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Abstract

The study of miscible flow in porous media is an important topic in many dis-

ciplines of science and engineering, especially in the field of petroleum engineering.

For example, Carbon dioxide (CO2) may be injected into an oil reservoir in order

to improve the oil recovery rates, which is called enhanced oil recovery (EOR). This

thesis focuses on the study of a miscible displacement of two fluids, such as CO2 and

oil, in a porous medium. An upscaling methodology for modeling multiscale features

of the flow and the porous medium has been studied, where the overall pressure drag

and skin friction exerted on the porous medium has been modelled by combining the

Darcy’s law with a statistical mechanical theory of viscosity, which is an important

contribution of this thesis.

A numerical methodology for capturing the multiphysics and multiscale nature

of the governing motion has been studied. The temporal discretization employs the

second order Crank-Nicolson scheme for viscous and diffusive phenomena, and an

explicit method for all other terms. The nonlinear advection terms in the momen-

tum equation has been treated with an Euler explicit flux form central finite difference

method; however, the advection of the CO2 mass flux has been treated with a stream-

line based Lagrangian method. In order to implement the Marker-and-Cell (MAC)

scheme for resolving the incompressibility, a staggered arrangement of the velocity

and pressure has been presented on a collocated grid. This approach enhances the

implementation of a multigrid solver, and is a novel computational model for simu-

lating miscible displacement processes. The performance of the Lagrangian method

has been assessed with respect to an equivalent flux form upwind method.

The results indicate that the viscous forces play a significant role compared to the

effect of permeability on miscible displacement of CO2 and oil, where the injected
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CO2 displaces the residual oil without being distorted, thereby enhancing the recov-

ery of hydrocarbon. Although the present results with an idealized model lacks from

verifications with field measurements, findings of this thesis provide useful feedback

to further investigations on CO2 based EOR techniques.

“Everything should be made as simple as possible, but not simpler.” −Albert

Einstein.
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Chapter 1

Introduction

The study of fluid flows in porous media has received considerable attention due to the

increasing interests in geophysics, thermal insulation, petroleum reservoirs, and many

other areas in science and engineering. This thesis focuses on the numerical simulation

of miscible displacement processes in porous media. The miscible displacement of a

fluid by a second fluid has received an increasing attention to scientists, especially, to

the oil industries, where a solvent, such as CO2, is used to displace the residual oil

that was trapped within pores of reservoir rocks. This residual oil may be up to 70%

of the original oil in a reservoir, and cannot be recovered with typical primary and

secondary techniques. The increasing demand of fuel has led scientists and engineers

to give attention to the recovery of the residual oil. Therefore, studies with idealized

oil reservoir models – also known as reservoir simulations – play an important role,

and help mitigate the financial burden of field operations. As described by Chen

(2007), numerical reservoir simulations are useful to predict the performance of a oil

recovery project.

The study of the miscible flow of CO2 and oil or saline is important for developing

sophisticated oil recovery techniques, as well as for mitigating the challenges of global

1
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warming due to human induced air pollution.

1.1 CO2 in oil production techniques

Let us now present several oil production techniques. The study of these oil recovery

techniques depends also on how modellers characterize the geological features of the

reservoir. Thus, the oil recovery techniques requires basic concepts on modelling

porous media and geological reservoirs.

1.1.1 Porous media and geological reservoirs

The concept of porous media is well-known by scientists, and used in many disciplines

of applied sciences and engineering. A fluid flow through porous media has become

a common interest to a number of interdisciplinary branches and, introduced an

independent field of research.

A porous medium contains pores (void space) and solids, where pores are inter

connected in such a way that a fluid can flow through it continuously. For instance,

consider a large stack of gulf balls. Rocks, soil, and biological tissues (e.g. bones,

kidneys) are examples of natural porous materials; on the other hand, cemented sand-

stone, water filter, and ceramics etc. are examples of artificial porous materials (Bear

& Bachmat, 1990). Clearly, the distribution of the void space in a stack of gulf ball

is different from that in a rock or collections of arbitrary shaped rocks. In other

words, a porous material may be homogeneous or heterogeneous. A porous mate-

rial is homogeneous with respect to a physical property, if this property does not

change within the material. Otherwise, it is called a heterogeneous porous medium.

Moreover, a porous material is referred to as an isotropic medium with respect to a

property, if the property does not change with direction (Bear & Bachmat, 1990). In
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practical applications, there is no absolute homogeneous and isotropic porous media

in the oil reservoir fields. However, when a representative elementary volume (REV)

is considered in a volume averaging process, the length scale of the REV is larger than

the length scale of the pore scale. In addition, the length scale of the whole domain

is larger than the length scale of the REV (Whitaker, 1986). The mean average of

the fluid properties remain constant within the REV (deLemos, 2006). Under this

consideration, we assume the homogeneous and isotropic porous media in our model.

A reservoir is a geological rock formation beneath the earth’s surface, which con-

tains fluids, such as oil or gas. This is often called the petroleum reservoir or the oil

reservoir. In other words, a reservoir is a fluid saturated subsurface porous medium.

In practice, a study of a fluid flow in a porous medium typically refers to an idealized

realization of oil/gas flow in a reservoir. In this thesis, a porous medium refers to an

oil reservoir, unless it is mentioned otherwise.

1.1.2 Primary and secondary oil recovery

Generally, the recovery of the crude oil from the reservoir begins with drilling wells

into the ground. During an early period, oil is driven toward a production well by the

natural high pressure of the reservoir. This is the primary recovery stage, when the

pressure is the result of the combination of a number of natural and physical mecha-

nisms. In the primary recovery stage, around 5-15% of the oil can be recovered (Chen

et al., 2006). This recovery stage continues until the natural pressure of the reservoir

maintains a desired level.

When the natural underground pressure falls below a certain level, the pressure

becomes insufficient to force the oil upward to the production well. Thus, the reser-

voir’s pressure needs to be increased, and this can be accomplished by injecting an-
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other fluid. Generally, water is injected into the reservoir during this process. This

stage of the oil recovery is referred to as secondary oil recovery process. As reported

by Sen (2008), at the end of the secondary oil recovery process, approximately 20-30%

of the original oil can be recovered depending upon the properties of the crude oil

and the characteristics of the reservoir. However, after the primary and secondary

recovery processes, about 60-80% (Gerritsen & Durlofsky, 2005) of the original oil

remains trapped into the pores which is the residual oil in a reservoir. Note that

about 377 billion barrels of residual oil cannot be recovered from known oil fields in

USA (Sen, 2008). Clearly, world’s residual oil is much more than 377 billion barrels.

Thus, an enhanced oil recovery process is an important topic.

1.1.3 Enhanced oil recovery

After the secondary recovery of the reservoir life time, a number of recovery methods

are developed by scientists and engineers to extract remaining trapped crude oil from

a mature oil field. These techniques are termed as an enhanced oil recovery (EOR)

process. Usually, at this stage the recovery techniques attempt to alter rock-fluid

interactions in the oil reservoir, and to enhance the recovery process. The techniques

include: steam injection, chemical injection or gas injection (i.e. CO2, N2, methane).

The main objectives of this process are to eliminate saturation of the residual oil,

reduce the viscosity of oil, and increase the miscibility so that oil moves toward the

production wells (Chen et al., 2006). An effective EOR technique would mobilise the

saturated oil, and form an oil bank that can move toward production wells. Gas or

liquid injection can be miscible or immiscible to oil.
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1.1.4 Miscible flow and miscible displacement

Let us consider that a fluid displaces another fluid. If the molecules of these two fluids

are free to mix with each other depending on their physical conditions, then mixing

begins through the interface between these two fluids. Such fluids are also known

as miscible fluids. For example, water can mix with juice, syrup or ethanol in any

proportions of these fluids. As a result, the water may not displace juice as a distinct

phase. In contrast, the mixing between CO2 and oil may occur in a way that, during

the displacement process, these two fluids may remain well separated, and occupy

approximately their own volume, where mixing occurs at molecular label through the

interface (Udey & Spanos, 1993; Bai & Elsworh, 1995). Thus, a full understanding of

such a miscible displacement process remains an active research topic in the field of

petroleum engineering (Green & Willhite, 1998). A schematic diagram of the miscible

displacement process is shown in Fig 1.1.

1.1.5 Immiscible two phase flow

On the other hand, if the flowing fluids are not miscible, the resulting migration is

an immiscible displacement process, where two fluids remain fully separated. For

example, when warm water or steam is injected into an oil reservoir to push the oil so

that it moves to the production well, the resulting flow is an immisicible two-phase

flow (Ehlers & Bluhm, 2002). Note that the displacement process of oil by CO2 may

also be immiscible, depending upon the condition of the crude oil and some other

related properties (Farajzadeh, 2009).

In order to outline some benefits of CO2 based EOR, table 1.1 presents the data

on the production rate of oil from 4 different countries. Clearly, miscible displacement

is more effective in Canadian oil fields (3600 bbl/day/field) compared to that in US
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Figure 1.1: The miscible displacement oil by CO2 has been presented schematically.

The diagram depicts the vertical cross section of a reservoir where CO2 is being

injected through the injection well, and oil is being collected through the production

well. The CO2 and the oil are well separated; however, there is an overlap, where the

mixing occurs. Further details of this diagram is given in Texas (2012).
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(294 bbl/dat/field). Numerical modelling studies may identify potential techniques

to improve the existing oil production rate.

Table 1.1: Ongoing EOR projects using CO2 and rate of production

Location Project type Number Production rate [bbl/day]

USA Miscible (immiscible) 70(1) 206000(105)

Canada Miscible 2 7200

Turkey Immiscible 1 6000

Trinidad Immiscible 5 320

Source:(Farajzadeh, 2009)

1.2 EOR as a carbon storage option

The CO2 based EOR is closely related to the carbon capture and storage, which

is the pilot project on mitigating the challenge of global warming due to human

induced carbon emission, and has a notable impact on the environmental manage-

ment (Gozalpour et al., 2005; Holtz et al., 2001). For example, the CO2 emission from

nuclear power plants may be easily captured and stored or reused for EOR (Fara-

jzadeh, 2009). Fig 1.2 depicts the collection of CO2 and its storage in offshore and

onshore subsurface locations.

1.3 Challenges in the reservoir simulations

There are a number of unresolved challenges in reservoir simulations, which need to

be addressed. According to Nobakht et al. (2007), accurate modelling of the effect of

viscosity is one of the most challenging aspects of CO2 based EOR process. Under
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Figure 1.2: Schematic diagram of CO2 collection and distribution.
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typical reservoir conditions, the viscosity of CO2 is less than that of crude oil. As a

result, the viscosity of the flowing binary fluid (CO2 and oil) play an important role

on reducing the skin friction and the overall drag experienced by the reservoir rock.

For example, in Fig 1.1, the viscosity of oil in the miscible zone will be less than that

of the oil. However, an accurate prediction of the viscosity of the binary fluid in the

miscible zone is an unresolved challenge. Furthermore, the availability of CO2 and

the cost of transportation must be considered for an efficient CO2 based EOR process

- a full discussion of which is outside the scope of this thesis. A principal focus of

this thesis aims to understand how to control the effect of viscous forces in order to

accelerate the recovery of residual oil.

Currently, the petroleum industry is one of the largest users of the high perfor-

mance computing resources (see Islam et al., 2010). Almost all aspects of the reservoir

engineering problems – from well testing to the prediction of reservoir life – are an-

alyzed with reservoir simulators. However, the lack of a priori real time data for

model verification demands rigorous theoretical studies. For example, weather pre-

diction computer models are verified with data obtained from a ‘space shuttle’ or a

‘weather balloon’, which is something that is difficult, if not impossible, in the field of

reservoir modelling (Islam et al., 2010). In this direction, there are two essential chal-

lenges: one is mathematical modeling of the flow physics and reservoir characteristics,

and the other is the real time computational methodologies.

1.3.1 Mathematical model

The mathematical model is the most important factor for studying any fluid flow

and the model should be as simple as possible, and represent the actual features of

a specific flow as accurately as possible. The simplest reservoir model adopts the
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Darcy’s equation to approximate the conservation of momentum, where the effects of

the viscous stress and inertial have been neglected (Islam et al., 2010; Vafai & Tien,

1982). This approximation is fully justified with rigorous mathematical analysis and

experiments with ideal flow of water through porous media. In other words, the

Darcy’s equation approximates the ‘true’ momentum transfer that occurs through

pores of the medium by an ‘approximation’ that is representative at the ‘field scale’.

As mentioned by Bear (1972), the Darcy’s equation remains valid when the Reynolds

number is about 1. Insufficient approximation of the momentum transfer by the

Darcy’s equation was studied by a number of researchers (Vafai & Tien, 1982; Nguyen,

1986). Nguyen (1986) mentioned that standard Darcy flow analysis could be over-

predicted the productivity rate of oil. Thus, it is needed an extended model to study

the flow behavior in EOR process. The regime of a reservoir flow – where the Darcy’s

equation is appropriate, and where a more robust upscaling approximation is required

– has been analysed thoroughly in recent years. Review of literature indicates that

characterizing the reservoir heterogeneity, modeling the dynamics of binary fluids, and

heat and mass transfer phenomena are among least understood topics (e.g., Nobakht

et al., 2007).

1.3.2 Computational challenges

The length of a petroleum reservoir is typically O(km); for example, Jilin oil field in

China is about 25 km long and 12 km wide (Yu et al., 2012). The Weyburn oil field

in Canada has a productive area of about 180 km2 (Elsayed et al., 1993). However,

the average space between rocks, where the actual flow occurs, is O(µm) (Popov

et al., 2009; Hasle et al., 2007). Thus, for a typical reservoir that is 10 km long,

10 km wide, and 100 m deep, we need 1010 × 1010 × 108 grid points for a simulation
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which aims to capture the actual fluid flow with the spatial step size, ∆x = 1µm.

Pruess & Zhang (2008) attempted to determine the minimum ∆x using the Darcy’s

equation, and found that ∆x = 1 mm is necessary to sufficiently resolve viscous

fingering effects. With this resolution, 107 × 107 × 105 grid points are needed. A

naive estimate shows that we would require a computer memory in the range of

106TB − 1015TB. Clearly, this is not possible with currently available computer

resources, which explains the computational challenges of reservoir simulation. To

meet this challenge, the development of sophisticated numerical techniques along

with rigorous upscaling methodology are needed. The principal motivation of this

thesis is along this direction.

1.4 Structure of the thesis

Chapter two presents a mathematical model of a miscible fluid flow in porous media.

In this model, the classical Darcy’s equation has been extended, where the character-

istic length scale has been referred to as the meso-scale – between the field scale and

the pore scale. A numerical modelling approach has been presented in chapter three.

This model takes advantage of the multigrid solution technique in order to optimize

the overall computation overhead. Chapter four introduces a novel streamline based

Lagrangian methodology, which resolves the advection dominated mass transfer in

a porous medium. Chapter five has been devoted to verification and validation of

the present Lagrangian modelling system. In chapter six, the effects of permeability

and viscous stress on the miscible displacement of oil by CO2 has been investigated.

Results indicate that accurate modelling of the viscous stress is more important than

that of the permeability effects of reservoir rocks, in order to optimize the efficiency

of oil recovery. Finally, the main conclusions of the thesis have been summarized
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in chapter seven, where some related future research directions have been discussed

briefly.



Chapter 2

A mathematical model for miscible

flows in porous media

A petroleum reservoir is a formation of a porous medium which contains hydro-

carbons (Islam et al., 2010). Hydrocarbons are produced by drilling wells into the

reservoirs. Before the final oil production, a number of simulations may provide use-

ful feedback to the field operations. The ultimate goal of numerical simulations is

the understanding of the reservoir fluid flow and the prediction of the overall reser-

voir performance (Islam et al., 2010). The reservoir simulation mainly depends on

a bonafide physical model, the development of a mathematical model, an optimal

numerical method to discretize the mathematical model, and an efficient computa-

tional algorithm (Chen, 2007). The physical model aims at representing the geological

features of a reservoir, which resolves essential features as much as possible, and a

mathematical model expresses the dynamics of the flow inside the reservoir. An op-

timal numerical method helps to approximate the model equations, and an efficient

computational algorithm helps to get the most accurate solution by implementing a

numerical method (Chen, 2007).

13
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2.1 Objective of the chapter

This chapter concentrates on the development of a mathematical model, which aims

to study an upscaling methodology for the flow of miscible fluids in porous media. The

main view of this upscaling methodology is to approximate the actual flow behavior

at pore scale to a much larger scale, which may be called the meso-scale. The volume

averaging technique (VAT) has been studied in order to upscale the fluid flow in a

porous medium. A statistical mechanical approach is applied to address the skin

friction exerted by the porous media.

