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Abstract

Background: A newly-described syndrome called Aneurysm-Osteoarthritis Syndrome (AOS) was recently reported. AOS
presents with early onset osteoarthritis (OA) in multiple joints, together with aneurysms in major arteries, and is caused by
rare mutations in SMAD3. Because of the similarity of AOS to idiopathic generalized OA (GOA), we hypothesized that SMAD3
is also associated with GOA and tested the hypothesis in a population-based cohort.

Methods: Study participants were derived from the Chingford study. Kellgren-Lawrence (KL) grades and the individual
features of osteophytes and joint space narrowing (JSN) were scored from radiographs of hands, knees, hips, and lumbar
spines. The total KL score, osteophyte score, and JSN score were calculated and used as indicators of the total burden of
radiographic OA. Forty-one common SNPs within SMAD3 were genotyped using the Illumina HumanHap610Q array. Linear
regression modelling was used to test the association between the total KL score, osteophyte score, and JSN score and each
of the 41 SNPs, with adjustment for patient age and BMI. Permutation testing was used to control the false positive rate.

Results: A total of 609 individuals were included in the analysis. All were Caucasian females with a mean age of 60.965.8.
We found that rs3825977, with a minor allele (T) frequency of 20%, in the last intron of SMAD3, was significantly associated
with total KL score (b= 0.14, Ppermutation = 0.002). This association was stronger for the total JSN score (b= 0.19,
Ppermutation = 0.002) than for total osteophyte score (b= 0.11, Ppermutation = 0.02). The T allele is associated with a 1.47-fold
increased odds for people with 5 or more joints to be affected by radiographic OA (Ppermutation = 0.046).

Conclusion: We found that SMAD3 is significantly associated with the total burden of radiographic OA. Further studies are
required to reveal the mechanism of the association.
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Introduction

Osteoarthritis (OA) is the most common form of arthritis in the

elderly, characterized pathologically by focal areas of damage to

the articular cartilage centered on load-bearing areas. It is

associated with new bone formation at the joint margins

(osteophytosis), changes in the subchondral bone, variable degrees

of mild synovitis, and thickening of the joint capsule [1] which lead

to the presentation of pain, stiffness and disability. Its prevalence—

already high—is increasing due to population aging and the

increase in obesity. Eighty percent of individuals over 75 years of

age have radiographic OA changes in at least one of their joints

[2]. According to a report from the Arthritis Community Research

& Evaluation Unit in April 2010, the prevalence of self-reported

and physician-diagnosed OA in individuals over age 45 ranged

from 2.3%–11% in the third world to 8%–16% in the USA [3]. In

the same year it affected 27 million people in the USA, imposing a

burden of over 11 million dollars on outpatient visits and over 13

billion dollars on OA-related job absence [4]. Half of all adults will

develop symptomatic OA of the knee at some points in their lives

[5].

OA is a multifactorial disease whose etiology is incompletely

understood. It is believed that a number of different environmental

and genetic factors interact in its initiation and progression [6].

Evidence suggests that genetic factors play a major role in OA,

although they may be site- and sex-specific. From twin studies, this

genetic influence has been estimated to be between 40% and 65%

on hand and knee OA [7]. First-degree relatives of individuals with

spine, hand, hip, or polyarticular OA have a two- to three-fold

increased risk of the disease [8,9]. The nature of the genetic

influence in OA is still unclear but it is likely to involve a

combination of effects on structure (i.e. collagen), alterations in

cartilage, bone metabolism and inflammation [10]. Although the
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genetic influence on OA was recognized more than 130 years ago

[11], genetic variants identified so far account only for a small

fraction of its heritability [12]. This may reflect several factors

including the heterogeneous nature of the disease, the tendency to

use less severe phenotypes in genetic searches and the reliance on

underpowered studies [13]. Generalized OA—a subtype of

primary OA—is characterized by the involvement of multiple

joints, and is believed to have a stronger genetic component than

individual joint OA [14]. However, genetic data on generalized

OA are limited.

