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Abstract

The main objective of this research is to develop a spatially explicit agent-

based model  that simulates emergent  cooperation and leadership in the context  of 

complex community development. Formalization of the framework is founded on the 

postulate  that  cooperation  and  complexity  leadership  emerge  from the  non-linear 

behaviours of mobile affective agents as they participate in social interactions. The 

architecture is an object-oriented system of components that model mobility, social 

communication,  psychological  state,  labour  market  dynamics,  leadership,  and 

evolutionary learning.  As an approximation  of real  world decision-making,  agents 

have  an  affective  state  derived  from a  psychological  model  that  influences  their 

participation and response to the outcomes of social interactions. The spatial context 

of these social interactions is based on the mobility dynamics of individuals as they 

probabilistically select an everyday activity in reference to their demographic states 

and  expected  payoff  structure  associated  with  potential  neighbours.  Social 

interactions  are  classified according to  the type  of neighbourhood required for its 

social network: (1) a grouping of multiple agents at a shared location, or (2) a directed 

pairing  of  employee-firm  traders  engaged  in  a  labour  market  transaction.  Social 

interactions in multiple agent neighbourhoods are simulated as N-Person's Prisoner's 

Dilemma games, where the action choices of the citizens are determined from the 

degree of relationality and trust within the social network. Labour market transactions 

are interactions between an employee and a firm who are paired with a preferential 

partnership matching mechanism. These directed social  exchanges are modeled as 

two  person's  Iterative  Prisoner's  Dilemma  games.  Self-organizing  leadership  is 

conditioned  on  the  tensions  endemic  in  the  Prisoner's  Dilemma  and  the  tensions 

purposely introduced during knowledge diffusion by the administrative leaders. The 

localized  and  overall  cooperation  and  defection  leaders  are  identified  by  the 

magnitude of their reward, and are tagged as the most successful individuals within 

the environment.  The unsatisfied agents survive by adopting the action strategy of 

their highest paid neighbour implemented with a social mimicry mechanism. A form 

of steady state cooperation in a spatial environment depends on the citizens behaving 
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in a comparable altruistic manner by making affective decisions with similar action 

strategies.
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Part I: Introduction and Research Overview

1.0 Introduction

The practice of community development in rural Newfoundland and Labrador 

has undergone a number of philosophical and theoretical shifts since the province was 

incorporated into Canada in 1949. In the years after Confederation, the federal and 

provincial  governments  enacted  programs  and  policies  that  promoted  small  scale 

manufacturing  and large scale  resource projects  meant  to  industrialize the outport 

communities.  As  a  top-down  province  wide  approach,  community  development 

focused primarily on improving the economic conditions of the rural population, but 

failed to consider the social effects of these policies. This was especially evident with 

the household  resettlement  program that  attempted  to  centralize  the  population  to 

support  the  industrial  growth.  In  the  late  1970s  and  early  1980s,  the  provincial 

government established programs based on the notion that the underdevelopment in 

the outports could be solved by gaining control over the natural resources to increase 

employment  in  the  communities.  Although  social  and  cultural  issues  were 

increasingly recognized, these approaches ignored the endogenous development by 

the  people  who  live  in  these  communities.  In  1985,  a  Royal  Commission  on 

Employment  and  Unemployment  was  established  to  investigate  the  fundamental 

requirements  for  a  program of  social  and economic  development  centered  on the 

strengths  and weaknesses  of  the  local  economy in  the  outports.  The commission 

recommended that the best strategy for improving the economic and social conditions 

in  the  outports  was  a  bottom-up  approach  of  the  citizens  developing  and 
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implementing  plans  and  policies  that  promote  small-scale  enterprise, 

entrepreneurship, and self-reliance. 

House  (1989)  supported  the  findings  of  the  commission  with  a  proposed 

model of community development that would lead to a sustainable outport. He listed 

ten features that the model community should have for development to succeed, and 

then  compared  existing  outports  to  the  sustainable  model  to  highlight  issues  that 

could  hinder  development  plans.  Two  of  the  main  constraints  on  long-term 

sustainability are the lack of entrepreneurship and the overreliance on unemployment 

insurance and short-term paid employment.  Historically,  entrepreneurship has been 

discouraged and suppressed by a local culture in the outports that frowns upon those 

individuals  who  are  trying  to  “get  ahead”.  More  importantly,  entrepreneurs  were 

often frustrated with the bureaucracy of rules and procedures that they experienced 

while applying for government funding and accessing development programs. There 

was also a pattern of short-term employment of people getting just enough weeks of 

work  to  qualify  for  unemployment  insurance.  The  sustainability  of  the  local 

economies was weakened by the labour market nonparticipation of those people who 

perceive  long-term  employment  as  undesirable.  Any  outport  that  strives  to  be  a 

sustainable community will have to address these issues, but the community leaders 

may have a difficult time in convincing people to alter their behavorial patterns.

In the twenty three years since, government has made efforts to facilitate and 

support  community development  with the creation of a province-wide network of 

Rural Economic Development Boards (REDBs), a red tape reduction program, and 

departments, such as Innovation, Business, and Rural Developments, with a mandate 
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to encourage and support endogenous growth. However, the success of a community 

development  program will  still  be greatly dependent  on the attitudes,  beliefs,  and 

decisions  of  the  local  leaders  and  entrepreneurs,  specifically  cooperatives  and 

community  organizations,  as  well  as  the  average  citizens  who  are  not  directly 

involved but may be impacted by the implemented plan. The basic social aspects of 

community  development  are  the  relationships  and  communications between  the 

people,  where individuals  cooperate  and exchange opinions  and knowledge about 

potential  courses  of  action  to  address  the  current  and  future  issues  facing  the 

community.  The participation of citizens in the decision-making processes enables 

the individuals who are entrusted with leadership roles to act on the community’s 

behalf.  From a social  perspective,  bottom-up development  is a consensus building 

approach  of  citizens  raising  issues,  listening  to  the  views  of  others,  and  then 

cooperating to produce an agreed upon enhancement plan. These social interactions 

define  the  relationships  that  emerge  between  the  participants  and  the  sense  of 

community that each person feels about belonging and mattering to the group. 

A common question both in practice and in the literature is why community 

development works in one locality but fails in another even though both have similar 

social and economic profiles. The reason could be obvious with one community being 

closer to a natural resource, having access to a major highway, or falling within the 

urban shadow of a large metropolitan center. However, an alternative explanation is 

that the difference in community development success is attributable to the citizens 

themselves,  with one community possessing a more motivated and knowledgeable 

development  team  that  its  counterpart.   In  this  thesis,  bottom-up  community 
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development  has  a  different  connotation  than  the  standard  interpretation  as  the 

consensus plans of the community.  It  is hypothesized that a model of community 

development  can  be  formalized  as  a  social  relationality  network  defined  by  the 

actions and decisions of people in the community. This requires a systems approach 

of community development  implemented as an individual-based model,  where the 

macro-level structure and conditions of the community emerge from the behaviours 

of the individual citizens. The dynamics of the participation and behaviours of each 

person as the community first works towards and then implements a consensus course 

of  action  is  the  focus  of  this  thesis,  rather  than  the  development  plan  itself.  For 

example, leadership is known as an essential element in empowering and mobilizing 

the population to get involved in community development.  Leaders can be people 

who are appointed to positions of authority by their neighbours, but they can also 

emerge  during  social  interactions  due  to  their  personal  traits  (e.g.  charismatic 

personality)  or  dedication  to  the  development  program.  At  the  micro-level  of 

individuals, community involvement is the conscious decisions of people to exchange 

information and opinions amongst themselves while participating in the development 

processes. 

The motivation for the research on the dynamics of community development 

using an individual-based model stems from several pragmatic considerations. Firstly, 

individual-based models can simulate phenomenon, such as the emotional conditions 

of  the  citizens,  which  are  impossible  to  model  with  deterministic  equation-based 

approaches. Secondly, an individual-based model can investigate the dynamics of a 

community from the perspective of an individual person. Each person in a community 
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can be represented and modeled as an affectively enabled individual who interacts 

with others citizens during the processes of community development. 

An affective individual will experience emotional and mood state changes as a 

consequence  of  social  exchanges,  which  contributes  to  his  self-identity  in  the 

community. A person will believe that he belongs to a community when his opinions 

are valued and his participation in the social interactions leads to a positive affective 

state.  This sense of belonging to the community will encourage the individual to 

cooperate during the decision-making process, and the more people who cooperate, 

the stronger the social capital of the community. A primary effect of person-to-person 

communication in community development is the diffusion of information, but it also 

provides a secondary function of evaluating the social positioning of individuals in 

the  community.  As  a  person reaches  and sustains  a  high  social  standing,  he  can 

emerge as a community leader to a point where average citizens trust him to decide 

the direction and focus of the development plan. The benefit of an individual-based 

modeling  approach is  that  the  success  or  failure  of  the  development  plan  can  be 

related to the strengths and weakness of the leader in his dealings with government, 

motivation  of  the  citizens,  and  understanding  and  acceptance  of  what  can  be 

realistically improved in the region. 

The third motivation for this research has to do with the history of change in 

the  provincial  government  in  designing  and  implementing  policies  related  to 

community development. The current direction of rural development in this province 

is  towards  a  regional  long-term sustainable  development  rather  than  endogenous, 

municipality-specific  development.  As  an  individual-based  system,  the 
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implementation of this model will remain the same regardless of the geographic scale 

of the social confluence area. Whether a neighbourhood, municipality, region, or the 

entire province, the processes of community development depend on the decisions 

and behaviours of the people within the modeling environment.

Individual-based models  of  social  phenomenon  are  normally  developed  as 

computational  models  of  complex  adaptive  systems.  This  research  follows  the 

common choice of developing and implemented a complex adaptive system as an 

agent-based model, except that it is spatially explicit since the individuals have the 

ability to move throughout the modeled area. Each agent is a computational object 

that represents a simplified version of an individual entity in the environment, agents 

represent anything from a human being to a firm to a physical infrastructure feature, 

such as a road or building. The interactions between agents are modeled with simple 

sets  of  rules,  but  lead  to  complex  behaviors  that  self-organize  the  modeled 

community. 

The  ground  of  many  studies  of  community  in  human  geography  is  the 

ensemble of activities and relationships  among people across space and place.   A 

community can be conceptualized as a structured environment of social relationality 

that is constantly reconfigured as people pursue the activities of everyday life. This 

concept of community can then be implemented as a generic modeling environment 

that simulates all of the communication and personal exchanges within the different 

types  of  social  networks:  pairs  of  people,  small  localized  groups,  or  the  entire 

community.  The design of a social relationality model must be able to handle the 

different types of social networks but also the different types of social interactions. 
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The various types of social interactions are generally associated with the everyday 

activities undertaken by the people in a community. There are short-term incidental 

meetings  between  people  and  the  longer  term  habitual  events  of  daily  life.  An 

example of an incidental meeting would be small talk amongst a group of consumers 

in a supermarket. Habitual activities, such as a school day or employment shift, are 

interaction episodes where the same group of people is relationally connected for an 

extended period of time.  

Markovsky  and  Willer  (1988)  state  that  the  different  types  of  social 

interactions can be viewed as power relationships. In a power relationship, a degree 

of control and persuasion is  either  implicitly or directly associated with particular 

individuals  in  a  social  network.  These  authoritative  people  have  the  ability  to 

influence the decisions and behaviours of the others in the social group. The locus of 

a  power  relationship  depends  on  the  intensity  of  the  control  exhibited  by  these 

socially dominant individuals. The submissive individuals relinquish their degree of 

control, because of the financial, emotional, or social benefit of membership in this 

grouping. 

The incidental meeting and habitual events are usually at the opposite ends of 

the  spectrum of  power  relationships.  The individuals  maintain  their  control  in  an 

incidental  meeting,  because  they have little  to  gain or lose from these short-term 

social exchanges. As humans are cognitively selfish, certain individuals will attempt 

to and may dominate the interaction, but their opinions and advice will have minimal 

effect on the decisions and behaviours of the others. 
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For the habitual interactions, the power relationship is often socially one sided 

with  one  individual  leading  the  decision  choices  of  the  social  network.  Teachers 

dictate  the  course  of  an  educational  session  with  minimal  interference  from  the 

students, because the students understand the knowledge benefit of paying attention 

in class. Workers accept the authoritative position of the managers at an employment 

facility, because the financial survival of the workers may be dependent on obtaining 

and maintaining a work contract at these firms. The higher intensities of control of 

social interactions in the settings of habitual daily activities arise and are maintained, 

because the familiarity that an individual has with dealing with the same people will 

enable him to trust one of them as a social leader. Between these two extremes are the 

power relationships with varied control structures where the decisions of the people 

are influenced by memories of past interactions and the anticipated outcome of the 

current social exchange.

Each individual in a power relationship will experience the interaction in a 

different way based on his personality and emotional appraisal of his position in the 

social  network.  This  affective  state  shapes  an individual's  sense of  community in 

terms of a  personal feeling of belonging,  emotional  connection to  others,  and the 

perception of having a degree of influence in the social  network.  An extroverted 

person with a charismatic personality may be able to convince others to allow him to 

assume control in the power relationship. People who are continually happy with the 

outcomes of social interactions will feel that they belong to the community, because 

they believe that they can anticipate and trust the behaviours of their counterparts.
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The  spatial  connotation  of  a  "community  of  place"  is  a  shared  physical 

interaction  network  and  regular  communication  among  residents  about  common 

issues and interests. Place in this sense is defined as a social region delineated by the 

movement of people as they travel to distinct locations to engage in activity-specific 

interactions. The destinations for these movement episodes, often buildings, provide a 

meaningful point of reference for the social interactions. Also, individuals will move 

multiple times throughout the environment as they engage in a series of activities that 

typify a  day in the life  of an average person. From a modeling  perspective,  each 

movement event will reconfigure the immediate social structure and spatial extent of 

the community.

The design of a realistic model of a community requires a bottom-up approach 

of  modeling  the  processes  of  social  relationality  according  to  the  behaviours  of 

affectively  enabled  individuals  that  generate  the  complex  macro-level  system 

structure.  Human  interactions  are  face-to-face  social  exchanges  that  occur  at  the 

micro-level of individual people. At this scale, the behaviors of the individuals can be 

unpredictable  and stochastic  so a  top-down modeling  approach based on a  set  of 

generalized  behavioral  equations  or  rules  would  be  problematic.  This  micro-scale 

unpredictability reflects the fact that a community of socially interacting people is a 

complex system, with complex referring to the many non-linear relationships between 

people and to  the fact  that  these relationships  are  the result  of processes that  are 

spatially  and  temporally  dynamic.  Each  person  can  vary  in  his  memories, 

experiences, knowledge, and desires so it is not useful to analyze a social community 

as the macro-scale, because the behaviours of the community will emerge from the 
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actions choices and decisions of the constituent individuals. For these reasons, the 

intention of this research is to develop a formalization founded on complexity theory 

that will model a community as a complex adaptive system of social relationality.

In the domain of geographic complexity, the relationality between constituent 

elements of a human system sets the focus on how the spatial variability and social 

interactions between people and the environment produce emergent system behaviour 

that in turn acts back on the individuals, altering and guiding their behaviours and 

decision-making.  Several authors (O’Sullivan 2004; Manson, 2007) present this form 

of aggregate complexity as a relational view of space, which involves the study of 

local attributes of physical locations, interactions among individuals at neighbouring 

locations, and information flows along these interaction networks. Thus, community 

as a complex adaptive system must represent the individuals, define the relationality 

among them according to a set of theoretically supported assumptions, and capture 

the role of the spaces in which they exist and are related. 

Hazy (2007) reviewed numerous distinct approaches synthesized as complex 

adaptive systems in computer models of social behaviours, and determined that agent-

based modeling is a preferred method for simulating the processes in a human system. 

Agent-based models are generative bottom-up systems that consist of a set of agents 

that simulate the behaviours of the various individuals that make up the system. A 

spatially explicit  agent-based model of a human system is based on two universal 

concepts essential for generating adaptive social networks: the processes that bring 

about the relations, and the internal structure of the network (Alam and Geller, 2012). 

Process  and  structure  are  linked  when  the  agents  are  placed  within  the  system 
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according to their social and geographic positioning.  The concept of a community is 

premised as a well-connected relational  structure of networks defined by a  set  of 

processes and reconfigured by the phenomena that emerge from social interactions.  

Gilbert  (2004)  suggests  that  the  design  of  an  agent-based  model  should 

consider existing theory to articulate its purpose, and its baseline architecture should 

concentrate  on  the  central  processes  of  a  number  of  important  aspects  in  the 

theoretical application. Onyx and Leonard (2010) present a complexity perspective of 

a well-connected community as a geographic confluence of social engagement across 

multiple  overlapping  networks  of  people  in  activities  geared  towards  community 

development.  In  practice,  community  development  from  a  complex  systems 

perspective is a specialized goal-oriented form of social relationality, but its abstract 

framework is  based on processes  and emergent  behaviours  common in studies of 

social  networks,  specifically  social  interactions,  cooperation,  trust,  and leadership. 

The postulates of community development from a complexity perspective provide the 

epistemological direction for developing and utilizing the model in this research.

 The aim of this research is to develop a spatially explicit agent-based model to 

simulate the nonlinear dynamics of social relationality in a generic rural community 

that is characteristic of an outport in Newfoundland and Labrador. As a sociological 

subject  and geographic  object,  the  emergent  community  depends  on  the  mobility 

behaviours  and  social  decisions  of  individuals  across  a  range  of  micro-level 

relationships of different types and strengths. It is also imperative that the influence of 

administrative  norms  and  macro-level  emergent  phenomena  on  the  decisions  and 

behaviours of the agents be considered, because individuals can reason and act on the 
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macro-level features of the social networks that they are part of (Gilbert, 2004). An 

undervalued  aspect  of  human  decisions  in  social  agent-based  modeling  is  the 

affective state of the individuals in the anticipation and response to the personal gains 

or losses from memberships in these interaction relationships. Kennedy (2012) argues 

that the design of an agent-based model of a human system needs to be cognitively 

enhanced to consider how the emotional states of individuals influence their decisions 

in social exchanges. Therefore, a better approximation of realistic human decision-

making has to consider how an individual’s emotions, mood, and personality generate 

stronger or weaker relational ties in the networks, and how the affective states of the 

citizens  influence  the  level  of  social  identity  in  the  community.   Formally,  the 

architecture of the model must be an integrated system of methods that simulate the 

different types of relationships that individuals could participate in, and a mobility 

mechanism to simulate the variability in the spatial positioning of the agents as they 

move throughout the environment to engage in everyday activities. Heeding Gilbert 

(2004) about limiting the scope of an agent-based model to avoid over-complication 

of its architecture, the everyday activities that the individuals can pursue are limited 

to  social  interactions  specific  to  definable  processes  of  community  development. 

Social  relationality  in  the  context  of  community development  will  depend on the 

emergence of cooperation and leadership in the localized social interaction networks. 

Studies  in  the  social  and  computer  sciences  have  utilized  the  Prisoner’s 

Dilemma  (PD)  to  analyze  the  emergence  of  cooperation  in  social  environments 

(Trivers, 1971; Axelrod, 1984; Brembs, 1996). The Prisoner’s Dilemma is a social 

coordination game that simulates the emergence of cooperation among the same set 
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of non-discriminatory agents who interact and learn synchronously. In this model, the 

formalization  of  the  Prisoner’s  Dilemma  game  is  conditioned  on  the  number  of 

individuals in the social grouping and the relationality structure of certain everyday 

activities. The Iterative Prisoner’s Dilemma (Axelrod, 1984; Boyd and Lorderbaum, 

1987;  Nowak  and Sigmund,  1992)  is  a  non-zero  sum game  played  between  two 

individuals who can choose to either cooperate with or defect from the other player. 

There are two situations where the social interactions are modeled as communication 

events between a pair of individuals: (1) the social group only consists of two people, 

and  (2)  for  a  social  group  of  more  than  two  people,  the  everyday  activities  are 

implemented  as  two person power relationships  between each possible  pairing  of 

individuals. For example, there may be ten patients in the waiting room of a medical 

clinic, but a physician will communicate with each person individually in a separate 

social exchange. 

For all other neutral power relationships (all individuals have some level of 

control)  with more than two people interacting,  the N-Person Prisoner’s Dilemma 

simulates the collective actions and behaviors in social groups. During an interaction 

episode, individual players may cooperate with each other for the collective good of 

their  social  environment,  or  they may prefer  to  pursue their  selfish interests.  The 

incentives  to  cooperate  may depend on how many players  are contributing  to the 

group and the effect of their  actions. In multi-player  interactions,  cooperation and 

social cohesion emerge from the consensus behaviors and actions of the social unit. In 

this  research,  the  N-Person Prisoner’s  Dilemma is  used  as  a  generic  approach of 
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social interactions in a spatial neighbourhood, and does not represent a specific type 

of relational situation between the individuals. 

The localization of social groupings is directly associated with the mobility 

events of individuals to locations of specific activities. For example, an agent travels 

to the nearest supermarket to purchase groceries and encounters other consumers at 

the same location. Once the temporary social groups are formed, the goal of the N-

Person  Prisoner’s  Dilemma game  is  to  only  simulate  the  processes  of  social 

interactions and determine whether a series of outcomes make the individuals more 

cooperative  and  trusting,  and  does  not  represent  the  processes  of  simulating  the 

particular everyday activity itself.  Simulations runs investigate the spatial dynamics 

of the emergence of cooperation and leadership in a community of social interaction 

networks, where altruistic behaviours of the agents are essential to strengthening the 

degree of communal relationality and social identity. 

1.1 Agent-Based Models

Originated  in  the  field  of  Distributed  Artificial  Intelligence,  agent-based 

models  are  based  on  the  principles  of  distribution  and  interaction  (Ferber,  1999; 

Weiss, 1999). Agent-based models are comprised of a community of agents. An agent 

is an autonomous entity that is able to act locally in response to stimuli  from the 

environment,  to communicate  with other agents, and to have goals that it  aims to 

satisfy. Ferber (1999) defines an agent as:

“a  real  or  abstract  entity  that  is  able  to  act  on  itself  and  its  
environment; which has a partial representation of its environment;  
which can communicate with other agents; and whose behavior is the  
result of its observation, knowledge, reasoning, and interactions with  
the other agent”
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The  goal  of  agent-based  models  of  human  systems  is  to  enrich  the 

understanding of  the macroscale  phenomena that  may emerge  in  the system.  The 

characteristics that are supported by the agent in a model will ultimately depend on 

the  context  of  the  project.  However,  there  are  seven  general  characteristics  that 

commonly form the core characteristics of an agent (Wooldridge and Jennings, 1995; 

Benenson and Torrens, 2004). 

First, agents are autonomous and heterogeneous, which means that they act 

based on their own experiences. An autonomous agent operates without the direct 

intervention of others and has control over its actions and internal states. 

Second,  agents  are  proactive  and  reactive.  An  agent  is  proactive  when  it 

exhibits goal-directed behavior to control its own behaviour in spite of changes in the 

environment.  Reactivity  is  the ability  of  an agent  to  sense and act  as  a  result  of 

changes  in  the  environment  (Cristo,  2001).  In  this  case,  an  agent  perceives  an 

environment, and a change in that environment affects its behavior. 

Third, agents have the ability to perceive their neighbours and be aware of the 

opportunities and problems they offer.

Fourth,  agents  can  exhibit  sociability,  which  allows  them to  communicate 

with  other  agents  and  entities.  Communication  is  one  of  the  most  important 

characteristics necessary for agent interactions and is the basis for the emergence of 

collective behaviors. 

The fifth characteristic of an agent is that it is adaptive, and it can learn and 

improve with experience. An agent uses its experience and knowledge to learn, and to 

change its behaviors based on this learning. 
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Sixth, an agent has an identity that contributes to its sense of individuality and 

recognition. Identity refers to the associated attributes assigned to an agent, such as 

gender, marital status, age, etc. When interaction starts, the identity attributes of the 

agents  enable  them  to  know  whom  they  are  dealing  with  and  how  they  should 

approach them in a communicative manner. 

Finally, an agent can be mobile and can travel about the system according to 

its sense of space. Agents can be static, but they can also be non-fixed entities that 

know where to go, when to go, and how to go there. During this movement, the sense 

of place orients the agent to be aware of its  own location as well as where other 

destinations, objects, and agents are situated.

Agent-based models are designed to simulate the behavior of these agents as 

they interact with each other and with their environment using simple local rules. The 

application of these rules will differ depending on the local characteristics of each 

agent. Thus, the rules are handled autonomously and independently at the level of 

each  agent,  but  their  functioning  takes  into  account  the  characteristics  of  the 

surroundings through the interactions between different entities. 

1.2 Social Relationality in a Community Context

Lichtenstein  et  al.  (2006)  describe  social  relationality  as  an  emergent 

phenomenon  from  the  non-linear  interactions  that  occur  between  the  "spaces 

between" individuals within a social network.  In this context, space is a sociological 

subject  concerned  with  the  bonding or  sense  of  closeness  that  emerges  from the 

communications and knowledge exchanges between individuals. Relationality is thus 
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an  adaptive  process  based  on  the  shared  understanding  of  the  associations  that 

constitute particular social connections. Individuals develop a sense of bonding, often 

varying temporally, when their interests and opinions are closely aligned with those 

of the interaction grouping. Thus, a social network consists of evolving connections 

and interdependencies between people rather than the selfish actions of individuals. 

The social  aspects  of  the "space  between" individuals  are  shared  with  the 

relational view of the space of aggregate complexity, but the geographic variability of 

where  the  individuals  are  situated  when  they  engage  in  a  social  interaction 

differentiates the approaches.  However,  several researchers (Gilchrist,  2000; Onyx 

and Leonard,  2010) present  relationality  as  an emergent  dynamic  within  a  "well-

connected" community,  an interaction space that is both a sociological subject and 

geographic object.  A relational community is conceptualized here as a geographic 

confluence of social engagement across multiple overlapping networks of interacting 

and  interdependent  agents.  The  self-organization  of  the  internal  structure  of  a 

community  will  depend on the  positioning  of  the  agents  in  the  social  interaction 

networks  as  each  individual  goes  about  their  daily  life.  Yamakawa  et  al. (2005) 

define social positioning as a dynamic form of social role determination contingent on 

the learning and recognition of the importance of individual social relationships in a 

community.  As  such,  social  positioning  is  the  level  of  trust  associated  with  an 

individual  as  a  consequence  of  the  altruistic  and  beneficial  (socially,  financially, 

emotionally,  etc.) behaviors in past interaction episodes. Individuals in high social 

positions often emerge as leaders within the community and are actively sought out 

by  others  wanting  to  exchange  information,  opinions,  and  knowledge  with  them. 
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Bradbury  and  Lichtenstein  (2000)  explain  that  social  positioning  in  relationality 

depends on the vividness and locus of the interactions within the social networks.    

Hess  et al. (2009) demonstrate that vividness of interactions depends on the 

social presence of individuals, with the intensity of vividness strongest in face-to-face 

communication.  As  such,  vividness  refers  to  the  degree  that  interpersonal 

relationships  are  visible  and  quantifiable  according  to  the  similarity  of  each 

individual's  self-identity  and  their  perceived  social  identity  of  the  collective.  The 

strength and temporal constancy of the connections that an individual associates with 

others will depend on the emergent level of cooperation in the decisions of the social 

grouping.  Also,  cooperation  is  an  integral  mechanism  in  a  tendency  toward 

homophily  in  a  social  network,  where  the  greater  the  similarity  between  the 

individuals  the  more  likely  it  is  that  they  will  establish  and  maintain  a  social 

connection (McPherson  et al.,  2001). Homophily is the tendency of individuals to 

associate  and bond with others  who share common characteristics,  such as  social 

position or type of occupation (Cohen et al., 1998). An individual’s sense of self in 

the  community  is  an  indication  of  the  social  and  emotional  profitability  of 

membership in a social network, which has been measured as individual utility levels 

in several agent-based models of relationality (Tesfatsion, 2001).  The vividness of 

the interaction can be determined with a simple comparison of the utility level of each 

individual and the average utility values for all citizens in the community. 

The locus  of interactions  refers  to  the different  types  of  relations  that  can 

occur  within  a  community:  dyadic  pairings,  small  aggregate  clusters,  the  entire 

population, etc.  The temporal and social elements of the locus of interactions are 
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conditioned on who initiates the contact in a relationship and whether an individual(s) 

has a level of authority or influence in the communication exchanges. Individuals of 

lower social position may intentionally initiate a relationship with a leader to learn 

what  traits  and  behaviors  they  could  imitate  to  improve  their  social  standing. 

Authority  and  influence  are  characters  of  power  relationships  (Mann,  1986, 

Markovsky and Willer, 1988), where a level of control is either implicitly or directly 

linked to certain participants in a social exchange.  The socially forward person in a 

power relationship has the ability to influence the behaviours and decisions of his 

subordinate neighbours for either personal advantage or for the self-perceived benefit 

of the collective. 

An  example  is  an  employee-firm  interaction  network  in  an  asymmetrical 

labour  market.  Depending  on  the  market  conditions,  such  as  the  wage  rate, 

unemployment rate, and job vacancies,  the locus of control falls to the participant 

who has the less to lose if the results of an interaction episode are mutually self-

rewarding.  Take the  case  where there  are  a  large  number  of  potential  employees 

interacting with a firm tasked with filling a single job opening. The likelihood is high 

that many of the employees will purposely exhibit altruistic behaviours and set the 

locus of control to the firm in an effort to differentiate themselves from the other 

candidates. The firm has exclusive control over who is selected as the job partner, and 

the choice could be the individual  that  the employer  believes can be exploited to 

obtain some level of payoff. 

An often overlooked factor in the locus of interactions is the affective states of 

the participants  in  these social  interactions.  An introverted  personality could be a 
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contributing cause as to whether a person intentionally avoids social contact, while a 

charismatic  extrovert  could  emerge  as  a  natural  leader  in  the  environment.  The 

emotional  aspects  of  the  personal  connections,  feelings  such  as  joy,  distress, 

admiration, and reproach, exert an influence on how individuals both anticipate and 

respond to the consequences of each interaction event.  For example, an individual 

who becomes angry has entered a mood state where his level of social dominance 

rises,  and can  increase  to  a  point  where  he  forcefully  takes  control  of  the  social 

interaction (Mehrabian, 1996).

Spatial positioning in the well-connected community refers both to the spatial 

variability of where the entities are situated and the mobility dynamics of the human 

population.  At  an  abstract  level,  a  typical  community  consists  of  both  fixed  and 

mobile geographic entities. Fixed entities are the non-mobile objects that comprise 

the infrastructure footprint of a community: buildings, roads, parks, water features, 

etc.   A  relational  view  of  fixed  space  is  primarily  concerned  with  the  spatial 

proximity of the infrastructure objects and how their characteristic attributes influence 

the formation of social networks. Changes in the physical state of a fixed object could 

impinge and alter the states of its fixed neighbours. For example, the levee of a river 

could break and the flood water spill onto a road network making it impassable. Yet, 

the  infrastructure  pieces  in  a  community  mostly  function  as  the  origins  and 

destinations  for  the  mobility  behaviours  of  the social  entities.  Networks  of  social 

interaction are constructed and reinforced as people move throughout the system as 

they  pursue  the  activities  of  everyday  life.  Whether  due  to  the  anticipation  of  a 

positive experience in the social exchange or the residency of a person of high social 
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position, individuals will purposely travel to the locations of specific infrastructure 

facilities that house these activities. The locus of interaction can play a role in the 

place-dependent trajectory of social bonding in the localized subpopulations of people 

who  emerge  within  the  system.  A  complex  adaptive  system  model  of  a  well-

connected community can be developed as a spatial agent-based model that simulates 

relationality as the product of the adaptive dynamics of both the geographic topology 

and social connectivity networks in the simulated environments.

2.0 Statement of the Objectives

The main objective of this research is to develop a spatially explicit agent-

based  model  of  a  relational  community  and  to  simulate  the  principal  processes 

associated  with  human  positioning  in  socio-geographic  interaction  networks.  The 

framework  will  simulate  the  dynamics  of  a  community  with  the  decisions  and 

behaviours of affectively enabled human agents, with the social bonding depending 

on the emergent cooperation within the environment. Agents who attain a level of 

trust can assume the role of a leader and direct the course of action of the plans and 

policies  to  better  the  social  and  economic  conditions  of  the  community.  Gilbert 

(2004) comments on the strategies of building socially oriented agent-based models, 

and suggests that the art of modeling is to keep the baseline framework as simple as  

possible. The research scope of human positioning is immense, involving aspects of 

sociology, psychology, geography, economics, and many other disciplines. A model 

of  relationality  comprising  all  of  the  functions,  processes,  and  methods  of  each 

research  discipline  would  be  theoretically  impractical  and  computationally  very 
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expensive. Also, the design of a model should be based on existing theory to aid in 

deciding what factors are important to clearly articulate its purpose and to ensure its 

capability of generating useful information (Gilbert, 2004).  With a well-connected 

community as the simulation environment, the theoretical basis for this model comes 

from the field of community development.

It  is  important  to  note  that  the  model  in  this  thesis  only  integrates  the 

characteristic  processes  universally  associated  with  community  development  to 

formalize a methodology of simulating social relationality in a generic community. 

To  comprehensively  model  the  dynamics  of  community  development,  major 

components that simulate culture, economy, and the natural environment would have 

to be included, and that is beyond the scope of this thesis. Also, processes directly 

tied to social relationality, such as volunteerism and empowerment, would have to be 

modeled.   In its  current  form, the  framework for this  model  encompasses  only a 

subset of the complete range of processes involved in community development.

2.1 Community Development as a Complex Process

Onyx and Leonard  (2010) describe  community  development  as  a  complex 

system of nonlinear processes that emerge from the actions and initiatives of people 

as they utilize the embedded social capital within a community. Similar to Shaffer et  

al.  (2006),  community  development  is  pictured  as  a  star-like  embodiment  of 

interacting spatial, economic, psychological, and social processes (Figure 2.1).  At the 

top  of  the  star,  the  human  resources  are  the  agent  population:  each  individual  is 

assigned a personality as well as state variables that determine his social position and 

spatial location in the network. The decisions and behaviors of each agent will alter 
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his affective status and states in function of a set of transition rules and in conjunction 

with institutional conditions and the global consequences of his interactions. Rules 

and  institutions  guide  the  behaviors  and  decision  making  of  the  human  agent. 

Institutions are governance networks that set the rules for using a community’s social  

and labour market capabilities. Rules provide the agent with a form of intellectual 

ability to interact and communicate within the environment. Intelligence relates to an 

agent’s cognitive ability obtained from its set of transition rules that handle its state, 

location, and neighbourhood interactions.

Figure 2.1: The Processes of Community Development

Decision-making is the primary evaluation process in a human system, where 

people communicate to identify values and issues in the community.  These social 

exchanges allow people to participate and cooperate in collective problem solving. A 

standard  for  the  agent-based  modeling  of  power  relationships  is  the  Prisoner’s 
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Dilemma. Yet, an underdeveloped aspect of the Prisoner’s Dilemma is the affective 

state of the agents as they engage in the social interactions. The locus of interactions 

requires the emotional and mood states of individuals to determine their reactions to 

the outcomes  of  these  communication  events.  In  addition,  decision-making  in  the 

different types of power relationships requires the social interactions be implemented 

both  as  multi-agent  and  dyadic  exchanges,  the  later  specific  to  labour  market 

interactions. 

Social  interactions  are  tied  to  decision-making  when  agents  have  actively 

chosen to pursue an activity in the community that brings them in close proximity to 

other agents. Social interactions are the knowledge exchanges that occur amongst the 

individuals,  and the results of these exchanges will determine the cooperation and 

leadership structure in the community.

Labour market exchanges are directed social interactions that are intended to 

establish an economic relationship between an employee and a firm.  Agent-based 

labour market interactions have been simulated as Trade Network Games (Tesfatsion, 

1997;  1998;  2001;  Kitcher,  1998;  McFadzean  and  Tesfatsion,  1999;  Pingle  and 

Tesfatsion,  2001,  Hauk,  2001),  and  this  approach  can  be  modified  to  consider 

geographic distance in the evaluation of expected payoffs for relational matching. A 

spatial labour market game component simulates a two-sided market of employees 

and  firms  with  choice  and  refusal  behaviors  and  the  option  of  non-employment. 

Cooperation  emerges  from  the  relationality  and  trust  between  pairings  of  trader 

agents as they participate in a labour market power interaction.
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Leadership structure involves the complex interplay between administrative 

coordination and adaptive enabling in the social interactions. Modeling of emergent 

leadership depends on the tensions in the social interactions and the dissemination of 

information  and  opinions  throughout  the  environment  by  socially  influential 

individuals (Lichtenstein  et al.,  2006). The altruistic  state of a social  environment 

depends on the survival and reputation of the overall cooperation leader(s) and the 

social mimicry of successful action strategies by the unsatisfied agents (Zimmermann 

and Equíluz, 2005).

Space  is  the  central  coordinating  element  that  integrates  all  of  the 

aforementioned processes, because all instances and manners of social interactions 

happen somewhere within the geographic confluence of the community. 

2.2 Framework of an Integrated Spatial Agent-Based Model of Relationality

The  computational  architecture  is  the  object  oriented  implementation  in 

Repast  of  a  heuristic  approach  to  modeling  the  nonlinear  dynamics  of  spatial 

mobility,  social  communication,  psychological  state,  labour  market  dynamics, 

emergent leadership, and evolutionary learning. The heuristic sets are comprised of 

both bottom-up and top-down interaction  rules  that  simulate  the  behaviors  of  the 

agents, who are represented as autonomous objects of knowledge and action.  

The  first  step  in  achieving  this  objective  is  to  devise  a  methodology  for 

simulating the behaviours of mobile agents in a community. As an approximation of 

real world decision-making,  agents have an affective state  derived from a layered 

model  of  affect  (personality,  mood,  and  emotions)  module  that  influences  their 
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participation  in  and  response  to  the  outcomes  of  social  interactions.  The  spatial 

context of these social interactions is based on the mobility dynamics of individuals 

as they probabilistically select an activity in reference to their demographic states and 

the expected payoff associated with potential neighbours. The possible activities are 

geographically  classified  according to  the  type  of  neighbourhood required  for  the 

corresponding social network: (1) a grouping of multiple agents at a shared location, 

or (2) a directed dyadic pairing of employee-firm traders engaged in a labour market 

transaction. Social interactions in multiple agent neighbourhoods are simulated as N-

Person's  Prisoner's  Dilemma  games,  where  the  action  choices  of  individuals are 

determined  from  the  degree  of  relationality  and  trust  within  the  social  network. 

Labour market transactions are preferential partnerships between an employee and a 

firm who are matched according to expected payoffs. These directed social exchanges 

are modeled as two person's Iterative Prisoner's Dilemma games. Emergent leadership 

is conditioned on the tensions endemic in the Prisoner's Dilemma and the tensions 

purposely introduced during knowledge diffusion by the administrative leaders. The 

localized  and  overall  cooperation  and  defection  leaders  are  identified  by  the 

magnitude of their  rewards,  and are identified as financially successful within the 

environment. The unsatisfied agents survive by adopting the action strategy of their 

highest paid neighbour in a form of evolutionary learning implemented with a social 

mimicry mechanism. The underlying principle of this model is a form of steady state 

cooperation  in  a  spatial  environment  that  depends  on  the  citizens  behaving  in  a 

comparably  altruistic  manner  by  making  affective  decisions  with  similar  action 

strategies.
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The next step is the simulation runs of “what if” scenarios that investigate the 

dynamics  of the processes of each model  component independently and then as a 

comprehensive  system.  The  findings  from  each  set  of  simulations  illustrate  how 

cooperation and trust depend on the familiarity between the agents and the size of the 

interaction neighbourhoods. Also, the simulation results for each model component 

were important for the testing of the functionality of the subsequent model additions. 

For example, context preservation was fundamental to the emergence of cooperation 

in N-Person Prisoner's Dilemma module, and cooperation leads to positive emotional 

and mood states in the layered model of affect. Thus, interactions with the same set of 

affective  neighbours  lead  to  positive  appraisals  of  the  actions  of  the  agents  and 

improved the likelihood of further cooperation in these social networks.  Simulations 

of the integrated model investigated the different types of social  relationships that 

comprise the daily activities that occur within a community.  Scenarios with varied 

labour market parameters and activity specific interaction periods demonstrated that 

the type of relationship and the locus of control in the interaction neighbourhoods led 

to the self-organization of the cooperation and leadership structure in the simulation 

environments. 

