
 

 

 

Comparative Biochemical Analysis of the Major Yolk Protein in the Sea Urchin Egg 

and Coelomic Fluid 

 

by 

Shemul Dev 

A Thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

 

Master of Science 

Department of Biochemistry 

 

Memorial University of Newfoundland 

 

May, 2014 

St. John’s   Newfoundland



 

ii 

ABSTRACT 

The sea urchin major yolk protein (MYP) is localized in nutritive phagocytes in the testis 

and ovary, as well as the egg and coelomic fluid of the adult sea urchin. We and others 

have shown that the egg MYP can drive calcium-dependent, membrane-membrane 

interactions. However, much less is known about the coelomic fluid-localized MYP. 

Therefore, we have begun a comparative biochemical analysis of the egg and coelomic 

fluid MYPs. Sucrose density gradient ultracentrifugation revealed unique elution profiles 

for the MYP species present in the egg and coelomic fluid. Under reducing conditions, 

there were two species of MYP both in the egg and the coelomic fluid. Sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the egg and coelomic fluid 

MYPs under reducing and non-reducing conditions revealed that under reducing 

conditions, there are two species in each fraction, 170- nad 240 kDa in the egg and 180- 

and 250 kDa in the coelomic fluid. However, under non-reducing conditions only one 

species is present in each fraction, 240 kDa in the egg and 250 kDa in the coelomic fluid. 

In addition, V8 protease peptide mapping showed that all four polypeptide species have 

very similar primary structures. Further analysis with circular dichroism (CD) revealed 

that the purified 170- and 180 kDa species possess different secondary structural features. 

Endogenous tryptophan fluorescence measurements in the presence of different 

concentrations of calcium showed a notable difference in apparent dissociation constants 

(calcium); 245- and 475 µM for the egg and coelomic fluid MYPs, respectively. 

Interestingly, there was no notable difference in the apparent dissociation constants for 

zinc. Additional assays revealed that both the 170- and 180 kDa species have different 
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calcium requirements for binding to liposomal membranes, with an apparent dissociation 

constants (calcium) of 10- and 290 µM for the 170- and 180 kDa species, respectively. In 

addition, both the 170- and 180 kDa species have different calcium requirement to induce 

vesicular aggregation, which is correlated with the calcium induced tertiary structural 

change in both polypeptides. Collectively, these results identify structural differences 

between the egg and coelomic fluid MYPs which may reflect different functional 

capabilities between these species. 
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1.1 The sea urchin: 

 

The sea urchin is a spiny, hard-shelled animal that lives on the rocky seafloor, from 

shallow waters to great depths. It is a globular marine invertebrate under the phylum 

echinodermata, which also includes sea stars, sea cucumbers, brittle stars, and crinoids. 

There are about 950 different species of sea urchins worldwide. Sea urchins are 

omnivorous animals and therefore eat both plant and animal matter. The sea urchin 

mainly feeds on algae, along with decomposing matter such as dead fish, mussels, 

sponges and barnacles. The main predators of the sea urchin are crabs, large fish, sea 

otters, eels, birds and humans. In some countries, certain species of the sea urchin are 

harvested and served as a sushi delicacy. There are black and dull shades of green, olive, 

brown, purple, blue, and red colored sea urchins. 

 

The sea urchin larvae have bilateral symmetry, but the adult sea urchins have fivefold 

symmetry (pentamarism), with five equally sized parts radiating out from their central 

axes (Fig.1.1 A and B). The mouth (known as the Aristotle's lantern) is located in the 

middle of the lower surface of the sea urchin and has five tooth-like structures for 

feeding. The anus of the sea urchin is located on the apical surface of the body. The 

internal organs are enclosed in a hard test composed of fused plates of calcium 

carbonate covered by a thin dermis and epidermis. 

 

 

http://en.wikipedia.org/wiki/Calcium_carbonate
http://en.wikipedia.org/wiki/Calcium_carbonate
http://en.wikipedia.org/wiki/Dermis
http://en.wikipedia.org/wiki/Epidermis_(skin)
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Fig.1.1: Internal structure of a sea urchin. A) Lateral view (from Petrunkevitch, 1875) 

and B) Top view. 
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The sea urchins have a round shaped body with long spines. The spines of the sea urchin 

are used for protection and to trap food particles that are floating around in the water. The 

spines are controlled by two rings of muscle and are covered with a layer of epithelium. 

They have small pinching appendages called pedicellaria at the base of spines. Sea 

urchins also have five paired rows of tiny tube feet which are found amongst the spines. 

The tube feet of the sea urchin have suction pads which help the sea urchin to move 

about, capture food, and to hold onto the ocean floor. The sea urchins have a vascular 

system comprised of water-filled channels that run through the body. Sea urchins have 

five gonads, and the female sea urchins releases millions of eggs into the water that are 

then fertilized by the sperm of the male sea urchins.  

 

1.2 The sea urchin as a model organism for developmental studies. 

 

The sea urchin has been most intensely used as a model system for research not only in 

gene regulation, molecular biology, molecular embryology, fertilization biology, cell 

biology, and evolutionary biology, but also in other areas like marine population genetics, 

toxicology and immunity. For more than a century, the sea urchin embryo has been used 

as an important model organism in developmental biology, due to their relatively simple 

construction, ease of spawning fertilization and growth of embryos, translucent 

appearance, and the ease of following the fate of individual cells as development 

proceeds.   
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Moreover, sea urchins belong to the deuterostome lineage, which also includes 

hemichordate (including starfish, sand dollars, and sea cucumbers) and chordates, 

including humans (Fig. 1.2). Consequently sea urchins are more closely related to 

vertebrates than fruit flies or worms. It also helps to use the sea urchin as a research 

model for the analysis of genes that are ancient within the regulatory architecture of 

human genome, genes that are chordate specific and modified due to evolution. For 

example, a molecular linkage has been established between a number of genes from the 

genome of S. purpuratus and mammalian major histocompatibility complex (MHC), even 

though sea urchins lack MHC genes (Sodergren et al., 2006). 

In the past, detailed gene expression analysis of mesoendoderm specification was 

performed in sea urchin, which has been the basis for the most comprehensive dissection 

of gene regulatory networks in metazoans (Davidson et al., 2002; Pederson, 2006). The 

sea urchin has contributed much as a research model in the area of gene expression and 

gene regulation in development. For example, the discovery of maternal mRNA and 

pronuclear fusion at fertilization were first recognized in sea urchin eggs. Moreover, the 

first measurement that established the complexity and distribution of mRNAs, the 

transcription rates, average and specific mRNA turnover rates, as well as protein 

synthesis rates, in embryos were first carried out on sea urchin embryos. Extensive 

characterization of actin genes (Crain et al., 1981, Cooper and Crain, 1982; Overbeek et 

al., 1981; Schuler et al., 1983; Lee et al., 1984) and identification of specific probes for 

each gene (Lee et al., 1984) made the sea urchin embryo an advantageous system for 

early studies of the diversity of expression patterns of individual actin genes (Cox et al., 

1986). 

https://en.wikipedia.org/wiki/Starfish
https://en.wikipedia.org/wiki/Sand_dollar
https://en.wikipedia.org/wiki/Sea_cucumber
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Fig. 1.2: The phylogenetic position of the sea urchin relative to other model systems and 

humans. (Sodergren et al., 2006) 
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The sequencing and annotation of the sea urchin genome is also enhancing the utility of 

this embryo for developmental studies.  

 

The 814-megabase genome of the sea urchin Strongylocentrotus purpuratus has been 

sequenced using whole genome shotgun and bacterial artificial choromosome (BAC) 

sequences (Sodengren et al., 2006). Among the 23,300 genes in the sea urchin genome 

nearly all are related to vertebrate gene families including genes previously thought to be 

vertebrate specific. An extensive defensome was identified in sea urchin genome. The sea 

urchin genome also includes orthologs of genes associated with vision, hearing, balance 

and chemosensation in vertebrates. 

 

In the sea urchin, around 12,000 to 13,000 genes were expressed during the early stages 

of development, indicating that about 52% of the entire protein coding capacity of the sea 

urchin genome is expressed during development to the mid–late gastrula stage 

(Sodengren et al., 2006). About 80% of the sea urchin regulome were expressed during 

48 hr of embryogenesis. In addition, more than 1200 genes involved in signal 

transduction were also identified, including 353 genes for protein kinases. In the sea 

urchin embryo 87% of signaling kinases and 80% of phosphatases were expressed, 

confirming the importance of signaling pathways in embryonic development. In addition, 

more than 90% of the GTPases are also expressed during embryogenesis. The sea urchin 

embryo also expresses genes encoding proteins like 14-3-3 epsilon and PI-nectin (Russo 

et al., 2010; Zito et al., 2010). The 14-3-3 epsilon is responsible for many cellular events 

including stress response, survival and apoptosis (Russo et al., 2010). This protein 
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expression in the sea urchin embryo increases with stress, indicating its role as a 

molecular biomarker for the dangerous effects of sunlight occurring in marine organisms 

living in shallow water. 

 

The sea urchin genome has been sequenced and it encodes about 23,300 genes, which 

have homology to nearly all vertebrate gene families (Sodergren et al., 2006).  Although 

they are invertebrates, sea urchins share a common ancestor with humans and have more 

than 7,000 genes orthologs of known human disease-associated genes, including genes 

associated with Parkinson's, Alzheimer's and Huntington's diseases, as well as muscular 

dystrophy. Moreover, between 4 and 5% of the genes in the sea urchin genome are related 

to genes responsible for immune function in humans, including 222 Toll-like receptors 

and a large family of scavenger receptor cysteine rich proteins (Rast et al., 2006; Pancer, 

2000). A complex immune system in purple sea urchin is likely to be controlled by gene 

expression in coelomocytes similar to vertebrates.  Earlier studies on the sea urchin 

immune system showed the presence of a complement system similar to the chordate 

alternative complement pathway (Gross et al., 1999; Smith et al., 2006), antibacterial 

molecules (Haug et al., 2002; Li et al., 2008) and the expression of a large array of 

scavenger receptor cystein rich proteins (Pancer, 2000). These findings make the sea 

urchin a model system for studies on human disease and immune system.  

 

There are also many additional reasons why the sea urchin embryo is useful as a research 

model in the study of developmental gene regulation. Technologies have been established 

in sea urchins allowing for very high throughput gene transfer, stable nuclear extract 
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production as well as methods for whole mounts in situ hybridization and 

immunocytology. As a result we now know a great detail about the signaling and 

transcription control processes (e.g; cis-regulatory elements) leading to cell specification 

in this embryo. The sea urchin research has also contributed to our understanding of the 

cell biology and biochemistry of eggs and the fertilization process. For example: Cyclins 

were first observed in sea urchin eggs, the role of cell adhesion was also first analyzed in 

sea urchins and cytonemes were also discovered in sea urchin embryos. 

 

The sea urchin embryo is also used as a model organism for biomineralization research 

due to the presence of spicules (tiny calcitic skeletal elements in Fig. 1.3). To date, 231 

spicule matrix proteins have been identified in S. purpuratus (Mann et al., 2010). These 

proteins play important roles in matrix assembly and mineralization. 

 

Sea urchin embryos have been successfully used in studies of the effects of various 

antiproliferative, antimitotic and cytotoxic agents e.g; anti-cancer drug testing and 

identification of anti-mitotic molecules that affect tubulin dynamics (Nishioka et al., 

2003, Semenova et al., 2006). During early embryogenesis, the series of successive cell 

divisions occurring at approximately 30 min intervals and the cilliary swimming ability of 

hatched P. lividus embryos within 9-12 h after fertilization can be easily monitored and 

quantified, making the sea urchin embryo an important model to screen molecules 

affecting microtubule structure and function (Semenova et al., 2006).  
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Fig.1.3: Scanning electron microscopy of the purified S. purpuratus spicules (Man et al., 

2010).  

A. Section showing fragments of spicules prepared from pluteus larvae. B. Higher 

magnification showing the clean surfaces of spicule fragments. C. Cross-section of a 

fractured spicule. D. Deeper etching and higher magnification picture.  
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The sea urchin is also widely used as a model organism for the study of the composition 

and functions of egg yolk granules, an abundant organelle in the sea urchin egg and 

embryo (Armant et al., 1986, Scott et al., 1990), and also for the major yolk protein 

present in the yolk granules (Perera et al., 2004, Hayley et al., 2006). The yolk granule is 

the primary membrane-bound organelle present in the eggs, embryos and larvae, 

occupying approximately one-third of the cytoplasmic volume and more than 50 % of the 

total yolk protein present in yolk granule is the major yolk protein (Kari and Rottmann, 

1985). This makes the sea urchin an appropriate model organism for large scale 

biochemical studies during development.    

 

Recently, the sea urchin has been also used as a tool to monitor environmental hazards 

e.g; sea water pollution. The teratogenic effects of various chemical agents and drugs on 

embryo development have been extensively studied (Kobayashi, 1980; Ozretic et al., 

1985, Sconzo et al., 1995, Morale et al., 1998). A recent study has shown that the 

coelomocytes, cells of the sea urchin coelomic fluid, can be used as a bioindicator for sea 

water pollution (Matranga et al., 2000). The number of coelomocytes increases with the 

level of sea water pollution.  

 

1.3 Sea urchin gametogenesis: 

 

In the sea urchin, the major yolk protein is mainly synthesized in the digestive tract and 

accumulates in the nutritivie phagocytes before gametogenesis to supply nutrients for the 

developing gamets (Unuma et al., 2002). In the sea urchin, reproduction, gametogenesis 
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and intra-gonadal nutrient storage and utilization are linked processes. During 

gametogenesis, the size of the sea urchin gonads increases due to the increase of size 

and/or number of germinal and somatic cells (nutritive phagocytes) present in the 

germinal epithelium of gonads. Nutritive phagocytes in both sexes play an important role 

in gametogenesis by supplying required nutrients, such as protein, lipid and glycogen 

(Walker, 1982; Walker et al., 2005 & 2007). Here, I describe the structural changes that 

occur inside the gonads during different stages of gametogenesis as determined by Fuji et 

al., (1960) and  Unuma et al., (1996 & 2002) (Fig. 1.4). 

 

Stage 1 Immature gonad before gametogenesis. Abundant amounts of the major yolk 

protein (MYP) are stored in the immature gonads of both sexes of sea urchins. However, 

as gametogenesis proceeds the amount of the major yolk protein decreases (Unuma et al., 

1998). The amount of MYP decreased rapidly in male but decreased gradually in female. 

In stage 1, nutritive phagocytes filled the gonadal acinus of both sexes of sea urchins. A 

few young oocytes are present in the periphery of the gonadal acini of ovaries whereas, in 

this stage detection of spermatogenic cells was difficult in testes (Unuma and Walker, 

2010).  The ovarian lumen is occasionally filled with hematoxylin-stained round spots, 

residue from phagocytized ova (Masuda and Dan, 1977; Tominaga & Takashima, 1987), 

whereas, hematoxylin-stained amorphous shaped speckles, residues from phagocytized 

spermatozoa are often present in nutritive phagocytes of testes (Kato & Ishikawa, 1982, 

Reunov et al., 2004).  
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Fig. 1.4: Representative morphology in the ovary (A—D) and testis (E—H) of P. 

depressus at different stages.  

At stage 1 (A,E), nutritive phagocytes filled the gonadal lumina. At stage 2 (B,F), the 

periphery is filled with many developing oocytes or clusters of spermatogonia. At stage 3 

(C,G), the center of the lumina is filled with ripe ova or spermatozoa by replacing 

nutritive phagocytes. At stage 4 (D,H; fully mature gonad), the lumina are filled with ripe 

ova or spermatozoa. NP, nutritive phagocyte; OC, oocyte; OV, ripe ovum; SG, 

spermatogonium; SC, spermatocyte; SZ, spermatozoon. Scale bar, 100 µm. (Unuma et 

al., 2003) 
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Stage 2 Beginning of spermatogenesis. In this stage the periphery of gonadal acini of both 

sexes is filled with clusters of developing oocytes and spermatogonia, but the gonadal 

lumina are still filled with nutritive phagocytes. The membrane-bound vesicles or 

cytoplasm of nutritive phagocytes in both sexes is filled with a variety of proteins, 

carbohydrates and lipids. The principle protein accumulated in this stage is the major yolk 

protein, a glycoprotein with a native molecular weight of about 1020 kDa (Unuma et al., 

1998, 2003). In the gonads of both sexes more than 80% of the total protein is MYP.   

 

Stage 3 Middle of gametogenesis. The center of gondal lumina are filled with ripe ova or 

spermatozoa by replacing nutritive phagocytes. In this stage, mobilization of nutrients 

from nutritive phagocytes and gonadal cell mitosis begins. The periphery of gonadal acini 

becomes filled with numerous developing oocytes or clusters of spermatogonia and 

spermatocytes (Ward & Nishioka, 1993; Walker et al., 2005). In this stage nutritive 

phagocytes gradually decreased in size. As gametogenesis proceeds a quantitative 

decrease in MYP with an increase in nucleic acids and proteins other than MYP was 

observed in both sexes (Unuma et al., 2003). It was suggested that, the MYP stored in 

both ovarian and testicular nutritive phagocytes are utilized to synthesis amino acids, that 

in turn provides materials to synthesis new proteins, nucleic acids and other nitrogenous 

substances that constitute eggs and sperm. The MYP presents in the yolk granules also 

degrades to provide nutrient for the larval stage (Scott et al., 1990). In this stage, 

numerous ovary specific proteins such as hyaline, glycosaminoglycans, serine proteases, 

ovoperoxidase and proteoliaisin, YP39 are synthesized in the oocytes and are later found 

in the cortical granules of fully mature ova (Wessel et al., 1998, Schuel et al., 1974, 
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Haley and Wessel 1999, Sommers et al., 1989; Nomura et al., 1999; Berg and Wessel, 

2003). Moreover, testes specific proteins including histone H1, H2B-1, and H2B-2 are 

produced in spermatogonial cells of testes (Poccia et al., 1989). 

 

Stage 4 Fully-mature gonads at the end of gametogenesis. In this stage the gonadal lumen 

is filled with fully differentiated gametes in both sexes. The shrunken nutritive 

phagocytes have already lost their nutrients and are located at the periphery of the 

gonadal acini. In this stage, gamete storage and spawning are the major activities of the 

gonads in both sexes. During spawning, the male spawns spermatozoa, which are 

activated and begin to swim upon contact with sea water and the female releases ova into 

a cloud of actively moving spermatozoa. The factors that influence spawning are still 

unknown but a study reported that a small molecular weight protein resulting from 

phytoplankton blooms initiate spawning in both sexes of S. droebachiensis (Himmelman, 

1975; Starr et al., 1992). 

