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ABSTRACT 
 

This thesis presents a quantitative approach to human reliability analysis (HRA) in 

offshore emergency conditions. Most of the traditional HRA methods use expert 

judgment techniques as human performance data for emergency situations are not readily 

available. Expert judgment suffers from uncertainty, incompleteness and when collected 

from multiple experts, may have conflicting views. This thesis investigates these 

limitations and presents a proper aggregation method to combine multiple expert 

judgments using Fuzzy Theory to handle the uncertainty and Evidence Theory to handle 

the incompleteness and conflict. Furthermore, the traditional approaches of HRA suffer 

from the unrealistic assumption of independence among different performance shaping 

factors (PSFs) and associated actions. This thesis addresses this issue using the Bayesian 

network (BN) approach which can represent the interdependencies among different PSFs 

and associated actions in a direct and structured way. The integration of Fuzzy Theory 

and Evidence Theory to the BN approach gives an HRA model that can better estimate 

the success or failure likelihood of personnel in offshore emergency conditions. 

Incorporation of environmental factors makes the model applicable for offshore 

emergencies occurring in harsh environments. Finally the thesis presents a new 

methodology to collect human performance data using a virtual environment. Using the 

collected data, a simplified BN model of offshore emergency evacuations is tested and 

verified. 
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Chapter 1: Introduction 

1.1 Background 

 

Human reliability is the probability that a person correctly performs a system-required 

activity in a required time period when time is a limiting factor (Swain & Guttmann, 

1983). The recognition of the potential contribution of human error in accidents initiated 

the development of different human reliability analysis (HRA) methods. As human 

reliability is found to be closely related to the field of human factors engineering, these 

HRA methods include the study of human performance shaping factors (PSFs) 

(Blackman, Gertman, & Boring, 2008). Starting in 1960, the search for an effective HRA 

method to quantify human error continued and today a number of HRA methods are 

available. These methods can be classified into two broad categories: the first generation 

HRA and the second generation HRA (Pasquale, Iannone, Miranda, & Riemma, 2013). 

At the early stage of human error quantification, the human was considered as a 

mechanical or an electrical component and the likelihood of failure of human action was 

calculated without any consideration of the causes or reasons of human behavior leading 

to this failure. These quantification methods are known as the first generation HRA. In 

the early 1990s significance of the cognitive aspect was recognized and the second 

generation HRA methods were developed with the incorporation of cognitive aspects in 

human error quantification. Though the HRA techniques in both groups have their own 

strengths, most of them suffer from two major limitations. 
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The first limitation is associated with the fact that the majority of the HRA methods use 

expert judgment techniques, as human performance data for emergency situations are 

generally not available (Kirwan, 1994). Single expert judgment can be biased and can 

suffer from uncertainty and incompleteness due to partial ignorance of the emergency 

context. One potential solution is to use multiple expert judgments and that requires the 

development of a proper aggregation method to combine multi-expert knowledge that can 

minimize the uncertainty, incompleteness and conflict among different experts. This 

thesis presents the use of Fuzzy Theory (Lee, 2005) and Evidence Theory (Sentz & 

Ferson, 2002) for a proper aggregation of multiple expert judgments. 

 

The second limitation is that most of the HRA techniques such as SLIM assume 

unrealistic independence among PSFs and associated actions. In reality the tasks 

performed in an emergency situation are related to each other and the success or failure of 

one task has effect on each subsequent task that need to be performed. In this thesis, the 

dependency is modeled using the Bayesian Network (BN) approach (Pearl, 1988). The 

BN model is then extended with help of information-decision-action (IDA) cognitive 

model to consider the dependency among different PSFs (Chang & Mosleh, 2007). To 

make the model applicable for offshore emergencies in harsh environments, impact of 

harsh environments on different PSFs has been considered and that leads to a BN model 

of human factor risk assessment during offshore emergencies in harsh environments. 

 

While applying the BN approach for offshore emergency case studies, it was found that 

an inherent problem with BN is to obtain the huge numerical parameters that are needed 
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to fully quantify it. For a binary variable with n binary predecessors in a BN, a total of 2
n
 

parameters must be specified. In the initial model presented in the thesis it has been 

assumed that these data are collected from multiple experts. The collected data are then 

aggregated using the Fuzzy and Evidence theories as stated earlier in this section. 

However, collecting 2
n
 parameters from different experts when n is sufficiently large is 

very challenging. This necessitated a more efficient, systematic and reliable way of data 

collection. This thesis presents a methodology to collect human performance data for all 

2
n
 combinations of n factors by a two level n factor experiment (assuming all factors are 

binary) using a virtual environment. Using this new data collection methodology a 

simplified BN model of offshore emergency evacuation is verified. 

 

1.2 Objective 

 

The main objective of this thesis was to develop an appropriate HRA methodology for 

offshore emergency conditions. Based on this objective the following goals were set: 

 

 To develop a proper aggregation method to handle the uncertainty, incompleteness 

and conflict among multiple domain expert judgments about human performance. 

 

 To develop a direct and structured HRA methodology to present the dependencies 

among different PSFs and associated actions. 
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 To develop a methodology to collect human performance data and use it for test and 

verification purpose. 

  

1.3 Novelty and contribution 

 

The novel contributions of this thesis are: 

 

 An aggregation method to combine multiple expert judgments about human 

performance data. Fuzzy theory is used to handle the uncertainty associated with the 

expert judgment. Evidence theory is used to minimize the incomplete knowledge due 

to partial ignorance and conflict among multiple experts. 

 

 A BN model for HRA in offshore emergency conditions that can represent the 

dependency among different PSFs and associated actions. Interdependencies of PSFs 

are identified with the help of the IDA model and used in the BN model for an 

improved quantitative analysis of human reliability. Consideration of the dependency 

results in better estimation of human error probability. 

 

 

 Extension of the basic BN model to incorporate the effect of harsh environments on 

human performance in offshore emergency conditions. This extension makes the 

HRA model more realistic and efficient as operators working offshore have a higher 

chance to face an emergency condition in a harsh environment. 
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 A new methodology for human performance data collection when collecting data 

from experts is challenging. As data required to apply BN approach in HRA is huge, 

expert judgment technique is hard to apply. A new data collection methodology is 

proposed in this thesis using the virtual environment.  

 

 

 Testing and verification of a simplified HRA model of offshore emergency 

evacuation using the collected data. 

 

1.4 Organization  

 

The thesis consists of three manuscripts: two of the manuscripts have been accepted and 

published; the third one has been submitted for publication.   

 

The thesis starts with a brief introduction to the HRA methodologies and the existing 

limitations. It then gives an overview of the two major limitations addressed in this 

research. The objective of the thesis is specified and novelties and contributions of the 

thesis are listed. These constitute Chapter 1. 

 

Chapter 2 presents the literature review. The literature review gives an overview of 

human behavior and response modeling, describes different PSFs and their 

interdependencies and presents different HRA methodologies, their strengths and 
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limitations. This section also gives an account of the previous applications of BN in GRA 

applications. 

 

Chapter 3 introduces a BN model of HRA during offshore emergency conditions. PSFs 

affecting human performance in different steps of offshore evacuation are identified. The 

estimated likelihoods of these PSFs are collected from multiple experts and combined 

using Evidence Theory. Finally, a BN of these PSFs is developed to estimate the success 

or failure likelihood of an operator in case of an offshore emergency evacuation. This 

chapter is published in the Journal of Safety Science, 2013. 

 

Chapter 4 presents an extension of the previous model presented in Chapter 3. The IDA 

model is first used to represent the interdependencies among different PSFs and then it is 

transformed into a BN for quantitative analysis. Like the first model, this model also uses 

expert judgment technique for data collection, but besides using Evidence Theory to 

handle incompleteness and conflict this model also uses Fuzzy Theory to handle the 

uncertainty. Inclusion of environmental factors in the model makes it applicable for 

offshore emergencies in harsh environments. This chapter is published in the 32
nd

 

International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2013. 

 

Chapter 5 presents a new methodology for human performance data collection. This 

chapter proposes a way to collect human performance data for all 2
n
 combinations of n 

factors by a two level n factor experiment (assuming all factors are binary). Using the 
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collected data, a simplified BN model of offshore emergency evacuation is assessed. This 

chapter is submitted to the Journal of Reliability Engineering and System Safety. 

 

Chapter 6 concludes the thesis and discusses future scopes of work. 
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Chapter 2: Literature review 

2.1 Introduction to Human Reliability Analysis (HRA) 

 

Human reliability as defined in Swain & Guttmann (1983) is the probability that a person 

correctly performs system-required activity in a required time period (if time is a limiting 

factor). The objective of a human reliability analysis (HRA) stated by Swain & Guttmann 

(1983) is „to evaluate the operator‟s contribution to system reliability‟ and, more 

precisely, „to predict human error rates and to evaluate the degradation to human–

machine systems likely to be caused by human errors in association with equipment 

functioning, operational procedures and practices, and other system and human 

characteristics which influence the system behavior‟. 

 

The origins of HRA methods dates from the year 1960 with an aim to identify, model, 

and quantify the probability of human errors. By mid-80s a few techniques for assessment 

of human reliability, in terms of propensity to fail, had been developed. With this 

recognition of the potential contribution of human errors in accidents, search for an 

effective HRA technique continued and resulted in the development of a handful of HRA 

techniques. The techniques can be divided essentially into two categories: first and 

second generation. 

 

The first generation HRA methods are based on the theory of probabilistic risk 

assessment (PRA). These methods consider the human as a mechanical component and 

assume that, just as for mechanical or electrical components, humans can have natural 
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deficiencies and can logically fail to perform tasks (Pasquale et al., 2013). The focus of 

these methods is the quantification of likelihood of failure of human action without 

considering the causes and reasons of human behavior leading to this success/failure. 

 

In the early 1990s, the need to improve HRA approaches to incorporate the cognitive 

human aspect initiated a number of important research and development activities around 

the world. These efforts led to much progress in first generation methods and the 

evolution of new techniques, referred to as second generation. The focus shifted to the 

cognitive aspects of humans, the causes of errors rather than their frequency, and the 

study of the interaction of the different human factors that increase the probability of error 

(Pasquale et al., 2013). These methods are based on cognitive models which are more 

appropriate to explain human behaviour and meet the need to include the role of human 

cognition in human performance. 

 

Before going into details of different HRA techniques in both categories some necessary 

background is covered. Section 2.2 provides necessary background of human behavior 

and response modeling to understand the second generation methods. Section 2.3 gives an 

overview of different human performance influencing factors, and the interrelation of 

performance influencing factors with IDA models. This section mainly focuses on the 

internal factors that are used in the qualitative and quantitative analysis of human 

reliability. Section 2.4 discusses environmental factors and their effect on human 

performance. Finally, in Section 2.5 the strengths and weaknesses of different HRA 

techniques have been discussed. 
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2.2 Human behavior & response modeling 

2.2.1 Information, Decision and Action (IDA) Model 

 

As the name suggests, the information, decision and action (IDA) model consists of three 

major components – the Information Module (I), the Problem Solving/ Decision Making 

Module (D) and the Action Module (A) (Smidts, Shen, & Mosleh, 1997). The cognitive 

process of the operator is dependent on these modules and their inter-communication as 

depicted in Figure 2.1. 

 

 

Figure 2.1: Cognitive process model of single operator (after Smidts, Shen, & Mosleh, 1997) 

 

 

As shown in Figure 2.1, the problem-solving/decision-making module is the core of the 

cognitive process model and is responsible to formulate a problem statement (diagnosis) 

and to select an appropriate response to solve the problem (decision-making). Required 

information for problem statement formulation is collected from the information module. 
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Thus the information module works as a communication medium between the working 

environment and the problem-solving/decision-making module. Once the problem-

solving/decision-making module formulates the problem statement and chooses a strategy 

to solve the problem, the decision is directed to the action module. The action module 

then executes the actions according to the decision. 

 

The problem-solving/decision-making module is the kernel of the operator cognitive 

process model and hence its development has been the main focus of the IDA model. To 

describe the cognition process three basic elements of the problem-solving/decision-

making module need to be illustrated. These are: 1) memory, 2) problem definition and 

problem solving strategies, and 3) a set of characteristics representing the operator‟s state 

of mind and the cognitive process. 

 

2.2.1.1 Memory Structure 

 

The information received or retrieved from the external environment is first registered or 

stored in a hierarchical memory structure before being processed. The hierarchy is 

developed according to type and recency. Different memory structures have been 

proposed over the years by cognitive scientists (Squire, 1987). In IDA, the structure of 

memory is categorized based on information type and its relation to the cognitive activity. 

The proposed memory structure has three areas: working memory, intermediate memory, 

and knowledge base. The schematic representation of the IDA memory and its relation to 

the main elements of the model is depicted in Figure 2.2. 
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Figure 2.2: Memory structure in IDA (after Smidts, Shen, & Mosleh, 1997) 

 

Working memory is the memory unit with the most limited storage capacity and stores 

the most recent information, mainly the ones involved in current cognitive processes  

(Newell, Rosenbloom, & Laird, 1989). The information may come from external sources 

or can be the rules and knowledge recently triggered from intermediate memory or 

knowledge base. In IDA, the working memory is assumed to store one set of related 

information and the set contains only a limited number of elements (Miller, 1956; 

Broadbent, 1975).  
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In terms of recency, next to working memory is the intermediate memory. The least 

recent information of the working memory is not actually forgotten, rather it is transferred 

to intermediate memory and can be retrieved any time with proper stimulus. While 

working memory is the active short-term memory, intermediate memory is the passive-

short memory. The storage capacity is also limited but larger compared to working 

memory and assumed to be unlimited during the period of abnormal situation (Smidts, 

Shen, & Mosleh, 1997). 

 

Knowledge base is the long-term memory and has the largest capacity compared to other 

two. Past experience, basic knowledge, memorized procedures and guidelines are all 

stored in knowledge base. When required, information can be retrieved from the 

knowledge base and placed in the working memory. On the other hand, with time, 

information stored in the intermediate memory transforms into a part of knowledge base. 

 

2.2.1.2 Problem definition and problem solving strategies 

 

The first step in case of an abnormal event is to state the problem to be solved and the 

goal to be pursued. Goals may not be fixed for the entire time frame; it may change 

eventually according to the context of the emergency at that time. There can be multiple 

goals that the operator may try to address at the same time. In case of multiple goals, 

proper prioritization is needed and goals with higher priority should be resolved earlier. 
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The next step is coming up with strategies to address the defined problem. Strategies 

should be chosen to solve the problem and also while making the decisions. Research has 

shown that only a small set of strategies are applicable for a wide range of situations 

(Newell & Simon, 1972; Pylyshyn, 1990). Moreover it has been shown that there are no 

strategic differences between experts and novices (Reimann & Chi, 1989). Reason (1990) 

proposed similarity matching and frequency gambling as two basic strategies. Mosleh, 

Shen, & Smidt (1996) gave a more complicated and realistic list of different available 

strategies. Among them six problem-solving strategies and one decision-making strategy 

have been identified and used in IDA. The problem-solving strategies are namely: 

programmed response, direct matching, follow procedure, logic expansion, trial and error 

and wait and monitor. At the end of applying problem-solving strategies, the problem 

solver may end up with a single solution or a bunch of alternative solutions that cannot be 

ranked, prioritized or preferred without additional criteria. This is where the decision-

making strategy has to play role to choose one solution from the available ones. The only 

decision making strategy applied in IDA is the „cost/ benefit optimization‟. Either cost or 

benefit can be defined in terms of various measures such as effort, money, personal or 

organizational consequences etc. 

 

2.2.1.3 Mental State 

 

It has been referenced in different literatures (Huang, Siu, Lanning, Carroll, & Dang, 

1991; Smidts, 1992) that the human cognition system has an additional element that 

works as an engine for the cognitive process and provides necessary motivation for 
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thinking, problem-solving, decision-making and leading to formation of intention to act. 

This is the mental state of the operator. The mental state together with the memory 

represents the operator‟s cognitive and psychological states. The mental state influences 

the dynamic activities within the information, decision and action modules.  

 

Extensive research has been done to identify factors that influence the mental state and 

the information, decision, action modules of the operator. Different influencing factors 

and their effect on human cognitive behavior is described in the next section. 

 

2.3 Performance Influencing Factor/ Performance Shaping Factor 

 

A performance shaping factor (PSF) is an aspect of the human‟s individual 

characteristics, environment, organization, or task that specifically decrements or 

improves human performance, thus respectively increasing or decreasing the likelihood of 

human error (Blackman, Gertman, & Boring, 2008). These factors are referred to by 

different terms in the literature: PSF (performance shaping factors), PIF (performance 

influencing factors), IF (influencing factors), PAF (performance affecting factors), EPC 

(error producing conditions), CPC (common performance conditions), and so on. 

 

PSFs can be thought of as a subset of causal factors and mechanisms through which a 

causal model of operator behavior is constructed. Different PSF identification methods 

and taxonomies are developed as to be suitable for different purposes and application 

areas (Kim & Jung, 2003). However, use of different methods and taxonomies causes two 



16 

 

 

obvious problems. First, it is hard to ensure that the identified set of PSFs is complete. 

Second, using different sets of PSFs for different human reliability analysis 

methodologies will give different results, making the comparison of the methodologies 

difficult, if not meaningless. This necessitated the development of a standard set of PSFs 

which is complete and can be used throughout different human performance evaluation 

methodologies. Chang & Mosleh (2007) proposed a hierarchical set of PSFs to cover a 

broader set of causal types and mechanisms and developed a performance influencing 

factors model for information, decision and action in crew context (IDAC). Later, Groth 

& Mosleh (2012) used the IDAC cognitive model and extended it using additional 

information to get a comprehensive set of PSFs that is orthogonal, measurable and can be 

used as a standard. The additional information includes a human performance database 

(HERA), different HRA methods, operational events and a series of expert workshops. 

