
Power Analysis of Stream Ciphers Based on

Feedback Shift Registers

by

c© Abdulah A. Zadeh, M.Sc., B.Eng.

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

May 2014

St. John’s Newfoundland Canada

ii

Acknowledgements

I would like to sincerely thank my supervisor Dr. Howard M. Heys.

Also, I should thank my friends and other professors: Cheng Wang, for many

good times we had in lab and working towards our PhD degrees, Dennis Peters, Cheng

Li, Lihong Zhang, Paul Gillard, Theodore Norvell, Amr Youssef, Gabriel Lau, and

Nolan White.

iii

Abstract

In recent days, many cryptographic devices, such as smart-cards and cell phones,

are widely accessible to many people. However, wide access to cryptographic devices

makes them vulnerable to side channel analysis (SCA) attack. As such, there is a

high demand for research in the field of side channel analysis. Although SCA attacks

have been extensively applied to block ciphers, only a limited amount of research

is available on the effectiveness of side channel analysis on stream ciphers. In this

dissertation, we study SCA attacks on stream ciphers and develop some cryptanalysis

methods for applying the attacks effectively on practical realization of stream ciphers.

The proposed power analysis attacks were first theoretically applied to stream

ciphers with a linear feedback shift register (LFSR) and nonlinear filtering function,

a structure referred to as a filter generator. Since typical stream ciphers include

multiple LFSRs and/or nonlinear feedback shift registers (NLFSRs), we first consider

the extension of the typical power analysis attack to stream ciphers with multiple

LFSRs and a nonlinear combining function, known as a combination generator. Then,

the attack is extended to stream ciphers based on nonlinear feedback shift registers

(NLFSRs) and stream ciphers with multiple NLFSRs and LFSRs.

In most papers related to applying side channel analysis attacks to stream ci-

phers, the authors ignore the effect of noise and inaccurate measurements. This

limits the applicability of their methods for real applications. This dissertation has

developed side channel analysis attacks on feedback shift register (FSR) based stream

iv

ciphers with consideration of inaccurate measurement effects. At first, we have de-

veloped the attack for stream ciphers based on an individual LFSR and/or NLFSR,

while the power measurements are inaccurate and they do not exactly match the

theoretical values. Later, considering inaccurate measurements, we have developed

power analysis of stream ciphers with multiple LFSRs and NLFSRs.

Finally, we consider combining SCA with some classical attacks on stream ciphers

based on mathematical and statistical approaches to recover key or state bits of the

stream ciphers. Hence, we have extended the correlation attack, fast correlation

attack and algebraic attack, which are mathematical (or classical) attacks, such that

they are applicable with side channel analysis. The proposed methods are validated

through implementation on a practical cryptographic algorithm, the Grain stream

cipher.

The practical investigations in this dissertation are done using simulated ASIC

circuits. To simulate the behavior of ASIC circuits, we have implemented them

using Cadence Virtuoso Spectre Circuit Simulator version 5.10.41. All the circuits

including LFSR, NLFSR and Grain, are prototyped in TSMC 180 nm standard cell

CMOS technology. The simulated power consumptions are used to investigate the

practical application of the proposed attacks.

This dissertation shows power analysis is a powerful technique to attack stream

ciphers and recover state bits and/or the key of the stream ciphers. Furthermore,

combining classical methods and measured power data can significantly reduce the

complexity of an attack of a stream cipher and countermeasure methods should be

considered in hardware implementation of stream ciphers, to make them resistant to

side channel analysis.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 5

2 Background 10

2.1 Linear and Nonlinear Feedback Shift Registers 10

2.2 Grain . 12

2.3 E0 . 17

2.4 LILI-128 . 18

2.5 Side Channel Analysis . 19

2.5.1 Timing Attack . 20

2.5.2 Template Attack . 20

2.5.3 Power Analysis Attack . 21

2.5.3.1 Simple Power Analysis 22

2.5.3.2 Differential Power Analysis 26

2.6 Classical Attack of Stream Ciphers 27

1

2.6.1 Time-Memory Trade off Attack 27

2.6.2 Algebraic Attack . 28

2.6.3 Correlation and Fast Correlation Attack 29

2.7 Summary . 30

3 Applicability of Simple Power Analysis to Stream Ciphers Con-

structed Using Multiple LFSRs 31

3.1 Extension of Simple Power Analysis to Ciphers with Multiple LFSRs 32

3.2 Application of the Attack to the E0 Stream Cipher 37

3.3 Application of the Attack to Irregular Clocking Stream Cipher, LILI-128 39

3.4 Summary . 41

4 Side Channel Analysis of NLFSR Based Stream Ciphers 42

4.1 Idealized SPA Applied to NLFSRs . 43

4.2 Complexity vs Available Power Samples 45

4.3 Applying SPA to Grain . 47

4.4 Summary . 49

5 Practical Application of SPA 51

5.1 Power Consumption of a Single D Flip-Flop 51

5.1.1 Power Consumption of the D Flip-flop at the Rising Edge of

the Clock . 52

5.1.2 Power Consumption of the D Flip-flop at the Falling Edge of

the Clock . 56

5.2 Developing Falling Edge SPA of LFSR/NLFSR 60

2

5.3 Categorization of Power Measurements 62

5.3.1 Categorizing MPD . 64

5.4 Basic Methods to Determine Correctly Categorized PD 66

5.4.1 Rising Edge/Falling Edge Equivalence 67

5.4.2 Robust Threshold . 68

5.4.3 Sequence Consistency . 68

5.5 Advanced Categorization Methods . 70

5.6 Analyzing an NLFSR . 75

5.7 An Improved Approach to SPA of LFSR Based Stream Ciphers . . . 81

5.8 Analyzing an LFSR . 85

5.9 Summary . 87

6 Using Simple Power Analysis for Correlation Attack 89

6.1 Preliminaries: Correlation Attack . 89

6.2 Categorization of Measured Power Difference Values 92

6.3 Practical Categorization for Grain . 94

6.4 Divide-and-Conquer Method . 97

6.4.1 Using Power Measurements in a Brute Force Attack 98

6.4.2 SPA Attack Using Divide-and-Conquer on Stream Ciphers with

Multiple FSRs . 101

6.4.2.1 General Attack . 101

6.4.2.2 Applying the Attack to Grain 104

6.4.2.3 Analysis of Attack on Grain 107

6.4.3 General Applicability of the Attack to Multiple FSR Ciphers . 111

3

6.5 Summary . 112

7 Using Fast Correlation Attack for Simple Power Analysis 113

7.1 Preliminaries: Fast Correlation Attack 114

7.2 Using Fast Correlation Attack in Simple Power Analysis 119

7.3 Application of Fast Correlation Attack to Grain 123

7.3.1 Categorizing the MPD of Grain 124

7.3.2 Deriving the LFSR State Bits of Grain 128

7.3.3 Deriving the NLFSR State Bits of Grain 129

7.3.3.1 Deriving the NLFSR State Bits of Grain-v0 129

7.3.3.2 Deriving the NLFSR State Bits of Grain-v1 131

7.4 Summary . 135

8 Conclusion 137

8.1 Summary of Research . 137

8.2 Future Work . 139

Bibliography 141

A 157

B 160

B.1 Linearization . 160

B.2 XL . 161

4

Chapter 1

Introduction

Increasing the application of complex systems increases the necessity of security and

data obscurity. Many companies require their information and data to be housed

securely and transmitted privately on the Internet. Cryptology is the science of hiding

data [1]. Hence, many new ranges of application in cryptology have been opened in

recent years. The demands of transferring these data over different networks such as

Internet, mobile systems and wireless networks underscores the necessity of studying

modern cryptology.

Nowadays, cryptology’s objective is not summarized merely in confidentiality or

encryption or hiding data from unauthorized persons. It also includes authenticity (in-

coming data originating from authorized source), data integrity (data is not changed

or maliciously modified before it is received) and digital signature (verification of the

authenticity of the message) [2].

Cryptology is divided into two dependent fields, cryptography and cryptanalysis

[2, 3]. The aim of cryptography is to design secure systems and/or protocols of

5

transferring data. It includes offering algorithms and methods of obscuring data

called cryptographic algorithms or ciphers. However, cryptanalysis is the study of

methods for obtaining the meaning of encrypted information without access to the

secret information. Typically, in cryptanalysis, scientists try to find the key. Applying

a cryptanalysis method is called an attack.

Cryptographic algorithms are divided into two classes, public key and private key.

In private key (also known as symmetric key), both parties involved share the same

key. This key is kept secret. Anybody who obtains it, can decrypt the ciphertext and

recover the original data (plaintext). Thus, a secure channel should be established to

transfer the private key to the other party. In public key cryptography, each party

has its own unique key and access to a shared public key. Since, each party uses its

own key to encrypt or decrypt, a secure channel is not necessary [4].

In comparison public key cryptography requires more computations. Hence, the

main application of public key cryptography is key exchanging. In order to avoid high

computational process of public key cryptography, applications usually also make use

of private key cryptography. Public key cryptography are used to generate a shared

key for both parties of the communications. Then, private key cryptography, with

lower computational process is used to encrypt and decrypt the data.

Private key cryptography is also divided into two categories, block ciphers and

stream ciphers. In block ciphers, the input is divided into blocks of fixed size and

encryption and/or decryption is performed on the whole block. In a stream cipher,

input is a continuous stream of bits. At each step (or clock), a random bit is generated

by the stream cipher. A bit wise Xor of the input and the generated bit makes the

output of the encryption or decryption.