3.0 Model Testing and Assessment 

One of the fundamental aspects of this research is gauging the utility of the 

model  through  calibration,  verification,  validation,  and  sensitivity  analysis. 

Calibration improves the agreement between model outputs and a real world dataset 

by adjusting initialization parameters. Verification is the testing method that evaluates 

the degree to which the computational and mathematical components of the model 
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generate expected behaviours relative to the theories that the model was developed 

with.  Rykiel  (1996) describes  validation  as  the procedure of demonstrating  that  a 

model possesses a satisfactory range of accuracy consistent with the intended purpose 

of the research application.  Sensitivity analysis  is a procedure that quantifies how 

adjustments  in  the  model  parameters  change  the  values  of  the  simulation  results 

(Kocabas and Dragićevíć, 2006).

Parker  et al. (2003) state that agent-based models fall into two classes: (1) 

theoretical "proof of concept" models for exploratory analysis, and (2) highly detailed 

empirical models for policy environments. The model presented in this thesis falls 

into the first category as a theoretical abstraction of social relationality so assessing 

its validity will be a challenge. This testing difficulty first relates to the fact that the 

relationality components are oversimplified representations of human communication 

so the possibility of disagreement between how people actually interact and cooperate 

and  the  manner  in  which  this  system  simulates  these  processes  is  significant. 

Secondly,  any ancilliary dataset that document the affective states, communication 

patterns,  and  cooperative  dynamics  is  most  likely  a  qualitative  summary  from a 

survey  or  questionnaire  so  validation  of  the  behaviour  of  the  model  may  be 

impractical. However, the issues of validation and verification must be addressed.

Refsgaard  and  Henriksen  (2004)  describe  calibration  as  a  procedure  of 

adjusting the parameters of a model to reproduce the simulation outputs according to 

benchmark settings. The calibration of a model that simulates human behavior and 

interaction is particularly difficult, because there is often no data source against which 

the  model  can  be  fine-tuned.  In  the  case  of  the  theoretical  community  of  social 
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relationality, there is not necessarily a real world system to compare the simulation 

with. One avenue of calibration of this model is to compare the simulation outcomes 

to results from previous research on the N-Person’s Prisoner’s Dilemma and Trade 

Network Games. The authors of these studies have provided expert opinions of what 

will and should happen in socialization activities in their  applications of a human 

system. The parameters for each component of this model should be set at the same 

initial values as in the original formalization to produce simulation results that should 

approximate the outcomes of these founding studies. For example, setting the non-

employment payment to zero should lead to full labour market participation during 

each  simulation  time-step  as  recorded by Tesfatsion  (1997)  in  runs  of  the  Trade 

Network Game. However, the calibration process in this model will have to adjust 

many parameters to account for the influence of space on the functionality of these 

components.  This  is  evident  in  the adjustment  of  the level  of  social  welfare in  a 

spatial labour market game as outlined in paper 3 of this thesis.

One of the main tests for gauging the trustworthiness of a model is through 

verification  of  the  logic  of  its  implementation  as  an  abstract  computer  program. 

Kennedy et al. (2006) refer to verification as "programming the model right", which 

means that it is a sufficiently accurate representation of the real-world phenomenon 

for  the  purposes  it  is  intended.  Verification  is  done  to  ensure  the  model  is 

programmed as error free as possible and that the algorithms and methods that drive 

the  simulations  are  implemented  properly.  Minimally,  it  is  a  process  including 

software debugging and evaluation testing runs to correct errors in an effort to ensure 

code  consistency  and  integrity.  The  development  of  these  models  involved  an 
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iterative strategy of unit testing after each revision of the source code. As each of the 

components from the first four papers was introduced into the integrated model, the 

evaluation involved tracing the source code in debug mode within Eclipse Integrated 

Development  Environment,  which  "steps  through"  the  code one  line  at  a  time  to 

verify the functionality and logic of the system. Following this regime of debugging, 

a level of certainty was gained that the model processes are activated as the right time 

and occur in the manner intended.  Model verification proceeded as more tests were 

performed,  errors  were  identified,  and  corrections  were  made  to  the  underlying 

model. The end result of verification is technically not a verified model, but rather a 

model that has passed all the verification tests (North and Macal, 2007).

Epstein and Axtell (1996) suggest that the quantitative verification of a model 

can be attained with the process of docking or model to model comparison. Docking 

involves the development of new software or utilization of an existing model to run 

the same coded routines and methods of the original system, and, keeping the data 

fixed, evaluate the similarities in the simulation results. The main idea is that model 

confidence  is  significantly improved when two model  produce the same effective 

results, particularly if the models were developed independently and with different 

programming  languages.  Due  to  the  considerable  programmatic  requirements  to 

development a secondary mode, docking was not pursued as a method of verification 

in this research.

Inner validation is concerned with the integrity of the processes described in 

the model  so its  assessment  purpose is  similar  to verification.  Peréz  et al. (2012) 

describe inner validation as a testing procedure that is concerned with how well the 
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model represents the theory and processes that describe and define its functionality. 

One method of testing the inner validity involves comparing the results of several 

replications of a simulation with the only difference being the random seed (Xiang et  

al.,  2005). Inconsistencies  in the results will  signify concerns with the validity of 

some aspect of the model.

Model validation is an assessment procedure that determines the adequacy and 

accuracy of the model’s computational framework in matching the real world system 

of interest. For model testing, validation is the crucial phase but, due to the stochastic 

and non-linear nature of complex adaptive systems, it is also the most problematic. 

The standard method of testing the performance of a model is outcome validation 

(Manson, 2001). Outcome validation is concerned with the "goodness of fit" of the 

results from the simulation runs and the empirical data collected for the real-world 

system, and quantifying the similarity between them with a statistical measurement of 

agreement, such as the Kappa value. The behaviour of the model is considered more 

valid and acceptable the higher the measurement of statistical similarity. However, it 

is  important  to  note  that  models  are  abstractions  of  reality  so  their  resultant 

behaviours can never totally and exactly match a real system.  Peréz  et al.  (2012) 

suggest  that  the  performance  of  a  model  should  be  measured  with  degrees  of 

validation, because there could be processes in the model that performed well despite 

the global disagreement so there is some value in the model.  Yet, many researchers 

(Fagerstorm, 1987; Mentis, 1988; Thagard, 1988; Oreskes et al., 1994; Crooks et al., 

2008; Peréz et al., 2012) argue that the outcome validation of an agent-based model 

of any social system is impractical and impossible. 
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Agent-based  models  are  inherently  non-linear  and  subject  to  stochastic 

fluctuations  so  each  simulation  run  could  produce  different  outcomes  that  are 

compared to the same empirical dataset. Some simulation results could approximate 

the validation data but others could be quite dissimilar. Batty and Torrens (2005) add 

to the argument by stressing that in recent years agent-based models have increased in 

diversity and richness of internal structures, and these complicated model structures 

are never  likely to be validated against  an atemporal  data  source.  Caswell  (1976) 

proposes that a theoretical model can only be conceptually validated by judging its 

value  on  its  usefulness  to  the  intended  purpose.  Manson  and  O'Sullivan  (2006) 

suggest that evaluation is an appropriate alternative to validation of abstract models, 

and  this  requires  the  researcher  to  find  ways  of  expressing  the  capabilities  and 

limitations of his model. One approach is face validation where domain experts are 

asked whether the model behaves reasonably and is sufficiently accurate, and this is 

generally a visual appraisal of the output. Mandelbrot (1983) also comments on the 

qualitative evaluation of a model by determining if the spatial patterns of simulation 

runs from the model visually "look right". The evaluation of a model can also be 

garnered from peer review of the methodology presented, and these expert opinions 

combined with experience and theory can set the foundation for model evaluation 

(Batty  and  Torrens,  2005).  These  arguments  set  the  possibility  of  conceptually 

validating the qualitative performance of this model by checking with experts in the 

associated fields of research (Becu et al., 2003; David et al., 2005). Several criteria 

that can be  used are (Janssen and Ostrom, 2006):

1. Is the model plausible given the understanding of the processes?
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2. Does  the  behavior  of  the  model  coincide  with  the  knowledge  and 
experiences of the relevant contributors to the research?

3. Can an understanding of why the model's performance is either good 
or unacceptable be achieved?

Once a model has been verified, a series of simulation runs is carried out to 

test the sensitivity of the model by changing input parameters to determine the effect 

upon the model and its output. Sensitivity analysis investigates the logic behind the 

design of the internal structure of the model, and provides an understanding of the 

implications of each assumption in the development and running of the model. The 

basis  of  all  social  relations  in  this  model  is  the  concept  of  a  geographic 

neighbourhood, the size of which determines the number of agents involved in the 

localized  social  interactions.  To  test  the  influence  of  neighbourhood  size  on  the 

emergence  of  cooperation  in  social  interactions,  simulations  with  neighbourhood 

sizes ranging from 10 to 500 meters radius were run. For the smallest sizes, those less 

than  40  meters,  the  composition  of  the  social  grouping  consists  of  an  agent's 

immediate neighbours. However, an issue in several of the simulation using small 

neighbourhoods was that  the groupings  only contained a  pair  of  agents,  and in  a 

group of n ≤ 2 individuals, the N-Person's Prisoner's Dilemma can not be simulated.  

In contract, social interactions in neighbourhoods of greater than 300 meters radius 

led to increasing instances of defection as the agents were less fearful of retaliation 

for their selfish behaviours.  The highest instances of localized cooperation and global 

social identity were evidenced for neighbourhoods within the 60 to 110 meter range, 

but the optimal neighbourhood size depends on the vector geometry of the spatial 

layer representing the buildings where agents can be situated.
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4.0 Research Organization

This research is divided into five papers submitted to peer-reviewed journals. 

Each concentrates on one aspect or component of the general model.  

Paper  one  discusses  the  theory  and  formalization  of  N-Person  Prisoner's 

Dilemma social interactions in a spatial environment. The model architecture consists 

of a simulation module tightly coupled to a Geographic Information System. Space is 

paramount in the mobility dynamics of the citizens and the configuration and size of 

the interaction neighbourhoods. The concepts and influences of context preservation 

and neighbourhood depth are introduced in these initial sets of simulation runs. This 

article  has  been  published  in  the  Journal  of  Artificial  Societies  and  Social 

Simulations, 12(18), http://jasss.soc.surrey.ac.uk /12/1/8.html. 

Paper two presents a layered model of affect, the psychology component that 

provides each agent with a personality, mood, and emotional state. The theory of the 

N-Person  Prisoner's  Dilemma  is  modified  to  consider  the  affective  states  of  the 

citizens in their behaviours before and after their responses to the outcomes of social 

exchanges.  This  article  has  been  submitted  for  peer  review  in  the  Journal  of 

Mathematical Sociology May 2013.

The third paper concentrates on the labour market dynamics within the socio-

geographic community. The design of a spatial labour market game is based on the 

preferential  partnerships  between  directed  employee-firm  pairings  from  a  Gale 

Shapley matching process, and the simulation of labour market exchanges as Iterative 

Prisoner's Dilemma games. After the labour market transactions, the action strategies 

of a pair of successful agents in a neighbourhood are imported into an evolutionary 
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learning module to produce an optimized behavorial strategy that is imitated by the 

lowest paid individual. This article has been submitted for peer review in the Journal 

of Computational Economics July 2013.

A conceptual  formalization  of  emergent  leadership  and  cooperation  is  the 

theme of the fourth paper. A literature review shows the entanglement of adaptive and 

administrative  leadership  provides  the  necessary  tensions  in  the  nonlinear  social 

exchanges of the citizens for cooperation to emerge and set the topology for localized 

and environment wide leadership. The importance of the diffusion of knowledge and 

opinions  throughout  the environment  as a  factor  in  emergent  cooperation  and the 

supplementary facilitation of the social interactions is discussed. A working model of 

self-organizing  leadership  requires  a  two stage plan of  first  presenting  the  theory 

behind the formalization and then the programming of the complicated integration of 

the components that simulate the processes of social relationality and cooperation. 

The development and implementation of a working model of emergent leadership is 

beyond the scope of this thesis so this paper is limited to the proposal of an abstract  

formalization.  This  article  has  been  submitted  for  peer  review  in  the  Journal  of 

Leadership Quarterly June 2013.

Paper five is the integrated model consisting of all of the components of the 

previous  papers.  This  is  a  spatially  explicit  model  containing  the  spatial,  social, 

psychological,  and  labour  market  elements  of  a  well-connected  community.  The 

modeling environment consists of affective citizens engaged in Prisoner's Dilemma 

game  play  after  they  have  relocated  to  the  activity  site.  For  a  socio-geographic 

environment,  a  steady state  of  cooperation  is  conditioned  on the  perpetual  social 
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mimicry  of  successful  action  strategies  to  a  point  where  a  small  set  of  schemas 

prevail, and the altruistic tendencies of a majority of the agent population. This article 

has  been  submitted  for  peer  review  in  the  Computers,  Environment,  and  Urban 

Systems June 2013.

A concluding chapter summarizes the methodologies for each the components 

of the model, list the achievements of the research, and proposes considerations for 

future work.
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Part II: Papers

6.0 A Spatial Agent-Based Model of N-Person Prisoner’s Dilemma Cooperation in a 
Socio-Geographic Community. 

Abstract

The purpose of this  paper is  to present a spatial  agent-based model  of N-

person prisoner’s dilemma that is designed to simulate the collective communication 

and cooperation within a socio-geographic community. Based on a tight coupling of 

REPAST  and  a  vector  Geographic  Information  System,  the  model  simulates  the 

emergence of cooperation from the mobility behaviors and interaction strategies of 

citizen  agents.  To  approximate  human  behavior,  the  agents  are  set  as  stochastic 

learning automata with Pavlovian personalities and attitudes. A review of the theory 

of the standard prisoner’s dilemma, the iterated prisoner’s dilemma, and the N-person 

prisoner’s dilemma is given as well as an overview of the generic architecture of the 

agent-based  model.  The  capabilities  of  the  spatial  N-person  prisoner’s  dilemma 

component are demonstrated with several scenario simulation runs for varied initial 

cooperation percentages and mobility dynamics.  Experimental results revealed that 

agent  mobility  and context  preservation bring qualitatively different  effects  to  the 

evolution of cooperative behavior in an analyzed spatial environment. 
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6.1 Introduction

The  evolutionary  processes  that  are  fundamental  to  cooperation  in  social 

situations have been an enduring theoretical problem in biological, sociological, and 

geographical  research.  Cooperation is  behavior  that  may initially  cost a person or 

group but ultimately benefits other individuals or social assemblages. While this may 

seem an uncomplicated concept, the derivation of satisfactory theoretical explanations 

for  real-world  altruistic  behavior  has  been  a  challenge  (Killingback  and  Doebeli 

2002). However, the prisoner’s dilemma has become one of the most widely adopted 

methodologies  for  studying  the  evolution  of  cooperation  in  simulated  social 

environments.

Most of the published work about the prisoner’s dilemma deals with the two-

player iterated game. These articles show how the repeated interactions between pairs 

of  players  can  result  in  the  emergence  of  cooperation  due  to  reciprocal  altruism. 

Beginning with Axelrod (1984), iterated prisoner’s dilemma tournaments have been 

run to compare and identify the evolutionary strategies that consistently produce the 

best  cooperation  results.  The  more  successful  strategies  have  demonstrated  that 

spatial  structure  is  an  influential  factor  in  building  cooperation.  Nowak and May 

(1992)  presented  the  seminal  work  that  showed  how  the  spatial  effects  of  the 

interactions between simple agents in a cellular automata (CA) model of the iterated 

prisoner’s dilemma was sufficient enough for the evolution of cooperation. Alonso et 

al. (2006)  devised  a  similar  CA  model  that  simulated  cooperation  through  the 

behavioral  adaptation  of  Pavlovian  agents  as  they  adjusted  their  cooperation  by 

mimicking the most successful player in a neighbourhood.
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N-person prisoner’s dilemma (NPPD) has also been a research topic of spatial 

modelers  who are  interested  in  the  emergence  of  collective  cooperation  in  social 

groupings. Referred to as a social dilemma situation, a player has to choose between 

his  own interests  or  exhibit  cooperative  behaviors  that  benefit  the  grouping of  N 

players. Akimov and Soutchanski (1994) developed a spatial NPPD game to relate 

how collective cooperation depends on the behavioral patterns of simple automata 

within  a  CA.   Szilagyi  (2003)  presented  a  CA  model  of  NPPD  based  on  the 

interactions  of  irrational  agents  in  a  social  unit  and revealed  how the  chaos  like 

actions of the agents was an important condition for decentralized group cooperation. 

Zhao et al. (2005) expanded the work of Szilagyi (2003) and proposed an N-person 

model  that  establishes  a  continuous  state  of  cooperation  from  the  attitudes  and 

personality types of agents in a CA. They found that the depth of the neighbourhood 

of the social groupings was the central factor that determined cooperation dynamics 

in  the  simulation  runs.  This  point  raises  an  important  condition  of  a  prisoner’s 

dilemma CA in that the automata are usually fixed entities in a regular lattice of cells.  

Context  preservation  has  been  established  as  a  key  factor  in  the  evolution  of 

cooperation and is intuitively linked to the neighbourhood and mobility rules within 

the spatial model. However, there is minimal published research that deals with the 

spatial modeling of NPPD involving mobile agents.

In  this  paper,  it  is  argued  that  a  spatial  agent-based  model  of  N-person 

prisoner’s  dilemma  can  extend  the  study  of  collective  communication  and 

cooperation  within  a  socio-geographic  community.  Based  on  a  tight-coupling  of 

REPAST and a vector Geographic Information System (GIS), the model is designed 



45

to  simulate  the  emergence  of  communal  cooperation  relative  to  the  mobility 

behaviors and interaction strategies of citizen automata. Support for the methodology 

is demonstrated with simulation runs for a real-world analyzed environment and a 

discussion of its use in simulating scenarios of social dynamics.

6.2 Agent-Based Models

Agent-based  models  (ABM) are  comprised  of  a  community  of  agents,  an 

agent being an autonomous entity that is able to act locally in response to stimuli 

from the environment, to communicate with other agents, and to have goals that it 

aims to satisfy. Community relates to the relationship between individual agents in 

the system, and these could be either reactive or cooperative (Benenson and Torrens 

2004). 

The  goal  of  agent-based  models  of  social  systems  is  to  enrich  the 

understanding of the fundamental processes that may appear in the environment. This 

requires the modeling of the essential characteristics and attributes of the agents, the 

simple  rules  of  agent  interaction,  and  the  emergent  patterns  of  automata 

communication  and  interactions.  Communication  is  one  of  the  most  important 

characteristics necessary for agent interactions and is the basis for the emergence of 

negotiation, collective behaviors, and social cooperation. 

6.3 Prisoner’s Dilemma and Social Cooperation

Many studies in the social and computer sciences have utilized the prisoner’s 

dilemma  to  analyze  the  emergence  of  cooperation  among  non-relatives  in  social 
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environments  (Brembs  1996;  Trivers  1971;  Axelrod 1984).  The popularity  of  the 

prisoner’s dilemma stems from it being a robust and fundamental method of modeling 

the  emergent  social  structures  from  the  reciprocity  of  cooperative  actions  from 

members of social and biological communities (Cohen et al. 1998).  Furthermore, the 

game is appealing from its simplicity of statement and design and its applicability to 

agent-based simulations of leadership, cooperation, and social differentiation from the 

interactions between neighbouring agents. 

6.3.1 Prisoner’s Dilemma

Originating within the field of game theory, the prisoner’s dilemma (PD) is a 

type  of  non-zero sum game played  by two players  who can choose between two 

moves, either to cooperate with or defect from the other player. The problem is called 

the prisoner's dilemma, because it is an abstraction of the situation felt by a prisoner 

who can either cut a deal with the police and tell on his partner (defect) or keep silent 

and therefore tell nothing of the crime (cooperate). The key tenet of this game is that  

the  only  concern  of  each  individual  player  is  to  maximize  his  payoff  during  the 

interaction, which sets the players as naturally selfish individuals. The dilemma arises 

when a selfish player realizes that he cannot make a good choice without knowing 

what the other one will do. Non-zero sum is a situation where the winnings of one 

player are not necessarily the losses of the other. As such, the best strategy for a given 

player is often the one that increases the payoff to the other player as well. 

Table 6.1 highlights the structure of a canonical payoff matrix used in a PD 

game.
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                 Table 6.1: Payoff Matrix for a General Prisoner’s Dilemma Game
Player A

Player B
Cooperate Defect

Cooperate R, R S, T
Defect T, S P, P

R is  the reward  payoff  that  each player  receives  if  they both  cooperate,  P  is  the 

punishment that each receives if both defect, T is the temptation to defect alone, and 

S is the sucker payoff that is assigned when a player cooperates alone.  The payoff 

structure is such that T>R>P>S, which ensures that there’s always the temptation to 

defect  since  the  gain  for  mutual  cooperation  is  less  than  the  gain  for  one  player 

defection.  

McCain (2003) states that the premise of a PD game is the strict domination of 

cooperation by defection so that the only possible equilibrium is obtained when all 

players defect. However, the pursuit of selfish interests will not produce a collective 

order  required  for  the  functioning  of  a  social  system.  Some  form  of  prisoners 

dilemma is therefore needed for the modeling the dynamics of a social community. 

While it has been extensively modeled, researchers have dismissed the basic 

PD as an unrealistic abstraction of individual interactions. Firstly, PD is intended to 

study finite two person interactions, but real-world social communities can consist of 

long-term  many-person  interactions.  Secondly,  it  is  assumed  that  there  is  no 

communication  between  the  two players  and  no  history  of  past  exchanges.  Prior 

knowledge of past interactions may commit the players to coordinated strategies of 

cooperation. Lastly, the players are assumed to be rational, which implies that both 

will  continually  decide  to  defect  to  maximize  their  individual  payoffs  and  never 

cooperate. 
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Nevertheless,  researchers  have  expanded  the  standard  PD game  to  enable 

participants  to  play  the  game  multiple  times  and to  have  knowledge  of  previous 

moves. The iterated prisoner’s dilemma has demonstrated that the players’ decision to 

cooperate or defect accumulates over time as each player develops a reputation that 

affects the incentive of others to cooperate.

6.3.2 Iterated Prisoner’s Dilemma

Axelrod  (1984)  presents  an  extension  to  the  classical  prisoner’s  dilemma 

scenario  that  permits  players  to  repeatedly  choose  mutual  strategies  and  have 

memories of their previous encounters. A strategy in a repeated game is a decision 

rule that specifies the probability of cooperation or defection for a player given some 

history  of  interactions  against  a  particular  opponent.  For  example,  an  agent  that 

adopts the strategy ALLC (all cooperate) will always cooperate with the opponent, 

regardless of past interactions and expected payoffs.

During  iterative  prisoner’s  dilemma  (IPD)  play,  two participants  will  play 

several consecutive iterations of the game using a payoff matrix (see Table 6.2) to 

accumulate a total score. The player with the larger cumulative score is deemed the 

winner and influences the cooperation strategy of the opponent.

      Table 6.2: Payoff Matrix for an Example Iterated Prisoner’s Dilemma Game
Player A

Player B
Cooperate Defect

Cooperate 3, 3 0, 5
Defect 5, 0 1, 1

Through iterative play,  cooperative and non-cooperative behavior will typically be 

reciprocated  to  a  certain  extent.  Trivers  (1971)  describes  how reciprocal  altruism 
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usually occurs through repeated interactions with the same individuals where a player 

returns the loyalty to an opponent who has previously cooperated.

Several researchers (Axelrod 1984; Boyd and Lorderbaum 1987; Nowak and 

Sigmund 1992) organized computer tournaments to detect strategies that would favor 

cooperation among individuals engaged in IPD. The goal of these contests is to pit 

different computer strategies against each other to identify ones that had the highest 

scores or instances of cooperation. Axelrod (1984) was one of the first to coordinate 

an  IPD  tournament,  a  round  robin  competition  between  fifteen  deterministic 

strategies.  The  simplest  strategy,  Tit-For-Tat  (TFT),  was  determined  the  best; 

cooperate  on  the  first  move  and  mimic  the  opponent’s  move  for  all  subsequent 

moves. Altruistic strategies tended to outperform the greedy methods over the long-

term. 

An important  finding  of  the  competitions  is  that  context  preservation  was 

determined to be a crucial factor for sustaining cooperation for interaction processes 

(Cohen et al. 1998). The emergence and maintenance of cooperation often depend on 

conditions  that  preserve  the  neighborhood  of  the  interacting  players.  In  addition, 

context  preservation increases  the likelihood of local  influencing (the tendency of 

players who interact frequently to become more similar over time) and homophily 

(the tendency to interact more frequently with the same individuals).

Stochastic  strategies  have also been used in  IPD tournaments.  Nowak and 

Sigmund  (1992,  1993)  revised  the  simulations  of  Axelrod  (1984)  to  model 

cooperation in noisy environments. They argue that it is possible that the actions of a 

player may be misinterpretations due to random errors, thus leading to a sequence of 



50

unwarranted punishment or cooperation. Running the competition with a variety of 

stochastic strategies, such as Pavlov, it was shown that cooperation could emerge as 

long as a stochastic version of TFT is included. This highlights the importance of a 

minimal social structure required for evolution of cooperation (Eckert et al. 2005). 

Critics have questioned the ability of IPD to simulate  real  world problems 

because of its structure as a two-person game (Yao and Darwen 1994). Many social 

and economic problems require analysis of group dynamics, and the strategies that 

work well for individuals in the IPD fail in large groups. For example, a two-person 

strategy that is predicated on the self interest of a single individual is not designed to 

model  the  emergence  of  cooperation  from  collective  behaviors.  The  n-person 

prisoner’s dilemma is  a  more  realistic  and general  game to model  real-life  social 

problems.

6.3.3 N-Person Prisoner’s Dilemma

N-person prisoner’s dilemma (NPPD) models have been referred to as social 

dilemma games, because they are focused on the simulation of the collective actions 

and behaviors in social groups (Schelling 1973).  Harden (1968) describes NPPD as a 

“tragedy of the commons” game in which the players are worse acting according to 

their  self  interests  than  if  they  were  cooperating  and  coordinating  their  actions. 

During play, individual players may cooperate with each other for the collective good 

of their social environment, or they may prefer to pursue their selfish interests. The 

incentives  to  cooperate  may depend on how many players  are contributing  to the 

group and the effect of their  actions. In multi-player  interactions,  cooperation and 
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social cohesion emerge from the consensus behaviors and actions of the social unit 

even though the preferred course of action for an individual player is still defection.

A typical  social  dilemma can be considered an n-person game (n  ≥ 2),  in 

which each player has the same preferred option that does not change regardless of 

the actions of the other players. Every player has the same payoff structure and can 

choose to either cooperate, C, or defect, D. The payoff of each player that defects is 

represented as D(m),  where m is  the number of players  in a social  grouping that 

cooperate (0 ≤ m ≤ n-1). The payoff for each cooperating player is donated as C(m). 

The social dilemma game is then defined by the following conditions (Akimov and 

Soutchanski 1994): 

1. D(m)  >  C(m  +  1):  each  player  is  better  off  choosing  to  defect  rather  than 
cooperate, regardless of how many players choose to cooperate on a particular 
play of the game.

2. C(n) > D(0); if everyone cooperates, each player is better off if everyone defects.
3. D(m + 1) > D(m) and C(m + 1) > C(m); the more players cooperate, the better off 

each player is, regardless of whether he chooses to cooperate or defect.
4. (m + 1)C(m + 1) + (n – m – 1)D(m + 1) > mc(m) + (N – m)D(m); society as a  

whole is better off the more players cooperate.

Figure 6.1 is a graphical representation of an example situation that shows the 

payoff functions for a player that chooses the preferred defection option (P) or the un-

preferred cooperation (U) alternative, depending on the number of other players (0 to 

n) that choose U.  To illustrate, at x = n/3, a third of the players choose to cooperate  

and  two  thirds  defect:  Px and  Ux are  the  payoffs  to  the  player  that  chooses  the 

defection  (preferred)  or  cooperation  (un-preferred)  alternatives,  respectively.  The 

payoff functions in the NPPD are structured so that each player receives a higher 
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payoff for defection than for cooperation (the P curve must always be above the U 

curve). 

Figure 6.1: N-Person Prisoner’s Dilemma Payoff Functions for Preferred
Defection and Un-Preferred Cooperation, Relative to the Number of

Other Players that Decide to Cooperate: 
(from Akimov and Southchanski 1994)

It is important to note that an NPPD game is not an expanded version of the 

iterated pairwise interaction game. It is a true multiplayer game where each player 

simultaneously interacts with all of the other players in a social grouping and decides 

to either cooperate or defect according to the rewards or punishments derived from 

the collective. A player’s decision to cooperate or defect is therefore dependent on the 

number  of  cooperators  and  defectors  in  his  neighbourhood  and  the  utility  of  the 

payoff functions at each time step of the play sequence. 

While  not  as  numerous  in  the  literature  as  the  two-person  IPD,  NPPD 

simulations  have been presented  as agent  based models.  The sequencing of these 

simulations depends on the components and parameters of the ABM. First of all, the 

initial  probabilities  of  cooperation  and  actions  of  each  individual  in  the  social 

environment  are  assigned,  often  randomly,  according  to  user-defined  instance 

parameters.  Secondly,  the  neighbourhood  configuration  of  the  social  grouping  is 
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determined. This can range from a grouping of socially similar players, a spatially 

defined interaction region, such as a Moore neighbourhood in a cellular automata, or 

the entire social environment itself. Next, the interaction strategies and the payoff and 

updating  schemes  dictate  the  course  of  the  game  play.  Many  different  types  of 

strategies  have  been tested  in  NPPD games,  but  most  are  deterministic  strategies 

based on the probability distribution for the two possible actions and the history of 

player interactions among the social group (Kehagias 1994). Payoff functions similar 

to figure 6.1 determine the reward/penalty assigned to each player dependent on the 

number of cooperators and defectors within the neighbourhood. The appeal of this 

type of model for simulating cooperation for real-world applications is the capability 

of setting the players as probabilistic learning automata so that their behaviors are 

learned and adjusted throughout the simulation.  In this manner,  behavior refers to 

how an  agent  decides  to  act  based  on his  current  state,  the  reward/penalty  from 

previous actions, and the actions and states of the neighbours. Szilagyi (2003) makes 

the  compelling  argument  that  human  behavior  is  best  described as  stochastic  but 

influenced  by  personality  characteristics.  His  work  investigates  the  role  of 

personalities in stochastic learning automata in the multiplayer PD game. Stochastic 

learning automata are agents whose behavior is influenced by random perturbances to 

simulate noise or stochastic responses from the environment. Assigning personalities 

to the agents imitates human decision-making and presents a method of specifying the 

updating schemes from certain attitude states and personal influences  (Zhao  et  al. 

2005).  Therefore,  agents  with  different  personalities  can  be  assigned  different 

updating schemes and allowed to interact with each other, resulting in observations of 
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how  the  various  personality  types  respond  to  one  another  in  the  same  social 

environment.  A  variety  of  personalities,  such  as  Pavlov,  conformist,  and  greedy 

(Brembs 1996),  have been applied in NPPD games,  the specifics  of each will  be 

discussed later. Some of the updating schemes of the agents used in NPPD games 

have  been  implemented  as  utility  functions,  probabilistic  equations,  and  choice 

heuristic  decision  rules  (Axelrod  1997).   The  updating  schemes  adjust  the 

probabilities  of  the  agent’s  actions  by  the  reward/penalty  received  from  the 

environment based on his and the other players’ behaviors and attitudes. The actions 

of  the  participating  agents  as  they  make  repeated  decisions  and  interactions  will 

determine the degree of cooperation that occurs within a social unit.

The N-person prisoner’s dilemma game seems well suited for realistic albeit 

simple investigations of collective behaviors within a social system and can be the 

foundation for a spatial agent based model of cooperation within a socio-geographic 

community.

6.4 Spatial Agent Based Modeling of N-Person Prisoner’s Dilemma Cooperation

The development of a spatial agent-based model of NPPD is contingent on the 

processes that define a socio-geographic community. From a research perspective, a 

socio-geographic community is both a geographical object and a sociological subject. 

Firstly,  it  is  an  integrated  geographic  network  of  social  units  defined  by  the 

interaction patterns and citizen flows throughout a dynamic area of collective social, 

economic, and emotional actions. Flow refers to labour market dynamics, individual 

flows to access goods and services, daily commuting activities, etc. As a sociological 

subject, a community codifies norms and behaviors to control the processes of social 
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and  institutional  interactions  (Loomis  1996).  The  community  becomes  a  social 

system of local communication and actions involving a collective identity, solidarity, 

and collaborative efforts. As a cohesive object and subject, the simulation of a real 

world community involves agents with personalities and attitudes that communicate 

and move throughout the environment as part of their daily activities. Formally, the 

model must specify the social unit as an analyzed environment and the citizen agents 

as analyzed automata. Analyzed agents are automata that mimic real world entities 

based  on  empirical  data,  and  the  analyzed  environment  is  a  real  world  location 

(Couclelis 2001).

This section of the paper presents the development  of a conceptual  spatial 

agent-based model of citizen cooperation within a socio-geographic community. Each 

citizen  agent  is  designed  with  reference  to  the  spatial  structure  of  the  analyzed 

environment,  states  variables  relevant  to  the  application,  state  transition  rules, 

movement rules, neighbourhood calculation, and the NPPD game play. Before these 

components are discussed, an overview of the basic architecture of the generic model 

is given.

6.5 The Architecture of the Generic Model

The generic model is developed as an exploratory approach for simulating the 

trends and patterns of citizen automata in social groupings. Generic infers that the 

model  is  applicable  to  multiple  socio-geographic  environments  and  contains 

functionality that is fundamental for any given social system. Also, the parameters of 

the  model  are  set  with  user-defined  variables  that  characterize  the  simulation 

scenario.
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The model is designed as a modeling-centric system with embedded vector 

Geographic  Information  System (GIS)  capabilities  (see  figure  6.2).  Formally,  the 

tight  coupling  of  agent-based  modeling  and  GIS  functionality  create  an  identity 

relationship between an agent and its spatial feature (Brown et al. 2005). The agent-

based modeling  platform was  developed  with  REPAST (Recursive  Porous  Agent 

Simulation Toolbox) Java to simulate agent interactions, movements, and the NPPD 

game play. 

Figure 6.2: Interface of the Spatial Agent-Based Model of NPPD Cooperation

Within this component, agents are object-oriented entities that use their states 

and definitions to simulate behaviors. The agent based methods model the behavior of 

the agents and alter their states, which are stored as geographic features within the 

GIS  as  polygons  and  points.  GIS  operations  are  implemented  with  a  number  of 
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software libraries that are imported into the simulation toolbox.  Specifically,  Java 

Topology  Suite  (2007)  is  utilized  to  calculate  topology  and  neighbourhood 

configurations,  GeoTools  (2008)  provides  data  importation  and  exportation,  and 

OpenMap GIS (2007)  is  used for  attribute  querying  and map  visualization.  As  a 

further enhancement, the sequential line graphing and movie creation methods within 

Repast are used to record changes during simulation runs.

6.6 Spatial Structure of Agent Locations in an Analyzed Environment

An analyzed environment is a real world study area that is set as the spatial 

confluence region for the simulation runs. The entities required for the simulation of 

cooperation  in  a  socio-geographic  community  are  fixed  non-mobile  building 

automata,  specifically  resident  households,  businesses,  community  services,  and 

schools, and non-fixed mobile citizen agents. The modeling configuration is set to the 

town of Catalina, Newfoundland and Labrador, Canada (figure 6.3) because of the 

availability  of  satellite  imagery  and,  more  importantly,  individual  level  socio-

economic statistics to microsynthesize and assign state variables to each citizen agent. 

Locations of both types of agents follow a vector GIS geo-referencing convention. 

The building entities are first  derived from an imported ESRI© shapefile  that was 

digitized from the satellite imagery. Since they are fixed automata, the buildings are 

directly  registered  as  two  dimensional  polygon  objects  with  coordinate  lists  and 

topology within the GIS component.  The citizen agents are also directly registered 

during  initialization,  but  are  locationally  pointed  during  movement  events.   At 

initialization, the household  locations  of a  user-defined number of citizens are set as
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Figure 6.3: Analyzed Environment of Central Catalina, Newfoundland and Labrador, 
Canada

the geographic coordinates of the centroids of randomly selected building polygons. 

This produced a set of citizen point objects that are directly geo-referenced to their 

assigned  household  locations.  The  relationship  between  both  types  of  entities  is 

hierarchical such that the point citizen agents are spatially nested within the building 

automata. As a citizen moves, the destination location is geo-referenced by pointing 

to a specific building object. For example, the destination for citizen agent A at time 

t+1 could be a school, whose locational coordinates are stored and easily accessible 

from the GIS database. Locational pointing is convenient for mobile agents because 

their locations can be constantly varied and reset as the simulation proceeds.
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6.7 State Variables and State Transition Rules

State variables are the characteristics of the fixed and mobile entities that are 

inputted into the transition rules to determine their behaviors. The buildings have a 

single  state  variable  according  to  their  previously  determined  type:  household, 

business, public service, or school. 

The  citizen  agents  are  specified  with  state  variables  that  determine  their 

mobility behavior and their initial action choice for the NPPD game play. Each point 

agent  is  initialized  with  an  age,  gender,  education  level,  and  worker  type 

(unemployed,  fish  plant  worker,  migrant  worker,  other,  or  not  in  labour  force). 

These variables were estimated from selected population and occupation tables from 

the 2006 general census release from Statistics Canada. During the setup sequence of 

a  simulation  run,  the  population  and  occupation  data  is  entered  into  a  set  of 

initialization equations to randomly compute or assign the states to each citizen agent.

State transition rules are currently only applicable to the citizen agents and 

consist of two sets of heuristics: those relating to the probability of cooperative action 

and rules that  are relevant  to the simple demographic profile  of the citizens.  The 

demographic rules are concerned with increasing the age of each citizen by a factor of 

1 for each yearly equivalent of time steps and altering the worker type according to a 

random updating event. Throughout the simulation run, the model can implement a 

worker turnover ratio to randomly change the worker type attribute of citizen agents 

between the ages of 15 to 65. A change in the worker type of an agent can affect its 

mobility behavior.
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6.8 Movement Rules

The object-oriented framework of REPAST coordinates movement as discrete 

event simulations, in which a scheduling mechanism directs the sequencing of agents’ 

mobility behaviors (Zeigler et al. 2000). In this model, movement rules manage both 

short-term  migration  (fly-in/fly-out  employment)  events  and  daily  commuting 

activities  of  the  citizen  agents.  Both  types  of  mobility  are  scheduled  in  a 

asynchronous  manner,  where  the  agents’  move  between  a  pair  of  origin  and 

destination locations at  a specified time step. Each time step represents a 12-hour 

interval and two consecutive time steps a typical day. The destination for a movement 

event is based on the worker type of each agent, where it is assumed that he is most  

likely to travel to and from his household to the site of his particular occupation. For 

example, a school is the most probable destination for a teacher and children aged 5 

to 18 during the weekday period. Pexp is the probability that a citizen moves to the 

expected site and is arbitrarily set at 0.9. However, a stochastic perturbance value is 

computed for each destination choice to model the nonlinearities of human decision-

making, where a person often fails to make the obvious choice. A random number 

generator class in REPAST computes a perturbance value, Pstoc, between 0 and 1 to 

determine whether an agent moves to another business or service location or whether 

he stays at his residence for that particular time step. When Pstoc > Pexp, a destination 

option is  randomly selected  from all  relevant  buildings,  except  the usual  place of 

work and other agent households, and a motion rule relocates the citizen to this new 

position for this sequence. 