 

Stage 5 After spawning. Nutritive phagocytes gradually phagocytize the residual ova or 

spermatozoa in the gonadal lumina and grow in size by accumulating nutrients. After this 

gonads return to Stage 1 and a new cycle begins. 

 

1.4 Properties of the yolk granules 

 

Yolk granules are large membrane-bound organelles comprising approximately 28-38 % 

of the egg cytoplasmic volume and are found in eggs, embryos and early larvae of the sea 
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urchin (Harvey, 1932; Costello, 1939). The yolk granule is a spherical or oval shaped 

organelle, with a diameter of 1-1.7 µm (Gross et al., 1960; Monroy and Maggio, 1964; 

Armant et al., 1986). It can be separated into two density classes by sucrose density 

gradient ultracentrifugation. The low density yolk granule fraction contains an acid 

phosphatase activity and is covered with an approximately 9 nm thick membrane. 

However, the purified, high density yolk granule is often slightly contaminated with 

mitochondria. During different stages of development, the chemical composition of the 

yolk granules also remained unchanged, but the major yolk protein undergoes proteolytic 

processing (Kari and Rottmann, 1985; Armant et al., 1986; and Harrington and Easton, 

1982). 

 

Electron microscopic examination revealed that, yolk granules of sea urchin also have 

some membrane-bound substructures with a diameter of 20- 30 nm (Takashima, 1971). 

After osmotic lysis and negative staining, it was revealed that those sub particles are 

lipoproteins, present throughout development and varying in diameter from about 10-50 

nm (Ichio et al., 1978). 

 

Most of the water-soluble lipoproteins in sea urchin eggs are localized in yolk granules 

(Ichio et al., 1978). Schuel et al., (1975) found that several lysosomal enzymes are also 

present within yolk granules of sea urchin eggs. The study done by Yokota et al. (1993) 

revealed that, the yolk granule undergoes morphological changes throughout embryonic 

development. However, the number and mass of yolk granules do not change. Yolk 

granules can be classified into four types, according to their structural characteristics 
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observed in electron microscope.  They are dense, intermediate, sparse and lysosomal 

yolk granules (Fig. 1.5). 

 

During the course of development, the dense granules are replaced by the sparse granules 

via an intermediate state. The dense type yolk granules are mostly observed in 

unfertilized eggs but they are rarely observed in the gastrula stage. These morphological 

changes are due to the biochemical changes occurring in the yolk granules. Yolk granules 

are also involved in protein export to the extracellular matrix, this process may be also 

responsible for the morphological changes in yolk granules during embryonic 

development (Gratwohl et al., 1991; Mayne and Robinson 1998, 2002). For example, 

41 kDa collagenase/gelatinase and HLC-32 are localized in yolk granules of unfertilized 

eggs but later as development proceeds they are found on the embryonic cell surface. The 

functional role of the yolk granules in sea urchin embryogenesis is still unknown. 

Previously, yolk granules were thought to serve as a storage compartment for nutrients 

required for embryogenesis. 

 

However, throughout development yolk granules remain unchanged, even during nutrient 

deprivation, and are only metabolized in 7 day old larvae (Ichio IL et al., 1978; Armant et 

al., 1986; Scott et al., 1990). This indicates a non-nutritional role for these membrane-

bound organelles. Studies done by Liao and Wang (1994) and Wang et al. (1995) 

revealed the dynamic nature of yolk granules. Localization of RNase to yolk granules in 

bullfrog oocytes suggests that yolk granules contain a cellular compartment that regulates 

the cytoplasmic access of some intracellular enzymes.  
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Fig. 1.5: Different morphological features of yolk granules. 

a) Dense type. b) Intermediate type c) Sparse type and d) & e) Lysosomal type yolk 

granules. Arrows indicate the small membrane-bounded particles. (Yokota et al., 1993).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



 

23 

 

 

 

 

 

 

 

 

 

 

 



 

24 

Yolk granules were also reported to be a storage compartment for proteins destined for 

transport to the cell surface (Grathwohl et al., 1991). For example, toposome, a 

glycoprotein, is destined for export from the yolk granule to the plasma membrane, where 

it may play a role in cell adhesion (Noll et al., 1985; Matranga et al., 1986; Cervello & 

Matranga, 1989; Grathwohl et al., 1991). Yolk granules may also play a role in plasma-

membrane repair. Studies done by McNeil et al. (2000) showed that yolk granules fuse 

with plasma-membrane in a rapid, chaotic manner in the presence of high concentrations 

of calcium. 

 

1.5 Yolk storage proteins 

 

Vitellogenesis is a process by which yolk proteins are synthesized and accumulated in 

growing oocytes to make the yolk of the mature eggs. The majority of the oocyte yolk 

proteins in different species are imported into the oocytes and the major sites of synthesis 

are also different such as liver for vertebrates, the fat body in insects and intestine in 

echinoderms.  

 

The yolk is a mixture of proteins, lipids and carbohydrates used for embryogenesis. In 

oviparous animals, accumulation of yolk proteins into yolk granules is a prerequisite for 

reproduction and oocyte growth and maturation. The yolk storage proteins are mainly 

vitellogenin (Vg), yolk proteins (YPs) and the major yolk protein (MYP). The 

vitellogenin is present in frog, chicken, nematode, fish and some insects such as 

mosquito, whereas the yolk proteins are found in dipteran insects such as fruitfly, 
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housefly, and the fleshfly (Brook and Wessel, 2003) (Table. 1.1). The major yolk protein 

(MYP) is present in the echinoderms, for example sea urchins. In oviparous animals, 

vitellogenin (Vg) and yolk proteins (YPs) are both female specific-proteins, whereas the 

major yolk protein in sea urchin is present in both sexes (Shyu et al., 1986; Unuma et al., 

2001). There is no sequence homology between vitellogenin and yolk proteins. Major 

yolk protein cDNA sequencing of several species of sea urchins revealed that the MYP 

does not have sequence homology with any known vitellogenin (Unuma et al., 2001; 

Brooks and Wessel, 2002; Yokota et al., 2003; Noll et al., 2007).  To date, three genes 

have been identified to encode vitellogenin-like proteins in Strongylocentrotus 

purpuratus (Song et al., 2006). In addition to vitellogenin and yolk proteins, other 

proteins are also packaged into the yolk granules. For example, hemolymph proteins in 

insects and vitellogenic cathepsin B (VCB) thiol protease in yellow fever mosquito 

(Aedes aegypti) (Cho et al., 1999).  

 

Sea urchin yolk proteins are mostly N-linked glycoproteins, comprising about 10- 15% of 

the egg proteins and ranging in size from 35-300 kDa (Ichio et al., 1978; Ozaki, 1980; 

Harrington and Easton, 1982; Kari & Rottmann, 1985). There are striking similarities in 

their amino acid and monosaccharide compositions and pI values among different species 

of sea urchin (Scott & Lennarz, 1989). 
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Table 1.1: Yolk Proteins in different phyla (Brook and Wessel, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

Protein 

name 

Organism Size Sex-

specific 

Site of 

synthesis 

Processing Receptor Function 

Vitellogenin 

(Vg) 

Frog, 

chicken, fish, 

nematode, 

some insects 

400-

500 

kDa 

Yes, 

females 

only 

Vertebrate: 

Liver 

Nematode: 

Intestine 

Insects: Fat 

body 

Large 

precursor is 

cleaved into 

smaller 

units, prior 

to yolk 

packaging 

LDLr-like 

Vertebrate: 

95-115 

kDa 

Insedcts: 

180-240 

kDa 

Nutrition and 

carrier protein 

for hormones 

and 

micronutrients 

Yolk 

proteins 

(YP) 

Dipteran 

insects (ex, 

Drosophila) 

46-

50 

kDa 

Yes, 

females 

only 

Fat body 

overian 

filllicle 

cells 

 

 

No 

difference 

between 

hemolymph 

and yolk 

form 

LDLr-Like 

210 kDa 

Nutrition & 

carrier protein 

for ecdysone. 

Major yolk 

protein 

(MYP) 

Echinoderms 

(ex- ea 

urchin) 

180-

200 

kDa 

no Intestine 

and 

nutritive 

phagocytes 

if ovary 

and testis 

Slight 

difference 

between 

coelomic 

fluid and 

yolk form 

??? ??? 
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1.6 Major yolk protein in egg and coelomic fluid. 

 

A 22-27 S particle was identified from the sea urchin eggs as a major component of the 

yolk granules (Malkin et al., 1965; Infanate and Nemer, 1968; Ichio et al., 1978). Later, 

Kari & Rotmann, 1980, identified a glycoprotein with an apparent molecular weight of 

200 kDa as the major protein component. Moreover, this protein species accounts for 10-

15% of the total egg protein and for about 50% of the yolk and coelomic fluid proteins, 

and it was named the major yolk protein (MYP).  

 

The major yolk protein (MYP) which was previously known as toposome, is the major 

protein component of the yolk granule present in the eggs, embryos and larvae of the sea 

urchin. This protein is peripherally associated with the yolk granule membrane (Kari & 

Rottmann, 1985; Perera et al., 2004; Hayley et al., 2006) and is a calcium binding, 

hexameric glycoprotein. Under reducing conditions, each subunit appears with an 

apparent molecular weight of 170 kDa and is characterized by intrachain disulfide bonds 

and stabilized by calcium. 

 

A non nutritional role for this protein in the developing embryo and larvae has been 

suggested since during embryogenesis and starvation its abundance remains unchanged 

(Armant et al., 1986, Scott et al., 1990). The major yolk protein is also present in the 

coelomic fluid and nutritive phagocytes of the gonad of both sexes (Unuma et al., 2010, 

2011).  More than 80% of the stored proteins in nutritive phagocytes are MYPs. It is 

stored in the nutrititive phagocytes and is suggested to supply nutrients for gametogenesis 
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and embryogenesis (Scott et al., 1990; Unuma et al., 1998, 2003). It is also believed to 

transport iron and zinc in the developing oocytes. However, the structure of MYP is 

different from the other transferrin family proteins (Brooks & Wessel, 2002; Unuma et 

al., 2007; Lambert et al., 2005; Noll et al., 2007). In addition, during embryogenesis the 

egg MYP may also function as a cell-adhesion molecule and may participate in 

membrane repair in embryo and larvae (Noll et al., 1985; Matranga et al., 1986; Perera et 

al., 2004; Hayley et al., 2006, 2008).  

 

Prior to gametogenesis MYP is stored in ovarian and testicular nutritive phagocytes to 

supply nutrients for gametogenesis (Ozaki et al., 1986; Unuma et al., 1998, 2003). Under 

reducing conditions, the apparent molecular weight of MYP is 170-180 kDa in nutritive 

phagocytes. The yolk granules of egg also accumulate MYP, which in turn may supply 

nutrient for the larval stage after fertilization (Scott et al., 1990). Major yolk protein 

mRNA expression profile studies showed that, in the adult sea urchin the MYP is 

predominantly synthesized in the inner epithelium of the digestive tract and the nutritive 

phagocytes in both sexes (Unuma et al., 2010). Noll et al. (2007) reported that the cDNA 

of the precursor major yolk protein (180-190 kDa) in gut and gonads of adult sea urchins 

undergoes a proteolytic removal of the N terminal WAP domain to generate the mature 

major yolk protein (170 kDa) in oocytes. The cleavage site is between amino acids 86 and 

87 of the precursor MYP.  

 

There are two isoforms of MYP. Under reducing conditions, the egg contains the 170 kDa 

species (egg MYP) and the coelomic fluid contains 180 kDa species (Coelomic fluid 



 

30 

MYP) (Unuma et al., 2011) and both species are present in nutritive phagocytes. Genome 

analysis of Strongylocentrotus purpuratus showed that, both species of MYP are encoded 

by the same gene (Song et al., 2006). Major yolk protein was previously thought to be a 

vitellogenin-like protein (Shyu et al., 1986; Cervello et al., 1994; Unuma et al., 2001; 

Yokota et al., 2003). However, to date three genes that encode vitellogenine-like proteins 

have been discovered in the sea urchin, S. purpuratus. The major yolk protein coding 

region encodes 1344 amino acids and cDNA sequencing of Pseudocentrolus depresssus 

and other species revealed that the MYP does not have any sequence homology with any 

known vertebrate vitellogenin, but is slightly homologus to transferrin family proteins 

(Fig. 1.6) (Unuma et al., 2001; Brook & Wessel, 2002; Yokota et al., 2003; Noll et al., 

2007). The precursor of the major yolk protein shows some special structural features: 1) 

a protease-inhibiting WAP domain, whose removal generates the mature major yolk 

protein in oocytes: 2) a 280 amino acid modified cysteine-less insertion in the C-lobe and: 

3) a 240 residue C-terminal extension with a modified cystine knot motif found in 

multisubunit external cell surface glycoproteins. The cystine knot motif is important to 

stabilize the cell-bound trimers upon calcium dependent cell dissociation of hexamer 

linked cells. 

 

1.7 Synthesis, transport and packaging of egg major yolk protein in the Sea 

Urchin. 

The major yolk protein is predominantly synthesized in the digestive tract (stomach, 

intestine and rectum) of the adult sea urchin as a slightly higher molecular weight 

component than the egg localized form (Shyu et al., 1986).  
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Fig. 1.6: Amino acid sequence derived from T. gratilla cDNA encoding toposome 

precursor (Noll et al.., 2007). The sequence homologous to the transferrin family is 

framed. The canonical cysteines (1–6, 8, 10–12 in the N-lobe and 1′–6′, 9′,–12′ in the C-

lobe of the transferrin part of the toposome) are indicated, and the positions 

corresponding to the iron-binding ligand amino acids in the diferric transferrins are 

marked by asterisks.  
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An mRNA expression study done by Unuma et al. (2001) showed that the MYP is also 

synthesized in the gonads of immature sea urchin. The MYP synthesized in the digestive 

tract, is then secreted into the coelomic fluid, transverses the two epithelial layers of the 

ovarian capsule and is absorbed by the nutritive phagocytes (Shyu et al., 1986). Later the 

MYP is localized peripherally on the oocyte, where a dynamin-dependent mechanism is 

involved in the endocytosis of MYP into the ova (Brooks & Wessel, 2004). Expression of 

a protein named YP 30 with an apparent molecular weight 30 kDa has been reported only 

in the oocytes, where it may play a role in the storage or packaging of MYP during 

oogenesis and/or utilization of the MYP in development (Wessel et al., 2000). Nutritive 

phagocytes provide nutrition for gametogenesis and also recycle nutrients by absorbing 

any unshed or degenerating germ cells at the end of the gametic cycle (Fuji, 1969; 

Walker, 1982; Harrington & ozaki, 1986; Unuma et al., 1998, 2001). 

 

1.8 Proteolytic processing of egg major yolk protein. 

 

The sea urchin yolk granules contain a large number of lysosomal hydrolases, which are 

optimally active at low pH (Schuel et al., 1975). A study done by Yokota & Kato (1988) 

showed that, under acidic condition (pH 4.2) the major yolk protein of both unfertilized 

and fertilized eggs undergoes proteolytic processing to lower molecular weight species of 

114, 94, 72 and 61 kDa, with a concomitant disappearance of the high molecular weight 

major yolk protein. The study done by Perera et al. (2004) also supports the idea of 

proteolytic processing of MYP. In vivo radiolabelling experiments also showed that, the 

lower molecular weight protein species were not a result of de novo protein synthesis but 
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due to the proteolytic processing of major yolk protein (Armant et al., 1986). The 

protease responsible for proteolytic processing is a cysteine protease (Cathepsin B) 

(Yokota and Kato, 1988; Scott et al., 1990a; Mallaya et al., 1992) or serine protease 

(Giga and Ikai, 1985; Lee et al., 1989). This protease becomes active due to mild 

acidification of yolk granules after fertilization (Medina et al., 1988; Mallaya et al., 1992; 

Fausto et al., 2001). However, the structural integrity and the function of the major yolk 

protein remain intact after proteolytic cleavage through the maintenance of the disulfide-

linked cleavage products (Perera et al., 2004; Noll et al., 1981; Matranga et al., 1986).  

 

Yokota et al. (2003) studied the overall cDNA sequence of the precursor of MYP and 

suggested a cysteine-less region is the site of proteolytic cleavage. There is no cysteine 

between amino acids 653 and 938 in H. pulcherrimus, between 656 and 941 in P. 

depressus (Unuma et al., 2001) and between 661 and 944 in S. purpuratus (Brooks & 

Wessel, 2002).  This region is a unique feature of sea urchin   

 

1.9 Proposed functions of MYP. 

 

1.9.1 Role of MYP as iron transporter. 

 

Iron is an important nutrient for a number of protein functions and physiological 

processes. Most organisms have special cofactors and proteins to absorb and transport 

iron by maintaining iron in a water soluble state, as free iron can generate oxidative 

radicals that damage lipids, proteins and DNA (Yoshiga et al., 1999; Boldt, 1999; Nappi 
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& Vass, 2000; Brooks & Wessel, 2002). Transferrins reversibly bind iron. Vertebrate 

transferrins are monomeric glycoproteins (~80 kDa) that consist of two domains with 

similar amino acid sequences, each with a single iron-binding site (Backer & Lindley, 

1992). These iron binding sites are stabilized by intrachain disulfide bonds. In vertebrates 

and invertebrates most of the transferrins function as iron transporters (Crichton & 

Charloteaux-Wauters, 1987; Bartfeld & Law, 1990; Kurama et al., 1995). The MYP can 

bind metals such as calcium, magnesium, barium, cadmium and manganese as well as 

iron in vitro (Brooks & Wessel, 2002; Hayley et al., 2008).    

 

In vitro iron binding assays with the major yolk protein in coelomic fluid also supported 

the idea that the coelomic fluid MYP can bind with iron. It was suggested that, the MYP 

can act as a shuttle to transport iron to support embryogenesis and gametogenesis (Fig. 

