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Abstract

Should growth hormone (GH) transgenic Atlantic salmon escape, there may be the potential for ecological and genetic
impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic
and non-transgenic full sibling Atlantic salmon during early ontogeny; a life history period of intense selection that may
provide critical insight into the fitness consequences of escaped transgenics. Transgenesis did not affect the routine oxygen
consumption of eyed embryos, newly hatched larvae or first-feeding juveniles. Moreover, the timing of early life history
events was similar, with transgenic fish hatching less than one day earlier, on average, than their non-transgenic siblings. As
the start of exogenous feeding neared, however, transgenic fish were somewhat developmentally behind, having more
unused yolk and being slightly smaller than their non-transgenic siblings. Although such differences were found between
transgenic and non-transgenic siblings, family differences were more important in explaining phenotypic variation. These
findings suggest that biologically significant differences in fitness-related traits between GH transgenic and non-transgenic
Atlantic salmon were less than family differences during the earliest life stages. The implications of these results are
discussed in light of the ecological risk assessment of genetically modified animals.
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Introduction

There is considerable interest in the application of transgenic

biotechnologies to enhance animal production. Among the first

animal biotechnologies to be considered commercially are growth

hormone (GH) transgenic Atlantic salmon (Salmo salar L.). Similar

to conventional aquaculture [1–3], there are concerns regarding

the potential impacts of ecological and genetic interactions

between transgenic and wild fish in nature [4–6]. As such, there

is a need for empirical data with which to assess the possible

environmental risks of such transgenic fish.

Early ontogeny is a period of intense selection in many fish

species, and thus, may provide critical information regarding the

fitness of transgenic fish strains relative to wild-type individuals.

For example, salmon eggs incubate in buried gravel nests that can

experience lethally low levels of dissolved oxygen, resulting in high

mortality [7–9]. Upon hatch, alevins (larval phase) remain

underneath the gravel until their endogenous yolk reserves are

near fully consumed. At this point, individuals emerge and

commence exogenous feeding. First-feeding is a critical period of

survival and performance for many fish species, including salmon,

where the fry (early stage juveniles) must learn to attain food,

compete for and/or migrate to foraging territories, and avoid

predation [10–12]. Mortality during the first few weeks of life can

be greater than 80% [13–15]. Thus, any transgene-induced effects

on physiological and behavioural traits during early ontogeny may

impact the persistence of the transgene in nature.

Beyond its effects on growth [16,17], GH transgensis is known

to have pleiotropic effects on other phenotypic traits in salmon,

including elevated metabolic rates, increased foraging motivation

and reduced anti-predator behaviour [18–23]. Many of these

studies have concentrated on juveniles ca. 8 months or older,

bypassing the intense selection experienced during early ontogeny.

However, research with GH transgenic coho salmon, Oncorhynchus

kisutch (Walbaum), has shown phenotypic effects during early life

history, including reduced survival as eyed embryos during

hypoxic (low oxygen) conditions [24], advanced embryo and

larval development [25–27] and greater susceptibility to predation

and starvation as first-feeding juveniles (fry) than non-transgenic

coho [28–30]. Collectively, these studies suggest that the relative
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fitness of transgenic and non-transgenic coho salmon during early

life history may differ considerably in nature.

As part of a continuum of correlated traits, resting metabolism

has been linked to variation in behaviour, performance, and life

history strategies among individuals at both inter- and intra-

specific levels [31–34]. In intra-specific laboratory studies with

salmonids, high resting metabolic rates correlate with fast growth

[35,36], foraging-induced aggression and dominance [37–40]; all

of which have been observed for GH transgenic salmon juveniles.

Resting metabolism is the minimum energy requirement of an

individual within a specific environment, and represents an

internal constraint on energy allocation that has significant

implications for an animal’s survival [41]. For example, fish with

elevated resting metabolic rates require more energy and,

consequently, more oxygen to maintain essential body functions.