The  fly-in/fly-out  workers  are  an  increasing  familiar  subcommunity  of 

individuals  in  communities  throughout  Newfoundland  and  Labrador.  These  are 
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workers  who  are  employed  for  weeks  in  locations  outside  of  the  community  of 

residence.  Even  though  these  workers  are  frequently  detached  from  their  home 

communities, they are still an important and influential socio-economic unit within 

the  broader  community  network.  Fly-in/fly-out  employment  is  a  work  pattern 

consisting of both an outmigration and immigration event. During model setup, each 

migrant worker is randomly assigned a start date of his first migration event, and a 

pair of scheduled basic action rules are initialized to implement the outmigration and 

immigration events. Outmigration is a scheduled action of placing a migrant worker 

agent  in  a  virtual  migration  container  for  a  user-defined  period  of  time  (see 

Flyin_Weeks variable  on right side of figure 6.2) and immigration is  a scheduled 

action that returns a migrant worker to his household for a user-defined stay period 

(Stay_Weeks variable on figure 6.2). This sequential movement continues throughout 

the entire simulation.

Mobility  behavior  is  an  important  element  in  the  spatial  agent-based 

simulation of cooperation in a social environment, because it sets the neighbourhood 

configuration for the prisoner’s dilemma game play.

6.9 Interaction Neighbourhoods

An interaction neighbourhood defines the extents of the spatial association of 

a social grouping within the environment. The rule set for neighbourhood delineation 

is based on the proximity of citizen agents on a geometric network, where agents 

within a specified straight-line distance of each other are considered neighbours. At 

each time step, the topology and automata composition of the neighbourhood for each 
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citizen  agent  is  estimated  with  a  GIS  buffer  operation.  Formally,  a  buffer,  or 

enclosing circle, of a user-defined radius is drawn around the point location of each 

agent,  and  a  point-in-polygon  method  identifies  those  agents  that  fall  within  the 

buffered  area  and  classifies  them as  neighbours.  For  example,  the  citizen  points 

symbolized  in  yellow in figure 6.4 are  the neighbours  situated within a  70-meter 

radius  of  agent  A.  With  the  neighbourhood defined,  an  arraylist  of  agent  objects 

including the identified neighbours and the citizen of interest is passed to the agent-

based model to begin the NPPD game. 

        Figure 6.4: Configuration of a 70 Meter Neighbourhood Buffer of Agent A

An interesting  consideration  for the simulation  of agent  cooperation  is  the 

effect that movement has on the calculation of neighbourhoods.  Each time an agent 

moves,  it  necessitates  the  generation  of  a  new  neighbourhood  configuration  and 
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produces a different listing of neighbours. Recall that for the two-person IPD, context 

preservation was a crucial element for the emergence of cooperation. It is assumed 

that context preservation will be a factor for the worker agents while they are at their 

place of work, because the calculated neighbourhood will be a compact grouping of 

social agents with a shared interaction history and similar state variable values. It is 

possible that a degree of social cohesion will arise amongst these agents and that they 

will  be  more  inclined  to  cooperate  with  each  other  during  the  social  dilemma 

simulation.

6.10 Spatial N-Person Prisoner’s Dilemma 

The aim of a spatial NPPD game is to investigate social interaction behaviors 

and communication between people situated in a stochastic environment. As Szilagyi 

(2003)  corrects  surmises,  human  behavior  cannot  be  accurately  simulated  with 

rational agents, because biological objects rarely act rationally.  As a result, several 

researchers (Boone  et al.  1999; Szilagyi and Szilagyi 2002; Zhao  et al. 2005) have 

stressed the need to investigate the role of personalities in the prisoner’s dilemma and 

to set the agents in the model as stochastic learning automata. These considerations 

were central to the development of the NPPD component in this model.

6.10.1 Basic Definition

Each  citizen  agent  is  a  stochastic  learning  entity  with  a  predetermined 

personality type and cooperation action. In a neighbourhood of N agents, the state of 

each citizen at time t is characterized by 0 (defection) or 1 (cooperation). During an 

interaction event, agents take actions according to the probabilities updated on the 

basis of the reward/penalty received for previous actions, their neighbours’ actions, 
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and their personalities.  The updating sequence occurs synchronously for all  of the 

agents in the neighbourhood or social grouping.

6.10.2 Components and Parameters of the N-Person Prisoner’s Dilemma

As a generic game, constraint parameters are set by the user to facilitate the 

NPPD simulation and to initialize the agents’ states. First, the percentage of the total 

number of agents, Cx, that begin the simulation as cooperators is included. Next, a set 

of initialization rules in the setup methods of REPAST uses Cx to randomly set each 

agent as either a cooperator or defector and initialize both its individual probability of 

cooperation and defection.

At each time step, the model calculates the neighbourhood of each agent and 

determines  the  total  number  of  cooperators  and  defectors  in  that  grouping.  The 

interaction proceeds as the reward/penalty for each agent is computed from a set of 

payoff functions. Lastly, each agent updates their cooperation action on the basis of 

the  reward/penalty  computed  from  the  payoff  functions  and  the  influence  of  its 

personality. In modeling terms, personalities are the interaction strategies that agents 

employ during game play. Zhao et al. (2005) lists several of the personality profiles 

and strategies that have been used in NPPD simulations:

1. Pavlovian:  an  agent  with  a  coefficient  of  learning  whose  probability  of 
cooperation changes by an amount proportional to the reward/penalty it receives 
from the environment 

2. Stochastically predictable: an agent whose probability of cooperation is constant 
but fluctuates with periodic random perturbances. For example, an angry agent 
(p=0) always defects.

3. Accountant: an agent whose probability of cooperation depends on the average 
reward for the social grouping for a previous action.

4. Conformist: an agent who imitates the action of the majority in the social unit.
5. Greedy: an agent who imitates the neighbour with the highest reward.
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These personality types represent certain simple aspects of actual human behavior. 

Szilagyi  and  Szilagyi  (2002)  state  that  Pavlovian  agents  are  the  most  realistic 

automata  for  the  investigation  of  the  evolution  of  cooperation,  because  they  are 

simple enough to know nothing about their rational choices but intelligent enough to 

follow Thorndike’s (1911) Law of Conditioning. Specifically, an action that produces 

a satisfactory state of affairs tends to reinforce the repetition of that particular action. 

Therefore, the citizen agents in this model are set as Pavlovian automata,  and the 

interaction functions are specified to support this condition.

Figure 6.5 shows the payoff curves for the cooperators and defectors, and, as 

required, the D curve is above the C curve so it is always best for an agent to choose 

to defect. Note that the payoff of an agent depends on its previous action (C or D), the 

ratio  of  cooperators  to  the  total  agents,  and  a  stochastic  factor  added  to  the 

environment. The payoff curves for both the defectors and cooperators are straight 

lines functions expressed 

as (Szilagyi, 2003):

D = -0.5 + 2x                                                         (6.1)
C = -1 + 2x                                                            (6.2)

The stochastic factor is a parameter that accounts for any uncertainty in the agent 

interactions and noise in the environment. This is applied to the payoff functions to 

thicken each line to produce a range of payoffs for a cooperation ratio. For example, 

an agent with previous action C in a neighbourhood with 0.60 cooperation receives a 

payoff reward of 0.207 ± 0.033. In a deterministic environment where the stochastic 

factor is zero, the payoff reward would be 0.207.



66

Figure 6.5: Reward/Penalty Payoff Functions for Pavlovian Defectors and 
Cooperators (from Szilagyi 2003)

The updating scheme is a set of functions that assign an action to a citizen 

agent probabilistically based on his behavior and the behaviors of the collective. Let 

pi(t) be the probability of cooperation for agent i at time t, and qi(t) the probability of 

defection  for  agent  i at  time  t. At  each  iteration,  agent  i changes  pi(t)  and  qi(t) 

according  to  the  reward/penalty  received  from  the  environment’s  responses.  For 

instance, at time t, the agent chooses C and the payoff functions reward it, then the 

probability of choosing C is increased for subsequent time steps. Each agent is also 

assigned  a  coefficient  of  learning  αi,  where  0  <  αi <  1,  to  adjust  the  probability 

according  the  neighbourhood  responses.  αi  increases  if  an  agent  makes  repeated 

actions within the environment but decreases as the actions become varied. Hence, 

the probability of cooperation for agent i at time t+1 is:

      p(t+1) = p(t) + (1-p(t)) * αi,  if at time t, action = C and the payoff = reward   (6.3)
      p(t+1) = (1-αi) * p(t), if at time t, action = C and the payoff = punishment      (6.4)



67

Note that for every t there must be q(t) = 1 – p(t).  The same set of equations is also 

used for updating the action probabilities when the previous action is D:

    q(t+1) = q(t) + (1-q(t)) * αi,  if at time t, action = D and the payoff = reward     (6.5)
    q(t+1) = (1-αi) * q(t), if at time t, action = D, and the payoff = punishment        (6.6)

The state  of  agent  i is  updated  contingent  on its  previous  state,  a  neighbourhood 

production  function,  and the  probabilities  for  both  C  and D.  The  neighbourhood 

production function is the average cooperation payoff for the group computed as:

                                                        (6.7)
where Cj is the number of cooperators and N is the total number of agents in 
the neighbourhood.

Thus, the state of agent i at time t+1 with S(t):

    For S(t) = C:

 S(t+1) = }
satisfiednot  are Dfor  conditions  theifaction  previousretain  C, 

R  1)q(t and 1),q(t  1)p(t pf,  iagent for  payoff if D,{ u>++<+<
(6.8)

         For S(t) = D:

S(t+1) = }
satisfiednot  are Cfor  conditions  theifaction  previousretain  D,  

R  1)p(t and 1),p(t  1)q(t pf,  iagent for  payoff if C,{ u>++<+<
(6.9)

   ,where Ru∈[0,1] is a uniform random value.

6.11 Results 

The goal of the simulation scenarios is to test  the ability of the system to 

model  social  cooperation  in  a  spatial  environment  considering  a  number  of 

fundamental considerations and questions. First of all, it is important to investigate 

the effect that the initial configuration of the model, which relies on the user-defined 

instance variables, has on the results of a spatial NPPD. Secondly, the emergence of 
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cooperation  in  social  groupings  can  depend  on  the  context  preservation  of 

neighbourhoods  so  it  is  imperative  to  consider  the  effects  of  the  mobility  of  the 

citizens  on agent  interactions.  Lastly,  a qualitative visual analysis  of the resultant 

cooperation maps will identify any localized patterns of cooperation or defection and 

whether their emergence is due to agents’ worker type and mobility status. For these 

purposes, separate sets of simulations were run with initialized proportions of 20% 

and  80% cooperators  among  the  citizens  and  were  repeated  with  both  fixed  and 

mobile  citizen  agents.  To  simulate  the  interaction  of  fixed  citizen  agents,  their 

mobility rules are disabled, and they are restricted to their place of residence. The 

social  community  involves  271  citizen  objects  in  an  analyzed  geographic 

environment that interacted and communicated for a full calendar year.

Figure 6.6 and 6.7 are the map and graph of the cooperation patterns for 20% 

cooperation  and  mobile  agents  respectively.  The  graph  in  figure  6.7  shows  the 

proportion  of  cooperating  agents  in  the  social  environment  as  a  function  of  the 

number  of  iterations.  Throughout  the  simulation  period,  the  number  of  total 

cooperators fluctuated in an irregular manner so that there is never an extended period 

where there are a majority of cooperators in the environment. The intermingling of 

cooperators and defectors in the map of figure 6.6 shows that the clusters of C and D 

are small (see northeast corner of map) and subject to change at each iteration. It is 

suspected  that  the  mobility  of  the  agents  and  the  changing  in  neighbourhood 

configuration  effect  the  learning  rate of  the  Pavlovian  agents and  cause  them  to 

continuously change cooperation  actions.  Figures 6.8 and 6.9 tend to support this 

observation. The sequential lines in figure 6.9 indicate that there are more cooperators 
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then defectors throughout the simulation run, and, after 500 iterations, the number of 

cooperators in the environment remains relatively stable.

Figure 6.6: Map of Cooperation Pattern for 20% Cooperators and Mobile Citizen Agents

Figure 6.7: Graph of Cooperation Pattern for 20% Cooperators and Mobile Citizen Agents
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Figure 6.8: Map of Cooperation Pattern for 20% Cooperators and Fixed Citizen Agents

Figure 6.9: Graph of Cooperation Pattern for 20% Cooperators and Fixed Citizen Agents
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More  importantly,  large  discernible  clusters  of  C  and  D  are  situated 

throughout the map in figure 6.8, especially the northeast and central sections. The 

reason for the difference in the emergence and maintenance of cooperation among the 

purposely  fixed  and  mobile  citizens  is  context  preservation  in  the  modeling 

environment.  The fixed citizens are homophily agents that interact with the same 

neighbours at each time step, which increases their learning rates and probabilities of 

neighbours at each time step, which increases their learning rates and probabilities of 

choosing  the  action  of  the  majority  of  their  social  grouping.  Conversely,  mobile 

agents experience fluctuations in learning rate and the probability of cooperation as 

their  neighbourhoods  change  during  their  daily  activities,  and  this  can  result  in 

frequent changes in cooperation action.

Similar  results  were  derived  for  the  fixed  and  mobile  agents  for  the 

simulations with initialized 80% cooperators. Figure 6.11 shows that the number of 

agents that choose C and D tend to oscillate, but the overall counts are generally equal 

during the experiment runs.  The spatial patterns changed constantly as a consequence 

of the transition  rules  even though the fraction of  cooperators  remained constant. 

Small  clusters  of cooperation and defection  are visible  on figure 6.10,  but it  was 

found that these groupings are highly susceptible to change.  An important factor to 

remember  is  that  these simulation  runs  contain  mobile  agents  together  with fixed 

workers, such as the people not in the labour force and the unemployed. The small 

clusters of C and D that  emerge  are  situated  around  the  residences  of  these  fixed 
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Figure 6.10: Map of Cooperation Pattern for 80% Cooperators and Mobile Citizen Agents

Figure 6.11: Graph of Cooperation Pattern for 80% Cooperators and Mobile Citizen Agents
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agents, which further substantiates the importance of context preservation in spatial 

NPPD modeling. The map and graphing results (figure 6.12 and 6.13) for the fixed 

citizen agents show that there are more cooperators than defectors during the run and 

that this situation begins early in the simulation. The sequential linear graphs of the 

cooperators and defectors are generally constant with periodic minor readjustments at 

specific time steps. Similarly, large clusters of C and D are evident on the maps. The 

map in figure 6.12 has visible groupings of C and D in the northeast section and 

center  of  the  community.  This  is  again  due  to  context  preservation,  but  equally 

important is the proximity of the agents. An agent that has many citizens within its 

neighbourhood will have multiple interactions with them during its own NPPD and 

the others’ game play. In other words, the same agents can be grouped many times if 

they live close to each other, and could start to adopt similar actions over time. 

Another interesting observation is the effect the fourth condition of NPPD has 

on the percentages of C and D, regardless of the initialized cooperation ratio value. 

Since it’s better for society when  agents cooperate, a set of transition rules in the 

model trigger the conversion of D agents to C agents whenever the condition for the 

4th condition  is  violated.  Referring to  figure 6.13,  the  simulation  starts  with  80% 

defectors, but the system readjusts itself  and decreases the number of defectors to 

approximately 50% at the initial  time steps.  Although simplistic,  this  operation  is 

based on the sociological premise that the functioning of a community is hindered or 

disabled when populated with self-interested individuals. Cooperation is a necessary 

requirement for social cohesion in a socio-geographic environment.
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Figure 6.12: Map of Cooperation Pattern for 80% Cooperators and Fixed Citizen Agents

Figure 6.13: Graph of Cooperation Pattern for 80% Cooperators and Fixed Citizen Agents
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A spatial agent-based model of NPPD in an analyzed community will contain 

mobile agents so the better cooperation results for the fixed citizen agent simulations 

in the examples above is an issue. However, a potential solution is to consider the 

entire social environment as an additional global neighbourhood so that its immediate 

neighbours as well as all other agents influence an agent during interactions. From the 

4th condition of NPPD, it is logical to consider the complete system as an important 

neighbourhood in the emergence of cooperation within a realistic socio-geographic 

community as small as the study area. Therefore, the simulation of cooperation in a 

model  of  mobile  agents  may require  transition  rules  that  consider  both  local  and 

community level processes to model cooperation action dynamics. 

6.12 Conclusion

The purpose of this  paper is  to present a spatial  agent-based approach for 

modeling the processes of communication and cooperation within a socio-geographic 

community. As a generic modeling-centric system with a tight coupling of REPAST 

and  a  vector  GIS,  the  model  is  designed  to  simulate  the  mobility  and  daily 

interactions of citizen agents in an analyzed spatial environment. The postulate of the 

system is that competition and cooperation will emerge from the behaviors of the 

citizens as they engage in N-Person prisoner’s dilemma play. These citizen agents are 

set as stochastic learning automata that take actions according to probabilities updated 

on the basis of the reward/penalty received for previous actions, their neighbours’ 

actions, and their Pavlovian personalities.

The  value  of  the  model  for  simulating  cooperation  in  a  social-geographic 

environment was evaluated from the results of two sets of experimental runs. It was 
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determined that the initial percentage of cooperators in a simulation had little bearing 

on the emergence of cooperation, but the mobility of the citizen automata was the 

central  factor.  The  preservation  of  neighbourhood  context  in  fixed  citizen  agent 

environments produced larger clusters of cooperators and defectors than the mobile 

agent environments. As the fixed citizen agents continuously interact with the same 

neighbours,  they  become  homophily  automata  with  increasing  learning  rates  and 

probabilities  of  copying  the  action  of  the  majority  of  their  social  grouping. 

Conversely, the environments of mobile citizen agents produced small clusters of C 

and  D,  but  they  were  susceptible  to  variations  in  size  and  location  as  the  agent 

neighbourhoods  changed.  Even  though  the  proportion  of  cooperators  remained 

constant, the spatial patterns changed repeatedly as a consequence of the movement 

and action updating rules. 

The work presented in this paper is a very simplistic model of cooperation-

agent interaction situations and should not be considered a complete analysis of the 

processes within a socio-geographic community.  Future revisions of the model are 

necessary for it to be applicable to more realistic problems of human interactions in 

analyzed environments.

The first step towards expanding the model is to investigate the performance 

of other learning rules, payoff functions, and updating schemes. This version of the 

model  is  developed  as  a  linear  reward/penalty  probabilistic  learning  automaton 

system, but the results for the mobile agents are discouraging. It is possible that the 

learning rules and updating scheme are inappropriate for nonfixed spatial agents and 

may have to be reconsidered.
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Secondly,  the  classical  definition  of  N-Person  prisoner’s  dilemma  is  an 

essentially  unrealistic  analogy  for  cooperation,  because  it  only  allows  a  boolean 

assignment to two cooperation classes. In reality, cooperation should be measured on 

a continuous state space that varies at each time step according to the attitudes of the 

agents.  Research  in  this  regard  has  been  undertaken  by Killingback  and  Doebeli 

(2002), who discuss a continuous iterated prisoner’s dilemma model of cooperation 

from  reciprocal  altruism.  A  further  expansion  to  the  model  is  to  develop  a 

methodology of assigning fuzzy memberships to an agent for both cooperation and 

defection.  Using a set of fuzzy membership functions similar  to figure 6.14, each 

agent is assigned a degree of membership in both classes to produce a continuum of 

cooperation  in  the  modeling  environment.  See  Power  et  al. (2001)  for  a  detailed 

explanation of fuzzy set theory. The advantage of utilizing fuzzy logic in the design 

of  the  transition  rules  and  updating  schemes  is  that  possibility  theory  permits 

memberships values that do not have to sum to 1 (a condition of probability theory). 

This flexibility could be implemented to account for noise and random errors known 

to exist in implementing a choice during real-world interactions.

Figure 6.14: Fuzzy Membership Functions of Cooperation and Defection
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As a further model revision, a fuzzy inference system can provide a flexible 

base  for  developing  a  modeling  component  that  permits  agents  to  have  multiple 

personality  types.  Through  the  combination  of  fuzzy membership  functions  for  a 

number  of  personality  types  and  a  compositional  rule  of  inference,  a  fuzzy 

transitional  rulebase will  assign varying degrees  of personalities  to  an agent.  The 

overall  personality  of  an  agent  then  becomes  a  combination  of  the  degrees  of 

membership in the personality strategies, with the membership values varying at each 

social dilemma game play. Agents with mixed personalities and interaction strategies 

are intuitively appealing for a spatial agent-based model of cooperation in a socio-

geographic environment.
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7.0 Paper 2: Affective Cooperation in the N-Person Prisoner’s Dilemma. A Spatial 
Agent-Based Modeling Perspective

Abstract

The purpose of this paper is to present a spatial agent-based model of affective 

N-Person’s  Prisoner’s  Dilemma  to  study  the  cooperation  dynamics  in  a  socio-

geographic  community.  The  benefit  of  the  affective  model  over  the  traditional 

approach  is  the  ability  to  assign  psychological  personalities  to  the  agents  which 

enable them to exhibit  believable behaviors.  The proposed integrated model has a 

spatial  module to simulate  the mobility events and neighbourhood composition of 

agents,  a  Personality-Mood-Emotion  psychological  component  to  model  affective 

states, and a N-Person’s Prisoner’s Dilemma social interaction mechanism to simulate 

communal  behaviors  and  emergent  cooperation.  The  layered  model  of  affect  is 

presented as the mapping of the five factor OCEAN model of personality, Mehrabian 

Pleasure-Arousal-Dominance Mood spacing, and the Ortony, Clore, Collins model of 

emotions.  This  hierarchical  structure  of  affect  is  developed  to  first  calculate  the 

individual intensities of the emotions from the action choices of neighbours and the 

outcome of  social  exchanges.  An additional  readjustment  of  the intensities  of the 

emotions happens during the computation of a comprehensive affective state as the 

influence of mood state and personality are considered.

 The capabilities of the system are demonstrated with benchmark simulation 

results. Clustering of cooperators tend to emerge at locations where the agents remain 

in  a  homophily  neighbourhoods  for  multiple  time  steps.  This  highlights  the 

importance of context preservation and neighbourhood strength on the emergence of 

cooperation in the environment. 
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7.1 Introduction:

Since the early 1990s, the N-Person Prisoner’s Dilemma (NPPD) has been a 

research topic of spatial and social modelers who are interested in the emergence of 

cooperation in social groupings. Akimov and Soutchanski (1994) developed a spatial 

NPPD game to relate how cooperation in social networks depends on the behavioral 

patterns of simple automata within a cellular automaton.  Szilagyi (2003) presented a 

model  of NPPD based on the interactions of irrational  agents in a social  unit and 

revealed how the chaos like actions of the agents was an important  condition for 

decentralized group cooperation. Power (2009) presented a spatial agent-based model 

of NPPD that simulated the emergence of cooperation from the behaviors of mobile 

citizen  agents  in  a  socio-geographic  community.  However,  the  basic  NPPD 

designates the interaction strategies of the agents as proxies for human personalities, 

but they have little relevance to a psychological personality. A formalization of social 

interactions  that  are  independent  of  the  emotional  states  of  agents  restricts  their 

autonomy  and  generalizes  the  complexity  of  individual  decision-making  during 

simulation episodes.

The purpose of this paper is to present a spatial agent-based model of affective 

N-Person’s Prisoner’s  Dilemma to study the cooperation  dynamics  of  agents  in a 

socio-geographic environment. The integrated model consists of a spatial component 

to  simulate  the  automata  mobility  behaviors  and  neighbourhood  structures,  a 

Personality-Mood-Emotion psychological mechanism to handle the affective states of 

the agents, and a NPPD component to simulate social interactions.  The discussion 

about  the  design of  the  model  begins  with a  brief  overview of  the theory of  the 
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NPPD. The following section  explains  the  layered  framework  of  the  Personality-

Mood-Emotions  model  comprised  of  the  five  factor  or  OCEAN  model  of 

psychological  personality,  Mehrabian  Pleasure-Arousal-Dominance  (PAD)  Mood 

spacing, and the Ortony, Collins, and Clore (OCC) model of emotions. Attention will 

be paid to procedures of mapping and linking each component into a layered affective 

model. Next, a methodology section presents a rule based inference system that links 

emotional affect to NPPD game play, where the probability of an agent choosing a 

specific  action  depends  both  on  the  affective  states  before  and  after  a  payoff  is 

received.

The  discussion  proceeds  with  model  experiments  that  explore  how  the 

mobility  dynamics  and  comprehensive  affective  state  of  the  agents  influence  the 

emergence of cooperation in the environment. A summary of the experiment findings 

as they relate to emergent cooperation concludes the paper.

7.2 N-Person Prisoner’s Dilemma

NPPD models have been referred to as social dilemma games, because they 

are focused on the simulation of the communal actions and behaviors in social groups 

(Schelling, 1973). During play, individual players may cooperate with each other for 

the benefit of their social network, or they may prefer to pursue their selfish interests. 

In multi-player interactions, cooperation emerges from the consensus behaviors and 

actions of the social unit even though the preferred course of action for an individual 

player is still defection.
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A typical  social  dilemma can be considered an n-person game (n > 2),  in 

which each player has the same preferred option that does not change regardless of 

the actions of the other players. Every player has the same payoff structure and can 

choose to either cooperate, C, or defect, D.  Figure 7.1 is a graphical representation of 

an example situation that shows the payoff functions for a player that chooses the 

preferred  defection  option  (P)  or  the  un-preferred  cooperation  (U)  alternative, 

depending on the number of other players (0 to n) that choose U.  

Figure 7.1: N-Person Prisoner’s Dilemma Payoff Functions for Preferred
Defection and Un-Preferred Cooperation, Relative to the Number of

Other Players that Decide to Cooperate: 
(from Akimov and Southchanski, 1994)

To illustrate, at x = n/3, a third of the players choose to cooperate and two thirds 

defect: Px and Ux are the payoffs to the player that chooses the defection (preferred) or 

cooperation  (un-preferred)  alternatives,  respectively.  The  payoff  functions  are 

structured  so  that  each  player  receives  a  higher  payoff  for  defection  than  for 

cooperation. A player’s decision to cooperate or defect is therefore dependent on the 

number  of  cooperators  and  defectors  in  his  neighbourhood  and  the  utility  of  the 

payoff functions at each time step of the play sequence.
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7.3 Personality-Mood-Emotion Model of Affect

An addition to the scope of spatial agent-based research is the capability of 

automata to show emotions  in their  behaviors as they perform everyday activities 

within an environment. Emotions will serve a number of purposes, from increasing 

the  believability  of  the  actions  of  the  agents  to  motivating  agent  behaviors  in 

cooperation decisions. Kennedy (2012) presents a set of basic principles to consider 

in simulating human behaviours with agent-based models. He discusses the real world 

condition  that  human  decisions  are  often  directed  by  emotional  drivers  and  the 

complex behaviours exhibited by individuals  are also influenced by the effects  of 

mood.  The  development  of  a  model  with  a  cognitive  architecture  requires 

mechanisms that more accurately represent the human mind both in perception and 

affective  response  to  social  interactions.  Kasap  et  al. (2009)  demonstrate  that 

emotions have proven effects on agents’ cognitive processes such as action selection, 

learning, memory, motivation, and planning. 

Gebhard (2005) presents an implementation of a psychological mechanism in 

an agent-based model that simulates cognitive processes as a layered model of affect. 

It is designed to simulate the three interacting kinds of affect that occur in human 

decision making:

1. Emotions  –  represent  short-term  affect  and  are  usually  associated  with  a 
specific event, object, or action. Emotions tend to dissipate when the agent 
changes focus.

2. Moods – reflect medium-term affect and are not associated with a specific 
event, object, or action. Moods have a temporal effect on cognitive functions 
that decays with each successive interaction sequence.
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3.  Personality  –  represents  long-term  affect  and  is  defined  by  individual 
differences  in  mental  characteristics.  Personality  is  an atemporal  state  that 
generally remains constant throughout a life span of an agent.

The Personality-Mood-Emotion  component  of this  study utilizes  the same layered 

approach, but relates the emotional state of the agents to the anticipated and resultant 

outcomes of NPPD episodes. The specification of the affective module follows the 

standard approach employed by numerous researchers (Egges et al., 2003; Ghasem-

Aghaee and Oren, 2003; Gebhard and Kipp, 2006; Mustafa et al., 2008; Kasap et al., 

2009) of integrating the five factor model of personality,  Mehrabian PAD spacing 

mood determination, and the OCC model of emotions.

7.3.1 The Big Five Factor Model of Personality

The five factor model is founded on the principle that the many ways in which 

people differ in their emotional and attitudinal styles can be summarized with the five 

basic  traits  of  Openness,  Conscientiousness,  Extroversion,  Agreeableness,  and 

Neuroticism (McCrae and Costa 1987; Goldberg 1992):

• Openness (O). Open people are imaginative,  intelligent,  and creative.  They 
like to experience new things.

• Conscientiousness (C).  Conscientious  people  are  responsible,  reliable,  and 
tidy.  They  think  about  all  their  behaviors’  outputs  before  acting  and take 
responsibility for their actions.

• Extroversion (E).  Extroverts  are  outgoing,  sociable,  and  assertive.  They’re 
energetic in achieving their goals.

• Agreeableness (A). Agreeable people are trustworthy, kind, and cooperative. 
They consider other people’s goals and are ready to surrender their own goals.

• Neuroticism (N).  Neurotic  people  are  anxious,  nervous,  and  prone  to 
depression. They lack emotional stability.
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From a modeling perspective, a unique personality can be assigned to an individual 

by varying the values of each OCEAN factor within the range of -1 to 1. The appeal 

of the five factor  model  is  that  the variety of individual  personalities  that  can be 

generated  during model  initialization  is  nearly boundless.  Also,  the five traits  are 

intuitively  sensible  and  computationally  simple,  and  provide  a  basis  for  relating 

personality  to  other  psychological  phenomena.  Specifically,  the  framework  of 

OCEAN can be mapped to an individual’s mood with Mehrabian PAD mood spacing.

7.3.2 Mehrabian Pleasure-Arousal-Dominance Mood Spacing

Mehrabian (1995) conducted a study to determine how his PAD temperament 

model could be theoretically linked to the five-factor model. He demonstrated how 

the commonality of descriptive emotional adjectives and measurement scales between 

the two approaches relate the three mood traits of Pleasure, Arousal, and Dominance 

to the five OCEAN components. This produces an alternative personality framework 

that includes mood types into the estimation of the emotional states of individuals.

Mood is a medium term affect that decays with time so it can be computed as 

the average of a person’s emotional states for a sequence of events and actions. In the 

PAD model,  Pleasure,  Arousal,  and Dominance  are  orthogonal  traits  that  form a 

mood  space,  which  is  implemented  as  a  three  dimensional  Cartesian  coordinate 

system with an axis ranging from -1.0 to 1.0 for each trait.  The strength of each trait  

is the distance from the origin measures along the given axis, and the three distances 

setting  the  Cartesian  positioning  of  the  mood  space.  Mood is  described  with  the 

following classification  of  each of  the three mood space axis:  +P and –P for  the 
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emotional state's positivity or negativity, +A and –A for mental arousal and alertness 

or mental inattentiveness, and +D and –D for feeling of social control and behavioral 

submissiveness. Table 7.1 lists all octants of the PAD mood space.

Table 7.1: Mehrabian Mood Octants and Mood Types
Trait Combination (Octant) Mood Type

+P +A +D Exuberant
-P -A -D Bored
+P +A -D Dependent
-P -A +D Disdainful
+P -A +D Relaxed
-P +A -D Anxious
+P -A -D Docile
-P +A +D Hostile

The first  factor  in  implementing  mood  is  initializing  each trait  to  position 

personality within a PAD spacing. Mehrabian (1996) devised a set of equations to 

translate the 5D personality vector  P into a default  PAD mood spacing. The base 

mood of an individual is:

                                             P = (O,C,E,A,N), O,C,E,A,N ∈ [-1,1]

                                             Moodbase = (P1, A1, D1) , P1, A1, D1 ∈ [-1,1]

                                       P1 = 0.21E + 0.59A + 0.19N                                             (7.1)
                                       A1 = 0.15O + 0.30A –0.57N                                              (7.2)
                                       D1 = 0.25O + 0.17C + 0.60E – 0.32A                               (7.3)

The second factor is the handling of individual mood changes. Russell and 

Mehrabian (1977) provide the methodology for simulating mood change from the 

association of PAD mood space to OCC emotions. Table 7.2 shows a portion of their 

suggested  mapping  for  several  basic  emotions  to  specific  PAD  spacings.  Each 

emotion type is succinctly described in terms of a set of values on the PAD axes that 

associates emotion to a PAD octant and mood type.  For instance, joy is linked to an 

exuberant mood type and +P+A+D mood octant.
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Table 7.2: Mapping from OCC Emotions to PAD Mood Space
Emotion Pleasure Arousal Dominance Mood Type Mood Class

Joy 0.40 0.20 0.10 +P+A+D Exuberant Positive
Distress -0.40 -0.20 -0.50 -P-A-D    Bored Negative

Hope 0.20 0.20 -0.10 +P+A-D Dependent Positive
Fear -0.64 0.60 -0.43 -P+A-D   Anxious Negative

Mehrabian (1995) updated mood with a function that calculates change in the 

emotional state of an individual. For example, when a person experiences the emotion 

joy, the mood spacing will be adjusted so that the Pleasure, Arousal, and Dominance 

values are all positive, which puts him in an exuberant mood.

7.3.3  Appraisal  Theory  and  Ortony,  Clore,  and  Collins  Model  of  Affective 
Emotions

Several  authors  (Ortony  et  al.,  1988;  Bartneck,  2002;  Kasap  et  al., 2009) 

present  the  OCC model  as  the  standard  approach  for  emotion  synthesis  utilizing 

cognitive  appraisal  theory.  Cognitive  appraisal  theory  asserts  that  emotions  are 

elicited  and  differentiated  on  the  basis  of  a  person’s  subjective  appraisal  of  the 

significance of a solution, object, or event according to a set of criteria conditions 

(Scherer, 1999). The advantage of appraisal theory for affective models is that the 

evaluation of emotion-eliciting objects or events is highly subjective and depends on 

the individual’s perceived goals, values and coping potential (Smith and Pope, 1992). 

This ability of appraisal theory to explain why seemingly similar events can trigger 

highly disparate emotions in different people is central to the appeal of OCC model.

Emotions are seen as the reactions to three types of appraisals: the appraisal of 

events  with  respect  to  agent  goals,  the  appraisal  of  agents  with  respect  to  the 

praiseworthiness  of  their  actions  compared  to  a  set  of  standard  behaviours,  and 
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appraisal of objects from the appeal as determined by agent attitudes (Ortony, 2003). 

Figure 7.2 gives an overview of the original OCC hierarchy that specifies twenty-two 

emotion  categories  and  two  cognitive  states  based  on  valenced  reactions  to  the 

consequences of events, actions of agents, and aspects of objects. 

Figure 7.2: The Original OCC Model (Source: Kessler et al., 2008)

The event-based emotions in the left branch arise when an agent determines 

the consequences of an event as being either desirable or undesirable. Desirability is 

the key factor  that  sets  the intensity  of  all  event-based emotions  and is  the main 

criterion for evaluation. Four classes constitute the event-based emotions. The first 

class is the fortunes-of-others, which includes the emotions happy-for, resentment, 

gloating, and pity. The intensity of these emotions depends on processing events that 

have consequences for other agents. The second and third classes are contingent on 
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processing events that have consequences for self. Appraising an event by evaluating 

its prospects is fundamental to the second class and depends on hoping or fearing that 

something will or will not occur. The third class is the well-being emotions of joy and 

distress that are the direct result of whether an agent is directly pleased or displeased 

with  the  results  of  an  event.  The  last  class  is  confirmation,  with  satisfaction, 

disappointment, relief, and fears-confirmed.

The middle  branch contains  the  general  class  of  emotions  associated  with 

approving and disapproving, and has a single class called attribution that contains the 

emotions pride, shame, reproach, and admiration. These are caused by reactions to the 

actions  of  agents  that  are  evaluated  as  being  either  praiseworthy or  blameworthy 

(Ortony et al., 1988).  When the actions of other agents are appraised, the emotions 

triggered are admiration or reproach. An additional class of attribution emotions is 

referred to as the compound classes. The compound emotions are derived from the 

conjunction of the eliciting conditions of a well-being emotion with an attribution 

emotion, and, focus on both the outcome of the event and the desirability of the result. 

The four compound emotions are gratification, gratitude, remorse, and anger. 

The right branch comprises the affective emotions from the reactions of liking 

and disliking. These are the attraction emotions, which are activated by reactions to 

objects or aspects of objects relative to appealingness. This branch of emotions has a 

single class of attraction, which includes love and hate.

The theory of the NPPD is such that the emotions experienced by the agents 

can be valenced reactions to the consequences of social exchanges and the actions of 

agents towards cooperation or defection. It was decided that the OCC structure for 
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this model be limited to a set of basic emotions that can be characterized by a set of 

decision  rules  relevant  to  the  NPPD  procedure.  Specifically,  the  prospect-based 

emotions of hope and fear and the well-being emotions of joy and distress can be 

measured  from  the  outcomes  of  NPPD  events  and  the  memories  of  past  social 

interactions.  The attribution emotions of admiration and reproach will indicate the 

positive  or  negative  affects  of  the  level  of  cooperation  in  each  interaction 

neighbourhood. Anger is also included to investigate how the combined intensities of 

primary emotions can produce a compound affective state. 

7.4 Methodology

The main consideration in the development of a spatial agent-based model of 

affective N-Person Prisoner’s Dilemma is that the actions and behaviors of agents 

have to better  approximate human decision-making during social  interactions.  The 

agents have to be represented as autonomous entities that make decisions according to 

their individual affective states and social position in the modeling environment. 

The architecture of the agent-based model in figure 7.3 shows the functional 

integration of pre-simulation initialization methods with the simulation components. 

A synthesized population of agents is assigned default personality and mood space 

states by the initialization  methods.  During simulation,  spatial,  psychological,  and 

social  processes  are  modeled  to  simulate  the  emergence  of  cooperation  among 

individuals in the environment.
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Figure 7.3: Model Architecture

7.4.1 Model Initialization

The first  stage in  the model  initialization  is  to  assign the agents  a  default 

personality  as  a  five  dimension  OCEAN  vector.  Each  trait  is  given  a  randomly 

generated initial  value between –1 and 1, but the assignment  can be restrained to 

several default personality types as listed in table 7.3. 
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The second stage in the model initialization is the setting of an initial mood 

state.  Once personality  has  been set,  a  default  mood  state  for  each  agent  can  be 

calculated  with  the  OCEAN  Mapping  to  Mehrabian  PAD  spacing  equations 

previously discussed.

Table 7.3: OCEAN Schemas for Extreme Personality Type
Personality Type O C E A N
Open Extrovert High Neutral High High Low

Neurotic Introvert Low Neutral Very Low Low Very High
* Neutral (≈ 0), Very Low (≈ -1), Very High (≈ 1)

7.4.2 Simulation and State Transition Rules

Figure 7.3 reveals the sequence of simulation components in the model, each 

containing state transition rules for modeling the mobility, psychological, and social 

processes of agents engaging in activities in a geographic environment. Simulation 

begins with a spatial component to model agent movements and compute the depth of 

neighbourhood configuration after each movement.

7.4.2.1 Agent Movement

Agent  movements  are  simulated  as  discrete  choice  events,  in  which  a 

scheduling  mechanism directs  the  sequencing  of  agents’  mobility  behaviors.  This 

requires movement rules that manage both the single time step and multiple time step 

activities  of  the  citizen  agents.  Both  types  of  mobility  are  scheduled  in  an 

asynchronous manner, where the agents move from origin to destination locations at a 

specified  time  step.  The  location  of  an  agent  at  each  time  step  depends  on  its 

randomly  selected  activity,  either  a  church,  recreation,  retail,  service,  friendship 
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gathering, school, or work event. Movement is therefore a two-step process of first 

choosing an activity for the time step and secondly selecting the location of where the 

agent will carry out the activity. When an agent moves to a location, he remains at 

that site for the associated time period.

7.4.2.2 Interaction Neighbourhoods

The depth of an interaction neighbourhood defines the extents of the spatial 

association  of  a  social  grouping  within  the  environment.  An  important  factor  of 

representing  mobile  automata  in  a  geographic  environment  is  that  movement  can 

produce  a  change  in  the  locational  topology  of  the  agents.  The  rule  set  for 

neighbourhood  delineation  is  based  on  the  proximity  of  agents  on  a  geometric 

network,  where  agents  within  a  specified  distance  of  each  other  are  considered 

neighbours.  At  each  time  step,  the  topology  and  automata  composition  of  the 

neighbourhood for each citizen agent is estimated with a buffer drawn around the 

location  of  each  agent,  and  all  individuals  that  fall  within  the  buffered  area  are 

classified as neighbors. 

