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Abstract

The demand of large diameter pipes is significant. In the offshore industry, seamless
and UOE (U-ing, O-ing, and Expanding) pipes are used commonly, but the produc-
tion costs of these kind of pipes is not low. The spiral welded pipe (SWP) is considered
the answer to this challenge. The SWP has a low cost of production and yet it can
be said that the SWP is as good as the UOE pipe. However, some opinions give bad
impressions about a SWP. Later, studies show that weaknesses found with SWPs are
due to poor manufacturing processes.

This work is developing a model to stimulate SWP strength with a finite element
analysis tool called ABAQUS. The pipe is loaded by internal pressure and bending
moment and there is imperfection on the pipe geometry. Therefore, local buckling is
expected. The model is built mainly by a Python script. This work emphasizes the
use of scripting for simulating a model, but some people may be not familiar with
Python. Therefore, other programs (e.g. FORTRAN and GNUPLOT) are involved.

There are two main models for this work. The first model is a UOE pipe; it is called
the Benchmark Pipe (BMP) model, this model of this pipe has been calibrated and
verified against large-scale physical tests, and the second model is for the SWP model.
Referring to the tested model, confidence in the SWP modelling procedures can be
established. Both models have the same dimensions, the same material properties,
and are isotopic. In this work, the SWPs with different setting are also examined.

The main conclusions from this study include:

1. The SWP modelling procedures provided consistent results with the BMP model
in terms of displacement response, moment-curvature behaviour and local de-
formation mechanisms.

2. The use of scripting provide an effective tool for the pre- and post-processing of
the simulation. The main pre-processing attributes included generation of the
pipe diameter, wall thickness, pitch, and initial geometric imperfections. The
post-processing script facilitates the analysis by transforming field variables such
as displacement, rotation and section forces into section moment, curvature,
deflection and axial strain.
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3. The use of partitioning was found to have detrimental effects on the pipe me-
chanical response that resulted in non-intuitive behaviour. This further supports
the need for scripting tools in the simulation and analysis.
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Chapter 1

Introduction

Demand for crude oil and gas is still high. Exploration and production of oil and gas
will impact on increasing demand for pipes (seamless, UOE, or spiral welded pipe).
As reported by TWI (The Welding Institute), spiral welded pipe consumes less cost
than UOE, estimated at 10-15% cheaper [22]. This can boost to increase spiral welded

pipe production.

This work is modeling local buckling of a spiral welded pipe. The problem is analyzed
by a software which is based on the finite element method. The modeling is done by
scripting. The scripting will prepare the input for the software and harvesting the

output from the software.

This chapter is divided into two sections. The first section is explaining the com-
ponents of the model and the second section is describing aim and content of this

work.



Production Process of Spirally Welded Pipes
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Figure 1.1: Scheme (a) and production process of SWPs (b), from [24] and [1] respec-
tively.

1.1 Background

This section will describe briefly the main factors of this work; the pipe, the software,

and the scripting.

1.1.1 The pipe

The transport of oil and gas over long distances is driving the need for producing
large diameter pipe that is cost-competitive with mechanical performance equal with
other pipe technologies (e.g. UOE). These pipes are manufactured in two ways, one
is the UOE process and the other is the spirally welded process. In the UOE process,
a plate is bent in U-shape first, then it is formed like O-shape, and finally it is welded

longitudinally and expanded to get the correct roundness [9].



The other process is forming the pipe by rolling the plate and welding it spirally, as
shown on Figure 1.1. This process gives a lot of advantages. These are the advantages
of the SWP as stated by reference [21]; the spiral welded pipes are better weld abil-
ity, fewer field welds, smaller tolerances, higher strength steels, and inherent safety
margins. However, some opinions describe that the spiral welded pipes are not as
strong as UOE pipes. This is not 100% true. The weakness of SWP is not because of
the spiral shape, but due to bad manufacturing. Study from [24] concludes that the
manufacturing process must be considered to define the axial strain capacity of the

spiral welded pipe.

As stated on reference [21], the forming and welding of spiral welded pipes demands
good technology of welding, only internal and external submerged arc welding that
gives top quality product. Other studies ([5],[11],[28]) also found that the SWP is as
good as the UOE. The spiral seam impacts none to the pipe performance. Figure 1.2
depicts an example of the internal and external submerged arc welding. Reference

[11] also concludes that spiral welded pipes cost less then UOE pipes.

The manufacturing of spiral welded pipes can be dated back in 1880s. That time,
the machine (see Figure 1.3) could produce pipes in sizes 4-30 inches [10]. Today,
manufacturers can make the pipes with diameters of up to 60 inches and up to 80 feet
in length. Driven by demand, especially in energy sectors, global market for spiral
welded pipes and tubes is projected to reach 24.6 million tons by 2018 as predicted
by Global Industry Analysts [19].

This work is intended to examine the mechanical performance of spiral welded pipe

strength in comparison with UOE pipe. The pipe is internally pressurized and bent



Inside weld: tandem arc welding
1/ DC-torch for deep-down weld
2/ AC-torch for filling weld

3/ AC-torch for finishing weld

Outside weld: tandem arc welding
1/ DC-torch for deep-down weld
2/ AC-torch for finishing weld

Figure 1.2: The welding process [24].

Figure 1.3: Machine for the manufacture of spirally welded tubing [10].



by bending moments on its ends. Bending load causes the pipe cross section to oval-
ize. Study of [13] shows that rigidity is reduced by ovalization. However, the internal
pressure causes the cross section to expand. Therefore the internal pressure reduces
the ovalization. Work of [15] shows that the internal pressure makes the pipe 6x
stronger than the pipe without internal pressure. This pressure delays the onset of

ovalization.

Beside the loads, the strength of the pipe is also influenced by plastic characteristics
of the material as shown by [12], [16], and [24]. Further studies also found another
factor that influenced the pipe strength which is the imperfection. The imperfections
are changes in diameter (ovality) and wall thickness due to the manufacturing pro-
cess. For the girth weld there are weld process imperfections including radial offset
misalignment and differences in pipe diameter of adjoining pipe. The UOE has a long
seam weld. The spiral pipe has a continuous spiral weld. Dents and bulges are more
damage characteristics. Studies of [12], [16], and [17] show that local imperfections
cause the bending strain capacity of the pipe reduce significantly. Recent studies of

6], [7], [8], and [23] also show that the imperfection influences the strain capacity.

For this work, the imperfection will be emphasized. The model, built by scripting
and evaluated by Abaqus, will examine local buckling of a pipe due to loads and the

imperfection.

1.1.2 The software

Finite element analysis will be used to simulate the model. There are many software
base on the finite element method. Abaqus 6.12 is chosen for this work. Abaqus is

a sophisticated simulation program. It can be used for variety problems in engineer-
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Figure 1.4: Abaqus products [2].

ing; not just for structural problem, but also for heat transfer, mass transfer, fluid
dynamics, electrical, magnetism, acoustics, etc. Abaqus can also handle linear and

nonlinear problems.

For further detail about Abaqus and its ability can be on reference [2]. Figure 1.4
shows that Abaqus can interact with another software. Input can be created by
itself or imported from another software, and then the result also can be exported to

another software.

As shown on Figure 1.4 and also stated on reference [26], the Abaqus consists of
four core software products; Abaqus/CAE, Abaqus/Standard, Abaqus/Explicit, and

Abaqus/CFD. A brief introduction about these products is described bellow:

e Abaqus/CAE
CAE stands for or ‘Complete Abaqus Environment. 1t is like a moderator. The

CAE creates the input file or imports it from another software, then it calls the



engine to compute the simulation, finally the CAE will show the result on the

visualization module or export it to another software.

e Abaqus/Standard
A general-purpose finite element analysis tool that uses implicit integration

scheme (traditional).

e Abaqus/Explicit
A special-purpose finite element analysis tool that uses explicit integration

scheme to solve highly nonlinear problems.

e Abaqus/CFD
CFD stands for ‘Computational Fluid Dynamics’. It is a finite element analysis

tool that provides advanced computational fluid dynamics capabilities.

Though Abaqus is complex, its work can be divided into three parts; creating input,
evaluating the input , and then the last one is harvesting the output. The flow cart is
shown on Figure 1.5. Beside knowing the stages of Abaqus process, it will be better if
user also knows three programming languages required by Abaqus, which are Fortran,
C, and Python. Users can develop their subroutines with Fortran, or write output

database with C, or do scripting with Python.

This work will emphasize the ability of Python working on modeling with Abaqus.
It will be shown here, knowing Python is enough to do a simulation. Python script
is like Abaqus/CAE that moderates the whole process, from preparing the input to

harvesting the output.
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Figure 1.5: Abaqus stages [2].

1.1.3 The scripting

Modern computation is not just computing numbers but also dealing with manag-
ing data. Reference [14] defines traditional programming, a program for computing
numbers only, as system programmaing. This program usually uses languages such as
Fortran, Pascal, C, C++, etc. The other program which is also dealing with managing
data and tools is called scripting. This program usually is written in Python, Ruby,

Perl, etc.

As mentioned in the previous section, Abaqus needs Fortran to do the computation
and C to write the output. To manage the data and these tools, Abaqus needs Python.
Using the Python scripting language, the input deck, job submission, and analysis of
export data can be conducted. This whole process, from beginning to the end, can

be done by scripting. The system programming only does the calculation.

Abaqus uses Python as the scripting language. Following is a brief introduction to

Python, where more detailed information can be found in online resources or books



(for example reference [18]). Online resources [25] and [27] are good sources to start
with. In 1990s, Guido Van Rossum created Python. It is named after a comedy
program in television called Monty Python’s Flying Circus. The program is an open-
source programming, structured, and high-level language. It can be used for wide
tasks; handling data (numeric or non-numeric), handling tools, and of course the
computation. Beside working with different tools, Python can work with different
platforms too, such as Microsoft Windows, Macintosh, and Linux. It makes Python

accessible from any operating system.

In the following paragraphs a brief introduction to key elements of the Python lan-
guage is explored. The whitespace or indentation is important in Python, as it defines
a block. The indention shows where blocks start and finish. Other program, like C
language, uses block delimiters, for example a pair of brackets ‘{ }’. Next, Python

usually handle data in three forms; list, tuple, and dictionary, as explained below

e List
It is a list of values, it may be numeric non non-numeric data. A list is mutable,
elements of a list can be changed by adding or deleting the elements. A list is

defined using square brackets ‘[ ]’ For example:

>>> mylist = [‘book’, ‘pipe’, 3.14]

This list contains strings ‘book’ and ‘pipe’ as well as the number 3.14. Items in a

list are accessed by their index, the index starts at zero. See following example:

>>> mylist =[‘book’, ‘pipe’, 3.14]
>>> mylist [0]

‘book’

>>> mylist[1]

‘pipe’
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>>> mylist[2]
3.14

Tuple

Tuple is similar to the list, except tuple is immutable, the set cannot be
changed. You can not add or delete item of a tuple. Once you have set a
tuple, there is no way to change it whatsoever: you cannot add, change, or
remove elements of a tuple. A tuple is defined using parentheses ‘( )’, but for a

simple tuple, it can be written by commas. For example:

>>> mytuple = ‘force’, 180, ‘stress’

However, it is often necessary to use parentheses to distinguish between different

tuples

>>> mytuple = (‘force’, 180, (‘stress’, ‘weld’))
>>> mytuple

(‘force’, 180, (‘stress’, ‘weld’))
>>> mytuple[0]

‘force’

>>> mytuple[1]

180

>>> mytuple[2]

(‘stress’, ‘young’)

>>> mytuple[2] [0]

‘stress’

>>> mytuple[2] [1]

‘weld’

Dictionary

Dictionary is like a list, it is mutable. However, the elements in a dictionary
are not bound to index. The element is accessed using its key. Every element
in a dictionary has two parts: a key, and a value. Calling a key of a dictionary

gives its value. Dictionary is stated by curly braces ‘{ }’, each element consists
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of three parts; the first part is its key, then a colon, and then the last part is its

value. For example

>>> mydictio = {‘material’: ‘steel’, ‘force’:10, ‘type’:‘UOE’}
>>> mydictio

{‘force’:10, ‘material’: ‘steel’, ‘type’:‘UCE’}

>>> mydictio[‘material’]

‘steel’

>>> mydictio[‘type’]

‘UOE’

>>> mydictio[‘force’]

10

Following will be shown an example of an output data from Abaqus, odb.rootAssembly.

elementSets[‘SET-MID’], that is arranged in lists, tuples, and dictionaries.

({’elements’: ([’0dbMeshElement object’, ’0dbMeshElement object’,
’0OdbMeshElement object’, ’0OdbMeshElement object’,

’OdbMeshElement object’, ’0dbMeshElement object’],),

’faces’: None, ’instances’: (({’analyticSurface’: None, ’beamOrientations’:
’BeamOrientationArray object’, ’elementSets’: ’Repository object’,
’elements’: ’0OdbMeshElementArray object’, ’embeddedSpace’: THREE_D,
’materialOrientations’: ’MaterialOrientationArray object’, ’name’: ’PIPE-1’,
’nodeSets’: ’Repository object’, ’nodes’: ’0dbMeshNodeArray object’,
’rebarOrientations’: ’RebarOrientationArray object’, ’rigidBodies’:
’0dbRigidBodyArray object’, ’sectionAssignments’: ’SectionAssignmentArray
object’, ’surfaces’: ’Repository object’, ’type’: DEFORMABLE BODY}),),
’isInternal’: False, ’name’: ’SET-MID’, ’nodes’: None})

Reference [20] is a good book to start to do scripting for Abaqus. The book contains

a lot of examples of scripting.
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1.2 Objective and Outline

The objective of this work is creating a model to simulate a spiral welded pipe under
pressure and bending moment loads simultaneously. The model is built by scripting
and then it is executed in Abaqus. Results of this model are compared to the results

from a bench mark model.