Thus, direct and/or indirect effects of the GH transgene on resting

metabolic rate during early life history may explain observations of

increased sensitivity to hypoxia, advanced development, higher

foraging-induced aggression and decreased anti-predator behav-

iour in GH transgenic salmon. However, to our knowledge,

respiratory metabolism has not been compared between GH

transgenic and non-transgenic salmon during early ontogeny.

Moreover, previous work with GH transgenic coho salmon may

not be representative of the early phenotypic responses of GH

transgenic Atlantic salmon that carry a distinctly different

transgene construct [42] (described in Methods).

If the GH transgene elevates metabolic rate during early

ontogeny (embryo, larval and fry stages) in Atlantic salmon, as

observed for older juveniles (aged .8 months) [18,19,23], then a

similarly advanced development to that of coho salmon may result.

Such phenotypic differences could influence the relative survival of

transgenic and non-transgenic salmon during a critical life history

period. To test for these potential phenotypic effects, and compare

how they may differ from other manifestations of GH salmon

transgenesis, this study compared the respiratory metabolism and

development of GH transgenic and non-transgenic Atlantic

salmon siblings during early ontogeny. Using siblings allowed us

to control for maternal effects and general genetic background,

and to thus quantify routine metabolism in GH transgenic and

non-transgenic salmon at three early stages of ontogeny; eyed

embryos, alevins (larvae) and fry (first-feeding juveniles) across

multiple family replicates. By doing this, we aimed to isolate the

genetic contributions of the transgene to offspring phenotype.

Furthermore, we tested for differences in hatch time and, near

exogenous feeding, alevin mass, length and the amount of yolk

remaining within (transgenic versus non-transgenic) and among

families.

Methods

Experimental Animals
A gene construct (opAFP-GHc2) consisting of growth hormone

cDNA from Chinook salmon, Oncorhynchus tshawytscha (Walbaum),

and an antifreeze protein gene promoter from ocean pout,

Macrozoarces americanus L., was introduced into the genome of wild

Atlantic salmon collected from the Exploits and Colinet Rivers,

Newfoundland, Canada in 1989 [16]. A stable transgenic line

(EO-1a transgene) resulting from these gene insertion experiments

was produced at the Ocean Sciences Centre, Memorial University

of Newfoundland [43]. During August 2005, wild adult Atlantic

salmon were also collected from the Exploits River (48u559N,

55u409W), Newfoundland, Canada, during their return migration

from sea and transferred to the Ocean Science Centre. The

Exploits River salmon population is one of the largest in
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Newfoundland, with fish typically returning to breed following a

single year at sea [44].

To isolate the genetic contributions of the transgene to offspring

phenotype, 11 single family crosses were produced during 3–22

November 2005 between wild, non-transgenic females and

captive-reared, transgenic males that were hemizygous for the

GH transgene. True to Mendelian inheritance patterns, such

crosses result in approximately half of the offspring inheriting the

GH transgene [45]. This enabled the comparison of full siblings

differing primarily in the presence or absence of the transgene (i.e.

other genetic differences tending to be randomized), and allowed

for the control of maternal effects and general genetic background.

All families were reared separately in Heath incubation trays

under ambient water temperatures until first feeding. At which

point, families were pooled into two distinct family groups at first

feeding (5 families in one tank and 6 families in another, grouped

by spawning date; ca. n = 500 per family) due to logistical

constraints and reared in 161 m holding tanks. The fish were

fed ad libitum with a combination of Artemia spp. and a salmonid

starter dry feed (Corey Feed Mills, Fredericton, Canada). With the

exception of the respirometry trials (see below), both temperature

and photoperiod were kept at ambient conditions during holding

and experimentation. Following all experiments, a tissue sample of

each individual was screened for the transgene using the

polymerase chain reaction (PCR) protocol described in [23]. All

animals were treated in accordance with the guidelines provided

by the Canadian Council on Animal Care and with the approval

of Memorial University’s Institutional Animal Care Committee

(protocol 08-03-IF).