2.2 Upscaling of a flow in porous media

The upscaling methodology aims to model the ‘true’ flow through the pores of a

reservoir by an overall ‘approximation’ of the flow in the reservoir. This may be

explained by the schematic scale separation diagram, which is adopted from Popov

et al. (2009) and presented in Fig 2.1. In Fig 2.1, the left panel, the top right panel,

and the bottom right panel illustrate the field scale, meso-scale, and micro-scale,

respectively. The actual flow occurs at the pore scale which is O(µm) and is known

as the micro scale (Popov et al., 2009; Hasle et al., 2007). The upscaling methodology

aims to develop a model to represent the rocks and the average flow at meso-scale

or at field scale (Elsayed et al., 1993). Clearly, upscaling at the meso-scale may be

more accurate compared to upscaling at the field scale. In the field operation, in

order to get some quick and coarse estimate, field scale upscaling is necessary. Thus,

traditional reservoir models typically adopt the field scale upscaling (see, Garibotti

& Peszyǹska, 2009). There may be two possible approaches: i) employ the field

scale model to simulate the flow using a mesh that is as fine as possible; ii) employ
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Figure 2.1: The multiscale nature of a reservoir has been depicted schematically. The

left panel presents an entire reservoir, where only large fractures (region with the

green color) may be realized. An overall understanding of the ‘field scale’ flow in this

reservoir of length 100 km is desired. An intermediate or meso-scale (the dimension

of the meso-scale is between kilo meter (km) and, micrometer (µm); here we consider

meter (m)) is depicted in the top right panel, where the tiny pores are not realized.

The bottom right pannel depicts the tiny pores of size O(µm). Clearly, a numerical

simulation may adopt any of these scales, depending on the aim of the simulation.
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a meso-scale model which resolves more features of the flow compared to the field

scale model, and use a relatively coarser mesh to simulate the flow. Another view

of upscaling indicates that meso-scale models may be more appropriate for research

and understanding the dynamics, and field scale models may be more appropriate for

a real time or faster than real time prediction of the overall reservoir life cycle (see,

Whitaker, 1996). Upscaling is done through an averaging process. Both the field scale

and the meso-scale upscaling model can be developed through the volume averaging

approach.

2.3 Volume averaging technique (VAT)

Figure 2.2: Schematic diagram of an isotropic porous medium where dark shapes are

solids (rocks). (a) An idealized reservoir, and (b) Representative elementary volume

(REV).

Let us consider an idealized oil reservoir, which is an isotropic porous medium as

shown in Fig 2.2(a). In this figure, the circular dark shapes represent solids (rocks)

and the void space is filled with a fluid such as crude oil. Fig 2.2(b) is a representative

elementary volume (REV), which contains both the void and the solid phases. Let V
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and Vf denote the entire volume of an REV and the volume of fluid within an REV,

respectively. The porosity or the void fraction is given by φ =
Vf
V

. In an REV, any

flow property is an average, which is an approximation to the actual flow through

pores, and has the same value everywhere within the REV, regardless of the rock or

the fluid (deLemos, 2006). In a numerical model, an REV may be considered the

smallest computational unit.

The volume average of any flow property ψ̃ is defined by

ψD ≡ 〈ψ̃〉v =
1

V

∫
V

ψ̃dV,

which is called the volume average (deLemos, 2006). For simplicity we denote the

volume average, 〈ψ̃〉v by ψD. Since the average ψD does not vary within the REV,

we can place a grid point anywhere within the REV (generally at the center). In

practice, a reservoir model does not distinguish whether the grid point is on the solid

phase or on the fluid phase. Clearly, the volume average is more effective, when the

actual flow does not have a significant variation within the REV. The volume average

may also be considered as a field scale realization of the true flow when the size of

the REV represents the characteristic of the field scale.

However, if the volume of the REV is reduced, spatio-temporal variation of the

flow in the REV may become important, and a modified averaging process is needed.

For example, both experiments and numerical simulations exhibited sharp changes

of streamlines for a slowly moving fluid past an obstacle at low Reynolds number

(0 < Re < 100). These fluctuations may not propagate far from the obstacle. To

model this effect, an intrinsic average is defined by

ψ ≡ 〈ψ〉i =
1

Vf

∫
V

ψ̃dV.

One finds that ψD = φψ; i.e. a fraction of ψ is captured by the volume average ψD,
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where porosity, φ = Vf/V . In other words, ψ = ψD + ψ′, where ψ′ is the missing

information in ψD. Furthermore, ψ̃ = ψD + ψ′ + ψ′′, where 〈ψ′′〉v = 〈ψ′′〉i = 0.

Some properties of the volume averaging process have been listed below, where

ρ(x, t) and u(x, t) denote density and velocity, respectively. (see, Whitaker, 1969;

Slattery, 1967; Gray & Lee, 1977; deLemos, 2006)

(∇ρ)D = ∇(φρ) +
1

V

∫
Ai

nρ̃dS, (2.1)

(∇ · u)D = ∇ · (φu) +
1

V

∫
Ai

n · ũdS, (2.2)

(
∂u

∂t

)D
=

∂

∂t
(φu)− 1

V

∫
Ai

n · (uiũ)dS, (2.3)

where Ai, n, and ui are interfacial area, unit normal vector to Ai, and velocity of the

fluid phase within an REV, respectively.

2.4 Field scale upscaling

Let us consider the vector form of momentum conservation equation within an REV

ρ

(
∂uD

∂t
+ uD · ∇uD

)
= −∇PD + µ∇ · ∇uD + F ,

where uD, PD, ρ, µ and F are the average velocity, average pressure within an REV,

the density, viscosity of the fluid and the pressure drag and skin friction exerted by the

porous medium, respectively. Now we integrate the above equation over the control

volume, V of an REV,

∫
V

ρ

(
∂uD

∂t
+ uD · ∇uD

)
dV =

∫
V

(
−∇PD + µ∇ · ∇uD + F

)
dV,
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Applying the divergence theorem to the right-hand side and Gauss’s theorem to the

second term of the left-hand side, yields

∂

∂t

∫
V

ρuDdV+

∫∫
S

ρ(uDuD)·ndS =

∫∫
S

[
−PD + µ(∇uD + (∇uD)T )

]
ndS+

∫
V

F dV,

(2.4)

where the superscript T denotes transpose. Here we have used uD ·∇uD = ∇·(uDuD)

(which follows from the divergence-free condition) in order to obtain a form to which

Gauss’s theorem applies.

According to Darcy’s experiment on water flow through a sand column, the total

drag is proportional to the average velocity in a way that it depends on the viscosity,

µ, of the fluid and permeability, κ, of the medium. Thus, a widely accepted model

for the drag force is given by

F = −µ
κ
uD. (2.5)

Since the average flow, uD, does not vary in the REV, thus eq (2.4) may be simplified

to get

∇PD = −µ
κ
uD. (2.6)

The Darcy’s model (2.6) is an upscaling of the flow from pore scale to a typically

resolved scale. This model has neglected the effects of both inertia and viscous terms.

Bear (1972) suggested that the onset of inertia effect begins at the pore scale based

Reynolds number, Red, between 3 to 10. Fancher & Lewis (1933) reported that

0.03 ≤ Red ≤ 1000 is the range of the pore scale based Reynolds number for the onset

of inertia effect. Also a number of research works reported the deviation from Darcy’s

model (Hubbert, 1956; Gavin, 2004; Yu et al., 2012). Jenny et al. (2006) proposed to

solve (2.6) at sufficiently high resolution to minimize large errors. However, a high

resolution simulation violets the fundamental assumption behind Darcy’s model (Ma

& Ruth, 1993). Thus a generalized upscaling model is needed for the high resolution
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simulations in reservoir flow.

2.4.1 A field scale model for the miscible flow of CO2 and oil

Peaceman & Rachford (1962) proposed a mathematical model for the simulation of

miscible flow of CO2 and oil in a porous medium. In terms of volume averaged

quantities, the model of Peaceman & Rachford (1962) takes the form (e.g., Booth,

2008)

∇ · uD = 0, (2.7)

∇PD = −µ
κ
uD, (2.8)

φ
∂CD

∂t
+ uD · ∇CD = D∇2CD, (2.9)

where C(x, t) is the volume fraction or dimensionless concentration of CO2 in oil, and

µ is the viscosity of the binary mixture. In general, there is no standard relationship

for the viscosity of a mixture of two fluids (Booth, 2008). However, commonly used

relationships are µ(C) = [Cµ
−1/4
s + (1−C)µ

−1/4
0 ]−4 (Koval, 1963), Lorenz-Bray-Clark

mode (Lorenz et al., 1964), and µ(C) = exp(C ln(µ0/µs) (Sahu et al., 2009), where

µ0 and µs are viscosity of the oil and the CO2, respectively. In Fig 2.3, normalized

µ(C) = [Cµ
−1/4
s + (1−C)µ

−1/4
0 ]−4 has been presented, where we see that the mixture

viscosity is nonlinearly dependent on the concentration of the solvent, and when the

ratio µo/µs increases, the viscosity of the binary mixture falls off quickly at low values

of C. However, a true relationship between the viscosity and concentration is a subject

of ongoing research (Jha et al., 2013; Homsy, 1987). In addition, the field scale model

based on the Darcy’s experiment was questioned by a number of researchers.

The verification of eq (2.8) for representing the conservation of momentum was

challenged by a number of researchers. In 1901, Forchheimer argued that inertial
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Figure 2.3: The dependence of mixture viscosity, µ(C) =
[
Cµ
−1/4
s + (1− c)µ−1/4

0

]−4

on the concentration, C. Mixture viscosity is normalized by the oil viscosity, µ0. The

graphs are plotted for the various mobility ratio, µ0/µs, where µs is solvent viscosity.
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effects cannot be neglected if the Reynolds number exceeds a value about 10. Er-

gun (1952) performed experiments with fluid flow through packed columns and found

the range of the critical value of the Reynolds number is 3 to 10. Brinkman (1947)

studied the importance of viscous stress, which has been neglected in eq (2.8). As a

result, eq (2.8) may be extened to Darcy-Brinkman-Forchheimer model by including

suggested corrections. The extended model is also supported by many other scien-

tists (e.g., Yu et al., 2012; Islam et al., 2010; Garibotti & Peszyǹska, 2009; Nguyen,

1986; Soni et al., 1978). Nguyen (1986) found that the prediction of productivity

performance by (2.8) in some circumstances was over-predicted.

Without going to further detailed review on the field scale model, which is also

given by Yu et al. (2012), let us present a meso-scale model based on the intrinsic

averaging process.

2.5 A meso-scale upscaling model

The conservation laws for mass and momentum for the ‘true’ incompressible flow at

pore-scale are given by

ρ

(
∂ũ

∂t
+ ũ · ∇ũ

)
= −∇P̃ + µ∇2ũ, ∇ · ũ = 0,

where ũ, P̃ , ρ, and µ are velocity of the fluid flow, pressure, density of the fluid, and

viscosity of the fluid, respectively.

Taking the volume average of these equations, and using the properties listed in

the previous section, we get (deLemos, 2006; Guo & Zhao, 2002; Hsu & Cheng, 1990)

∇ · uD = 0, (2.10)

ρ

(
∂uD

∂t
+ uD · ∇(uD/φ)

)
= −∇(φP ) + µ∇2uD + R, (2.11)
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where R = − 1
V

∫
Af

nP̃ dS + µ
V

∫
Af

n · (∇ũ)dS is the total drag force per unit volume

due to the presence of the porous matrix. See Chapter 4 of deLemos (2006) for a

detailed derivation of this averaged form of the equations. In order to obtain (2.8)

when variation of uD is neglected in (2.11), one would take R = φF , where F is

given by (2.5).

Using uD = φu, where uD and u are volume average and intrinsic average,

respectively, and assuming that φ is a constant, we obtain

∇ · u = 0, (2.12)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u + F , (2.13)

where F represents the total force which accounts for the pressure and skin friction.

We need to parametrized this F .

2.5.1 A simple model of F for a miscible flow in a porous

medium

We consider that the solvent induced mixture viscosity is given by µ(C) = µ0(1 +

µc(x, y)), where µ0 is the oil viscosity, and the spatially dependent component µc(x, y)

is an ‘induced’ viscosity due to the presence of the solvent molecules. Therefore,

accepting the effect of viscosity due to concentration, eq (2.5) takes the form

F = −φµ0

κ
u + F s, (2.14)

where F s represents the drag force per unit volume due to the presence of the solvent

and the porous matrix, and may be modelled by using a statistical mechanical theory.

The statistical mechanical theory of viscosity assumes that the activated collision

of molecules from one equilibrium state to another state induces a potential barrier,
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and the molecules have to overcome this potential barrier in response to a shearing

stress (see, Alam & Ahammad, 2013). For a Newtonian flow of a solvent-oil model, the

ratio of the shearing stress to the rate of deformation is proportional to the potential

barrier, µc. Therefore, µc can be related to the solvent density through the Maxwell’s

equation, which leads to

∇2µc =
µc

λ2
, (2.15)

where λ is a dimensionless distance from the solid phase measuring a viscous boundary

layer (for details see, Alam & Ahammad, 2013). Note, a solution of the eqn.(2.15) for

µc can be found by using Dirichlet boundary condition in the x direction and Neumann

boundary condition in the y direction in a rectangular domain. Following Alam &

Ahammad (2013), we obtain F s = Q
κ
µ0µc

λ2 , where Q is the volume flow rate of the

solvent-oil mixtures. Note that, the solvent is used to increase the flow rate of the

solvent-oil mixtures.

2.6 The model equations for miscible flow in porous

media

The final set of model equations are,

∇ · u = 0, (2.16)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u + F , (2.17)

∂C

∂t
+ u · (∇C) = D∇2C, (2.18)

where F = −φµ0

κ
u + Q

κ
µ0µc

λ2 .
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2.6.1 Dimensionless form of the model equations

Let us make the model equations dimensionless by introducing

x̃ =
x

H
, ũ =

u

U
, t̃ =

Ut

H
and P̃ =

P

ρU2
.

Using these dimensionless variables, the model eqns.(2.16 - 2.18) become

∇̃ · ũ = 0,

∂ũ

∂t̃
+ ũ · ∇̃ũ = −∇̃P̃ +

α

Re
∇̃2ũ− φ

ReDa
ũ +

cϕ
λ2ReDa

µ̃c∇ϕ̃,

and
∂C

∂t
+ ũ · ∇̃C =

1

ReSc
∇̃2C,

Here Q, representing a steady state, incompressible, and irrotational component of

the velocity, has been written in terms of a velocity potential, ϕ, and cϕ is an arbitrary

constant, considered as a model parameter and α = µeff

µ0
is viscosity ratio. For sim-

plification, one may omit ‘tilde’ notation from dimensionless quantities because the

rest of the thesis will use only dimensionless quantities unless otherwise mentioned.

Thus, the dimensionless form of the model equations are

∇ · u = 0, (2.19)

∂u

∂t
+ u · ∇u = −∇P +

α

Re
∇2u + F , (2.20)

∂C

∂t
+ u · ∇C =

1

ReSc
∇2C, (2.21)

where

F = − φ

ReDa
u +

cϕ
λ2ReDa

µc∇ϕ.

The dimensionless numbers are defined as follows: Reynolds number, Re = UH
ν

;

Darcy number, Da = κ
H2 ; Schmidt number, Sc = ν

D
. The eqns.(2.19, 2.20, and 2.21)

constitute the model equations.
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Figure 2.4: Schematic diagram of the flow region with boundary conditions. Dark

shapes are solid (rock), white spaces are void spaces.

2.6.2 Boundary conditions

The mathematical models to study fluid flows are not complete unless necessary

boundary and initial conditions are specified. We consider a rectangular idealized oil

reservoir to study flow in porous media. Usually, oil reservoirs are horizontally long

and, top and bottom boundaries are attached with an impermeable wall. We assume

an injection well (inlet) at one end and a production well (outlet) at the other end.