1.7). The coleomic fluid localized MYP may bind iron and deliver it to the developing 

oocyte (Brooks & Wessel 2002). It was suggested that, the transported iron may remain 

associated with MYP or may be transferred to the other metalloproteins of egg such as 

ovorperoxidase. Iron can also be transferred to the iron storage protein ferritin and 

nutritive phagocytes by MYP. Cervello et al. (1994) suggested that the coleomic fluid 

MYP may have bacteriostatic function by scavenging iron ions from bacterial pathogens. 
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Fig. 1.7: Proposed model of MYP function (Brooks & Wessel, 2002). The coelomic fluid 

MYP is an iron transporter, Delivery of iron to the ovary and testis may support 

gametogenesis and the packaging of MYP into yolk granules may serve as a mechanism 

of iron delivery during embryogenesis. The major yolk protein packaging in 

coelomocytes could have a dual function of providing a bacteriostatic function in 

coleomic fluid as well as MYP-Fe delivery to the gonad 
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However, Hayley et al. (2008) suggested that though the MYP is transferrin-like in 

sequence, it is unlikely to function as an iron transporter in the developing sea urchin eggs 

and embryos.  Functional transferrins bind iron as Fe
3+

 and are able to transport iron at or 

below nano-molar concentrations (Baker et al., 2003). Binding data suggested that the 

apparent dissociation constant of the egg MYP for Fe
3+

 is 275 µM, which indicates the 

egg MYP is insensitive to low concentrations of iron (Hayley et al., 2008).The strongest 

evidence against iron binding by the MYP is the absence of any canonical ligand amino 

acids (Noll et al., 2007). Furthermore, five iron binding amino acids e.g; two Y, one D, 

one R and one H are also absent in the egg MYP (Noll et al., 2007; Backer et al., 1987; 

Legrand et al., 1988; Baker and Lindley, 1992). 

 

1.9.2 Role of the MYP as a zinc transporter. 

 

Zinc is an essential trace element for gametogenesis (Falchuk & Montorzi, 2001; 

Yamaguchi et al., 2009).  The structural integrity of chromatin and the functional states of 

many enzymes and gene regulatory proteins are also dependent on zinc (Fulchuk & 

Montorzi, 2001). The S. purpuratus genome also contains many genes encoding many 

zinc binding proteins that are expressed during embryogenesis (Materna et al., 2006; 

Angerer et al., 2006; Howard-Ashby et al., 2006).  

 

The sea urchin gonads contain both the germ cell and nutritive phagocytes (somatic cells). 

Both sexes of the sea urchin store nutrients for gametogenesis in the nutritive phagocytes 

(Walker, 1982; Walker et al., 2006). Unuma et al. (2011) studied MYP accumulation and 
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its relationship to zinc content in sea urchin gonads during the non-reproductive season. 

Accumulation of the MYP in the agametogenic gonads suggests a role as a zinc 

transporter during the non-reproductive season.  

 

The MYP may also transport zinc from the digestive tract to the ovary and testis through 

the coelomic fluid to supply nutrients during gametogenesis and thus act as a zinc 

transporter throughout the reproductive season (Unuma et al., 1998, 2003 & 2007)   Zinc 

transport is more active in female than male sea urchins.  

 

The major yolk protein can bind with other trace metals including calcium, magnesium, 

barium, cadmium and manganese as well as iron in vitro (Hayley et al., 2008). Unuma et 

al. (2007) reported that the MYP loses its zinc binding capacity after transport from the 

coelomic fluid into the gonads of sea urchins suggesting that the coelomic fluid-localized 

MYP may have a greater zinc binding ability than the MYP localized in eggs. The gonad 

also increases in size by accumulating MYP and zinc. These results indicate that, during 

the reproductive season and before metamorphosis in the larvae, the coelomic fluid-

localized MYP transports zinc to the gonads (Unuma et al., 2007, 2009). Unuma et al. 

(2007) suggested that the MYP synthesized in the digestive tract binds zinc derived from 

ingested food and transports it through the coelomic fluid to the nutritive phagocytes in 

agametogenic gonads (Fig. 1.8). The nutrititive phagocytes store the MYP and zinc for 

future usage. Oogenesis in the sea urchin required more zinc than spermatogenesis, 

indicating that the sea urchin eggs contain a higher level of zinc than sperm (Unuma et 

al., 2007). 
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Fig. 1.8:  Proposed model for the synthesis and accumulation of the MYP and its 

involvement in zinc transport in male and female sea urchins (Unuma et al., 2007).  

There are two possible fates for the amino acids synthesized in the digestive tract to MYP 

in the gonad. (1) Amino acids from the digestive tract are transported to the nutritive 

phagocytes to produce the MYP (coelomic fluid MYP or egg MYP or both) in these cells 

(open arrows). (2) Amino acids from digestive tract may also synthesize coelomic fluid 

MYP, which may bind with zinc and then transported to the gonad, playing a role as zinc 

transporter (closed arrows). Incorporation of some coelomic fluid MYPs into the nutritive 

phagocytes form egg MYPs, with a loss of zinc binding ability.  
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1.9.3 Role of the egg major yolk protein in mediating cell-cell adhesion and plasma 

membrane repair in eggs and embryo. 

 

Cell adhesion is required in many cellular processes like embryonic development, tissue 

formation and signal transduction. In general, there are two classes of cell adhesion 

molecules; one is calcium-dependent like integrins, cadherins, selectins and the other 

group is calcium-independent like immunoglobulin superfamily.  

 

The egg MYP is localized to the yolk granule, cortical granule and plasma membrane in 

the unfertilized sea urchin egg (Gratwohl et al., 1991). During embryogenesis, the 

proteolytically processed, yolk granule-localized MYP is transported to the plasma 

membrane and the cortical granule-localized MYP is released into the extracellular matrix 

(Noll et al., 1985; Matranga et al., 1986). In addition, yolk granules also have a large 

amount of membrane required for patching lesions in the plasma membrane of sea urchin 

eggs and embryos (Terasaki et al., 1997; McNeil et al., 2000). The major yolk protein 

plays a role in plasma membrane yolk granule interaction by associating with yolk 

granule and may also be important in expressing positional information (Perera et al., 

2004; Hayley et al., 2006; Noll et al., 1985; Matranga et al., 1986; Cervello & matranga, 

1989). 

 

Plasma membrane disruption is a normal event in many cells. Plasma membrane fusion is 

an important and ubiquitous process that is required by all types of cells. It may occur 

extracellularly such as during fertilization, organ development and also during viral 

https://en.wikipedia.org/wiki/Immunoglobulin_superfamily
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infection. Intracellularly membrane-membrane fusion occurs in such processes as 

exocytosis and membrane trafficking (Tamm et al., 2003). In the sea urchin membrane-

membrane interaction is required for membrane repair and to export protein. Sea urchins 

spawn in open sea water and embryogenesis occurs in a hostile marine environment. 

Plasma membrane damage results in the influx of sea water with a high concentration of 

calcium (10 mM), and results in yolk granule aggregation and fusion with the plasma 

membrane in a rapid and organized manner that patches the damaged area (McNeil et al., 

1997, 2000). 

 

In the sea urchin, the egg MYP and calcium are required to initiate cell-cell interaction 

(Noll et al., 1985; Matranga et al., 1986). In the developing embryo exogenously added 

egg MYP stimulates the re-aggregation of dissociated blastula cells, depleted of MYP by 

butanol extraction (Matranga et al., 1986, Cervello & Matranga, 1989). This process is 

calcium-dependent. Calcium induces secondary and tertiary structural changes in the egg 

MYP to trigger the plasma membrane repair in the sea urchin egg and embryo (Fig. 1.9) 

(Hayley et al., 2006).  

 

The NMR study done by Hayley et al. (2006) indicated that the egg MYP interacts 

peripherally with the membrane in the presence of 100 µM calcium, and this interaction is 

not further modified with the increasing concentration of calcium. The egg major yolk 

protein undergoes a calcium-dependent two step structural change, one required for  

MYP-membrane binding and the other facilitating an MYP-dependent membrane-

membrane interaction (Perera et al., 2004 and Hayley et al., 2006).  
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Fig. 1.9: Putative role of the egg MYP in the patch hypothesis of membrane repair 

(McNeil et al.. 2000).  

(A) A normal egg or embryonic cell. The egg MYP is peripherally associated with the 

yolk granule membrane (Perera et al.. 2004).  

(B) The plasma membrane of the egg or embryonic cell undergoes damage, resulting in 

an influx or extracellular calcium.  

(C) This influx of calcium is more than sufficient to cause a change in the tertiary 

structure of the egg MYP, which could then mediate membrane–membrane interaction 

between the yolk granule and plasma membranes, resulting in repair. 
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In the trace of increasing concentrations of calcium, a secondary structural change 

occurred with an apparent dissociation constant (kd) of 25 µM, responsible for the binding 

of the egg MYP to the membrane. This is followed by a tertiary structural change with an 

apparent kd (calcium) of 240 µM, which was responsible for triggering MYP-dependent 

membrane-membrane interaction. 

 

Perara et al. (2004) have also shown that the egg MYP can induce yolk granule 

aggregation. 1) Yolk granules lose their calcium-dependent aggregation activity after the 

addition of EGTA. In the presence of EGTA, the egg MYP is dissociated from the 

isolated yolk granule and the aggregation activity can be restored by addition of purified 

egg MYP to the EGTA-treated yolk granules. 2) The EGTA-treated yolk granules also 

lose aggregation activity if the added, purified egg MYP is preincubated with anti-egg 

MYP antibody. 3) Trypsin-treated yolk granules no longer aggregate in the presence of 

calcium. Again, incubation with purified egg MYP restores calcium-dependent 

aggregation. 4) Preincubation of purified yolk granules with anti-egg MYP antibody 

followed by an assay for calcium-dependent aggregation also shows the loss of 

aggregation activity.   

 

1.9.4 Importance of coelomic fluid major yolk protein and coelomic fluid. 

 

Coelomic fluid is a suspension that occupies the coelomic cavity of the sea urchin, mainly 

used to wrap and protect the inner organs and to mediate interactions between different 

regions of the cavity. The coelomic fluid contains a large number of cells (about 1-5 X 
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10
6
/ ml) named coelomocytes that take part in the sea urchin immune response (Smith et 

al., 2006). The sea urchin coelomocytes have been classified into four types: phagocytes, 

vibratile cells and red and white morula cells, Fig. 1.10 (Bertheussen and Selijelid, 1978; 

Gerardi et al., 1990). Coelomocytes are the immune cells of echinoderms, due to their 

ability to respond to injuries, host invasion and cytotoxic agents. About 33% of the 

coelomocytes are involved in phagocytosis and the rest of the cells initiate clotting and  

antibacterial activity by releasing specific molecules (Smith et al., 1996; Stabili et al., 

1996; Terwilliger et al., 2006; Dheilly et al., 2009). Coelomic fluid contains proteins 

responsible for cell adhesion and cytoskeleton organization e.g; the cytoskeletal actin and 

profilin (Fasoli et al., 2012). Profilin is responsible for changes in the coelomocyte shape 

in the sea urchin. Moreover, a calcium binding protein, calmodulin-2 and the 

complement, C3 were identified in the coelomic fluid, indicating the presence of an 

innate immune response in the sea urchin. 

 

Harrington & Ozaki (1986) identified the major yolk protein in cultured coelomocytes 

using an anti-egg MYP antibody. They suggested that the coelomocytes produce the 

MYP and secret it into the coelomic fluid. A later study done by Cervello et al. (1994) 

also suggested that the white morula cells produce the MYP and release it under stress 

conditions such as in response to injury or host invasion, indicating a role for the 

coelomic fluid MYP in the clotting phenomena. The coelomic fluid MYP concentration 

was high in sea urchins infected with bacteria, which indicates a bacteriostatic role for 

this protein (Unuma et al., 2010).  
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Fig. 1.10: Morphology of four types of coelomocytes in the coelomic fluid of P. 

depressus (Unuma et al., 2010).  

A, phagocyte; B, vibratile cell; C, white morula cell and D, red morula cell.  
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It was also observed in sea star Asterias rubens that coleomocyte numbers increase in the 

post-traumatic stress period suggesting a defensive role (Pinsino et al., 2007). It was 

found that the coelomocytes aggregate in response to stress conditions such as wound 

healing in A. rubens (Smith, 1981; Moss et al., 1998). In echinoderms, wound repair and 

encapsulation of invasive materials require an adhesive activity in coelomic fluid (Pinsino 

et al., 2007). In the sea urchin, both the coelomic fluid and coelomocytes contain major 

yolk protein, which is an adhesive protein molecule (Matranga et al., 1986; Perera et al., 

2004; Hayley et al., 2006, 2008). Under conditions of stress such as unusual temperature, 

acidic pH, heavy metals and other pollutants, the sea urchin also produces Hsp 70, which 

is responsible for a number of intracellular processes such as chaperone guidance, protein 

folding, and protection against apoptosis (Matranga et al., 2000, 2002, 2005, 2006; 

Becker & Craig 1994; Buchner 1996; Parcellier et al., 2003). Interestingly, an increased 

number of coelomocytes and increased concentrations of Hsp 70 were also reported for 

sea urchins in polluted sea water, suggesting that sea urchin coelomocytes can be utilized 

as bio-indicators of environmental stress (Matranga et al., 2000). Other studies also 

suggested that coelomocytes can respond to injury by activating a series of genes related 

to the immune response (Smith et al., 1996). 

 

1.10 Purpose of study. 

 

We were interested in a comparative biochemical analysis of the egg and coelomic fluid 

MYPs. Both the coelomic fluid MYP and the egg MYP are products of the same gene, 

while the coelomic fluid MYP is 10 kDa higher in molecular mass and considered to be a 
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precursor of the egg MYP (Harrington and Easton, 1982). Moreover, a proteolytical 

removal of the N-terminal domain from the coelomic fluid MYP generates the egg MYP 

(Noll et al., 2007).  These observations indicate that the egg MYP and coelomic fluid 

MYP may be different in their biological functions. However, the biological functional 

difference between the coelomic fluid MYP and the egg MYP have yet to be identified. 

Unuma et al., (2007) showed that the coelomic fluid MYP has a higher zinc binding 

capacity than the egg MYP. Moreover, the egg MYP is peripherally located to the plasma 

membrane which is important for its biological function. In contrast, the ability of the 

coelomic fluid localized MYP to bind with plasma membrane is still unknown.  

 

In this study, I compared the structural and biological properties of both the egg and 

coelomic fluid localized forms of MYP. Initially I employed sucrose density gradient 

ultracentrifugation both in the presence and absence of Triton X-100, to study the elution 

profile of both the egg and coelomic fluid MYPs. Sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) and Native-PAGE were employed both in the presence 

and absence of reducing agents, to identify the apparent molecular mass differences 

between both the reducible and non-reducible forms of the major yolk protein present in 

both the egg and coelomic fluid. A partial V8 protease peptide map analysis was done to 

probe the primary structural relationship between the egg MYP and coelomic fluid MYP. 

Circular dichroism and fluorescence spectroscopy were utilized to probe the secondary 

and tertiary structure in a calcium-dependent manner. To investigate the calcium-

dependent phospholipid binding and vesicular aggregation capacity of these proteins, I 

performed liposome binding assay and liposome aggregation assay, respectively.  
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2.1  Preparation of the egg yolk granule protein extracts and coelomic fluid 

protein extracts. 

 

Strongylocentrotus droebachiensis were collected off the east coast of Newfoundland and 

induced to release eggs by intracoelomic injection of 0.5 M KCl. Preparation of the yolk 

granule protein extracts followed the procedure described previously with some 

modifications (Perera et al., 2004).  The eggs were suspended in a solution containing 0.5 

M KCl, 10 mM Tris, pH 8.0, and homogenized in a hand-held Dounce homogenizer in 

the presence of protease inhibitor (Sigma Chemical Co.) at 0°C. The homogenate was 

then fractionated by centrifugation at 400xg for 10 min at 4°C and the pellet was 

discarded. The supernatant then underwent fractionation by centrifugation at 2400xg for 

10 min at 4°C. The final pellet was incubated for 30 min in the presence of protease 

inhibitor (Sigma Chemical Co.) in a solution containing 20 mM Tris, 2 mM EDTA, pH 

8.0 followed by ultracentrifugation at 50,000xg for 1 h at 4°C by using 70 Ti rotor. The 

supernatant was collected and further purified by using anion exchange chromatography.  

 

The coelomic fluid was collected from different individuals of Strongylocentrotus 

droebachiensis and protease inhibitor (Sigma Chemical Co.) was added. The fluid was 

then centrifuged at 15,000xg for 30 min at 4°C to remove the coelomocytes and other 

insoluble materials. The supernatant was collected and further purified by anion exchange 

chromatography. 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1440-169X.2006.00872.x/full#b24
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2.2 Purification of major yolk proteins from the egg and coelomic fluid extracts 

by anion exchange chromatography. 

 

The aliquots containing the egg MYP and coelomic fluid MYP were dialyzed against the 

starting buffer (10 mm Tris-HCl, pH 8.0) and loaded onto a Q-Sepharose Fast Flow 

column (Amersham Pharmacia, Uppsala, Sweden) that had been previously equilibrated 

with the starting buffer. The column was washed three times to remove any unbound 

proteins followed by the elution of bound proteins with a NaCl step gradient, prepared in 

sstarting buffer. To purify the egg MYP a 0.2 M to 0.4 M NaCl gradient, and a 0.1 M to 1 

M NaCl gradient were used to purify the coelomic fluid MYP. The eluted proteins were 

then analyzed on an 8% (w/v) polyacrylamide gel by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS–PAGE) and the gel was stained with CBB R-

250 (Laemmli, 1970).  

 

2.3 Sucrose density gradient centrifugation. 

 

The aliquots containing the egg MYP and coelomic fluid MYP were further fractionated 

using sucrose density gradient ultracentrifugation to analyze the elution profiles of the 

proteins present in the egg and coelomic fluid extracts. We used sucrose density gradient 

centrifugation as described previously (Mayne et al., 2002). Aliquots of the resuspended 

pellet were loaded on to discontinuous sucrose gradients composed of 30%, 25%, 20% 

and 15% (w/v) sucrose in 20 mM Tris pH 8.0, followed by ultracentrifugation at 

100,000xg by using an SW 28 rotor for 18 hours at 15°C. The gradients were fractionated 

http://onlinelibrary.wiley.com/doi/10.1111/j.1440-169X.2006.00872.x/full#b26
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from the bottom of the tubes using a peristaltic pump and 600 µl fractions were collected. 

