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Abstract 

Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyses 

triglycerides within circulating lipoproteins. Macrophage LPL contributes to 

atherogenesis, but the mechanisms behind it are poorly understood. I hypothesized that 

the free fatty acid (FFA) component of the products of lipoprotein hydrolysis generated 

by LPL promotes atherogenesis by inhibiting the cholesterol efflux ability by 

macrophages. To test my hypothesis, THP-1 macrophages were incubated overnight with 

lipoprotein hydrolysis products generated by LPL. Results showed that the hydrolysis 

products negatively modulated the transcripts encoding nuclear receptors, cholesterol 

transporters, and enzymes involved in FFA synthesis. A mixture of only purified FFA that 

matches those liberated by LPL yielded comparable results to those for lipoprotein 

hydrolysis products. Furthermore, the FFA mixture significantly attenuated 

apolipoprotein A-I-mediated cholesterol efflux. Overall, these data show that lipoprotein 

hydrolysis products generated by LPL may promote atherogenesis by inhibiting 

cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. 
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Chapter 1: Introduction 

1.1 Lipoproteins 

Lipoproteins are a complex assembly consisting of lipid and protein, allowing 

lipids to be transported within the circulation for delivery to different tissues (1). 

Lipoproteins are segregated into five major classes, categorized by density. Each class has 

a distinct lipid and protein composition, and each plays specific roles in lipid metabolism. 

These five classes of lipoproteins, in order of increasing density, are chylomicrons (CM), 

very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density 

lipoprotein (LDL), and high-density lipoprotein (HDL) (1). Lipoproteins share the same 

general structure, including a hydrophobic core and a surface monolayer with embedded 

apolipoproteins (apo), which are required for solubilizing the lipid and for receptor 

recognition (1). Specifically, the hydrophobic core consists of triglycerides (TG) and 

cholesteryl esters (CE), while the surface monolayer consists of amphipathic lipids, 

including phospholipids (PL) and cholesterol (1). 

In the intestine, the dietary ingested TG and PL are hydrolysed by pancreatic lipase, 

generating free fatty acids (FFA). The generated FFAs subsequently enter the intestinal 

absorptive cells and are subsequently reassembled into TG and/or PL, which are then 

further packaged into CM along with cholesterol and CE (1). Following this, the newly 

synthesized CM is secreted into the lacteals and eventually enters the vascular circulation. 
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Within the circulation, the CMs are captured by lipoprotein lipase (LPL) in different 

tissues, and the hydrolysis of the TG components subsequently follows. As a result, the 

CM becomes a smaller and denser particle, that is known as a CM remnant. The CM 

remnant can be rapidly taken up by the liver, where its protein and lipid cargo can be 

used for intracellular functions, including the synthesis of VLDL (Figure 1) (2, 3).  

Similarly to CM, newly synthesized VLDL is secreted from the liver into the 

plasma, and is hydrolysed by LPL within the circulation. The hydrolysis of its TG 

component leads to an increase of lipoprotein density, thus generating IDL. IDL continues 

to travel through the circulation, and the TG and PL components are further hydrolysed by 

both hepatic lipase (HL) and LPL. The hydrolysis of the IDL TG and PL result in the IDL 

to become a cholesterol-rich lipoprotein, which is termed LDL (4). LDL functions in the 

delivery of cholesterol to cells. When a cell requires cholesterol for constructing its 

membrane or for synthesizing steroid hormones, circulating LDL will be recognized and 

endocytosed by the cellular LDL receptor. In addition, the excess LDL in the bloodstream 

will be eliminated by the liver via LDL receptor-mediated endocytosis to avoid high 

circulating levels of LDL (Figure 1) (1). 

Different from the other 4 classes of lipoproteins, which function in delivering 

lipid to the peripheral cells, HDL is responsible for transporting excess cellular 

cholesterol to the liver for excretion into bile by the process of reverse cholesterol 

transport (RCT) (5, 6). Briefly, within the circulation, HDL precursors (a complex of 

 2
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Figure 1: The metabolism of chylomicrons and VLDL 
 
Chylomicrons (CM) are produced in the intestine and are ultimately delivered into the 
bloodstream. The circulating CM triglycerides (TG) are hydrolysed at different tissues by 
lipoprotein lipase (LPL); the hydrolysis liberates free fatty acids (FFA) and generates a 
cholesterol rich CM remnant. The CM remnant can be rapidly taken up by the liver, where 
its protein and lipid cargo can be used for various purposes, including the synthesis of 
very low-density lipoprotein (VLDL). Once synthesized by liver, VLDL is secreted into 
the circulation, where its TG and phospholipids (PL) are hydrolysed by LPL, hepatic 
lipase (HL), and endothelial lipase (EL). These actions increase the density of the VLDL 
into an intermediate-density lipoprotein (IDL) and low density lipoprotein (LDL). Lastly, 
excess circulating LDL can be removed by many tissues, including the liver. 
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apoA-I and PL) continually obtain cholesterol that is effluxed from the peripheral cells to 

form a mature HDL particle, which is eventually eliminated from the circulation by the 

liver (Figure 2) (for more details see section 1.4). 

1.2 Lipoprotein lipase and the sn-1 lipase subfamily 

1.2.1 Overview of the sn-1 lipase subfamily 

Lipases are water-soluble enzymes that function to liberate FFA from lipids by 

hydrolysing ester bonds. The sn-1 lipase subfamily specifically functions to hydrolyse the 

ester bond at the sn-1 position of circulating TG and PL (Figure 3). This subfamily 

includes LPL, HL and endothelial lipase (EL), which are thought to share structural 

homology. In addition to their catalytic function, LPL, HL, and EL also exhibit a 

non-catalytic function by binding to cell surface proteoglycans, which acts to facilitate the 

uptake of lipoproteins by cells by bringing the lipoproteins in close proximity to cell 

surface receptors. The non-catalytic function of these lipases is thought to contribute to 

lipoprotein metabolism independently of the catalytic function (7-11). 

Previous studies have implicated LPL, HL, and EL in the modulation of 

atherosclerosis by both their catalytic and non-catalytic functions. LPL appears to exhibit 

an anti-atherogenic function; however, its expression in macrophages is tied with an 

increased risk of atherosclerosis (for more details see section 1.3.2) (12-17). The role of 

HL in atherosclerosis is unclear: hepatic HL has been suggested to play an 
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Figure 2: Reverse cholesterol transport 
 
Excess non-hepatic cellular cholesterol and phospholipid is transferred to extracellular 
apolipoprotein A-I (apoA-I) by the cholesterol transporter adenosine triphosphate-binding 
cassette transporter, sub-family A, member 1 (ABCA1) to form nascent HDL, which can 
continue to accept cellular cholesterol via the cholesterol transporters adenosine 
triphosphate-binding cassette transporter, sub-family G, member 1 (ABCG1) and 
scavenger receptor class B member 1 (SR-BI). The newly acquired cholesterol can be 
esterified to cholesteryl esters (CE) by lecithin:cholesterol acyltransferase (LCAT). 
Through this process, the nascent HDL becomes a large mature HDL particle. In humans, 
the cholesteryl ester transfer protein (CETP) can move some of the HDL CE to 
triglyceride (TG)-rich lipoprotein particles in exchange for TG, thus allowing some of the 
CE to be removed from the circulation via very low-density lipoprotein (VLDL) or 
low-density lipoprotein (LDL) receptors. While on the way back to the liver, HDL is 
hydrolysed by hepatic lipase (HL) and endothelial lipase (EL), leading to the liberation of 
CE from HDL at the liver. As a result, the released CE will be taken up by the liver via 
the dual-directional cholesterol transporter SR-BI, while the liberated apoA-I is available 
to restart the RCT process.  
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Figure 3: Triglyceride and phospholipid structure and the site of action of sn-1 
lipase subfamily  
 
A: The structure of triglyceride. B: The structure of phospholipid. The red vertical line 
where shown indicates the site of hydrolysis by sn-1 lipase subfamily members. 
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anti-atherogenic role by facilitating the elimination of pro-atherogenic TG-rich 

lipoproteins from the circulation (18-23); however, macrophage HL has been shown to 

increase aortic lesion areas, which suggests a pro-atherogenic role (23). Experimental 

results from EL knockout and overexpression studies suggest that EL is more likely to 

exhibit a pro-atherogenic property. Specifically, i) the transgenic expression of human EL 

in mice leads to a reduced level of circulating HDL, due to a high HDL catabolism rate in 

the liver and kidneys (24-27); ii) the expression level for EL positively correlates with the 

development of atherosclerosis (28, 29); and iii) EL-knockout mice have an increased 

HDL level and decreased atherosclerotic lesion area (27, 29-31). However, the exact role 

of EL in atherogenesis is currently uncertain. 

1.2.2 The tissue expression profile and physiological action sites of the sn-1 lipase 

subfamily members 

LPL, HL, and EL are commonly expressed in monocyte-derived macrophages and 

in hepatocytes (26, 32-36). Additionally, LPL is specifically expressed in the heart, 

skeletal muscle, adipose tissue, spleen, mammary glands, and lung (36-38). HL activity 

has been isolated from adrenal tissue and ovaries (39-42). The expression of EL has been 

identified in placenta, thyroid, lung, and kidney (26, 34). 

Non-macrophage LPL and HL are first synthesized by parenchymal cells, where 

they are then translocated to the luminal surface of the capillary endothelium to bind with 
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cell surface proteoglycans (37, 38, 43-50). Here, they are exposed to the bloodstream to 

access the lipoproteins within the circulation. Non-macrophage EL is synthesized by 

arterial/venous endothelial cells and binds directly to the luminal surface of the capillary 

endothelium (26, 34). 

1.2.3 The structure of the sn-1 lipase subfamily 

LPL, HL, and EL exhibit at least a 40% amino acid sequence identity with each 

other (7). Furthermore, multiple conserved amino acid sequences have been identified, 

which include a catalytic triad of serine (Ser), aspartic acid (Asp), and histidine (His), and 

the lipase consensus sequence glycine (Gly)-x-Ser-x-Gly (where x represents any amino 

acid) (51, 52). Although the crystal structures for LPL, HL, and EL have not been 

elucidated, a putative model of the tertiary structures for LPL and HL were previously 

reported based on the three-dimensional structure of the related lipase pancreatic lipase (53, 

54). The putative tertiary structures of LPL and HL include two major structural domains: 

an amino-terminal globular domain, and a carboxyl-terminal -barrel domain. The 

amino-terminal globular domain has been identified to contain the Ser-Asp-His catalytic 

triad and a ‘lid’ domain, which are both important for the catalytic activity of the lipase; the 

catalytic triad is covered by the lid domain. As a result, the substrate only has access to the 

catalytic site when the lid domain moves away from the catalytic triad. Thus, the lid 

domain plays a partial role in determining the substrate specificity of the lipase (55, 56).    
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1.2.4 The substrate preference of the sn-1 lipase subfamily and its role in lipoprotein 

metabolism 

LPL, HL, and EL exhibit different relative affinities to diverse lipid substrates. 

Specifically, LPL shows a high TG lipase activity and low phospholipase activity, whereas 

EL exhibits a dominant preference for PL; HL has an equal substrate preference for TG and 

PL (7, 57, 58). Due to the differences in substrate specificities, LPL, HL, and EL differ 

widely in their roles within lipoprotein metabolism. Specifically, LPL primarily 

hydrolyses TG rich lipoproteins, including CM, VLDL, and LDL; HL hydrolyses all 

classes of lipoproteins, while EL is mainly responsible for catalyzing the hydrolysis of 

HDL (35, 57, 59, 60). 

1.2.5 The synthesis, processing, and secretion of LPL 

Similar to any other secretory protein, the gene for LPL is first transcribed to 

messenger RNA (mRNA) in the nucleus. The mRNA is then further transported to the free 

cytosolic ribosome, where a signal sequence is synthesized. The signal sequence functions 

to assist the transport of the mRNA-ribosome complex to the rough endoplasmic reticulum 

(ER). Once the mRNA-ribosome complex binds to the rough ER, the signal sequence is 

removed and the translation of LPL mRNA is restored, while the newly synthesized 

polypeptide enters the ER lumen (61). 

Within the ER, LPL is N-glycosylated with a high mannose content (rendering it 
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sensitive to endoglycosidase H cleavage) at asparagines 43 and 359 of full-length LPL 

(61-64). Next, glucose residues are trimmed from the glycosylation chains by glucosidase; 

this step is deemed to be critical for LPL function, as it induces partial catalytic activity 

(65-67). In addition, the existence of LPL activity in the ER suggests that the trimming of 

glucose residues allows for the dimerization of LPL (61, 66, 68-70). Lastly, the partially 

active LPL is transferred to the Golgi apparatus, where the N-linked oligosaccharide 

chains are further processed into more complex branched chains that become insensitive to 

endoglycosidase H cleavage (61). The fully processed LPL in the trans-Golgi network is 

then delivered to secretory vesicles. However, not all of the newly synthesized LPL will be 

secreted, as some is delivered to lysosomes for degradation (37, 61). A yet to be identified 

sorting process is believed to exist in the trans-Golgi network, which is responsible for the 

degradation of excess LPL (37, 61). 

After being secreted from the parenchymal cell, LPL will immediately bind to the 

surface of the parenchymal cell through highly negatively charged, membrane bound 

chains of heparan sulfate proteoglycans (HSPG). Afterward, the LPL is displaced from 

the parenchymal cell surface. It crosses the interstitial space, and is finally transported to 

its physiological action site (37, 61). To date, few pathways explaining how LPL crosses 

the endothelial monolayer to reach the circulation have been identified. Nonspecific 

transport of LPL is achieved by either cellular vesicular transit or paracellular routes, 
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while specific transport has been identified that needs the assistance of both HSPG and 

VLDL receptors (60, 71-74). Furthermore, Davies et al. (75) have recently identified that 

glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 

(GPIHBP1) functions to transport LPL across endothelial cells, and a deficiency of 

GPIHBP1 in mice results in an incorrect LPL localization. 

1.2.6 The Regulation of LPL 

1.2.6.1 Transcriptional regulation 

The transcriptional regulation of LPL is achieved through the interaction between 

transcription factors and cis-acting sequences, which are present in the regulatory regions 

of the LPL gene (37, 61). Previous studies have reported multiple mechanisms underlying 

the transcriptional regulation of LPL by metabolites and certain drugs. Firstly, in liver, 

adipose tissue, and macrophages, the transcript of LPL has been shown to be modulated 

through the binding of the peroxisome proliferator activated receptor (PPAR)-PPAR-, 

and 9-cis retinoic acid receptor to the peroxisome proliferator response element (PPRE) in 

response to fibrates, fatty acids, glucose, and thiazolidinediones (76-79). Secondly, in 

adipocytes, sterols induce modulation of LPL gene transcripts; this is partially mediated 

through the sterol regulatory element binding protein (SREBP) (80). Thirdly, Zhang et al. 

(81) previously showed that a high cholesterol diet could result in a selective expression of 

LPL in the liver and macrophages via the binding of liver X receptor/retinoid X receptor 
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(LXR/RXR) to its response element, which is located between exon 1 and 2 of the LPL 

gene. In addition, Hughes and colleagues (82) have shown that interferon- acts to 

decrease the DNA binding activity of the transcription factor specificity protein (Sp) Sp1, 

as well as the stability of Sp3. This further results in a decreased binding of Sp1 and Sp3 to 

the LPL promoter, and eventually leads to suppression of the transcript for LPL. Lastly, 

Tanuma et al. (83) showed that the transcripts of LPL could be silenced by the binding of 

an unknown LPL silencer protein (with a mass between 54 and 63 kDa) to the silencing 

element, which is located in the promoter at positions -225 to -81.  

1.2.6.2 Translational regulation 

Some mechanisms have been identified for the translational regulation of LPL. 