7.4.3 The Layered Model of Affect of NPPD Game Play

An affective NPPD network consisting of event-based and attribute emotions, 

where actions are evaluated with respect to the goal of receiving a reward payoff and 

the emergence of group cooperation.  Figure 7.4 displays the OCC hierarchy of the 

emotional model of affect for NPPD game play.

The event-based emotions arise when an agent determines the consequences 

of a NPPD event as being either desirable or undesirable, and desirability refers to the 
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degree of wanting the social interaction event to produce a positive payoff and the 

emotional affect of this resultant reward or penalty.

7.4.3.1 Rule Based Inference of Affective States Pre-NPPD

The  Personality-Mood-Emotions  component  is  structured  as  a  conditional 

rule-based system that  simulates  the affective states  of agents from their  mobility 

activities, neighbourhood configurations, and the action choices from the outcomes of

Figure 7.4: OCC Emotions for NPPD Game Play

social interaction events. The rule-based model consists of pre-payoff, post-payoff, 

and  post  action  choice  NPPD  If-Then  conditional  statements  to  synthesize  the 

intensities of the emotions felt by each agent. The rules for each of the event based 

emotions and attribution emotions in the appraisal system are detailed in appendix 1.  
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The prospect based emotions of hope and fear depend on the degree to which 

an NPPD event is pleasing or displeasing to an agent, but also must be appraised 

according to the likelihood of getting a reward from an upcoming social interaction. 

For these anticipative affects, the likelihood of an event must evaluate desirability, 

because it makes little sense to desire an outcome from an event that is unlikely to 

happen.  Thus,  hope  relates  to  the  prospect  and anticipation  of  getting  a  positive 

payoff. Fear, on the other hand, is based on the prospect and expectation of receiving 

a negative payoff. The If parts of the rules for hope test desirability and the likelihood 

of  receiving  a  positive  payoff,  while  the  If  parts  of  the  rules  for  fear  only  test 

likelihood of  receiving  a  negative  payoff.  The Then action  for  both sets  of  rules 

determines the potential for generating the emotion and directly sets its intensity.

The  likelihood  of  activating  hope  and  fear  is  reliant  on  the  cooperation 

composition of the neighbourhood, but as pre-NPPD emotions, this has to be derived 

from  the  memories  of  each  agent  about  the  past  cooperation  decisions  of  their 

neighbours. An agent would only know the current action choice of a neighbour if 

both had participated in the same NPPD event at time  t. So, there will be instances 

where the agent is unaware of some or all of their neighbours’ action choices at time 

t, especially for the single time step mobility activities. This issue is addressed in two 

ways.  First,  each  agent  is  assigned  an  arraylist  state  attribute  that  stores  the  last 

experienced action choice of past neighbours. After a neighbourhood composition of 

an agent is identified, the agent refers to this arraylist to set each associated action 

choice of its neighbours as their cooperative state at time  t. Secondly, an agent that 



99

has no record of a neighbour’s last action choice randomly sets him as a cooperator or 

defector.

As the total number of known cooperators within a neighbourhood increases, 

the higher the likelihood that an agent will experience hope and fear. The desirability 

of hope then is a function of the likelihood of receiving a positive payoff and the 

payoff history of the agent. An agent will desire a positive payoff more if he has 

received negative payoffs over a series of time steps. For fear however, desirability is 

zero, because no agent wants to receive a negative payoff.  

The  activation  of  a  prospect  emotion  requires  the  determination  of  its 

Personality-Mood-Emotions intensity (IPME), and this is conditioned on the emotional 

intensity  IE computed  from  likelihood  and  desirability  of  a  potential  payoff,  the 

intensity of temporal mood PAD state (IM), and, sometimes, the degree of neuroticism 

of the agent. The level of IE for hope is high whenever the likelihood and desirability 

are both high, because the agent anticipates that the positive payoff that he greatly 

wants will be obtained in the upcoming NPPD event. As likelihood decreases, the 

intensity of hope lowers to a point that the effect of desirability is negated. An agent 

will not desire an event that is unlikely to happen. Fear is initially assigned an  IE 

setting  referring  to  the  likelihood  of  getting  a  negative  payoff.  The  higher  the 

likelihood, the more intense the level of fear, and vice versa. 

The middle term temporal mood PAD state is an important component for 

determining  the  short  term  intensity  of  emotions  for  several  reasons.  Firstly,  it 

incorporates the influence of the post-payoff and post action choice NPPD emotions 

into the probability of an agent choosing a specific action during game play.  The 
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combined affective intensities of joy, distress, relief, admiration, reproach, and anger 

from the result of a social exchange at time step  t are embodied in the mood PAD 

spacing, which is a contributing factor in setting the overall affective state of an agent 

at time step t+1. Referring to appendix 1, a positive  IM value raises the intensity of 

hope and decreases the intensity of fear a random amount while the contrary situation 

occurs for a negative mood state. Secondly,  the temporal mood state becomes the 

default means of setting the IPME whenever the level of IE is negligible or zero. 

In situations where IE and IM are both approximating zero, the long term affect 

of  the  neuroticism  of  an  agent  will  influence  the  computed  IPME level.  By  their 

propensity  to  be  easily  stressed  and  overreact  in  social  situations  (Miller,  1991), 

extremely  neurotic  individuals  will  be  less  hopeful  and  more  fearful  and  their 

corresponding affective intensities will be lessened and strengthened accordingly. The 

opposite condition applies to individuals with low neuroticism levels. 

At  the  completion  of  the  pre-NPPD  affective  state  evaluation,  the 

comprehensive  intensity  values  IHope and IFear values  are  passed  to  the  social 

component of the model to begin the affective NPPD game play.

7.4.3.2 Affective N-Person Prisoner’s Dilemma 

Each agent is a stochastic learning two-step memory entity with a Pavlovian 

interaction strategy, a randomly assigned initial action choice, OCEAN personality, 

and default mood PAD spacing. A Pavlovian agent utilizes a coefficient of learning to 

change  the  probability  of  cooperation  by  an  amount  proportional  to  the 

reward/penalty it receives from the environment
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At each time step, an agent is randomly assigned a discrete choice activity, 

which requires either movement to a randomly chosen activity specific location or 

staying  at  the  current  geographic  position.  After  the  mobility  events,  the  model 

calculates  the  neighbourhood  of  each  agent  and  determines  the  total  number  of 

cooperators  and  defectors  in  that  grouping.  The  interaction  proceeds  as  the 

reward/penalty for each agent is computed from a set of payoff functions. Lastly, 

each agent updates his action choice (C or D) according to a weighted reward/penalty 

estimation  derived  from two-step  memory  payoff  values  and  the  influence  of  its 

interaction  strategy.  An  affective  Pavlovian  agent  adjusts  the  probability  of 

cooperation by the emotional intensities of hope, fear, relief, joy, and distress, by an 

amount proportional to the reward/penalty it received from the environment, and the 

influence of its coefficient of learning.

The emotional  fine-tuning of  the  probability  of  cooperation  for  the agents 

occurs before the agents choose an action, and this happens both before and after the 

agents receive a payoff for the NPPD event. Therefore, the probability of cooperation 

for agent  i at  time step  t,  notarized as  pi(t), is reset first  according to the agent’s 

intensities of fear and hope, and then by relief, joy, and distress. The initial stage pre-

payoff NPPD affective state is computed as:

        IprePayoff = (IHope + 0.1) + (IFear – 0.1)                                        (7.4)

As the social interaction begins, the reward or penalty received is computed 

from a set of functions considering the neighbourhood composition and the action 

state  of  the  agent.  The  payoff  curves  for  both  the  defectors  and  cooperators  are 

straight lines functions expressed as (Szilagyi, 2003):
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                                                     D = -0.5 + 2x                                                       (7.5)

                                                     C = -1 + 2x                                                         (7.6), 

where x represents the ratio  of the number  of cooperators to the total  number of 
neighbours. 

Once the agent has collected a reward or penalty, the post payoff intensities of 

relief, joy, and distress are computed, and the probability of cooperation adjusted by 

the  confirmation  and well  being  emotional  states.  Thus,  the  comprehensive  post-

payoff affective state is:

            IPostpayoff=(IRelief + 0.05) + (IJoy + 0.1) + (IDistress – 0.1)                      (7.7) 

The emotion adjusted probability of cooperation for agent i is then set as

pei(t) = pi(t) + IprePayoff  + IpostPayoff                                                 (7.8) 

The emotion adjusted probability of defection is thus derived from :

qei(t) = 1 - pei (t)                                                                                      (7.9)                                                                   

Next, the action strategies represent the interaction histories of agents as a weighted 

payoff, an average production function, and a coefficient of learning. Given a citizen 

agent, the weighted payoff is defined as 

                                                                    (7.10)

and Mci is the history payoff (i.e. Mc1 stores the current payoff). Assuming that the 

effects of memory decrease with time, W1 ≥ W2 ≥W3.

The updating scheme is a set of functions that assign an action to an agent 

probabilistically based on his behavior and the behaviors of his neighbours in the 
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social  grouping from three-step memory events. At each iteration, agent  i changes 

pei(t) and  qei(t) according  to  the  reward/penalty  received  from the  environment’s 

responses. For instance, if at time  t, the agent chooses C and the payoff functions 

reward it, then the probability of choosing C is increased for subsequent time steps. 

Each agent is also assigned a coefficient of learning αi, where 0 < αi < 1, to adjust the 

probability according the neighbourhood responses and past  cooperation  states.  αi 

increases if an agent makes repeated actions within the environment but decreases as 

the actions become varied.

 With αi restricted to the range 0.1 to 1, there are three possible adjustments to 

the learning coefficient:

1. αi(t+1) = αi(t) + 0.10, if (S(t) = S(t-1)) and (S(t-1) = S(t-2))
2. αi(t+1) = αi(t) + 0.05, if (S(t) = S(t-1)) and (S(t-1) ≠ S(t-2))
3. αi(t+1) = αi(t) - 0.05, if (S(t) ≠ S(t-1))

 Consequently, the probability of cooperation for agent i at time t+1 is:

              p(t+1) = pei(t) + (1-pei(t)) * αi,  if at time t, action = C and RPwt > 0       (7.11)
              p(t+1) = (1-αi) * pei(t), if at time t, action = C and RPwt ≤ 0                    (7.12)

The probability of defection is thus computed as qei(t) = 1 – pei(t).  

The same set of equations is also used for updating the action probabilities when the 

previous action is D:

              q(t+1) = qei(t) + (1- qei(t)) * αi,  if at time t, action = D and RPwt > 0      (7.13)
              q(t+1) = (1-αi) * qei(t), if at time t, action = D, and RPwt ≤ 0                   (7.14)

The  state  of  agent  i is  updated  contingent  on  its  previous  state,  the  average 

neighbourhood  production  function,  and the  probabilities  for  both  C  and D.  The 
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neighbourhood production function for time t is the cooperation payoff for the group 

computed as:

                                                  (7.15)

where Cj is the payoff value for agent j and N is the total number of agents in 
the neighbourhood.

The average neighbourhood function for three memory events is formulated as:

                                                                                              (7.16)

Thus, the state of agent i at time t+1 with S(t):

         For S(t) = C:

S(t+1) = }
satisfiednot  are Dfor  conditions  theifaction  previousretain  C, 

R  1)q(t and 1)q(t  1)p(t and pf  iagent for  RP if D,{ uavgwt >++<+<
 (7.17)

         For S(t) = D:

 S(t+1) = }
satisfiednot  are Cfor  conditions  theifaction  previousretain  D,  

R  1)p(t and 1)p(t  1)q(t and pf  iagent for  RP if C,{ uavgwt >++<+<
(7.18)

                            ,where Ru∈[0,1] is a uniform random value.

7.4.3.3 Rule Based Inference of Affective States Post-Action Choice NPPD

The rule-base for the post-action choice NPPD affiliation emotions sets their 

intensities relative to the short-term, middle-term, and long-term valenced reactions to 

a  NPPD  result.  The  reader  is  once  again  directed  to  appendix  1  to  view  the 

hierarchical structure of these emotions. 
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The affiliation emotions are the most influential short-term reactions for the 

agent-based modeling of cooperation, because admiration and reproach are activated 

according to the appraisal of the actions of an agent’s neighbours during game play. 

Within the affective framework, agents are naturally selfish automata who experience 

the attribution emotions in much the same manner as the well being prospect-based 

emotions; the higher the percentage of cooperators in a social grouping, the larger the 

payoff  received.  Fluctuations  in  cooperation  composition  are  likely  for 

neighbourhoods with a high percentage of total cooperators, because the temptation 

of agents to defect would surpass the benevolent considerations for the other citizens. 

However, an emotional agent will tend to cooperate with those neighbours he has a 

social  connection  with,  which  is  contingent  on  the  cognitive  strength  of  the 

neighbourhood. By interacting with the same neighbours continually for a minimum 

of  three  NPPD  events,  the  memory  capabilities  of  the  agents  will  produce  a 

familiarity and awareness of altruistic tendencies in the social unit, and this facilitates 

the evaluation of the approving or disapproving affects of neighbourhood cooperation 

dynamics.

Anger is derived from the conjunction of the negative conditions of distress 

with reproach. The intensity of anger depends first on an agent’s reaction to receiving 

a penalty, and then on the amount of blame placed on the decisions of others. Being 

partially  derived  from an  affiliation  emotion,  context  preservation  is  a  necessary 

condition for the intensity of anger to be significant, because the distress of a negative 

payoff derived from the action choices of a grouping of trusted neighbours results in a 

compounded negative short-term affective state.
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The post action choice emotions are also influenced by mood and personality 

with their intensities adjusted by mood class and neuroticism level. Mood class can be 

either  positive  or  negative  and  is  derived  from  the  PAD  spacing.  As  a  positive 

emotion, the intensity of admiration is randomly increased (see appendix 1) with a 

positive mood class and decreased with a negative mood class. Reproach is a negative 

emotion,  so the contrary adjustment  is  in place for these affective responses.  The 

mood  and  personality  adjustment  for  anger  are  embedded  in  the  increases  or 

decreases for distress and reproach so a secondary readjustment is unnecessary.

 The  long-term affect  of  neuroticism again  influences  the  intensity  of  the 

emotion in situations where the emotional responses and mood state are neutral. For 

agents  with  high  values  of  neuroticism in  their  OCEAN personality  schema,  the 

intensity  of  admiration  from a  neutral  payoff  is  reduced  while  the  intensities  of 

reproach is increased in the same manner as the pre-NPPD emotions 

7.4.4 Mood Adjustment

The last procedure in a simulation run is the adjustment of the mood spacing 

considering the intensities of all the activated emotions. This is an important element 

of  the  model,  because  it  provides  a  methodological  linkage  to  all  of  the  NPPD 

emotions.  A  comprehensive  short-term  summary  is  transferred  to  a  middle-term 

affective state at time  t, either positive or negative, and is utilized in evaluating the 

pre-payoff NPPD emotions at time t+1. 

The mapping  of  OCC emotions  to  Mehrabian  PAD spacing models  mood 

changes  from  an  agent’s  comprehensive  affective  profile.  Kessler  et  al.  (2008) 
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present a mood updating component of the SIMPLEX emotion model that determines 

a mood state according to the average intensities of all activated emotions. The same 

approach  is  applied  in  this  model  as  a  function  that  computes  an  average  PAD 

spacing from the intensities  of the triggered emotions  from the result  of a NPPD 

event. Table 7.4 shows the comprehensive mapping of the OCC emotions and PAD 

space used in this research. The mathematical workings for the mood adjustment are 

found in appendix 2.

Table 7.4: Mapping of OCC Emotions to Mehrabian PAD Spacing for NPPD Events

Emotion Pleasure Arousal Dominance PAD 
Octant

Mood 
Type

Mood 
Class

Joy 0.40 0.20 0.10 +P+A+D Exuberant Positive
Hope 0.20 0.20 -0.10 +P+A-D Dependent Positive
Relief 0.20 -0.30 0.40 +P-A+D Relaxed Positive

Admiration 0.40 0.30 -0.24 +P+A-D Dependent Positive
Distress -0.40 -0.20 -0.50 -P-A-D Bored Negative

Fear -0.64 0.60 -0.43 -P+A-D Anxious Negative
Reproach -0.30 -0.10 0.40 -P-A+D Disdainful Negative

Anger -0.51 0.59 0.25 -P+A+D Hostile Negative

7.5 The Model Environment

This  paper  is  the  continuance  of  research  of  this  author  about  the  spatial 

agent-based modeling  of  N-Person Prisoner’s  Dilemma  (Power  2009).  Thus,  it  is 

expected that  the previous findings of the importance  of context  preservation and 

agent  mobility  on  communal  cooperation  will  be  important  processes  during 

simulation events. However, this model also needs to consider the influence of the 

affective state of the agents on their action choices. 
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Figure 7.5 displays the interface of the model produced from a tight coupling 

with a layered model of affective NPPD and a Geographic Information System (GIS) 

and is designed to simulate the affectively influenced social interactions of mobile 

automata within an artificial environment. Context preservation can be analyzed by 

setting the length of time for each of the discrete choice activities during a simulation 

event. For example, the Work_Steps setting of 8 ensures that the agent remains at the 

work location for the preset number of social interactions.

Figure 7.5: Model Interface
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The  mapping  component  in  the  center  of  figure  7.5  visually  displays  the 

spatial structure of the mobile trader agents and fixed non-mobile building automata 

in  the  environment.  Locations  of  both  types  of  agents  follow a  vector  GIS  geo-

referencing  convention.  The  building  automata  are  polygons  and  the  citizens  are 

points,  both imported into the GIS as ESRI© shapefiles.  The relationship between 

both types of entities is hierarchical such that the point agents are spatially nested 

within the building automata.  As an agent  moves,  the destination location is  geo-

referenced by pointing to a specific building object.

7.6 Model Experiments

An explicit  modeling objective of the experiments is to determine how the 

mobility  dynamics  and  affective  state  of  the  agents  influence  the  emergence  of 

cooperation in the environment.  For all  simulations,  the mobility behaviors of the 

agents depend on the length of the time step settings for each possible activity, most 

set  to  1  except  school  and  work  events,  which  are  set  to  5  and  8  time  steps 

respectively.  Cognitively, a time step is a set period of agent interactions, which are 

proxies  for  the  amount  of  time  that  real  people  engage  in  these  activities.  For 

example, a retail event is an incidental social exchange that occurs within a single 

interaction between a customer and a retail employee

The stochastic elements in the model limit the insight from a single simulation 

result so 500 simulations, each with 500 time steps, were run for the initialization 

setting.  Thus,  the  discussion  about  the  experiment  results  is  based  on  the  most 
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common mobility  and cooperation  action  choices,  and the  average  affective  state 

patterns sampled at specific time steps.

Figure 7.6 graphs the average action choices for the agent population, and, at 

each  time  step,  there  are  more  defectors  than  cooperators  throughout  the  entire 

environment. This is the expected pattern due to the utility functions assigning the 

highest  payoffs  to  the  defectors.  The  interesting  pattern  is  the  emergence  of  a 

subpopulation of agents who avoid participation in both mobility and NPPD events. 

These nonparticipants  were given low setting  of  extraversion  during the OCEAN 

personality assignment,  which sets  the condition that whenever the emotional  and 

mood state are minimal for a time step, this personality trait increases the probability 

the agent will remain at their residence location and shun social contact. However, 

nonparticipation  is  limited  to  several  instances  at  each  time  step  so  the  social 

interaction network within the environment is minimally restricted.

             Figure 7.6: Simulation Summary of Action Choices for the Agent Population
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Figure 7.7 contains a series of six maps that document that spatial dynamics of 

mobility and social interaction processes in the simulations. Sampled at successive 

intervals of 100 time steps, each map presents the most common location and action 

choice  of  each agent  for  the  500 simulations.  From a  randomly assigned starting 

population of an equal number of cooperators and defectors, spatial clusters of similar 

action choices emerge at the later time steps. To gauge the effect of agent mobility 

and  context  preservation  on this  spatial  clustering,  the  locations  of  the places of 

Figure 7.7: Simulation Results for the Spatial Agent Population
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employment (numbered 1 to 3) and the school (4) are highlighted with purple ellipses. 

The neighbourhoods at these locations for time steps 100, 300, 400, and 500 have a 

blended  structure  of  both  cooperators  and  defectors,  but  there  are  homogeneous 

groupings of cooperators at locations 2 and 4 for time step 200. Power (2009) has 

determined  that  the  strength of  a  “sense of  familiarity”  amongst  a   grouping  of 

agentsdepends on the temporal constancy of the social network, which increases the 

probability  of  the  emergence  of  a  fully  cooperative  neighbourhood.  Yet,  blended 

action  choice  groupings  indirectly  indicate  that  the  temptation  of  a  high  positive 

payoff available to a defector within a predominantly cooperative environment causes 

a  portion  of  the  agents  to  remain  self-interested  despite  familiarity  with  their 

neighbours.  Spatial  clustering  of  both  cooperation  and defection  can  also  emerge 

when context preservation is negligible as seen at locations 5 and 6 at time step 300. 

Since these agents pursue activities that require mobility events at each time step, the 

similarities in action choice are predicated on their affective states.

Figure 7.8 is a ring diagram of the average dominant emotion of the automata 

at each time step. The bins consist of six segments, the size of each representing the 

percentage  of  the  total  agent  population  who have experienced a  specific  highest 

intensity emotion the most often throughout the simulation runs. For example at time 

step 1, the most common intense emotional percentages are 25%, 26%, 38%, 6%, 2%, 

and 3% for hope, relief, joy, admiration, reproach, and anger respectively. Joy is the 

predominant short-term affect throughout the simulation runs, followed by hope and 

relief. The  prevalence  of  joy  indicates  that most of agents are very pleased with the 
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Figure 7.8: Ring Histogram of the Average Principle Emotion in the Simulations

outcomes of the NPPD events, but it also highlights their  self-interested nature of 

being primarily concerned with obtaining a positive payoff at each social interaction. 

The affective presence of hope and relief is an interesting finding, because, despite 

one  being  a  likelihood  event-based emotion  and the  other  a  realization  state,  the 

strength of their intensities is often interrelated. It was established that when hope or 

relief is the most intense emotion, the agents have usually either just arrived at a work 

or school location to start the NPPD interaction period or undertaken a mobility event 

for a single time step stay period. The non-familiarity of the neighbourhood structure
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causes the agents to hope for a positive payoff, but they have a level of trepidation 

about a possible negative outcome. Once the NPPD event has produced a satisfactory 

result,  the level  of relief  felt  by the agent  is  significant.  Therefore,  the negligible 

influence of context preservation in this case is a condition for an interconnection 

between these two valenced reactions.

The opposite situation exists for both admiration and reproach, where context 

preservation  plays  a  considerable  role.  When  admiration  or  reproach  is  the  most 

intense emotion, the agents are usually engaged in either a work or school activity 

event. The constant assignment of a positive payoff from a set of homophily automata 

causes an agent to appreciate the altruistic behaviors of his neighbours. However, any 

deviation from communal cooperation leading to a neutral or negative payoff is met 

with reproach. The longer the succession of positive payoffs followed by a negative 

result, the more intense the sense of reproach towards the neighbours. It is also these 

disgruntled agents who experience anger from both the selfish action choices in their 

social grouping and the distress of a negative payoff.

With  the  mood  spacing  of  an  agent  set  a  three-step  memory  affective 

condition, the principle average temporal mood state provides a comprehensive and 

less sensitive interpretation of the affective condition of each agent during a set of 

simulation runs. Figure 7.9 is a ring diagram of the dominant average mood space for 

the  simulation  runs,  with  each  time  step  containing  bins  for  five  PAD  spacing 

assignments.  It  has  a  similar  affective  structure  as  figure  7.8 with a  considerable 

portion of the population in an exuberant mood due to the positive results from the 

NPPD events. However, the prevalent mood space is dependent (+P+A-D) where the
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Figure 7.9: Ring Histogram of the Average Principle Mood Space in the Simulations

agents  experience  positive  pleasure  and  arousal  and  negative  dominance.  A 

dependent mood space signifies that the agents experience a lack of control during a 

series of social interactions, but in a homophily environment, this suggests that they 

have become more inclined to be less selfish in favor of altruistic behaviours. The last 

two mood spacings comprise a small portion of each time step in the ring diagram, 

but  disdainful  and  hostile  signify  the  presence  of  uncooperative  behaviors. 

Interestingly enough, context preservation is a requirement for these mood spacings, 
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but in a negative sense. Agents that are either disdainful or hostile are displeased with 

their neighbours’ continual selfishness so they resort to antisocial behavior to gain a 

degree of control within the grouping. This is further highlighted by the fact that these 

mood  spacings  were  not  an  issue  amongst  neighbourhoods  of  agents  engaged  in 

single time step mobility events.of the population in an exuberant mood due to the 

positive  results  from  the  NPPD  events.  However,  the  prevalent  mood  space  is 

dependent  (+P+A-D)  where  agents  experience  positive  pleasure  and  arousal  and 

negative dominance. A dependent mood space signifies that the agents experience a 

lack of control during a series of social interactions, but in a homophily environment, 

this  suggests  that  they  have  become more  inclined  to  be  less  selfish  in  favor  of 

altruistic behaviours. The last two mood spacings comprise a small portion of each 

time  step  in  the  ring  diagram,  but  disdainful  and  hostile  signify  the  presence  of 

uncooperative behaviors. Interestingly enough, context preservation is a requirement 

for these mood spacings, but in a negative  sense. Agents  that are  either disdainful or 

hostile are  displeased  with their neighbours’ continual level of selfishness so they 

resort to antisocial behavior to gain a degree of control within the grouping. This is 

further highlighted by the fact that these mood spacings were not an issue amongst 

neighbourhoods of agents engaged in single time step mobility events.

7.7 Conclusion

This paper describes the methodology and structure of an integrated agent-

based model  of affective  NPPD that  simulates  the emergence  of cooperation in a 

synthesized  socio-geographic  environment.  The  integrated  system  has  a  spatial 

module to simulate mobility behaviors and neighbourhood confluences of agents, a 
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Personality-Mood-Emotions  component  to  model  the  agent  affective  states,  and a 

NPPD mechanism to simulate  social  interactions.  This  layered  model  of  affect  is 

designed to calculate the intensities of the triggered emotions from the outcome of 

NPPD events and to adjust the intensities relative to agent temporal mood state and 

personality.

The  simulation  runs  investigate  how  the  mobility  behaviors  and  affective 

profile of an agent influences the emergence of cooperation. Analysis of the average 

dominant  emotional  states  indicates  that  joy  was  the  most  common  short-term 

affective response to the NPPD results. Social agents are naturally self-interested so 

any interaction that is personally beneficial and pleasing is positively received. The 

expected role of context preservation and neighbourhood strength in the multiple time 

step NPPD events emerged, but with both positive and negative connotations.  On the 

positive side, admiration was the average dominant emotion of agents who appreciate 

and affectively recognize the altruistic decisions of their neighbours. Reproach and 

anger  were negatively experienced by individuals  who decide  to  cooperate  in  the 

social groupings but were constantly frustrated with the selfish action choices of their 

neighbours. The middle term affective states of the agents during the simulation runs 

show that joyous individuals tend to transition into exuberant mood state over the 

three-step memory period. However, the most prevalent average temporal mood state 

is dependence, where the agent experiences a lack of control in the social interaction. 

In familiar neighbourhoods, there is a stage in the game play where individuals will 

relinquish  their  self-interested  control  to  make altruistic  decisions  that  benefit  the 

entire grouping, and they remain in this cooperative mindset throughout the activity 
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interaction  period.  This  process  explains  the  emergence  of  spatial  clusters  of 

cooperators  at  the school  and work places,  which are the locations  initialized  for 

multiple time step NPPD interactions. 
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8.0 Paper 3: Spatial Agent-Based Modeling of an Evolutionary Labour Market Game

Abstract

The objective of this paper is to present a spatially explicit agent-based model 

of  an  evolutionary  labour  market  game that  builds  on  the  methodology of  Trade 

Network Game research by including an employee mobility mechanism to simulate 

directed work flows. The theoretical benefit of adding labour market mobility to the 

original formalization is that the distance that each employee must travel to each firm 

could influence their social interaction decisions and matching partnerships with the 

firms.  In  terms  of  specifications,  the  model  is  comprised  of  mechanisms  for  the 

geographically  influenced  preferential  partnership  matching,  Iterative  Prisoner’s 

Dilemma market exchanges, the genetic evolution of successful worksite strategies, 

and  spatially  constrained  action  strategy  diffusion.  The  system  simulates  the 

emergence  of  cooperation  within  a  market  environment  from  the  mobility  and 

socialization decisions of the individuals as they engage in worksite interactions. 

Simulation runs investigate the influence of a non-employment payment and 

the  distance  between  employees  and  firms  on  the  emergence  of  preferential 

partnerships, labour market participation rates, and worksite choices. The significance 

of  place  is  evident  with  the  results  from  a  high  non-employment  payment-high 

distance  cost  simulation.  The  social  network  of  firm-employee  relationships  self-

organizes  into  a  smaller  group  of  the  most  distant  firms  connected  to  the 

geographically closest employees. 
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8.1 Introduction

The field of agent-based computational economics is being advanced as an 

alternative modeling framework for investigating the dynamics of labour market and 

economic interactions.  Departing from the empirical  statistical  top-down methods, 

agent-based computational economics is a bottom-up nonlinear approach that models 

markets as systems of autonomous interacting socio-economic entities. The goal of 

many  models  is  to  understand  the  emergent  global  patterns  and  regularities  in 

economic  processes,  which  arise  from path-dependent  decisions  and behaviors  of 

individual agents.

Tesfatsion  (2002)  provides  a  comprehensive  survey  of  agent-based 

computational  economics  research  of  complex  adaptive  systems  dealing  with  the 

evolution of behavioral norms, formation of economic networks, etc. For this study, 

research on the formation of economic networks is topical, specifically the means of 

agent selection of partners in labour market transactions. Klos and Nooteboom (2001) 

developed  a  preferential  relationship  model  that  simulates  the  affiliation  between 

buyer and supplier firms that depends on anticipated future returns. A consideration 

of the work is the emergence of trust between agents based on expected benefits and 

the effect of the duration of a relationship on the level of trust. 

Studies  on  the  formation  of  trade  networks  also  demonstrate  the  value  of 

agent-based  modeling  in  labour  market  simulations.  Several  authors  (Tesfatsion, 

1997; 1998; 2001; McFadzean and Tesfatsion, 1999; Pingle and Tesfatsion, 2001) 

present an agent-based framework for modeling labour markets as Trade Network 

Games  (TNG).  The  aim  of  a  TNG  simulation  is  to  study  the  evolutionary  and 
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emergent structure of preferential partner selection between agents and to model the 

dynamics of social interactions under varied market conditions. For example, TNG 

models have simulated employee-employer social networks (Smucker, Stanley, and 

Ashlock,  1994;  Kitcher,  1998),  and  the  evolutionary  dynamics  of  social  welfare 

(Hauk, 2001). Tesfatsion (1997) provides the founding methodology of a TNG model 

for  endogenous  partner  selection  in  a  labour  market  environment.  Throughout  a 

simulation  event,  employees  and  firms  engage  in  two  activities:  (1)  determining 

preferential partnerships with a modified Gale and Shapley (1962) matching routine, 

where  individuals  are  paired  according  to  the  expected  payoffs  that  each  agent 

associates with all potential partners, and (2) an employment process where a pairing 

of agents undertakes social interactions as an Iterative Prisoner’s Dilemma game. For 

both  processes,  each  agent  updates  his  current  utility  assessment  with a  potential 

partner each time he obtains a payoff. The distinctive feature of a matching procedure 

is that employee-firm pairings are not randomly determined or set by a deterministic 

mechanism, such as a grid neighborhood (Ashlock, Smucker, Stanley, and Tesfatsion, 

1996). Instead, a preferential  partnership mechanism ensures that employees direct 

work offers to firms they believe they can have a cooperative social exchange with, 

and these firms utilize the same assessment process to either accept or reject the offer. 

Throughout  a  simulation  time  step,  employees  develop  assessments  about  the 

preferable firms they make offers to, and the firms form assessments about the more 

preferable workers they accept offers from. The matching process continues until the 

resultant pairings are core stable and Pareto optimized in that every trader is at least 

as well off as the other agents and at least one individual is better off in terms of 
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expected payoffs.  In other words, the matching arrangement  can not be improved 

without negatively impacting at least one agent. The agents then engage in the dyadic 

interaction  as  an  Iterative  Prisoner’s  Dilemma  simulation  of  the  progression  of  a 

cooperative or defective relationship between the partners. A final step in a trade time 

step is an evolutionary procedure of social mimicry where the less successful (lowest 

paid) agents adjust their worksite rules by copying the strategies of their highest paid 

neighbours.

Stanley,  Ashlock, and Tesfatsion (1994) developed a similar labour market 

model with a preferential partnership matching mechanism to conduct simulations of 

employee-firm social networks. Agents were determined to choose partners that they 

believe will cooperate with them, which produced long-term relational networks of 

nice agents. The principle finding is that agent matching resulted in the emergence of 

cooperative behaviors quicker than a random iterative pairing procedure.

Pingle  and  Tesfatsion  (2001)  experimented  with  the  effect  of  a  non-

employment payoff on the evolution of cooperation between workers and firms in a 

labour market game with incomplete contracts.  The non-employment payoff is an 

interesting  modeling  parameter,  because,  depending  on  the  amount,  agents  may 

decide to collect an unemployment payment and not participate in the labour market. 

Results for simulation runs for zero, low, and high non-employment payoff values 

reveal that increases in the non-employment payoff result in higher unemployment 

and vacancy rates while at the same time encouraging higher rates of cooperation 

among the matched workers and employers. Increasing the non-employment payoff 

also filters outs firms and workers more likely to defect, and this translates into higher 
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productivity  and  social  welfare  levels.  This  suggests  that  the  labour  market 

participants  learn  to  coordinate  their  behaviors  as  cooperative  strategies,  thus 

improving the overall efficiency of the simulated labour market.

An additional expansion of the TNG approach that has not been extensively 

explored  to  this  point  is  the  effect  of  place  on  the  emergence  of  preferential 

partnerships and labour market structure. It is hypothesized that the spatial locations 

of the residences of the agents will influence the diffusion of the successful work 

strategy  information  throughout  the  environment,  and  that  the  distances  that  an 

employee must travel to get to a firm plays a similar role as the non-employment 

payment in the matching and employment processes of a labour market model.

The objective of this paper is to present a spatial  agent-based model of an 

evolutionary labour market game that builds on the research of Tesfatsion (1997) by 

including a mobility mechanism to simulate employee work flows. The theoretical 

benefit of labour market mobility is that a distance cost (e.g. public transportation, 

rising fuel cost, automobile operation, etc.) that an employee will incur to travel to a 

firm could influence their behavioral decisions and matching partnerships with the 

firms.  Mobility  cost  is  set  as  a  negative  payoff  that  increases  with  the  distance 

between  the  employee  and  firm,  and  is  included  as  a  penalty  adjustment  to  the 

cumulative payoff for each labour market interaction cycle. During the initial stages 

of a simulation time step with all  things being equal relative to expected payoffs, 

firms that are closer to the employees should receive more directed work offers than 

those farther away, but the temporal constancy of this offer submission pattern needs 

to be investigated. The emergence of distinct employee-firm interaction networks can 
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also be place dependent, because the employment instability of receiving few or no 

work offers may bias the remote firms towards cooperative decisions with employees. 

The contrary consideration is the propensity of closer firms with many work offers to 

engage in exploitive behaviors. Relationality in the social interaction system is reliant 

on  the  spatial  confluence  of  social  networks  of  preferential  partnerships  in  the 

environment and the diffusion of work strategy information among the agents. It is 

speculated  that  the  level  of  communal  cooperation,  measured  as  social  welfare 

(Orbell  and  Dawes,  1993),  and  the  social  mimicry  of  work  strategies  will  be 

influenced by changes in the size and geographic extent of interaction neighborhoods, 

either  due  to  varied  initialization  parameters  or  emergent  processes  during  a 

simulation event. 

The paper begins with a discussion of the methodology of the spatial labour 

market  game.  This  consists  of  a  preferential  partner  matching  process,  Iterative 

Prisoner’s Dilemma employment  process,  genetic  evolution of worksite  strategies, 

and the spatially influenced social mimicry of successful action strategies. Attention 

will be directed to the function of place and employee mobility in the implementation 

of the model components. The discussion of the methodology gives an overview of 

the  basic  architecture  of  the  model.  Support  for  the  methodology  is  given  by 

simulations results with varied non-employment payoffs and distance cost penalties. 

8.2 Methodology

The methodology of the spatial agent-based labour market game is founded on 

the  general  formalization  of  Tesfatsion  (1997),  and  the  reader  is  referred  to 
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McFadzean and Tesfatsion (1999) for a detailed overview of the components of the 

standard model. The architecture of Tesfatsion’s model is expanded by the inclusion 

of  four  spatially  explicit  mechanisms  in  the  labour  market  processes.  Firstly,  an 

employee-firm matching routine is utilized by the agents to evaluate their potential 

listing of interaction partners according to expected payoffs. A consideration in this 

process of preferential partnering is the distance cost that an employee incurs as he 

travels to a firm location to submit a work offer. Since the distance cost is subtracted 

from  the  expected  payoff,  the  submission  of  work  offers  can  often  be  locally 

contained. The second component is the Iterative Prisoner’s Dilemma game, where 

each employee-firm pairing in a spatially defined network engages in rounds of social 

exchanges.  Thirdly,  an  evolutionary learning module  is  implemented  as  a  genetic 

algorithm to produce successful action strategies from the pairings of highest paid 

agents.  Lastly,  an  action  strategy  diffusion  mechanism  identifies  the  lowest  and 

highest paid agents in a geographic neighbourhood, and instructs the less successful 

agent to imitate the action strategies of his more successful neighbour. 

The modeling procedure for each simulation time step can be viewed as a 

sequence of activities that comprise a typical labour market day. At the start of each 

day,  the employees  and firms develop a mental  listing of potential  labour  market 

partners  from  the  expected  payoffs  that  are  associated  with  these  people.  The 

expected payoff is the financial  reward that an agent believes he will get from an 

interaction with a specific individual during a labour market exchange. The agents 

refer  to  past  successful  transactions  to  estimate  the  amount  of  expected  payoffs 

attached to the labour market partners. However, employees must also adjust their 
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expected payoffs by considering the cost of traveling to the firm locations and any 

penalties associated with a work offer. 

The second event in a labour market day is the movement of employees to the 

most preferred firms to submit an offer to work, the identification of the composition 

of employees within a firm's neighbourhood, and the firm’s evaluation of the work 

offers of the employees. Each work offer is considered individually as the firm first 

determines if this potential employee is in his listing of preferred workers, which is an 

inventory of the agents that the firm has a memory of obtaining a positive payoff 

from the  previous  interactions  between them.  The  employees  that  are  ranked  the 

highest in  the firm’s  worker  listing are told that  they are accepted as prospective 

partners in the labour market game. The work offers from the other employees not on 

the firm listing are rejected, and these unsatisfied workers move to the next preferred 

firm, and the model performs the same work offer and firm evaluation process. This 

continues until the employees have either traveled to and submitted work offers to all  

of the firms or have willing left the labour market and accepted an unemployment 

payment. 

The  third  stage  of  the  labour  market  day  is  the  actual  labour  market 

transactions between the firms and their preferred employees. Formally, this requires 

a set of nested interactions of labour market communications and learning within the 

simulation  time  step.  These  interactions  are  referred  to  as  generations  of  labour 

market exchanges, because the end result of each interaction is a new generation of 

behavioral strategies that are diffused to the lowest paid labour market participants. 

Each generation proceeds in the following manner. First, the firm will engage in a 
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Prisoner's  Dilemma  interaction  with  each  employee  within  his  neighbourhood. 

Secondly, after the firm has interacted with each employee, the workers talk amongst 

themselves to determine who received the highest payments from the labour market 

exchange. The third step is the central procedure of a generation, the evolutionary 

adaptation of successful action strategies and learning by the unsatisfied agents. Two 

individuals are probabilistically selected from a grouping of the higher paid agents, 

and their action strategies are genetically altered to generate an offspring strategy that 

is more likely to give the highest payoff in the labour market interactions within this 

neighbourhood. The lowest paid agent wants to improve his result in the next labour 

market generation so he proceeds with a process of social mimicry where he discards 

his own action strategy and imitates the optimized offspring strategy. All of the other 

agents  retain  their  action  strategies  for  the  next  generation  of  labour  market 

interactions. For each simulation time step, this three stage process of labour market 

interactions is simulated for gr rounds, where gr is the parameter setting specifying the 

number of labour market generations.