The collected fractions were further analyzed by performing sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) using an 8% (w/v) polyacrylamide gel 

under reducing conditions as described by Laemmli (1970) and stained with Coomassie 

Brilliant Blue (CBB) R-250. The separated protein bands were excised and incubated 

overnight with 25% (v/v) pyridine. The proteins were quantified by measuring 

absorbance at 650 nm. 

 

2.4 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

 

Electrophoresis was carried out using a mini gel electrophoretic apparatus (ThermoEC) in 

1.5 mm thick 8% (w/v) polyacrylamide, [30% (w/v) acrylamide, 0.8% (w/v) 

bisacrylamide] slab gels (Laemmli, 1970). Protein samples were precipitated with an 

equal volume of 20% (w/v) TCA on ice for 30 min, centrifuged in an eppendrof 

centrifuge at 16000xg for 3 min and the supernatant were discarded. Pellets were 

resuspended in solubilizing solution [0.4 M Tris, 2% (w/v) SDS, 32 % glycerol, 0.1 M 

DTT and 0.1 % bromophenol blue]. Protein samples were boiled for 2 min and separated 

by electrophoresis at 20 mA. The electrophoresis buffer contained 25 mM Tris, 200 mM 

glycine and 0.1% (w/v) SDS. After electrophoresis, the gels were stained with 0.25% 

(w/v) CBB R-250 in 45% (v/v) methanol and 10% (v/v) acetic acid for 15 min at 37 °C, 

followed by destaining with a solution containing 10% (w/v) acetic acid and 7% (w/v) 

methanol at 37°C. Alternatively, some gels used in peptide mapping and two-dimensional 

SDS-PAGE was stained with silver by using silver staining kits (BIO-RAD). The gels 
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were photographed by using the ChemiImager software program of Gel Documentation 

System (Alpha Innotech Corporation). 

 

2.5 Two dimensional gel electrophoresis. 

 

In the first-dimension gel, the aliquots containing the egg and coelomic fluid proteins 

were fractionated in a 3-12% (w/v) gradient gel with 3% (w/v) stacking gel (Laemmli, 

1970) in the absence of the reducing agent DTT. The protein bands corresponding to the 

egg and coelomic fluid proteins were excised and stored at -20 °C. Prior to second-

dimension separation, the stored protein bands were incubated for 1 hr in a shaking water 

bath at 37 °C in an equilibrium buffer containing 50 mM Tris, 2% SDS and 20 mM DTT, 

pH 6.8. The gel slices were then placed at the bottom of the wells of a 3% (w/v) stacking 

gel on a 3-12% (w/v) gradient gel of polyacrylamide (Laemmli, 1970). The second-

dimension electrophoresis was performed at 10 mA until the tracker dye reached the gel 

interface. The elecrtrophoresis was then increased to 20 mA and allowed to run for an 

extra hour until the tracker dye came out. This was followed by silver staining of the gel.  

 

2.6 Peptide mapping analysis: 

 

Peptide mapping analysis was performed as described by Cleveland et al. (1977). 

Aliquots containing the egg and coelomic fluid proteins were fractionated in a 3-12% 

(w/v) gradient gel containing a 3% (w/v) stacking gel (Laemmli, 1970) and stained by 

using CBB R-250 to visualize the protein bands. The appropriate protein bands were 
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excised and shaken at room temperature for 30 min in a solution containing 0.125M Tris-

HCl, 0.1% (W/V) sodium dodecyl sulfate (SDS) and 1 mM EDTA, pH 6.8. The gel slices 

were then placed at the bottom of the wells of a 3% (w/v) stacking gel of polyacrylamide 

with different concentrations of acrylamide (7-12% and 3-12%) (Laemmli, 1970). 

Different concentrations of Staphylococcis aureus-V8 protease were overlayed on the gel 

slices and electrophoresis was performed at 10 mA and stopped for 45 min when the 

protein substances and the protease fully entered into the stacking gel. The electrophoretic 

separation was then resumed at 20 mA and the gel was stained with silver. 

 

2.7 Determination of protein concentration by Lowry assay. 

 

Aliquots of protein were precipitated with an equal volume of 20 % (w/v) TCA for 30 

min on ice followed by centrifugation in an eppendorf centrifuge at 16,000xg for 10 min 

and the supernatants were discarded. The protein concentrations were determined by 

using BSA as a standard (Lowry et al., 1951). Absorbance was measured at 750 nm in a 

spectrophotometer (Spectronic 601, Milton Roy) 

 

2.8 Circular dichroism spectrometry measurements. 

Circular dichroism (CD) spectra measurements in the far ultraviolet (190-230 nm) were 

performed on a Jasco-810 spectrapolarimeter. Aliquots of purified major yolk proteins 

both in the egg and coelomic fluid were dialyzed against the starting buffer, 20 mM Tris, 

pH 8.0, and the absorbance of the protein/reagents mixture was checked at 222nm to 

ensure that it did not exceed 1.0. A CTC-345 circulating water bath was used to control 
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the temperature at 15°C. The scanning speed of the instrument was set at 100 nm/min 

with normal sensitivity. A water-jacketed cell (light path = 5 mm) was used and spectra 

were collected between 190 and 300 nm. Baselines were established using the appropriate 

buffers and 5 spectra were collected for each sample and averaged. Prior to the collection 

of spectra, the purified major yolk protein of both the egg and coelomic fluid was 

incubated with 200 µM of calcium for 30 min at 15°C.  

The raw elipticity (mdeg) values were transformed in mean residue molar ellipticity 

(deg.cm
2
.dmol

−1
) by using the following equation. 

Mean residue molar elipticity [Ѳ] =   

 

Where 115 g/ mole is the mean residue weight, l is the path length of the CD cell in cm, 

Ѳabs is the elipticity in mdeg and [Ѳ] is the mean residue molar elipticity in 

deg.cm
2
.dmol

−1
. The secondary structural features were calculated from the collected 

spectra using the computer program K2d3 (Louis-Jeune et al., 2011). This program can 

be accessed at http://www.ogic.ca/projects/k2d3. 

 

2.9 Endogenous tryptophan fluorescence measurements. 

 

Tryptophan fluorescence was measured for the major yolk protein in both the egg and 

coelomic fluid in the absence and presence of different concentrations of calcium or zinc 

at room temperature in a Shimadzu Model RF-540 spectrofluorimeter. The excitation 

wavelength was 287 nm and emission spectra were measured between 300 and 400 nm. 

Ѳabs X 115 g/ mole  

        10 X lcm X C 
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In all cases, the aliquots of major yolk protein of both the egg and coelomic fluid were 

dissolved in 20 mm Tris-HCl, pH 8.0.  

 

2.10 Preparation of multilammellar liposomes. 

 

Brain lipid extract (10% (w/w) PI, 50% (w/w) phosphatidyl serine and several other 

lipids; Sigma-Aldrich Canada) were used to prepare multilammellar liposomes. The lipid 

was solubilized in chloroform: methanol (2:1) by vortexing for 4 min, evaporated to 

dryness under nitrogen gas and dried under vacuum for 1 h. The dried lipid film was 

resuspended in the liposome binding buffer (50 mm Imidazole, 150 mm NaCl, 

0.1 mm EDTA, pH 7.4) to a final concentration of 5 mg/ml and five freeze-thaw cycles 

were done by dipping the lipid into liquid nitrogen for rapid cooling followed by a 

transfer at a temperature of 45°C for thawing.  

 

2.11 Liposome binding assay. 

 

Liposome binding assays were performed following the method of Spenneberg et al. 

(1998) with some modifications. The aliquots of purified major yolk protein of both the 

egg and coelomic fluid were incubated with multilammilar brain lipid liposomes (10% 

(w/w) PI, 50% (w/w) phosphatidyl serine and several other lipids; Sigma-Aldrich Canada, 

Oakville, Ontario, Canada) in the presence of different concentrations of free calcium for 

30 min at room temperature. The online software program WEBMAXC STANDARD 

(http://www-leland.stanford.edu/~cpatton/webmaxc/webmaxcE.htm) was used to 

http://www-leland.stanford.edu/~cpatton/webmaxc/webmaxcE.htm
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determine the free calcium concentrations. After the 30 min incubation, the liposome 

pellets and supernatants were harvested by centrifugation. Both the liposome pellet and 

corresponding supernatant were fractionated in an 8% (w/v) SDS–PAGE gel, which was 

stained with Coomassie Brilliant Blue R-250. The corresponding major yolk protein 

bands from the egg (170 kDa) and coelomic fluid (180 kDa) were excised and incubated 

with 25% (v/v) pyridine overnight. The proteins were quantified by measuring the 

absorbance at 650 nm. The percentage of bound protein was calculated and plotted 

against calcium concentrations.   

 

2.12 Liposome aggregation assays. 

 

Liposome aggregation assays were performed as described by Lee et al. (1997). 

Liposome aggregation assays were performed with a fixed amount (5 µg) of toposome 

and varying amounts of calcium. Aliquots of both the egg and coelomic fluid MYPs were 

incubated in the aggregation buffer, 40 mM histidine, 300 mM sucrose and 

0.5 mM MgCl2, pH 6.0, containing different concentrations of calcium for 10 min at room 

temperature. In the meantime, we measured the absorbance of the multilammellar 

liposome (10 mg/ml) alone and also in the presence of different concentrations of calcium 

to determine the effect of calcium on liposome aggregation. After 10 min at room 

temperature, protein pre-incubated with different concentrations of calcium was added to 

the liposome to determine the effect of protein alone on liposome aggregation. The 

optical density at 350 nm was monitored per min for a total period of 25 min. The initial 

http://onlinelibrary.wiley.com/doi/10.1111/j.1440-169X.2004.00737.x/full#b20
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rates of aggregation (ΔOD350/min) were determined and plotted against calcium 

concentration. 
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3.1 Purification of the major yolk proteins from the egg and coelomic fluid 

extracts by using anion exchange chromatography:  

 

The prepared egg extract was fractionated by 8% (w/v) SDS-PAGE (Fig. 3.1 A). The 

apparent molecular mass of the major polypeptides present in the egg extract were 240 

kDa, 170 kDa and 32 kDa. For further analysis the 170 kDa complex was purified by 

using an ion exchange chromatographic technique. An anion exchange resin, Q-sepharose 

fast flow (fast-Q) (Pharmacia Biotech) and a step gradient of NaCl ranging from 0.2 M to 

0.4 M were used to achieve a fractionation of the proteins present in the egg extract. After 

loading the column with the egg extract, the bound proteins were eluted with a step 

gradient of 0.2 M, 0.25 M, 0.3 M, 0.35 M and 0.4 M NaCl (Fig. 3.1 B). We again 

combined the 0.2 M (lanes 3 and 4) and 0.25 M (lanes 5 and 6) fractions followed by 

anion exchange chromatography using the fast-Q resin (Pharmacia Biotech) with the 

same step gradient of NaCl to get the purified 170 kDa species. The eluted fractions were 

than analyzed in an 8% (w/v) polyacrylamide gel followed by CBB staining (Fig. 3.2). 

 

The prepared coelomic fluid extract was fractionated in a 10% (w/v) polyacrylamide gel 

under reducing conditions (Fig. 3.3 A) followed by CBB staining. The collected coelomic 

fluid extract contains mainly 250 kDa, 180 kDa and a low molecular weight (LMW) 

polypeptides. For further analysis the 180 kDa complex was purified by using an ion 

exchange chromatographic technique. An anion exchange resin, Q-sepharose fast flow 

(fast-Q) (Pharmacia Biotech) and a step gradient of NaCl ranging from 0.1 M to 1 M 

were used to fractionate the proteins present in the coelomic fluid extract. 
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Fig. 3.1: Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the egg yolk 

granule extract and the fractions eluted from the anion exchange resin. 

A) Aliquots of the egg extract were fractionated in an 8% (w/v) polyacrylamide gel 

followed by CBB staining. The egg extract mainly contains polypeptides of 240 kDa, 170 

kDa and 32 kDa.  

B) Anion exchange resin, Q-Sepharose fast flow (fast-Q) was equilibrated with 0.15 M 

NaCl, 10 mM tris, pH 8.0, at 4 °C and protein containing egg extract was loaded onto the 

column. Aliquots of the first wash (lane 1), unbound fraction (lane 2) and elution from 0.2 

M (lanes 3 and 4), 0.25 M (lanes 5 and 6), 0.3 M (lanes 7 and 8), 0.35 M (lane 9) and 0.4 

M NaCl (lane 10) were fractionated in an 8% (w/v) polyacrylamide gel followed by CBB 

staining.  

 

 

 

 

 

 

 

 

 

 

 



 

65 

 

 

 

 

 

 

 

 

 

 

 



 

66 

Fig. 3.2: Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the combined 

fraction of 0.2 M and 0.25 M NaCl, 10 mM Tris, pH 8.0 (Fig. 3.1, panel B, lane 3 to 6) 

eluted from the anion exchange resin.  

The anion exchange resin, Q-Sepharose fast flow (fast-Q) (Pharmacia Biotech) was 

equilibrated with 0.15 M NaCl, 10 mM tris, pH 8.0, at 4 °C and the aliquots of combined 

NaCl fractions of 0.2 M and 0.25 M NaCl, 10 mM Tris pH 8.0 (Fig. 3.1, panel B, lanes 3 

to 6) was loaded onto the column. The column was washed with same equilibration buffer 

and the bound proteins were eluted with a 0.2 M, 0.25 M, 0.3 M, 0.35 M and 0.4 M step 

gradient of NaCl in the same buffer. Aliquots of the first wash (lane 1), unbound fraction 

(lane 2) and elution from 0.2 M (lanes 3 and 4), 0.25 M (lanes 5 and 6), 0.3 M (lanes 7 

and 8), 0.35 M (lane 9) and 0.4 M NaCl (lane 10) were fractionated in an 8% (w/v) 

polyacrylamide gel followed by CBB staining.  
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Fig. 3.3: Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the coelomic fluid 

extract and the fractions eluted from the anion exchange resin. 

A) Aliquots of the coelomic fluid extract were fractionated in a 10% (w/v) 

polyacrylamide gel followed by CBB staining. The coelomic fluid extract contains 

polypeptides of 250 kDa, 180 kDa and low molecular weight (LMW). The coelomic fluid 

is enriched with 180 kDa species. 

B) Anion exchange resin, Q-Sepharose fast flow (fast-Q) (Pharmacia Biotech) was 

equilibrated with 10 mM tris, pH 8.0, at 4 °C and protein containing coelomic fluid 

extract was loaded onto the column. Aliquots of the first wash (lane 1), unbound fraction 

(lane 2) and elution from 0.1 M to 1 M (lanes 3 to lane 8, respectively) were fractionated 

in an 8% (w/v) polyacrylamide gel followed by CBB staining.  
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After loading the column with the coelomic fluid extract, the bound proteins were eluted 

with a step gradient of 0.1 M, 0.2 M, 0.3 M, 0.4 M, 0.5 M and 1 M NaCl, 10 mM Tris, 

pH8.0 (Fig. 3.3 B). The eluted fractions were than analyzed in an 8% (w/v) 

polyacrylamide gel followed by CBB staining.  

 

Most of the 170 kDa species eluted in the 0.25 M (Fig. 3.2, lanes 5 and 6) and 0.3 M 

(Fig.3.2, lane 7) NaCl fractions from the Q-resin. However, most of the 180 kDa species 

eluted in 0.3 M (Fig. 3.3, Panel B, lane 5) and 0.4 M (Fig. 3.3, Panel B, Lane 6) fractions. 

Those fractions were further used for structural and functional analysis of the egg and 

coelomic fluid MYPs.  

 

3.2. Sucrose density gradient ultracentrifugation analysis of the proteins present 

in the egg and coelomic fluid extracts, both in the absence and presence of Triton X-

100. 

 

Sucrose density gradient ultracentrifugation was performed to examine the elution profile 

of the polypeptide species present in both the egg and coelomic fluid extracts in the 

absence of Triton X-100. Aliquots of the egg and coelomic fluid extracts were loaded on 

to a discontinuous sucrose gradients composed of 30%, 25%, 20% and 15% (w/v) sucrose 

in 20 mM Tris pH 8.0, followed by ultracentrifugation at 100,000xg by using an SW 28 

rotor for 18 hours at 15°C. The eluted fractions were collected from the bottom by using a 

peristaltic pump and further fractionated in by 8% (w/v) SDS-PAGE under reducing 

conditions. The gel was stained with CBB, and the corresponding bands for the 240-, 
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170- and 32 kDa from the egg extract and the 250 kDa, 180 kDa, and LMW from the 

coelomic fluid extract were excised and incubated overnight with 25% (v/v) pyridine to 

further quantify the proteins by measuring absorbance at 650 nm. The elution profile of 

the egg extract revealed that the majority of the 240 kDa, 170 kDa and 32 kDa 

polypeptides eluted in fraction 28, 17 and 27, respectively (Fig. 3.4 A). Similarly, the 

majority of the 250 kDa, 180 kDa and low molecular weight (LMW) species in the 

coelomic fluid extracts eluted in fraction 21, 13 and 19, respectively (Fig. 3.4 B).  

 

We also analyzed the elution profile of all the polypeptides present in the egg and 

coelomic fluid extracts in the presence of 0.5% Triton X-100 using sucrose density 

gradient ultracentrifugation. Triton X-100 is a non-ionic surfactant, mainly used to 

solubilize membrane proteins. We used the same sucrose-Tris step gradient as in the 

fractions separated for both the egg and coelomic fluid extracts, followed by 

ultracentrifugation at 100,000xg by using an SW 28 rotor for 18 hours at 15°C. We 

collected the separated fractions and analyzed them in an 8% (w/v) polyacrylamide gel. 

The gel was stained with CBB and the corresponding bands for proteins present in both 

egg and coelomic fluid extracts were excised and incubated overnight with 25% (w/v) 

pyridine to further quantify the proteins by measuring absorbance at 650 nm. The elution 

profile revealed that in the egg extract most of the 240 kDa, 170 kDa and 32 kDa eluted 

in fraction 23, 17 and 29, respectively (Fig. 3.5 A). Whereas, most of the 250 kDa, 180 

kDa and LMW species eluted in fraction 23, 17 and 21, respectively (Fig. 3.5 B).  
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Fig. 3.4: Sodium dodecyl sulfate gel electrophoretic analysis of separated fractions of the 

egg and coelomic fluid extracts after sucrose density gradient ultracentrifugation in the 

absence of Triton X-100 and under reducing conditions.  