 

PSFs in this standard set can be divided into two broad categories: internal and external 

PSFs (Wu S., Sun, Qin, & Huang, 2006). While the internal PSFs are those which 

influence the operator‟s cognitive, emotional and physical states (e.g. stress), the external 

PSFs are influencing factors from the external world (e.g. safety and quality culture). The 

internal PSFs can further be classified into three categories: mental state, memorized 

information and physical factors. External PSFs can also be classified into four 

categories: team-related factors, organizational factors, environmental factors and 

conditioning events. The main focus of this research is to analyze the influence of the 

internal PSFs (the unit of analysis is chosen as person rather than team), among the 
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external PSFs only environmental factors are taken into account to make the HRA 

methodology applicable in harsh environments. 

 

The hierarchical structure and influence paths of IDAC internal and external PSFs are 

shown in Figure 2.3. 

 

Figure 2.3: The hierarchical structure and influence paths of the IDAC PSFs (after Chang & Mosleh, 

2007) 

 

 

The following subsection defines various PSFs in each category of internal and external 

PSFs and gives an overview of how they influence human performance. 



18 

 

 

2.3.1 Definitions of IDAC PSFs 

2.3.1.1 Definitions of the mental state factors 

 

Mental state covers the operator‟s cognitive and emotional states.  It consists of four PSF 

subgroups hierarchically structured to represent a process of cognitive and emotional 

responses to stimuli. At the bottom of the hierarchy is the “perception and appraisal” 

which processes the incoming information and stimulates operator‟s response according 

to the perception and situation appraisal. The emotional and cognitive responses 

generated at this step create the inner feelings represented by “strains and feelings”. The 

inner feelings propagate and turn to emotional expression represented by “emotional 

arousal”. Consequently, cognitive activities could begin to form a certain pattern or mode. 

Though the operator is most likely to be unaware of forming a specific pattern or mode 

(i.e. being biased) of his/her behavior, this is observable by other operators and is 

represented by “cognitive modes and tendencies”. Along with these four PSF subgroups 

another group denoted as “intrinsic characteristics” is included in mental state to capture 

the effect due to individual differences. 

 

PSFs in different subgroups are briefly discussed below and the details can be found in 

Chang & Mosleh, 2007. 

 

Cognitive modes and tendencies  
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Attention: refers to ideal distribution of cognitive and physical resources according to 

necessity. There are two types of attention identified: attention to current task and 

attention to surrounding environment.  

 

Alertness: refers to the total amount of attention resource available to detect the state of 

the external world.  

 

Bias: is defined as a cognitive preoccupation or obsession that causes strong confidence 

in reaching preset goals despite the presence of contradictory evidence. Extreme bias may 

become fixation and induce systematic errors. 

 

Emotional arousal 

Stress: Different definitions of stress can be found in the literatures. Gaillard (1993) 

defines stress as “a state in which the operator feels threatened and is afraid of losing 

control over the situation”. Swain & Guttmann (1983) define stress as “bodily or mental 

tension” which is caused by physical or psychological stressors, or both. Four types of 

stressor have been found: pressure, conflict, frustration and uncertainty. Each stressor has 

different influence on operator‟s behaviour. Pressure stressor can mobilize the resources 

of the operator.  Conflict stress originating from conflicting needs may end up in giving 

up or asking for help. Frustration stress can also end up in giving up, however sometimes 

this motivates the operator to seek an alternative method. Uncertainty stress, which 

originates from the lack of a clear picture of the situation, reveals behaviour that helps to 

gain more confidence such as obtaining more information. 
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Strains and feelings 

Time-constraint load: is referred to as a strain resulting from the feeling of not having 

sufficient time to solve the problem. It can also be defined as “time stress” and “time 

pressure” (Svenson & Maule, 1993). Time-constraint load is determined by the relative 

lengths of “perceived time available” and “perceived time required” for a task. Time-

constraint load is only dependent on the person‟s sense of time sufficiency (perception of 

the operator), not on the actual time available. 

 

Task related load: this is the aggregated task load induced by task quantity, complexity, 

importance, and accuracy requirement per unit of time. The perceived level of load 

depends on the individual operator‟s proficiency, and familiarity with the tasks. 

 

Non-task-related load: this is the load induced by extra work in addition to regular 

required duties. An example can be answering phone calls to or from management to 

inform of current system status while attending to all other necessary tasks. Non-task-

related load is also defined in the literature as “disturbance when performing an activity” 

(Kirwan, 1994), “distraction” or “interfering activities” (Malone, Kirkpatrick, Mallory, 

Eike, & Johnson, 1979) . 

 

Passive information load: is created by perception of the amount of incoming information 

from the external world. Too much information in a limited period of time gives no useful 

information, rather it disrupts the cognitive process.  
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Confidence in performance: is the feeling of assurance that the situation is on track. 

During an emergency situation the operator generates a list of goals to address the 

problem and continuously assesses the situation by the achievability of the goals. When 

performing multiple tasks at a time, the operator may have different confidence in 

performance in different tasks and a global confidence in performance reflects the 

aggregated results. 

 

Perception and appraisal 

Perceived severity of consequences associated with current diagnosis/decision: is the 

immediate perception of the potential adverse consequences which could result from the 

situation. This represents the importance of a task and potential consequences of failure or 

loss of integrity. 

 

Perceived criticality of system condition: is the appraisal of the system safety margin. 

Safety is often measured by the absolute values, rate of change and changing direction of 

a few parameters. These parameters have a normal operating range and exceeding the 

range denotes threat to the safety of the system. The criticality perception refers to how 

close the system is to the state of the failure. 

 

Perceived familiarity with the situation: this refers to operator‟s perception of similarity 

between the current situation and the situation he/she has experienced or been trained on. 
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Perceived system confirmatory/contradictory responses: this is the perception about what 

the response of the system actually is and what the response of the system ideally should 

be. The positive and negative system responses are evaluated to make check if the 

expected outcome is achievable. 

 

Perceived decision responsibility: is the awareness of responsibility and accountability 

toward the operator‟s decisions or actions. This often results in threat of failure and loss 

of job and some people tend to delegate or transfer decisions to other. 

 

Perceived complexity of strategy: As mentioned in section 2.2.1.2, an operator has to 

choose a strategy from an available set of strategies while solving a problem or making a 

decision. According to the demand on mental effort, each strategy has a complexity level. 

Perceived complexity of strategy refers to the operator‟s perception of such complexities. 

This perception will have effect on the operator‟s choice of strategy. 

 

Perceived task complexity: The level of cognitive and physical effort required to complete 

a task for an average operator is defined as perceived task complexity. The perceived task 

complexity depends on several factors such as precision requirements and computational 

demand. This perception when combined with the perceived familiarity with the situation 

creates the individual‟s perception of task difficulty. 

 

Perception of problem solving resources: refers to the high level assessment by the 

operator of his/her internal and external resources available to solve the problem. An 
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example of internal resources can be the number of methods that the operator knows for 

solving the problem. Examples of external resources can be procedures, decision-aid 

systems and remote technical support centers. 

 

Awareness of roles and responsibility: Two kinds of responsibilities are included in this 

category. These are primary responsibilities (officially assigned) and subsidiary 

responsibilities (not officially assigned rather done to enhance team work). 

 

Intrinsic Characteristics 

An intrinsic characteristics is what is known as “personality” (Wilson & Corlett, 1995) or 

“intrinsic human variability” (Dougherty, 1997) and refers collectively to these factors 

and dimensions. “Temperament” and “cognitive faculties” are two main subdivisions of 

intrinsic characteristics.  

 

“Temperament” refers to the style of the behavior, not the content of it. Several 

classifications of individual‟s response tendencies and personal traits are available. 

Among these IDAC considers three main PSFs: self-confidence, problem solving style, 

and morale-motivation attitude, to include in the type of temperament.  

 

The cognitive faculties cover the individual differences in mental capabilities (memory 

capacity, and sharpness) and are not currently modeled in the form of a specific set of 

PSFs. 
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Three types of temperaments are briefly defined below. 

 

Self-confidence: Self-estimation of the operator of his/her overall problem-solving 

knowledge and skills is referred to as self-confidence. Generally, self-confidence 

increases with experience. Either over confidence or the lack of it may lead to premature 

decisions, bias and fixation and negligence of safe practices. 

 

Problem-solving style: refers to an individual‟s inherent cognitive tendency. These 

tendencies influence operator‟s selection of problem-solving strategies. 

 

Morale-motivation-attitude: refers to the combined indication of an individual‟s 

willingness and commitment to his/her responsibilities. Morale and motivation lead to 

energy, direction and channeling, and helps to maintain or sustain the individual‟s 

behavior. Attitude however is more about positive or negative feelings towards the work. 

 

Memorized information 

Knowledge and experience: Knowledge refers to operator‟s understanding of his/her 

responsibilities, what those are and how those can be performed. Knowledge includes 

fundamental and engineering understanding of the system design, purposes, elements, 

functions and operations. It also includes operator‟s appreciation of his/her position and 

the specific activities or tasks being undertaken. 
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Experience can be gained by putting this knowledge into practice. During the direct or 

indirect interaction with the system, the operator uses his/her knowledge to cope with the 

situation, to solve problems or to make decisions and along with time these constitute 

his/her experience. 

 

Skills: Skills refer to the proficiency of the operator to understand the situation and take 

necessary decisions and actions as required without much cognitive effort. The more 

skilled the operator is, the higher is the work quality and the less is the response time. 

 

Memory of recent diagnoses, actions and results: While performing a role in any event, 

the operator gains a history of diagnoses, actions performed and the outcomes observed. 

The history soon becomes a part of the memory and influences the operator‟s behavior 

during the next events. 

 

Memory of incoming information: In case of an incident there is bunch of information 

coming from the system, from communication with other operators and other events. All 

these information is registered in the operator‟s memory and influence the operator‟s 

performance. 

 

Physical PSFs 

Fatigue: can be defined as the physical or mental weariness that can affect the operator‟s 

performance. Fatigue can induce more error on skill-based activities and can delay the 
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cognitive response in case of an emergency. Rosekind et al. (1994) defined fatigue as one 

of the most important PSFs in transportation industries. 

 

Physical abilities: measures the ergonomic compatibility between what the operator has 

and what the system requires. Too short to reach, too big to fit, too weak to lift are 

examples of physical inabilities. With each human-system interface design is associated a 

normal range, and if the operator‟s physical ability falls out of this range in any situation, 

he/she may not perform appropriately for the situation. 

 

The next subsection describes the influence of environmental factors on human 

performance. The other external factors are out of the scope this research and the details 

can be found in (Chang & Mosleh, 2007). 

 

2.4 Environmental factors and its impact on human performance 

 

This thesis focuses on developing a HRA methodology suitable for cold environments. 

Both the physical and mental performance of the operator can be adversely affected by 

the stressors imposed by cold environments. A list of such stressor can be found in 

Bercha et al., (2003) as shown in Table 2.1. 

 

Karwowski (2001) and Hoffman (2002) define a list of specific effects of these stressors 

on human performance. These effects are briefly described below. 
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Manual performance: In cold weather hypothermia begins as the body temperature 

begins to fall below the normal resting values. As the cooling condition continues, the 

metabolism increases, and as the metabolism increases, the amount of time a person can 

work reduces (Mäkinen, 2006). There is also loss of strength, mobility, and balance 

which affect the physical performance. Protective clothing needed for the extreme cold 

reduces the strength production capacity, decreases mobility and makes the operator 

unable to perceive external elements or cues. 

 

Table 2.1: General environmental factors affecting human performance (Bercha et al., 2003) 

Stressors Details 

Coldness Breathing difficulty   

Muscular stiffness  

Frost bite  

Lowered metabolism  

Hypothermia  

Bulky clothing  

Stiffness of suits impairing movement  

Slippery surfaces  

Adds weight/mass   

 

Combined Weather Effects Wind, snow, waves-impair HP  

 

Low visibility Ice, fog, lack of solar illumination 

Frost on windows, visors, glasses  

 

Remoteness Fear of unknown  

Stress for being detached from the family for a long 

time 
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Motor control and reaction times: Though decrease in reaction time for simple tasks is 

minimal in cold environments (except in the most extreme cases), it is not negligible for 

complex tasks. Decrease in reaction speed is linear with temperature. With the reducing 

temperature there is also increase in number of errors, incorrect responses, number of 

false alarms and a decreased ability to inhibit incorrect responses. 

 

Target tracking: An impairment of visual-motor tracking performance is observed in 

extreme coldness. Exposure of men fully dressed in arctic clothing to air temperatures of  

-25
◦
 C produced a 19% decrease in performance in comparison to that found at 23

◦
 C, and 

a further decrease in temperature to -41
◦
 C produced an additional 21% reduction. 

 

Memory and recall: An increase in the number of errors is observed as compared to 22
◦
 C 

ambient temperature while operators are exposed to 5
◦
 C air. Increased confusion and 

impaired consciousness induced by the extreme coldness are found to be the root causes 

of this increased number of errors. 

 

Fatigue: Fatigue is found to be either the main cause or a major contributing factor 

responsible for casualties, loss of life and damage to the environment and property. The 

cold and motion-rich environments can increase fatigue to a high level, both physically 

and mentally.  
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With the understanding of the cognitive modeling of human behavior and response and 

different PSFs and their influence, the following subsection now describes a few HRA 

techniques, their strengths, and limitations. 

 

2.5 Quantitative approaches of HRA 

 

2.5.1 Fault tree analysis (FTA) 

 

Since its innovation, fault tree analysis has always been one of the most popular failure 

analysis tools among reliability experts. Fault tree analysis is a top down approach and 

intends to represent the failure of a system through a cause effect relationship. At the top 

is an undesirable event which is the effect. Inventory characteristics, experience or 

judgment can be applied to identify this top event. The system is then investigated to 

define what single event, or combinations of events could have led to the top event. Two 

logical gates are very commonly used in the fault tree analysis: either an „AND‟ gate, 

which means that, all events under the gate must occur before the event above the gate 

can occur or an „OR‟ gate, which means that, the event above the gate will occur if any 

one (or more) of the events immediately below it occurs (Kirwan B. , 1994). 

 

Fault tree analysis has long been used to assess the probability of occupational accident. 

Because human errors can be important contributors to risk, the inclusion of human error 

possibilities in FTA is important to provide a realistic picture of the overall failure 

probability and risk. Stamatelatos et al., (2002) defines the type of human error that 
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should be modeled while doing the FTA and these are: test and maintenance related 

errors, errors causing initiating events, procedural errors during an incident or accident, 

errors leading to inappropriate actions, detection and recovery errors. If human error is 

considered as the top event, these different types of errors are the contributor and the 

intermediate events. Again each of these errors is a result of the states of different PSFs at 

a given time. So, PSFs can be modeled as the basic events. Johnson (1999) shows how 

psychological and physiological factors of the operator can be modeled to get the ultimate 

human error probability. 

 

Figure 2.4 shows an example of basic structure of fault tree for human error probability 

calculation. 

 

Figure 2.4: Basic fault tree structure for human error calculation 
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Fault tree is very easy to understand and use. It can be used for both the qualitative and 

quantitative analysis of human error. But the underlying dependencies of the basic events 

(here the performance shaping factors) are not considered in this approach. The likelihood 

of different basic events and conditional dependencies of intermediate events are 

collected from analysts and can be biased.  Assuming two analysts have the same 

technical knowledge, there will still be notable differences in the fault trees that each 

would generate for the same situation. Judgment of analyst can also contain uncertainty 

and incompleteness. 

 

2.5.2 Success likelihood index methodology (SLIM) 

 

Success Likelihood Index Method (SLIM) is a technique used in the field of HRA, for the 

purposes of evaluating the probability of a human error occurring throughout the 

completion of a specific task. The original source reference Embrey et al., (1984) and the 

Human reliability Assessor‟s Guide (Kirwan, Embrey, & Rea, 1988) define the formal 

stages of the SLIM procedure. Here, the main steps of the techniques are described in a 

rather informal and easy to understand way. 

 

Step 1: The selection of the expert panel. 

To carry out the SLIM exercise a panel of experts is required. Selection of experts is 

critical and should be made in a way that the panel meets three basic requirements – 

substantive expertise, normative expertise and group cohesion. Substantive expertise 

means that experts should possess the knowledge and experience (generally minimum 10 
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years) in the subject matter of the human reliability quantification (HRQ) exercise. 

Normative expertise refers to the requirement that expert must be familiar with 

probabilities and should be able to appreciate the magnitude of the differences among 

them. Group cohesion refers to how the experts in the panel work as a group. When the 

cohesion is strong the experts not only shares own opinion about the scenarios and their 

probabilities but also are receptive to the views of other experts. A workable group would 

have three main substantive experts, one human factor professional, one safety assessor 

and one facilitator. 

 

Step 2: The definition of situations and subsets. 

For unbiased judgment it is required that all members in the expert panel share the same 

mental model of the scenarios. To facilitate this need the assessor tries to gather as much 

information as possible including information on likely PSFs. Once the scenarios are 

explored by the panel, the assessor can group the scenarios into subsets to take the 

advantage of the degree of homogeneity of the PSFs affecting them. 

