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ABSTRACT
This thesis presents a quantitative approsxthuman reliability analysis (HRA) in
offshore emergency conditions. Most of the traditional HRA methods use expert
judgment techniques as human performance data for emergency sgaatiomt readily
available. Expertjudgment sufferdrom uncertainty, incompleteness and when collected
from multiple experts may have conflicting views This thesisinvestigates these
limitations and presents a propeggregation method to combineultiple expert
judgmentsusing Fuzzy Reory to handle the undcamty and Evidence Reory to handle
the incompleteness and conflict. Furthermore, the traditional approaches of HRA suffer
from the unrealistic assumption of independence among different performance shaping
factors (FSFs) and associated actions. This thesis addresses this issue using the Bayesian
network (BN) approach which can represent the interdependencies among different PSFs
and associated actions in a direct and structured way. The integrattarzf Theory
and Evidence Theoryo the BN approach gives an HRA modeat can better estimate
the success or failure likelihood gdersonnelin offshore emergency conditions.
Incorporation of environmental factors makes the model applicable for offshore
emergenciesoccuring in harsh environmeat Finally the thesis presenta new
methodology to collect human performance data uaikgtual environment. Using the
collected dataa simplified BN model of offshore emergency evacuaisntested and

verified.



ACKNOWLEDGEMENTS

First of all, | would like to acknowledgay sincerest gratitude to my supervisors,

Dr. Faisal Khan, Dr. Syed Imtiaz, Dr. Brian Veitch and Dr. Scott MacKinnon. Without
their continuous guidance andhaduragement this work would never have been

completed successfully. | am very thankful to get the opportunity to work with this
wonderful team.

| acknowledge with thanks the financial support provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC), the Atlantic Canada
Opportunities Agency (ACOA), Virtual Marine Technology (VMT), aReésearch &
Development Corporation dfewfoundland and LabradoRDC).

Thanks to the entire Virtual Environmerior Knowledge Mobilization Team,
with special thanks to Jennifer Smith, Patrick Linehan and Andrew House. Jennifer has
been the best team mate one can ever wish for and a friemd¢avbs a lot. | am very
thankful to Patrick and Andrefor makingroom for me in their busy schedules.

Thanks a lot to my fellow graduate studentkinaid Hassan, Norafneeza
Norazahar, Syed Nasir Daniahd Raihan Mallickfor their support and the wonderful
memories throughout the research work. Thanks to all of my friends specially: Faten
Jasim,Makamum MahmoodMilka Patricia Poddeand Kashfi Binte Habib for being so
supportive and helpful.

| can nevethank enough my parents and family members for always being there
for me. Your unconditional love gives me the energy to keep going. A special thanks to

my wonderful husband Abir Zubayer, for believing in me and loving me so much.



Table of Contents

ABSTRACT .t ere e e e e e e e e e s il
ACKNOWLEDGEMENTS. ... . e e e e e ennes lii
TabIE Of CONENTS. ....coiiiiiiiiie e et e e e e smme e iv
LISt Of TABIES .. ... eennr e e e e e X
IS Ao T U =P PPPPPPPPPRPN Xi
NOMENCIALUI ...t eenr e e e e e e e e e neesnnre e e e e e Xiii
Chapter 1: INTrOAUCTION. ......cccoiiiiiiiiie e cceee ettt e e eeeme s 1
I A = T Yod (o | {0111 Lo USSP 1
O © 1 o] 1= V= USSP UPUPPPRS 3
1.3 Novelty andcontribULiON............ooooiiiiiiiiiiee e 4
1.4 OrganiZAtiON......cceeiiiiiiiieiee e er e 5
Chapter 2: LIiterature FEVIEM.......cccciieeeeeeeeeeeeeeeee e ettt mmme e e e e e e e s 8
2.1 Introduction to Human Reliability Analysis (HRA)........cuvviiiiiiiiieeeiieee, 8
2.2 Human behavior & response modeling.............cooovvviiiieeeiii i 10
2.2.1 Information, Decision and Action (IDA) Model..........cccccoeeeeiiiiieecenninnnnn. 10

2.3 Performance Influencing Factor/ PerformaBbaping Factor.......................... 15
2.3.1 Definitions Of IDAC PSFS.......coiiiiiiiiiieiiieeee e 18

2.4 Environmental factors and its impact on human performance..................... 26



2.5 Quantitativeapproaches of HRA............oviiiieiiee e ereere s 29

2.5.1 Fault tree analySiS (FTA).. ... it eeeeerene e 29
2.5.2 Success likelihood index methodology (SLIM)........cceviieriieiiiiceniiiinennns 31
2.5.3 Technique for human error rate prediction (THERR)...........ooovviiiiiieeee.. 35
2.5.4 Cognitive reliability error analysis methCREAM)...........ccccceeeeiiiieeeeeens 38
2.5.5 A technique for human error analysis (ATHEANA)..............ccccceeeieee 40
2.5.6 Standardized plant analysis ffskman reliability analysis (SPAR) .......... 43
2.5.7 FUZZY TNEOLY......co oo e e e 46
2.5.8 EVIAENCE thEOLY....ceiiiiiiiiiieeee e 48
2.5.9 HRA using Bayesian network (BN)...........ceeveiiiiiiiiieemiiiiee 50

Chapter 3: Human reliability assessment during offshore emergency conditions56

3.1 INTrOAUCTION. ...t eeeea et e e e e e e e e e e e e emmee s 57
3.2 Human reliability assessment approach background.................c..vveeeee. 59
3.2.1  PSFIdentification...........ccoouiiiiiiiiiiiee e 59
3.2.2 PSF assessment using Evidence Theory...........coooeoiiieenn s 60
3.2.3 Bayesian modeling fundamentals.............ccccoooiiiiiccc e 62
3.3 Bayesian approach to human reliability assessment...............cccccecmeeeee.. 65
3.3.1  SCEeNArio @NAIYSIS......uiiieiiiiiiie et ieeee e errer e aaand 6.7
3.3.2  AWArENESS PRASE......cciiiiiiiiiiiiiiiteeme e 69



3.3.3  Bayesian analySiS..........cccooiiiiiiiiiiiiiee e 74

3.4 Result and diSCUSSION.........cceiiiiiiiiiiiiiime e 17
3.4.1 Results for complete StUAY............uueeiiiiiiiiiieeeiiiiie e 77
3.4.2 Comparison with analytical approach...........ccccccovvviiiccceiieeee 78

3.5 CONCIUSION. ...ttt e e e e mn e 84

3.6 RETEIENCES. ... 84

Chapter 4: Human factor risk assessment during emergency condition in harsh

2T 0 AT (0] 0] 4 =10 | S PP PP PP RPTPPPPPPRPTN 38
4.1 INFOTUCTION. ... .eiiiiiie ittt eeee e e e e e e e e e anenree s 89
4.2 Cold environment and its impact on human penfance................ccc..evvvvneee 91
4.3 The IDA cognitive MOTEl.........oeiiiiiiiiiiiiii e 92
4.4 Risk Assessment using Bayesian approach.............cccevvvieeeiiiiiiiiiinnnnne. 94

v 0t R Y/ (=11 g To To (o] [0 |V PP PP PPPPPPUPUPP 94
4.4.2 Bayesian network fundamentals...........ccccooeiiiiiiieeen i 96
4.4.3 Integration of Fuzzy theory with Bayesian network.......................c... 98
4.4.4 Integration of Evidence theory with Bayesian network...................... 99
4.5 Bayesian approach to implement IDA............ooooiiiiiimeen e 100
4.5.1 SCENANIO ANAIYSIS.....uuuuiiiiiiiiiiiiiiii ettt 100
4.5.2  AWArENESS PNASE....coiiiiiitiiiiiee ettt e e anena e e e e e 102

Vi



4.5.3 Dynamic Bayesian analySiS..........ccceeeeeiiiiiiieeeii e 107

4.6 ReSUIt aNd JISCUSSION. ......uueiiiiiiiiiiiiii ettt 109
4.6.1 Results for complete study............oooiiiiiiiiiimmm e 109
4.6.2 Comparison with analytical approach...........cccccccoviiiieec, 110

4.7 CONCIUSION.....cciiiiiiiiiiiie ettt rmme e e e emme e s 114

4.8 REEIENCES....ciiii ittt rmmee et 115

Chapter 5: Testing and Verification of Bayesian Network Approach of Human Reliability

ANAIYSIS ... —————————— e e e e s anann e aaaaaaaaaaaes 119
5.1 INTrOAUCTION. ....ce ittt ettt rme e e e e st e e e e emmme e e 120
5.2 Overview of the virtual environment and experimental setup.................... 122
5.3 DeSIgN Of EXPEITMENT........uiiiiiiiiiiiiii it ieeeetti et e e e e e e e s eer e e e e e e e e e e e e e e e 124

5.3.1 Independent faCtQLS..........ccuuuriiiiiiiieeeiiiiii e 124
5.3.2 Dependent VariabIes. ............eiiiiiiiiiieeeeeeeeeee s 126
5.4 Data COIECHION. ..ot e e e e 128
5.5 Integration of collected data in the BN madel............cccooooiiiieeeiiiiiiiiinen, 131
5.6 ReSUIt and diSCUSSION. ........uuiiiiiiiiiiiiiieeeiiiiieie et e e e e e e e e eermr e e e e e e e e e e e e e e 133
5.6.1 Effect Of COMPIEXILY......oouiiiiiiiiiii e 133
5.6.2 Effect Of VISIDIlITY........coooiieeiiiie e 135
5.6.3 EffeCt Of traiNiNg........cuvuiiiiiiiee e 135

Vii



oI A O1e] 4 (o1 [V 17 To] o IR 137

5.8 REIBIBNCES ... .ottt e e e e e e e e enena e e e e as 138
Chapter 6: Conclusion and recommendation.................uuuuiimeeieeieeeeeeeeiine e 140
G @ 0] o Tod 1] o] o PP 140
6.2 RECOMMENUALIONS......uueiiiiiieieee e e e e eeeees e e e e e e e e e e e e e e e e eearneeeeeeeeeeeeeeeeeeennsennnnns 142

viii



List of Tables

Table 2.1.General environmental factors affecting human performance............... 27
Table 2.2: Outline of @ THERP ProCcedure..............uueviiiiiieemiiiiiiiiiiiieeceeeee e 35
Table 3.1: Muster action broken down by muster phase..........ccccccvvvieeevieeeenenenn. 68
Table 3.2: Performance factors for Awareness phase..........ccccoovvvvccceeeeeeeeeees 70
Table 3.3: Evidence combination for PSF Distraction probability......................c... 71
Table 3.4: Evidence combination for PSFs related to alarm Detection.................71

Table 3.5: Updating Distraction likelihood using new expert judgment evidence..75
Table 3.6: Likelihoods of failure ofcdons using Bayesian approach...................... 18
Table 3.7: Dependency of Concentration on Stress and Distraction..................... 80
Table 3.8: Dependency of alarm detection on concentration and perception....... 80
Table 3.9: SLI calculation for alarm detection Failure............ceevveviiieeciiiiiiiiiiieeee. 81

Table 3.10: Comparison oflcalated HEP in Bayesian approach and SLIM methodology

............................................................................................................................... 82
Table 3.11: Comparison of calculated likelihood in Bayesian approacBlait

methodology with evidence of Training or Experience high.............ccccooiveee. 83
Table 4.1: General Environmental Factors Affecting Human Pediocen.................. 92

Table 4.2: Updating fatigue likelihood using new expert judgment evidence.....108

Table 4.3: Likelihoods of actions using Bayesian approach...............ccceeeeennnnns 110
Table 4.4: SLI calculation for Alarm Detection Failute..............ccovvvvvieeeeeeeeeeeee. 112
Table 4.5: Comparison of calculated HEP in BN and Shisthodology.................. 113



Table 4.6: Comparison of calculated HEP in BN and SLIM methodology with evidence

Of DA WEALNE........eeiiiiiie e 114
Table 5.1: Sample data COlECHION............oovviiiiieiiee e 129
Table 5.2: Collected CPT data for time to evacuation..............cccevveeaceeeenininnnnn. 130
Table 5.3: Collected CPT data for backtracking time.................oevveemeeeeieeeeeeennnns 130
Table 5.4: CPT data collected for exposure to hazard...............ocoeveeecviiceeeeeennn. 131
Table 5.5: Performance improvement or degradation according to evidence....136

Table 5.6: Comparison of performance improvement or degradation according to

LAY/ L0 2] 0 o] TSRO UPTY 137



List of Figures

Figure 2.1: Cognitive process model of single operatar............cccceeeiieeeiieeneeeennn. 10
Figure2.2: Memory StruCture iN IDA ... 12

Figure 2.3: The hierarchical structure and influence paths of the IDAC RSEs.....17

Figure 2.4: Basic fault tree structure for human error calculation.......................... 30
Figure 2.5: Scheme for the construction of a HRAERP event tree........................ 37
Figure 2.6: ATHENA application process flow diagram...........ccccccccvvvieecvinnennnn. 41
Figure 2.7: TEN to represent PSF probability..............oooiiimn e a7
Figure 2.8: A hierarchy graph based on a BN for HRA..........ooooiiiiiiiiiiin, 50
Figure 3.1: A hierarchy graph based on a BN for HRA..........cooooiiiiiiiiiin, 65
Figure 3.2: Proposed methodology flowChart.............coooiiiiiieen e 66
Figure 3.3: Causal dependency in Awareness phase...........cccuuvveieemniivivinninnnnnnen. 69
Figure 3.4: Network of PSFs for alarm detection..............ccccvvvieeeiiiiiiiiiiiiiieeeeeenn, 12
Figure 3.5: Network of PSFs for alarm identificatian...............ccoooiiiccce s 12
Figure 3.6: Network of PSFs for act acCordingly..............eeeeveiiiieeeiieeiieeiiiiiiieeeeeen, 13
Figure 3.7: BN Of Awareness pPhase..........cccccuvvviiiiimmminiiiiiiiiiiineeeeeeeeeseeeseeseeeeeeeee e 3
Figure 3.8: Network of PSF for alarm detection after dynamic update.................76
Figure 3.9: Network of PSF for alarm identificatiafter dynamic update.................. 77
Figure 3.10: Comparison of Bayesian approach to SLIM..........cccccoooviniiccnnnnnnnnd 79
Figure 4.1: The Proposed methodology for human error analysis..................ocue-.. 95