Figure 1. The mean (±S.E.) routine oxygen consumption (mg O2 g21 hr21) of transgenic and non-transgenic Atlantic salmon (Salmo
salar) eyed-embryo (A) and alevin (B) full siblings. Transgenic and non-transgenic mean values within families are represented by black and
white circles, respectively. The short and long dashed lines represent the overall transgenic and non-transgenic means, respectively.
doi:10.1371/journal.pone.0095853.g001
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Respirometry Equipment
To estimate the metabolic rate of individual embryos and fish,

we measured their routine oxygen consumption [46] in one of two

respirometry systems. Jobling [46] defined routine metabolic rate

as the oxygen consumption (mg O2 g21 hr21) of fasted, unstressed

animals experiencing minimal movement. In the case of endog-

enously feeding eyed embryos and alevins (larvae), we consider our

measurements representative of routine metabolism.

The first respirometer was a custom glass design, used to

measure the oxygen consumption of individual salmon eyed

embryos. It consisted of an inner experimental chamber, where

the animal was located, and an outer chamber connected to an

external water bath (model 1150 S, VWR International, Mis-

sissauga, Canada) that maintained the inner chamber at 3uC.

Freshwater was pumped into the bottom of the 6.75 ml inner

chamber from an oxygenated glass reservoir (situated in the water

bath) and returned through an exit port at the top of the chamber,

with the aid of a peristaltic pump (Masterflex L/S model 77200-

12, Cole-Palmer Inc., Barrington, USA) and low gas permeability

tubing (Tygon Food & LFL, Cole Palmer Inc., Barrington, USA).

Individual embryos were elevated above the bottom of the inner

chamber on the mesh surface of a perforated, circular glass tube.

The entire respirometer was suspended over a magnetic stirrer

such that the stir bar, located within the glass tube, ensured water

was mixing slowly and no oxygen gradients were present.

Immediately prior to oxygen consumption measurements, the

peristaltic pump was turned off and the inner chamber was closed

with stop-cocks. The drop in oxygen concentration was then

measured using a fibre-optic oxygen minisensor system (Fibox 3,

PreSens GmbH, Regensburg, Germany; dissolved oxygen resolu-

tion: 60.04 mg L21 at 9.06 mg L21) connected to a computer

running OxyView software (version PST3_v532) and an oxygen

sensitive spot attached to the inside surface of the inner chamber.

The fibre-optic oxygen meter was calibrated regularly using

aerated water and water from which all oxygen had been removed

by the addition of sodium sulphite (0.1 g per 10 ml).

The second respirometer was a custom-built, glass, Blazka-type

respirometer [47] that had an 82 ml volume. This device was used

to measure the routine metabolism of individual alevins and fry.

The design and operation of this respirometer was similar to that

previously described in Killen et al. [48], with one exception. As

with the respirometer used to measure embryo metabolism, water

temperature was controlled using an outer water jacket that was

attached to an external water bath. The water temperature was

maintained at 4.5uC and 8.5uC for alevins and fry, respectively. A

slow current was induced within the inner chamber to ensure

proper mixing and prevent the formation of oxygen gradients. The

current, however, was ,3 cm s–1 and no swimming activity was

required by the animals. A black cloth was draped over the

respirometer to prevent disturbance and a mirror was used to

monitor the activity of the fish during the oxygen measurement

period.

