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Abstract
Understanding the complexities involved in identifying disease causing genes is

still a monumental task. As we know, genetic variants and environmental factors can

influence the risk of disease outcomes. Epidemiological studies have identified that

age is one of a number of environmental risk factors for Familial Pulmonary Fibrosis

(FPF), but the genetic risk factors involved identification of disease causing genes still

are a problem largely unsolved. An inherited disease-causing locus occurs in the same

genomic position as an ancestor who has the disease trait, and the disease genotype

may be associated with a marker genotype. A joint modeling of genetic linkage and

association within families having a remote common ancestor or at population level is

presented in this thesis. This joint modeling uses a likelihood approach that allows the

inclusion of other covariates into the model for quantitative traits and binary traits with

multivariate random effects. Power studies via simulation compare the new proposed

procedure with standard linkage or association procedures. The joint test is more pow-

erful than linkage or association test alone where both sources of variation of linkage or

association are present. Furthermore, the proposed method also allows testing against

specific alternatives - for example, against the significance of linkage where there is

no association, significance of association where there is no linkage, and significance

of both linkage and association. By utilizing data from five FPF families in New-

foundland, four candidate loci were identified for the linkage or/and association with

age-at-onset gene and FPF (rs4605929 in chromosome 6, rs11078200 in chromosome

7, rs1941686 in chromosome 18 and rs114682 in chromosome 22).
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Chapter 1

Introduction

Due to the immense academic and commercial effort in mapping the total human

genome, it has become feasible to conduct large genome-wide linkage or association

studies for complex behavior and disease, using measured genes or genetic markers

(micro-satellites and/or single-nucleotide polymorphisms(SNPs)). Genetic mapping

procedures are used to locate and identify the gene or genetic markers associated

or linked to a particular inherited trait. Genetic mapping approaches - such as link-

age analysis, association studies, or joint linkage and association studies - enable re-

searchers to sample a large pool of genetic markers from each subject in a genome-

wide manner, capture variation uniformly across an individual’s genome. Such vari-

ation is used to explore how the genes and alleles contribute to susceptibility to a

particular disease as well as the way they interact with each other as well as with en-

vironmental and other stochastic factors to produce phenotypes. The aim of this thesis

is to explore and develop statistical approaches based on the joint modeling of linkage

1



and association for mapping and/or identification of genes of complex diseases. The

methods proposed here will be applied to study the genetics underlying the inheritance

of familial pulmonary fibrosis (FPF).

1.1 Linkage Analysis

Genetic linkage is the tendency of genetic loci that are located proximal to each other

to be inherited together during meiosis. Loci within a small chromosome neighbor-

hood are less likely to be separated onto different chromatids during crossover, and

are therefore said to be genetically linked. The main idea of linkage studies is that the

loci which are found in a vicinity on the chromosome have a tendency to stick together

when passed on to offsprings. The goal of linkage analysis is to “infer relative posi-

tion of two or more loci by examining transmission from parent to offspring or allele

sharing patterns of relatives” (Sham 1998). Linkage analysis is used to infer locations

on chromosomes where disease genes lie with respect to a set of genetic markers. In

linkage studies, the relatives, who have similar phenotypes, will likely have identical

alleles at the genetic markers only if the disease gene controlling that phenotype is

linked to these markers. Therefore, it is of interest to find which markers are tightly

linked to the transmission patterns of a putative disease gene.

In human genetics, much progress in statistical and computational methodology

has been achieved for linkage analysis. The key approaches to human linkage analysis

include the segregation (or co-segregation) analysis (Morton, 1955; Kruglyak et al.,
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1996), regression methods (Haseman and Elston, 1972; Allison et al., 2000), variance

components (Amos, 1994; Fulker and Cherny, 1996; Diao and Lin, 2010).

At the most basic level, linkage analysis tests for co-segregation between the lo-

cation of a putative gene for a given trait and a genetic marker. The major groups

of linkage statistics are classified as “model-based” (also termed “parametric”) and

“model-free” (also termed “nonparametric”). Model-based linkage requires specifica-

tion of the model of inheritance (additive, dominant, or recessive). It is a three-step

procedure: (i) genotype the collection of markers along the genome; (ii) calculate the

appropriate linkage statistic between the putative locus and each marker or group of

markers; (iii) identity the regions where the statistic analysis shows “significant” evi-

dence of linkage.

An early approach to human linkage analysis was segregation analysis that used the

“log of the odds ratio” (LOD) as the test statistic (Morton, 1955). Under this approach,

the LOD score is calculated on a grid of locations for the putative gene determined

by the markers and used to determine where the strongest evidence of co-segregation

between markers and the putative gene associated to the phenotype come from. If the

likelihood was maximized over a single recombination fraction alone, a LOD score of

3 was taken as significant. Lander and Schork (1994) synthesized the linkage methods

to highlight some enlightening examples of the genetic dissection of complex traits.

Kruglyak et al. (1996) performed multipoint parametric LOD-score calculations that

use all available inheritance information about segregation at every point in the genome

from general pedigrees of moderate size, based on genotypes at large number of mark-
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ers considered simultaneously. Whittemore (1996) developed a score test for linkage

analysis that differentiates the retrospective log likelihood of marker data when pheno-

types are given with respect to model parameters. McPeek (1999) described the direct

connection between the affected relative methods and traditional parametric linkage

analysis for dominant, additive, and recessive models, and used this connection to pro-

duce explicit formulae for the optimal sharing statistics and weights that are applicable

to all pedigree types.

Linkage analysis is motivated by the phenomenon of recombination. If we went to

examine two loci which are close together, we would expect the number of recombi-

nations between them to be close to 0. On the other hand, if we went to examine two

loci which are on different chromosomes or far apart on a chromosome, then we would

expect that half or nearly half of them recombine. So, testing for linkage between two

loci is done by estimating if the recombination fraction differs significantly from 1/2.

Two-point linkage test is a test of linkage between two loci. The common method

is to test if the recombination fraction between two loci is less than 0.5. If the number

of recombinant individuals is k, then the probability of getting k recombinants is rk.

Likewise, the probability of getting n − k nonrecombinants (n is the total number of

people examined) is (1− r)n−k. Remember that the recombination frequency between

two unlinked markers is always 0.50. The probability of getting n individuals with any

genotype is just 0.50n. Therefore, the general formula for the LOD score is defined as

LOD = log10
L(r)

L(r = 0.5)
= log10

rk(1− r)n−k

0.50n
(1.1)
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A LOD score of 3 has been used as the threshold for linkage testing.

Therefore, for each marker, a LOD score is calculated to test the probability that the

genetic marker and trait co-segregate. If the likelihood was maximized over a single

recombination fraction alone, a LOD score of 3 was taken as significant.

Multipoint linkage test is commonly used to evaluate linkage of a disease to a

small region by using multiple markers (Kruglyak et al. 1996; Goring and Terwilliger,

2000; Kong et al., 2004). Linkage analysis can be more efficient if data for more

than two markers are analyzed simultaneously. Experimental geneticists have long

used three-point crosses for linkage analysis. Suppose that data are available for three

linked loci A, D, and B in the same families, and denote the three recombination rates

as rAD, rAB, and rDB. The classical approach consists of analyzing each pairwise com-

bination of loci by computing a LOD-score, and takes the estimation of recombination

fraction value for which the lod-score is maximum. The gene order may be inferred

by inspection of the estimated recombination rates. If the given order is ADB, then

rAB = 1− (1− rAD)(1− rDB)

Multipoint linkage test is more efficient than estimating the recombination fraction

for intervals in a series of two-point crosses. A second advantage of multipoint linkage

test in humans is that it helps overcome problems caused by the limited informativeness

of markers. Some meioses in a family might be informative with marker A, and others

uninformative for A but informative with the nearby marker B. Simultaneous linkage

analysis of the disease with markers A and B extracts the full information.

Model-free approaches have been developed to account for between-family and
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within-family variation without the specification of a genetic model. The power of

model-free methods is based on knowing or estimating the proportion of sharing of

marker alleles that are identical by descent (IBD); that is, alleles are direct copies of

the same ancestral alleles. The usefulness of sib pairs for quantitative trait loci link-

age analysis (QTL) is well established and is based on the use of IBD relationships

among genotypes (Haseman and Elston 1972). Hössjer (2003) proposed a score test

that is conditional on observed phenotypes within a unified framework, investigated

the asymptotic behavior of disease locus estimators under perfect marker information,

corresponding to a dense set of markers when all (or a sufficient number of) pedigree

members are being typed. Later, Hössjer (2005a) developed a general strategy for

linkage analysis which is applicable to arbitrary pedigree structures and genetic mod-

els, with major gene and environmental effects that require disease allele frequencies

and penetrance parameters of the causal gene. Hössjer’s score tests make general-

ized linear models for linkage analyses. Lemire (2005) proposed some nonparametric

methods based on the estimation of inheritance vectors to test for linkage.

Another type of linkage analysis is referred to as the “variance components” (VC)

methods. VC methods in genetic studies are a powerful tool for modeling continuous

response variable in families (Lange et al.,1976; Hopper and Mathews, 1982; Goldgar,

1990; Schork, 1993; Amos, 1994; Amos et al., 1996; Falconer and Mackay, 1996;

Kruglyak et al., 1996; Blangero and Almasy, 1997; Williams et al., 1997; Abecasis et

al., 2002; Sullivan et al., 2003; Evans and Medland, 2003; Diao and Lin, 2010).

VC methods offer a powerful and flexible approach to model-free linkage analysis.
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As in any linkage procedure that the purpose is to determine whether genetic variation

at a specific marker locus can explain the variation in the phenotype and to estimate the

location of a putative QTL. When a locus is associated to a trait, variation at its posi-

tion increases the variance as well as induces correlation among relatives who share the

same alleles by descent. VC linkage attempts to estimate proportion of these variance

by exploring the relationship among relatives. It can be used to test the significance of

a QTL effect through the use of a likelihood ratio test. The variance of the phenotype

can be broken down into components due to genes of large effect linked to few marker

locations and variation. The modeling under VC linkage is quite simple, instead of

specifying the allele frequencies and penetrances for a trait locus. VC method exam-

ines the phenotypes co-variation of related individuals given the relationship between

the individuals and the proportion of IBD genes shared at a specific marker locus.

Many authors considered a phenotype of interest, measured in a set of pedigrees,

each including one or more related individuals. Denote Yij and x as the observed

trait and covariates, respectively, for individual j in family i; Gijm as the observed

genotype at marker m for individual j in family i. For each of the genotyped SNP

markers, researchers are interested in using VC model to testing whether the marker

locus and the disease locus are linked. For the SNP being tested, label the two alleles

“A” and “a”, and define a genotype score, gijm , as 0, 1, or 2, depending on whether

Gijm is aa, Aa, or AA, respectively.

In a basic VC model, it is assume that the vector of phenotype in the jth family, Y,

has a multivariate normal distribution with mean E(y) = µ+αg+γx and covariance
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matrix:

Σ = σ2
aΣa + 2σ2

gΣg + σ2
eI

where µ is the population mean, g is the genotype score, and x is the covariate of in-

terest; σ2
a, σ

2
g and σ2

e are the polygenic, major gene and residuals variance components,

respectively; Σa is a matrix that depends on the IBD status at the tested locus; Σg is

the kinship coefficient matrix; and I is identity matrix. Self and Liang (1987) tested

the null hypothesis H0 : σ2
a = 0 against the alternative hypothesis H1 : σ2

a > 0 by

likelihood ratio test which is approximately a half-and-half mixture of a χ2
1 variable

and a point mass at 0.

The modeling framework used in VC analysis is remarkably general. Lange et

al. (1976) suggested the likelihood ratio for testing linkage based on the maximum

likelihood estimates of the VC. Hopper and Mathews (1982) introduced a VC linkage

analysis procedure to estimate the effect of measured genetic markers and the effect

of shared family environments. Goldgar (1990) presented a linkage test based on es-

timating the proportion of genetic material shared IBD by sibling pairs in a specified

chromosomal region. Schork (1993) proposed a similar procedure based on specify-

ing the expected genetic covariances in arbitrary relatives as a function of the IBD

relationships at a QTL. Amos (1994) developed a linkage method based on variance

components to estimate the genetic variance attributable to the region around a specific

genetic marker.

Linkage analysis has been extremely successful at identifying genetic variations for

many diseases that underline single-gene disorders following Mendelian inheritance
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patterns, including Huntington’s disease (Gusella et al. 1983), Duchenne muscular

dystrophy (Koenig et al. 1987), cystic fibrosis (Kerem et al., 1989; Riordan et al.,

1989; Rommens et al., 1989) and neurofibromatosis type-1 (Xu et al., 1990). However,

for some complex traits that influence by multiple genetic, environmental factors and

interaction, linkage analysis is limited.

1.2 Association Studies

Association refers to a correlation between a particular marker allele and a disease

trait. Association studies are useful for assessing potential candidate genes, either in

targeted regions (Xie and Ott, 1993; Zhao et al., 2002; Zaykin et al., 2002; Sham et

al., 2004; Van Steen and Lange, 2005; Curtis et al., 2006) or in genome wide analyses

(Farrer et al., 1997; Klein, et al., 2005; Barrett and Cardon, 2006; Duerr et. al., 2006;

Sladek, et al., 2007).

Linkage disequilibrium (LD) is the non-random association of alleles at two or

more loci. In other words, LD is the occurrence of some combinations of alleles or

genetic markers in a population more often or less often than expected from a random

formation of haplotypes. LD is not the same as linkage, it is the association of two or

more loci on a chromosome with limited recombination between them. If two popu-

lations with different allele frequencies are mixed then overall population can display

disequilibrium, even if the loci are unlinked. Non random mating can induce disequi-

librium in the absence of linkage as well. If both loci A and B are under directional
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selection, then there will be a negative correlation between the alleles at these loci

in progeny of selected parents, even when the loci are unlinked. In all these cases

association between genotypes frequencies of unlinked loci may be evident.

Linkage disequilibrium is often quantified using statistics of association between

the allelic states at pairs of loci. Chakraborty and Weiss (1988) referred a gametic

association as “mixture disequilibrium” when two populations with different allele

frequencies at two loci will produce a gametic association between these loci in any

admixed population. Lander and Schork (1994) developed a non-random association

test when a case-control sample is ethnically mixed or is derived from a population that

experienced admixture during the past few generations at markers completely unlinked

to a disease locus. Rabinowitz (1997) introduced family-based LD tests for quantita-

tive traits by using parental genotypes to construct well-matched controls in simplex

families.

Association mapping is a method to find a statistical association between genetic

markers and a trait. Genetic markers may be in LD with the causative gene or lie within

candidate genes suspected to contribute to the variation in the trait, the goal of associa-

tion mapping is to identify the actual genes affecting that trait. Since population genetic

structure (genetic differences that accumulate between isolated populations) can cause

LD, association analyses must account for population genetic structure whenever it

is present in the population from which the sample has been drawn (Pritchard et al.,

2000; Thornsberry et al., 2001).

Association mapping is most often performed by scanning the entire genome for
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significant associations between a panel of SNPs and a particular phenotype. These as-

sociations must then be independently verified in order to show that they either a) con-

tribute to the trait of interest directly, or b) are linked or in linkage disequilibrium with

a locus that contributes to the trait of interest. The advantage of association mapping is

that it can map quantitative traits with high resolution in a way that is statistically very

powerful. Association mapping is already widely used in candidate gene studies when

trying to detect or localize the active variants at a fine scale. To date, genome wide

associations studies (GWAS) have been performed on the human genome in attempt to

identify SNPs associated with a wide variety of complex human diseases (e.g. cancer,

Alzheimers disease, and obesity), and the generalized linear regression model (or some

other statistical techniques depending upon the nature of phenotype) could be used to

test whether the regression coefficients are significant (Allison, 1997; Tsai et al. 2001,

2003; Tikhonoff et al. 2003).

Association studies aim to identify genetic variants related to diseases by examin-

ing the associations between phenotypes and hundreds of thousands of markers. There

are three popular study designs for association: random sampling from the population,

case-control, and family-based association.

Many genetic studies of complex disorders are performed with samples from eth-

nically stratified populations. A case-control study is an analytical epidemiological re-

search method that works to identify the factors that contribute to a particular disease

or condition. Researchers select two groups of people from a common population:

the ones with a particular disease (the cases) and the group without the disease (the
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controls). Case-control studies compare allele frequencies between a group of unre-

lated, affected individuals and an unrelated group of matched controls (Owerbach et

al., 1997; Bain et al., 2005; Zhao et al., 2006).

Case-control studies have specific advantages compared to other study designs.

They are comparatively quick, inexpensive, and easy. They have been advocated to

be particularly appropriate for (1) investigating outbreaks, and (2) studying rare dis-

eases. Since case-control studies start with people known to have the outcome, it is

prone to stratification and, consequently, it may lead to high number of false positive

associations. On the other hand, it may make it possible to enroll a sufficient number

of patients with a rare disease. As with any epidemiological study, greater numbers

in the study will increase the power of the study. Case-control studies are a relatively

inexpensive and frequently used type of epidemiological study that can be carried out

by small teams or individual researchers in single facilities. The case-control study

design is often used in the study of diseases where little is known about the association

between the risk factor and disease of interest.

If genetic variants are more frequent in people with the disease, the variants are said

to be “associated” with the disease. Association analysis of genetic polymorphisms has

been mostly performed in those case-control settings where unrelated affected subjects

are compared to unrelated, unaffected subjects. Significant differences in allele fre-

quencies between cases and controls are taken as evidence for the involvement of an

allele in disease susceptibility. Alternatively, genotype frequencies rather than allele

frequencies can be compared in cases and controls. Self et al. (1991) extended case-
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control studies to incorporate information from a matched control series to estimate

disease and environmental risk factor effects simultaneously. Case-control association

analyses are sensitive to population heterogeneity of disease etiology and marker al-

lele frequencies (Curtis and Sham 1996; Deng 2001). Chapman et al. (2003) treated

disease gene alleles as hidden variables and mainly focused on population based case-

control studies, and the relation between marker and disease causing alleles was mod-

eled in terms of linear regression. They propose an “indirect” method that presumes

the existence of one or more causal variants in the region. In the absence of migration,

mutation, natural selection, and assortative mating, genotype frequencies at any locus

are a simple function of allele frequencies. A population is in equilibrium, termed

“Hardy-Weinberg equilibrium” (HWE), if the gene and genotypic frequencies are con-

stant from generation to generation. The Hardy-Weinberg Disequilibrium (HWD) at a

marker locus in affected patients can be interpreted as evidence for association with a

disease (Nielsen et al. 1998; Lee 2003). The analysis consists of either a Pearson χ2,

likelihood ratio test, Fisher’s exact test, or logistic regression to test association in the

case-control design.

A strong association between two variables does not necessarily imply a cause-

effect relationship between them. (1) The association can be due to chance. Tests of

statistical significance are important in determining the probability that the association

is due to chance. (2) The association can be due to a bias such as non-comparable

criteria, or non-comparable information. (3) The association can be due to a mixing

of effects between the exposure, the disease, and a confounding factors. Thus, caution
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should be used when interpreting results from case control studies.

One problem with the case-control design is that genotype and haplotype frequen-

cies vary between ethnic or geographic populations. If the case and control populations

are not well matched for ethnicity or geographic origin then false positive association

can occur because of the confounding effects of population stratification.

Family based association designs aim to avoid the potential confounding effects of

population stratification by using the parents as controls for the case, which is their

affected offspring. The advantage of family-based studies has received much attention

because spurious associations caused by population structure can be controlled, and

marker genotype information on diseased cases and their parents can be used to test

the compound hypothesis of both linkage and linkage disequilibrium.

Association mapping based on family studies can identify genes that influence

complex human traits while providing protection against population stratification. Family-

based studies test for equality between the transmission and nontransmission of a given

allele to affected children from heterozygous parents (Terwilliger et al., 1992; Spiel-

man et al., 1993; Boomsma et al., 2000; Nash et al., 2005; Gosso et al., 2006). The

transmission/disequilibrium test (TDT, Spielman et al. 1993) considers parents who

are heterozygous for an allele associated with disease and evaluates the frequency with

which that allele or its alternate is transmitted to affected offspring. It does not require

data either on multiple affected family members or on unaffected sibs. The TDT is a

simple means of detecting associations that should only be positive if the marker allele

is linked to the disease locus when the parents of affected subjects are available. Curtis
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(1997) extended TDT to use unaffected siblings rather than parents as controls, and

like the TDT, it is robust against bias due to population stratification and other sources;

it is expected to produce only positive results when a marker is both associated and

linked with the disease locus. Boehnke and Langefeld (1998) developed family-based

tests of association that use sib pairs where one sib is affected with a disease and the

other is not. These tests are based on statistics that compare counts of alleles or geno-

types or for symmetry in tables of alleles or genotypes. Ideally, TDT tests should use

parental genotypes when available, and sibling genotypes otherwise, to consider all

available information in the most efficient manner possible. Diao and Lin (2006) have

constructed a most flexible and powerful quantitative transmission-disequilibrium tests

(QTDT) based on the variance-components model and family-based tests of associa-

tion for quantitative traits.

