 21C 2.2 11.1 45.384 4.526 9.1 0.091 

Se6 - 35C 2.2 11.3 42.321 7.589 15.2 0.152 

Note: Analyzed initial concentrations: 49.228 mg/L Se(IV); 49.910 mg/L Se(VI), 

Standard deviation of +/- 2.1% of adsorption capacity is illustrated in the graphs. 
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Overall, the low selenium adsorption efficiency and adsorption capcaity by CLM2 

samples may be due to the following reasons: adsorbent surface can be negatively 

charged which may repel the selenite and selenate anions; high adsorbent doses with high 

alkalinity adding more hydroxyl ions into the solution which may act as competing ions 

causing low amount of Se(IV) and Se(VI) adsorbed per g of ash. 

 

6.4.5 Thermodynamic Parameters  

Thermodynamic parameters (∆G : Gibbs free energy change of adsorption, ∆H: enthalpy 

change, ∆S: entropy change) are typically assessed in all processes to determine the 

thermodynamic nature of the process (e.g. tendency to occur at given conditions). KD 

(distribution coefficient) vs. the inverse absolute temperature graphs for Se(IV) and 

Se(VI) are shown in Figure 6-7 and 6-8. ∆H and ∆S values were calculated from the 

intercept and gradient of these graphs and results are given in Table 6-4. 

 

Table 6-4: Thermodynamic parameters 

Temperature 

(K) 

∆G  

(kJ/mol) 

∆S  

(kJ/mol.K) 

∆H 

(kJ/mol) 

Selenite 

278.15 0.5905 

0.09054 

25.774 

294.15 -0.9257 25.707 

308.15 -2.1167 25.783 
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Figure 6-7: ln KD vs. I/T(K
-1

) plot for selenite, Se(IV) 

 

Positive ∆G values indicate the process is not thermodynamically favoured and negative 

∆G values indicate the process is favoured. Here, the ∆G values become more negative 

with temperature increase, indicating that at high temperatures the adsorption process is 

more favourable (Jordan et al., 2013a). Positive ∆H values indicate the endothermic 

Selenate 

278.15 -0.5255 

0.09046 

24.635 

294.15 -1.6884 24.919 

308.15 -3.2719 24.602 
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nature of adsorption. Positive ∆S values indicate the increased degree of randomness at 

the adsorbent/solution interface (Nettem and Almusallam, 2013). 

 

Figure 6-8: ln KD vs. I/ T(K
-1

) plot for selenate, Se(VI) 

 

6.5 Conclusion and Recommendations 

The biomass ash used in this study was collected from ZCLP giving the following: high 

specific surface area; low density; high carbon content; presence of S-O, C-O and Si-O 

surface functional groups; high total alkalinity with neutralization capacity; presence of 

minerals favorable to be used as adsorbents such as calcite, alkali-feldspar, quartz. These 

results confirmed the suitability of using these biomass ash as an adsorbent for treatment 

of contaminants in mining effluent water streams.  
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The adsorption experiments were carried out using synthesized solutions of selenite, 

Se(IV) and selenate, Se(VI) at varying pH, biomass ash dose and temperature. Maximum 

percentage removal for Se(IV) and Se(VI) was 10.3% and 15.2% at 35
o
C. When the pH 

was decreased from pH 9 to 2 adsorption percentage increased by 5%. Varying the 

biomass ash dose did not have a significant effect on Se removal percentage. However, 

high adsorption capacities were recorded at low adsorbent dose (20 g/L). Adsorption 

capacities obtained for Se(IV) (0.195 mg/g) and Se(VI) (0.211 mg/g) are similar to  

capacities recorded in Hasan et al., 2010 and higher than the capacities recorded in 

Gulipalli et al., 2011. High neutralization capacities were recorded with both Se(IV) and 

Se(VI) solutions where final solution pH of all samples fall within pH 10.5 - 11.4 despite 

the initial pH value.  

 

Although, selenium adsorption capacities onto biomass ash are relatively low compared 

with the monolayer sorption capacities of various adsorbents recorded in Table 3-2, it 

may be possible to increase the adsorption capacities of biomass ash by chemical 

modification. 

 

Recommendations for future work include; 

 Characterization of spent adsorbents from these experiments to understand which 

specific properties may have involved in selenium removal. By comparing ash 

characteristics before and after mixing with Se, it will be possible to understand 
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what properties should be enhanced to increase Se adsorption capacity/removal 

percentage. 

 Identify suitable chemical modification methods to increase the selenium sorption 

capacity. These chemicals should be selected such that, modified ash will have 

increased anion exchange capacity or increased positively charged functional 

groups or increased ability to convert selenite and selenate ions to elemental 

selenium.  

 Perform experiments using simulated effluent streams with various other 

compounds to determine any interference these compounds may have in 

adsorption. 