Respirometry Protocol
Fish used in the respirometry experiments were maintained at

the experimental temperatures for a minimum of two weeks prior

to measurement of oxygen consumption. These temperatures

corresponded to the ambient conditions at the initiation of

experimentation. Logistical constraints and the time consuming

nature of the measurements limited the number of families that

could be tested. For eyed embryos, the oxygen consumption of 6–7

embryos from six families (n = 39 in total; Mean

6SE = 0.13560.003 g; Range = 0.10–0.16 g) was measured at

ages ranging from 385–415 degree days (a developmental index

representing the sum of daily mean temperatures). These embryos

were acclimated to the respirometer for 90 minutes prior to

oxygen consumption measurements. Then two successive, 30

minute oxygen consumption measurements, separated by 15

minute periods where the respirometer was flushed with fresh

water, were taken on each individual and averaged. All embryos

within each family were measured within an 18 h period to limit

potential developmental effects on metabolic rate. To simulate

both the rearing and natural environments, all measurements were

performed in total darkness.

For alevins, the oxygen consumption of 9–10 individuals from

four families (n = 39 in total; Mean 6SE = 0.15460.002 g; Range

= 0.12–0.19 g) was measured at ages ranging from 668–725

degree days. Individuals were acclimated to the respirometer for

90 minutes prior to a 60 minute oxygen consumption measure-

ment. All individuals within each family were measured over 3 d

to limit potential developmental effects on metabolic rate. As with

the eyed embryos, all measurements were performed in total

darkness.

Following one week of exogenous feeding, fry to be used for

oxygen consumption measurements were haphazardly selected

from the holding tanks and transferred into two aquaria (n = 20 per

aquaria) housed in a temperature-controlled room. Fish from

families having similar dates for the start to exogenous feeding (a

reflection of fertilization date) were housed together. They were

fasted for 48 h and acclimated to the respirometer for 150 minutes

prior to a 30 minute measurement of oxygen consumption.

Sixteen fry per aquarium were tested (n = 32 in total; Mean

6SE = 0.18160.03 g; Range = 0.13–0.27 g). All measurements

were performed under low light conditions.

The duration of the acclimation periods was based on

preliminary trials, ensuring that the animals were in a steady

state of constant low oxygen consumption (i.e. they had recovered

from any stress associated with handling). Rates of oxygen

consumption (mg O2 g21 hr21) for each trial were calculated

using the slope of a linear regression between water oxygen level

(mg L21) and time, then multiplied by the chamber volume and

divided by the animal’s mass. At the end of each day, blank

measurements were made to ensure that background oxygen

consumption was minimal, and the respirometers were cleaned

with 100% ethanol. Any observed background oxygen consump-

tion was subtracted from the experimental values. Trials where

background oxygen consumption was greater than 5% of a fish’s

oxygen consumption were not included in the data set (n = 6; all in

fry experiments).

Development
Hatch time, and alevin yolk surface area (mm2), mass (g) and

fork length (mm) near emergence (yolk sac absorption) were used

as indices for examining the effect of the transgene on

developmental rate. Approximately 100 eyed embryos were

haphazardly sub-sampled from each of 8 families and placed into

plastic canvas mesh baskets housed within separate incubation

trays. During incubation, the ambient temperature ranged

between 2–8uC, with a temperature of 4uC at hatch. Baskets

were checked once daily for hatched individuals. At hatch,

individuals were preserved in 95% ethanol for subsequent PCR

analysis to determine the presence or absence of the transgene. For

the same 8 families, 40 late stage alevins (ca. 774 degree days), that

were approaching the start of exogenous feeding (yolk sac

absorption), were haphazardly sub-sampled from the family-

specific incubation trays, weighed and digitally photographed on a

standardized mount using the Pixera Viewfinder 2.6 software

application (Pixera Corp., Los Gatos, USA). Fork length (mm) and

Delayed Phenotypic Response in GM Atlantic Salmon
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yolk surface area (mm2) were recorded using ImageJ 1.37v

processing and analysis software (ImageJ, http://rsbweb.nih.gov/

ij/index.html). Following measurements, the alevins were placed

into individual microcentrifuge tubes containing 95% ethanol for

subsequent PCR analysis.