Thus, there will be no flow along the top and bottom boundaries, and fluid will move

horizontally. The computational domain for a two-dimensional incompressible flow

through porous media is depicted schematically in Fig 2.4 with boundary conditions,

where dark shapes represent solids (rocks). We assume that the porous media is

homogeneous and isotropic, thus the permeability and porosity remain uniform over

the flow domain. The computational domain can be expressed as

D = {(x, y) : xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax},
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which is considered as the flow simulation domain. We divide the domain into discrete

points known as grid points as (xi, yj) = (i∆x, j∆y) for i = 1, 2, 3, ... nx, and

j = 1, 2, 3, ... ny, where ∆x, ∆y, nx and nx are grid space along x-axis, grid space

along y-axis, number of grid cells along x-axis and number of grid cells along y-axis,

respectively. We consider no-slip boundary condition on the top and bottom walls

and Neumann boundary condition at the inlet and outlet boundaries for the velocity

field. We adopt Dirichlet boundary condition at input and output boundaries and

Neumann boundary condition on the top and bottom walls for the concentration field.

Pressure is prescribed at inlet and outlet, while zero-pressure gradients are prescribed

on walls. This means we use Dirichlet type boundary condition at inlet and outlet

boundaries, and a Neumann type boundary condition at the top and bottom walls

for pressure. For the velocity potential we use Dirichlet type boundary condition at

inlet and outlet boundaries, and a Neumann type boundary condition at the top and

bottom walls. The boundary conditions can be expressed mathematically as:

P (xmin, y) = P0 and P (xmax, y) = P1,

0 =
(
Py

)
(x,ymin)

and 0 =
(
Py

)
(x,ymax)

,

for a pressure field,

u(x, ymin) = 0 = v(x, ymin) and u(x, ymax) = 0 = v(x, ymax),

0 =
(
ux

)
(xmin,y)

=
(
vx

)
(xmin,y)

and 0 =
(
ux

)
(xmax,y)

=
(
vx

)
(xmax,y)

,

for a velocity field,

C(xmin, y) = C0 and C(xmax, y) = C1,

0 =
(
Cy

)
(x,ymin)

and 0 =
(
Cy

)
(x,ymax)

,
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for a concentration field,

ϕ(xmin, y) = 1 and ϕ(xmax, y) = 0,

0 =
(
ϕy

)
(x,ymin)

and 0 =
(
ϕy

)
(x,ymax)

,

for a velocity potential,

where Py, Cy, ux, vx, and ϕy define the differentiation as, Py = ∂P
∂y
, Cy = ∂C

∂y
, ux =

∂u
∂x
, vx = ∂v

∂x
, and ϕy = ∂ϕ

∂y
, respectively.

2.7 Summary

We have developed a mathematical model to approximate the miscible displacement

flows in porous media at the meso-scale. A statistical mechanical theory of binary

fluids has been applied to address skin friction exerted by the porous media so that

oil viscosity can be reduced if a solvent is added. This model is a generalization of the

Darcy-Peaceman model, because Darcy’s law can be retained from the momentum

equation of this model when flow is incompressible, steady state and viscous force

is balance by inertia force. The dimensionless form of the model equations with

proper boundary conditions have been presented. In the next chapter, we will discuss

computational methodology for the approximate solutions of the model equations for

miscible flow.



Chapter 3

A multiscale computational

methodology for miscible flow

The numerical simulation of miscible flow and transport in a subsurface porous media

is a challenging endeavor because an extremely large number of the computational

degrees of freedom (DOF) is necessary in order to resolve the flow from the pore scale

to the reservoir scale. A rigorous upscaling approximation of the true flow truncates

the number of DOFs, as well as captures the most important physical features which

interact from pore-scale to field-scale. The upscaling methodology developed in this

thesis features transient behaviour in a range of length scales, and, as a result, a

fast numerical solution technique needs to be developed (e.g. see Ewing, 1983). This

thesis employs a streamline based Lagrangian method and a multilevel method for

studying miscible mass transfer mechanisms, and the present chapter outlines the

development of a multilevel solution methodology for a miscible flow in porous media

so that the overall computational workload remains asymptotically optimal. In other

words, if the total number of grid points, N , increased due to the need of resolving

fine scale features of the flow, the CPU time would remain approximately O(N ).

29
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3.1 Computational methodology

3.1.1 Treatment of velocity and pressure calculation

Harlow & Welch (1965) developed a method to solve the incompressible Navier-

Stokes equations for studying free surface flow. This method is often known as MAC

method (Pletcher et al., 2013). In this method, the scheme was based on a staggered

grid to calculate the velocity and pressure. This method had the advantage of a more

compact finite difference stencil and decoupling between the velocity and pressure

fields(Johnson, 1996). In addition, the convergence of the pressure Poisson equation

is satisfied automatically (Pletcher et al., 2013). In this method, first a velocity field

is to be known at the beginning of the cycle either as initial condition or calculated

from previous time step. However, it is necessary to ensure conservation of mass

by satisfying the incompressibility condition (2.20). Harlow & Welch (1965) showed

that this requirement can be fulfilled by staggering the velocity and pressure. In this

staggered grid, pressure is stored at the cell centre and velocity on the cell interface.

In contrast, a collocated or nonstaggered grid stores the velocity and pressure at each

collocation mesh.

We use the MAC method on a virtual staggered grid to calculate pressure. This

grid is displayed in Fig 3.1. In this figure, the solid lines represent a virtual staggered

grid on a collocated grid which is represented by the dashed lines. Here the symbols

‘I’, ‘N’ and ‘◦’ represent locations of the stream wise velocity, span velocity, and

pressure, respectively. The 5-point stencil for the MAC method to solve the pressure

equation is exhibited in Fig 3.1, and the boundary conditions are described symboli-

cally in Fig 3.1(a) only for the limited spaces on the other figures. In the collocated

grid, we have velocity and pressure on each grid point. In order to ensure a staggered



Chapter 3. A multiscale computational methodology for miscible flow31

grid we are considering a cell marked with solid line where pressure is at the center

and velocity on the interface of the cell as shown in Fig 3.1. After calculating pressure

on a staggered grid with the MAC scheme, then we consider another cell to calculate

pressure on each grid point. Following this algorithm we are calculating pressure on

each grid cell using a virtual staggered grid in the multilevel grid, whereas in the orig-

inal MAC method, pressure was not calculated on each grid point. Next we discuss

the multilevel grid generation.

3.1.2 Multilevel grid generation

For x ∈ [0, 1], we can define a dyadic grid at level l ≥ 0 by

Glx = {xli ∈ [0, 1] : xli = 2−li, i = 0, . . . , 2l, l <∞}.

A two-dimensional grid of the unit square [0, 1]×[0, 1] is obtained by taking the tensor

product of two one-dimensional grids Glx and Gly; i.e.

Gl = Glx × Gly.

This dyadic grid generation is simple, and can be applied to any rectangle. Fig 3.1

presents an example of a multilevel grid of a rectangle at 3 different levels. Clearly,

Gl ⊂ Gl+1.

In order to approximately satisfy the conservation of mass, we want to arrange

the velocity and pressure on a staggered grid, which adds a further challenge to

implement a multilevel solver. Harlow & Welch (1965) provides further details of the

staggered grid approach. We have implemented a staggered arrangement which is

discussed in the previous section. The sequence of staggered grids obtained this way is

automatically nested, and does not require an interpolation of velocity (see, Harlow &

Welch, 1965). Note that the approach of Harlow & Welch (1965) interpolates velocity
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Figure 3.1: An example of 2D multilevel grids at levels, l = 0, 1, 2. The intersections

of the dashed lines represent grid points, where velocity and pressure are collocated.

A staggered arrangement has been demonstrated at each level. To show clearly, the

boundary conditions are presented symbolically only in figure (a), where suffix with

variables denote the derivative with respect to that variables.
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at 4 corners of each cell, but the present approach solves for velocity on each grid

point, where the staggered arrangement satisfies conservation of mass.

In this thesis, uniformly refined multilevel grids are considered, and a second

order accurate finite difference method has been applied to approximate all spatial

derivatives, unless otherwise stated. For the simplicity of presentation, we have used

one-dimensional notation. More specifically, the numerical derivatives of u(x) at i-th

grid point of Glx may be denoted by ∂u
∂x

∣∣
i

and ∂2u
∂x2

∣∣∣
i
, respectively, for first and second

order derivatives with respect to x. In the rest of this thesis, we will use uni to denote

the evaluation of a time dependent quantity, u(x, t), on the i-th location of the grid

Glx at n-th time step; i.e. uni = u(xli, n∆t). Two-dimensional notations are equivalent.

3.1.3 Temporal evolution on multilevel grids

A principal challenge of resolving a fine scale flow is that if the grid is refined by

a factor of two, the time step ∆t must be refined by at least a factor of four when

explicit Euler method is used for the viscous term (Pletcher et al., 2013). To address

this challenge, we have adopted an implicit second order Crank-Nicolson method for

the treatment of viscous/diffusion terms. All other terms have been treated explicitly.

Note, the nonlinear advection term has been discretized with a second order scheme

instead of the classical upwind method.

The principal motivation, as studied by Alam & Bowman (2002), of this develop-

ment is to design a near optimal computational methodology so that the physics of

the flow is resolved sufficiently accurately. The explicit-implicit scheme adopted in

this work resides at the wake behind capturing the physics of the flow more accurately.

Note, a second order accurate stable scheme implies that the local truncation error

is reduced by a factor of four if the grid is refined by a factor of two. This does not
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guarantee that the discrepancies on the resolved physics will be improved at the same

rate. In the numerical analysis, this is called global accuracy. Note that, controlling

global error is an independent and challenging topic of Computational Mathematics,

and is out of the scope of this thesis.

In order to present our development, it is useful to consider a one-dimensional

model equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
− ∂P

∂x
+G,

∂u

∂x
= 0, (3.1)

where u and P are two unknown quantities, ν is a parameter, and G(x) is a known

source term. Note, eqn. (3.1) is considered to represent the Navier-Stokes equation,

for a presentation purpose of the scheme, and does not have a full mathematical

meaning. There is no independent pressure equation and pressure is coupled with the

velocity field. To decouple pressure from the velocity field, we can take divergence to

the eqn. (3.1). Now from (3.1), we get a pressure Poisson equation

∂2P

∂x2
=

∂

∂x

(
G− u∂u

∂x

)
.

The forward in time and centered in space scheme can be presented considering only

the advection part of eqn. (3.1).

3.1.3.1 Explicit scheme for the advection term

The following scheme,

un+1
i − uni

∆t
+ uni

(
uni+1 − uni−1

2∆x

)
= 0, (3.2)

is explicit because we can evaluate un+1
i directly from (3.2) using the known values

of uni−1, uni , and uni+1. In other words, the solution at the present time step explicitly

predicts the solution at the next time step. The leading order error term of the scheme

(3.2) is (−u2∆t
2

)∂
2u
∂x2 , which is the second order derivative with a negative coefficient.
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Thus, the scheme (3.2) is unconditionally unstable (Pletcher et al., 2013; Chung, 2010)

for solving a pure advection equation. However, the viscous term in (3.1) balances

the artificial diffusion occurred by the leading order error, thereby making the scheme

conditionally stable. The condition of stability is (ν − u2∆t
2

) > 0 i.e. ∆t < 2ν
u2 .

3.1.3.2 Implicit scheme for the viscous term

The Crank-Nicolson method is a second order in both time and space, and is implicit,

which can be written for the viscous term of eqn.(3.1); i.e.

un+1
i − uni

∆t
=
ν[(un+1

i+1 − 2un+1
i + un+1

i−1 ) + (uni+1 − 2uni + uni−1)]

2(∆x)2
, (3.3)

where 0 ≤ i ≤ 2−l for a fixed l. This method requires the solution of the linear system

un+1
i

∆t
−
ν(un+1

i+1 − 2un+1
i + un+1

i−1 )

2(∆x)2
=
uni
∆t

+
(uni+1 − 2uni + uni−1)

2(∆x)2
.

The implicit scheme (3.3) is unconditionally stable (Pletcher et al., 2013), and has a

leading order truncation error, O((∆t)2, (∆x)2). When the scheme (3.3) is extended

in a 2D grid, the multilevel solution method optimizes the computational cost.

3.2 Combined explicit and implicit scheme

Applying an explicit scheme for advection terms and an implicit scheme for diffusion

terms, and an explicit scheme for the pressure and the other external force terms of

the eqn.(3.1), the discretized form of the eqn.(3.1) yields

un+1
i − uni

∆t
+ uni

(
uni+1 − uni−1

2∆x

)
=

ν

2(∆x)2
(un+1

i+1 − 2un+1
i + un+1

i−1 )

+
ν

2(∆x)2
(uni+1 − 2uni + uni−1)

+

(
P n
i+1 − P n

i−1

2∆x

)
+Gn

i . (3.4)
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Using γ = ν∆t
2(∆x)2 , the eqn.(3.4) can be re-written as

−γun+1
i+1 + (1 + 2γ)un+1

i − γun+1
i−1 = γuni+1 + (1− 2γ)uni + γuni−1

− ∆t

2∆x
uni
(
uni+1 − uni−1

)
+

∆t

2∆x

(
P n
i+1 − P n

i−1

)
+ ∆tGn

i , (3.5)

which has the following symbolic form

Lu = f. (3.6)

Note, L denotes the discretization operator, u denotes the discrete solution vector,

and f denotes the discrete right hand side vector. The eqn.(3.6) expresses a system

of linear algebraic equations, where the right hand side is a known quantity. For the

present model, in order to approximate the solution of the PDE (3.1), the system of

algebraic eqn. (3.6) needs to be solved at each time step.

The pressure variable, P n
i , has been incorporated in the right hand side of (3.6),

which is obtained from the following equation. For the discrete pressure equation

∂2P

∂x2

∣∣∣∣n
i

=
∂

∂x

(
G− u∂u

∂x

) ∣∣∣∣n
i

, (3.7)

the i-th grid point is the center of the central cell in the staggered grid as shown

in Fig 3.1, where the discretization stencil corresponds to the velocity and pressure

points as demonstrated in Fig 3.1. According to a brief literature review, Chorin

(1968) developed a method often termed as projection method or the method of

fractional steps for solving the Navier-Stokes equations of incompressible flow. In

this method a collocated or nonstaggered grid was used. We employ a staggered grid

between the pressure and velocity similar to the MAC method of Harlow & Welch

(1965) so that we can easily implement a multilevel methodology. In other words,

the pressure and velocity are staggered with respect to a staggered virtual cell on the
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collocated computation grid. Note that the rotational form of the advection term

is more accurate for conserving mass with the present multilevel algorithm. This is

an important contribution of this thesis. The results are verified in Chapter five.

Finally, the benefits of the multilevel method have been examined for miscible flow

in a porous medium.

3.3 Semi-discrete form of the model equation

In order to simplify the notation, let us present the above discretization for the

momentum equation (2.20) in the semi-discrete form

Lu︷ ︸︸ ︷(
I − α∆t

2Re
∇2

)
un+1 =

(
I +

α∆t

2Re
∇2

)
un + ∆tSn︸ ︷︷ ︸

f

, (3.8)

where

Sn = −∇P n − un · ∇un + F n,

and other symbols are defined in the Chapter two.

Taking divergence of the eqn.(2.20) leads to the pressure equation

∇2P n = ∇ · (F n − un · ∇un) , (3.9)

at each time step, which replaces the incompressibility condition, ∇ · un = 0 in the

numerical model.

After spatial discretization with a center in space finite difference method, eqns.(3.8, 3.9)

take the form of a linear system of equations; i.e.

Lu = f. (3.10)

and

L∇P = h, (3.11)
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where L and L∇ denote spatial discretization operators for the momentum and pres-

sure equations (3.8, 3.9), respectively.

Note, choosing a solution methodology for these linear systems (3.10, 3.11), it

is a vital point so that one can get a desired result with a minimum computational

complexity.

3.4 Computational difficulties in mass transport

equation

The concentration equation represents mass transport phenomena of fluid flows, also

this equation is an advection dominant equation; i.e. advection is the dominant

mechanisms compared to the diffusion. If one uses the scheme (3.2) for the advec-

tion terms and (3.3) for diffusion terms to solve the concentration equation, then a

numerical artifact in the form of negative diffusion occurs. As a result, the scheme

becomes conditionally stable with the condition (D − 1
2
|u|2∆t) > 0, where D is the

diffusion coefficient (Pletcher et al., 2013). We need extra care to discretize the con-

centration equation. Thus, for a stable solution, the time step, ∆t, must be smaller

than 2D
|u|2 . Since the diffusion coefficient, D, is typically O(10−5) for most of the fluids,

such as CO2 (Cussler, 1997), an extremely small ∆t, is needed. Thus, this scheme

will require a significant amount of computational cost. However, if one uses an im-

plicit scheme for the advection and the diffusion terms of the concentration equation,

then the scheme will produce a nonlinear system of equations, which also requires

an additional difficulty in handling these issues. Thus, we need a more sophisticated

method with greater capability to overcome these issues. A well-known treatment to

address the difficulties encountered is the upwind scheme that is commonly used by
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scientists (Patankar, 1980). Using upwind scheme for the advection term, we get

un+1
i − uni

∆t
+ uni

(
uni − uni−1

∆x

)
= 0. (3.12)

According to the von-Neumann stability analysis this scheme is conditionally sta-

ble with the condition, 0 ≤ |u∆t
∆x
| ≤ 1 (Courant et al., 1928). In spite of, conditional

stability, the upwind scheme introduces numerical diffusion i.e. numerical solution

will deviate from analytical solution after long time simulations (Pletcher et al., 2013;

Fletcher, 1990). Since flows in porous media are low speed flow, integration time is

long.