Yukht et al. (84) found that catecholamine can inhibit LPL synthesis through an interaction 

between a trans-acting factor (likely a protein) and the proximal 3’ untranslated region 

(UTR) binding site of the LPL mRNA that lies between nucleotides 1599 and 1638. Kern 

and co-workers (85) found that LPL synthesis is enhanced in hypothyroid rat adipocytes 

versus wild type adipocytes due to the reduced activity of a translation-inhibitory factor, 

which acts to inhibit the translation of LPL by binding to the same proximal 3’ UTR 

binding site of LPL mRNA as stated above . Ranganathan et al. (86) previously showed 

that epinephrine could inhibit LPL translation in adipocytes due to the binding of a 

trans-acting binding protein (of about 30 kDa) to another 3’ UTR binding site within the 

LPL mRNA that resides between nucleotides 1601 and 1650 . Insulin also regulates the 
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translation of LPL. In insulin deficient rats, a reduced translation of LPL in adipose tissue 

was identified as a result of the binding of an unknown cytoplasmic protein to the 3’ UTR 

binding site of the LPL mRNA between nucleotides 1834 and 1980 (87). Notably, in 

addition to modulating LPL expression at translational level, Semenkovich et al. (88) 

showed that insulin functions to increase the level of LPL mRNA by enhancing the LPL 

mRNA stability in adipocytes.  

1.2.6.3 Post-translational regulation 

The post-translational regulation of LPL includes the modulation of the 

degradation, processing, secretion, and translocation of LPL protein. Evidence exists to 

suggest that fasting may prevent either the elimination of glucose from LPL N-linked 

oligosaccharides, or the transfer of LPL from the ER to the cis-Golgi network, thus, 

resulting in a decrease of LPL activity (89). Specifically, although the mRNA level and 

synthesis rate of LPL in adipose tissue was increased by 2-fold in fasting mice, the LPL 

mass was unchanged and the LPL activity was decreased by 50% versus fed mice (89). 

Consistent with this observation, the LPL within adipose tissues of fasting mice was found 

to be 65% as an endoglycosidase H-sensitive (high mannose glycosylated ER) form and 

35% as an endoglycosidase H-insensitive (low mannose Golgi-derived) mature from, 

while the refeeding of mice led to a LPL profile of 35% high mannose ER form and 65% 

Golgi-derived form (89). On the other hand, kinetic analysis indicated that fasting did not 

affect the degradation rate of ER-derived LPL, but markedly enhanced (by 3.5-fold) the 
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fractional catabolic rate of mature LPL in the secretory compartment of Golgi (89). 

Furthermore, fasting yielded a similar effect on LPL activity in heart, without affecting the 

LPL mRNA level and synthesis rate (89). Additionally, lipase maturation factor 1, a newly 

identified ER-transmembrane protein, has been shown to regulate LPL at the 

post-transcriptional level by affecting the dimerization of inactive LPL monomers (which 

is a crucial step in activating LPL), and the stabilization of active LPL homodimers (90, 

91).   

1.2.6.4 Signalling transduction mechanisms involved in the regulation of LPL 

To date, multiple intracellular signalling transduction pathways have been 

identified which function to regulate the expression of LPL. Firstly, Tengku-Muhammad et 

al. (92) previously showed that lipopolysaccharide and cytokines function to regulate the 

expression of macrophage LPL by tyrosine kinases in the presence or absence of 

phosphatidylinositol-3-kinase activity. Secondly, in macrophages, the activation of protein 

kinase C (PKC) by agents including glucose, homocysteine, platelet-derived growth factor, 

and reactive oxygen intermediates, has been shown to be involved in stimulating LPL 

expression and secretion (76, 93-95). Specifically, Beauchamp et al. (76) showed that the 

treatment of macrophages with the PKC inhibitor Calphostin C abolishes the 

homocysteine-induced stimulation of LPL transcription and translation; similarly, the 

abolishment of homocysteine-induced stimulation of LPL expression by D-glucose has 

also been reported by Sartippour et al. (93). Renier et al. (95) showed that inhibiting PKC 
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activity within macrophages by Calphostin C completely inhibited reactive oxygen 

species-induced LPL secretion. Inaba et al. (94) have also shown that blocking PKC using 

staurosporine significantly suppressed platelet-derived growth factor 

(BB homodimer)-induced LPL activity in macrophages. Thirdly, Kraemer et al. (96) 

showed that in adipocytes, the insulin-stimulated activity of LPL can be restored in the 

presence of wortmannin by inhibiting the activity of phosphatidylinositol-3-kinase. They 

also found that similar to wortmannin, rapamycin acts to abolish the insulin-induced 

activation of LPL activity in adipocytes by indirectly inhibiting the activity of p70S6 

kinase via the direct inhibition of the mammalian target of rapamycin protein (96, 97). 

Lastly, cyclic adenosine monophosphate (cAMP) exhibits species specificity in modulating 

the LPL synthesis. Studies using multiple human and rat tissues plus cell models (including 

the human adrenocortical carcinoma cell line-NCI-H295, rat brown adipose tissue, human 

THP-1 cells, and rat mesenchymal heart cells), showed that cAMP exhibits a positive 

correlation with LPL transcripts, while studies using mouse cell models (including J774 

macrophage and 3T3-F442A adipocyte) found that the secretion and transcription of LPL 

was negatively regulated by cAMP (98-103). However, Gardette et al. (104) found that the 

treatment of human monocyte-derived macrophages with cAMP significantly attenuated 

the secretion of LPL, while Peinado-Onsurbe et al. (105) observed that an increase of 

cellular cAMP positively regulated the LPL activity in the neonatal mouse hepatoma cell 

line BWTG3.  
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1.2.7 Activity and substrate specificity of LPL 

LPL exhibits a catalytic function, as well as a non-catalytic bridging function that 

is independent of catalysis. The catalytic function is the most well studied and is deemed to 

be the most important. LPL mainly acts to catalyze the hydrolysis of fatty acyl chains from 

TG within circulating lipoproteins. In vivo, the circulating TG is derived from two 

pathways: one is from diet by intestinal absorption (secreted as CM), and the other is 

endogenous synthesis by the liver (secreted as VLDL) (43, 106-108). Through the 

catalysis by LPL, the TG component of CM is removed, thus forming a cholesterol 

enriched particle known as a CM remnant; the CM remnants are removed from the 

circulation by the liver through LDL receptor family members (106, 109). In contrast, 

within the circulation, following a series of attachment/detachment events in different 

tissues, the liver derived VLDL are converted to IDL and further to LDL, in part through 

the catalysis by LPL, thus enabling the lipid to be distributed to tissues within circulation 

(106). 

An in vitro study conducted by Deckelbaum and co-workers (110) showed that 

compared to long-chain TG (LCT) (with fatty acid chains containing 16 to 18 carbons), 

LPL displayed a marked preference for the hydrolysis of medium-chain TG (MCT) (with 

fatty acid chains containing 8 to 10 carbons). This is probably because MCT has a higher 

solubility and the increased mobility at the emulsion-water interface versus LCT (110). 
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The preferential hydrolysis of TGs by LPL is also relative to the degree of saturation of 

fatty acyl chains bound to the glycerol backbone (111). In general, TGs containing 

medium saturated or long unsaturated fatty acyl chains were shown to be better 

substrates for LPL versus TGs with long-chain saturated fatty acyl chains (111). 

Furthermore, due to the effects of steric hindrance, the first 8 carbons of the fatty acyl 

chains were shown to be critical for the ability of LPL to liberate the fatty acyl chains 

from TG. Specifically, LPL was shown to exhibit the highest enzyme affinity to the fatty 

acyl chain with 8 carbons, and it exhibited an advanced enzyme affinity to TG with fatty 

acyl chains that have a cis-double bond at C9 position (111). Additionally, it has been 

shown that the liberation of saturated and monounsaturated C16-18 FFA from TG by LPL 

is faster than those for the C20 fatty acids arachidonic acid and eicosapentaenoic acid 

(112, 113). LPL hydrolyses the C22 docosahexaenoic acid ester bond from TG at a rate 

between the hydrolysis rate of C16-18 acid ester bonds and C20 acid ester bonds (112, 113). 

Moreover, the same trend was observed in the hydrolysis of fatty acid ester bond from PL 

by LPL (112). 

The non-catalytic bridging function of LPL normally refers to its ability to bind to 

lipoproteins and cells simultaneously, which allows for facilitating the uptake and 

degradation of lipoproteins (9, 60, 114). Previous in vitro and in vivo studies showed that 

the cell binding sites of LPL are the sulfated proteoglycans of HSPG, plus cell surface 
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proteins, including LDL receptor related protein, LDL receptor, VLDL receptor, gp330, 

apoE receptor, and GPIHBP1 (9, 15, 60, 114-116). Mamputu et al. (117) also previously 

showed that a bridging action by LPL occurs between cells, as they found that LPL could 

bind simultaneously to both monocyte surface HSPG and to the cells of the arterial 

endothelium.  

The functions of LPL can regulate other processes, including functioning to trigger 

the expression of tumour necrosis factor alpha (TNF-, suppressing the secretion of apoE, 

and activating endothelial NAD(P)H oxidase (118-120). Specifically, Renier et al. (118) 

previously observed that the incubation of macrophages with LPL increased the 

expression of TNF- by promoting the transcription of TNF- via nuclear factor 

kappa-light-chain-enhancer of activated B cells, and an increased stability of the TNF- 

mRNA. Lucas et al. (120) previously showed that either directly incubating macrophages 

in the presence of LPL or pre-binding LPL to macrophage cell surfaces led to a decreased 

secretion of apoE, likely through a mechanism associated with the LDL receptor. 

Esenabhalu et al. (119) have observed that the expression of human LPL in mouse aortic 

smooth muscle cells resulted in a deposition of FFA in the aorta, which further acts to 

activate the endothelial NAD(P)H through a PKC-dependent mechanism. Furthermore, 

Mamputu and colleagues (121) also showed that LPL promotes the proliferation of 

vascular smooth muscle cells (VSMC) through the co-operation between its catalytic and 
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non-catalytic function: they observed that the LPL induced proliferation of VSMC was 

abolished by inactivating LPL, and by releasing LPL from the cell surface using 

heparinase. 

1.3 Atherosclerosis 

1.3.1 Overview of atherosclerosis 

Atherosclerosis refers to the thickening of the artery wall, which results from the 

formation of atheromatous plaques in the sub-endothelial space. The atherosclerotic plaque 

consists of lipid-laden foam cells, proliferating smooth muscle cells, and multiple 

extracellular materials, including collagen, sulfated glycosaminoglycans, fibrin, and 

cholesterol (122, 123). Atherosclerosis is initiated when the excess circulating plasma LDL 

invades the sub-endothelial space, where the LDL is susceptible to oxidation (124, 125). 

Once the LDL is oxidized, it will entice the blood circulating monocytes to migrate into the 

sub-endothelial space, where they further differentiate into macrophages that can take up 

the oxidized LDL (ox-LDL) (125). The continuing uptake of ox-LDL slowly turns the 

macrophages into lipid-laden foam cells. Concomitantly, with the accumulation of foam 

cells, a fatty streak is formed. This is considered as the early state of atherogenesis (125, 

126).  

In the development of atherosclerosis, the smooth muscle cells migrate into the 

sub-endothelial space from the medial layer of the artery wall. Similar to macrophages, 
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these smooth muscle cells subsequently transform into foam cells by taking up ox-LDL. 

More importantly, under the activation of ox-LDL, the smooth muscle cells generate 

several extracellular matrix proteins, which induce the fatty streak formation and cause the 

foam cells to form a fibrous cap (122, 123, 127). Meanwhile, the interactions between cells 

and the cytokines within the sub-endothelial space act on triggering the apoptosis of 

macrophages and smooth muscle cells, resulting in the accumulation of extracellular 

cholesterol and the formation of the necrotic core, which is characteristic of advanced 

atherosclerotic plaques (122, 123). In vivo, advanced atherosclerotic plaques mainly lead 

to the ischemic symptoms of atherosclerosis by narrowing the vessel lumen. However, the 

neovascularization together with the matrix metalloproteinases, which are secreted by 

macrophages and smooth muscle cells, act on weakening the atherosclerotic plaque (128, 

129). Thus, in lesions with a thin fibrous cap and a large necrotic core, the plaque is prone 

to rupture. This leads to the thrombosis of the vessel that eventually can cause an acute 

cardiovascular event, such as stroke or myocardial infarction (130, 131). 

1.3.2 The pro-atherogenic effects of macrophage LPL 

The pro-atherogenic property of macrophage LPL was first reported by Zilversmit 

(132), based on an observation in cholesterol fed rabbits that the arterial LPL content 

positively correlated with the amount of aortic cholesterol and the rate of plasma CE influx 

to the artery. Following this report, evidence from in vivo studies further confirmed a link 
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with LPL expression and atherogenesis. This included: i) the existence of LPL mRNA and 

protein in atherosclerotic lesion macrophages (133); ii) an enhanced peritoneal 

macrophage LPL mRNA and protein expression level in an atherosclerosis-susceptible 

mouse strain (134); and iii) elevated plasma cholesterol in apoE-null mice positively 

related with the accumulation of CE in atherosclerotic lesion macrophages and the 

expression of LPL (135). 

LPL clearly influences lesion development in vivo. Babaev and colleagues (136) 

have reported that the injection of homozygous LPL deficient fetal hepatic cells in 

irradiated C57BL/6 mice results in a significant decrease of atherosclerotic lesion size 

versus mice injected with wild type hepatic cells. They also showed that the injection of 

homozygous LPL deficient fetal hepatic cells in irradiated male LDLR-null mice fed an 

atherogenic diet for 8 weeks significantly reduced the proximal aortic lesion area (by 33%) 

and en face aortic lesion size (by 38%) at the end of 8 weeks, versus mice injected with 

wild type hepatic cells. In addition, at the end of 19 weeks, the en face aortic lesion size in 

the mice injected with fetal homozygous LPL-deficient hepatic cells was reduced by 69%, 

versus mice injected with wild type hepatic cells. (137). Notably, the post-heparin plasma 

LPL activities and plasma lipid profiles were unchanged in these studies, which suggested 

that the attenuated atherosclerosis in these mouse models is a result of lowered LPL 

expression levels in the atherosclerotic lesion (136, 137). On the other hand, a study 

conducted by Wilson and colleagues (138) showed that the macrophage-specific 
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overexpression of human LPL in male apoE null mice resulted in a markedly increased 

aortic lesion size by 51% versus control. Furthermore, recent studies showed that LPL 

promotes the deposition of lipid in atherosclerotic-susceptible sites. Localized human LPL 

transgene expression in both the balloon-injured carotid arteries of rabbits and mouse 

carotid arteries result in a marked lipid accumulation (139, 140), which suggested that the 

locally liberated hydrolysis products of lipids by LPL might augment atherogenic lesion 

progression.  

The pro-atherogenic activity of macrophage LPL has also been reported from in 

vitro studies, as LPL could result in an accumulation of lipid within macrophages that 

might further trigger the macrophages to transform into foam cells (7, 136-145). In THP-1 

macrophages, LPL was shown to increase the binding and uptake of mildly-oxidized 

lipoproteins, and stimulated the uptake and degradation of LDL independently of the 

LDL-receptor (144, 145). Similarly, in J774 mouse macrophages, LPL has been shown to 

increase the accumulation of VLDL-derived CE and TG (143). Lastly, the secretion of 

interleukin (IL)-1, IL-6, monocyte chemoattractant protein-1, and TNF- (which are 

pro-inflammatory cytokines) by THP-1 macrophages were markedly attenuated when LPL 

expression was suppressed, while the incubation of VLDL and LPL with macrophages 

would significantly activate the expression of TNF- suggesting that the lipid hydrolysis 

products generated by LPL might be responsible for the ability of LPL to modulate 

pro-inflammatory cytokines and adhesion molecules (141, 142). 
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Taken together, given the potent pro-atherogenic activity of macrophage LPL, a 

further understanding of the mechanisms behind these pro-atherogenic activities may 

allow for macrophage LPL to be a potential therapeutic target for the prevention and 

treatment of atherosclerosis. 