A brief outline of the thesis content is presented in the following paragraphs. Chapter
1 contains the introduction of the spiral welded pipe, the software, and the program.
Detail in creating the model and its result will be discussed in the next chapters.
Chapter 2 explores designing the model. It starts with presenting the element of the
model, then it discusses the imperfection, the flow chart, and then it is closed by

testing the model.

Further discussion about the scripting is found on Chapter 3. This chapter contains
three sections; the first section is about scripting for the bench mark model, the
second section is the scripting for the spiral welded pipe, and the last section is
discussing scripting for harvesting the output. Results and discussion will be presented
on Chapter 4. And finally, conclusions and recommendations are shown on the last

chapter, Chapter 5.



Chapter 2

Designing the Model

This chapter discusses the procedure to build the model. The model is a program
to simulate a pipe under internal pressure and bending moment load simultaneously.
The model is a finite element analysis that runs in Abaqus and it is developed using
scripting. Before discussing the program, basic components of the model, which are
the element and geometry imperfection, are explained. The programs, the inputs,
and the outputs will be shown in the appendices. These appendices are suitable for
the models discussed here, another model with different dimensions and grid will have

different number of nodes, but the flowchart does not change.

2.1 The Element of the Model

The model is built using elements. The family of element is shell element because it
is assumed that the length of the pipe is significantly larger than its thickness and
the stress through thickness is negligible. There are two types of shell element, i.e.

conventional shell and continuum shell, as depicted on Figure 2.1.

Further detail about this element can be found at Abaqus User’s Manual [3]. In this

13
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- element thickness is defined by nodal geometry.

Figure 2.1: Two types of the shell element [3].
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work, the model is built using conventional shells. The element can be summarized

as following,

e Degrees of freedom (dof)

Six-dof is used, they are referred to as follows:

1) z-displacement
2) y-displacement
3

z-displacement

5) Rotation about the y-axis, in radians

(1)
(2)
(3)
(4) Rotation about the z-axis, in radians
(5)
(6)

6) Rotation about the z-axis, in radians.

e Number of nodes

The element is linear element or first-order element, and it is a triangle shape,

so number of nodes will be three. It is called S3.
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Co g
dw dw Voo |dx 1=
dx Neutral o A
S axis =N Neutral
(a) / (b) \ | . axis
M
Transverse W Transverse
- T section - section
x 7 x |17
Deformation of cross-section Deformation of cross-section

Figure 2.2: Behavior of transverse shell sections in (a) thin shells and (b) thick shells
3]

e Formulation
Shell element has three classes; general-purpose shell, thin shell, and thick shell.
The thin shell analysis neglects the effects of transverse shear deformation, but
the thick shell analysis does not neglect those effects. The model developed in

this study uses thin shell analysis.

e Integration
Abaqus uses Gaussian quadrature to evaluates the material response at each
integration point in each element. There are two methods of the integration;
full and reduced integration [3]. The full integration refers to the number of
Gauss points required to integrate the polynomial terms in an element’s stiffness
matrix exactly, for example a linear quadrilateral element uses two integration

points in each direction.

2.2 The Imperfection of the Model

The model simulates a pipe under internal pressure and bending moment. Local

buckling is expected to happen. As stated in the Abaqus manual, the local buckling
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4 3 4 3
x 3 % 4
w ]
= | x 2
1 2 1 2
Full integration rReduced integration

Figure 2.3: Full and reduced integration of a S4 element [3].

creates a discontinuous response (bifurcation) that cannot be analyzed directly. To
simulate this problem, we have to change it into a problem with continuous response,
which can be done by introducing an imperfection pattern in the geometry of the
model so that there is some responses in the buckling mode before critical load is

reached [3].

There are three ways defining imperfection in Abaqus:

1. linear superposition of buckling eigenmodes
2. from the displacements of a static analysis

3. by specifying the node number and imperfection values (Az, Ay, Az) directly.

The third method is used in this model. For example, there is imperfection on the
half length of the pipe with a wavy shape, as depicted on Figure 2.4 (this is only
an example of the imperfection, the model uses different shape of imperfection but
similar to this wavy shape), then to get the imperfection on the model, the input file
of the model is modified by inserting a line code that includes an imperfection file.
Detail about implementing the imperfection on the model is discussed in the next

section.
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Figure 2.4: The imperfection.

2.3 The Programming of the Model

Simulating model is done in three stages, as shown on Figure 2.5. First is ‘pre-
processing’ which is preparing the input, then is ‘processing’ which is compiling and
executing the program, the last stage is ‘post-processing’ which is working with the

output.

A lot of efforts are done in preparing the input, because the wrong input will give the
wrong result and just a waste of effort. Following subsection will discuss each stage
further.

Pre- _ . Post-
Processing

Processing Processing

Figure 2.5: Flow chart of running the model.

2.3.1 Pre-processing

The pre-processing starts with creating a model; it can be done by Abaqus/CAE or

by running a Python script. In this work, a model is created by Python script, it is



Create a model with
Python or CAE,

Write INP file,

(draft)

Create file:

(copy-paste all nodes
from INP file)

Compile
for creating
IMPERFECTION

:
T

Edit the INP file:

18

Submit job,

Get the complete

element set. Run: 1

(post-processing)

Figure 2.6: Pre-Processing.

named XXX_model.py' (see Appendix Al and A2). The script is executed to build the

model then the job is submitted. However, this is not the complete model yet. The

imperfection needs to be involved in the model. Also, it is found that some elements

are missing from the requested set. Most output are property of the element, therefore

the lack of element will give error outputs. Figure 2.6 shows the flow chart of the

pre-processing. Further explanation will be given in the next section.

There are two things that must be done in the pre-processing stage, i.e.

e inserting the imperfection, and

I1XXX is either BMP or SWP
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e cditing the requested element set.

We start with inserting the imperfection. Firstly, we build a model from XXX_model. py,
then the model produces an input file called XXX_model. inp, it is done by clicking
‘Write Input’ button in the job module of Abaqus/CAE. Then create a file called
XXX_input.dat using a text editor by copied-pasted the nodes, this file contains all
nodes of the model. An example of this file is shown on Appendix A3. These nodes

and their coordinates represent ‘prefect’ geometry of the model.

A FORTRAN program called createIMP.f (see Appendix A4) is used to create the
imperfection. This program needs the XXX_input .dat and will give the XXX_imper.dat
as the result, as shown on Appendix A5. This file will be called by XXX_model.inp

to generate the imperfection.

After the imperfection is created, the next step is editing the element set. It is found
that some elements on the requested set are missing, especially if triangle elements are
used. It might be a bug of the Abaqus v.12. Therefore, another program is developed
to fix this program. A Python script called The_MiddElm.py (see Appendix A6) will
search the missing elements and add them to the requested set. This program reads
data from an odb file. To get this file, XXX _model.odb, we click ‘Submit’ button in
the job manager of Abaqus/CAE. After one step of calculation is done, we kill this
job because at this stage we just need the information about nodes and their element
set. The complete computation will be conducted after we fix the missing elements

using the nodes and the element set that we got from the first run.

The The_MiddElm.py will produce complete element set plus additional element set

(xxx_mymid.dat) and a library of requested node set (xxx_attelib.py), as shown
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on Appendix A7 and A8 respectively. However, the xxx_attelib.py will be needed
for post-processing. Running The MiddElm.py takes times when number of node is
huge, for example reading 300,000s nodes needs almost 1 hour. Visualizations of this
work are depicted on the following figures; Figure 2.7a shows some elements are not
included in the requested set, and Figure 2.7b shows edited element set, the complete

element set.

Now, with the imperfection file and the new element set, the XXX_model. inp is edited.
After deleting brackets in file xxx_mymid.dat, we copy-paste this data into element
set ‘SET-MID’ therefore the XXX_model.inp will have the complete element set of

‘SET-MID’, see following example:

*Elset, elset=Set-MID, instance=Pipe-1
<copy-paste new numbers here, old numbers are removed>
*Nset, nset=Set-Tpointl, instance=Pipe-1

To include the imperfection in the XXX_model. inp, add this line between ‘End As-
sembly” and ‘MATERIALS’ as follow:

*End Assembly
*ok

* %

*IMPERFECTION, INPUT=XXX_imper.dat
*%

*% MATERIALS
Kk

*Material, name=Material-Pipe

T3 kko

where represents key word and represents comment, ‘XXX’ is replaced by

‘BMP’ or ‘SWP".

Now the XXX_model.inp is ready for simulation, the element set is correct and the

imperfection is included. Appendix A9 through A12 show difference between before
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Figure 2.7: The element set.
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and after editing of the input file, XXX_model. inp.

2.3.2 Processing

This part is the easiest task in this simulation. First, we put files XXX_model.inp
and XXX_imper.dat in the same folder, then we run this model in a command
prompt, by typingTEMP: ‘abaqus job=XXX_ model interactive’ or ‘abaqus
job=XXX_ model cpus=2’, where option ‘interactive’ shows feedback of the pro-
cess and ‘cpus=2’ defines number of CPU required. The Abaqus/CAE cannot handle
the ‘IMPERFECTION’, therefore a command prompt is needed.

2.3.3 Post-processing

During computation Abaqus is writing reports in text format and output in binary
format. Abaqus/CAE will show the binary format in readable format by human,
in form of graphs or reports. It is easy to get 3D graphs, but often 2D graphs are
requested. Abaqus/CAE also provide the mechanism to generate 2D plots, but it

needs additional effort, and it will be tedious job when dealing with a lot of numbers.

On this step (post-processing), there will be two things to be done: examining the
pipe deflection and computing other parameters. Python scripts are created to read
the binary output file (XXX_model.odb), the readers are called Coor_Qut.py (see Ap-
pendix A13-1) and NodeField Out.py (see Appendix A13-2). The first reader finds
the deflection and the second reader finds other parameters; i.e. curvature, strain, and
moment. The flowchart of the readers are shown on Figure 2.8. However, only reader
two will be discussed further. The Appendix does not include xxx_coorfield.out

nor coor_plot.plt file.
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Figure 2.8: Post-Processing.

As shown in Figure 2.8b, the reader needs another file called xxx_attelib.py beside
the odb file. The xxx_attelib.py contains list of requested nodes and the elements
that attach to those nodes. Most of the variable output belongs to the element, for
example the stress (S). Therefore, to find stress on a node, we have to extrapolate

stresses on all elements that attach to that node.

The NodeField_Out.py takes data from the output file, then does necessary computa-
tions, and finally prints the required outputs on ASCII file format, named xxx_node-
field.out (see Appendix Al4). Now the final output is suitable for plotting 2D,
because data are presented in columns. Using GNUPLOT script, field_plot.plt

(see Appendix A15), we make 2D graphs.

2.4 Testing the Model

There are two tests which will be conducted on this work, i.e. numerical test and

parameter test. The numerical test relates to the software and the parameter test



24

relates to the pipe.

2.4.1 Numerical test

Creating set on the model can be very helpful for harvesting output from the compu-
tation. A set on certain location usually is created before meshing. This is done by
partition. However, creating partition seems to change the stiffness of the pipe numer-
ically. Therefore, we are going to make a numerical test, a model without partition is
compared to a model with partition. To have a set on a model without partition, we
are going to use the ‘bounding box’ module. The module will collect any node inside

the box. This module will be discussed further in Chapter 3.

Figure 2.9 shows creating a set without partition with the bounding box module and
Figure 2.10 depicts a model with partition. The bounding box makes the model
simpler because there are no partitions, but sometimes the bounding box can not
capture the wanted location, especially when we have free mesh and it is not a simple

geometry.

[

Bounsing B =B

Figure 2.9: Creating a set using a bounding box.

2.4.2 Parameter test

This is not a laboratory test, but still using the software to simulate the pipe under

certain conditions. This test relates to the geometry and load applied to the pipe.
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(a) Seamless Pipe

(b) Spiral Welded Pipe

Figure 2.10: Creating a set using partitions.

There are four tests will be conducted here, they are called:

e Material Test
e Ovality Test
e Pitch Test

e Internal Load Test

First, we are going the see the material influence on the pipe; we will run a model

with uniform material and a model with two kind of material. The material for weld-
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ing has yield stress 1.1x than the base material properties of the pipe. Figure 2.11
describes the materials used in this model. Next, we are going the see the influence of
the cross section shape of the pipe. There are three shapes; ellipse horizontally, circle,

and ellipse vertically, as sketched on Figure 2.12. Figure 2.13 shows 3D of those pipes.

The third test is to see the influence of the pitch angle of the spiral welded pipe. We
are going to have 40° and 60° pitch angle respectively, as depicted on Figure 2.14. The
last test, we are going to have two internal load conditions; the pipe is pressurized

and the pipe with zero pressure.
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Figure 2.11: Material property of the weld and the shell.



Figure 2.12: Three different shape of the pipe cross section.

(a) Horizontally ellipse

(b) Vertically ellipse

Figure 2.13: Elliptical pipes.
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(a) pitch 40°

(b) pitch 60°

Figure 2.14: SWPs with different pitch.
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Chapter 3

Detail Model and Python Scripting

The model and detail Python scripting will be discussed in this chapter. Mainly, there
are two models are built: one is the benchmark, a UOE pipe, it is called the BMP
(Benchmark Pipe) model, and the other is the spiral welded pipe or the SWP model.
The BMP model is built to imitate a model done by A Fatemi and S Kenny [6], let’s

call this model the ‘F&K model’.

In this work, the units are not mentioned, because this work is emphasizing on the
programming point of view only. The aim is to work on software with scripting;
create a model, run it, and collect the output. The calibration dataset was from a
proprietary study that has been reported in the open literature [6] that was calibrated
and verified against a physical dataset. This proprietary information was used to cal-
ibrate the numerical modelling procedures in the current study in order to provide

confidence for extending the algorithm to the local buckling response of spiral pipe.