Linear regression can be used to test for association between alleles and pheno-

typic outcomes. Abecasis et al. (2000) have built an identification of complex disease

genes association methods for linkage-disequilibrium mapping of quantitative traits,

to construct a general approach that can accommodate nuclear families of any size,

with or without parental information by using variance components to construct a test

that utilizes information from all available offspring. Laird and Lange (2006) treated

the phenotype as the random response and the genotype as the fixed predictor and

used the ordinary linear regression for association test. Baksh et al. (2007) presented

an alternative likelihood-based method of analysis for ordered categorical phenotypes

in nuclear families that permits straightforward inclusion of covariate, gene-gene, and
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gene-covariate interaction terms in the likelihood, incorporating a simple model for as-

certainment that allows for family-specific effects in the hypothesis test. Diao and Lin

(2010) proposed a generalized linear VC model for the association analysis of ordinal

traits.

1.3 Association in the Presence of Linkage

Association between complex traits and a series of closely linked SNPs is of central

importance in modern human genetics. If association is due to LD between markers

and causal loci, which in general acts over very short distances in the genome, this

not only allows for fine mapping of disease susceptibility genes indicated by linkage

studies, but it also offers an opportunity for discovering genes by association studies.

The traditional route in gene discovering has linkage and association as two stages of

the process. Once genetic linkage has been identified for a complex disease, the next

step is an association analysis in which SNPs within the linkage region are genotyped.

Genetic mapping studies reveal a region of linkage containing a number of associated

variants. A marker may be genetically associated with the disease either because it has

direct influence on disease susceptibility (“causal”), or because it is in linkage dise-

quilibrium with a causal variants. Identifying the variant(s) that potentially ‘explain’

an observed linkage result is a routinely part of modern gene discovering methods. If

a particular locus is the only causal variant in the region, then association with this

locus should be able to explain all the linkage in the region. If the variant is not the
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causal variant, or is not the only causal variant in the region, evidence of linkage should

exist to explain the remaining variation. To localize the susceptibility allele more pre-

cisely, disease-marker association analysis with additional genetic markers specific to

the linked region can be performed.

The TDT also fits to test for association in the presence of linkage when the marker

locus and the hypothetical disease locus are linked and in linkage disequilibrium. Sham

and Curtis (1995) derived the transmission probabilities for a multi-allele marker lo-

cus and a generalized single locus disease model that consists of two genotyped parents

and an affected child in a random sample of affected families from a randomly mat-

ing population. The form of these transmission probabilities suggests an extension of

the TDT to multi-allele marker loci, in which the alternative hypothesis is restricted to

take account of the likely pattern of unequal transmission. However, family-based tests

require information of parental marker genotypes, but for late-onset diseases parental

data are often not available. Curtis (1997) proposed an alternative approach for ana-

lyzing larger sibships, resulting in a test of linkage and association by reducing each

sibship to two siblings via two steps; first, randomly choose an affected individual,

second, choose the unaffected sibling whose marker genotype is maximally different

from that of the affected sibling in first step. Boehnke and Langefeld (1998) developed

family-based tests of association of late-onset diseases that use discordant sib pairs in

which one sib is affected with a disease and the other sib is not. Horvath and Laird

(1998) introduced a discordant-sibship test that uses the data of all the affected and

unaffected siblings. Monks et al. (1998) proposed an extension of family-based tests
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of association and linkage, that utilizes unaffected siblings as surrogates for untyped

parents in the context of a complex disease for both biallelic and multiallelic markers

as well as for sibships of different sizes. Clayton (1999) proposed a score test for asso-

ciation in the presence of linkage in sibship data for situations in which transmission

is uncertain, which means one or both parents are missing. Weinberg (1999) described

a likelihood-based method for testing linkage disequilibrium for inclusion of genetic

information from incomplete triads when one or both parents are missing. Rabinowitz

and Laird (2000) proposed a family-based examination of linkage disequilibrium be-

tween marker alleles and traits, based on computing p-values. Martin et al. (2003)

presented a test for association in the presence of linkage that incorporates IBD rela-

tionships to adjust for linkage when inferring missing parental genotypes in nuclear

families. Lemire (2004) described a simple allele-sharing test statistic for discordant

pairs (one affected and one unaffected individual) that share alleles less often than

expected under Mendelian inheritance, and provide additional information about the

segregation of the putative disease gene.

Statistical geneticists have devoted valuable thought to the problem of detecting

association in the presence of linkage for quantitative traits. The available statistical

procedures for the analysis of continuous traits have been proved to be very effective

in sib-pair and related linkage procedures. Cardon et al. (2000) presented a systematic

approach to the use of sib pairs for the analysis of both association and linkage for

quantitative traits within the variance-components framework. Lake et al. (2000) per-

formed an association test in the presence of linkage using the mean of the test statistic
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and an empirical variance-covariance estimator that adjusts for the correlation among

sibling marker genotypes. This provides a convenient means for testing allelic associ-

ation in the presence of linkage that can be used with a wide range of test statistics and

any pedigree configuration. Sun et al. (2002) showed that when the candidate SNPs is

the sole causal site in the region, IBD sharing of affected sib pairs (ASPs) at the candi-

date SNP, is independent of their affected status and depends only on their genotypes

at the SNP. Fan et al. (2003) investigated variance components models of both linkage

analysis and high resolution LD mapping for QTL. The model simultaneously takes

care of the linkage, LD or association, and the effects of the putative trait locus in the

prior suggestive linkage region. Li et al. (2005) described a statistical framework that

identifies candidate SNPs that can fully or partly explain the observed linkage signal

based on joint modelling of linkage and association. Assuming one causal SNP in

the region of linkage, they modelled the likelihood of the marker data conditional on

the trait data for a sample of ASPs, with disease penetrances and disease-SNP hap-

lotype frequencies as parameters, proposing likelihood-ratio tests to characterize the

LD between the candidate and disease SNPs. Biernacka and Cordell (2007) tested a

particular variant that can explain all of the observed linkage versus those that cannot.

Some authors have tested the linkage in the presence of association. Spielman

and Ewens (1998) described a method, called the “sib TDT” (or “S-TDT”), that uses

marker data from unaffected sibs instead of parents, thus allowing the application of

the principle of TDT to sibships without parental data and allowing all the data to be

used jointly in one overall TDT-type procedure to test for linkage in the presence of
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association. Knapp (1999) proposed a method for testing a marker for linkage with

a disease, which employs parental-genotype reconstruction information from affected

and unaffected sibs. Zollner and Pritchard (2005) outlined a general coalescent frame-

work that uses genotype data in linkage disequilibrium-based mapping studies to detect

association and to estimate the location of the causative variation.

1.4 Joint Linkage and Association Analysis

Linkage and association methods are widely used in the genetic analysis in family

studies, but the study of joint linkage and associated is not that common. It must be

pointed out that joint modeling of linkage and association is not the same as performing

a linkage study with a small set of markers followed by an association study with

a denser set of markers on some “regions of interest” whenever “a linkage peak” is

found, nor the other way around. Instead, in the study of joint linkage and association,

we take into consideration both forms to develop the testing and estimation procedures

to account for linkage and association simultaneously.

Linkage and association are different phenomena. Linkage describes the rela-

tionship phenotype/loci while association describes the relationship phenotype/alleles.

Linkage is a consequence of co-segregation, a fundamental genetic principle, while

association is simply a statistical statement about the co-occurrence of alleles. In con-

trast with association, linkage is a phenomenon to be studied within families, but not

amongst unrelated people. Nonetheless, whenever two supposedly unrelated people
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with disease D actually inherited their disease from a distant common ancestor, they

may very well share particular ancestral alleles at loci closely linked to D. In so far as a

population that can be seen as a large extended family, with families descending from

a common ancestor, population level association due to linkage disequilibrium should

exist between ancestral disease susceptibility genes and closely linked markers. In a

situation like this, jointly model linkage and association methods are desirable which

have greater efficiency than either method considered alone.

The methodological literature on genetic analysis of joint linkage and association

analysis is very limited. Zhao et al. (1998) defined a semi-parametric estimating equa-

tions method, with one linkage and one association component in the score vector.

Fulker et al. (1999) developed a method to test linkage while simultaneously modeling

allelic association by using of the variance-components framework of means and vari-

ances for sib-pair data. Sham et al. (2000) introduced a joint likelihood ratio test for

linkage and family-based association in which the association and linkage parameters

are contained in mean vector and covariance matrix respectively. Hössjer (2005b) fo-

cused on family-based association studies and used the joint distribution of marker and

disease alleles to introduce a combined score test for association and linkage analysis

based on a biologically plausible model. His test is based on a retrospective likelihood

of marker data given phenotypes, treating the alleles of the causal gene as hidden data.

The score vector has one association and one linkage component, which can be used

to define separate tests for association and linkage. Except for small pedigrees with

very simple structures, the distribution of test statistic may be difficult to find. The
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combined test is a robust alternative; it does not substantially under-perform relative to

either linkage or association test, and sometimes significantly out-perform both tests. It

should be considered particularly useful when little is known about the genetic model.

In linkage analysis, genome regions are sought for where marker allele transmis-

sions from parents to children are correlated with phenotypes. Underlying linkage is

the occurrence of crossovers in meioses and occurs for all markers associated to the

disease locus. In association analysis, one searches regions of non-independence be-

tween phenotypes and marker alleles at the population level. Since both association

and linkage tests use marker and phenotype data from a number of families, a com-

bined linkage and association test optimally extracts information from data and hence

should have greater power in detecting a disease susceptibility locus. If there is no

linkage between the marker and the disease loci and no association between any par-

ticular allele variant at the marker with a variant at the putative locus, then for each sib,

regardless of the size of the sibship, the affection status and the alleles at the marker are

independent. Alternatively, if there is linkage but no association between any partic-

ular allele variant at the marker with a variant at the putative locus, linkage can cause

excess sharing of marker alleles among affected siblings. When there is no evidence

for linkage between a marker and disease locus but there is an association between

alleles at the two loci, the affection status depends on alleles among affected siblings.

A joint association and linkage test may have significant power even when there is no

association between marker and disease genotypes or no evidence for linkage between

two loci. This is not the case for methods based on transmitted and non-transmitted
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founder alleles, such as the TDT-tests. Furthermore, linkage is modeled through the

covariance structure, while the association along with other covariates are modeled via

the regression parameter.

The aim of this thesis is to develop statistical methods for the joint modeling of

genetic linkage and association, then apply the methods to family data that are com-

putationally feasible and biologically sound. There are two distinct kinds of statistical

goals: testing for association and testing for mapping. When testing the hypothesis for

association, we try to explore how does genetic variation contributes to the phenotype.

When mapping, our purpose is to determine the location of the variant(s). We have de-

veloped joint modeling of linkage and association for pedigrees by using a conditional

likelihood approach for the phenotype functions. One of the objectives of this research

is to extend linear regression or logistic functions that include other covariates into

the model and use the well-known variance components model to test for the joint ef-

fects of linkage and association analysis in family studies. This variance-components

approach allows simultaneous testing of the linkage parameter and association param-

eter, implying that all the information in a set of individuals can be used to construct a

test of joint linkage and association.

Our model has some advantages. First, the joint test can increase the power of

detecting disease locus when the marker and the disease loci are linked, and association

between any particular allele variant at the marker and a variant at the putative locus.

Second, the joint test can be applied when the linkage or association evidence vanishes

entirely, the marker locus may be linked to disease locus or the disease itself, or in very

23



strong linkage disequilibrium with the disease alleles. Third, our proposed variance

components model provides a flexible and powerful maximum-likelihood framework

for further generalizations and extensions, such as multiple phenotypes. These further

developments should lead to a set of powerful tools for the detection of disease loci

and the dissection of complex traits in humans.

In Chapter 2, we review some basic concepts and methods of genetics. This will

provide the basic knowledge that is required to read this dissertation.

In Chapter 3, we propose a quantitative trait joint linkage and association test based

on variance components model that considers the association between markers and

phenotypes, as well as linkage between marker and disease respective loci within fam-

ilies when a common ancestor or in population level is present. This test is based on

a likelihood ratio test to overcome the usual identifiability issues that affect most of

the standard methods intended to address this joint test. The parameter estimations are

obtained through an implementation of the EM algorithm.

In Chapter 4, we consider LRT, Wald, and score test on testing the joint linkage

and association components for binary phenotypes through a mixed model with mul-

tivariate normal random variables that are computationally feasible and biologically

sound. We develop joint modeling of linkage and association for pedigrees that uses

a conditional likelihood approach for the phenotype functions. These methods to gen-

eral forms of logistic functions allow the inclusion of other covariates into the model

and use those three tests to test for the joint effects of linkage and association analysis

in family studies when the true parameter values may be on the boundary of parameter
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space.

In Chapter 5, we derive a test statistic based on the score function for a general

sampling distribution where an alternative hypotheses is based on a set of dependent

unknown distribution random variables. This test requires an estimation of the model

only under the null hypothesis, and the functional form of the test statistic is indepen-

dent of the form of the mixing distribution.

In Chapter 6, we discuss the simulation results of the joint linkage and association

test compared with linkage test and association test. The simulation shows that the joint

test approach for treating both linkage and association provides rigorous inference, that

is more accurate and more robust than linkage or association test alone.

In Chapter 7, we apply score statistical method to study of joint linkage and as-

sociation to Familial Pulmonary Fibrosis, in addition, use two-point and multi-point

linkage analysis by Merlin program to find the significant LOD scores that these loci

may be linked with Familial Pulmonary Fibrosis.

Finally, in Chapter 8, the results obtained in this thesis are summarized, and the

future research work are given.
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Chapter 2

Review of Genetic Principles

2.1 Basic Concepts

A gene is a functional DNA unit which often encodes for a protein. Genes hold the

information to build and maintain the cells in an organism. To introduce the basic

genetic concepts, we give a diagram in Figure 2.1. The position of a gene on a

Figure 2.1: Diagram showing the basic genetic concepts

chromosome is known as its locus (rs2665035 and rs2672347). Variants of a DNA

sequence at a locus among individuals are called alleles. In Figure 2.1, the two forms,

1 and 2, are alleles of locus rs2665035. Allele frequency is the number of copies of
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a particular allele divided by the number of copies of all alleles at a particular locus

in a population. A genotype (12 or 34 in Figure 2.1) is the combination the maternal

and paternal inherited alleles at a particular locus. Also, broadly speaking, it is the

genetic makeup of a cell, an organism, or an individual usually with reference to a

specific character under consideration. The physical expression of the genotype is

called the phenotype. Phenotype is an organism’s actual observed properties, such as

morphology, development, or behavior. Phenotypes result from the expression of an

organism’s genes, as well as the influence of environmental factors and the interactions

between the two. It is generally accepted that inherited genotypes, epigenetic factors,

and environmental variation contribute to the phenotype of an individual.

Genetic disease is a condition or state caused by the expression of one or more

genes in a person, which results in a clinical phenotype. The goal of gene discovery is

to locate these genes, usually called disease susceptibility loci, so that we can diagnose

and/or develop treatments for these diseases. In this thesis, it is assumed that one or

several genes cause a single disease. Disease alleles are passed from parents to off-

spring, but do not always result in a disease phenotype. The probability that a certain

genotype causes a particular phenotype is called the penetrance of the genotype. In

epidemiology, the penetrance of a disease-causing gene is the proportion of individu-

als with the disease-causing variant who exhibits clinical symptoms. For example, if

a disease-causing gene responsible for a particular autosomal dominant disorder has

95% penetrance, then 95% of those individuals with one copy of the disease-causing

variant will develop the disease, while 5% will not. For many hereditary diseases, the
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onset of symptoms is age related and, in addition to the genetic determinants, it may

also be affected by environmental factors such as nutrition and smoking, as well as

epigenetic regulation of expression.

A haplotype in genetics is a combination of alleles (DNA sequences) at different

places (loci) on the same chromosome that are transmitted together. A haplotype may

be one locus, several loci, or an entire chromosome. In Figure 2.1, the first genotype

has alleles 1 and 2, and the second genotype has alleles 3 and 4. The four possible

haplotypes for these two genotypes are 13, 14, 23, and 24.

The amount of linkage disequilibrium (LD) is the difference between observed

and expected allelic frequencies. In a diploid population, two alleles A1 and A2 are

segregating at locus ti, and alleles B1 and B2 are segregating at locus ti+1. There are

four possible gametes A1B1, A1B2, A2B1 and A2B2 with probilities pA1B1
, pA1B2

, pA2B1

and pA2B2
. The expression of measures of LD value by Lewontin and Kojima (1960)

is:

D = pA1B1
pA2B2

− pA1B2
pA2B1

In case with D = 0 is called linkage equilibrium.

For biallelic markers, another useful and common measure (Hill and Robertson

1968) is the squared correlation between the presence and absence of alleles at different

loci,

r2 = D2/[pA1
pA2

pB1
pB2

] (2.1)
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All these measures are closely related to each other and to the standard χ2-statistic for a

2 × 2 contingency table. When “significant LD” is discussed, it is usually in the sense

of a simple contingency table test of association even between unlinked loci. When the

genotype of one of the loci perfectly predicts the other locus, r2 = 1 implies that two

cells in the 2× 2 table are 0, and is referred to as perfect LD. r2 also ranges from 0 to

1, and is the percentage of noncentrality parameter for an association test conducted at

a marker in LD with the disease locus (Sham et al. 2000).

2.2 Genetic Recombination and Genetic Maps

Meiosis is the type of cell division by which germ cells (eggs and sperm) are produced.

Meiosis involves a reduction in the amount of genetic material. At the beginning of

meiosis, during the prophase, it occurs the phenomenon known as crossing over on

which homologous chromosomes pair up, intertwines and exchanges sections of DNA

material. The end result of this process are gametes with a new combination of genes

that differs from the chromosomes found in the parents. Through this process of re-

combining genes, organisms can produce offspring with new combinations of maternal

and paternal traits. Thus recombination can cause alleles previously on the same chro-

mosome to be separated and end up in different daughter cells.

During meiosis, the maternal and paternal homologs of each chromosome pair to-

gether. Each chromosome consists of two sister chromatids. Whole two homologous

chromosomes remain paired, they can exchange segments in a random way through a
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Figure 2.2: Basic symbols and terminologies in meiosis

process known as recombination (crossover). Recombination involves physical break-

age of the double helix in one paternal and one maternal chromatid, and rejoining of

maternal with paternal ends (Figure 2.2). (1) part of two chromatids of the two ho-

mologous chromosomes in a parent’s cell, rs2665033, rs2665035, and rs2672347 are

loci of genes. Two alleles at the same locus are denoted by numbers. For example,

at locus rs2665033 the two alleles are 1 and 1 which inherited from one paternal and

one maternal chromatid. (2) during meiosis, the two chromosomes may tangle to-

gether and exchange material. (3) after meiosis, the resulting gametes are formed. If

there is a large distance between two loci, such as rs2665035 and rs2672347, there is

a good chance that recombination will occur between them. However, if the two loci

(rs2665033 and rs2665035) are close together recombination will rarely occur (the two

loci will tend to stay together rather than being split apart by recombination).

Recombination frequency (r) is the proportion of progeny being recombinant

with respect to a pair of loci on the same chromosome. A centiMorgan (cM) is a unit

30



that describes a recombination frequency. In this way we can measure the genetic

distance between two loci, based upon their recombination frequency. If the loci lie

on different chromosomes, in absence of interference, the recombinant fraction would

be the half, because during meiosis the chromosomes assort randomly into gametes,

such that the segregation of alleles on locus is independent of the segregation on the

other, as stated in the Mendel’s Second Law. For example, consider the crossing of the

homozygote parental strain with genotype AABB with a different strain with genotype

aabb, A and a and B and b represent the alleles of genes A and B assumed to be

on different chromosomes. Crossing these homozygous parental strains will result

in F1 generation offspring with genotype AaBb. The F1 offspring AaBb produces

gametes that are AB, Ab, aB, and ab with equal frequencies (25%) because the alleles

of gene A assort independently of the alleles for gene B during meiosis. Note that 2

of the 4 gametes (50 %) Ab and aB that represent recombination were not present in

the parental generation, and they are the sole consequence of independent assortment.

When two genes are on the same chromosome, they do not assort independently, a

recombination frequency is less than 50%. The lower the recombination frequency

between two loci, the more likely that they will segregate together and thus be closely

linked.

The greater the frequency of recombination between two genetic loci, the farther

apart they lie. Conversely, the lower the frequency of recombination between the mark-

ers, the smaller the genetic distance between them.
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2.3 Identity by Descent(IBD) Estimation

When two individuals have the same allele (gene-variant) at a specific location, the

alleles are considered to be identical by state (IBS). A pair of individuals can have

zero, one or two alleles IBS. When the allele at the specific location is inherited from

a common ancestor, the alleles are said to be identical by descent (IBD). Phenotypes

of relatives are often similar because they may have similar genotypes and may share

a common environment, and could have identical copies of a IBD gene segregating

from a common ancestor. A founder within a set of pedigree data is defined as an

individual whose neither the mother nor father is known. Such an individual may truly

be a “founding ancestor” of a breed or “population” in the sense that it is not related

to any other founder, or it may be related - possibly closely - to other members of the

group but the details of this are not known. Because of the lack of information, we

usually assume the genes in founders are not IBD. The calculation of IBD is based on

the probability for the two alleles to be IBD. Mendel’s first law states that: a diploid

individual receives, at any given locus, a copy of a randomly chosen one of the two

genes in his father and (independently) a copy of a randomly chosen one of the two

genes in his mother, and will pass on a copy of a randomly and independently chosen

one of these two genes to each of his offspring. The probability of IBD between more

distant relatives are obtained by transmitting the parent-offspring information along

the path between the relatives. When the information relies only on markers, it is

rapidly eroded along the pedigree path due to recombination events during meiosis.