1.4 Reverse cholesterol transport 

1.4.1 Overview of reverse cholesterol transport 

RCT is an atherosclerotic protective process that drives the excess cholesterol from 

peripheral tissues back to the liver for excretion (146, 147). RCT requires the transfer of 

cholesterol from cells to HDL (Figure 2). 

ApoA-I, the major protein component of HDL, is mainly synthesized in the liver 

and intestine, or is derived from lipoproteins. In vivo, newly synthesized apoA-I is 

secreted into circulation as a lipid-poor particle, which functions as a cholesterol acceptor 

(146-148). Adenosine triphosphate-binding cassette transporter, sub-family A, member 1 

(ABCA1) is a cholesterol efflux transporter that is embedded in the cell membrane. 

ABCA1 functions to remove (or efflux) excess cholesterol plus PL from non-hepatic 

tissues to the cholesterol acceptor apoA-I when it travels through the circulation (146). 

The loading of cholesterol and PL leads to the transformation of apoA-I to form what is 

known as nascent HDL (or pre-HDL), which can continue to take up cholesterol that is 

effluxed from peripheral cells by the cholesterol transporters adenosine 
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triphosphate-binding cassette transporter, sub-family G, member 1 (ABCG1) and 

scavenger receptor class B member 1 (SR-BI) (149).  

Lecithin:cholesterol acyltransferase (LCAT) is mainly synthesized in the liver and 

is activated by apoA-I after it binds to HDL; LCAT plays an important role in promoting 

the ability of HDL to accept cholesterol from the peripheral cells (150, 151). Specifically, 

the cholesterol that is accumulated in the nascent HDL (located on the surface of the 

particle) is esterified to a CE by LCAT, and the CE is subsequently moved to the 

hydrophobic core of the HDL particle, thus providing HDL with more room to accept 

additional cholesterol from peripheral tissues (149). Furthermore, the continued loading 

of cholesterol progressively increases the size of the HDL particles, leading to the 

transformation of the discoid nascent HDL into spherical mature HDL. 

In humans, the cholesteryl ester transfer protein (CETP) plays a role in HDL 

metabolism. CETP is a hydrophobic glycoprotein that is secreted into the circulation after 

being synthesized by the liver and adipose tissue (152). CETP acts by transferring CE 

from HDL and exchanges CE for TG from TG-rich lipoprotein particles. This modulation 

by CETP allows for some of the HDL CE to be taken up by the liver via VLDL and/or 

LDL receptors, while generating TG rich/CE depleted HDL particles whose PL can be 

hydrolysed more effectively by HL and EL, thus generating smaller and more dense HDL 

particles (153). 
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When the HDL is at the liver, the TG and PL components within the particle are 

readily hydrolysed by HL and EL, leading to the alteration of lipid composition of the 

particle that in turn promotes the liberation of the CE and apoA-I from HDL (146). As a 

result, the released CE will be taken up by the liver via the dual-direction cholesterol 

transporter SR-BI, while the liberated apoA-I and PL are now available to restart the 

RCT process (149).  

Lastly, once CE is transported into the liver, it is converted back to free 

cholesterol that can subsequently be eliminated from the body through bile secretion, 

thus completing the RCT process (146).   

1.4.2 Cholesterol efflux 

Cholesterol efflux, the initial step of the RCT process, refers to the removal of 

excess cholesterol from non-liver tissues by apoA-I and HDL (154). The function of 

cholesterol efflux in maintaining cell cholesterol homeostasis is a critical process that can 

inhibit the progression of atherosclerosis (146, 147). 

To date, multiple mechanisms of cholesterol efflux have been identified, which 

includes aqueous diffusion and transporter meditated efflux. (154, 155). Specifically, 

removal of cholesterol by aqueous diffusion commonly occurs with all cell types, but 

with a very limited efficiency (155). Thus, the ability of cells to efflux cholesterol is 

mainly dependent on cholesterol transporters (155). The transporters that are involved in 
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cholesterol efflux include ABCA1, ABCG1, and SR-BI (154). 

ABCA1 is highly expressed in liver and tissue macrophages (154). ABCA1 

functions by promoting the transfer of peripheral cholesterol and PL onto lipid-poor 

apoA-I, which is responsible for initiating the formation of nascent HDL particles (154, 

156). ABCG1 functions to efflux cholesterol to PL-containing acceptors, which include 

PL-only small unilamellar vesicles, nascent HDL, and mature HDL (157). The ability of 

ABCG1 to export cholesterol to PL-containing acceptors is thought to facilitate the 

ABCA1-induced formation of pre-HDL from apoA-I, which suggests a co-operative 

relation between these two cholesterol transporters in cholesterol efflux (154, 157). 

Furthermore, the markedly increased expression of ABCG1 in ABCA1-deficient 

macrophages suggests a compensatory role for ABCG1 in cholesterol efflux (158). 

Unlike ABCA1 and ABCG1, the flux of cholesterol mediated by SR-BI is 

bidirectional. It has been shown that SR-BI not only exhibits an ability to efflux cholesterol 

from macrophages to circulating lipoproteins, it also functions to influx cholesterol from 

circulating lipoproteins to the liver and steroidogenic tissues (that include the adrenals, 

ovaries, and testis) (154, 159, 160).  

The expression level of these cholesterol transporters has become a critical factor 

for determining the ability to export cholesterol from arterial macrophages and preventing 

atherogenesis. 
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1.4.3 Modulation of cholesterol efflux by nuclear receptors in macrophages 

LXR- is a member of the nuclear receptor family that acts on modulating the 

transcription of genes involved in cholesterol efflux, transport and excretion (161, 162). 

LXR- serves as a cholesterol sensor that is activated by oxysterols and intermediates of 

the cholesterol biosynthetic pathway (161). LXR- acts on inducing the transcripts of its 

target genes by binding to LXR response elements (LXRE) after forming heterodimers 

with RXR (163-165).  

PPAR- and PPAR- are ligand-activated transcription factors that can also 

influence cholesterol efflux. PPAR- is highly expressed in the liver, muscle, kidney, and 

heart, while PPAR- is mainly expressed in the intestine, mammary gland, and adipose 

tissue (166-170). The endogenous ligands for PPARs include fatty acids and eicosanoids 

(166). Once activated, PPARs will first heterodimerize with RXR, and following this 

they activate the transcripts of target genes by binding to the PPREs that are located in 

the promoter regions of the target genes (171, 172). Notably, one of the target genes of 

PPARs includes NR1H3, which encodes for LXR-, since the PPRE has been identified 

and located on its promoter region (173, 174). Additionally, PPARs were also shown to 

function to suppress gene transcripts by interfering with signalling pathways (reviewed in 

(175)). Both PPAR- and PPAR- have been implicated as critical modulators of 

cholesterol efflux within macrophages by regulating the expression of the cholesterol 
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transporters ABCA1, ABCG1, and SR-BI through either a LXR- dependent or 

independent pathway (Figure 4) (176-179).  

Evidence has shown that the activation of either PPAR- or PPAR- significantly 

increases the expression of LXR- and ABCA1, and subsequently elevates ABCA1 and 

apoA-I mediated cholesterol efflux (179). Furthermore, the identification of an LXRE on 

the ABCA1 promoter indicated that ABCA1 is a direct target for LXR- (180-182). Thus, 

both PPAR- and PPAR- exhibit the ability to regulate the expression of ABCA1 via the 

transcriptional cascades in the PPAR-and LXR- pathways (Figure 4). 

The transcriptional cascades in the PPAR- and LXR- pathway were also shown 

to be responsible for regulating the expression of ABCG1. Specifically, four LXREs were 

identified and characterized within the intron downstream of exon 2 (178). The 

expression of ABCG1 could be induced by PPAR-, which is associated with an 

increased expression of LXR- and the disruption of PPAR- results in lowered 

expression of ABCG1 and reduced cholesterol efflux (183). On the other hand, it has 

been reported that the activation of PPAR- could also activate the expression of ABCG1 

in the absence of LXR-(177). Thus, PPAR- could act on modulating ABCG1 in either 

a LXR dependent or independent pathway (Figure 4). Additionally, the agonists of either 

PPAR- or PPAR- have been reported to significantly induce SR-BI mediated 

cholesterol efflux, which suggests that PPAR- and PPAR- have an ability to modulate  
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Figure 4: The pathway of the transcriptional regulation of cholesterol transporters by 
PPARs 
 
PPAR-functions to indirectly modulate the transcription for genes encoding ABCA1 
and ABCG1 via LXR-black arrows); PPAR- functions to indirectly modulate the 
transcription for genes encoding ABCA1 and ABCG1 via LXR-, and to directly 
modulate the transcription for the gene encoding ABCG1 gray arrows). Both PPAR- 
and PPAR- have an ability to modulate the expression of SR-BI, however whether this 
modulation requires the activity of LXR- is uncertain (black and gray broken arrows). 
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the expression of SR-BI. However, whether the PPARs regulation of SR-BI requires the 

activity of LXR- is uncertain (Figure 4) (176).  

1.5 Intracellular FFA synthesis and its regulation 

In addition to regulating cholesterol efflux at a transcriptional level, LXR- also 

functions to modulate intracellular lipid metabolism by regulating the expression of LPL 

(as described in section 1.2.6.1) and enzymes involved in FFA synthesis (184). Specifically, 

LXR- was shown to indirectly modulate the transcripts for genes encoding enzymes 

involved in FFA synthesis via the transcriptional cascades in the LXR- and SREBP-1c 

pathways (184-186). Furthermore, LXR- has also been shown to directly promote the 

transcription of the gene encoding fatty acid synthase (FASN) (184, 186). 

SREBP-1c, a downstream target of LXR-, is a member of the basic 

helix-loop-helix leucine zipper transcription factor family. The activation of target genes 

by SREBP-1c is achieved through its amino-teminal domain, namely nuclear SREBP 

(nSREBP) (187). The nSREBP enters the nucleus after it is cleaved from the SREBP-1c by 

both site-1 protease and site-2 protease. Once inside the nucleus, nSREBP will bind to 

sterol response elements, which are found in the promoter regions of its target genes 

(187). The downstream target genes of SREBP-1c that are involved in the intracellular 

FFA synthesis include the genes encoding acetyl-CoA carboxylase A (ACCA), FASN, and 

stearoyl-CoA desaturase-1 (SCD-1) (188-191).  
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ACCA is a biotin-dependent enzyme, which exhibits a biotin carboxylase and a 

carboxyl transferase activity (192, 193). Within the FFA synthesis process, ACCA 

functions by catalyzing the carboxylation of acetyl-CoA to generate malonyl-CoA, which 

is a substrate for FASN (193). FASN is a multifunctional enzyme, which consists of two 

independent multifunctional polypeptides (194). FASN is responsible for catalyzing the 

synthesis of the saturated FFA palmitate and myristate (194). Notably, in addition to being 

indirectly modulated by LXR- via SREBP-1c, a direct mechanism for the regulation of 

FASN by LXR has been identified by Joseph and colleagues (186). They found that when 

SREBP processing was suppressed, the LXR-induced activation of FASN expression was 

reduced, but not abolished, and FASN was activated by LXR agonists without altering the 

expression level of SREBP-1 (186).  Moreover, LXREs were indeed identified and 

characterized within the FASN promoter region (186).  

SCD-1 is a key lipogenic enzyme, which functions by catalyzing the desaturation 

of stearic acid to synthesize the mono-unsaturated fatty acid oleic acid (195). The synthesis 

rate of oleic acid by SCD-1 was shown to be strongly related to the storage and the 

transport of cholesterol, since oleic acid is the preferred fatty acid for the esterification of 

cholesterol (196). 
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1.6 Hypothesis and Objectives 

1.6.1 Hypothesis 

I hypothesize that the hydrolysis products of plasma total lipoproteins generated 

by LPL will significantly suppress the transcripts of genes associated with cholesterol 

efflux and lipogenesis. I also hypothesize that the FFA component of the hydrolysis 

products is responsible for influencing the expression of genes related to cholesterol 

efflux and lipogenesis. 

1.6.2 Objectives 

The objectives of this research are: i) to investigate the influence of the hydrolysis 

products of total lipoproteins generated by LPL and of the FFA, liberated from total 

lipoproteins by LPL, on the levels of gene transcripts associated with cholesterol efflux 

and lipid synthesis within THP-1 human macrophages; and ii) to assess the ability of 

macrophages treated with FFA that match the ratios to those liberated from total 

lipoproteins by LPL to efflux cholesterol from macrophages. 

1.7 Significance 

Macrophage LPL exhibits a positive correlation with atherogenesis; however, the 

mechanisms underlying any pro-atherogenic property of macrophage LPL remain poorly 

understood. By studying the pro-atherogenic property of macrophage LPL, the results of 
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my experiments will offer some insight as to whether macrophage LPL promotes 

atherogenesis by attenuating the ability of cells to efflux cholesterol. The results from 

this study will hopefully allow for future studies to investigate whether partial inhibition 

or elimination of macrophage LPL activity can positively modulate cholesterol efflux. If 

the inhibition of macrophage LPL activity is successful in activating cholesterol efflux, 

this could make macrophage LPL a potential therapeutic target in atherosclerosis. 

 

 



Chapter 2: Materials and Methods 

2.1 Cell culture and reagents 

2.1.1 Cell lines and maintenance 

2.1.1.1 Human embryonic kidney 293T cell line 

The human embryonic kidney cell line HEK-293T was donated by Dr. Sherri 

Christian (Department of Biochemistry, Memorial University of Newfoundland). Cells 

were maintained in a complete growth medium of Dulbecco’s Modified Eagle Medium 

(DMEM)/High Glucose (which contained 4 mM L-glutamine, 4.5 g/L glucose and 110 

mg/L sodium pyruvate) (HyClone, South Logan, UT, USA), 10% v/v fetal bovine serum 

(FBS) (Hyclone), and 1% v/v of an antibiotic/antimycotic (A/A) stock solution (containing 

10,000 U/mL penicillin G, 10,000 g/mL streptomycin, and 25 g/mL amphotericin B) 

(HyClone). The cells were incubated in T75 cell culture flasks (BD Biosciences, 

Mississauga, ON, Canada) at 37°C, with an atmosphere of 95% air and 5%CO2(g). The 

cells were sub-cultured every 2 to 3 days with a 1:10 sub-cultivation ratio. Briefly, cell 

culture medium was discarded and the cells were washed briefly using 5 mL plain DMEM. 

To detach the cells from the cell culture flasks, the cells were rinsed with 2.5 mL of 0.25% 

w/v trypsin (HyClone), and then placed at 37°C for 2 minutes. Next, 10 mL fresh 

complete DMEM medium was used to re-suspend the cells. Lastly, 1 mL of mixed cells 
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was removed and added into a new T75 flask that contained 14 mL fresh complete DMEM 

medium. 

2.1.1.2 THP-1 cell line 

The human monocytic leukemia cell line THP-1 was obtained from the American 

Type Culture Collection (Manassas, VA, USA). Cells were maintained in a complete 

growth medium of Roswell Park Memorial Institute (RPMI)-1640 medium (which 

contained 25 mM HEPES and 0.3 mg/L L-glutamine) (HyClone), 10% v/v FBS, and 1% 

v/v A/A. The cells were incubated in T75 cell culture flasks at 37°C, with an atmosphere of 

95% air and 5%CO2(g). The cells were sub-cultured every 3 to 4 days when the 

concentration reached 8 × 105 cells/mL by removing 3 mL of media (containing 

non-adherent cells) to a new T75 flask containing 12 mL fresh complete RPMI. 