We will simulate a pipe hold by 0.4m collars on both ends. The pipe is pressurized

29
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Figure 3.1: Dimensions and loads of the pipe.

inside and bent by moments. Detail dimensions and properties' can be seen on Figure
3.1 and Table 3.1 respectively. This work is dealing with local buckling which is a
nonlinear problem, therefore we also need plastic property of the pipe, as shown on

Table 3.2.

Table 3.1: Pipe properties and loads.

Dimensions

Length 11.0
Radius 0.44577
Thickness 0.01143
Properties

Young modulus 2.05el1
Poisson ratio 0.3
Loads

Internal pressure | 1.1e7
Bending moment | 1.4e7

There are three main scripting will be discussed on the following sections. Two script-

ing are about creating the pipes and one scripting is about reading the output file.

!The internal pressure is 11.3MPa.
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3.1 Scripting for the BMP

The scripting can be found on Appendix Al. This section is discussing this script

thoroughly. Abaqus works with modules; in this work, we are using eight modules.

Before entering the module, we do importing objects and defining parameters, as

following example

from part import *

# Dimmesions required
pipelength = 11.0

# Reference points
zp3 = pipelLength/2.

Now, we are entering to see on each module.

e MODULE 1: PART
The name of the model is defined and the pipe is created by extruding a circle a

certain length. The circle is made by defining its center and its radius.

e MODULE 2: PROPERTY
Firstly, the material properties (density, Young modulus, Poisson ratio, plasticity)
are defined. Then, we create a section and finally assign the property to that section.

Before we go to the next section, we have to take care of the orientation.

As explained on [3], default 1-axis of local shell material coincides with X-axis of

global axis (see Figure 3.2). This will give incorrect results if there are some elements
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n 2
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(a) Default local shell material directions.

(b) Default local material 1-direction in a cylinder.

Figure 3.2: The direction of stress and the local axis [3].

on the pipe that their plain are perpendicular to global X-axis. Therefore, we have to
make sure that there is no element which its normal (n) will be parallel to the global
X-axis. It can be done either by rotating the model so its main axis is parallel to global
X-axis or by defining orientation on the model. In this work, we define orientation
is cylindrical, where Z-axis is main axis of the pipe, X-axis relates to radial direction
of the pipe, as shown on Figure 3.3. The different results between wrong and correct
orientation of a model are shown on Figure 3.4. This figure shows pipes with different
orientation. Both pipes have fixed diameter on the ends. The pipes are pressurized
with the same load. However, the result of the hoop stress on the visualization shows
different pattern. The wrong orientation gives incorrect contour on the middle, broken
ring (see Figure 3.4a) and the correct one gives correct contour, continued ring (Figure

3.4b). The pipe should have uniform hoop stress along its circumference.

e MODULE 3: ASSEMBLY

For this model, we assembly nothing. However, on field the pipe is hold by collars on
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Figure 3.3: Defined local axis.

its ends, therefore we will create collars on the model too. Collar is built by defining
position and the length of collar, then the partition is created, so there will be two

parts, the pipe and the collar on the same surface.

e MODULE 4: STEP

The model is for simulating a nonlinear problem, so we have to use Riks step method
and nonlinear geometry function must be turned on. Not all output variables will
be written on the output file, some variables must be requested. This module is the
place to request the output, Field or History output, but because we request output
on certain set, then we will define Field or History output after the set is ready. We

will do it on another module.

e MODULE 5: INTERACTION
In this module, we are creating a coupling. The collar is stated as a rigid body that
has a reference point. The bending moment and boundary conditions are acting on

these reference points.

e MODULE 6: LOAD

In this module, loads and boundary conditions are defined. Care must be taken for
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applying pressure on the surface. The pressure load must hit all surfaces. For bending
moment, direction and its axis are the important factors to mimic a real moment load.
Together with the boundary conditions, the moments are applied on the reference
points. There are two boundary conditions, one is set ul = 0.0,u2 = 0.0,u3 = 0.0,

and the other is ul = 0.0, u2 = 0.0, u3 # 0.0.

e MODULE 7: MESH
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There are three parts in this module, i.e. creating set for output, meshing the model,

and requesting outputs on the defined set.

Because we want to collect output on a certain location, it is suggested to define that
location as a set. To create a set, we have to create partition first. A set contains a
group of nodes or may be just a single node. With Abaqus/CAE, a set can be created
either before or after meshing. However, in scripting, we have to create a set before

meshing. A set is formed by creating a partition, and then name it.

After we have the set, then can proceed meshing. Mesh size is 0.025, mesh shape is
TRI (triangle) and not structured. In this step, we have to make sure that all surfaces

are covered (remember, we just did partition).

Finally, after we define the location on sets, we can tell Abaqus to write outputs on
that locations. This is done by requesting Field or History output on that set. In this

work, we will collect the output from the Field.

e MODULE 8: JOB
This is the last module. Because we have to create an imperfection, then we can not
run the script until getting the final result. The script ends in the job manager. Final

result will be done by the input file, BMP_model . inp, executed in a command prompt.

3.2 Scripting for the SWP

Two models of SWP will be presented in this section. The first model is a model with

uniform material, and the second model has two kinds of material. However, only the
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first model will be discussed in detail in this report, and the second model is discussed
briefly because this model uses the same principal as the first model, except having

two materials.

3.2.1 The SWP model with uniform material

The scripting can be found on Appendix A2. This work emphasizes creating a script
to model a SWP, at the moment the SWP has the same properties as the BMP. The
model is created with the procedure as the previous model with some exceptional due

to nature of making a spiral shape.

e MODULE 1: PART
The name of the model is defined and the pipe is created by extruding a circle a cer-
tain length. This is not just simple extruding, but also requires a pitch. This process

will create a spiral shape.

The circle is made by two arcs. The arc needs three points; a center and two ends
of the arc. However, we have to create these arcs counter clockwise or we will get
wrong normal direction. Figure 3.5 shows the relation between direction of the arc

and normal vector.

e MODULE 2: PROPERTY

Similar to the BMP, except there are two materials, the shell and the weld. In this
work, it is assumed that the weld has the same properties as the shell. Therefore,
we copy the property, from the first material to the second material. Of course, this

model also has the same orientation as the previous model.
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a. clockwise arcs b. counterclockwise arce

Figure 3.5: Relation between direction of the arc and normal vector.

e MODULE 3: ASSEMBLY

No further explanation, it is similar to BMP’s assembly module.

e MODULE 4: STEP

No further explanation, it is similar to BMP’s step module.

e MODULE 5: INTERACTION

No further explanation, it is similar to BMP’s interaction module.

e MODULE 6: LOAD

Loads and boundary conditions module is similar to the BMP model, but extra care
must be taken for applying pressure on all materials. The weld width is much smaller
than the shell, some part may have no load if we miss to include them in the script.
We have to check the inp file on the total number of element and number of element

under the pressure load. See the following example:
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*Element, type=S3

1, 1, 17, 894
2, 17, 2634, 894
3’ 17’ 2, 2634

158590, 79450, 48465, 48346
*Nset, nset=Set-Shell

*Elset, elset=_Surf-press_SNEG, internal, instance=Pipe-1, generate
1, 158590, 1

*3urface, type=ELEMENT, name=Surf-press

_Surf-press_SNEG, SNEG

It is found that total of the element 158590, and the element set (‘Elset’) is generated
from 1 to 158590 with step 1, it means total ‘Elset’ = 158590 or equals to the total of
the element. Therefore, it can be concluded that the pressure hits all elements. The

same procedure is applied to check the pressure load on the surface of the BMP.

e MODULE 7: MESH

No further explanation, it is similar to BMP’s mesh module.

e MODULE 8: JOB
No further explanation, it is similar to BMP’s job module. Final result will be done

by the input file, SWP_model. inp, executed in a command prompt.
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3.2.2 The SWP model with two kinds of material

The second model uses two materials. The material for welding is assumed having
yield stress 1.1x than the material of shell. The scripting for this test can be found on
Appendix A2. After running the script, then we have to check the input file to make
sure that the model contains two kinds of material. Editing this file is necessary, for
example including the imperfection file, changing Riks’ parameters if required, and
checking the model again to make sure we run the model with correct parameters

(orientation, material properties, load, boundary condition).

3.3 Scripting for a Model without Partition

As shown on Figure 2.9, we create an imaginary box on the model. This box will
capture all points inside the box. Then we define a set of these collected points.
Therefore, we have a set without doing partition on the model. However, it may not
capture the desired points when we have free mesh or non structure element. The
box is created by modul getByBoundingBox (xmin,ymin,zmin,xmax,ymax,zmax) in

scripting.

The getByBoundingBox(...) modul requires 2 points on the corners that separated
by space diagonal (remember, the box is 3D object). Following shows a part of the
script that explains the bounding box method. As you can see, there are 3 parts;
first is defining the points on the corners (xmin,ymin,zmin,xmax,ymax,zmax), then
invoking the method and name the set (Set-Top), and finally using this set to collect

the output (COORD).
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# Creating sets with bounding box
allNodes = swpModel.rootAssembly.instances[’Pipe-1’].nodes
xmin = -0.001

ymin = radius-0.001
zmin = zn1-0.01
xmax = 0.001

ymax = radius+0.001
zmax = zpl0 + 0.01

topNodes = allNodes.getByBoundingBox (xmin,ymin,zmin,xmax,ymax,zmax)
swpModel .rootAssembly.Set (name=’Set-Top’, nodes=topNodes)

swpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-2’, rebar=EXCLUDE, region=
swpModel .rootAssembly.sets[’Set-Top’], sectionPoints=
DEFAULT, variables=(’COORD’,))

Before running the program, we must check again the input file, because it is possible
we made mistakes in scripting. The software executes the input file only, therefore
this file is very important, wrong input will produce wrong output, and of course it
is a big waste. Following shows the important parts in the input file that needs to be

checked (there are 5 parts);

*Elset, elset=_Surf-Pressure SNEG, internal, generate
1, 154832, 1

*Surface, type=ELEMENT, name=Surf-Pressure

_Surf-Pressure SNEG, SNEG

*0Orientation, name=0ri-1, system=CYLINDRICAL
0., 0., 0., 0., 0.,
1.
1, 0.
**x Section: Section-Weld
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*Shell Section, elset=Set-2-weld, material=Material-Weld,
orientation=0ri-1, offset=SPOS

0.01143, 9

**x Section: Section-Shell

*Shell Section, elset=Set-1-shell, material=Material-Shell,
orientation=0ri-1, offset=SP0S

0.01143, 9
*End Instance
*%

*End Assembly
*k
*k

*IMPERFECTION, INPUT=wave2s_imper.dat
*k

** MATERIALS
*k

*%
*3tep, name=Step-1, nlgeom=YES, inc=100
*Static, riks
0.05,1.0,0.00000000000000005,0.025,

*Dsload
Pipe-1.Surf-Pressure, P, 1.13143e+07

The explanation about the important part is given below:

Part I, make sure the surface include all nodes/elements (see keyword ‘gen-
erate’) and define cylindrical axis for the pipe (if the global axis is used, then

make the x-axis as the main axis).

Part II, all materials are defined and have correct orientation.

Part III, include the imperfection file.

Part IV, edit Riks parameter if the computation does not converge.
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e Part V, make sure the load (pressure) hit all nodes/elements.

3.4 Scripting for Working on the Output

The scriptings can be found on Appendix A13.1 and A13.2. The first script (A13.1) is
a short script to get y-ordinate of top points set, and the second script (A13.2) will get
other parameters. In this work, we want to plot Bending Moment against Curvature
and Bending Moment against Strain. Those are 2D plots, so it will be convenient to
use a script to manage the output. For that purpose, these variables are required,
i.e. COORD (coordinates), UR (rotation), SE (section strain), and SF (section force).
The COORD and the UR belong to the node, but the SE and the SF are property of
the element. Therefore, to get strain or force on a node, we have to get it from all

elements that attach to that node.

To get those outputs, we have to request them on module STEP first, we request
Field outputs on the certain sets that have been already defined. Remember, not
all variables will be available on output file, by default Abaqus only reserve some.

Therefore, requesting variables output before executing the job is very important.

3.4.1 Mathematical equations

Following is explaining to get the final outputs. The final outputs are x (curvature),
€top (Strain on the compression side), and M,,;; (bending moment on the middle of
the pipe). We are going to use following equations to compute those variables and

Figure 3.6 depicts the variables and the locations that we need.

We are going to compute the curvature. The coordinates, displacements, and rotations
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Figure 3.6: For computing the curvature, strain, and moment.

are define in global axis, therefore the variable is computed as

5_92—(91
- dx

(3.1)

where k is the curvature, #; is the UR1 at Point 1, 0 is the UR1 at Point 2. The dx is
defined by
dr = COORSPOimg — COORgpomﬂ. (32)

The strain on the compression side can be defined as

€top = kD — €pot (33)

where D is the outside diameter of the pipe and €, is the average strain on the

bottom (tension side) of the pipe. The €, is defined by

SE2pointt + SE2p0in
oot = “; por? (3.4)

The strain is element property and is governed by local axis. On the orientation we

have defined axis-1 is radially, therefore we get axis-2 is axially.

The moment is found by multiplying section force and its arm (distance between the
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Figure 3.7: Quadrant IV nodes.

force and the neutral axis) and then adding these products to get the total bending
moment. The neutral axis is the location where the stress is zero. Before computing
the moment, the neutral axis must be found first. See Figure 3.7, the neutral axis will
be on y = 0 if the load either moment or internal pressure only, but when the both
loads are applied, the neutral axis will be on y < 0. Therefore, to find the neutral

axis faster, only nodes on quadrant IV will be considered.

SFminl

N ¥l 2

Figure 3.8: Finding the neutral axis.