Under this theoretical discussion, the numerical diffusion in Eulerian frame is a

scientific challenge when one studies a mass transport problem. A Lagrangian method

has been developed (which will be described in next chapter) to handle this numerical

diffusion successfully. We will employ this Lagrangian method for the advection

part of the concentration equation, where advection and diffusion terms have been

treated using an operator splitting method (Holden, 2010). For comparison with the

Lagrangian method, the advection part is discretized using an upwind method on an

Eulerian reference. The diffusion term of the concentration equation is discretized

with Crank-Nicolson scheme. Using the aforementioned schemes the discretized form

of the concentration equation (2.21) in Eulerian reference yields(
I − ∆t

2ReSc
∇2

)
Cn+1 =

(
I +

∆t

2ReSc
∇2

)
Cn + ∆tSn (3.13)

with Sn = −un · ∇Cn. Eqn.(3.13) can be expressed as

Lu = f. (3.14)

Each of the discrete eqns.(3.8) and (3.13) leads to a large system of linear algebraic

equations. Depending upon the size of the problem, most of the computation time
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may be spent behind solving this system of equations. For instance, about 80% to

90% of the total simulation time goes into solving a linear system of equations for

a petroleum reservoir simulator with a number of gridblocks of order O(105) (Chen

et al., 2006). Therefore, we need an appropriate and computationally optimal method

to solve these systems of equations. We will apply a multilevel method to address

this issue.

3.5 Multilevel method

An efficient technique for solving a system of linear algebraic equations is one of the

main challenges currently facing most of the simulator developers in the oil industries.

The oil industries also desire to get the actual picture of the fluid flow from the reser-

voir simulations. Unfortunately, the task is computationally very expensive. Using

a direct solution method such as the Gauss elimination method for solving a system

of linear equations, the required computational cost is O(N3) (Bhogeswara & Kil-

lough, 1992; Behie & Forsyth, 1983; Mekeon & Chu, 1987). Iterative methods, such

as Gauss-Seidel method, converge very slowly for a large system of linear equations,

and convergence rate depends on the number of grid points. A multigrid method is

efficient to handle this issue. Fedorenko (1962, 1964) first introduced the multigrid

method to solve elliptic equations. After the pioneer work of Brandt (1977, 1972), it

was possible to apply the multigrid method in fluid dynamics. The basic idea of multi-

grid methods is to perform the calculation on multiple grids - finer grid to coarser grid,

and then interpolate solution from coarser to finer grids, in such a way that the rate

of convergence is improved, and this algorithm is termed as V−cycle (see, for details,

Pletcher et al., 2013; Bhogeswara & Killough, 1992). Pletcher et al. (2013) showed

that a standard Gauss-Seidel method for solving Laplace’s equation with Dirichlet
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boundary conditions required 6826 iterations for a square domain with 129 × 129

resolutions, whereas only 21 iterations are needed for the multigrid method. Clees &

Ganzer (2007) proposed an adaptive algebraic multigrid solver strategy to solve the

discrete systems of partial differential equations that arises from structured and un-

structured grid models in the reservoir simulations. Bhogeswara & Killough (1992) de-

veloped a multigrid method for the simulation in porous media. They mentioned that

their method is ten times faster than widely used sequential solvers on 32-processors.

They also showed that the use of line corrections and line Jacobi was essential for

a good convergence rate using their method. Mekeon & Chu (1987) developed a

multigrid method for solving partially saturated flows in porous media. They showed

that their multigrid method is about 22 times faster than the LSOR (line successive

over relaxation) method in terms of CPU time. Behie & Forsyth (1983) described a

multigrid technique to solve pressure equations for the oil reservoir simulations. Re-

cently, MacLachlan et al. (2008) investigated the simulations of bubbly flow using a

robust multilevel solver. They found that using this technique the amount of work is

reduced extensively for solving the pressure-correction system. In the present study,

we are using a multilevel methodology which is implemented by Alam & Bowman

(2002) for the simulation of incompressible Electro-Osmotic and pressure-driven flow.

The computational complexity of this V-cycle algorithm is linearly proportional to

the number of grid points.

3.6 Summary

An accurate and reliable approximation method for solving model equations is a

challenging issue. We use an explicit-implicit combined method to discretize the

momentum equation, where pressure is calculated on a staggered grid. In addition,
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implementing a staggered arrangement between velocity and pressure on a multilevel

collocated grid and its verification with a miscible flow in porous media may shed

further light into the computational challenges of the reservoir modeling. We use a

computationally optimal multilevel method for efficiently solving algebraic system of

linear equations resulting from the discetization of the model equations. A streamline

based Lagrangian method has been developed which is described in the next chapter.



Chapter 4

Streamline based Lagrangian

methodology

Nowadays the streamline method is getting more popularity with several research

groups of computational fluid dynamics such as reservoir simulations (Thiele et al.,

2010; Nourozieh et al., 2008; Batycky et al., 1997; Thiele et al., 1996), electro-osmotic

flow study (Alam & Penney, 2012). Particularly, reservoir simulation groups feel more

inclined to use streamline based simulators, because the streamline method offers

more accurate solutions, reduced numerical dispersion compared to the traditional

finite difference methods, and also it takes less CPU time for computation. Thus,

it is possible to predict reservoir performance more accurately than existing finite

difference method based simulators (see, Islam et al., 2010; Crane & Blunt, 1999;

Batycky et al., 1997). The streamline method also does not have the time step

restriction as finite difference methods do (Obi & Blunt, 2004). In spite of these

advantages, the streamline method has some drawbacks, such as more computational

cost (Thiele et al., 2010) and satisfying mass conservation law.

The present streamline method has been implemented on a Lagrangian frame

43
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(a) (b)

Figure 4.1: Representation of the flow description. (a) Lagrangian particle-based

fluid structure in 2D. The particles are represented by the dots. The circles represent

the volume of each particle, (b) Eulerian grid-based fluid structure in 2D. The fluid

properties such as velocity and pressure are represented by ‘∗’ on the discrete grid

points.

work. Note, there are two fundamental approaches to describe fluid flow. One is

a grid-based method which is known as the Eulerian method (i.e. finite difference

methods), and the other one is a particle-based method, known as the Lagrangian

method (Kundu et al., 2012).

4.1 Description of fluid motion

To study the fluid motion in a Lagrangian frame, the individual fluid particles are

tracked. On the other hand, in an Eulerian frame a control volume is defined, in

which fluid flow properties of interest are expressed as fields (Kundu et al., 2012).

Let us briefly explain the Lagrangian description of fluid flow. Consider any

property of fluid, Ψ, for example the concentration or temperature. Then, we can

describe Ψ as Ψ(x, t), where x is the position and t is time, that is know the property
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of flow at each location and time, but we do not know which fluid particle occupies

that position at that time. If each particle is given an identity, and with this identity

the fluid particle can be identified at all subsequent times, then we can keep track of

individual fluid particles along their flow paths. Suppose we mark the position xk of

the kth fluid particle at some initial instant, t = t0, then each fluid particle changes its

position as they move but the identity will remain fixed. The flow description in this

manner is known as the Lagrangian approach. In contrast, in the Eulerian description,

fluid properties are prescribed on the discrete grid points of the flow domain (see, for

detail, Kundu et al., 2012). The Lagrangian and Eulerian description of fluid flows is

depicted schematically in the Figs 4.1(a) and 4.1(b), respectively. In Fig 4.1(a) the

fluid particles are denoted by small circles and the particles are tagged with the fluid

properties. In Fig 4.1(b), the fluid properties are denoted by ‘∗’ on the discrete grid

points. In some specific fields of fluid flow, such as flow in porous media, heat island

circulation or weather modeling, some obstacles exist along the flow or flow domain.

These types of study may not be appropriate with the Eulerian description because

some grid points may be on the obstacles where fluid properties such as velocity

will be zero. Note that fluid flow is a continuum phenomenon, so infinite numbers

of fluid particles exist, thus it is difficult to apply the streamline based Lagrangian

method to study fluid flow. The main idea of this method is to study the flow of fluid

along the streamlines without discretizing the advective derivative. Here we develop

a streamline based Lagrangian method.

4.2 Lagrangian algorithm

Traditional finite difference methods have some sort of difficulties while studying mass

transport problems (Pletcher et al., 2013). These difficulties include artificial mass
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diffusion, artificial oscillations, time step limitations to satisfy stability condition,

and grid orientation effects (Obi & Blunt, 2004; Chen et al., 2006). In the Eulerian

description of flows, the fluid properties are stored on the gird points and after any

time step all the fluid particles may not reach the grid points. Then the accuracy

of storing fluid properties on the grid points is questionable. In Fig 4.2 we see that,

all the streamlines do not reach the grid points. An appropriate streamline based

Lagrangian method may apply to address these issues. Here we extend the streamline

based Lagrangian method developed by Alam & Penney (2012).

Figure 4.2: Schematic diagram shows fluid flow through porous media. The dark

spaces with irregular shapes are solid bodies (sands or rocks). The curves with arrow

represent the streamlines of fluid flow. The vertical and horizontal solid lines represent

the grid lines in Eulerian frame.

4.2.1 Mathematical formulation of the streamline based La-

grangian method

A streamline is a continuous line within a fluid which is tangent to the velocity field

at each instant. The streamlines in a flow do not intersect each other, because a fluid

particle does not have two different velocities at the same point at the same instant.

Therefore, any particle of fluid starting on one streamline must stay on the same

streamline throughout the fluid flow (Kundu et al., 2012).
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Let us consider an elementary length of a streamline to be dS, and the streamline

is tangent to the local velocity vector, then the mathematical form of the streamlines

can be expressed as

ds1

u
=
ds2

v
, (4.1)

where the velocity field, u = (u, v), and the streamlines as S = (s1, s2), where s1 and

s2 are streamline position along the x-axis and y-axis, respectively. The streamlines

S can be parametrized as S(ξ) = (s1(ξ), s2(ξ)) such that

u =
dS

dξ
. (4.2)

Since the velocity field is tangent to the streamlines, thus the velocity can be found by

taking the directional derivative of any streamline, S, in the direction of the velocity

field, u, such that u = u · ∇S. Then the eqn.(4.2) leads to

d

dξ
= u · ∇. (4.3)

Now applying the operator expressed in eqn.(4.3) to the advection part of the eqn.(2.18)

of chapter two, we get

dC

dt
+
dC

dξ
= 0. (4.4)

Thus, a multidimensional advection equation becomes a one dimensional linear ad-

vection equation. The eqn.(4.4) can be solved analytically. The unique solution of

eqn.(4.4) can be obtained with an initial condition C = C0(S(ξ, 0)) as C(S(ξ, t)) =

Cn(S(ξ − t)).

Therefore, after the first fraction of time, we can compute C(x, t) such that

Cn+ 1
2 (S(ξ),∆t) = Cn(S(ξ −∆t)).

During the second fraction of time step, the solution of the diffusion part of the

eqn.(2.18) will be used as an initial condition.
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Note that for each value of the parameter, ξ, there will be a point on the stream-

lines S, thus the quantity, C(ξ, t) must be on a streamline. In Fig 4.2, we see that all

the streamlines may not pass through the grid points. In this situation, we need to

find a sophisticated way to calculate and store the fluid properties such as velocities,

concentration, etc., on the grid points.

4.2.2 Calculation of concentration field and velocity field

(i, j)
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Figure 4.3: Representation of Lagrangian algorithm. Here ‘∗’s represent the fluid

properties on the grid points. The cell marked with ‘green’ color represents the initial

concentration at the cell S0. The rectangles represented by red, blue, purple and sky

color express the distribution of the initial concentration.

Suppose we have total of nx × ny = K cells within the domain, where nx and ny

are the number of cells along the x-axis and y-axis, respectively, and K is any integer.

Also (xi, yj) is the position of the center of the cell (i, j), and Cn
ij(x, t) represents the
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concentration at the cell (i, j) at time tn with cell position (xi, yj). Equivalently, we

can say that at the streamline position Sl , lεK, the concentration is C(Sl, t
n), i.e.,

Cn
ij(x, t) = C(Sl, t

n). Note that we will refer to each cell as a fluid particle. Now we

want to compute the concentration after one time step, i.e., Cn+1
ij (x, t), by tracing

the streamline.

Let us start with any fluid particle which is marked by green color in Fig 4.3,

with the streamline position at S0. For a given velocity, let us begin by tracing a

streamline from this position and suppose the streamline arrives anywhere within the

cell (i− 1, j). The new position of the streamline is denoted by Sk, which may not be

on a grid point. According to the mass conservation law, we should get the same size

of fluid particle with the same concentration at the new position of the streamline,

i.e., at Sk. This concentration will be distributed among the neighbouring cells. A

similar situation will happen to the other cells and concentration of all cells will be

re-distributed. This circumstance is depicted in the Fig 4.3. Here we schematically

exhibit that the initial concentration, C(S0, t
n) which is staring from the initial posi-

tion of the streamline will take place in the four cells i.e (i− 1, j), (i, j), (i, j + 1) and

(i− 1, j + 1) at the new streamline position, Sk after fraction of time step. The con-

centration, C(S0, t
n), will be distributed among these cells according to A1C(S0, t

n),

A2C(S0, t
n), A3C(S0, t

n) and A4C(S0, t
n), where Ai’s are portions of the area fluid

particle.

Then, for the next time step, we have to trace the streamline that will again start

from Sk using the velocity u(Sk) at Sk. Since Sk is not on a grid point, we can not

measure u(Sk). Then we may redistribute the velocity within the neighbouring cells

as in the concentration distribution. We complete this procedure by interpolating the

data.

Therefore, following this procedure velocity will be updated at each time step



Chapter 4. Streamline based Lagrangian methodology 50

through streamline position, also concentration for each cell will be updated as well,

as soon as streamlines have been traced at each time step. Note that the accuracy

and efficiency depend on the interpolation of the velocity.

4.3 Accuracy of the velocity interpolation

We have discussed the streamline based Lagrangian method in detail in the last

section. In this method, for a given velocity field on the grid points, we are tracing

the streamline to compute concentration field. After one time step, the position of

the traced streamlines may not be on the grid points. Thus, we can store neither the

concentration field nor the velocity field on the grid points, also we will not be able to

use velocity to trace next the streamline. Here we use the algorithm that is described

above to interpolate the velocity field.

Infinite norm is used for the error calculation during the velocity interpolation

on the grid points, and the errors of six grid levels are plotted on a log-log scale.

Fig 4.4(a) depicts that the error decreases when grid size, i. e. ∆x or ∆y decreases.

Also a slope fitted curve with a slope O(1) is fitted well. Fig 4.4(b) shows that when

the number of grid points increases, then the error decreases and a linear curve fits

well with the error curve. This means error is linearly decreasing with an increasing

number of grid points, N . This test confirms that the Lagrangian algorithm offers

an optimal numerical technique.

4.4 Summary

We have developed a streamline based Lagrangian methodology to study mass trans-

port phenomena in miscible fluid flow through porous media. In this methodology a
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Figure 4.4: Estimation of error during velocity interpolation in Lagrangian method:

(a) Error decreases linearly for finer grid size, (b) Error is inversely proportional to

the number of grid points, N .
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multi-dimensional advection equation can be converted into a one dimensional equa-

tion in streamline coordinates. Furthermore, an optimal interpolation technique is

used to transfer data between streamlines and Eulerian grid points. In this tech-

nique, the order of accuracy depends linearly on the number of grid points. The

newly developed Lagrangian method will be able to overcome some of the drawbacks

of existing numerical methods. In the next chapter, we will observe the performance

of this streamline based Lagrangian method.