Kinship and inbreeding are best thought of as relationships between gametes rather
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than between individuals. The coefficient of kinship between two individuals B and C,

denoted by ψ(B, C), is the probability that homologous genes on gametes segregating

from B and from C are IBD, while the inbreeding coefficient of an individual B,

denoted by

fB = ψ(MB, FB),

is the probability that homologous genes on the two gametes unite to form individual B

are IBD. Where MB and FB are the parents of B. An individual is inbred if his parents

are related. The process of observing probability of IBD starts with coefficients of

inbreeding and kinship, since these provide an introduction to the ideas of gene identity

by descent, to alternative computational approaches, and to Monte Carlo estimation of

expectations.

The early approach of path-counting (Wright 1922) for computing kinship coeffi-

cients simply enumerates all the possibilities (in an efficient way). Each path from the

individual, B, to common ancestor, A, of its parents, descending via a disjoint set of

individuals to B again contributes a term 2−(nM+nF +1)(1+fA) to the inbreeding coeffi-

cient fB, where nM and nF are the number of segregations in the maternal and paternal

lines of the path. If the common ancestor is inbred itself, its coefficient of inbreeding

fA must be worked out from its pedigree.

A parent and its offspring always have exactly one allele each that are IBD (the

other allele in the offspring comes from the other parent.) Full sibs (a sibling with

whom an individual shares the same biological parents), may have 0, 1, or 2 pairs of

alleles that are IBD. Half sibs (shares the same mother but different father, or one
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that shares the same father but different mother) and first cousins (share the same

grandparents in common) may have 0 or 1 pairs of alleles that are identical by descent

if the parents are not related.

To describe the relationship between two individuals there are nine condensed iden-

tity states (Sr, r = 1, 2, . . . , 9) and the probabilities of these states are known as con-

densed identity coefficients (Lange 2002), which are denoted by ∆r, r = 1, 2, . . . , 9,

then the kinship coefficient ϕ between these two individuals can be written as

ϕjj′ = ∆1,jj′ +
1

2
(∆3,jj′ + ∆5,jj′ + ∆7,jj′) +

1

4
∆8,jj′

S1 S2 S3 S4 S5

S6 S7 S8 S9

∆r = Pr(Sr)

There are many programs to compute the ∆ coefficients, for example, ‘parente’ is

a good C++ program to carry on the task that wrote by K. Morgan and J C. Loredo-

Osti. The computation of these coefficients only requires knowledge of the pedigree.

However, such a computation given the marker information at a fixed marker m, also

requires the allele frequencies at such a locus, i.e.,

ϕ
(m)
jj′ = ∆

(m)
1,jj′ +

1

2

(
∆

(m)
3,jj′ + ∆

(m)
5,jj′ + ∆

(m)
7,jj′

)
+

1

4
∆

(m)
8,jj′
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where

∆
(m)
r,jj′ = Pr

(
Sr

∣∣ g
(m)
j , g

(m)
j′

)

and g
(m)
j , g

(m)
j′ are the genotypes of the jth and j′th individuals at the marker m. For

example with bi-allelic markers there are six distinguishable genotype pairs and their

conditional probabilities given the identity state, Pr(gj, gj′ |Sr), are presented in the

following table.

Condensed identity states

Genotype pair S1 S2 S3 S4 S5 S6 S7 S8 S9

aa, aa pa p2
a p2

a p3
a p2

a p3
a p2

a p3
a p4

a

aa, ab 0 0 papb 2p2
apb papb 2p2

apb 0 2p2
apb 4p3

apb

aa, bb 0 2papb 0 papb 0 papb 0 0 2p2
ap

2
b

ab, ab 0 0 0 0 0 0 2papb papb 4p2
ap

2
b

ab, bb 0 0 papb 2pap
2
b papb 2pap

2
b 0 2pap

2
b 4pap

3
b

bb, bb pb p2
b p2

b p3
b p2

b p3
b p2

b p3
b p4

b

Thus, an application of the Bayes Theorem yields

Pr
(
Sr

∣∣ g
(m)
j , g

(m)
j′

)
=

∆r,jj′ Pr
(
g

(m)
j , g

(m)
j′

∣∣ Sr

)

∑9
s=1 ∆s,jj′ Pr

(
g

(m)
j , g

(m)
j′

∣∣ Ss

)

For polymorphic markers, the following table contains the relevant extensions to allow

the computation of this conditional probability.
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Condensed identity states

Genotype pairS1 S2 S3 S4 S5 S6 S7 S8 S9

aa, aa pa p2
a p2

a p3
a p2

a p3
a p2

a p3
a p4

a

aa, ab 0 0 papb 2p2
apb papb 2p2

apb 0 2p2
apb 4p3

apb

aa, bb 0 2papb 0 papb(pa + pb) 0 papb(pa + pb) 0 0 2p2
ap

2
b

ab, ab 0 0 0 0 0 0 2papbpapb(pa + pb) 4p2
ap

2
b

aa, bc 0 0 0 2papbpc 0 2papbpc 0 0 4p2
apbpc

ab, ac 0 0 0 0 0 0 0 2papbpc 8p2
apbpc

ab, cd 0 0 0 0 0 0 0 0 8papbpcpd

2.4 Genome-Wide Association Study

In contrast to the methods that specifically test one or a few genetic regions, the

genome-wide association studies (GWAS) investigates the entire genome based on

single-marker analysis. It is a genetic association study design in which a sample

of cases and controls, is genotyped for a large number of genetic markers. The ulti-

mate aim of the GWAS design is to capture all common genetic variation across the

genome and relate this variation to disease risk by case-control cohorts (Sullivan et

al. 2001). Evidence for association is typically based on a simple statistical test of

single SNPs, such as the chi-square test based on genotype counts with two degrees

of freedom, or based on allele counts with 1 degrees of freedom. A standard linear or

logistic regression is widely applied to the analysis of quantitative or binary outcomes
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in population-based GWAS.

GWAS can also be used for family-based design. The advantage of this design

is that it provides protection against spurious findings due to population stratification

and other biases. Its significant disadvantage is inefficiency, as a large proportion

of markers will have low power to detect association. One approach to the analysis

of GWAS data is to compute power to detect association for each SNP and rank the

SNPs by power with the primary analysis consisting of some number of SNPs with

the greatest power (Sham 1998; Herbert et al. 2006). Aulchenko et al (2010) have

designed genome-wide regression under linear, and logistic models for family-based

association studies and genetically-isolated human populations.

As of present, over 1,200 human GWASs have been examined over 200 diseases

and traits, and almost 4,000 SNP associations have been found throughout the human

genome.
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Chapter 3

Joint Testing for Quantitative

Traits

3.1 Introduction

Linkage or association methods are widely used in the genetic analysis of quantitative

traits in family studies, but using them jointly is not often done. Sham et al. (2000)

derived analytical formulas for the noncentrality parameters for the linkage and asso-

ciation tests under a variance-components approach and showed empirically that the

power of association is directly related to the QTL heritability and the power of link-

age is related more closely to the square of the QTL heritability. However, their model

makes no allowance for any correlation or interaction between the candidate gene and

the environment. They consider six parameters: additive effect and dominance devia-

tion for mean part, additive component and dominance component of QTL variance,
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residual shared and nonshared variance for variance part. Linkage test is conducted by

testing additive effect and dominance deviation. Overall association test is conducted

by testing additive component and dominance component of QTL variance. Those test-

ing parameters may reach the boundary. Therefore, the distribution of the likelihood

ratio statistics of linkage, association, or both are complicated. Hössjer (2005b) intro-

duced a combined score test for association and linkage analysis for quantitative traits

based on a retrospective likelihood of marker data when given phenotypes, treating the

alleles of the causal gene as hidden data with association between markers and causal

genes, and penetrance between phenotypes and the causal gene. It is common to use a

multivariate distribution of phenotypes for giving genotypes of family members. This

mixed model incorporates effects of the major gene, G, only in the mean vector; the

covariance matrix is independent of G. This method performs well for small pedigrees

with a very simple structure, but the test statistic may be hard to calculate in large and

complicated pedigrees.

In this chapter, we use the well-known variance-components model to test the joint

effects of linkage and association analysis of quantitative traits in relatively large and

complicated pedigrees that may have a remote common ancestor, or in population

level. An EM algorithm implementation for parameter estimation is proposed. A

likelihood ratio test is constructed to decide the significance of the hypothesis induced

by the model of no association and no linkage, the association test is two-sided, the

linkage test is a one-sided test, and those parameters may reach the boundary for joint

linkage and association.

39



3.2 Methods

Consider a phenotype of interest measured in N independent families, each one con-

sistent of ni related individuals, where
∑

ni = n individuals. Let yij and xij =

(xij1, ..., xijs) denote the observed trait and an s-dimension covariates vector respec-

tively for individual j in family i. Similarly, for each SNP in the data set, label the two

alleles as “A” and “a” and define a genotype score, gij , as the counting of “A” alleles

in the genotype. Based on phenotypes, marker data, and covariates from all families at

each locus, we would like to test

H0 : marker is not linked to disease locus nor associated to disease genotypes

H1 : marker is linked to disease locus and/or associated to disease genotypes

Now consider the set of phenotypes yi = {yi1, yi2, ..., yini
}, genotypes gi = {gi1, gi2, ..., gini

},

and covatiates xi = {xi1,xi2, ...,xini
} for each individuals in the ith family. Given a

fixed locus in family i, the particular model is:

yi = µ1 + αgi + xiγ + ξi + εi (3.1)

Assume random variables in the ith family ξi ∼ N(0, β2Σξi
), and εi ∼ N(0, σ2I). µ

is overall mean, and σ2 is the residuals variance. In family i, Σξi
is a known positive

definite identity-by-descent (IBD) matrix at tested locus and I is identity matrix. The

hypotheses of interest involve parameter α and the variance component β2. The param-
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eter α quantifies association between y and g, β2 quantifies linkage between marker

locus and disease locus, and γ is a nuisance parameter. If α = 0, the phenotype and

marker alleles are not associated. Otherwise, the phenotype are associated with the

marker gene. If β2 > 0, the marker locus and disease locus are linked together. If the

estimation gives a negative estimate of β2 due to random sampling, but we know that

a variance component cannot be negative, we use zero instead of a negative number of

β2, the marker locus does not linked with disease locus, the only association effect α

be tested. With the normality assumption, the model given in (3.1) can be expressed

as follows:

yi ∼ N(µ1 + α gi + xiγ, β2 Σξi
+ σ2I) (3.2)

and the log-likelihood can be written as:

l(θ) = −1

2

N∑
i=1

[
ln |β2Σξi

+ σ2I|+ (3.3)

(yi − µ1− αgi − xiγ)T (β2Σξi
+ σ2I)−1(yi − µ1− αgi − xiγ)

]

According to this parameterization, we rewrite the hypothesis test as:

H0 : α = 0 and β2 = 0

H1 : α 6= 0 and/or β2 > 0.
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3.3 Estimation

Dempster et al. (1977) presented a general approach to compute the maximum-likelihood

estimates iteratively when the observations can be viewed as incomplete data. This it-

erative algorithm consists of an expectation step followed by a maximization step and

it is called the EM algorithm. First, in the E-step, find the expectation of the logarithm

of the likelihood given the observed data and the current estimated value of the pa-

rameter. The second step of the EM algorithm, the M-step, maximize the expected log

likelihood which yields the next value of the parameter. Using the new value of the

parameter, compute the next E-step and continue. Dempster et al. (1977) proved that

this iterative process converges to the maximum likelihood estimators. McLachlan and

Krishnan (1997) derived the MLE of mixed model parameters. Sammel et al. (1997)

discussed a general framework that EM algorithm was performed to find the estimates

that maximize the likelihood. Harville (1977) applied maximum likelihood approaches

to the estimation of variance components, and the estimation of the model’s fixed and

random effects. The problem of estimating variance components can be regarded as a

special case of a general linear model problem in which the elements of the covariance

matrix are known functions of a parameter vector to be estimated. Loredo−Osti (2014)

proposed a bootstrapping procedure under a mixed model applied to quantitative trait

locus mapping, implemented an application of ML theory to the estimation of variance

components, and the fixed and random effects. We use a variance-components model

and apply EM algorithm to estimate fixed and random parameters for several indepen-

dent families that assumes a random vector ξi with a multinomial distribution in ith
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family.

In order to apply the EM algorithm, first we assume the values of β2 and σ2 are

known, and rewrite the model (3.2) as following:

yi ∼ N(µ1 + α gi + xiγ, σ2Σi) (3.4)

where ς = β2/σ2,Σi = ς Σξi
+ I is a known n × n positive definite matrix. ς

represents the signal−to−noise ratio. By using the generalized least square method,

we can obtain the following algorithm at iteration m + 1 for all N families:

θ(m+1) = (µ(m+1) α(m+1) γ(m+1))T

=

(
N∑

i=1

zT
i (Σ

(m)
i )−1zi

)−1 N∑
i=1

zT
i (Σ

(m)
i )−1yi (3.5)

and the best unbiased predictor of ξi can be written as

ξ̂
(m)
i = ς(m)Σξi

(Σ
(m)
i )−1

(
yi − ziθ

(m+1)
)

. (3.6)

Also

σ̂2(m+1) =
N∑

i=1

(yi − ziθ
(m+1))T (Σ

(m)
i )−1(yi − ziθ

(m+1))/(n− s− 2) (3.7)

β̂2(m+1) =
1

n

N∑
i=1

(
ξ̂

(m)′
i (ς(m)Σξi

)−1ξ̂
(m)
i + σ̂2(m+1)tr((ς(m)Σξi

)−1C
(m)
i )

)
(3.8)
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with

C
(m)
i =

(
I− zi(z

′
izi)

−1z′i + (ς(m)Σξi
)−1

)−1

where zi = (1 gi xi) is a known n× (s + 2) matrix, and

Σ
(m)
i = ς(m)Σξi

+ I

Beginning with a reasonable initial guess about the parameters, the system of equations

(3.5) to (3.8) provides an iterative algorithm that proceeds until the relative change in

the estimated parameters is sufficiently small, such as 10−4 (Although in principle, the

EM algorithm yield the overall maximum, the way we treat includes the possibility

that any application of the procedure stops in a local maximum).

3.4 Test of Hypotheses on the Boundary of the Param-

eter Space

Berkhof and Snijders (2001) showed that the likelihood ratio test has the best power

properties for a multilevel model with random coefficients if those correlations are

large. The asymptotic distribution of likelihood ratio test statistic will be chi-squared

when the null hypothesis values are interior points of the permissible parameter space.

Under the following regularity conditions (Chernoff (1954)): (a) The parameter space

Ω has finite dimension p, θ is within of Ω; (b) it can take (up to third) derivatives of

ln f(y, θ) with respect to all θ, l′(θ) denotes the p vector of first derivatives of l(θ),
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l′′(θ) denotes the p× p matrix of second derivatives of l(θ); (c) Eθ0
[l′(θ)] = 0 and the

Fisher information is positive and bounded; (d) simple algebra up to a second-order

expansion of the log-likelihood is sufficient and valid; if the hypothesis that parameter

θ lies on a p−s dimensional hyperplane of p dimensional space is true, the distribution

of the likelihood ratio is asymptotically χ2 with s degrees of freedom, while the value

of the parameter is not a boundary point of both the set of θ corresponding to the null

and alternative hypothesis. However, it happens frequently that the population value of

the parameter vector is a boundary point of the feasible region or at least is sufficiently

close to the boundary of the region. If such a situation occurs, the asymptotic distribu-

tion of likelihood ratio test statistic will not be chi-squared. Moran (1971) studied the

asymptotic behavior of maximum likelihood when the true parameter point in estima-

tion problems lies on the boundary of the parameter space. Chant (1974) introduced

the asymptotic tests when the parameter is on the boundary of a closed parameter

space: the asymptotic distributional form of the maximum likelihood estimators is

established under the null hypothesis. Shapiro (1985) presented the asymptotic distri-

bution of the likelihood ratio test statistic that is a mixture of chi-squared distributions

when the null hypothesis value is a boundary point of the feasible region. Self and

Liang (1987) investigated the existence of a consistent maximum likelihood estimator,

the large sample distribution of the estimator, and the large sample distribution of like-

lihood ratio statistic under regularity conditions, allowing the true parameter value to

be on the boundary of the parameter space. The exact limiting distributions are com-

plicated by the number of unknown parameters. In some relatively simple cases, the
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limiting distributions of the maximum likelihood estimator and likelihood ratio statis-

tics are mixtures of normals and mixtures of chi-squared distributions, respectively.

Feng and McCulloch (1992) examined both the property of local maxima of the log-

likelihood and asymptotic coverage probability using maximum likelihood estimation

and the generalized likelihood ratio when the true parameter is on the boundary of the

parameter space when the data are independent and identically distributed observations

with a known density function.

In this chapter, we examine the statistical inference for variance components model

with multivariate normal random effects, using maximum likelihood estimation and the

generalized likelihood ratio when the true parameters of linkage and association are on

the boundary of the parameter space.

3.4.1 Test of Joint Linkage and Association

Under H0, the model is:

y = µ01 + xγ0 + ε0 (3.9)

where ε0 ∼ N(0, σ2
0I). The estimators under the reduced model can be obtained

through the procedure of linear regression.

Under Ha, the model is the same as model (3.1) and the parameter estimators

(µ̂, α̂, γ̂, β̂2, σ̂2) can be obtained through the procedure described in previous section.

For our null hypothesis H0 : α = 0 and β2 = 0, the alternative hypothesis has three
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cases:

HA1 : α 6= 0, β2 = 0

HA2 : α = 0, β2 > 0

HA3 : α 6= 0, β2 > 0

Because of the three cases alternative hypothesis, the test statistic can be used for

making inferences about signals arising from the linkage, the association, and both.

Figure (3.1) identifies four regions indexed by estimated |α| and β2; when both |α|

and β2 are approximately at their respective null values, there is apparently no signal.

Otherwise, it yields a strong signal that can be detected by linkage or by association

only, or both.

Figure 3.1: Illustration of a joint linkage/association analysis with one SNP marker
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I

II

III

IV

Figure 3.2: Diagram of the parameter space

Let (β2, α, µ, γ, σ2) be the dimension (1, 1, 1, s, 1) and let (µ, γ, σ2) represent

nuisance parameters with true values not on the boundary. By the four tuple (Self and

Liang 1987) of parameters of interest with true values on the boundary, parameters

of interest with true values not on the boundary, nuisance parameters with true values

on the boundary, and nuisance parameters with true values not on the boundary. For

hypothesis test H0 : β2 = 0, α = 0 vs. β2 > 0 or/and α 6= 0, since β2 is nonnegative,

the value of likelihood ratio test statistic is set equal to test case HA1 if the estimate

of β2 is not positive. We extend a result of Self and Liang (1987, case 7) regarding

two boundary parameter {0} of β2 and α, where the parameter space is either [0,∞)

or (−∞,∞). So then, the parameter configuration will be (2, 0, 0, s + 2). Figure

(3.2) identifies the parameter space for this case. Region I with angle π/2 represents

the likelihood ratio test for alternative case HA1, which has a χ2
1 distribution. Region
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III with angle π/2 represents the likelihood ratio test for alternative case HA2, which

has a 50:50 mixture of χ2
0 and χ2

1 distribution. Region IV with angle ρ represents the

likelihood ratio test for alternative case HA3, which has a 50:50 mixture of χ2
1 and χ2

2

distribution. Self and Liang (1987) gave:

ρ = arccos
I12√
I11I22

(3.10)

where the I ′ijs are the (i, j) entries of the information matrix under null hypothesis.

From our model (3.1) and for the multivariate normal distribution assumption, α is

independent of β2, ρ = π/2. Finally, likelihood ratio test reduces to zero (or χ2
0) in

region II with angle π− ρ = π/2. So that the asymptotic distribution of the likelihood

ratio test is as follows:

1

4
χ2

1 +
1

4
(
1

2
χ2

0 +
1

2
χ2

1) +
ρ

2π
(
1

2
χ2

1 +
1

2
χ2

2) +
π − ρ

2π
χ2

0

=
3

8
χ2

0 +
1

2
χ2

1 +
1

8
χ2

2 (3.11)

which is a mixture of χ2
0, χ

2
1, and χ2

2 distribution with mixing probabilities 3/8, 1/2, and

1/8 respectively.

3.4.2 Test of Association

When α 6= 0 and β2 is free, the model can be expressed same as (3.1) and the estimators

under this model can be obtained through the procedure described in section 3.3.
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When α = 0 and β2 is free, the reduced model can be expressed as

yi = µ•01 + xiγ
•
0 + ξ•i0 + ε•0 (3.12)

Similarly, the estimators can be obtained through the procedure described in the previ-

ous section by setting α = α(m) = 0 for all m.

For testing association, the likelihood ratio test is approximately χ2 distributed with

1 degree of freedom.

3.4.3 Test of Linkage

When α is free and β2 > 0, the model and the parameter estimators are the same as

before. Under β2 = 0, the reduced model can be expressed as

y = µ?1 + α?g + xγ? + ε? (3.13)

where ε? ∼ N(0, σ?2I). The estimators under the reduced model can be obtained

through linear regression.