This model uses two minimum positive section force to search where the location of
the zero force is, as shown on Figure 3.8. Therefore the y neutral axis is defined as

SFminl

yna o yl |:SFmin2_SFminl
Y2—y1

(3.5)

After the neutral axis has been determined, then we can compute the total bending
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moment as
i=Total MidN ode

Mpniqg = Z SE X Yna; (36)

=1
3.4.2 The output database

Abaqus will write an output file in binary format, a file with extension odb, stands
for output database. This file consists of two things; model data and result data, as
shown on Figure 3.9. As explained in [4], the model data contain the parts and part
instances that make up the root assembly; i.e. element types, nodal coordinates, set
definitions, etc. The results data give the results of the analysis; i.e. displacements,
strains, stresses, etc. The results data are requested from the step module, so it can

be either field or history output data. In this work, the field output data are requested.

Outputs are kept in object data, to harvest these data we have to know the structure of
the file. Figure 3.9 is important, like a map, it locates the desired output; for example
you cannot get the ‘fieldOutputs’ if you open folder ‘historyRegions’. Further detailed

explanation about the output database can be found in [4].

3.4.3 Scripting algorithm

As mentioned before, the program to read the output is called NodeField Out.py.
This program needs the output file, XXX_model.odb and a list of requested nodes and
their attached elements, this list are kept on the file xxx_attelib.py. Put those two

files in the same folder as NodeField Out.py first, then we can execute it.

Following is the explanation of the scripting algorithm;
e OPENING

This program is a general reader, it can read output from BMP model or SWP model,
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odb —
— rootAssembly
— parts elementSets
— sectionCategories nodeSets
— materials surfaces
= Container instances
= Singular object elementSets
description nodeSets
name surfaces
elements
nodes
Model Data
L steps
|
frames
—L Frame
—L fieldOutputs
historyRegions
1 HistoryRegion
—k point
historyQutputs

Results Data

Figure 3.9: The output database [4].

therefore we have to select which model is.

e SETTING VARIABLES

In this section we are preparing required sets. One set for nodes on 0.25D from the
middle length of the pipe, called ‘SET-1.25’, and set of 0.50D from the middle length
of the pipe, called ‘SET-L50".

e COMPUTATION

It starts with opening the file for writing the result, then do sorting and computing;
1. Sorting nodes, from top to bottom.

2. Computing the curvatures using Equation 3.1.
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3. Reading SE, SF, and S. In this model, S will not be saved, this variable can

be removed from the sript.
4. Extrapolating SE, SF', and S for defined nodes.
5. Finding the neutral axis (N A) using Equation 3.5.

6. Calculating the total moment (M,,;4) using Equation 3.6.

e PRINT FINAL RESULTS

The result is kept on file called xxx nodefield.out. It contains: step number,
curvature-1, curvature-2, strain on the top, and total bending moment. It is shown
on Appendix 14. Then using GNUPLOT program, as seen on field_plot.plt (Ap-

pendix 15), we plot the results.



Chapter 4

Results and Discussion

This chapter will show results from the test done in this work and result found in
Abaqus’s visualization and discuss them thoroughly. We start by showing the result

from the numerical test first.

4.1 The Numerical Test

This test is to see the influence of partitions on the model. Partitions are imaginary
division, it deals with the mesh only, and does not physically separate the model into
smaller parts. These partitions are invoked because we need to have a set on a certain
location for collecting the output. It is done before meshing. The other way creating

a set is by bounding box module, it is done after meshing.

All pipes have the same dimension, material, and geometric imperfection, but differ-
ent mesh distribution. We are going to see the first result, it is from the BMP model,
the BMP model is ‘cloning’ of the F&K model. As seen on Figure 4.1a, there are a lot
of points captured by the bounding box. For different mesh, we may get less or more

points. Therefore, number of points captured is function of the mesh configuration

49
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and the bounding box dimension.

Figure 4.1b is showing a model with a set created by partitions. We get exact number
and location of the required points. These points are not function of the mesh, but
the mesh is forced to have those points (the mesh is function of the set). In this case

we just collect points between 2.5D from the middle length of the pipe.

As shown on Figure 4.1, it is found, beside different number of point of the set, the
required step to get the same deflection is also different. The model without partition

requires less computation than the model with partition, by around 20% less.

Figure 4.2 shows the 3D image of the both pipes. For the same deflection, we see
slightly different shape of bump (see the circle on Figure 4.2a and 4.2b). The maxi-
mum von Mises stress is also slightly different, the pipe without partition can reach

6.523E4-08, and the pipe with partition reach less (6.522E+08).

As we know, both models have, more or less, the same size of mesh, but the density
or distribution is not the same. For the model without partition, we can say that the
mesh will be distributed equally or uniform density, but the model with partition will
force the model to have mesh on the partition, it will change the density or distribu-

tion of the mesh.

Figure 4.3 shows result from the spiral welded pipe. The elements of this pipe are
rotated, so when we use a bounding box module, some desired points may not be in
the box. As shown on Figure 4.3a, the points are not equally distributed in required

domain and unfortunately we can not capture points on the middle of the pipe either.
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Now, the models are run with the same step, as depicted on Figure 4.3b, the model

with a set can not reach the same deflection as the model without a set (Figure 4.3a).

This test shows that a model with partitions is stiffer than a model without partitions,

because mesh density or distribution is different.

4.2 The Material Test

The second test will see the influence of the material of the pipe. Two SWPs are

modeled, one has uniform material and the other contains two material; material of

welding is different from the shell as depicted on Figure 2.11. Both models are using

the same geometric imperfection and having the same mesh density/distribution.
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Figure 4.4: The deflection of the SWP models (uniform and non-uniform).

Figure 4.4 through 4.6 show that having different material (weld yield stress 1.1x than

shell yield stress) give no much difference. Both SWPs produce similar plot.
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They reach the same deflection with the same number of computation (twice than
BMP model), see Figure 4.4. Both models also show the same trend on the moment-
curvature and moment-strain graph, as shown on Figure 4.5 and Figure 4.6 respec-

tively.

The numerical simulations provide evidence on the influence of the pipe pitch angle
and distribution of material properties along the spiral weld seam influence the me-
chanical performance relative to the UOE pipe. The numerical simulations suggest
the UOE pipe has slightly greater moment capacity with nominally similar strain (i.e.

curvature) at peak moment.

4.3 The Ovality Test

The third test is dealing with the cross section of the pipe. There are three cross
section types; circle (a/b = 1), ellipse horizontally (a/b > 1), and ellipse vertically
(a/b < 1). These three shapes have the same imperfection amplitude and wavelength,
as depicted on Figure 4.7 (only ellipse pipes shown). For this test, we have 5 SWPs,
a pipe with a/b=1.05, 1.01, 1.00, 0.99, and 0.95 respectively.

Figure 4.8 shows deflection and local buckling of pipes with a/b > 1. These figures
show similar result from a circle pipe, the local buckling occurs on the middle of the
pipe. Figure 4.9 shows loci on different section of the pipe; loci at 0.25D and 0.50D
respectively, at beginning and ending of the computation. At beginning, although
there is imperfection, but a small imperfection, all pipes seem to have a circle shape
through the pipe length (see Figure 4.9a & 4.9¢). Then, at the end of computation

we can see that the section close to the middle length (0.25D) deforms more than the
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section 0.50D (see Figure 4.9b & 4.9d).

(a) Ellipse horizotally

(b) Ellipse vertically

Figure 4.7: Ellipse shape and its imperfection (exaggerated).

Figure 4.11 shows detail of loci on different section of the pipe (loci at 0.25D and
0.50D). For a/b=0.99, the local buckling happens on the middle (see Figure 4.10a),
and we can see that the section 0.25D deforms more than the section 0.50D (see Fig-
ure 4.11b). However, this pattern is not found on the pipe with a/b = 0.95, this pipe
produces local buckling on the quarter (more or less) length of the pipe, as shown on
Figure 4.10b, and we can not find much difference on those sections. Those sections

give a circle shape on the end of computation.
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Figure 4.8: Isometric view of the deflection of the horizontal ellipse pipe.

Something interesting is found in Figure 4.12. For horizontally ellipse pipes, the 1%
ovality (a/b = 1.01) seems to smooth the imperfection, the pipe becomes stronger,

for the same number of computation, it bends less than the circle pipe. Increasing
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Figure 4.12: The deflection of the SWP models (circle and ellipses).

the ovality to 5% (a/b = 1.05), it makes the pipe weaker, it bends more than the 1%
ovality pipe. For vertically ellipse pipes, the 1% ovality (a/b=0.99) influences little to
the pipe, the pipe behaves like the circle pipe. However, the 5% ovality (a/b=0.95)
does change the pipe behaviour a lots. The weakest point is not on the middle pipe

anymore. The local buckling happens near the collar.

4.4 The Pitch Test

The fourth test is testing the pitch angle of the SWPs. There are two models, both
models have two material (weld + shell) and have the same imperfection, only the

pitch angle is different, one is 40° and the other is 60° respectively.

The results are shown on Figure 4.13 through 4.15. It is a surprising result, even
though we have the same imperfection and material properties, the changing pitch

angle can change the local buckling location. We expect the buckling will occur at
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the middle, but apparently it appears somewhere 1D from the middle (see Figure
4.13). This graph also tells the 60° pitch requires less computation than the 40° pipe

to reach the same deflection, around 50% less.

The moment-curvature and moment-strain graphs are computed from the set 0.25D
and 0.50D from the middle of the pipe and it is assumed the local buckling will be
on the middle, but apparently the local buckling of is not on the middle for the 60°
pitch pipe, therefore the curve from the 60° pitch pipe is different from the 40° pitch

pipe (see Figure 4.14 and see 4.15).

These results suggest the tests conducted on spiral pipe with segments lengths of 3D
will be influenced by the boundary conditions and test specific parameters such as

pipe pitch and material properties.

Consequently the qualification of spiral pipe for use in strain based design application
requires physical testing to calibrate and verify the modelling procedures. The numer-
ical simulations indicate factors that will influence the moment and strain capacity

response include pipe pitch, pipe imperfections, and weld/base metal overmatch.

Other factors not addressed in this study that may influence the moment and strain
capacity response of spiral pipe include material characteristics such as anisotropy for

high strength pipe, Bauschinger effect, Luder’s banding, and girth weld processes.
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4.5 The Internal Load Test

The fifth test is testing the internal load. First, we have a model with two kind of
load applied which are bending moment and internal pressure. Second, a model with
one kind of load applied which is bending moment only. The second model will use
the inp file from the first model with small editing. The second model requires no
pressure, so we will switch off the pressure by adding two asterisks (**) on unwanted
lines or we delete these lines. Following shows part of the inp file on the load for each
model:

e model with pressure

** LOADS

*k

** Name: Moment-1  Type: Moment
*Cload

_PickedSetl17, 4, 1.4e+07

** Name: Moment-2  Type: Moment
*Cload

_PickedSet18, 4, -1.4e+07

** Name: Pressure  Type: Pressure
*Dsload

Pipe-1.Surf-Pressure, P, 1.13143e+07
*ok

e model without pressure

** LOADS

*k

** Name: Moment-1  Type: Moment
*Cload

_PickedSetl17, 4, 1.4e+07

** Name: Moment-2  Type: Moment
*Cload

_PickedSet18, 4, -1.4e+07

**xxx Name: Pressure  Type: Pressure
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***Dsload
**%Pipe-1.Surf-Pressure, P, 1.13143e+07
*k

However, when running the second model, it does not converge. Editing Riks’ param-
eters does not solve this problem. It took days to figure out this problem. Apparently,
omitting the pressure and only applying moment creates rotation about 3-direction.
Using the same boundary conditions as the first model makes the computation di-
verge. Therefore we have to edit the boundary conditions for the second model. We
have to nullify the DOF (degree of freedom) number 6. Following shows the difference
of boundary conditions applied to each model:

e boundary conditions for the first model (model with pressure)

*x BOUNDARY CONDITIONS

*k

*x*% Name: BC-1 Type: Displacement/Rotation
*Boundary

_PickedSet19, 1, 1

_PickedSet19, 2, 2

** Name: BC-2 Type: Displacement/Rotation
*Boundary
_PickedSet20, 1, 1
_PickedSet20, 2, 2
_PickedSet20, 3, 3
*k

e boundary conditions for the second model (model without pressure)

*x BOUNDARY CONDITIONS

*ok

**% Name: BC-1 Type: Displacement/Rotation
*Boundary

_PickedSet19, 1, 1

_PickedSet19, 2, 2

** Name: BC-2 Type: Displacement/Rotation
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*Boundary
_PickedSet20, 1, 1
_PickedSet20, 2, 2
_PickedSet20, 3, 3
_PickedSet20, 6, 6
*k

In this test we are going to see the deflection and the local buckling due to omitting
the pressure. The imperfection is designed to have a local buckling on the middle
length of the pipe if the internal pressure is involved. With the same imperfection,
it is found that the local buckling of the pipe without pressure is not on the middle
of the pipe. Figure 4.16a shows the local buckling somewhere around quarter length
of the pipe and Figure 4.16b can not plot the local buckling because it is beyond the

set.

As expected, without internal pressure, the local buckling is depicted by dents, as
shown on Figure 4.17. It will be a different shape if internal pressure applied, a bump

will appear to represent the local buckling as depicted on Figure 4.16b or 4.18.

4.6 The Visualization

It is necessary to show the result of the visualization, because we found unexpected
result plot on the visualization. As shown on Figure 4.18, the contour plot of the
BMP model is good, but the contour plot of the SWP model is broken. Some regions

that suppose to have some values give ‘white’ colour or empty.

Further investigation found that it was just a visual error. Figure 4.19 plots result of
the beginning computation and the next step (Step-0 and Step-1). Let’s see elements
30060 and 30102. The element 30060 has value for all steps, even though on the
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Figure 4.19: Contour plot on the SWP model.
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Step-1, its colour is not full. The element 30102 has no value for all step, but it has

colour on the Step-1.