Chapter 5

Performance of the proposed

Lagrangian method

This chapter presents the performance of the proposed Lagrangian method. A com-

putational code is verified with a closed-form solution of two-dimensional incom-

pressible Navier-Stokes equations. A pressure driven channel flow is studied with the

Lagrangian method and compared with the Eulerian method. The newly developed

method is verified with existing an exact solution of a one dimensional advection-

diffusion equation.

5.1 Objective of this chapter

When a CFD model is developed, potential sources of errors have to be identified.

These include mathematical modelling of the underlying physical phenomena and

numerical discretization. In the Lagrangian model, we aim to simulate an advection

dominated two miscible fluids flow without artificial dissipation. The verification of

the proposed Lagrangian CFD model includes two sets of results. First, the numer-

53
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ical simulation of two representative flows have been considered, for which both the

velocity and the pressure can be expressed in a closed mathematical form. Note that

the present model employs an Eulerian mesh for computing the velocity field. Second,

a simplified mathematical model and a reference numerical model have been used to

verify the Lagrangian simulation.

5.2 An incompressible flow in a doubly periodic

domain

5.2.1 A brief outline of the simulation

A two-dimensional incompressible flow in a unit domain, [0, 1]× [0, 1], with a doubly

periodic boundary condition, is a representative test case in the field of CFD mod-

elling (e.g. Zhou et al., 2003). The governing equations for this flow are given by

eqns.(2.19 - 2.20) along with F = 0. We can derive a closed-form solution for u, v

and P of the eqn.(2.20) for F = 0, which is given by (e.g. Zhou et al., 2003)

u(x, y, t) = −cos(2πx)sin(2πy)exp(−8π2t/Re), (5.1)

v(x, y, t) = sin(2πx)cos(2πy)exp(−8π2t/Re), (5.2)

P (x, y, t) = −1

4
(cos(4πx) + cos(4πy))exp(−16π2t/Re). (5.3)

The numerical resolution for the present simulation is given by nx×ny, where ∆x =

1/(nx−1) and ∆y = 1/(ny−1). A resolution is obtained with ∆x = ∆y = 3.9×10−3.

For this resolution a time step, ∆t = 5 × 10−5, and a Reynolds number, Re = 100,

have been adopted. Since all spatial derivatives have been approximated with a

second order scheme, the adopted value of ∆t is approximately O(∆x2). Clearly,

these parameters satisfy the stability condition, ∆t ≤ 2/Re, discussed in chapter
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three. The results for velocity and pressure fields are discussed in the following

subsections.

5.2.2 Results for the velocity field

We have calculated the numerical solution of u = (u, v) of the eqns. (2.19 - 2.20) for

which the exact solution is given by the expressions (5.1) and (5.2). In order to present

a qualitative comparison, the contour plots of numerical and exact velocity fields

are presented in Fig 5.1, after 2000 time steps. In this contour plot, the numerical

and exact solutions for both velocity components are indistinguishable. In order to

investigate a quantitative comparison between the numerical and exact solutions of

the velocity fields, we have computed the profiles along the center lines for numerical

solutions and those are compared with the line plots of their corresponding exact

solutions. Here two representative cases are presented in Fig 5.2. One is a line plot

of the u-velocity component at x = 0.5, i.e., u(0.5, y, 1), (Fig 5.2(a)), and the other

one is v-velocity component at y = 0.5, i.e., v(x, 0.5, 1), (Fig 5.2(b)). From these

line plots we see that the numerical and exact solutions have an excellent agreement.

Next we discuss pressure field computation.

5.2.3 Results for the pressure field

We have calculated the numerical solution of P (x, y, t) of the eqn. (2.20) for which the

exact solution is given by the expression (5.3). The contour plots of both the numerical

and exact solutions of the pressure field are exhibited in Fig 5.3. In these contour plots,

the numerical and exact solutions are nearly indistinguishable. For a quantitative

investigation we have calculated a number of line plots of the pressure field (for

both the numerical and exact) at various position of the domain to investigate the
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Figure 5.1: Comparison of the exact and numerical results of both velocity compo-

nents u(x, y, t) and v(x, y, t) at t = 1.
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Figure 5.2: Velocity profiles along the center line: (a) u(0.5, y, 1) along the line x = 0.5

and (b) v(x, 0.5, 1) along the line y = 0.5.
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Figure 5.3: Comparison of the exact and numerical pressure fields, P (x, y, t) at t = 1.

differences between numerical and exact solutions. Among them, the line plots at

x = 0.75 and y = 0.75 are presented in Fig 5.4 as representatives. We notice both the

numerical and exact solutions have a good agreement except a slight deviation near

the boundary.

5.3 Pressure-driven flow of two miscible fluids

5.3.1 Model description

Let us consider the flows of two miscible fluids which are driven by a constant pres-

sure gradient. Suppose, initially, the reservoir is filled with a highly viscous fluid such

as oil (resident fluid). We present a computational model to explain a phenomenon

where oil is displaced by injecting a lower viscous fluid compared to oil. This injected

fluid can be CO2 which is the choice for most industrial applications for economical
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Figure 5.4: Comparison of the profiles of numerical and exact pressure field, P (x, y, t)

presented in Fig 5.3. The profiles are calculated along a fixed line: (a) P (x, 0.75, 1)

along the line y = 0.75, and (b) P (0.75, y, 1) along the line x = 0.75.
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Figure 5.5: Schematic diagram of the pressure driven flow with boundary conditions.

and environmental benefit (Gozalpour et al., 2005; Holtz et al., 2001; Gerritsen &

Durlofsky, 2005). In order to investigate the computational performance of the pro-

posed model, let us assume a reservoir with high permeability, and the gravitational

force is neglected, also the flow domain is confined between two impermeable regions

as depicted schematically in Fig 5.5. Since the permeability is assumed to be high

and the flow is driven by a pressure drop, thus the velocity would decrease from the

highest value near the center of the reservoir, to zero near impermeable boundaries

(see Fig 5.5). In order to simulate this type of flow, we consider eqns.(2.19 to 2.21) as

governing equations with F = 0. The necessary boundary conditions are described

in chapter two, and also shown in Fig 5.5, symbolically.

We study the numerical simulations of this model using a newly developed La-

grangian method which is described in chapter four, and the Eulerian method as a

numerical experiment.
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5.3.2 Numerical simulations of mass transport phenomena

The mass transfer methodology analysis is studied theoretically in chapter three to

understand the source of numerical mass diffusion and dispersion. We follow the per-

formance of the Lagrangian method by comparing the simulations with the Eulerian

method.

We start the simulations with 16,384 grid points for the both methods Lagrangian

and Eulerian. In addition, we use time step, ∆t = 5×10−2 for the Lagrangian method,

and ∆t = 5× 10−4 for the Eulerian method to maintain numerical stability condition

(CFL condition). It has been found that both methods work fine with this resolution

and time step. Since we are interested in finding the solution in a finer grid, thus we

are able to increase the resolution for the Lagrangian method keeping the same time

step which is hundred times larger than the Eulerian method. On the other hand,

if we increase the resolution in the Eulerian method, it is necessary to decrease the

time step to maintain the stability condition which leads to more computational cost.

Therefore, in the present simulations, we use 65,536 grid points in the Lagrangian

method and 16,384 grid points in the Eulerian method. Note that in all relevant

simulated figures throughout the thesis from here, yellow represents resident fluids,

such as oil, and red represents interface of the miscible zone of the concentration field

after injection of another fluid like CO2.

Viscosity has an important role in the EOR process from production to trans-

portation (Homayuni et al., 2011). We consider two types of simulations: one for the

flow at a low Reynolds number, i.e., Re = 1, and other one for the flow at a high

Reynolds number, i.e., Re = 100. Note, Re = 1 means the viscous force is balanced

by the inertia force and Re = 100 means viscosity is reduced by a factor of 100.
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Parameters Lagrangian Eulerian

Lx × Ly 3× 1 3× 1

nx × ny 512× 128 256× 64

∆t 5× 10−2 5× 10−4

∇P 2 2

Re 1 1

Table 5.1: List of parameters for corresponding Fig 5.6.

5.3.2.1 Numerical simulations when viscosity is high

First, we study the simulations of a mass transport phenomena for Re = 1. Fig 5.6

depicts the mass transport phenomena of the concentration for the various values of

ReSc. Here, we clearly follow a visual comparison between the left and the right

columns in Fig 5.6 that exhibits that the Eulerian method has been plagued with the

numerical artifact of mass dispersion. The streamline based Lagrangian method is

able to minimize the impact of numerical dispersion. The mass dispersion is signif-

icantly reduces when the value of ReSc is increasing, i.e., the diffusion coefficient is

decreasing. In Lagrangian method, the interface of the miscible zone of two fluids be-

comes steeper with increasing ReSc values. On the other hand, the interface remains

stretched in the Eulerian simulations compared to the Lagrangian simulations. Next

we study the simulations of the fluid flows at low viscosity.

5.3.2.2 Numerical simulations when viscosity is low

Here we study the mass transport phenomena when viscosity is reduced by a factor of

100 and all other parameters remain the same as for high viscosity i.e. Re = 1. The

simulations are presented in Fig 5.7. In this case, we also observe exactly the same
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Figure 5.6: The effect ReSc on the concentration field, C(x, y, t), at time t = 24.5 for

Re = 1. The left column of simulations is done by Eulerian method, and the right

column by the proposed Lagrangian method. (a) and (b) ReSc = 1000, (c) and (d)

ReSc = 2000, (e) and (f) ReSc = 10000, (g) and (h) ReSc = 20000.
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Figure 5.7: The effect ReSc on the concentration field, C(x, y, t) at time, t = 2.55 for

Re = 100. Left column is done by Eulerian (Upwind) method, and right column by the

proposed Lagrangian method. (a) and (b) ReSc = 1000, (c) and (d) ReSc = 2000, (e)

and (f) ReSc = 10000, (g) and (h) ReSc = 20000.
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Parameters Lagrangian Eulerian

Lx × Ly 3× 1 3× 1

nx × ny 512× 128 256× 64

∆t 5× 10−2 5× 10−4

∇P 2 2

Re 100 100

Table 5.2: List of parameters for corresponding Fig 5.7.

behavior of the flow that was experienced in the flow at high viscosity. This means

that the Lagrangian method has no numerical artifact compared to the Eulerian

method. Furthermore, we see that when viscosity is reduced, then the flow gets

speeds up and the flow at Re = 100 is near by ten times faster than the flow at

Re = 1. Thus, we see that viscosity has an important role in the fluid flow.

We use a grid size, ∆x = 3/512, and time step, ∆t = 5× 10−2, in the Lagrangian

method, whereas a grid size, ∆x = 3/256, and time step, ∆t = 5 × 10−4 have to

be used for the Eulerian method to maintain a numerical stability condition. We

observe from the simulations that the proposed streamline based Lagrangian method

does not suffer from minimal numerical dispersion, and also has no limitation on time-

step for numerical stability to capture small scale physics. In addition, the proposed

Lagrangian method is computationally inexpensive. Note that, this method is one

hundred times faster in time step and a finer resolution than the Eulerian method

can be used .
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5.4 A simplified two fluids model

In this section we develop a simple model so that a closed form solution can be

found. It can therefore be used as a quick approximation for the flow profiles. Let us

consider a particular flow of the flow configuration described in subsection 5.3.1. To

make definite our mathematical formulation, we simplify the model with the following

assumptions: the flow direction is along the x-axis and flow is driven by a constant

external pressure gradient. Under these assumptions mass conservation eqn. (2.19)

reduces to ∂v
∂y

= 0, which implies v is constant. Since v = 0 at ymin = 0 and ymax = H,

thus, v = 0 everywhere. We also consider constant permeability and porosity is equal

to one, then according to Darcy’s law the mean velocity along the flow direction

will be constant. The initial concentration is also invariant along the y-axis, i.e.,

∂C
∂y

= 0. When flow is fully developed, it becomes a steady state. Applying all

these conditions to the x-momentum, y-momentum and concentration equations of

the model eqns. (2.19 - 2.21) with F = 0, we get,

0 = −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
, (5.4)

0 = −1

ρ

∂P

∂y
, (5.5)

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
. (5.6)

The eqn. (5.5) implies that P is independent of y. Again in eqn. (5.4), P can be

a function of x, and u can be a function of y, but to satisfy eqn. (5.4) with these

two functions simultaneously, both terms must be a constant. Thus, the pressure

gradient is constant along the flow direction of the reservoir. Now integrating twice

with respect to y, the eqn. (5.4) yields,

− y2

2

dP

dx
+ µu+ Ay +B = 0,with µ = νρ. (5.7)
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Figure 5.8: Comparison of exact velocity profile and model velocity profile at the

stage of fully developed flow, when Re = 1.

By using the boundary conditions u = 0 at ymin = 0 and ymax = H (H is the width

of the channel) then, eqn. (5.7) becomes

u(y) = − 1

2µ

dP

dx
y(H − y). (5.8)

The mean average velocity can be derive as

ũ = −H
2

12µ

dP

dx
. (5.9)

Note that the eqn. (5.8) is Poiseuille flow velocity (Kundu et al., 2012).

5.4.1 Comparison of horizontal velocity profile

The velocity defined in eqn.(5.8) is considered as an exact velocity along the flow

direction. The exact velocity is computed using parameter values: µ = 1, H = 1 and

dP
dx

= −0.66 in eqn.(5.8) in the case of the simplified model. The numerical velocity

profile is calculated when flow is fully developed. The exact and numerical velocity
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Figure 5.9: Concentration profiles, C(x, 0.5, 24.5) of the simulations presented in

Fig 5.6 at the center line of y-axis, for several values of ReSc when Re = 1: (a)

Eulerian method, (b) Lagrangian method.

profiles are presented in Fig 5.8. We see that the model velocity profile has a strong

agreement with the exact velocity profile. This experiment was used to validate the

results by many authors, such as Zhang & Prosperetti (2009) used it to validate their

velocity estimation for pressure-driven flow with porous walls and Nathan & Niall

(2006) used it while they were studying pressure driven flows in porous microfluidic

devices.

5.4.2 Study of mass diffusion

Concentration is a fundamental quantity of interest in transportation of miscible fluid

flows. The term concentration expresses the amount of mass diffusion of a substance

within the mixing region. Mass diffusion is one of the important factors in such fluid

flows. When miscible flow moves forward, according to the advection equation, the
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Figure 5.10: Concentration profiles, C(x, 0.5, 2.55), of the simulations presented in

Fig 5.7 at the center line of y-axis, for several values of ReSc when Re = 100: (a)

Eulerian method, (b) Lagrangian method.

flow faces dispersion during the progress (Udey & Spanos, 1993). We would like to

examine the nature of this diffusion, and compare this between the Lagrangian and

Eulerian methods. In Fig 5.6 and Fig 5.7 of the subsection 5.3.2, we have observed

how the flow is experiencing numerical diffusion in both the Lagrangian and Eulerian

methods. To analyze this mass diffusion, we compute a profile of the concentration

field along the line y = 0.5 for each simulation presented in Fig 5.6 and Fig 5.7.

For the Eulerian method the concentration profiles are presented in Fig 5.9(a) and

Fig 5.10(a) when Re = 1 and Re = 100, respectively. Fig 5.9(b) and Fig 5.10(b)

show the concentration profiles of the simulations presented in Fig 5.6 and Fig 5.7

by using the Lagrangian method for Re = 1 and Re = 100, respectively. We notice

that in the Eulerian method the profiles become more smeared out. On the other

hand, the profiles remain steeper in the Lagrangian method. This means that the

Eulerian method has significant numerical diffusion and the diffusion is negligible
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in Lagrangian method. Therefore, the newly developed Lagrangian method has the

ability to eliminate the numerical mass diffusion that appears in the Eulerian method.

The concentration profiles of the Lagrangian method approach very closely to the

exact solution rather than spreading out, that is the Lagrangian method is free from

numerical diffusion. We will compare the numerical solutions with the exact solution

in the next subsection.

5.4.3 Comparing with an exact solution of one dimensional

advection-diffusion equation

In this subsection, we compare a numerical solution with an exact solution of a one

dimensional advection-diffusion equation (5.6). A closed form solution of advection-

diffusion equation (5.6) with the initial condition, C(x, 0) = exp(−x2/D) is

C(x, t) =
1√

(4Dt+ 1)
exp
[
− (x− ut)2

D(4t+ 1)

]
, (5.10)

where u is the average mean velocity along the x-axis, defined in eqn.(5.9). This

type of exact solution was used by Noye & Tan (1988) to validate their numerical

method. Celia et al. (1990) used this type of solution while studying the Eulerian -

Lagrangian localized adjoint method (ELLAM). Sankaranarayanan et al. (1998) took

this type of solution to validate their model for studying the transport of conservative

pollutants, and Dehghan (2004) used it to validate the method for studying numerical

diffusion. We examine the numerical results with the exact solutions for two cases:

one is Reynolds number, Re = 1 and the other one is Reynolds number, Re = 100.