6

Among different kinds of cryptographic methods, stream ciphers typically con-

sume less power and occupy smaller area on the chip. Due to this fact, stream ciphers

are attractive in many low power designs. Notable examples of low power circuits

are used in RFID-tags, smart-cards, and wireless sensor networks. Because of these

characteristics of stream ciphers, the improvement of security in stream ciphers has

been intensively researched in recent years.

A prominent example for a stream cipher is the A5/1 cipher, which is part of the

GSM mobile phone standard and is used for voice encryption [5]. Another notable

application of stream ciphers is the E0 cipher used in bluetooth data transferring

[6]. Although, stream ciphers are sometimes also used for encrypting Internet traffic,

especially the stream cipher RC4, in practice, block ciphers are used more than stream

ciphers for Internet communications [7].

Stream ciphers are basically random bit generator state machines. The output

of the state machine is called the keystream. At each clock, encryption or decryption

is achieved by adding (Xoring) a bit from a keystream to a plaintext bit. Hence, both

parties of the communication should be synchronized. The process is shown in Figure

1.1.

In order to generate random bit values, linear feedback shift registers (LFSRs)

are widely used in stream ciphers. LFSRs as a building block of many stream ciphers,

can generate a good pseudo-random sequence. The other advantage of using LFSRs

in stream ciphers is straightforward implementation in hardware. One general ar-

chitecture to generate keystream in stream ciphers is called a combination generator

and uses multiple LFSRs or nonlinear feedback shift registers (NLFSRs) combining

their output bit values to generate the stream cipher’s keystream. Notable examples

7

Figure 1.1: General architecture of stream ciphers

of this architecture are A5/1, A5/2 [5], E0 [6], Grain [8] and Trivium [9].

Cryptanalysis is divided into two classes. The first class is referred to as mathe-

matical attack (or classical cryptanalysis) and is based on a combination of algebraic,

statistical and numerical techniques. Well-known examples of mathematical attacks

on stream ciphers are the algebraic attack, correlation attack, fast correlation attack

and distinguishing attack. The second class is called side channel analysis (SCA)

which is based on gaining information from physical implementation of cryptosys-

tem, such as power consumption, timing information and electromagnetic leaks.

For an SCA attack, the attacker should have physical access to the hardware

implementation of the cryptographic circuit and the ability to measure the physical

characteristics of the hardware. Wide access to hardware systems such as wireless

sensor nodes, RFID-tags and smart-cards make many applications vulnerable to side

channel analysis attack. Also, advancements in technology provides many measuring

devices with high accuracy at low cost for small labs and personal purpose. The

physical access to the target devices and accurate measuring devices increase the

necessity of studying side channel analysis.

8

In this dissertation, we will investigate the application of side channel analysis, in

particular power analysis, to stream ciphers constructed using feedback shift registers.

9

Chapter 2

Background

This chapter presents some basic concepts of stream ciphers and side channel analysis

attacks. As well, it introduces the notion of the linear feedback shift register (LFSR)

and the nonlinear feedback shift register (NLFSR) as basic components of many

stream ciphers. Grain, as a test bench for our cryptanalysis techniques, is described

and some preliminaries of classical attacks applied to stream ciphers and side channel

analysis are presented.

2.1 Linear and Nonlinear Feedback Shift Registers

Linear feedback shift registers are widely used as a basic component of a keystream

generator in many proposed stream ciphers [2], due to their simple hardware structure

and the good pseudo-random properties of the generated sequence. A right-shifting

LFSR of size L consists of L bits and the output of each step (i.e., as the result of a

triggering clock edge in synchronous sequential digital logic hardware) is the rightmost

bit. The bit values are shifted to the right at each step and a new bit is injected into

10

the leftmost bit of the register after being produced as a linear combination of bits

currently stored in the register. It is well known that if the feedback is chosen as a

primitive polynomial, the LFSR makes a sequence of bits with a maximal period of

2L−1 [10, 11, 12]. Using the feedback coefficients, we can give a compact description

of an LFSR through its feedback polynomial.

The value of the i-th register bit at time t is represented as st(i). The content

of the register at time t is St = (st(L − 1), st(L − 2), st(L − 3), ..., st(0)). This is

called the state of the LFSR at time t. The first L bit values of the LFSR, S0 =

(s0(L−1), s0(L−2), s0(L−3), ..., s0(0)), are loaded into the register at the start, and

is denoted as the initial state of the LFSR.

LFSRs are used as a building block in many applications. Although they are

designed for hardware, they can be efficiently implemented in software. In software,

a finite field corresponding with the word size can be used efficiently to implement

LFSRs. For instance, a 64-bit LFSR can be implemented easily on a 64 bit processor.

Since the register bit values and resulting outputs are generated from the linear

combination of the previous L bit values, the register value of the LFSR at a particular

point in time can easily be derived from any previous or following sequence of L

consecutive bits of output. Hence, in order to increase the security, some stream

ciphers use nonlinear feedback shift registers, NLFSRs. In an NLFSR, the feedback

is a nonlinear combination of bit values. Although the nonlinear feedback makes

the analysis of the output stream more difficult, it also reduces the output sequence

period below the maximal value of 2L − 1 [11, 12].

The general structure of an LFSR or NLFSR is shown in Figure 2.1, where each

square represents a register bit or D flip-flop.

11

Figure 2.1: Overall architecture of LFSR or NLFSR

2.2 Grain

In 2004, the European Network of Excellence in Cryptology, ECRYPT, launched a

call for stream cipher proposals named eSTREAM [13]. The candidate stream ciphers

were submitted in May 2005. The candidates were divided into software oriented and

hardware oriented stream ciphers.

Grain is a light-weight stream cipher, first proposed by M. Hell, T. Johansson

and W. Meier to eSTREAM. The original Grain [14] (now referred to as Grain version

0 or Grain-v0) uses an 80-bit key and a 64-bit initialization vector (IV). The IV is a

publicly known value and used along with the secret key, to fill the internal state or

register bits of the stream cipher. Grain has 160 bits of internal state including an 80

bit LFSR and an 80 bit NLFSR. The generated keystream bit at each clock pulse is

a nonlinear combination of some LFSR and NLFSR bits. A slightly modified version

(with small changes to the output function and the nonlinear feedback function),

referred to as Grain version 1 or Grain-v1 [8] has been selected for the hardware

portfolio by the eSTREAM project. In addition to Grain-v0 and Grain-v1, a version

of Grain with 128 bit key proposed in [15] is called Grain-128. It includes a 128

12

Figure 2.2: Architecture of Grain stream cipher

bit LFSR and a 128 bit NLFSR and nonlinear combination function to generate

keystream bits. In this dissertation, we only study Grain-v0 and Grain-v1, however

the proposed methods are applicable to Grain-128. The overall architecture of Grain-

v1 is shown in Figure 2.2. Let St and Bt denote the 80-bit LFSR and NLFSR states,

respectively, and st(i) and bt(i), 0 ≤ i < 80, represents the value of bit i of St and Bt

at time t.

The primitive polynomial of the LFSR for both Grain-v0 and Grain-v1 is

x80 + x67 + x57 + x42 + x29 + x18 + 1 = 0 (2.1)

and the update function or feedback of the LFSR is

st(80) = st(62)⊕ st(51)⊕ st(38)⊕ st(23)⊕ st(13)⊕ st(0) (2.2)

where ⊕ represents Xor operation. The expression of the feedback function for the

13

NLFSR of Grain-v0 is given by

bt(80) = st(0)⊕ bt(62)⊕ bt(60)⊕ bt(52)⊕ bt(45)⊕ bt(37)⊕ bt(33)⊕ bt(28)

⊕bt(21)⊕ bt(15)⊕ bt(9)⊕ bt(0)⊕ bt(60) · bt(63)⊕ bt(37)

·bt(33)⊕ bt(9) · bt(15)⊕ bt(45) · bt(52) · bt(60)⊕ bt(33) · bt(28)

·bt(21)⊕ bt(9) · bt(28) · bt(45) · bt(63)⊕ bt(60) · bt(52) · bt(37) · bt(33)

⊕bt(63) · bt(60) · bt(21) · bt(15)⊕ bt(63) · bt(60) · bt(52) · bt(45) · bt(37)

⊕bt(9) · bt(15) · bt(21) · bt(28) · bt(33)⊕ bt(21) · bt(28) · bt(33) · bt(37)

·bt(45) · bt(52). (2.3)

Note that the generation of bt(80) involves a bit from the LFSR in addition to the

NLFSR feedback. The keystream output bit of Grain-v0 at time t, denoted as zt, is

derived from the current LFSR and NFSR states bits as follows:

zt = bt(0)⊕ st(25)⊕ bt(63)⊕ st(64) · st(3)⊕ st(64) · st(46)

⊕st(46) · st(25) · st(3)⊕ st(64) · st(46) · st(3)⊕ bt(63)

·st(46) · st(3)⊕ bt(63) · st(64) · st(46) (2.4)

Due to the weak design of Grain-v0, it was cryptanalyzed in [16, 17, 18]. Subsequently,