The other element of the SWP model shows the same behaviour, it will not give any
value when we do not request it, but the element may have colour on the visualization.
This odd is found on the SWP model only, the BMP gives good visualization. This
problem can be eliminated by switching the default contour type, from ‘banded’ to

‘quilt’, as shown on Figure 4.20.



Chapter 5

Conclusions and Recommendations

This chapter consists of conclusions and recommendations. First, it will conclude
results found in this work, result from the tests and also result from building the

model. Then, it gives recommendations for future work to be done.

5.1 Conclusions

Based on those results and experiencing the process (from preparing the input, exe-

cuting the model, and getting the result), it can be concluded:

e The scripting is very useful in Abaqus, it can build and edit a model fast, it can

create an imperfection, and it works for all stages (pre- to post-processing).

e Working on a nonlinear problem, the following parameters -imperfection, mesh

size, mesh distribution, and Riks step- must be considered.

e Creating set by partition to collect the output is good, but it changes mesh

density and can influence the stiffness of the model numerically.

e The SWP with weld material 1.1x stronger than the shell gives similar result as

7
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the SWP with uniform material.

e The SWP, due to extruding shape with a pitch, requires more computation step

than then UOE pipe.

e The orientation of the cross section shape can change the imperfection influence,

it is able to move the local buckling expected location.

e The pitch of the SWP can change the imperfection influence too. It is found,
for higher pitch, the SWP tends to behave like UOE pipe.

e The shape of local buckling is function of the internal pressure. The internal

pressure will create a bump, the zero pressure will create a dent.

e In this work, without internal pressure can make the model rotate on 3-direction,

therefore we have to adjust the boundary condition.

e Some bugs are found in this Abaqus, one is in pre-processing and the other
is in post-processing. The requested nodes missing some of their attached ele-
ments and in visualization the default contour plot, banded type, is distorted in

extruded shape with pitch.

5.2 Recommendations

Based on the experience doing this work and accommodating real condition on the

field, for future work, it is recommended:

e The Abaqus must fix the bugs, especially the missing element in the triangle

mesh (the contour plot on twisted surface can be can be fixed later).
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e Using the actual materials (for weld and base plate) that have been tested in
lab to define the stress-strain relationships. This testing accounts for material

orientation and effects (e.g. Bauschinger, Luder’s) on strength behaviour.

e Using the actual imperfections that accommodates the real surface of the pipe,
this imperfection includes cross section ovality, thickness, local dent or bump,

and spiral or girth weld offset.

e Finally, large-scale tests on spiral welded pipe are required to calibrate and

verify the results from the numerical simulation.
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Al. BMP__model.py

++

BENCHMARK PIPE (BMP_model.py)

This program simulates buckling on a pipe under an internal pressure
and moment load.

The SI system of units is used in this program.

This program is create with the CAE’s journal file and then
it is modified by A Susilo.

H OH H H H K H H R R

Created on: 01 Oct 2013

=+
|
+H+

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *
from load import =*

from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *

# Dimmesions required
pipelength = 11.0
radius = 0.44577
pipeODia = 2*radius
pipeThickness = 0.01143
collar = 0.4

# Reference points
zm = pipelength/2.

zm + (0.25*pipe0Dia)
zm + (0.50*pipe0Dia)
zm + (0.75*pipeODia)

zpl
zp2
zp3
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zp4 = zm + (1.00*pipeODia)
zp5 = zm + (1.25*pipeODia)
zp6 = zm + (1.50*pipeODia)
zp7 = zm + (1.75%pipe0ODia)
zp8 = zm + (2.00*pipeODia)
zp9 = zm + (2.25*pipeODia)

zpl0 = zm + (2.50*pipe0Dia)

znl0 = zm - (0.25%pipe0Dia)
zn9 = zm - (0.50*pipeODia)
zn8 = zm - (0.75%pipe0Dia)
zn7 = zm - (1.00*pipe0ODia)
zn6 = zm - (1.25*pipeODia)
znb5 = zm - (1.50*pipeODia)
zn4 = zm - (1.75%pipeODia)
zn3 = zm - (2.00*pipeODia)
zn2 = zm - (2.25%pipeODia)
znl = zm - (2.50*pipeODia)

ypos = radius
yneg = -radius

epsilon = 0.5*(zm-znl)

# 1. MODULE: PART
#
1.1. Create the model

= —_——— —m—m————————————————————————— +#

H H ®

# The model is called ’Benchmark Pipe’

mdb.models. changeKey (fromName="Model-1’, toName=’Benchmark Pipe’)
bmpModel = mdb.models[’Benchmark Pipe’]

# 1.2. Create the part
#=

#

# The part is a circle. It is created by a circle uses 2 points (center, radius).
# Then this part is extruded to ’pipelength’ long.

#

# The part is called ’Pipe’

H#
"

bmpModel .ConstrainedSketch(name=’__profile__’, sheetSize=200.0)
bmpModel . sketches[’__profile__’].CircleByCenterPerimeter(center=(



0.0, 0.0), point1=(0.0, radius))

bmpModel .Part (dimensionality=THREE_D, name=’Pipe’, type=
DEFORMABLE_BODY)

bmpModel .parts[’Pipe’] .BaseShellExtrude (depth=pipelLength, sketch=
bmpModel.sketches[’__profile__’1])

del bmpModel.sketches[’__profile__’]

# 2. MODULE: PROPERTY
#

# 2.1. Create material
H—=

#
# There are one material in this model, material for the pipe

matP = ’Material-Pipe’
young = 2.05el1l
poisson = 0.3

pipeMaterial = bmpModel.Material (name=matP)
pipeMaterial.Elastic(table=((young, poisson), ))
pipeMaterial.Plastic(table=(
(430500000,0),
(433125000,1.22E-05),
(435750000,2.44E-05) ,
(438375000,3.66034E-05) ,
(441000000,4.8808E-05) ,
(443625000,6.1015E-05),
(446250000,7.32251E-05) ,
(448875000,8.54391E-05) ,
(451500000,9.76579E-05) ,
(454125000,0.000109883) ,
(456750000,0.000122115),
(459375000,0.000134357) ,
(462000000,0.00014661) ,
(464625000,0.000158878) ,
(467250000,0.000171164),
(469875000,0.000183472) ,
(472500000,0.000195807) ,
(475125000,0.000208176) ,
(477750000,0.000220587) ,
(480375000,0.00023305) ,
(483000000,0.000245576) ,
(485625000,0.000258181) ,
(488250000,0.000270882) ,

$#

87



(490875000,0.
(493500000, 0.
(496125000,0.
(498750000,0.
(501375000,0.
(504000000,0.
(506625000,0.
(509250000,0.
(511875000,0.
(514500000,0.
(517125000,0.
(519750000,0.
(522375000, 0.
(525000000,0.
(527625000,0.
(530250000,0.
(532875000,0.
(535500000,0.
(538125000,0.
(540750000,0.
(543375000,0.
(546000000, 0.
(548625000,0.
(551250000, 0.
(553875000,0.
(556500000,0.
(559125000,0.
(561750000,0.
(564375000,0.
(567000000,0.
(569625000,0.
(572250000,0.
(574875000,0.
(577500000,0.
(580125000, 0.
(582750000,0.
(585375000, 0.
(588000000,0.
(590625000,0.
(593250000,0.
(595875000,0.
(598500000,0.
(601125000,0.
(603750000,0.
(606375000,0.
(609000000, 0.

0002837) ,

000296663) ,
000309803) ,
00032316) ,
000336781) ,
000350725) ,
000365063) ,
000379881) ,
000395283) ,
000411395) ,
000428369) ,
000446389) ,
000465677) ,
000486501) ,
000509182) ,
000534109) ,
000561747) ,
000592655) ,
000627508) ,
000667103) ,
000712412) ,
000764585) ,
000825002) ,
000895311) ,
000977479) ,
001073852) ,
001187224),
001320926) ,
001478915) ,
001665899) ,
001887468) ,
002150257) ,
002462134) ,
002832422) ,
003272159) ,
003794406) ,
004414603) ,
005150989) ,
006025094) ,
007062316) ,
008292589) ,
009751174) ,
011479569) ,
013526587) ,
015949594) ,
018815971),

38
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(611625000,0.0222048) ,
(614250000,0.026208832) ,
(616875000,0.030936781),
(619500000,0.036515981) ,
(622125000,0.043095472) ,
(624750000,0.05084959) ,
(627375000,0.059982121),
(630000000,0.070731124),
(632625000,0.083374509) ,
(635250000,0.098236502) ,
(637875000,0.115695123) ,
(640500000,0.13619083) ,
(643125000,0.16023651) ,
(645750000,0.188429017) ,
(648375000,0.221462487)))
pipeMaterial.plastic.Potential(table=
((0.981, 1.0, 1.0, 1.0, 1.0, 1.0), D)

# 2.2. Create section
H—

#
# Only one section, the pipe

=+

bmpModel . HomogeneousShellSection(idealization=NO_IDEALIZATION,
integrationRule=SIMPSON, material=matP, name=’Section-Pipe’,
numIntPts=9, poissonDefinition=DEFAULT, prelntegrate=0FF, temperature=
GRADIENT, thickness=pipeThickness, thicknessField=’’, thicknessModulus=None,
thicknessType=UNIFORM, useDensity=0FF)

# 2.3. Assign section
H—

=+

bmpModel.parts[’Pipe’].Set(faces=
bmpModel .parts[’Pipe’] .faces.findAt (((0.0,
radius, pipelength/2.0), )), name=’Set-Section’)

bmpModel .parts[’Pipe’] .SectionAssignment (offset=0.0, offsetField=
??, offsetType=TOP_SURFACE, region=
bmpModel .parts[’Pipe’] .sets[’Set-Section’], sectionName=
’Section-Pipe’, thicknessAssignment=FROM_SECTION)

# NOTE:

# For a model with the conventional shell element,

# it is suggested that the X-axis is the axial axis.

#

# The model uses Z-axis is the main axis so then the local axis must be defined.
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# The local axis is cylindrical that states:
# x = radial direction, y = axial direction.

bmpModel .parts[’Pipe’] .DatumCsysByThreePoints (coordSysType=
CYLINDRICAL, linel=(1.0, 0.0, 0.0), 1line2=(0.0, 1.0, 0.0), name=
’Datum csys-1’, origin=(0.0, 0.0, 0.0))

bmpModel.parts[’Pipe’] .MaterialOrientation(
additionalRotationField=’’, additionalRotationType=ROTATION_NONE, angle=0.0
, axis=AXIS_1, fieldName=’’, localCsys=
bmpModel .parts[’Pipe’] .datums [3], orientationType=SYSTEM,
region=Region(faces=bmpModel.parts[’Pipe’].faces.findAt (((
0.0, radius, pipelength), (0.0, radius, 0.0)), )))

# 3. MODULE: ASSEMBLY

3.1. Create the assembly

H H ®

+*

bmpModel.rootAssembly.DatumCsysByDefault (CARTESIAN)
bmpModel.rootAssembly. Instance (dependent=0FF, name=’Pipe-1’,
part=bmpModel.parts[’Pipe’])

# Creating collars

bmpModel .rootAssembly.DatumAxisByPrincipalAxis(principalAxis=
ZAXIS)

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, 0.0, collar))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, 0.0, pipelLength-collar))

bmpModel .rootAssembly.DatumPlaneByPointNormal (normal=
bmpModel .rootAssembly.datums[4], point=
bmpModel .rootAssembly.datums [5])
bmpModel.rootAssembly.DatumPlaneByPointNormal (normal=
bmpModel .rootAssembly.datums[4], point=
bmpModel.rootAssembly.datums [6])

bmpModel .rootAssembly.PartitionFaceByDatumPlane (datumPlane=
bmpModel.rootAssembly.datums[7], faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (((
0.0, radius, pipeLength/2.0), )))

bmpModel .rootAssembly.PartitionFaceByDatumPlane (datumPlane=



bmpModel.rootAssembly.datums[8], faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (((
0.0, radius, pipeLength/2.0), )))

# 4. MODULE: STEP
#
# 4.1. Create the step

H—
H

+*

bmpModel.StaticRiksStep(name=’Step-1’, nlgeom=0N, previous=
’Initial’)

# Requests for Field and History Output are placed after setting sets.

# 5. MODULE: INTERACTION
#

# Connect the pipe to the reference points with ’Coupling’
H—

**

disRP = 1.2
z1RP = -disRP
z2RP = pipelength + disRP

bmpModel .rootAssembly.ReferencePoint (point=(0.0, 0.0, z1RP))
bmpModel .rootAssembly.ReferencePoint (point=(0.0, 0.0, z2RP))

bmpModel .RigidBody (bodyRegion=Region(
faces=bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt(
((0.0, -radius, 0.0), (0.0, radius, 0.0)), )),
name=’Constraint-1’, refPointRegion=Region(referencePoints=(
bmpModel .rootAssembly.referencePoints[11], )))

bmpModel .RigidBody (bodyRegion=Region (
faces=bmpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0.0, -radius, pipelength), (0.0, radius, pipelength)), )),
name=’Constraint-2’, refPointRegion=Region(referencePoints=(
bmpModel .rootAssembly.referencePoints[12], )))

# 6. MODULE: LOAD

.1. Create the loads, internal pressure and bending moment

H H H
(0]

H*
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pressInt = 11314297.0286
momentLoad = 2*x7000000

#NOTE: internal pressure is defined by ’side2Faces’

bmpModel .Pressure(createStepName=’Step-1’, distributionType=

UNIFORM, field=’’, magnitude=pressInt, name=’Pressure’, region=Region(
side2Faces=bmpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
(0.0, -radius, 0.0), (0.0, radius, 0.0)),