Figure 4.2: The IDA model of operator behavior for the task Alarm Detection....103

Figure 4.3: Baysian Network for Mental State...........ccccceeeeiiiiiicccciiiciiieee e, 105

Xi



Figure 4.4: Bayesian Network for Environmental Factors...........ccccevvvvvieeeeeeeeeen. 105
Figure 4.5: Bayesian Network for Physical Factars.............cccccovvvieeeeiiiiieeeeeeeee, 106
Figure 4.6: Bayesian Network of operator behavior for Alarm Detectian............ 106
Figure 4.7: Bayesian Network for Environmental Factors after dynamic update 109
Figure 5.1: Schematic diagram of the experimental design................ccovveeeeeeennnn. 127

Figure 5.2: Logic diagram illustrating likelihood assessment of evacuation compromise

............................................................................................................................. 128
Figure 5.3: BN of time to evacuation................ooovviiiimeee e eee e 132
Figure 5.4: BN of backtracking time...............oooviiiiiiie e 132
Figure 5.5: BN of exposure to hazard..............cccooviiiieeeii e 132
Figure 5.6: BN Of EVACUALIQN.............cooiiiiiiiiieeeee e 133

Figure5.7: Updated network of time to evacuation with evidence of low complesid¢

Figure 5.8: Updated network of time to evacuatiotih evidence of high complexityl 34

Xii



Nomenclature

ATHENA A Technique for Human Error Analysis
AVERT All Hand Virtual Emergency Respon3eainer
BN Bayesian Network

BPA Basic Probability Assignment

CPC Common Performance Conditions

CPT Conditional Probability Table

CREAM Cognitive reliability error analysis method
DST Dempsteii Shafer theory

EFC Error Forcing Context

FTA Fault TreeAnalysis

HEP Human Error Probability

HERA Human Events Repository Analysis

HFE Human Failure Events

HRQ Human reliability quantification

HTA Hierarchical Task Analysis

IDA Information, Decision and Action

IDAC Information, Decision and Action i@Grew Context
NPP Nuclear Power Plant

OoIM Offshore Installation Manager

PA Public Address

Xiii



PRA

PSA

PSF

SLI

SLIM

SPARH

TFN

THERP

TSR

VE

Xiv

Probabilistic Risk Assessment

Probabilistic Safety Assessment

Performance Shaping Factor

Success Likelihood Index

Success Likelihood IndeMethodology

Standardized Plant Analysis Risluman Reliability Analysis
Triangular Fuzzy Number

Technique for Human Error Rate Prediction

Temporary Safe Refuge

Virtual Environment



Chapter 1: Introduction

1.1Background

Human reliability is the probability that a person correctly perfoansystemrequired

activity in a required time period when time is a limiting fad{Swain & Guttmann,

1983) The recognition of theotential contribution of human error in accidents initiated

the development of different human reliability analysis (HRA) methods. As human
reliability is found to be closely related to the field of human faotmigineering, these

HRA methods include # study of human performance shaping factors (PSFs)
(Blackman, Gertman, & Boring, 2008ptartingin 1960, the search for an effective HRA
method to quantify human error continued and todayumberof HRA methods are
available. These methods can be classified into two broad categories: the first generation
HRA and the second generation HRRasquale, lannone, Miranda, & Riemma, 2013)

At the early stage of human error qtification, the human was considered as a
mechanical or an electrical component and the likelihood of failure of human action was
calculated without any consideration of the causes or reasons of human behavior leading
to this failure. These quantificatianethods are known as the firstngeation HRA. In

the early 1999 significance ofthe cognitive aspect wasecognizedand the second
generation HRA methods were developed with the incorporation of cognitive aspect
human error quantification. ThoughettHRA techniques in both groups have their own

strengtls, most of them suffer from two major limitations.



The first limitation is associated with the fact thiz majority of the HRA methods use
expert judgment techniques, as human performance dataniengency situatiaare
generallynot available(Kirwan, 1994) Single expert judgment can be biased and can
suffer from uncertainty and incompleteness due to partial ignomintee emergency
context One potential solutiorsito use multiple expert judgments and ttegjuiresthe
development of a proper aggregation method to combine-exgért knowledge that can
minimize the uncertainty, incompleteness and conflict among different experts. This
thesis presents the use lBifzzy Theory(Lee, 2005)and Evidence TheorySentz &

Ferson, 2002for a proper aggregation of multiple expert judgments.

The second limitation is that most of the HRA techniques such as SLIM assume
unrealistic independence among PSFs and associated actions. In reality the tasks
performed in an emergency situation are related to each other and the success or failure of
one task has effect on each subsequent task that need to be performed. Isishibehe
dependency is modeled using the Bayediatwork (BN) approach(Pearl, 1988) The

BN model isthen extended with help of informatiedecisionraction (IDA) cognitive

model to consider the dependency among different FSkang & Mosleh, 2007)To

make the model applicable for offshore emergencies in harsh enviranmepact of

harsh environmeston different PSFs has been considered and that leads to a BN model

of human factor risk assessment during offshore emergencies in harsh envisonment

While applying the BN approach for offshore emergency case stiidveas found hat

an inherent problem with BN is to obtain the huge numerical parameters that are needed



to fully quantify it. For a binary variable withbinary predecessors in a BN, a totalof
parametersnust be specified. In the initial model presented in thesithét has been
assumed that these data are collected from multiple experts. The collected data are then
aggregated using thBuzzy and Evidence heoies as stated earlier in this section.
However, collecting?" parameters from different experts wheis sufficiently large is

very challenging. This necessitated a more efficispstematia@and reliable way of data
collection. This thesis presentsreethodologyto collect human performance data for all

2" combinations ofi factors by a two leveh factor eyperiment (assuming all factors are
binary) using a virtual environment. Using this new data collection methodology a

simplified BN model of offshore emergency evacuation is verified.

1.2 Objective

The main objective of this thesis was to develop an apptepH®A methodology for

offshore emergency conditions. Based on this objective the folloyaatswere set:

1 To developa proper aggregation method to handle the uncertainty, incompleteness

and conflict among multiple domain expert judgments about human performance.

1 To developa direct and structured HRA methodology to present the dependencies

among different PSFs and associated actions.



1 To developa methodology to collect human performance daa use it for test and

verification purpose.

1.3Novelty and contribution

The noel contributions of this thesisre

1 An aggregation method to combine multiple expert judgments about human
performance data. Fuzzy theory is used to handle the uncertainty associated with the
expert judgment. Evidence theory is used to minimize the iptzimmknowledge due

to partial ignorance and conflict among multiple experts.

1 A BN model for HRA in offshore emergency conditiotigat can represent the
dependency among different PSFs and associated actions. Interdependencies of PSFs
are identified withthe help of the IDA model and used in the BN model for an
improved quantitative analysis of human reliability. Consideration of the dependency

results in better estimation of human error probability.

1 Extension of the basic BN model to incorporate theatfbf harsh environmesnon
human performance in offshore emergermmonditions This extension makes the
HRA model more realistic and efficient as operators working offshore have a higher

chance to face an emergency conditioa varsh environment.



1 A new methodology for human performance data collection when collecting data
from expersis challenging. As data required to apply BN approach in HRA is huge,
expert judgment technique is hard to apply. A new data collection methodology is

proposed in this tles using the virtual environment.

1 Testing and verification of a simplified HRA model of offshore emergency

evacuation using the collected data.

1.4 Organization

The thesis consists of three manuscript® of the manuscriptsave been accepted and

published; he third one has been submitted for publication.

The thesis starts with a brief introduction to the HRA methodologies and the existing
limitations. It then gives an overview of the two major limitations addressed in this
research. The objectivef the thesis is specified and novelties and contributions of the

thesis are listed. These constitute Chapter 1.

Chapter 2 presents the literature review. The literature review gives an overview of
human behavior and response modeling, describes diffeRSBEs and their

interdependencies and presents different HRA methodologies, their strengths and



limitations. This section also gives ancount of the previous applications of BN in GRA

applications.

Chapter 3 introduces a BN model of HRA during offshemeergency conddns. PSFs
affecting human performance in different steps of offshore evacuation are iderited.
estimated ikelihoods of these PSFs are collected from multiple experts and combined
usingEvidence TheoryFinally, a BN of these PSFsdeveloped to estimate the success

or failure likelihood of an operator in case of an offshore emergency evacuation. This

chapter is published in the Journal of Safety Science, 2013.

Chapter 4 presents an extension of the previous model presented inrGhdjite IDA

model is first used to represent the interdependencies among different PSFs and then it is
transformed into a BN for quantitative analysis. Like the first mdaded model also uses
expert judgment technique for data collection, but besid#sguEvidence Theoryo

handle incompleteness and conflict this model also &sezy Theoryto handle the
uncertainty. Inclusion of environmental factors in the model makes it applicable for
offshore emergencies in harsh environmerithis chapter is putshed in the 3%

International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2013.

Chapter 5 presents a new methodology for human performancecalkgetion This
chapter proposes a way to collect human performance data @fambinatons ofn

factors by a two leveh factor experiment (assuming all factors are binary). Using the



collected dataa simplified BN model of offshore emergency evacuaticassessedrhis

chapter is submittetb the Journal of Reliability Engineering and &ya Safety.

Chapter 6 concludes the thesis amstusses future scopef work.



Chapter 2: Literature review

2.1 Introduction to Human Reliability Analysis (HRA)

Human reliability as defined in Swain & Guttma(®83) is the probability that a person
correctly performs systemmequired activity in a required time period (if time is a limiting

factor). The objective of a human reliability analysis (HRA) stated by Swain & Guttmann
(1983) S 0t o eéwalwarnter itblue i operntat ogyst em
precisely, 6to predict human error Trates
machine systems likely to be caused by human errors in association with equipment
functioning, operational procedures and gbies, and other system and human

characteristics which influence the system

The origins of HRA methods dates from the year 1960 with an aim to identify, model,
and quantify the prolidlity of human errors. By mi@0s a few techniques for assenent

of human reliability, in terms of propensity to fail, chédeen developed. With this
recognition of the potential contribution of human errors in accidents, search for an
effective HRA technique continued and resulted in the development of a hahHfieliA
techniques. The techniques can be divided essentially into two categories: first and

second generation.

The first generation HRA methods are based on the theory of probabilistic risk
assessment (PRA). These methods congldehuman as a mechaniceomponent and

assumethat just asfor mechanical or electrical componsgnbhumars can have natural



deficiencies and can logically fail to perform tagRasqualest al.,2013) The focus of
these methods is the quard#tion of likelihood offailure of human action without

considering the causes and reasons of human behavior leading to this success/failure.

In the early 1990s, the need to improve HRA approaches to incorporate the cognitive
human aspedhitiateda number of important research and depeient activities around

the world. These efforts led to much progress in first generation methods and the
evolution of new techniquesieferred toas second generation. The focus shifted to the
cognitive aspects of humans, the causes of errors rathethbmnfrequency,and the

study of the interaction of the different human factors that increase the probability of error
(Pasqualeet al, 2013) These methods are based on cognitive modblsh aremore
appropriate to explain human behaviour and meenéael to include the role of human

cognition in human performance.

Before going into details of different HRA techniques in both categeae® necessary
background is covered. Section 2.2 provides necessary background of human behavior
and responsmodeling to understand the second generation methods. Section 2.8rgive
overview of different human performance influencing fact@rsd the interrelation of
performance influencing factors with IDA modelBhis section mainly focuses on the
internal factors that are used in the qualitative and quantitative analysis of human
reliability. Section 2.4 discusses environmental factors and their effect on human
performance. Finally, in Section 2.5 the strengths and weaknesses of different HRA

techniques havieeen discussed.
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2.2 Human behavior & response modeling

2.2.1 Information, Decision and Action (IDA) Model

As the name suggestieinformation, decision and actiofDA) model consists of three
major components the Information Module (1), the Problem Solving/ Decision Making
Module (D) and the Action Module (A)Smidts, Shen, & Mosleh, 1997yhe cognitive
process of the operator is depemiden these modules and their il@mmunication as

depicted in Figur@.1.

Working Environment

N . N
Active Passive Take Action/s to
Information Information change s’fatus of
Collection Collection the working
v v environment
Information Module Action Module
Recognize and store 1
Call for informationin Call for
required A working memory required
Information Action/s

Problem-Solving/Decision-Making Module

Figure 2.1: Cognitive process model of single operatdiafter Smidts, Shen, & Mosleh, 1997)

As shownin Figure 2.1, the problersolvingdecisionmaking module is the core tfie
cognitive process model and is responsible to formulate a problem statement (diagnosis)
and to select an appropriate respotssolve the problem (decisianaking). Required

information for problem statement formulation is collected from the infoonatiodule.
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Thus the information module works as a communication medium between the working
envimnment and the problesolving/decisiormaking module. Ore the problen-
solvingdecisionmaking module formulates the problem statement and chacsteategy

to solve the problem, the decision is directed to the action module. The action module

then executes the actions accordinthedecision.

The problemsolving/decisiormaking module is the kernel of the operator cognitive
process model and hee its development has been the main focus of the IDA model. To
describe the cognition process thrbasic elements of the problesolving/decision

making module need to be illustrated. These djememory,2) problem definition and

problem solving stragies, and)a set of characteristics rep

of mind and the cognitive process.