Recently, a new syndrome called Aneurysm-Osteoarthritis

Syndrome (AOS) was reported [15]. Patients with AOS present

with early-onset OA affecting multiple joints including feet/ankle,

hand/wrist, knee, hip, facet joints, uncovertebral joints and also

exhibit degeneration of the intervertebral discs [15,16]. Eight rare

mutations in the SMAD3 gene (Similar to Mothers Against

Decapentaplegic type 3) were identified as responsible for AOS in

eight unrelated families.15, 16 Subsequent studies reported

additional SMAD3 mutations [17,18] and also a CNV (copy

number variant) [19] linked to AOS. The SMAD3 gene encodes a

protein that belongs to the SMAD protein family, that are

downstream mediators of the transforming growth factor beta

(TGF-b) signaling pathway [20], which inhibits terminal hyper-

trophic differentiation of chondrocytes and is essential for

maintaining the integrity of articular cartilage [20,21]. This

regulatory pathway also stimulates osteogenesis and bone forma-

tion [22]. SMAD3 knock-out mice develop degenerative joint

disease similar to human OA [23]. Although a few studies on

SMAD3 and single-joint OA have been reported, no data are

available regarding the role SMAD3 plays in generalized OA.

Because of the similarity with AOS, in which multiple joints are

also affected, we hypothesized that the SMAD3 gene plays a role in

idiopathic generalized OA. We tested our hypothesis in a large

population-based cohort of individuals who had radiographic

assessment of multiple joints.

Methods and Subjects

Subjects
The study subjects were women aged 43-67 years at baseline

(1988–1989) who were participating in the Chingford Study, a

prospective population-based study of OA and osteoporosis. The

Chingford Study cohort comprises 1003 women derived from the

register of a large general practice in North London, who are

similar to the UK population for most demographic variables [24].

Height, weight and details of concomitant diseases, operations

and medications were recorded for all subjects. DNA was

extracted from blood by standard phenol or salting-out methods.

At both baseline and 10 years later, all subjects completed a

standardized medical history questionnaire.

Ethics
The Guys & St Thomas’ Trust and the Waltham Forest Trust

ethics committees approved the study protocol. Written consent

was obtained from all participants.

Radiography
Plain films of all joints were obtained from a standard postero-

anterior view at baseline and again 9–11 years later. The distal

interphalangeal (DIP), proximal interphalangeal (PIP) and first

carpometacarpal (CMC) joints of the thumbs, the knee- and hip-

joints, as well as four lumbar spinal joints (L1–L5) were assessed

for radiographic OA according to the Kellgren & Lawrence (KL)

score using a 0–4 scale [25]. Joint Space Narrowing (JSN) and

osteophyte characteristics were each scored on a 0–3 scale using a

standard atlas [26]. All radiographs were independently assessed

by two trained observers (DJ Hunter and DJ Hart). In cases of

disagreement, a third adjudicator was used. The intra- and inter-

observer reproducibility of the scoring measured on a subgroup of

50 hands had a Kappa statistic of approximately 0.68 for all sites

and features.

For the current study, the most recent radiographic and

demographic data were used, including cross sectional radio-

graphic data for hip, spine, knee and hand from years 8, 9, 10, and

11 and the age and body mass index (BMI) from the 8th year of the

study. All patients were visited at year 8, when the demographic

information was collected. Due to the schedule of the radiology

department, different joints were assessed in different years

(between year 8 and year 11). Total KL score, osteophyte and

JSN scores were used as indicators of the total burden of

radiographic OA, which was calculated by summing up the

individual scores of each joint. Total radiographic scores have

been used by researchers in clinical, biomedical, and genetic

studies of OA [14,27–29] as an indicator for total burden of OA.

In addition, individuals were evaluated for the criteria required for

a diagnosis of generalized OA. To this end, joints were defined as

being affected by OA if the KL score was $2. OA of either the

DIP or PIP joint groups was defined as the presence of OA in at

least two of the relevant joints. A diagnosis of GOA was based on

the definition used by Cooper et al [30]. Fourteen joints or joint

groups were considered: the four lumbar joints together with the

left and right knee, hip, DIP group, PIP group and thumb CMCs.

GOA was defined as the presence of OA in at least five of these 14

joints. Those with fewer than five joints affected were designated

as controls.

Genotyping
The samples were genotyped using the Illumina Human-

Hap610Q array. The normalized intensity data was used by the

Illluminus calling algorithm [31] to assign genotypes. No calls were

assigned if an individual’s most likely genotype was called with a

posterior probability threshold of less than 0.95. Sample exclusion

criteria were: (i) sample call rate ,98%, (ii) heterozygosity across

all SNPs $2 s.d. from the sample mean; (iii) evidence of non-

European ancestry as assessed by PCA comparison with

HapMap3 populations; (iv) observed pair-wise IBD probabilities

suggestive of sample identity errors; (v). SNP exclusion criteria

included (i) Hardy-Weinberg p-value,1026, assessed in a set of

unrelated samples; (ii) MAF,1%, assessed in a set of unrelated

samples; (iii) SNP call rate ,97% (SNPs with MAF$5%) or ,

99% (for 1%#MAF,5%). For the current study, we retrieved

genotype data for all 41 SNPs within the SMAD3 gene which were

available on the array.