((0.0, -radius, pipeLength/2.0), (0.0, radius, pipelLength/2.0)),
((0.0, -radius, pipeLength), (0.0, radius, pipelLength)), )))

bmpModel .Moment (cm1= momentLoad, createStepName=’Step-1’,
distributionType=UNIFORM, field=’’, localCsys=None, name=’Moment-1’,
region=Region(referencePoints=(
bmpModel .rootAssembly.referencePoints[11], )))

bmpModel .Moment (cml= -momentLoad, createStepName=’Step-1’,
distributionType=UNIFORM, field=’’, localCsys=None, name=’Moment-2’,
region=Region(referencePoints=(
bmpModel .rootAssembly.referencePoints[12], )))

# 6.2. Create boundary conditions

H
w

**

bmpModel .DisplacementBC (amplitude=UNSET, createStepName=’Step-1’,
distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=None,
name=’BC-1’, region=Region(referencePoints=(
bmpModel .rootAssembly.referencePoints[11], )), ul=0.0, u2=0.0,
u3=UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)

bmpModel .DisplacementBC(amplitude=UNSET, createStepName=’Step-1’,
distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=None,
name=’BC-2’, region=Region(referencePoints=(
bmpModel .rootAssembly.referencePoints[12], )), ul=0.0, u2=
0.0, u3=0.0, url=UNSET, ur2=UNSET, ur3=UNSET)

# 7. MODULE: MESH
#
# 7.1. Create partitions

H
H

#
# Creating sets (partitions)

H*




# Create the reference points

# Create the reference points

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znl))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn2))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn3))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znéd))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znb))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn6))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znT7))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn8))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn9))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znl0))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zm))

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zpl))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp2))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp3))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp4))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp5))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp6))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp7))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp8))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp9))
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
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(0.0, ypos, zpl0))
# Partitions

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [22], point2=
bmpModel .rootAssembly.datums [23])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [23], point2=
bmpModel .rootAssembly.datums [24])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [24], point2=
bmpModel .rootAssembly.datums [25])

bmpModel.rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [25], point2=
bmpModel .rootAssembly.datums [26])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0, yneg, zplO+epsilon), )), pointl=
bmpModel.rootAssembly.datums [26], point2=
bmpModel .rootAssembly.datums [27])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [27], point2=
bmpModel .rootAssembly.datums [28])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [28], point2=
bmpModel.rootAssembly.datums [29])
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bmpModel.rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [29], point2=
bmpModel .rootAssembly.datums [30])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [30], point2=
bmpModel .rootAssembly.datums[31])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [31], point2=
bmpModel .rootAssembly.datums [32])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [32], point2=
bmpModel .rootAssembly.datums [33])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [33], point2=
bmpModel.rootAssembly.datums [34])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [34], point2=
bmpModel .rootAssembly.datums [35])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [35], point2=
bmpModel .rootAssembly.datums [36])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [36], point2=
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bmpModel .rootAssembly.datums [37])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [37], point2=
bmpModel.rootAssembly.datums [38])

bmpModel.rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [38], point2=
bmpModel .rootAssembly.datums [39])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [39], point2=
bmpModel .rootAssembly.datums [40])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums [40] , point2=
bmpModel .rootAssembly.datums [41])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
bmpModel .rootAssembly.datums[41], point2=
bmpModel .rootAssembly.datums [42])

bmpModel.rootAssembly.Set (name=’Set-Top’, vertices=
bmpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt (

(0.0, ypos, znl), ), ((0.0, ypos, zn2), ), ((0.0, ypos, zn3),
(0.0, ypos, zn4), ), ((0.0, ypos, znb), ), ((0.0, ypos, zn6),
((0.0, ypos, zn7), ), ((0.0, ypos, zn8), ), ((0.0, ypos, zn9),
(0.0, ypos, zn10), ), ((0.0, ypos, zm), ), ((0.0, ypos, zpl),
((0.0, ypos, zp2), ), ((0.0, ypos, zp3), ), ((0.0, ypos, zp4),
((0.0, ypos, zp5), ), ((0.0, ypos, zp6), ), ((0.0, ypos, zp7),
(€0.0, ypos, zp8), ), ((0.0, ypos, zp9), ), ((0.0, ypos, zpl0),

bmpModel .rootAssembly.DatumPlaneByPointNormal (normal=
bmpModel .rootAssembly.datums[4], point=
bmpModel .rootAssembly.datums [30])



bmpModel .rootAssembly.DatumPlaneByPointNormal (normal=
bmpModel .rootAssembly.datums[4], point=
bmpModel .rootAssembly.datums[31])

bmpModel.rootAssembly.DatumPlaneByPointNormal (normal=
bmpModel .rootAssembly.datums[4], point=
bmpModel.rootAssembly.datums [33])

bmpModel .rootAssembly.DatumPlaneByPointNormal (normal=
bmpModel .rootAssembly.datums[4], point=
bmpModel .rootAssembly.datums [34])

bmpModel.rootAssembly.PartitionFaceByDatumPlane (datumPlane=
bmpModel .rootAssembly.datums[64], faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zm), )))

bmpModel .rootAssembly.PartitionFaceByDatumPlane (datumPlane=
bmpModel .rootAssembly.datums [65], faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zm), )))

bmpModel .rootAssembly.PartitionFaceByDatumPlane (datumPlane=
bmpModel .rootAssembly.datums[66], faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zm), )))

bmpModel .rootAssembly.PartitionFaceByDatumPlane (datumPlane=
bmpModel .rootAssembly.datums[67], faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, ymneg, zp3), )))

bmpModel .rootAssembly.Set (edges=
bmpModel.rootAssembly.instances[’Pipe-1’].edges.findAt(
((0, yneg, zn9), )), name=’Set-L50’°)
bmpModel.rootAssembly.Set (edges=
bmpModel .rootAssembly.instances[’Pipe-1’].edges.findAt (
((0, yneg, zn10), )), name=’Set-L25’°)
bmpModel .rootAssembly.Set (edges=
bmpModel .rootAssembly.instances[’Pipe-1’].edges.findAt (
((0, yneg, zpl), )), name=’Set-R25’)
bmpModel.rootAssembly.Set (edges=
bmpModel .rootAssembly.instances[’Pipe-1’].edges.findAt (
((0, yneg, zp2), )), name=’Set-R50’)

bmpModel .rootAssembly.Set (name=’Set-T1’, vertices=
bmpModel.rootAssembly.instances[’Pipe-1’].vertices.findAt(
(0.0, ypos, zn9), ), ))

bmpModel .rootAssembly.Set (name=’Set-T2’, vertices=
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bmpModel .rootAssembly.instances [’Pipe-1’].vertices.findAt (
(0.0, ypos, znl0), ), ))

bmpModel.rootAssembly.Set (name=’Set-T3’, vertices=
bmpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt(
(€0.0, ypos, zpl), ), ))

bmpModel.rootAssembly.Set (name=’Set-T4’, vertices=
bmpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt (
(€0.0, ypos, zp2), ), ))

# Creating set on the bottom

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, zn9)) #80

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, zn10)) #81

bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, zpl))  #82
bmpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, zp2))  #83

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0.0, yneg, zn9+0.01), )), pointl=
bmpModel .rootAssembly.datums [80], point2=
bmpModel .rootAssembly.datums[81])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zm), )), pointl=
bmpModel .rootAssembly.datums [81], point2=
bmpModel .rootAssembly.datums [82])

bmpModel .rootAssembly.PartitionFaceByShortestPath(faces=
bmpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zpl1+0.01), )), pointl=
bmpModel .rootAssembly.datums [82], point2=
bmpModel .rootAssembly.datums [83])

bmpModel.rootAssembly.Set (name=’Set-B1’, vertices=
bmpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt(
((0.0, yneg, zn9), ), ))
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bmpModel .rootAssembly.Set (name=’Set-B2’, vertices=
bmpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt(
((0.0, yneg, zn10), ), )

# 7.2. Create mesh
H=

=+

sizeMesh = 0.025 #(for the simulation)

# NOTE:

# TRI = triangle

# QUAD = guadrilateral

# technique = FREE / STRUCTURED

bmpModel .rootAssembly.setMeshControls (elemShape=TRI,
regions=bmpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(

(0.0, ypos, 0.0), ), ((0.0, yneg, zn5), ), ((yneg, 0.0, zn9+0.01), ), ((ypos,
0.0, zn9+0.01), ),

((yneg, 0.0, zm), ), ((ypos, 0.0, zm), ), ((yneg, 0.0, zpl+0.01), ), ((ypos,
0.0, zp1+0.01), ),

((0.0, yneg, zp5), ), ((0.0, ypos, pipelength), ), ),technique=FREE)

bmpModel .rootAssembly.seedPartInstance(deviationFactor=0.1,
regions=(bmpModel.rootAssembly.instances[’Pipe-1°], ),
size=sizeMesh)

bmpModel .rootAssembly.generateMesh(regions=(
bmpModel .rootAssembly.instances[’Pipe-1’]1, ))

# For additional requested Field and History output

bmpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-2’, rebar=EXCLUDE, region=
bmpModel .rootAssembly.sets[’Set-Top’], sectionPoints=
DEFAULT, variables=(’COORD’,))

bmpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-3’, rebar=EXCLUDE, region=
bmpModel.rootAssembly.sets[’Set-T1’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

bmpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-4’, rebar=EXCLUDE, region=
bmpModel .rootAssembly.sets[’Set-T2’], sectionPoints=
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DEFAULT, variables=(’UR’,’COORD’,))

bmpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-5’, rebar=EXCLUDE, region=
bmpModel .rootAssembly.sets[’Set-T3’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

bmpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-6’, rebar=EXCLUDE, region=
bmpModel.rootAssembly.sets[’Set-T4’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

bmpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-7’, rebar=EXCLUDE, region=
bmpModel .rootAssembly.sets[’Set-B1’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

bmpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-8’, rebar=EXCLUDE, region=
bmpModel .rootAssembly.sets[’Set-B2’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

bmpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-9’, rebar=EXCLUDE, region=
bmpModel .rootAssembly.sets[’Set-L25’], sectionPoints=
DEFAULT, variables=(’S’, ’SE’, °UR’, ’SF’, ’COORD’))

bmpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-10’, rebar=EXCLUDE, region=
bmpModel.rootAssembly.sets[’Set-L50’], sectionPoints=
DEFAULT, variables=(’S’, ’SE’, ’UR’, ’SF’, ’COORD’))

o0

. MODULE: JOB

(00)

.1. Create job

H H OH

H
#

mdb. Job(atTime=None, contactPrint=0FF, description=’’, echoPrint=0FF,
explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=0FF,
memory=90, memoryUnits=PERCENTAGE, model=’Benchmark Pipe’, modelPrint=
OFF, multiprocessingMode=DEFAULT, name=’BMP_model’, nodalOutputPrecision=
SINGLE, numCpus=1, numGPUs=0, queue=None, scratch=’’, type=ANALYSIS,
userSubroutine=’’, waitHours=0, waitMinutes=0)



# 8.2. Write BMP_model.inp

#
"

Click ’Write Input’ on Module:Job, the file ’BMP_model.inp’ will be
generated. After adding IMPERFECTION and edit the output element set
on that file, then run the job by typing:

’abaqus job=BMP_model interactive’ on Windows command prompt.

The result will be saved on the file BMP_model.odb.

H OH OH B O H
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A2. SWP__model.py
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**

SPIRAL WELDED PIPE (SWP_model.py)

This program simulates buckling on a sipral welded pipe under
an internal pressure and moment load.

The SI system of units is used in this program.

This program is create with the CAE’s journal file and then
it is modified by A Susilo.

Created on: 04 Oct 2013

H OH H H H K H H KR H KR

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *
from load import *

from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *
import math

# Dimmesions required
pipelength = 11.0
radius = 0.44577
pipeODia = 2*radius
pipeThickness = 0.01143
collar = 0.4

pipePitch = 40.

weldGap = 0.01

# Constants / inputs

Pi = math.pi

alpha = pipePitch/180.*Pi
radius = pipeODia/2.

**
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# Reference points
zm = pipelLength/2.

zpl = zm + (0.25*pipeODia)
zp2 = zm + (0.50*pipeODia)
zp3 = zm + (0.75*pipeODia)
zp4 = zm + (1.00*pipeODia)
zp5 = zm + (1.25%pipeODia)
zp6 = zm + (1.50%pipeODia)
zp7 = zm + (1.75%pipe0ODia)
zp8 = zm + (2.00*pipe0Dia)
zp9 = zm + (2.25*pipeODia)

zpl0 = zm + (2.50*pipeODia)

zn10 = zm - (0.25*pipe0Dia)
zn9 = zm - (0.50*pipeODia)

zn8 = zm - (0.75*pipeODia)
zn7 = zm - (1.00*pipeODia)
zn6 = zm - (1.26%pipeODia)
znb = zm - (1.50*pipeODia)

zn4 = zm - (1.75%pipe0Dia)
zn3 = zm - (2.00*pipe0Dia)
zn2 = zm - (2.25*pipeODia)
znl = zm - (2.50*pipeODia)

ypos = radius
yneg = -radius

epsilon = 0.5%(zp2-zpl)

1. MODULE: PART

*

#
#
# 1.1. Create the model
#
#

The model is called ’Spiral Welded Pipe’

mdb.models.changeKey (fromName="Model-1’, toName=’Spiral Welded Pipe’)
swpModel = mdb.models[’Spiral Welded Pipe’]

# 1.2. Create the part

#= #

#

# The part is a circle. It is created by a circle uses 2 points (center, radius).
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# Then this part is extruded ’pipelLength’ long.