For testing linkage, the distribution of likelihood ratio test is approximately a half-

and-half mixture of a χ2
1 variable and a point mass at 0 (Self and Liang, 1987).
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Chapter 4

Binary Phenotype with

Multivariate Normal Random

Effects

4.1 Introduction

In epidemiology and human molecular genetics, it is common to have the binary out-

come variables. Typical binary variables express the disease statements through re-

sponse alternatives such that the individual phenotype is either present or absent. An

example is the testing of the family-based joint linkage and association in human ge-

netical studies with binary phenotypes, SNPs, and covariates.

As discussed in Chapter 3, models for continuous data that incorporate both fixed
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and random effects (mixed models) are commonly used in genetic studies. It is usu-

ally assumed that the random variables have a multivariate normal distribution with

mean vector zero and a covariance matrix depending on some variance components.

Williams (1975) and Crowder (1978) hypothesized a mixing distribution directly based

on the probability of success, but this approach does not easily generalize to multiple

random effects. Zeger and Liang (1986) and Liang and Zeger (1986) have proposed

an estimating equation approach, but their methods focus on the fixed effects and only

estimate the variances and covariances as nuisance parameters. Prentice (1988) has

considered extensions of the Zeger and Liang (1986) estimating equation approach,

explicitly estimating the covariances as well. McCulloch (1994) presented a class of

probit-normal models and described MLE of the parameters in the model by using

EM algorithm (Dempster et al. 1977). This implementation of the EM algorithm is

identical to the continuous case, which represents an unobserved continuous variable

replaced by their expected values given the observed binary phenotypes.

Many authors consider a likelihood ratio test for binary variables with indepen-

dent random variables in linear mixed models. Verbeke and Molenberghs (2000) used

linear mixed models for independent random variables that has a known distribution.

Baksh et al. (2007) presented an alternative likelihood-based method of analysis for

ordered categorical phenotypes in nuclear families. Aulchenko et al (2010) have de-

signed genome-wide regression that facilitates fast genome-wide association analysis

under logistic model for family-based association studies and genetically-isolated hu-

man populations.
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We apply LRT, Wald, and score test on testing the joint linkage and association

components for binary phenotypes with dependent random variables in non-linear

mixed model. We have developed a joint modeling of linkage and association for pedi-

grees that uses a conditional likelihood approach for the phenotype functions. One of

the objectives of our study is to extend the method to general forms of logistic func-

tions, allow the inclusion of other covariates into the model. When the true parameter

values may be on the boundary of parameter space, we use the above mentioned three

tests to test the joint effects of linkage and association analysis in family studies. This

proposed mixed model with random effects due to linkage and/or polygenic factors

provides a flexible and powerful framework for further generalizations and extensions,

such as multiple phenotypes. These further developments should lead to a set of pow-

erful tools for the detection of disease loci and the dissection of complex traits in

humans.

4.2 Mixed Model without Linkage Effects

Suppose that we have a random sample yi1, yi2, . . . , yini
, with yij ∈ {0, 1}, j =

1, 2, . . . , ni in ith family and each yij has an associated vector of covariates zij =

{1, gij,xij} ∈ RS+2, i = 1, 2, . . . , N ; j = 1, 2, . . . , ni. Additionally, assume that for

each individual there is an independent random variable ξij ∈ R such that, for given

ξij and zij, the random vector variable yij has a binomial distribution with parameter
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πij(ξij), where

πij(ξij) = Pr (yij = 1 | zij, ξij) (4.1)

=
ezijθ+ξij

1 + ezijθ+ξij
for i = 1, 2, . . . , N ; j = 1, 2, . . . , ni.

Define θ = {µ, α, γ}′, ζij = ezijθ, ζij(ξ) = eξ ζij and λij(ξ) = (1 + ζij(ξ))
−1 so that

πij(ξ) = ζij(ξ)λij(ξ). Thus, if each ξij has a density parameterized by ϑ, say fϑ(·), for

i = 1, 2, . . . , N ; j = 1, 2, . . . , ni

pij (yij | zij, ξ) = ζ
yij

ij (ξ)λij(ξ) (4.2)

Pr (yij | zij) =

∫ ∞

−∞
pij (yij | zij, ξ) fϑ(ξ) dξ (4.3)

= Eϑ

(
πij(ξ)

∣∣ zij

)yij Eϑ

(
λij(ξ)

∣∣ zij

)1−yij

= yij + (−1)yij

∫ ∞

−∞
λij(ξ) fϑ(ξ) dξ

= πij,

i.e., πij is a function of yij and zij only. Consequently, conditional on {zij},

Pr (y | {zij}) =
N∏

i=1

ni∏
j=1

πij (4.4)

and the log-likelihood can be written as

`(θ, ϑ) =
N∑

i=1

`i(θ, ϑ) =
N∑

i=1

ni∑
j=1

log πij
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with θ and ϑ being the parameters of the logistic model and over-dispersion distribu-

tion, respectively. `i(θ, ϑ) is the ith family log-likelihood. Under mild assumptions

regarding fϑ, we have

∂`(θ, ϑ)

∂θ
=

N∑
i=1

ni∑
j=1

∫ ∞

−∞

∂

∂θ

(
λij(ξ) ζ

yij

ij eξ yij

) fϑ(ξ)

f (yij | zij)
dξ

=
N∑

i=1

ni∑
j=1

∫ ∞

−∞
zij

(
yij − πij(ξ)

)f (yij | zij, ξ) fϑ(ξ)

f (yij | zij)
dξ

=
N∑

i=1

ni∑
j=1

∫ ∞

−∞
zij

(
yij − πij(ξ)

)
f (ξ | zij, yij) dξ

=
N∑

i=1

ni∑
j=1

zij

(
yij − Eξ

(
πij(ξ)

∣∣ zij, yij

) )
(4.5)

=
N∑

i=1

ni∑
j=1

(−1)1−yijzij

Eξ

(
Var(yij | zij, ξij)

)

πij

=
N∑

i=1

ni∑
j=1

zij

(
yij − µij

µij(1− µij)

)
Eξ

(
Var(yij | zij, ξij)

)
(4.6)

where µij = E (yij | zij) and Var(yij|zij, ξij) = πij(ξij)
(
1−πij(ξij)

)
. To see this, from

∂pij(yij | zij, ξ)

∂θ
= zij

(
yij − πij(ξ)

)
pij(yij | zij, ξ) (4.7)

∂ log πij

∂θ
=

1

πij

∫ ∞

−∞

∂pij(yij | zij, ξ)

∂θ
fϑ(ξ) dξ (4.8)
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On the other hand,

∂`(θ, ϑ)

∂ϑ
=

N∑
i=1

ni∑
j=1

∫ ∞

−∞

f (yij | zij, ξ) f ′ϑ(ξ)

f (yij | zij)
dξ

=
N∑

i=1

ni∑
j=1

∫ ∞

−∞

f (yij | zij, ξ) fϑ(ξ)

f (yij | zij)

f ′ϑ(ξ)

fϑ(ξ)
dξ

=
N∑

i=1

ni∑
j=1

∫ ∞

−∞

∂ log fϑ(ξ)

∂ϑ
f (ξ | zij yij) dξ

=
N∑

i=1

ni∑
j=1

Eξ

(
∂ log fϑ(ξ)

∂ϑ

∣∣∣ zij, yij

)
(4.9)

These expressions can be used to maximize `(θ, ϑ) by iteratively solving

∂`(θ, ϑ)

∂θ
= 0 and

∂`(θ, ϑ)

∂ϑ
= 0

In general, the above equations cannot be solved explicitly, instead, we can use a first

order approximation to the score function

∂`(θ̂, ϑ̂)

∂θ̂
≈ ∂`(θ, ϑ)

∂θ
+

∂2`(θ, ϑ)

∂θ ∂θ′
(θ̂ − θ) (4.10)

or its delta method approximation

∂`(θ̂, ϑ̂)

∂θ̂
≈ ∂`(θ, ϑ)

∂θ
− E

(
− ∂2`(θ, ϑ)

∂θ ∂θ′

)
(θ̂ − θ) (4.11)
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where

∂2`(θ, ϑ)

∂θ ∂θ′
=

N∑
i=1

∂2`i(θ, ϑ)

∂θ ∂θ′

=
N∑

i=1

ni∑
j=1

zijz
′
ij Eξ

((
yij − πij(ξij)

)2 − πij(ξij)
(
1− πij(ξij)

) ∣∣ zij, yij

)

−
N∑

i=1

ni∑
j=1

zijz
′
ijE

2
ξ

(
(yij − πij)

∣∣ zij, yij

)

=
N∑

i=1

ni∑
j=1

zijz
′
ij Eξ

((
yij − πij(ξij)

)2 − πij(ξij)
(
1− πij(ξij)

) ∣∣ zij, yij

)

−
N∑

i=1

ni∑
j=1

zijz
′
ij

(
Eξ

(
Var(yij | zij, ξij)

)

πij

)2

(4.12)

and

−E

(
∂2`(θ, ϑ)

∂θ ∂θ′

)
=

N∑
i=1

ni∑
j=1

(
zijz

′
ij

µij(1− µij)

) (
Eξ

(
Var(yij | zij, ξij)

))2
(4.13)

because

∂2pij(yij | zij, ξ)

∂θ∂θ′
= zijz

′
ij

((
yij − πij(ξ)

)2 − πij(ξ)
(
1− πij(ξ)

))
pij(yij | zij, ξ)

(4.14)

whose expectation is null, as well as

E

(
1

π2
ij

)
=

1

µij(1− µij)
(4.15)
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4.2.1 Computations

To evaluate the conditional expectations involved in the previous expressions we can

use the following relationship. For r = −1, 0, 1, 2, . . . , define

P
(r)
ij =

∫ ∞

−∞
πr+1

ij (ξ) fϑ(ξ) dξ (4.16)

and

Q
(r)
ij =

∫ ∞

−∞
λr+1

ij (ξ) fϑ(ξ) dξ (4.17)

Then, we have that, for r = 0, 1, 2, . . . ,

πij Eϑ

(
πr

ij(ξij)
∣∣ zij, yij

)
= (1− yij) P

(r−1)
ij + (−1)1−yij P

(r)
ij (4.18)

πij Eϑ

(
λr

ij(ξij)
∣∣ zij, yij

)
= yij Q

(r−1)
ij + (−1)yij Q

(r)
ij (4.19)

and

µij = P
(0)
ij (4.20)

= 1−Q
(0)
ij
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as well as

Eϑ

(
Var(yij | zij, ξij)

)
= P

(0)
ij − P

(1)
ij (4.21)

= Q
(0)
ij −Q

(1)
ij

These expressions can be easily evaluated by quadrature methods. In this thesis,

128point Gauss Hermite quadrature was used.

4.2.2 Normal Case

If we assume that fϑ(·) has a normal distribution with null mean and variance ϑ > 0.

Then

∂`(θ, ϑ)

∂ϑ
=

N∑
i=1

ni∑
j=1

(
− 1

2ϑ
+

1

2ϑ2Eξij

(
ξ2
ij | zij, yij

))
(4.22)

=
N∑

i=1

ni∑
j=1

(
− 1

2ϑ

(
yij − µij

1− µij

)
+

1

2ϑ2

(
yij − µij

µij(1− µij)

)
Eξij

(
ξ2
ij πij(ξij)

))

(4.23)

and the remaining components of the Fisher information can be written as

−E

(
∂2`(θ, ϑ)

∂ϑ2

)
=

1

4ϑ4

N∑
i=1

ni∑
j=1

µ2
ijϑ

2 − 2µijϑEξij

(
ξ2
ij πij(ξij)

)
+ E2

ξij

(
ξ2
ij πij(ξij)

)

µij(1− µij)

(4.24)
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as well as

−E

(
∂2`(θ, ϑ)

∂ϑ∂θ′

)
=

1

2ϑ2

N∑
i=1

ni∑
j=1

x′ij Eξij

(
Var(yij | zij, ξij)

)
(

Eξij

(
ξ2
ij πij(ξij)

)− ϑµij

µij(1− µij)

)

(4.25)

4.3 Mixed Model with Linkage Component

In this case, it is common to assume that the vector of random effects ξi has null mean

and variance ϑΣi, where Σi is a positive definite matrix assumed to be known up to a

multiplicative constant in ith family. Define

Pr(yi | {zij}, ξi) =

ni∏
j=1

ζ
yij

ij (ξij) λ(ξij). (4.26)

Then,

Pr(yi | {zij}) =

∫

Rni

Pr(yi | {zij}, ξi) f(ξi) dξi (4.27)

By the same argument used before,

∂ Pr(yi | {zij}, ξi)

∂θ
= Pr(yi | {zij}, ξi)

ni∑
j=1

zij

(
yij − πij(ξij)

)
(4.28)
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and

∂2 Pr(yi | {zij}, ξi)

∂θ∂θ′
= Pr(yi | {zij}, ξi)

ni∑

j′=1

ni∑
j=1

zij′z
′
ij

(
yij′ − πij′(ξij′)

) (
yij − πij(ξij)

)

− Pr(yi | {zij}, ξi)

ni∑
j=1

zijz
′
ij πij(ξij)

(
1− πij(ξij)

)
(4.29)

so that

∂`i(θ, ϑ)

∂θ
= Eξi

( ni∑
j=1

zij

(
yij − πij(ξij)

) ∣∣∣ {zij},yi

)

=

ni∑
j=1

zijyij − Eξi

( ni∑
j=1

zijπij(ξij)|{zij},yi

)
(4.30)

and

∂2`i(θ, ϑ)

∂θ∂θ′
= −

(
∂`i(θ, ϑ)

∂θ
−

ni∑
j=1

zij yij

)(
∂`i(θ, ϑ)

∂θ
−

ni∑
j=1

zij yij

)′

+ Eξi

(
ni∑

j′=1

ni∑
j=1

zij′z
′
ij πij′(ξij′) πij(ξij)

−
ni∑

j=1

zijz
′
ij πij(ξij)

(
1− πij(ξij)

) ∣∣∣ {zij},yi

)
(4.31)

It is easy to show that

−E

(
∂2`i(θ, ϑ)

∂θ∂θ′

)
=E

(
Eξi

(
ni∑

j=1

zij

(
yij − πij(ξij)

) ∣∣ {zij},yi

)

Eξi

(
ni∑

j=1

z′ij
(
yij − πij(ξij)

) ∣∣ {zij},yi

))
(4.32)
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Now, under the assumption that ξi ∼ N(0, ϑΣi) with ϑ > 0,

∂`i(θ, ϑ)

∂ϑ
= − ni

2ϑ
+

1

2ϑ2 Eξi

(
ξ′iΣ

−1
i ξi | {zi},yi

)
(4.33)

and

∂2`i(θ, ϑ)

∂ϑ2 =−
(

∂`i(θ, ϑ)

∂ϑ

)2

−
(

ni + 2

ϑ

)(
∂`i(θ, ϑ)

∂ϑ
+

ni

4ϑ

)

+
1

4ϑ4 Eξi

(
(ξ′iΣ

−1
i ξi)

2 | {zij},yi

) (4.34)

by using the rules of conditional expectation

−E

(
∂2`i(θ, ϑ)

∂ϑ2

)
=

1

4ϑ4E
(
Eξi

(
ξ′iΣ

−1
i ξi | {zij},yi

)− niϑ
)2

=
1

4ϑ4 Var
(
Eξi

(
ξ′iΣ

−1
i ξi | {zij},yi

)) (4.35)

we have

∂2`i(θ, ϑ)

∂θ∂ϑ
= −

(
∂`i(θ, ϑ)

∂θ
−

ni∑
j=1

zijyij

)(
∂`i(θ, ϑ)

∂ϑ
− ni

2ϑ

)

− 1

2ϑ
E

(
ni∑

j=1

zijπij(ξij) ξ′iΣ
−1
i ξ

∣∣ {zij},yi

) (4.36)
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and

−E

(
∂2`i(θ, ϑ)

∂ϑ∂θ′

)
=

1

2ϑ2E

((
Eξi

(
ξ′iΣ

−1
i ξi | {zij},yi

)− niϑ

)

Eξi

(
ni∑

j=1

z′ij
(
yij − πij(ξij)

) ∣∣ {zij},yi

))
(4.37)

When Σi can be written as

Σi = I + ςAi

with unknown ς > 0 and a nonnegative definite matrices Ai. Up to a multiplicative

constant, we can think of Ai as the identity by descent matrix at any given locus in ith

family, then ς can be thought as the signal-to-noise ratio at the given locus. Under this

parameterizations, the score vector must be augmented with

∂`i(θ, ϑ, ς)

∂ς
=

1

2ϑ
Eξi

(
ξ′iΣ

−1
i AiΣ

−1
i ξi − ϑ tr

(
Σ−1

i Ai

) ∣∣ {zij},yi

))
(4.38)

Similarly, the observed and Fisher information matrix must be augmented in a dimen-

sion while all the other elements of the score vector and information matrix remain the

same. The additional elements of the observed and Fisher information matrix can be

written as

∂2`i(θ, ϑ, ς)

∂ς2 ≈ −
(

∂`i(θ, ϑ, ς)

∂ς
+

1

2
tr

(
Σ−1

i Ai

))2

+
1

2
tr

(
Σ−1

i AiΣ
−1
i Ai

)

− 1

ϑ
Eξi

(
ξ′iΣ

−1
i AiΣ

−1
i AiΣ

−1
i ξi

∣∣ {zij},yi

)
+

1

4ϑ2 Eξi

((
ξ′iΣ

−1
i AiΣ

−1
i ξi

)2∣∣ {zij},yi

)
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−E

(
∂2`i(θ, ϑ, ς)

∂ς2

)
=

1

4ϑ2Var
(
Eξi

(
ξ′iΣ

−1
i AΣ−1

i ξi | {zi},yi

))
(4.39)

and

∂2`i(θ, ϑ, ς)

∂ς∂θ′
≈−

(
∂`i(θ, ϑ, ς)

∂θ
−

ni∑
j=1

zijyi

)(
∂`i(θ, ϑ, ς)

∂ς
+

1

2
tr

(
Σ−1

i Ai

))

− 1

2ϑ
Eξi

( ni∑
j=1

zijπij(ξij)ξ
′
iΣ

−1
i AiΣ

−1
i ξi

∣∣ {zij},yi

)

∂2`i(θ, ϑ, ς)

∂ϑ∂ς
≈−

(
∂`i(θ, ϑ, ς)

∂ϑ
+

ni

2ϑ

)(
∂`i(θ, ϑ, ς)

∂ς
+

1

2
tr

(
Σ−1

i Ai

))

+
1

4ϑ3 Eξi

(
ξ′iΣ

−1
i ξξ′iΣ

−1
i AiΣ

−1
i ξi

∣∣ {zij},yi

)

−E

(
∂2`i(θ, ϑ, ς)

∂ς∂θ′

)
=

1

2ϑ
E

(
Eξi

(
ξ′iΣ

−1
i AiΣ

−1
i ξi − ϑ tr

(
Σ−1

i Ai

) ∣∣ {zij},yi

)

Eξi

(
ni∑

j=1

z′ij
(
yij − πij(ξij)

) ∣∣ {zij},yi

))
(4.40)

−E

(
∂2`i(θ, ϑ, ς)

∂ϑ∂ς

)
=

1

4ϑ3E

((
Eξi

(
ξ′iΣ

−1
i ξi − niϑ | {zij},yi

) )

Eξi

(
ξ′iΣ

−1
i AiΣ

−1
i ξi − ϑ tr

(
Σ−1

i Ai

) ∣∣ {zij},yi

))
(4.41)

In the general mixed model, the evaluation of the score vector can be carried out
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by direct Monte Carlo or by a combination of Monte Carlo and quadrature methods,

while the Fisher information matrix can be evaluated by the Monte Carlo technique

of importance sampling. For this work, the distribution described in the previous sec-

tion was used an importance sampling distribution, i.e., assuming Σi = I, so that the

sampling Monte Carlo sampling distribution was a set of independent yij ∼ Ber(µij),

j = 1, 2, . . . , ni, with each µij computed by 128-point Gauss-Hermite quadrature.

In some situation, particularly when the number of observations grows, the Monte

Carlo scheme could be quite inefficient. In such cases, the Laplace approximation may

be a good alternative.

The Laplace approximation for (4.27) goes as follows: define F0(ξi) as

F0(ξi) = − 1

2ϑ
ξ′iΣ

−1
i ξi + log Pr(yi | {zij}, ξi) (4.42)

then

Pr(yi | {zij}) =

√
1

(2π ϑ)ni |Σi|
∫

Rni

eF0(ξi) dξi

≈
√

1

ϑni |Σi| |Ro| eF0(ξ̆io)

(4.43)

where z̆o is the solution to
∂F0(ξi)

∂ξi
= 0
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and Ro is defined as

Ro = −∂2F0(ξi)

∂ξi ∂ξ′i

∣∣∣
ξi=ξ̆io

i.e., ξ̆io satisfy

ξ̆io = ϑΣi

(
yi − E(yi | {zij}, ξ̆io)

)
(4.44)

and

Ro =
1

ϑ
Σ−1

i + Var(yi | {zij}, ξ̆io). (4.45)

Similarly, to compute the sth entry in the score function (4.30), say `′is, s = 1, 2, ...

S+2, define Fs(ξi) as

Fs(ξi) = F0(ξi) + log gs

(
ξi | {zij}

)
(4.46)

where

gs

(
ξi | {zij}

)
=

ni∑
j=1

zij,s πij(ξij).