A)  Fractions collected from the egg extract after ultracentrifugation on a discontinuous 

sucrose gradients composed of 30%, 25%, 20% and 15% (w/v) sucrose in 20 mM Tris pH 

8.0 for 18 hours at 15°C. The fractions were separated in an 8% (w/v) SDS-PAGE 

followed by CBB staining. The specific polypeptide bands were excised and incubated 

overnight with 25% (v/v) pyridine. The proteins were quantified by measuring 

absorbance at 650 nm. Most of the 240 kDa, 170 kDa and 32 kDa polypeptides eluted in 

fraction 28, 17 and 27, respectively. 

B) Fractions collected from the coelomic fluid extract after ultracentrifugation on a 

discontinuous sucrose gradients composed of 30%, 25%, 20% and 15% (w/v) sucrose in 

20 mM Tris pH 8.0 for 18 hour at 15°C. The fractions were separated in an 8% (w/v) 

SDS-PAGE followed by CBB staining. The specific polypeptide bands were excised and 

incubated overnight with 25% (v/v) pyridine. The proteins were quantified by measuring 

absorbance at 650 nm. Most of the 250 kDa, 180 kDa and a Low molecular weight 

(LMW) polypeptide eluted in fraction 21, 13 and 19, respectively.  
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Fig. 3.5: Sodium dodecyl sulfate gel electrophoretic analysis of separated fractions of the 

egg and coelomic fluid extracts in the presence of 0.5% Triton X-100 after sucrose 

density gradient ultracentrifugation under reducing conditions.  

 

A)  Fractions collected from the egg extract after ultracentrifugation on a discontinuous 

sucrose gradients composed of 30%, 25%, 20% and 15% (w/v) sucrose in 20 mM Tris pH 

8.0 for 18 hours at 15°C in the presence of 0.5% Triton X-100. The fractions were 

separated in an 8% (w/v) SDS-PAGE followed by CBB staining. The specific 

polypeptide bands were excised and incubated overnight with 25% (v/v) pyridine. The 

proteins were quantified by measuring absorbance at 650 nm. Most of the 240 kDa, 170 

kDa, and 32 kDa polypeptides eluted in fraction 23, 17 and 29, respectively. 

B) Fractions collected from the coelomic fluid extract after ultracentrifugation on a 

discontinuous sucrose gradients composed of 30%, 25%, 20% and 15% (w/v) sucrose in 

20 mM Tris pH 8.0 for 18 hours at 15°C, in the presence of 0.5% Triton X-100. The 

fractions were separated in an 8% (w/v) SDS-PAGE followed by CBB staining. The 

specific polypeptide bands were excised and incubated overnight with 25% (v/v) 

pyridine. The proteins were quantified by measuring absorbance at 650 nm. Most of the 

250 kDa, 180 kDa and a low molecular weight (LMW) polypeptide eluted in fraction 23, 

17 and 21, respectively. 
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In the presence of Triton X-100, there is a clear shift in the elution profile of the 240 kDa 

and 32 kDa species from the egg extract and the 250 kDa, 180 kDa and LMW species 

from the coelomic fluid extract (Table. 3.1). In the presence of Triton X-100, the 250 kDa 

and 180 kDa species eluted in the higher density fractions. In the presence of Triton X-

100, the 240 kDa species eluted in the lower density fractions. The elution profile 

remained unchanged for the 170 kDa species in the absence and presence of Triton X-

100. In the presence of Triton X-100, both the 180 kDa and 170 kDa species are eluted in 

fraction 17, while both the 250- and 240 kDa eluted in fraction 23.  

 

These results indicated that there are two forms of MYP in both the egg and coelomic 

fluid extracts and the apparent molecular weight of the coelomic fluid MYPs are 10 kDa 

higher than the corresponding egg MYPs. It also suggested that the 240 kDa & 250 kDa 

species are not aggregates of the 170 kDa and 180 kDa species, respectively. 

Interestingly, all the polypeptides in both the egg and coelomic fluid extracts have unique 

elution profiles in the absence of Triton X-100.  

 

3.3.  Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the 

polypeptides present in the egg and coelomic fluid extracts in the presence and 

absence of reducing agents. 

 

Initially, we prepared the egg and coelomic fluid extracts, enriched in the MYP.  The 

extracts were then analyzed by SDS-PAGE both in the presence and absence of the 

reducing agent, DTT (Fig. 3.6).  
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Table. 3.1: Summery of sucrose density gradient ultracentrifugation analysis of the 

elution profile of proteins present in the egg and coelomic fluid extracts, both in the 

absence and presence of Triton X-100. 
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Polypeptides (kDa) Fraction number 

(-Triton X-100) 

Fraction number 

(+Triton X-100) 

240 28 23 

170 17 17 

32 27 29 

250 21 23 

180 13 17 

LMW 19 21 
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Fig. 3.6: Analysis of the eggs and coelomic fluid extracts in the presence or absence of 

reducing agents by SDS-PAGE followed by silver staining. 

Aliquots of an egg extract (lanes 1 and 2) and a coelomic fluid extract (lanes 3 and 4) 

were fractionated in a 3-12% (w/v) polyacryamde gradient gel (Laemmli 1970) in the 

presence (lanes 1 and 3) or absence (lanes 2 and 4) of the reducing agent dithiothreitol.  
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In the presence of reducing agents, SDS-PAGE revealed that there are several 

polypeptide bands in the egg extract (Fig. 3.6, lane 1). One species migrated with an 

apparent molecular mass of 170 kDa, while a slower migrating species was seen at 240 

kDa. Both species have previously been seen in preparations of the purified egg MYP 

(Perera et al., 2004). Interestingly, in the absence of reducing agents (Fig. 3.6, lane 2), the 

170 kDa species disappeared while the 240 kDa remains. This result suggested that the 

240 kDa species may represent a non-reduced form of the 170 kDa egg MYP.  

 

Similarly, when the coelomic fluid extract was analyzed in the presence of DTT (Fig. 3.6, 

lane 3), two species of protein were seen with apparent molecular masses of 180 kDa and 

250 kDa. In the absence of DTT (Fig. 3.6, lane 4) only the 250 kDa species was seen. 

These results suggested that two forms of MYP are present in both the egg and coelomic 

fluid extracts, one is a reducible form (170 kDa for egg and 180 kDa for coelomic fluid) 

and the other is a non-reducible form (240 kDa for egg and 250 kDa for coelomic fluid) 

of MYP. To further investigate this possibility, we did two dimensional SDS-PAGE with 

both the egg and coelomic fluid extracts. In the first dimension gel in the absence of DTT, 

only the 240 kDa and 250 kDa species of MYP were detected in the egg and coelomic 

fluid extracts, respectively (Fig. 3.7 A, lanes 1 and 2, respectively). The 240 kDa and 250 

kDa bands were excised from the gel and incubated with DTT and SDS, and were 

fractionated in a second dimension SDS-PAGE gel (Fig. 3.7 B). In the presence of DTT 

and SDS, both the 170 kDa and 180 kDa polypeptides appeared along with the 240 kDa 

and 250 kDa species in the egg and coelomic fluid extracts.  
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Fig. 3.7: Two-dimensional SDS-PAGE analysis of the egg and coelomic fluid extracts in 

the presence or absence of reducing agents.  

A) Aliquots of the egg extract (lane 1) and coelomic fluid extracts (lane 2) were 

fractionated in a 3-12% (w/v) polyacryamde gradient gel (Laemmli 1970) in the absence 

of the reducing agent dithiothreitol.  

B)  The 240 kDa and 250 kDa bands from the first dimension gel (Panel A, lanes 1 and 2, 

respectively) were excised, incubated in a buffer containing 50 mM Tris, 2% (w/v) SDS 

and 20 mM DTT, pH 6.8 for 1 hr in a shaken water bath at 37 °C and fractionated in a 3-

12% (w/v) SDS-PAGE. The gel was silver stained.  
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Again these results suggest that in the absence of reducing agents, a reducible form of 

MYP (170 kDa for egg & 180 kDa for coelomic fluid) co-migrates with the 

corresponding non-reducible form of the protein (240 kDa for egg and 250 kDa for 

coelomic fluid) in both the egg and coelomic fluid extracts. Also, the apparent molecular 

masses of the reducible and non-reducible forms of coelomic fluid MYPs are slightly 

higher than the corresponding egg MYPs. 

 

In addition, native-PAGE was also carried out with the egg and coelomic fluid extracts to 

further confirm that these extracts contained the two forms of MYP. We loaded the egg 

and coelomic fluid extracts on a 3% (w/v) stacking gel placed on the top of a 3-12% (w/v) 

polyacrylamide gradient gel in the absence of SDS and DTT. Native-PAGE revealed that 

only a single species of MYP was present in both the egg and coelomic fluid extracts 

(Fig. 3.8 A, lanes 1 and 2, respectively). Both the bands were excised and incubated with 

DTT and SDS, and analyzed by SDS-PAGE. Sodium dodecyl sulfate polyacrylamide gel 

electrophoretic analysis also revealed the existence of two forms of egg MYP (240 kDa 

and 170 kDa) (Fig. 3.8 B, lane 1) and two forms of coelomic fluid MYP (250 kDa and 

180 kDa) (Fig. 3.8 B, lane 2). 

 

The above results lead us to conclude that under non-reducing conditions both the 170 

kDa species from egg and the 180 kDa species from coelomic fluid extract co-migrates 

with the corresponding 240 kDa and 250 kDa species of the egg and coelomic fluid 

extracts, respectively. In every case, coelomic fluid MYPs are 10 kDa higher in apparent 

molecular mass than the corresponding egg MYPs.  
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Fig. 3.8:  Analysis of the egg and coelomic fluid extracts by native-PAGE and SDS-

PAGE. 

A) Native-PAGE analysis of the egg (lane 1) and coelomic fluid extract (lane 2) in the 

absence of DTT and SDS on a 3-12% (w/v) polyacrylamide gradient gel with a 3% (w/v) 

stacking gel.  

B) Second dimension SDS-PAGE analysis of the protein species appeared in panel A. 

The bands were excised from the native gel (Panel A), incubated with SDS and DTT and 

fractionated in a 3-12 % (w/v) SDS-PAGE. 
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3.4 Partial V8 protease peptide map analysis of polypeptides present in the egg 

and coelomic fluid extracts. 

 

In order to explore the primary structural relationship between the different polypeptides 

(240-, 170-, 250- and 180 kDa) in the egg and coelomic fluid extracts, we performed a 

partial in gel V8 protease peptide mapping. The V8 protease is an endopeptidase that 

cleaves specifically at the carboxyl side of aspartate and glutamate residues. This enzyme 

is also known as endoproteinase Glu-C, Glu-C protease, staphylococcal serine proteinase, 

Staphylococcus V8 serine endopeptidase and Glutamyl endopeptidase. We used an online 

program ExPASy-Peptide cutter (http://web.expasy.org/peptide_cutter) to determine the 

number of V8 protease cleavage sites in the precursor of major yolk protein of 

Strongylocentrotus purpuratus. We found that it has 77 cleavage sites for V8 protease 

(Fig. 3.9).  

Furthermore, we performed a partial in gel peptide mapping experiment by following the 

method of Cleveland et al. (1977) with some modifications. Polypeptides present in the 

egg and coelomic fluid extracts were separated by electrophoresis  in a 3-12% (w/v) 

polyacrylamide with 3% (w/v) stacking gel under reducing conditions (Laemmli, 1970), 

following a brief staining with CBB. The 240 kDa and the 170 kDa species from the egg 

extract, and the 250 kDa and 180 kDa species from the coelomic fluid extract, were 

excised from the gel. All the four polypeptides were digested with different amounts of 

Stphylococcus aureus V8 protease following electrophoresis of the polypeptides and 

protease into a 3% (w/v) polyacrylamide stacking gel.  

http://enzyme.expasy.org/EC/3.4.21.19
http://web.expasy.org/peptide_cutter
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Fig. 3.9: Peptide map analysis of the major yolk protein precursor from 

Strongylocentrotus purpuratus by using an online program peptide cutter. 

A) The amino acid sequence of the major yolk protein precursor from Strongylocentrotus 

purpuratus.  

B) The major yolk protein precursor has 77 cleavage sites for V8 protease or Glutamyl 

endopeptidase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Glu
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Glu


 

89 

A) 

 

B) 

 



 

90 

The resulting peptides were resolved in different concentrations (7-12% and 3-12%) of 

polyacrylamide gel and visualized by silver staining. 

 

The resulting peptide maps showed that, the digestion patterns were almost identical 

between the 170 kDa and the 180 kDa species in the presence of 0.45 µg V8 protease 

(Fig. 3.10 A). Hence, they are highly identical proteins except the coelomic fluid form is 

10 kDa higher in apparent molecular mass. Similarly, the digestion pattern was also very 

similar between the 170 kDa and the 240 kDa forms of egg MYP (Fig. 3.10 B). The 240 

kDa species required 2.25 µg of V8 protease while the 170 kDa required 0.45 µg of V8 

protease. This result indicated that the 240 kDa species is more resistant to digestion by 

V8 protease than the 170 kDa form of the protein. 

 

In addition, many peptide fragments were common between the 180 kDa and 250 kDa 

polypeptides (Fig. 3.10 C). Here also the 180 kDa species required 0.45 µg of V8 

protease but the 250 kDa species required 0.225 µg of V8 protease. Similarly, the 240- 

and 250 kDa species had similar peptide profile (Fig. 3.10 D). These partial digestions 

with V8 protease results suggested that, while they have different apparent molecular 

masses, all the four species of MYP in fact have the same primary structure. Moreover, 

the 240 kDa in the egg extract was somewhat resistant to digestion by V8 protease.  

 

These results provided strong evidence that all the four polypeptides have the same 

primary structure.  
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Fig. 3.10: In gel partial peptide mapping of all the four species of both the egg and 

coelomic fluid major yolk protein with V8 protease. All the gels were silver stained.   

A) V8 protease (0.45 µg) digestion of the 180 kDa and 170 kDa species in a 7-12% (w/v) 

SDS-PAGE followed by silver staining.  

B) Digestion profiles of the 170 kDa and 240 kDa species in a 3-12% (w/v) SDS-PAGE 

followed by silver staining. The 240 kDa species required 2.25 µg and the 180 kDa 

required 0.45 µg of V8 protease. 

C) Digestion profiles of the 180 kDa and 250 kDa from the coelomic fluid extract in a 3-

12% (w/v) SDS-PAGE followed by silver staining and the required amount of V8 

protease were 0.45 µg & 0.225 µg, respectively. 

D) Digestion profiles of the 240 kDa and 250 kDa species in a 3-12% (w/v) SDS-PAGE 

in the presence of 2.25 µg and 0.225 µg of V8 protease, respectively. 
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3.5. Probing the secondary structural features of the purified MYP present in the 

egg and coelomic fluid extracts. 

  

Circular dichroism spectroscopy was utilized to probe the differences in secondary 

structural features of the purified egg and coelomic fluid MYPs.  The egg MYP was 

previously shown to undergo structural changes in a calcium-dependent manner (Hayley 

et al., 2006). We examined the secondary structural features of the purified egg MYP 

(170 kDa) and coelomic fluid MYP (180 kDa). Ion exchange chromatography was 

performed using an anion exchange resin, Q-sepharose fast flow (fast-Q) (Pharmacia 

Biotech) to purify the 170 kDa and 180 kDa species from the egg and coelomic fluid 

extracts, respectively.  

 

We calculated the molar residual elipticity (MRE) and plotted a graph of molar residual 

elipticity (MRE) vs wavelength. We used 20 mM Tris pH 8.0 as a blank. The MRE 

spectrum of purified egg MYP (170 kDa) had two negative peaks of similar magnitude at 

208 nm and 219 nm (Fig. 3.11 A). Whereas, the negative peak at 219 nm was absent in 

purified coleomic fluid MYP (180 kDa) (Fig. 3.11 B). We used an online program k2D3 

(http://www.ogic.ca/projects/k2d3) to calculate the secondary structural components of 

the purified 170 kDa and 180 kDa polypeptides. 

 

The CD spectra directly reflect different types of secondary structures (alpha helix and 

beta sheet) present in the protein. The K2D3 program gives quantitative value of the 

alpha helix and beta sheet content by using a database of theoretically derived CD spectra  

http://www.ogic.ca/projects/k2d3
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Fig. 3.11: Secondary structural characteristics of the purified egg MYP (170 kDa) and 

coelomic fluid MYP (180 kDa) between 200 nm and 300 nm CD spectra. 

A)  CD spectra of the purified egg MYP (170 kDa) has two negative bands (208 nm and 

219 nm), whereas B) the purified coelomic fluid MYP (180 kDa) has a single negative 

band at 208 nm. 
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from the whole PDB to predict the secondary structure fractions of a protein from its CD 

spectrum.  On the other hand, K2D3 is unreliable to give secondary structural content of 

100% beta sheet protein. Our CD spectra data clearly shows that both the 170- and 180 

kDa polypeptides undergo conformational change in the presence of 200 µM calcium.  

The α helix and β sheet contents should be viewed as differentialtion of the secondary 

structural features of the 170- and 180 kDa isoforms.  

   

The K2D3 data suggested that the 170 kDa polypeptide has 5.57 ± 7.02% (n=4) α- helical 

and 24.27 ± 4.36% (n=4) β- sheet content, whereas the 180 kDa species has 61.71 ± 23.74 

% (n=3) α-helical and 0.58 ± 0.58% (n=3) β- sheet content (Table 3.2). 

 

Hayley et al. (2006) showed that the egg MYP undergoes a secondary structural change 

in the presence of 50 µM calcium and calcium concentrations above 50 µM did not 

induce any further change in secondary structural features. We characterized the calcium 

induced secondary structural changes in the 170 kDa and 180 kDa polypeptides in the 

presence of 200 µM calcium (Fig. 3.12 and 3.13, respectively). The MRE were quenched 

in both the polypeptide species in the presence of 200 µM calcium (n=3). In the presence 

of 200 µM calcium, the 170 kDa showed a significant quenching in the MRE values (Fig. 

3.12), while the 180 kDa species showed a little or no quenching in the MRE values (Fig. 