First, we discuss the case when the Reynolds number is Re = 1. In Figs 5.11(a)

to 5.11(d), the exact solution is plotted with the numerical solutions computed by

the Lagrangian and Eulerian methods for each value of ReSc. The results show that

the Lagrangian solutions have a good agreement with the exact solution for each
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Figure 5.11: Comparison of concentration profiles of Lagrangian results with Eulerian

and exact results for the simulations presented in Fig 5.6 when Re = 1 and various

values of ReSc: (a) ReSc = 1000, (b) ReSc = 2000, (c) ReSc = 10000, (d) ReSc =

20000 at time t = 24.5.
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Figure 5.12: Comparison of the results of the Lagrangian method with Eulerian

method, and exact solutions for the maximum concentration distribution, C(x, t)

versus ReSc for the corresponding results presented in Fig 5.11.

value of ReSc. To quantify this argument we perform the following experiment. The

maximum values of each concentration distribution for the simulations presented in

Fig 5.11 are calculated and compared with the exact value using a log-log plot which

is displayed in Fig 5.12 when Re = 1. We notice that the Eulerian solutions have

a significant deviation from the exact solution, whereas the Lagrangian solutions

converge to the exact solution.

Second, we discuss the case when the Reynolds number, Re = 100. In this case,

we also plot the exact solution along with numerical solutions computed by the La-

grangian and Eulerian methods for each value of ReSc in Figs: 5.13(a) to 5.13(d).

The Lagrangian solutions have a good agreement with the exact solution for each

value of ReSc. We clearly notice that Eulerian results decline from the exact solu-

tion, and the declination appears more significant when the value of ReSc increases,
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Figure 5.13: Comparison of concentration profiles of Lagrangian results with Eulerian

and exact results for the simulations presented in Fig 5.7 when Re = 100 and various

values of ReSc: (a) ReSc = 1000, (b) ReSc = 2000, (c) ReSc = 10000, (d) ReSc =

20000 at time t = 2.55.
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Figure 5.14: Comparison of the results of Lagrangian method with Eulerian method,

and exact solutions for the maximum value of the concentration distribution, C(x, t)

which are calculated from the Fig 5.13 where ReSc = 1000, 2000, 10000, and 20000

with Re = 100.

i.e., the diffusion coefficient of the concentration field decreases. To quantify this

argument we also perform the same experiment as we did for the Re = 1 case. The

results are presented in Fig 5.14. We observe that the Lagrangian solutions converge

to the exact solution, and the Eulerian solutions diverge from the exact solution.

5.4.4 Verification of mass conservation law

The mass conservation law states that, in an isolated system, mass is neither created

nor destroyed; it might be transferred from one phase to another. Thus, in the

study of fluid dynamics, it is important to verify the mass conservation law. Out

of sixteen simulations presented in Fig 5.6 and Fig 5.7, we consider one simulation

as a representative case with ReSc = 20000 and Re = 100 for both the Lagrangian

and Eulerian methods (Figs: 5.7(g) and 5.7(h)). Note that the amount of the initial
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Figure 5.15: Verification of mass conservation law for the simulations produced by

the Lagrangian and Eulerian methods. A representative case is considered when

ReSc = 20000 and Re = 100.

concentration is C0 = 1. After the initial stage fluid moves forward and we expect this

initial value of the concentration to remain the same within the flow region until the

time it takes to reach the other boundary. We have used the formula,
∫
V

C(x, t)dV to

calculate the total amount of the concentration at time t. Employing this formula we

calculate the total amount of the concentration after time t in both the Lagrangian

and Eulerian methods. The results are plotted in Fig 5.15. In Fig 5.15, the curve

denoted by (· − · − ·) represents the amount of concentration in the Lagrangian

method and the curve denoted by (−) represents the amount of concentration in the

Eulerian method. We understand that in the Lagrangian method the curve remains

approximately very close to initial value 1 until final time, but in the Eulerian method

the curve declines from the initial value 1. Note that in Fig 5.15, there is a negligible

increase of mass in the Lagrangian method at the end of the simulations. The one
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of the probable reasons behind this increased mass could be the implementation of

the boundary conditions. Another reason could be the production rate, i.e., when oil

reaches near the boundary of the production well, all the oil may not come out through

the production well, therefore a few masses gain near the boundary of production well.

However, the proposed Lagrangian method conserves mass. Therefore, the study of

fluid flow using the Lagrangian method satisfies the mass conservation law but the

Eulerian method does not satisfy the mass conservation law.

5.5 Effect of viscosity

Viscosity reduction is one of the important challenging issues for the oil industry from

the production to the consumption stage (Abdurahman et al., 2012; Homayuni et al.,

2011; Tao & Xu, 2006; Saniere et al., 2004). We notice that in the Figs 5.6 and 5.7

there is a significant difference between the shape of the flow and the flow movement

(speed of the flow). The only difference among the parameter values between these

two simulations is the Reynolds number, i.e., in Fig 5.6, the Reynolds number Re = 1,

and in Fig 5.7, the Reynolds number Re = 100. We choose two representative cases:

one from Fig 5.6 and another one from Fig 5.7, and both cases are displayed in

Fig 5.16. We notice that when viscosity is reduced by a factor of 100, the parabolic

shape of the concentration field is changing toward the flat shape (see Fig 5.16(c)) and

also the flow rate increases. From this observation we realize that viscosity reduction

may help the EOR process. We will discuss this issue elaborately in the next chapter.
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Figure 5.16: Effect of viscosity on the flow field when ReSc = 20000: (a) initial

stage, (b) Flow at high viscosity, i.e.Re = 1 at time, t = 24.5, and (c) Flow at low

viscosity, Re = 100 at time, t = 2.55.
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5.6 Summary

Finally, we conclude with the following comments:

• The Numerical diffusion is not dominant over physical diffusion in the proposed

Lagrangian method, whereas the Eulerian method has the significant numerical

diffusion. Thus, the proposed Lagrangian method is able to minimize the impact

of numerical diffusion and also it has no time step restriction for numerical

stability.

• Obi & Blunt (2004) articulated that Batycky et al. (1997) designed a three

dimensional streamline based method which is 10− 1000 times faster than the

traditional finite difference method. Our proposed Lagrangian method is about

100 times faster in time step.

• When viscosity of fluid is reduced, then fluid moves faster. For instance, in

Fig 5.6, fluid reaches this position at time t = 24.5 when viscosity is higher, i.e.,

the Reynolds number Re = 1, whereas fluid reaches almost the same position

at time t = 2.55 when viscosity lower, i.e., the Reynolds number Re = 100

(Fig 5.7).

The present streamline based Lagrangian method permits reasonable large time steps

and is free from much numerical diffusion. This method holds the mass conservation

law and is computationally inexpensive. Therefore, the efficiency of the streamline

based Lagrangian method offers a unique opportunity to study the simulations in the

oil reservoir.



Chapter 6

Viscous effects on miscible fluid

flow in porous media

The viscosity of crude oil plays a pivotal role in the oil industry. Oil viscosity influ-

ences the flow of oil through porous media (Ghosh & Shalabi, 2011). If the viscous

force can be reduced then the EOR process will help to sweep out more oil to the pro-

duction well. Depending on the method and reservoir condition, viscosity of oil can

be reduced by 10 to 90% and the recovery incremental goes up to 25% (Kumar et al.,

2008; McGuire et al., 2005; Nobakht et al., 2007). According to scientific literature,

the specific effects of viscous forces still remain fully unstudied or not well understood

(Nobakht et al., 2007). Therefore, it is a challenging and interesting topic to study

the viscous effect in the EOR precess.

79
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6.1 Objective of the chapter

In this chapter, we aim to investigate the viscous effect on the flow of two miscible flu-

ids through an idealized model with porous media, and the influences of permeability

on the flow field. We study the effect of CO2-oil dissolution on the overall pressure

drag and skin friction experienced by the porous media by using statistical-mechanical

theory of viscosity.

6.2 Idealized model for the flow in porous media

The field of reservoir simulation in the oil industry has been developed more in the

last few decades. To simulate the reservoir flow, an idealized model is needed so

that field data can be used. A list of the pertinent parameters are listed in table 6.1

from relevant references. Ghosh & Shalabi (2011) used the data to study viscosity

reduction in the EOR process. Chaudhary (2011) simulated the flow by considering

the reservoir thickness of 200 ft of the Eagle Ford Shale reservoir, Texas, USA. Ku-

mar et al. (2008) articulated a large number of field and simulation data that are

summarized in table 6.1 while they were studying high mobility ratio of water flood-

ing and performance of prediction of the reservoir. Chen et al. (2006) described an

ideal reservoir domain with different thickness of the reservoir layer (30-50 ft) and

permeability (20-150 mD). Christie et al. (2001) chose 50ft thickness for their gas-

injection model in reservoir simulation and 170ft thickness of waterflood of a large

geostatistical model in their study. Adams (1982) used the field data from the heavy-

oil reservoirs in the Lloydminster area of western Canada to study the behavior of

waterflood performance in this reservoir. We use the data mentioned in table 6.2 for

an idealized reservoir model. First, we discuss the effects of viscosity on the flow in
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Parameter Ghosh & Salabi Chaudhary Kumar et al Christie Adams(1982)

(2011) (2011) (2008) (2001) (Lloydminster

oil reservoir,

CANADA)

U 0.43-3.87 ft/day — — 1ft/day —

H — 200 ft 100− 600 ft 50-170 ft 500− 600 m

µ 4.3-53.6 mPas — 70-1500 cP — 400-1500 cP

ρ .831-.895 g/cc — — — 0.95− 0.98 g/cm3

φ 20.8-21.9 % 6 % 23-36% — 29-35 %

Table 6.1: List of the parameters used by relevant references: Velocity (U), Reservoir

thickness (H), Oil viscosity (µ), Permeability (κ), Porosity (φ), Density (ρ) and

Kinematic viscosity (ν = µ/ρ).

Parameter value used in the simulations

U 3.5× 10−6m/s ∼ 1ft/day

(Christie, 2001)

H 500 m (Adams, 1982)

ν 1.75× 10−3m2/s (Adams, 1982)

φ 18% (Elsayed, 1993)

Table 6.2: List of the parameters used in the present simulations for an idealized

reservoir model.

porous media.

6.3 Viscous effects on the miscible displacement

There are some advantages of using a lower viscous fluid to displace higher viscous

fluid in a miscible displacement process. First, the two fluids are free to mix with

each other within the porous media. Second, injected fluid is less viscous than the

oil. This leads to a mixture with a viscosity less than that of the oil. Thus, a
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Figure 6.1: Effect of viscosity on the flow through porous media: (a) Initial concen-

tration field after CO2 injection is shown in red and the region in yellow represents

crude oil for all cases, (b) Position of the concentration field at time, t = 45.4 when

Re = 1, Da = φ× 10−1, (c) Position of the concentration field at time, t = 2.4 when

Re = 100, Da = φ × 10−1, (d) Position of the concentration field at time, t = 22.5

when Re = 1, Da = φ × 106 and (e) Position of the concentration field at time,

t = 2.30 when Re = 100, Da = φ × 106. All other parameter values are listed in

table 6.3.
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Parameters Values for Values for Values for Values for

Fig 6.1(b) Fig 6.1(d) Fig 6.1(c) Fig 6.1(e)

Lx × Ly 3× 1 3× 1 3× 1 3× 1

nx × ny 512× 128 512× 128 512× 128 512× 128

∆t 10−2 10−2 10−2 10−2

∇P 2 2 2 2

α 1 1 1 1

cϕ 0 0 0 0

Da 10−1 106 10−1 106

Re 1 1 100 100

ReSc 2× 104 2× 104 2× 104 2× 104

Table 6.3: List of the parameters for corresponding Fig 6.1.

reduced pressure gradient is required to displace the oil, and this helps the EOR

process (Booth, 2008). Modelling of miscible displacements is more difficult compared

with immiscible displacements because the velocity field changes significantly as the

more mobile fluid is carried into the production well (Thiele et al., 1996). Nowadays,

to displace higher viscous fluid by injecting a lower viscous fluid like CO2 injection

in the EOR process becomes more economical, environmentally friendly and a more

effective technique. A large number of experiments and numerical simulations have

been studied regarding gas or liquid injection in the EOR process.

The viscous effects play an important role during the miscible displacement of

fluid. Kumar et al. (2005) and Ghosh & Shalabi (2011) mentioned oil viscosity is one

of the common parameters in the oil industry and highly viscous oil strongly influ-

ences the flow through porous media and affects the EOR process. Ghosh & Shalabi

(2011) and Mohsin & Anazi (2009) mentioned an artificial way to reduce viscosity by
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using gas or solvent injection in miscible or semi-miscible fluids and the WAG (wa-

ter altering gas) or SWAG (simultaneously water and gas) process. Nobakht et al.

(2007) investigated the effects of viscosity by the injection rate and injection pressure

of CO2. McGuire et al. (2005) showed that when a viscosity reducing injectant (VRI)

was injected, then viscosity was reduced up to 90% and oil recovery was improved

by 15% - 20%. Thus, it is important to study the effects of the viscous force when a

high viscous fluid is displaced by a less viscous fluid , like CO2 injection in the EOR

processes.

The present investigation is mainly concerned with the study of viscous effects on

the mechanisms of miscible displacement flows in a porous media. In the case of a low

Reynolds number, the flow is dominated by the pressure gradient and viscous forces.

In contrast, the dominant terms for a high Reynolds number flow are the inertia and

pressure gradient forces (Kundu & Cohen, 2004). Note, viscosity describes internal

resistance of fluid to flow and may be thought of as a measure of fluid friction.

We see how viscous stress affects the flow pattern through the porous media.

Fig 6.1 represents the effects of the viscosity on the flow field. The values of the

parameter used in the present simulations are listed in table 6.3. For high viscous

fluid (i.e. Re = 1), the front of the displacing fluid region has reached the position

about 2 of the domain at time t = 45.4 (Fig 6.1(b)), whereas for a low viscous case

(i.e. Re = 100), the front of the displacing fluid region has reached the same position

at time t = 2.4 (Fig 6.1(c)) with the same Darcy number, Da = φ× 10−1. Thus the

flow speed of lower viscous fluid is about 19 times faster than that of a higher viscous

fluid. Further, when the Darcy number increases from 10−1 to 106, we notice that the

flow moves faster. If we compare the speed of the simulations for Re = 1 (Fig 6.1(d))

and Re = 100 (Fig 6.1(e)) by keeping all other parameters same, still we see that the

flow at a lower viscosity is about 10 times faster than that of the higher viscosity. All
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the simulations displayed in Fig 6.1 are at the same position of the domain, but at

a different time. This indicates that if the viscosity of resident fluid (oil) is reduced,

then the EOR efficiency will increase.

In addition, we clearly see that in the case of higher viscosity (i.e. Re = 1),

the region of displacing fluid takes parabolic shape (Fig 6.1(b), 6.1(d)). On the

other hand, the parabolic shape is tending to a relatively flat shape when viscosity is

reduced by a factor of 100 (Fig 6.1(c), 6.1(e)). The shape of the flow pattern does

not change but the speed of the flow does by increasing the Darcy number by a factor

of 107, i.e., allowing more permeability (Figs 6.1(c) and 6.1(d)). Thus, the distortion

of CO2 strongly depends on viscous stress (Figs 6.1(b) and 6.1(c)) or (Figs 6.1(d)

and 6.1(e)).

Furthermore, to study a qualitative and quantitative measure of the distortion of

the initial shape of CO2, a rectangle has been drawn in each of the plots in Fig 6.1

and placed at the front of the displaced region by CO2. In Fig 6.1(a) initially injected

CO2 is marked by Aint. The EOR process will be successful if this shape remains

the same until near the production well boundary. Unfortunately, we notice that the

displacing region is about half of Aint for Re = 100 cases and one-fourth of Aint for

Re = 1 cases.