2.2.1.1 Memory Structure

The information received or retrieved from the external environment is first registered or
stored in a hierarchical memgr structure before being processed. The hierarchy is
developed according to type and recency. Different memory structures have been
proposed ovethe yearsby cognitive scientist§Squire, 1987)In IDA, the structure of
memoryis categorized based on information type and its relation to the cognitive activity
The proposed memory structuhasthree areas: working memory, intermediate memory,
and knowledge base. The schematic representation of the IDA memory and its relation to

the main elements of the model is depicted in Figuze 2
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N

Working Environment

Working Memory

v Problem-
Information Solving/ Action

Module Decision- Module
Making
Module

4
- \_/ -
Nk g
a3 k]
— E —
© 3 @
— — —_
d Y
€CaY | Intermediate | Knowledge
—
Memory Base

Figure 2.2: Memory structure in IDA (after Smidts, Shen, & Mosleh, 1997)

Working memory isthe memory unit with the most limited storage capacity and stores
the most recent information, maintile ones involved in current cognitive pro@sss
(Newell, Rosenbloom, & Laird, 1989The information may come from external sources

or can be the rules and knowledge recently triggered from intermediate memory or
knowledgebase. In IDA the working memory is assumed to store one set of related
information and the set contains only a limited number of eleméviter 1956;

Broadbent, 1976
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In terms of recency, next to working memory is the intermediate memory. The least
recent information of the working memaspymot actually érgotten ratherit is transferred

to intermediate memory and can be retrieved any time with proper stimulus. While
working memory is the active shedrm memory, intermediate memory is the passiv
short memory. The storage capacityaiso limited but larger compared to working
memory and assumed to be unlimited during the period of abnormal sit(@trodts,

Shen, & Mosleh, 1997)

Knowledge base is therg-termmemory and has the largest capacity comptoether

two. Past experience, basic knowledge, memorized procedures and guidelines are all
stored in knowledge basé&Vhen required, information can be retrieved from the
knowledge base and placed in the workimgmory. On the other hand, with time,

information stored in the intermediate memtransforms inta part ofknowledge base

2.2.1.2 Problem definition and problem solving strategies

The first step in case of an abnormal event is to state the problem dolved and the
goal to be pursued. Goals may not be fixed for the entire time frame; it may change
eventually according to the context of the emergency at that time. There can be multiple
goals that the operator may try to address at the same tincasénof multiple goals

proper prioritization is needed and goals with higher priority should be resolved earlier.
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The next steps coming up with strategies to address the defined problem. Strategies
should be chosen to solve the problem and also wiaking the decisionfesearch ha

shown that only a small set of strategies are applicale@ wide range of situations
(Newell & Simon, 1972; Pylyshyn, 1990Moreover ithas been shown that theaee no
strategic differences between experts and ne{Reimann & Chi, 1989)Reasor(1990)
proposed similarity matching and frequency gambling as two basic strateigiskeh,

Shen, & Smidt(1996 gavea more complicated and realistist of different available
strategies Among them six problersolving strategies and one decisimaking strategy

have been identdéid and used in IDA. The problesolving strategies are namely:
programmed response, direct matching, follow procedure, logic expansion, trial and error
and wait ad monitor. At the end of applying problemsolving strategiesthe problem

solver may end up with a single solution or a bunch of alternative soltiattannot be
ranked, prioritized or preferred without additional arée This is where the decision
making strategy has to play role to choose one solution from the available ones. The only
deci sion making strategy applied in |IDA is
benefit can be defined in terms of various measures such as effort, rpereynal or

organizational consequences etc.

2.2.13 Mental State

It has been refenced in different literatureHuang, Siu, Lanning, Carroll, & Dang,
1991; Smidts, 1992)hat the human cognition system has an additional elentleat

works as an enginéor the cognitive process and provides necessantivation for
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thinking, problemsolving, decisiormaking and leading to formation of intention to act.
This is the mental state of the operator. The mental state together with the memory
represents the opeat or 6s cognitive and psychol ogi cal

the dynamic activities within the information, decision and action modules.

Extensive research has been done to identify factors that influence the mental state and
the information,decision, action modules of the operator. Different influencing factors

and their effect on human cognitive behavior is described in the next section.

2.3 Performance Influencing Factor/ Performance Shaping Factor

A performance shaping factor (PSF) is anspect of t he humano
characteristics, environment, organization, or task that specifically decrements or
improves human performance, thus respectively increasing or decreasing the likelihood of
human error(Blackman, Gertman, & Boring, 2008)These factors are referred to by

different termsin the literature PSF (performance shaping factors), PIF (performance
influencing factors), IF (influencing factors), PAF (performance affecting factors), EPC

(error producig conditions), CPC (common performance conditions), and so on.

PSFs can be thought of as a subset of causal factors and mechanisms through which a
causal model of operator behavior is constructed. Different PSF identification methods
and taxonomies are developed as to be suitable for different purposes and application

areagKim & Jung, 2003) However, use of different methods and taxonomies causes two
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obvious problems. First, it is hard to ensure that the identified set of PSFs is complete
Second, using different sets of PSFs for different human reliability analysis
methodologies willgive different resultsmaking the comparison of the methodologies
difficult, if not meaninglessThis necessitated the development of a standard set of PSFs
which is complete and can be used throughout different human performance evaluation
methodologiesChang & Moslen(2007) proposed a hierarchical set of PSFs to cover a
broader set of causal types and mechanisms and developed a performance influencing
factas model for information, decision and action in crew context (IDAC). | &soth

& Mosleh (2012) usedthe IDAC cognitive model and extended it using additional
information to get @&omprehensiveetof PSFs that is orthogonal, measurable and can be
usedas a standard. The additional information includes a human performance database

(HERA), different HRA methods, operational events and a series of expert workshops.

PSFs in this standard set can be divided into two broad categories: internal and external
PSFs (Wu S., Sun, Qin, & Huang, 20Q6While the internal PSFs are those which
influence the operatorés cognitive, emotio
PSFs are influencing factors from the external world (e.g. safety and qualityegulhe

internal PSFs can further be classified into three categories: mental state, memorized
information and physical factors. External PSFs can also be classified into four
categories: teafrelated factors, organizational factors, environmental factord
conditioning events. The main focus of this research is to analyze the influence of the

internal PSFs (the unit of analysis is chosen as person rather than team), among the
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external PSFs only environmental factors are taken into account to make the HRA

methodology applicable in harsh environngent

The hierarchical structure and influence paths of IDAC internal and external PSFs are

shown in Figure2.3.

Operator Behavior (I, D & A)

N

Mental State
Cognitive Modes &

, <
Tendencies

: —>

—>{ Physical Factors [€ Emotional Arousal lgm
> : : L

Strains & Feelings -

: : —

Perception and appraisal =

Intrinsiccharacteristics  —

Environmental Factors > Memorized information |—

Figure 2.3: The hierarchical structure and influence paths of the IDAC PSFgafter Chang & Mosleh,
2007)

The following subsection defines various PSFs in each category of indewhaxternal

PSFs and gives an overview of how they influence human performance.
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2.3.1 Definitions of IDAC PSFs

2.3.1.1 Definitions of the mental state factors

Mental statec over s t he operatordés cognitive and e
subgroups hierarchically structured to represent a process of cognitive and emotional
responses to stimuli. At the bottom of t h
which processes the incoming information an

to the perception and situation appraisal. The emotional and cognitive responses

generated at this step create the inner fe
i nner feelings propagate and turn to emot
arousal 6. Consequently, cognitive activiti

Though the operator is most likely to be unaware of forming a specific pattenode

(i.e. being biased) of his/her behavior, this is observable by other operators and is
represented by fcognitive modes and tenden
another group denoted as Aintritew®icapture har ac

the effect due to individual differences.

PSFs in different subgroups dreefly discussed below and the details can be found in

Chang & Mosleh, 20Q7

Cognitive modes and tendencies



19

Attention refers to ideal distribution of cognitive amdhysical resources according to
necessity. There are two types of attention identified: attention to current task and

attention to surrounding environment.

Alertness refers to the total amount of attention resource available to detect the state of

theexternal world.

Bias is defined as a cognitive preoccupation or obsession that causes strong confidence
in reaching preset goals despite the presence of contradictory evidence. Extreme bias may

become fixation and induce systematic errors.

Emotional arousal

Stress Different definitiors of stress can be found itme literatures.Gaillard (1993)

defines stress as fia state in which the o
contr ol over the situationo. fBhvadinl y& do&utmar
tensiono which i s ¢ aus esttessbryor hpth.yFsur tgpad of or p ¢

stressor have been found: pressure, conflict, frustration and uncertainty. Each stressor has
di fferent i nf |bahavioar®ressune stoepserrcan tmohiliZe gshe resources

of the operator. Conflict stress originating from conflicting needs may end up in giving
up or asking fohelp. Frustration stress can also end up in giving up, however sometimes
this motivates the operatoo tseek an alternative method. Uncertainty stress, which
originates from the lack of a clear picture of the situation, reveals behaviour that helps to

gain more confidence such as obtaining more information.
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Strains and feelings

Timeconstraint load:is referred to as a strain resulting from the feeling of not having
sufficient time to solve the probl em. It
pr es $Svansow & Maule, 1993)imeconstraint load is determined by theative

l engths of Afiperceived time availableo and
constraint load is onlgependenbo n t he personés sense of ti me

the operator), nainthe actual time available.

Task related loadthis is the aggregated task load induced by task quantity, complexity,
importance, and accuracy requirement per unit of time. The perceived level of load

depends on the individual operatordds profi

Nontaskrelated load this is the load induced by extra work in addition to regular
required duties. An example can be answering phone calls to or from management to
inform of current system status while attenditogall other necessary tasks. Ntask

related load is also dekd inthel i t er at ure as Adisturbance w!
(Kirwan, 1994) Adi stracti ono o(Maloie, Kirkpatrick, allorp,g ac't

Eike, & Johnson, 1979)

Passive information loads created by peeption of the amount of incoming information
from the external world. Too much information in a limited period of time gives no useful

information ratherit disrupts the cognitive process.
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Confidence in performancas the feeling of assurance that tkiéuation is on track.
During an emergency situation the operator generatdist of goals to address the
problem and continuously assesthe situation by the achievability of the goals. When
performing multiple tasks at a time, the operator may have different confidence in
performance in different tasks and a global confidence in performance reflects the

aggregated results.

Perception andappraisal

Perceived severity of consequences associated with current diagnosis/deisisiba:
immediate perception of the potential adverse consequences which could result from the
situation. This represents the importance of a task and potential aenseg of failure or

loss of integrity.

Perceived criticality of system conditiois the appraisal of the system safety margin.
Safety is often measured by the absolute values, rate of change and changing direction of
a few parameters. These parametesseha normal operating range and exceeding the
range denotes threat to the safety of the system. The criticality perception refers to how

close the system is to the state of the failure.

Perceived familiarity with the situation t hi s r e f eerseptionof sinpasty at or 0

between the current situation and the situation he/she has experienced or been trained on.
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Perceived system confirmatory/contradictory respontfgs:is the perception about what
the response of the system actually is and wheatébponse of the system ideally should
be. The positive and negative system responses are evaluated to make check if the

expected outcome is achievable.

Perceived decision responsibilitis the awareness of responsibility and accountability
towardtheper at or 6s deci sions or actions. Thi s

of job and some people tend to delegate or transfer decisions to other.

Perceived complexity of strategis mentioned in section 2.2.1.2, an operator has to
choose a stratggrom anavailable set of strategies while solviagroblem or making a

decision. According to the demand on mental effmath strategy has a complexity level.
Perceived complexity of strategy refers to

Thi s perception will have effect on the ope

Perceived task complexityhe level of cognitive and physical effort required to complete

a task for an average operator is defined as perceived task complexity. The perceived task
complexity depends on several factors such as precision requirements and computational
demand. Thiperceptionrwhencombined with the perceived familiarity with the situation

creates the individual 6s perception of tas

Perception of problem solving resourcegfers to the high level assessméyt the

operator of his/her internal and extdrmasources available to solve the problem. An
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example of internal resources cantbe number of methods that the operator knows for
solving the problem. Exam@eof external resources can be procedures, dee@tbn

systems and remote technical suppertters.

Awareness of roles and responsibilifyjwo kinds of responsibilities are included in this
category. These are primary responsibilities (officially assigned) and subsidiary

responsibilities (not officially assigned rather done to enhance team.work)

Intrinsic Characteristics

An intrinsic characteristics is whestknowna s fi p e r (8Vilsona&lCorletyy TO95pr

Al ntrinsic hu(Daugherty, A997padbrefdrsi collgctively to tlse factors

and di mensions. ATemperament 0 and fAcogniti

intrinsic characteristics.

ATemperamento refers to the style of t he
classifications of | esdandv pecana lirdits arer avalable.n s e
Among thee IDAC considers three main PSFs: satinfidence, problem solving style,

and moralemotivation attitudeto includein the type of temperament.

The cognitive faculties cover the individual differences iental capabilities (memory
capacity, and sharpness) and are not currently modeled in the form of a specific set of

PSFs.
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Three types of temperaments brefly defined below.

Selfconfidence: Self-estimation of the operator of his/her overall probisaiving
knowledge and skills is referred tas self-confidence. Generally, setbnfidence
increases with experience. Either over confidence or the lack of it majolgagimature

decisions, bias and fixation andgligenceof safe practices.

Problemsolving style:r ef er s t o an i ndividual 6s i nher

tendencies influence eq@vingsrategiess sel ecti on

Morale-motivationattitude: refers to the combined indication ofan i ndi vi dual 6
willingness and commitment this/her responsibilities. Morale and motivation lead to
energy, direction and channeling, and helps to maintain or su$taein ndi vi dual 0

behavor. Attitude however is more abopbsitive or negative feelings towards the work.