3.13). We also calculated the secondary structural components by using K2D3 after 

addition of 200 µM calcium.  Addition of 200 µM calcium induced a secondary structural 

change in the 170 kDa species that resulted in a conformation containing 3.25 ± 4.66% 

alpha helix and 24.44 ± 5.61% beta-sheet content (Table: 3.2). 
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Table 3.2: Secondary structural features of the purified reducible forms of MYP in both 

the egg (170 kDa) and coelomic fluid (180 kDa) extracts by using K2D3 program. 
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Polypeptides (kDa) Alpha-helix (%) Beta-Sheet (%) Random coil (%) 

170 5.57 ± 7.02 (n=4) 24.27 ± 4.36 (n=4) 70.16 ± 5.16 (n=4) 

170 + 200 µM Ca2+ 3.25 ± 4.66 (n=4) 24.44 ± 5.61 (n=4) 72.31  ± 2.02 (n=4) 

180 61.71 ± 23.74 (n=3) 0.58 ± 0.58 (n=3) 37.04 ± 22.52 (n=3) 

180 + 200 µM Ca2+ 59.45 ± 21.92 (n=3) 1.12 ± 1.16 (n=3) 39.43 ± 20.91 (n=3) 
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Fig. 3.12: Calcium induced secondary structural change of the purified reducible form of 

the egg MYP (170 kDa). In the presence of 200 µM calcium, the MRE values of both the 

negative peaks quenched by approximately 16000 mdeg cm
2 

mol
-2

.  
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Fig. 3.13: Calcium induced secondary structural change of the purified reducible form of 

the coelomic fluid MYP (180 kDa). In the presence of 200 µM calcium, there was a very 

little or no change in the MRE values at 208 nm.  
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In the presence of 200 µM calcium, the 180 kDa contained 59.45 ± 21.92% alpha helix 

and 1.12 ± 1.16% beta-sheet. These data indicated that both the 170 kDa and 180 kDa 

polypeptides undergo conformational changes in the presence of 200 µM calcium. We 

also probed the secondary structural features of the non-reducible form of coelomic fluid 

MYP (250 kDa) both in the absence and presence of 200 µM calcium. A single negative 

peak at 203 nm was evident for the 250 kDa complex in coelomic fluid (Fig. 3.14).  

 

These results suggest that while all four species have similar primary structure they each 

likely possess distant secondary structural features. 

 

3.6. Endogenous tryptophan fluorescence measurements, in the presence of 

different concentrations of calcium and zinc. 

 

We next probed the tertiary structure of the purified 170 kDa (egg) and 180 kDa 

(coelomic fluid) polypeptides in the presence of calcium and/or zinc using endogenous 

tryptophan fluorescence measurements. Reports published by Hayley et al. (2006), 

evidenced a tertiary structural change in the egg MYP in a calcium-dependent manner. 

Unuma et al. (2007) showed that the MYP present in coelomic fluid has more zinc 

binding ability than the egg MYP and both of them can act as a zinc transporter.  
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Fig. 3.14: Calcium induced secondary structural change of the purified non-reducible 

form of the coelomic fluid MYP (250 kDa). In the presence of 200 µM calcium, there 

was approximately 5000 mdeg cm
2 

mol
-2 

quenching in the MRE values at 203 nm.  
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In our study, the fluorescence spectra were measured by excitation at 287 nm and the 

emitted light was monitored between 300 and 400 nm. The maximum emission 

wavelength (λmax) was 333 nm for both the 170 kDa and 180 kDa. The fluorescence 

emission spectra of both the egg MYP and coelomic fluid MYP was compared in the 

presence and absence of calcium
 
(Fig. 3.15 A and B, respectively). In the presence of 

increasing concentrations of calcium, the emission spectrum was altered and there was a 

quenching in fluorescence intensity in both the 170 kDa and 180 kDa polypeptides (Fig. 

3.15 A and B, respectively). However, the λmax for both the egg (170 kDa) and coelomic 

fluid MYP (180 kDa) remained unchanged at 333 nm. The apparent dissociation constant 

(calcium) for the egg MYP (170 kDa) and coelomic fluid MYP (180 kDa) was 245- and 

475 µM, respectively (Fig. 3.15 A and B). The fluorescence intensity was also decreased 

by 14% and 12% for the egg MYP (170 kDa) and coelomic fluid MYP (180 kDa), 

respectively.  

These results suggest that, both the egg MYP (170 kDa) and coelomic fluid MYP (180 

kDa) have different affinities for calcium. In addition, we also probed the tertiary 

structural change of both the 170 kDa and 180 kDa species in response to increasing 

concentrations of zinc. The emission spectrum was altered, as both protein species 

showed a quenching in fluorescence (Fig. 3.16 A and B, respectively). Here also the λmax 

was at 333 nm for both polypeptide species. However, the apparent dissociation constants 

(zinc) were similar, 13.1- and 15.6 µM for the egg MYP (170 kDa) and coelomic fluid 

MYP (180 kDa), respectively (Fig. 3.16 A and B, respectively). Moreover, there was a 

decrease in fluorescence intensity by 17.5% for the egg MYP (170 kDa) and 16.5% for 

the coelomic fluid MYP (180 kDa).  
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Fig. 3.15:  Correlation between the changes in the emitted fluorescence of the purified 

170 kDa and 180 kDa polypeptides from the egg and coelomic fluid extracts, respectively 

as a function of calcium concentration.  

 

A) Changes in fluorescence emission of the purified reducible form of MYP (170 kDa) 

from the egg extract. Aliquots of purified egg MYP (170 kDa) were incubated for 30 min 

at room temperature in the presence of various concentrations of calcium. The emitted 

fluorescence was decreased by 14% with an apparent dissociation constant (calcium) of 

245 µM (Kd = 245 µM, R
2
= 0.89).   

B)  Changes in fluorescence emission of the purified reducible form of MYP (180 kDa) 

from the coelomic fluid extract. Aliquots of the 180 kDa polypeptide enriched coelomic 

fluid were incubated for 30 min at room temperature in the presence of various 

concentrations of calcium. The emitted fluorescence was decreased by 12% with an 

apparent dissociation constant (calcium) of 475 µM (Kd = 475 µM, R
2
= 0.93).   
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Fig. 3.16: Correlation between the changes in the emitted fluorescence of the purified 170 

kDa and 180 kDa polypeptides from the egg and coelomic fluid extracts, respectively as a 

function of zinc concentration. 

 

A) Tryptophan fluorescence of the egg MYP (170 kDa) with different concentrations of 

zinc. Aliquots of the purified egg MYP (170 kDa) were incubated for 30 min at room 

temperature in the presence of various concentrations of zinc. The emitted fluorescence 

was decreased by 17.5% with an apparent dissociation constant (zinc) of 13.1 µM (Kd = 

13.1 µM, R
2
 = 0.75).   

B) Tryptophan fluorescence of the coelomic fluid MYP (180 kDa) with different 

concentrations of zinc. Aliquots enriched with the coelomic fluid MYP (180 kDa) were 

incubated for 30 min at room temperature in the presence of various concentrations of 

zinc. The emitted fluorescence was decreased by 16.5% with an apparent dissociation 

constant (zinc) of 15.6 µM (Kd = 15.6 µM, R
2
 = 0.75). 
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These results suggest that both the egg MYP (170 kDa) and coelomic fluid MYP (180 

kDa) interact with zinc in a similar manner. 

 

3.7. Calcium-dependent liposome binding assay of the purified 170 kDa and 180 kDa 

polypeptides. 

 

Peripheral membrane proteins attach temporarily to the outer portions of the biological 

membrane. Typically these proteins interact with the lipid head groups and sometimes top 

of the aliphatic chains. Their function revolves around binding and unbinding from 

membranes. These proteins can be involved in intracellular signaling and trafficking. 

 

Previous studies showed that the egg MYP is peripherally associated with the plasma 

membrane and can promote cell-cell adhesion (Perera et al. 2004; Hayley et al., 2006, 

2008). It was suggested that the egg MYP underwent structural changes during binding to 

liposome in a calcium-dependent manner (Hayley et al., 2006; Perera et al., 2004).  

 

We therefore determined the ability of both the purified reducible forms of the major yolk 

protein present in the egg (170 kDa) and coelomic fluid MYP (180 Kda) to bind with 

liposomes. Liposome binding assays were employed to determine and compare liposome 

binding ability of the reducible forms of the MYPs in the egg (170 kDa) and coelomic 

fluid (180 kDa). 
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We quantified the calcium concentration-dependence of binding of the purified 170 kDa 

and 180 kDa species with multilammellar liposomes prepared using a brain lipid extract 

(Sigma Chemical Co.). We used the 0.25 M fraction (Fig. 3.2, Lane 5) for the purified 

170 kDa and the 0.4 M fraction (Fig. 3.3, Panel B, Lane 6) for the purified 180 kDa 

species, eluted from the fast-Q resin and the brain lipid extract (5 µg/ ml) composed of 

10% (w/v) PI, 50% (PS) and several other lipids (Sigma-Aldrich, Canada). The liposome 

binding assay revealed that both the 170 kDa and 180 kDa species bind with liposomes in 

a calcium-dependent manner (Fig. 3.17 A and B, respectively). Aliquots of the purified 

170 kDa or 180 kDa species were incubated with multilammellar liposomes (5 µg/ml) in 

the presence of different concentrations of calcium followed by centrifugation. The 

unbound (supernatant) and the bound (pellet) fractions were separated by electrophoresis 

in an 8% (w/v) polyacrylamide gel and the gel was stained with CBB.  

 

The bands of both of the polypeptides were excised from the gels and incubated overnight 

with 25% (w/v) pyridine. The polypeptides were quantified by measuring the absorbance 

at 650 nm. The amount of free calcium was calculated by using an online program 

WEBMAXCEXTENDED(http://www.leland.stanford.edu/~cpatton/webmaxc/webmaxcE

.htm). The percentage of protein binding showed a positive correlation with increasing 

calcium concentration in both the 170 kDa and 180 kDa species (Fig. 3.18 A and B, 

respectively). The 170 kDa species showed a maximum percentage binding of 22% at a 

free calcium concentration of 160 µM, whereas the 180 kDa species showed a maximum 

binding of 36% at a free calcium concentration of 1000 µM.  

 

http://www.leland.stanford.edu/~cpatton/webmaxc/webmaxcE.htm
http://www.leland.stanford.edu/~cpatton/webmaxc/webmaxcE.htm
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Fig. 3.17: Liposome binding assay of the purified 170 kDa and 180 kDa polypeptides 

with multilammellar brain lipid liposome.  

 

A) An aliquot of the 0.25 M fraction (Fig. 3.2, Lane 5) containing the purified 170 kDa 

was incubated with multilammellar liposome for 30 min at room temperature in the 

presence of 0 µM (lanes 1 and 2), 80 µM (lane 3 and 4), 130 µM (lane 5 and 6), 150 µM 

(lanes 7 and 8) and 170 µM (lanes 9 and 10) free calcium. The liposomes were pelleted 

by centrifugation for 30 min and both the unbound (lanes 1, 3, 5, 7 and 9, respectively) 

and bound fractions (lanes 2, 4, 6, 8 and 10 respectively) were fractionated in an 8% 

(w/v) polyacrylamide gel. The gel was stained with CBB. 

B) An aliquot of the 0.4 M fraction (Fig. 3.3, Panel B, Lane 6) for the purified 180 kDa 

species, was incubated with multilammellar liposome for 30 min at room temperature in 

the presence of 0 µM (lanes 1 and 2), 100 µM (lanes 3 and 4), 300 µM (lanes 5 and 6), 

500 µM (lanes 7 and 8) and 1000 µM (lanes 9 and 10) free calcium. The liposomes were 

pelleted by centrifugation for 30 min and both the unbound (lanes 1, 3, 5, 7 and 9, 

respectively) and bound fractions (lanes 2, 4, 6, 8 and 10 respectively) were fractionated 

in an 8% (w/v) polyacrylamide gel. The gel was stained with CBB. 
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Fig. 3.18: Effect of calcium concentrations on both the 170 kDa and 180 kDa species 

binding to liposome. 

 

A) Aliquots of 0.25 M fraction (Fig. 3.2, Lane 5) containing the purified 170 kDa was 

incubated with multilammellar liposome for 30 min at room temperature in the presence 

of different concentrations of free calcium for 30 min. The liposomes were pelleted by 

centrifugation for 30 min and both the unbound and bound fractions were fractionated in 

an 8% (w/v) polyacrylamide gel. The gel was stained with CBB. The 170 kDa bands were 

excised and incubated with 25% (v/v) pyridine for overnight. The percentage of bound 

protein to liposome was quantified by measuring absorbance at 650 nm. The apparent 

dissociation constant (calcium) was 10 µM (Kd = 10 µM; R
2
= 0.95). 

B) Aliquots of the 0.4 M fraction (Fig. 3.3, Panel B, Lane 6) for the purified 180 kDa 

species, was incubated with multilammellar liposome for 30 min at room temperature in 

the presence of different concentrations of free calcium for 30 min. The liposomes were 

pelleted by centrifugation for 30 min and both the unbound and bound fractions were 

fractionated in an 8% (w/v) polyacrylamide gel. The gel was stained with CBB. The 180 

kDa bands were excised and incubated with 25% (v/v) pyridine for overnight. The 

percentage of bound protein to liposome was quantified by measuring absorbance at 650 

nm. The apparent dissociation constant (calcium) was 290 µM (Kd = 290 µM; R
2
= 0.97). 
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The apparent dissociation constants (calcium) for the purified 170 kDa and 180 kDa 

species were 10- and 290 µM, respectively. The liposome binding data clearly suggested 

that while both proteins bind to liposomes, their calcium concentration dependencies are 

different. 

 

3.8. Liposome aggregation by the egg and coelomic fluid major yolk proteins in a 

calcium dependent manner.  

 

Liposome aggregation assays were performed to investigate vesicular aggregation ability 

of the reducible forms of the MYPs present in the egg (170 kDa) and coleomic fluid (180 

kDa). The 170 kDa polypeptide was capable of driving aggregation of vesicular structures 

in a calcium-dependent manner. In the absence of the egg MYP, 1.5 mM calcium was 

able to aggregate liposome (Hayley et al., 2006). 

 

To determine the effect of the egg MYP (170 kDa) or coleomic fluid localizd MYP (180 

kDa) on liposome aggregation in a calcium-dependent manner, two sets of aggregation 

assays were performed. The first set involved the addition of different concentrations of 

calcium (below 1.5 mM) in the absence of the egg MYP (170 kDa) or the coelomic fluid 

MYP (180 kDa) to the liposome to demonstrate that calcium alone was not able to drive 

liposome aggregation. In the second set of experiment we added a fixed amount (5 µg) of 

the 170 kDa or 180 kDa proteins with different concentrations of calcium to liposome to 

determine the effect of calcium on protein-dependent liposome aggregation (Fig. 3.19 A 

and B, respectively).  
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Fig. 3.19: Determination of the effect of the egg MYP (170 kDa) or coelomic fluid MYP 

(180 kDa) on liposome aggregation in the presence of different concentrations of calcium.  

A) Aliquots (5 µg) of 0.25 M NaCl fraction (Fig. 3.2, lane 6) enriched in the 170 kDa species 

were incubated for 10 min with 250-, 350-, 850- and 1000 µM of calcium. Aggregation was 

monitored by measuring the OD at 350 nm at one min intervals. Upon addition of 

multilammellar liposomes (10 mg/ml) to the aggregation buffer containing 40 mM Histidine, 

300 mM sucrose, 0.5 mM MgCl2, and 0.5 M KCl (pH 6.0) were monitored for 5 min. Then 

different concentrations of calcium were added to the liposome containing aggregation buffer 

and the OD were monitored for 10 min to see the effect of calcium on liposome aggregation. 

At 16 min, the pre-incubated protein (5 µg) with calcium was added to the aggregation buffer 

containing liposomes and calcium, the OD was monitored for another 10 min.  

 

B) Aliquots (5 µg) of 0.3 M NaCl fraction (Fig. 3.3, lane 5) enriched in the 180 kDa were 

incubated for 10 min with 100-, 250-, 350-, 500- and 850 µM of calcium. Aggregation was 

monitored by measuring the OD at 350 nm at one min intervals. Upon addition of 

multilammellar liposomes (10 mg/ml) to the aggregation buffer containing 40 mM Histidine, 

300 mM sucrose, 0.5 mM MgCl2, and 0.5 M KCl (pH 6.0) were monitored for 5 min. Then 

different concentrations of calcium were added to the liposomes containing aggregation 

buffer and the OD were monitored for 10 min to see the effect of calcium on liposome 

aggregation. At 16 min, the pre-incubated protein (5 µg) with calcium was added to the 

aggregation buffer containing liposome and calcium, the OD was monitored for another 10 

min 

 

.  
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We used a Lowry assay to determine the concentrations of the 170 kDa and 180 kDa 

species in the fractions eluted from fast-Q resin. In each case, for both the 170 kDa and 

180 kDa species we calculated the initial rates of aggregation and plotted them against 

different calcium concentrations (Fig. 3.20). 

   

The liposome aggregation assay was then performed with the purified enriched fractions 

of 170 kDa species from egg extract and 180 kDa species from coelomic fluid extracts 

eluted from the fast-Q resin. We used the 0.25 M NaCl fraction (Fig. 3.2, lane 6) enriched 

in 170 kDa form in the presence of different concentrations of calcium below 1.5 mM. In 

each experiment we used 5 µg of 170 kDa form that was incubated for 10 min with 

different concentrations of calcium. We measured the absorbance of liposome in the 

presence of different concentrations of calcium below 1.5 mM, in a 170 kDa species 

independent manner for 10 min at 350 nm in one min interval and found that calcium 

alone could not drive liposome aggregation (Fig. 3.19 A). 

 

In the second set, we added 5 µg of the egg MYP (170 kDa), that was pre incubated with 

different concentrations of calcium and took the absorbance for 10 more min at 350 

nm/min. The egg MYP (170 kDa) was capable of driving liposome aggregation below 1.5 

mM calcium, a concentration at which calcium alone could not drive liposome 

aggregation. These results indicated that in the presence of the egg MYP (170 kDa), the 

rate of aggregation was dependent on the calcium concentrations used in the assay. The 

rate of aggregation was fast and there was no effect of calcium alone used in the assay. 