14

in Grain-v1 the feedback function of the NLFSR and output function changed to

bt(80) = st(0)⊕ bt(62)⊕ bt(60)⊕ bt(52)⊕ bt(45)⊕ bt(37)⊕ bt(33)⊕ bt(28)

⊕bt(21)⊕ bt(14)⊕ bt(9)⊕ bt(0)⊕ bt(60) · bt(63)⊕ bt(37)

·bt(33)⊕ bt(9) · bt(15)⊕ bt(45) · bt(52) · bt(60)⊕ bt(33) · bt(28)

·bt(21)⊕ bt(9) · bt(28) · bt(45) · bt(63)⊕ bt(60) · bt(52) · bt(37) · bt(33)

⊕bt(63) · bt(60) · bt(21) · bt(15)⊕ bt(63) · bt(60) · bt(52) · bt(45) · bt(37)

⊕bt(9) · bt(15) · bt(21) · bt(28) · bt(33)⊕ bt(21) · bt(28) · bt(33) · bt(37)

·bt(45) · bt(52) (2.5)

and

zt = bt(1)⊕ bt(2)⊕ bt(4)⊕ bt(10)⊕ bt(31)⊕ bt(43)⊕ bt(56)

st(25)⊕ bt(63)⊕ st(64) · st(3)⊕ st(64) · st(46)⊕ st(46)

·st(25) · st(3)⊕ st(64) · st(46) · st(3)⊕ bt(63) · st(46)

·st(3)⊕ bt(63) · st(64) · st(46). (2.6)

The LFSR feedback remained unchanged.

Before any keystream is generated, the cipher must be initialized with a key and

an IV. Let the bits of the key, K, be denoted ki, 0 ≤ i < 80, and the bits of the IV

be denoted IVi, 0 ≤ i < 64. The initialization of the key is done as follows:

b0(i) = ki, 0 ≤ i < 80

s0(i) = IVi, 0 ≤ i < 64

s0(i) = 1, 64 ≤ i < 80

15

The cipher is clocked 160 times without producing any keystream. The output func-

tion is fed back and Xored with the input of both the LFSR and NLFSR.

The most successful documented attack on Grain is reported in [17]. It is appli-

cable on Grain-v0. The attackers use second order fast correlation attack to calculate

the LFSR state bits and using a simple technique they obtain the NLFSR state

bits. The complexity of the proposed attack is 243 operations and requires 238 known

keystream bits. As described above, due to the changes in the output function and

the NLFSR feedback, this attack is not applicable to Grain-v1.

Another proposed attack on Grain is the time-memory trade-off attack. In [19],

a time/memory/data trade off attack on stream ciphers has been analyzed and, using

this approach, it is shown in [20] that for 160 state bits of Grain-v1, as an example of

the trade offs, an attack can be mounted with a preprocessing complexity of 2103, a

time complexity of 278 and the required memory and keystream data of 264 and 257.

Further, in [20], a guess-and-determine method is used so that the complexities are

improved to 271 for time complexity and required memory, 2106.5 for preprocessing

complexity, and 253.5 for required keystream. Since the key size for Grain-v1 is 80

bits, the total time complexity (considering both preprocessing time and runtime) of

the proposed time-memory trade off attacks on Grain-v1 is worse than exhaustive

key search. Currently the most efficient known attack on Grain-v1 and Grain-128 are

still exhaustive key search [21].

16

Figure 2.3: Architecture of E0 stream cipher

2.3 E0

E0 is another type of stream cipher. It is used in Bluetooth for wireless communication

[6]. E0 has four LFSRs and four bit registers as memory. Figure 2.3 illustrates the

cipher. The four-bit memory, ct, causes the output of the cipher to depend on the

current and the former state of the LFSRs. The lengths of the LFSRs are L1 = 25,

L2 = 31, L3 = 33 and L4 = 39. The key size is L1 + L2 + L3 + L4 = 128. At each

step the LFSRs are clocked once. The output of the LFSRs and the current values

of the memories are combined to make the keystream (using a nonlinear function F).

Then new value of memory is updated using current value of the memory and the

summation of the four LFSR outputs.

Using an algebraic attack on E0, generates 254.51 monomials. The number of

required known keystream bits for algebraic attack is 223 [22]. However the best

cryptanalysis result belongs to a conditional correlation attack. In [23], it has been

17

Figure 2.4: General architecture of LILI-128

shown that knowing the first 24 bits of 223.5 frames, we can break E0 with the com-

plexity of 238.

2.4 LILI-128

LILI-128 [24] consists of two LFSRs (LFSRc and LFSRd). LFSRc is 39 bits in

length and controls the clock of LFSRd which is 89 bits in length. The bit values

of c12 and c20 in LFSRc are passed through a function with two bits output, to

determine whether LFSRd should be clocked once, twice, thrice or four times to

produce keystream bits. The number of clocks, fc, for LFSRd, is calculated by

fc = 2× c20 + c12 + 1. (2.7)

The designers of LILI-128 publicized all the structure of the clock control sub-

system and structure of the data generation subsystem. In Figure 2.4, the general

structure of LILI-128 has been shown. LILI-128 was broken using Matlab software

[25], on a personal laptop, given 212 bits in about 1.7 hours by reconstructing its

nonlinear filter function [26].

18

2.5 Side Channel Analysis

The low complexity of stream ciphers allows a straightforward approach to implemen-

tation in comparison to block ciphers. However, their straightforward design makes

them vulnerable to side channel analysis attacks [27]. In reality, cryptographic algo-

rithms are implemented in software or hardware on a physical device. Regardless of

the robustness of resistance of a cipher to mathematical attacks, any implementation

of a cipher can lead to new vulnerabilities called side channel analysis attacks. Side

channel analysis has been an active area since 1996, when Paul Kocher published his

paper on using timing information to attack the RSA, DSS and Diffie-Hellman public

key cryptography algorithms [28].

In these attacks, a number of physical measurements of the cryptographic unit

are made, for example power consumption, computing time or EMF radiation. These

measurements are made over a large number of encryptions and then, using statistical

techniques, the secret key embedded inside the cryptographic core is uncovered. These

attacks work because there is a correlation between the physical measurements of

consumed power taken at different points during the computation and the internal

state of the processing device, which is itself related to the secret key. For example,

in a smart-card when data is loaded from a memory, the memory bus has to carry

the value of the data, taking an amount of power that depends on the data value

[29, 30]. Since, the load instruction always happens at the same point within the

computation, one can produce correlations between various runs of the application,

eventually giving away the secret key of the smart-card.

Typically, in cryptanalysis, attackers try to find the key, or in the case of stream

19

ciphers, the state bits. Many different methods have been used to cryptanalyze cryp-

tographic algorithms. Using side channel information, the most well known attacks

on cryptographic hardware are timing attack, template attack, power analysis and

electromagnetic leakage attack.

2.5.1 Timing Attack

Timing attacks enable an attacker to extract secret information in a security system

by observing the time it takes the system to respond to various queries or perform the

cryptographic algorithm. The notable example of timing attack is timing attack of

ECC [31] and RSA [28, 32]. The main operation in ECC is the double-and-add algo-

rithm. The double-and-add algorithm is a series of point addition and point doubling

over the curve. Point addition and point doubling include a series of multiplications,

squaring, additions and divisions (or inversions) over the finite field. Execution of

point doubling takes less time than point addition. For example, the ECC core im-

plemented in [33] executes a point addition in 103 µs and a point doubling in 76

µs over GF (P). Measuring the execution time of ECC, the attacker can guess the

number of executed point addition and point doubling and calculate the key [31, 34].

2.5.2 Template Attack

A template attack is a strong probabilistic method for side channel analysis attack.

It works by building up a set of templates for an intermediate value using a large

number of acquired traces, where a trace is a recording of side channel information

such as power consumption of the device being attacked while it is executing an

20

algorithm. The classification stage then matches traces to a particular template

using a probability distribution. The correct key value should be returned with a

higher probability than the incorrect values. The computationally intensive and time

consuming template building stage need only be completed once for a particular

device. The same templates can then be used to mount multiple attacks on identical

devices [35, 36].

2.5.3 Power Analysis Attack

A power analysis attack is a type of side channel analysis attack which assumes

that the use of different keys implies differences in the power consumption. In this

dissertation, we focus on side channel analysis attack based on gaining information

from consumed power of the circuit. However, an electromagnetic leakage attack,

is very similar in nature to power analysis attacks. In an electromagnetic leakage

attack, the attacker measures the electromagnetic radiation of the chip to infer the

internal data of the registers.

CMOS (Complementary Metal Oxide Semiconductor) is the dominant technol-

ogy for ASIC (Application Specific Integrated Circuit) purposes. Minimal power

consumption at steady state conditions determines the success of the technology in

many present day consumer electronics. Unfortunately, the power consumption of

this technology has a dependency on the data. This makes the implemented crypto-

graphic algorithm in CMOS technology vulnerable to the side channel analysis attack

based on power consumption.

As described in [37, 38, 39, 40], the major power consumption of transistors in a

21

CMOS circuit is dynamic power consumption. Dynamic power dissipation happens

every time the state of a transistor changes (i.e. switches from zero to one or one

to zero) causing the charge or discharge of the load capacitance. At the gate level,

when the output of a gate changes, the state of its transistors changes. In other

words, changing the output of a logic gate causes power dissipation in the circuit.

In sequential circuits, the state of the circuit changes at the clock edges. Hence, the

main dynamic power dissipation in sequential circuits happens at the triggering edges

of the clock.