 

Step 3: The elicitation of PSFs. 

Next the panel identifies a set of PSFs which can affect operator‟s performance positively 

or negatively while performing a task. Typical PSFs used are: the time pressure or stress, 

the quality of information, the quality of procedures, consequences as perceived by the 

operator‟s, the level of complexity of the task, the amount of teamwork required and level 

of training or competence. 
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Step 4: The rating of the tasks on the PSF scale. 

After listing all the possible human errors arising in the scenario, the panel has to decide 

to what extent each PSF is optimal or sub-optimal for that task in the situation being 

assessed. The rating for whether a task is optimal or sub-optimal for a particular PSF is 

made on a scale of 1 to 9, with 9 as optimal. 

 

Step 5: PSF weighting. 

Next the panel has to define weight for each identified PSF for each task. Weight refers to 

the relative importance of the PSF for the relevant task. Weightings after collected from 

the panel can be normalized so as to add up to unity. 

 

Step 6: The calculation of SLIs. 

In SLIM the degree of preference is calculated as a function of the sum of the weightings 

multiplied by their ratings for each item. The resultant preference is called success 

likelihood index (SLI). Equation 2.1 shows calculation of SLI. 

 

         (        )                                                         

Where:                                          
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The SLIs represent the likelihood of different errors and have to be calibrated in order to 

get the human error probabilities (HEPs). 

 

Step 7: Conversion of SLIs into probabilities. 

Studies on calibration suggest a logarithmic relationship of the form shown in Equation 

2.2 (Pontecorvo, 1965; Hunns, 1982). 

 

                                                                              

 

Where logs to base 10 are used and a and b are constants that can be derived either by the 

computer system or by the process of simultaneous equations, as long as at least two 

calibration probabilities have been assessed within each task subset (Kirwan, 1994). 

 

Estimation of human error probability using SLIM approach is pretty straightforward.  

Theoretical validity of this approach is at a reasonably high level. It does not require a 

detailed decomposition of the task and hence serves as a very flexible technique. 

However, there are some limitations of this approach. SLIM only focuses on the 

dominant PSFs and does not consider the effect of all possible PSFs. SLIM‟s PSFs are 

fairly global, in comparison to the more specific and perhaps more useful PSFs found in 

other HRA techniques. A proper aggregation method to combine the judgments of the 

experts from expert panel is not present. Moreover, dependency among PSFs and 

associated actions are not considered. 
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2.5.3 Technique for human error rate prediction (THERP) 

 

Among the first generation techniques, THERP is the most popular and effectively used 

method. The main author Swain (Swain & Guttmann, 1983) developed the methodology 

over a significant period of time and the THERP handbook has been proven as a very 

useful document in the field of HRA. The original document is large enough to fit in the 

scope of this thesis. An overview of the main steps of the methodology is briefly 

presented here. Table 2.2 presents the outline of a THERP procedure for HRA (Bell, 

1984). 

Table 2.2: Outline of a THERP procedure (Bell, 1984) 

Phase 1: Familiarization 

 Plant visit 

 Review information from system analysts 

Phase 2: Qualitative assessment 

 Talk or walk through 

 Task analysis 

 Develop HRA event trees 

Phase 3: Quantitative assessment 

 Assign nominal HEPs 

 Estimate the relative effects of PSFs 

 Assess dependence 

 Determine success and failure probabilities 

 Determine the effects of recovery factors  

Phase 4: Incorporation 

 Perform a sensitivity analysis, if warranted 

 Supply information to system analysts 
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As a total methodology THERP deals with the familiarization and qualitative assessment. 

But our primary focus is to look at the quantitative assessment. The quantification part of 

the THERP comprises the following: 

 

1. A database of human errors: The impact of PSFs on human actions can be 

retrieved from the database. The assessor can modify the database to reflect the real 

impact according to the scenario. 

 

2. A dependency model: This model calculates the degree of dependency between 

two actions. For example, in case of an emergency evacuation if the operator fails to 

detect an alarm, he/she will fail to act accordingly to the alarm as this action is dependent 

on the former. 

 

 

3. An event tree modeling approach: This combines HEPs calculated for individual 

steps in a task into an overall HEP for the task as a whole. Two types of event tress can be 

used. The first one is, a human reliability analysis event tree (HRAET) to represent the 

operator‟s performance. This one is broadly used and an example is shown in Figure 2.5. 

Alternatively, an operator action event tree can also be used (Whittingham, 1988).In both 

cases, the sequence of events is represented via the event tree and possible failures are 

considered at each branch in the tree. The errors are then quantified and recovery paths 

are added if necessary 
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Figure 2.5: Scheme for the construction of a HRA-THERP event tree: Each node in the tree is related 

to an action, the sequence of which is shown from the top downwards. Originating from each node 

are two branches: The branch to the left, marked with a lowercase letter, indicates the success; the 

other, to the right and marked with the capital letter, indicates the failure. (after Pasquale et al., 

2013) 

. 

4. Assessment of recovery paths: Recovery paths should be added in the event tree 

as required. For example, in procedural sequences operator often gets a chance in the later 

step of the procedures to recover from an earlier error in a previous step. Without a proper 

identification of recovery opportunities, the human error factor may be overestimated. 

 

THERP has been very well used in practice and offers a powerful methodology that is 

auditable by the assessor. In terms of accuracy it is found to perform well compared to 

other methodologies. One of the major disadvantages is that it does not offer enough 

guidance in modeling both scenarios and the impact of PSFs on errors. While some users 

make extensive use of PSFs in determining impacts on HEPs, others use only a nominal 

effect of “stress” in some cases. Another limitation is that, it considers only the external 
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error modes and does not look into the details of the psychological error mechanisms. Its 

consistency as a technique has also been questioned is some literatures (Brune et al., 

1983; Waters, 1989). 

 

2.5.4 Cognitive reliability error analysis method (CREAM) 

 

Eric Hollnagel (1998) proposed CREAM with an aim that this HRA technique can be 

used in both performance prediction and accident analysis. CREAM is a second 

generation HRA method and characterizes human performance from a „thinking‟ 

perspective rather than a doing „perspective‟. The CREAM technique consists of a 

method, a classification scheme and a model. 

 

The main principle of CREAM method is that it is fully bi-directional. The same 

principles can be applied for retrospective analysis – in the search for causes, and for the 

predictive analysis – performance prediction. The method is recursive, rather than strictly 

sequential. Finally, the method contains a clear stop-rule – a well-defined condition/ 

conditions that determine when an analysis or a prediction has come to the end. 

 

CREAM uses a model of cognition, the cognitive control model (COCOM) (Hollnagel, 

1993). COCOM focuses on how actions are chosen and assumes that the degree of 

control that an operator has over his actions is variable and also that the degree of control 

an operator holds determines the reliability of his performance. The COCOM outlines 

four modes of control: scrambled control, opportunistic control, tactical control and 
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strategic control (Hollnagel, 1998). According to Hollnagel (1998) when the level of 

operator control rises, so does their performance reliability. 

 

The CREAM technique uses a classification scheme consisting of a number of groups 

that describe the phenotypes (error modes) and genotypes (causes) of the erroneous 

actions. The classification scheme is used by the analyst to predict and describe how 

errors could potentially occur. The classification scheme allows the analyst to define the 

links between the causes and consequences of the error under analysis. The detail of the 

causes, classification groups and error modes can be found in Hollnagel (1998). 

 

The retrospective and predictive analysis both have certain steps. As this thesis focuses on 

the quantitative analysis and prediction of human error, only the predictive analysis is 

described here. The main steps of the predictive analysis are as follows: 

 

Step 1: Describe the task or task segments to be analyzed.  

Like other HRA methods the first step of CREAM is to do a task analysis or another type 

of systematic task description. A well-defined task list helps to appreciate the 

consequences of individual task steps and actions. 

 

Step 2: Assess the common performance conditions (CPCs).  

The CPCs are used to characterize the overall nature of the task, and the characterization 

is expressed by means of a combined CPC score. 
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Step 3: Determine the probable control mode. 

 The probable control mode is a central concept of the underlying cognitive control model 

(COCOM) and is determined from the combined CPC score assessed in Step 2. It is 

assumed that a control mode corresponds to a region or interval of action failure 

probability. 

 

CREAM has the potential to be used both qualitatively and quantitatively. It gives a clear, 

structured and systematic approach to human error identification and quantification. The 

classification scheme used in CREAM is detailed and exhaustive and it takes the context 

into account. However, the exhaustiveness often makes the method longer and more 

resource intensive than other methods. The application time of this approach is quite high, 

even for very basic analyses. Like many other approaches it also requires analysts with 

knowledge of human factors and cognitive ergonomics and combining multiple expert 

judgments can be a challenge. 

 

2.5.5 A technique for human error analysis (ATHEANA) 

 

In 2000 the US nuclear regulatory commission developed ATHENA with the hope to 

represent the different types of human behavior in nuclear plants and industries in an 

easily understandable way. Like other second generation techniques it also focuses on the 

cognitive modeling of human behavior and seeks to provide a robust psychological 

framework to evaluate and identify PSFs. The application process in ATHENA is shown 

in Figure 2.6 (Cooper et al., 1996). 
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Figure 2.6: ATHENA application process flow diagram (after Cooper et al., 1996) 

 

 

As shown in Figure 2.6, ATHENA application process constitute of two main stages: 

identification and definition stage and quantification stage. These stages are briefly 

described below: 

 

Stage 1: Identification and definition 

This stage begins with identification of plant functions required for response to each 

initiating event. Not only the plant functions explicitly used in the event trees are 
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included, but those implied in the accident progression are also included. The automatic 

plant functions are included as well. Next the HRA analyst along with the help of the 

event tree analyst and plant experts, analyze these plant functions to identify opportunities 

for operators to fail these functions. A set of human failure events (HFEs) and associated 

PRA scenarios will be found as a result of this search. 

 

The next step is to identify the unsafe action/actions responsible for these HFEs. Again, 

these unsafe actions are outcome of plant specific error forcing context (EFC) which also 

has to be identified. As the plant conditions and associated PSFs will be different in 

different scenarios, the HFEs, the PRA scenarios and the PRA model may need to be 

refined to reflect greater detail. 

 

Stage 2: Quantification 

The main focus of this stage is to estimate the probabilities of the HFEs. This is done in 

two steps. First step is to calculate the relative frequency of specific error-forcing 

contexts. This is estimated by the combined relative frequency of the characteristic plant 

conditions and associated PSFs. The second step is the estimation of the probability of a 

human error given a specific error-forcing context. ATHENA user guide is provided for 

both estimations. 

 

The mathematical formula to calculate HFE probability is shown in Equation 2.3. 
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Where:     |                                        

                                                                         

       is comprised of two contributions. The first contribution would be the 

probability of the plant conditions and PSFs associated with the EFC and second 

would be the probability of error given the EFC. 

 

Compared to other first generation methods, ATHENA provides a much richer and more 

complete understanding of the context concerning the human factors. It also has a higher 

capability to identify the key risks associated with HFEs. Most importantly, ATHENA 

allows for the consideration of a much wider range of PSFs and does not require 

independence among factors. The primary shortcoming however is that, it does not give a 

direct estimate of the human error probability (HEP). This reduces its simplicity to be 

used as a part of a quantitative risk assessment. Its inability to prioritize factors or 

establish details of causal relationship among these factors is also a major limitation. The 

outcomes of the human error are also constrained by previously defined sequences of 

PSA accidents. 

 

2.5.6 Standardized plant analysis risk-human reliability analysis (SPAR-H) 
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In support of the accident sequence precursor program (ASP), the U.S. nuclear regulatory 

commission (NRC), in conjunction with the Idaho national laboratory (INL), in 1994 

developed the accident sequence precursor standardized plant analysis risk model 

(ASP/SPAR) human reliability analysis (HRA) method, which was used in the 

development of nuclear power plant (NPP) models. Based on experience gained in field 

testing, this method was updated in 1999 and renamed SPAR-H (Gertman, Blackman, 

Marble, Byers, & Smith, 2005).  

 

SPAR-H quantifies HEP using the following three steps: 

 

1. Determine the plant operation state and type of activity: Two plant states: at power 

and low power/shutdown and two types of activities: diagnosis and action are 

considered in this method. Same PSFs and equations are used for calculating HEP for 

both type of activities, but the PSF multipliers are different. 

 

2. Evaluate PSF levels to determine the multipliers:  A total of 8 PSFs are used in the 

SPAR-H method. Each possible level of these PSFs is associated with an HEP 

multiplier value. In this step, a level for each PSF has to be assigned on the HEP 

worksheet. 

 

 

3. Calculate HEP using equation provided in the worksheets: Two equations are 

provided in the HEP worksheet. The equation depends on the number of negative 
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PSFs (any PSF where the assigned level has a multiplier greater than 1). Equation 2.4 

is used to calculate the HEP for a situation with fewer than 3 negative PSFs. Equation 

2.5 is used if there are 3 or more negative PSFs. 

 

         ∏  

 

 

                                                                      

     
     ∏   

 
 

      ∏         
 

                                                           

 

The SPAR-H model is relatively easy to use and results are traceable. To consider the 

dependency among subtasks and event sequence the THERP-like dependence model can 

be used. The major limitation of this approach is the inadequacy of the degree of 

resolution of the PSFs. Depending on the context the analysts may need to do a more 

detail analysis which cannot be covered by the eight PSFs, but no explicit guidance is 

provided for addressing a wider range of PSFs when needed. To ensure consistency of the 

SPAR-H underlying data it is compared to the other methods but the basis for selection of 

final values is not always transparent. 

 

Different HRA techniques discussed so far have their own strengths and weaknesses. 

Here, in this thesis two major limitations of the traditional HRA methods are addressed. 

First is to handle the uncertainty and inconsistency associated with PSF likelihood data. 

As ecologically valid PSF data are not readily available, the majority of the HRA 

techniques use expert judgment to logically estimate the data. To avoid bias and 
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incomplete knowledge, judgments are collected from multiple experts rather than a single 

expert. To minimize the uncertainty and conflict among opinions of different experts a 

proper aggregation method is required. Fuzzy theory is used in this paper to handle 

uncertainty, to handle the incompleteness and conflict evidence theory is used. 

 

Another major limitation that most of the HRA techniques suffer from is that they do not 

consider the dependency among different PSFs and associated actions. To represent these 

dependencies a direct and structured way is required and hence Bayesian network 

approach is adopted in this thesis.  

 

The following subsections provide necessary background for fuzzy theory, evidence 

theory and finally present the HRA technique using Bayesian network. 

 

2.5.7 Fuzzy theory 

 

While collecting expert judgments regarding PSF likelihood, there is always a chance of 

linguistic and subjective uncertainty.  Rather than giving an exact numerical expression, 

experts often prefer to give judgment in the form of linguistic expressions (e.g. extremely 

probable, highly improbable). Judgment can also come in the form of a range (e.g. 

probability of stress being high is “nearly” 40%). There should be a way to transform this 

linguistic expression or range into exact numerical value. In this thesis, fuzzy theory is 

used for this purpose. 
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In this thesis Triangular Fuzzy Numbers (TFN) (Ferdous, Khan, Sadiq, Amyotte, & 

Veitch, 2009) are used for representing linguistic and range variables. Figure 2.7 shows a 

typical TFN for uncertain quantity.  

 

 

Figure 2.7: TFN to represent PSF probability 

 

As shown in Figure 2.7, instead of one exact numeric number a fuzzy number is 

presented with three points A = (a1, a2, a3) that represents the minimum, most likely and 

maximum values of event probability. This representation is interpreted as membership 

functions and the membership degree of x in the fuzzy set A can be defined using 

Equation 2.6. 

 

      

{
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By α-cut operation a crisp interval Aα can be obtained            from Equation 2.7. 

 

      
    

                                                          

 

To transform this fuzzy number    into a crisp value, Yager‟s ranking index (Isabels & 

Uthra, 2012) defuzzification method shown in Equation 2.8 is used. 

 

     ∫        
    

  
 

 

                                                                    

 

2.5.8 Evidence theory 

 

Besides uncertainty expert judgment also suffers from incomplete knowledge of 

individual expert and conflict among opinions from different experts. To handle the 

incompleteness and conflict Dempster–Shafer evidence theory (DST) is used in this thesis 

(Sentz & Ferson, 2002). 

 

The basic probability assignment (BPA) or belief mass for each individual PSF is 

acquired from different experts. If the PSF can be in three different states possibly – 

{Yes}, {No} and {Yes, No} then BPA is assigned by an expert for each of these states and 

represents the degree of expert belief. The BPA is denoted by m(pi) and can be 

characterized by the following equations: 
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                     ∑                                             

    

 

 

DST combination rule is then used to aggregate the multiple knowledge sources 

according to their individual degrees of belief. 

 

If there are n different knowledge sources that are to be combined, the orthogonal sum 

combination rule as depicted in Equation 2.10 is used. 

 

                                                                       

 

The DS combination rule uses a normalizing factor (1–k) to develop an agreement among 

the multiple knowledge sources, and ignores all conflicting evidence through 

normalization. Assuming that knowledge sources are independent, this combination rule 

uses AND-type operators (product), for example, if the m1 (pa) and m2 (pb) are two sets of 

evidence for the same event collected from two independent sources, the DS combination 

rule  uses the relation in Equation 2.11 to combine the evidence (Sentz & Ferson, 2002). 