The initial rate of aggregation for the egg MYP (170 kDa) was 2.2 X 10
-5

(Fig. 3.20). 
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Fig. 3.20: Comparative analysis of the effect of egg MYP (170 kDa) and coelomic fluid 

MYP (180 kDa) on the rate of liposome aggregation. 

Aggregation assays were performed by using 0.25 M NaCl fraction (Fig. 3.2, lane 6) 

enriched in the 170 kDa species and 0.3 M NaCl fraction (Fig. 3.3, lane 5) enriched in the 

180 kDa species with multilammellar liposome in the presence of a series of calcium 

concentrations from 100- to 1000 µM. All the aggregation assays were performed with a 

fixed amount (5 µg) of protein. The initial rate of aggregation was calculated from the 

calcium-dependent aggregation activities of both the 170 kDa and 180 kDa species (Fig. 

3.19 A and B, respectively). These initial rates of aggregation of both polypeptides were 

plotted against the calcium concentrations.  The initial rate of aggregation for both 

proteins was increased with the increase of calcium concentrations. The initial rate of 

aggregation was 2.2 X 10
-5

 and 1.12 X 10
-5 

for the egg and coelomic fluid MYP, 

respectively. 
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We also found a direct consistent correlation of liposome aggregation with the calcium 

dependent tertiary structural change of the egg MYP (170 kDa) (Fig. 3.21 A).  

 

Similarly, a liposome aggregation assay was also performed with 5 µg of coelomic fluid 

MYP (180 kDa) to investigate and compare the effect of the 180 kDa species with the 170 

kDa species in egg. We used 0.3 M NaCl fraction (Fig. 3.3, lane 5) enriched in 180 kDa 

and followed the same procedure of liposome aggregation as followed with egg MYP 

(170 kDa) in the presence of same concentrations of calcium below 1.5 mM (Fig. 3.19 B).  

 

These results indicated that the coelomic fluid localized MYP (180 kDa) can also drive 

liposome aggregation in a calcium dependent manner. The aggregation activity was 

increased with the addition of higher calcium concentrations to the liposomes containing 

aggregation buffer in the presence of the 180 kDa species (Fig. 3.19 B). The initial rate of 

aggregation for the coelomic fluid MYP (180 kDa) was 1.12 X 10
-5

, which is lower than 

the rate of vesicular aggregation driven by the egg MYP (170 kDa) (Fig. 3.20).  

  

The MYP localized in both the egg and coelomic fluid is capable of driving vesicular 

aggregation in a calcium dependent manner. The egg MYP (170 kDa) has a higher 

capability to aggregate liposome than the coelomic fluid MYP (180 kDa). In the presence 

of both the egg MYP (170 kDa) and coelomic fluid MYP (180 kDa), liposome 

aggregation occurred in a manner consistent with the calcium concentration dependent 

change in tertiary structure of both polypeptides (Fig. 3.21 A and B, respectively).  
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Fig. 3.21: Correlation between the change in the emitted fluorescence of both the egg 

MYP (170 kDa) and coelomic fluid MYP (180 kDa) as a function of calcium 

concentration (■) and the effect of calcium dependent liposome aggregation in the 

presence of the170 kDa or the 180 kDa polypeptides (•).  

A) In all fluorescence experiments, aliquots of the 170 kDa species were incubated for 30 

min at room temperature in the presence of various concentrations of calcium followed by 

spectrophotometric analysis. In the liposome aggregation study, aliquots of the 170 kDa 

species were added to multillamellar liposomes in the presence of different concentrations 

of calcium. The initial rates of liposome aggregation (Δ OD350/min) in the presence of the 

170 kDa protein and different concentrations of calcium were calculated and plotted 

against the calcium concentrations. 

B) In all fluorescence experiments, aliquots of the 180 kDa species were incubated for 30 

min at room temperature in the presence of various concentrations of calcium followed by 

spectrophotometric analysis. In the liposome aggregation study, aliquots of the 180 kDa 

were added to multillamellar liposomes in the presence of different concentrations of 

calcium. The initial rates of liposome aggregation (Δ OD350/min) in the presence of the 

180 kDa protein and different concentrations of calcium were calculated and plotted 

against the calcium concentrations. 
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These findings directly indicated that the tertiary structural change of both the egg MYP 

(170 kDa) and coelomic fluid MYP (180 kDa) is associated with calcium-dependent 

vesicular aggregation. 
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4.1. The major yolk protein present in the egg (170 kDa and 240 kDa) and 

coelomic fluid (180 kDa and 250 kDa) are the same protein, but they exhibit 

differences in their biological properties.  

 

In the current study, we focused on the biochemical characterization of the major yolk 

protein localized in both the egg and coelomic fluid with the specific aim of identifying 

structural and function differences between the egg and coelom-specific forms. The egg 

MYP is known to be a hexameric glycoprotein characterized by intra-chain disulfide 

bonds and is stabilized with calcium. For our initial comparison we investigated the 

sucrose density gradient elution profile of the polypeptides present in the egg and 

coelomic fluid, both in the absence and presence of Triton X-100. 

 

The sucrose density gradient ultracentrifugation data revealed that in the absence of 

Triton X-100, the egg-specific (240-, 170-kDa) and coelom-specific (250- and 180 kDa) 

polypeptides are unique in their elution profiles (Table. 3.1). The buoyant densities of the 

170- and 180 kDa are higher than the 240- and 250 kDa. This indicated that under native 

conditions, both the egg MYP (240- and 170 kDa) and the coelomic fluid MYP (250- and 

180 kDa) are unique in their size and/or shape. Under native conditions, the non-reducible 

forms of the MYP in both the egg (240 kDa) and coelomic fluid (250 kDa) are not the 

aggregated forms of the reduced MYPs (170 kDa in egg; 180 kDa in coelomic). Both of 

the coelomic fluid protein species are 10 kDa higher in molecular masses than the 

corresponding egg species.  
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In the presence of Triton X-100, there is a clear shift of elution profiles for the 240 kDa 

from the egg and the 250 kDa and 180 kDa species from the coelomic fluid extract 

(Table. 3.1). In the presence of Triton X-100, the MYP present in the coelomic fluid (250 

kDa and 180 kDa) eluted in low-density fractions, while the egg MYP (240 kDa) eluted 

in high-density fractions, possibly because Triton X-100 induces a change in the shape of 

the 180-, 240- and 250 kDa polypeptides. The elution profile remains the same for the 

170 kDa species both in the presence and absence of Triton X-100. Clearly, Triton X-100 

does not induce any change in the shape of the reducible form of the egg MYP (170 kDa).  

Triton X-100 is a non-ionic detergent that induces a hydrophobic environment similar to 

the hydrophobic environment between the inner and outer leaflets of the lipid bilayer. 

This further supports the contention that the egg MYP (170 kDa) is peripherally located 

in the plasma membrane. Moreover, in the presence of Triton X-100, both the 240- and 

250 kDa polypeptides eluted in the same fraction. Both the 170- and 180 kDa species are 

also eluted in the same fraction in the presence of Triton X-100. This indicated that in the 

hydrophobic environment all four species may exhibit same biological function.  

  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Native-

PAGE studies indicated that, under reducing conditions, there are mainly two forms of 

major yolk protein present in both the egg (170 kDa, 240 kDa) and the coelomic fluid 

extracts (180 kDa, 250 kDa), and the coelomic fluid protein species are 10 kDa higher in 

apparent molecular masses than the corresponding egg species (Fig. 3.6, lanes 1 and 3, 

respectively; Fig. 3.7 B and Fig. 3.8 B). However, under non-reducing conditions, the 

reducible forms of the MYP in both the egg (170 kDa) and coelomic fluid (180 kDa) co-
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migrated with the non-reducible forms of the MYP (240 kDa in egg; 250 kDa in coelomic 

fluid) (Fig. 3.6, lanes 2 and 4, respectively; Fig. 3.7 A, lanes 1 and 2, respectively and 

Fig. 3.8 A, lanes 1 and 2, respectively). These data indicated that the intact 240- and 250 

kDa species consists of subunits characterized by intra-chain disulfide bonds. Disulfide 

bonds play an important role in the folding and stability of proteins, usually proteins 

secreted to the extracellular medium. Since most cellular compartments are reducing 

environments, generally disulfide bonds are unstable in the cytosol. Our data showed that, 

under both the reducible and non-reducible conditions, the coelomic fluid MYP is 10 kDa 

higher in apparent molecular mass than the egg MYP, possibly because the coelomic fluid 

MYP is slightly modified in molecular structure after its incorporation with the egg yolk 

granule. The difference in apparent molecular mass between the MYP localized in the egg 

and the coelomic fluid was also observed in different species of sea urchin, which 

indicates it may be a common phenomenon in sea urchins. All four MYP species present 

in both the egg and the coelomic fluid are unique in their SDS-PAGE electrophoretic 

mobility both under reducing and non-reducing conditions. This difference in physical 

property may be responsible for functional differences, which further supports the idea 

that the polypeptides present in the egg and coelomic fluid are unique in size. Under non-

reducing conditions, both the reducible forms of the MYP in the egg (170 kDa) and 

coelomic fluid extract (180 kDa) co-migrated with the non-reducible forms of the MYP 

(240 kDa in egg; 250 kDa in coelomic fluid). This indicated that both the 170- and 240 

kDa in the egg and the 180- and 250 kDa in coelomic fluid are isomers the same protein, 

but with a difference in their size.  

http://en.wikipedia.org/wiki/Reducing_environment
http://en.wikipedia.org/wiki/Reducing_environment
http://en.wikipedia.org/wiki/Cytosol
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To further investigate the possibility that all four polypeptides share the same primary 

structure, we did partial V8 protease peptide mapping. The online program ExPASy-

Peptide cutter suggested that the MYP contains V8 protease digestion sites (Fig. 3.9 B). 

Limited V8 protease peptide mapping data also showed an identical digestion pattern 

between the 170 kDa and 180 kDa species (Fig. 3.10 A). The digestion pattern was also 

similar between the 170 kDa and 240 kDa (Fig. 3.10 B) and as well as between the 180 

kDa and 250 kDa species (Fig. 3.10 C).  The V8 protease digestion pattern was also 

somewhat similar between the non-reducible forms of the MYP present in the egg (240 

kDa) and coelomic fluid (250 kDa) (Fig. 3.10 D). Although having differences in their 

molecular masses and different sucrose density gradient elution profiles, all four 

polypeptides have a similar primary structure. The V8 protease requirement was the same 

for the 170 kDa and 180 kDa, while the 240 kDa required high concentrations of V8 

protease and the 250 kDa required lower concentrations of V8 protease. This may be 

because all four polypeptides are different in their molecular masses and have different 

shapes resulting in varying access of the V8 protease to susceptible peptide bands. This 

clearly indicated that all four MYP species present in both the egg and coelomic fluid are 

isoforms of the same protein, but may differ in their biological properties.  

 

4.2. The reducible forms of the major yolk protein present in the egg (170 kDa) 

and coelomic fluid (180 kDa) undergo changes in their secondary and tertiary 

structure in response to calcium.  
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The egg MYP undergoes two calcium-concentration-dependent structural transitions: a 

secondary structural change responsible for membrane binding, with an apparent 

dissociation constant (calcium) 25 µM, followed by a tertiary structural change 

responsible for egg MYP-driven membrane-membrane interaction, with an apparent 

dissociation constant (calcium) 240 µM (Hayley et al., 2006, 2008; Perera et al., 2004). 

 

We did a comparative analysis of both the secondary and tertiary structural changes of the 

egg MYP (170 kDa) and coelomic fluid MYP (180 kDa) in response to calcium 

concentration. Circular dichroism data suggested that, in the absence of calcium, both the 

egg (170 kDa) and coelomic fluid MYP (180 kDa) were unique in their secondary 

structural features (Fig 3.11 A and B, respectively). Their unique structural features may 

be due to their difference in size and/or shape. The molar residual elipticity (MRE) of the 

purified egg MYP (170 kDa) has a double dip (208 nm, 219 nm), whereas there is a 

single dip (208 nm) for the purified coelomic fluid MYP (180 kDa) species.  Moreover, 

the purified non-reducible form of MYP (250 kDa) in the coelomic fluid also has a single 

dip at 203 nm (Fig. 3.14). These results further suggested that both the 170 kDa and 180 

kDa species are unique in their secondary structure, hence they may also show a 

difference in their liposome binding ability.  

 

In the presence of 200 µM calcium, the 170 kDa species showed a dramatic change in 

secondary structural features, while there was little or no evidence of structural change for 

the 180 kDa species in response to the same concentration of calcium (Fig. 3.12 and Fig. 
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3.13, respectively). This indicated that higher concentrations of calcium are required for a 

secondary structural change in the MYP present in the coelomic fluid (180 kDa) than the 

egg MYP (170 kDa). The CD data indicated that in the presence of calcium, the molar 

residual elipticity (MRE) of the 170 kDa species increased at 208- and 219 nm, possibly 

because the 170 kDa undergoes a secondary structural change by losing its α-helical 

structure in the presence of calcium (Fig. 3.12). Using the K2D3 data, the calcium-bound 

170 kDa species is estimated to contain less α-helical structure than the calcium free 

protein (Table 3.2). On the other hand, there was no noticeable change in MRE of the 180 

kDa species in response to 200 µM calcium (Fig. 3.13).  The K2D3 data indicated that the 

α-helical structure of the 180 kDa species only slightly changed in the presence of 200 

µM calcium (Table. 3.2). This may possibly be because the 180 kDa species requires 

higher concentrations of calcium to induce a conformational change. It is likely that 

calcium binding causes a reorganization of these polypeptides’ secondary structure that is 

already formed in the calcium-free state. The observed change in secondary structure in 

response to 200 µM calcium was also evidenced with the 250 kDa species from coelomic 

fluid (Fig. 3.14). Here also the MRE was increased at 203 nm in the calcium bound state 

of the 250 kDa polypeptide. These data suggested that all three polypeptides may have a 

different binding affinity to calcium that causes their conformational change and thus may 

have differences in calcium-mediated biological functions. 

 

In addition, the near UV region (320-260 nm) reflects the environments of the aromatic 

amino acid side chains (phenylalanine, tyrosine and tryptophan) and thus gives 

information about the tertiary structure of the protein (Kelly et al., 2000). In our study, in 
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the presence of 200 µM calcium, there was no dip in CD spectrum in this region, which 

indicated the necessity of higher concentrations of calcium to mediate tertiary structural 

change in the 170-, 180- and 250 kDa polypeptides. Like most of the calcium binding 

proteins, these three polypeptides may also play important biological functions by 

regulating ion transport, protein conformational change and enzyme activation. 

 

To further analyze the effects of calcium on the tertiary conformational change of the 170 

kDa and 180 kDa polypeptides, we utilized tryptophan fluorescence measurements. 

Calcium was found to modulate the intensity of maximal endogenous fluorescence. The 

effect of calcium on the egg MYP (170 kDa) species was different from the coelomic 

fluid MYP (180 kDa), with an apparent dissociation constant of 245- and 475 µM for the 

170 kDa and 180 species, respectively (Fig. 3.15 A and B, respectively). These data 

indicated that the 170 kDa species is more sensitive to tertiary conformational change in 

response to calcium than the 180 kDa species. There was a characteristic calcium-

mediated 14% and 12% maximum quenching of fluorescence in both the 170 kDa and 

180 kDa polypeptides because the tryptophan residues of both the polypeptides are 

exposed to a more polar environment. The decrease in fluorescence also indicated that 

both the proteins undergo a transition from the folded state to an unfolded state in 

response to high calcium concentrations. This also indicated that the calcium-mediated 

tertiary structural change may play an important biological role. The calcium 

requirements for tertiary structural change in both the 170 kDa and 180 kDa were higher 

than was required for the secondary structural change. This indicated that both the 
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polypeptides undergo a calcium-mediated two step structural change that may modulate 

their biological function. 

 

In addition, the endogenous tryptophan fluorescence study showed that, in the presence of 

200 µM calcium, only a 2.5% decrease in fluorescence was evident in the 180 kDa 

species, while an approximate 7% decrease was evident with the 170 kDa polypeptide 

(Fig. 3.15 A and B, respectively). This also supported the idea that the 170 kDa species is 

more sensitive to a calcium-dependent secondary structural change than the 180 kDa 

species (Fig. 3.12 and Fig. 3.13, respectively). Both the 170- and 180 kDa induce two-

step structural changes in a calcium-dependent manner. In the first step, both the proteins 

undergo a secondary structural change in the presence of calcium. In the second step, both 

the polypeptides undergo a tertiary structural change in the presence of higher 

concentrations of calcium. The 180 kDa requires more calcium than the 170 kDa to 

undergo a conformational change, possibly because the polypeptides may have a different 

calcium binding affinity, which may further modulate their biological functions.  

  

We further characterized the metal binding capacity of these proteins by analyzing the 

effects of zinc on the tertiary conformation of 170 kDa and 180 kDa polypeptides. Both 

the 170 kDa and 180 kDa polypeptides induce a tertiary conformational change in 

response to zinc, characterized by a maximum quenching in fluorescence by 17.5% and 

16.5%, respectively (Fig. 3.16 A and B, respectively). The apparent dissociation constant 

(zinc) was 13.1- and 15.6 µM for the 170 kDa and 180 kDa, respectively. These data 

indicated that the 170- and 180 kDa species have the same weak affinity for zinc, but both 
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the proteins were nevertheless able to induce a zinc-mediated tertiary structural change. 

In contrast, the study conducted by Unuma et al., (2007) concluded that the 180 kDa 

species contains more zinc-binding sites than 170 kDa and may act as a zinc transporter. 

However, our results suggested that both polypeptides have the same affinity to zinc. 

  

4.3. The calcium-driven structural transitions of the reducible forms of the major 

yolk protein present in the egg (170 kDa) and coelomic fluid (180 kDa) are required 

to mediate liposome binding and vesicular aggregation. 