#

# The part has 2 sections, the shell and the weld. The part is a circle.

# It is created by an arc that uses 3 points (center, pointl and point 2).
# Then this part is extruded to ’pipelength’ long and twisted

# ’pipePitch’ long/revolution.

#

# The part is called ’Pipe’

# Define points for creating the arc

H
#

H

weldGapBase = weldGap/math.sin(alpha)

xArcl = weldGapBase/2.

yArcl = (radius*radius - xArcl*xArcl)**0.5
xArc2 = -xArcl

yArc2 = yArcl

pipeCirc = Pi * pipeODia
pipePitch = pipeCirc*math.tan(alpha)

swpModel .ConstrainedSketch(name=’__profile__’, sheetSize=1.0)

swpModel.sketches[’__profile__’].Spot(point=(0.0, 0.0))

# Arches are drawn counterclockwise so it will give normal outward
swpModel .sketches[’__profile__’].ArcByCenterEnds(center=(0.0, 0.0)

, direction=COUNTERCLOCKWISE, pointl=(xArcl, yArcl), point2=(xArc2, yArc2))

swpModel .sketches[’__profile__’].ArcByCenterEnds(center=(0.0, 0.0)

, direction=COUNTERCLOCKWISE, pointl=(xArc2, yArc2), point2=(xArcl, yArcl))

swpModel.Part (dimensionality=THREE_D, name=’Pipe’, type=
DEFORMABLE_BODY)

swpModel.parts[’Pipe’] .BaseShellExtrude (depth=pipeLength, pitch=pipePitch,

sketch=swpModel.sketches[’__profile__’])

del swpModel.sketches[’__profile__’]

2. MODULE: PROPERTY

2.1. Create material

++

H OH O H H B H

material of the weld. The values are supplied by user.

matl = ’Material-Shell’

There are 2 materials in this model, material of the shell and
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mat2 = ’Material-Weld’

# Material 1 = the shell
youngl = 2.05ell
poissonl = 0.3

# Material 2 = the weld
young2 = 2.05ell
poisson2 = 0.3

pipeMaterial = swpModel.Material (name=mat1)
pipeMaterial.Elastic(table=((youngl, poissonl), ))
pipeMaterial.Plastic(table=(
(430500000,0),
(433125000,1.22E-05),
(435750000,2.44E-05) ,
(438375000, 3.66034E-05) ,
(441000000,4.8808E-05) ,
(443625000,6.1015E-05) ,
(446250000,7.32251E-05) ,
(448875000,8.54391E-05) ,
(451500000,9.76579E-05) ,
(454125000,0.000109883) ,
(456750000,0.000122115) ,
(459375000,0.000134357),
(462000000,0.00014661) ,
(464625000,0.000158878) ,
(467250000,0.000171164),
(469875000,0.000183472),
(472500000,0.000195807) ,
(475125000,0.000208176) ,
(477750000,0.000220587) ,
(480375000,0.00023305) ,
(483000000,0.000245576) ,
(485625000,0.000258181) ,
(488250000,0.000270882) ,
(490875000,0.0002837) ,
(493500000,0.000296663) ,
(496125000,0.000309803) ,
(498750000,0.00032316) ,
(501375000,0.000336781),
(5604000000,0.000350725) ,
(5606625000,0.000365063) ,
(509250000,0.000379881) ,
(5611875000,0.000395283),
(514500000,0.000411395) ,
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(5617125000,0.000428369) ,
(519750000,0.000446389) ,
(5622375000,0.000465677) ,
(525000000,0.000486501) ,
(627625000,0.000509182) ,
(5630250000,0.000534109),
(632875000,0.000561747) ,
(5635500000,0.000592655) ,
(638125000,0.000627506) ,
(5640750000,0.000667103) ,
(5643375000,0.000712412),
(5646000000,0.000764585) ,
(5648625000,0.000825002) ,
(651250000,0.000895311),
(5653875000,0.000977479) ,
(656500000,0.001073852),
(5659125000,0.001187224) ,
(661750000,0.001320926) ,
(5664375000,0.001478915) ,
(667000000,0.001665899) ,
(669625000,0.001887468) ,
(5672250000,0.002150257) ,
(5674875000,0.002462134),
(5677500000,0.002832422) ,
(680125000,0.003272159),
(5682750000,0.003794406) ,
(685375000,0.004414603) ,
(5688000000,0.005150989) ,
(690625000,0.006025094) ,
(5693250000,0.007062316) ,
(5695875000,0.008292589) ,
(5698500000,0.009751174) ,
(601125000,0.011479569) ,
(603750000,0.013526587) ,
(606375000,0.015949594) ,
(609000000,0.018815971),
(611625000,0.0222048) ,

(614250000,0.026208832) ,
(616875000,0.030936781),
(619500000,0.036515981) ,
(622125000,0.043095472) ,
(624750000,0.05084959) ,
(627375000,0.059982121),
(630000000,0.070731124),
(632625000,0.083374509) ,
(635250000,0.098236502) ,
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(637875000,0.115695123) ,
(640500000,0.13619083) ,
(643125000,0.16023651) ,
(645750000,0.188429017) ,
(648375000,0.221462487)))
pipeMaterial.plastic.Potential (table=
((0.981, 1.0, 1.0, 1.0, 1.0, 1.0), ))

weldMaterial = swpModel.Material (name=mat2)
weldMaterial .Elastic(table=((young2, poisson2), ))
weldMaterial.Plastic(table=(
(430500000,0),
(476437500,1.22E-05),
(479325000,2.44E-05),
(482212500,3.66E-05),
(485100000,4.88E-05) ,
(487987500,6.10E-05),
(490875000,7.32E-05) ,
(493762500,8.54E-05) ,
(496650000,9.77E-05) ,
(499537500,0.000109883) ,
(502425000,0.000122115) ,
(505312500,0.000134357) ,
(508200000,0.00014661) ,
(511087500,0.000158878) ,
(513975000,0.000171164) ,
(516862500,0.000183472) ,
(519750000,0.000195807) ,
(522637500,0.000208176) ,
(5625525000,0.000220587) ,
(528412500,0.00023305) ,
(5631300000,0.000245576) ,
(534187500,0.000258181) ,
(537075000,0.000270882) ,
(539962500,0.0002837) ,
(542850000,0.000296663) ,
(5645737500,0.000309803) ,
(548625000,0.00032316) ,
(5651512500,0.000336781) ,
(554400000,0.000350725) ,
(5657287500,0.000365063) ,
(560175000,0.000379881) ,
(663062500,0.000395283),
(565950000,0.000411395) ,
(568837500,0.000428369) ,
(571725000,0.000446389) ,
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(674612500,0.000465677) ,
(5677500000,0.000486501) ,
(680387500,0.000509182) ,
(5683275000,0.000534109) ,
(686162500,0.000561747) ,
(5689050000,0.000592655) ,
(691937500,0.000627506) ,
(594825000,0.000667103) ,
(697712500,0.000712412),
(600600000,0.000764585) ,
(603487500,0.000825002) ,
(606375000,0.000895311),
(609262500,0.000977479) ,
(612150000,0.001073852) ,
(615037500,0.001187224) ,
(617925000,0.001320926) ,
(620812500,0.001478915) ,
(623700000,0.001665899) ,
(626587500,0.001887468) ,
(629475000,0.002150257) ,
(632362500,0.002462134),
(635250000,0.002832422) ,
(638137500,0.003272159),
(641025000,0.003794406) ,
(643912500,0.004414603),
(646800000,0.005150989) ,
(649687500,0.006025094) ,
(652575000,0.007062316) ,
(655462500,0.008292589) ,
(658350000,0.009751174),
(661237500,0.011479569) ,
(664125000,0.013526587) ,
(667012500,0.015949594) ,
(669900000,0.018815971),
(672787500,0.0222048) ,

(675675000,0.026208832) ,
(678562500,0.030936781) ,
(681450000,0.036515981) ,
(684337500,0.043095472),
(687225000,0.05084959) ,
(690112500,0.059982121),
(693000000,0.070731124),
(695887500,0.083374509) ,
(698775000,0.098236502) ,
(701662500,0.115695123),
(704550000,0.13619083) ,



109

(707437500,0.16023651) ,
(710325000,0.188429017) ,
(713212500,0.221462487)))
weldMaterial.plastic.Potential(table=
((0.981, 1.0, 1.0, 1.0, 1.0, 1.0), ))

# 2.2. Create section

H
o

#
# There are 2 SECTIONS in this model, shell and weld

++

swpModel . HomogeneousShellSection(idealization=NO_IDEALIZATION,
integrationRule=SIMPSON, material=matl, name=’Section-Shell’,
numIntPts=9, poissonDefinition=DEFAULT, prelntegrate=0FF,
temperature=GRADIENT, thickness=pipeThickness, thicknessField=’’,
thicknessModulus=None, thicknessType=UNIFORM, useDensity=0FF)

swpModel . HomogeneousShellSection(idealization=NO_IDEALIZATION,
integrationRule=SIMPSON, material=mat2, name=’Section-Weld’,
numIntPts=9, poissonDefinition=DEFAULT, prelntegrate=0FF,
temperature=GRADIENT, thickness=pipeThickness, thicknessField=’’,
thicknessModulus=None, thicknessType=UNIFORM, useDensity=0FF)

# 2.3. Assign section

H
w

*

swpModel .parts[’Pipe’].Set(faces=
swpModel.parts[’Pipe’] .faces.findAt (((-0.397661,
-0.201437, 0.654762), )), name=’Set-1-shell’)

swpModel.parts[’Pipe’] .SectionAssignment (offset=0.0,
offsetField=’’, offsetType=TOP_SURFACE, region=
swpModel.parts[’Pipe’].sets[’Set-1-shell’],
sectionName=’Section-Shell’, thicknessAssignment=FROM_SECTION)

swpModel .parts[’Pipe’] .Set(faces=
swpModel.parts[’Pipe’] .faces.findAt (((-0.437571,
-0.085104, 0.662651), )), name=’Set-2-weld’)

swpModel.parts[’Pipe’] .SectionAssignment (offset=0.0,
offsetField=’’, offsetType=TOP_SURFACE, region=
swpModel.parts[’Pipe’] .sets[’Set-2-weld’],
sectionName=’Section-Weld’, thicknessAssignment=FROM_SECTION)

# NOTE:
# For a model with the conventional shell element,
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# it is suggested that the X-axis is the axial axis.

#

# The model uses Z-axis is the main axis so then the local axis must be defined.
# The local axis is cylindrical that states:

# x = radial direction, y = axial direction.

swpModel.parts[’Pipe’] .DatumCsysByThreePoints (coordSysType=
CYLINDRICAL, linel=(1.0, 0.0, 0.0), line2=(0.0, 1.0, 0.0), name=
’Datum csys-1’, origin=(0.0, 0.0, 0.0))

swpModel.parts[’Pipe’] .MaterialOrientation(
additionalRotationField=’’, additionalRotationType=ROTATION_NONE, angle=0.0
, axis=AXIS_1, fieldName=’’, localCsys=
swpModel.parts[’Pipe’] .datums[4], orientationType=SYSTEM,
region=Region(faces=swpModel.parts[’Pipe’].faces.findAt(((0.0, -radius,
pipeLength), (0.0, -radius, 0.0)), ((0.0, radius, 0.0), (xArcl, yArcl, 0.0)),
)))

# 3. MODULE: ASSEMBLY
#
# 3.1. Create the assembly

H—
"

$#

swpModel .rootAssembly.DatumCsysByDefault (CARTESIAN)
swpModel.rootAssembly.Instance (dependent=0FF, name=’Pipe-1’,
part=swpModel.parts[’Pipe’])

# Creating collars
swpModel.rootAssembly.DatumAxisByPrincipalAxis(principalAxis=

ZAXIS)
swpModel.rootAssembly.DatumPointByCoordinate (coords=

(0.0, 0.0, collar))
swpModel.rootAssembly.DatumPointByCoordinate (coords=

(0.0, 0.0, pipelLength-collar))

swpModel.rootAssembly.DatumPlaneByPointNormal (normal=
swpModel.rootAssembly.datums[4], point=
swpModel .rootAssembly.datums [5])
swpModel.rootAssembly.DatumPlaneByPointNormal (normal=
swpModel.rootAssembly.datums[4], point=
swpModel .rootAssembly.datums [6])

swpModel.rootAssembly.PartitionFaceByDatumPlane (datumPlane=



swpModel.rootAssembly.datums[7], faces=

swpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (((

0.0, radius, pipeLength/2.0), )))
swpModel.rootAssembly.PartitionFaceByDatumPlane (datumPlane=

swpModel.rootAssembly.datums [8], faces=

swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (((

0.0, radius, pipeLength/2.0), )))

# 4. MODULE: STEP
#
# 4.1. Create the step

H—
w

swpModel.StaticRiksStep(name=’Step-1’, nlgeom=0N, previous=
’Initial’)

# Requests for Field and History Output are placed after setting sets.

# 5. MODULE: INTERACTION
#
# Connect the pipe to the reference points with ’rigid body’

H—
"

$#

disRP = 1.2
z1RP = -disRP
z2RP = pipelength + disRP

swpModel.rootAssembly.ReferencePoint (point=(0.0, 0.0, z1RP))
swpModel.rootAssembly.ReferencePoint (point=(0.0, 0.0, z2RP))

swpModel .RigidBody (bodyRegion=Region (

faces=swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(

(0.0, -radius, 0.0), (0.0, radius, 0.0)), )),

name=’Constraint-1’, refPointRegion=Region(referencePoints=(

swpModel .rootAssembly.referencePoints[11], )))

swpModel .RigidBody (bodyRegion=Region(

faces=swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0.0, -radius, pipelLength), (0.0, radius, pipelength)), )),
name=’Constraint-2’, refPointRegion=Region(referencePoints=(

swpModel .rootAssembly.referencePoints[12], )))

# 6. MODULE: LOAD

$#
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#
# 6.1. Create the loads, internal pressure and bending moment