 Conduct kinetic experiments to determine rates for reactor type selection and 

design of the overall selenium treatment process.  

 Assess the leaching characteristics of the spent ash to determine further disposal 

options for these ash (e.g. use as an additive for construction purposes, landfill 

disposal etc.). 

 

  



186 

 

Bibliography - Chapter 6 

Adeoti, I. A.: Characterization and Alternative Use Study of Fly Ash, 160 pp., Memorial 

University of Newfoundland., 2011. 

Berra, M., Casa, G. De, Orso, M. D., Galeotti, L., Mangialardi, T., Paolini, A. E. and 

Piga, L.: Reuse of Woody Biomass Fly Ash in Cement-Based Materials : Leaching Tests, 

in Recycling of Biomass Ashes, edited by H. Insam and B. A. Knapp, pp. 133–146, 

Springer Berlin Heidelberg., 2011. 

Berra, M., Dell’orso, M., Mangialardi, T., Paolini, A. E. and Piga, L.: Chemical and 

Environmental Characterization of Fly Ash from Woody Biomass Combustion, in 

Internation Symposium on Energy from Biomass and Waste, CISA, Environmental 

Sanitary Engineering Centre, Venice., Italy., 2010. 

El-Shafey, E. I.: Removal of Se(IV) from aqueous solution using sulphuric acid-treated 

peanut shell., J. Environ. Manage., 84(4), 620–7, doi:10.1016/j.jenvman.2007.03.021, 

2007a. 

El-Shafey, E. I.: Sorption of Cd(II) and Se(IV) from aqueous solution using modified rice 

husk., J. Hazard. Mater., 147(1-2), 546–55, doi:10.1016/j.jhazmat.2007.01.051, 2007b. 

Envirogen Technologies: Treatment of Selenium-Containing Coal Mining Wastewater 

with Fluidized Bed Reactor Technology. [online] Available from: 

http://www.envirogen.com/files/files/ETI_Selenium_GrayPaper_V_FINAL.pdf, 2011. 

Environment protection Division Ministry of Environment Government of British 

Columbia: Ambient Water Quality Guidelines for Selenium, [online] Available from: 

http://www.env.gov.bc.ca/wat/wq/BCguidelines/selenium/selenium.html, 2001. 

Gulipalli, C. H. S., Prasad, B. and Wasewar, K. L.: Batch Study, Equilibrium and 

Kinetics of Adsorption of Selenium using Rice Husk Ash (RHA), J. Eng. Sci. Technol., 

6(5), 586–605 [online] Available from: http://jestec.taylors.edu.my/Vol 6 Issue 5 October 

11/Vol_6_5_586_605_WASEWAR.pdf, 2011. 

Hasan, S. H., Ranjan, D. and Talat, M.: Agro-industrial waste “wheat bran” for the 

biosorptive remediation of selenium through continuous up-flow fixed-bed column., J. 

Hazard. Mater., 181(1-3), 1134–42, doi:10.1016/j.jhazmat.2010.05.133, 2010. 

Jordan, N., Müller, K., Franzen, C. and Brendler, V.: Temperature impact on the sorption 

of selenium(VI) onto anatase., J. Colloid Interface Sci., 390(1), 170–5, 

doi:10.1016/j.jcis.2012.09.021, 2013. 



187 

 

Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S. and Chanthai, S.: 

Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and 

application for selenium adsorption in aqueous solution, Chem. Eng. J., 215-216, 522–

532, doi:10.1016/j.cej.2012.11.054, 2013. 

Li, L., Yu, C., Bai, J., Wang, Q. and Luo, Z.: Heavy metal characterization of circulating 

fluidized bed derived biomass ash., J. Hazard. Mater., 233-234, 41–7, 

doi:10.1016/j.jhazmat.2012.06.053, 2012. 

Li, X., Guo, X., Wang, S., Wang, K., Luo, Z. and Wang, Q.: Characterization and 

Analysis of Char Produced by Biomass Fast Pyrolysis, 2010 Asia-Pacific Power Energy 

Eng. Conf., 1–4, doi:10.1109/APPEEC.2010.5448524, 2010. 

Li, Z., Li, H., Yang, X., Zhang, H., Liu, C. and Cao, B.: Characterization of Se(IV) 

removal from aqueous solution by Aspergillus sp. J2, Chem. Eng. J., 220(3), 67–71, 

doi:10.1016/j.cej.2012.11.136, 2013. 

Liu, Z., Zhang, F.-S. and Wu, J.: Characterization and application of chars produced from 

pinewood pyrolysis and hydrothermal treatment, Fuel, 89(2), 510–514, 

doi:10.1016/j.fuel.2009.08.042, 2010. 

McCafferty, E.: Introduction to Corrosion Science, Springer New York., 2010. 