Statistics
Since the distribution of the total KL, JSN, and osteophyte

scores was skewed, a logarithmic transformation was performed to

approximate a normal distribution. Subsequent analyses were

performed on the log-transformed values. A linear regression

model, testing for an additive genetic model, was used to test the

association between each of the 41 candidate SNPs and the total

KL, JSN, and osteophyte scores individually. A logistic regression

model was used to test the association between each of the 41

SNPs and GOA. Potential confounders such as age and BMI were

considered in both models. All SNP associations with p,0.05 in

the initial analyses were subject to permutation testing in order to

control the false positive rate. The permutation method is well

established as a robust approach for obtaining empirical signifi-
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cance levels while minimizing Type I errors [32,33], and has been

used to correct for multiple testing in genetic association studies

[34]. Because of the infinite permutation with our sample size, we

used a Monte Carlo permutation procedure and the phenotype

labels were reshuffled 10,000 times. The permutation-based p-

value was calculated as the proportion of the statistic on all the

reshuffled data sets greater than the observed statistic [34]. The

significance level was defined as a permutation-based p-value of

less than 0.05. All analyses were conducted using STATA/SE 11.2

(Stata Corp, College Station, Texas, USA).

Results

All study subjects were Caucasian females. Radiographic data

for spine, hips, knees and hand joints were available for 796, 794,

614, and 687 individuals, respectively. The age and BMI data

were available for 843 participants with a mean age of 61.265.8

and a mean BMI of 26.764.7. Total KL, osteophyte and JSN

scores were available for 609, 603, and 607 individuals respec-

tively. As expected, patients with GOA—defined as having 5 or

more joints affected—were, on average, older than those with

fewer than 5 affected joints, and also had a higher BMI (Table 1).

The frequency of subjects with different number of affected joints

is presented in Table 2.

Forty-one common SNPs within the SMAD3 gene were

genotyped and passed quality control. They were scattered

randomly throughout the SMAD3 gene, but none were located

in exons (Figure 1). The average pairwise R2 between SNPs was

0.07.

We found that SNP rs3825977 was significantly associated with

all phenotypes analyzed, viz. total KL, osteophyte and JSN scores.

The differences in these traits among individuals with different

genotypes are presented in Figures 2, 3, 4. After adjustment for age

and BMI, the minor (T) allele of rs3825977—with 20% allele

frequency—was associated with a 0.14% increase in log total KL

score (95% CI 0.04–0.20, Ppermutation = 0.002). The association is

stronger for log total JSN score with b= 0.19 (95%CI 0.07–0.31,

Ppermutation = 0.002) than for log total osteophyte score with

b= 0.11 (95%CI 0.01–0.20, Ppermutation = 0.02). Two other

SNPs—rs6494629 and rs2118612—were significant for only total

osteophyte score in the univariate analysis but not in a multivariate

analysis. All the results of univariate and multivariate linear

regression analyses for total KL, osteophyte and JSN scores for all

41 SNPs are presented in Tables S1–S3 in File S1, respectively.

Furthermore, we categorized the study participants into two

groups: one with $5 joints affected (GOA) and one with ,5 joints

affected and examined the association of each group with each of

the 41 SNPs. We found that the T allele of rs3825977 was

significantly associated with a 1.47-fold increased risk of GOA

(95% CI 1.02–2.1, Ppermutation = 0.046) after adjustment for age

and BMI (Table 3). All results of the associations with each of the

41 SNPs are presented in Table S4 in File S1.

Discussion

In the present study we demonstrate a significant association of

SNP rs3825977—located in the last intron of SMAD3—with the

total burden of radiographic OA. This SNP is more strongly

associated with total JSN score than with total KL score or

osteophyte score, suggesting that the potential mechanism for the

association is more likely through cartilage loss rather than

osteophyte formation. The same SNP has previously been

reported as associated with increased breast cancer risk for BRCA2

mutation carriers [35]. Although the possible effect of the SNP on

SMAD3 function is still unclear, it is believed that the effects on

both breast cancer and generalized OA susceptibility are mediated

through the TGF-b signaling pathway.