2.1.2 HEK-293T cell transfection 

HEK-293T cells at 60-80% confluency in 100-mm dishes (BD Falcon) were 

transfected using LipofectamineTM (Invitrogen, Burlington, ON, Canada) according to the 

manufacturer’s instructions. To reach a confluency of 60-80% at the time of transfection, 

18 to 24 hours before the transfection, one confluent T75 flask was split 1:3 into a 100-mm 

plate. Cells in 100-mm plates were transfected using LipofectamineTM with no cDNA 

(Non), 5.85 g of pcDNA3 (Invitrogen) containing the cDNA for human LPL 

[GenBank:NM_000237] (a gift from Dr. Daniel J. Rader, University of Pennsylvania, 
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Philadelphia, PA, USA), or 5.85 g empty pcDNA3 mammalian expression vector (empty 

vector control transfection). At 24 hours post-transfection, the culture media were 

discarded, and the cells were washed once with 5 mL plain DMEM media. Then, 5 mL 

DMEM media containing 10 U/mL heparin (Organon, Toronto, ON, Canada) and 1% v/v 

A/A was added to each dish; heparin was used to release LPL from cell surfaces. Cells 

were then incubated for another 23.5 hours at 37°C with 5% CO2(g). At 47.5 hours 

post-transfection, 1 mL DMEM media containing 100 U/ml heparin and 1% v/v A/A was 

added to each dish to raise the overall heparin concentration to 25 U/mL, and the cells were 

incubated at 37°C with 5% CO2(g) for additional 30 minutes (end at 48 hours after 

transfection). At 48 hours post-transfection, the conditioned medium in each dish was 

harvested and transferred to individual 15 mL centrifuge tubes. In order to remove the cell 

debris, the conditioned medium was centrifuged at 1,050 rpm for 7 minutes at 4°C. The 

supernatant was collected and divided into 200 L and 500 L aliquots, and stored at 

-80°C until needed. LPL hydrolytic activity was evaluated as described in section 2.3.3. 

2.1.3 THP-1 cell differentiation  

The differentiation of THP-1 monocyte cells  into macrophage cells was 

performed as previously described (197). One confluent T75 flask was equally divided 

into two 15 mL centrifuge tubes, and followed by centrifuging at 750 rpm for 7 minutes 

at room temperature. The supernatant (culture medium) was discarded, and the cells were 
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resuspended in complete RPMI medium with addition of 100 nM phorbol 

12-myristate-13-acetate (PMA) (Sigma, St. Louis, MO, USA) at a concentration of 3.86 

× 105 cells/mL. Next, 9.65 × 105 cells were added to each well of a 6-well plate, and 

cultured at 37°C with 5% CO2(g) for 48 hours. After 48 hours, the adherent cells in each 

well were washed 3 times with 2 mL RPMI-1640 media containing 0.2% w/v fatty acid 

free bovine serum albumin (FAF-BSA) (Sigma), then cultured for 24 hours with RPMI 

containing 1% v/v A/A, 0.2% w/v FAF-BSA and 100 nM PMA (2.5 mL per well) at 37°C 

with 5% CO2(g). After 24 hours, the THP-1 macrophage cells were ready to be treated 

with hydrolysis products or purified FFA mixture.  

2.2 Analysis of LPL expression 

2.2.1 Quantification of LPL mRNA 

The quantification of LPL mRNA was performed exactly as previously described 

(197). Briefly, total RNA from transfected HEK-293T cells was extracted using the 

RNeasy Mini Kit (Qiagen, Toronto, ON, Canada); the mRNA was stored at -80ºC and 

cDNA was generated using the iScript RT Supermix cDNA synthesis kit (which contains 

oligo(dT) and random primers) (Bio-Rad). Real-time PCR analyses with the cDNA 

samples were performed using SYBR-Green and primers (Integrated DNA Technologies, 

Toronto, ON, Canada) against LPL and -actin (for details see section 2.7).  
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2.2.2 Immunoblot analysis 

To denature the LPL protein in conditioned medium, the samples (40 L) were 

mixed with an equal volume of a 2X treatment buffer containing 0.125 M Tris-HCl (pH 

6.8), 20% v/v glycerol, 5% v/v -mercaptoethanol, 4% w/v SDS, and 0.01% v/v 

bromophenol blue. Samples were incubated at 100°C for 7 minutes. Whole cell lysates in 

100 mm dishes were prepared by scraping cells into 500 L of 2X treatment buffer, and 

samples were incubated at 100°C for 7 minutes. Denatured media and cell samples were 

then loaded (20 L per well) and separated by SDS-PAGE (stacking gel: 5%, separating 

gels: 10%) for approximately 60 minutes at 200 VDC; the running buffer for gel 

electrophoresis consisted of 25 mM Tris, 192 mM glycine, and 0.1% w/v SDS (pH 8.3) 

(Bio-Rad). Proteins were subsequently transferred to nitrocellulose membranes using a 

wet electroblotting system (at 350 mA, at 4°C, for 2 hours) (Bio-Rad); the buffer used for 

the transfer was 48 mM Tris base, 39 mM glycine, 1.3 mM SDS, and 20% v/v methanol. 

Once the samples were transferred to the membrane, the membrane was then incubated 

for 2 hours with a blocking solution (5% w/v non-fat dry milk (Bio-Rad), 0.05% v/v 

Tween-20 (Sigma Aldrich), and 0.05% w/v NaN3 (Fisher Scientific, Toronto, ON, Canada) 

in phosphate-buffered saline (PBS) (3.8 mM NaH2PO4, 16.2 mM Na2HPO4, 0.15 M NaCl) 

at room temperature on a platform shaker. Next, the membranes were incubated for 16 to 

18 hours with a 1:1,000 dilution (diluted by PBS containing 5% w/v non-fat dry milk, 
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0.05% v/v Tween-20, and 0.05% w/v NaN3) of an anti-human LPL polyclonal antibody 

(#sc-32885, Santa Cruz Biotechnology, Santa Cruz, CA, USA) at room temperature on a 

platform shaker. After incubation, the membranes were washed 4 times with PBS, and 

incubated for 2 hours with a 1:1,000 dilution (diluted by PBS containing 5% w/v non-fat 

dry milk and 0.05% v/v Tween-20) of a horseradish peroxidase-conjugated anti-rabbit 

IgG (#SA1-200, Pierce Biotechnology, Rockford, IL, USA) at room temperature on a 

platform shaker. After 2 hours, the membranes were washed 4 times with PBS, and 

developed using the ECLTM Prime chemiluminescent reagent (GE Healthcare, Baie 

d’Ufre, QC, Canada). Chemiluminescence was subsequently detected on an ImageQuant 

4000 gel imager (GE Healthcare).  

2.3 Lipoprotein isolation, analysis and hydrolysis 

2.3.1 Isolation of human plasma total lipoproteins by KBr density gradient 

ultracentrifugation 

The total lipoprotein fraction (d<1.21 g/mL), including VLDL, LDL, IDL, and 

HDL, was isolated by density gradient ultracentrifugation as previously described (198). 

Briefly, a total of 80 mL of human blood was collected from two normolipidemic donors 

fasted overnight (Human Investigation Committee approval number 11-109); immediately 

upon collection, ethylenediaminetetraacetic acid (EDTA) was added from a 0.5 M stock 

(pH 7.4) to reach a final concentration of 2 mM. To isolate the plasma, the blood was 
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centrifuged at 2,800 rpm for 15 minutes at 4°C, and then the plasma (supernatant) was 

collected and pooled. Next, the density of the plasma was adjusted to 1.21 g/mL using a 

d=1.35 g/mL KBr solution (in 154 mM NaCl and 2 mM EDTA, pH 7.4). Subsequently, the 

plasma with the density of 1.21 g/mL was ultracentrifuged at 4°C in a 70.1Ti rotor 

(Beckman, Mississauga, ON, Canada) at 50,000 rpm for 44 hours. After 

ultracentrifugation, the top ¼ of the supernatant (d<1.21 g/mL) was collected. The total 

lipoproteins were dialyzed in a cellulose tubular membrane (with a molecular weight cut 

off of 3,500) against PBS for 24 hours at 4°C; the PBS was changed every 6 hours. After 

the dialysis, the lipoproteins were collected and stored under N2(g) at 4°C. 

2.3.2 Quantification of phospholipid in isolated human plasma total lipoproteins 

The PL concentration of the isolated plasma total lipoproteins was measured using 

a commercial kit (Phospholipids C - Wako Diagnostics, Richmond, VA, USA), according 

to manufacturer’s instructions. Briefly, in triplicate, a 5 L aliquot of the isolated 

lipoproteins was mixed with 15 L PBS, and subsequently the diluted lipoproteins were 

mixed with 200 L of the kit’s color reagent solution in a well within a 96-well plate. The 

mixture was incubated at 37°C for 5 minutes, then the absorbance of the sample was 

measured at 600 nm wavelength on a Synergy fluorescent plate reader (Bio-Tek, Winooski, 

VT, USA). Samples were compared to a standard curve, prepared from the PL standard 

stock (at 300 mg/dL) within the kit. To prepare the standard curve, the stock solution was 
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diluted to 5 mg/dL, 10 mg/dL, 25 mg/dL, 50 mg/dL, 100 mg/dL, 150 mg/dL using PBS. To 

a separate well for each dilution, 20 uL of the diluted standard solutions or PBS (as a 

reagent blank) were mixed with 200 L color reagent and assessed as above. 

2.3.3 Lipoprotein hydrolysis by LPL 

PBS or heparinized media without (no cDNA transfection or mock transfection) or 

with LPL from the transfected HEK-293T cells (as prepared and described in section 2.1.2) 

were gently mixed with an equal volume of isolated plasma total lipoproteins (as prepared 

and described in section 2.3.1, with a PL concentration of 3.1 mM (as measured and 

described in section 2.3.2)). FAF-BSA was added to each mixture to reach a final 

concentration of 0.2% w/v, then these mixtures were incubated for 4 hours at 37°C. The 

FFA present in each sample after 4 hours was evaluated using a commercial kit (HR Series 

NEFA-HR 2) (Wako), according to manufacturer’s instructions. Briefly, in triplicate, a 4 

L aliquot of medium from each mixture was added to individual wells in a 96-well 

microplate. Mixtures were incubated with kit reagents to generate a color change 

corresponding to FFA content, and samples were measured at 560 nm wavelength on a 

Synergy fluorescent plate reader. A standard curve was created using 0+4, 0.5+3.5, 1+3, 

1.5+2.5, 2+2, 2.5+1.5, 3+1 and 4+0 L of standard solution (1 mM oleic acid) + water in 

separate wells. Data were expressed as the amount of FFA (nmol) generated per L of 

heparinized media (or PBS) per 4 hours. No differences were observed for LPL hydrolytic 
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activity from experiment to experiment.  

2.4 Mass spectrometry analyses 

Tandem electrospray ionization-mass spectrometry (ESI-MS) and gas 

chromatography-mass spectrometry (GC-MS) analyses of lipoprotein hydrolysis 

products were performed by Dr. Robert Brown (Department of Biochemistry, Memorial 

University of Newfoundland) at the laboratory of Dr. David Ford at the Center for 

Cardiovascular Research at Saint Louis University (St. Louis, MO, USA). Data analyses 

were carried out by Yanbo Yang. Lipid extractions and analyses are described below. 

2.4.1 Lipid extraction 

Lipids from 10 L lipoprotein-media mixtures (prepared as described in section 

2.3.3, but with 3.9 mM stock total lipoproteins (by PL)) were extracted using the 

Bligh-Dyer method, exactly as previous described (199), in the presence of non-naturally 

occurring internal standards for each class of lipid assessed. Internal standard lipids that 

were added to each lipoprotein-media mixture include 0.5 g triheptadecenoin (tri-17:1 

TG) (Nu-Chek Prep, Elysian, MN, USA), 5 g diarachidoyl phosphocholine (di-20:0 

PtdCho) (Avanti Polar Lipids, Alabaster, AL, USA), 1.2 g 1-heptadecanoyl 

lysophosphatidylcholine (17:0 lysoPtdCho) (Avanti Polar Lipids), and 1 g arachidic 

acid (20:0 FFA) (Nu-Chek Prep). Extracted lipids were resuspended in 500 L 

chloroform and stored at -20°C under N2(g) until needed. 
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2.4.2 Electrospray ionization-mass spectrometry analyses 

ESI-MS analyses were carried out as previously described (200-202). Briefly, 200 

L methanol and 2 L of 10 mM NaOH (in methanol) were mixed with 50 L of lipid 

extract, and subsequently injected into a Thermo TSQ Ultra tandem ESI-MS system at a 

rate of 3.5 L per minute; the electrospray needle voltage (with a capillary temperature 

of 270ºC) was set at 3,500 VDC in positive ion mode. Sodiated adducts of select PtdCho 

and lysoPtdCho species were quantified by scanning for the neutral loss of choline (m/z 

59.1) using a collision energy of -28 eV, and sodiated adducts of TG were quantified by 

survey scanning for [M+Na]+ between m/z 800 and 950. Isotopic contributions toward all 

collected ESI-MS data were corrected as previous described (200-202). 

2.4.3 Gas chromatography-mass spectrometry analyses 

The GC-MS analyses were performed as previously described (203), to quantify 

the individual species of FFA within lipoprotein-media mixtures. Briefly, the FFA were 

firstly esterified into pentafluorobenzyl esters, then quantified by selective ion 

monitoring. 

2.5 Preparation of FFA mixture 

2.5.1 Stock solution preparation 

Briefly, myristic acid (14:0), palmitic acid (16:0), palmitoleic acid (16:1), stearic 
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acid (18:0), oleic acid (18:1), linoleic acid (18:2), arachidonic acid (20:4), and 

docosahexaenoic acid (22:6) (all from Nu-Chek Prep) were dissolved in high performance 

liquid chromatography grade methanol to a concentration of 10 mg/mL. The prepared fatty 

acid stock solutions were sealed under N2(g), and stored at -20°C until needed.   

2.5.2 Preparation of a purified FFA mixture that matches the amounts liberated 

from lipoproteins by LPL 

A mixture of FFA that matches the amounts to those liberated from human plasma 

total lipoproteins by LPL was prepared as previously described (197). Briefly, to prepare 

a mixture of purified FFA that matches the amount of 250 L total lipoprotein hydrolysis 

products generated by LPL, a certain amount (nmol) of each species of FFA (as shown in 

Table 1) was removed from its stock solution (as described and prepared in section 2.5.1) 

to a 1.5 mL Eppendorf tube. The methanol was evaporated using N2(g) at 35°C, and the 

fatty acids were resuspended in 10 L dimethylsulfoxide. Next, with continuous vortexing, 

the prepared fatty acid mixture was added to 240 L DMEM medium containing 1% A/A 

at a rate of 1 L/minute. 
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Table 1: Components of the purified FFA mixture that matches the amount             
liberated from total lipoproteins by LPL 

 
Species of FFA Amount (nmol) 

Myristic acid (14:0) 18.6 

Palmitoleic acid (16:1) 23.7 

Palmitic acid (16:0) 275 

Linoleic acid (18:2) 70 

Oleic acid (18:1) 241.8 

Stearic acid (18:0) 45.4 

Arachidonic acid (20:4) 0.9 

Docosahexaenoic acid (22:6) 0.4 

    
 Listed are the nmol of each free fatty acid (FFA) 
 present in 250 L of the prepared purified FFA mixture. 
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2.6 Incubation of lipoprotein hydrolysis products and purified FFA mixture with 

THP-1 macrophages  

2.6.1 Incubation of lipoprotein hydrolysis products with THP-1 macrophages 

Differentiated THP-1 cells in 6-well plates (as prepared and described in section 

2.1.3) were washed once with RPMI (2 mL/well). Next, 1 mL of RPMI containing 0.2% 

w/v FAF-BSA, 25 g/mL tetrahydrolipstatin (THL) (Sigma) and 1% v/v A/A was added to 

each well. THL inhibits the lipolytic activity of any endogenous sn-1 lipases within the 

THP-1 macrophages (197). The cells were incubated at 37°C with 5% CO2(g) for 1 hour. 