Nettem, K. and Almusallam, A. S.: Equilibrium, Kinetic and Thermodynamic Studies on 

the Biosorption of Selenium (IV) Ions onto Ganoderma Lucidum Biomass, Sep. Sci. 

Technol., (June), doi:10.1080/01496395.2013.791318, 2013. 

Pan, H. and Eberhardt, T.: Characterization of Fly Ash from the Gasification of Wood 

and Assessment for Its Application as a Soil Amendment., 2011. 

Rajamma, R., Ball, R. J., Tarelho, L. a C., Allen, G. C., Labrincha, J. a and Ferreira, V. 

M.: Characterisation and use of biomass fly ash in cement-based materials., J. Hazard. 

Mater., 172(2-3), 1049–60, doi:10.1016/j.jhazmat.2009.07.109, 2009. 

Shang, G., Shen, G., Wang, T. and Chen, Q.: Effectiveness and mechanisms of hydrogen 

sulfide adsorption by camphor-derived biochar, J. Air Waste Manage. Assoc., 62(8), 873–

879, doi:10.1080/10962247.2012.686441, 2012. 

Sheha, R. R. and El-Shazly, E. a.: Kinetics and equilibrium modeling of Se(IV) removal 

from aqueous solutions using metal oxides, Chem. Eng. J., 160(1), 63–71, 

doi:10.1016/j.cej.2010.03.004, 2010. 

Smidt, E., Böhm, K. and Schwanninger, M.: Fourier Transforms - New Analytical 

Approaches and FTIR Strategies, edited by G. Nikolic, InTech., 2011. 



188 

 

US EPA: Basic Information about Selenium in Drinking Water, [online] Available from: 

http://water.epa.gov/drink/contaminants/basicinformation/selenium.cfm#four, 1992. 

Vadapalli, V. R. K., Gitari, M. W., Petrik, L. F., Etchebers, O. and Ellendt, A.: Integrated 

acid mine drainage management using fly ash, J. Environ. Sci. Health. A. Tox. Hazard. 

Subst. Environ. Eng., 47(1), 60–9, doi:10.1080/10934529.2012.629582, 2012. 

Vassilev, S. V., Baxter, D., Andersen, L. K. and Vassileva, C. G.: An overview of the 

composition and application of biomass ash. Part 1. Phase–mineral and chemical 

composition and classification, Fuel, 105, 40–76, doi:10.1016/j.fuel.2012.09.041, 2013a. 

Vassilev, S. V., Baxter, D., Andersen, L. K. and Vassileva, C. G.: An overview of the 

composition and application of biomass ash. Part 2. Potential utilisation, technologcal and 

ecological advantages and challenges, Fuel, 105, 19–39, doi:10.1016/j.fuel.2012.10.001, 

2013b. 

World Health Organization: Background document for preparation of WHO Guidelines 

for drinking-water quality, (WHO/SDE/WSH/03.04/13), 2003.  

 

 

 

 

 

 

 

  



189 

 

Chapter 7 : Summary 

This study investigated the possibility of using biomass ash/ char, a byproduct of 

combustion of forestry residue and/or fossil fuels in pulp and paper mill boilers, as an 

adsorbents to treat sulphur and selenium oxy-anions present in mining effluent water.  

 

Chapter 1 provides the 'Introduction and Overview'. The main objectives of the study, 

structure of the thesis as well as the importance and value of the current research were 

discussed in this chapter. 

 

Chapter 2 provided a comprehensive review on removal of sulphur-oxy anions (thiosalts 

and sulphates) from mining effluent water. The generation and importance of Acid Mine 

Drainage (AMD), different sulphur species present in AMD, mainly, sulphate and 

thiosalts (thiosulphate, trithionate, tetrathionate), behavior of thiosalts at different pH (2, 

4, 7, 9) and temperature (4, 15, 30 
o
C) and various thiosalt treatment methods such as 

natural degradation, chemical oxidation, biological oxidation were discuseed. 

Furthermore, use of various carbonaceous adsorbents, ion exchange resins, fly ash and fly 

ash zeolites used for sulphate and thiosalt removal by adsorption and ion exchange were 

discussed in detail.  

 

Chapter 3 provided a comprehensive review on removal of selenium oxy-anions (selenite 

and selenate) from aqueous media by adsorption. This chapter summarizes recent work 

on adsorbent types used in selenium oxy-anions (selenite and  selenate) treatment such as 
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activated carbon, biomass, biomass ash, iron oxides, aluminium based adsorbents, silica, 

apatite, rutile etc. The effect of pH (1.5 - 11.5), temperature (18 - 50 
o
C), initial 

concentration of selenium in the solution (0.8 - 100 mg/L), adsorbent dosage (0.5 - 20 

g/L) on the sorption capacity was reviewed. Monolayer sorption capacities for selenium 

ranging from 0.081 mg/g to 126.99 mg/g of adsorbent have been reported. Further details 

on isotherm models, kinetic models and thermodynamic parameters such as Gibbs free 

energy change, enthalpy change, entropy change as well as techniques used in adsorbent 

characterization (XRD, SEM, FT-IR, BET surface area, point of zero charge pH, and 

analytical determination of selenium were also discussed. 