Data Analyses
Nested, two-way ANOVAs were performed to test for the effects

of family origin and genotype (transgenic or non-transgenic) on the

response variables of mass (mg) and oxygen consumption (mg O2

g21 hr21), where genotype was nested within family. Family and

genotype were treated as fixed effects factors. For the respirometry

experiments on fry, families were split into two distinct groups and

placed in separate tanks, where tank was treated as a fixed effects

factor.

To test for differences in hatch time between families and

genotypes, a binomial logistic regression was fit, where the

response variable represented the proportion of all individuals

carrying the transgene. Explanatory variables including hatch day

(represented by degree days) and family were treated as fixed

effects factors. To test for the effects of family and genotype on

yolk surface area (mm2), mass (g) and fork length (mm) of alevins

near emergence (yolk sac absorption), nested, two-way ANOVAs

were used with genotype nested within family. In cases where both

family and genotype were statistically significant, the strength of

association (effect size) between the explanatory variables and the

response variable was estimated with omega-squared (v2) in the

ANOVA models.

All data were analyzed using the R statistical software

application (version: R-2.15.3; http://www.r-project.org/). Statis-

tical significance was measured at the 5% alpha level of type I

error. Since the lmer function in the R lme4 package does not

compute p-values for a nesting factor with random effects, family

and tank were treated as fixed effects. An alternative mixed model

analysis following a model selection approach with the Akaike

information criterion (AIC) did not change any biological

interpretations associated with the fixed effects ANOVA models

reported.

Results

Respirometry
At both the eyed embryo and alevin stages, oxygen consump-

tion (MO2) and mass were strongly influenced by family, with less

of an effect related to the transgene itself (Table 1, Fig. 1). Mean

oxygen consumption of transgenic to non-transgenic siblings

within families varies, as does dispersion, being higher among

transgenic than non-transgenic siblings in some families and vice

versa in others (Fig. 1). The overall mean oxygen consumption of

transgenics was slightly higher than non-transgenics during the

eyed-embryo stage, with the trend reversing at the alevin stage.

However, as family effects outweighed transgene effects, the

presence or absence of the transgene had little predictive value at

the eyed embryo and alevin stages. Similarly, the transgene had no

significant effect on oxygen consumption or mass of fry at the start

of exogenous feeding (Table 1). Holding tank, reflecting fertiliza-

tion date and subsequent start of exogenous feeding, however, had

a significant influence on mass (First-feeding Mass: n = 32,

F = 16.14, P,0.001), but not oxygen consumption (First-feeding

MO2: n = 32, F = 1.1, P = 0.292). This likely reflects a family effect;

specifically, a bias for families with larger body size in one holding

tank over the other.

Development
The majority of individuals (.60%) within each family hatched

over a three to four day period (Fig. 2). The proportion of

transgenics hatched was influenced by both family (n = 837,

x2 = 20.48, P = 0.004) and accumulated degree days (n = 837,

x2 = 13.00, P,0.001). Transgenic individuals tended to hatch less

than one day (i.e. 4 degree days) earlier (Transgenic mean

6SE = 493.868.2 degree days, Non-transgenic 497.268.1 degree

days). When comparing the time to hatch of transgenic and non-

transgenic individuals within families, it appears that the tendency

for transgenics to hatch earlier was strong in some families (e.g. E,

F; Fig. 2) and weak in others (e.g. A, G). Thus, the effect of

transgenesis on hatch time was to some extent dependent on

family.

Near emergence (i.e. yolk sac nearly absorbed and prior to

exogenous feeding), transgenic alevins had a slightly (3%) greater

amount of yolk remaining than non-transgenics (Table 2). Family

of origin, however, significantly influenced the amount of yolk sac

remaining and had a substantially larger effect size than that of the

transgene itself (Table 2; Fig. 3). The size, mass and length, of the

transgenics at this stage tended to be slightly smaller than that of

the non-transgenics (Table 2; Fig. 3). As with the amount of yolk

sac remaining, however, family effects demonstrated a greater

influence on alevin size than did the presence of the transgene

(Table 2; Fig. 3). Overall, there was greater variation in body size

among families than between transgenic and non-transgenic

alevins within families.