Meanwhile, the total lipoprotein hydrolysis products (as prepared and described 

in section 2.3.3) were diluted in a ratio of 1:4 and 1:8 separately using RPMI containing 

0.2% w/v FAF-BSA, 25 g/mL THL, 100 nM PMA and 1% v/v A/A to give a 

concentration of 0.68 mM and 0.34 mM, respectively (based on post-hydrolysed FFA). 

After 1 hour, 930 L of diluted hydrolysis products was added to each well of cells, and 

cells were incubated for 18 hours at 37°C with 5% CO2(g). After 18 hours, the THP-1 

macrophage RNA was isolated for analysis by real-time PCR. 



2.6.2 Incubation of FFA mixture with THP-1 macrophages 

The differentiated THP-1 cells (as prepared and described in section 2.1.3) were 

first washed once with RPMI-1640 media (2 mL/well). Next, 1 mL of RPMI containing 

0.2% w/v FAF-BSA, 25 g/mL THL and 1% v/v A/A was added to individual wells. The 

cells were then incubated for 1 hour at 37°C with 5% CO2(g). Meanwhile, the fatty acid 

containing medium (as prepared and described in section 2.5.2) was diluted in a ratio of 

1:4 or 1:8, as described in section 2.6.1, to give a final FFA concentration of 0.68 mM or 

0.34 mM. After 1 hour, 930 L of diluted purified FFA mixture was added to each well of 

cells; cells were incubated for 18 hours at 37°C with 5% CO2(g). After 18 hours, the THP-1 

macrophage cells were ready for real-time PCR analysis (as described in section 2.7) or 

Oil red O staining. For staining, the cells were washed twice with PBS and then were 

incubated with Oil red O dye (0.36% in 60% isopropanol) (Millipore, Toronto, ON, 

Canada) for 15 minutes on a rocker at room temperature. After 15 minutes, Oil-red O dye 

was removed, and the stained THP-1 macrophages were examined by using a light 

microscope (40x objective, bright field), and images were captured using a digital camera. 

2.7 Real-time PCR analysis 

2.7.1 RNA extraction 

Total RNA from the THP-1 macrophage cells was extracted using the RNeasy 

Mini Kit (Qiagen, Toronto, ON, Canada) according to manufacturer's instructions. The 
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isolated RNA was stored at -80°C until needed. 

2.7.2 cDNA synthesis 

The cDNA was synthesized from the isolated total RNA (as described and 

prepared in section 2.7.1) using iScript RT Supermix (Bio-Rad, Mississauga, Ontario, 

Canada) according to manufacturer's instructions. Briefly, for each reaction, 1 g of total 

RNA was reverse transcribed with the iScript reverse transcriptase in a total volume of 20 

L, using the following reaction conditions: 5 minutes at 25°C, followed by 30 minutes 

at 42°C, followed by 5 minutes at 85°C. The synthesized cDNA was collected and stored 

at -20°C until needed. 

2.7.3 SYBR Green real-time PCR assay 

Quantitative real-time PCR was performed using the iQ SYBR Green Supermix 

kit (Bio-Rad) and primers against -actin, LXR-, PPAR-, PPAR-, ABCA1, ABCG1, 

SR-BI, ACCA, FASN, SCD-1, SREBP-1c, and LPL (Integrated DNA Technologies) on a 

Mastercycler ep realplex (Eppendorf, Mississauga, ON, Canada) real-time PCR system. 

The final reaction mixture (25 L) contained 75 ng of cDNA or non template control (in 

3 L), 1.25 L of 500 nM forward primer, 1.25 L of 500 nM reverse primer, 7 L of 

RNase-free water (provide in kit), and 12.5 L iQ SYBR Green Supermix (provided in 

kit). The sequences of primers are shown in Table 2. The PCR was carried out using the 

following program: 1 cycle of 95oC for 3 minutes; 40 cycles of 95oC for 15 seconds,  
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Table 2: Real-time PCR primer sequences used to quantify the mRNA level of 
reference and target genes 
 

Gene Forward Primer Reverse Primer 

ACTB 

NC_000007.13 

5’‐ ACC TTC TAC AAT GAG CTG CG ‐3’ 

Template: 349    . . . . . . . . . . . . . . . . . . . . . . . . .    368 

5’‐ CCT GGA TAG CAA CGT ACA TGG ‐3’ 

Template: 537    .. . . . . . . . . . . . . . . . . . . . . . . . . . 517 

NR1H3 

XM_005252718.1 

5’‐ TCC TTT TTC TGA CCG GCT TC ‐3’ 

Template: 444    . . . . . . . . . . . . . . . . . . . . . . . .    463 

5’‐ GAT GAA TTC CAC TTG CAG CC ‐3’ 

Template: 591    . . . . . . . . . . . . . . . . . . . . . . . .    572 

PPARA 

XM_005261658.1 

5’‐ GCT ATC ATT ACG GAG TCC ACG ‐3’ 

Template: 460    . . . . . . . . . . . . . . . . . . . . . . . . .    480 

5’‐ TCG CAC TTG TCA TAC ACC AG ‐3’ 

Template: 547    . . . . . . . . . . . . . . . . . . . . . . . . .    528 

PPARG 

NM_138711.3 

5’‐ GAG CCC AAG TTT GAG TTT GC ‐3’ 

Template: 1367    . . . . . . . . . . . . . . . . . . . . . . .    1386 

5’‐ GCA GGT TGT CTT GAA TGT CTT C ‐3’ 

Template: 1514    . . . . . . . . . . . . . . . . . . . . . . .    1493 

ABCA1 

XM_005251780.1 

5’‐ AAC GAG ACT AAC CAG GCA ATC ‐3’ 

Template: 1778    . . . . . . . . . . . . . . . . . . . . . . .    1798 

5’‐ ACA CAA TAC CAG CCC AGA AC ‐3’ 

Template: 1925    . . . . . . . . . . . . . . . . . . . . . . .    1906 

ABCG1 

XM_005261209.1 

5’‐ GAG GGA TTT GGG TCT GAA CTG ‐3’ 

Template: 1108    . . . . . . . . . . . . . . . . . . . . . . .    1128 

5’‐ CTG TTC TGA TCA CCG TAC TCG ‐3’ 

Template: 1197    . . . . . . . . . . . . . . . . . . . . . . .    1177 

SCARB1 

XM_005253637.1 

5’‐ ATC CTC ACT TCC TCA ACG C ‐3’ 

Template: 979    . . . . . . . . . . . . . . . . . . . . . . .    997 

5’‐ TTC ACA GAG CAG TTC ATG GG ‐3’ 

Template: 1108    . . . . . . . . . . . . . . . . . . . . . . .    1089 

ACACA 

XM_005257267.1 

5’‐ TCG CTT TGG GGG AAA TAA AGT G ‐3’ 

Template: 417    . . . . . . . . . . . . . . . . . . . . . . .    438 

5’‐ ACC ACC TAC GGA TAG ACC GC ‐3’ 

Template: 508    . . . . . . . . . . . . . . . . . . . . . . .    489 

FASN 

NM_004104.4 

5’‐ ACA GGG ACA ACC TGG AGT TCT ‐3’ 

Template: 2483    . . . . . . . . . . . . . . . . . . . . . . .    2503 

5’‐ CTG TGG TCC CAC TTG ATG AGT ‐3’ 

Template: 2633    . . . . . . . . . . . . . . . . . . . . . . .    2613 

SCD 

NM_005063.4 

5’‐ CTC CAC TGC TGG ACA TGA GA ‐3’ 

Template: 2768    . . . . . . . . . . . . . . . . . . . . . . .    2787 

5’‐ AAT GAG TGA AGG GGC ACA AC ‐3’ 

Template: 3018    . . . . . . . . . . . . . . . . . . . . . . .    2999 

LPL 

NM_000237.2 

5’‐ ACA CTT GCC ACC TCA TTC C ‐3’ 

Template: 525    . . . . . . . . . . . . . . . . . . . . . . .    543 

5’‐ ACC CAA CTC TCA TAC ATT CCT ‐3’ 

Template: 645    . . . . . . . . . . . . . . . . . . . . . . .    625 

SREBF1 

XM_005256773.1 

5’‐ GGA GGG GTA GGG CCA ACG GCC T ‐3’ 

Template: 35    . . . . . . . . . . . . . . . . . . . . . . . . . . .    56 

5’‐ CAT GTC TTC GAA AGT GCA ATC C ‐3’ 

Template: 114    . . . . . . . . . . . . . . . . . . . . . . . . . .    93 

 

The gene symbols (with corresponding national center for biotechnology information 
reference accession number) encode the following proteins: ACTB encodes -actin, 
NR1H3 encodes LXR-, PPARA encodes PPAR-, PPARG encodes PPAR-, ABCA1 
encodes ABCA1, ABCG1 encodes ABCG1, SCARBI encodes SR-BI, ACACA encodes 
ACCA, FASN encodes FASN, SCD encodes SCD-1, LPL encodes LPL, and SREBF1 
encodes SREBP-1c The efficiencies for each pair of primers are as shown in the 
Appendix under Supplemental Table 1.  
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56oC for 15 seconds, 72oC for 20 seconds; all reactions were performed in triplicate. The 

mRNA levels were normalized to -actin, which was used as a house keeping gene. 

2.7.4 Measurement of real-time amplification efficiencies of target and reference 

genes 

The real-time PCR amplification efficiencies for each mRNA assessed were 

calculated according to the following equation (204):  

 

E = 10 [–1/slope]
  (Equation 1) 

 

The slopes were calculated from the threshold cycle (Ct) value, which were measured as 

described in section 2.7.3., versus input cDNA concentration (1 ng, 5 ng, 10 ng, 50 ng, and 

100 ng). All reactions were performed in duplicate, and the data are shown in Appendix, 

Supplemental Table 1. The melting curve analysis showed that only one specific melting 

peak can be detected for each PCR product. This suggested that only one product has been 

amplified in each reaction (data not shown). 

2.7.5 Calculation of gene expression 

The relative expression ratio of a target gene was calculated according to a 

modified equation based on the delta delta Ct mathematical model (Equation 2) (204): 
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Ratio = (Etarget) 
CPtarget (control-sample) / (Eref) 

CPref (control-sample)
 

(Equation 2) 

Specifically, Etarget and Eref  represent the amplification efficiency of the target 

genes and the reference gene -actin, respectively, which were measured as described in 

section 2.7.3. ΔCPtarget is the difference between the Ct value of the control and the 

experimental sample of the target gene transcript; ΔCPref is the difference between the Ct 

value of the control and the experimental sample of -actin transcript. The relative 

transcriptional level of control samples was expressed as 100% ± standard deviation 

(SD). 

2.8 Cholesterol efflux assay 

2.8.1 Desalting of apolipoprotein A-I 

Lyophilized apoA-I (Sigma) in 10 mM ammonium bicarbonate was resuspended in 

water and salt-exchanged for PBS using a PD-10 desalting column (GE Healthcare) 

equilibrated with PBS. The absorbance of the eluate was read at 280 nm (using PBS as 

blank), and the concentration of apoA-I was calculated using the Beer–Lambert law where 

the molar absorption coefficient of apoA-I equals 1.23 mL/ mg · cm (205).   
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2.8.2 Cholesterol efflux assay 

Cholesterol efflux assays were performed as similarly described (206). Briefly, 

THP-1 cells were differentiated into macrophages by PMA in a 12-well plate (4.63 × 105 

cells/well) as described in section 2.1.3. After 48 hours incubation, media were replaced 

with 500 l RPMI-1640 containing 1% v/v FBS, 1% v/v A/A and 1 Ci/mL 

[3H]cholesterol (PerkinElmer, Waltham, MA, USA); cells were cultured for 24 hours at 

37°C with 5% CO2(g) to load cells with labelled cholesterol. After 24 hours, the cells in 

each well were washed twice using 750 L media containing 0.2% w/v FAF-BSA, 100 nM 

PMA, and 1% v/v A/A. Following washes, the cells were cultured with 480 L RPMI 

containing 0.2% w/v FAF-BSA, 100 nM PMA, and 1% v/v A/A for 5 hours at 37°C with 

5% CO2(g). After 5 hours, the culture media were replaced with 480 L RPMI containing 

0.2% w/v FAF-BSA, 100 nM PMA, 1% v/v A/A, and 25 g/mL THL; cells were then 

cultured for 1 hour at 37°C with 5% CO2(g). After 1 hour, the culture media were replaced 

with RPMI containing 0.2% w/v FAF-BSA, 100 nM PMA, 1% v/v A/A, and 25 g/mL 

THL ± FFA mixture (0.68 mM) (as described and prepared in section 2.6.2); cells were 

then cultured for 18 hours at 37°C with 5% CO2(g). After 18 hours, cells were washed with 

750 L RPMI containing 0.2% w/v FAF-BSA, 100 nM PMA, and 1% v/v A/A. Following 

washes, the media were replaced with 446.4 L RPMI containing 0.2% w/v FAF-BSA, 

100 nM PMA, and 1% v/v A/A ± 25 g/mL apoA-I; cells were then incubated for 6 hours 

 56



at 37°C with 5% CO2(g). After 6 hours, the medium in each well was collected into a 

labelled scintillation vial containing 553.6 L ddH2O. The cells in each well were lysed 

using 500 L of 0.2 M NaOH for 30 minutes at room temperature; cell lysates were 

subsequently collected and placed into scintillation vials. Following this, additional 500 

L fresh 0.2 M NaOH was added to each well to resuspend and collect any cell lysis 

remnants. Both the media and cells were assessed by liquid scintillation counting for 

[3H]cholesterol. The amount of [3H]cholesterol effluxed was calculated as a percentage 

of [3H]cholesterol effluxed into the medium per amount of total cell and medium 

[3H]cholesterol. The background (BSA only data) was subtracted to obtain efflux data 

specific for apoA-I. 

2.9 Statistical analyses 

Where indicated in figure legends, one-way analysis of variation (ANOVA) with a 

Tukey's test for multiple comparisons, and two-way ANOVA with a Sidak multiple 

comparison test were performed on data using GraphPad Prism Version 5.0 (Trial) for 

Windows (GraphPad Software, Inc., La Jolla, CA, USA). Where indicated in figure 

legends, Student’s t-tests were performed on data using Microsoft Office Excel 2010 

(Microsoft Canada Inc., Mississauga, ON, Canada). Error bars on the data are mean ± SD. 

 57



Chapter 3: Results 

3.1 Generation of recombinant LPL 

To generate the LPL that was used in the current study, a plasmid with the human 

LPL cDNA was transfected to HEK-293T cells as described in section 2.1.2. As shown in 

Figure 5A, real-time PCR analyses for LPL transcripts were markedly increased within 

HEK-293T cells expressing LPL. Furthermore, immunoblots for human LPL show that 

the transcript was actively translated in cells, and that it was released into media in the 

presence of heparin (Figure 5B). Triplicate assays to assess the FFA released from the 

hydrolysis of 1.05 mM total lipoproteins (by PL) from human plasma by conditioned 

media from HEK-293T cells expressing LPL showed that the quantity of FFA that was 

liberated was significantly greater than the amount liberated by media from mock 

transfected cells (p<0.001) (Figure 5C). No significant differences were observed in the 

quantity of FFA between hydrolysis reactions using either mock-transfected heparinized 

media or heparinized media from pcDNA3 transfected cells (Figure 5D). Taken together, 

these results show that the transfection was successful in producing recombinant human 

LPL, and the conditioned media from those cells transfected with human LPL possess 

considerable lipase activity. 
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Figure 5: Expression of LPL 
 
A: Real-time PCR analyses of total RNA from transfected HEK-293T cells expressing no 
lipase (Non) or LPL to quantify LPL expression. Data represent the means ± SD from 3 
independent experiments. *, p<0.005 (t-test). B: Immunoblot analyses for LPL in cells 
and heparinized media from transfected HEK-293T cells expressing no lipase (Non) or 
LPL. Data are representative of triplicate transfections. C: 1.05 mM total lipoproteins 
(d<1.21 g/mL) were hydrolysed over 4 hours at 37°C by heparinized media from 
transfected HEK-293T cells expressing no lipase (Non) or LPL (over 4 hours at 37°C). 
FFA released were quantified, and data represent the means ± SD from 3 independent 
experiments. Statistical analyses were performed using a t-test. D: 1.05 mM total 
lipoproteins (d<1.21 g/mL) were incubated for 4 hours at 37°C with heparinized media 
from transfected HEK-293T cells expressing no lipase (Non) or pcDNA3. FFA released 
were quantified, and data represent the means ± SD from 3 independent experiments. 