Memorized information

Knowledge and experienck nowl edge refers to op/leerator 0
responsibilities, what thosare and how tbse can be performed. Knowledge includes
fundamental and engineering understanding of the system design, purposes, elements,
functions and operations. I't also includes op¢

the specific activities or tasks being undertaken.
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Experience can be gained by putting this knowledge into practice. During the direct or
indirect interaction with the syem the operator uses his/her knowledge to cope with the
situation, to solve problesnor to make decisions and along with time these constitute

his/her experience.

Skills: Skills refer to the proficiency of the operator to understand the situatiorakad t
necessary decisions and actions as required without much cognitive effort. The more

skilled the operator is, the higher is the work quality and the less is the response time.

Memory of recent diagnoses, actions and resiltkile performing a role in any event,
the operator gains a history of diagnoses, actions performed and the outcomes observed.
The history soon becomes a part of the memory and influegheesp er at or 6 s beh

during the next events.

Memory of incomingnformation: In case of an incident there is bunch of information
coming from the system, from communication with other operators and other events. All
these information is registered theoper at or 6 s me maohe g p earnadt oirndfsl

performance.

Physcal PSFs
Fatigue: can be defined as the physical or mental weariness that cantaéfecpo e r at or 6 s

performance. Fatigue can induce more error on-bkiled activities and can delay the
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cognitive response in case of an emergeRogekind et al{1994) efined fatigue as one

of the most important PSFstiransportationndustries

Physical abilities:measures the ergonomic compatibility between what the operator has

and what thesystemrequires. Too short to reach, too big to fit, too weak toalitt

examples of physical inabilities. With each hursgstem interface design is associated a

nor mal range, and i f the operatorés physic

he/she may not perform appropriately for the situation.

The next subection describes the influence of environmental factors on human
performance. The other external factors are out of the scope this research and the details

can be found iiChang & Mosleh, 2007)

2.4 Environmental factorsand its impact on human performance

This thesis focuses on developing a HRA methodology suitable for cold environments.
Both the physical and mental performance of the operator can be adversely affected by
the stressors imposed by cold environments. Adissuch stressor can be found in

Bercha et al., (2003s shown in Tabl2.1.

Karwowski (2001) and Hoffman (2002) define a list of specific effects of these stressors

on human performance. These effectsbarefly described below.
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Manual performance:in cold weather hypothermia begins as the body temperature
begins to fall below the normal resting values. As the cooling condition continues, the
metabolism increases, and as the metabolism increases, the amount of time a person can
work reduces(Méakinen, 2006) There is also loss of strength, mobility, and balance
which affect the physical performance. Protective clothing needed for the extreme cold
reduces the strength prodion capacity, decreasemobility and makes the operator

unable to perceive external elements or cues.

Table 2.1: General environmental factors affecting human performancgBercha et al., 2003)

Stressors Details

Coldness Breathing difficulty
Muscular stiffness
Frost bite

Lowered metabolism

Hypothermia

Bulky clothing

Stiffness of suits impairing movement
Slippery surfaces

Adds weight/mass
Combined Weather Effects wind, snow, wavesmpair HP
Low visibility Ice, fog, lack of solaitlumination

Frost on windows, visors, glasses

Remoteness Fear of unknown
Stress for being detached from the family for a I«
time
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Motor control and reaction timesthoughdecreasen reaction time for simple tasks is
minimal in cold environments (except in the most extreame}, it is not negligible for
complex tasks. Decrease in reaction speed is lineartentiperatureWith the reducing
temperatureghere is also increase in mber of errors, incorrect responses, number of

false alarms and a decreased ability to inhibit incorrect responses.

Target tracking: An impairment of visuamotor tracking performance is observed in
extreme coldnes&xposure of men fully dressed in acctilothing to aitemperaturesf
-25°C produced a 19% decrease in performance in compadgbat found at Z%C, and

a further decrease in temperatureétﬂ)UC produced an additional 21% reduction.

Memory and recallAn increase in the number of errors is observed as compareti@o 22
ambienttemperature whileperators are exposed t8 G air. Increased confusion and
impaired consciousness induced by the extreme coldness are found to be the root causes

of this increged number of errors.

Fatigue: Fatigue is found to be either the main cause or a major contributing factor
responsible for casualties, loss of life and damage to the environment and property. The
cold and motiorrich environments can increase fatigue tbigh level, both physically

and mentally.
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With the understanding of the cognitive modeling of human behavior and response and
different PSFs and their influence, the followisgtsection now describes a few HRA

techniques, their strengthandlimitations.

2.5 Quantitative approaches of HRA

2.5.1 Fault tree analysis (FTA)

Since its innovatiopfault tree analysis has always been one of the most popular failure
analysistools among reliability expert$ault tree analysis is a top down apploand

intends to represent the failure of a system through a cause effect relationship. At the top

is an undesirable event which is the effect. Inventory characteristics, experience or
judgment can be applied to identify this top event. The system isinkiestigatedio

define what single event, or combinations of events could have led to the top event. Two

| ogi cal gates are very commonly wused in t
which means that, all events under the gate must occur betoevéimt above the gate

can occur or an OOR6 gate, which means t ha

one (or more) of the events immediately below it oc¢kinsvan B. , 1994)

Fault tree analysis has long beerediso assess the probability of occupational accident.
Because human errors can be important contributors to risk, the inclusion of human error
possibilities in FTA is important to provide a realistic picture of the overall failure

probability andrisk. Stamatelatos et al., (2002)efines the type of human error that
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should be modeled while doing the FTA and these are: test and maintenance related
errors, errors causing initiating events, procedural errors during an incident or accident,
errors leading tonappropriate actions, detection and recovery errors. If human error is
considered as the top event, these different types of errors are the contributor and the
intermediate events. Again each of these errors is a result of the states of different PSFs at
a given time. So, PSFs can be modeled as the basic eyehtsson 1999 shows how
psychological and physiological factors of the operator can be modeled to get the ultimate

human error probability.

Figure2.4 shows an example of basic structure of fault tree for human error probability

calculation.
Human error
Errors Procedural Errors Detection
Test and . . .
. causing errors during leading to and
maintenance ey L. . .
initiating an incident inappropria Recovery
related errors . .
events or accident te actions errors
AND/ AND/ AND/ AND/ AND/
OR OR OR OR OR
PSF1 |-~ PSFn||PSF1}|- PSFn [ [PSF1 |- PSFn || PSF1 |- PSFn || PSF1|-..{ PSFn

Figure 2.4: Basic fault tree structure for human error calculation
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Fault tree is very easy to understand and use. It can be used for both the qualitative and
guantitative analysis of human error. But the underlying dependencies of the basic events
(here the performance shaping factors) are not considered in this approach. The likelihood
of different basic events and conditional dependencies of intermediate ewents
collected from analysts and can be biased. Assuming two analysts have the same
technical knowledge, there will still be notable differences in the fault trees that each
would generate for the same situation. Judgment of analyst can also contaiginiycert

and incompleteness.

2.5.2 Success likelihood index methodology (SLIM)

Success Likelihood Index Method (SLIN&) a technique used in the field of HRA, for the
purposes of evaluating the probability of a human error occurring throughout the
completion of a specific task. The original source refer&robrey et al., (19849nd the
Human reliabil i {Kywam Emsbeyg & KReap1988)6fime tHeeformal

stages of the SLIM procedure. Here, the main steps of the techniques are described in a

rather informal and easy to understand way.

Step 1.The selection of the expert panel.

To carry out the SLIM exercise a panel of experts is required. Selection of experts is
critical and should be made mway that the panel meets three basic requiremients
substantive expertise, normative expertise and group cohesion. Substantive eexpertis

means that experts should possess the knowledge and experience (generally minimum 10
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years) in the subject matter of tleiman reliability quantification HRQ) exercise.
Normative expertise refers to the requirement that expert must be familiar with
probabilities and should be able to appreciate the magnitude of the differamosg)

them. Group cohesion refers to how the experts in the panel work as a group. When the
cohesion is strong the experts not only shares own opinion about the scenarios and their
probabilities but also are receptive to the views of other experts. A workable group would
have three main substantive experts, one human factor professional, one safety assessor

and one facilitator.

Step 2:The definition of situations and subsets.

For unbiased judgment it is required that all members in the expert panel share the same
mental model of the scenarios. To facilitate this need the assessor tries to gather as much
information as possible including information on likely PSFs. Once the scerango
explored by the panel, the assessor can group the scenarios into subsets to take the

advantage of the degree of homogeneity of the PSFs affecting them.

Step 3:The elicitation of PSFs.

Next the panel identifies a set of PSFs which can affqgcte r at or 6 s per f or man
or negatively while performing a task. Typical PSFs used are: the time pressure or stress,

the quality of information, the quality of procedures, consequences as perceived by the
operator 6s, t he |task thé amount otcteampotk eeguired gnd eviel t h e

of training or competence.
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Step 4:The rating of the tasks on the PSF scale.

After listing all the possible human errors arising in the scenario, the panel has to decide
to what extent each PSF is optimal saboptimal for that task in the situation being
assessed. The rating for whether a task is optimal eogtimal for a particular PSF is

made on a scale of 1 to 9, with 9 as optimal.

Step 5:PSF weighting.
Next the panel has to define weight for eatdntified PSF for each task. Weight refers to
the relative importance of the PSF for the relevant task. Weightings after collected from

the panel can be normalized so as to add up to unity.

Step 6:The calculation of SLlIs.
In SLIM the degree of preference calculated as a function of the sum of the weightings
multiplied by their ratings for each item. The resultant preference is called success

likelihood index (SLI). Equatio2.1 shows calculation of SLI.
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The SLls represent the likelihood of differertors and have to be calibrated in order to

get the human error probabilities (HEPS).

Step 7:Conversion of SLIs into probabilities.
Studies on calibration suggest a logarithmic refeiop of the form shown induation

2.2 (Pontecorvol965;Hunns, 182).

D& "I & @ UL Q i"YD 'O ]

Where logs to base 10 are used amahdb are constants that can be derived either by the
computer system or by the process of simultaneous equations, as long as at least two

calibration probabilities have been assessed within each task @€ibsen, 1994)

Estimation of human errgorobability using SLIM approach is pretty straightforward.
Theoretical validity of this approach is at a reasonably high level. It does not require a
detailed decomposition of the task and hence serves as a very flexible technique.
However, there are some limitat® of this approach. SLIM only focuses on the

domi nant PSFs and does not consider the ef
fairly global, in comparison to the more specific and perhaps more useful PSFs found in
other HRA techniques. A proper aggatign method to combine the judgments of the

experts from expert panel is not present. Moreover, dependency among PSFs and

associated actions are not considered.
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2.5.3 Technique for human error rate prediction (THERP)

Among the first generation technigelfHERP is the most popular and effectively used
method. The main author Swgi8wain & Guttmann, 1983Jeveloped the methodology

over a significant period of time and the THERP handbook has been proven as a very
useful doament in the field of HRA. The original document is large enough to fit in the
scope of this thesis. An overview of the main steps of the methodology is briefly
presented herelable 22 presents the outline of a THERP procedure for H{@all,

1984)

Table 22: Outline of a THERP procedure (Bell, 1984)

Phase 1: Familiarization
1 Plant visit
1 Review information from system analysts

Phase 2: Qualitative assessment
1 Talk or walk through
i Task analysis
1 Develop HRA event trees

Phase 3: Quantitative assessment

Assign nominal HEPs

Estimate the relative effects of PSFs
Assess dependence

Determine success and failure probabilities
Determine the effects of recovery factors

= =4 4 A4

Phase 4: Incorporation
1 Perform asensitivity analysis, if warranted
1 Supply information to system analysts
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As a total methodology THERP deals with the familiarization and qualitative assessment.
But our primary focus is to look at the quantitative assessment. The quantification part of

the THERP comprises the following:

1. A database of human errors: The impact of PSFshuman actions can be
retrievedfrom the database. The assessor can modify the database to reflect the real

impact according to the scenario.

2. A dependency model: Thimodel calculates the degree of dependency between
two actions. For example, in case of an emergency evacuation if the operator fails to
detect an alarm, he/she will fail to act accordingly to the alarm as this action is dependent

on the former.

3. An eventtree modeling approach: This combines HEPs calculated for individual

steps in a task into an overall HEP for the task as a whole. Two types of event tress can be
used. The first one is, a human reliability analysis event tree (HRAET) to represent the
operda or 6s performance. This one is b2koadly wu
Alternatively, an operator action event tree can also be (Mgbdtingham, 1988)n both

cases, the sequence of events is represented viaghetee and possible failures are
considered at each branch in the tree. The errors are then quantified and recovery paths

are added if necessary
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A
\ Failure

Success Failure

Figure 2.5: Scheme for the construction of a HRATHERP event tree: Each node in the tree is related
to an action, the sequence of which is shown from the top downwards. Originating from each node
are two branches: The branch to the left, marked with a lowercase letter, indicates the success; the

other, to the right and marked with the capital letter, indicatesthe failure. (after Pasquale et al.,
2013)

4, Assessment of recovery paths: Recovery paths should be added in the event tree
as required. For example, in procedural sequences operator often gets a chance in the later
step of the procedures to recover framearlier error in a previous step. Without a proper

identification of recovery opportunities, the human error factor may be overestimated.

THERP has been very well used in practice and offers a powerful methodology that is
auditable by the assessor.terms of accuracy it is found to perform well compared to
other methodologies. One of the major disadvantages is that it does not offer enough
guidance in modeling both scenarios and the impact of PSFs on errors. While some users
make extensive usd ®@SFs in determining impacts HEPs, others use only a nominal

effect of fistresso in some cases. Anot her
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error modes and does not look irhe detaik of the psychological error mechanisms. Its
consistacy as a technique has also been questioned is some literatures (Brune et al.,

1983; Waters, 1989).