 

           {

            
∑               
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In the above equation, m1–2 (pi) denotes the combined knowledge of two experts for an 

event, and k measures the degree of conflict between the two experts, which is determined 

by the factor: 

 

   ∑       

       

                                                           

 

2.5.9 HRA using Bayesian network (BN) 

 

Human decision and action both are dependent on different PSFs. This dependency can 

best be described using the BN (Neapolitan, 2004). Figure 2.8 represents the BN for HRA 

in the simplest way. 

 

 

 

Figure 2.8: A hierarchy graph based on a BN for HRA 
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As shown in Figure 2.8, human decision/action at any given time can be dependent on n 

different PSFs which constitute the first level of hierarchy. These PSFs can further be 

influenced by several other PSFs. For example, PSF 1 in Figure 2.8 is an outcome of PSF 

A and PSF B, which constitute the second level of hierarchy. The BN is considered 

complete when all nodes are exploited (Wu et al., 2006). 

 

In Baraldi et al. (2009) the use of a BN expert model on dependence assessment in HRA 

has been investigated. In this work the authors focused to find if conversion of the expert 

knowledge into a mathematical model like BN can improve the traceability and 

repeatability of the assessment. A BN model of post - initiating event scenarios in nuclear 

power plants (NPPs) is presented in this paper. The dependence model underlying the BN 

is adopted in this paper from Zio et al., (2009) and to model the relationships among the 

input and output factors of the dependence model, two conditional probability distribution 

tables (CPTs) are defined. The CPT data are derived from the fuzzy rules of a fuzzy 

expert system (FES) previously defined by the authors in Zio et al. (2009). Integration of 

the dependence model with CPT completes the development of the BN. But before it can 

be used by analysts to assess the dependence level, specific guidance must be provided 

for the analysts to interact with the model. The authors hence present a way to translate 

the analysts‟ assessments into a BN input and to convert the BN output into suitable 

information for probabilistic safety assessment (PSA). To convert analyst assessment into 

BN input two input elicitation approaches are proposed based on a discrete and a 

continuous assessment of the input factors. The sole concept in both approaches is the use 

of anchor points which provide the analysts with examples of known situations for which 
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the subjective assessment is „natural‟ and which can be used for assessing, by 

comparison, situations that deviate from the anchor. The output of the BN model comes 

in the form of a discrete probability distribution which has to be converted into a 

numerical value representing the conditional human error probability (CHEP). The 

integration of the information in the BN output distribution and in the corresponding 

CHEP is obtained by calculating the expected value as proposed in (Zio et al., 2009). 

 

In Martins & Maturana (2009) an application of BN in collision accident has been 

illustrated using a case study applied to the naval industry. The authors analyzed the same 

case study in a previous work (Maturana & Martins, 2008) through the THERP. But as 

THERP cannot model the relationship between different PSFs and hazardous event, BN is 

used as an alternative which has the ability to do that. Hazard identification and task 

analysis which lead to the fault trees and event trees structure are adopted from the 

previous work (Maturana & Martins, 2008). First, this fault tree is transformed into a BN. 

Dynamic BNs were then prepared for the tasks associated with the basic events of the 

fault tree (with the support of the event trees). Next, PSFs related to each task found in 

the previous step are identified. Integrating the results of these three steps the final and 

complete BN for collision accident is generated. The data required for BN analysis are 

also taken from the previous work. The CPTs are filled in way that the obtained results 

for the probabilities of the fault tree's basic events could be the same obtained by the 

application of the THERP in the previous study (Maturana & Martins, 2008). 
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In Groth & Swiler (2012) an existing HRA methodology SPAR-H is translated into a BN 

to demonstrate the usefulness of the BN framework. The focus of this paper is to use 

BN‟s ability to incorporate prior information about the probability of the PSF levels into 

HEP calculations. The SPAR-H method is used to build the BN structure and the 

conditional probability table. Probability of different PSF levels is taken from Hallbert 

(2007). Using this information the BN is developed. Then the network is analyzed for 

three different cases: one with all necessary information, one with partial information and 

one with no new information. In the first case the analyst knows the exact level for all 

PSFs, so evidence is set for all PSFs in the BN and HEP is calculated. This is the same 

way analysis is done in SPAR-H, where analysts have to know the exact level of each 

PSF. However, more case studies are done to show that BN can also operate with partial 

information. In those cases, analysts do not have to know the exact state of a PSF, rather 

they can assign probabilities for different states of PSFs. A case study is also done when 

the analyst does not have any new information. When there is no new information the 

prior information is used to calculate the HEP. These case studies show BN‟s extended 

ability to work for cases with missing observations and proves it more powerful and 

flexible than SPAR-H. 

 

Groth & Mosleh (2012) present the methodology to develop a data-informed BN of PSFs 

using multiple sources of HRA data. Two sources of human performance data from 

nuclear power plant operations: the Human Events Repository Analysis (HERA) (US 

Neuclear Regulatory Commission, 2008) database and worksheets from an application of 

the IDA model (Smidts, Shen, & Mosleh, 1997) are used to build this data-informed BN. 
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The first step is to identify a set of PSFs either using expert judgment or quantitative 

analysis, and determine which behaviors will be linked to the PSFs. Next step is to model 

relationships between the PSFs. Correlation analysis is done to elicit PSF relationships. 

Expert judgment is used to define the direction of the relationship arcs based on causality. 

Minimum residuals (Minres) factor analysis (FA) is then done to identify patterns how 

PSFs are linked to human errors. The final step is to populate marginal and conditional 

probability tables. It is assumed that there is a well-populated data base available which is 

sufficient to define the initial probability distribution of the factors and conditional 

probabilities by automatic quantification. Use of domain expert knowledge is suggested 

to fill any missing values before applying automatic quantification. The authors also 

suggest two promising methods that can be used with HRA-style data provided by 

Almond (2010) and Bonafede & Giudici (2007). 

 

As discussed so far BN approach is used for HRA in the context of nuclear power plants. 

This thesis focuses on application of BN in offshore emergency scenarios. A BN model 

for offshore emergency evacuation is developed. The first challenge while doing the HRA 

for offshore emergency is to handle the scarcity of data. Expert judgment technique for 

data collection has been used in this thesis. To minimize the uncertainty, incompleteness 

of knowledge and conflict among different experts, fuzzy theory and evidence theory is 

applied on the expert judgment before using it (detail in Section 2.5.5 and 2.5.6). Next, 

the model is extended to be applied in harsh environment. Environmental PSFs are taken 

into account to make the model appropriate for offshore emergencies in harsh 

environments. Finally, a new data collection technique using a virtual environment of an 



55 

 

 

offshore oil installation is presented in this thesis, as collecting data for a really complex 

BN from experts can be prohibitively cumbersome. Using the data collected from this 

technique a simplified BN for offshore emergency evacuation is verified. 
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Abstract 

This paper presents a quantitative approach of Human Reliability Analysis (HRA) during 

emergency conditions in an offshore environment. Due to the lack of human error data for 

emergency conditions most of the available HRA methodologies are based on expert 

judgment techniques. Expert judgment suffers from uncertainty and incompleteness due 

to partial ignorance, which is not considered in available techniques. Furthermore,
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traditional approaches suffer from unrealistic assumptions regarding the independence of 

the human factors and associated actions. The focus of this paper is to address the issue of 

handling uncertainty associated with expert judgments with evidence theory and to 

represent the dependency among the human factors and associated actions using a 

Bayesian Network (BN) approach. The Human Error Probability (HEP) during different 

phases of an emergency is then assessed using a Bayesian approach integrated with an 

evidence theory approach. To understand the applicability of the proposed approach, 

results are compared with an analytical approach: Success Likelihood Index Methodology 

(SLIM). The comparative study demonstrates that the proposed approach is effective in 

assessing human error likelihood. In addition to being simple, it possesses additional 

capability, such as updating as new information becomes available and representing 

complex interaction. Use of the proposed method would provide an effective mechanism 

of human reliability assessment in hazardous operations. 

 

3.1 Introduction 

 

Human reliability, as defined by Swain & Guttmann (1983), is the probability that a 

person correctly performs system-required activities in a required time period (if time is a 

limiting factor). Human reliability is related to the field of human factors engineering and 

involves the study of human Performance Shaping Factors (PSF) (Blackman, Gertman, & 

Boring, 2008). PSFs improve or decrease human performance. Recognition of the 

potential contributions of PSFs to accidents leads to the development of different Human 

Reliability Analysis (HRA) techniques. Swain & Guttmann (1983) proposed THERP 
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(Technique for Human Error Rate Prediction) for qualitative and quantitative analysis of 

human reliability. Later SLIM (Success Likelihood Index Methodology) was proposed to 

handle the lack of data with expert judgment (Kirwan B. , 1994). With the extension of 

the human reliability research field from human-machine systems to human inherent 

factors (psychology, emotion and behavior in emergency situations) ATHEANA (A 

Technique for Human Error Analysis) (Cooper, Ramey-Smith, & Wreathall, 1996) and 

CREAM (Cognitive Reliability and Error Analysis Method) (Hollnagel E. , 1998) were 

proposed. Though dozens of HRA techniques are employed today, most suffer from two 

major limitations. First, they are unable to handle the uncertainty and inconsistency 

associated with expert judgments. Second, most assume unrealistic independence among 

human factors, and associated actions. The main focus of the paper is improving HRA 

method to have better human error probability assessment. The approach has the 

capabilities of considering the underlying uncertainty and conflict within input data, and 

represents the dependency among different human factors and associated actions. 

Specifically the method will be applied to assess HEP to offshore emergency situation. A 

better estimate of human reliability would help design more effective safety systems and 

emergency management systems. 

 

Due to lack of real or ecologically-valid data, the majority of works in human error 

prediction such as SLIM and THERP consider expert judgment techniques. However, 

expert judgment from a single expert may be biased and incomplete due to partial 

ignorance. Hence, single expert opinion is not sufficient for reliable human error 

predictions. One potential solution to this problem is to use multiple experts (multi-
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expert) knowledge and experience. A proper aggregation method is needed to combine 

this multi-expert knowledge that will minimize the uncertainty and opinion conflict. This 

paper proposes to use evidence theory to combine multi-expert knowledge and hence 

increase the reliability of human error prediction. 

 

The PSFs that influence human performance depend on the conditions or circumstances 

under which an event occurs and are influenced by underlying dependency and contextual 

factors. Moreover, the tasks performed in an emergency scenario are not independent and 

have relations that must be taken into account. In every offshore emergency situation, 

individuals have to perform a sequence of tasks and the outcome of one task generally 

affects the task that follows. A direct and structured way is needed to present the 

dependencies among factors and actions. Bayesian Network (BN) is used in this paper to 

represent the relationships among human factors and associated actions in a hierarchical 

structure. The network represents external relations of PSFs and associated actions, rather 

than internal dependencies among PSFs themselves. The network enables dynamic 

updating through emerging information.  

 

3.2 Human reliability assessment approach background 

 

3.2.1 PSF identification 

 

The first step of HRA is to focus on human behavior and identify a set of human factors 

believed to be related to performance. These PSFs are then employed to estimate the 
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probability of human error in a given situation. For a given offshore emergency situation, 

a sequence of actions has to be performed for the successful evacuation. Each of these 

actions requires particular skills and these skills are influenced by different human 

factors. In this paper, an offshore emergency scenario is first analyzed and a series of 

decisions and actions to overcome the situation are identified using a task analysis as 

presented in DiMattia, Khan, & Amyotte (2005). It has been considered that the failure or 

success of a specific task depends on the skill level necessary to do the task. Task analysis 

is followed by identifying required skills to do a task. Finally, the PSFs that can influence 

the status of these skills are identified. 

 

3.2.2  PSF assessment using Evidence Theory 

 

The Bayesian approach to human reliability assessment requires prior knowledge and 

detail about the pertinent PSFs. Human performance data with greater detail is difficult to 

find in real world situations, which requires the use of expert judgment techniques. Expert 

judgment itself suffers from subjectivity and variability as people use different heuristic 

reasoning to arrive at a solution to a problem. Moreover, expert judgment is also subject 

to uncertainty due to partial ignorance. In this paper, prior knowledge about PSF is taken 

from different experts and this multi expert knowledge is combined using Dempster – 

Shafer Evidence Theory (DST) (Sentz & Ferson, 2002).  

 

The Basic Probability Assignment (BPA) or belief mass for each individual PSF is 

acquired from the different sources. If the PSF can be assigned to three different states 
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possibilities – {Yes}, {No} and {Yes, No} then BPA is assigned by an expert for each of 

these states and represents the degree of expert belief. The BPA is denoted by m(pi) and 

can be characterized by the following equations: 

 

                     ∑                                                         

    

 

 

A DST combination rule is then used to aggregate the multiple knowledge sources 

according to their individual degrees of belief. 

 

If there are n different knowledge sources that are to be combined, the orthogonal sum 

combination rule as depicted in Equation 3.2 is used. 

 

                                                                              

 

The DST combination rule uses a normalizing factor (1–k) to develop an agreement 

among the multiple knowledge sources, and ignores all conflicting evidence through 

normalization. Assuming that knowledge sources are independent, this combination rule 

uses AND-type operators (product). For example, if the m1 (pa) and m2 (pb) are two sets of 

evidence for the same event collected from two independent sources, the DST 

combination rule (Sentz & Ferson, 2002) uses the relation in Equation 3.3 to combine the 

evidence: 
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In the above equation, m1–2 (pi) denotes the combined knowledge of two experts for an 

event, and k measures the degree of conflict between the two experts, which is determined 

by the factor: 

 

   ∑       

       

                                                                   

 

3.2.3 Bayesian modeling fundamentals 

 

BNs are probabilistic models representing interaction of parameters through acyclic graph 

and Conditional Probability Tables (CPTs) (Lampis & Andrews, 2008). The networks are 

composed of nodes and links. Nodes represent the variables of interest whereas links 

joining the nodes represent causal relations among the variables. Nodes and links together 

define the qualitative part of the network. The quantitative part is constituted by the 

conditional probabilities associated with the variables. Conditional probabilities specify 

the probability of each dependent variable (also called child node) for every possible 

combination of the states of the variables it is directly dependent on (also called parent 

node).  The probabilities of the independent variables, i.e., nodes with no predecessor 

(also called root nodes) are also given. Given the probabilities associated with each root 

node and the conditional probability table associated with each intermediate child node, 
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the probabilities of child node can be calculated. A significant feature of the BN is that it 

gives the flexibility to update the probability of the nodes when the states of some 

variables in a network are known due to new evidence emerging. It also gives the 

opportunity to evaluate the criticality of a variable relative to the others. The law of 

marginal probability (Lampis & Andrews, 2008) gives the probability for an event A as 

the sum of the joint probability of A with a set of mutually exclusive events B1, B2,…,Bn 

 

     ∑                                                                       

                                                                

By the product rule, Equation 3.5 can be written in terms of conditional probabilities as: 

 

           |                                                         (3.6) 

 

Combining Equation 3.5 and 3.6 we obtain: 

 

      ∑    |                                                          (3.7) 

 

The probability of the states of each node can be calculated marginalizing over the states 

of the node‟s parents, which represent mutually exclusive events. 
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When evidence is given on any node of a BN, the updated probability - the posterior 

probability - can be calculated using Bayes‟ theorem (Haldar & Mahadevan, 2000) given 

as: 

   |    
   |      

    
                                                                      

 

Equation 3.8 can also be written in terms of the marginal probability as: 

 

   |    
∑          

∑   ∑          
                                                             

 

 

3.2.3.1 Human Reliability Assessment (HRA) using Bayesian Networks (BN) 

As discussed in Section 3.2.1, each decision and action is regarded as the outcome of the 

joint influence of different human factors. Human factors can be classified into two broad 

categories: internal factors and external factors (Wu S. , Sun, Qin, & Huang, 2006). The 

scope of this paper is limited to the internal factors having effect on human performance. 

In the Bayesian approach to HRA, human action is considered as the critical node, which 

depends on different internal factors. These factors are further analyzed and are expressed 

as a hierarchical structure. Thus every node becomes a child of other nodes that can affect 

it. The BN is complete once all nodes are exploited (Wu et al., 2006). Figure 3.1 gives the 

simplest representation of a BN for human reliability analysis. 
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Figure 3.1: A hierarchy graph based on a BN for HRA 

 

As shown in Figure 3.1, human performance while doing an action is dependent on n 

different internal factors, which constitute the first level of the hierarchy. Internal factor 1 

can be further analyzed and found to be an outcome of Factor A and Factor B, which 

constitute the second level of the hierarchy. 

 

3.3 Bayesian approach to human reliability assessment 

 

The main focus of this paper is to: 

 

1. Reduce the uncertainty and conflict associated with expert judgment using evidence 

theory. 

2. Use BN to represent relationships among human factors and actions and to calculate 

human error probability. 
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Figure 3.2: Proposed methodology flowchart 

 

 

This section gives an overview of the proposed methodology to achieve these two goals. 

The main steps of the proposed methodology are shown in the flowchart (Figure 3.2). The 

methodology starts with the scenario analysis. At the end of this step the scenario is 

divided into smaller phases. Then for each phase, PSFs influencing human performance 

within each phase are identified. The importance of each PSF related to a specified task is 

then assessed using evidence theory. Once all PSFs regarding a task are identified and 

assessed, the BN of PSFs is developed. BNs are updated each time there is new 

information or evidence available. The likelihood of task failure and corresponding 
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Human Error Probability (HEP) are finally calculated. The process is repeated for all 

phases identified during scenario analysis.  