 

In this study, we first compared the liposome binding ability of both the reducible forms 

of MYP present in the egg (170 kDa) and coelomic fluid (180 kDa) in a calcium-

dependent manner. We found that both the MYP (170 kDa and 180 kDa) undergo 

structural changes in a calcium-dependent manner that could further mediate membrane-

membrane interaction. The egg MYP drives a calcium-dependent secondary and tertiary 

structural change that is responsible for binding with liposome and vesicular aggregation 

(Hayley et al., 2006; Perera et al., 2004). Most of the proteins involved in membrane 

aggregation, fusion and intracellular transportation belong to the family of annexins, 

which are involved in binding with the acidic phospholipids in a calcium-dependent 

manner (Grewal et al., 2000; Filipenko and Wasiman, 2000; Mailliard et al., 1995; 

Boustead et al., 1993 & Spenneberg et al., 1998). Calcium binding provides positive 

charges for proteins, which can mediate acidic phospholipid binding (Lee et al., 1997; 

Spenneberg et al., 1998; Boustead et al., 1993; Filipenko and Waisman, 2000). Acidic 

and amide amino acids and the carbonyl oxygen atoms in peptide bonds are responsible 
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for calcium binding. Moreover, with a very weak affinity, the egg MYP binds with 

calcium and the calcium mediates a secondary structural change that facilitates 

interactions between the egg MYP and the phosphoserine head group (Hayley et al., 

2006). These weak-affinity binding sites are occupied by calcium and actively modulate 

the biological functions of the MYP by modulating the structure of the MYP. Again, the 

sequence analysis study showed that the major yolk protein in the egg does not have any 

known high-affinity calcium-binding motifs, but did reveal a 27.11 M percentage content 

of acidic and amide residues, all potential low affinity calcium binding sites (Brooks & 

Wessel 2002).  

 

The egg MYP (240 kDa) undergoes vesicular aggregation through embryonic 

development (Perera et al., 2004). We were interested in biochemically characterizing 

and comparing the phospholipid binding and vesicular aggregating activities of the 

reducible form of MYP present in both the egg (170 kDa) and the coelomic fluid (180 

kDa). There is a high likelihood that the calcium binds with both the egg MYP (170 kDa) 

and coelomic fluid MYP (180 kDa) followed by a structural change that drives both the 

proteins to bind and aggregate liposomes. 

 

Perera et al., (2004) and Hayley et al. (2006) showed that a maximum binding of 25% 

was observed at a calcium concentration of 200 µM, with an apparent dissociation 

constant (calcium) of 25 µM and the percentage of bound protein remained constant at 

25% in the presence of calcium concentrations above 200 µM.  In our study we also 

found evidence of binding between the reducible form of egg MYP (170 kDa) and 
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liposome in a calcium-dependent manner, with an apparent dissociation constant 

(calcium) of approximately 10 µM (Fig. 3.18 A). This difference in apparent dissociation 

constant (calcium) with the previous studies is possibly because of different species of sea 

urchins. In the presence of 40 µM calcium, maximum 22% of the egg MYP (170 kDa) 

was bound to liposomes. This result supports the data published by Perera et al., (2004) 

and Hayley et al. (2006). On the other hand, in the presence of 800 µM calcium, a 

maximum 38% of the coelomic fluid MYP (180 kDa) was bound to liposomes, with an 

apparent dissociation constant (calcium) 290 µM (Fig. 3.18 B). The MYP localized in the 

egg and coelomic fluid were unable to bind with liposome in the absence of calcium, 

which indicated that a calcium responsive structural change is required to have binding 

between the liposome and the MYP localized in both the egg and the coelomic fluid. This 

result clearly indicated that the egg MYP (170 kDa) is more sensitive than the coelomic 

fluid MYP (180 kDa) to calcium. Probably calcium binding mediated a secondary 

structural change of the egg MYP (170 kDa) and the coelomic fluid MYP (180 kDa) 

followed by opening a secondary binding site for the phospholipid head groups. 

Moreover, the egg MYP interacts peripherally with the membrane, thus a calcium 

mediated tertiary structural change was required for the process of membrane 

aggregation.  

 

This idea was supported by our data that indicated higher concentrations of calcium were 

required for a secondary structural change in the coelomic fluid MYP (180 kDa) than the 

egg MYP (170 kDa) to show binding with liposomes. Again, membrane binding may also 

promote rearrangement, dissociation, or conformational changes within many protein 

http://en.wikipedia.org/wiki/Conformational_change


 

139 

structural domains, resulting in an activation of their biological activity. Both the egg 

MYP (170 kDa) and the coelomic fluid MYP (180 kDa) may have a difference in their 

calcium binding affinity, and thus may also have different biological functions.  

 

In general, the net charge of the polar head group seems to be important for recruiting 

proteins to the membrane. However, the molecular interactions of the lipid head group 

with the protein also influence the affinity with which the protein binds with the lipid. In 

our liposome binding study we used brain lipid extract containing 50% (w/w) 

phosphatidyl serine. The egg yolk granule also contains 18.3% phosphatidyl serine (PS). 

Therefore, the difference in calcium induced liposome binding ability may also be 

because the coelomic fluid MYP (180 kDa) has less affinity to bind with the phosphatidyl 

serine (PS) head group than the egg MYP (170 kDa). In addition, as both the 170- and 

180 kDa required different calcium concentrations to bind with liposomes, this also 

suggests that both the proteins can respond to a different spectrum of calcium 

concentration changes induced by different stimuli. 

  

Moreover, in the absence of the egg MYP (240 kDa), liposome aggregation did not occur 

at calcium concentrations below 1.25 mM, while in the presence of the egg MYP (240 

kDa), liposome aggregation occurred at greatly reduced concentrations of calcium (Perera 

et al., 2004; Hayley et al., 2006). The aggregation was mediated by the calcium 

dependent tertiary structural changes of the egg MYP (240 kDa) with an apparent 

dissociation constant of 240 µM.   
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We also determined and compared the effect of calcium on liposome aggregation in the 

presence of the egg (170 kDa) or the coelomic fluid MYP (180 kDa). We found that in 

the absence of calcium, both the egg MYP (170 kDa) and the coelomic fluid MYP (180 

kDa) were not able to aggregate liposomes (Fig. 3.19 A and B, respectively). The initial 

rate of liposome aggregation was exponentially increased with the increase of calcium 

concentrations for both the 170- and 180 kDa species (Fig. 3.20 A and B, respectively). 

Again, the egg MYP (170 kDa) showed more sensitivity to the increasing amount of 

calcium than the coelomic fluid MYP (180 kDa). The initial rate of aggregation was 

higher for the egg MYP (170 kDa) than the coelomic fluid MYP (180 kDa), which 

indicated that the MYP localized in coelomic fluid (180 kDa) required higher 

concentrations of calcium than the MYP localized in egg (170 kDa) to induce the 

conformational change required for membrane-membrane interactions. The coelomic 

fluid MYP may have required more calcium for its translocation to the membrane. It is 

also possible that the coelomic fluid MYP (180 kDa) required higher concentrations of 

calcium to induce tertiary structural change. In our study, we found that in the presence of 

both the egg (170 kDa) and the coelomic fluid MYP (180 kDa) with different 

concentrations of calcium, there is a steady increase in aggregation activity until a plateau 

is reached (Fig. 3.19 A and B, respectively). Again, Kanungo, (1982) showed that in vitro 

coelomocyte clumping in sea stars is mediated by an unknown factor present in the 

coelomic fluid that requires calcium and/or magnesium. The coelomocytes were unable to 

aggregate in the presence of 0.23 mM calcium and 0.50 mM magnesium. In the presence 

of 0.45 mM calcium coelomocytes undergo biphasic aggregation, consisting of a fast 

phase followed by a slow phase. We assume that the unknown factor is the MYP 
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localized in the coelomic fluid (180 kDa), which required high concentrations of calcium 

to induce tertiary structural change to mediate liposome aggregation. According to our 

study, the coelomic fluid MYP (180 kDa) mediated liposome aggregation rate was high at 

a calcium concentration of 500- and 850 µM, which supports the idea of Kanungo (1982) 

(Fig. 3.19 B). The liposome aggregation buffer contains 0.5 mM magnesium. However, 

the egg MYP (240 kDa) does not have any interaction with magnesium (Hayley et al., 

2008). This indicates a need for further comparative analysis of the effect of magnesium 

on egg MYP (170 kDa) and coelomic fluid MYP (180 kDa).  

 

In our study, we also found that both the MYP localized in egg (170 kDa) and coelomic 

fluid (180 kDa) drives two-phase liposome aggregation in a calcium dependent manner. 

In an initial phase occurring during the first 4-minute period after adding protein, the 

liposome aggregation rate is high. this is followed by a slow occurring second phase 

during the last 6-minute period. This is possible because the interactions between the 

MYP localized in the egg (170 kDa) or coelomic fluid (180 kDa) with liposome may 

affect the structural and dynamic properties of the lipid bilayer.  

 

A positive correlation was also observed between the change in tertiary structure of the 

MYP present in egg (170 kDa) and coelomic fluid (180 kDa) with the liposome 

aggregation activity driven by both polypeptides in a calcium dependent manner (Fig. 

3.21 A and B, respectively). This data further confirms that a change in the tertiary 

structure of the egg MYP (170 kDa) and the coelomic fluid (180 kDa) is required to 

mediate membrane-membrane interactions.  
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4.4. Conclusion. 

 

The research carried out by Hayley et al. (2006, 2008) and Perera et al. (2004) clearly 

demonstrated that the major yolk protein present in the egg undergoes a calcium-driven 

structural transition which may mediate membrane-membrane interaction. Again, major 

yolk proteins are also localized in the coelomic fluid of the adult sea urchin, which 

contains coelomocytes. Reports suggested that coelomocytes play an immune effector 

role, such as in the formation of cellular clots, phagocytosis, encapsulation, wound repair, 

etc; all of which require an adhesive activity (Matranga. 1996; Matranga et al., 2005). 

Moreover, sea water is a very hostile environment which contains 10 mM calcium. Injury 

occurring in the plasma membrane is a common event in sea water, and requires resealing 

to maintain cell viability. The influx of 10 mM calcium is more than enough to induce 

secondary and tertiary structural change in both the egg MYP (170 kDa) and coelomic 

fluid MYP (180 kDa), and thus may facilitate membrane-membrane interaction to repair 

the plasma membrane. 

 

We have identified and compared the biochemical characteristics of the major yolk 

proteins present in the egg and coelomic fluid of the Strongylocentrotus droebachiensis. 

The results presented here for the egg MYP (170 kDa) support the findings of Hayley et 

al. (2006, 2008) and Perera et al. (2004). Our results show that the reducible forms of the 

MYP present in the egg (170 kDa) and the coelomic fluid (180 kDa) have the ability to 

bind with calcium. Both the 170 kDa and 180 kDa polypeptides have the ability to bind 

and aggregate liposomes in a calcium-dependent manner, so that they may participate in 
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signaling pathways that regulate key cellular processes. Kanungo (1982) suggested that 

the in vitro coelomocyte aggregation is mediated by an unknown factor in the presence of 

calcium. Coelomocyte clumping is a defense mechanism in sea star and sea urchin during 

stress conditions. We think that the coelomic fluid MYP may also participate in 

coelomocyte aggregation in response to stress conditions and play an immune effector 

role in the sea urchin. However, the 180 kDa protein is more dependent on calcium 

concentrations than the 170 kDa one. Low concentrations of calcium induce a change in 

secondary structure of both the egg MYP (170 kDa) and the coelomic fluid MYP (180 

kDa) that facilitates binding with phospholipids. Both the 170 kDa and 180 kDa 

polypeptides were able to aggregate liposomes in the presence of higher concentrations of 

calcium. Moreover, higher concentrations of calcium can induce a tertiary structural 

change in both the egg MYP (170 kDa) and coelomic fluid MYP (180 kDa) which are 

correlated with the ability to facilitate membrane-membrane interactions. Our study 

suggested that under physiological conditions, the biological functions of both the 170 

kDa and 180 kDa can be regulated by calcium. We suggest that, under stress conditions, 

the coelomic fluid MYP may incorporate with the coelomocyte membrane in a calcium-

dependent manner and plays an immune effector role by mediating membrane-membrane 

interactions. 

 

In summary, we can conclude that the coelomic fluid MYP and the egg MYP are different 

from each other regarding their affinity for lipids and calcium. Both of them may be 

involved in a wide range of intra- and extracellular biological processes for example, 
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membrane trafficking, membrane-cytoskeleton interaction, ion channel activity and 

regulation, as well as antiinflammatory and anticoagulant activities.  

 

4.5. Future directions. 

 

In our observation, both the egg MYP (170 kDa) and coelomic fluid MYP (180 kDa) bind 

and aggregate liposomes in a calcium-dependent manner. Both the proteins may 

participate in calcium-regulated cell adhesions, plasma membrane repair, endocytosis, 

cell signaling, etc. The egg MYP (170 kDa) is peripherally located with the plasma 

membrane, and thus may also participate in membrane fusion events, export pathways, 

vesicle trafficking and ion channel formation. Both the egg MYP (170 kDa) and coelomic 

fluid MYP (180 kDa) undergo a conformational change during membrane-membrane 

interactions in a calcium-dependent manner. There may be two possible mechanisms by 

which the MYP present in the egg and coelomic fluid can induce membrane-membrane 

interactions: A) both the polypeptides may generate a second binding site for the protein 

of the opposing membrane, thus mediating protein-protein interaction, and allowing the 

opposing membranes to interact; or B) both the polypeptides may expose a second 

membrane binding site in a calcium-dependent manner.  Future experiments can be 

designed to investigate the mechanism of MYP-mediated membrane-membrane 

interaction. We can utilize cryo-electron microscopy of aggregated lipid vesicles in the 

presence of the egg MYP or the coelomic fluid MYP, both in the presence and in the 

absence of calcium. 
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Our study showed that the initial rate of liposome aggregation is higher in the egg MYP 

than the coelomic fluid MYP in a calcium-dependent manner. Again phosphorylation and 

proteolysis negatively regulate vesicular aggregation in annexin family proteins (Kaetzel 

et al., 2001). In the future we can investigate the effect of phsophorylation and proteolysis 

on biological functions of the MYP localized in the egg and coelomic fluid. We can 

induce phosphorylation in both the egg MYP and coelomic fluid MYP by using protein 

kinase C and then investigate their regulation on membrane-membrane interactions. We 

can also compare the trypsin digestion patterns of free and vesicle-bound proteins 

between the egg MYP and coelomic fluid MYP both in the absence and in the presence of 

calcium. These will also further prove that both the proteins undergo conformational 

changes in the course of vesicle binding and aggregation. 

 

In our study, we found that the coelomic fluid MYP is more dependent on calcium for 

liposome binding and aggregation than the egg MYP. The phospholipid composition of 

the egg yolk granule may be different than the coelomocytes. To determine whether 

phsopholipid composition had an effect on aggregation, vesicles composed of different 

phospholipids, such as vesicles containing brain or synthetic PS, or 1,2-di-(9Z-

octadecenoyl)-sn-glycero-3-phosphate (DOPA) or 1,2-dioleoyl-sn-glycero-3-[phospho-

rac-(1-glycerol)] (DOPG), can be incubated with both the egg MYP and the coelomic 

fluid MYP and assayed for aggregation. 

 

Our data showed that the coelomic fluid MYP (180 kDa) required higher concentrations 

of calcium to induce secondary and tertiary structural change to facilitate liposome 
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binding and aggregation. We can do a comparative analysis between the egg MYP and 

coelomic fluid MYP by quantifying the calcium binding sites on the MYP present in the 

egg and in the coelomic fluid. The egg MYP also binds with magnesium, barium, 

cadmium and manganese as well as iron in vitro (Brooks and Wessel, 2002; Hayley et al., 

2008). We can also perform endogenous tryptophan fluorescence study with the coelomic 

fluid MYP incubated with magnesium, barium, cadmium and manganese. 

 

Our data suggested that the coelomic fluid MYP (180 kDa) undergoes little or no change 

in the presence of 200 µM calcium and it required higher concentrations of calcium than 

the egg MYP (170 kDa) for tertiary structural change, liposome binding and vesicular 

aggregation. To determine the calcium concentration dependency effect on the secondary 

structural change of both the egg MYP (170 kDa) and the coelomoic fluid MYP (180 

kDa), and to correlate between the secondary structural change and liposome binding, we 

can perform CD analysis by using different concentrations of calcium. 

 

In addition, we know that the near UV region (320-260 nm) reflects the environments of 

the aromatic side chains and, thus gives information about the tertiary structure of the 

protein.  Circular dichroism spectroscopy can be utilized to determine the tertiary 

conformational changes of the egg MYP and coelomic fluid MYP in the presence of 

higher concentrations of calcium than are required for secondary structural changes. In 

addition, our data suggested that the 240-, 250- and 180 kDa species induce changes in 

shape in the presence of Triton X-100, which may involve a change in their secondary 

and/or tertiary structures. Circular dichrosim can be performed to probe the 
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conformational changes of the egg MYP and coelomic fluid MYP in the presence of 

Triton X-100.  

 

Nuclear magnetic resonance studies can be used to determine the site of interaction of the 

coelomic fluid MYP with the coelomocyte membrane. As each of the MYP required 

different amounts of calcium for their biological functions, this indicated that both the 

polypeptides may act as an intracellular calcium sensor with a regulatory role to other 

signaling pathways.  

 

To determine the ability of calcium to modulate the stability of the egg MYP (reducible 

and non-reducible form), we can perform a thermal denaturation study. We can then 

compare the thermal stability of both the egg MYP (both reducible and non-reducible 

forms) and the coelomic fluid MYP (both reducible and non-reducible forms) in the 

presence and absence of calcium. 

 

Plasma membrane disruption is a common form of cell injury, which occurs due to stress. 

As both the MYP are able to bind and aggregate liposomes, both of the polypeptides may 

also play an important role in membrane repair. A redistribution of the egg MYP and 

coelomic fluid MYP may also occur at the disruption site. Therefore, in future to confirm 

the biological role of the egg MYP and the coelomic fluid MYP, we can utilize an in vivo 

comparative analysis by using live embryos, coelomocytes, or cultured cells, which 

express egg MYP and coelomic fluid MYP. Perera et al. (2004) showed that anti-egg 

MYP antibodies can inhibit phospholipid binding and vesicular aggregation. We can use 
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this anti-egg MYP or anti-coelomic fluid MYP antibody in in vivo assays by using 

wounded or ruptured cells to observe their effect on the cells. We can also localize the 

MYP presence on the wounded site by immunostaining. 

  

Coelomocytes play an immune effector role in the sea urchin. There is a possibility that 

the coelomic fluid MYP may also modulate anti-inflammatory responses induced by 

lipopolysaccharide. In future, we can employ an in vivo assay by using cultured 

coelomocytes to discover how coelomic fluid MYP modulates the MAPK/ERK 

pathways.  
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