Therefore, the results in Fig 6.1 indicate that reducing the damping force of the

porous media, i.e. the drag, by factor of 107 has no effect on the shape of the

moving sample of CO2. Since an upscaling model ignores the details of the flow

in the pores of the porous matrix, the role of the viscous stress is more likely the

shearing effect rather than the effect of the porous media. However, more studies of

miscible flow in porous media put emphasis on determining µ(c), ignoring the viscous

stress, where µ(c) appears only in the term that models the drag force. Moreover,

to improve the EOR process through a miscible displacement, it is also important to
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understand the necessary conditions for which a rectangular sample of CO2 would

migrate without much distortion of its initial shape. In Darcy’s model, reducing µ(c)

by a factor of 10 is equivalent to increasing the permeability by the same factor.

An increased permeability would enhance the rate of momentum transfer, thereby

requiring a balance by the shearing stress. Mixing and dissolution occurs at the

molecular level. The slowly moving CO2 molecules near a solid body will have more

chance to be dissolved. This dissolution effect is neither resolved by Darcy’s model

nor resolved by the shearing stress.

Therefore, viscosity has a significant effect on the progress of flow of miscible

fluids. In the next section we investigate the effect of permeability on the flow.

6.4 Effect of permeability

The Darcy number is a dimensionless number, which measures the permeability of

the porous medium. It is important to understand how energy, heat or mass transfer

are influenced by the change of the permeability of the system for a fixed length scale.

Here, we define the Darcy number as Da = κ/H2, where κ is permeability and H is

the length scale of the domain. This definition of the Darcy number depends on the

system under consideration, and does not express a suitable pore scale for the porous

media. Thus, the Darcy number needs to be redefined based on a different length

scale, which can be derived directly from the current definition of Da. For instance,

a Darcy number based on the pore diameter, d, can be defined as Dap = d2/H2 with

κ ∼ d2 or ( Dap = κ/d2) where Dap is the Darcy number based on the pore diameter

and d is the diameter of the pore. Thus, this definition of the Darcy number is more

applicable for the actual flow field.

As before, we study two cases: one is the Reynolds number, Re = 1, and the other
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Parameter value for value for

Figs 6.2 & 6.3 Figs 6.4 & 6.5

Lx × Ly 3× 1 3× 1

nx × ny 512× 128 512× 128

∆t 10−2 10−2

∇P 2 2

cϕ 0 0

Re 1 100

ReSc 2× 104 2× 104

Table 6.4: List of the parameters for the corresponding figures.

one is the Reynolds number, Re = 100, to see the effects of permeability.

6.4.1 Effect of permeability for the flow at low Reynolds

number

In this study, four different Darcy numbers, Da = φ × 10−2, φ × 10−1, φ × 100, and

φ × 106 are considered with porosity, φ = 18%. According to the definition of the

Darcy number, a lower Darcy number offers higher resistance to the fluid motion, and

hence allows lower flow rates. In a similar fashion, the higher Darcy number offers

lower resistance to the fluid motion, and permits higher flow rates.

The influences of the Darcy number on the flow field is shown in the Fig 6.2.

The parameter values used for these simulations are listed in table 6.4. In Figs 6.2(a)

to 6.2(d), the fronts of the displaced fluid region by CO2 reach different positions of the

domain at the same time, t = 30.0. For the lowest Darcy number, Da = φ× 10−2, we

notice that the fluid region displaced by CO2 moves slowly (Fig 6.2(a)). Accordingly,
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Figure 6.2: Temporal evolution of the flow under the influence of the Darcy number,

when Re = 1 and φ = 18%: (a) Da = φ × 10−2, (b) Da = φ × 10−1, (c) Da =

φ× 100, (d) Da = φ× 106, all the cases are at the same time, t = 30. The parameter

values are listed in the table 6.4.
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Figure 6.3: Influence of the Darcy number on the flow field when Re = 1: (a) Da =

φ× 10−2 at time, t = 250, (b) Da = φ× 10−1 at time, t = 45.4, (c) Da = φ× 100 at

time, t = 24.4, (d) Da = φ × 106 at time, t = 22.5. The parameter values are listed

in the table 6.4.
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we see that for the highest Darcy number, Da = φ × 106, the fluid region displaced

by CO2 moves quickly (Fig 6.2(d)). Thus, it is clear that the lower Darcy number

has more resistance on the flow than the higher Darcy number. Another important

observation is that the lower Darcy number cases have more mass dispersion than

the higher Darcy number cases. In Fig 6.2, we see that mass dispersion is gradually

decreasing when the Darcy number is increasing (Figs 6.2(a) to 6.2(d)).

Fig 6.3 represents the same simulations presented in Fig 6.2 but at the same

position of the domain. Here we see that for the lowest Darcy number, Da = φ×10−2,

the fluid region takes time, t = 250, to reach this position. The reach time is gradually

decreasing with the increase of the Darcy number, Da, for example, the highest Darcy

number, Da = φ×106, the fluid region takes time, t = 22.5 to reach the same position.

In addition, we see that mass dispersion increases significantly for the lower Darcy

number than for the higher Darcy number. Note, we notice that for the highest Darcy

number, Da = φ × 106, requires a reach time at the same position to be 11 times

faster than the lowest Darcy number, Da = φ × 10−2. In the neat subsection, we

carry out a similar study for the lower viscous fluid.

6.4.2 Effects of permeability for the flow at high Reynolds

number

In the high Reynolds number case, we also consider four Darcy numbers to investigate

the effects of permeability. The parameter values used in the simulations are listed

in table 6.4. All the simulations displayed in Fig 6.4 are plotted at the same time,

t = 2, but at different positions of the domain. Again, all the simulations exhibited

in Fig 6.5 are plotted at the same position of the domain, but at a different time.

Note that all the parameter values for the simulations presented in Figs 6.4 and 6.5
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Figure 6.4: Influence of the Darcy number on the flow field when Re = 100 and at

same time, t = 2: (a) Da = φ × 10−2, (b) Da = φ × 10−1, (c) Da = φ × 100, (d)

Da = φ× 106. The parameter values are listed in the Table 6.4.
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Figure 6.5: Influence of the Darcy number on the flow field when Re = 100: (a)

Da = φ×10−2 at time, t = 3.7, (b) Da = φ×10−1 at time, t = 2.4, (c) Da = φ×100

at time, t = 2.31, (d) Da = φ×106 at time, t = 2.30. The parameter values are listed

in the Table 6.4.
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are the same. The same behaviors of the Darcy number as seen in the lower Reynolds

number are also expected in the higher Reynolds number case. This means that the

lower Darcy number offers the higher resistance to the fluid motion, and hence, allows

lower flow. In other words, the higher Darcy number offers the lower resistance to

the fluid motion and permits higher flow.

For each simulation we calculate the time for the front of the fluid region displaced

by CO2 to reach the same position of the domain. In the lowest Darcy number,

Da = φ×10−2 case, we notice that the displaced fluid region moves slowly (Fig 6.4(a)

or Fig 6.5(a)). Accordingly, for the highest Darcy number case, Da = φ × 106, the

displaced fluid region moves faster (Fig 6.4(d) or Fig 6.5(d)) than for the lowest

Darcy number (Fig 6.4(a) or Fig 6.5(a)). We see that for the Darcy number where

Da = φ × 10−2, the fluid region takes time, t = 3.7, (Fig 6.5(a)), whereas for the

Darcy number, Da = φ × 106, it takes time, t = 2.30, (Fig 6.5(d)) to reach the

same position of the domain. Thus, it is found that in the highest Darcy number,

Da = φ× 106 case, the front of the fluid region moves at about 1.6 times faster than

it does for the lowest Darcy number, Da = φ × 10−2, in terms of the reach time at

the same position.

Therefore, we notice that the region displaced by CO2 moves faster with the in-

creasing Darcy number. This acceleration is also influenced by the Reynolds number,

Re. In addition, the shape of the region displaced by the CO2 sample is not controlled

by the Darcy numbers, but depends on the Reynolds number, Re. This indicates that

the hydrodynamical dispersion is important.
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Figure 6.6: Effects of Darcy number on mass diffusion. Concentration profiles,

C(x, 0.5, t), are calculated along a line at y = 0.5 and presented for various val-

ues of Da: (a) The profiles of the simulations presented in Fig 6.3 when Re = 1 and

(b) The profiles of the simulations presented in Fig 6.5 when Re = 100. At different

time evolution.

6.4.3 Effect of permeability on mass diffusion

To investigate the effects of the Darcy number on mass diffusion, we take the profiles

of the concentration fields of simulations that are displayed in the Fig 6.3 (when

Re = 1) and Fig 6.5 (when Re = 100) along the center line of the y-axis of the

domain and presented in Fig 6.6(a) and Fig 6.6(b), respectively. We observe that for

the flow at high viscosity, i.e., Re = 1, mass diffusion is significant when the Darcy

number is small and mass diffusion decreases with the increase of the Darcy number.

For the flow at low viscosity, i.e., Re = 100, mass diffusion is not significant and it

remains almost the same with the variation of the Darcy number. This means that

when viscosity is reduced, then mass diffusion is also reduced.
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6.5 Dispersion phenomena in miscible displacement

For a fluid flow through an isotropic porous medium, the dispersion depends largely

on the velocity field (Koch & Brady, 1985; Hsu & Cheng, 1990). To help the EOR

process with a miscible displacement technique, both the shape of the region displaced

by CO2 and the arrival time at the production well are the most important factors.

By keeping a flat band of the region displaced by CO2 like the initial flat band,

it would optimize the oil recovery. Also a positive vertical velocity near the upper

boundary and a negative vertical velocity near the bottom boundary would prevent

the parabolic bending of the shape of the region displaced by CO2.

Fig 6.7 exhibits the horizontal and vertical velocity profiles along the center line

of the x-axis of the domain for the flow at the Reynolds number, Re = 1, with

various Darcy numbers. The flow becomes a steady state at time, t = 0.8, when

Da = φ × 100. The horizontal velocity gradually increases when the Darcy number

increases (Fig 6.7(a)). This type of behavior was mentioned by Alazmi & Vafai (2004)

and Chen & Vafai (1996). We see that for the small Darcy number (Da is the order

of 10−2 or less) vertical velocity is near zero. The vertical velocity increases with

the increase of the Darcy number (Fig 6.7(b)). We see that vertical velocity has a

positive magnitude on the upper half of the domain and a negative magnitude on the

lower half of the domain. We also notice that the maximum values of the horizontal

velocity components for the flow at the Reynolds number, Re = 100, are larger than

the flow at the Reynolds number, Re = 1, for the same Darcy number in each case.

The reason for this is the reduction of the viscosity by a factor of 100.

For Re = 1, the inertia effect is balanced by the viscous stress, and the pressure

gradient force is balanced by the drag force exerted by the porous media if Da/φ =

1. The drag force dominates if Da/φ < 1 and the pressure gradient dominates if
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Figure 6.7: Effect of the Darcy number on velocity field, u at time, t = 30 for Re = 1.

The profiles are calculated along the center line of x-axis at x = 1.5. (a) Horizontal

velocity profile, u(1.5, y, 30), (b) Vertical velocity profile, v(1.5, y, 30). The parameter

values are listed in table 6.4.
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Figure 6.8: Effects of the Darcy number on velocity field, u at time, t = 2 for

Re = 100. The profiles are calculated along the center line of x-axis at x = 1.5. (a)

Horizontal velocity profile, u(1.5, y, 2), (b) Vertical velocity profile, v(1.5, y, 2). The

parameter values are listed in table 6.4.
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Figure 6.9: Flow direction of the velocity field. (a) when Re = 1, (b) when Re = 100.

Da/φ > 1. Note that the flow remains unsteady for Re = 100, where inertia effects

is dominant over the viscous stress, and the pressure gradient is balanced by the drag

force of the porous media for Da/φ = 10−2. Figs 6.7(a) and 6.8(a) show that the

parabolic shape of the horizontal velocity profiles takes on a relatively flat shape,

when non-linear inertia effects in the porous media dominate, and the strength of the

horizontal flow increases if the Darcy number, Da, increases. The vertical velocity

profiles clearly indicate that the hydrodynamical transverse dispersion is influenced by

the dominant inertia effects. Furthermore, the vertical velocity profiles in Figs 6.7(b)

and 6.8(b) show that the region displaced by CO2 as a flat band is enhanced by a

factor of about 105, if the viscous stress is reduced by a factor of 102.

Further, Fig 6.9(a) indicates the direction of the velocity field for the flow at the

Reynolds number, Re = 1. We see that the flow is in the horizontal direction and the

shape is parabolic. In addition, the direction of the velocity field for the flow at the
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Parameter values for Fig 6.10 values for Fig 6.11

Lx × Ly 3× 1 3× 1

nx × ny 512× 128 512× 128

∆t 10−2 10−2

∇P 2 2

∇ϕ 1 1

Da φ× 100 φ× 10−2

Re 1 100

ReSc 2× 104 2× 104

Table 6.5: List of the parameters for corresponding figures.

Reynolds number, Re = 100, is plotted in Fig 6.9(b). We also notice that the flow

is along the horizontal direction but the shape is not parabolic. This means that the

changing of the shape of the flow depends on viscosity. Furthermore, we notice that

for the high viscous flow the magnitude of the velocity near the impermeable walls

is smaller then the magnitude at the center line of the domain (Fig 6.9(a)). Again,

when viscosity is reduced, the magnitude of the velocity near the impermeable walls

is almost the same as the magnitude of the center line (Fig 6.9(b)). This indicates

that viscosity reduction may help the EOR processes.

6.6 Effects of the boundary layer width

In this section, we discuss the effects of a solvent dissolution depending on µc which

is a function of space. We investigate the role of µc when λ changes but the overall

strength of the drag force associated with dissolution of the solvent F S remains the

same.
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Figure 6.10: Effect of boundary layer width, λ. Left column represents µc(1.5, y)

and right column represents concentration field, C(x, y, 25) for Re = 1 and Da =

φ×100. (a) & (b) λ2 = 2×10−1, (c) & (d) λ2 = 2×10−2 and (e) & (f) λ2 = 2×10−3.

The parameter values are listed in table 6.5.
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Figure 6.11: Effect of boundary layer width, λ. Left column represents µc(1.5, y)

and right column represents concentration field, C(x, y, 3) for Re = 100 and Da =

φ × 10−2. (a) & (b) λ2 = 2 × 10−1, (c) & (d) λ2 = 2 × 10−2 and (e) & (f)

λ2 = 2× 10−3. The parameter values are listed in table 6.5.
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First, we perform numerical experiments by decreasing the values of λ and keeping

Re = 1, Da = φ × 100 with cϕ = λ2. The results with λ2 = 2 × 10−1, 2 × 10−2 and

2 × 10−3 are presented in Fig 6.10. Here, the first column represents µc(1.5, y) and

the second column represents the concentration field for various values of λ2. We

clearly see the influences of λ on µc and µc would accelerate the flow near each of

the impermeable boundaries in a region of width λ. By keeping cϕ/(λ
2ReDa) = 1,

we are able to examine how a space dependent viscosity, µc, influences mass and

momentum transfer in a porous medium. For Re = 1, Da = φ × 100, we notice

that the concentration field gets accelerations to move toward the production well

if the value of λ increases. In Fig 6.10, all the concentration fields are plotted at

the same time, and we observe that when the value of λ2 increases from 2× 10−3 to

2× 10−1 then the concentration field moves faster than it does for the lower value of

λ2 (Fig 6.10(b)).

We also examine the influences of µc on the concentration field by changing λ,

and viscosity is reduced by a factor of 100, i.e., Re = 100. In this case, we also keep

cϕ/(λ
2ReDa) = 1 with Da = φ× 10−2. We present µc in the first column of Fig 6.11

for various values of λ and the concentration field for the corresponding values of λ in

the second column. We witness the same influences of µc on the concentration field

for the Reynolds number, Re = 1. This means that when the value of λ increases,

then the fluid moves faster. The concentration fields are plotted in Fig 6.11 at the

same time for various values of λ. We see that for the higher value of λ, i.e., 0.2, the

concentration field travels farther than for the case of the lower value of λ with the

same time evaluation, i.e. C(x, y, 3) (Fig 6.11(b)). Note that for a small value of λ,

µc is nearly zero except in a narrow region that is adjacent to the boundaries.
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6.7 Piston-like miscible displacement

When the interface of the displacing fluid portion is flat enough to sweep out a

maximum amount of oil to the production well, then this type of displacement process

is termed as a piston-like displacement (Latil, 1980). This type of displacement occurs

when the fluid motion is controlled by viscous forces (Semmelbeck & HoldItch, 1988;

Kjonsvik & Alvestad, 1995).