In power analysis, the attackers use the dynamic power consumption of the circuit

to guess the number of changing gates and state bits of the circuit. There are two

major methods that consider dynamic power dissipation of the circuit to recover the

state bits or secret key of the cryptographic circuits, simple power analysis (SPA) and

differential power analysis (DPA). While SPA directly uses the power consumption

measurements to identify relevant power fluctuations related to cipher data, DPA uses

statistical analysis and error correction techniques to extract information correlated

to the state bits of the circuit. In the following sections, we review these two methods.

2.5.3.1 Simple Power Analysis

Previously proposed simple power analysis cryptanalysis of stream ciphers suggest

using the dynamic power consumption measurements at the triggering edge of the

clock (which we shall assume is the rising edge) to analyze the stream cipher. In

the following, we will review the proposed analysis in [41] which is applicable to

filter generator stream ciphers based on one LFSR and a nonlinear filtering function

(Figure 2.5). Practical stream ciphers with this structure include Crypt-1 [42] and

22

Figure 2.5: Architecture of filter generator stream cipher

Toyocrypt [43]. In such ciphers, the cipher key is typically used to initialize the bits of

the LFSR. It should be noted that the attack of [41] is an idealized attack, assuming

perfect mapping between power consumption information and cipher data.

During each clock cycle, assume each bit value in the LFSR is shifted to the right

and the leftmost bit of the LFSR is updated with a linear combination of current

register bit values (the feedback function in Figure 2.1). Changing the value of each

bit in the register is due to change in gate outputs and transistor states and causes

dynamic power consumption. At clock cycle t, the current state is represented as

St and the state for the next clock cycle is given as St+1. The Hamming distance

between St and St−1 is given as HDt where HDt is calculated from

HDt =
L−1∑
i=0

(st(i)⊕ st−1(i)), (2.8)

where st(i) represents the value of bit i of St with st(0) being the rightmost bit of the

23

LFSR, st(L− 1) being the leftmost bit, and ⊕ representing Xor.

According to the Hamming distance power model used in the analysis [41], the

dynamic power consumption of the cipher at clock cycle t is proportional to HDt.

Between two successive clock cycles, the difference between the Hamming distances

must be one of three values: HDt+1 − HDt ∈ {−1, 0,+1}. Defining the theoretical

power difference to be PDt given by

PDt = HDt+1 −HDt, (2.9)

it can be seen that PDt is proportional to the difference of the measured dynamic

power consumption at two consecutive clock cycles at times t and t + 1, which is an

analog variable in watts and referred to as MPDt. Simply, PDt ∝MPDt.

Substituting equation (2.8) into (2.9) results in (after simplifications)

PDt = [st+1(L− 1)⊕ st(L− 1)]− [st(0)⊕ st−1(0)], (2.10)

where the new bit value for state t+ 1, st+1(L− 1), will be the new value of bit L− 1

based on the values of St. Considering operations over GF (2), we can write

|PDt| = st(L)⊕ st−1(L)⊕ st(0)⊕ st−1(0), (2.11)

where we now denote st+1(L− 1) as st(L) and st(L− 1) as st−1(L) 1. If the measured

dynamic power consumption of the LFSR at clock cycle t is equal to the measured

dynamic power consumption at clock cycle t + 1 (that is, MPDt ≈ 0), then we can

conclude PDt = 0 and write st(L)⊕st−1(L)⊕st(0)⊕st−1(0) = 0 and, if the measured

1In general, we can write st+j(i) = st(i+ j) with st(i+ j) representing the (i+ j)-th bit following

bit st(0) in the LFSR/NLFSR sequence.

24

dynamic power consumption at time t and t+ 1 are not equal (that is, MPDt 6= 0),

we can conclude PDt 6= 0 and write st(L)⊕ st−1(L)⊕ st(0)⊕ st−1(0) = 1.

It is known that, for any t, the bit values of St can be written as a linear function

of the initial register state S0 bits, that is, bits {s0(i)}, where 0 ≤ i < L. Hence,

for a stream cipher constructed as a nonlinear filter generator using one LFSR and a

nonlinear filtering function [2], analyzing L power difference values, it is straightfor-

ward to find the initial L bit values of the LFSR and thereby determine the complete

keystream sequence [41]. For this purpose, we can collect enough power samples to

derive L power difference values and write L equations similar to equation (2.11),

relating St through the linear expressions of the LFSR to the bits of S0. Then we

have a linear system of equations with L unknown variables and L equations, which

is easily solved to determine the initial state of the LFSR, S0, effectively finding the

cipher key which is used to initialize S0 in a typical stream cipher. Equivalently,

finding the L bit values of the LFSR at any time t is sufficient to have broken the

cipher, as all subsequent keystream bits are easily determined.

It is important to note that the described SPA method assumes that the analysis

is capable of exactly determining theoretical power difference values (such that |PD| ∈

{1, 0}) from real power consumption measurements (which are analog values in units

of watts). The theoretical PD values are then used directly to determine the register

bit values. In practice, this is somewhat challenging and methods to overcome this

challenge are discussed later in this dissertation.

25

2.5.3.2 Differential Power Analysis

Another approach to recover the state bits of a cryptosystem is called differential

power analysis. It was proposed at first in 1999 [44]. Extensive research on DPA

attacks shows its effectiveness even if the recorded power traces are inaccurate. DPA

is more applicable to block ciphers and little research has investigated the application

of DPA on stream ciphers. Notable reports of applying DPA on stream ciphers are

[42], [45] and [46]. In [45], a theoretical DPA attack on A5/5 and E0 is offered. In

[46], a known IV attack to Grain is proposed and [42] has offered a DPA attack of

LFSR based stream ciphers, such as Crypto-1. In the proposed DPA attacks, it is

necessary for the attacker to be able to perform encryption with different initialization

vectors. That is, the cipher needs to be resynchronized many times. This limits the

applicability of DPA in stream ciphers.

A precondition for a differential power analysis attack is that adversary knows

the plaintext and the ciphertext to obtain the key. Let’s assume an internal state bit

of the cipher, is computed by F (pi, K), where F is a Boolean function, pi is the i-th

plaintext and K is the key. In DPA we divide the key to subkeys, k, and guess an

initial value for each subkey. Then we check whether our guess was right or wrong.

To check the correctness of the guess, for random input plaintext, pi, we compute

F (pi, k) (for the guessed value of the subkey) and we divide the results into two

parts, S0 and S1. S0 is the consumed power corresponds of set of computed values

where F (pi, k) = 0 and S1 is for F (pi, k) = 1. For all pi, the difference between the

mean values of two sets can be calculated

δk =
∑
i∈S1

ti
|S1|
−
∑
i∈S0

ti
|S0|

(2.12)

26

where ti is the measured value of the cipher power for pi. Every wrong guessed bit of

subkey, k, reduces the absolute mean value (|δk|) while the correct bit guess increases

|δk|, in the above equation. To find the correct subkey, we have to test all possible

values for k and the greatest mean value of (2.12) shows the right guess of the subkey.

Increasing the number of plaintexts helps the attacker to obtain more accurate results

and decreases the effect of noise or inaccurate measurements. For example, in AES,

F is defined as a function of 8 bits of subkey and using the above process we can

recover the eight bits of AES at one time [47, 48].

2.6 Classical Attack of Stream Ciphers

The proposed classic mathematical attacks of stream ciphers are classified as known-

plaintext attacks. In this section, we briefly review the basic concepts of the time-

memory trade off attack, the algebraic attack, the correlation attack and the fast

correlation attack.

2.6.1 Time-Memory Trade off Attack

The time-memory trade off attack is a known plaintext attack proposed in [49] and

includes two phases. In the precomputation step, the attacker explores the general

structure of the stream cipher and makes a table which consists of m bits of input

and n bits of output. In other words, the attacker lists all possible values of m bits as

input and calculates their corresponding outputs. In the second phase, the attacker,

divides his output keystream to n-bit blocks and finds the corresponding m bit inputs

in the table.

27

To make the attack more efficient, the attacker should make the table as big

as possible and use some proposed techniques to sort them (in the precomputation

phase). Increasing the table size causes increase in the required memory while reduc-

ing the required time to attack. Efficient implementation techniques have been offered

in several papers, such as [19, 50], to make this attack practical for stream ciphers.

A practical analysis of time-memory trade off attack of stream ciphers is proposed in

[20] on Grain. It has been shown that recovering the state bits of Grain-v1 is possible

with the memory and time complexity of 271 and 253.5 known keystream bits. The

precomputation step needs 2106.5 steps.

2.6.2 Algebraic Attack

The algebraic attack is a powerful tool to cryptanalyze many stream ciphers previously

believed very secure. The main idea behind this method is finding and solving a

system of multivariate polynomial equations over a finite field. In other words, the

algebraic attack reduces the cryptanalysis of the cipher into the problem of finding

and solving a system of polynomial equations.

Solving a system of nonlinear polynomial equations over a finite field in general

is an NP hard problem. But not all instances of NP hard problems are hard to solve.

It might be possible to express a cipher in such a way that it is easier to solve than in

exponential time. Solving such a system is called an algebraic attack. These attacks

are motivated by the fact that the equation systems derived from the cipher are both

sparse and overdefined [51]. The typical approach in an algebraic attack is converting

the system of nonlinear equations to a system of linear equations. This process

28

is called linearization. It causes a significant increase in the number of unknown

variables. In Appendix A, we have provided a brief review to the proposed algebraic

attacks called the relinearization and XL methods.