Discussion

Family differences had a stronger influence on the routine

oxygen consumption (metabolism) and developmental rate of

Atlantic salmon during early ontogeny than did GH transgenesis

(Fig. 1–3). Transgenesis did not affect the oxygen consumption of

individuals at the eyed-embryo, alevin (larval) or fry (first feeding

juvenile) stages in a consistent way among families. The majority

of individuals (.60%) within each family hatched over a three or

four day period and the effect of transgenesis was weak.

Transgenic fish hatched less than one day earlier than their non-

transgenic siblings. Conversely, near emergence, transgenic

individuals contained more yolk and were smaller in terms of

both mass and length. However, the influence of genotype on all

these measures was less than that of family, suggesting that family

of origin contributes more to the variation of these traits than the

GH transgene.

The vulnerability of salmonid embryos to low oxygen conditions

has been demonstrated previously [9,49,50]. If GH transgenesis

were to affect the basal metabolic rate of Atlantic salmon embryos,

there could be survival differences during embryo incubation

relative to non-transgenic individuals [24,51]. Both metabolic and

developmental measurements, however, were similar between

transgenic and non-transgenic embryos of Atlantic salmon,

suggesting that the threat of exposure to periods of hypoxia in

the gravel beds would be similar.

Figure 2. The time of hatch (degree days) of full-sibling transgenic and non-transgenic Atlantic salmon (Salmo salar) from eight
families. Transgenic and non-transgenic values are represented by black and white circles, respectively. These data are represented by cumulative
proportions of approximately 100 individuals per family.
doi:10.1371/journal.pone.0095853.g002
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Like many other fishes, the transition from endogenous to

exogenous feeding is considered a critical period of survival for

stream-dwelling salmonids [13–15]. Suitable spawning habitat can

contain dense aggregations of nests, a situation that results in

density-dependent competition among emerging fry for foraging

territories [12,52]. Body size at emergence and timing of

emergence are thought to be important determinants of survival

during this period. Larger fish tend to win laboratory-based

contests against smaller fish, and this has been shown to carry over

to the performance of individuals in wild release experiments

[14,53,54]. However, the advantages and disadvantages of

emerging early or late, relative to the rest of the population, are

likely dependent on local environmental conditions. Early

emergence may provide a beneficial opportunity to establish

prime foraging territories (prior residency), and perhaps, an

additional chance to grow [55–58]. Conversely, environmental

T
a

b
le

2
.

A
m

o
u

n
t

o
f

yo
lk

sa
c

re
m

ai
n

in
g

an
d

si
ze

(m
e

an
6

SE
)

o
f

n
o

n
-t

ra
n

sg
e

n
ic

an
d

tr
an

sg
e

n
ic

al
e

vi
n

s
(l

ar
va

e
)

n
e

ar
th

e
st

ar
t

o
f

e
xo

g
e

n
o

u
s

fe
e

d
in

g
.

T
ra

n
sg

e
n

e
E

ff
e

ct
F

a
m

il
y

E
ff

e
ct

T
ra

it
N

o
n

-t
ra

n
sg

e
n

ic
T

ra
n

sg
e

n
ic

N
d

.f
.