 59



Figure 5 

A 

 
B  

HEK-293T Cells: 

 

Heparinized media: 

 

 60



Figure 5 (cont.) 

 

C 

 

   

 

D 

     

 61



3.2 Lipidomic analysis of hydrolysis products generated by LPL from total 

lipoproteins 

 Shotgun lipidomic analyses on the lipoprotein hydrolysis products generated by 

conditioned media in the absence versus presence of LPL provide details for the 

individual molecular lipid species of the substrates and products. The substrates include 

molecular species of TG, PtdCho and lysoPtdCho, and the products include lysoPtdCho 

(derived from PtdCho) and FFA (derived from all substrates). 

 ESI-MS analyses of the hydrolysis reaction show that compared to mock 

transfected media incubations with total lipoproteins, 15 of the 17 species of TG that 

were assessed were significantly decreased following the hydrolysis of total lipoproteins 

by conditioned media containing LPL (Figure 6A). Furthermore, LPL significantly 

reduced the levels of 8 of the 10 PtdCho species assessed versus the PtdCho levels from 

mock transfected media incubations with total lipoproteins (Figure 7A). No significant 

differences for the levels of lysoPtdCho species were observed between the LPL and 

mock transfected media incubations (Figure 8A). Only modest differences were observed 

to the levels of individual species of TG (Figure 6B), PtdCho (Figure 7B), and 

lysoPtdCho (Figure 8B) between hydrolysis reactions in the presence of mock 

transfected media or PBS. Using GC-MS to measure FFA from hydrolysis reactions, 

results show that compared to mock transfected media incubations, all of the species of  
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Figure 6: Triglyceride species levels following total lipoprotein hydrolysis by heparinized 
media from LPL and no-lipase expressing HEK-293T cells 
 
A: Lipids were extracted from total lipoprotein hydrolysis products from total 
lipoproteins (d<1.21 g/mL, 1.95 mM by PL) that were generated by heparinized media 
from HEK-293T cells expressing either LPL or no lipase (Non). Using triheptadecenoin 
as an internal control, the pmol triglyceride (TG) species per L were quantified as 
described in section 2.4.2; a, p<0.05 versus Non; b, p<0.01 versus Non; c, p<0.001 
versus Non (t-test). B: Lipids were extracted from total lipoprotein hydrolysis products 
from total lipoproteins (d<1.21 g/mL, 1.95 mM by PL) generated by heparinized media 
from mock transfected HEK-293T cells or PBS (vehicle control). The pmol TG species 
per L were quantified as described above; a, p<0.05 versus PBS; b, p<0.01 versus PBS 
(t-test). All data are means ± SD from triplicate experiments. 
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Figure 7: Phosphatidylcholine species levels following total lipoprotein hydrolysis by 
heparinized media from LPL and no-lipase expressing HEK-293T cells 
 
A: Lipids were extracted from total lipoprotein hydrolysis products from total 
lipoproteins (d<1.21 g/mL, 1.95 mM by PL) that were generated by heparinized media 
from HEK-293T cells expressing either LPL or no lipase (Non). Using diarachidoyl 
phosphocholine as an internal control, the pmol phosphatidylcholine (PtdCho) species 
per L were quantified as described in section 2.4.2; a, p<0.05 versus Non; b, p<0.01 
versus Non; c, p<0.001 versus Non (t-test). B: Lipids were extracted from total 
lipoprotein hydrolysis products from total lipoproteins (d<1.21 g/ml, 1.95 mM by PL) 
generated by heparinized media from mock transfected HEK-293T cells or PBS (vehicle 
control). The pmol PtdCho species per L were quantified as described above; a, p<0.05 
versus PBS; b, p<0.01 versus PBS (t-test). All data are means ± SD from triplicate 
experiments. 
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Figure 8: Lysophosphatidylcholine species levels following total lipoprotein hydrolysis by 
heparinized media from LPL and no-lipase expressing HEK-293T cells 
 
A: Lipids were extracted from total lipoprotein hydrolysis products from total 
lipoproteins (d<1.21 g/mL, 1.95 mM by PL) that were generated by heparinized media 
from HEK-293T cells expressing either LPL or no lipase (Non). Using 1-heptadecanoyl 
lysophosphatidylcholine (lysoPtdCho) as an internal control, the pmol lysoPtdCho 
species per L were quantified as described in section 2.4.2. B: Lipids were extracted 
from total lipoprotein hydrolysis products from total lipoprotein (d<1.21 g/mL, 1.95 mM 
by PL) generated by heparinized media from mock transfected HEK-293T cells or PBS 
(vehicle control). The pmol lysoPtdCho species per L were quantified as described 
above; a, p<0.05 versus PBS (t-test). All data are means ± SD from triplicate 
experiments. 
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FFA assessed were significantly increased after the hydrolysis of total lipoproteins by 

media containing LPL (Figure 9A). Compared to the hydrolysis reactions in the presence 

of PBS (vehicle control), 5 species of FFA were modestly increased in the hydrolysis 

reactions in the presence of mock transfected media (Figure 9B).  

The concentration of the FFA liberated by LPL, as determined by GC-MS was 

2.72 mM. This value was used to define the concentration of the total lipoprotein 

hydrolysis products and FFA that were added to THP-1 macrophages in subsequent 

studies: a dilution ratio of 1:4 (high concentration) (as described in section 2.6.1) is 

defined as 0.68 mM, and a dilution ratio of 1:8 (low concentration) (as described in 

section 2.6.1) is defined as 0.34 mM. These diluted products and FFA are representative 

of FFA concentrations found in the bloodstream of fasted persons in vivo (207).   

3.3 The negative influences of the total lipoprotein hydrolysis products generated by 

LPL on gene transcripts within THP-1 macrophages 

3.3.1 The mRNA levels for nuclear receptors LXR-, PPAR-, and PPAR- were 

significantly decreased by LPL lipoprotein hydrolysis products 

The incubation of THP-1 macrophages with lipoprotein hydrolysis products 

generated by LPL significantly reduced the mRNA levels of the lipid–activated nuclear 

receptors PPAR-, PPAR-, and LXR-Figure 10. Both the low concentration (0.34 
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Figure 9: Free fatty acid species levels following total lipoprotein hydrolysis by 
heparinized media from LPL and no-lipase expressing HEK-293T cells 
 
A: Lipids were extracted from total lipoprotein hydrolysis products from total 
lipoproteins (d<1.21 g/mL, 1.95 mM by PL) that were generated by heparinized media 
from HEK-293T cells expressing either LPL or no lipase (Non). Using arachidic acid as 
an internal control, the pmol free fatty acid (FFA) species per L were quantified as 
described in section 2.4.3; a, p<0.001 versus Non (t-test). B: Lipids were extracted from 
total lipoprotein hydrolysis products from total lipoproteins (d<1.21 g/mL, 1.95 mM by 
PL) generated by heparinized media from mock transfected HEK-293T cells or PBS 
(vehicle control). The pmol FFA species per L were quantified as described above; a, 
p<0.05 versus PBS; b, p<0.01 versus PBS, c, p<0.001 versus PBS (t-test). All data are 
means ± SD from triplicate experiments. 
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Figure 10: mRNA levels for nuclear receptors in macrophages incubated with lipoprotein 
hydrolysis products 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with 0.34 mM and 0.68 
mM FFA (based on post-hydrolysis) of total lipoprotein hydrolysis products generated by 
LPL. A: The mRNA levels for LXR-, normalized to the mRNA levels for -actin, were 
quantified in triplicate by real-time PCR. No significant difference was observed for the 
mRNA levels of LXR- between the low concentration and high concentration 
hydrolysis products treatments. B: The mRNA levels for PPAR-, normalized to the 
mRNA levels for -actin, were quantified in triplicate by real-time PCR. No significant 
difference was observed for the mRNA levels of PPAR- between the low concentration 
and high concentration hydrolysis products treatments. C: The mRNA levels for PPAR-, 
normalized to the mRNA levels for -actin, were quantified in triplicate by real-time 
PCR. No significant difference was observed for the mRNA levels of PPAR- between 
the low concentration and high concentration hydrolysis products treatments. Control 1 
and 2, represent the treatment of cells with total lipoprotein hydrolysis products 
generated by conditioned media with no lipase; respectively, they are the controls for the 
0.34 mM and 0.68 mM FFA treatment. All data are means ± SD; p values, where written, 
indicate significance between control and treatment (t-test). Statistical analyses between 
hydrolysis products treatments were performed using a two-way ANOVA with a Sidak 
multiple comparison test. 
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mM FFA based on post-hydrolysis) and the high concentration (0.68 mM FFA based on 

post-hydrolysis) of lipoprotein hydrolysis products significantly reduced the mRNA level 

of LXR- (by 68% and 69%, respectively) (Figure 10A). The mRNA level of PPAR- 

was markedly decreased by the high concentration of lipoprotein hydrolysis products by 

42%, while the low concentration of lipoprotein hydrolysis products did not yield any 

significant effect on the transcript for PPAR- (Figure 10B). Furthermore, the mRNA 

level of PPAR- was markedly decreased by low concentration and high concentration of 

LPL lipoprotein hydrolysis products by 36% and 67%, respectively (Figure 10C). No 

significant difference was observed for the mRNA levels of LXR-, PPAR-, and 

PPAR- between the low concentration and high concentration hydrolysis products 

treatments. 

The observations of the suppressed transcription of genes encoding LXR- and 

PPARs led us to speculate that the lipoprotein hydrolysis products generated by LPL may 

negatively modulate the genes that associate with cholesterol transport and lipogenesis. 

Thus, we further quantified the mRNA levels of multiple cholesterol transporters and 

enzymes involved in FFA synthesis in THP-1 macrophages that were incubated for 18 

hours with lipoprotein hydrolysis products generated by LPL.  
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3.3.2 The mRNA levels for cholesterol transporters ABCA1, ABCG1, and SR-BI 

were significantly decreased by LPL lipoprotein hydrolysis products 

The results from real-time PCR showed that the incubation of THP-1 

macrophages with lipoprotein hydrolysis products generated by LPL significantly 

reduced the mRNA levels for ABCA1, ABCG1, and SR-BI (Figure 11). Both the low 

concentration (0.34 mM FFA) and high concentration (0.68 mM FFA) of lipoprotein 

hydrolysis products generated by LPL significantly decreased the mRNA levels for 

ABCA1 (by 48% and 24%, respectively) (Figure 11A) and ABCG1 (by 40% and 53%, 

respectively) (Figure 11B). The mRNA levels for SR-BI were significantly decreased 

only by the high concentration of LPL hydrolysis products (Figure 11C). A significant 

difference in the mRNA levels for ABCA1 was observed between the low concentration 

and high concentration treatment, while there was no significant difference in the mRNA 

levels for ABCG1 and SR-BI between the two treatments. 

3.3.3 The mRNA levels for enzymes involved in FFA synthesis: ACCA, FASN, and 

SCD-1 were significantly decreased by LPL lipoprotein hydrolysis products 

The transcriptional levels for the downstream target genes of LXR-, including 

ACCA, FASN, and SCD-1, in THP-1 macrophages were assessed following incubation 

of the cells with lipoprotein hydrolysis products generated by LPL (Figure 12). The low 

concentration (0.34 mM FFA) and the high concentration (0.68 mM FFA) of lipoprotein  
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Figure 11: mRNA levels for cholesterol transporters in macrophages incubated with 
lipoprotein hydrolysis products   
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with 0.34 mM and 0.68 
mM FFA (based on post-hydrolysis) of total lipoprotein hydrolysis products generated by 
LPL. A: The mRNA levels for ABCA1, normalized to the mRNA levels for -actin, were 
quantified in triplicate by real-time PCR. A significant difference was observed for the 
mRNA levels of ABCA1 between the low concentration and high concentration 
hydrolysis products treatments (two-way ANOVA with a Sidak multiple comparison test. 
*, p<0.01). B: The mRNA levels for ABCG1, normalized to the mRNA levels for -actin, 
were quantified in triplicate by real-time PCR. No significant difference was observed 
for the mRNA levels of ABCG1 between the low concentration and high concentration 
hydrolysis products treatments (two-way ANOVA with a Sidak multiple comparison test). 
C: The mRNA levels for SR-BI, normalized to the mRNA levels of -actin, were 
quantified in triplicate by real-time PCR. No significant difference was observed for the 
mRNA levels of SR-BI between the low concentration and high concentration hydrolysis 
products treatments (two-way ANOVA with a Sidak multiple comparison test). Control 1 
and 2, represent the treatment of cells with total lipoprotein hydrolysis products 
generated by conditioned media with no lipase; respectively, they are the controls for the 
0.34 mM and 0.68 mM FFA treatment. All data are means ± SD; p values, where written, 
indicate significance between control and treatment, based on Student’s t-test. 
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Figure 12: mRNA levels for enzymes involves in FFA synthesis in macrophages 
incubated with lipoprotein hydrolysis products 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with 0.34 mM and 0.68 
mM FFA (based on post-hydrolysis) of total lipoprotein hydrolysis products generated by 
LPL. A: The mRNA levels for ACCA, normalized to the mRNA levels for -actin, were 
quantified in triplicate by real-time PCR. No significant difference was observed for the 
mRNA levels of ACCA between the low concentration and high concentration hydrolysis 
products treatments (two-way ANOVA with a Sidak multiple comparison test). B: The 
mRNA levels for FASN, normalized to the mRNA levels for -actin, were quantified in 
triplicate by real-time PCR. No significant difference was observed for the mRNA levels 
of FASN between the low concentration and high concentration hydrolysis products 
treatments (two-way ANOVA with a Sidak multiple comparison test). C: The mRNA 
levels for SCD-1, normalized to the mRNA levels for -actin, were quantified in 
triplicate by real-time PCR. No significant difference was observed for the mRNA levels 
of SCD-1 between the low concentration and high concentration hydrolysis products 
treatments (two-way ANOVA with a Sidak multiple comparison test). Control 1 and 2, 
represent the treatment of cells with total lipoprotein hydrolysis products generated by 
conditioned media with no lipase; respectively, they are the controls for the 0.34 mM and 
0.68 mM FFA treatment. All data are means ± SD; p values, where written, indicate 
significance between control and treatment, based on Student’s t-test.  
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hydrolysis products generated by LPL reduced the mRNA levels for ACCA by 37% and 

44%, respectively (Figure 12A), FASN by 52% and 31%, respectively (Figure 12B), and 

SCD-1 by 60% and 67%, respectively (Figure 12C). No significant differences were 

observed for the mRNA levels of ACCA, FASN, and SCD-1 between the low 

concentration and high concentration hydrolysis products treatments. 

3.3.4 The mRNA levels for LPL were significantly decreased by LPL lipoprotein 

hydrolysis products 

 In order to find out whether or not a feedback mechanism of LPL exists in 

macrophages, we investigated the influence of lipoprotein hydrolysis products generated 

by LPL on the transcript for the gene encoding LPL. The real-time PCR results showed 

that both the low concentration (0.34 mM FFA) and high concentration (0.68 mM FFA) 

of lipoprotein hydrolysis products significantly reduced the mRNA level for LPL by 56% 

and 69%, respectively (Figure 13). No significant difference was observed between the 

low concentration and high concentration hydrolysis products treatments. 