The applicability of the algebraic attack investigated in many stream ciphers such

as HFE [52], Toyocrypt [53], Sfinks 1 [54], LILI-128 [55] and E0 [56]. Application of

the algebraic attack is not limited to stream ciphers. Some research has been done to

extend it to block ciphers and even public key cryptosystems as well. For example,

in [57], the applicability of algebraic attack to Advanced Encryption Standard (AES)

is studied. An example of applying algebraic attack to a public key cryptosystem is

[58] in which they use algebraic attack to break MQQ public key cryptosystem.

2.6.3 Correlation and Fast Correlation Attack

Another powerful method of cryptanalyzing stream ciphers constructed of multiple

FSRs is called the correlation attack. It is based on a divide-and-conquer approach.

It has been shown that, for many LFSR based stream ciphers, there exists a measure

of correlation between the keystream sequence and the outputs of the LFSRs, making

it possible to determine the initial state of each of the LFSRs, independently [59].

Further it is possible to define higher order correlation attacks [60]. If there is a

correlation between the keystream sequence and the addition of some LFSR state

bits over the LFSR, still the attacker can use correlation attack. This is called a

second order correlation attack.

The fast correlation attack is a more developed correlation attack, proposed for

LFSR based stream ciphers. In the fast correlation attack, the attacker considers the

1an LFSR based stream cipher

29

linear relation between LFSR bits. Using the linear relation between LFSR bits, the

attacker can reduce the timing complexity of the correlation attack. In Chapters 6

and 7, we have provided a more detailed review for correlation and fast correlation

attacks.

2.7 Summary

In this chapter, we have reviewed the preliminaries for stream ciphers and side chan-

nel cryptanalysis. The main target of side channel cryptanalysis in our research is

feedback shift register (FSR) based stream ciphers. We have studied the LFSR and

NLFSR as a main building block of modern stream ciphers and Grain as an example

of that. Also, we have studied the proposed simple power analysis for an LFSR based

stream cipher, which has limited applicability on recent stream ciphers but is an im-

portant foundation for the work in this thesis. In the next chapters, we will discuss

the development of the simple power analysis and propose new techniques which are

applicable to practical implementations of modern stream ciphers.

30

Chapter 3

Applicability of Simple Power

Analysis to Stream Ciphers

Constructed Using Multiple LFSRs

As described in Section 2.5 the applicability of a simple power analysis, SPA, on

stream ciphers has been identified in [41]. The proposed method is applicable to

stream ciphers with just one linear feedback shift register. Since a number of modern

stream ciphers use more than one LFSR, the direct methodology in [41] has limited

applicability. In this chapter, we propose a method based on simple power analysis to

attack stream ciphers with multiple LFSRs such as E0 [6]. Further, we consider the

applicability of the attack to irregular clocking stream ciphers by examining LILI-128

[24]. It should be noted the proposed approach in this chapter is applicable in ideal

environment, where the measured power of the circuit can be mapped to the theoret-

ical state values of the circuit. In other words, there is no inaccuracy between power

31

Figure 3.1: A stream cipher keystream generator with three LFSR

measurements and theoretical power differences. This work was initially presented in

[61].

3.1 Extension of Simple Power Analysis to Ciphers

with Multiple LFSRs

Consider now stream ciphers constructed from multiple LFSRs and a nonlinear com-

bining function, referred to as a combination generator. An early example of such

stream ciphers is the Geffe generator, which is constructed with three LFSRs and a

nonlinear combining function [62]. We now consider the novel extension of the attack

in [41] to such ciphers. A system with three LFSRs is illustrated in Figure 3.1, where

F represents a nonlinear combining function.

As described before, in classical simple power analysis it is assumed the power

consumption of the circuit at the rising edge of the clock is for D-flip flops. The

power consumption of the other components has been ignored at the rising edge of

the clock.

For simplicity in the discussion, let us assume a stream cipher with two LFSRs,

LFSRS and LFSRR, and bit values st(i) and rt(j) where 0 ≤ i < N and 0 ≤ j < M

32

where N and M are the sizes of the LFSRs 1. The overall power difference of two

LFSRs, PDt = HDt+1 − HDt, at each clock can now be from {−2,−1, 0,+1,+2}.

Since each LFSR could have a power difference of −1, 0 or +1, if the power difference

for both LFSRs is the same and equal to −1 or +1, then the overall PDt is −2 or

+2, respectively.

Although values of PDt = +2 or −2 indicate that both LFSRs must have non-

zero power differences, other values of overall PDt will not get us any useful infor-

mation about the individual LFSRs. For example, if the overall PDt = 0, we cannot

conclude whether both LFSR power differences are equal to zero or the power differ-

ence for one LFSR is equal to −1 and for the other one is equal to +1. Also, if the

overall PDt = +1 or PDt = −1, we cannot distinguish for which LFSR the power

difference is zero and for which LFSR the power difference is nonzero. However, for

each clock cycle where overall PDt = +2 or PDt = −2, based on equation (2.11), we

can conclude:

st−1(0)⊕ st(0)⊕ st−1(M)⊕ st(M) = 1

rt−1(0)⊕ rt(0)⊕ rt−1(N)⊕ rt(N) = 1 (3.1)

where st(i) and rt(i) represent the i-th bits of LFSR states at clock cycle t.

To break the stream cipher, we need to determine the M +N bits of the LFSRs

at a particular point in time. Hence, we require enough power difference values with

PDt = +2 or PDt = −2 to obtain linear equations using (3.1) to solve for M + N

unknown variables. The minimum number of power difference values to set up the

1This method can be used for stream ciphers constructed more than two LFSRs. We will use it

for E0 stream cipher, has four LFSRs

33

M + N equations is M (if M > N) or N (if N > M). However, the minimum is

unlikely to be achieved since usable power difference values must satisfy PDt = +2

or PDt = −2.

When we measure the consumed power of the circuit we should observe roughly

five levels of power difference. The largest negative level should be assigned to PDt =

−2 and the largest positive level should be assigned to PDt = +2.

The probability of a particular overall PDt = +2 or PDt = −2 is equal to

1
8
, since this occurs when the individual shift registers both have power differences

of +1 or −1, each of which occurs with a probability of 1
4
. Hence, on average, we

require 8×max{M,N} power difference values to derive M +N equations. Letting

T = max{M,N}, given n power difference values, it can be shown that the probability

that there are enough usable power differences to form T equations is given by

QT (n) =
n∑
i=T

(
n

i

)
(
7

8
)n−i(

1

8
)i. (3.2)

Hence, for T = 80 and n = 800 power difference values, the probability that 80

equations can be derived is Q80(800) = .9877. Assuming that all equations derived

from the power differences are linearly independent, we can solve the system for the

M + N initial state bits of the two LFSRs by using two systems of equations. The

systems of equations are linear and can be solved using appropriate mathematical

computation tools such as Sage [63] or algebraic algorithms such as Gaussian elim-

ination. However, the equations derived from the power difference values and the

feedbacks are not necessarily all linearly independent. In fact, for an L-bit LFSR,

given k randomly generated linear equations of the LFSR initial state bit values, from

34

[64] the probability that all k equations are linearly independent is

PL(k) =

∏L−1
i=0 (2L − 2i)

k!×
(
2L−1
k

) (3.3)

for k ≤ L.

If k = L, then PL(k) gives the probability that L randomly selected equations

is enough to solve for the LFSR initial state bits. For example, for k = L = 80,

P80(80) = .289, implying that with 80 equations there is a 28.9% chance of being able

to solve uniquely for the 80 state bits of the LFSR. Hence, in general, to ensure that

we have a high probability of solving for M +N bits when attacking the cipher based

on two LFSRs, we should obtain somewhat more than max{M,N} equations from

the power differences.

Consider now, the estimate of a lower bound on the probability, given k randomly

generated linear equations with k > L, of being able to fully solve the system. PL(i, k)

is defined as the representation of the probability which, given k bits randomly se-

lected from a sequence generated by an L-bit LFSR, it is possible to generate a set of

i linearly independent equations. From [64], for k ≤ L, PL(k, k) can be generated:

PL(k, k) =

∏L−1
i=0

(
2L − 2i

)
k!×

(
2L−1
k

) (3.4)

We are interested in situations where k > L and i = L. Although we will not

compute the probability directly in this case, we will derive a lower bound on PL(L, k)

for k > L.

Consider a set of k−1 linear equations, k > L, formed from bits randomly selected

from the sequence of an L-bit LFSR with the unknown variables being the initial L

bits of the LFSR. Assume within the set of k − 1 linear equations, there is a subset

35

of i − 1 equations, i ≤ L, that are linearly independent. Following the arguments

presented in [64], the probability of randomly selecting a k-th linear equation that

is linearly independent of all equations in the subset so that a subset of i linearly

independent equations is formed is given by:

ΓL(i, k) =

(
2L − 2i−1

)
(2L − k − 2)

(3.5)

The denominator represents the total number of equations left from which the

k-th equation is drawn and the numerator represents the number of equations left

which are linearly independent of the equations in the subset. The denominator and

numerator are formed by considering that there are a total of 2L−1 linear equations

of L variables and there are 2i−1 − 1 equations that are not linearly independent of

the subset of i− 1 equations. We are specifically interested in cases where k � 2L−1

and, hence, since i ≤ L, it is easy to see that ΓL(i, k) ≥ .5 and ΓL(i, k) ∼= .5 occurs

for i = L.