 

Chapter 4 provided the methodology used for characterization of eight biomass ash/char 

samples collected from three pulp and paper mill boilers (Kruger Brompton Mill, Corner 

Brook Pulp and Paper Limited,  Zellstoff Celgar Limited Partnership) and extensive 

discussion on results. Eight ash/char samples were characterized chemically, physically, 

thermally, and structurally by inductively coupled plasma mass spectrometry and optical 

emission spectrometry (ICP-MS, ICP-OES), CNS (carbon, nitrogen, sulphur) elemental 

analysis, mineral liberation analysis (MLA), X-ray diffraction (XRD), Fourier transform 

infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), specific 

surface area, pore volume, bulk density, pH, total alkalinity, thermo-gravimetric analysis 

(TGA) and results were discussed in detail. 
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Chapter 5 provided the results from the batch experiment studies on removal of sulphur 

from thiosulphate, trithionate and tetrathionate solutions using biomass ash/char (CBM-W 

sample) characterized in Chapter 4. Batch mixing experiments were conducted with 3 

different types of biomass ash/char (CBM-D1, CBM-W, CLM1) by varying initial 

solution pH (2, 4, 7, 9), adsorbent dose (20, 50, 80 g/L of CBM-W sample) and 

temperature (5, 21, 35 
o
C) until equilibrium was achieved (24 hrs). Highest adsorption 

capacities were recorded at the highest adsorption dose used (80 g/L) which were 10.822, 

10.291, 14.235 mg/g of biomass ash for thiosulphate, trithionate and tetrathionate 

respectively. Variation in pH and temperature didn't have a significant effect on sulphur 

adsorption from all three solutions. Moderate neutralization capacities were recorded 

where final pH values of all solutions fall  in the range 6.6 - 9.4. Freundlich isotherm 

equation was found to be a better fit than the Langmuir isotherm equation. 

 

Chapter 6 provided the results from the batch experiment studies on removal of selenium 

from selenite and selenate solutions using biomass ash/char (CLM2) characterized in 

Chapter 4. Batch experiments were conducted by mixing different doses of ash (CLM2) 

sample (20, 50, 80 g/L) with Se(IV) and Se(VI) solutions (50 mg/L Se concentration) at 

different pH (2, 4, 7, 9)  and temperature (5, 21, 35 
o
C) until equilibrium is achieved (24 

hrs). Maximum percentage removal for Se(IV) and Se(VI) was 10.3% and 15.2% at 35
o
C. 

When the pH was decreased from pH 9 to 2 adsorption percentage increased by 5%. 

Varying the biomass ash dose did not have a significant effect on Se removal percentage. 

However, high adsorption capacities were recorded at lower adsorbent doses (20 g/L). 
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Adsorption capacities obtained for Se(IV) (0.195 mg/g) and Se(VI) (0.211 mg/g) are 

similar to capacities recorded in Hasan et al., 2010 and higher than the capacities recorded 

in Gulipalli et al., 2011. High neutralization capacities were recorded with both Se(IV) 

and Se(VI) solutions where final solution pH of all samples fall within pH 10.5 - 11.4 

despite the value of initial pH. 

 

Recommendations for future work are as follows; 

 Characterization of spent adsorbents from to understand which specific properties 

may have involved in sulphur and selenium removal and to understand the 

adsorption mechanism.  

 Using a more accurate analytical method to determine the amount of sulphur in 

the solution would aid in analysis. 

 Selection of a narrow size range of the CBM-W sample as well as higher dose to 

obtain significant variation in results with varying parameters. 

 Identify suitable chemical modification methods to increase the selenium sorption 

capacity. These chemicals should be selected such that, modified ash will have 

increased anion exchange capacity or increased positively charged functional 

groups or increased ability to convert selenite and selenate ions to elemental 

selenium.  

 Conduct column experiments to obtain more information in designing an 

adsorption process. 
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 Perform experiments using simulated effluent streams with various other 

compounds to determine any interference these compounds may have in 

adsorption 

 Conduct kinetic experiments to determine rates for reactor type selection and 

design of the overall selenium treatment process.  

 Assess the leaching characteristics of the spent ash to determine further disposal 

options for these ash (e.g. use as an additive for construction purposes, landfill 

disposal etc.) 
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Appendix 

Appendix A: ATR-FTIR spectrums 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

  



 

 

Appendix B: Weight% and derivative weight(%/
o
C) vs temperature graphs (TGA) 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

  



 

 

Appendix C: XRD spectra 
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