2.5.4 Cognitive reliability error analysis method (CREAM)

Eric Hollnagel(1998) proposed CREAM with an aim that this HRA technique can be

used in both performance prediction and accident analysis. CREAM is a second
generation HRA met hod and characterizes
perspective rather O0tThhaeen CaREAMi ngechmeé g e cct

met hod, a classification scheme and a mode

The main princife of CREAM method is that it is fully kdirectional. The same
principles can be applied for retrospective analysisthe search for causeandfor the
predictive analysi$ performance prediction. The method is recursive, rather than strictly
sequential. Finally, the method contains a clear-sitgi a welldefined condition/

conditions that determine when an analysis or a prediction has come tathe en

CREAM uses a model of cognition, tieeo g n controlvmedel (COCOM])Hollnagel,

19 9 EPCOM focuses on how actions are chosen and assumes that the degree of
control that an operator has over his actions is variable and also that the degree of control
an operator holds determines the reliability of his performance. The COCOM outlines

four modes of controlscrambled control, opportunistic control, tactical control and
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strategic controlHollnagel, 1998). According to Hollnagel (1998) when the level of

operator control rises, so does their performance reliability.

The CREAM technique uses a classification scheme consisting of a number of groups
that describe the phenotypes (error modes) and genotypes (causes) of the erroneous
actions. The classificatioacheme is used by the analyst to predict and describe how
errors could potentially occur. The classification scheme allows the analyst to define the
links between the causes and consequences of the error under analysis. The detail of the

causes, classifation groups and error modes can be found in Hollnagel (1998)

The retrospective and predictive analysis both have certain steps. As this thesis focuses on
the guantitative analysis and prediction of human error, only the predictive analysis is

describedhere. The main steps of the predictive analysis are as follows:

Stepl Describe the task or task segments to be analyzed.
Like other HRA methods the first step of CREAM is to do a task analysis or another type
of systematic task description. Avell-defined task list helps to appreciate the

consequences of individual task steps and actions.

Step2 Assess the common performance conditions (CPCs).
The CPCs are used to characterize the overall nature of the task, and the characterization

is exprassed by means of a combined CPC score.



40

Step3 Determine the probable control mode.

The probable control mode is a central concept of the underlying cognitive control model
(COCOM) a n id determined from the combined CPC score assessed in2Skefs
assumed that a control mode corresponds to a region or interval of action failure

probability.

CREAM has the potential to be used both qualitatively and quantitatively. It gives a clear,
structured and systematic approach to human error identificatioguamdification. The
classification scheme used in CREAM is detailed and exhaustive and it takes the context
into account. However, the exhaustiveness often makes the mletiger and more
resource intensive than other methods. The application time @afgbisach is quite high,

even for very basic analyses. Like many other approaches itemjsoesanalysts with
knowledge of human factors and cognitive ergonomics and combining multiple expert

judgmentscan be a challenge.

2.5.5 A technique for human eror analysis (ATHEANA)

In 2000 the US nuclear regulatory commission developed ATHENA with the hope to
represent the different types of human behavior in nuclear plants and industries in an
easily understandable way. Like other second generation techitigises focuses on the
cognitive modeling of human behavior and seeks to provide a robust psychological
framework to evaluate and identify PSFs. The application process in ATHENA is shown

in Figure2.6 (Cooper et al., 1996)
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Figure 2.6: ATHENA application process flow diagram(after Cooper et al., 1996)

As shown in Figure2.6, ATHENA application process constieubf two main stages:
identification and definition stage and quantification stage. These stages are briefly

described below:

Stagel: Identification and definition
This stage begins with identification of plant functions required for response to each

initiating event. Not only the plant functions explicitly used in the event trees are
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included, but those implied in the accident pregren are also included. The automatic
plant functions are included as well. Next the HRA analyst along with the help of the
event tree analyst and plant experts, analyze these plant functions to identify opportunities
for operators to fail these functian& set of human failure events (HFEs) and associated

PRA scenarios will be found as a result of this search.

The next step is to identify the unsafe action/actions responsible for these HFEs. Again,
these unsafe actions are outcome of plant specific fermng context (EFC) which also

has to be identified. As the plant conditions and associated PSFs will be different in

different scenarios, the HFEs, the PRA scenarios and the PRA model may need to be

refined to reflect greater detail.

Stage 2: Quaniidation

The main focus of this stage is to estimate the probabilities of the HFEs. This is done in
two steps. First step is to calculate the relative frequency of specificfercorg
contexts. This is estimated by the combined relative frequency ch#racteristic plant
conditions and associated PSFs. The second step is the estimation of the probability of a
human error given a specific erffmrcing context. ATHENA user guide is provided for

both estimations.

The mathematical formula to calculate Elprobability is shown in Equatidh3.
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0 Y is comprised of two contributions. The first contribution would be the

probability of the plant conditions and PSFs assediatith the EFC and second

would be the probability of error given the EFC.

Compared to other first generation methods, ATHENA provides a much richer and more
complete understanding of the context concerning the human factors. It also has a higher
capability to identify the key risks associated with HFEs. Most importantly, ATHENA
allows for the consideration of a much wider range of PSFs and does not require
independence among factors. The primary shortcoming however is that, it does not give a
direct estimate of the human error probability (HEP). This reduces its simplicity to be
used as a part of a quantitative risk assessment. Its inability to prioritize factors or
establish details of causal relationshipongthese factors is also a major limitation. The
outcomes of the human error are also constrained by previously defingehses| of

PSA accidents.

2.5.6 Standardized plant analysis riskhuman reliability analysis (SPARH)
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In support of the accident sequence precursor program (ASP), the U.S. nuclear regulatory
commission (NRC), in conjunction with thelaho national laboraty (INL), in 1994
developed the accident sequence precursor standardized plant analysis risk model
(ASP/SPAR) human reliability analysis (HRA) method, which was used in the
development of nuclear power plant (NPP) models. Based on experience gainedl in fiel
testing, this method was updated in 1999 and renamed $PABertman, Blackman,

Marble, Byers, & Smith, 2005)

SPARH quantifies HEP using the following three steps:

1. Determine the plant operation state and type of iagtifwo plant states: at power
and low power/shutdown and two types of activities: diagnosis and action are
considered in this method. Same PSFs and equations are used for calculating HEP for

both type of activities, but the PSF multipliers are different.

2. Evaluate PSF levels to determine the multipliers: A total of 8 PSFs are used in the
SPARH method. Each possiblevel of these PSFs is associated with an HEP
multiplier value. In this step, a level for each PSF has to be assigned on the HEP

worksheet.

3. Calculate HEP using equation provided in the worksheets: Two equations are

provided in the HEP worksheet. The equation depends on the number of negative
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PSFs (any PSF where the assigned level has a multiplier greater than 1). Ezjdation
is used to caldate the HEP for a situation with fewer than 3 negative PSFs. Equation

25 is used if there are 3 or more negative PSFs.
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The SPARH model is relatively easy to use and results are traceable. To consider the
dependency among subtasks and event sequence the TIlRERIBpendence model can

be used. The major limitah of this approach is the inadequacy of the degree of
resolution of the PSFs. Depending on the context the analysts may need to do a more
detail analysis which cannot be covered by the eight PSFs, but no explicit guidance is
provided for addressing a vadrange of PSFs when needed. To ensure consistency of the
SPARH underlying data it is compared to the other methods but the basis for selection of

final values is not always transparent.

Different HRA techniques discussed so far have their own streagitisveaknesses
Here, in this thesis two major limitatiows the traditional HRA methodsre addressed.
First is to handle the uncertainty and inconsistency associated with PSF likelihood data.
As ecologically valid PSF data are not readily available, tajority of the HRA

techniques use expert judgment to logically estimate the data. To avoid bias and
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incomplete knowledge, judgments are collected from multiple experts rather than a single
expert. To minimize the uncertainty and conflict among opinmindifferent experts a
proper aggregation method is required. Fuzzy theory is used in this paper to handle

uncertainty, to handle the incompleteness and conflict evidence theory is used.

Another major limitation that most of the HRA techniques suffer fiothat they do not
consider the dependency among different PSFs and associated actions. To represent these
dependencies a direct and structured way is required and IBayasian network

approach is adued in this thesis.

The following subsections pvile necessary background for fuzzy theory, evidence

theory and finally present the HRA technique using Bayesian network.

2.57 Fuzzy theory

While collecting expert judgments regarding PSF likelihood, there is always a chance of
linguistic and subjectiveincertainty. Rather than giving an exact numerical expression,
experts often prefer to give judgment in the form of linguistic expressions (e.g. extremely
probable, highly improbable). Judgment can also come in the form of a range (e.g.
probabilityofst ess being high is fAnearl yo 40%). Th
linguistic expression or range into exact numerical value. In this thesis, fuzzy theory is

used for this purpose.
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In this thesis Triangular Fuzzy Numbers (TF{Perdous, Khan, Sadiq, Amyotte, &
Veitch, 2009)are used for representing linguistic and range variables. F2gushows a

typical TFN for uncertain quantity.
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Figure 2.7: TFN to represent PSF probability

As shown in Figure Z, instead ofone exact numeric number a fuzzy number is
presented with three poins= (a;, &, a) that represents the minimum, most likely and
maximum values of event probability. This representation is interpreted rabarship
functions and the membershidegreeof x in the fuzzy setA can be defined using

Equation2.6.
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By U-cutoperation a crisp intervaélycan be obtained| N mip from Equation 2.7

~
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To transform this fuzzy numbér into a crisp valugY a g erankirg index(Isabels &

Uthra, 2012defuzzification mdtod shown in Equatio®.8is used.

2.58 Evidence theory

Besides uncertainty expert judgment also suffers from incomplete knowledge of

individual expert andconflict among opinions from different experts. To handle the

incompkteness and conflict Dempst8hafer evidence theory (DST) is used in this thesis

(Sentz & Ferson, 2002)

The basic probability assignment (BPA) or beliehss for each individual PSF is

acquired from different experts. If the PSF can be in three different states pdssibly

{Yes}, {No}and{Yes, No}then BPA is assigned by an expert for each of these states and

represents the degree of expert belief. The BBRAdenoted bym(p) and can be

characterized by the following equations:
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DST combination rule is then used to aggregate the multiple knowledge sources

according to their individuadegrees of belief.

If there aren different knowledge sources that are to be combined, the orthogonal sum

combination rule as depicted im&ation2.10is used.

& G4 8§64 §8%q B T

The DScombination rule uses a normalizing factoirk)lto develop an agreement among

the multiple knowledge sources, and ignores all conflicting evidence through
normalization Assuming that knowledge sources are independent, this combination rule
uses ANDtypeoperators (product), for example, if thre (p2) andm, (py) are two sets of
evidence for the same event collected from two independent sources, the DS combination

rule uses theelation in Kuation 2.11o combine the evidend8entz & Ferson, 2002)

a n . ¢Pp
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In the above equatiomy;, (pi)) denotes the combined knowledge of two experts for an
event, andk measures thdegree of conflichetween the two experts, which is determined

by the factor:

Q G n a 0 ¢P ¢

2.59 HRA using Bayesian network (BN)

Human decision and action both are dependent on different PSFs. This dependency can
best be described using the BNeapolitan, 2004)Figure 2.8 represents the BN for HRA

in the simplest way.

Human
Decision/
Action

Figure 2.8: A hierarchy graph based on a BN for HRA
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As shown in Figur@.8, human decision/action at any given time can be dependent on
different PSFs which constitute the first level of hierarchy. These PSFs can further be
influenced by several other PSFs. For example, PSF 1 imnedis an outcomef PSF

A and PSF B, which constitute the second level of hierarchy. The BN is considered

complete when all nodes are exploi{#du et al., 2006)

In Baraldi et al. (2009)he use of a BN expert model on dependence assessment in HRA
has been investigated. In this work the authors focused to find if cdowef the expert
knowledge ito a mathematical model like BN can improve the traceability and
repeatability of the assement. A BN model of postinitiating event scenarios in nuclear

power plants (NPPs) is presented in this paper. The dependence model underlying the BN
is adopted in this paper fro#io et al., (2009and to model the relationships among the

input and otput factors of the dependence model, two conditional probability distribution
tables (CPTs) are defined. The CPT dataderived from the fuzzy rules of a fuzzy
expert system (FES) previously defingy the authors iZio et al. (2009) Integration of

the dependence model with CPT completes the development of the BN. But before it can
be used by analysts to assess the dependencedpeeific guidance must be provided

for the analysts to interact with the model. The authors hence present a way &ieransl
the anal ystsd assessments into a BN input
information for probabilistic safety assessment (PSA). To convert analyst assessment into
BN input two input elicitation approaches are proposed based on a discieta an
continuous assessment of the input factors. The sole concept in both approaches is the use

of anchor points which provide the analysts with examples of known situations for which
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t he subjective assessment i s O0nag,ubyal 6 a
comparison, situationthat deviate from the anchor. The output of the BN model comes
in the form of a discrete probability distribution which has to be converted into a
numerical value representing the conditional human error probability (CHEP). The
integration of the information in the BN output distribution and in the corresponding

CHEP is obtained by calculating the expected value as propo&&id iet al., 2009)

In Martins & Maturana (2009pmn application of BN in collision accident has been
illustrated using a case study applied to the naval industry. The authors analyzed the same
case study in a previous wofkaturana & Martins, 2008hrough the THERP. But as
THERP cannot model the relationship between diffeRS#s and hazardous event, BN is
used as an alternative which has the ability to do that. Hazard identification and task
analysis which lead to the fault trees and event trees structure are adopted from the
previous workMaturana &Martins, 2008) First, this fault tree is transformed into a BN.
Dynamic BNs were then prepared for the tasks associated with the basic events of the
fault tree (with the support of the event trees). Next, PSFs related to each task found in
the prevous step are identified. Integrating the results of these three steps the final and
complete BN for collision accident is generated. The data required for BN analysis are
also taken from the previous work. The CPTs are filled in way that the obtaineis resul
for the probabilities of the fault tree's basic events could be the same obtained by the

application of the THERP in the previous stiMaturana & Martins, 2008)



53

In Groth & Swiler (2012)an existing HRA methodology SPAR is translated into a BN

to demonstrate the usefulness of the BN framework. The focus of this paper is to use
BN6s ability to incorporate prior informat
HEP calculations. Té&n SPARH method is used to build the BN structure and the
conditional probability table. Probability of different PSF levels is taken firtattbert

(2007) Using this information the BN is developed. Then the network is analyzed for
three different casesne with all necessary information, one with partial information and

one with no new information. In the first case the analyst knows the exact level for all
PSFs, so evidence is set for all PSFs in the BN and HEP is calculated. This is the same
way analyss is done in SPARH, where analysts have to kndhe exact level of each

PSF. However, more case studies are done to show that BN can also operate with partial
information. Inthosecases, analysts do not have to krtbeexact state of a PSFather

they can assign probabilities for different states of P@Fsase study is also done when

the analyst does not have any new information. When there is no new information the
prior information is used to calculate the
ability to work for cases with missing observations and proves it more powerful and

flexible than SPARH.