In order to calculate the lower bound on PL(L, k) for k > L, we can use

PL(L, k) ≥ max{PL(j, j)× βL(j, k)}(0 < j ≤ L) (3.6)

where PL(j, j) is given by (3.4) and βL(j, k) is the probability of adding L − j more

linear equations to the set of linearly independent equations given k−j more randomly

selected equations. Since ΓL(i, k) ≥ .5, we can compute a lower bound on βL using

the binomial distribution:

βL(j, k) ≥
k−j∑
i=L−j

(
k − j
i

)
× 5k−j (3.7)

Using two equations (3.7) and (3.6), we can estimate the lower bound on PL(L, k)

for k > L.

36

For example, if L = 80, it can be shown that obtaining 120 random equations will

give a probability of over 99.99% of being able to solve for the 80 unknowns. Hence,

for the cipher based on two LFSRs, if max{M,N} = 80 bits, then, from equation

(3.2), 1200 power difference values will give a 98.99% probability of obtaining 120

equations, which according to the equations (3.7) and (3.6), will give a probability

of 99.99% of being solvable for the LFSR initial state bit values. Hence, for ciphers

based on two LFSRs of sizes 80 bits and less, 1200 power samples will give a very

high probability of being able to successfully apply SPA.

3.2 Application of the Attack to the E0 Stream

Cipher

The E0 stream cipher [6] is a well-known stream cipher, used in Bluetooth which is

used in short range, high speed communications such as mobile cell phones, PCs, and

computer accessories. It is based on four LFSRs (LFSRa, LFSRb, LFSRc, LFSRd)

with lengths of 25, 31, 33 and 39 bits [6]. In addition to four LFSRs, four bit registers

save the state of the cipher as part of the nonlinear combining function. Hence, the

equations used in the simple power analysis should be expanded to these four register

bits. The output bit is a combination derived from the current bit values of LFSRs

and the former state or register values.

Since at each clock, four LFSRs and four register bits could be changed, the

overall PDt can be from {±8,±7,±6,±5,±4,±3,±2,±1, 0}. The useful power dif-

ferences are PDt = +8 and PDt = −8. When PDt = +8 or PDt = −8 we can

37

conclude:

at−1(0)⊕ at(0)⊕ at−1(25)⊕ at(25) = 1

bt−1(0)⊕ bt(0)⊕ bt−1(31)⊕ bt(31) = 1

ct−1(0)⊕ ct(0)⊕ ct−1(33)⊕ ct(33) = 1 (3.8)

dt−1(0)⊕ dt(0)⊕ dt−1(39)⊕ dt(39) = 1

where a, b, c and d represent LFSR state bits. In addition, four equations can be

written for the four register bits of the combiner.

Noting that the largest LFSR size is 39 bits based on the discussions in former

section, using 60 useful power difference values (i.e., PDt = +8 or PDt = −8), with

the probability of more than 99.2%, we can find 39 linearly independent equations to

solve LFSRd. To find 60 useful power differences, equations (3.2) should be modified

for E0 to (3.9).

QT (n) =
n∑
i=T

(
n

i

)
(
254

256
)n−i(

2

256
)i (3.9)

From Equation (3.9) and (3.3) we can estimate 16000 power difference values results

in a probability of 98.0%. Hence, with very high probability, 16000 power samples

are enough to attack E0. Once the LFSR bit values are known, the four combining

function state bits can be determined by exhaustively testing each possible value.

We can reduce the number of required power samples by determining the smallest

LFSR at the first. When we collect enough PDt = +8 or PDt = −8 to find 25 linearly

independent equations to solve LFSRa, we can calculate its PD values and deduct

from total PD of the circuit. Then, to obtain the state bits of the other LFSRs we

look for PD′t = +7 and PD′t = −7, where PD′t is the PDt of circuit subtracting the

38

PDt of LFSRa. With 45 useful power difference values (i.e., PDt = +8 or PDt = −8)

with the probability of more than 99.5% we have 25 linearly independent equations

and we can calculate LFSRa state bits. Using equations (3.9) and (3.3) shows 12000

is enough to calculate the state bits of LFSRa and then, other LFSR state bits of E0

with a probability higher than 99%.

3.3 Application of the Attack to Irregular Clock-

ing Stream Cipher, LILI-128

So far we have described an SPA attack on stream ciphers with regular clocks. In

this section, we use SPA to attack a non-regular clocking LFSR stream cipher, LILI-

128 [24]. In LILI-128, two LFSRs are employed (LFSRc and LFSRd) to generate a

random sequence. LFSRc is 39 bits in length and controls the clock of LFSRd which

is 89 bits in length. The bit values of ct(12) and ct(20) in LFSRc are passed through

a function with two bits output, to determine whether LFSRd should be clocked one,

two, three or four times to produce key stream bits [24]. Since it is not known how

many bits LFSRd is being clocked to produce each output bit, we cannot directly

approach the equations for LFSRd. Hence, at first we should find the bit values of

LFSRc.

Two different architectures have been offered for LILI-128 [24]. In the first ar-

chitecture, two clocks are employed with different speeds. The first clock is used for

LFSRc and the second one is for LFSRd which is four times faster. If ct(12) = 1

and ct(20) = 1, then LFSRd is clocked four times. To use simple power analysis and

39

set up the equations, we should wait until PDt = +2 or PDt = −2 at the triggering

edge of the first clock (i.e. the clock driving LFSRc). WhenPDt = +2 or PDt = −2,

we can write:

ct−1(0)⊕ ct(0)⊕ ct−1(39)⊕ ct(39) = 1. (3.10)

No useful information can be obtained for LFSRd, because t is not known for LFSRd.

Hence, at this point we cannot find any equation for LFSRd. More information could

be obtained by considering power consumption correlated to the LFSRd clock. If

power consumption could be observed for LFSRd between two consecutive clocks of

LFSRc, indicating four shifts of LFSRd we can conclude:

ct(12) = 1 (3.11)

ct(20) = 1

Using equation (3.10) and (3.11), we can set up a system of linear equations to find

the bit values of LFSRc. Finding the bit values of LFSRc, we can use the former

power difference values to find the equations for bit values of LFSRd.

In the second offered architecture for LILI-128 [24], just one clock has been used

for both LFSRs. LFSRd is implemented using four copies of the feedback function

and the irregular clocking is performed in one clock cycle. For this architecture,

equation (3.11) can not be used; hence just equation (3.10) could be employed to

realize LFSRc bit values.

Since the size of LFSRc is 39 bits, 60 equations with the probability of more than

99.2% can provide 39 linearly independent equations. In the second architecture, 600

power samples can provide 60 usable power difference values, with the probability of

97.5%. Hence, the second architecture is susceptible to SPA with 600 power samples

40

with high probability. In the first architecture with the probability of 1
8
, equation

(3.10) can be obtained and with the probability of (1
8
)(1

2
) equation (3.11) can be

employed in the system. After collecting 300 power samples, with the probability of

more than 98.2%, 60 equations can be obtained to solve state bits of LFSRc.

When bit registers of LFSRc are known, finding bits of LFSRd is similar to

using SPA to attack one LFSR, proposed in [41]. To break LFSRd, if we collect 110

equations, with the probability of more than 99% we will have 89 linearly independent

equations.

3.4 Summary

In this chapter, we have extended the former method of simple power analysis attack

proposed for one LFSR-based stream ciphers to ciphers based on multiple LFSRs.

Also, we extend the proposed method to stream ciphers with irregular clocking LFSRs.

In order to illustrate the proposed methods, we applied them to well known

stream ciphers E0 which includes four LFSRs and four bit registers and LILI-128

which includes two LFSRs, one with irregular clocking. We have shown that E0 could

be broken using a few thousand power samples and LILI-128 is susceptible to simple

power analysis with few hundred power samples. However, it should be noted that

these results are based on the assumption that the Hamming distance model holds.

That is, the theoretical power difference, which is related directly to the Hamming

distance of the register values between clock cycles, is accurately determined from the

analysis of power traces.

41

Chapter 4

Side Channel Analysis of NLFSR

Based Stream Ciphers

An NLFSR has a similar structure to an LFSR as shown in Figure 2.1, except the

feedback function is nonlinear. In order to make stream ciphers more secure, par-

ticularly against algebraic attack, NLFSRs are widely used in stream ciphers. For

example, the Grain stream cipher [8] combines the outputs of an LFSR and NLFSR

to produce the keystream. Since in an NLFSR, the feedback is nonlinear, using the

described method in Section 2.5 and [41] results in a system of nonlinear equations

which are difficult to solve. In a secure NLFSR, the order of equations relating output

bits to the initial state bits increases very quickly and makes it difficult to solve the

system. Hence, the formerly proposed methods of using simple power analysis for LF-

SRs are not applicable to NLFSR based stream ciphers. In this chapter we propose a

new method to use simple power analysis against NLFSR based stream ciphers. The

proposed method is applicable in ideal environments in which the measured power

42

difference of the circuit matches the theoretical power difference values of the circuit.

Then, we apply the proposed method to the Grain stream cipher to get the state bits

from power consumption measurements. The results in this chapter were initially

presented in [65].