Then

`′is ≈ Sis −
√
|Ro|
|Rs| eFs(ξ̆is)−F0(ξ̆io) (4.47)

where

Sis =

ni∑
j=1

zij,s yij

and ξ̆is and Rs can be computed by using

ξ̆is = ϑΣi

(
yi − E(yi | {zij}, ξ̆is) + qs(ξ̆is)

)
(4.48)
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and

Rs =
1

ϑ
Σ−1

i +Var(yi | {zij}, ξ̆is)+qs(ξ̆ij) q′s(ξ̆is)−diag
((

1−2 E(yi | {zij}, ξ̆is)
)◦qs(ξ̆s)

)

(4.49)

with

qs(ξi) =
1

gs

(
ξi | {zij}

) Var(yi | {zij}, ξi)




xi1,s

xi2,s

...

xini,s




(4.50)

and ‘a ◦ b’ denotes Hadamard product.

To find the Laplace approximation for (4.33), say `′iϑ, define Fϑ(ξi) as

Fϑ(ξi) = F0(ξi) + log ξ′iΣ
−1
i ξi (4.51)

and compute

`′iϑ ≈ − ni

2ϑ
+

1

2ϑ2

√
|Ro|
|Rϑ| eFϑ(ξ̆iϑ)−F0(ξ̆io) (4.52)

with ξ̆iϑ 6= 0 and satisfying

ξ̆iϑ = ϑΣi

(
yi − E(yi | {zij}, ξ̆iϑ)

)
+

2ϑ

ξ̆i
′
ϑΣ

−1
i ξ̆iϑ

ξ̆iϑ (4.53)

or, equivalently

ξ̆i
′
ϑΣ

−1
i ξ̆iϑ = 2ϑ + ϑ ξ̆i

′
ϑ

(
yi − E(yi | {zij}, ξ̆iϑ)

)
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and

Rϑ =
1

ϑ
Σ−1

i +Var(yi | {zij}, ξ̆iϑ)−
2

ξ̆i
′
ϑΣ

−1
i ξ̆iϑ

Σ−1
i +

(
2

ξ̆i
′
ϑΣ

−1
i ξ̆iϑ

)2

Σ−1
i ξ̆iϑξ̆i

′
ϑΣ

−1
i

(4.54)

Finally, the Laplace approximation to (4.38), `′iς , can be found as follows. Define

Fς(ξi) = F0(ξi) + log ξ′iΣ
−1
i AiΣ

−1
i ξi (4.55)

and compute

`′iς ≈ −1

2
tr(Σ−1

i Ai) +
1

2ϑ

√
|Ro|
|Rς | eFς(ξ̆iς)−F0(ξ̆io) (4.56)

with ξ̆iς 6= 0 and satisfying

ξ̆iς = ϑΣi

(
yi − E(yi | {zij}, ξ̆iς)

)
+

2ϑ

ξ̆i
′
ςΣ

−1
i AiΣ

−1
i ξ̆iς

AiΣ
−1
i ξ̆iς (4.57)

and

Rς =
1

ϑ
Σ−1

i + Var(yi | {zij}, ξ̆iς)−
2

ξ̆i
′
ςΣ

−1
i AiΣ

−1
i ξ̆iς

Σ−1
i AiΣ

−1
i

+

(
2

ξ̆i
′
ςΣ

−1
i AiΣ

−1
i ξ̆iς

)2

Σ−1
i AiΣ

−1
i ξ̆iς ξ̆i

′
ςΣ

−1
i AiΣ

−1
i (4.58)

Now we would like to find the ss′th entry of the observed information matrix, or equiv-

alently the ss′th entry of (4.31), say `′′iss′. To do so, define two functions F ◦
ss′(ξi)and
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F •
ss′(ξi) as

F ◦
ss′(ξi) = F0(ξi) + log g◦ss′

(
ξi | {zij}

)
and F •

ss′(ξi) = F0(ξi) + log g•ss′
(
ξi | {zij}

)

(4.59)

where

g◦ss′
(
ξi | {zij}

)
=

ni∑
j=1

ni∑

j′=1

zij,s zij′,s′ πij(ξij)πij′(ξij′)

g•ss′
(
ξi | {zij}

)
=

ni∑
j=1

zij,s zij,s′ πij(ξij)(1− πij(ξij))

Then

`′′iss′ ≈ −(`′is−Sis)(`
′
is′ −Sis′) +

√
|Ro|
|R◦

ss′|
eF ◦

ss′(ξ̆i
◦
ss′)−F0(ξ̆io)−

√
|Ro|
|R•

ss′|
eF •

ss′(ξ̆i
•
ss′)−F0(ξ̆io)

(4.60)

with ξ̆i
◦
ss′ satisfying

ξ̆i
◦
ss′ = ϑΣi

(
yi − E(yi | {zij}, ξ̆i

◦
ss′) + qss′◦(ξ̆i

◦
ss′)

)
(4.61)

and

R◦
ss′ =

1

ϑ
Σ−1

i + Var(yi | {zij}, ξ̆i
◦
ss′) + qss′◦(ξ̆i

◦
ss′)q

′
ss′◦

(ξ̆i
◦
ss′)

−diag
((

1− 2 E(yi | {zij}, ξ̆i
◦
ss′)

) ◦ qss′◦(ξ̆i
◦
ss′)

)−B◦
ss′(ξ̆i

◦
ss′)/g

◦
ss′

(
ξi | {zij}

)

(4.62)
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where

qss′◦(ξi) =
1

g◦ss′
(
ξi | {zij}

) Var(yi | {zij}, ξi)h
◦
ss′(ξi)

and the elements of h◦ss′ ∈ Rni and B◦
ss′ ∈ Rni×ni are given by

h◦ss′,j′(ξi) = zij′,s

∑
j

zij,s′ πij(ξij) + zij′,s′
∑
j=1

zij,s πij(ξij)

and

B◦
ss′,jj′(ξi) =





2 zij,s zij,s′ (Var(yij | zij, ξij))
2 if j = j′

(zij,s zij′,s′ + zij,s′ zij′,s)Var(yij | zij, ξij) Var(yij′ | zij′, ξij′) otherwise.

The equations for ξ̆i
•
ss′ are the similar with ‘◦’ replaced by ‘•’ and the elements of

h•ss′ ∈ Rni and B•
ss′ defined as

h•ss′,j(ξi) = zij,s zij,s′(1− 2 πij(ξij))

and

B•
ss′,jj′(ξi) =





2 zij,s zij,s′ (Var(yij | zij, ξij))
2 if j = j′

0 otherwise.
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To find the observed information Laplace approximation for (4.34), `′′ϑϑ, define

Fϑϑ(ξi) = F0(ξi) + 2 log ξ′iΣ
−1
i ξi (4.63)

and compute

`′′iϑϑ ≈ −`′iϑ
2 −

(
ni + 2

ϑ

) (
`′iϑ +

ni

4ϑ

)
+

1

4ϑ4

√
|Ro|
|Rϑϑ| eFϑϑ(ξ̆iϑϑ)−F0(ξ̆io) (4.64)

where ξ̆iϑϑ can be found recursively by using the relationship

ξ̆iϑϑ = ϑΣi

(
yi − E(yi | {zij}, ξ̆iϑϑ)

)
+

4ϑ

ξ̆i
′
ϑϑΣ

−1
i ξ̆iϑϑ

ξ̆iϑϑ (4.65)

and

Rϑϑ =
1

ϑ
Σ−1

i + Var(yi | {zij}, ξ̆iϑϑ)−
4

ξ̆i
′
ϑϑΣ

−1
i ξ̆iϑϑ

Σ−1
i

+ 2

(
2

ξ̆i
′
ϑϑΣ

−1
i ξ̆iϑϑ

)2

Σ−1
i ξ̆iϑϑξ̆i

′
ϑϑΣ

−1
i

(4.66)

Similarly, to find the sth entry of (4.36), say `′′isϑ, define

Fsϑ(ξi) = F0(ξi) + log ξ′iΣ
−1
i ξi + log

ni∑
j=1

zij,sπij(ξij) (4.67)
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Then

`′′isϑ ≈ − (`′is − Sis)
(
`′iϑ +

ni

2ϑ

)
− 1

2ϑ2

√
|Ro|
|Rsϑ| eFsϑ(ξ̆isϑ)−F0(ξ̆io) (4.68)

where ξ̆isϑ satisfies

ξ̆isϑ = ϑΣi

(
yi − E(yi | {zij}, ξ̆isϑ) + qs(ξ̆isϑ)

)
+

2ϑ

ξ̆i
′
sϑΣ

−1
i ξ̆isϑ

ξ̆isϑ (4.69)

with qs(ξ̆isϑ) defined by (4.50) and

Rsϑ =
1

ϑ
Σ−1

i + Var(yi | {zij}, ξ̆isϑ)− diag
((

1− 2 E(yi | {zij}, ξ̆isϑ)
) ◦ qs(ξ̆isϑ)

)

+ qs(ξ̆isϑ)q
′
s(ξ̆isϑ)−

2

ξ̆i
′
sϑΣ

−1
i ξ̆isϑ

Σ−1
i +

(
2

ξ̆i
′
sϑΣ

−1
i ξ̆isϑ

)2

Σ−1
i ξ̆isϑξ̆i

′
sϑΣ

−1
i

(4.70)

The Laplace approximation for the remaining components of the observed information

matrix can be found in the same way:

`′′isς ≈ − (`′is − Sis)

(
`′iς +

1

2
tr

(
Σ−1

i Ai

))− 1

2ϑ

√
|Ro|
|Rsς | eFsς(ξ̆isς)−F0(ξ̆io) (4.71)

with

Fsς(ξi) = F0(ξi) + log ξ′iΣ
−1
i AiΣ

−1
i ξi + log

ni∑
j=1

zij,sπij(ξij) (4.72)
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`′′iϑς ≈ −
(
`′iϑ +

ni

2ϑ

) (
`′iς +

1

2
tr

(
Σ−1

i Ai

))
+

1

4ϑ3

√
|Ro|
|Rϑς | eFϑς(ξ̆iϑς)−F0(ξ̆io) (4.73)

with

Fϑς(ξi) = F0(ξi) + log ξ′iΣ
−1
i AiΣ

−1
i ξi + log ξ′iΣ

−1
i ξi (4.74)

and

`′′iςς ≈ −
(

`′iς +
1

2
tr

(
Σ−1

i Ai

))2

+
1

2
tr

(
Σ−1

i AiΣ
−1
i Ai

)− 1

ϑ

√
|Ro|
|Rςς◦|

eFςς◦(ξ̆iςς◦)−F0(ξ̆io)

+
1

4ϑ2

√
|Ro|
|Rςς•|

eFςς•(ξ̆iςς•)−F0(ξ̆io)

(4.75)

with

Fςς◦(ξi) = F0(ξi) + log ξ′iΣ
−1
i AiΣ

−1
i AiΣ

−1
i ξi (4.76)

and

Fςς•(ξi) = F0(ξi) + 2 log ξ′iΣ
−1
i AiΣ

−1
i ξi (4.77)

where ξ̆iςς◦ and ξ̆iςς• satisfy

ξ̆iςς◦ =ϑΣi

(
yi − E(yi | {zij}, ξ̆iςς◦)

)
+

2ϑ

ξ̆i
′
ςς◦Σ

−1
i AiΣ

−1
i AiΣ

−1
i ξ̆iςς◦

AiΣ
−1
i AiΣ

−1
i ξ̆iςς◦

ξ̆iςς• =ϑΣi

(
yi − E(yi | {zij}, ξ̆iςς•)

)
+

4ϑ

ξ̆i
′
ςς•Σ

−1
i AiΣ

−1
i ξ̆iςς•

AiΣ
−1
i ξ̆iςς•
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and

Rςς◦ =
1

ϑ
Σ−1

i + Var(yi | {zij}, ξ̆iςς◦)−
2

ξ̆i
′
ςς◦Σ

−1
i AiΣ

−1
i AiΣ

−1
i ξ̆iςς◦

Σ−1
i AiΣ

−1
i AiΣ

−1
i

+

(
2

ξ̆i
′
ςς◦Σ

−1
i AiΣ

−1
i AiΣ

−1
i ξ̆iςς◦

)2

Σ−1
i AiΣ

−1
i AiΣ

−1
i ξ̆iςς◦ξ̆i

′
ςς◦Σ

−1
i AiΣ

−1
i AiΣ

−1
i

Rςς• =
1

ϑ
Σ−1

i + Var(yi | {zij}, ξ̆iςς•)− 2
2

ξ̆i
′
ςς•Σ

−1
i AiΣ

−1
i ξ̆iςς•

Σ−1
i AiΣ

−1
i

+ 2

(
2

ξ̆i
′
ςς•Σ

−1
i AiΣ

−1
i ξ̆iςς•

)2

Σ−1
i AiΣ

−1
i ξ̆iςς•ξ̆i

′
ςς•Σ

−1
i AiΣ

−1
i

Beginning with a reasonable initial guess about the parameters, the system of equations

above describes an iterative algorithm that proceeds until the relative change in the

estimated parameters is sufficiently small, such as 10−4, and the (k + 1)th iteration of

θ and ϑ will be:




θ̂(k+1)

ϑ̂(k+1)

ς̂(k+1)




=




θ̂(k)

ϑ̂(k)

ς̂(k)




+ I−1(θ̂(k), ϑ̂(k), ς̂(k))




∑
i

`′
iθ̂(k)

∑
i

`′
iϑ̂(k)

∑
i

`′iς̂(k)




(4.78)

or



θ̂(k+1)

ϑ̂(k+1)

ς̂(k+1)




=




θ̂(k)

ϑ̂(k)

ς̂(k)




+ I−1(θ̂(k), ϑ̂(k), ς̂(k);y)




∑
i

`iθ̂(k)

∑
i

`iϑ̂(k)

∑
i

`iς̂(k)




(4.79)
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with

I(θ̂, ϑ̂, ς̂) =




−E
∑

i

`′′iθθ′ −E
∑

i

`′′iθϑ −E
∑

i

`′′iθς

−E
∑

i

`′′iϑθ′ −E
∑

i

`′′iϑϑ −E
∑

i

`′′iϑς

−E
∑

i

`′′iςθ′ −E
∑

i

`′′iςϑ −E
∑

i

`′′iςς




and

I(θ̂, ϑ̂, ς̂;y) =




−
∑

i

`′′iθθ′ −
∑

i

`′′iθϑ −
∑

i

`′′iθς

−
∑

i

`′′iϑθ′ −
∑

i

`′′iϑϑ −
∑

i

`′′iϑς

−
∑

i

`′′iςθ′ −
∑

i

`′′iςϑ −
∑

i

`′′iςς




4.4 Test of Joint Linkage and Association

For joint linkage and association test, we write the hypothesis test as:

Ho : α = 0 and ς = 0

HA : α 6= 0 and/or ς > 0.

The hypotheses of interest involve parameter α and the signal-to-noise ratio ς . The pa-

rameter α quantifies association between y and g, ς quantifies linkage between marker

locus and disease locus. If α = 0, the traits and the marker gene are not associated.

Otherwise, the traits are associated with the marker gene. If ς > 0, the marker locus
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and disease locus are linked together. If the estimation gives a negative estimate of ς

due to random sampling, but we know that signal-to-noise ratio cannot be negative,

we use zero instead of a negative number of ς , the marker locus does not linked with

disease locus, the only association effect α be tested.

Under Ho, the random vector variable yij has a binomial distribution with inde-

pendent random variable ξij, and the model is similar to (4.1), where ξij ∼ N(0, ϑ)

with ϑ > 0. The parameter estimators (µ̂, γ̂, ϑ̂) can be obtained through the procedure

described in previous section.

Under HA, the random vector yi has a binomial distribution with dependent ran-

dom variable ξi, and the model is similar to (4.27), where ξi ∼ N(0, ϑΣi) with ϑ > 0.

The parameter estimators (µ̂, α̂, γ̂, ϑ̂, ς̂) can be obtained through the procedure de-

scribed in previous section. For our intersection null hypothesis α = 0 and ς = 0, the

alternative hypothesis has three cases:

HA1 : α 6= 0, ς = 0

HA2 : α = 0, ς > 0

HA3 : α 6= 0, ς > 0

Because of the three cases alternative hypothesis, the test statistic can be used for

making inferences about signals arising from the linkage, the association, and both.

Parallel to the study in Chapter 3, for hypothesis test Ho : ς = 0, α = 0 vs. ς >
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0 or/and α 6= 0, the likelihood ratio test is as follows:

−2
N∑

i=1

{log Pr(yi|{zi})|Ho
− log Pr(yi|{zi})|H1

}

Under the Wald statistical test, the estimate (α̂, ς̂) of the parameter(s) of interest (α, ς)

is compared with the proposed value (α0, ς0), with the assumption that the difference

between the two for each parameter will be approximately normally distributed. Typi-

cally under Ho : α0 = 0, ς0 = 0, the Wald test statistic is,

(α̂, ς̂)I(α̂, ς̂;y)




α̂

ς̂




where

I(α̂, ς̂;y) =




−
∑

i

`′′iαα −
∑

i

`′′iας

−
∑

i

`′′iςα −
∑

i

`′′iςς




at (µ̂, α̂, γ̂, ϑ̂, ς̂) under HA.

The score test is a statistical test of a simple null hypothesis that a parameter of

interest (α, ς) is equal to some particular value (α0, ς0). It is the most powerful test

when the true value of (α, ς) is close to (α0, ς0). The main advantage of the score

test is that it does not require an estimate of the information under the alternative

hypothesis or unconstrained maximum likelihood. This makes testing feasible when

the unconstrained maximum likelihood estimate is a boundary point in the parameter
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space. Typically under Ho : α = 0, ς = 0, the score test is,

(`′iα, `′iς)I
−1(α̃, ς̃;y)




`′iα

`′iς




at (µ̃, 0, γ̃, ϑ̃, 0) under Ho.

In particular, these three statistics do not follow a standard chi-square distribution

because the true parameter values will reach the boundary parameter {0}, the asymp-

totic distribution of the three joint tests under Ho is :

(
5

8
− ρ

2π
)χ2

0 + (
3

8
+

ρ

4π
)χ2

1 +
ρ

4π
χ2

2 (4.80)

where

ρ = arccos

(−
∑

i

`′′iας)

√
(−

∑
i

`′′iαα)(−
∑

i

`′′iςς)
(4.81)

at (µ̂, α̂, γ̂, ϑ̂, ς̂) for Wald test, and at (µ̃, 0, γ̃, ϑ̃, 0) for LR and score tests.

4.5 Test of Association

For association test, we write the hypothesis test as: Ho : α = 0 vs. H1 : α 6= 0. When

α = 0 and ς is free, the vector of random effects ξi has null mean and variance ϑ•Σi,

where ξi ∼ N(0, ϑ•Σi) with ϑ• > 0 and Σi = I + ςAi. Define θ•0 = {µ•0, γ•0}′, zij =
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{1,xij}, the estimators θ̂•0, ϑ̂
•
0 and ς̂•0 can be obtained through the procedure described

in the previous section by setting α• = α•(k) = 0 for all k, and for fixed α, the

estimators θ̂•, ϑ̂• and ς̂• can be obtained by setting α• = α•(k) for all k. Testing

association, the likelihood ratio test:

−2
N∑

i=1

(log Pr•(yi|{zi})|Ho
− log Pr•(yi|{zi})|HA

),

Wald test

α•2 (−
∑

i

`′′iα•α•)|HA
,

and score test

(
∑

i

`′iα•)
2/(−

∑
i

`′′iα•α•)|Ho

are approximately χ2 distributed with the 1 degree of freedom.

4.6 Test of Linkage

For linkage test, we write the hypothesis test as: Ho : ς = 0 vs. H1 : ς > 0. When

α is free and ς = 0, the random vector variable yij has a binomial distribution with

parameter π?
ij0

π?
ij0 = Pr (yij = 1 | ξi, ξij) (4.82)

=
eξiθ

?
0+ξij

1 + eξiθ?
0+ξij

for i = 1, 2, . . . , N ; j = 1, 2, . . . , ni.
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where θ?
0 = {µ?

0, α
?
0, γ

?
0}′, zij = {1, gij,xij}, and the independent random variable

ξij ∼ N(0, ϑ?). The estimators under the reduced model can be obtained through the

procedure described in the previous section, and for fixed ς , the estimators θ̂?, ϑ̂? can

be obtained by setting ς? = ς?(k) for all k. The asymptotic distribution of the likelihood

ratio test becomes:

−2
N∑

i=1

{log Pr?(yi|{zi})|Ho
− log Pr?(yi|{zi})|HA

}

Wald test is:

ς?2 (−
∑

i

`′′iς?ς?)|HA
,

and score test is:

(
∑

i

`′iς?)2/(−
∑

i

`′′iς?ς?)|Ho
,

which are the mixture of χ2
0 and χ2

1 distribution with mixing probabilities 1/2 and 1/2

respectively.

80



Chapter 5

Binary Phenotype with

Multivariate Random Effects -

Distribution Unknown

For binary data, however, the multivariate normal distribution assumption may not

be true or unknown population distribution sometimes, the parameters can not be es-

timated under the alternative hypothesis, LR and Wald tests can not be used, score

test can be applied. Zelterman (1988) described the score function based on a set of

mutually independent random variables for a general mixture sampling distribution.

Jacqmin-Gadda and Commenges (1995) proposed a score test for testing homogeneity

among clustered data, adjusting for the effects of covariates. Silvapulle and Silvapulle

(1995) introduced a score type statistic for testing one-sided hypotheses for indepen-
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dent and identically distributed observations. Lin (1997) developed a score test based

on an integrated quasi-likelihood function for the marginal distribution of the response

vector. Hall and Praestgaard (2001) introduced the restricted score tests that improves

upon the earlier work of Lin (1997) in terms of efficiency.