Groth & Mosleh (2012present the methodology to develop a datarmed BN of PSFs
using multiple sources of HRA data. Two sources of human pesfozendata from
nuclear power plant operations: the Human Events Repository Analysis (HEFA)
Neuclear Regulatory Commission, 20@BYabase and worksheets from an application of

the IDA model(Smidts,Shen, & Mosleh, 1997gre used to build this dataformed BN.
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The first step is to identify a set of PSFs either using expert judgment or quantitative
analysis, and determine which behaviors will be linked to the PSFs. Next step is to model
relationsips between the PSFs. Correlation analysis is done to elicit PSF relationships.
Expert judgment is used to define the direction of the relationship arcs based on causality.
Minimum residuals (Minres) factor analysis (FA) is then done to identify patteyws

PSFs are linked to human errors. The final step is to populate marginal and conditional
probability tables. It is assumed that there is a-pefiulated data base available which is
sufficient to define the initial probability distribution of the fastoand conditional
probabilitiesby automatic quantification. Use dbmain expert knowledge is suggested

to fill any missing values before applying automatic quantification. The authors also
suggest two promising methods that can be used with -Btigéd daa provided by

Almond (2010)andBonafede & Giudici (2007)

As discussed so far BN approach is used for HRA in the contextobdéar power plants.

This thesis focuses on application of BN in offshore emergency scenarios. A BN model
for offshore emergenogvacuation is developed. The first challenge while doing the HRA

for offshore emergency is to handle the scarcity of data. Expert judgment technique for
data collection has been used in this thesis. To minimize the uncertainty, incompleteness
of knowledgeand conflict among different experfsizzy theory and evidence theory is
applied on the expert judgment before usinfdetail in Section 2.5.5 and 2.5.6). Next,

the model is extended to be applied in harsh environment. Environmental PSFs are taken
into account to make the modelppropriate for offshore emergencies in harsh

environmers. Finally, a new data collection technique usangrtual environment of an
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offshore oil installation is presented in this thesis, as collecting data for a really complex
BN from expers can be prohibitively cumbersome. Using the data collected from this

technique a simplified BN for offshore emergency evacuation is verified.
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Chapter 3: Human reliability assessment during offshore emergency

conditions
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Abstract
This paper presents a quantitative approach of HUR&hiability Analysis (HRA) during
emergency conditions in an offshore environment. Due to the lack of human error data for
emergency conditions most of the available HRA methodologies are based on expert
judgment techniques. Expert judgment suffers froroeuiainty and incompleteness due

to partial ignorance, which is not considered in available techniques. Furthermore,

"Published in the Journal of Safety Science, 2013
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traditional approaches suffer from unrealistic assumptions regarding the independence of
the human factors and associated actions. Thesfotcthis paper is to address the issue of
handling uncertainty associated with expert judgments with evidence theory and to
represent the dependency among the human factors and associated actions using a
Bayesian Network (BN) approach. The Human ErrobBbdity (HEP) during different

phases of an emergency is then assessed using a Bayesian approach integrated with an
evidence theory approach. To understand the applicability of the proposed approach,
results are compared with an analytical approach: Saddkelihood Index Methodology
(SLIM). The comparative study demonstrates that the proposed approach is effective in
assessing human error likelihood. In addition to being simple, it possesses additional
capability, such as updating as new informationobees available and representing
complex interaction. Use of the proposed method would provide an effective mechanism

of human reliability assessment in hazardous operations.

3.1Introduction

Human reliability, as defined by Swain & Guttmann (1983), is thabatduility that a
person correctly performs systeequired activities in a required time period (if time is a
limiting factor). Human reliabilityis related to the field of human factors engineering and
involves the study of human Performance Shaping Fa¢RSF)Blackman, Gertman, &
Boring, 2008) PSFs improve or decrease human performance. Recognition of the
potential contributions of PSFs to accidents leads to the development of different Human

Reliability Analyss (HRA) techniques. Swain & Guttmann (1983) proposed THERP
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(Technique for Human Error Rate Prediction) for qualitative and quantitative analysis of
human reliability. Later SLIM (Success Likelihood Index Methodology) was proposed to
handle the lack of dataith expert judgmen{Kirwan B. , 1994) With the extension of

the human reliability research field from huraachine systems to human inherent
factors (psychology, emotion and behavior in emergency situations) ATHEANA (A
Technique for Human Error AnalysigCooper, Ramegmith, & Wreathall, 1996and
CREAM (Cognitive Reliability and Error Analysis Metho(hlolinagel E. , 1998were
proposed. Though dozens of HRA teicfues are employed today, most suffer from two
major limitations. First, they are unable to handle the uncertainty and inconsistency
associated with expert judgments. Second, most assume unrealistic independence among
human factors, and associated actidifee main focus of the paper is improving HRA
method to have better human error probability assessment. The approach has the
capabilities of considering the underlying uncertainty and conflict within input data, and
represents the dependency among differeaman factors and associated actions.
Specifically the method will be applied to assess HEP to offshore emergency situation. A
better estimate of human reliability would help design more effective safety systems and

emergency management systems.

Due to lack of real or ecologicatalid data, the majority of works in human error
predictionsuch as SLIM and THERREonsider expert judgment techniquétwever,
expert judgment from a single expert may be biased and incomplete due to partial
ignorance. Hence, single expert opinion is not sufficient for reliable human error

predictions. One potential solution to this problem is to use multiple experts-(multi
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expert) knowledge and experience. A proper aggregation method is needed to combine
this multrexpert knowledge that will minimize the uncertainty and opinion conflict. This
paper proposes to use evidence theory to combine-exgért knowledge and hence

increase the reliability of human error prediction.

The PSFs that influence human performanceeddmn the conditions or circumstances
under which an event occurs and are influenced by underlying dependency and contextual
factors. Moreover, the tasks performed in an emergency scenario are not independent and
have relations that must be taken intocard. In every offshore emergency situation,
individuals have to perform a sequence of tasks and the outcome of one task generally
affects the task that follows. A direct and structured way is needed to present the
dependencies among factors and actiorgeBian Network (BN) is used in this paper to
represent the relationships among human factors and associated actions in a hierarchical
structure. The network represents external relations of PSFs and associated actions, rather
than internal dependencies amng PSFs themselves. The network enables dynamic

updating through emerging information.

3.2Human reliability assessment approach background

3.2.1 PSF identification

The first step of HRA is to focus on human behavior and identify a set of human factors

believed to be related to performance. These PSFs are then employed to estimate the
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probability of human error in a given situation. For a given offshore emergenaiiasitu

a sequence of actions has to be performed for the successful evacuation. Each of these
actions requires particular skills and these skills are influenced by different human
factors. In this paper, an offshore emergency scenario is first analyzeal sartes of
decisions and actions to overcome the situation are identified using a task analysis as
presented in DiMattia, Khan, & Amyotte (2005). It has been considered that the failure or
success of a specific task depends on the skill level necessduthie task. Task analysis

is followed by identifying required skills to do a task. Finally, the PSFs that can influence

the status of these skills are identified.

3.2.2 PSF assessment using Evidencén@ory

The Bayesian approach to human reliability asseasmequires prior knowledge and
detail about the pertinent PSFs. Human performance data with greater detail is difficult to
find in real world situations, which requires the use of expert judgment techniques. Expert
judgment itself suffers from subjectiyiand variability as people use different heuristic
reasoning to arrive at a solution to a problem. Moreover, expert judgment is also subject
to uncertainty due to partial ignorance. In this paper, prior knowledge about PSF is taken
from different expertsand this multi expert knowledge is combined using Dempster

Shafer Evidence Theory (DSTSentz & Ferson, 2002)

The Basic Probability Assignment (BPA) or belief mass for each individual PSF is

acquired from the differerdources. If the PSF can be assigtethree different states
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possibilitiest {Yes}, {No}and{Yes, No}then BPA is assigned by an expert for each of
these states and represents the degree of expert belief. The BPA is dera{gd dyd

can be charactemd by the following equations:

an o mphe T an  p o

A DST combination rule is then used to aggregate the multiple knowledge sources

according to their individual degrees of belief.

If there aren different knowledge sources that are to be combined, the orthogonal sum

combination rule as depicted in Equati®8 is used.

a a $a s$8s a og

The DST combination rule uses normalizing factor (k) to develop an agreement
among the multiple knowledge sources, and ignores all conflicting evidence through
normalization Assuming that knowledge sources are independent, this combination rule
uses ANDtype operators (productfor example, if them (pa) andm, (p,) are two sets of
evidence for the same event collected from two independent sources, the DST
combination rulgSentz & Ferson, 2002jses the relation in Equati@&®B to combine the

evidence:
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In the above equatiomy;, (pi)) denotes the combined knowledge of two experts for an
event, ank measures thdegree of conflichetween the two experts, which is determined

by the factor:

Q @& N 4 n o8

3.2.3 Bayesian modeling fundamentals

BNs are probabilistic models representing interaction of parameters through acyclic graph
and Conditional Probability Tables (CPTkampis & Andrews, 2008)The networks are
composed of nodes and links. Nodes represent thables of interest whereas links
joining the nodes represent causal relations among the variables. Nodes and links together
define the qualitative part of the network. The quantitative part is constituted by the
conditional probabilities associated wittetvariables. Conditional probabilities specify

the probability of each dependent variable (also called child node) for every possible
combination of the states of the variables it is directly dependent on (also called parent
node). The probabilities oh¢ independent variables, i.e., nodes with no predecessor
(also called root nodes) are also given. Given the probabilities associated with each root

node and the conditional probability table associated with each intermediate child node,
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the probabilitieof child node can be calculatedl.significant feature of the BN is that it
gives the flexibility to update the probability of the nodes when the states of some
variables in a network are known due to new evidence emerging. It also gives the
opportunity toevaluate the criticality of a variable relative to the others. The law of
marginal probability(Lampis & Andrews, 2008yives the probability for an eveAtas

thesum of the joint probability of\ with a set of mutually exakive event8;, B,, € 5 B
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The probability of the states of each node cacdleulated marginalizing over the states

of the nodeds parents, which represent mut
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When evidence is given on any node of a BN, the updated probabihty posterior

probability-c an be cal cul at e dHaldes & Mahad&any206@vyent he or e

as:
5 bS5 0 063366 o) o)
Equation 3.&an also be written in terms of the marginal probability as:
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3.2.3.1Human Reliability Assessment (HRA) using Bayesian Networks (BN)

As discussed in Sectidh2.1, each decision and action is regarded as the outcome of the
joint influence of differenhuman factors. Human factors can be classified into two broad
categories: internal factors and external facfgvs S. , Sun, Qin, & Huang, 20Q6Jhe

scope of this paper is limited to the internal factors having effect oamyerformance.

In the Bayesian approach to HRA, human action is considered as the critical node, which
depends on different internal factors. These factors are further analyzed and are expressed
as a hierarchical structure. Thus every node becomes athilder nodes that can affect

it. The BN is complete once all nodes are explofi#d et al., 2006)Figure3.1 gives the

simplest representation of a BN for human reliability analysis.
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Figure 3.1: A hierarchy graph based on a BN for HRA

As shown inFigure 3.1, human performance while doing an action is dependemt on
different internal factors, which constitute the first level of the hieraicigrnal factor 1

can be further analyzed and found to be an outconfeactor A and Factor B, which

constitute the second level of the hierarchy.

3.3Bayesian approach to human reliability assessment

The main focus of this paper is to:

1. Reduce the uncertainty and conflict associated with expert judgment using evidence

theory.

2. Use BN to representlationships among human factors and actions and to calculate

human error probability.
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Figure 3.2: Proposed methodology flowchart

This section gives an overview of theopposednethodologyto achieve these two goals.

The main steps of the proposed haetology are shown in the flowchart (Figu2). The
methodology starts with the scenario analysis. At the end of this step the scenario is
divided into smaller phases. Then for each phase, PSFs influencing human performance
within each phase are idengifl. The importance of each PSF related to a specified task is
then assessed using evidence theory. Once all PSFs regarding a task are identified and
assessed, the BN of PSFs is developed. BNs are updated each time there is new

information or evidence avaible. The likelihood of task failure and corresponding
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Human Error Probability (HEP) are finally calculated. The process is repeated for all

phases identified during scenario analysis.

3.3.1 Scenario analysis

The ideal muster sequence starts with the musiemato notify all personnel to start a
muster procedure and ends with all personnel gathered at Temporary Safe Refuge (TSR)
(DiMattia D. G., 2004) Between these two final actignsntermediate actions are
performed by individualsPersonnel on boardgave to identify alarms, stop the work and
return the process to a safe state. The workplace has to be ensured as safe to avoid
obstruction at the time of egress. Moreover, eachisitkiding accommodations needs to

be in a state that inhibifartherescalation of the hazard event.