4.1 Idealized SPA Applied to NLFSRs

Since, in a typical stream cipher, the key bits are used to initialize the NLFSR state,

finding the state of the NLFSR (i.e., the L bits of the register) at any time is sufficient

to break the system and determine the subsequent keystream bits. As in the previous

section, we assume that the measured power consumption resulting in the measured

power difference at time t, MPDt, can be accurately converted to the theoretical

power difference, PDt. (In subsequent sections, we will discuss practical issues such

as the inaccurate determination of PDt values.)

Consider a consecutive series of PDt values for an NLFSR with the length of L

bits and denote the i-th bit of the NLFSR at time t as bt(i). In order to calculate

NLFSR bit values, we should modify the former equations proposed in Section 2.5 to

analyze an LFSR. Similar to equation (2.10), we can write:

PDt = [bt(L)⊕ bt−1(L)]− [bt(0)⊕ bt−1(0)]. (4.1)

Then, when PDt = +1, we conclude

bt(L)⊕ bt−1(L) = 1

bt(0)⊕ bt−1(0) = 0

(4.2)

43

and, when PDt = −1, we can write

bt(L)⊕ bt−1(L) = 0

bt(0)⊕ bt−1(0) = 1.

(4.3)

To apply simple power analysis to an LFSR we only used the absolute value of PDt.

However to apply SPA to an NLFSR, the attacker should consider whether PDt is

greater or less than zero. When PDt = 0, the two bracketed Xor results of equation

(4.1) are both equal to either 0 or 1 and we can write

bt(L)⊕ bt−1(L) = bt(0)⊕ bt−1(0). (4.4)

As long as PDt 6= 0, we can find a relation between two consecutive values of the

NLFSR bits, using equations (4.2) or (4.3).

To analyze the NLFSR, we must obtain L consecutive bits of the NLFSR. Equa-

tions (4.2) and (4.3) could determine the relation between two bits of the NLFSR

when PDt = +1 or PDt = −1. However, when PDt = 0, we cannot use equations

(4.2) and (4.3) directly. Instead, we make use of equation (2.11) for PDt and PDt+L

to obtain

|PDt| ⊕ |PDt+L| = bt(L)⊕ bt−1(L)⊕ bt(0)⊕ bt−1(0)⊕ bt+L(L)

⊕bt+L−1(L)⊕ bt+L(0)⊕ bt+L−1(0) (4.5)

= bt(0)⊕ bt−1(0)⊕ bt(2L)⊕ bt−1(2L)

where we have made use of bt+j(i) = bt(i+ j). Also, it can be shown that

PDt + PDt+L = [bt(2L)⊕ bt−1(2L)]− [bt(0)⊕ bt−1(0)]. (4.6)

The value of PDt+i must be +1, 0 or −1 implying |PDt+i| ∈ {0, 1}. Since

|PDt| ⊕ |PDt+L| will be either 1 or 0, if PDt = 0, then we can write equation (4.2)

44

or (4.3) for PDt+L if |PDt+L| is 1 and using equation (4.5) find the relation between

bt(0) and bt−1(0). For example, let us assume PDt = 0. If PDt+L = +1 or −1, then

bt(2L) ⊕ bt−1(2L) and bt(L) ⊕ bt−1(L) are known from either equation (4.2) or (4.3)

(with t replaced with t + L) and since the left side of equation (4.5) is known from

power measurements then bt(0)⊕ bt−1(0) can be inferred. If PDt+L = 0, then power

differences from cycle t+ 2L must be considered.

Now using equations (4.2) or (4.3) and (4.5), if necessary, the relationships be-

tween L pairs of consecutive bits are known. Although the actual values of the bits

are not known, there are only two possibilities and both can be tested to determine

which results in the correct state of the NLFSR. Since for this method, the feedback

relation is not used, we can use the approach for both an NLFSR and LFSR. This

method has the advantage that there is no need to solve a system of equations.

4.2 Complexity vs Available Power Samples

From equation (4.1), it is easy to see that the probability of PDt equal to zero is

1
2
. Hence, we need to obtain PDt+L for, on average, 1

2
of L consecutive PDt values.

On average, 1
2

of the values of PDt+L are equal to the zero and we need to collect

PDt+2L values. In other words, on average for 1
2

of L consecutive bits we are targeting,

we need to collect PDt+L values; for 1
4

of the L consecutive bits, we need to collect

PDt+2L values, etc. In practical applications to analyze the sequence of an NLFSR, it

is sufficient to find any consecutive L bits of the NLFSR. Hence, the analysis initially

collects a number of consecutive power samples and then analyzes the values. In order

to estimate the probability of a successful analysis, we assume n×L consecutive power

45

difference values have been collected. The probability of all PDt+iL values being zero

for 0 ≤ i < n and a fixed value of t (and therefore not being usable to determine bits

in the register) is 2−n. If we assume the occurrence of PDt = 0 for different values of

t are independent, then, given n×L power difference values, the probability that this

is enough samples to analyze the NLFSR is [1−2−n]L. For L� 2n, this probability is

approximately 1− 2−nL. So, for example, for L = 80, 800 consecutive power samples

(i.e., n = 10) will allow successful analysis with a probability of about 92%.

If the number of available PDt are limited, still we can calculate the state bits of

the NLFSR and successfully analyze the NLFSR. This can be done by increasing the

complexity of the attack. If a target PDt is equal to zero and all available PDt+iL (for

0 ≤ i < n) are zero, we can not directly guess the relationship of bt(0) and bt−1(0). In

that case, we should test both possible relationships for bt(0) and bt−1(0) and check

the correctness of each of them. The possible relationships between these two boolean

values are bt(0) = bt−1(0) and bt(0) 6= bt−1(0).

As discussed before, the probability of PDt equal to zero is 1
2
. Let the available

number of PDt values, N equal to 2L (i.e. n = 2). On average for 1
4

of PDt, we can

not use equations (4.1), (4.2) and (4.3) and we should check all possible relationships

for the corresponding consecutive bits. This increases the average-case complexity of

the attack from 2 to 2
L
4
+1. For example, to analyze an 80 bit length NLFSR with

available 160 PDt values, the average-case complexity of the attack is 221. If the

number of available PDt increase to 320, the average-case complexity of the attack

is reduced to 26. In general, the average-case complexity of the attack to an L bit

length when n× L samples are used is given by 2L×2
−n+1.

To check the correctness of a guess, after calculating L consecutive bits (bt(0) to

46

bt(L−1)) we should use the feedback to calculate extra bits bt(j) for j ≥ L. Using the

calculated bt(i), we should compute PDt values and compare them with the available

PDt. If they match, we can conclude our guess is correct and if they don’t match,

the guessed relations are incorrect.

4.3 Applying SPA to Grain

As a practical application for the proposed method, we consider the stream cipher

Grain [8]. Grain is a keystream generator designed for efficient hardware implemen-

tations, based on the nonlinear mixing of data from an 80-bit linear feedback shift

register (LFSR) and an 80-bit nonlinear feedback shift register (NLFSR).

Since Grain uses two feedback shift registers (one LFSR and one NLFSR), we

need to consider the methods summarized in Chapter 3 which describe a theoretical

attack on stream ciphers with multiple LFSRs, where it is assumed that the attack

takes place in circumstances where measured power traces perfectly map to the correct

PDt values. However, the proposed attack of Chapter 3 can not be applied directly

on NLFSR based ciphers, such as Grain, since it relies on constructing and solving a

system of linear equations.

To extend the attack to Grain, we can use the proposed method discussed in

Section 4.1 which is applied to an NLFSR assuming perfect mapping from power

measurements to the correct PDt values. Since for the Hamming distance power

model, we know that the overall power consumption of Grain is approximated by the

summation of power consumption of the LFSR and the NLFSR (and it is assumed

power consumed in other parts of the circuit at the triggering edge of the clock

47

is negligible), measuring the power at the triggering edge of the clock, embodies

the power consumption of the D flip-flops of both the LFSR and NLFSR. If we

assume the power consumption of the circuit at time t (at the triggering edge) is

the summation of the power consumption of the LFSR and the NLFSR (which is

also proportional to the Hamming distance of their consecutive states), then we can

conclude the overall dynamic power dissipation of the circuit at the triggering edge

of the clock is proportional to HDLFSR
t +HDNLFSR

t . Hence, we can define the power

difference of the circuit as

PDGrain
t = [HDLFSR

t+1 +HDNLFSR
t+1]

−[HDLFSR
t +HDNLFSR

t] (4.7)

= PDLFSR
t + PDNLFSR

t .

As shown in Section 2.5 and Section 4.1, PDLFSR
t and PDNLFSR

t values can

be −1, 0 or +1, and, hence, −2 ≤ PDGrain
t ≤ +2. As described in Section 3.1, if

PDGrain
t = +2 or −2, then we can conclude (PDLFSR

t , PDNLFSR
t) = (+1,+1) or

(−1,−1), respectively. Hence, for PDGrain
t = +2 or −2, we can use the proposed

method in Section 2.5 and set up a system of linear equations to get the bit values of

the LFSR. To complete the attack and get the bit values of the NLFSR, we use the

proposed method described in Section 4.1.