3.4 The pro-atherogenic influence of the purified FFA mixture on intracellular lipid 

homeostasis 

In order to investigate the influence of the FFA liberated from total lipoproteins 

by LPL on intracellular lipid storage, a mixture of FFA that matched the concentrations 

of individual FFA species that were present in lipoprotein hydrolysis products generated 
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Figure 13: mRNA levels for LPL in macrophages incubated with lipoprotein hydrolysis 
products 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with 0.34 mM and 0.68 
mM FFA (based on post-hydrolysis) of total lipoprotein hydrolysis products generated by 
LPL. The mRNA levels for LPL, normalized to the mRNA levels for -actin, were 
quantified in triplicate by real-time PCR. No significant difference was observed for the 
mRNA levels of LPL between the low concentration and high concentration hydrolysis 
products treatments (two-way ANOVA with a Sidak multiple comparison test). Control 1 
and 2, represent the treatment of cells with total lipoprotein hydrolysis products 
generated by conditioned media with no lipase; respectively, they are the controls for the 
0.34 mM and 0.68 mM FFA treatment. All data are means ± SD; p values, where written, 
indicate significance between control and treatment, based on Student’s t-test.  
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by LPL was prepared and incubated with differentiated THP-1 cells to assess its effect on 

lipid droplets. THP-1 macrophages were incubated overnight with low (0.34 mM) and 

high (0.68 mM) concentrations of the FFA mixture (in serum-free culture media 

containing PMA and 0.2% w/v FAF-BSA); cells were subsequently stained with Oil red 

O to stain the intracellular neutral lipids. Figure 14 shows that compared to cells treated 

with the vehicle control (of DMSO in media) (Figure 14A), Oil red O positive lipid 

droplets were clearly present in the THP-1 macrophages incubated with either a low 

concentration (0.34 mM) (Figure 14B) or a high concentration (0.68 mM) (Figure 14C) 

of the purified FFA mixture. Moreover, THP-1 macrophages incubated with the purified 

FFA mixture led to the development of foam cell-like macrophages: macrophages that 

were incubated with the high concentration of the purified FFA mixture (0.68 mM) 

presented with the most pronounced foam cell-like phenotype (Figure 14C), whereas 

macrophages incubated with the vehicle control (no FFA) did not exhibit a foam cell-like 

appearance (Figure 14A). 

3.5 The negative influences of the purified FFA mixture on gene transcripts within 

human THP-1 macrophages 

The results from quantitative real-time PCR analyses demonstrate that a purified 

FFA mixture, that matches the amounts to those added to cells from human plasma total 

lipoproteins hydrolysed by LPL, yield comparable results to those for lipoprotein
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Figure 14: Oil red O Staining 
 
Differentiated THP-1 cells were treated for 18 hours with A: the vehicle control (of 
DMSO in media); B: with a low concentration (0.34 mM) of purified FFA mixture; and C: 
with a high concentration (0.68 mM) of purified FFA mixture. Cells were subsequently 
stained with Oil red O. Data are representative of triplicate experiments. 
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hydrolysis products generated by LPL on gene transcription. 

3.5.1 The mRNA levels for nuclear receptors LXR-, PPAR-, and PPAR- were 

significantly decreased by the purified FFA mixture 

The low concentration (0.34 mM) and the high concentration (0.68 mM) of the 

purified FFA mixture treatments of THP-1 macrophages for 18 hours significantly 

reduced the mRNA levels for LXR- (by 74% and 33%, respectively) (Figure 15A) and 

PPAR- (by 47% and 28%, respectively) (Figure 15C). However, neither the low 

concentration (0.34 mM) nor the high concentration (0.68 mM) of the purified FFA 

mixture had a significant influence on the level of transcripts for gene encoding PPAR- 

(Figure 15B). No significant differences were observed for the mRNA levels of LXR-, 

PPAR-, and PPAR- between the low and high concentrations of FFA treatments. 

3.5.2 The mRNA levels for cholesterol transporters ABCA1, ABCG1, and SR-BI 

were significantly decreased by the purified FFA mixture 

Both the low concentration (0.34 mM) and high concentration (0.68 mM) of the 

purified FFA mixture significantly reduced the mRNA levels for ABCA1 (by 70% and 

27%, respectively), (Figure 16A) ABCG1 (by 83% and 67%, respectively) (Figure 16B), 

and SR-BI (by 42% and 20%, respectively) (Figure 16C). A significant difference was 

observed for the mRNA levels of ABCA1 between the low concentration and high 

concentration treatments, while there was no significant difference for the mRNA levels 
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Figure 15: mRNA levels for nuclear receptors in macrophages incubated with purified 
FFA mixture 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with a mixture of 
purified FFA (that represents the species’ of FFA liberated by LPL from total 
lipoproteins). A: The mRNA levels for LXR-, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of LXR- between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). B: The mRNA levels for PPAR-, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of PPAR- between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). C: The mRNA levels for PPAR-, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of PPAR- between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). Vehicle 1 is the control for 0.34 mM FFA, and Vehicle 2 is the control 
for 0.68 mM FFA. All data are means ± SD; p values, where written, indicate 
significance between control and treatment, based on Student’s t-test.  
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Figure 16: mRNA levels for cholesterol transporters in macrophages incubated with 
purified FFA mixture 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with a mixture of 
purified FFA (that represents the species’ of FFA liberated by LPL from total 
lipoproteins). A: The mRNA levels for ABCA1, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. A significant difference was 
observed for the mRNA levels of ABCA1 between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test. *, p<0.01). B: The mRNA levels for ABCG1, normalized to the mRNA 
levels for -actin, were quantified in triplicate by real-time PCR. No significant 
difference was observed for the mRNA levels of ABCG1 between the low concentration 
and high concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). C: The mRNA levels for SR-BI, normalized to the mRNA levels of 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of SR-BI between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). Vehicle 1 is the control for 0.34 mM FFA, and Vehicle 2 is the control 
for 0.68 mM FFA. All data are means ± SD; p values, where written, indicate 
significance between control and treatment, based on Student’s t-test.  
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of ABCG1 and SR-BI between the two treatments. 

3.5.3 The mRNA levels for enzymes involved in FFA synthesis were significantly 

decreased by the purified FFA mixture 

As shown in Figure 17, both the low (0.34 mM) and high (0.68 mM) 

concentrations of the purified FFA mixture markedly decreased the mRNA levels for 

ACCA (by 57% and 34%, respectively) (Figure 17A), while only the low concentration 

of the purified FFA mixture significantly decreased the transcription of genes for FASN 

and SCD-1 by 49% (Figure 17B) and 79% (Figure 17C), respectively. No significant 

difference was observed for the mRNA levels of ACCA, FASN, and SCD-1 between the 

low concentration and high concentration FFA treatments. 

3.5.4 The mRNA levels for SREBP-1c were significantly decreased by the purified 

FFA mixture 

Both the low concentration (0.34 mM) and the high concentration (0.68 mM) of 

the purified FFA mixture significantly decreased the mRNA levels for SREBP-1c (by 

75% and 85%, respectively) (Figure 18). No significant difference was observed for the 

mRNA levels of SREBP-1c between the low concentration and high concentration FFA 

treatments. 

3.5.5 The mRNA levels for LPL were unchanged by the purified FFA mixture 

Unlike the observation on THP-1 macrophages incubated with lipoprotein 
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Figure 17: mRNA levels for enzymes involved in FFA synthesis in macrophages 
incubated with purified FFA mixture 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with a mixture of 
purified FFA (that represents the species’ of FFA liberated by LPL from total 
lipoproteins). A: The mRNA levels for ACCA, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of ACCA between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). B: The mRNA levels for FASN, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of FASN between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). C: The mRNA levels for SCD-1, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of SCD-1 between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). Vehicle 1 is the control for 0.34 mM FFA, and Vehicle 2 is the control 
for 0.68 mM FFA. All data are means ± SD; p values, where written, indicate 
significance between control and treatment, based on Student’s t-test.  
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Figure 18: mRNA levels for SREBP-1c in macrophages incubated with purified FFA 
mixture 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with a mixture of 
purified FFA (that represents the species’ of FFA liberated by LPL from total 
lipoproteins). The mRNA levels for SREBP-1c, normalized to the mRNA levels for 
-actin, were quantified in triplicate by real-time PCR. No significant difference was 
observed for the mRNA levels of SREBP-1c between the low concentration and high 
concentration FFA mixture treatments (two-way ANOVA with a Sidak multiple 
comparison test). Vehicle 1 is the control for 0.34 mM FFA, and Vehicle 2 is the control 
for 0.68 mM FFA. All data are means ± SD; p values indicate significance between 
control and treatment, based on Student’s t-test.  
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hydrolysis products generated by LPL, neither the low concentration (0.34 mM) nor the 

high concentration (0.68 mM) of the purified FFA mixture significantly influenced the 

mRNA levels for LPL versus vehicle controls (Figure 19). A significant difference was 

observed for the mRNA levels of LPL between the high concentration and low 

concentration FFA treatments. 

3.6 The purified FFA mixture negatively influences apolipoprotein A-I mediated 

cholesterol efflux 

We tested whether or not the reduced mRNA levels for cholesterol transporters in 

THP-1 macrophages treated with FFA would translate into an attenuated ability of 

macrophages to efflux cholesterol. Compared to vehicle control treated cells, the efflux 

of cholesterol to apoA-I from THP-1 macrophages labeled with [3H]cholesterol was 

significantly reduced from 3.7% to 1.3% when pre-incubated with the 0.68 mM purified 

FFA mixture (Figure 20). 
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Figure 19: mRNA level for LPL in macrophages incubated with purified FFA mixture 
 
Differentiated THP-1 cells were treated in triplicate for 18 hours with a mixture of 
purified FFA (that represents the species’ of FFA liberated by LPL from total 
lipoproteins). The mRNA levels for LPL, normalized to the mRNA levels for -actin, 
were quantified in triplicate by real-time PCR. A significant difference was observed for 
the mRNA levels of LPL between the low concentration and high concentration FFA 
mixture treatments (two-way ANOVA with a Sidak multiple comparison test. *, p<0.05). 
Vehicle 1 is the control for 0.34 mM FFA, and Vehicle 2 is the control for 0.68 mM FFA. 
All data are mean ± SD; p values, where written, indicate significance between control 
and treatment, based on Student’s t-test.   
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Figure 20: The FFA component of total lipoprotein hydrolysis by LPL attenuated apoA-I 
mediated cholesterol efflux 
 
Differentiated THP-1 cells labelled with [3H]cholesterol were treated for 18 hours with a 
mixture of purified FFA (0.68 mM) (as described in section 2.5.2), then subsequently 
tested for cholesterol efflux ability to apoA-I over 6h. Efflux was calculated as a 
percentage of media [3H]cholesterol per total cell and media [3H]cholesterol. All data 
were corrected for control efflux experiments to 0.2% w/v FAF-BSA. Data are means ± 
SD; n=6. Statistical analyses were performed using a Student’s t-test. 
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Chapter 4: Discussion 

4.1 Discussion 

4.1.1 Shotgun lipidomic analyses of lipoprotein hydrolysis products generated by 

LPL provided insight into the activities of LPL at the molecular level 

In this study, LPL liberated from total lipoproteins all of the FFA species that 

were assessed by GC-MS. This was tied to significantly decreased levels of individual 

species of TG and PtdCho. While LPL preferentially hydrolyses TG, it does have a 

phospholipase A1 activity (208). The significant hydrolysis of lipoprotein PtdCho in the 

current study by LPL suggests that once a maximal degree of hydrolysis of TG by LPL 

was reached, LPL likely would move toward hydrolysing PtdCho. In contrast, the lack of 

significant hydrolysis of lipoprotein lysoPtdCho suggested that LPL may not have an 

activity toward lysoPtdCho in vitro. 

In the hydrolysis reactions with mock-transfected media, we unexpectedly 

observed that the levels for 5 species of FFA were increased versus the hydrolysis 

reaction in the presence of PBS. However, the comparable levels of individual species of 

TG and PtdCho between lipoproteins incubated with either mock-transfected media or 

PBS indicated that the mock-transfected media does not exhibit a significant LPL activity. 

Thus, I speculate that the significantly elevated levels for 5 species of FFA in the 

incubation of mock-transfected media with lipoproteins are derived from the HEK-293T 
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cells and not from the hydrolysis reaction.  

4.1.2 The lipoprotein hydrolysis products generated by LPL negatively modulate the 

transcripts for genes encoding PPARs and LXR- 

In the current study, by using quantitative real time-PCR analyses, we discovered 

that the hydrolysis products generated by LPL from total lipoproteins significantly 

reduced the mRNA levels for the nuclear receptors PPAR-, PPAR-, and LXR-, while 

the FFA component of the hydrolysis products suppressed the transcripts for genes 

encoding LXR- and PPAR-. The unchanged mRNA levels for PPAR- in macrophages 

incubated with the purified FFA mixture suggests that other components from the LPL 

lipoprotein hydrolysis, such as diglycerides and liberated proteins, are likely responsible 

for the suppressive effects on PPAR-. It is unlikely that lysoPtdCho contributed in this 

study, as their levels were not different following hydrolysis. The decreased mRNA 

levels for LXR- in macrophages incubated with the purified FFA mixture might be in 

part a result of down-regulation by PPAR-, since the unsaturated FFA arachidonic acid 

blocks the ligand-dependent activation of LXR- without influencing the basal 

expression of LXR-. 

On the other hand, given Inoue et al. (210) previously reported that individual 

species of FFA differently affect the mRNA level of PPAR- in human umbilical vein 

endothelial cells (i.e. oleic acid and eicosapentaenoic acid lead to an increase in PPAR- 

 102



mRNA levels, while arachidonic acid and linoelaidic acid lead to a decrease in PPAR- 

mRNA levels), I speculate that the net effects of the FFA mixture resulted in a decrease in 

PPAR- mRNA. Furthermore, some other mechanism may also exist to account for the 

decreased mRNA level of PPAR- in macrophages incubated with the lipoprotein 

hydrolysis products generated by LPL. Previous studies have reported that TNF- acts to 

down regulate the transcript of the gene encoding PPAR- in adipocytes, and the 

expression levels of TNF- are inversely related to LPL activity (211, 212). Thus, I 

speculate that other components from LPL lipoprotein hydrolysis products, but not FFA, 

may trigger a feed back regulation, such that the expression of TNF- may be increased, 

thus leading to decrease in LPL mRNA plus a suppression of the transcription of the gene 

encoding PPAR- The exact mechanism by which LPL lipoprotein hydrolysis products 

suppresses the transcripts of genes encoding PPARs and LXR- merits further study, 

which may tie a pro-inflammatory response to hydrolysis products with the mechanism.  

4.1.3 The suppressed transcripts of genes encoding nuclear receptors likely further 

result in lowered mRNA levels for cholesterol transporters  

Given the identified roles of PPAR- and PPAR-in directly or indirectly 

(through LXR-) modulating the transcripts of genes encoding the cholesterol 

transporters ABCA1, ABCG1, and SR-BI (173, 176-178, 180, 213, 214), it was 

anticipated that the decrease of PPARs and LXR- mRNA expression, caused by total 
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lipoprotein hydrolysis products generated by LPL, would contribute to a suppression of 

the transcripts of genes encoding ABCA1, ABCG1 and SR-BI. As expected, we found 

that the transcripts encoding these cholesterol transporters were indeed reduced. Notably, 

the low concentration FFA mixture was shown to significantly decrease the SR-BI mRNA 

level. While it would be expected that a similar result would be observed from the low 

concentration hydrolysis products treatment (since the low concentration of hydrolysis 

products has the exact same FFA profile as the low concentration FFA mixture), the low 

concentration of hydrolysis products did not have a significant effect on SR-BI mRNA 

level. Since a significantly suppressed transcript for SR-BI was observed in macrophages 

incubated with high concentration hydrolysis products, it is unlikely that other 

components from the hydrolysis products are offsetting the FFA induced reduction in 

SR-BI mRNA level. The exact explanation behind this discrepancy remains unknown.  