The fourth stage of a labour market day is a second movement event of the 

employees  to their  residence locations after work, and the estimation of the agent 

composition of each employee neighbourhood. The residential  neighbourhoods are 

the relational networks for the final stage of a labour market day, which is the social 

mimicry of the action strategy of the highest paid neighbour by the least successful 

neighbour. The benefit of this supplementary application of social mimicry is that the 

unsatisfied agents can be exposed to the action strategies that were successful at firm 

locations other than where they were situated for time t.  The lowest paid agent sets 
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his  behavorial  schema  to  the  action  strategy  of  the  most  satisfied  neighbour  to 

improve his likelihood of a better performance in the next simulation time step.

The application of the model will simulate a two-sided labour market in an 

unstructured environment of adaptive firms and employees who have the option of 

non-employment. In the two-sided market, the set of b employees (agents who submit 

work offers) is  disjoint from the set  of  s firms (agents who receive work offers). 

Therefore, the market structure is the union V = B ∪ S of the B subset of employees 

and the S subset of firms, where the employees can have up to bq work offers to the 

firms and the firms can accept  no more than  sq work offers from the employees, 

where bq and sq are parameters representing an offer quota and an acceptance quota 

respectively. For an interaction cycle, each employee and firm is randomly assigned 

initial expected payoffs for each of its potential partners and a preliminary worksite 

action strategy. A common choice in the standard framework is to set these utility 

levels equal to the mutual cooperation payoff from the Prisoner’s Dilemma payoff 

matrix. For this study, the expected payoffs that the firms have for each employee are 

set in the same manner, but the expected payoffs that the employees have for each 

firm must  take  into  consideration  the  distance  between them.  Thus,  the  expected 

payoffs  that  each  employee  has  for  the  n firms  are  set  by  adjusting  the  mutual 

cooperation  payoff  by a  random amount  1.0± .  When the  n firms  have the same 

expected utility payoff, each employee will usually default to the nearest firm to pay 

the lowest distance cost. However, the assignment of different expected payoffs to 

each firm for the employees ensures that the farthest away firms receive work offers 

at the start of the interaction cycle and are not isolated from the market exchanges.  
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The  action  strategy  of  each  agent  determines  its  behaviour  in  worksite 

interactions. From  Miller  (1994),  each  worksite  action  strategy  is  a  randomly 

generated  finite  state  machine  that  is  computationally  represented  as  a  Moore 

Machine  with  sixteen  internal  states.  A  Moore  Machine  developed  to  play  the 

Iterative Prisoner’s Dilemma will consist of four elements. The first feature is a set of 

internal  states,  one  of  which  is  set  as  the  starting  or  initial  state  of  the  Moore 

Machine; this initial state is the second element. Thirdly,  each state has a specific 

action associated with it, so for the Iterative Prisoner’s Dilemma, it indicates whether 

the machine will  cooperate  (C) or defect  (D) at  time  t+1.  The final  element  is  a 

transition function linked to each internal state that determines the next state given the 

action choice of the opponent. The transitions may go to any of the internal states 

(including the current one), and are always conditioned on the current state of the 

machine  and  the  reported  move  of  the  opponent.  Thus,  a  machine  begins  in  its 

starting state and does the action specified in that state (either C or D). The machine 

then moves to a new internal state based on the observed move of the opponent, and 

proceeds with the action specified in the new state. This process will continue until 

the game ends. 

A more intuitive description of a finite state machine is given by its transition 

diagram (see Figure 8.1). The  circles  in  the  transition  diagram  represent  the 

internal  states,  and  the upper-case labels inside of the circles indicate the action 

choice of the machine when it enters this state. The labeled arcs extending from the 

circles are transition functions, with the lower-case labels representing the observed 

action  of  the  opponent  and  the  arc  direction  the  machine’s  next  state.  As  an 
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illustration, the finite state machine in Figure 8.1 is a deterministic model of Tit-for-

Tat.  Starting with C in the left-hand state, the machine cooperates again at time t+1. 

After a defection from the opponent, a transition is triggered to the right-hand state 

and the machine issues a defection D. The automaton will remain in the right-hand 

state (and thereby continue

Figure 8.1: Finite State Transition Diagram for Tit-For-Tat

defecting) until a cooperation is observed by the opponent, at which time a transition 

to the left-hand cooperative state occurs.

Each Moore Machine is represented by a binary coded decimal numeric string 

of 148 bits (Hardy and Steeb, 2001).  The  first  four  bits provide the starting state of 

the  agent.  Sixteen  nine-bit  bundles  are  positioned  in  a  string  array,  and  each 

represents an internal  state  of the automaton (see Figure 8.2).  The first  bit  in the 

bundle  sets  the  move  at  time  t+1 whenever  the  automaton  is  in  that  state 

(0=cooperate, 1=defect). The following four bits dictate the transition state when the 

opponent cooperates, and the final four bits give the transition state if a defection is 

observed. 
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The  preferential  partnership  process  is  a  spatially  modified  Gale-Shapley 

matching mechanism.  With  an unstructured  environment  of  more  employees  than 

firms, the matching process is a (many to one match) college admission game rather 

than the (one to one match) core marriage game (Roth and Sotomayor, 1992). The 

spatial  influence is to amend the expected payoffs assigned to each firm for each 

employee, by creating a spatially adjusted expected payoff that subtracts the distance 

cost from the original expected payoff.

Figure 8.2: Example of Part of a Bit-String used to Represent a State in
an Agent’s Strategy

For any agent  v in V,  v uses the expected payoffs Uv(k) in the preferential 

partnering  mechanism  to  determine  the  offering,  acceptance,  and  refusal  of 

interaction offers based on the ranking of potential partners  k. The spatial influence 

on Uv(k) is dependent on the distance between v and k, the mobility status of v, and 

the neighborhood structure of k. A condition of the matching procedure is that agents 

have  to  be  in  close  spatial  proximity  to  submit  work  offers,  which  requires  a 

movement  event  by  an  employee  agent.  Movement  is  penalized  with  a  negative 

payoff  dc that  is  subtracted  from Uv(k)  to  produce  a  spatially  adjusted  expected 
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payoff value  )(kUsv . In this model, the firms are fixed agents while the employees 

are mobile  agents. Therefore,  the distance cost for firms is zero so their  )(kUsv = 

Uv(k). For the employees, dc is computed as: 

                                                        dc = 
DMax
kDb

bs

i )(
,                                                  (8.1)

where i is the current location of agent b, Dbi(k) is the road distance between agents b 

and k, and DMax bs  is the maximum road distance between an employee and a firm 

calculated during initialization. 

The manner in which worksite interactions are directed also depends on the 

tolerability of the partnership between agents, expressed as the minimum tolerance 

level. As is standard, the minimum tolerance level is set to 0 so that work offers are 

not directed with )(kUsv  < 0.  When )(kUsv  ≥ 0, each employee submits up to  bq 

work offers to the tolerable firms, beginning with the firm with the highest  )(kUsv  

value.  

The  labour  market  mechanisms  are  dynamically  coupled  to  a  Geographic 

Information System (GIS) to handle the spatial dynamics of the model. An important 

factor of representing labour market agents in a GIS context is that movement can 

produce  a  change  in  the  vector  geometry  and  topology  of  the  agent  population. 

Consequently, it is necessary for firm s to geographically identify the employees that 

are  situated  within  a  confluence  neighbourhood.  During  a  simulation,  the  agent 

composition  of  the  neighborhood for  s is  estimated  with a  GIS buffer  operation. 

Formally, a buffer of a specified radius (a model parameter) is drawn around the point 
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location of each firm agent, and a point-in-polygon method identifies those agents 

that fall within the buffered area and classifies them as neighbors. 

The employees within the matching neighborhood have determined that firm s 

is the most preferred employer at this stage of the matching process. As fixed agents, 

firms make no direct evaluation of employees before they are determined suitable 

according to the ranking of highest expected payoffs.  Once judged, firm  s’s  most 

preferred employees are placed on a waitlist of employee objects while the remaining 

employee  neighbors  are  rejected  by  s and  penalized  a  negative  transaction  cost 

payoff. A principle of the spatial labour market game is that the rejected neighbors 

have  to  move  from the  location  of  the  dismissive  firm  before  the  neighborhood 

composition  can  be  computed  for  matching  step  m+1.  Therefore,  each  rejected 

worker moves to the geographic location of the next most preferred tolerable firm 

who has not rejected him in the matching process and submits a work offer. If no 

tolerable firm exists, the employee returns to his residence, pays a distance cost from 

firm  sm to  his  residence,  and takes  the non-employment  payment.  As before,  the 

expected payoff is adjusted according to the offer cost and distance cost dc, but, for 

matching step m > 1, dc is relative to the distance from firm m to firm m+1. The more 

instances that an employee pays offer costs, and refusal and distance penalties, the 

more likely he is to return to his place of residence and accept the non-employment 

payment.

This matching process continues until firms stop receiving new work offers, 

and the  prospective  employees  on their  waitlist  are  accepted  for  the  employment 

negotiation process. All other employees who have submitted at least one work offer 
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are excluded from the interaction network as the mobility mechanism returns them to 

their place of residence and assigns them the non-employment payment.

With  the  completion  of  the  matching  procedure  and  the  preferential 

partnerships sets, the generations of labour market interactions between each firm and 

the employees in its waitlist begins. Each pairing of employee and firm represents a 

mutually agreed upon interaction between labour market agents that is simulated as 

an Iterative Prisoner’s Dilemma game for that  work cycle.  Originating within the 

field of game theory, the Prisoner’s Dilemma is a type of non-zero sum game played 

by two players who can choose between two moves, either to cooperate with or defect 

from the other player. The key tenet of this game is that the only concern of each 

individual player is to maximize his payoff during the interaction, with the size of the 

reward or penalty determined from a payoff matrix (Table 8.1). The dilemma arises 

when a selfish player realizes that he cannot make a good choice without knowing 

what the other one will do. 

     Table 8.1: Payoff Matrix for the Spatial Labour Market Prisoner’s Dilemma Game 
Player A (Firm)

Player B 
(Employee)

Cooperate Defect
Cooperate 1.4, 1.4 -1.6, 3.4
Defect 3.4, -1.6 -0.6, -0.6

An agent’s action strategy is an autonomous schema that is unknown to the 

other agents before game play.  During a game play simulation round, agents only 

learn about their opponent’s strategy by observing their actions and evaluating the 

derived payoffs. So, an agent’s action choice (C or D) for a labour market event is 

based entirely on the history with an opponent so the agent must keep track of the 

current state associated with each potential partner.
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During the course of each game play round, agents use a simple criterion filter 

to update their expected utility assessments for their potential partners as new utility 

payoffs  are  received.  The  criterion  filter  uses  a  payoff  count  NV(k) and  memory 

weight  wV(k) to  adjust  )(kUsv  of  agent  v with  partner  k according to  interaction 

payoffs or refusal penalties. After each social exchange between v and k, the current 

payoff count is set as (McFadzean and Tesfatsion, (1999)):

      NV(k)= NV(k) + 1                                                 (8.2)

to revise the memory weight

           wV(k)= NV(k) / [NV(k) + 1]                                         (8.3)

The expected payoff )(kUsv that v links to k is then updated as

     )(kUsv = wV(k) )(kUsv + [1- wV(k)]P,                             (8.4)

where  P is  the payoff  or refusal penalty from the current interaction between the 
partners.

The function of the criterion filter is to ensure that the expected payoff that 

agent  v associates with agent  k approaches the true average payoff that  v would get 

from limitless repeated interactions with  k. In the absence of high positive payoffs, 

the weighting mechanism sets the condition where repeated refusal payoffs will lower 

the  expected  payoff  associated  with  an  agent  to  a  value  less  than  the  minimum 

tolerance level, thus leading to termination of the current labour market interaction.

At the end of each game play round, the action strategies of the agents evolve 

according to fitness scores. Formally, a genetic algorithm utilizes elitism, crossover, 

and mutation to retain the most successful strategies of the agents with the highest 

payoffs  while  replacing  the  strategies  of  all  other  agents  with  variants  of  these 

successful  finite  state  machines.   Figure  8.3  displays  the  general  structure  of  the 
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genetic  algorithm consisting of  encoding and representation,  parent  selection,  and 

generation of optimized action strategies with genetic operators. 

Figure 8.3:  The Functional Implementation of the Elements in the Genetic Algorithm

Moore  Machine  action  strategies  are  encoded as  genetic  chromosomes  for 

both employees and firms in the model. Depending on the initialized percentage of 

highest paid agents that comprise a subpopulation of successful agents,  n pairs of 

these agents are probabilistically selected as parents for the evolutionary process. The 

probability of selection is proportional to the actual payoffs from the employment 

events for a particular round of game play, so the higher the payoff for an agent, the 

greater the chance that it will be chosen as a parent for the evolutionary step. In a 

standard genetic algorithm, two parent agents reproduce, and their chromosomes are 
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altered to generate optimized action strategies. Firstly, elitism ensures that each of the 

original action strategies is preserved for the next interaction cycle before the parents

engage in the genetic process. Next, crossover and mutation are the operators that 

produce the optimized worksite strategies.

Crossover  is  a  process  that  emulates  sexual  reproduction  by  recombining 

alleles through the exchanging of segments between pairs of chromosomes (Hosage 

and Goodchild,  1986).  The standard  two point  crossover  of  parent  pairs  involves 

randomly selecting two bit  positions on the finite state machine string of the first 

parent, and exchanging the corresponding bit string with those of the second parent to 

obtain an offspring Moore Machine action strategy.

Mutation  is  a  process  that  alters  the  structure  of  a  chromosome  and 

reintroduces alleles that have been deleted during crossover (Hosage and Goodchild, 

1986). Mutation serves as a policy to prevent solutions from being trapped in local 

optima  and  is  considered  as  a  secondary  mechanism  in  the  operation  of  genetic 

algorithms  (Jaramillo,  Bhadury,  and Batta,  2002).   Generally,  the  positions  to  be 

mutated  are  randomly  selected  where  each  position  has  a  small  probability  of 

selection, and replacing the values in the identified position with a contrary bit value 

forms  a  new structure.  In  Figure  8.3,  the string is  mutated  by flipping the  bit  at 

position four from 1 to 0. 

At the end of the breeding stage, each highest paid agent retains their finite 

state string strategy from step t, but has an agent attribute set as the genetically altered 

action strategy that they will distribute throughout the environment during the process 

of social mimicry.  In the instances where the neighborhood of an unsatisfied agent 
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has no successful agents, the agent either retains his own action strategy or adopts the 

strategy of the neighbor with the highest payoff.  

8.3 The Model Environment

A central  feature  of  the  model  is  the  ability  of  the  user  to  set  the  model 

parameters that characterize a simulation scenario. Note on the left side of Figure 8.4 

that the user can set the number of interaction cycles, minimum tolerance level, offer 

and distance costs, the percentage of successful agents to utilize in the evolutionary 

process,  and  the amount  of  the  non-employment  payoff.  The  Prisoner’s  Dilemma 

 

Figure 8.4: Interface of the Model of the Spatial Labour Market Game
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payoffs (see Table 8.1) and the genetic algorithm conditions (e.g. mutation rate = 

0.005) are set  as the same as those presented in  the original  model  of Tesfatsion 

(1997).

The spatial structure contains all of the necessary features in the study area for 

the simulations runs. Figure 8.5 displays the spatial environment consisting of non-

fixed mobile employee agents and fixed non-mobile building agents in a synthetic 

labour  market.  The  environment  is  an  unbalanced  labour  market  consisting  of 

employees and firms that are linked by a road network. Locations of both types of 

agents  follow  a  vector  GIS  geo-referencing  convention.  The  building  agents  are 

polygons  and the  human agents  are  vector  points,  both  imported  into  the GIS as 

ESRI© shapefiles. The relationship between both types of entities is hierarchical  such 

Figure 8.5: Artificial Labour Market comprising Mobile Agents and Fixed Building Agents
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that each human agent is spatially nested within boundaries of a specific building 

agents. As an employee moves, the destination location is geo-referenced by pointing 

to a specific building object.

8.4 Simulation Experiments

The simulation experiments are based on a two-sided spatial  labour market 

consisting  of  27  employees  and  3  firms,  with  this  9:1  ratio  arbitrarily  set  to 

investigate  the  dynamics  of  a  heavily unbalanced  market  environment.  Each firm 

(agents 27 to 29) has the same acceptance quota of nine, and all of the employees 

(agents 1 to 27) have a similar work offer quota of one. These experiments investigate 

the  influence  of  distance  between  employees  and  firms  on  the  emergence  of 

preferential  partnerships,  labour  market  participation  rates,  and  worksite  choices. 

Therefore,  the  three  firms  are  intentionally  located  at  varying  distances  from the 

residential concentration of employees, with firm agent 28 being the most distant. The 

initialization  settings  displayed  in  the  model  parameters  panel  in  Figure  8.4  are 

unchanged  for  the  simulation  runs,  except  for  the  non-employment  payment  and 

distance  cost.  For  the  combinations  of  low,  medium,  and  high  non-employment 

payments and low and high distance costs (see Table 8.2), six spatial labour markets 

were generated and analyzed. 

Table  8.2:  Spatial  Labour  Market  Model  Initialization  and Conceptual  Validation 
Settings

Setting Level Non-Employment 
Payment

Distance Cost Spatial Adjusted 
Social Welfare

Low 0 0.05 1.35
Medium 0.565 N/A 1.3

High 1.05 0.15 1.25
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For each labour market combination, a simulation run with 150 time steps was 

run 100 times. For each time step, there were 1000 generations of labour market game 

play and genetic evolution and social mimicry of action strategies within each firm 

neighbourhood.  The  structure  of  the  simulation  scenarios  follows  the  research  of 

Tesfatsion  (1997) and Pingle  and Tesfatsion  (2001) with an analysis  sequence of 

sampling the time steps at generations 12, 50 and 1000. The conceptual verification 

of the model is first evaluated by comparing sets of simulation results to the previous 

TNG  findings  (Pingle  and  Tesfatsion,  2001)  for  social  welfare,  preferential 

partnerships, and non-employment payment. A fully cooperative labour market would 

consist  of  agents  with  ALLC  (always  cooperate)  action  strategies,  resulting  in 

individual utility levels and a social  welfare measure equal to the C payoff.  Prior 

research demonstrates how the preferential partnership matching evolved the utility 

levels of the agents to the mutual cooperation level thus producing a labour market 

approximating a fully cooperative environment. Subsequent experiments altered the 

size of the offer and acceptance quotas and introducing employment parameters to 

compare the emergent labour markets to the utopian cooperative market. Pingle and 

Tesfatsion (2001) found that an increase in non-employment payment lead to greater 

instances of wallflower participants and higher unemployment and vacancy rates, but 

the pairs of agents that manage to match have a propensity to cooperate. However, the 

level of social welfare can decrease as the non-participation rate increases despite the 

proclivity of cooperation among matched partners. These conditions should also be 

prevalent in this model but have a geographic association.
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For  simulation  runs  with  low  non-employment  payment  (NEP)  and  low 

distance costs, the spatial  labour market  game is similar to the standard model  of 

Pingle and Tesfatsion (2001). For simulations with a low distance cost, it is likely that 

the  geographic  effect  on  the  matching  dynamics  of  the  agents  will  be  minimal, 

because  the  spatially  adjusted  expected  payoffs  for  the  employees  will  still  be 

considerably higher  than  the  non-employment  and wallflower  payoffs.  Figure  8.6 

displays  the latched pairings between the employees  and firms shown as maps of 

flowlines  for  the  three  sampled  generations.   A  latched  pairing  is  a  form  of 

preferential partnership matching where an employee and firm continually decide to 

socially interact with each other for a set time frame due to the emergent level of trust 

and history of altruistic conditions between them. A flowline represents a preferential 

matching between an employee and a firm and  each  colored  segment of the flowline 

indicates the total percentage of pairwise action choice for the 1000 generations that 

are averaged for the 150 labour market  time steps. Visual  inspection of the maps 

shows an almost equal percentage (approximately 25%) for each pairwise employee-

firm action choice. This is quantified by the summary statistics in Table 8.3 that lists 

the  total  percentages  for  the  employee-firm action  choices  for  the  three  sampled 

generations  for  each  labour  market  environment.   It  is  likely  that  the  random 

generation of finite state machines played a role in these simulation results, because 

each  machine  could  follow a  nice,  greedy,  or  neutral  action  strategy.  A network 

comprised  of  agents  who  are  genetically  predisposed  to  cooperation  and  shirker 

agents  inclined  towards  defection  would  be  less  likely  to  experience  a  single 

dominant action choice pairing as compared to an amalgam of pairwise action choices 
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   Figure 8.6: Simulation Results for Low NEP and Low Distance Cost
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as evidenced in Figure 8.6. It is speculated that as dc increases there should be more 

instances of latching between employees and their spatially closest firm. However, 

with a low dc, this matching phenomenon does not occur as each firm is latched to 

employees that reside throughout the environment.

Table 8.3: Simulation Mean Values for Varied Non-Employment Payment and 
Distance Costs

An  analysis  of  the  agent  worksite  histories  reveals  that  the  persistent 

relationship between the latched partners is mutual intermittent defection (M-IntD), 

where the action choice of the agents alternates between cooperation and defection. 

However, instances of cooperative choices, both mutually and individually, increase 

as  the  action  strategies  that  produce  high  payoffs  are  diffused  throughout  the 

environment. This is evident by the slight increase in the social welfare value for each 

successive generation for this simulation state. Note that the social welfare values are 

lower  than  the  payoff  for  mutual  cooperation  payoff  of  1.4.  Tesfatsion  (1998) 

presents scenarios where transaction costs and inactivity penalties lead to lower social 

welfare scores, and this is the case with the distance costs. For an unbalanced labour 
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market where the utility levels of 90% of the agents can be decreased by distance 

costs, a lower social  welfare value is anticipated.  Thus, a spatially adjusted social 

welfare  measure  (see  Table  8.2)  is  a  more  appropriate  indicator  of  cooperative 

behavior in these simulations. This is defined as 

                                      SpSW= (CC-Idc)                                                    (8.5)

,where CC is the mutual cooperation payoff and Idc is the initialization setting for 

distance  cost.  With  SpSW  values  ranging  from  1.346  to  1.351  for  the  sampled 

generations, a low NEP-Low dc labour market evolves towards a cooperative social 

interaction environment.  This supports the findings of previous research about the 

importance of preferential partner selection and the evolution of action behaviors on 

the formation of an altruistic labour market network. A further interesting feature of 

the  results  is  a  labour  market  non-participation  rate  of  0%  for  the  sampled 

generations, which represents the absence of wallflower agents. It is probable that the 

initialized  settings  for  the  minimum tolerance,  offer  quota,  and  acceptance  quota 

influenced this behavioral pattern, but the consequences of these parameters will be 

constant for the subsequent simulation runs. 

The next two sets of simulation runs investigated the labour market dynamics 

from an increased NEP with a low distance cost.  As the NEP is raised, employees 

and firms are increasingly enticed to leave the labour market as they evaluate how the 

expected payoffs will be adjusted for penalty costs. Even with a low distance cost, it 

is possible that a spatial clustering of non-participant employees will emerge. Figure 

8.7  displays  the  results  of  the  simulations  with  a  medium NEP value  and a  low 

distance  cost.  Three  discernible  patterns  are evident  on the maps for each sampled 
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          Figure 8.7: Simulation Results for Medium NEP and Low Distance Cost
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generation.  Firstly,  the  flowlines  between  the  latched  employees  and  firms  have 

approximately equal percentages, as shown in Table 8.3. Secondly, each of the firms 

is latched to employees  who live throughout the environment  so the distance cost 

only  becomes  a  consideration  for  the  employees  when  they  make  multiple 

movements throughout the environment as they submit work offers. Lastly, instances 

of  non-participation  in  each of  the  market  generations  are  represented  as  isolated 

employees lacking a flowline to a firm, but these disconnected agents only comprise a 

small proportion (7.4%) of the total population. This increase in unemployment has 

also led to the expected decrease in social welfare to a level of 1.142. 

The maps in Figure 8.8 present the simulation results of a high NEP and low 

distance  cost,  which  have  a  similar  spatial  pattern  to  those  in  Figure  8.7.  The 

flowlines to each firm originate from employee locations throughout the environment, 

and it appears that the percentages of action-choice pairings are visually unchanged. 

Table 8.3 indicates  that  the percentage  of  CC action-choice pairing has increased 

albeit  by a small  amount.  This increase in cooperative behavior is negated by the 

influence of a high NEP payoff as more employees decide not to participate in the 

labour  market.   In  addition,  social  welfare  tends  to  decrease  to  a  level  of 

approximating the unemployment payment as the NEP is increased. Figure 8.8 shows 

that the unemployed agents tend to be spatially dispersed when distance cost is low, 

and the employment status of some individuals can vary at each sampled generation. 

Thus, the decision of an individual to leave a labour market is swayed more by the 

temptation of the non-employment compared to the expected payoffs and less by the 

distances to the firms.  
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Figure 8.8: Simulation Results for High NEP and Low Distance Cost    
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The influence of place on the emergence of cooperation and the dynamics of a 

labour  market  can  be  examined  by  increasing  the  distance  cost  in the simulation 

scenarios.  With  high  dc simulation  runs,  the  interrelationship  between  NEP  and 

distance costs and their influence on the emergent  structure of a labour market is 

revealed more clearly.  In Figure 8.9, the low NEP is an incentive for all agents to 

participate in the labour market, but instances of non-participation occur at generation 

50 and 1000.  An agent becomes a non-participant  when the distance costs, offer 

costs, and refusal payoffs are less than or equal to the non-employment payment. The 

simulation  time  step  processes  for  these  non-participant  agents  consists  of  the 

movement to and submission of a work offer to at least two of the firms as well as a  

mobility event to return to the place of residence. Recall that the acceptance quota of 

the  firms  for  these  simulations is  nine so there  are vacancies  that these employees 

could fill. However, the potential of a third work offer rejection with the associated 

refusal  penalty  and  distance  cost  influences  these  employees  to  leave  the  labour 

market.  This  finding  suggests  the  possibility  of  employees  engaging  in  fewer 

movements and work offer submissions to the detriment of the firms. There is also 

the likelihood that firms that are spatially closer to the employees may have a slight 

advantage  in  procuring  preferential  partnerships  over  their  more  distant  employer 

counterparts. The flowlines of the maps in Figure 8.9 for generations 50 and 1000 

show that  firm 27 has M-IntD latched relationships with nine employees, but firms 

28 and 29 have only eight preferential  pairings for generations  50 and 1000. The 

percentages of action-choice pairings shown in the flowlines visually mimic those of 

the  other  low  NEP  simulations,  but  the  influence  of  a  higher  dc  in  a  low NEP 
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Figure 8.9: Simulation Results for Low NEP and High Distance Cost  
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simulation setting can be evaluated by comparing the social welfare values against the 

thresholds listed in Table 8.2. The social welfare value for each of the generations for 

low dc is above the threshold, but less than the threshold for high dc. As an average 

utility  level,  social  welfare  in  a  low  NEP-high  dc  simulation  depends  on  the 

adjustments of each agent’s utility level for all movement events and the presence of 

non-participating individuals

Visual inspection of the simulation results in Figure 8.10 shows an anticipated 

increase in the number of non-participant agents in all  sampled generations as the 

non-employment is increased from low to medium, and a pattern of spatial clustering 

of unemployed agents in the southwestern section of the environment for generations 

12  and  50.  Also,  there  is  an  increase  in  the  CC  action-choice  pairings  of 

approximately  2%  over the  low NEP-high dc values, but  the altruistic nature  of the 

environment, as seen by the lower social welfare value, is weakened by the increased 

number of non-participant agents.

A simulation with a high NEP and high  dc will model an emergent labour 

market  structure  comprising  a  considerable  number  of  non-participants  within the 

agent population,  some having left the market due to their  road distance from the 

firms (Figure 8.11). With the highest non-participation rates, 18.5% to 22.2%, the 

maps  for  the  high  NEP-high  dc simulations  display  both  a  spatial  clustering  of 

unemployed  agents  and  individual  instances  of  non-participation  throughout  the 

environment.  Specifically,  the  non-participants  are  becoming  clustered  in  the 

southwestern section of the environment. The noted pattern is the self-organization of 

the  preferential  partnerships  flowlines  into  localized  networks  of  M-IntD latched 
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          Figure 8.10: Simulation Results for Medium NEP and High Distance Cost 
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Figure 8.11: Simulation Results for High NEP and High Distance Cost        
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firms to geographically closer employees, which is especially evident for firm 28 at 

generation  1000.  At  generation  12,  firm  28  has  latched  relationships  to  seven 

employees  located  throughout  the  environment,  but  there  are  only  preferential 

partnerships to the four closest employees at generation 1000. The implication of this 

process is the possibility of a reduction of the available employee pool for the more 

distant  firms,  which  puts  them  at  a  competitive  disadvantage  with  the  other 

employers.   Tesfatsion (1998) states  that  the firms  with high vacancy rates  often 

resort  to  unprovoked  defection  when they  receive  a  work  offer  in  an  attempt  to 

procure a payoff higher than the wallflower payoff. There is also the situation where 

the non-employment payment and distance cost values are set so high that a distant 

firm receives  no  work  offers  and  is  consistently  assigned  the  wallflower  payoff. 

These circumstances could deter the emergence of mutually cooperative behaviour 

between agents resulting in a lowered social welfare state. The vacancy rates for firm 

27, 29, and 28 at generation 1000 are 0%, 22.2%, and 55.5%, respectively, and this is 

partly due to their location within the modeling environment. Even though firms 28 

and 29 have significant vacancy rates, the percentage of CC action-choice pairings 

from generation 50 to generation 1000 only slightly decreased for firm 28. This fact 

combined with increases in employee non-participation may explain why the social 

welfare values are the lowest for these simulations, ranging from 1.018 to 1.061. 

A detail that needs to be considered is the diffusion of the evolutionary action 

strategies in a high NEP-high dc environment. The successful agents are those who 

actively engage in the employment process and receive the highest payoff during a 

round of  game play.  As such,  the  diffusion  of  action  strategies  of  the  successful 
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agents to the unsatisfied individuals is meant to supplement and direct the behavorial 

processes of all participants in the labour market. The issue for a high NEP-high dc 

simulation event is that the highest paid agents could be those who have chosen the 

non-employment payment. Non-participation is theoretically suboptimal in a labour 

market model, so the preservation and imitation of less successful action strategies 

could slow the evolution of the system towards a cooperative state. This is a topic that 

will be thoroughly investigated in future versions of the model.

8.5 Conclusion

This  paper  presents  a  spatial  agent-based model  of  an evolutionary  labour 

market  game developed to simulate  employee-firm relationality  within a synthetic 

geographic environment. Built on the original methodology of Tesfatsion (1997), this 

model  expands the  preferential  partnership  mechanism to  consider  agent  mobility 

behaviors in the matching process, and supplements the social mimicry component 

with a geographically constrained diffusion of successful action strategies that are 

evolved with a standard genetic algorithm. The goal of the system is to simulate the 

emergence  of  cooperation  within  a  market  environment  from  the  mobility  and 

socialization  decisions  of  the  agents  as  they  engage  in  cycles  of  labour  market 

interactions. 

Six sets of simulations results document the effect of varied non-employment 

payments and distance costs on the emergent patterns of employment and cooperation 

within the model. For a low NEP-low dc simulation, distance played a minimal role 

in the dynamics of the labour market, but the results support the findings of previous 
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research of the value of preferential partnership matching in the evolution towards a 

fully  cooperative  market  environment.  As  the  non-employment  payment  is  raised 

from low to high, increased instances of non-participation were spatially dispersed 

throughout the labour market. The localized instances of paired agents engaging in 

CC  action  choice  behaviours  will  increase  at  the  higher  NEP  settings,  but  the 

environment-wide level of cooperation, measured as spatially adjusted social welfare, 

will  decrease  due  to  the  lower  utility  levels  assigned  to  the  non-participant 

individuals. As dc was set at the high thresholds, the cumulative distance penalty had 

a stronger negative influence on the employee decisions to participate in the labour 

market. The significance of place in the labour market game is highlighted with the 

results from the setting of high NEP-high  dc. The spatial clustering of unemployed 

agents  occurred  within  a  small  number  of  time  steps,  but  a  noticeable  emergent 

pattern is the localization of the latched partnership network between employees and 

the more distant firms. The network of firm-employee relationships reorganized into a 

smaller  group  of  the  most  distant  firms  latched  to  the  geographically  closest 

employees. 
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9.0 Paper 4: A Conceptual Framework for a Spatial Agent-Based Model of Self-
Organizing Leadership and Cooperation.

Abstract

This  paper  presents  a  conceptual  framework  to  formalize  an  agent-based 

model  of emergent leadership and cooperation in a socio-geographic environment. 

Self-organization of the configuration of social networks and the spatial topology of 

interaction neighbourhoods is central  to the proposed framework. A review of the 

theory of emergent leadership is provided to derive and support the basic postulates 

for the model. The modeling aspects then detail the integration of social and spatial 

components  to  simulate  the  non-linear  interactions  that  occur  within  the  “space 

between  individuals”.  The  primary  social  component  is  an  N-Person  Prisoner’s 

Dilemma mechanism that simulates emergent cooperation and social identity from the 

consensus  behaviors  and  actions  of  citizens  in  interaction  networks.  The  spatial 

aspects simulate the geographic reconfiguration of neighbourhoods from the mobility 

dynamics  of  agents  as  they  search  out  partners  relative  to  expected  payoffs. 

Leadership emerges in the environment from the tensions in the decision choices of 

agents  during  social  exchanges  and  the  enabling  actions  of  administrative  and 

cooperation leaders. The mobility choices of unsatisfied agents are contingent on the 

possibility  of  a  positive  payoff  from  interactions  with  identified  leaders,  where 

followers purposely move to the locations of these influential cooperators. At the end 

of each social exchange, action strategy mimicry is implemented with the unsatisfied 

citizens  imitating  the  strategy  of  the  neighbours  with  the  highest  payoffs.   The 

conclusion is a discussion of potential “what-if” scenarios to gauge the merit of a 

formal model.



162

9.1 Introduction 

The study of leadership has been an important topic of social science research 

for  decades,  but  has  been  criticized  due  to  the  proliferation  of  theories  with  no 

universally accepted framework for understanding the dynamics of leadership (Bass, 

Avolio, and Goodheim, 1987; Yukl, 1989). In a simple context, leadership has been 

described as the process of social influence in which one person can enlist the aid and 

support of others in the accomplishment of a common task (Chemers, 1997).  The 

leadership literature presents a myriad of theories that associate social influence with 

the characteristics of leaders and the situational factors that guide the communication 

and interactions between leaders and followers. Traits theorists (Jenkins, 1947; Gibb, 

1947;  Kilpatrick  and  Locke,  1991)  believe  that  certain  physical,  social,  and 

personality traits distinguish leaders from non-leaders in social settings. Judge and 

Bono (2000) present a dispositional  framework that links the five-factor model of 

personality to  leadership  behaviour.  They determined that  leadership  effectiveness 

could be estimated by the degree of extroversion, agreeableness, and openness of the 

individuals. Behavioural theorists (Bales, 1954; Mann, 1965) focus on the behavioral 

dimensions and actions of the leaders as they bring about change. With this approach, 

the assumption is that effective leaders can be identified from the right combination 

of approach and people orientation (Fleishman and Harris, 1962).  In the 1960s and 

1970s, research turned to contingency theories to account for situational factors that 

influence effectiveness from the style of leadership exhibited by individuals (House 

and  Mitchell,  1974;  Fiedler,  1976).  Leadership  style  generally  falls  into  two 

categories:  transformational and transactional.  A transformational leader influences 
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followers to work for collective goals, and the level of trust and respect that they have 

for the leader motivates them to go beyond what is normally expected of them (Bass, 

1985). Transactional leadership is predicated on the motivational abilities of leaders 

to clarify how follower needs can be fulfilled in return for their efforts at satisfying 

their job requirements. 

These traditional theories are deterministic top-down approaches that assume 

equilibrium end states. Contemporary leadership researchers (Lichtenstein et al. 2006; 

Hazy,  2007;  Plowman  et  al.  2007;  Uhl-Bien  et  al.  2007)  have  stated  that  these 

conventional  methods  are  inappropriate  and  out  of  date  to  handle  the  leadership 

dynamics  in  the  modern  knowledge  work  environment.  They  have  proposed 

alternative frameworks drawing from aggregate complexity theory (Manson, 2001) 

that consider leadership to be an emergent property from the nonlinear interactions 

among groupings of leaders and followers. The theory of emergent leadership focuses 

on evolving social networks of informally interacting agents, where the leader enables 

rather  than  aligns  the  networks  (Uhl-Bien  et  al.  2007).  Instead  of  controlling  the 

interactions between individuals for desirable results, leaders are adaptive when they 

encourage  and  nurture  conflicting  ideas  and  options  within  the  social  unit.  A 

theoretical principle of leadership in a complex system is the emergence of localized 

leader-follower  groupings  that  achieve  order,  because  their  path-dependent  social 

interactions  produce  unexpected  outcomes  (Chiles  et  al.  2004).  The  stochastic 

dynamics of the informal interactive interdependency between the individuals leads to 

bottom-up behaviors that collectively lead to the emergence of structural changes in 

the social network. 
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Uhl-Bien et al. (2007) state that the basic unit of analysis in the formal models 

of self-organizing leadership is the complex adaptive system, a dynamic network of 

interacting,  interdependent  agents who are bonded in a cooperative dynamic  by a 

common goal, outlook, etc. Of interest to this paper is the research utilizing agent 

based modeling (Hubler and Pines, 1994; Carley and Ren, 2001; Black et al. 2006; 

Dionne et al. 2010) as the complex adaptive systems to simulate the emergence of 

leadership at the micro-leadership level (individuals in social groups).  Agent-based 

models are ideally suited for simulating leadership in social networks, because the 

individual  decisions  and  behaviors  of  each  agent  generate  system-wide  emergent 

capabilities  and  adaptability  in  leader-follower  exchanges.  The  efficacy  of  the 

leadership within a multi-agent environment will depend on the level of cooperation 

between the agents,  and their  ability to  receive advice and knowledge from other 

individuals.  This  leads  to  the  formation  of  cooperative  aggregates  of  agents  that 

follow an influential leader in making their individual decisions (Anghel et al. 2004). 

There has been leadership literature that looks at the motivational influence of the 

leader to encourage cooperation among the agents (Solow et al. 2005), but there are 

few studies that consider the cooperation dynamics of the agents as it relates to their 

personal benefit and leadership position in the social environment. 

Cooperation  is  behavior  that  may  initially  cost  a  person  or  group  but 

ultimately benefits other individuals or social aggregates. While this may seem an 

uncomplicated concept, the derivation of satisfactory theoretical explanations for real-

world  altruistic  behavior  has  been  a  challenge  (Killingback  and  Doebeli,  2002). 