Following the muster alarm, there is the Pulliddress(PA) announcementegarding

the update of the nature of the muster and areas to be avoidegréss path has to be
chosen using the information provided. On safe arrival at the TSR, individuals have to
register themselves. Subsequently specific individuals contribute to rescue or fire

suppression.

The Offshore Installation Manager (OIM) providas update with time that includes

decisions such as a general order to don survival suits and load life boat for evacuation.
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Hierarchical Task Analysis (HTA) for a generic muster scenario is adopted from
DiMattia, Khan, & Amyotte (2005). The HTA givesseries of muster actions that are
independent of muster initiator. A total of 17 tasks have been identified that are broken
down into four muster phases. The muster actions can be categorized under four muster
phases namely Awareness phase, Evaluationagk, Egress phase and Recovery phase.

The four phases are shown sequentially in Talle

Table 3.1: Muster action broken down by muster phas¢DiMattia, Khan, & Amyotte, 2005)

Awareness Phase

1 Detect alarm

2 Identify alam

3 Act accordingly

Evaluation Phase

4 Ascertain if danger is imminent

5 Muster if in imminent danger

6 Return process equipment to safe state

7 Make workplace as safe as possible in limited time

Egress Phase

8 Listen and follow PA

9 Evaluatepotential egress paths and choose route

10 Move along egress route

11 Assess quality of egress route while moving to TSR

12 Choose alternate route if egress path is not tenable

13 Assist others if needed or as directed

Recovery Phase

14 Register af SR

15 Provide pertinent feedback attained while enroute to TSR

16 Don personal survival suit or TSR survival suit if instructed
abandon

17 Follow OIM instructions

PSF identification, assessment and BN modeling are done for each of these phases. The

following section demonstrates these steps of the methodology for awareness phase. The
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same process is repeated for the other three phases and the result is sumntlaeizedtiat

of this section.

3.3.2 Awareness phase

The first step of the awareness phase is to detect the alarm successfully. When the alarm
is detected it should be interpreted to identify the meaning of the alarm. After successful
identification of the alarmthe muster command is recognized and proper actions should

be taken accordingly. The success of the awareness phase thus depends on the success of
alarm detection, identification and actions taken. Figuf® r8presents these causal

dependencies.

Awareness

Alarm Alarm Act
Detection Identification Accordingly

Figure 3.3: Causal dependency in Awareness phase

3.3.2.1PSF identification

Alarm detection, alarm identification, and act accordingly are further analyzed to identify
PSFs related to these actions. TaébRshows the required skills to perform these actions

and thePSFgelated to these skills.
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Once PSFs are identified, the next step is to estimate the prior knowledge of the PSFs and

the conditional probabilities required to develop the BN, which is described in the next

section.
Table 3.2: Performance factors for Avareness phase

Task/Action  Skills Required Identified PSF
Detect alarm 1. Concentration Distraction, Stress

2. Perception Distraction (Noise)Physical Condition
Identify 1. Concentration Distraction, Stress
alarm 2. Knowledge Training/ExperienceCommunication
Act 1. Concentration Distraction, Stress
accordingly Training/Experience, Action Procedure,

2. Knowledge .
9 Communication

3. Intelligence/cognitive Available Time, Fear/Anxiety
skills (decision Complexity, Training/Experience, Actior
making, problem Procedure, Fitness for duty
solving)

3.3.2.2PSF assessment

As discussed in SectioB.2.2, the prior knowledge of each PSF comes from different
expert sources in terms bpaand they are combined using DST combination rule. For
example, anexpert reports that the probability of distraction being present in alarm
detection is 15%, and not present is 75%. Mathematically, this can be writi@n as
({Yes}) = 0.15m ({No}) = 0.75andmy ({Incomplete Knowledge}) = 0.Another expert
defines theprobabilities asm, ({Yes}) = 0.2 my ({No}) = 0.7 and m, ({Incomplete

Knowledge}) = 0.1.
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These two sets of expert judgments are combined using DST combination rule as

depicted in EquatioB.2. The combination process is illustrated in T&h8e

Table 3.3: Evidence combination for PSF Distraction probability

n {Yes} {No} {Yes, No}
my 0.2 0.7 0.1
{Yes} 0.15 {Yes}=0.03 { G } = {Yes}=0.015
{No} 0.75 { G } ={No}=0.525 {No0}=0.075
{Yes, No} 0.1 {Yes}=0.02 {No0}=0.07 {Yes, No}=0.01
k 0.255
G n o N 0065 0.67 0.01
m;»(DST) 0.087 0.899 0.013

Using the same process the prior probabilities of each PSF can be obtained. The prior

probabilities of the PSFs related to the task alarm detection are summarized iB.4.able

Table 3.4: Evidence combination for PSFs related to alarm Detection

PSF Expert Judgment 1  Expert Judgment 2 Combined Probabilit
Distraction {Yes} = 15% {Yes} =20% {Yes} =9%
{No} = 75% {No} = 70% {No} = 90%
{Incomplete {Incomplete {Incomplete
knowledge} = 10%  Knowledge} =10% Knowledge}= 1%
Physical {Good} = 80% {Good} = 85% {Good} =97%
Condition  {Bad} = 10% {Bad} = 5% {Bad} = 2%
{Incomplete {Incomplete {Incomplete
knowledge}= 10%  Knowledge} = 10% Knowledge}= 1%
Stress {High} = 15% {High} = 10% {High} = 7%
{Low} = 70% {Low} = 70% {Low} = 89%
{Incomplete {Incomplete {Incomplete

knowledge}= 15%

knowledge} = 20%

knowledge} = 4%
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3.3.2.3Bayesian Networks (BN) modeling of PSF

With the support of Tabl8.2 and probabilities obtained in Secti83.2.2, BNs are now
developed for each task with the factors that influence task perforni®laséns &

Maturana, 2009)The networks obtained are shown in Figuddsthrough3.6.

] Alarm Detection

Success 929 (]

Failure 7%

Incompletekn ... 2“.-{:| =
(> Concentration o Perception
High 90% [ High o43% ]

5%

Incomplete ... 3%| [ Incomplete ... 1%| [

N

Low 8% L
[

(] Stress Distracton (0 Physical Condition
High 7% Nes 5% ]| Bad 2%

Low 29% No 90% Good 97%
Incomplete .. 4%| [ ncomplete . 1%| [ Incomplete .. 1%| [

Figure 3.4: Network of PSFsfor alarm detection

0 Alarm ldentification

Success 87% -:|

Failure 5%
Incomplete ... 4% | =

SN

L] Concentration L] Knowledge

High 0% (IE] High 5% (I

Low 8% Low 10%

Incomplete ... 3%| [ Incomplete ... 5%| [
o Distraction [ Stress (O Training/Experience | [  Communication
Yes 9% || High 7%]| Low 9% || Bad 10%/]
No 90% Low 9% High 90% Good B0%
Incomplete .. 1%] [ incomplete .. 4%| [ |ncomplete .. 1%| A |ncomplete . 10%|| [

Figure 3.5: Network of PSFsfor alarm identification
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These posterior probabilities of alarm detection, identification and response are used in

the causal network shown in FiguB3. Applying these give the final BN of the

awareness phase as shown in FigBré For each action, incomplete knowledge is

combned with the failure probability to give the final failure probability.
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Figure 3.7: BN of Awareness phase
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The same approach is used for developing the networks for the other three phases and

results are summarized in Secti®d.1.

3.3.3 Bayesian analysis

The BN of PSFs is dynamic in nature and can be updated as new information regarding
the PSFs becomes available. The information may come in two different ways: expert

judgment or observed evidence.

To illustrate the formerthe network of PSFs for alarm téetion shown in Figur84 is

used The network is developed with the three PSFs: distraction, physical condition, and
stress. The probabilities of these PSFs being positive or negative are obtained by
combining expert judgments as discussed in Se@®2.2. As shown in Figurd4, the
combination gives the likelihood of distraction being present as 9%, not present as 90%
and an incomplete knowledge of 1%. Later another expert judgment gives the likelihood
of distraction being present as 20%, not present as 70% and an incompletedge of

10%. This new expert judgment needs to be combined with the previous likelihood to
assess the updated likelihood, of the PSFs at a given time. This combination is done using
Dempstei Shafer theory (DST(Sentz & Ferson2002) A DST combination rule is used

to combine expert judgments according to their individual degrees of belief.

Table35 illustrates the DST rule by combining the new expert judgment with the prior

likelihood for the distraction PSF in the alarm detection network. After combining the
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new expert judgment, the likelihood of Distraction being present becomes 4%, not present

becomes 96% with an incomplete knowledge of only 0.1%.

Table 3.5: Updating Distraction likelihood using new expert judgment evidence

my { Yes} { No} {Incomplete
Knowledge}
my 0.2 0.7 0.1
{Yes} 0.09 {Yes}=0.02 { G } = {Yes}=0.009
{No} 0.9 { G } = {No}=0.63 {No0}=0.09
{Incomplete {Incomplete
Knowledge} 0.01 {Yes}=0.002 {No0}=0.007 Knowledge}
=0.001
k 0.24
G n & n o3 0.73 0.001
my.2(DST) 0.04 0.96 0.001

The network is updated as new evidence is collected. The alarm detection network shown
in Figure3.4 can be used as example. As shown in Fi@uteinitially the likelihood of
distraction is considered to be 9%. This percentage of distraction beingtpsesainject

to change according to observed evidence. For example, given the evidence that the
weather condition is extremely bad, the distraction would increase. Thus distraction itself
is dependent on weather conditions and to incorporate this depgndemmetwork is

revised as shown in FiguBs.
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Figure 3.8: Network of PSF for alarm detection after dynamic update

The network shown in Figur8.8 takes the dependency of distraction on weather
conditions into account and assesses the likelihoodisifaction as 12%. As new
evidence about the weather is available and is included in the network, the likelihood of
the distraction will change accordingly, which in turn will change the overall likelihood

of positive alarm detection.

As shown in Figure35 the task alarm identification is dependent on distraction,
communication, training/experience and stress. If communication is observed to be bad at

the time of performing the task, then the alarm identification failure likelihood changes as
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shown in Fgure 3.9. As shown in Figur&.9, with the evidence that communication is

bad, the alarm identification failure likelihood increases from 9% to 31%.
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Figure 3.9: Network of PSF for alarm identification after dynamic update

3.4Result and discussion

3.4.1 Results for complete study

Calculated likelihoods of failure for all actions using the Bayesian approach are presented

in Table3.6. The detail of the calculation is reported in Sec8@n
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Table 3.6: Likelihoods of failure of actions using Bayesian gproach

Action Lower bound Upper bound
of failure of failure
likelihood likelihood

Detect alarm 7% 9%

Identify alarm 9% 13%

Act accordingly 12% 18%

Ascertain if danger is imminent 12% 18%

Muster if in imminent danger 14% 21%

Return process equipmeotsafe state 14% 21%

Make workplace as safe as possible in limited time 14% 21%

Listen & follow PA 8% 11%

Evaluate potential egress paths and choose route 12% 18%

Move along egress route 10% 16%

Assess quality of egress route while moving to TSR 14% 21%

Choose alternate route if egress path is not tenable 14% 21%

Assist others if needed or as directed 13% 20%

Register at TSR 13% 19%

Provide pertinent feedback attained while enroute to ~ 13% 18%

Don personal survival suit or TSR survival suift 14% 21%

instructed to abandon

Follow OIM instructions 13% 19%

3.4.2 Comparison with analytical approach

The proposed approach is compared to the S(Hiwan B. , 1994) The likelihood
associated with each PSF is used as the rating while the weights of the factors are given in
accordance with the conditional probability table. The comparison process is described in

Figure3.10.



79

Performance Performance
Shaping Factors Shaping Factors
Individual Conditional _ _
Likelihood of PSF Probabilities Weight of PSF Rating of PSF
Bayesian
Network of SLIM

Task/Action Methodology

Likelihood of the Logarithmic Likelihood of the
Task/Action g Task/Action
. Scale .
Failure Failure
HEP HEP

Figure 3.10: Comparison of Bayesian apwach to SLIM

In both approaches, calculation of the likelihood of failure of a task or action first needs
the PSFs influencing the task to be identified. Once PSFs are identified, in the Bayesian
approach a network of PSFs is developed with known li&etihof each PSF and the
conditional probability table representing the dependency of a task or action on the PSFs.
The likelihood offailure ofthe task or action can then be calculated by forward analysis
using the individual PSF likelihood and conditibrmobabilities. In SLIM, the PSF

identification is followed by assigning a rating and a weight for each of the PSFs. The
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Success Likelihood Index (SLI) is then calculated as the sum of the weightings multiplied

by their ratings for each time (task error).

The process is illustrated using the network of PSFs for alarm detection shown in Figure
3.4. The likelihood of distraction being present is 9%, physical condition being bad is 2%
and stress being high is 7%. These values are directly used as the PSF ratings. Weight is

inferred from the conditional probability tables shown in TaBlésand3.8.

Table 3.7: Dependency of Concentration on Stress and Distraction

Stress High Low Incompleteknowledge
Digtraction Yes Mo Incomplete... g Mo Incomplete... g No Incomplete...