Most of the literature on score test is concerned with independent and identically

distributed observations. In this chapter, we discuss central mixture alternative hy-

potheses based on a set of dependent unknown distribution random variables. we

explore a score test that is derived from a Taylor series expansion of the likelihood

function for testing one-sided and two-sided hypotheses where the true parameter val-

ues may be on the boundary of parameter space. The main advantages of score tests

are that they require estimation of models only under the null hypothesis that no ran-

dom variables in model. If the exact population distribution is unknown or the exact

likelihood is unknown, the parameters can not be estimated to the likelihood ratio and

other equivalent forms under the alternative hypothesis. Therefore, score tests are con-

venient to apply because the full model does not need to be estimated, and we do not

need to know the exact likelihood because score tests are based on estimating equations

rather than likelihoods.

5.1 Model Specification

Suppose yi = (yi1, yi2, ..., yini
) is a vector of phenotypes with the binary variables tak-

ing values 0 and 1. 0 means that the jth individual in ith family is unaffected, while 1
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means affected. Genotypes gi = {gi1, gi2, ..., gini
} and covatiates xi = {xi1,xi2, ...,xini

}

for each members in the ith family, and the particular model is:

logit P (yi = 1) = µ1 + xiγ + αgi +
√

βξi

= λi + αgi +
√

βξi (5.1)

where µ is overall mean, α quantifies association between y and g, β quantifies linkage

between marker locus and disease locus, γ is nuisance parameter, random vector ξi

has multivariate distribution function G with mean 0 and covariance matrix Σξi
that

is known positive definite IBD matrix at tested locus in family i, and λi = µ1 + xiγ.

With this model, the hypothesis testing looks like:

Ho : α = 0 and β = 0

HA : α 6= 0 and/or β > 0.

The hypotheses of interest involve parameter α and the random effect β. The param-

eter α quantifies association between y and g, β quantifies linkage between marker

locus and disease locus. If α = 0, the traits and the marker gene are not associated.

Otherwise, the traits are associated with the marker gene. If β > 0, the marker locus

and disease locus are linked together. If the estimation gives a negative estimate of β

due to random sampling, but we know that random effect cannot be negative, we use

zero instead of a negative number of β, the marker locus does not linked with disease

locus, the only association effect α be tested.
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Again HA includes three cases: HA1 : α 6= 0, β = 0, HA2 : α = 0, β > 0 and

HA3 : α 6= 0, β > 0. Under the null hypothesis (H0 : α = 0, β = 0), the reduced

model will be:

logit P (yi = 1) = µ0 + xiγ0 = λi0 (5.2)

yi has independent identical distribution, such that the model can be expressed as a

Bernoulli distribution:

yij ∼ Ber(pij),

with the logistic link function:

pij =
eµ0+xijγ0

1 + eµ0+xijγ0
.

5.2 Test of Joint Linkage and Association

Under alternative hypothesis α 6= 0 or/and β > 0, in ith family, λi = {λij}, and

ξi = {ξij}, j = 1, ..., ni have multivariate distribution function G with mean 0 and

covariance matrix Σξi
, the likelihood function Li is given by:

Li =

∫
· · ·

∫
L(λi, α, β|yi)dG(ξi). (5.3)
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Let λ = {λi} and l(λ, α, β) =
∑N

i=1 ln Li denotes the log-likelihood function of

(λ, α, β), the efficient score for α(α = 0), β(β = 0) is denoted by:

U(α, β) =


 ∂l

∂α

∣∣∣∣
α=0
β=0

,
∂l

∂β

∣∣∣∣
α=0
β=0


 (5.4)

=




N∑
i=1

[
1

Li
× ∂Li

∂α

]∣∣∣∣
α=0
β=0

,

N∑
i=1

[
1

Li
× ∂Li

∂β

]∣∣∣∣
α=0
β=0




The Taylor series expansion for L(λi, α, β|yi) around λi0 is

L(λi, α, β|yi) = L(λi0|yi) + L
′
(λi0|yi)(αgi +

√
βξi)

+
1

2
(αgi +

√
βξi)

TL
′′
(λi0|yi)(αgi +

√
βξi) + ri (5.5)

where L(λi0|yi) is the likelihood function under Ho,

L
′
(λi0|yi) =

(
∂L(λi0|yi)

∂λi10
,
∂L(λi0|yi)

∂λi20
, ...,

∂L(λi0|yi)

∂λini0

)∣∣∣∣
λi0

and

L
′′
(λi0|yi) =




∂2L(λi0|yi)

∂λ2
i10

∂2L(λi0|yi)

∂λi1∂λi20
· · · ∂2L(λi0|yi)

∂λi10∂λini0
∂2L(λi0|yi)

∂λi20∂λi10

∂2L(λi0|yi)

∂λ2
i20

· · · ∂2L(λi0|yi)

∂λi20∂λini0
... ... ... ...

∂2L(λi0|yi)

∂λini0∂λi10

∂2L(λi0|yi)

∂λini0∂λi20
· · · ∂2L(λi0|yi)

∂λ2
ini0




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λi0

(5.6)
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are the first two partial derivatives of L(λi0|yi) with respect to λi0, and ri is the re-

mainder term. Since

∫
· · ·

∫
L
′
(λi0|yi)ξidG(ξi) = 0

∫
· · ·

∫
ξT

i L
′′
(λi0|yi)ξidG(ξi) = tr[L

′′
(λi0|yi)Σξi

]

Li can be represented as

Li = L(λi0|yi) + αL′(λi0|yi)gi +
1

2
α2gT

i L′′(λi0|yi)gi

+
1

2
βtr[L

′′
(λi0|yi)Σξi

] + Ri (5.7)

where Ri =
∫ · · · ∫ ridG(ξi). From the result given in Zelterman and Chen (1988),

∂3L(λi0|yi)/∂λ3
i0 is bounded, both ∂Ri/∂α and ∂Ri/∂β approach to 0 for all indi-

viduals as α and β ↓ 0. The efficient score U(α, β) then becomes:

U(α, β) =

(
N∑

i=1

L
′
(λi0|yi)gi/L(λi0|yi),

1

2

∑
i

tr[L
′′
(λi0|yi)Σξi

]/L(λi0|yi)

)

=




N∑
i=1

ni∑
j=1

gij

f ′ij
fij

∣∣∣∣∣
λi0

,
1

2

N∑
i=1

ni∑
j=1

(Σξi
)jj

f ′′ij
fij

∣∣∣∣∣
λi0

+
N∑

i=1

∑

j<j′
(Σξi

)jj′
f ′ijf

′
ij′

fijfij′

∣∣∣∣∣∣
λi0


 (5.8)
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where f is the probability density function of y, and f ′, f ′′ is the first−, second−order

partial derivatives with respect to λij0 under H0, the information matrix is:




I11 I12 I13

I21 I22 I23

I31 I32 I33




where

I11 = E[(∂l(λ, α, β)/∂λ)2|H0] =
N∑

i=1

ni∑
j=1

E[(f ′ij/fij)
2|H0],

I12 = I21 = E[(∂l(λ, α, β)/∂λ)(∂l(λ, α, β)/∂α)|H0]

=
N∑

i=1

ni∑
j=1

E[(f ′ij/fij)
2gij|H0],

I22 = E[(∂l(λ, α, β)/∂α)2|H0] =
N∑

i=1

ni∑
j=1

E[(f ′ij/fij)
2g2

ij|H0],

I13 = I31 = E[(∂l(λ, α, β)/∂λ)(∂l(λ, α, β)/∂β)|H0]

=
1

2

N∑
i=1

ni∑
j=1

E
f ′′ijf

′
ij

f 2
ij

(Σξi
)jj

∣∣∣∣∣
H0

I23 = I32 = E[(∂l(λ, α, β)/∂α)(∂l(λ, α, β)/∂β)|H0]

=
1

2

N∑
i=1

ni∑
j=1

Egij

f ′′ijf
′
ij

f 2
ij

(Σξi
)jj

∣∣∣∣∣
H0

I33 = E[(∂l(λ, α, β)/∂β)2|H0] =
1

4

N∑
i=1

ni∑
j=1

E

(
f ′′ij
fij

(Σξi
)jj

)2
∣∣∣∣∣
H0

+
N∑

i=1

∑

j<j′
E

(
(Σξi

)jj′
f ′ijf

′
ij′

fijfij′

)2
∣∣∣∣∣∣
H0
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The probability density function of yij under H0 is:

fij = p
yij

ij (1− pij)
1−yij ,

so that, U(α, β) becomes:

(
N∑

i=1

ni∑
j=1

(yij − pij)gij,
1

2

N∑
i=1

ni∑
j=1

(Σξi
)jj [(yij − pij)

2 − pij(1− pij)]

+
N∑

i=1

∑

j<j′
(Σξi

)jj′ (yij − pij)(yij′ − pij′)


 (5.9)

and the elements of Fisher information matrix are:

I11 =
N∑

i=1

ni∑
j=1

pij(1− pij)

I12 = I21 =
N∑

i=1

ni∑
j=1

pij(1− pij)gij

I22 =
N∑

i=1

ni∑
j=1

pij(1− pij)g
2
ij

I13 = I31 =
1

2

N∑
i=1

ni∑
j=1

pij(1− pij)(1− 2pij)(Σξi
)jj

I23 = I32 =
1

2

N∑
i=1

ni∑
j=1

pij(1− pij)(1− 2pij)(Σξi
)jjgij

I33 =
1

4

N∑
i=1

ni∑
j=1

pij(1− pij)(2pij − 1)2(Σξi
)2
jj

+
N∑

i=1

∑

j<j′
pij(1− pij)pij′(1− pij′)(Σξi

)2
jj′
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Since pij is unknown, we replace it by its MLE p̂ij under H0,

p̂ij = eµ̂0+xij γ̂0/(1 + eµ̂0+xij γ̂0)

where the values (µ̂0, γ̂0) are the MLE of (µ0, γ0) under Ho, Bartoo and Puni (1967)

demonstrated that the score test statistic is:

U(α, β)







I22 I23

I32 I33


−




I21

I31


 I−1

11

(
I12 I13

)



−1

UT (α, β)

In particular, this score statistic does not follow a standard chi-square distribution be-

cause the true parameter values are on the boundary of the parameter space. The same

as in chapter 3, for hypothesis test H0 : β = 0, α = 0 vs. Ha : β > 0 or/and α 6= 0,

the parameter β or α will reach the boundary parameter {0} at HA. As before, the

asymptotic distribution of the score test is as following:

(
5

8
− ρ

2π
)χ2

0 + (
3

8
+

ρ

4π
)χ2

1 +
ρ

4π
χ2

2 (5.10)

with

ρ = arccos
I23√
I22I33

(5.11)
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5.3 Test of Association

For testing association alone, setting free β•, the model can be expressed as:

logit P (yij = 1) = µ• + α•gij + xijγ
• + ξ•ij

= λ•ij + α•gij (5.12)

Under α = 0, the model can be reduced as,

logit P (yij = 1) = µ•0 + xijγ
•
0 + ξ•ij0 = λ•ij0 (5.13)

assuming {yij} are independent and ξ•ij0 ∼ N(0, β•20 ). The parameters of fixed ef-

fects and random effect jointly in these models can be obtained through the procedure

described in the previous section 5.2.

Let λ• = {λ•i}, λ•i = {λ•ij}, and l(λ•, α•) =
N∑

i=1

ni∑
j=1

ln fij denotes the log-

likelihood function of (λ•, α•), the efficient score for α•(α• = 0) is:

U(α•) =
∂l

∂α•

∣∣∣∣
α•=0

. (5.14)

The Taylor series expansion for fij around λ•ij0 is:

fij = f(yij|λ•ij0) + α• gijf
′
ij|λ•ij0 +

1

2
α•2g2

ijf
′′
ij|λ•ij0 + r•ij
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where f(yij|λ•ij0) is probability density function of yij under H0, similarly

f
′
ij|λ•ij0 =

∂f(yij|λ•ij0)
∂λ•ij0

∣∣∣∣∣
λ•ij0

f
′′
ij|λ•ij0 =

∂2f(yij|λ•ij0)
∂λ

•2
ij0

∣∣∣∣∣
λ•ij0

r•ij is the remainder term which equals zero as α• ↓ 0.

If µ•0, γ
•
0 , β

•
0 are known, U 2(α•)/I22 will be a χ2

1 distribution asymptotically when

H0 is true. If λ• is replaced by its estimation λ̂• under H0, then Bartoo and Puni (1967)

demonstrated the test statistic:

U 2(α•)/(I22 − I2
12/I11) (5.15)

which is approximately distributed as χ2
1 distribution under null hypothesis, where Iij

is component in the information matrix with respect to (λ•, α•).

Under the model (5.13) and score function (5.14),

U(α•) =
N∑

i=1

ni∑
j=1

(yij − pij)gij (5.16)
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and the elements of information matrix are:

I11 =
N∑

i=1

ni∑
j=1

pij(1− pij)

I12 = I21 =
N∑

i=1

ni∑
j=1

pij(1− pij)gij

I22 =
N∑

i=1

ni∑
j=1

pij(1− pij)g
2
ij

Replacing the unknown pij by its MLE p̂ij under H0,

p̂ij = eµ̂•0+xij γ̂
•
0+ξ̂•ij0/(1 + eµ̂•0+xij γ̂

•
0+ξ̂•ij0),

the values (µ̂•0, γ̂
•
0 , ξ̂

•
ij0) are obtained by model (5.13).

5.4 Test of Linkage

For linkage test, setting free α? , the model is

logit P (yi = 1) = µ?1 + xiγ
? + α?gi +

√
β?ξi

= λ?
i +

√
β?ξi (5.17)

and the likelihood function Li is given by:

Li =

∫
· · ·

∫
L(λ?

i , β
?|yi)dG(ξi), (5.18)
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where β? ≥ 0 behaves as a scale parameter, λ?
i = µ?1 + xiγ

? + α?gi, and ξi =

{ξij}, j = 1, ..., ni have multivariate distribution function G with mean 0 and covari-

ance matrix Σξi
.

Let λ? = {λ?
i}, l(λ?, β?) =

N∑
i=1

ln Li denotes the log-likelihood function of

(λ?, β?), the efficient score for β?(β? = 0) is denoted by:

U(β?) =
∂l

∂β?

∣∣∣∣
β?=0

=
N∑

i=1

[
1

Li
× ∂Li

∂β?

]∣∣∣∣
β?=0

. (5.19)

The Taylor series expansion for likelihood function L(λ?
i , β

?|yi) around λ?
i0 is:

L(λ?
i , β

?|yi) = L(λ?
i0|yi) +

√
β?L

′
(λ?

i0|yi)ξi

+
1

2
β?ξT

i L
′′
(λ?

i0|yi)ξi + r?
i (5.20)

where λ?
i0 = µ?

01 + xiγ
?
0 + α?

0gi, and L(λ?
i0|yi) is the likelihood function under H0 in

the ith family.

L
′
(λ?

i0|yi) =

(
∂L(λ?

i0|yi)

∂λ?
i10

,
∂L(λ?

i0|yi)

∂λ?
i20

, ...,
∂L(λ?

i0|yi)

∂λ?
ini0

)∣∣∣∣
λ?

i0
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and

L
′′
(λ?

i0|yi) =




∂2L(λ?
i0|yi)

∂λ?2
i10

∂2L(λ?
i0|yi)

∂λ?
i10∂λ?

i20
· · · ∂2L(λ?

i0|yi)

∂λ?
i10∂λ?

ini0
∂2L(λ?

i0|yi)

∂λ?
i20∂λ?

i1

∂2L(λ?
i0|yi)

∂λ?2
i20

· · · ∂2L(λ?
i0|yi)

∂λ?
i20∂λ?

ini0
... ... ... ...

∂2L(λ?
i0|yi)

∂λ?
ini0∂λ?

i10

∂2L(λ?
i0|yi)

∂λ?
ini0∂λ?

i20
· · · ∂2L(λ?

i0|yi)

∂λ
?2
ini0




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ?

i0

are the first two partial derivatives of L(λ?
i0|yi) with respect to λ?

i0 = {λ?
ij0}, j =

1, 2, · · · , ni, and r?
i is the remainder term. Since

∫
· · ·

∫
L
′
(λ?

i0|yi)ξidG(ξi) = 0

and

∫
· · ·

∫
ξT

i L
′′
(λ?

i0|yi)ξidG(ξi) = tr[L
′′
(λ?

i0|yi)Σξi
]

Therefore, Li from (5.17) can be represented as

Li = L(λ?
i0|yi) +

1

2
β?tr[L

′′
(λ?

i0|yi)Σξi
] + Ri (5.21)

Following the result in Zelterman and Chen (1988), Ri =
∫ · · · ∫ ridG(ξi) = 0 as
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β? ↓ 0. The efficient score U(β?) of (5.19) then becomes:

U(β?) =
1

2

N∑
i=1

ni∑
j=1

(Σξi
)jj

f ′′ij
fij

∣∣∣∣∣
λ?

i0

+
N∑

i=1

∑

j<j′
(Σξi

)jj′
f ′ijf

′
ij′

fijfij′

∣∣∣∣∣∣
λ?

i0

(5.22)

where fij is the probability density function of yij, and f ′ij, f
′′
ij are the first two partial

derivatives with respect to λ?
ij0 under H0, (Σξi

)jj is the jth diagonal value of covari-

ance matrix Σξi
and (Σξi

)jj′ is the jth row and the j′th columns non-diagonal value of

covariance matrix Σξi
in the ith family.

Under H0, the information matrix with respect to (λ?, α?)is given by:




I11 I12

I21 I22




where

I11 = E[(∂l(λ?, β?)/∂λ?)2|H0] =
N∑

i=1

ni∑
j=1

E[(f ′ij/fij)
2|H0],

I12 = I21 = E[(∂l(λ?, β?)/∂λ?)(∂l(λ?, β?)/∂β?)|H0]

=
1

2

N∑
i=1

ni∑
j=1

E
f ′′ijf

′
ij

f 2
ij

(Σξi
)jj

∣∣∣∣∣
H0

I22 = E[(∂l(λ?, β?)/∂β?)2|H0]

=
1

4

N∑
i=1

ni∑
j=1

E

(
f ′′ij
fij

(Σξi
)jj

)2
∣∣∣∣∣
H0

+
N∑

i=1

∑

j<j′
E

(
(Σξi

)jj′
f ′ijf

′
ij′

fijfij′

)2
∣∣∣∣∣∣
H0

If λ? is known, U 2(β?)/I22 will be a χ2
1 distribution asymptotically when H0 is true. If
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λ? is replaced by its MLE λ̂? under H0, the test statistic

U 2(β?)/(I22 − I2
12/I11) (5.23)

has a 50:50 mixture of χ2
0 and χ2

1 distribution under null hypothesis.

If the probability density function of yij under H0 is:

fij = p
yij

ij (1− pij)
1−yij ,

and pij is replaced by its MLE p̂ij under H0, where p̂ij = eµ̂?
0+xij γ̂

?
0+α̂?

0gij/(1+eµ̂?
0+xij γ̂

?
0+α̂?

0gij),

the values (µ̂0
?, γ̂?

0 , α̂
?
0) are the MLE of (µ?

0, γ
?
0 , α

?
0) under β? = 0. The efficient score

U(β?) becomes:

U(β?) =
1

2

N∑
i=1

ni∑
j=1

(Σξi
)jj [(yij − p̂ij)

2 − p̂ij(1− p̂ij)]

+
N∑

i=1

∑

j<j′
(Σξi

)jj′ (yij − p̂ij)(yij′ − p̂ij′) (5.24)

and I11 =
N∑

i=1

ni∑
j=1

p̂ij(1− p̂ij)

I12 = I21 =
1

2

N∑
i=1

ni∑
j=1

p̂ij(1− p̂ij)(1− 2p̂ij)(Σξi
)jj

I22 =
1

4

N∑
i=1

ni∑
j=1

p̂ij(1− p̂ij)(2p̂ij − 1)2(Σξi
)2
jj

+
N∑

i=1

∑

j<j′
p̂ij(1− p̂ij)p̂ij′(1− p̂ij′)(Σξi

)2
jj′
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Chapter 6

Simulation Study

6.1 Introduction

We have conducted extensive simulation studies to assess the performance of the pro-

posed joint linkage and association test, linkage test, and association test for quanti-

tative traits and binary traits. Phenotypes are simulated on 73 individuals using 550K

SNP genotype data from five pedigrees. A random genotype quality, SNP rs3859167

on chromosome 16, is selected to be the single marker locus explaining our simulation

studies. Simulation is done in three steps: First, 73 individual genotypes are selected

for SNP rs3859167 on chromosome 16 of five pedigrees; Second, 73 random traits

are obtained, which may be influenced by marker genotype and by environment (age);

Third, proposed methods are used to calculate the statistic value. Each simulation of

73 observations is generated as follows: Each observation consists of genotypes, a

covariates (age), and an outcome y that is the phenotype of the individual.
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6.2 Simulation Results for Quantitative Traits

First, to explore the selected sample properties of the proposed likelihood ratio test for

quantitative traits, we run a series of simulations using multivariate normal data with

several fixed effects and a random effect. Data are generated from the multinormal

mixed model (3.1) with the values of the fixed parameters at µ = 0, γ = 0.02. We

perform a simulation study based on 10,000 replicates of data sets and set α = 0, β2 =

0, and σ2 = 1 to examine the level of significance of the proposed joint test. Table

(6.1) presents the levels of significance of the tests for the multinormal mixed model.