 

3.3.1 Scenario analysis 

 

The ideal muster sequence starts with the muster alarm to notify all personnel to start a 

muster procedure and ends with all personnel gathered at Temporary Safe Refuge (TSR) 

(DiMattia D. G., 2004). Between these two final actions, intermediate actions are 

performed by individuals. Personnel on board have to identify alarms, stop the work and 

return the process to a safe state. The workplace has to be ensured as safe to avoid 

obstruction at the time of egress. Moreover, each site, including accommodations needs to 

be in a state that inhibits further escalation of the hazard event. 

 

Following the muster alarm, there is the Public Address (PA) announcement regarding 

the update of the nature of the muster and areas to be avoided. An egress path has to be 

chosen using the information provided. On safe arrival at the TSR, individuals have to 

register themselves. Subsequently specific individuals contribute to rescue or fire 

suppression. 

  

The Offshore Installation Manager (OIM) provides an update with time that includes 

decisions such as a general order to don survival suits and load life boat for evacuation. 
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Hierarchical Task Analysis (HTA) for a generic muster scenario is adopted from 

DiMattia, Khan, & Amyotte (2005). The HTA gives a series of muster actions that are 

independent of muster initiator. A total of 17 tasks have been identified that are broken 

down into four muster phases. The muster actions can be categorized under four muster 

phases namely – Awareness phase, Evaluation phase, Egress phase and Recovery phase. 

The four phases are shown sequentially in Table 3.1. 

Table 3.1: Muster action broken down by muster phase (DiMattia, Khan, & Amyotte, 2005) 

Awareness Phase  

1 Detect alarm 

2 Identify alarm 

3 Act accordingly 

Evaluation Phase  

4 Ascertain if danger is imminent 

5 Muster if in imminent danger 

6 Return process equipment to safe state 

7 Make workplace as safe as possible in limited time 

Egress Phase  

8 Listen and follow PA 

9 Evaluate potential egress paths and choose route 

10 Move along egress route 

11 Assess quality of egress route while moving to TSR 

12 Choose alternate route if egress path is not tenable 

13 Assist others if needed or as directed  

Recovery Phase  

14 Register at TSR 

15 Provide pertinent feedback attained while enroute to TSR 

16 Don personal survival suit or TSR survival suit if instructed to 

abandon 

17 Follow OIM instructions 

 

PSF identification, assessment and BN modeling are done for each of these phases. The 

following section demonstrates these steps of the methodology for awareness phase. The 
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same process is repeated for the other three phases and the result is summarized at the end 

of this section. 

3.3.2 Awareness phase 

 

The first step of the awareness phase is to detect the alarm successfully. When the alarm 

is detected it should be interpreted to identify the meaning of the alarm. After successful 

identification of the alarm, the muster command is recognized and proper actions should 

be taken accordingly. The success of the awareness phase thus depends on the success of 

alarm detection, identification and actions taken. Figure 3.3 represents these causal 

dependencies. 

 

Figure 3.3: Causal dependency in Awareness phase 

 

3.3.2.1 PSF identification 

 

Alarm detection, alarm identification, and act accordingly are further analyzed to identify 

PSFs related to these actions. Table 3.2 shows the required skills to perform these actions 

and the PSFs related to these skills. 
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Once PSFs are identified, the next step is to estimate the prior knowledge of the PSFs and 

the conditional probabilities required to develop the BN, which is described in the next 

section. 

Table 3.2: Performance factors for Awareness phase 

Task/Action Skills Required Identified PSF 

Detect alarm 1. Concentration Distraction, Stress 

2. Perception Distraction (Noise), Physical Condition 

   

Identify 

alarm 

1. Concentration Distraction, Stress 

2. Knowledge Training/Experience, Communication 

   

Act 

accordingly 

1. Concentration Distraction, Stress 

2. Knowledge 
Training/Experience, Action Procedure,  

Communication 

3. Intelligence/cognitive 

skills (decision 

making, problem 

solving) 

Available Time, Fear/Anxiety, 

Complexity, Training/Experience, Action 

Procedure, Fitness for duty 

 

3.3.2.2 PSF assessment 

 

 

As discussed in Section 3.2.2, the prior knowledge of each PSF comes from different 

expert sources in terms of bpa and they are combined using DST combination rule. For 

example, an expert reports that the probability of distraction being present in alarm 

detection is 15%, and not present is 75%. Mathematically, this can be written as m1 

({Yes}) = 0.15, m1 ({No}) = 0.75 and m1 ({Incomplete Knowledge}) = 0.1. Another expert 

defines the probabilities as m2 ({Yes}) = 0.2, m2 ({No}) = 0.7 and m2 ({Incomplete 

Knowledge}) = 0.1. 
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These two sets of expert judgments are combined using DST combination rule as 

depicted in Equation 3.2. The combination process is illustrated in Table 3.3. 

Table 3.3: Evidence combination for PSF Distraction probability 

 m2 {Yes} {No} {Yes, No} 

m1  0.2 0.7 0.1 

{Yes} 0.15 {Yes}=0.03 { φ }=0.105 {Yes}=0.015 

{No} 0.75 { φ }=0.15 {No}=0.525 {No}=0.075 

{Yes, No} 0.1 {Yes}=0.02 {No}=0.07 {Yes, No}=0.01 

 k 0.255   

 ∑       

        

       0.065 0.67 0.01 

 m1-2(DST) 0.087 0.899 0.013 

 

Using the same process the prior probabilities of each PSF can be obtained. The prior 

probabilities of the PSFs related to the task alarm detection are summarized in Table 3.4.  

Table 3.4: Evidence combination for PSFs related to alarm Detection 

PSF Expert Judgment 1 Expert Judgment 2 Combined Probability 

Distraction {Yes} = 15% {Yes} = 20% {Yes} = 9% 

{No} = 75% {No} = 70% {No} = 90% 

{Incomplete 

knowledge} = 10% 

{Incomplete 

Knowledge} = 10% 

{Incomplete 

Knowledge} = 1% 

    

Physical 

Condition 

{Good} = 80% {Good} = 85% {Good} = 97% 

{Bad} = 10% {Bad} = 5% {Bad} = 2% 

{Incomplete 

knowledge} = 10% 

{Incomplete 

Knowledge} = 10% 

{Incomplete 

Knowledge} = 1% 

    

Stress {High} = 15% {High} = 10% {High} = 7% 

{Low} = 70% {Low} = 70% {Low} = 89% 

{Incomplete 

knowledge} = 15% 

{Incomplete 

knowledge} = 20% 

{Incomplete 

knowledge} = 4% 
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3.3.2.3 Bayesian Networks (BN) modeling of PSF 

 

With the support of Table 3.2 and probabilities obtained in Section 3.3.2.2, BNs are now 

developed for each task with the factors that influence task performance (Martins & 

Maturana, 2009). The networks obtained are shown in Figures 3.4 through 3.6. 

 

 

Figure 3.4: Network of PSFs for alarm detection 

 

 

Figure 3.5: Network of PSFs for alarm identification 
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Figure 3.6: Network of PSFs for act accordingly 

 

These posterior probabilities of alarm detection, identification and response are used in 

the causal network shown in Figure 3.3. Applying these give the final BN of the 

awareness phase as shown in Figure 3.7. For each action, incomplete knowledge is 

combined with the failure probability to give the final failure probability. 

 

 

Figure 3.7: BN of Awareness phase 
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The same approach is used for developing the networks for the other three phases and 

results are summarized in Section 3.4.1. 

 

3.3.3 Bayesian analysis 

 

The BN of PSFs is dynamic in nature and can be updated as new information regarding 

the PSFs becomes available. The information may come in two different ways: expert 

judgment or observed evidence. 

 

To illustrate the former, the network of PSFs for alarm detection shown in Figure 3.4 is 

used. The network is developed with the three PSFs: distraction, physical condition, and 

stress. The probabilities of these PSFs being positive or negative are obtained by 

combining expert judgments as discussed in Section 3.3.2.2. As shown in Figure 3.4, the 

combination gives the likelihood of distraction being present as 9%, not present as 90% 

and an incomplete knowledge of 1%. Later another expert judgment gives the likelihood 

of distraction being present as 20%, not present as 70% and an incomplete knowledge of 

10%. This new expert judgment needs to be combined with the previous likelihood to 

assess the updated likelihood, of the PSFs at a given time. This combination is done using 

Dempster–Shafer theory (DST) (Sentz & Ferson, 2002).  A DST combination rule is used 

to combine expert judgments according to their individual degrees of belief. 

 

Table 3.5 illustrates the DST rule by combining the new expert judgment with the prior 

likelihood for the distraction PSF in the alarm detection network. After combining the 
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new expert judgment, the likelihood of Distraction being present becomes 4%, not present 

becomes 96% with an incomplete knowledge of only 0.1%. 

 

Table 3.5: Updating Distraction likelihood using new expert judgment evidence 

 m2 { Yes} { No} {Incomplete 

Knowledge} 

m1  0.2 0.7 0.1 

{Yes} 0.09 {Yes}=0.02 { φ }=0.06 {Yes}=0.009 

{No} 0.9 { φ }=0.18 {No}=0.63 {No}=0.09 

{Incomplete 

Knowledge} 0.01 {Yes}=0.002 {No}=0.007 

{Incomplete 

Knowledge} 

=0.001 

     

 k 0.24   

     

 ∑       

        

       0.03 0.73 0.001 

     

 m1-2(DST) 0.04 0.96 0.001 

 

 

The network is updated as new evidence is collected. The alarm detection network shown 

in Figure 3.4 can be used as example. As shown in Figure 3.4, initially the likelihood of 

distraction is considered to be 9%. This percentage of distraction being present is subject 

to change according to observed evidence. For example, given the evidence that the 

weather condition is extremely bad, the distraction would increase. Thus distraction itself 

is dependent on weather conditions and to incorporate this dependency, the network is 

revised as shown in Figure 3.8. 
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Figure 3.8: Network of PSF for alarm detection after dynamic update 

 

 

The network shown in Figure 3.8 takes the dependency of distraction on weather 

conditions into account and assesses the likelihood of distraction as 12%. As new 

evidence about the weather is available and is included in the network, the likelihood of 

the distraction will change accordingly, which in turn will change the overall likelihood 

of positive alarm detection. 

 

As shown in Figure 3.5 the task alarm identification is dependent on distraction, 

communication, training/experience and stress. If communication is observed to be bad at 

the time of performing the task, then the alarm identification failure likelihood changes as 



77 

 

 

shown in Figure 3.9. As shown in Figure 3.9, with the evidence that communication is 

bad, the alarm identification failure likelihood increases from 9% to 31%. 

 

 

 

Figure 3.9: Network of PSF for alarm identification after dynamic update 

 

 

3.4 Result and discussion 

 

3.4.1 Results for complete study 

 

Calculated likelihoods of failure for all actions using the Bayesian approach are presented 

in Table 3.6. The detail of the calculation is reported in Section 3.3. 

 

 



78 

 

 

Table 3.6: Likelihoods of failure of actions using Bayesian approach 

Action Lower bound 

of failure 

likelihood 

Upper bound 

of failure 

likelihood 

Detect alarm 7% 9% 

Identify alarm 9% 13% 

Act accordingly 12% 18% 

Ascertain if danger is imminent 12% 18% 

Muster if in imminent danger 14% 21% 

Return process equipment to safe state 14% 21% 

Make workplace as safe as possible in limited time 14% 21% 

Listen & follow PA 8% 11% 

Evaluate potential egress paths and choose route 12% 18% 

Move along egress route 10% 16% 

Assess quality of egress route while moving to TSR 14% 21% 

Choose alternate route if egress path is not tenable 14% 21% 

Assist others if needed or as directed 13% 20% 

Register at TSR 13% 19% 

Provide pertinent feedback attained while enroute to TSR 

 

13% 18% 

Don personal survival suit or TSR survival suit if 

instructed to abandon 

14% 21% 

Follow OIM instructions 13% 19% 

 

3.4.2 Comparison with analytical approach 

 

The proposed approach is compared to the SLIM (Kirwan B. , 1994). The likelihood 

associated with each PSF is used as the rating while the weights of the factors are given in 

accordance with the conditional probability table. The comparison process is described in 

Figure 3.10. 
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Figure 3.10: Comparison of Bayesian approach to SLIM 

 

In both approaches, calculation of the likelihood of failure of a task or action first needs 

the PSFs influencing the task to be identified. Once PSFs are identified, in the Bayesian 

approach a network of PSFs is developed with known likelihood of each PSF and the 

conditional probability table representing the dependency of a task or action on the PSFs. 

The likelihood of failure of the task or action can then be calculated by forward analysis 

using the individual PSF likelihood and conditional probabilities. In SLIM, the PSF 

identification is followed by assigning a rating and a weight for each of the PSFs. The 
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Success Likelihood Index (SLI) is then calculated as the sum of the weightings multiplied 

by their ratings for each time (task error). 

 

The process is illustrated using the network of PSFs for alarm detection shown in Figure 

3.4. The likelihood of distraction being present is 9%, physical condition being bad is 2% 

and stress being high is 7%. These values are directly used as the PSF ratings. Weight is 

inferred from the conditional probability tables shown in Tables 3.7 and 3.8. 

 

Table 3.7: Dependency of Concentration on Stress and Distraction 

 

Table 3.8: Dependency of alarm detection on concentration and perception 

 

 

From Table 3.7 it can be observed that when distraction is not present, then the likelihood 

of concentration is dependent only on stress and has a likelihood of being low of 0.5 

when stress is high. This value represents the importance of stress on concentration. From 

Table 3.8 we can see that alarm detection is dependent on concentration and has a 

likelihood of failure of 0.5 when concentration is low given perception is high. The 
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weight of stress is thus 0.5 × 0.5 = 0.25. With the PSF ratings and weights, the SLI can be 

calculated for alarm detection failure as shown in Table 3.9. 

Table 3.9: SLI calculation for alarm detection Failure 

PSF Weight Rating Alarm detection Failure 

Distraction (0.25+0.25)=0.5 0.09 0.045 

Stress 0. 25 0.07 0.0175 

Physical Condition 0.25 0.02 0.005 

  SLI(Total) 0.0675 

 

 

Once the likelihood of task or action failure is calculated, the relationship in Equation 

3.10 is used to transform the likelihood into HEPs (Kirwan B. , 1994). 

 

Log (HEP) = a (SLI) + b                                       (3.10) 

 

Two more tasks are evaluated where SLIs are assessed as 1 and 0 for known HEPs of 1E-

5, and 0.9 respectively. From these the constant a and b can be calculated as a = - 4.954 

and b = - 0.046. 

 

Table 3.10 shows a comparison of likelihood and corresponding error probabilities 

calculated using the Bayesian approach and SLIM methodology for 10 different tasks. 

From Table 3.10 it can be observed that the likelihood of failure calculated in both 

approaches is similar and so is the calculated HEP. 
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Table 3.10: Comparison of calculated HEP in Bayesian approach and SLIM methodology 

Task Failure 

likelihood 

(BN) 

Failure 

likelihood 

(SLIM) 

HEP 

(BN) 

HEP 

(SLIM) 

Detect alarm 0.068 0.068 0.414 0.414 

Identify alarm 0.088 0.088 0.329 0.329 

Act accordingly 0.116 0.115 0.240 0.242 

Ascertain if danger is imminent 0.121 0.123 0.226 0.221 

Muster if in imminent danger 0.136 0.139 0.190 0.185 

Return process equipment to safe state 0.136 0.135 0.191 0.192 

Make workplace as safe as possible in 

limited time 

0.136 0.135 0.191 0.192 

Listen & follow PA 0.076 0.076 0.378 0.378 

Evaluate potential egress paths and choose 

route 

0.121 0.123 0.226 0.221 

Move along egress route 0.097 0.097 0.297 0.297 

Assess quality of egress route while moving 

to TSR 

0.136 0.139 0.190 0.185 

Choose alternate route if egress path is not 

tenable 

0.136 0.139 0.190 0.185 

Assist others if needed or as directed 0.127 0.126 0.211 0.213 

Register at TSR 0.131 0.131 0.202 0.202 

Provide pertinent feedback attained while 

enroute to TSR 

0.133 0.120 0.200 0.228 

Don personal survival suit or TSR survival 

suit if instructed to abandon 

0.136 0.139 0.190 0.185 

Follow OIM instructions 0.131 0.130 0.202 0.203 

 

 

One of the advantages of the Bayesian approach over SLIM is that once new evidence is 

available the likelihood of failure of any task or action can be revised as discussed in 

Section 3.3.3. The SLIM methodology does not have the flexibility to take new evidence 

into account and change accordingly. For example, with the information that at a given 
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time in an emergency condition the training or experience of the operator is high, the 

likelihood of actions dependent on training or experience will change as listed in Table 

3.11. The likelihoods of failure of actions calculated in the SLIM approach remain the 

same as before, without any effect of the observed evidence. 