However,  the  Prisoner’s  Dilemma  has  become  one  of  the  most  widely  adopted 
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methodologies  for  studying  the  evolution  of  cooperation  in  simulated  social 

environments.  The  Iterative  Prisoner’s  Dilemma  is  the  common  approach  of 

simulating emergent cooperation in pairings of continually interacting agents, where 

cooperative  and  non-cooperative  behaviors  are  reciprocated  conditioned  on  the 

emergent level of trust between the partners. Leadership in the Iterative Prisoner’s 

Dilemma game has been shown to be an important process in achieving a steady state 

of  cooperation  in  social  networks  (Zimmerman  and  Equiluz,  2005).  As  dyads  of 

agents interact,  followers will adopt the strategies of the neighbouring cooperative 

individuals with the highest aggregate payoffs, setting these agents as the cooperation 

(C) leaders in the social environment. The emergence of global cooperative steady 

states was found to depend exclusively on the survival of certain C-leaders with the 

maximum payoffs in the network, because these were the individuals that unsatisfied 

agents would gravitate towards as they searched for partners for future game play 

episodes. However, the general assumption is that agents only interact with a single 

matched partner  during each round of game play,  and this  simplifies  the network 

concept of neighbourhood. Social networks, such as a city or large corporation, are 

often  comprised  of  simultaneous  interacting  agents  in  a  multitude  of  social 

configurations  (pairings  of  agents,  small  localized  groupings,  or  the  entire 

community).  There has been an increase in the research and application of the N-

Person’s  Prisoner’s  Dilemma  (NPPD)  to  investigate  the  emergence  of  collective 

cooperation in social groupings. Referred to as a social dilemma situation, a player 

has to choose between his own interests or exhibit cooperative behaviors that benefit 

the grouping of  N players. Simulations have shown that agents meeting repeatedly 
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develop  a  propensity  to  cooperate  and  exhibit  altruistic  behaviors,  and  this 

cooperation  is  sustained  by  the  reciprocity  of  neighbours  within  the  social 

environment.  Several  authors  have  also  elaborated  on  the  delineation  of  NPPD 

neighbourhoods by investigating the spatial  dynamics  of social  networks.  Akimov 

and Soutchanski  (1994) developed a spatial  NPPD game to relate  how collective 

cooperation depends on the behavioral patterns of simple automata within a cellular 

automaton. Szilagyi (2003) presented a cellular automata model of NPPD based on 

the interactions of irrational agents in a social unit and revealed how the chaos like 

actions of the agents was an important condition for decentralized group cooperation. 

Power  (2009) presented  a  spatial  agent-based model  of  NPPD that  simulated  the 

emergence of cooperation from the behaviors of mobile citizen agent in a real world 

socio-geographic community. A practical extension of the spatial NPPD models is to 

provide a conceptual abstraction that simulates the emergence of leadership from the 

mobility influenced altruistic decisions of agents. 

The purpose of this paper is to propose a framework for a spatial agent-based 

model that simulates self-organizing leadership from the structure of cooperation and 

trust that emerges from multi-agent social interactions. The theoretical concepts of the 

model  are  presented as  separate  but  interrelated  methods  that  simulate  the spatial 

variability  in  the  social  interactions  that  define  leadership  structure  with attention 

given to the assumptions and computation approaches. From these assumptions, the 

basic  elements  of  the  model  are  established  and  the  integration  between  them 

considered.  The  paper  is  organized  as  follows.  In  section  9.2,  the  theoretical 

principles  and  implementations  of  self-organizing  leadership  in  organizational 
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sciences  and  community  development  practices  are  reviewed  to  derive  the  basic 

precepts for the conceptual model. Section 9.3 focuses on the components required 

for the morphology of a spatial  NPPD agent-based model of emergent  leadership. 

Section 9.4 presents the formal design of the integrated components of the simulation 

model based on the supposition that cooperative decisions of mobile agents can lead 

to the emergence of C-leaders within a social network. Cooperation is established and 

sustained according to the social preferences of the agents in selecting neighbours for 

game play.  C-leaders  are  agents  who prefer  continued altruism and will  accept  a 

payoff  lower  than  the  largest  possible  utility  level  of  defection.  Followers  are 

unsatisfied  agents  who  search  for  and  choose  new  partners  relative  to  expected 

payoff, which triggers a reconfiguration of the topological structure of the spatial and 

social  network.  The mobility  decisions  of  the defection  (D) leaders  also alter  the 

network structure as they seek out cooperative neighbours to exploit. From memories 

of past payoffs, a level of trust develops between the followers and the C-leaders, and 

this increases the probability of the unsatisfied individuals moving to the location of 

the  C-leader.  In  a  contrary  manner,  known  D-leaders  are  avoided  by  exploited 

followers  so  these  defectors  to  have  to  perpetually  invade  neighbourhoods  of 

unsuspecting  cooperators.  Each  simulation  time  step  will  conclude  with  social 

mimicry, where the unsatisfied followers adopt the action strategy of the neighbour 

with  the  highest  payoff.  The  discussion  section  details  the  conditions  for  the 

development and application of the proposed model, and discusses potential “what if” 

scenarios  for  simulating  cooperation  and  leadership  in  socio-geographic 
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environments.  The paper concludes with a summary of the processes in a model to 

simulate the dynamics of leadership in a well-connected community.

9.2 Theory of Self-Organizing Leadership

The concept of emergent leadership is founded on the principles of aggregate 

complexity  theory,  specifically  the  dynamics  that  explain  the  self-organization  of 

social networks. Lichtenstein et al. (2006) describe leadership as an outcome of the 

tensions  in  the relational  interactions  among agents  within a social  network.  This 

tension causes a network to emerge out of states of disequilibrium when it is at the 

“edge of chaos” (Gilchrist, 2000; Kuhn, 2009). This is when the system is most open 

to new input and will permit novel information and options to enter the interaction 

network and challenge the status quo. Conflict is often a necessary condition for the 

early stages of emergent leadership, both amongst the individuals and between the 

entire social network and outside contacts. It is this state of disequilibrium that will 

cause agents to communicate with one another and to interact and explore options for 

localized actions within the network. The intensity and range of the interactions will 

change  as  information  is  shared  and  diffused  throughout  the  network  causing 

individuals  to  continually  adapt  and  act  differently  from the  feedback  about  the 

actions  of  others.  However,  Onyx  and  Leonard  (2010)  state  that  even  though 

disequilibrium  may  be  encouraged,  social  networks  also  have  forces  or  “deep 

structures” that push the network towards equilibrium. Whether through a common 

set of principles or objectives, turbulence in the social interactions can be limited by 

the cooperative and consensus decision-making among the participant agents. These 
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bottom-up interactions of the social agents lead to an emergent form of order which 

Heihetz et al. (2009) refers to as “controlled disequilibrium”.

Uhl-Bien et al. (2007) present a complex adaptive system outline of emergent 

leadership that focuses on social positioning in evolutionary networks of informally 

interacting agents. They argue for a departure from the traditional view of a leader as 

an authoritative figure influencing and guiding the actions of followers to obtain an 

organizational objective. Instead, they view leadership involving interrelated roles for 

administrative,  adaptive,  and enabling  leadership.  Administrative  leadership  is  the 

top-down coordinating actions and decisions of agents in formal managerial positions 

who plan  activities  to  satisfy organizational  outcomes.  Adaptive  leadership  is  the 

micro-level emergent, interactive dynamics among agents that produces collaborative 

change  within  a  social  network.  Enabling  leadership  is  intended  to  identify  and 

manage  the  conditions  required  for  adaptive  leadership  including  any  norms  and 

institutional conditions introduced into the system by the administrative leader. The 

essence  of self-organizing  leadership  is  that  leaders  enable rather  than dictate  the 

network dynamics by encouraging and allowing individuals to remain engaged and 

connected despite the tensions within the social networks. Adaptive leaders enable 

behaviors  that  encourage  conflict  in  the  network  to  motivate  and  coordinate  the 

interactions, and they direct attention to what is important and provide meaning to 

events. Unlike the standard approaches, leaders in a complex system frequently have 

little  authority  in  the  organization  and  can  lead  in  a  temporary  capacity.  The 

individuals who assume a role of a communicator become a  tag within the social 

network  (Holland 1995; Marion and Uhl-Bien 2001) when they are recognized as 
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influential  in  coordinating  initiatives  and  facilitating  interactions  amongst  the 

individuals. A tag is a representative social standing or reputation associated with a 

leader from the role(s) he undertakes in catalyzing actions and directing behaviours in 

the social network. For example, a leader could be a tag for social empowerment due 

to his efforts to include disenfranchised citizens in the decision process that address 

civic issues. Another person could be tagged as an entrepreneur as his neighbours 

recognize and appreciate the leadership displayed in past business venture successes. 

With  the  condition  that  a  tag  is  often  unassociated  with  a  position  of  formal 

management, there can be multiple leaders who share the facilitator role in tandem. 

The scope of the interactions is intended to bond the immediate social network as 

well  as  distinguish  it  from  other  external  groups.  Interactions  within  the  group 

facilitate a social identity that incites individuals to accept and appreciate the opinions 

of  others,  while  interactions  with  outside  groups increase  the  importation  of  new 

ideas, information, and innovations from the environment.

Lichtenstein  et  al.  (2006)  view leadership  as  an  emergent  event  from the 

nonlinear interactions that occur between the “spaces between individuals” in a social 

network. The bonding within a social network emerges from human interactions that 

depend on an orientation amongst the individuals (Bradbury and Lichtenstein, 2000). 

This  relationality  postulates  that  self-similarity  is  associated  with  organizational 

identity,  because  it  occurs  when  an  individual’s  beliefs  become  self-defining 

(Schneider  and Somers,  2006).   Members  in a  social  network develop a sense of 

belonging to the group when their self-identity approximates their perceived identity 

of the organization. As such, the structure of a social network consists of evolving 
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connections and interdependencies between people rather than the selfish actions of 

individuals. Leadership is thus a system phenomenon reliant on communication and 

information diffusion within the bonded social space. The term space is important, 

because it suggests a means of analyzing adaptive leadership in terms of the social 

distance  among  the  individuals  in  the  network.  Episodes  of  leadership  can  be 

identified by analyzing changes in the closeness in the social interactions resulting 

from an individual’s actions to mobilize others to seize new opportunities and tackle 

relevant issues. This degree of closeness within the network will be both positively 

and negatively influenced by the tensions in the social interactions. Tensions can push 

people together to develop a consensus approach to a common concern, adopt a new 

innovation,  or  plan  an  agenda.  However,  tensions  can  also  cause  individuals  to 

question their place in the social grouping when their self-identity increasingly differs 

from the organizational identity despite the efforts of a moderator. Emergent order 

within  the  environment  can  rely  on  the  social  and  temporal  strength  of  the 

connections between those individuals who feel closer to and those who are further 

alienated by the interactions in the social network.

The  “space  between  individuals”  has  a  geographic  connotation  that  many 

scholars in organizational science have ignored or dismissed in their  formulations. 

However, researchers in community development have studied emergent leadership 

as a non-linear process of interactions within a community, which has both social and 

spatial  processes.  A  tenet  of  community  development  is  that  the  success  of  an 

individual or a group’s efforts to mobilize the community hinges on the interactions 

between citizens as they utilize social capital. Gilchrist (2000) presents a model of the 
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well-connected community as an adaptive socio-geographic network of inter-locking 

relationships. She argues that community development practitioners need to support 

and shape social  networks for the emergence of empowering forms of communal 

actions.  Community leaders  are  the individuals  who facilitate  communication  and 

cooperation within the network producing a strong collective identity based on shared 

geography  or  common  interests.   Onyx  and  Leonard  (2010)  reviewed  five  case 

studies to determine the common elements of self-organizing leadership that recur in 

successful community development programs. Community leaders are often tagged 

individuals, most with little formal authority, who have the vision and initiative to 

articulate  a  future  vision  of  the  community’s  social,  cultural,  and  economic 

conditions.  An  important  spatial  pattern  that  often  occurs  is  the  movement  of 

followers to locations within close physical proximity of the prominent citizens to 

both share and receive information. These spatial groupings were both the results of 

concerned  or  interested  citizens  convening  for  public  meetings  at  a  communal 

facility, such as a school or town hall, and the conscious decisions of people to search 

out and move to the locations of the leaders. It was determined that when leaders 

become embedded in the formal  and informal  networks within a community they 

inherit  a level of trust and reverence amongst the followers. Theoretically,  system 

order from the processes associated with emergent leadership in a socio-geographic 

environment is the product of the self-organization of both the social connectivity 

network and the spatial topology of the well-connected community. 
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9.3 Spatial Agent Based Model of NPPD Emergent Cooperation and Leadership

The abstract framework of the model is founded on the processes that define 

leadership in a socio-geographic community.  From a research perspective, a socio-

geographic community is both a geographical object and a sociological subject. It is 

an integrated geographic network of social individuals defined by the communication 

patterns and flows throughout an evolving area of collective social interactions. Flows 

refer to  both random movements  throughout the modeling environment  and agent 

specific  decisions  to  move to the location  of influential  agents.  As a sociological 

subject,  a  community  codifies  behaviors  to  control  the  processes  of  social 

interactions. For self-organizing leadership, the community becomes a social system 

of individual agents engaging in both local communication and actions involving a 

self-identity, social identity, and collaborative efforts. Thus, the simulation of a socio-

geographic  community  considers  agents  with  individual  characteristics  and 

behaviours, the relationship among and between them and the environment, as well as 

how these characteristics and relationships change through time and space. The agent-

based model must simulate the “space between individuals” in both a sociological and 

geographic sense. 

9.3.1 Object Oriented Relationality: Agent States and Transition Rules

Bathhelt  and  Glûckler  (2003)  demonstrate  that  social  relationality  in 

geographic research emphasizes  the importance of contextuality in human actions. 

For  the  computational  development  of  spatial  models  of  relationality,  social 

individuals  are  geographically  interconnected  in  communication  and  cooperative 
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processes with their neighbours. The emergent localized processes will depend on the 

actions  of  the  agents,  who  have  to  be  represented  as  autonomous  objects  of 

knowledge and information.  

Many of the spatial agent-based models in the literature have been developed 

with  object  oriented  programming  within  a  modeling  platform  such  as  Repast 

Simphony© or Netlogo©, and the same approach is proposed for this research.  These 

models are computational representations of a complex adaptive system consisting of 

generative  heuristic  mechanisms  to  simulate  multi-scalar  interactions  between 

entities. From a programming perspective, each agent is represented as an object that 

changes its state, location, and interactions with others according to transition rules at 

successive time-steps. Figure 9.1 displays an example of a modeling framework for a

Figure 9.1: Repast Simphony Display of a Socio-Geographic Community
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socio-geographic community developed with Repast Simphony©.  This object-based 

view of a community consists of both fixed and mobile geographic automata, each 

ontology of object assigned specific state variables during initialization and a set of 

transition  rules  to  determine  how these  states  change over  time.  The citizens  are 

mobile agents who actively engage in the social interactions associated with emergent

leadership. Each citizen is assigned state variables that determine their social position

in  the  network  and spatial  location  in  the  modeling  environment.  Social  position 

requires parameters that set the agent’s participation in NPPD game play, specifically 

interaction strategy, last action choice (cooperation or defection), and payoff level. 

An agent’s social position in the dynamics of leadership is tracked with variables that 

remember tags assigned to certain influential citizens, identities of any cooperation 

(C) and defection (D) leaders from time step  t, and the level of self-identity in the 

social network. Spatial position is logged with pairs of geographic coordinates of the 

location of the citizen at time t, the t geographic coordinates of tags and C-leaders, the 

destination locality at time t+1, and an arraylist of the neighbouring citizens who will 

participate in episodes of NPPD play.

The buildings  are  non-mobile  features  and structures that  are  directly geo-

referenced  in  the  model  as  origins  and  destinations  of  the  citizen  agents.  Each 

building  has  a  single  state  variable  that  describes  its  occupancy  type:  household 

residence, community center, church, school, etc.

9.3.2 State Transition Rules

Simulation  of  the  spatially  enabled  social  interactive  behaviors  of  citizens 

requires an integrated knowledge of system state, location, and neighbourhood rules. 
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State transition rules are only needed for citizen agents and consist of four sets of 

heuristics: (1) those relating to the probability of cooperative action,  (2) rules that 

determine  if  an agent copies the strategy of neighbourhood leaders,  (3) rules that 

update  a  citizen’s  social  identity  at  time  step  t,  and  (4)  rules  that  update  the 

identification of tags, C-leaders, and D-leaders for each agent at time step t.

9.3.3 Movement Transition Rules

An  object-oriented  approach  will  coordinate  movement  as  discrete  event 

simulations  with  a  scheduling  mechanism  directing  the  sequencing  of  agents’ 

mobility  behaviors.  Movement  rules  manage  both  the  travel  of  the  citizens  to 

randomly selected destinations and the agent specific decisions to commute to the 

locations of influential agents. Standard movement requires a set of rules that first 

randomly selects one of the buildings and relocates the citizen to the facility. Directed 

movement of citizens to the locations of tags and leaders is coordinated by rules that 

consider the degree of social space accorded to them by the citizen at  t.  Bounded 

rationality sets the condition that a citizen moves to the time t  location of a selected 

tag even though that individual may have relocated at time step t+1. In the instance 

where there are numerous identities of multiple tags and leaders stored as agent states, 

one is randomly selected and the citizen moved to the building where the influential 

individual was situated at time step  t. Mobility behavior is an important element in 

the spatial agent-based simulation of cooperation in a social environment, because it 

sets the neighbourhood configuration for the NPPD game play.
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9.3.4 Social Interaction Neighbourhoods

A consequence of representing mobile automata in a geographic environment 

is that movement can produce a change in the locational topology of the agents. The 

rule  set  for  neighbourhood  delineation  is  based  on the  proximity  of  agents  on  a 

geometric  network,  where  agents  within  a  specified  distance  of  each  other  are 

considered neighbours. At each time step, the topology and automata composition of 

the neighbourhood for each citizen agent is estimated with a buffer drawn around the 

location  of  each  agent,  and  all  individuals  that  fall  within  the  buffered  area  are 

classified as neighbors.  

9.4 Spatial N-Person Prisoner’s Dilemma 

The aim of a spatial NPPD game is to investigate social interaction behaviors 

and communication between n > 2 individuals at a shared location. In this model, the 

NPPD game is an abstraction of social interactions in a spatial neighbourhood, and, as 

a generalized application,  does not represent a specific  type of relational situation 

between the agents. The goal of the generalized NPPD game is to only simulate the 

processes of social interactions and determine whether a series of outcomes make the 

neighbours  more  cooperative  and  trusting.  Any  reasons  why  the  agents  share  a 

common  location  and  decide  to  interact  is  secondary  to  the  actual  processes  of 

communication and altruistic decision-making.

Formally,  a typical social dilemma can be considered an n-person game, in 

which each player has the same preferred option that does not change regardless of 

the actions of the other players. Every player has the same payoff structure and can 
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choose to either cooperate, C, or defect, D. The payoff of each player who defects is 

represented as D(m),  where m is the number of players  in a social  grouping who 

cooperate (0 ≤ m ≤ n-1). The payoff for each cooperating player is denoted as C(m). 

The  social  dilemma  is  then  defined  by  the  following  conditions  (Akimov  and 

Soutchanski 1994): 

1. D(m) > C(m + 1):  each player  is  better  off choosing to defect  rather  than 
cooperate, regardless of how many players choose to cooperate on a particular 
play of the game.

2. C(n) > D(0); if everyone cooperates, each player is better off than if everyone 
defects.

3. D(m + 1) > D(m) and C(m + 1) > C(m); the more players cooperate, the better 
off each player is, regardless of whether he chooses to cooperate or defect.

4. (m + 1)C(m + 1) + (n – m – 1)D(m + 1) > mc(m) + (N – m)D(m); society as a  
whole is better off the more players cooperate.

Formally,  each citizen agent will be a stochastic learning entity with three step 

memory,  and  a  predetermined  action  strategy  and  action  choice  (C  or  D).  In  a 

neighbourhood of N agents (n > 2), the state of each citizen at time t is characterized 

by  defection  or  cooperation.  At  each  time  step,  the  model  calculates  the 

neighbourhood of each agent  and determines  the total  number of cooperators  and 

defectors in that grouping. As the interaction proceeds,  each agent sets  his action 

choice  according  to  the  probabilities  updated  on  the  basis  of  the  reward/penalty 

computed from the payoff functions, his neighbour’s actions, and the influence of its 

action  strategy.  The  reader  is  referred  to  Zhao  et  al. (2005)  for  a  list  of  action 

strategies that have been used in NPPD simulations.

A set of proposed payoff curves for both the defectors and cooperators can be 

straight lines functions expressed as (Szilagyi, 2003):
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D = -0.5 + 2x                                                         (9.1)
C = -1 + 2x                                                            (9.2)

The updating scheme is a set of functions that assign an action to a citizen 

agent probabilistically based on his behavior and the behaviors of his neighbours. The 

probability that an agent will choose cooperation or defection is adjusted according to 

a three-step memory appraisal of the interaction histories of agents evaluated with a 

weighted payoff, an average payoff for the neighbourhood, and a three-step memory 

coefficient of learning. The action state of each agent at time t+1 changes whenever 

his derived payoff is less than the production function and the adjusted probabilities 

of either cooperation or defection is greater than its current action state. The reader is 

referred to Power (2009) for a detailed overview of the mathematical workings of the 

spatial NPPD.

9.5 Computational Implementation of the Proposed Model

The social functionality of the model involves the refinement of the NPPD 

component  to  consider  the  emergence  of  leadership  both  within  localized  spatial 

neighbours and throughout the modeling environment. Building on the research of 

Zimmermann and Equíluz (2005), adaptive leadership would be simulated according 

to the expected payoffs that each agent associates with tagged individuals, the payoffs 

received from game play, and the imitation of action strategies from the highest paid 

automata. The original work simulated the emergence of cooperation and leadership 

from  multi-agent  social  interactions,  but  the  reorganization  of  neighbourhood 

structures was a simple random selection of individuals for an agent to interact with at 
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t+1.  Neighbourhood adaptation related to the evolution of the configuration of the 

social  networks of the agents, but the spatial  topology was ignored. The proposed 

model must consider the nonlinear interrelationship between the social structure and 

spatial  geometry  to  effectively  simulate  topological  adaptation  in  a  network  of 

“spaces  between  individuals”.  For  a  socio-geographical  environment,  it  is  also 

important to include administrative leadership with adaptive leadership as presented 

by Uhl-Bien et al. (2007).  It is standard that a real world community would often 

have individuals in formal authoritative roles who dictate information diffusion and 

policy  decisions  from  a  top-down  viewpoint.  These  could  be  local  government 

officials (e.g mayor), clergy, and other institutional figures and groups. This can be 

implemented  in  a  model  during  initialization  by randomly  selecting  one  or  more 

citizens agents and setting them as administrative leaders. Initialization settings for 

the simulation runs will establish the macro-level norms by which the community 

functions, and the administrative leaders would facilitate the dissemination of these 

institutional  conditions  throughout  the  environment.  For  example,  a  fundamental 

heuristic could be “the level of social identity should approximate the payoff schema 

of all cooperation at time step t+1”. Tesfatsion (1998) refers to this condition as the 

social welfare of a modeling environment, where the action choices of the majority of 

the automata are based on communal considerations rather than individual rewards. It 

would be the responsibility of the administrative leader to remind citizens within his 

neighbourhood of this collective goal, and this exchange will influence to varying 

degrees the decision-making of the citizens in their social interactions.
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In  a  working  model,  the  processes  that  define  the  environment  will  be 

simulated  in  sequential  order.  First,  the  spatial  dynamics  of  agent  mobility  are 

simulated relative to expected payoffs  and the action state of the automata at  t-1. 

Given their strategy and action choice state, the expected payoff that an individual 

associated  with  another  citizen  is  computed  from the  payoff  functions.  However, 

bounded rationality  sets  the  condition  that  a  citizen  can  only  estimate  the  action 

choice states of their tags and the overall C leader, so computed expected payoffs are 

limited  to  these  individuals.  The  computation  of  all  payoffs  in  NPPD requires  a 

minimum of three agents in the neighbourhood, but an agent would only know at 

most  the action state  of two game participants  (himself  and the  tag or C-leader). 

Expected  payoffs  can  be  reliant  on  setting  the  action  choice  of  the  unknown 

neighbours  with  a  random  assignment  of  either  cooperation  or  defection,  and 

computing the reward or payoff from the utility functions. An underlying assumption 

is that C followers will seek out the C-leader(s), because they know there is at least  

one possible cooperator in the potential neighbourhood and other followers are likely 

to  move  to  this  location  for  the  same  reason.  This  set  the  probability  that  the 

percentage of cooperation in the neighbourhood could be higher, which results in a 

positive payoff for the agents. Defectors will also consider movement to the C-leader 

position in search for possible cooperators to exploit. The contrary situation exists for 

the expected payoffs assigned to the D-leader(s) who are flagged for their previous 

selfish action choices. The mobility component can have a set of transition rules that 

considers all expected payoffs in an agent’s decision to move to a destination, but the 

movement  decisions  should  also  be  subject  to  a  random perturbation  to  simulate 
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stochastic responses from the citizens. In the situations where the expected payoffs 

are minimal,  the agent will be placed at a randomly selected destination.  Mobility 

rules are also essential for the D-leader and C-leader. The uncooperative reputation of 

the  D-leader  makes  him  a  target  to  avoid  so  he  will  have  to  constantly  change 

position  in  search  of  a  neighbourhood  of  citizens  ignorant  of  his  exploitive 

tendencies.  The mobility rules for the C-leader should have a random condition that 

he  will  remain  at  his  t  location  for  the  next  time  step.  This  rule  increases  the 

likelihood that the C-leader will be at the geographic coordinates chosen specifically 

by a follower for the purpose of interacting with him. At the start of each time step, a  

random number Cr can be computed, and the C-leader will travel to a new location 

when Cr <= tr or remain in place when Cr > tr, where tr∈[0,1.0] is a model parameter 

set during initialization.

The modeling aspects for each time step of a simulation run can be explained 

by  referring  to  agent  i in figure 9.2.  The initial decision of  this  citizen  is  a 

discrete mobility event to a destination,  in this case a randomly selected building. 

Next,  the model  runs  a  buffering  operation  to  determine  the neighbours  within a 

social  network  of  fifty  meters  around  the  location  of  agent  i.   Thirdly,  social 

interaction  is  modeled  as  a  two-step  process  of  information  exchange and NPPD 

game play. The neighbours begin communication by diffusing their individual listing 

of tags amongst themselves providing each agent with a more refined and possibly 

expanded overview of  the influential  citizens  in  the socio-geographic  community. 

Then, all agents in the local social network defined by the buffer engage in NPPD 

game play, each agent receiving  a  payoff  conditioned on  their interaction  strategy 
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Figure 9.2: Example Social and Spatial Network Configuration for a NPPD Episode

and  action choice. The cumulative utility level assigned to each agent after the game 

play can be considered as a measurement of their self-identity in the environment. 

The final modeling aspect is social mimicry, where agent  i, if unsatisfied with their 

payoff, will imitate the action strategy of his highest paid neighbour. All agents will 

compute their aggregate payoff from the NPPD event, diffuse these scores throughout 

the neighbourhood, and identify the C and D leaders. The neighbourhood C-leader 

will be the agent with the highest payoff among all cooperators while the D-leader 

has the highest payoff of all defectors. The C and D leaders are spatially identified in 



184

the neighbourhood (see figure 9.2), and each agent will update his listing of tags to 

include  these  highest  paid  individuals.  Agent  i will  then  revisit  his  strategy  by 

adopting the action strategy of the neighbour with the highest payoff. If there is more 

than one neighbour with the same maximum payoff other than agent i himself, then 

one is selected randomly. Agent i will retain his strategy if he has the highest payoff. 

For example, agent  i receives a cumulative payoff of 0.4 from his Pavlovian action 

strategy,  but  a  neighbour  gets  a  reward  of  0.9  from  a  greedy  strategy.  Agent  i 

abandons the Pavlovian in favour of the greedy strategy for the t+1 round of NPPD 

game play.

At  the  end  of  each  time  step,  the  administrative  leader  is  tasked  with  a 

secondary role of communicating the identities of the overall C and D leader and the 

level  of  social  identity  for  the  environment.  A  simple  comparative  routine  can 

identify the overall C and D leaders and compute the level of social identity as the 

average  payoff  of  the  individual  levels  of  self-identity.  This  information  is  then 

diffused back through the social  network to qualified individuals.  A disqualifying 

condition can penalizes consistent defectors who ignore the administrative leader’s 

suggestion to cooperate by refusing to provide this knowledge to these exploiters for 

a number of time steps.

The last modeling operation at time t is the updating of the social and spatial 

structure of leadership in the mapping display as shown in example in figure 9.3. 

Visual inspection of the mapped results at the end of each time step can aid in the 

identification and analysis of emergent patterns of leadership for various simulation 

parameters.
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Figure 9.3: Example of Patterns of Cooperation and Leadership from a Simulation

9.6 Discussion

The goal of the simulation runs from the model is to experiment with “what 

if”  scenarios  (e.g.  what  if  the  all  leaders  are  set  as  non-mobile)  concerning  the 

emergence of leadership within a socio-geographic community. A primary condition 

for  the  emergence  of  leadership  is  enabling  and analyzing  tensions  in  the  social 

interactions of the citizens during simulation runs. Tension is theoretically present in 

the  NPPD as  individuals  are  often  conflicted  with  the  decision  to  either  behave 

selfishly or cooperate with each other for the collective good of society.  However, 

adaptive tensions can be introduced into a simulation with initialization settings and 

conditional rules that help motivate and coordinate the social interactions. Schreiber 

(2006) discusses enabling dynamics in emergent leadership in social groupings, and 

classifies  leaders  as  agents  who are  most  likely to  communicate  new knowledge. 
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After each time step, a source of new knowledge is the individual tag listing, and a 

heuristic  can  be  set  that  this  information  is  only  shared  with  trusted  neighbours. 

Tension  is  easily  introduced  into  the  information  dissemination  processes  of  the 

administrative leader. By combining each agent’s listing of tags, the administrative 

leader  can direct  certain information  to specific  agents.  For example,  the level  of 

social identity may be communicated to targeted defectors to encourage and remind 

them to consider cooperation at  t+1 for the betterment of the social network. Also, 

the identity of the overall C and D leaders can be restricted to the followers with the 

lowest  aggregate  payoff  to  improve  only  their  likelihood  of  moving  to  a 

neighbourhood of cooperators at t+1. 

Zimmermann  and  Equíluz  (2005)  established  that  multi-agent  Prisoner’s 

Dilemma  social  networks  enter  a  steady  or  equilibrium  state  when  the  network 

configurations and individual strategies remain stationary over a set time period. In 

these cases, agents have either received the maximum payoff in their neighbourhoods 

or they have all imitated the action choice strategy of the same agent. An additional 

factor  when considering mobility and the spatial  topology of social  networks that 

enter a steady state is the role of context preservation on the emergent patterns of 

communal cooperation. Context preservation is a process where the configuration of a 

social and spatial neighbourhood remains static over a period of NPPD interactions. 

Cohen et al. (1998) state that context preservation increases the likelihood of local 

influencing (the tendency of players who interact frequently to become more similar 

over time) and homophily (the tendency to interact more frequently with the same 

individuals). Model experiments can be designed to investigate how the dynamics of 
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adaptive  leadership  are  swayed  by  the  mobility  status  of  the  citizens  and 

neighbourhood structures of social interactions. Power (2009) demonstrated that the 

preservation  of  neighbourhood  context  in  non-mobile  citizen  agent  environments 

produced larger clusters of cooperators than mobile agent environments. As the fixed 

citizen  agents  continuously  interact  with  the  same  neighbours,  they  become 

homophily  automata  with  increasing  probabilities  of  copying  the  action  of  the 

majority of their  social  grouping. It is hypothesized that emergent levels of social 

identity would be higher for an environment of non-mobile citizens, but permanently 

fixed automata are an unrealistic dynamic for a socio-geographic community. Yet, the 

non-linear entanglement of the processes of self-organizing leadership and context 

preservation can be modeled with simulations where specific agents remain stationary 

under certain conditions. In a town meeting perspective, the administrative leader can 

be placed at a civic facility for a period of time to assume the role of a top-down 

mediator and disseminator of knowledge and policy options, and the majority of the 

citizens  purposely travel  to that  location for social  interaction purposes.  Also,  the 

overall C leader can be temporarily immobilized as long as his cumulative payoff is 

the highest of the C agents. He will become mobile whenever the payoff of another C 

agent is higher than his utility level for that time step. This condition is also appealing 

in a modeling sense in that the followers who chose to travel to the location of the C-

leader will know that he is at those spatial coordinates.  It is likely that geographic 

clusters  of  social  cooperation  and  the  network  configuration  of  leadership  will 

become  more  directly  influenced  by context  preservation  when  agent  mobility  is 

restricted.
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9.7 Conclusion

This  paper  presents  a  conceptual  formulation  of  a  spatially  explicit  agent-

based  model  of  cooperation  and  emergent  leadership  in  a  socio-geographic 

environment. The basic principles of the self-organization of social networks driven 

by tensions in the interactions among agents and emergent cooperation within the 

environment  are  central  to  the  proposed  framework.  Self-organizing  leadership 

requires  a  framework that  entangles  administrative  and adaptive  leadership  in  an 

environment where individuals can introduce and enable conditions that catalyze the 

emergence  of  a  leadership  structure.  Enabling  leaders  are  often  the  people  who 

communicate new information to the social network, and this shared knowledge can 

induce selfishly oriented individuals to make cooperative decisions for the benefit of 

the community. 

The modeling aspects are presented in a manner that details the integration of 

social  and  spatial  components  to  simulate  the  non-linear  interactions  that  occur 

within the relational space between agents.  Leadership emerges in the environment 

from the tensions in the decision choices of citizen automata during NPPD play and 

the  enabling  actions  of  administrative  and  C-leaders.  The  mobility  choices  of 

unsatisfied  agents  are  contingent  on  the  possibility  of  a  positive  payoff  from 

interactions with identified tags and C-leaders, where followers purposely move to 

the locations  of  these influential  cooperators.  During NPPD play,  agents  will  be 

inclined to cooperate when the context preservation of the spatial network provides a 

degree  of  social  familiarity  among  the  neighbours.  Familiarity  strengthens 

relationality  in  the  social  network,  one  potential  result  being  individuals’  self-
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identities  approximating  the  communal  social  identity.  Evolutionary  learning  is 

embedded in the interaction dynamics of the agents in the form of social mimicry, 

which  conditions  low  scoring  followers  to  imitate  the  action  strategy  of  the 

neighbours with the highest payoffs. The emergent leadership structure can direct 

this social mimicry of action strategies as followers imitate the strategies of C and D 

leaders.  The  well-connected  community  can  be  described  as  an  environment  of 

interacting agents in localized spatial neighbourhoods who cooperate for the benefit 

of the community according to the tensions, diffused knowledge and action choices 

of tags and leaders. 

It is important to note that the intention of this paper is to present the theory of 

self-organizing leadership and cooperation in a socio-geographic environment. The 

working of  a  formal  model  of  leadership  is  demonstrated  as  a  component  of  the 

comprehensive  model  of  social  relationality  discussed  in  the  next  chapter  of  this 

thesis.
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10.0 Paper 5:  A Spatial Agent-Based Model of Social Relationality: Emergent 
Cooperation and Leadership in Community Development. 

Abstract

This paper presents a spatially explicit agent-based model that simulates the 

social relationality underlying the principle processes of community development in a 

socio-geographic  community.  The  formalization  is  based  on  the  postulate  that 

cooperation and leadership emerge from the behaviours of mobile affective agents as 

they  participate  in  social  interactions.  The  model  is  a  process-centric  system  of 

integrated psychological, spatial, social, and labour market components. Each agent is 

an approximation of a human person with a layered model of affect simulating their 

personality,  mood,  and  emotional  states  from  the  outcomes  of  social  exchanges. 

Spatial mobility consists of daily activity events of agents moving between origin-

destination  locations  relative  to  their  states  and  expected  payoffs  from  potential 

neighbours.  The emergence  of  cooperation  from social  exchanges  in  most  spatial 

neighbourhoods is modeled with the N-Person Prisoner’s Dilemma. A spatial labour 

market  game  simulates  employee-firm interactions  with  a  preferential  partnership 

matching mechanism and Iterative Prisoner’s Dilemma employment. Self-organizing 

leadership  depends  on  the  tensions  in  the  social  interactions  with  leaders  of 

cooperation and defection emerging as the successful agents with the highest payoffs. 

The unsatisfied  agents  undergo a  form of  evolutionary  learning  to  survive  in  the 

social network by mimicking the action strategies of the highest paid individual in 

their neighbourhoods.

The advantages of the model are illustrated with a benchmark simulation of a 

real world community. Results show that a reward received from an interaction sets 

an agent  in  a  positive  affective  state,  and the relationality  required  for  a  form of 

steady state cooperation is directly linked to context preservation of the interaction 

neighbourhoods. 
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10.1 Introduction

Many studies  in  human  geography  are  premised  on  the  concept  of  social 

relationality  between  people  across  space  and  place.  Lichtenstein  et  al. (2006) 

describe  social  relationality  as  an  emergent  phenomenon  from  the  non-linear 

interactions that occur within the "spaces between" individuals in a social network. 

In this context, space is a sociological concept concerned with the sense of closeness 

that  emerges  from  the  communications  and  knowledge  exchanges  between 

individuals. The social aspects of the "space between" individuals are shared with the 

relational view of space of geographic complexity (Manson, 2007), but the locational 

variability  of  where  the  individuals  are  situated  when  they  engage  in  a  social 

interaction  differentiate  the  approaches.  However,  several  researchers  (Gilchrist, 

2000; Onyx and Leonard, 2010) present relationality as an emergent dynamic within 

a "well-connected" community, an interaction space that is both a sociological subject 

and  geographic  object.  A complexity  perspective  on  a  relational  community  is  a 

geographic confluence of social engagement across multi-scalar interaction networks 

of  autonomous  individuals.  The  self-organization  of  the  internal  structure  of  a 

community  will  depend  on  the  social  behaviours  and  spatial  positioning  of  the 

individuals in the interaction networks as each person goes about his daily life. 

In a relational community, the everyday activities occur within different types 

of social structures (dyads, small groupings, etc.) as power relationships, where the 

decisions  and  behaviours  of  affective  individuals  are  controlled  or  influenced  to 

varying degrees by certain authoritative figures. Incidental meetings, such as a retail 

event, are usually characterized by mutual control among the participants in the social 
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network,  because  the  exchanges  between  people  are  impersonal  and  short  lived. 

Habitual activities, such as a work day, are interaction episodes where the same group 

of people is relationally connected for an extended period of time. There is an implicit 

correlation between higher intensities of control of social interactions at the habitual 

daily activities, because the familiarity that an individual has from dealing with the 

same people will better enable him to trust one of them as a social leader. 

Spatial positioning in a community refers both to where the individuals are 

located  and  the  mobility  dynamics.  The  geographic  extents  of  the  community 

fluctuate with the movement of people as they travel to distinct locations to engage in 

activity specific social  interactions.  The destinations for these movement episodes, 

often buildings, provide a locational point of reference for the social interactions. 

The  dynamics  of  social  relationality  demonstrate  that  a  community  is  a 

complex human system, consisting of many spatially and temporally varied processes 

directed by the sometimes stochastic and unpredictable decisions and behaviours of 

individuals.  Therefore, the computational design of a model of a community requires 

a bottom-up approach for simulating the processes of social relationality according to 

the behaviours of affective individuals that generate a complex macro-level system 

structure. This paper presents a formalization that simulates a community as a spatial 

agent-based model of social relationality. As a complex adaptive system, a model of a 

well-connected  community  must  represent  the  individuals,  define  the  relationality 

between them according to a set of theoretically supported assumptions, and identify 

the spaces in which they exist and are related. 
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Gilbert  (2004)  suggests  that  the  design  of  an  agent-based  model  should 

consider existing theory to articulate its purpose, and its baseline architecture should 

concentrate on a number of important aspects in the theoretical application.  Gilchrist 

(2000)  presents  community  development  as  the  complex  processes  of  people 

networking  and  the  formation  of  links  and  alliances  that  result  in  a  sense  of 

community.  The well-connected community is formalized as a complex system of 

multi-scalar  relationships  and  social  interactions  that  lead  to  the  emergence  of 

communal  decision-making  and  problem  solving.  In  practice,  community 

development  is  a  specialized  goal-oriented  form of  social  relationality  where  the 

activities of the participants are geared towards improving the cultural,  social,  and 

economic  conditions  of  a  region.  However,  the  generic  framework  of  social 

relationality  in  this  model  is  limited  to  several  principle  processes  of  community 

development  specifically  with  mechanisms  that  simulate  social  interactions, 

cooperation, leadership, and collaborative behaviours. 

Simulations  of  social,  psychological,  economic,  and  spatial  dynamics  are 

investigated  and presented  as  separate  but  interrelated  components  of  the  system. 

The  paper  begins  with  an  abstraction  of  community  development  as  a  star-like 

process, with each point of the star representing a specific modeling process. Section 

10.3  presents  the  model  architecture  and  dedicates  considerable  attention  to  the 

theoretical and computational implementation of the major processes. In section 10.4, 

the capabilities of the model are demonstrated with a benchmark simulation scenario. 