F
P

v
2

F
P

v
2

Y
o

lk
sa

c
re

m
ai

n
in

g
(m

m
2
)

1
2

.9
9

0
6

0
.2

6
0

1
3

.3
8

0
6

0
.2

7
0

3
1

6
1

5
,3

0
0

2
.2

1
0

.0
2

7
0

.0
0

8
1

3
2

.5
8

,
0

.0
0

1
0

.7
3

9

B
o

d
y

m
as

s
(g

)
0

.1
5

1
6

0
.0

0
2

0
.1

4
8
6

0
.0

0
0

3
1

6
1

5
,3

0
0

3
.1

0
0

.0
2

2
0

.0
0

6
3

1
8

.3
0

,
0

.0
0

1
0

.8
0

0

B
o

d
y

le
n

g
th

(m
m

)
2

5
.2

6
0
6

0
.1

2
0

2
5

.0
8

0
6

0
.0

9
0

3
1

6
1

5
,3

0
0

1
.6

6
0

.1
0

7
—

5
4

.7
7

,
0

.0
0

1
—

A
N

O
V

A
re

su
lt

s,
in

cl
u

d
in

g
re

le
va

n
t

e
ff

e
ct

si
ze

s
as

e
st

im
at

e
d

b
y

o
m

e
g

a-
sq

u
ar

e
d

(v
2
)

va
lu

e
s,

ar
e

sh
o

w
n

fo
r

th
e

tw
o

ca
te

g
o

ri
ca

l
e

ff
e

ct
s

o
f

tr
an

sg
e

n
e

an
d

fa
m

ily
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

5
8

5
3

.t
0

0
2

Figure 3. Mean (±S.E.) yolk surface area (A; mm2), mass (B; g),
and fork length (C; mm) of transgenic and non-transgenic
Atlantic salmon (Salmo salar) alevins near emergence.
doi:10.1371/journal.pone.0095853.g003

Delayed Phenotypic Response in GM Atlantic Salmon

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e95853



stressors such as temporal variation in predation pressure, food

resources and suitable habitat characteristics provide possible

selective pressures against early emergence [11,59,60]. Thus,

transgene-induced changes in body size at emergence and/or the

timing of emergence, in either direction, have the potential to

influence the fitness of the transgene in nature.

While consistent differences were observed in yolk area, mass

and length between transgenic and non-transgenic alevins close to

emergence (start of exogenous feeding), the extent to which such

small differences affect relative fitness at emergence is unclear. It

was evident, however, that family of origin was responsible for

more variation in alevin characteristics than was the transgene.

From a population perspective, the most dominant trait influenc-

ing emergence time may be spawning time [61–63]. If we are to

assume that the transgene does not influence female spawn time,

then the key traits influencing fitness at emergence are the rate of

development (emergence time) and size at emergence. In the

current study, non-transgenic alevins contained less yolk reserves

and were slightly larger near emergence, suggesting transgenic

Atlantic salmon may be more susceptible to predation (cf. [64])

and competitively disadvantaged at the onset of first-feeding.

However, the differences in the mean value of these measurements

between transgenic and non-transgenic individuals were 3% or less

(Fig. 3). Salmonid fry have demonstrated considerable variation in

the amount of yolk remaining at emergence [65–67]. Thus, the

small differences observed in yolk reserves between transgenics

and non-transgenics suggest that emergence time would be similar,

unless the transgene affects emergence behaviour. Previous studies

assessing the effect of emergence time on performance in the wild

have found that early emergence provides a competitive advan-

tage. However, such studies have either compared individuals with

substantial differences in emergence time (5–6 days) [14] or the

early emerging group had a confounding, albeit natural, size

advantage [15]. The body size differences detected in the current

study may be so small (often ,1 mm) as to not influence contests

for foraging territories in stream salmonids as suggested by

previous behavioural experiments [30,68,69]. Thus, the high levels

of family variation combined with the small transgene–induced

differences in characteristics of alevin siblings near emergence

suggest that transgenesis may not have a considerable influence on

fitness related to body size at, and timing of first-feeding.