 

Table 3.11: Comparison of calculated likelihood in Bayesian approach and SLIM methodology with 

evidence of Training or Experience high  

Task Failure 

likelihood 

(BN) 

Failure 

likelihood 

(SLIM) 

HEP 

(BN) 

HEP 

(SLIM) 

Detect alarm 0.068 0.068 0.414 0.414 

Identify alarm 0.065 0.088 0.429 0.329 

Act accordingly 0.101 0.115 0.284 0.242 

Ascertain if danger is imminent 0.107 0.123 0.265 0.221 

Muster if in imminent danger 0.113 0.139 0.248 0.185 

Return process equipment to safe state 0.121 0.135 0.226 0.192 

Make workplace as safe as possible in 

limited time 

0.121 0.135 0.226 0.192 

Listen & follow PA 0.061 0.076 0.449 0.378 

Evaluate potential egress paths and choose 

route 

0.107 0.123 0.265 0.221 

Move along egress route 0.097 0.097 0.297 0.297 

Assess quality of egress route while moving 

to TSR 

0.113 0.139 0.248 0.185 

Choose alternate route if egress path is not 

tenable 

0.113 0.139 0.248 0.185 

Assist others if needed or as directed 0.112 0.126 0.251 0.213 

Register at TSR 0.116 0.131 0.240 0.202 

Provide pertinent feedback attained while 

enroute to TSR 

0.133 0.120 0.197 0.228 

Don personal survival suit or TSR survival 

suit if instructed to abandon 

0.113 0.139 0.248 0.185 

Follow OIM instructions 0.116 0.130 0.240 0.203 
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3.5 Conclusion 

 

Precise assessment of human error necessitates consideration of interdependency among 

human factors and associated actions. This paper proposes to use BN to present this 

interdependency in a structured way and calculate human error likelihood. For handling 

data scarcity, multi-expert knowledge is used. Uncertainty and conflict associated with 

expert judgment is handled using evidence theory. With the integration of evidence 

theory with BN, this paper presents a methodology to overcome two major limitations of 

existing HRA methods: incompleteness and conflicts in expert opinion, and unrealistic 

assumption of independence among human factors and associated actions, and likely 

presents a more precise human error estimation. The application of the method is 

illustrated using an example scenario of offshore emergency evacuation. Comparison 

with an analytical approach shows its utility in estimating human error probability. 

Moreover, the methodology affords the flexibility of dynamic updating of the BN with 

emerging evidence. Precise estimates of human error using the proposed methodology 

could help to design more effective emergency management systems. The current 

approach only takes internal human factors into account. Future work includes an 

incorporation of external factors into the network to increase the reliability of human 

error prediction. 
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Abstract 

This paper presents a quantitative approach to human factor risk analysis during 

emergency conditions on an offshore petroleum facility located in a harsh environment. 

Due to the lack of human factors data for emergency conditions, most of the available 

human factor risk assessment methodologies are based on expert judgment techniques. 

Expert judgment is a valuable technique; however, it suffers from vagueness, subjectivity 

and incompleteness due to a lack of supporting empirical evidence. These weaknesses are
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often not accounted for in conventional human factor risk assessment. The available 

approaches also suffer from the unrealistic assumption of independence of the human 

performance shaping (HPS) factors and actions. The focus of this paper is to address the 

issue of handling uncertainty associated with expert judgments and to account for the 

dependency among the HPS factors and actions. These outcomes are achieved by 

integrating Bayesian Network with Fuzzy and Evidence theories to estimate human error 

probabilities during different phases of an emergency. To test the applicability of the 

approach, results are compared with an analytical approach. The study demonstrates that 

the proposed approach is effective in assessing human error probability, which in turn 

improves reliability and auditability of human factor risk assessment. 

 

4.1 Introduction 

 

Human reliability is the probability that a person correctly performs system-required 

activities in a required time period (if time is a limiting factor) (Swain & Guttmann, 

1983). The performance depends on cognitive, emotional, and physical demands upon the 

person over that time period. These activities are influenced by a number of performance 

shaping factors (PSFs) (Swain & Guttmann, 1983). A successful human reliability 

analysis involves the study of human factors and performance shaping factors (PSF) 

(Blackman, Gertman, & Boring, 2008). With this recognition of the potential contribution 

of human factors in accidents, different human reliability assessment (HRA) techniques 

(i.e. THERP, SLIM) based on human factors analysis have been developed. However, 

they suffer from the limitations of data uncertainty, incompleteness and unrealistic 
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assumption of the independence of HPS factors. Moreover, operators working in offshore 

may be exposed to harsh environmental conditions and this necessitates considering the 

effect of harsh working environments on human performance. This paper presents a 

quantitative approach of human reliability assessment in offshore emergency condition 

with the capability of considering the underlying uncertainty, incompleteness and 

dependency and taking the influence of harsh environment into account. 

 

Operator‟s response in offshore emergency condition should be modeled in such way that 

all cognitive, emotional and physical aspects are taken into account. Operator response 

modeling thus includes understanding the complex mechanism of information processing, 

decision making and action execution. Interaction among the physical and mental aspects 

of operator should also be reflected in the model. To complete the model, the effects of 

external environmental factors should also be considered. This paper uses the 

information-decision-action (IDA) model presented by Cheng and Mosleh (Chang & 

Mosleh, 2007) to represent operator behavior and response as it fulfills all the stated 

requirements. The model contains the PSFs having influence on physical and mental 

states, the environmental factors, and represents their underlying dependency. This model 

is then converted into a Bayesian Network (BN) with the same underlying structure for 

the quantitative analysis of human error likelihood while performing a task. Fuzzy theory 

and evidence theory have been integrated with the BN to handle data uncertainty and 

incompleteness associated with expert judgment. 
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The paper starts with a brief overview of effect of cold environments on human 

performance. Section 4.3 covers the IDA cognitive model. Section 4.4 describes the 

proposed methodology along with basic understanding of fuzzy theory, evidence theory 

and BN. The methodology is demonstrated in the context of human reliability of actions 

related to evacuation of an offshore platform due to a fire and explosion in Section 4.5. 

The outcome of the study is discussed in Section 4.6. A comparison of the methodology 

to an analytical approach namely the Success Likelihood Index Methodology (SLIM) is 

also presented in this section. Finally, Section 4.7 gives a direction of possible future 

work and concluding remarks. 

 

4.2 Cold environment and its impact on human performance 

 

Cold environments impose serious stresses on operators and may adversely affect both 

their physical and cognitive performance. Major stressors are listed in Table 4.1 along 

with their impact on human performance. 

 

Physiological homeostasis of the operator is affected by the cold environment. For 

example, in abnormally cold weather; metabolism of an individual increases to maintain 

appropriate body temperature. An increasing metabolic rate; decreases the amount of time 

an individual might work. Loss of strength, mobility and balance are additional effects of 

extreme coldness. Stress and fatigue increase and make workers more susceptible to 

physical injuries (Karwowski, 2001). 
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Table 4.1: General Environmental Factors Affecting Human Performance (Bercha, Brooks, & 

Leafloor, 2003) 

Stressors Impact 

Coldness Breathing difficulty   

Muscular stiffness  

Frost bite  

Lowered metabolism  

Hypothermia  

Bulky clothing  

Stiffness of suits impairing movement  

Slippery surfaces  

Adds weight/mass   

 

Combined Weather Effects Wind, snow, waves  

 

Low visibility Ice, fog, lack of solar illumination   

Frost on windows, visors, glasses  

 

Remoteness Fear of unknown  

Stress for being detached from the 

family for a long time 

 

Mental state and memory performance are also affected by the cold environment through 

decreased perception and reasoning. These deficits will increase the likelihood of error in 

decision-making.  Response time also increases in degraded environmental conditions. 

Visual-motor tracking performance is impaired due to the cold and accompanying low 

visibility (Hoffman, 2002). 

 

4.3 The IDA cognitive model 
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The IDA model (Smidts, Shen, & Mosleh, 1997) represents the behavior of an operator 

contemplating three kinds of responses – information pre-processing (I), diagnosis and 

decision making (D), and action execution (A). The information pre-processing (I) 

involves handling the incoming information and filtering, comprehension, retrieval, 

relating and grouping of available information. By information pre-processing the 

operator often reaches a problem statement, which needs to be solved by diagnosis and 

decision-making (D). Diagnosis and decision making involves choosing a strategy and 

making the best decision given the circumstances. The decisions made at this step are 

executed in the action execution process (A). Mental state together with the memory 

constitutes the cognitive and psychological states of the operator and influences all three 

kinds of responses – information pre-processing (I), diagnosis and decision making (D) 

and action execution (A) (Smidts, Shen, & Mosleh, 1997). 

 

A set of performance shaping factors (PSF) has been identified which may influence 

operators‟ problem solving behavior (i.e. I, D and A). The unit of analysis is chosen as a 

person (the operator) rather than a team and the PSF set is assured to adhere with the 

fundamental principles of PSF selection (Groth & Mosleh, 2012). These factors are 

divided into two broad categories – internal PSFs and external PSFs. Internal PSFs 

include cognitive, emotional, and physical states while external PSFs include factors from 

the external world (i.e. communication availability).  

 

All the internal PSFs are further classified in three broad categories – mental state, 

physical factors and memorized information. Though in the original IDA model external 
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factors are classified into four groups – team related factors, organizational factors, 

environmental factors, and conditioning events, the scope of this paper has been limited 

to environmental factors only, as the main focus is to develop an HRA method for cold 

environments.  

 

4.4 Risk Assessment using Bayesian approach 

4.4.1 Methodology 

 

Figure 4.1 presents the main steps of the proposed methodology. The first step is scenario 

analysis which gives the overview of the emergency scenario and activities of an 

individual in that scenario. Scenario analysis is followed by hierarchical task analysis 

(HTA) which breaks the whole scenario into a series of actions that needed to be 

performed in that specific emergency scenario. Then for each task, PSFs that may 

influence the task are identified. For the PSF identification purpose both physical and 

cognitive aspects of the individual are considered and factors that may affect any of these 

are taken into account. The identified PSFs are then used to develop the cognitive IDA 

model of individual behavior for the task. Next step is to assess the PSF using expert 

judgment technique. Fuzzy and Evidence Theories are used in this step to handle the 

uncertainty and partial ignorance associated with expert judgments. 
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Figure 4.1: The Proposed methodology for human error analysis 

 

 

A BN is then developed from the IDA model and the PSF assessments achieved in 

previous steps are fed into it. This BN gives the likelihood of the corresponding task 

failure. Finally, human error probability (HEP) for a task is calculated using the 

likelihood achieved from the BN. Each time new information or evidence is available the 

BN is updated, which in turn updates the likelihood of human failure of doing a task and 

HEP. The whole process is repeated for each task identified during HTA. 
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The following subsections give a brief overview of BN and integration of Fuzzy and 

Evidence Theories with the BN for better understanding of the proposed methodology. 

 

4.4.2 Bayesian network fundamentals 

 

BNs are probabilistic models representing interaction of parameters through acyclic graph 

and conditional probability tables (CPTs) (Lampis & Andrews, 2008). The networks are 

composed of nodes and links. Nodes represent the variables of interest whereas links 

joining the nodes represent causal relations among the variables. Nodes and links together 

define the qualitative part of the network. The quantitative part is constituted by the 

conditional probabilities associated with the variables. Given the probabilities associated 

with each root node (node with no predecessor) and the conditional probability table 

associated with each intermediate child node, the probabilities of child nodes can be 

calculated. The significant feature of the BN is that it gives the flexibility to update the 

probability of the nodes when the states of some variables in a network are known due to 

new emerging evidence (Pearl, 1988). The law of marginal probability (Lampis & 

Andrews, 2008) gives the probability for an event A as the sum of the joint probability of 

A with a set of mutually exclusive events B1, B2…Bn: 

 

     ∑       

 

                                                                  

 

By the product rule, Equation 4.1 can be written in terms of conditional probabilities as: 
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Combining Equation 4.1 and 4.2 we obtain: 

 

     ∑   |         

 

                                                           

 

The probability of the states of each node can be calculated marginalizing over the states 

of the node‟s parents, which represent mutually exclusive events. 

 

When evidence is given on any node of a BN, the updated probability- the posterior 

probability - can be calculated using Bayes‟ theorem (Haldar & Mahadevan, 2000) given 

as: 

   |    
   |      

    
                                                               

 

Equation 4.4 can also be written in terms of the marginal probability as 

 

   |    
∑          

∑   ∑          
                                                              

 

In the proposed methodology, a BN is used to implement the IDA cognitive model for 

quantitative analysis of human reliability. For each task, a BN is developed from the 

corresponding IDA cognitive model with the same PSFs and the same interdependency 
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relationship; task failure likelihood can be calculated using Equation 4.3. At any time if 

new evidence is observed the posterior probabilities can be updated using Equation 4.5. 

 

4.4.3 Integration of Fuzzy theory with Bayesian network 

 

The Bayesian approach to human reliability assessment requires prior knowledge about 

the identified PSFs and their conditional dependencies with a high level of detail. Human 

error data with such great detail is difficult to find, which necessitates the use of expert 

judgment techniques. Expert judgment itself suffers from vagueness coming from 

linguistic and subjective uncertainty. Judgment often comes from experts in the form of 

linguistic expressions (i.e. extremely probable, highly improbable) rather than exact 

numerical expression. Judgment can also come in the form of a range rather than one 

exact numerical value (i.e. probability of temperature to be high is “about or nearly” 

40%). Fuzzy Theory provides a way to transform this qualitative judgment into numerical 

reasoning. 

 

In this paper Triangular Fuzzy Numbers (TFN) (Ferdous, Khan, Sadiq, Amyotte, & 

Veitch, 2009) are used for representing linguistic variables. Instead of one exact numeric 

number a fuzzy number is presented with three points A = (a1, a2, a3) that represent the 

minimum, most likely and maximum values of event probability. This representation is 

interpreted as membership functions as shown in Equation 4.6. 
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By α-cut operation a crisp interval    can be obtained            from Equation 4.7. 

 

      
    

                                                   

 

To transform this fuzzy number into a crisp value Yager‟s Ranking index (Isabels & 

Uthra, 2012) defuzzification method shown in Equation 4.8 is used. 

 

     ∫        
    

  
 

 

                                                      

 

4.4.4 Integration of Evidence theory with Bayesian network 

 

As discussed in Section 4.4.3 expert judgment suffers from vagueness. It also suffers 

from incomplete knowledge of experts due to partial ignorance. Judgment coming from 

different experts may also have conflicts. Evidence Theory is used in this paper to handle 

this incompleteness and conflict. Prior knowledge about PSFs is taken from different 

experts and this multi expert knowledge is combined using Dempster – Shafer evidence 

theory (DST) (Musharraf, Hasan, Khan, Veitch, MacKinnon, & Imtiaz, 2013). 
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The basic probability assignment (BPA) or belief mass for each individual PSF is 

acquired from the different sources. If the PSF can be in three different states–, {Yes}, 

{No} and {Yes, No}, then BPA is assigned by an expert for each of these states and 

represents the degree of expert belief. The BPA is denoted by m(pi) and can be 

characterized by the following equations- 

 

                      

∑                                                                             

    

 

 

DST combination rule is then used to aggregate the multiple knowledge sources 

according to their individual degree of belief. If there are n different knowledge sources 

that are to be combined, the orthogonal sum combination rule as depicted in Equation 

4.10 is used. 

 

                                                                   

 

4.5 Bayesian approach to implement IDA 

 

4.5.1 Scenario analysis 

 

Human reliability assessment of a muster scenario due to the occurrence of a fire on an 

offshore platform adopted from (DiMattia D. G., 2004) is illustrated in this section. The 

first step is the process alarm that sounds to warn individuals. Through the distributed 
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control system (DCS) a parallel process alarm should sound in the control room to warn 

the operator. Failure to control the abnormality may lead to an escalation of the 

seriousness of the event, which in turn initiates a muster.  

 

The ideal muster sequence starts with the muster alarm to notify all personnel to start a 

muster procedure and ends with all personnel gathered at a temporary safe refuge (TSR). 

In between these, individuals perform intermediate actions. Individuals have to identify 

alarms, stop the work and secure the process to a safe state to provide an obstruction free 

path for egress. Each site, including accommodations, needs to be in a state that inhibits 

escalation of the hazard event. 

 

Following the muster alarm, there is a public announcement (PA) regarding the update of 

the nature of the muster and areas to be avoided. An egress path has to be chosen using 

the provided information. On safe arrival at the TSR, individuals have to register 

themselves. The offshore installation manager (OIM) provides an update with time that 

includes decisions such as don survival suit or load life-boat for evacuation. Subsequently 

specific individuals contribute to the evacuation process or fire suppression.  

 

HTA for a generic muster scenario is adopted from (DiMattia, Khan, & Amyotte, 2005). 

The HTA gives a series of muster actions that are independent of muster initiator. A total 

of eighteen tasks have been identified that are broken down into four muster phases. The 

muster actions can be categorized under four muster phases:  Awareness, Evaluation, 

Egress and Recovery.  
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PSF identification, assessment and BN modeling are done for each of these phases. The 

following section demonstrates these steps of the methodology for awareness phase. The 

same process is repeated for the other three phases and the results are summarized at the 

end of this section. 

 

4.5.2 Awareness phase 

 

The first step of the awareness phase is to detect the alarm successfully. When the alarm 

is detected it should be interpreted to identify the meaning of the alarm. After successful 

identification of the alarm the muster command is recognized and proper actions should 

be taken accordingly. The success of the awareness phase thus depends on the success of 

alarm detection, identification and actions taken.  

 

4.5.2.1 PSF identification and IDA model of PSF 

 

As discussed in Section 4.4.2 the IDA cognitive model is used to analyze the behavior of 

the operator while performing a task in an offshore emergency situation. The analysis 

results in a set of internal and external PSFs influencing operator performance and their 

hierarchical dependencies. Figure 4.2 shows the IDA model of operator behavior for the 

task alarm detection. 
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Figure 4.2: The IDA model of operator behavior for the task Alarm Detection (Chang & Mosleh, 

2007) 

 

 

As shown in Figure 4.2 successful alarm detection requires both sound physical and 

mental state of the operator. The physical factors that may influence the operator to fail 

detecting an alarm are some physical limitation to hearing and/or fatigue. Besides the 

physical soundness, the operator needs to be mentally alert and attentive to detect the 

alarm. Alertness and attentiveness depend on the stress level of the operator. The stress 

again is dependent on the task load of the operator at that time. Both these physical and 

cognitive factors are internal and are influenced by the external factor environment. All 

these PSFs and their dependencies are used to finally get a model of the behavior of the 

operator for the task alarm detection as represented in Figure 4.2. 
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The IDA model for the other two tasks of the awareness phase – (alarm identification and 

act accordingly), are developed in the same way.  