The  paper  concludes  with  a  commentary  on  the  benefit  offered  by  agent-based 

modeling for the study of the social dynamics of human systems.
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6.2 Complex Community Development

Onyx and Leonard  (2010) describe  community  development  as  a  complex 

system of nonlinear processes that emerge from the actions and initiatives of people 

as they utilize the embedded social capital within a community. For this study, the 

socio-geographic community presented by Power (2009) is the environmental setting 

of the model, and is implemented as both a geographical object and a sociological 

subject. 

Following Shaffer et al. (2006), community development is conceptualized as 

a  star-like  constellation  of  interacting  spatial,  economic,  psychological,  and social 

processes  (Figure  10.1).   At  the  top  of  the  star,  the  human  resources  are  the 

population of individuals:  each with a personality,  mood, and emotional state, and 

each characterized by state variables that determine his social  position and spatial 

location.  The  decisions  and  behaviors  of  each  citizen  will  modify  their  affective 

conditions and state variables according to a set of transition rules and institutional

Figure 10.1: The Processes of Community Development
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conditions.  Due to feedback effects,  the global  consequences  of these interactions 

ultimately affect the individuals.

Rules/Institutions  guide  the  behaviors  and  decision  making  of  the  human 

resources.  Institutions  are  governance  networks  that  set  the  rules  for  using  a 

community’s social and labour market capabilities. Rules provide the agents with a 

form of  intellectual  ability  to  interact  and  communicate  within  the  environment. 

Intelligence relates to an agent’s cognitive ability obtained from its set of transition 

rules that handle its state, location, and neighbourhood interactions. 

Decision-making is about choosing a course of action that is beneficial to both 

the individual and the community. An important underpinning of the decision-making 

process of community development are the social interactions between the citizens. 

These communication events enable individuals to learn about the opinions of others, 

gain knowledge about issues in the community,  and participate in developing and 

implementing  a  development  plan.  A  standard  technique  for  the  agent-based 

modeling of emergent cooperation is the Prisoner’s Dilemma, both in environments 

consisting of many individuals and in those characterized by dyadic pairings. Yet a 

major shortcoming of conventional implementations of the Prisoner’s Dilemma is the 

failure to incorporate the affective state of the agents as they engage in the social 

interactions.  The  emotional  and  mood  states  of  individuals  will  influence  their 

decision to cooperate or defect, as well as determine their reactions to the outcomes 

of these communication events. Decision-making can be implemented as an affective 

iterated Prisoner’s Dilemma game.
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Social  interactions  are  directed  tied  to  decision-making  when  agents  have 

chosen to pursue an activity in the community that brings them in close proximity to 

other agents. Social interactions are the knowledge exchanges that occur amongst the 

individuals,  and the results of these exchanges will determine the cooperation and 

leadership structure in the community.

Synergy  in  the  labour  market  is  an  important  factor  in  the  economic 

conditions  of  a  community.  Agent-based  labour  market  interactions  have  been 

simulated as Trade Network Games (Tesfatsion, 1997; 1998; 2001; Kitcher, 1998; 

McFadzean and Tesfatsion, 1999; Pingle and Tesfatsion, 2001, Hauk, 2001), and this 

approach  was  adopted  but  modified  to  consider  the  geographic  distance  in  the 

evaluation  of  expected  payoffs  for  preferential  partnership  matching.  The  spatial 

labour market game component simulates a two-sided market of employees and firms 

with preferential partnership matching behaviors and the option of non-employment. 

Cooperation emerges from the relationality and trust between pairings of agents as 

they participate in Iterative Prisoner’s Dilemma game play. 

Lichtenstein et al. (2006) describe leadership as an outcome of the tensions in 

the  relational  interactions  among  agents  within  a  social  network.  Tensions  are 

interjected  into  the  social  network  when  leaders  enable  rather  than  dictate  the 

dynamics of social interactions by encouraging individuals to go against the status 

quo. Dictating can be socially restrictive, because the leader is telling the individuals 

to behave a certain way. However, leaders enable by allowing individuals to express 

their opinions, and this increases the possibility of the introduction of a radical idea or 

course of action to the social grouping.  The modeling of self-organizing leadership 
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requires the combination of the bottom-up enabling of adaptive leadership with the 

top-down conditions of administrative leadership. Adaptive leadership is based on the 

tensions  in  the  Prisoner’s  Dilemma  social  interactions  where  individuals  must 

evaluate the likelihood of a positive payoff to decide whether to cooperate or defect. 

Administrative  leadership  considers  the  influence  of  respected  individuals  in  the 

dissemination  of  information  and  opinions  throughout  the  environment.  The 

emergence  and  sustainability  of  cooperation  in  the  environment  depends  on  the 

survival  and reputation  of  the  overall  cooperation  leader  and  the  mimicry  of  the 

highest paid action strategies by unsatisfied agents.

Space  is  the  central  coordinating  element  that  integrates  all  of  the 

aforementioned processes, because all instances and manners of social interactions 

happen somewhere within the geographic confluence of the community. 

10.3 Architecture of the Generic Model

The generic model is developed as an experimental approach for simulating 

the behaviours of affectively enabled agents in an artificial modeling environment. 

The model is generic in that it can in principle be applied to any community as it is 

built on methods that simulate the basic processes of social relationality.

Within this object-oriented modeling framework, agents are objects that use 

their  definition  and states  to  simulate  behaviors.  The architecture  is  comprised  of 

activity-specific rulebases that model the mobility and social interaction dynamics of 

the agents.
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10.3.1 Agents Objects and Agent States

Each agent is represented as an object that changes its main states variables 

and location according to transition rules at each time-step. For a socio-geographic 

community,  this  object-based  view consists  of  both  fixed  and  mobile  geographic 

agents.  The  mobile  agents  are  the  individual  citizens  who  move  about  in  the 

environment to perform their daily activities. At the initialization of a simulation run, 

each  citizen  is  assigned  state  variables  that  determine  their  social  and  economic 

profile. Citizens also have labour market and affective states that set the conditions 

for  their  participation  in  social  interactions  and  records  their  responses  to  the 

outcomes  the  interactions.  The  fixed  agents  are  buildings  and  structures  that  are 

directly geo-referenced as origins and destinations of the citizen agents. 

10.3.2 State Transition Rules

The  general  state  transition  rules  maintain  and update  the  socio-economic 

profile of the citizens. One set of rules is concerned with altering the employment and 

participation status in labour market events. Additional rules update the action choice 

and affective states of the agents at the end of each time step. The default rule set is  

utilized to randomly select an activity for the agents to pursue at each time step.

10.3.2.1 Movement Rules

Movement  is  coordinated  as  discrete  choice  event  simulations  with  a 

scheduling mechanism directing the agents’ mobility behaviors (Zeigler et al., 2000). 

Mobility  rules  manage  the  everyday  activities,  which  are  limited  to  church, 

recreation,  retail,  service,  friendship  gathering,  school,  or  labour  market  events. 

Mobility is a relocation process of the agents’ movement between a pair of origin and 
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destination locations.  In the spatial  network,  the agent moves to the location of a 

building containing the selected activity.  However,  the choice of building for this 

movement  event  can  be  directed  with  a  measure  of  expected  payoff  from social 

interactions with agent(s) that are likely to be situated there.

10.3.2.2 Interaction Neighbourhoods

Agents  interact  with  others  in  their  neighbourhood.  The  rule  set  for 

neighbourhood delineation  is  based on the proximity of agents,  where individuals 

within  a  specified  distance  of  each  other  (a  model  parameter)  are  considered 

neighbours.  At  each  time  step,  the  topology  and  agent  composition  of  the 

neighbourhood for each citizen agent is estimated with a buffer drawn around his 

location,  and  all  individuals  who  fall  within  the  buffered  area  are  classified  as 

neighbors. 

10.4 Modeling Components of Social Relationality in a Community

The theoretical formalization of a community as a complex adaptive system of 

social  relationality  requires  a  framework  that  simulates  the  emergent  spatial  and 

temporal  structures  of  cooperation  and  leadership  from the  affectively  influenced 

decisions and behaviours of individuals pursuing everyday activities.   Most of the 

social  interactions  are  multi-person communication  events,  but  the  labour  market 

interactions are dyadic exchanges between firms and employees. The model must also 

contain mechanisms dedicated to affective decision-making, leadership structuring, 

and social mimicry.



204

10.4.1 Social Interactions and Prisoner’s Dilemma Cooperation

The  magnitude  of  social  identity  in  a  community  is  contingent  on  the 

emergence  of  a  level  of  cooperation  within  neighbourhoods  of  citizens  and  the 

diffusion of successful behavioral strategies and top-down administrative conditions 

throughout the network. 

In the social  and computer  sciences,  the Prisoner’s Dilemma is  a common 

method for analyzing the emergence of cooperation among non-relatives in social 

environments. A spatial Prisoner’s Dilemma model assumes that cooperation emerges 

from the social  exchanges that are guided by the manner in which the geographic 

structure of the environment influences the spatial behaviors of agents. Cooperation is 

consequently  dependent  on  the  neighbourhood  relationality  of  each  daily  activity 

event. Labour market transactions require a directed bonding between employee-firm 

pairings  where  agents  are  matched  relative  to  expected  payoffs.  This  preferential 

matching sets a modeling constraint that the interaction between firms and employees 

is  implemented  on  a  one-to-one  basis,  where  the  firm  agent  exclusively  and 

sequentially communicates with each employee in its neighbourhood. In a two-sided 

market  environment,  each  potential  employee-firm pairing  is  simulated  as  a  two-

person Iterative Prisoner’s Dilemma (IPD) game.

 During IPD play, two participants will play several consecutive rounds of the 

game using a payoff matrix to accumulate a total score (Trivers 1971; Axelrod 1984; 

Brembs 1996). The player with the larger cumulative score is deemed the winner and 

influences  the  cooperation  strategy  of  the  opponent.  Through  iterative  play, 

cooperative and selfish behavior will typically be reciprocated to a certain extent.
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The other daily activities represent social interaction events between groups of 

agents who are situated at the same location. These social interactions are many-to-

many  communication  events  in  neighbourhoods  consisting  of  n  >  2  individuals, 

which are modeled with the N-Person Prisoner’s Dilemma (NPPD). A typical social 

dilemma can be considered an n-person game, in which each player  has the same 

preferred option that does not change regardless of the actions of the other players.  

Every player has the same payoff structure and can choose to either cooperate, C, or 

defect, D. The payoff of each player that defects is represented as D(m), where m is 

the number of players in a social grouping that cooperate (0 ≤ m ≤ n-1). The payoff 

for each cooperating player is donated as C(m). The social dilemma is then defined 

by the following conditions (Akimov and Soutchanski 1994): 

1. D(m)  >  C(m  +  1):  each  player  is  better  off  choosing  to  defect  rather  than 
cooperate, regardless of how many players choose to cooperate on a particular 
play of the game.

2. C(n) > D(0); if everyone cooperates, each player is better off than if everyone 
defects.

3. D(m + 1) > D(m) and C(m + 1) > C(m); the more players cooperate, the better off 
each player is, regardless of whether he chooses to cooperate or defect.

4. (m + 1)C(m + 1) + (n – m – 1)D(m + 1) > mc(m) + (N – m)D(m); society as a  
whole is better off the more players cooperate.

10.4.2 Spatial Labour Market Game

The aim of the agent-based modeling of labour market dynamics is to simulate 

the patterns of employee-firms partnerships from the interactions of individuals under 

varied market conditions. The labour market component is a modified version of the 

Trade Network Game presented by Tesfatsion (1997; 1998; 2001) that incorporates 

spatial  mechanisms  into  the  labour  market  processes.  The  reader  is  referred  to 
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McFadzean and Tesfatsion (1999) for a detailed overview of the components of the 

standard model. The original approach is revised to consider the geographic distance 

between agents in the partner selection in the labour market environment. In terms of 

specifications,  the spatial  labour market game is comprised of two methods: (1) a 

preferential  partnership matching mechanism,  where the mobility  dynamics  of the 

potential employees influence the submission of job offers, and (2) IPD employment. 

The preferential  partnership  mechanism is  a  spatially  modified  Gale  and Shapley 

(1962) matching routine, where agents are paired by the expected payoffs that each 

individual associates with all potential partners. The spatial influence is included by 

reducing  the  expected  payoffs  according  to  the  distance  between  the  potential 

employee  and firm. The potential  employees then direct trade offers to firms they 

believe they can have a profitable social interaction with, and these firms utilize the 

same spatially  modified  Gale  and Shapley assessment  process  to  either  accept  or 

reject the offer. 

The labour market game module simulates a two-sided market of employees 

and firms with choice and refusal behaviors and the option of non-employment. In the 

two-sided market, the set of b potential employees (agents who submit work offers) is 

disjoint  from the  set  of  s firms  (agents  who receive  work offers).  Therefore,  the 

market structure is the union V = B ∪ S of the B subset of potential employees and 

the S subset of firms, where the potential employees can have up to bq work offers to 

the firms and the firms can accept no more than sq work offers from the employees, 

where bq and sq are parameters representing an offer quota and an acceptance quota 

respectively. For an interaction cycle, each potential employee and firm is randomly 
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assigned initial expected payoffs for each of its possible partners and a preliminary 

worksite action strategy. A common choice in the standard framework is to set these 

utility levels equal to the mutual cooperation payoff from the Prisoner’s Dilemma 

payoff  matrix.  For  this  study,  the  expected  payoffs  that  the  firms  have  for  each 

potential  employee  are set  in the same manner,  but the expected payoffs  that  the 

potential  employees  have  for  each firm must  take  into  consideration  the  distance 

between them.

The original  research of Tesfatsion (1997) assigned action strategies  to the 

agents  as  deterministic  finite  state  machines  for  playing  the  employment  game. 

However,  a  deterministic  fixed  action  string  is  a  limited  tactic  in  simulating  the 

behaviours of agents, because it assumes that all of the possible action decisions are 

represented  by  the  transition  functions  in  the  finite  state  machine.  It  is  also 

pragmatically  difficult  to  represent  affectively  influenced  and  random  decision 

making  in  the  rigid  structure  of  a  deterministic  routine.  The  finite  state  machine 

approach  is  substituted  with  a  rule-based  strategy  that  sets  the  probability  of 

cooperation or defection according to a learning rate, memories of past payoffs, and 

the history of interactions with the neighbours. For model universality, the interaction 

strategies (see Table 10.1) are structurally the same for NPPD or IPD game play. 

Table 10.1: Prisoner's Dilemma Action Strategies and Profiles (Zhao et al., 2005)
Action Strategy Action Strategy Description
Pavlovian An agent with a coefficient of learning whose probability of 

cooperation changes by an amount proportional to the 
reward/penalty it receives from the environment

Accountant An agent whose probability of cooperation depends on the average 
reward for the social grouping for a previous action.

Conformist An agent who imitates the action of the majority in the social unit
Greedy An agent who imitates the neighbour with the highest reward
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For any agent  v in V,  v uses the expected payoffs Uv(k) in the preferential 

partnering to  determine  the proffering,  acceptance,  or  refusal  of interaction  offers 

based  on  the  ranking  of  potential  partners  k.  The  spatial  influence  on  Uv(k)  is 

dependent  on  the  distance  between  v  and  k,  the  mobility  status  of  v,  and  the 

neighborhood structure of  k.  A condition of the matching procedure is that agents 

have  to  be  in  close  spatial  proximity  to  submit  work  offers,  which  requires  a 

movement  event  by  an  employee  agent.  Movement  is  penalized  with  a  negative 

payoff  dc that  is  subtracted  from Uv(k)  to  produce  a  spatially  adjusted  expected 

payoff value  )(kUsv . The firms are fixed agents while the potential employees are 

mobile agents. Therefore, the distance cost for firms is zero so their )(kUsv = Uv(k). 

For the potential employees, dc is computed as: 

                                                        dc =
bs

i

MaxD
sDb )(

,                                                 (10.1)

where  i is  the  current  location  of  agent  b,  Dbi(s) is  the  road  distance  between 

employee  b and  firm  s,  and  DMax bs  is  the  maximum  road  distance  between  a 

potential employee and a firm, as calculated during initialization. 

The potential employees within the matching neighborhood have determined 

that  firm  s is  the most  preferred tolerable  employer  at  this  stage of the matching 

process. As fixed entities, firms make no direct evaluation of employees before they 

are determined suitable by the degree of expected payoffs. Once judged, firm s’s most 

preferred potential employees are placed on a waitlist while the remaining applicant 

neighbors are rejected by  s and penalized a negative transaction cost payoff. Each 

rejected agent moves to the geographic location of the next most preferred tolerable 
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firm who has not rejected him in the matching process and submits a work offer to 

this specific firm. If no tolerable firm exists, the agent returns to his residence, pays a 

distance cost from firm sm to his residence, and takes a non-employment payment. 

This matching process continues until firms stop receiving new trade offers, 

and  the  employees  in  their  perspective  waitlist  are  accepted  for  the  employment 

process.  For  an  employment  event,  the  social  exchanges  between each pairing  of 

employee b and firm s are simulated as an IPD game for that work cycle. Table 10.2 

highlights the structure of the IPD payoff matrix.  At the end of all  labour market 

interactions  for  step  n,  all  participants  select  an  action  choice  according  to  the 

affective  responses  to  the  payoffs  received  from  the  interaction  result,  and  the 

employed workers are relocated to their residence location.

Table 10.2: Payoff Matrix for the Spatial Labour Market Game      
Player A (Firm)

Player B 
(Employee)

Cooperate Defect
Cooperate 1, 1 1, 2.5
Defect 2.5, -1 -0.5, -0.5

10.4.3 Decision Making with a Layered Model of Affect

Affective decision-making is implemented as a psychological mechanism that 

simulates cognitive processes as a layered model of affect.  It is designed to simulate 

the three interacting kinds of affect that occur in human decision making:

1. Personality  –  represents  long-term  affect  and  is  defined  by  individual 
differences  in  mental  characteristics.  Personality  is  an atemporal  state  that 
generally remains constant throughout a life span of an individual.

2. Moods  –  reflect  medium-term  affect  and  have  an  influence  on  cognitive 
functions that decays with each successive interaction event.
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3. Emotions  –  represent  short-term  affect  and  are  usually  associated  with  a 
specific event, object, or action. Emotions tend to dissipate when the agent 
changes focus.

The  Personality-Mood-Emotion  component  utilizes  the  same  layered  approach 

presented by Gebhard (2005),  but  relates  the emotional  state  of  the agents  to  the 

results of social interactions. The specification of this module follows the standard 

methodology  employed  by  numerous  researchers  (Egges  et  al.,  2003;  Ghasem-

Aghaee and Oren, 2003; Gebhard and Kipp, 2006; Mustafa et al., 2008; Kasap et al., 

2009)  of  integrating  the  five  factor  model  of  personality,  Mehrabian  Pleasure-

Arousal-Dominance (PAD) spacing mood determination, and the Ortony, Clore, and 

Collins (OCC) model of emotions.

10.4.3.1 The Big Five Factor Model of Personality

The five factor model summarizes the many ways in which people differ in 

their  emotional  and  attitudinal  styles  with  the  five  basic  traits  of  Openness, 

Conscientiousness,  Extroversion,  Agreeableness,  and  Neuroticism  (McCrae  and 

Costa, 1987; Goldberg, 1992; Judge and Bono, 2000):

• Openness (O). Open people are imaginative,  intelligent,  and creative.  They 
like to experience new things.

• Conscientiousness (C).  Conscientious  people  are  responsible,  reliable,  and 
tidy.  They  think  about  all  their  behaviors’  outputs  before  acting  and take 
responsibility for their actions.

• Extroversion (E).  Extroverts  are  outgoing,  sociable,  and  assertive.  They’re 
energetic in achieving their goals.

• Agreeableness (A). Agreeable people are trustworthy, kind, and cooperative. 
They consider other people’s goals and are ready to surrender their own goals.

• Neuroticism (N).  Neurotic  people  are  anxious,  nervous,  and  prone  to 
depression. They lack emotional stability.



211

A unique personality can be assigned to an individual by varying the values of each 

OCEAN factor within the range of -1 to 1.  The appeal of the five factor model is the 

framework of OCEAN can be mapped to an individual’s mood with Mehrabian PAD 

mood spacing.

10.4.3.2 Mehrabian Pleasure-Arousal-Dominance Mood Spacing

Mehrabian (1995) conducted a study to determine how his PAD temperament 

model could be theoretically linked to the five-factor model. He demonstrated how 

the commonality of descriptive emotional adjectives and measurement scales between 

the two approaches relate the three mood traits of Pleasure, Arousal, and Dominance 

to the five OCEAN components. 

Mood is a medium term affect that decays with time so it can be computed as 

the average of a person’s emotional states for a sequence of events and actions. In the 

PAD model,  Pleasure,  Arousal,  and Dominance  are  orthogonal  traits  that  form a 

mood  space,  which  is  implemented  as  a  three  dimensional  Cartesian  coordinate 

system with an axis ranging from -1.0 to 1.0 for each trait.  The strength of each trait  

is the distance from the origin measures along the given axis, and the three distances 

setting  the  Cartesian  positioning  of  the  mood  space.  Mood is  described  with  the 

following classification  of  each of  the three mood space axis:  +P and –P for  the 

emotional state's positivity or negativity, +A and –A for mental arousal and alertness 

or mental inattentiveness, and +D and –D for feeling of social control and behavioral 

submissiveness. Table 10.3 lists all octants of the PAD mood space.
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A factor in implementing mood is initializing each trait to position personality 

within a PAD spacing. Mehrabian (1996) devised a set of equations to translate the 

personality  vector  P into  a  default  PAD  mood  spacing.  The  base  mood  of  an 

individual is:

                                             P = O,C,E,A,N ∈ [-1,1]
                                             Moodbase = P1, A1, D1 ∈ [-1,1]
                                       
                                       P1 = 0.21E + 0.59A + 0.19N                                           (10.2)
                                       A1 = 0.15O + 0.30A –0.57N                                            (10.3)
                                       D1 = 0.25O + 0.17C + 0.60E – 0.32A                             (10.4)

   Table 10.3: Mehrabian Mood Octants and Mood Types
Trait Combination (Octant) Mood Type

+P +A +D Exuberant
-P -A -D Bored
+P +A -D Dependent
-P -A +D Disdainful
+P -A +D Relaxed
-P +A -D Anxious
+P -A -D Docile
-P +A +D Hostile

Russell and Mehrabian (1977) provide the methodology for simulating mood 

change from the association of PAD mood space to OCC emotions. Table 10.4 shows 

a portion of  their  suggested  mapping for  several  basic  emotions  to  specific  PAD 

spacings. Each emotion type is described in terms of a set of values on the PAD axis 

that associates emotion to a PAD octant and mood type.  For example, when a person 

experiences the emotion joy, the mood spacing will be adjusted so that the Pleasure, 

Arousal,  and Dominance  values  are  all  positive,  which  puts  him in  an  exuberant 

mood.

Table 10.4: Mapping from OCC Emotions to PAD Mood Space
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Emotion Pleasure Arousal Dominance Mood Type Mood Class
Joy 0.40 0.20 0.10 +P+A+D Exuberant Positive

Distress -0.40 -0.20 -0.50 -P-A-D    Bored Negative

10.4.3.3 Ortony, Clore, and Collins Model of Affective Emotions

Several  authors  (Ortony  et  al.,  1988;  Bartneck,  2002;  Kasap  et  al., 2009) 

present  the  OCC model  as  the  standard  approach  for  emotion  synthesis  utilizing 

cognitive  appraisal  theory.  Cognitive  appraisal  theory  asserts  that  emotions  are 

elicited  and  differentiated  on  the  basis  of  a  person’s  subjective  appraisal  of  the 

significance  of  a  solution,  object,  or  event  from a  set  of  criteria  (Scherer  1999). 

Emotions are the reactions to three types of appraisals: the appraisal of events with 

respect to agent goals, the appraisal of agents with respect to the praiseworthiness of 

their actions compared to a set of standard behaviours, and appraisal of objects from 

the  appeal  as  determined  by  agent  attitudes.  Ortony  (2003)  states  that  the 

development  of  an  affective  model  with  the  original  hierarchy  of  twenty  two 

emotions  is  computationally  impractical,  and  suggests  using  only  the  emotional 

categories those agents will experience during the modeling events. 

The  methodology  of  both  the  IPD  and  NPPD  is  such  that  the  emotions 

experienced by the agents can be valenced reactions to the consequences of Prisoner’s 

Dilemma  events  and the  actions  of  agents  towards  cooperation  or  defection.  The 

event-based  emotions  in  Figure  10.2  emerge  when  an  agent  determines  the 

consequences of game play as being either desirable or undesirable. Desirability sets 

the intensity of event-based emotions and is the main criterion for evaluation. The 

intensities  of  the  prospect-based emotions  are  set  before  Prisoner's  Dilemma play 

begins as a probabilistic appraisal of the hope of receiving a reward or the fear of a 
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penalty from past memories of exchanges with neighbours. The well-being emotions 

of  joy  and  distress   are  directly   measured  from  the  outcomes  of  the  Prisoner’s

Figure 10.2: OCC Emotions for IPD and NPPD Game Play

Dilemma events: joy with a positive payoff and distress with a negative result, the 

intensities of each conditioned on the magnitude of the assigned utility value. The 

right  branch  of  Figure  10.2  contains  the  affiliation  emotions  of  admiration  and 

reproach, and they are caused by reactions to the actions of agents that are evaluated 

as being either praiseworthy or blameworthy. These emotions are computed after a 

social  interaction event,  and their  intensities  will  indicate  the positive  or negative 

affects of the level of emergent cooperation in each interaction structure. 

The final  affect  is  anger,  which  is  a  compound  affiliation  emotion  that is 

measured from the conjunction of the negative conditions of distress and reproach. 

The intensity of anger depends first on an agent’s reaction to receiving a penalty, and 
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then on the amount of blame placed on the decisions of others. Thus, the computation 

of anger occurs at the end of each social exchange once the agents have made an 

action choice.

10.4.3.4 Rule Based Inference of Affective States Pre-Prisoner’s Dilemma

The  Personality-Mood-Emotions  component  is  structured  as  a  conditional 

rule-based  system  that  simulates  the  affective  states  of  agents  from  their  daily 

activities,  neighbourhood  configurations,  and  cooperation  decisions  from  the 

outcomes of social interactions. The prospect based emotions of hope and fear depend 

on the degree to which a social exchange is pleasing or displeasing to an agent, but 

also must be appraised from the likelihood of getting a reward. For these anticipative 

affects,  the  likelihood  of  an  event  must  be  weighted  by  the  desirability  of  the 

expected  event  outcome.  The  activation  of  a  prospect  emotion  requires  the 

determination of its Personality-Mood-Emotions intensity (IPME), and this relies on the 

emotional intensity IE computed from likelihood and desirability of a potential payoff, 

the  intensity  of  temporal  mood  PAD  state  (IM),  and,  sometimes,  the  degree  of 

neuroticism of the agent. The level of IE for hope is high whenever the likelihood and 

desirability are both high. As likelihood decreases, the intensity of hope decreases to 

the point  that  the  effect  of  desirability  is  negated.  Fear  is  initially  assigned an  IE 

setting  referring  to  the  likelihood  of  getting  a  negative  payoff.  The  higher  the 

likelihood, the more intense the level of fear.

The  combined  affective  intensities  of  joy,  distress,  relief,  admiration, 

reproach, and anger at time step t are embodied in the mood PAD spacing, which is a 
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contributing factor in setting the overall affective state and action choice of an agent 

at time step  t+1.  A positive mood space value  IM raises the intensity of hope and 

decreases the intensity of fear a random amount while the contrary situation occurs 

for a negative mood state. Secondly,  the temporal mood state becomes the default 

means of setting the IPME whenever the level of IE is negligible or zero. 

In situations where IE and IM are both approximating zero, the long term affect 

of  the  neuroticism  of  an  agent  will  influence  the  computed  IPME level.  By  their 

propensity  to  be  easily  stressed  and  overreact  in  social  situations  (Miller,  1991), 

extremely  neurotic  individuals  will  be  less  hopeful  and  more  fearful  and  their 

corresponding affective intensities will be lessened and strengthened accordingly. The 

opposite condition applies to individuals with low neuroticism levels. 

At the completion of the pre-Prisoner’s Dilemma affective state evaluation, 

the  comprehensive  intensity  values  IHope and IFear values  are  passed  to  simulate 

affective Prisoner’s Dilemma interactions.

10.4.3.5 Affective NPPD and IPD 

Each agent  is  characterized  by a  stochastic  learning process,  a two period 

memory,  a  predetermined  interaction  strategy,  an  action  choice  (C  or  D),  a 

personality, and a default mood PAD spacing. At each time step, each agent adjusts 

the  probability  of  cooperation  from  his  emotional  state  proportional  to  the 

reward/penalty he received from the environment, and the influence of his coefficient 

of learning.
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The  emotional  fine-tuning  of  the  probability  of  cooperation  for  an  agent 

occurs before the choice of action. This fine tuning takes place before and after the 

agents receive a payoff for the interaction event. The probability of cooperation for 

agent  i at  time  step  t,  pi(t), is  reset  before  the  payoff  according  to  the  agent’s 

intensities of fear and hope, and afterwards as a function of relief, joy, and distress. 

The initial stage pre-payoff affective state is computed as:

        IprePayoff = (IHope + 0.1) + (IFear – 0.1)                                      (10.5)

The  social  interactions  occur  either  as  group  exchanges  or  labour  market 

pairings. Except  for the labour market  interactions,  the payoff curves for both the 

defectors and cooperators are straight lines functions expressed as (Szilagyi, 2003):

                                                     D = -0.5 + 2x                                                    (10.6)
                                                     C = -1 + 2x                                                       (10.7), 
where x represents the ratio  of the number  of cooperators to the total  number of 
neighbours. 

The payoff  or reward for labour market  exchanges is  determined from the payoff 

matrix  in Table  10.2.  Once the agent  has collected  a reward or penalty,  the post 

payoff  intensities  of relief,  joy,  and distress  are  computed,  and the probability  of 

cooperation is adjusted accordingly.  Thus, the comprehensive post-payoff affective 

states is:

            IPostpayoff=(IRelief + 0.05) + (IJoy + 0.1) + (IDistress – 0.1)                    (10.8) 

The emotional adjusted probability of cooperation for agent i is then set as

pei(t) = pi(t) + IprePayoff  + IpostPayoff                                              (10.9) 

and the emotional adjusted probability of defection is then calculated as :

qei(t) = 1 - pei (t)                                                                     (10.10)                                                                   
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The action strategy of an agent is based on the interaction history of the agents as 

represented by a weighted payoff, a coefficient of learning, and an average production 

function. 

Given an agent, the weighted payoff is defined as 

                                                         (10.11)

and Mci is the historical payoff (Mc1 stores the current payoff). Assuming that the 

effects of memory decrease with time, W1 ≥ W2 ≥W3.

Each agent is also assigned a coefficient of learning αi,  where 0 < αi < 1, to 

adjust  the  probability  according  the  responses  of  their  neighbour(s)  and  past 

cooperation  states.  αi  increases  if  an  agent  continually  cooperates  or  defects  but 

decreases as the actions become varied.

 With αi restricted to the range 0.1 to 1, there are three possible adjustments to 

the learning coefficient:

4. αi(t+1) = αi(t) + 0.10, if (S(t) = S(t-1)) and (S(t-1) = S(t-2))
5. αi(t+1) = αi(t) + 0.05, if (S(t) = S(t-1)) and (S(t-1) ≠ S(t-2))
6. αi(t+1) = αi(t) - 0.05, if (S(t) ≠ S(t-1))

 Consequently, the probability of cooperation for agent i at time t+1 is:

            p(t+1) = pei(t) + (1-pei(t)) * αi,  if at time t, action = C and RPwt > 0       (10.12)
            p(t+1) = (1-αi) * pei(t), if at time t, action = C and RPwt ≤ 0                    (10.13)

The probability of defection is thus computed as qei(t) = 1 – pei(t).  
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The same set of equations is also used for updating the action probabilities when the 

previous action is D:

            q(t+1) = qei(t) + (1- qei(t)) * αi,  if at time t, action = D and RPwt > 0      (10.14)
            q(t+1) = (1-αi) * qei(t), if at time t, action = D, and RPwt ≤ 0                   (10.15)

The  state  of  agent  i is  updated  contingent  on  its  previous  state,  the  average 

neighbourhood  production  function,  and the  probabilities  for  both  C  and D.  The 

neighbourhood production function for time t is the cooperation payoff for the group 

computed as:

                                                               (10.16)

where Cj is the payoff value for agent j and N is the total number of agents in 
the neighbourhood.

Despite the preferential bonding in the dyadic social exchanges of the labour market 

transactions,  the  production  function  considers  the  cumulative  payoffs  for  all 

participants within the employment neighbourhood. Formally,  pfi is computed in the 

same manner for all daily activity interactions.

The average neighbourhood function for three memory events is formulated as:

                                                                                            (10.17)

Thus, the state of agent i at time t+1 with S(t):

         For S(t) = C:

S(t+1)= }
satisfiednot  are Dfor  conditions  theifaction  previousretain  C, 

R  1)q(t and 1)q(t  1)p(t and pf  iagent for  RP if D,{ uavgwt >++<+<
(10.18)

         For S(t) = D:



220

 S(t+1) = }
satisfiednot  are Cfor  conditions  theifaction  previousretain  D,  

R  1)p(t and 1)p(t  1)q(t and pf  iagent for  RP if C,{ uavgwt >++<+<
(10.19)

                            ,where Ru∈[0,1] is a uniform random value.
10.4.3.6 Rule Based Inference of Post-Action Choice Affective States

The  intensities  of  affiliation  emotions  are  set  relative  to  the  short-term, 

middle-term,  and  long-term  valenced  reactions  to  a  social  interaction  result. 

Cooperation will depend greatly on admiration and reproach, because these affiliation 

emotions are indicators  of the  benevolent  considerations  between neighbours.  The 

intensity  of  admiration  increases  as  more  neighbours  choose  cooperation  as  their 

action choice. The reverse situation exists for reproach as its intensity strengthens as 

the  instances  of  defection  increase  in  the  multi-agent  neighbourhoods and dyadic 

pairings. However, an emotional agent will tend to cooperate with those individuals 

he has an affective connection with, which is contingent on the context preservation 

in the neighbourhood (Cohen et al., 1998; Szilagyi, 2003; Power, 2009).

The intensity  of  anger  depends  first  on an  agent’s  reaction  to  receiving  a 

penalty, and then on the amount of blame placed on the decisions of others. Being 

partially  derived  from an  affiliation  emotion,  context  preservation  is  a  necessary 

condition for the intensity of anger to be significant, because the distress of a negative 

payoff  derived  from  the  action  choices  of  trusted  neighbour(s)  results  in  a 

compounded negative short-term affective state.

The post action choice emotions are also influenced by mood and personality 

with their intensities adjusted by mood class and neuroticism level. The modification 

in the intensities from the middle-term and long-term affective states is the same as 

previously discussed in section 10.3.3.4.
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10.4.3.7 Mood Adjustment

Kessler  et al.  (2008) presents a mood updating component of the SIMPLEX 

emotion model that determines a mood state according to the average intensities of all 

activated  emotions.  The same approach is  applied as a function that  computes  an 

average PAD spacing from the intensities of the triggered emotions from the result of 

a Prisoner’s Dilemma event.  Table 10.5 shows the comprehensive mapping of the 

OCC emotions and PAD space.

Table 10.5: Mapping of OCC Emotions to Mehrabian PAD Spacing

Emotion Pleasure Arousal Dominance PAD 
Octant

Mood 
Type

Mood 
Class

Joy 0.40 0.20 0.10 +P+A+D Exuberant Positive
Hope 0.20 0.20 -0.10 +P+A-D Dependent Positive
Relief 0.20 -0.30 0.40 +P-A+D Relaxed Positive

Admiration 0.40 0.30 -0.24 +P+A-D Dependent Positive
Distress -0.40 -0.20 -0.50 -P-A-D Bored Negative

Fear -0.64 0.60 -0.43 -P+A-D Anxious Negative

10.4.4 Self-Organizing Leadership

Self-organizing leadership requires a framework that entangles administrative 

and  adaptive  leadership  in  an  environment  where  individuals  can  introduce  and 

enable  conditions  that  catalyze  the  emergence  of  a  leadership  structure.  The 

individuals who assume the role of a communicator receive a “tag” within the social 

network  (Holland, 1995; Marion and Uhl-Bien, 2001) when they are recognized as 

influential  in  coordinating  initiatives  and  facilitating  interactions  amongst  the 

individuals. A tag represents the social standing or reputation associated with a leader 

due to the role he undertakes in catalyzing actions and directing behaviours in the 
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social network. With the condition that a tag is often unassociated with a position of 

formal management, there can be multiple leaders who share the facilitator role in 

tandem. Administrative leadership is implemented by randomly selecting one or more 

agents  during  initialization  and assigning them the  authority  and responsibility  of 

disseminating all institutional information throughout the environment. 

The  emergence  of  cooperation  depends  on  the  inherent  and  introduced 

tensions in the social interactions of citizens. The temptation of a payoff for defection 

in the Prisoner's Dilemma interjects tensions into the action choice decisions of the 

agents. Tensions are also introduced into the social interactions with the probability 

that agents exhibit behaviors that are contrary to their expected payoffs. For example, 

an agent may decide to interact with a neighbour with the lowest expected payoff 

rather than the agent with the highest expected payoff. 

At the end of each time step,  all  agents compute  their  self  identity as the 

aggregate payoff from the daily activities, and the neighbourhood C-leader will be the 

agent  with  the  highest  payoff  among  all  cooperators  while  the  D-leader  has  the 

highest payoff of all defectors. 

The administrative leader is tasked with a secondary role of communicating 

the  level  of  social  identity  and  the  tags  of  the  overall  C  and  D  leaders  in  the 

environment. This requires that each agent relay his listing of tags and self-identity to 

the  administrative  leader.  A  comparative  routine  identifies  the  overall  C  and  D 

leaders  and  computes  the  level  of  social  identity  as  the  average  payoff  of  the 

individual levels of self-identity. This information is then diffused back through the 

network to qualified individuals. 
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The overall C-leader is the highest paid cooperator within the environment, 

the one individual whose action strategy is considered optimal for the emergence of 

cooperation within the network. The emergence of global cooperative steady states 

will depend exclusively on the survival of the C-leaders with the maximum payoffs in 

the  network,  because  these  are  the  individuals  that  unsatisfied  agents  gravitate 

towards as they search for partners for future social interaction episodes. Also, the 

selfish nature of the agents will entice them to abandon their unsuccessful behavioral 

schemas and socially mimic the action strategies of the highest paid individuals to get 

a larger payoff at t+1. 

10.4.5 Social Mimicry

Each unsatisfied agent first  determines  all  C-leaders and D-leaders,  if  any, 

within his spatial  neighborhood, and copies the strategy of the neighbour with the 

highest  cumulative  payoff.  If  there  is  more  than  one  neighbour  with  the  same 

maximum payoff other than the agent himself, then one is selected randomly.  The 

agent will retain his strategy if he has the highest payoff.  

10.5 Model Experiments

The object oriented model was developed in REPAST© Java (Figure 10.3). 

The  model  is  spatially  explicit  in  that  it  utilizes  high  resolution  Geographic 

Information  System  layers  to  represent  the  elements  of  a  socio-geographic 

community: building polygons, a linear road network, and citizen agents symbolized 

as points. A central feature of the model is the ability of the user to set the parameters 
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for each of the components before the simulation runs. For example, the duration of 

each  of  the  everyday  activities  can  be  varied  to  reveal  the  influence  of  context 

preservation on the emergent patterns of cooperation.

Figure 10.3: Model Interface and Default Parameters

10.5.1 Model Environment
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The model is implemented through the simulation of social interactions in the 

community of Trinity Bay North, Newfoundland and Labrador, Canada (Figure 10.4). 

This study area was chosen because of the availability of spatial layers for each of the 

required features for a socio-geographic community and the availability of individual 

level socio-economic statistics to produce and assign state variables to each citizen 

agent. The buildings and roads are fixed agents, with the buildings having a single 

state that classifies them according to occupancy. Note that there are two additional 

polygons to represent the destinations for the employees who engage in fishing and 

who work outside of the confluence area of the community. Citizens (Figure 10.5) are 

mobile  agents  with states  (age,  occupation,  etc.)  that  have  been microsynthesized 

from selected 2011 Statistics Canada general census tables and ancillary datasets.