Uehara et al. (215) previously showed that unsaturated FFA can markedly 

down-regulate the expression of ABCA1 without changing the expression of LXR-. 

They further found that unsaturated FFA could suppress the expression of ABCG1 and 

inhibit the activity of ABCA1 and ABCG1 promoters by a mechanism that involves the 

binding of LXR/RXR to the direct repeat 4 (DR4) element (which is a positive regulatory 

element for LXR/RXR) (216). Similarly, Yoshikawa et al. (217) have clearly 

demonstrated that polyunsaturated FFA can suppress the promoter activity of SREBP-1c 
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by inhibiting the binding of LXR-, which suggested that these species of FFA have the 

ability to modulate the target genes of LXR-via post-transcriptional regulation. Taken 

together, given that the purified FFA mixture contains both polyunsaturated FFA and 

monounsaturated FFA (Table 1), I speculate that in addition to the suppression of 

transcripts for ABCA1, ABCG1, and SR-BI via the transcriptional cascade in the PPARs 

and LXR- pathways (as described in section 1.4.3), the FFA may also act to reduce the 

mRNA levels for these cholesterol transporters by negatively modulating LXR- at the 

post-translational level by inhibiting the binding of LXR to the promoters of ABCA1, 

ABCG1, and SR-BI, which contains a DR4 element. DR4 (or LXRE) exists within the 

promoters of ABCA1, ABCG1, and SR-BI, and they are located between residues -803 

and +165, residues -1104 and +37, and residues -1200 to -937, respectively (215, 216, 

218). However, the exact mechanism by which LPL lipoprotein hydrolysis products 

suppresses the transcripts of genes encoding cholesterol transporters remains to be 

determined and warrants further study. 

Interestingly, although both the high and low concentration of hydrolysis 

products/FFA mixture reduced the ABCA1 mRNA level, results from the two-way 

ANOVA analysis indicated that the low concentration yielded a more potent effect than 

the high concentration. However, the mechanisms behind this are currently unknown.  
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4.1.4 The lowered mRNA levels for cholesterol transporters are tied to an attenuated 

ability for THP-1 macrophages to efflux cholesterol to apoA-I 

Inducing the transcripts and/or expression of cholesterol transporters by the 

nuclear receptors PPARs and LXR was shown to significantly promote cholesterol efflux 

and RCT (181, 182, 219, 220). In contrast, lowering the expression or increasing the 

degradation of cholesterol transporters markedly attenuated cholesterol efflux and 

promotes atherogenesis (183, 221). Consistent with these previous observations, the 

current study shows that suppressing the transcripts for ABCA1, ABCG1, and SR-BI by 

the FFA component of hydrolysis products was tied to a reduction of the ability for 

THP-1 macrophages to efflux cholesterol to apoA-I. 

Wang et al. (221) showed that unsaturated FFAs act to attenuate the ability of 

macrophages to efflux cholesterol to apoA-I by increasing the degradation of ABCA1 

and decreasing the binding of apoA-I to ABCA1 at the cell surface. Thus, given that the 

purified FFA mixture contains unsaturated FFA, it is possible that in addition to the 

negative modulation on the transcripts of gene encoding ABCA1, the lipoprotein 

hydrolysis products generated by LPL might also function to reduce the ability for THP-1 

macrophages to efflux cholesterol to apoA-I by inducing the degradation of ABCA1 

and/or decreasing the binding of apoA-I to ABCA1/cell surface. 

Notably, this study chose to carry out cholesterol efflux assays to evaluate the 
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influence of purified FFA on the ability of macrophages to efflux cholesterol. The effect 

of hydrolysis products was not evaluated because the lipoprotein remnants in the 

hydrolysis products could function as cholesterol receptors, which might give unreliable 

and irreproducible results for apoA-I mediated cholesterol efflux ratio. 

In addition to a reduction to ABCA1 mRNA levels, ABCG1 mRNA levels were 

also decreased by both lipoprotein hydrolysis products generated by LPL, and the FFA 

mixture. It is likely that cholesterol efflux to small, mature HDL particles (such as HDL3) 

would be reduced, which warrants testing in future studies. 

4.1.5 The purified FFA mixture led to an accumulation of lipid within macrophages  

Results from my study also show that suppressing the transcripts for ABCA1, 

ABCG1, and SR-BI by the FFA component of hydrolysis products was tied to an 

accumulation of intracellular lipids and foam cell-like formation. The FFA component of 

hydrolysis products induced lipid accumulation within macrophages, which is consistent 

with previous reports: i) macrophage and smooth muscle cell LPL can locally liberate 

hydrolysis products from lipoproteins and further facilitate the cellular uptake of lipids 

(119, 139, 140, 222); and ii) macrophages with high LPL expression levels and activity 

are more easily converted to foam cells, and the amounts of extracellular FFA localized 

with these cells are greater than that for macrophages with normal levels of LPL (223). In 

the current study, although unlikely, the lipid accumulation within macrophages that were 
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incubated with the purified FFA mixture may just simply be a result of increased storage 

of the lipid. However, it may also be part of an unknown effect of a FFA-induced 

negative modulation on LXR, as LXR deficiency in mice leads to an increase in foam 

cell formation from macrophages (224). 

4.1.6 The lowered mRNA levels for enzymes involved in FFA synthesis are likely due 

to lowered LXR-expression 

The current study also shows that consistent with the suppressed transcript levels 

of LXR-, the mRNA levels for the downstream target genes ACCA, SCD-1 and 

FASNwere all reduced. Of these enzymes that are involved in FFA synthesis, FASN was 

shown to play a promotional role in atherosclerosis: Schneider et al. (225) observed that 

a deficiency of macrophage FASN in apoE-null mice acts to significantly attenuate 

atherogenesis by inducing the transcription of LXR- which will favour cholesterol 

efflux and attenuate cholesterol uptake by increasing the expression of ABCA1 and 

decreasing the expression of cluster of differentiation 36, respectively.  

SCD-1 was shown to exhibit properties that are both pro- and anti-atherogenic. 

The pro-atherogenic properties include: i) SCD-1 activity is positively associated with 

plasma TG levels, which is deemed to be a significant independent risk factor of 

cardiovascular disease (226); and ii) SCD-1 and its products function to attenuate 

ABCA1 mediated cholesterol efflux by elevating the destabilization of ABCA1 (215, 221, 
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227-229). The anti-atherogenic property of SCD-1 represents its critical role in the 

homeostasis of the pro-atherogenic lipoprotein LDL (229-231). Specifically, a deficiency 

of SCD-1 in mice results in a significantly increased plasma LDL level, likely as a result 

of a decreased LDL clearance rate (230).  

Taken together, due to the different properties of FASN (which exhibits a 

pro-atherogenic property), SCD-1 (which exhibits properties that are both pro- and 

anti-atherogenic), and ACCA (which does not seem to have a detrimental role in 

atherogenesis), the net effects of the suppressed transcripts of these enzymes, as found in 

the current study, on atherosclerosis remain to be investigated in future studies. 

The mechanism by which lipoprotein hydrolysis products generated by LPL 

suppresses the transcripts of genes encoding ACCA, FASN and SCD-1 is not resolved. 

Knowing SREBP-1c functions to modulate lipid homeostasis in vertebrate cells (187), in 

part by directly targeting the transcripts encoding ACCA, FASN, and SCD-1 (188-191), 

and given that Hannah, et al. (232) previously demonstrated that unsaturated FFAs could 

significantly repress the transcript encoding SREBP-1c, it was expected that the purified 

FFA mixture would suppress the transcription of genes involved in FFA synthesis via a 

reduction of the mRNA levels for SREBP-1c. As expected, we found that the purified 

FFA mixture in the current study indeed dramatically reduced the mRNA level for 

SREBP-1c (Figure 18). Moreover, since SREBP-1c is a downstream target gene of 
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LXR-, and given the current study shows that the purified FFA significantly suppresses 

the transcripts encoding LXR-I speculate that the FFA can be involved in regulating 

cellular FFA homeostasis, partially by acting on the identified transcriptional cascades in 

the LXR- and SREBP-1c pathways (Figure 4) (184).  

The formation of TG can protect cells from any toxic effects due to sudden 

increases of FFA influx (233). Though not tested in the current study, I speculate that the 

uptake of FFA from LPL mediated lipoprotein hydrolysis by macrophages would result 

in increased cellular TG synthesis. It has been shown that the activation of PPAR- 

promotes -oxidation (234). Given the observed decrease in PPAR- mRNA within 

macrophages incubated with LPL lipoprotein hydrolysis products, I also speculate that 

-oxidation might be suppressed in the macrophages, which will favour the formation of 

TG. 

Esterification of cholesterol to cholesteryl esters by acyl-coenzyme A:cholesterol 

acyltransferase (ACAT) is critical for protecting macrophages from cholesterol toxicity 

(147). Given the observed attenuation of cholesterol efflux capacity in macrophages 

incubated with the purified FFA mixture, and knowing PPAR- acts to negatively 

modulate the expression of ACAT in macrophages (235, 236), it is anticipated that the 

macrophages incubated with the FFA mixture would protect themselves from the 

accumulated cholesterol and/or sudden increase of FFA influx by increasing the activity 
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of ACAT, which will promote intracellular esterification of cholesterol and the FFA. 

4.1.7 The lowered mRNA levels for LPL by LPL lipoprotein hydrolysis products 

suggest the existence of a negative feedback loop for the regulation of LPL 

Lipoprotein hydrolysis products generated by LPL markedly decreased the 

transcripts encoding LPL within THP-1 macrophages, which suggests the existence of a 

negative feedback loop for LPL regulation. This might be regarded as an 

anti-atherosclerosis mechanism, since the negative feedback regulation of LPL will 

decrease the synthesis of lipoprotein hydrolysis products, thus temporarily reducing the 

burden on the macrophages from the pro-atherogenic activities of these lipoprotein 

hydrolysis products. The suppression of transcripts encoding LPL may be due in part to 

the reduced levels of PPARs and LXR-. This speculation is supported by the observation 

that LXR- exhibits an ability to regulate the transcription of LPL by binding to the 

LXRE of the LPL promoter, as well as the observation that the activation of either 

PPAR- or PPAR- in human monocyte derived macrophages significantly elevates the 

levels of LPL mRNA and the secretion of LPL protein (81, 237). In contrast, in the 

current study, the purified FFA mixture significantly reduced the mRNA levels for 

PPAR-, but no appreciable changes were observed at the transcriptional level for LPL in 

macrophages that were incubated with the purified FFA mixture. This result suggests that 

different from the regulatory effects of lipoprotein hydrolysis products on the 
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macrophage LPL transcripts (as stated above), other factors that are independent of 

PPARs may be involved in the regulatory effects of FFA on macrophage LPL transcripts, 

such as through the PKC/c-fos pathway (238-244). Michaud et al. (244) previously 

reported that i) different species of FFA yield different effects on the mRNA levels for 

LPL (i.e. the incubation of arachidonic acid and eicosapentaenoic acid with macrophages 

reduce the mRNA levels for LPL; the incubation of linoleic acid, palmitic acid, and 

stearic acid with macrophages increase the mRNA levels for LPL; the incubation of oleic 

acid with macrophages has no effect on mRNA levels for LPL); and ii) the incubation of 

macrophages with arachidonic acid and eicosapentaenoic yield parallel effects on 

reducing the mRNA levels for c-fos and LPL. Taken together, it is possible that the 

effects of each species of FFA in the purified FFA mixture in the current study on 

modulating the mRNA levels for LPL could cancel each other and result in no net effect, 

but other components within the lipoprotein hydrolysis products generated by LPL are 

likely responsible for the observed decrease in LPL mRNA in the THP-1 macrophages. 

4.2 Overall conclusion  

The current results establish that the lipoprotein hydrolysis products generated by 

LPL can act to suppress the transcript of genes for encoding nuclear receptors LXR- and 

PPARs in cultured human THP-1 macrophages. This suppression appears to explain, at 

least partially, the ability of LPL lipoprotein hydrolysis products to lower the mRNA levels 
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for cholesterol transporters, the transcription of which has been shown to be regulated by 

PPARs and LXR-(173, 176-178, 180, 213, 214). Moreover, the lowered transcripts for 

cholesterol transporters, which led to an attenuation of the THP-1 macrophages to efflux 

cholesterol to apoA-I, could contribute to the promotion of atherosclerosis development.  

4.3 Direction of future study 

Previous studies have shown that macrophage LPL exhibits a positive correlation 

with atherogenesis; however, the mechanism underlying any pro-atherogenic property of 

macrophage LPL remains poorly understood. Revealing the negative influences by the 

total lipoprotein hydrolysis products generated by LPL on cholesterol efflux provides 

new insight into the mechanism underlying the pro-atherogenic property of macrophage 

LPL. Since the hydrolysis products released from substrates with different 

lipid/lipoprotein profiles might have different effects on cholesterol efflux, future studies 

investigating the influence of LPL hydrolysis products liberated from total lipoproteins 

collected from dyslipidemic subjects on cholesterol efflux is necessary. 

Moreover, given macrophage specific suppression of LPL using 

lentivirus-mediated RNA interference has been well established (141), future studies 

examining the impact of lipoprotein hydrolysis products on cholesterol efflux due to an 

RNA interference mediated reduction of endogenous macrophage LPL might reveal a 

potentially beneficial effect toward RCT. It is anticipated that the elimination of LPL will 
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facilitate cholesterol efflux by protecting the macrophages from taking up 

pro-atherogenic hydrolysis products. However, future study also is required to exclude 

other sources of hydrolysis products and their effects on cholesterol efflux. Firstly, LPL, 

HL, and EL may exhibit compensatory activities in hydrolysing lipoprotein lipids, thus it 

is possible that HL and EL might compensate for the eliminated LPL activity in 

macrophages. Secondly, while the hydrolysis products generated by cell-associated LPL 

likely will be directly taken up by local cells, it is possible that the lipoprotein hydrolysis 

products generated by non-macrophage LPL could be transported to macrophages 

through the bloodstream, thus further acting to promote atherosclerosis by negatively 

influencing the ability of macrophages to efflux cholesterol (119, 139, 140).  

In conclusion, investigating the effects of inhibiting macrophage access to LPL 

hydrolysis products on cholesterol efflux in vitro and in vivo will help to accentuate the 

promise in using genetic approaches as a potential future therapy for preventing 

atherogenesis and cardiovascular disease. 
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Supplementary Table 1: Real-time amplification efficiencies of reference and target 
genes 
 

Genes Amplification Efficiency 

ACTB 0.73 

NR1H3 1.06 

PPARA 1.25 

PPARA 0.81 

ABCA1 0.71 

ABCG1 0.73 

SCARB1 0.72 

ACACA 0.92 

FASN 0.63 

SCD 0.83 

LPL 1.08 

SREBF1 1.03 

 

The gene symbols (with corresponding national centre for biotechnology information 
reference accession number) encode the following proteins: ACTB (NC_000007.13) 
encodes -actin, NR1H3 (XM_005252718.1) encodes LXR-, PPARA 
(XM_005261658.1) encodes PPAR-, PPARG (NM_138711.3) encodes PPAR-, 
ABCA1 (XM_005251780.1) encodes ABCA1, ABCG1 (XM_005261209.1) encodes 
ABCG1, SCARBI (XM_005253637.1) encodes SR-BI, ACACA (XM_005257267.1) 
encodes ACCA, FASN (NM_004104.4) encodes FASN, SCD (NM_005063.4) encodes 
SCD-1, LPL (NM_000237.2) encodes LPL, and SREBF1 (XM_005256773.1) 
encodes SREBP-1c. All primer pairs for the above generated only one product, as 
determined through melting curve analyses (data not shown). 
 