 

4.5.2.2 PSF Assessment 

 

As discussed in Section 4.4.4 and 4.4.5, the prior knowledge of PSFs and their 

conditional dependencies come from different expert sources and suffer from imprecision 

and incompleteness. So, the PSF assessment consists of two main parts : 

 

I. Recognize and reduce the imprecision using Fuzzy Theory. 

II. Handle the incompleteness and conflict using Evidence Theory. 

 

4.5.2.3 Bayesian networks modeling of PSFs 

 

Once the PSF assessment is done, required PSF probabilities and conditional probabilities 

are at hand. The IDA model of the operator behavior can now be transformed into a BN 

with the same underlying hierarchical structure. Though physical factors and mental state 

of the operator are dependent on each other as shown in the IDA models, in the Bayesian 

Network only mental state is assumed to depend on the physical state and not the vice 

versa as Bayesian networks do not support cyclic dependency. 

 

The IDA model shown in Figure 4.2 is transformed to a BN to calculate the likelihood of 

alarm detection task failure. In order to reduce calculation complexity the network is 



105 

 

 

divided into smaller subnetworks of mental state, physical factors and environmental 

factors and shown in Figures 4.3-4.5 respectively. Combining all these subnetworks the 

final BN of Alarm detection is achieved as shown in Figure 4.6. 

 

 

Figure 4.3: Bayesian Network for Mental State 

 

 

Figure 4.4: Bayesian Network for Environmental Factors 
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Figure 4.5: Bayesian Network for Physical Factors 

 

 

 

Figure 4.6: Bayesian Network of operator behavior for Alarm Detection 
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4.5.3 Dynamic Bayesian analysis 

 

The BN of PSFs is dynamic in nature and can be updated as new information regarding 

the PSFs becomes available. The information may come in two different ways: expert 

judgment or observed evidence. 

 

To illustrate the former, consider the network of PSFs for Alarm Detection shown in 

Figure 4.6. The physical state of the operator in the network is dependent on physical 

limitation and fatigue as shown in Figure 4.5. The probabilities of these PSFs being 

positive or negative are obtained by combining expert judgments as discussed in Section 

4.4.5. As shown in Figure 4.5, the combination gives the likelihood of fatigue being 

present as 14%, not present as 85% and an incomplete knowledge of 1%. Later another 

expert judgment gives the likelihood of fatigue being present as 10%, not present as 75% 

and an incomplete knowledge of 15%. This new, expert judgment needs to be combined 

with the previous likelihood to assess the updated likelihood, of the PSFs at a given time. 

This combination is done using Dempster–Shafer theory (DST) (Musharraf et al., 2013). 

 

A DST combination rule is used to combine expert judgments according to their 

individual degrees of belief. 

 

Table 4.2 illustrates the DS rule by combining the new expert judgment with the prior 

likelihood for the fatigue PSF in the Alarm Detection network. 
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Table 4.2: Updating fatigue likelihood using new expert judgment evidence 

 m2 {Yes} {No} { Yes, No} 

m1  0.1 0.75 0.15 

{Yes} 0.14 {Yes} =0.014 { φ }=0.105 {Yes}=0.021 

{No} 0.85 { φ }=0.085 {No}=0.638 { No}=0.128 

{ Yes, No} 0.014 {Yes}=0.001 {No}=0.01 {Yes, No}  

= 0.002 

 k 0.19   

     

 ∑       

        

       0.036 0.78 0.002 

 m1-2(DS) 0.04 0.959 0.014 

 

After combining the new expert judgment, the likelihood of fatigue being present 

becomes 4%, not present becomes 95.9% with an incomplete knowledge of only 

0.1%.The network can also be updated as new evidence is observed. As shown in Figure 

4.4 the environmental factor is a combination of temperature, weather, remoteness and 

visibility. For example, if at a given time temperature is observed to be abnormally low 

and visibility is observed to be low due to snow, the likelihood of environmental factor 

will be changed as shown in Figure 4.7. 

 

From Figure 4.7 it can be observed that, the likelihood of the environmental factor being 

bad is increased from 30% to 65%. This change will affect the physical and mental state 

of the operator and finally increase the likelihood of failure of alarm detection from 27% 

before getting the evidence to 32% after. 
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Figure 4.7: Bayesian Network for Environmental Factors after dynamic update 

 

As shown in Figure 4.7, the likelihood of the environmental factor of being bad is 

increased from 30% to 65%. This change will affect the physical and mental state of the 

operator and finally increase the likelihood of failure of alarm detection from 27% before 

getting the evidence to 32% after. 

 

4.6 Result and discussion 

 

4.6.1 Results for complete study 

 

Calculated likelihoods of failure for all actions using the Bayesian approach are presented 

in Table 4.3. The detail of the calculation is illustrated in Section 4.5. 
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Table 4.3: Likelihoods of actions using Bayesian approach 

Action 

Lower and 

Upper bound 

of failure 

likelihood 

Detect alarm (0.27, 0.36) 

Identify alarm (0.27, 0.33) 

Act accordingly (0.28, 0.34) 

Ascertain if danger is imminent (0.30, 0.35) 

Muster if in imminent danger (0.29, 0.35) 

Return process equipment to safe state (0.28, 0.34) 

Make workplace as safe as possible in limited time (0.29, 0.35) 

Listen and follow PA announcements (0.27, 0.33) 

Evaluate potential egress paths and choose route (0.30, 0.35) 

Move along egress route (0.14, 0.15) 

Assess quality of egress route while moving to TSR (0.30, 0.35) 

Choose alternate route if egress path is not tenable (0.28, 0.34) 

Collect personal survival suit if in accommodations at time of muster (0.12, 0.18) 

Assist others if needed or as directed  (0.13, 0.2) 

Register at TSR  (0.13, 0.19) 

Provide pertinent feedback attained while enroute to TSR (0.13, 0.18) 

Don personal survival suit or TSR survival suit if instructed to abandon (0.14, 0.21) 

Follow OIM's instructions (0.13, 0.19) 

 

4.6.2 Comparison with analytical approach 

 

The proposed approach is compared with the success likelihood index method (SLIM) 

(Kirwan, 1994). The likelihood associated with each PSF is used as the rating while the 

weights of the factors are given in accordance with the conditional probability table.  

 

In both approaches, for calculation of the likelihood of failure of a task or action the first 

step is identification of the PSFs influencing the task. In the Bayesian approach, the 

likelihood of failure of the task or action can be calculated by forward analysis using the 
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individual PSF likelihood and conditional probabilities. In SLIM, the PSF identification is 

followed by assigning a rating and a weight for each of the PSFs. The success likelihood 

index (SLI) is then calculated as the sum of the weightings multiplied by their ratings for 

each time (task error). 

 

We illustrate the process using the network of PSFs for alarm detection shown in Figure 

4.6. The subnetwork shown in Figure 4.5 for physical factors represents that probability 

of having a physical limitation is 10% and probability of being fatigued is 14%. These 

values are directly used as the PSF ratings for physical limitation and fatigue. Ratings of 

other factors for the task alarm detection can be achieved in the same way from Figure 

4.3 and 4.4.  

 

Weight is inferred in a rather complex way with the conditional probability tables and 

dependency relationship. For example, as shown in Figure 4.5, fatigue can affect operator 

behavior for alarm detection in two different paths – fatigue  physical factors  

operator behavior for alarm detection and fatigue  physical factors  mental state  

operator behavior for alarm detection. Weight of fatigue can be achieved by summing the 

weight of these two paths. Now weight of the first path is the weight or importance of 

fatigue on physical factors multiplied by weight of physical factors on operator behavior 

for alarm detection. When there is no physical limitation and the environmental factor is 

benign the likelihood of physical factors being bad are 0.33 due to fatigue. This represents 

the weight of fatigue on physical factors. Similarly, the weight of physical factors on 

operator behavior for alarm detection is 0.5. This gives the weight of the path fatigue -> 
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physical factors -> operator behavior for alarm detection = 0.33×0.5 = 0.17. Weight for 

the path fatigue -> physical factors -> mental state -> operator behavior for alarm 

detection is calculated in the same way and is found to be 0.33×0.25×0.5 = 0.04. So, 

finally the weight of fatigue is = 0.17 + 0.04 = 0.21. With the PSF ratings and weights the 

success-likelihood index (SLI) can be calculated for alarm detection failure as shown in 

Table 4.4. 

 

Once the likelihood of task or action failure is achieved, the relationship in Equation 4.11 

is used to transform the likelihood into human error probabilities (HEPs) (Kirwan, 1994). 

 

Log (HEP) = a (SLI) + b                                                (4.11) 

 

Table 4.4: SLI calculation for Alarm Detection Failure 

Factors Rating Weight Failure Likelihood 

Physical Limitation 0.1 0.21 0.02 

Fatigue 0.14 0.21 0.03 

Alertness & Attention 0.23 0.13 0.03 

Stress 0.22 0.19 0.04 

Task Load 0.11 0.23 0.03 

Temperature 0.3 0.08 0.02 

Combined WE 0.4 0.08 0.03 

Remoteness 0.2 0.08 0.02 

Visibility 0.3 0.08 0.02 

  
SLI (Total) 1- 0.24 = 0.76 
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Two more tasks are evaluated where SLIs are assessed as 1 and 0 for known HEPs of 1E-

5, and 0.9 respectively. From these the constant a and b can be calculated as, a = - 4.954 

and b = - 0.046. 

 

Table 4.5 shows a comparison of likelihood and corresponding error probabilities 

calculated using the Bayesian approach and SLIM methodology for the first five tasks. 

From Table 4.5 it can be observed that the failure likelihood calculated in both 

approaches is similar and so is the calculated HEP. 

 

One of the advantages of the Bayesian approach over SLIM is that once new evidence is 

available the likelihood of failure of any task or action can be revised as discussed in 

Section 4.5.3. The SLIM methodology does not have the flexibility to take new evidence 

into account and change accordingly. 

 

Table 4.5: Comparison of calculated HEP in BN and SLIM methodology 

Task 
Failure likelihood 

(BN) 

Failure likelihood 

(SLIM) 

HEP  

(BN) 

HEP 

(SLIM) 

Alarm Detection 0.27 0.24 0.00022 0.00015 

Alarm Identification 0.27 0.26 0.00022 0.00019 

Act Accordingly 0.28 0.28 0.00024 0.00024 

Ascertain if danger is 

imminent 
0.3 0.36 0.00031 0.00061 

Muster if in imminent 

danger 
0.29 0.27 0.00027 0.00022 
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For example, with the evidence that at a given time in an emergency condition the 

environmental condition is bad, the likelihood of actions listed in Table 4.5 will change as 

listed in Table 4.6. The likelihoods of actions calculated in the SLIM approach remain the 

same as before, without any effect of the observed evidence. 

 

Table 4.6: Comparison of calculated HEP in BN and SLIM methodology with evidence of bad 

weather 

Task 
Failure likelihood 

(BN) 

Failure likelihood 

(SLIM) 

HEP  

(BN) 

HEP 

(SLIM) 

Alarm Detection 0.42 0.24 0.0012 0.00015 

Alarm Identification 0.54 0.26 0.0047 0.00019 

Act Accordingly 0.53 0.28 0.0042 0.00024 

Ascertain if danger is 

imminent 
0.57 0.36 0.0067 0.00061 

Muster if in imminent 

danger 
0.55 0.27 0.0053 0.00022 

 

 

4.7 Conclusion 

 

The paper presents a quantitative approach to human reliability analysis during offshore 

emergency conditions in harsh environments. To model operator response in an offshore 

emergency in harsh environment the IDA cognitive model has been adopted. From this 

model the BN is developed, which maintains the dependency relationships from the IDA 

model and gives the opportunity to incorporate quantitative analysis. To handle 

uncertainty and incompleteness of required data, Fuzzy and Evidence Theories are used 

together. An offshore muster scenario is used as an example of emergency conditions to 

illustrate the methodology. With further generalization and availability of data the 
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methodology can be applied to assess human reliability for any offshore emergency 

scenario in harsh environments. 
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Abstract 

Bayesian network (BN) is a powerful tool for human reliability analysis (HRA) as it can 

characterize the dependency among different human performance shaping factors (PSFs) 

and associated actions. Unfortunately, data required to construct BN for HRA in offshore 

emergency situations are not readily available. For many situations there is either
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little or no appropriate data. This presents significant challenges to assign prior and 

conditional probabilities. This paper presents a data collection methodology using a 

virtual environment for a simplified BN model of offshore emergency evacuation. A two-

level, three-factor experiment is used to collect human performance data in different 

mustering conditions. Using these data, the BN model is verified by comparing the 

performance outcomes with a previous test study. 

 

5.1 Introduction 

 

Bayesian networks (BNs) are acyclic directed graphs modeling probabilistic 

dependencies and interdependencies among variables (Pearl, 1988). The graphical part of 

a BN reflects the causal relationship of the variables under consideration. The interactions 

among these variables are quantified by conditional probabilities. BNs proved to be a 

powerful tool for human reliability analysis (HRA) (Musharraf, Hassan, Khan, Veitch, 

MacKinnon, & Imtiaz, 2013) as it has the capability to consider dependency among 

human performance shaping factors (PSFs) (Blackman, Gertman, & Boring, 2008) and 

associated actions. 

 

A major difficulty in applying BN to practical problems is to obtain the numerical 

parameters that are needed to fully construct a BN (Oniśko, Druzdzel, & Wasyluk, 2001). 

The complete probability distribution table (CPT) for a binary variable with n binary 

predecessors in a BN requires specification of 2
n
 independent parameters. For a 

sufficiently large n, eliciting 2
n
 parameters is difficult. This problem is severe in the case 
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of HRA, as human performance data for emergency scenarios are not readily available. 

Though expert judgment technique has been used as a solution to the data scarcity 

problem, collecting judgment from domain experts for 2
n
 parameters when n is 

sufficiently large can be prohibitively cumbersome. This paper presents a way to collect 

human performance data using a virtual experimental technique to deal with the data 

scarcity problem. The data are then integrated in the BN to determine the human error 

likelihood. The focus of this paper is to verify the BN model of HRA by comparing this 

achieved likelihood using BN to the likelihood obtained in a previous study (Bradbury-

Squires, 2013) that uses the same data but a different methodology. 

 

The experiment is done in a virtual environment (VE).  Human performance data were 

collected for all 2
n
 combinations of n factors by a two level (assuming all factors are 

binary) n factor experiment. An overview of the VE and experimental setup is given in 

Section 5.2. The BNs that need to be verified are modeled to observe the effect of three 

PSFs: training, visibility and complexity on three different responses: time to evacuation, 

backtracking time and exposure to hazard. The detail of the experimental design is given 

in Section 5.3. Section 5.4 describes the data collection process. Section 5.5 illustrates 

integration of collected data in the BNs. Results are discussed and compared with a 

previous study for verification of the model in Section 5.6. Section 5.7 gives direction for 

future work and concludes the paper. 
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5.2 Overview of the virtual environment and experimental setup 

 

VEs allow employees to gain artificial experience of performing in dangerous and stress-

inducing scenarios in a simulated environment when practicing these scenarios in the real 

world is ethically, logistically or financially unfeasible (Veitch, Billard, & Patterson, 

2008). Simulation training through the VE‟s facilitates training people for different 

evacuation conditions (Ali, 2006).  This can also be used as a tool to observe human 

performance and behavior in different emergency situations. In the experiment presented 

in this paper, human performances during emergency evacuations are observed in 

different scenarios. The VE used in this experiment is called the all-hands virtual 

emergency response trainer (AVERT). This VE is designed for offshore emergency 

response training. The VE is modeled after a specific offshore oil installation platform 

with very high levels of detail. A first person point of view of the VE is displayed through 

a desktop computer monitor and the trainees can interact with the environment using a 

Microsoft XBox controller. Scenarios in AVERT can be designed for trainees to practice 

responding to emergency situations by mustering or evacuating the platform. The 

AVERT prototype is capable of creating credible emergency scenarios by introducing 

hazards such as blackouts, fires and explosions.  

 

Bradbury-Squires (2013) designed an experiment to use AVERT to assess three specific 

queries: 1) to determine the effectiveness of different modes of learning on task 

performance during simulation training in a VE, 2) to examine the relationships between 

subjective and objective measures of presence (Witmer & Singer, 1998) and 3) to 
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investigate the relationships between measures of presence and spatial learning (Carassa, 

Geminiani, Morganti, & Varotto, 2002) during simulation training in a VE. Here, in this 

paper the same experiment is used to illustrate a way of collecting data to test and verify a 

BN model of HRA during offshore emergency evacuation. The feature of AVERT of to 

create different visibility levels is used in the experiment to make day and night 

conditions. The ability to create virtual hazards like jet fires, pool fires, and smoke is used 

to vary the level of complexity. When there is no hazard the complexity level is low. With 

different kinds of hazards blocking several routes, the situation is much more complex. 