We note from the table that the level of significance of the joint test is generally much

closer to the nominal 0.05, 0.01, and 0.001.

Nominal level .05 .01 .001
Type I error .0455 .0091 .0009

Table 6.1: Empirical level of significance for a multinormal mixed model of joint test.

The power of a statistical test is the probability that the test will reject the null hy-

pothesis when the null hypothesis is actually false. In general, the power is a function

of the possible distributions which is determined by parameters under the alternative

hypothesis. To investigate the power of the proposed likelihood ratio tests, we choose

α = −0.8,−0.4, 0, 0.4, 0.8, β2 = 0.2, 0.4, 0.6, 0.8 at σ2 = 1, and use 1,000 simulation

replications for each simulation configuration, to find the P-value of the joint linkage

and association test, linkage test, and association test. Table (6.2) presents the empir-

ical powers of the likelihood ratio tests for the joint test, linkage test, and association

test. It is clear from the table that the proposed joint test performs slightly worse than

98



association test, sometimes performs significantly better than both tests. When the

value of |α| increases, likelihood ratio method tends to provide increased powers of

the joint test and association test significantly, remained fairly constant powers of link-

age test. When the value of β2 increases, the likelihood ratio method tends to provide

results obvious increased powers of linkage test and joint test except larger |α| which

slightly decrease power, and moderately decreases the power of association test except

smaller |α| which slightly increase the power.

α β2 Test
Joint Association Linkage

.2 .984 .946 .016
-.8 .4 .981 .914 .106

.6 .954 .922 .203

.8 .956 .898 .280

.2 .704 .530 .015
-.4 .4 .652 .543 .089

.6 .676 .535 .216

.8 .684 .486 .283

.2 .008 0 .022
0 .4 .086 0 .114

.6 .161 0 .205

.8 .246 0 .298

.2 .692 .566 .010
.4 .4 .679 .540 .110

.6 .690 .506 .196

.8 .679 .505 .288

.2 .987 .936 .024
.8 .4 .973 .934 .096

.6 .961 .917 .220

.8 .958 .896 .283

Table 6.2: Empirical power for a multinormal mixed model with σ2 = 1
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6.3 Simulation Results of Binary Traits with Multivari-

ate Normal Random Effects

We perform a simulation study for binary traits with multivariate normal random ef-

fects, where the value of the logistic regression parameter µ is fixed at - 1.5, and γ is

fixed at 0.02. The value α = 0, ς = 0 are used to examine the level of significance of

the proposed joint test. For each simulation configuration, we illustrate the simulation

study based on 1,000 replicates of data sets. From Table (6.3) we can see that the 0.01

level of significance of the joint test is slightly larger than the nominal 0.01 level of

significance.

Nominal level .01
test LRT Wald score

Type I error 0.021 0.046 0.017

Table 6.3: Empirical level of significance for a binary mixed model of joint test with multivariate
normal random effects

To investigate the powers of proposed joint, linkage, and association tests for binary

mixed models with multivariate normal assumption of random variables, we choose

α = 0.35, 0.4, 0.45, ς = 0.1, 0.15, 0.2, and use 1,000 simulation replications for each

simulation configuration to find the P-value of the joint, linkage, and association stud-

ies with LRT, Wald and score tests. Table (6.4) presents the empirical powers of the

joint, linkage, and association studies when µ = 2 and γ = 0.02. It is clear from the ta-

ble (6.4) that the proposed joint test is generally more powerful than the linkage test or

the association alone for most of cases, the Wald test is much more powerful than LRT

and score tests, and LRT test is slightly powerful than score test. When the value of α
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increases, three tests tend to provide increased power for the joint and association test,

but the power of the linkage test tends no change. When the value of ς increases, three

tests tend to provide increased powers of the joint test and Wald test tends to provide

increased powers of the linkage test. The Wald test shows no powers of association

while α is small , and no powers of linkage score test.

α ς
Joint Association Linkage

LRT Wald score LRT Wald score LRT Wald score
.1 .364 .918 .363 .297 0 .253 .038 .506 0

.35 .15 .363 .992 .358 .306 0 .286 .058 .949 0
.2 .413 1 .387 .317 0 .314 .076 1 0
.1 .415 .966 .368 .396 .013 .327 .037 .553 0

.4 .15 .424 1 .373 .408 .019 .360 .078 .923 0
.2 .482 1 .458 .466 .020 .380 .1 1 0
.1 .433 .977 .377 .400 .983 .363 .032 .494 0

.45 .15 .452 1 .378 .424 .984 .369 .082 .936 0
.2 .522 1 .514 .498 .992 .433 .1 1 0

Table 6.4: Empirical power of tests for binary mixed models with multivariate normal random effects

6.4 Simulation Results of Score Tests for Binary Traits

with Multivariate Random Effects - Distribution Un-

known

A simulation study based on the score tests for binary traits with multivariate random

effects that distribution unknown, where the value of the logistic regression parameters

µ is fixed at−3 and γ is fixed at 0.02. The value α = 0, β = 0 are used to examine the

level of significance of the proposed joint score test. For each simulation configuration,

a simulation study based on 10,000 replicates of data sets was performed. Table (6.5)
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presents the levels of significance of the joint score test based on the mixture of chi-

square distributions. Here we observe that the proposed joint score test provides level

of significance that is generally larger than the nominal level at 0.05, at 0.01, and at

0.001.

Nominal level .05 .01 .001
Type I error .0564 .0200 .0079

Table 6.5: Empirical level of significance for binary mixed model of joint score test with multivariate
random effects - distribution unknown

To investigate the power of proposed joint, linkage, and association score tests,

we consider α = 0.2, 0.4, 0.6, 0.8, β = 0.2, 0.4, 0.6, 0.8, and use 1,000 simulation

replications for each simulation configuration to find the P-value of the score tests.

Table (6.6) presents the empirical powers of the joint, linkage, and association score

tests when µ = −3 and µ = −5. It is clear from table (6.6) that the proposed joint score

test is generally more powerful than the linkage score test or the association score test

alone. When the value of α increases, the power of the joint score test and association

score test increase, and the power for the linkage test tends to slightly decrease. When

the value of β increases, the power of the joint test and the linkage test increase, but

the power of association seems no change.

6.5 Overall Simulation Results

In the generalized mixed model, the proposed joint test is a simple alternative to com-

pute approximate P-values based on a mixture of chi-square distributions. The overall

results from the simulation study demonstrate that type I errors of proposed joint LRTs
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α β
µ = -3 µ = -5

Joint Association Linkage Joint Association Linkage
.2 .394 .142 .129 .350 .117 .147

.2 .4 .463 .140 .192 .416 .109 .180
.6 .562 .150 .235 .498 .106 .278
.8 .604 .118 .298 .615 .095 .378
.2 .632 .382 .115 .461 .216 .109

.4 .4 .709 .362 .146 .545 .213 .181
.6 .758 .353 .221 .628 .251 .271
.8 .790 .372 .268 .722 .232 .371
.2 .884 .746 .112 .623 .385 .124

.6 .4 .883 .692 .142 .701 .398 .190
.6 .930 .695 .201 .749 .392 .275
.8 .938 .660 .260 .836 .434 .380
.2 .978 .920 .106 .773 .586 .117

.8 .4 .969 .901 .127 .840 .603 .196
.6 .980 .898 .164 .882 .636 .273
.8 .984 .887 .213 .928 .619 .368

Table 6.6: Empirical power of score tests for binary mixed models

for quantitative traits have generally correct level at nominal 0.05, 0.01, and 0.001 sig-

nificance respectively. However, type I errors of the proposed LRT, Wald and score

tests for the binary traits with multivariate normal assumption of random variables and

score test for the binary traits with dependent unknown distribution random variables

are generally larger than nominal levels. The combined test is a robust alternative; it

does not substantially under-perform relative to either linkage or association test, and

sometimes significantly out-perform both tests.

The joint tests can keep the power advantage even when the data has either no

linkage or no association evidence. For the cases where the association parameter

increases, linkage tests may provide slightly decreased power or remain fairly constant,

while if the linkage parameter increases, association tests may lead moderately change.
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However, for either cases, the proposed joint tests result significantly increased power.

In a simulation study, we compare the Wald joint test to the LRT and score joint

tests for the binary data with multivariate normal assumption of random variables. It

is confirmed that the Wald joint test is too liberal whereas the LRT and score joint

tests are too conservative for ‘large’ α and ς , and the powers of the score test and the

LRT are non-significantly different. Our simulation studies also have confirmed that

Wald joint test has dramatically inflated type I error. For small linkage and association

parameters, the robust Wald test does not perform well.

The LR, Wald, and score tests require different models to be estimated. More

specifically, Wald test only requires the unrestricted model, score test needs the re-

stricted model only, whereas LRT requires both the restricted and unrestricted models

to be estimated. Several authors have identified problems with the use of the Wald

statistic. Menard (1995) warns that for large coefficients, standard error is inflated,

lowering the Wald statistic (chi-square) value. Agresti (1996) states that the likelihood-

ratio test is more reliable for small sample sizes than the Wald test. Comparing the

proposed joint LRT and joint score test for binary traits, the power of the joint score

test is just slightly smaller than the power of the LRT with the same parameter values.

In addition, the joint score test only requires estimation of the fixed effects regression

coefficients under the null hypothesis such that the computation of joint score test is

much faster than joint LRT (joint score test in chapter 5 with 1,000 simulation replica-

tions took 12 minutes, joint LRT in chapter 4 with 1,000 simulation replications took

8 hours of R 3.0.1 program). For large data sets, such as genome-wide SNPs, the joint
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score statistic is recommended. If the exact population distribution is unknown or the

exact likelihood is unknown, the joint score statistic has to be used. As in our data set

with 600470 SNP’s markers and unknown distribution of Familial Pulmonary Fibrosis,

the joint score test should be used.
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Chapter 7

Testing the Model with Familial

Pulmonary Fibrosis

7.1 Introduction

Many common diseases in humans are caused by complex interactions among multiple

genes with environment. A genetic predisposition may make a person vulnerable to

developing a disease, while an environmental exposure may actually cause a disease to

manifest. For example, pulmonary fibrosis (PF) is a complicated illness that the most

frequent cases are related to sarcoidosis, fibrosis associated with certain occupational

diseases, and older age, male sex, and history of cigarette smoking are important risk

factors for the development of disease. Knowing that age, cigarette smoking are the

risk factors suggest environmental factors may accentuate genetic risk and that gene-

environment interactions may be important in PF disease pathogenesis (Canadian lung

association: http://www.lung.ca/). Although we know that both environmental factors
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such as age and lifestyle factors add tremendously to the uncertainty of developing a

disease, it is difficult to measure and evaluate their overall effect on a disease process.

Here, we analyze mainly a person’s genetic predisposition and an environmental factor

(age).

Identifying common ancestors can be very important. In one extended family

members, association due to linkage disequilibrium should exist between ancestral dis-

ease susceptibility genes and closely linked markers. Investigation of genetic diseases

has been facilitated by large families, close family ties, and modest out migration. A

joint association and linkage tests that use marker and phenotype data from a number

of families should have greater power in detecting a disease susceptibility locus.

The island of Newfoundland is a sparsely populated region of Canada in which

50% of the population of 560,000 reside in small coastal communities. The colo-

nization of the island occurred primarily by natural increase from northern European

settlers of predominantly English and Irish extraction who arrived before 1835. Most

founders originated from the West Country of England and from southeast Ireland.

Mating segregation between Irish Catholics and English Protestants, low immigra-

tion, and geographical isolation of communities have resulted in genetic isolation of

the population. The Newfoundland population can be considered to have relatively

homogenous origins and consist of multiple genetically simplified isolates. Its geog-

raphy, settlement, and socioeconomic development have produced a population group

which is ideal for study of genetic diseases (Young et al. 1999; Parfrey et al. 2002).

It is known that population genetic isolation results in an increase in the possibility

107



of allele frequencies being affected by founder effects and a high coefficient of kin-

ship. Familial pulmonary fibrosis is characterized by the presence of two or more

primary biological family members (parent, child, or sibling) with the diagnosis of

Idiopathic Pulmonary Fibrosis (IPF) or any other form of Idiopathic Interstitial Pneu-

monia (IIP). IPF is a late-onset disease characterized by inflammation and scarring of

the lung parenchyma. A 10-15% of IPF is attributed to genetic causes.

FPF is considered a complex disease. This means a combination of genetic predis-

position and environmental triggers contribute to an individual developing pulmonary

fibrosis. FPF appears to transmit through families in an autosomal dominant fashion

with reduced penetrance. An autosomal dominant inheritance pattern implies that if

an affected mutation carrier has offspring, an average of 50% of the offspring of the

mutation-carrier will carry the disease-causing variant. In a disease that has reduced

penetrance, such as FPF, there are individuals who may carry the disease-causing ge-

netic variant but will not present with the disease phenotype during their lifetime. Fur-

thermore, phenocopies can also be present in families with FPF. Phenocopies are de-

fined as the same phenotype being displayed by different individuals due to differing

genetic and/or environmental causes. Disease heterogeneity in FPF within individual

families has been found recently. Genetic heterogeneity is a phenomenon in which a

single phenotype or genetic disorder may be caused by any one of a multiple number

of alleles or non-allele alterations, like insertions or deletions. Genetic heterogeneity

can be classified as either “allelic” or “locus”. Allelic heterogeneity means that differ-

ent mutations within a single gene locus (forming multiple alleles of that gene) cause
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the same phenotypic expression. Locus heterogeneity means that variation in possibly

unrelated gene loci can cause the disorder.

FPF is a rare disease with a strong genetic component that has a high prevalence

in the Newfoundland population compared to other populations, the possibility of one

or few founder mutation cannot be ruled out as being a cause. Alternatively, without

the founder effect hypothesis, one must conclude that it is the heterogeneous nature of

the disease the cause of the high prevalence of FPF in Newfoundland. Although the

complete pathogenesis of FPF is still not completely understood, the five genes (TERT,

TERC, ABCA3, SFTPC and SFTPA2) known to carry variants causing familial pul-

monary fibrosis (FPF) have been screened in our NL cohort, and Dr. Michael Woods’

laboratory showed the liability class as table (7.1)

Table 7.1: Liability class
age normal homozygous disease heterozygous disease homozygous
< 40 0.000006 0.10 0.10
40-49 0.000012 0.13 0.13
50-59 0.000034 0.33 0.33
60-69 0.000082 0.50 0.50
70-79 0.000164 0.73 0.73
> 80 0.0002 1.00 1.00

To illustrate our method, Dr. Michael Woods’ laboratory, at Memorial Univer-

sity collected blood or tissue samples of families with clinically confirmed FPF and

extracted genomic DNA from these samples. A total of five Familial Pulmonary Fi-

brosis (FPF) families which have 73 individual genotypes with 600470 SNP’s markers

are available for study. There are two distinct statistical goals: (1) Do the SNP data

provide evidence that the genetic variation contributes to FPF? (2) What is the most

109



likely location of the disease variant(s)? For these goals, we have discrete outcomes

(phenotypes) which have been clinically verified, and genotypes and covariate (age).
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Figure 7.1: Pedigree structure, phenotype for the FPF pedigree R0851
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Figure 7.2: Pedigree structure, phenotype for the FPF pedigree R0892
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Figure 7.3: Pedigree structure, phenotype for the FPF pedigree R0896
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Figure 7.4: Pedigree structure, phenotype for the FPF pedigree R0942

7.2 Linkage Analysis Results

In a pedigree, it is not possible to identify recombinants unambiguously and counts

them. Morton (1955) demonstrated that the LOD score method represents the most
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Figure 7.5: Pedigree structure, phenotype for the FPF pedigree R1136

efficient statistic for linkage analyses between Mendelian characters. In a set of fami-

lies, the overall probability of linkage is the product of the probabilities in each family,

therefore LOD scores can be added up across families. The LOD score with value 3

which corresponds to 1000 : 1 odds [log10(1000) = 3.0] is the threshold for accepting

linkage with 5% chance of error. This can be quantified in a Bayesian calculation such

that 1000 : 1 odds corresponds precisely to the conventional p = 0.05 threshold of

significance.

Two-point and multi-point linkage analysis are conducted for five pedigrees (R0851,

R0942, R0892, R0896, and R1136) where 73 individuals are genotyped from Illumina

610 Quad Array. To speed up the linkage analyses, pedigrees were trimmed to re-

move non-genotyped founders (parents of spouses), non-genotyped individuals, and

little impact individuals on linkage (Figure 7.1 to 7.5, legend for these Figures: Square
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- male; Cycle - female; Black - affected; White: - unaffected; ? mark - uncertainty

phenotype; DNA - genotyped individual).

Two-point analyses have the advantage of being (relatively) easy to do and com-

putationally fast. We carry out the Two-point linkage analyses using Merlin on Linux

and the LOD scores were compiled by extracting results from the Merlin output files.

We force 363 SNPs with the highest two-point LOD (LOD ≥ 2) scores for tag SNPs.

As seen in Figures 7.6 to 7.9 and table 7.2, there are three chromosomes (2, 6, and

18) with interesting peaks with LOD scores higher, or near to, 3. Chromosome 6 gives

the highest LOD score peak of 3.22 at marker rs942631 and 3.15 at marker rs3130922

(see figure 7.8). Chromosome 18 gives the best result with a small number of negative

values near the peak region (see figure 7.9) where the peak is 2.40 for three markers:

rs12607533, rs11082034 and rs4528652. The region can be generally defined to be lo-

cated between the first result with LOD < - 2 at rs3786276 and rs307082 in an interval

of 3 cM genetic distance which corresponds to physical distance from 320914936 to

35798935 base pairs of the peak region.

However the main disadvantage of two-point analyses is that the confidence inter-

vals for the estimates of the two-point recombination frequencies are often very wide.
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Chr Marker Lod cM Chr Marker Lod cM Chr Marker Lod cM
2 rs13410055 2.07 129.665 6 rs581046 2.39 30.053 6 rs9466615 2.29 46.345
2 rs4849902 2.08 130.460 6 rs9369762 2.38 30.450 6 rs12523660 2.30 46.348
2 rs6706968 2.73 130.493 6 rs6907651 2.38 30.450 6 rs13216722 2.30 46.355
2 rs277554 2.21 132.048 6 rs7775901 2.38 30.475 6 rs4464783 2.29 46.365
2 rs277547 2.17 132.068 6 rs4715077 2.38 30.488 6 rs4566882 2.26 46.370
2 rs17007730 2.86 134.975 6 rs9369815 2.29 30.527 6 rs4310044 2.26 46.373
2 rs6713772 2.32 134.983 6 rs1937774 2.38 30.529 6 rs4571550 2.26 46.381
2 rs6541829 2.28 134.984 6 rs11751831 2.37 30.539 6 rs12527913 2.29 46.391
6 rs12526976 2.12 2.413 6 rs11755240 2.38 30.541 6 rs17302729 2.08 47.930
6 rs9328087 2.04 6.268 6 rs7742342 2.33 31.029 6 rs3765502 2.74 48.012
6 rs2505658 2.04 6.434 6 rs7764728 2.06 33.046 6 rs9461082 2.14 49.153
6 rs9378384 2.14 10.257 6 rs957387 2.03 34.632 6 rs587009 2.38 49.205
6 rs7741360 2.36 19.490 6 rs6919364 2.12 37.385 6 rs401671 2.27 49.248
6 rs6927500 2.23 19.531 6 rs10949381 2.11 37.412 6 rs2078527 2.46 49.659
6 rs11964049 2.23 19.537 6 rs9383214 2.03 37.864 6 rs2744267 2.39 49.660
6 rs12198986 2.25 19.558 6 rs11756169 2.37 38.999 6 rs4713108 2.01 50.473
6 rs7762096 2.16 22.383 6 rs6923060 2.44 40.385 6 rs6903282 2.01 50.476
6 rs2294729 2.78 22.745 6 rs9368069 2.20 41.199 6 rs2205831 2.03 50.481
6 rs12203770 2.03 23.038 6 rs6915939 2.05 41.207 6 rs3130922 3.15 51.279
6 rs855377 2.96 23.348 6 rs7743281 2.05 41.209 6 rs2395043 2.69 51.279
6 rs1206963 2.56 23.366 6 rs16882179 2.21 41.210 6 rs2395045 2.01 51.283
6 rs707782 2.56 23.387 6 rs2876555 2.08 41.412 6 rs3131631 2.01 51.283
6 rs1925768 2.56 23.515 6 rs9358258 2.08 41.413 6 rs2269475 2.05 51.296
6 rs9477228 2.56 23.522 6 rs4712423 2.16 41.418 6 rs2280800 2.05 51.305
6 rs1322826 2.29 23.882 6 rs9356703 2.43 41.422 6 rs2242653 2.05 51.309
6 rs6906943 2.11 24.251 6 rs9358259 2.44 41.424 6 rs3763305 2.04 51.873
6 rs9358307 2.10 24.255 6 rs9358260 2.47 41.425 6 rs11753634 2.10 54.742
6 rs796102 2.04 24.782 6 rs9368104 2.42 41.426 6 rs11758426 2.08 54.751
6 rs645297 2.04 24.787 6 rs9460399 2.36 41.441 6 rs2814982 2.08 54.770
6 rs942631 3.22 25.126 6 rs1209816 2.65 41.491 6 rs2814985 2.03 54.771
6 rs9357002 2.28 25.675 6 rs10946363 2.30 42.199 18 rs1469945 2.23 54.050
6 rs2179179 2.32 26.833 6 rs9466024 2.34 43.612 18 rs2919999 2.23 54.067
6 rs7760294 2.53 26.890 6 rs1322884 2.12 44.010 18 rs717948 2.08 55.581
6 rs10484453 2.55 26.918 6 rs196048 2.09 45.269 18 rs3826608 2.12 57.306
6 rs10498677 2.55 27.112 6 rs7451606 2.03 45.562 18 rs505601 2.36 57.763
6 rs17533974 2.33 28.177 6 rs1935005 2.04 45.563 18 rs9948912 2.02 57.994
6 rs209779 2.26 28.179 6 rs1033440 2.63 46.050 18 rs4799982 2.23 59.275
6 rs9296224 2.03 28.295 6 rs2744143 2.39 46.051 18 rs4129469 2.23 59.303
6 rs913021 2.27 28.295 6 rs2655439 2.08 46.052 18 rs12607533 2.40 59.305
6 rs511574 2.13 30.031 6 rs4280956 2.20 46.269 18 rs11082034 2.40 59.318
6 rs522923 2.06 30.040 6 rs4345386 2.29 46.340 18 rs4528652 2.40 59.331
6 rs560810 2.39 30.046 6 rs13208193 2.29 46.340 18 rs12970162 2.37 59.335

Table 7.2: Markers with LOD scores higher than 2 obtained by two-point linkage analysis of chromo-
some 2, 6, and 18
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Figure 7.6: Two-point linkage LOD score on 550k SNPs for 5 FPF pedigrees on 22 autosomal chro-
mosomes

Figure 7.7: Two-point linkage LOD score on 550k SNPs for 5 FPF pedigrees on chromosome 2
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Figure 7.8: Two-point linkage LOD score on 550k SNPs for 5 FPF pedigrees on chromosome 6

Figure 7.9: Two-point linkage LOD score on 550k SNPs for 5 FPF pedigrees on chromosome 18

To overcome this disadvantage, we can use multi-point analysis. Multi-point analysis

is the most efficient method of detecting linkage, estimating recombination, and de-

termining gene order compared to two-point analysis from family data. Experimental

geneticists have used multi-point analysis for linkage study for long time.