H
H

**

pressInt = 11314297.0286
momentLoad = 2*x7000000

#NOTE: internal pressure is defined by ’side2Faces’

swpModel.parts[’Pipe’].Surface (name=’Surf-Pressure’,
side2Faces=swpModel.parts[’Pipe’].faces.findAt (((
-0.437571, -0.085104, 0.662651), ), ((-0.397661, -0.201437, 0.654762), ),
)

swpModel.Pressure(createStepName=’Step-1’,
distributionType=UNIFORM, field=’’, magnitude=pressInt, name=’Pressure’,
region=swpModel.rootAssembly.instances[’Pipe-1’].surfaces[’Surf-Pressure’])

swpModel.Moment (cml= momentLoad, createStepName=’Step-1’,
distributionType=UNIFORM, field=’’, localCsys=None, name=’Moment-1’,
region=Region(referencePoints=(
swpModel.rootAssembly.referencePoints[11], )))

swpModel .Moment (cm1= -momentLoad, createStepName=’Step-1’,
distributionType=UNIFORM, field=’’, localCsys=None, name=’Moment-2’,
region=Region(referencePoints=(
swpModel.rootAssembly.referencePoints[12], )))

# 6.2. Create boundary conditions
H—

=+

swpModel .DisplacementBC (amplitude=UNSET, createStepName=’Step-1’,
distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=None,
name=’BC-1’, region=Region(referencePoints=(
swpModel.rootAssembly.referencePoints[11], )), ul=0.0, u2=0.0,
u3=UNSET, url=UNSET, ur2=UNSET, ur3=UNSET)

swpModel.DisplacementBC (amplitude=UNSET, createStepName=’Step-1’,
distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=None,
name=’BC-2’, region=Region(referencePoints=(
swpModel.rootAssembly.referencePoints[12], )), ul=0.0, u2=
0.0, u3=0.0, url=UNSET, ur2=UNSET, ur3=UNSET)

# 7. MODULE: MESH
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#
# 7.1. Create partitions

H
w

#
# Creating sets (partitions)

**

# Create the reference points
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znl))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn2))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn3))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn4))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znb))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn6))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znT7))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn8))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zn9))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, znl0))

swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zm))

swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zpl))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp2))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp3))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp4))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp5))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp6))
swpModel .rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp7))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
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(0.0, ypos, zp8))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zp9))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, ypos, zpl0))

# Partitions

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums [21], point2=
swpModel .rootAssembly.datums [22])

swpModel .rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums [22], point2=
swpModel .rootAssembly.datums [23])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel .rootAssembly.datums [23], point2=
swpModel.rootAssembly.datums [24])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums[24], point2=
swpModel.rootAssembly.datums [25])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums [25], point2=
swpModel .rootAssembly.datums [26])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums[26], point2=
swpModel .rootAssembly.datums [27])

# No shortest path partition between 27-28



swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel .rootAssembly.datums [28], point2=
swpModel.rootAssembly.datums [29])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums[29], point2=
swpModel .rootAssembly.datums [30])

swpModel .rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums [30], point2=
swpModel .rootAssembly.datums [31])

swpModel .rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel .rootAssembly.datums [31], point2=
swpModel.rootAssembly.datums [32])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel .rootAssembly.datums [32], point2=
swpModel.rootAssembly.datums [33])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt(
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums [33], point2=
swpModel .rootAssembly.datums [34])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums [34], point2=
swpModel .rootAssembly.datums [35])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel .rootAssembly.datums [35], point2=
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swpModel.rootAssembly.datums [36])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel .rootAssembly.datums [36], point2=
swpModel.rootAssembly.datums [37])

# No shortest path partition between 37-38

swpModel .rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums [38], point2=
swpModel .rootAssembly.datums [39])

swpModel .rootAssembly.PartitionFaceByShortestPath(faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel.rootAssembly.datums[39], point2=
swpModel .rootAssembly.datums [40])

swpModel.rootAssembly.PartitionFaceByShortestPath(faces=
swpModel .rootAssembly.instances[’Pipe-1’].faces.findAt (
((0, yneg, zplO+epsilon), )), pointl=
swpModel .rootAssembly.datums [40], point2=
swpModel.rootAssembly.datums [41])

# Create the set of top points

swpModel.rootAssembly.Set (name=’Set-Top’, vertices=
swpModel.rootAssembly.instances[’Pipe-1’].vertices.findAt(

(0.0, ypos, znl), ), ((0.0, ypos, zn2), ), ((0.0, ypos, zn3),
((0.0, ypos, zn4), ), ((0.0, ypos, znb), ), ((0.0, ypos, zn6),
(0.0, ypos, zn7), ), ((0.0, ypos, zn8), ), ((0.0, ypos, zn9),
((0.0, ypos, zn10), ), ((0.0, ypos, zm), ), ((0.0, ypos, zpl),
((0.0, ypos, zp2), ), ((0.0, ypos, zp3), ), ((0.0, ypos, zp4),
(€0.0, ypos, zp5), ), ((0.0, ypos, zp6), ), ((0.0, ypos, zp7),
(€0.0, ypos, zp8), ), ((0.0, ypos, zp9), ), ((0.0, ypos, zpl0),

swpModel.rootAssembly.DatumPlaneByPointNormal (normal=
swpModel .rootAssembly.datums [4], point=
swpModel .rootAssembly.datums [29])

swpModel .rootAssembly.DatumPlaneByPointNormal (normal=
swpModel.rootAssembly.datums[4], point=
swpModel .rootAssembly.datums [30])

b

b

b

b

)
)
),
)
)
)

), D))
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swpModel.rootAssembly.DatumPlaneByPointNormal (normal=
swpModel.rootAssembly.datums[4], point=
swpModel .rootAssembly.datums [32])
swpModel.rootAssembly.DatumPlaneByPointNormal (normal=
swpModel.rootAssembly.datums [4], point=
swpModel.rootAssembly.datums [33])

# Create the circle set

swpModel .rootAssembly.PartitionFaceByDatumPlane (
datumPlane=swpModel.rootAssembly.datums[61], faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((-0.122593, 0.428581, 3.27381), ), ((-0.13849, -0.423712, 1.060241), ),

))

swpModel.rootAssembly.PartitionFaceByDatumPlane (
datumPlane=swpModel.rootAssembly.datums[62], faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((-0.413812, -0.165743, 5.433735), ), ((-0.389887, -0.2161, 5.369048), ),
))

swpModel.rootAssembly.PartitionFaceByDatumPlane (
datumPlane=swpModel.rootAssembly.datums[63], faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((-0.006518, -0.445722, 5.761905), ), ((-0.44561, -0.011928, 5.301205), ),
))

swpModel .rootAssembly.PartitionFaceByDatumPlane (
datumPlane=swpModel.rootAssembly.datums[64], faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0.405486, 0.185181, 6.626506), ), ((-0.006518, -0.445722, 5.761905), ),
))

swpModel.rootAssembly.Set (edges=
swpModel .rootAssembly.instances[’Pipe-1’].edges.findAt (
((-0.334379, -0.294791, 5.05423), ), ((-0.35926, 0.2639, 5.05423), ), ((
-0.102578, 0.433807, 5.05423), ), ), name=’Set-L50’)
swpModel.rootAssembly.Set (edges=
swpModel.rootAssembly.instances[’Pipe-1’].edges.findAt (
((-0.174145, -0.410347, 5.277115), ), ((-0.165791, 0.413792, 5.277115), ),
((-0.445454, 0.01679, 5.277115), ), ), name=’Set-L25’)
swpModel.rootAssembly.Set (edges=
swpModel.rootAssembly.instances[’Pipe-1’].edges.findAt(
((0.210758, -0.3928, 5.722885), ), ((-0.18043, -0.407622, 5.722885), ), ((
-0.27998, 0.346874, 5.722885), ), ), name=’Set-R25’)
swpModel.rootAssembly.Set (edges=
swpModel.rootAssembly.instances[’Pipe-1’].edges.findAt(
((0.35983, -0.263122, 5.94577), ), ((-0.328356, 0.301485, 5.94577), ), ((
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0.079438, -0.438635, 5.94577), ), ), name=’Set-R50’)
# Create set of 4 points on the top

swpModel.rootAssembly.Set (name="Set-T1’, vertices=
swpModel .rootAssembly.instances[’Pipe-1’] .vertices.findAt(
((0.0, ypos, zn9), ), ))

swpModel.rootAssembly.Set (name="Set-T2’, vertices=
swpModel.rootAssembly.instances[’Pipe-1’].vertices.findAt(
((0.0, ypos, zn10), ), ))

swpModel.rootAssembly.Set (name=’Set-T3’, vertices=
swpModel.rootAssembly.instances[’Pipe-1’].vertices.findAt(
(€0.0, ypos, zpl), ), ))

swpModel.rootAssembly.Set (name=’Set-T4’, vertices=
swpModel.rootAssembly.instances[’Pipe-1’].vertices.findAt(
(€0.0, ypos, zp2), ), ))

# Create set of 4 points on the bottom

swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, zn9))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, znl0))

swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, zpl))
swpModel.rootAssembly.DatumPointByCoordinate (coords=
(0.0, yneg, zp2))

swpModel.rootAssembly.PartitionFaceByShortestPath(
faces=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((-0.440373, -0.069157, 5.238095), )), pointl=
swpModel.rootAssembly.datums [77], point2=
swpModel .rootAssembly.datums [78])

swpModel.rootAssembly.DatumPlaneByLinePoint (line=
swpModel .rootAssembly.datums [4], point=
swpModel.rootAssembly.datums [79])

swpModel.rootAssembly.PartitionFaceByDatumPlane (
datumPlane=swpModel.rootAssembly.datums[82], faces=
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swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0.146846, -0.420889, 5.892857), ), ((-0.056343, -0.442195, 5.831325), ),
((-0.080843, 0.438378, 5.892857), ), ))

swpModel.rootAssembly.Set (name=’Set-B1’, vertices=
swpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt(
((0.0, yneg, zn9), )))

swpModel.rootAssembly.Set (name=’Set-B2’, vertices=
swpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt(
((0.0, yneg, zn10), )))

swpModel.rootAssembly.Set (name=’Set-B3’, vertices=
swpModel.rootAssembly.instances[’Pipe-1’].vertices.findAt(
((0.0, yneg, zpl), )))

swpModel.rootAssembly.Set (name="Set-B4’, vertices=
swpModel .rootAssembly.instances[’Pipe-1’].vertices.findAt(
((0.0, yneg, zp2), )))

# 7.2. Create mesh

H—
H

=+

sizeMesh = 0.025 #(for the simulation)

# NOTE:

# TRI = triangle

# QUAD = guadrilateral

# technique = FREE / STRUCTURED

swpModel.rootAssembly.setMeshControls (elemShape=TRI,
regions=
swpModel.rootAssembly.instances[’Pipe-1’].faces.findAt (
((0.012643, -0.445591, 5.935145), ), ((0.012661, -0.44559, 5.890469), ),

((

-0.006518, -0.445722, 5.761905), ), ((-0.060001, -0.441713, 5.107143), ),
(

(0.03978, 0.443991, 5.892857), ), ((0.155111, 0.417913, 6.809524), ), ((

-0.056343, -0.442195, 5.831325), ), ((0.358932, -0.264345, 6.228916), ),
((

-0.158908, -0.416484, 5.630952), ), ((-0.011358, 0.445625, 5.630952), ),
((

0.095033, -0.435522, 5.238095), ), ((-0.046136, 0.443376, 5.761905), ), ((

-0.422056, 0.143456, 5.168675), ), ((-0.206331, -0.395143, 5.698795), ),
((

-0.122593, 0.428581, 3.27381), ), ((-0.027426, 0.444925, 5.238095), ), ((
-0.433896, 0.102202, 0.392857), ), ((0.369481, 0.249389, 1.987952), ), ((
-0.091119, -0.436358, 10.607143), ), ))



swpModel.rootAssembly.seedPartInstance(deviationFactor=0.1,
regions=(swpModel.rootAssembly.instances[’Pipe-1°], ),
size=sizeMesh)
swpModel.rootAssembly.generateMesh(regions=(
swpModel .rootAssembly.instances[’Pipe-1’], ))

# For additional requested Field and History output

swpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-2’, rebar=EXCLUDE, region=
swpModel .rootAssembly.sets[’Set-Top’], sectionPoints=
DEFAULT, variables=(’COORD’,))

swpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-3’, rebar=EXCLUDE, region=
swpModel.rootAssembly.sets[’Set-T1’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

swpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-4’, rebar=EXCLUDE, region=
swpModel.rootAssembly.sets[’Set-T2’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

swpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-5’, rebar=EXCLUDE, region=
swpModel .rootAssembly.sets[’Set-T3’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

swpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-6’, rebar=EXCLUDE, region=
swpModel.rootAssembly.sets[’Set-T4’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

swpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-7’, rebar=EXCLUDE, region=
swpModel.rootAssembly.sets[’Set-B1’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

swpModel.FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-8’, rebar=EXCLUDE, region=
swpModel.rootAssembly.sets[’Set-B2’], sectionPoints=
DEFAULT, variables=(’UR’,’COORD’,))

swpModel .FieldOutputRequest (createStepName=’Step-1’, name=
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’F-Output-9’, rebar=EXCLUDE, region=
swpModel.rootAssembly.sets[’Set-L25°], sectionPoints=
DEFAULT, variables=(’S’, ’SE’, ’UR’, ’SF’, ’COORD’))

swpModel .FieldOutputRequest (createStepName=’Step-1’, name=
’F-Output-10’, rebar=EXCLUDE, region=
swpModel.rootAssembly.sets[’Set-L50’], sectionPoints=
DEFAULT, variables=(’S’, ’SE’, ’UR’, ’SF’, ’COORD’))

# 8. MODULE: JOB

#

# 8.1. Create job

#= #
mdb. Job(atTime=None, contactPrint=0FF, description=’’, echoPrint=0FF,

explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=0FF,
memory=90, memoryUnits=PERCENTAGE, model=’Spiral Welded Pipe’, modelPrint=
OFF, multi