 

A total of 43 participants participated in the study. All participants attended three training 

sessions and one testing session. At the very beginning of the experiment participants 

were given a brief of the procedure they were to go through and the goals of the 

experiment. They were naïve concerning any detail of the experimental design or the 

testing sessions. The participants were randomly assigned to two different training 

groups. Both of the groups had the same goal: to evacuate efficiently and successfully in 

all conditions. The difference was in the type of training they received during the training 

sessions. Different types of training are described in detail in Section 5.3.1.1. The testing 

session was the same for both groups and data were collected during this session. 

Different scenarios were created in this session by varying visibility and complexity; 

performances of the participants were measured in terms of time taken for evacuation, 

time spent in backtracking, and exposure to hazard. 
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5.3 Design of experiment 

 

The focus of this paper is to verify the Bayesian network (BN) approach of HRA with test 

data from experiments conducted in a VE. The first step of this verification exercise is to 

transform collected data to relevant normalized conditional probabilities. A two-level, 

three-factor experiment was used for data collection and the collected data were analyzed 

to get the required conditional probabilities. This section gives an overview of the design 

of this experiment. 

 

5.3.1 Independent factors 

 

The PSFs considered in this experiment were: training, visibility and complexity. Each 

factor was studied in two different levels. The possible levels of different factors were set 

as follows. 

 

5.3.1.1 Training 

 

This PSF refers to the type of training of the subject. Training varied in two different 

levels: 1) active exploration group and 2) hybrid active and passive exploration group. 

The goal for both groups was to learn to navigate to their assigned lifeboat platform and 

both groups received training in three different sessions to achieve the goal. The training 

sessions were designed differently for the two groups. Participants in the active group 

tried to learn to navigate to the lifeboat platform by freely exploring the environment. The 

active-passive group on the other hand tried to learn to navigate the lifeboat platform by 
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watching three training videos hosted by an avatar who described a specific and 

predetermined path. Participants in the active-passive group did not get a chance to freely 

explore but were allowed to imitate the routes taken by the avatar after each video. 

 

5.3.1.2 Visibility 

 

This PSF refers to the amount of ambient light while performing a specific task. The 

amount of light is believed to affect the visibility of the operator and hence affect 

performance. This factor was varied in two different levels: day and night. The day 

condition had high level of visibility. In the night condition, the visibility was reduced. 

However, the participants were allowed to use a virtual flashlight to increase visibility in 

the night condition. Though the visibility using the flash light was not as high as the day 

condition, it allowed for sufficient visibility to see the routes during navigation. 

 

5.3.1.3 Complexity 

 

Complexity refers to how difficult it is to perform the task in a given context. Complexity 

considers both the task and the environment in which the task is to be performed. The 

more difficult the task is to perform, the greater the chance for human error. Two 

different levels of complexity were considered in this experiment: high and low. 

Complexity was low when there was no hazard or obstacles on the available routes to the 

lifeboat platform. High complexity condition was created by blocking several available 

routes by hazards like a jet fire, a pool fire and heavy smoke. 
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5.3.2 Dependent variables 

 

The three factors were varied in different levels and responses were measured for all 

possible combinations of the factor levels. The responses measured in the experiment are: 

1) time to evacuation, 2) backtracking time and 3) exposure to hazard. Time to evacuation 

refers to the time taken by the subject to reach the lifeboat platform from the starting 

position. Backtracking time means time spent by the subject going back the way he/she 

had come. Depending on the type of hazard and time spent close enough to the hazard, 

subjects could have first or second degree burns or death. Exposure to hazard was 

measured as a response to reflect the likelihood of injury or death. Each of the responses 

was also considered to have different possible states. Time to evacuation and 

backtracking could be compared to a benchmark evacuation time. Exposure to hazard 

could have four states: no exposure to hazard, first degree burn, second degree burn and 

death. 

 

Benchmarks were defined for all the responses so that the deviation from the benchmark 

in different conditions of the factors could be examined. Benchmark time to evacuation 

was fixed at 98 seconds for low complexity scenarios and 190 seconds for high 

complexity scenarios, which was the time taken by an experienced qualified person to 

reach the lifeboat platform from the starting position. In an ideal case, the subject should 

not spend time in backtracking unless the route followed was blocked, in which case 

he/she might have to backtrack to find an alternative route. The ideal backtracking time 

was 0 seconds when no route was blocked and 26 seconds when routes were blocked by a 
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hazard. The ideal backtracking time for the scenario with blocked routes was the 

minimum time spent by an experienced qualified person in backtracking in that scenario. 

Similarly, ideally no subject should expose himself/herself to hazard in any condition, and 

the likelihood of injury or death was expected to be 0 in these specific scenarios. 

 

Figure 1 presents a schematic diagram of the experimental design. 

 

 

 

Figure 5.1: Schematic diagram of the experimental design 

 

 

Once all the responses were measured, the final likelihood of evacuation failure was 

calculated using the cause effect relationship shown in Figure 2. Failure could occur for 

any of these reasons: the subject 1) took more time to evacuate than the benchmark limit 

or 2) spent more time in backtracking or 3) had exposure to hazard. 
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Figure 5.2: Logic diagram illustrating likelihood assessment of evacuation compromise (failure to 

evacuate safely) 

 

 

5.4 Data collection 

 

For developing a Bayesian network two types of data are needed: 1) Basic probabilities of 

the independent nodes and 2) conditional probability distribution table (CPT) data for the 

dependent nodes. The three PSFs are the independent nodes here. The basic probability of 

both active and active-passive training was considered 50% as the total sample was 

divided into two equal groups. As two out of three scenarios had day light, the probability 

of day was considered 2/3 and the probability of night was then 1/3. The same strategy 

was used for complexity. As only one of the scenarios out of three had high complexity 

the probability of complexity being high was considered 1/3 and the probability of 

complexity of being low was 2/3.  

 

With three factors, data collection had to be done for a total of 2
3
 = 8 combinations. To 

get the likelihood that can suffice the CPT, time to evacuation, backtracking time and 
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exposure to hazard were first collected for all 8 possible combinations of factors. Table 

5.1 shows a set of collected data as an example. 

Table 5.1: Sample data collection 

State of the factors Time to 

evacuation 

(s) 

Backtracking 

time (s) 

Exposure to 

hazard 

(% injury or 

death) 
Training Visibility Complexity 

Active Day Low 121.5 1  

Active Day High 176.2 23 0 % 

Active Night Low 115.1 9  

Active Night High 176.2 23 0 % 

Active-passive Day Low 104 9  

Active-passive Day High 302.7 60 95% 

Active-passive Night Low 102.4 3  

Active-passive Night High 302.7 60 95% 

 

Once the raw data is at hand, likelihood required for the CPT can then be calculated using 

basic probability theory. For example, the likelihood of time to evacuation being less than 

or equal to benchmark time for the first combination (Training = active, Visibility = day, 

Complexity = low) can be calculated using equation 5.1. 

 

                                                         

  

                                                                
                

                                                       
                                              

                                 

          

 

One limitation of the experiment is that data were collected for only six combinations. 

The two combinations where there is hazard at night were not conducted. However, as 
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found by Bradbury-Squires (2013) it is assumed in this paper that the performance at 

night and day for the high complexity scenarios are very similar and the data collected for 

day is used for night as well for the high complexity scenarios, as shown in Table 5.1.  

 

Conditional probabilities for all combinations are calculated in the same way shown in 

equation 5.1. The calculated CPT data are shown in Tables 5.2 & 5.3 for time to 

evacuation and backtracking time respectively. 

Table 5.2: Collected CPT data for time to evacuation  

Training Active Active-passive 

Visibility Day Night Day Night 

Complexity Low High Low High Low High Low High 

Likelihood of time to 

evacuation being less than 

or equal to benchmark 

time 

0.55 0.27 0.45 0.27 0.48 0.1 0.38 0.1 

Likelihood of time to 

evacuation being higher 

than benchmark time 

0.45 0.73 0.55 0.73 0.52 0.9 0.62 0.9 

 

 

Table 5.3: Collected CPT data for backtracking time 

Training Active Active-passive 

Visibility Day Night Day Night 

Complexity Low High Low High Low High Low High 

Likelihood of time to 

evacuation being less than 

or equal to benchmark 

time 

0.32 0.18 0.41 0.18 0.29 0.05 0.33 0.05 

Likelihood of time to 

evacuation being higher 

than benchmark time 

0.68 0.82 0.59 0.82 0.71 0.95 0.67 0.95 
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However, exposure to hazard could only happen in the presence of any type of hazard that 

is in the scenarios where complexity was high. As mentioned earlier in this section, the 

effect of visibility on performance is assumed to be minimum. The only factor that‟s 

effect has been modeled for exposure to hazard is training. The CPT data collected for 

exposure to hazard is shown Table 5.4. 

 

Table 5.4: CPT data collected for exposure to hazard 

Training Active Active-passive 

Likelihood of no exposure to hazard 0.61 0.358 

Likelihood of first degree burn 0 0.086 

Likelihood of second degree burn 0 0.036 

Likelihood of death 0.39 0.52 

 

The next section describes the calculation of the total probability of different states of the 

responses using the prior probabilities and CPT calculated in this section for the BN. 

 

5.5 Integration of collected data in the BN model 

 

The prior probabilities and the CPT data are now integrated in the BN of all three 

responses. The networks are shown in Figures 5.3 through 5.5. 
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Figure 5.3: BN of time to evacuation 

 

 

 Figure 5.4: BN of backtracking time  

 

 

 

Figure 5.5: BN of exposure to hazard 
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These posterior probabilities of time to evacuation, backtracking time and exposure to 

hazard are used in the causal network shown in Figure 5.2, which gives the final BN of 

evacuation success or failure. The network is shown in Figure 5.6. 

 

 

Figure 5.6: BN of Evacuation 

 

5.6 Result and discussion 

 

The BNs discussed in Section 5.5 are further analyzed to find the significance of different 

factors. The results are then compared to the findings in (Bradbury-Squires, 2013).  

 

5.6.1 Effect of complexity 

 

Updated networks of time to evacuation with evidence of low complexity and high 

complexity are shown in Figures 5.7 and 5.8 respectively.  
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Figure 5.7: Updated network of time to evacuation with evidence of low complexity 

 

 

Figure 5.8: Updated network of time to evacuation with evidence of high complexity 

 

As shown in Figures 5.7 and 5.8 likelihood of taking less than or equal to the benchmark 

time to evacuation decreased 60% (from 48% to 19%) in high complex situation. 

Backtracking time, which is also dependent on complexity, had a 63% (from 33% to 

12%) decrease in the likelihood of being less than or equal to benchmark time in high 

complex situation. In the high complexity situation, it was found to be more likely that 

the subject will take more than the benchmark time and spend more time in backtracking. 
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5.6.2 Effect of visibility 

 

As shown in Table 5.5, in night situation, likelihood of time to evacuation being less than 

or equal to the benchmark time decreased by 17%. However, the likelihood of 

backtracking time being less than or equal to benchmark time increased by 20% in the 

night situation, contrary of what was expected. This may be due to the reason that, with 

the help of flashlight, the visibility in the night scenarios increased to a comfortable level 

and did not have much difference from the day light.  

 

5.6.3 Effect of training 

 

With the evidence of training it was found that the active training group had an overall 

25% higher likelihood to take less than or equal time to the benchmark time compared to 

the active-passive group as shown in Table 5.5. The likelihood of spending less than or 

equal time to the benchmark time in backtracking was also 24% higher for the active 

group compared to the active-passive group. The chance of death was 33% higher in the 

active-passive group compared to the active group. Though difference between two 

groups was marginal in low complexity scenarios, it was significant in high complexity 

scenarios. In high complexity scenarios the likelihood of time to evacuation being less 

than or equal to the benchmark was 63% higher with active training. Likelihood of 

backtracking time being less than or equal to the benchmark time was also 72% higher 

with active training.  

 

Table 5.5 summarizes the effect of different factors on the responses. 
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Table 5.5: Performance improvement or degradation according to evidence (degradation is shown 

using negative sign) 

Evidence 

% improvement 

in terms of Time 

to evacuation 

% improvement 

in terms of 

Backtracking 

time 

% improvement in 

terms of Exposure 

to hazard (death) 

Complexity 

(From low to high) 
(-) 60% (-) 63%  

    

Training (From active-

passive to active) 
25% 24%  

    

Visibility (From day to 

night) 
(-) 17% 20%  

    

Complexity = High & 

Training (From active-

passive to active) 

63% 72% 33% 

 

As stated in Bradbury-Squires (2013) the difference of performance between the day and 

night conditions is minimal, regardless of group. However, during the most challenging 

scenarios (high complexity scenarios where there was hazard), the active training group 

demonstrated consistently superior performance compared to the active-passive group. As 

demonstrated in Table 5.5, the outcomes using the BN approach show the same 

indication. The difference is marginal for day and night situation. In high complexity 

scenarios, all three responses are significantly superior for the active group than the 

active-passive group. The results are described in terms of time in Bradbury-Squires 

(2013). For a comparison purpose, the results are converted in terms of likelihood using 

the same benchmark for response variables as used in the Bayesian network. Table 5.6 

shows the comparison between the result found using the BN approach and the one 
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observed in Bradbury-Squires (2013). As exposure to hazard was not calculated in 

Bradbury-Squires (2013) no comparison for this response is shown in Table 5.6. 

 

Table 5.6: Comparison of performance improvement or degradation according to evidence 

(degradation is shown using negative sign)  

Evidence 

Time to evacuation  

(% improvement) 

Backtracking time  

(% improvement) 

Using 

BN 
Observed 

Using 

BN 
Observed 

Complexity (From low to high) (-) 60% (-) 64% (-) 63% (-) 60% 

Training (From active-passive to active) 25% 26% 24% 26% 

Visibility (From day to night) (-) 17% (-) 19% 20% 19% 

Complexity = High & Training (From 

active-passive to active) 
63% 63% 72% 72% 

 

5.7 Conclusion 

 

This paper presents a way to address the issue of data scarcity for HRA in offshore 

emergency conditions using a VE. Integration of the collected data in a BN model of 

offshore emergency evacuation gives the opportunity to verify the model by comparing 

the result with a previous study. It has to be taken into account that the VE can provide a 

certain level of fidelity (realism) and human performance in a VE cannot be expected to 

be an exact match of real life human performance. The authors aim to make the scenarios 

more complex and lifelike by inclusion of stress, communication, different kinds of 

alarms and PA announcement in the future work.  Validity of using data drawn from a 

virtual environment is not addressed in this paper and the authors plan to work on this 

point in future work. 
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Chapter 6: Conclusion and recommendation 

6.1 Conclusion 

 

This thesis presents a human reliability analysis (HRA) methodology to assess human 

performance in offshore emergency conditions. Two major limitations of the existing 

HRA methodologies have been addressed in the proposed methodology. The first is to 

handle the uncertainty, incompleteness and conflict among multiple expert judgments 

while applying expert judgment techniques in HRA. Fuzzy theory is used to handle the 

uncertainty, while incompleteness and conflict is handled using evidence theory. The 

second is to eliminate the unrealistic assumption of independence among different 

performance shaping factors (PSFs) and associated actions. A Bayesian network approach 

is used to present the underlying dependencies among PSFs and associated actions in a 

structured way. Integration of fuzzy theory and evidence theory with the BN approach 

gives an HRA model which can better estimate the human failure likelihood in offshore 

emergency conditions. The model is extended to incorporate environmental factors that 

can impact human performance in harsh environments. Finally, the thesis presents a new 

data collection methodology using a virtual environment. The method is particularly 

useful when expert judgment based data collection is challenging. Using the data 

collected with this new methodology, a simplified BN model of offshore emergency 

evacuation is tested and verified.  
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This thesis concludes that the effectiveness of HRA can be significantly improved by 

integrating BN with Fuzzy and Evidence theories. The developed model is tested and 

verified using data collected through virtual experimental tests. 

 

The human error probability calculated using the BN approach reflects the average error 

rate for the task type, while accounting for the relevant PSFs. This error rate should be 

compared with the threshold and appropriate measures need to be taken in case the error 

rate is higher than acceptable. Using the backward analysis, contribution of different PSFs 

to the error can be calculated. Once potential sources of error have been identified, 

actions can be developed to minimize or mitigate their impact and improve the reliability 

of human performance within the task. Identification of commonly experienced error-

inducing factors enables the personnel and the organization to address these issues at a 

tertiary level. As the BN enables updating the human error probability according to new 

information and evidence, it provides the opportunity to better prepare for any given 

situation. 

 

One of the current limitations of the proposed approach is that it can only deal with 

discrete variables. Some PSFs are continuous in nature (i.e. environmental factors) and a 

hybrid BN including both discrete and continuous nodes may give a better estimate of the 

calculated probabilities. Also, number of experimental runs to obtain data for conditional 

probability tables of BN using virtual environment is quite high. Application of advanced 

concepts such as Noisy OR, Noisy AND can reduce the number of required data points to 

a manageable level. Also, to the authors‟ knowledge, no previous work has been done to 
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use the virtual environment to construct and update a BN and hence additional works 

need to be done to validate the methodology before its extensive use. 

 

6.2 Recommendations 

 

This work can be further improved by focusing on: 

 

 The integration of all external PSFs in the current model. 

 

 Improving human performance using the BN model.  The BN model can be used 

to identify the significance of different PSFs and appropriate preventive measure 

can be planned accordingly. 

 

 Additional work on virtual environment testing, data collection and validation. 

 

 Advanced concepts such as: Noisy OR, noisy AND and dynamic nodes in BN 

model development. 
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