The multi-point linkage analyses results are showed here that obtained by Merlin

software. There are three chromosomes (chromosome 6, 16, and 18) with peaks near

2 or above 2 for three-point parametric linkage analysis (see figures 7.10 to 7.13, and

tables 7.3). Chromosome 18 is the only one with LOD scores above 2.

119



Chr Marker Lod cM Chr Marker Lod cM Chr Marker Lod cM
6 rs9367137 1.81 64.369 16 rs8055935 1.97 18.117 18 rs12956578 2.88 57.533
6 rs9394894 1.94 64.468 16 rs17669255 1.97 18.170 18 rs12607135 2.89 57.534
6 rs12195244 1.94 64.510 16 rs1478713 1.97 18.183 18 rs1050265 2.96 57.561
6 rs9349232 1.94 64.680 16 rs1551960 1.97 18.200 18 rs1390430 2.98 57.575
6 rs365387 1.94 64.682 16 rs1038106 1.97 18.244 18 rs12957930 3.01 57.596
6 rs260253 1.94 64.701 16 rs1038103 1.97 18.252 18 rs12956471 3.01 57.601
6 rs12201447 1.94 64.705 16 rs17669791 1.97 18.285 18 rs16967980 3.02 57.615
6 rs7756342 1.94 64.792 16 rs4411516 1.97 18.368 18 rs9652996 3.03 57.637
6 rs9367148 1.94 64.811 16 rs2346602 1.97 18.386 18 rs2469881 3.06 57.736
6 rs7753593 1.91 65.036 16 rs2178720 1.97 18.500 18 rs519309 3.07 57.770
6 rs5014584 1.91 65.037 16 rs12709192 1.97 18.524 18 rs11665085 3.07 57.770
6 rs375435 1.89 65.139 16 rs2103403 1.97 18.539 18 rs2847593 3.07 57.777
6 rs621627 1.89 65.143 16 rs4536494 1.96 18.647 18 rs3747899 3.08 57.873

16 rs11862743 1.81 16.856 16 rs12444565 1.96 18.905 18 rs1786060 3.08 57.945
16 rs8055674 1.89 16.939 16 rs17671833 1.96 18.965 18 rs4799911 3.09 58.053
16 rs43142 1.97 17.017 16 rs17563428 1.86 19.129 18 rs4077472 3.09 58.089
16 rs1476968 1.97 17.066 18 rs17649254 2.07 57.313 18 rs611473 3.10 58.131
16 rs7195768 1.97 17.194 18 rs2096889 2.09 57.332 18 rs1539847 3.11 58.297
16 rs17140584 1.97 17.263 18 rs567058 2.12 57.363 18 rs11660785 3.11 58.303
16 rs17140687 1.96 17.425 18 rs12454634 2.12 57.366 18 rs7232868 3.11 58.322
16 rs9935419 1.96 17.441 18 rs3786279 2.12 57.367 18 rs2027754 3.11 58.440
16 rs9302824 1.96 17.453 18 rs1057251 2.12 57.369 18 rs13380988 3.10 58.466
16 rs8057575 1.96 17.480 18 rs12961465 2.13 57.382 18 rs16968965 3.10 58.478
16 rs8053669 1.96 17.480 18 rs680423 2.14 57.395 18 rs1786802 3.10 58.509
16 rs12445315 1.96 17.480 18 rs9957382 2.18 57.436 18 rs6507207 3.08 58.655
16 rs17722735 1.96 17.480 18 rs1790649 2.22 57.490 18 rs9953231 3.08 58.692
16 rs12598879 1.96 17.648 18 rs8087319 2.22 57.494 18 rs4799952 3.06 58.796
16 rs12599604 1.96 17.661 18 rs17746694 2.47 57.500 18 rs751947 3.01 59.019
16 rs11860754 1.96 17.759 18 rs1546564 2.47 57.500 18 rs930027 3.01 59.034
16 rs17141214 1.96 17.778 18 rs7238168 2.48 57.500 18 rs9954636 2.88 59.200
16 rs8046305 1.97 17.833 18 rs7238355 2.48 57.500 18 rs12607533 2.78 59.305
16 rs8057091 1.97 17.911 18 rs9652993 2.49 57.500 18 rs9948897 2.13 59.411
16 rs11643737 1.97 18.048 18 rs7236364 2.87 57.531 18 rs9807741 2.12 59.416
16 rs8053066 1.97 18.108 18 rs12955215 2.88 57.533

Table 7.3: Markers with LOD scores higher than 2 obtained by multipoint linkage analysis
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Figure 7.10: multipoint linkage LOD score on 550k SNPs for FPF pedigrees on 22 autosomal chro-
mosomes

Figure 7.11: Multipoint linkage LOD score on 550k SNPs for 5 FPF pedigrees on chromosome 6

Chromosome 6 has 13 loci with LOD scores above 1.8. The near 2 LOD score

markers are from rs9367137 (64.389 cM) to marker rs621627 (65.147 cM), and the
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Figure 7.12: Multipoint linkage LOD score on 550k SNPs for 5 FPF pedigrees on chromosome 16

Figure 7.13: Multipoint linkage LOD score on 550k SNPs for 5 FPF pedigrees on chromosome 18

highest parametric LOD score for the peak is 1.94 from marker rs9394894 (64.468 cM)

to marker rs9367148 (64.811 cM). Chromosome 16 shows that the markers that LOD

scores above 1.8 are from rs11862743 (16.856 cM) to marker rs17563428 (19.129

cM), the highest parametric LOD score for the first cluster of peaks is 1.97 from

marker rs43142 (17.017 cM) to marker rs17140584 (17.263 cM), and the second peak

from marker rs8046305 (17.833 cM) to marker rs2103403 (18.539 cM). Chromosome

18 is the only one with LOD scores above 2 from marker rs17649254 (57.313 cM)

to rs9807741 (59.416 cM). The highest parametric LOD score is 3.11 from marker

rs1539847 (58.297 cM) to marker rs2027754 (58.440 cM). For this peak, every family
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is contributing positively to the LOD score.

The major disadvantage of multipoint linkage analysis is that for n loci there may

be up to 2n−1 − 1 parameters to be estimated. So, if n is greater than 3, either the

number of families must be reasonably large , or a priori knowledge concerning values

of some of the multi-point recombination frequencies is needed.

7.3 Joint Score Linkage and Association Study Results

For testing the joint score linkage and association in a generalized mixed model with

unknown distribution of random variables, we can find an empirical P-value of the test

of the mixed chi-square distribution for single-locus one-by-one. The most popular

and simplest is the so-called minP test that takes the minimum p value of the individ-

ual tests. In the dense-map case, occurrences of spuriously small P-value at nearby

markers are no longer independent events. The results of P-value immediately trans-

late into statements about how small a P-value will be expected to occur by chance,

given the penalty size of the genome. Specifically, the penalty size M of 550k Illumina

SNP data is 1867, and putative trait loci penalty function is given by:

P ∗ = MP

Equivalently, one can combine individual score test statistics and − log10 p by their

maximum, and the penalty function is:

− log10 p∗ = − log10 p− 3.27

We perform a joint linkage and association study based on the score test for binary
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traits with multivariate unknown distribution random effects for FPF families. The

results are presented in Table 7.4, Figure 7.14 to 7.18.

There are 16 chromosomes (except chromosome 8, 9, 13, 15, 19 and 20) with val-

ues − log10 p∗ above 2 for joint linkage and association score test(see figures 7.14 and

tables 7.4). Only chromosomes 6, 17, 18, and 22 have the value − log10 p∗ around 3

(see figures 7.15 to 7.18). Marker rs4605929 (11.1421 cM) has highest score test statis-

tic 24.56885 and − log10 p∗ value 2.800226 in chromosome 6; Marker rs11078200

(39.7220 cM) has statistic 24.30622 and − log10 p∗ value 2.735171 in chromosome

17; Marker rs1941686 (55.5969 cM) has statistic value 25.56352 and − log10 p∗ value

3.026009 in chromosome 18; Marker rs114682 (36.8622 cM) has statistic 25.55801

and − log10 p∗ value 3.019527 in chromosome 22. These four are the most signifi-

cance markers that relate disease gene.

124



Chr Marker bp cM Test-Stat − log10 p∗
chr1 rs12739892 66077155 92.2933 24.13593 2.697791
chr1 rs2734690 86717023 110.7731 23.02958 2.465658
chr1 rs4847183 93957932 117.3230 22.33328 2.312328
chr2 rs6544340 40535657 65.1119 21.32333 2.084857
chr2 rs2121304 53116620 78.1286 22.04461 2.247345
chr2 rs13002109 63200206 84.7203 21.46243 2.114602
chr2 rs2121304 53116620 78.1286 22.04461 2.247345
chr2 rs13002109 63200206 84.7203 21.46243 2.114602
chr3 rs1394764 24380054 46.1834 21.60298 2.151027
chr3 rs9829159 36007577 61.1164 24.11680 2.694197
chr3 rs1147696 121602169 126.9800 22.32073 2.310858
chr3 rs1515577 121611630 126.9800 22.08907 2.259584
chr3 rs1881919 134537735 140.5947 22.28300 2.295886
chr3 rs36059 136215422 143.4800 23.68631 2.600389
chr3 rs4371486 144385643 149.8817 22.47789 2.336017
chr3 rs4839656 144397917 149.9000 22.47789 2.336017
chr3 rs4839629 144410136 149.9182 22.47789 2.336017
chr3 rs4839637 144422638 149.9369 21.66923 2.157343
chr4 rs6838690 162279202 155.0975 22.39278 2.322098
chr5 rs1363576 169332702 179.4815 21.29043 2.081115
chr5 rs7701794 170110717 182.8091 21.00161 2.023576
chr6 rs11759003 2690371 7.5082 22.16126 2.268680
chr6 rs4605929 4096517 11.1421 24.56885 2.800226
chr6 rs2064108 5609463 14.7939 23.32504 2.524652
chr6 rs4716001 9918688 23.3248 23.02176 2.458014
chr6 rs9368621 11344664 26.5768 22.98379 2.438531
chr6 rs7750679 12999287 30.2790 21.50840 2.126581
chr6 rs865226 20299817 42.2858 21.44344 2.114750
chr7 rs156675 131844848 137.5191 22.25209 2.289600
chr7 rs156974 131851408 137.5372 22.16564 2.270321
chr7 rs10260766 131868326 137.5840 22.27549 2.294533
chr7 rs2253200 137592748 145.0690 24.12334 2.709005

chr10 rs10997481 68434476 83.6192 22.83058 2.417149
chr10 rs10885336 114101192 129.3316 21.61788 2.149678
chr10 rs11198686 120696565 141.3733 22.88129 2.427675
chr10 rs11018214 129278677 159.5559 21.97567 2.214423
chr11 rs1528640 14027404 22.7726 21.32439 2.091597
chr12 rs7974181 13309964 30.9746 21.34480 2.086817
chr14 rs11158329 60752466 60.7764 22.23052 2.285244
chr16 rs6497441 9737349 24.9599 22.50869 2.351173
chr16 rs1549662 74880036 92.0534 22.57699 2.369739
chr16 rs7198446 86936870 128.3817 22.95407 2.448039
chr17 rs11078200 13696863 39.7220 24.30622 2.735171
chr18 rs1941686 29554557 55.5969 25.56352 3.026009
chr18 rs12456032 55683064 82.4427 21.09905 2.035142
chr21 rs2828183 23761888 22.8980 20.96074 2.002030
chr21 rs2226674 23840748 23.0123 22.10160 2.250789
chr21 rs8134891 28888157 30.4692 21.33917 2.095521
chr22 rs2073760 17886456 8.0471 23.31451 2.528482
chr22 rs2073762 18151568 8.6980 22.60177 2.375552
chr22 rs2073765 18180322 8.7686 22.91433 2.447694
chr22 rs114682 31398118 36.8622 25.55801 3.019527
chr22 rs1159220 31410753 36.8772 23.57574 2.582233
chr22 rs3788483 31414345 36.8815 21.54420 2.133546

Table 7.4: Markers with − log10 p∗ larger than 2 obtained by joint linkage and association analysis
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Chapter 8

Conclusions and Future Works

A joint modeling of genetic linkage and association for combinations of pedigree struc-

tures and relationship of relative individuals within pedigrees has been reviewed for

families with or without a remote common ancestor. This joint modeling uses a likeli-

hood approach that allows the inclusion of other covariates into the model of quantita-

tive and binary traits.

For quantitative traits, the approach tested has similarities with that of Zhao et al.

(1998) and Sham et al. (2000). Zhao et al. (1998) estimated the recombination frac-

tion (RF) for linkage analysis to determine the genetic distance between the putative

disease locus and the marker locus. If the estimated RF is significantly less than .5,

then a positive linkage can be declared. The presence of linkage disequilibrium im-

plies that the disease allele at the putative disease locus is associated with an allele at

the marker locus. Linkage disequilibrium is equivalent to the association between the

putative disease allele and the marker allele; that is, they are no longer independent.

Zhao et al. (1998) also used the odds ratio for linkage disequilibrium test. Further-

more, combining both linkage and linkage-disequilibrium analysis, this method pro-
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duces a combined test statistic that tests the significance of both linkage and linkage

disequilibrium, or against the significance of linkage where there is no association, or

significance of association where there is no linkage. But this joint modeling does not

allow other covariates into the model and it can not be used in a maximum likelihood

framework. Sham et al. (2000) introduced a joint likelihood ratio test for linkage and

family-based association under a variance-components model. This joint test contains

several parameters for linkage and several parameters for association respectively, and

assumes the true parameters do not reach the boundary. This joint modeling allows

other covariates into the model and it uses the maximum likelihood framework. This

method produces a combined test statistic that only detects the presence of both linkage

and linkage disequilibrium.

We consider LR, Wald and score tests on testing the joint linkage and association

components for binary traits with multivariate normal assumption random variables

in our non-linear mixed model. It is confirmed that the Wald joint test is too liberal

whereas the LRT and score joint tests are too conservative for large α and ς , and the

powers of the score test and the LRT are non-significantly different.

Also, we have explored the score test - the alternative hypotheses based on a set of

binary traits with multivariate unknown distribution random variables. The joint score

test requires estimation of the model only under the null hypothesis. This approach has

some similarities with that of Zelterman and Chen (1988), who derived test statistic

through a score test that base on independent of the particular mixing distribution.

Although our research shows none powers of linkage score test, but the joint score
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test for linkage and association provides a fast and comparable power to LRTs for

analysing large and complicated pedigrees.

In this thesis, we have derived a joint test for linkage and association. It can be used

for combinations of pedigree structures and relationship of relative individuals within

a pedigree. We also have defined separate tests for linkage and association by using

either of the two components separately. Our framework facilitates efficiency compar-

isons between the joint, association, and linkage tests. When comparing linkage and

association, no method is uniformly superior. The simulation study shows that the joint

tests have a level of significance close to the nominal levels of quantitative traits, but

the levels of significance of the joint tests are slightly larger than the nominal 0.01 level

of significance of binary traits; in addition, the joint test is more powerful than linkage

or association test alone when both sources of variation are present. Furthermore, the

joint method may also test against specific alternatives - for example, against the sig-

nificance of linkage where there is no association, against significance of association

where there is no linkage, against significance of both linkage and association.

From our joint genome-wide family-based approach, we could verify several mark-

ers which already confirmed evidence of linkage and association for FPF in 5 pedi-

grees. Through linkage and association analyses, marker rs4605929 in chromosome

6, marker rs11078200 in chromosome 17, marker rs1941686 in chromosome 18, and

marker rs114682 in chromosome 22 are the most significance markers related the dis-

ease gene.

Our joint modeling of genetic linkage and association can be present phenocopies
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in families, modeling the contributions of environmental covariates with or without

familial correlations. With this extension, our proposed methods are even more useful

for assessing the performance of various pedigree analysis methods that incorporate

environmental covariates or search for more than one disease gene at a time.

In human studies, the putative disease alleles are generally unobserved and may

need to be inferred on the basis of the observed phenotypes and their marker genes. A

joint linkage and association test based on inferred latent variables will be investigated

in a future study. To improve the efficiency of joint linkage and association analysis,

multipoint joint linkage and association analysis should be considered.

132



Reference

Abecasis GR, Cardon LR, Cookson WO (2000) A general test of association for
quantitative traits in nuclear families. Am J Hum Genet 66: 279-292.

Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) MERLIN-rapid analysis
of dense genetic maps using sparse gene flow trees. Nat. Genet. 30: 97-101.

Agresti A. (1996) An introduction to categorical data analysis. John Wiley and Sons,
Inc.

Allison DB (1997) Transmission disequilibrium tests for quantitative traits. Am J
Hum Genet 60: 676-690.

Allison DB, Fernandez JR, Heo M, Beasley TM (2000) Testing the robustness of the
new Haseman-Elston quantitative-trait loci-mapping procedure. Am. J. Hum.
Genet. 67: 249-252.

Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general
pedigrees. Am J Hum Genet 62: 1198-1211.

Amos CI (1994) Robust variance-components approach for assessing genetic linkage
in pedigrees. Am J Hum Genet 54: 535-543.

Amos CI, Zhu DK, Boerwinkle E (1996) Assessing genetic linkage and association
with robust components of variance approaches. Ann Hum Genet 60: 143-160.

Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE,
Xie M, Vulto I, Phillips JA, Lansdorp PM, Greider CW, Loyd JE (2007) Telom-
erase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med.
356: 1317-26.
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Appendix A

Laplace’s Method

In mathematics, Laplace’s method is a technique used to approximate integrals of the
form ∫ b

a

eMf(x)dx

Assume that the function f(x) has a unique global maximum at x0. If the limits of
integration go from −∞ to +∞, then

∫ b

a

eMf(x)dx ≈
√

2π

M |f(x0)′′| eMf(x0) as M −→∞

A generalization of this method and extension to arbitrary precision is provided by Fog
(2008).

In order to find the value of Pr(yi | {zij}), The Laplace approximation goes a fol-
lows:

Pr(yi | {zij}) =

∫

Rni

Pr(yi | {zij}, ξi) f(ξi) dξi (1.1)

define F0(ξi) as

F0(ξi) = − 1

2niϑ
ξ′iΣ

−1
i ξi +

1

ni
log Pr(yi | {zij}, ξi) (1.2)
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then

Pr(yi | {zij}) =

√
1

(2π ϑ)ni |Σi|
∫

Rni

eniF0(ξi) dξi

≈
√

1

(niϑ)ni |Σi| |Ro| eniF0(ξ̆io)

(1.3)

as ni −→∞, where z̆o is the solution to

∂F0(ξi)

∂ξi
= 0

and Ro is defined as

Ro = −∂2F0(ξi)

∂ξi ∂ξ′i

∣∣∣
ξi=ξ̆io

i.e., ξ̆io satisfy
ξ̆io = ϑΣi

(
yi − E(yi | {zij}, ξ̆io)

)
(1.4)

and

Ro =
1

niϑ
Σ−1

i +
Var(yi | {zij}, ξ̆io)

ni
. (1.5)
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