} | High 0 05 0 05 1 05 0 05 0
Low 1 05 05 05 0 0 05 0 0
IncompleteKnowledge 0 0 05 0 0 05 05 05 1

Table 3.8: Dependency of alarm detection on concentration and perception
Concentration High Low Incompleteknowledge
Perception High Low Incomplete. .. High Low Incomplete. .. High Low Incomplete. ..

b | Success | 1 05 05 05 0 0 05 0 0
Failure 0 05 0 05 1 05 0 05 0
IncompleteKnowledge 0 0 05 0 0 05 05 05 1

From Table3.7 it can be observed that when distraction is not present, then the likelihood
of concentration iglependent only on stress and has a likelihood of being low of 0.5
when stress is high. This value represents the importance of stress on concentration. From
Table 3.8 we can see that alarm detection is dependent on concentration and has a

likelihood of falure of 0.5 when concentration is low given perception is high. The
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weight of stress is thus 0.5 x 0.5 = 0.25. With the PSF ratings and weights, the SLI can be

calculated for alarm detection failure as shown in T8l8le

Table 3.9: SLI calculation for alarm detection Failure

PSF Weight Rating Alarm detection Failure
Distraction (0.25+0.25)=0.5 0.09 0.045
Stress 0.25 0.07 0.0175
Physical Condition 0.25 0.02 0.005

SLI(Total) 0.0675

Once the likelihood of task or action failure is calculated, the relationship in Equation

3.10 is used to transform the likelihood into HERswan B. , 1994)

Log (HEP) = a (SLI) + b (3.10)

Two more tasks are evaluated where SLIs are assessed as 1 and O for known HEPs of 1E
5, and 0.9 respectively. From these the constamtdb can be calculated as= - 4.954

andb =- 0.046.

Table 3.10 shows a comparison of likelihood and corresiimyp error probabilities
calculated using the Bayesian approach and SLIM methodology for 10 different tasks.
From Table3.10 it can be observed that the likelihood of failure calculated in both

approaches is similar and so is the calculated HEP.
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Table 3.10: Comparison of calculated HEP in Bayesian approach and SLIM methodology

Task Failure Failure HEP HEP
likelihood likelihood (BN) (SLIM)
(BN) (SLIM)

Detect alarm 0.068 0.068 0.414 0.414
Identify alarm 0.088 0.088 0.329 0.329
Act accordingly 0.116 0.115 0.240 0.242
Ascertain if danger is imminent 0.121 0.123 0.226 0.221
Muster if in imminent danger 0.136 0.139 0.190 0.185
Return process equipment to safe state 0.136 0.135 0.191 0.192
Make workplace as safe as possible 0.136 0.135 0.191 0.192
limited time

Listen & follow PA 0.076 0.076 0.378 0.378
Evaluate potential egress paths and chc 0.121 0.123 0.226 0.221
route

Move along egress route 0.097 0.097 0.297 0.297
Assess quality of egress route while mov 0.136 0.139 0.190 0.185
to TSR

Choose alternate route if egress path is 0.136 0.139 0.190 0.185
tenable

Assist others if needed or as directed 0.127 0.126 0.211 0.213
Register at TSR 0.131 0.131 0.202 0.202
Provide pertinent feedback attained wr 0.133 0.120 0.200 0.228
enroute to TSR

Don personal survival suit or TSR surviv 0.136 0.139 0.190 0.185
suit if instructed to abandon

Follow OIM instructions 0.131 0.130 0.202 0.203

One of the advantages of the Bayesian approach over SLIM is that once new evidence is
available the likelihood of failure of any task or action can be revised as discussed in
Section3.3.3. The SLIM methodology does not have the flexibility to take nedese

into account and change accordingly. For example, with the information that at a given
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time in an emergency condition the training or experience of the operator is high, the
likelihood of actions dependent on training or experience will changeted irs Table
3.11. The likelihoods ofailure of actions calculated in the SLIM approach remain the

same as before, without any effect of the observed evidence.

Table 3.11: Comparison of calculated likelihood in Bayesian approach and SLIM methodology with

evidence of Training or Experience high

Task Failure Failure HEP HEP
likelihood likelihood (BN) (SLIM)
(BN) (SLIM)

Detect alarm 0.068 0.068 0.414 0.414
Identify alarm 0.065 0.088 0.429  0.329
Act accordingly 0.101 0.115 0.284 0.242
Ascertain if dangeis imminent 0.107 0.123 0.265 0.221
Muster if in imminent danger 0.113 0.139 0.248 0.185
Return process equipment to safe state 0.121 0.135 0.226 0.192
Make workplace as safe as possible 0.121 0.135 0.226 0.192
limited time

Listen & follow PA 0.061 0.076 0.449 0.378
Evaluate potential egress paths and chc 0.107 0.123 0.265 0.221
route

Move along egress route 0.097 0.097 0.297 0.297
Assess quality of egress route while mov 0.113 0.139 0.248 0.185
to TSR

Choose alternate route if egress piatimot 0.113 0.139 0.248 0.185
tenable

Assist others if needed or as directed 0.112 0.126 0.251 0.213
Register at TSR 0.116 0.131 0.240 0.202
Provide pertinent feedback attained wt 0.133 0.120 0.197 0.228
enroute to TSR

Don personal survival sudr TSR survival 0.113 0.139 0.248 0.185

suit if instructed to abandon
Follow OIM instructions 0.116 0.130 0.240 0.203
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3.5Conclusion

Precise assessment of human error necessitates consideration of interdependency among
human factors and associated actions. This paper proposes to use BN to present this
interdependency in a structured way and calculate human error likelihood. For handling
data scarcity, mukexpert knowledge is used. Uncertainty and conflict associated with
expert judgment is handled using evidence theory. With the integration of evidence
theory with BN, this paper presents a methodology to overcome two major limitations
existing HRA methodsincompleteness andonflicts in expert opinionand unrealistic
assumptionof independenceamong human factors and associated actions, and likely
presents a more precise human error estimation. The application of the method is
illustrated using an example scenario of offshore emergency evacuation. Comparison
with an analytical approach shows its utility in estimating human error probability.
Moreover, the methodology affords the flexibility of dynamic updating of the BN with
emergig evidencePrecise estimates of human error using the proposed methodology
could helpto design more effective emergency management systems. The current
approach only takes internal human factors into account. Future work includes an
incorporation ofexternal factors into the network to increase the reliability of human

error prediction.
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Chapter 4: Human factor risk assessment during emergency condition

in harsh environment
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Preface

A version of this paper has bepresented angublished in theproceedings of thg2"
InternationalConference on Ocean, Offshore and Arctic EnginegfMgAE 2013. The
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Abstract
This paper presents a quantitative approach to human factor risk andilysig
emergency conditions on an offshore petroleum facility located in a harsh environment.
Due to the lack of human factors data for emergency conditions, most of the available
human factor risk assessment methodologies are based on expert judgnreqtiésch
Expert judgment is a valuable technique; however, it suffers from vagueness, subjectivity

and incompleteness due to a lack of supporting empirical evidence. These weaknesses are

"Presented and published in the proceedings of tA€IB&rnational Conference on
Ocean, Offshore and Arctic Engineering (OMAE 2013)
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often not accounted for in conventional human factor risk assessirtentavailable
approaches also suffer from the unrealistic assumption of independence of the human
performance shaping (HPS) factors and actions. The focus of this paper is to address the
issue of handling uncertainty associated with expert judgments aaccoant for the
dependency among the HPS factors and actions. These outcomes are achieved by
integrating Bayesian Network with Fuzzy and Evidence theories to estimate human error
probabilities during different phases of an emergency. To test the apigicabithe
approach, results are compared with an analytical approach. The study demonstrates that
the proposed approach is effective in assessing human error probability, which in turn

improves reliability and auditability of human factor risk assessment

4 .1 Introduction

Human reliability is the pmbability that a person correctly performs systemuired
activities in a required time period (if time is a limiting fact@®wain & Guttmann,

1983) The performance depds on cognitive, emotional, and physical demands upon the
person over that time period. These activities are influenced by a number of performance
shaping factors (PSFqSwain & Guttmann, 1983)A successful humaneliability
analysis involves the study of human factors and performance shaping factors (PSF)
(Blackman, Gertman, & Boring, 20Q8)ith this recognition of the potential contribution

of human factors in accidents, féifent human reliability assessment (HRA) techniques
(i.,e. THERP, SLIM) based on human factors analysis have been developed. However,

they suffer from the limitations of data uncertainty, incompleteness and unrealistic
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assumption of the independence of HR&ors. Moreover, operators working in offshore

may be exposed to harsh environmental conditions and this necessitates considering the
effect of harsh working environments on human performance. This paper presents a
guantitative approach of human religyi assessment in offshore emergency condition
with the capability of considering the underlying uncertainty, incompleteness and

dependency and taking the influence of harsh environment into account.

Operatorb6s response i n oalddesnbdeleden sechmeay that n c y
all cognitive, emotional and physical aspects are taken into account. Operator response
modeling thus includes understanding the complex mechanism of information processing,
decision making and action execution. Interacdarong the physical and mental aspects

of operator should also be reflected in the model. To complete the model, the effects of
external environmental factors should also be considered. This paper uses the
informationdecisionaction (IDA) model presentedly Cheng and MosleliChang &
Mosleh, 2007)to represent operator behavior and response as it fulfills all the stated
requirements. The model contains the PSFs having influence on physical and mental
states, the environma&l factors, and represents their underlying dependency. This model
is then converted into a Bayesian Network (BN) with the same underlying structure for
the quantitative analysis of human error likelihood while performing a task. Fuzzy theory
and evidene theory have been integrated with the BN to handle data uncertainty and

incompleteness associated with expert judgment.
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The paper starts with a brief overview of effect of cold environments on human
performance. Sectiod.3 covers the IDA cognitive model. Sectid describes the
proposed methodology along with basic understanding of fuzzy theory, evidence theory
and BN. The methodology is demonstrated in the context of human reliability of actions
related to evacuation @n offshore platform due to a fire and explosion in Sectién

The outcome of the study is discussed in SectibnA comparison of the methodology

to an analytical approachamely theSuccess Likelihood Index Methodology (SLIM) is
also presented in ith section. Finally, SectioA.7 gives a direction of possible future

work and concluding remarks.

4.2 Cold environment and its impact on human performance

Cold environments impose serious stresses on operators and may adversely affect both
their physical and cognitive performance. Major stressors are listed in Zabéong

with their impact on human performance.

Physiological homeostasis of the operatoraffected by the cold environment. For
example, in abnormally cold weather; metabolism of an individual increases to maintain
appropriate body temperature. An increasing metabolic rate; decreases the amount of time
an individual might work. Loss of strgth, mobility and balance are additional effects of
extreme coldness. Stress and fatigue increase and make workers more susceptible to

physical injuriegKarwowski, 2001)
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Table 4.1: General Environmental Factors Affecting Human Performance(Bercha, Brooks, &

Leafloor, 2003)

Stressors

Impact

Coldness

Combined Weather Effects

Low visibility

Remoteness

Breathing difficulty

Muscular stiffness

Frost bite

Lowered metabolism

Hypothermia

Bulky clothing

Stiffness of suits impairing movement
Slippery surfaces

Adds weight/mass

Wind, snow, waves

Ice, fog, lack of solar illumination
Frost on windows, visors, glasses

Fear of unknown
Stress for being detached from t
family for a long time

Mental state and memory performance are also affected by the cold environment through

decreased perception and reasoning. These deficits will increase the likelihood of error in

decisionmaking. Response time also increases in degraded environmentalooendi

Visualmotor tracking performance is impaired due to the cold and accompanying low

visibility (Hoffman, 2002)

4.3The IDA cognitive model
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The IDA model(Smidts, Shen, & Mosleh, 1997¢preents the behavior of an operator
contemplating three kinds of respongesmformation preprocessing (I), diagnosis and
decision making (D), and action execution (A). The informationppoeessing (I)
involves handling the incoming information and filtegj comprehension, retrieval,
relating and grouping of available information. By information -precessing the
operator often reaches a problem statement, which needs to be solved by diagnosis and
decisionmaking (D). Diagnosis and decision making invelwehoosing a strategy and
making the best decision given the circumstances. The decisions made at this step are
executed in the action execution process (A). Mental state together with the memory
constitutes the cognitive and psychological states of teeatgr and influences all three

kinds of responses information preprocessing (I), diagnosis and decision making (D)

and action execution (ABmidts, Shen, & Mosleh, 1997)

A set of performance shaping factors (PSF) besn identified which may influence
operatorso6 problem solving behavior (1. e.
person (the operator) rather than a team and the PSF set is assured to adhere with the
fundamental principles of PSF selectig@roth & Mosleh, 2012) These factors are
divided into two broad categorids internal PSFs and external PSFs. Internal PSFs
include cognitive, emotional, and physical states while external PSFs include factors from

the externalworld (i.e. communication availability).

All the internal PSFs are further classified in three broad categbrieental state,

physical factors and memorized information. Though in the original IDA model external
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factors are classified into four groujpsteam related factors, organizational factors,
environmental factors, and conditioning events, the scope of this paper has been limited
to environmental factors only, as the main focus is to develop an HRA method for cold

environments.

4.4Risk Assessment sing Bayesian approach

4.4.1 Methodology

Figure4.1 presents the main steps of the proposed methodology. The first step is scenario
analysis which gives the overview of the emergency scenario and activities of an
individual in that scenario. Scenario analysisfollowed by hierarchical task analysis
(HTA) which breaks the whole scenario into a series of actions that needed to be
performed in that specific emergency scenafiben for each task, PSFs that may
influence the task are identified. For the PSF idieation purpose both physical and
cognitive aspects of the individual are considered and factors that may affect any of these
are taken into account. The identified PSFs are then used to develop the cognitive IDA
model of individual behavior for the tasklext step is to assess the PSF using expert
judgment technique. Fuzzy and Evidence Theories are used in this step to handle the

uncertainty and partial ignorance associated with expert judgments.
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Figure 4.1: The Proposed methodology for human error aalysis

A BN is then developed from the IDA model and the PSF assessments achieved in
previous steps are fed into it. This BN gives the likelihood of the corresponding task
failure. Finally, human error probability (HEP) for a task is calculated usieg th
likelihood achieved from the BN. Each time new information or evidence is available the
BN is updated, which in turn updates the likelihood of human failure of doing a task and

HEP. The whole process is repeated for each task identified during HTA.
















































































































