The similarity in metabolic and developmental rate measures of

GH transgenic and non-transgenic Atlantic salmon siblings

contrasts with observations made with GH transgenic coho

salmon during early ontogeny. GH transgenic coho salmon have

been shown to experience increased mortality under hypoxic

conditions [24], hatch 2–3 days earlier [25,27] and emerge from

the gravel 1–2 weeks earlier [26,27]. An increased sensitivity to

hypoxic conditions suggests higher basal metabolic rates [35], as

observed in older GH transgenic salmonids [19,23]. A higher

metabolic rate during early ontogeny may speed up the

mobilization of yolk-sac reserves to body tissues and/or for

maintenance processes [35], and is thus, a plausible explanation

for observations of advanced development to first-feeding and

greater susceptibility of eyed embryos to low oxygen conditions in

GH transgenic coho salmon carrying the OnMTGHI gene

construct. However, the current study has shown the opAFP-

GHc2 gene construct (EO-1a line) has little to no consistent

phenotypic effect on pre-emergent Atlantic salmon. This suggests

that there are ecologically important phenotypic differences

between these two GH transgenic lines during this critical period

of survival. Whether this is due to the different growth hormone

constructs or different species effects is not known.

Elevated metabolic rate has been shown to correlate with fast

growth [35,36], foraging-induced aggression and dominance [37–

40]. In addition, it is hypothesized that higher basal metabolic

rates concomitantly increase energy requirements that are

addressed by a suite of compensatory behavioural changes toward

greater foraging motivation and risk taking actions [34,70,71]. GH

transgenic coho salmon juveniles, from as young as the fry stage,

have shown changes in behaviour and performance that are

consistent with this hypothesis [28,29]. The current study is the

first to measure the respiratory metabolism of GH transgenic fish

at first-feeding, and we find no consistent effect of transgenesis on

the metabolic rate of salmon fry up to one month following

emergence. Our results support the findings of a study conducted

concurrently, where Moreau et al. [30] observed no differences in

the competitive ability or survival of first-feeding GH transgenic

and non-transgenic Atlantic salmon fry reared in low feed, near-

natural stream environments. Previous work has indicated mRNA

expression of the transgene, GH1 and GH2 receptors as early as

the embryo stage (King and Fletcher, Unpub. Data, Young and

Fletcher Unpub. Data). Therefore, collectively, our work indicates

that there is a delay in the response of other physiological systems

to elevated levels of growth hormone and suggests that fitness may

not be greatly affected during this critical period of early ontogeny.

Previous measurements on older GH transgenic Atlantic salmon

juveniles (.2 months post-emergence) have demonstrated elevated

routine metabolic rates that are consistent with shifts in behaviour

and performance relative to non-transgenics [18,72]. We have

observed changes in growth prior to this stage of development

(personal observations); however, the absence of an effect during

this most critical period of survival suggests that the early

recruitment of transgenic juveniles may be similar to that of

non-transgenic individuals in the wild.

Conclusions

In the current study, we controlled for genetic background by

comparing transgenic and non-transgenic full siblings. This

approach was intended to not only isolate the effects of the

transgene from differences in genetic background, but also to

minimize maternal effects that may confound interpretation of

direct genetic effects. We found that family of origin explained

considerably more trait variation than did transgenesis. Pakkas-

maa et al. [73] found a similarly strong family effect on the

metabolic rate of Arctic charr (Salvelinus alpinus) eyed embryos.

This suggests that any potential selection acting upon the GH

transgene during early life history may be overshadowed by

selection acting at the family level. This finding is relevant to

understanding the potential implications of the offspring of GH

transgenic fish escapees, particularly as it concerns Atlantic

salmon. Firstly, the fitness of transgenic offspring in early life

may be more a function of background genotype (i.e. due to non-

local origins and domestication selection) than transgenesis itself.

Secondly, the extent and form of differences between transgenic

and non-transgenic siblings within families varied in the present

study, and as such, this could be indicative of the transgene having

different effects in different genetic backgrounds (i.e. epistasis) [74].

Thus, the strong effect of family (i.e. background genotype)

contributes to the complexity and adds to the uncertainty [6,75] of

predicting the fate of the transgene in nature.
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