We use the following mathematical formula to calculate the efficiency of the dis-

placement process:

Aeff =
Adis

Aint

× 100%, (6.1)

where Aeff, Aint and Adis represent efficiency of the displacement process, initial

fractional volume of expected displaced area and fractional volume of the displaced

area, respectively. Aeff, Aint and Adis will measure the fractional volume of the mass

or concentration that accumulates within the region.

We apply this efficiency measurement formula to the simulations presented in

Fig 6.1 in section 6.3. We immediately find that the efficiency is 21.5% for the

case of Re = 1, i.e., for the flow at high viscosity (Fig 6.1(b)), and for the low

viscosity case where Re = 100, the efficiency is 58.7% (Fig 6.1(c)). Therefore, from

these simulations we understand that if viscosity is reduced, then the displacement

efficiency will increase.

In this section, we investigate the potentiality of the present statistical mechani-

cal theory of viscosity. We discuss a conceptual model demonstrating how the flow

pattern becomes piston like when a statistical-mechanical theory of viscosity is taken

into consideration.
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Figure 6.12: Conceptual model for solvent dissolution into oil. (a) Initial stage, (b)

Dispersion or diffusion before solvent induced, (c) Expected flat shape of miscible

displacement to enhance EOR.

6.7.1 A conceptual model to study solvent dissolution into

oil

In the previous chapter, we saw how initially injected CO2 (Figs 5.16(a) to 5.16(c))

was dispersed or diffused during the travel of flow in the reservoir. We aim to study

how viscosity reduction helps the EOR process. In Fig 6.12, we illustrate three

situations of mass transport phenomena, (a) the initial concentration distribution, (b)

mass diffusion or dispersion during fluid flow in the domain, and (c) expected shape

of the region displaced by CO2 when a solvent is induced. Next, we investigate how

statistical-mechanical theory of viscosity plays a role to resolve solvent dissolution.

6.7.2 Effects of the solvent dissolution for the flow at lower

Reynolds number

In this investigation, we use boundary layer width, λ2 = 7.1 × 10−5, the Darcy

number, Da = φ × 100, the Reynolds number, Re = 1, and model parameter, cϕ =

0.42, to study solvent dissolution into oil. Three values of the Schmidt number,

Sc = 1× 104, 2× 104, and 1× 105 are used for the simulations, and the simulations
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are presented in Fig 6.13. Other parameter values used for these simulations are listed

in table 6.6.

The spatial dependent viscosity, µc(1.5, y), is depicted in Fig 6.13(a) where we

see that the maximum value of µc(1.5, y) is near zero. We also see that flow pat-

terns become piston-like as expected (Fig 6.13(b)-6.13(d)). In addition, we employ

the formula expressed in eqn.(6.1) to calculate the efficiency of the miscible displace-

ment. The efficiency for the simulations which are presented in Fig 6.13(c), 6.13(d),

and 6.13(e) are calculated and found to be 87.3%, 94.3%, and 98.3%, respectively.

This efficiency is improved by a factor of approximately five compared to the efficiency

without the statistical-mechanical approach of viscosity reduction (ref. Fig 6.1).

Further, we have plotted the profiles of the concentration field and have presented

them in Fig 6.14. We see that there is more mass dispersion for the lower value of

the Schmidt number, Sc, than the higher one (Fig 6.14). So, the EOR efficiency is

less for a lower value of the Schmidt number, Sc. In other words, the EOR efficiency

is less for the higher value of the diffusion coefficient, D, of CO2. The value of D can

be determined empirically based on field measurements (Gelhar et al., 1992). The

present development may be used to validate such empirical values. Here values of the

diffusion coefficient, D, are 1.75× 10−7m2/s, 8.75× 10−8m2/s, and 1.75× 10−8m2/s

for the simulations with the Schmidt number, Sc, 1 × 104, 2 × 104, and 1 × 105,

respectively. Thus, we see that the simulation with the Schmidt number, Sc = 1×105,

has negligible dispersion (Fig 6.13(e)). Next, we discuss the effects of statistical-

mechanical approach of viscosity reduction for the flow at the Reynolds number,

Re = 100.
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Figure 6.13: Piston-like displacement when viscous effect is reduced. For Re = 1,

Da = φ × 100, and λ2 = 7.1 × 10−5. (a) Plot of the function µc(1.5, y), (b) Initial

stage for any value of Sc, (c) Sc = 1 × 104, (d) Sc = 2 × 104, (e) Sc = 1 × 105. All

the simulations are at time, t = 16.5 except initial case. The parameter values are

listed in table 6.6.
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Parameter value for value for

Fig 6.13 & 6.14 Fig 6.15 & 6.16

Lx × Ly 3× 1 3× 1

nx × ny 512× 128 512× 128

∆t 10−2 10−2

∇P 0.5 0.15

cϕ 0.42 1.4× 10−3

∇ϕ 1 1

λ2 7.1× 10−5 7.1× 10−5

Da φ× 100 φ× 10−2

Re 1 100

Table 6.6: List of the parameters for corresponding figures.
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Figure 6.14: Concentration profiles for various value of Sc at time, t = 16.5 when

Re = 1. The profiles are calculated along the center line of the y-axis at y = 0.5 for

the corresponding simulations presented in Fig 6.13.
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6.7.3 Effects of the solvent dissolution for the flow at higher

Reynolds number

In this study, we use boundary layer width, λ2 = 7.1×10−5, the Darcy number, Da =

φ × 10−2, the Reynolds number, Re = 100, and model parameter, cϕ = 1.4 × 10−3,

and the simulations are presented in Fig 6.15 with the various values of the Schmidt

number, Sc. In this case we also consider the three values of the Schmidt numbers,

Sc = 1 × 104, 2 × 104, and 1 × 105 to investigate dispersion of the miscible flow.

Others parameter values used for these simulations are listed in table 6.6.

The simulations are depicted in Fig 6.15. First, we plot the function, µc in

Fig 6.15(a) and we witness the same behavior of the flow as at a low Reynolds number.

Further, applying the formula (6.1), the efficiency of the miscible displacement of oil

by CO2 for the simulations which are presented in Fig 6.15(c), 6.15(d), and 6.15(e)

are calculated and found to be 77%, 87%, and 94.2%, respectively.

Further, the profiles of the concentration field displayed in Fig 6.16 show that mass

dispersion decreases when the value of the Schmidt number, Sc, increases. Thus,

displacement efficiency is less for the lower value of Sc. This explanation is the same

as for the flow at the Reynolds number, Re = 1.

Note that, in the case of high viscosity, Re = 1, we use the value of the model

parameter, cϕ = 1.4×10−3, boundary layer width, λ2 = 7.1×10−5, the Darcy number,

Da = φ×100, and pressure gradient ∆P = 0.5 to reduce mixture viscosity so that the

simulations perform as a piston-like displacement. On the other hand, for the flow at

low viscosity, Re = 100, we use cϕ = 1.4× 10−3 and λ2 = 7.1× 10−5 with the Darcy

number, Da = φ×10−2 and pressure gradient, ∆P = 0.15. The flow for the Reynolds

number, Re = 1, takes time, t = 16.5, to reach the position approximately x = 2.25

of the domain (Fig 6.13), whereas the flow for the Reynolds number, Re = 100, takes
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Figure 6.15: Piston-like displacement by reducing viscous effect. For Re = 100,

Da = φ × 10−2, and λ2 = 7.1 × 10−5. (a) Plot of the function µc(1.5, y), (b) Initial

stage for any value of Sc, (c) Sc = 1×104, (d) Sc = 2×104, (e) Sc = 1×105. All the

simulations are at time, t = 50, except initial case. The parameter values are listed

in table 6.6.
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Figure 6.16: Concentration profiles for various value of Sc at time, t = 50, when

Re = 100. The profiles are calculated along the center line of the y-axis at y = 0.5

for the corresponding simulations presented in Fig 6.15.

time, t = 50, to reach the same position of the domain (Fig 6.15). Here the flow rate

of the higher Reynolds number is slower than the flow rate of the lower Reynolds

number. This happen because of the lower pressure gradient and the lower Darcy

number for the higher Reynolds number.

Therefore, the developed statistical mechanical theory of viscosity performs very

well to reduce viscosity of oil and enhances the EOR process. In the next section, we

discuss the pressure control to perform piston-like displacement.

6.8 Pressure maintenance

The pressure gradient plays an important role in reservoir simulations to predict

the flow rate. Initial production of hydrocarbons from an underground reservoir is



Chapter 6. Viscous effects on miscible fluid flow in porous media 111

accomplished by the use of natural reservoir pressure (Chen et al., 2006). When

the natural reservoir pressure has been depleted, then it is necessary to augment the

natural pressure with an external source of pressure. This is usually accomplished

by the injection of fluids, either a gas or liquid phase (Islam et al., 2010). One

of the purposes of the solvent injection process is to re-pressurize the reservoir and

to maintain an optimal pressure level in the reservoir. Hence, the term pressure

maintenance is another important parameter among the pertinent parameters in the

EOR process.

At this stage we also study pressure gradient effects for the flow at high viscosity

and low viscosity.

6.8.1 Optimization of pressure for the flow at low Reynolds

number

We investigate the optimal pressure gradient so that the region displaced by CO2

stays piston-like to help the EOR process. Numerical experiments for various values

of the pressure gradient are investigated, among them the simulations for the pressure

gradient, ∆P = 1, 0.5, and 0.25, are presented in Fig 6.17. All other parameter

values used for these simulations are listed in table 6.7. All the simulations exhibited

in Fig 6.17 are at approximately the same position of the domain but at a different

time. We find the optimal pressure gradient, ∆P , is 0.5. Thus, it is possible to help

the EOR process more effectively with piston-like displacement by using this pressure

gradient with the pertinent parameters listed in table 6.7.
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Figure 6.17: Optimized pressure gradient when Darcy number, Da = φ × 100,

Reynolds number, Re = 1, boundary layer width, λ2 = 7.1 × 10−5 and ReSc =

2 × 104. (a) ∆P = 1 at time , t = 10.7, (b) ∆P = 0.5 at time , t = 12, and (c)

∆P = 0.25 at time , t = 12.8. The parameter values are listed in table 6.7.
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Parameter value for value for

Fig 6.17 Fig 6.18

Lx × Ly 3× 1 3× 1

nx × ny 512× 128 512× 128

∆t 10−2 10−2

∇ϕ 1 1

cϕ 0.42 1.4× 10−3

λ2 7.1× 10−5 7.1× 10−5

Da φ× 100 10−2

Re 1 100

ReSc 2× 104 2× 104

Table 6.7: List of the parameters for corresponding Fig 6.17 and Fig 6.18.

6.8.2 Optimization of pressure for the flow at high Reynolds

number

Here we also study the effect of pressure for the flow at the high Reynolds number,

Re = 100. For the flow at the high Reynolds number, we study numerical experiments

for various values of the pressure gradient such as ∆P = 0.20, 0.15 and 0.125, and

other parameters are listed in table 6.7. All the simulations exhibited in Fig 6.18 are

close to the same position of the domain but at a different time. We find that the

optimal pressure gradient, ∆P , is 0.15. Thus, it is possible to help the EOR process

more effectively with a piston-like displacement by using this pressure gradient with

the pertinent parameters listed in table 6.7.

Therefore, for the flow at low Reynolds number, i.e., Re = 1, we need the optimal

pressure gradient, ∆P = 0.5, to keep a piston-like displacement (Fig 6.17(b)). On the
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Figure 6.18: Pressure optimization when Darcy number, Da = φ × 10−2, Reynolds

number, Re = 100, boundary layer width, λ2 = 7.1 × 10−5 and ReSc = 2 × 104.

(a) ∆P = 0.20 at time , t = 28, (b) ∆P = 0.15 at time , t = 35.4, and (c) ∆P = 0.125

at time , t = 40. All the parameter values are listed in table 6.7.
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other hand, the optimal pressure gradient, ∆P = 0.15, is needed for the flow at the

high Reynolds number, i.e., Re = 100 (Fig 6.18(b)). Here we should mention that for

the flow at the high viscosity, the pressure gradient should be about 3.3 times higher

than for the lower viscosity to maintain a piston-like displacement (Fig 6.17(b) and

Fig 6.18(b)). As we see in Fig 6.17(b) for the high viscosity case, it takes time, t = 12

to reach the position about x = 2.25 of the domain, whereas for the low viscosity

case, it takes time, t = 35.4 to reach the same position (Fig 6.18(b)). Here the flow

in the higher viscosity case is faster than the flow in lower viscosity case, because the

lower pressure gradient and the smaller Darcy number are considered in the lower

viscosity case.

6.9 Summary

Viscosity reduction is one of the important parts of research in the oil industries. We

investigate the effects of viscosity and permeability on the miscible displacement of

oil by CO2. We also study the effects of boundary layer width and dispersion of mass

transport phenomena on the miscible displacement of the fluids. We have found that

CO2 dissolution depends mostly on viscosity rather than permeability. In addition,

the optimum pressure gradient is studied to enhance the EOR process with piston

like displacement.
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Concluding remarks and future

work

In this chapter, we summarize the present research on the miscible displacement

process of two fluids in a porous medium. Finally, we briefly discuss some future

research directions.

7.1 Conclusion

The study of accurate and efficient flow in porous media at pore scale is still a chal-

lenging and interesting topic (Gerritsen & Durlofsky, 2005). We have developed a

generalized mathematical model by using upscaling methodology for multiscale fea-

tures of the flow and porous media where a statistical mechanical theory of viscosity

has been developed to resolve the effect of CO2 dissolution. The pressure drag and the

skin friction of the porous medium have been modelled by combining the statistical

mechanical approach with the Darcy’s law. In addition, to meet the computational

challenges, a multigrid method has been used to solve the system of linear equa-

116
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tions so that the overall computational cost could be optimized. A streamline based

Lagrangian method has been developed to model the miscible mass transport mech-

anism.

We have compared the results of this Lagrangian method with that of an equivalent

Eulerian method. The Lagrangian method performs very well by producing non-

oscillatory solutions without numerical diffusion. This method is about one hundred

times faster in time step. In addition, the Lagrangian method is able to refine the

mesh double than Eulerian method to capture the small scale physics, however, if we

refine the mesh so that it works twice as efficient as the in the Eulerian method we

have to reduce time step by at least a factor of 2, but in the Lagrangian we method

do not need to reduce the time step to refine the mesh. Therefore, the Lagrangian

method can produce highly accurate solutions with a faster speed (see subsection 5.3.2

and Figs 5.6 & 5.7). Furthermore, this method resolves the mass conservation law

more accurately compared to a representative Eulerian method (see, subsection 5.4.4

and Fig 5.15). Thus we see that the Lagrangian method is able to simulate mass

transport phenomena for the miscible displacement in porous media more accurately

and efficiently with an optimal computational cost. Therefore this method can be

applied to study the fluid flow in oil reservoir.

Viscosity reduction is one of the most important parts of research for the oil indus-

tries to improve oil recovery (Ghosh & Shalabi, 2011; Haskin & Alston, 1989), and to

transport highly viscous crude oil (Homayuni et al., 2011). We have found that fluid

flow in a reservoir mostly depends on viscosity rather than permeability (ref. Fig 6.1).

We have focused on the development of a generalized upscaling model employing a

statistical-mechanical approach to resolve the effects of CO2 dissolution, and studied

the factors for optimizing the pressure drag and the skin friction which are exerted

by the porous media at the reservoir scale. Finally, the potentiality of the statistical
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mechanical approach has been investigated, and we have found that the displacement

pattern takes a form as if the CO2 sample migrates like a piston without noticeable

distortion (see section 6.7 and Figs 6.13 & 6.15). In other words, this approach to

viscosity reduction may help the EOR processes by increasing the rate of oil produc-

tion.

7.2 Future research directions

The numerical simulations presented in this thesis indicate that the streamline based

Lagrangian method may be an efficient technique to study miscible fluid flows in

porous media. Note that the present model exhibits much less artificial diffusion

compared to similar model and does not require a time step restriction for numerical

stability. The future potential research directions can be addressed as follows:

Three-dimensional simulations will help better to understand the flow behavior in a

oil reservoir. Our proposed model may be extended for three-dimensional simulations

of miscible displacement. In addition, this model may be applied to the investigation

of miscible displacement through fractured porous media. Chen et al. (2006); Brand

et al. (1991); Shubin & Bell (1984) and Ewing (1983) described the grid orientation

problem that affects the oil reservoir simulations. The newly developed Lagrangian

method may be applied to address this grid orientation problem.
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