Figure 10.4: Analyzed Environment of Trinity Bay North
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Figure 10.5: Microsynthesized Population by Household Structure

10.6 Simulation Results

As a benchmark evaluation, a simulation was run with the default settings as 

displayed in Figure 10.3.  During initialization, the citizens are randomly selected and 

assigned  an  action  strategy  (see  table  10.1)  and  a  randomly  generated  OCEAN 

personality.   The effect of context preservation on the cooperative structure of the 

spatial  neighbourhoods is  conditioned on continuous social  interactions  for school 

and work activities where the agents remain at these locations for 5 and 8 time steps 

respectively.  The  labour  market  parameters  set  the  expected  payoff  for  mutual 

cooperation at 1 and the wallflower payoff at 0. Also, all participant employees and 

firms  are  enticed  to  enter  and  remain  in  the  labour  market  by  setting  the  non-

employment payoff to 0.
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The  inherent  stochasticity  of  agent-based  models  makes  the  analysis  of  a 

single  simulation  result  problematic.  Therefore,  the  average  result  from  500 

simulation  runs  is  the  basis  for  the  analysis  of  the  simulation  outcomes.  Each 

simulation run consists of 500 time steps of social  interaction and agent mobility.  

However,  the labour  market  interactions  required secondary nested interactions  of 

150 labour market exchanges for each simulation time step. To illustrate for time step 

t, the firm is individually paired with each employee in its neighbourhood for 150 

iterations of IPD game play, with the average utility level set as the resultant payoff 

for that  labour  market  transaction.  The following discussion is  a summary of  the 

average mobility activities, affective states, action choices, and leadership structure 

patterns.

Figure 10.6 is a line graph of the average action choices of the agents. With 

the exceptions at time steps 119 and 341, there are more defectors than cooperators in 

the socio-geographic community after each simulation step, but this is anticipated for 

two reasons.  Firstly, the payoff structure of the Prisoner’s Dilemma will encourage 

more defectors than cooperators, because citizens are tempted to behave as selfish 

individuals  in  the  pursuit  of  the  highest  possible  reward.  Secondly,  the  mobility 

choices of many of the citizens involve single time step daily activities that require 

these agents to reevaluate their activity choices and geographic location at t+1. This 

persistent  transient  subpopulation  of agents destabilizes  the temporal  constancy of 

many social interaction neighbourhoods so the level of trust and relationality known 

to contribute to communal cooperation is absent or significantly limited.
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Figure 10.6: Simulation Summary of Action Choices for the Agent Population

A steady state of cooperation depends on a relatively stable agent membership 

in the interaction neighbourhoods and the adoption and utilization of the same action 

strategy by the individuals (Zimmermann and Equiluz, 2005). In this model, these 

factors are difficult to evaluate, because the single time step activities ensure that the 

neighbourhood membership of a considerable portion of the agent population varies 

from  one  time  step  to  the  next.  Yet,  the  effects  of  context  preservation  can  be 

analyzed at a time step when the total communal level of cooperation is high. For the 

58% cooperation level of time step 119, the spatial dynamics of the social interactions 

are  displayed  on the map in Figure 10.7,  especially  in the insets  centered  on the 

locations of the overall C and D-leaders. Small geographic groupings of cooperators 

are evident throughout the environment, but the largest concentration of cooperation 

occurs at locations of activities where context preservation is intentionally introduced. 

It is logical that an overall C-leader will be spatially positioned within a preserved 

neighbourhood where cooperation dominates, because the memory adjusted payoffs 

of the agents will record any degree of trust that emerges within the localized social 
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network.   The noteworthy finding in  Figure  10.7 shows the  presence  of  multiple 

overall C-leaders, which supports the assumption of Marion and Uhl-Bien (2001) that 

multiple leaders can emerge as information facilitators in a social interaction network.

Figure 10.7: Average Cooperation and Leadership Structure at Sampled Time Step 
119 for Simulations with Normal Personality Population and NEP=0

With two overall C-leaders, there is a greater probability that the expected payoffs 

will direct the lowest paid agents to one of these locations, which translates into more 

agents interacting with a selfless partner and possibly a higher incidence of localized 

cooperation.

The contrary social interaction dynamic exists for the overall D-leader who 

becomes tagged as the highest paid exploiter in the environment. The behaviour of 

the  unsuccessful  agents  thus  depends  on  the  fact  that  the  expected  payoffs  they 
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compute at each time step sets the D-leader as the least attractive partner for social 

interaction. The probability of these citizens traveling to the location of the D-leader 

is low, but still stochastically possible. To counter this behaviour, the D-leader must 

be constantly mobile during the time sequence that he is the dominant defector to 

avoid reprisals from previous unsatisfied partners. The threat of reprisal is directly 

proportional  to the degree  of familiarity  and context  preservation in  the localized 

social network so the overall D-leader will usually avoid participation in school or 

work events. This is one reason why the overall D-leader in inset 3 on Figure 10.7 is 

situated within a building of a single time step service activity.

With  the  mood  spacing  of  an  agent  endowed  with  a  three-step  memory 

response, the most common average mood state provides a measure of the affective 

condition of each agent during a set of simulation runs. Figure 10.8 shows a ring 

diagram of the most common average moods for the simulation runs, with each bar 

containing bins for five PAD spacing assignments. For each time step, a wedge shows 

the mean percentage of citizens who have most frequently exhibited each particular 

mood during the simulations. For example, time step one displays a bin size of 16% 

for dependent. This indicates that accumulating the results for the 500 simulations, at 

time step one, the dominant mood for 16% of the citizens was dependent.

The affective structure shows that a considerable portion of the population is 

an exuberant mood due to the positive results from the social interaction events. With 

the payoff structure, the localized D-leaders are often the most exuberant individuals 

and remain in this  mood state as long as they avoid reprisals  for their  egocentric 

behaviors. However, the prevalent mood space is dependent, which signifies that the
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Figure 10.8:  Ring Histogram of the Most Common Average Mood Space in the 
Simulations

agents sense a lack of control during a sequence of social interactions. Agents will 

relinquish control in a social network when they have become more inclined to be 

less selfish in favor of cooperation. The overall C-leaders often exhibited the highest 

level of dependent mood space at the end of school or work interaction exchanges. 

The last two mood spacings comprise a small portion of each simulation run in the 

ring diagram, but disdainful and hostile moods signify the presence of uncooperative 

behaviors. Interesting, context preservation is a requirement for these mood spacings, 

but in a negative sense. Agents that are disdainful or hostile are displeased with their 
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neighbours’ continual level of selfishness so they resort to antisocial behavior to gain 

a degree of control within the grouping. 

10.7 Conclusions

Spatial agent-based modeling will be viewed as unnecessarily complicated by 

many of the practitioners who are more comfortable with the traditional approach of 

the qualitative analysis of social relationality. Yet, the most complicated element in 

designing and implementing an agent-based system is representing the variable, non-

linear decision-making of the citizens. While the unwritten credo of ‘Keep It Simple 

Stupid” should be paramount in the development of any model, there comes a point 

when a complicated framework is necessary to expand the applicability of the system. 

Start  with  the  simple  view  of  a  community  as  a  network  of  social  interactions 

consisting of people going about their daily lives. Each person is an individual who 

makes decisions according to his appraisal of what is beneficial both for himself and 

the community as a whole. This autonomy of human behaviours is crucial  for the 

self-organization of the entire socio-geographic community so the actual foundation 

of bottom-up decision-making is the individual. Complexity theory provides a context 

for simulating the self-organized emergence of the processes that define and sustain a 

community, and an agent-based model is appropriate formalization of this complex 

adaptive system.

The subject of this paper is a spatial agent-based systems model developed to 

simulate emergent cooperation and leadership from the nonlinear social interactions 

of mobile agents in a socio-geographic environment.  The architecture is a tightly-



233

coupled framework of functionally linked components that model spatial  mobility, 

social  communication, affective state, labour market dynamics, and self-organizing 

leadership. The complexity in the decision-making and the behaviors of the agents is 

captured by the bottom-up simulation of individuals as they participate in the social 

interactions of their daily activities. A benchmark set of simulation runs supports the 

common-sense expectations that a reward received from a social interaction sets an 

agent in a positive affective state, and the relationality required for a form of steady 

state  cooperation  is  directly  linked  to  context  preservation  of  the  interaction 

neighbourhoods. 
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Part III: Discussion and Conclusions

11.0 Introduction

A  human  geography  perspective  on  social  relationality  requires  an 

understanding of complexity in both decision-making and the localized consequences 

of interpersonal interactions. The dynamics of social relationality reflect the fact that 

a  community  is  a  complex  human  system,  consisting  of  many  spatially  and 

temporally varied processes directed by the sometimes stochastic and unpredictable 

decisions and behaviours of individuals. This research has produced a formalization 

that  models  a  community as a complex adaptive  system of social  relationality  by 

representing the individuals, defining the relationality among them, and identifying 

the spaces in which they act and are related. 

11.1 Summary of the Research

The model developed in this work is a spatially explicit agent-based model 

that simulates the dynamics of social interactions with a set of generic components 

that  model  psychological  states,  multi-person  social  interactions,  labour  market 

dynamics, and emergent leadership. 

The  basic  framework  for  simulating  multi-agent  social  interactions  is 

presented in paper one as a spatially explicit  agent-based model that simulates N-

Person’s Prisoner’s Dilemma games, where the configuration of the spatially defined 

neighbourhoods  is  conditioned  on  the  activities  and  mobility  of  citizen  agents. 

Simulation runs explored the influence of mobility and neighbourhood size on the 

self-organization of the modeled community.  One set of simulations  demonstrated 
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that the movement and action choices of mobile agents led to a common emergent 

pattern  of  smaller  clusters  of  cooperators  and  defectors  that  varied  in  size  and 

locations.  A  second set  of  simulations  with  fixed  agents  investigated  the  role  of 

context  preservation  and  neighbourhood  depth,  and  found  that  social  interactions 

among familiar  citizens  led to  increased  instances  of  spatial  groupings  comprised 

predominately of cooperators.

The second paper modifies the N-Person Prisoner’s Dilemma by endowing 

agents  with  affective  states  in  their  anticipation  and response  to  the  outcomes  of 

social  interactions.  The  hierarchical  structure  of  the  layered  Personality-Mood-

Emotion model of affect calculates the intensity of the triggered emotions from the 

outcomes of N-Person Prisoner’s Dilemma events and adjusts the intensities further 

relative to temporal mood state and personality.  The most common average emotion 

of agents who received a payoff was joy while those with a penalty experienced either 

reproach or anger. For agents that remain in the same neighbourhood for multiple 

time steps, the sense of social bonding that developed among them was a condition 

for  the  emergence  of  admiration  as  the  most  common  average  emotion  and 

dependence as the most common average temporal mood. In a grouping of socially 

bonded individuals,  neighbours  relinquish  their  self  control  and cooperate  for  the 

benefit of the social network. The long-term affect of personality relates to the degree 

of neuroticism and extraversion in the agents, and plays  a determining role in the 

decision of some agents to avoid participation in social interaction events.

The  third  paper  presents  a  spatial  labour  market  game  with  preferential 

partnership matching and Iterative Prisoner's Dilemma worker-employer exchanges. 
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Simulation runs investigated the influence of distance between employees and firms 

on the emergence of preferential partnerships, labour market participation rates, and 

action choices.  The initial  simulations  were used to  both calibrate  the model  and 

compare the resultant patterns of employee-firm partnerships to the findings from the 

original research of Tesfatsion (1997). With low to medium distance costs and low 

non-employment  payments,  the need for potential  employees  to travel  to  firms  to 

submit  job offers  had a  negligible  effect  on  the  emergent  structure  of  the  labour 

market. As with Tesfatsion (1997), potential employees will direct interactions to the 

firms with the highest associated expected payoff and firms will  offer jobs to the 

potential employees highest on their waitlist. As the non-employment payment was 

raised  from  low  to  high,  increased  instances  of  non-participation  were  spatially 

dispersed  throughout  the  labour  market.  The  likelihood  that  the  latched  firm-

employee pairs would engage in Cooperation-Cooperation action choice was slightly 

increased  at  the  higher  non-employment  payment  settings,  but  the  social  welfare 

values are subsequently deflated,  producing a less cooperative environment.  When 

the distance cost was set  at  medium and high thresholds,  the cumulative  distance 

penalty had a stronger negative influence on the decisions of potential employees to 

participate in the labour market. The significance of space was evident in the results 

from  a  high  non-employment  payment-high  distance  cost  simulation.  The  social 

network of firm-employee relationships was reorganized into a smaller group of the 

most distant firms latched to the geographically closest employees. 

The model in paper 4 for self-organizing leadership presents a framework for 

simulating  the  structure  of  social  positioning  in  a  community  environment.  The 
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framework entangles administrative and adaptive leadership in an environment where 

individuals  can  introduce  and enable  conditions  that  catalyze  the  emergence  of  a 

leadership structure. Leadership emerges from the space between individuals from the 

tensions in the decisions of agents during N-Person Prisoner’s Dilemma game play 

and  the  enabling  actions  of  administrative  and  cooperation  leaders.   Context 

preservation  is  essential  to  the  sustainability  of  cooperation  and  trust  among  the 

agents.  The  mobility  dynamics  of  the  unsatisfied  agents  are  determined  by  the 

locations of tagged individuals in a “well-connected” community.

Paper  five  presents  a  comprehensive  model  designed  to  simulate  social 

relationality  as  a  result  of  the  emergence  of  cooperation  and  leadership  in  a 

community.  The  framework  of  the  model  consists  of  the  integration  of  the 

components of community development presented in the previous papers. Mobility 

actions  of  the  agents  depend  on  expected  payoffs,  and  everyday  activities  are 

modeled  as  affective  multiple  person  social  exchanges  or  dyadic  labour  market 

transactions. In a benchmark simulation, common sense expectations were confirmed 

with the finding that agents most often experienced a positive affective state after 

they  have  received  a  payoff  from  a  social  interaction  event.  Also,  the  context 

preservation of the interaction neighbourhood lead to a sense of bonding between the 

agents that moved the dynamics towards a form of steady state cooperation. For the 

school and work events where context preservation was deliberately introduced, the 

percentage  of  cooperation  increased  due  to  the  temporal  constancy  of  the  agent 

grouping. However, the single time step activity neighbourhoods had a blending of 

cooperators and defectors, with defection being the best action choice of the agents. 
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An interesting result was the emergence of multiple cooperation leaders at different 

preserved neighbourhoods. The longer these successful agents remained in place, the 

stronger the cooperation grew, because unsatisified agents traveled to their location to 

interact  with  a  known cooperator.  The longer  an  agent  remained  the  cooperation 

leader,  the  greater  the  social  mimicry  of  his  action  strategy,  which  increases  the 

probability of greater instances of cooperation at later time steps. The cooperation 

leaders often experienced the highest intensity of a dependent (+P+A-D) mood space. 

The negativity of dominance as a mood trait  indicates that these leaders had little 

interest  in  controlling  social  interactions  for  personal  gain  and  exhibit  recurrent 

altruistic behaviours instead. Familiarity and trust were minimal at the unpreserved 

neighbourhoods,  and  these  were  determined  to  be  a  primary  condition  for  the 

emergence of the defection leader. The defection leader had the good fortune of being 

the highest paid defector in a neighbourhood for a single time step activity.  From 

being rewarded with the  largest  payoff,  the defection  leader  also experienced  the 

highest exuberant mood space intensity.

11.2 Achievements of the Research

The following are the most significant findings of this research:

• Affective decision making affords a more realistic approximation of human 
social interactions.

Many agent-based models of human systems simulate the behaviors of 

individuals  with  deterministic  schemas  and simple  rulebases.  Representing 

agents as objects that choose a course of action only according to a utility 

level  ignores  the  complexity  and autonomy of  their  behaviours.  Emergent 

cooperation and leadership in a community environment are more realistically 
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modeled with affective agents, because the developing sense of community 

influences their participation in and response to the dynamics of their social 

interactions. Agents with a personality will also appeal to researchers of a trait 

theory of leadership, because certain OCEAN factors sway the participation 

and responses  of  citizens  in  the everyday  activities.  Participation  in  social 

interactions  is  essential  for  the  sustainability  of  relationality  in  the  social 

network,  which conditions  the emergence of the cooperation and defection 

leadership structure in the community.

• Space is an important element in labour market dynamics that should not be  
ignored.

The  standard  economic  models  of  labour  market  dynamics,  such  as  the 

original Trade Network Game, often have no mechanism to incorporate space 

in the analysis. It is recognized in this research that many of the traditional 

models are generic abstractions so the dismissal of space is a methodological 

decision  to  simplify  the  architecture  of  system.  However,  the  counter 

argument can be made that a modeling framework that ignores space is itself 

theoretically suspect.  Space (e.g. location of firms and employees, shipping 

destinations,  etc,)  and  spatial  mobility  (labour  market  commuting  flows, 

distance costs)  are elements  in the processes of agent  matching and social 

interactions  that  also  direct  the  emergence  of  cooperation  in  the  social 

environment. The methodology of the spatial labour market game incorporates 

space  into the original  Trade Network Game formalization  and provides  a 

framework that accommodates the needs of both economists and geographers. 
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The ability of agent-based modeling to simulate an economic environment in 

a more realistic and plausible manner is beneficial to both fields of research. 

• Emergent  cooperation  and  leadership  are  directly  correlated  to  context  
preservation.

Relationality depends on the familiarity and confidence that agents have in the 

decisions  and  action  choices  of  their  neighbours.  In  preserved 

neighbourhoods, agents continually interact with the same set of individuals 

for  a  set  period  of  time,  which  enables  each  agent  to  make  a  temporal 

evaluation of the behavorial patterns in his social interactions. The memories 

and learning abilities of the individuals set the condition that selfish actions 

will  be  remembered  and  reciprocally  acted  upon.  As  the  instances  of 

cooperation increase, the agents begin to admire the selfless behaviors of their 

neighbours  and  cooperate  in  response.  The  agent  in  the  preserved 

neighbourhood that initiates and promotes cooperation directs the social group 

towards  a  consensus  decision,  which  makes  this  individual  a  localized 

cooperative leader. As the lowest rewarded citizens adopt his action strategy, 

the possibility  of  a  form of  steady state  cooperation  in  the neighbourhood 

increases, and this improves the social position of the localized cooperation 

leader in the community.  

• The complex adaptive systems approach is essential in the modeling of the  
processes of community development.

With social relationality as a complex process, higher-level order can arise in 

the  social  networks  as  enabled  individuals  communicate  and  disseminate 
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knowledge throughout the environment. The social exchanges between agents 

are  non-linear  in  nature,  because  of  the  repeated  feedback  through  the 

emergent  structures  within  the  social  network.  Many  of  the  standard 

approaches to social relationality are implemented in a top-down framework, 

and  lack  the  appropriate  methodology  to  include  decision-making  at  an 

individual level. This factor is central to the criticism that some contemporary 

researchers  attach  to  the  conventional  methods  as  being  inappropriate  to 

handle  the  interaction  dynamics  in  a  community.  In  this  research,  the 

processes of social relationality are modeled as a complex adaptive system, 

where the stochastic dynamics of the social exchanges between the individuals 

lead to the emergence of structural changes in the socio-geographic network. 

Guided by the idea that a community could be modeled as a complex adaptive 

system, the spatial agent-based approach of this research may supplement the 

traditional  theories  of  community  development,  which  tend  to  ignore  the 

processes by which a community organization interacts  to reach or fails to 

reach a consensus.

11.3 Future Work

This research has contributed  to  the fields  of computational  sociology and 

human geography by demonstrating the advantages of spatial agent-based modeling 

in simulating the dynamics of a complex human system. However, there are still areas 

that need to be investigated and some aspects of this model can be further refined. 

They are summarized as follows:
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• Holistic Agent-based Modeling of Community Development.

In its current form, the framework of this model is based only on the processes 

of social relationality. Further development of the model as a system that can 

simulate  the  broad  range  of  dynamics  associated  with  community 

development requires several extensions. At the very least, components that 

simulate  relevant  aspects  of  the  culture,  the  natural  environment,  the 

governance  structure  and  the  economy  would  have  to  be  included  in  the 

model. With a labour market component already developed, the integration of 

an economic model is a natural start. An interesting possibility is the agent-

based  modeling  approach  of  a  simple  Luhmann  economy  proposed  by 

Fleischmann (2005). A Luhmann economy is based on the proposition that an 

economy functions as a subsystem of society and that economic development 

is  an  evolutionary  process  of  the  exchange of  goods between agents.  The 

manner in which agents access these goods produces an ownership code that 

emphasizes  that  it  is  better  to  own the good than desire  it.  The economic 

system starts from and produces an inequality in goods in order to continue 

and  uses  agent  interactions  to  evolve  towards  a  near  equilibrium  balance 

between the supply and demand for the good. The essential elements are the 

stocks  and  flows,  and  the  demand  for  goods  results  from  the  observed 

differences  in  ownership  of  scarce  goods.  In  this  approach,  a  Luhmann 

economy could consider as goods the labour services that individuals offers to 

the system and that firms purchase in the form of jobs. Another possibility is 

the  comprehensive  model  of  an  evolving  economic  system  developed  by 
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Straatman  et  al.  (2008),  which  uses  artificial  chemistry  to  simulate  the 

production system of an economy.   The modeling environment  consists of 

social networks, agents, products, and technology and changes in the economy 

can  occur  when  agents  expand  their  interaction  network,  buy  and  sell 

commodities,  or adopt new technologies.  The integration of components of 

the model presented in this thesis and the model of Straatman et al. (2008) 

would  benefit  both  formalizations.  For  example,  the  selection  of  trading 

partners  in  the  artificial  chemistry  economy  could  be  improved  with  the 

preferential  partnership  matching  mechanism  of  the  spatial  labour  market 

game, and this could aid in the determination of market price. An economy is 

an  essential  component  of  a  model  of  community  development,  and  the 

approach  of  Straatman  et  al.  (2008)  is  an  innovative  way  of  including 

technology and natural resources into the modeling environment. These two 

elements are essential for directing development plans in rural communities, 

where  a  common  proposal  for  improving  economic  conditions  is  the 

introduction of new technology and the harvesting of natural resources. 

• Modeling fuzziness in the affective states and action choices of the agents  
(Paper 1 Future Research).

The classical definition of Prisoner’s Dilemma is a simplistic representation of 

cooperation, one only allows a boolean assignment to two cooperation classes. 

Cooperation should be measured on a continuous state space that varies at 

each time step according to the attitudes of the agents. As a further model 

revision, a Mamdani fuzzy inference system can provide a flexible base for 
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developing a modeling component that assigns fuzzy memberships to an agent 

for both cooperation and defection. The purpose of the fuzzy inference system 

is  to  model  agent  decisions  to  cooperate  by considering  both the  standard 

Prisoner’s Dilemma probability approach and the affect of the emotional state 

of the agent. Using a set of fuzzy membership functions each agent is assigned 

a degree of membership in both classes to produce a continuum of cooperation 

in  the  modeling  environment.  A  fuzzy  rulebase  will  model  the  decision 

choices  of  the  agents  by  inferring  their  willingness  to  cooperate  as  a 

consequence of an agent’s emotional state and payoff from a social interaction 

event.  The willingness to cooperate is implemented as a fuzzy cooperation 

value, which ranges from 0 to 1. This alternative to the Boolean dichotomy of 

cooperation and defection would enable an agent to exhibit a more believable 

and varying degree of cooperation throughout the simulation.

11.4 Comments on the Research Experience

I am at a point in my PhD. research where I have started to reflect on my 

mindset as a geographer, and the question that constantly arises is “Do I have a better 

understanding of geographic human systems?” To answer that question, I have to go 

back to my previous life as a spatial analyst. Educated and trained in the theories of 

Geographic Information  Sciences  (GIS),  my default  approach to  analyzing spatial 

phenomena was to apply some form of optimization or statistics to identify patterns in 

the data, investigate spatial dependencies, develop prediction models, etc. I looked at 

space with linear vision and never truly considered the issues with this perspective. I 
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could fit a line through any of the datasets I studied, and would address the associated 

error in the usual statistical manner of confidence intervals. However, the inability of 

the methodologies in my GIS repertoire to incorporate time into the analysis always 

bothered  me,  but,  like  many  spatial  analysts,  I  accepted  it  as  standard  operating 

practice.  Things  changed  when  I  was  tasked  with  mapping  a  time  series  of 

demographic data, or at least what the client thought was a time series. The purpose 

of the project was produce chloropleth maps of population changes in communities 

over three Statistics Canada census releases (1996, 2001, and 2006) as a means of 

visually identifying  growth areas and regions in decline.  Each table of population 

counts  for  a  census  year  is  theoretically  atemporal,  because  the data  represents  a 

snapshot  of  the  sampled  population  on  the  day  that  the  census  survey  was 

administered. A population change map tells nothing of the reasons why population 

has increased or decreased, and disregards the demographic dynamics between the 

census years. The more I thought about it, the more I realized that population change 

is  due  to  the decisions,  actions,  and health  status  of  the  individual  people  in  the 

communities.  

This was an epiphany, because it was the first time that I considered studying 

the micro-scale dynamics of a geographic system, and, even more challenging, the 

dynamics  of a human system.  Also,  the formalization  of a human system from a 

quantitative GIS approach is a contrast with the qualitative perspectives of human 

geography so my initial research thought was to devise a methodology that integrated 

both approaches. I began with the common view of a human system as a community,  

a grouping of people in a spatially defined region such as a city or town, and thought 
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that a set of rules that handle the qualitative aspects of human interactions could be 

the basis for a model of a community.  This belief failed miserably, because it ignored 

the  complexity  of  the  processes  of  the  human  system.  I  needed  the  complexity 

perspective  of  an individual-based model  of  a  community,  and found what  I  was 

looking for in the theory of complex adaptive systems. 

The focus of my research then became the development and implementation 

of a model of a community as a complex adaptive system that models the interactions 

and behaviours  between people  within  a  spatial  confluence  region.  Spatial  agent-

based modeling was the natural choice as a computational approach to understanding 

a complex adaptive system, a decision which was further supported by the fact that 

agent-based  modeling  was  becoming  increasing  common  in  human  geography 

literature.  Further,  an  agent-based  modeling  approach  is  ideal,  because  complex 

macro-level phenomena can be studied as emerging by a process of self-organization 

of  the  macro-level  structure  of  the  system  from  the  micro-level  behaviours  of 

individuals.

The challenging task in the development stage of the model was representing 

the processes of interactions between individuals. I spent considerable time reviewing 

agent-based models in journals dedicated to sociology, psychology, economics, and 

robotic engineering in addition to the studies utilizing spatial agent-based models. It 

was the merger of the theories from these different research disciplines that resulted 

in the formalization of the model presented in this thesis. 

I’ll  conclude  this  commentary  by  returning  to  the  question  about  my 

understanding of  a  human  system.  The personal  and professional  benefits  of  this 
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research are threefold. First, I can confidently state that my formal knowledge of the 

processes of a human system has improved considerably, but I have only scratched 

the surface when it comes to fully understanding all aspects of a human system. The 

true benefit  is  that  it  has made me keenly aware of the complexity of the social  

interactions that often drive a human system. The theory and findings of this thesis 

add to  the  field  of  human geography,  but  there  are  many avenues  of  research to 

pursue in the future. Secondly,  I have witnessed my transformation from a spatial 

analyst  to  a  spatial  modeler,  and  to  some  degree,  a  human  geographer.  I  never 

envisioned  that  I  would  abandon  the  statistical  methodologies  of  GIS  for  the 

nonlinear stochastic dynamics of agent-based models of social, economic, and spatial 

phenomena. However, any model of a human system has to be as true as possible to 

the real world social environment that it is intended to represent, and this is achieved 

with  an  individual  based-approach  as  presented  in  this  thesis.  Lastly,  the 

epistemological  advances  of  complex  adaptive  systems  approaches  to  socio-

geographic research must be mentioned. For example, any of the theoretical issues of 

the  traditional  economic  geography,  such  as  individual  rational  choice  can  be 

addressed with a complex adaptive system approach that simulates the behaviours of 

economic agents in space. As proposed by Schenk (2007), this could be an alternative 

framework of a relational view of economic geography. At the very least, I hope that 

any researcher who reads this thesis or any of the contributing papers will consider it 

an endorsement of interjecting tensions into their standard mindset to expand their 

knowledge of human systems. 
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12.0 Appendix I: Rules for Basic Emotions

A.1  For all emotions in the rule-based model, the following notations are applicable: 
D(p,e,t) is the desirability that agent p assigns to the outcome of an NPPD event e 
at  time  t,  Mt is  the  temporal  mood  state,  Pn is  the  neuroticism value  in  the 
OCEAN personality schema, Nt is the payoff received by agent p at time t, St-1 is 
the action state (C: cooperation or D: defection) of the agent at time  t-1, Cp(

Se t, 1− ) is the percentage of cooperators in the neighbourhood of agent e, IE is the 
emotional  intensity,  IM is  the  mood-emotional  intensity,  and  IPME is  the 
combined affective intensity.

Rules for Joy:   Joy = f (D(p,e,t), Mt, Pn), 

D(p,e,t) = f(Nt, St-1)

If St-1 = C and Nt > 0 then 
set IE = Nt / PMaxC, where PMaxC is the highest payoff that a cooperator can receive 
from the payoff function 

Else If St-1 = D and Nt > 0 then
set IE = Nt / PMaxD, where PMaxD is the highest payoff that a defector can receive from 
the payoff function

Else
  set IE = 0 
End If

If Mt ≡ PAD ≡ Positive Mood state then 
  set IM = IE + x, where x ∈[0.001,0.05] is a uniform random value
Else If Mt ≡ PAD ≡ Negative Mood state then
  set IM = IE - x
End If

If IM ≈ 0 then
  If Pn ≈ 1 then
   set  IPME = IM - y, where y ∈[0.001,0.05] is a uniform random value to a minimum of 
0
  Else If Pn ≈ −1 then
    set IPME = IM + y
  End If
   set IJoy = IPME

Else
  set IJoy = IM

End If

Rules for Distress:   Distress = f (D(p,e,t), Mt, Pn), 

D(p,e,t) = f(Nt, St-1)
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If St-1 = C and Nt < 0 then
set IE = Nt / PMinC, where PMinC is the lowest payoff that a cooperator can receive 
from the payoff function 

Else If St-1 = D and Nt < 0 then
set IE = Nt / PMinD, where PMinD is the lowest payoff that a defector can receive from 
the payoff function

Else
  set IE = 0
End If

If Mt ≡ PAD ≡ Positive Mood state then 
  set IM = IE - x, where x∈[0.001,0.05] is a uniform random value
Else If Mt ≡ PAD ≡ Negative Mood state then
  set IM = IE + x
End If

If IM ≈ 0 then
  If Pn ≈ 1 then
   set  IPME = IM + y, where y ∈[0.001,0.05] is a uniform random value
  Else If Pn ≈ −1 then
    set IPME = IM – y, to a minimum of 0
  End If
   set IDistress = IPME

Else
  set IDistress = IME

End If

Rules for Hope: Hope = f ( LS t 1− ,D(p,e,t), Mt, Pn),

where LS t 1−  is the likelihood of receiving a positive payoff p from the action state of 
the agent at time t-1

From the payoff functions, LS t 1−  ∝ Cp(
Se t, 1− )   when Cp(

Se t, 1− )  > Cpz, where Cpz is 

the condition of Cp(
Se t, 1− ) that will derive a prospect payoff p = 0

If Cp(
Se t, 1− ) > Cpz Then

 set LS t 1−  = (Cp(
Se t, 1− ) - Cpz) / (1 - Cpz)

Else
 set LS t 1−  = 0
End If

D(p,e,t) = f( LS t 1− , pt-1) , where pt-1 is the one step memory payoff at time t-1
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Note: Hope is increased with a history of negative payoffs

If pt-1 < 0 then
 set D(p,e,t) = pt-1 / PMin ,where PMin is the lowest payoff that an agent with action state St-

1 can receive
Else 
  set D(p,e,t) = 0
End If

If LS t 1−  ≥ 0.75 then
  If D(p,e,t) > 0.8 then 
   set IE = rh, where rh ∈[0.8,1] is a uniform random value
  Else If D(p,e,t) ≥ 0.5 and D(p,e,t) ≤ 0.8 then
   set IE = rh, where rh ∈[0.6,0.8] is a uniform random value
  Else
   set IE = rh, where rh ∈[0.3,0.6] is a uniform random value
  End If
Else If LS t 1−  ≥ 0.5 and LS t 1−  < 0.8 then
 If D(p,e,t) > 0.8 then 
   set IE = rh, where rh ∈[0.7,0.8] is a uniform random value
  Else If D(p,e,t) ≥ 0.5 and D(p,e,t) ≤ 0.8 then
   set IE = rh, where rh ∈[0.4,0.7] is a uniform random value
  Else
   set IE = rh, where rh ∈[0.25,0.4] is a uniform random value
  End If
Else
  set IE = rh, where rh ∈[0.01, 0.25] is a uniform random value
End If

If Mt ≡ PAD ≡ Positive Mood state then 
  set IM = IE + x, where x ∈[0.001,0.05] is a uniform random value
Else If Mt ≡ PAD ≡ Negative Mood state then
  set IM = IE - x
End If

If IM ≈ 0 then
  If Pn ≈ 1 then
   set  IPME = IM - y, where y ∈[0.001,0.05] is a uniform random value to a minimum of 
0
  Else If Pn ≈ −1 then
    set IPME = IM + y
  End If
set IHope = IPME

Else
  set IHope = IM



256

End If

Rules for Fear: Fear = f ( LS t 1− , Mt, Pn),

where LS t 1−  is the likelihood of receiving a negative payoff p from the action state (C 
or D) of the agent at time t-1

From the payoff functions, LS t 1−  ∝ Cp(
Se t, 1− )   when Cp(

Se t, 1− )  > Cpz, where Cpz is 

the condition of Cp(
Se t, 1− ) that will derive a prospect payoff p = 0

If Cp(
Se t, 1− ) < Cpz Then

 set LS t 1−  = (Cpz - Cp(
Se t, 1− )) / Cpz

Else
 set LS t 1−  = 0
End If

IE ∝ LS t 1− but subjected to a random perturbance to model nonlinearities 
∴IE  ≈ ( LS t 1−  ±  rp), where rp ∈[0.001, 0.1]

If Mt ≡ PAD ≡ Positive Mood state then 
  set IME = IE - x, where x ∈[0.001,0.05] is a uniform random value
Else If Mt ≡ PAD ≡ Negative Mood state then
  set IME = IE + x
End If

If IM ≈ 0 then
  If Pn ≈ 1 then
   set  IPME = IM + y, where y ∈[0.001,0.05] is a uniform random value
  Else If Pn ≈ −1 then
    set IPME = IM – y, where y ∈[0.001,0.05] is a uniform random value to a minimum of 
0
  End If
   set IFear = IPME

Else
  set IFear = IM

End If

Rules for Relief: Relief = f(IFear, Nt, Mt, Pn)

IE ∝ IFear

If Nt > 0 then
  set IE = IFear + ri, where ri ∈[0.001,0.01] is a uniform random value
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Else
  set IE = 0
End If

If Mt ≡ PAD ≡ Positive Mood state then 
  set IM = IE + x, where x ∈[0.001,0.05] is a uniform random value
Else If Mt ≡ PAD ≡ Negative Mood state then
  set IM = IE - x
End If

If IM ≈ 0 then
  If Pn ≈ 1 then
   set  IPME = IM - y, where y ∈[0.001,0.05] is a uniform random value to a minimum of 
0
  Else If Pn ≈ −1 then
    set IPME = IM + y, where y ∈[0.001,0.05] is a uniform random value
  End If
   set IRelief = IPME

Else
  set IRelief = IM

End If

Rules for Admiration: Admiration = f(Tcne, Cp(
Se t, 1− ) , Nt, Mt, Pn), where Tcne is 

the neighbourhood strength or temporal constancy of the neighbours of agent e 
indicated as the number of continuous time steps that e interacts with the same 
neighbours

‘A sense of familiarity from a minimum of three interactions with the same agents

If (Tcne ≥ 3) Then 
   If  (St-1 = C and Cp(

Se t, 1− ) ≥ 0.60) then
   set IE = Nt / PMaxC, where PMaxC is the highest payoff that a cooperator can receive 
from the payoff function 

  Else
      set IE = 0 
  End If

      If Mt ≡ PAD ≡ Positive Mood state then 
        set IM = IE + x, where x ∈[0.001,0.05] is a uniform random value
      Else If Mt ≡ PAD ≡ Negative Mood state then
        set IM = IE - x
     End If

     If IM ≈ 0 then
       If Pn ≈ 1 then
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         set  IPME = IM - y, where y ∈[0.001,0.05] to a minimum of 0
       Else If Pn ≈ −1 then
           set IPME = IM + y, where y ∈[0.001,0.05] is a uniform random value
       End If
         set IAdmiration = IPME

     Else
         set IAdmiration = IM

     End If
Else
   set IAdmiration = 0
End IF

Rules for Reproach: Reproach = f(Tcne, Cp(
Se t, 1− ) , Nt, Mt, Pn), where Tcne is the 

neighbourhood strength or temporal constancy of the neighbours of agent e indicated 
as the number of continuous time steps that e interacts with the same neighbours

‘A sense of familiarity from a minimum of three interactions with the same agents

If (Tcne ≥ 3) Then 
   If  (St-1 = D and Cp(

Se t, 1− ) ≥ 0.60) then
   set IE = Nt / PMaxD, where PMaxD is the highest payoff that a defector can receive 
from the payoff function 

  Else
      set IE = 0 
  End If

      If Mt ≡ PAD ≡ Positive Mood state then 
        set IM = IE - x, where x ∈[0.001,0.05] is a uniform random value
      Else If Mt ≡ PAD ≡ Negative Mood state then
        set IM = IE + x
     End If

     If IM ≈ 0 then
       If Pn ≈ 1 then
         set  IPME = IM + y, where y ∈[0.001,0.05] is a uniform random value
       Else If Pn ≈ −1 then
           set IPME = IM - y, where y ∈[0.001,0.05] to a minimum of 0
       End If
         set IReproach = IPME

     Else
         set IReproach = IM

     End If
Else
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   set Ireproach = 0
End IF

Rules for Anger: Anger  = f(Tcne, IDistress, IReproach), where Tcne is the neighbourhood 
strength or temporal constancy of the neighbours of agent e indicated as the number 
of continuous time steps that e interacts with the same neighbours

If (Tcne < 3) Then
‘with less than 3 time steps, the agent is angered more by the distress of a negative 
payoff
  set IAnger = (0.6* IDistress) + (0.4 * IReproach)
Else
‘with ≥ 3 time steps, the agent is angered more by the groupings action choices
  set IAnger = (0.4* IDistress) + (0.6 * IReproach)
End IF

13.0 Appendix II: Mood Adjustment
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A.2   Consider that the PAD entries listed in Table 7.3 are the mood values for each 
emotion  when  Ie =1,  where  Ie is  the  intensity  of  activated  emotion  e.  The 
adjusted PAD spacing for emotion e is dependent on its intensity:

         With Iei  is the intensity of emotion i:

Pei = I Peei ,where Pe is the maximum pleasure value for emotion i from Table 7.3
Aei = I Aeei ,where Ae is the maximum arousal value for emotion i 
Dei = I Deei ,where De is the maximum dominance value for emotion i 

With N as the number of emotions e with Ie> 0, the average PAD spacing is computed 
as:

Pe = ∑
n

i
iPe / N, where n=1,…N

Ae = ∑
n

i
iAe / N, where n=1,…N

De = ∑
n

i
iDe / N, where n=1,…N

The resultant average mood state then translates to:

PAD ≡ Pe Ae De

The final step in the mood adjustment is the setting of the temporal mood state 
Mt, which is a three-step memory weighted summation of the average mood states. 
Weighted summation allows the weights to be linearly decayed so that the effects of 
the average mood state decreases with each time step. Formally, Mt adjusts each of 
the average PAD elements:

M Pt  = ∑
3

i
iW  Pei

M At  = ∑
3

i
iW  Aei

M Dt  = ∑
3

i
iWi  Dei

,where W1=1

∴ Mt ≡ M Pt M At M Dt
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