Data on the associations between the SMAD3 gene and GOA

are limited and, to our knowledge, no genetic or genome-wide

association study has been performed on GOA. A study by Yao

JY, et al. [36] was the first to report a connection between SMAD3

and OA. This paper described a missense mutation located in the

linker region of the SMAD3 protein which resulted in an increased

expression of matrix metalloproteinase (MMP) 2 and 9 in the

serum of one OA mutation carrier compared to MMP expression

in other OA patients and in controls. Another study by A. Valdes

and colleagues [37] reported the association of a variant in the

SMAD3 gene with hip and knee OA. In that study the frequency of

the major (G) allele of rs12901499—located in the first intron of

SMAD3—was increased in patients undergoing hip or knee

Table 1. Descriptive statistics of the study population.

GOA (n = 247) Controls (n = 360) P-Value

Age 64.2160.34 58.7160.3 P,0.0001

BMI 27.5060.26 26.0260.2 P,0.0001

Figures are mean 6 SD, and Student’s T-test was used for the comparison.
doi:10.1371/journal.pone.0097786.t001

Table 2. Frequency of patients with different number of
joints affected.

Number of Joints affected Frequency (%)

0 43 (7.06%)

1 62 (10.18%)

2 83 (13.63%)

3 93 (15.27%)

4 80 (13.14%)

5 51 (8.37%)

6 64 (10.51%)

7 38 (6.24%)

8 36 (5.91%)

9 22 (3.61%)

10 15 (2.46%)

11 12 (1.97%)

12 9 (1.48%)

13 1 (0.16%)

Total 609 (100%)

doi:10.1371/journal.pone.0097786.t002
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Figure 1. Distribution and LD pattern of 41 genotyped SNPs in SMAD3 gene.
doi:10.1371/journal.pone.0097786.g001

Figure 2. Total KL and each genotype of rs3825977. Error bars indicate Standard Error of the mean.
doi:10.1371/journal.pone.0097786.g002
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replacement as compared to controls. A recent study by Jiang

Liying et al. [38] found this SNP was also associated with hand and

knee OA in a northeast Chinese population. However, we did not

observe a significant association with rs12901499, which is not in

LD with rs3825977 (R2 = 0.01). This may have resulted from the

different methods used for the definition and classification of OA

in our study and the previous studies which used either end-stage

OA (requiring total joint replacement) or symptomatic OA,

neither of which is necessarily concordant with radiographic OA

[39]. Alternatively, one or both of these SNPs may be non-

functional but rather in LD with causal variants in the gene that

were not typed in these studies.

Cartilage homeostasis depends on a balance between the

catabolic and anabolic activities of chondrocytes being controlled

Figure 3. Total osteophyte and each genotype of rs3825977. Error bars indicate Standard Error of the mean.
doi:10.1371/journal.pone.0097786.g003

Figure 4. Total JSN and each genotype of rs3825977. Error bars indicate Standard Error of the mean.
doi:10.1371/journal.pone.0097786.g004

SMAD3 and OA

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e97786



by numerous cytokines and growth factors. TGF-b is an important

molecule that plays a critical role in the development, growth,

maintenance and repair of articular cartilage by modifying the

metabolism of the chondrocyte. Deregulation of TGF-b signaling

and responses have been shown to be involved in OA [20]. The

SMAD family proteins, including SMAD3, are important

intracellular signals in the TGF-b pathway [21]. Another possible

mechanism by which SMAD3 acts to maintain cartilage homeo-

stasis is by inducing the expression of type II collagen and

repressing MMP-13. A recent study by Chen and colleagues [40]

showed that SMAD3 (fl/fl) mice were severely deficient in both type

II collagen and aggrecan due to the proteolytic activity of MMP-

13, which is normally down-regulated by TGF-b signals mediated

through SMAD3.

There are some limitations in the study. All the participants

were female, which limits the generalizability. Given its unknown

function, it is not clear whether the associated SNP is causal.

Conclusions

We demonstrated that the SMAD3 gene is associated with the

total burden of radiographic OA. As a marker, it has a potential in

identifying those with increased risk of OA, thus permitting earlier

joint-preserving intervention. It also has potential as a molecular

target for developing new OA drugs.
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