To calculate the bit values of the NLFSR, we should have 80 consecutive PDNLFSR
t

values. To obtain 80 consecutive PDNLFSR
t values we should at first collect enough

power samples so that we have several hundred values of PDGrain
t = +2 or −2 and we

can find 80 power differences that lead to independent linear equations. Using these,

we can calculate LFSR bit values. After calculating LFSR bit values, we should

48

calculate PDLFSR
t values for a few hundred consecutive clocks. Finally, deducting

calculated PDLFSR
t from the measured PDGrain

t , we have a few hundred PDNLFSR
t

values. Using the proposed method in Section 4.1, we can calculate the bit values of

the NLFSR.

The probability of PDGrain
t = +2 or −2 is 1/8. As discussed in Section 3.1,

when considering the 80-bit LFSR of Grain, to solve the system of 80 linear equa-

tions, somewhat more than 80 power difference values are required to ensure that we

can obtain 80 linearly independent equations. Based on the analysis provided in Sec-

tion 3.1, from 120 random linear equations, the probability that at least 80 equations

will be linearly independent is greater than 99.99%. To obtain 120 equations, on

average, 960 power samples should be collected. Using 1200 power difference values,

as calculated in Section 3.1, the probability of 120 usable power difference values is

greater than 98.99%. Making use of the analysis method in Section 4.1, the probabil-

ity of a successful attack on an 80-bit NLFSR when 1200 power samples have been

collected is (1− 2−15)80 ≈ 99.8%. Hence, we can conclude that with 1200 power sam-

ples, Grain is theoretically susceptible to an SPA attack with very high probability.

This represents an attack on Grain that is substantially less complex than exhaustive

key search, which requires as much as the analysis of 280 values for the 80-bit key of

Grain.

4.4 Summary

In this chapter, we have discussed the application of a simple power analysis attack

to NLFSR based stream ciphers and we have applied the techniques to the Grain

49

stream cipher. We assume an ideal environment where the Hamming distance model

can be applied perfectly to relate power measurements directly to changes in the

cipher’s state registers. Under these conditions, Grain would be susceptible to power

analysis with only a few hundred power samples. However, this is an idealized result

and difficulties would exist in mounting a practical attack which can not assume that

measured power differences can be perfectly related to register data. Nevertheless,

the results presented here do illustrate the potential vulnerability of stream ciphers

based on LFSRs and NLFSRs to power analysis attacks.

50

Chapter 5

Practical Application of SPA

The analysis outlined in the previous sections and the previous works (such as [41])

is idealized in that it assumes a perfect determination of PDt values from measured

power differences, MPDt. In this and the following sections, we consider the practical

issues associated with applying simple power analysis to a practical CMOS circuit

realization of an LFSR and/or an NLFSR when the measured power difference may

not lead to the correct determination of PDt. The first part of the research in this

chapter is presented in [66].

5.1 Power Consumption of a Single D Flip-Flop

The D flip-flop, as building block of LFSRs and NLFSRs, is the main power consumer

of stream ciphers. At the triggering edge of the clock, at first the D flip-flop gates

change and subsequently, other gates which are connected to the output of the D

flip-flops such linear or nonlinear combinational functions will change. Hence, at the

triggering edge of the clock, theoretically the measured power consumption of the

51

LFSR/NLFSR is mainly due to the changes in the D flip-flops.

In this section, we study two typical positive edge triggered D flip-flops, shown

in Figure 5.1 (a) and (b). For our cryptographic circuits, we consider the first D flip-

flop shown in Figure 5.1 (a). The first typical D flip-flop includes six NAND gates

(T1, T2, ..., T6), two independent inputs (clock and D) and two dependent outputs

(Q and Q). The D flip-flop state, Q, changes only at the rising edge of the clock.

The dynamic power (which is typically the dominant factor in power consumption of

CMOS circuits) of the D flip-flop depends on the number of changing gates (resulting

in transistor state changes).

The second D flip-flop has three inputs. An independent input as D and two

dependent input signals, clock and inverted clock (Clk and ClkB). The output signal

is Q. The drawback of this D flip-flop is that it needs two clock signals; however

the fewer number of transistors and less power consumption are advantages of this

structure to the first one. It is constructed with four inverter gates and four CMOS

transmission gates, which is in total 16 transistors.

5.1.1 Power Consumption of the D Flip-flop at the Rising

Edge of the Clock

Previously proposed attacks assume the power consumption of the circuit at the rising

(i.e., triggering) edge of the clock. Since, at the rising edge of the clock, the value of

the register can change, we can conclude some gate outputs and transistor states are

changed. As can be seen from Figure 5.1 (a), when D = 0 and Q = 0, at the rising

edge of the clock only T3 changes, and, when D = 1 and Q = 1, at the rising edge

52

Figure 5.1: The typical architectures for D flip-flop: (a) classical structure; (b) alter-

nate structure.

53

Figure 5.2: Power consumption of classical D flip-flop at the rising edge (in watts)

versus time (in seconds), when (a) D = 0 and Q = 0, (b) D = 0 and Q = 1, (c)

D = 1 and Q = 0, (d) D = 1 and Q = 1.

only T2 changes. When D = 0 and Q = 1, at the rising edge of the clock, three gates

(T3, T5 and T6) change. Three gates (T2, T5 and T6) also change, when D = 1

and Q = 0. Hence, we expect more power to be consumed at the rising edge when

D = 1 and Q = 0 or when D = 0 and Q = 1, compared to when D = 0 and Q = 0

or when D = 1 and Q = 1. In other words, when there is a D flip-flop state change,

we expect more power consumption. This is consistent with the Hamming distance

power model used in our proposed analysis and the approach of others.

In Figure 5.2, the power consumption of a single classical D flip-flop (shown in

Figure 5.1 (a)) for different inputs and outputs is shown. In Figure 5.2, the vertical

axis represents the consumed power and the horizontal axis represents time. The

rising clock edge occurs at t = 0 and the rise time is 20 ns. To investigate our

methods, we have used Cadence Virtuoso Spectre Circuit Simulator version 5.10.41

54

Figure 5.3: Power consumption of alternate D flip-flop at the rising edge (in watts)

versus time (in seconds), when (a) D = 0 and Q = 0, (b) D = 0 and Q = 1, (c)

D = 1 and Q = 0, (d) D = 1 and Q = 1.

to obtain the power consumption of the circuit. All the circuits here are prototyped

in TSMC 180 nm standard cell CMOS technology. The supply voltage of all circuits

is 1.8 volts and the experiments have been done assuming room temperature and

default noise.

Under the same condition, we measure the power consumption of the alternate

D flip-flop, shown in Figure 5.1 (b). The results for different inputs and outputs are

shown in Figure 5.3. As can be seen from Figure 5.1 (b), when D = 0 and Q = 0

and when D = 1 and Q = 1 at the rising edge of the clock, no gate changes. When

D = 0 and Q = 1, at the rising edge of the clock, two gates (T3 and T4) change and

the same two gates change when D = 1 and Q = 0.

55

For an LFSR or NLFSR, the power consumption of the circuit at the rising edge

of the clock corresponds to the summation of power consumption of each single D

flip-flop (plus a small amount of power consumption due to the subsequent changes

in the combinational logic in the feedback and output functions). Hence, HDt, in

general, is expected to be proportional to the summation of the consumed power of

each D flip-flop.

5.1.2 Power Consumption of the D Flip-flop at the Falling

Edge of the Clock

Studying the architectures of the positive edge triggered D flip-flop, we can see at

the falling (i.e., non-triggering) edge of the clock, we have changes in some gates

and transistor states. For the classical D flip-flop (Figure 5.1 (a)), when D = 1 and

Q = 1, at the falling edge of the clock, one gate will change (T2), and, when D = 0

and Q = 0, T3 will change. Meanwhile, for D = 0 and Q = 1, two gates (T1 and T2),

and, for D = 1 and Q = 0, three gates (T1, T3 and T4) will change at the falling edge.

The power consumption of a D flip-flop at a falling edge of the clock for different D

and Q are shown in Figure 5.4 where the vertical axis represents the consumed power

and the horizontal axis represents time. The falling clock edge occurs at t = 0 and

the rising time is 20 ns.

Studying the alternate D flip-flop of Figure 5.1 (b), shows that some gates can

change at the falling edge of the clock for this architecture. When D = 0 and Q = 0

and when D = 1 and Q = 1, at the falling edge of the clock, no gate changes. When

D = 0 and Q = 1, at the falling edge of the clock, two gates (T1 and T2) change.

56

Figure 5.4: Power consumption of classical D flip-flop at the falling edge (in watts)

versus time (in seconds), when (a) D = 0 and Q = 0; (b) D = 0 and Q = 1; (c)

D = 1 and Q = 0; (d) D = 1 and Q = 1.

When D = 1 and Q = 0, T1 and T2 gates change at the falling edge of the clock.

The power consumption of a D flip-flop at the falling edge of the clock, for different

input and outputs (D and Q) are shown in the Figure 5.5.

Considering the consumed power at the falling edge of the clock to analyze the

cryptographic circuits has not been discussed in the previous literature. In the sub-

sequent sections, we use the power consumption of the circuit at the falling edge of

the clock, in addition to the rising edge, to analyze cryptographic circuits. Obviously,

this technique is not only applicable to stream ciphers and it could be applied to

block ciphers and public key cryptographic circuits, as well.

The apparent advantage of simple power analysis using the falling edge (which

we will refer to as falling edge SPA or FESPA) is that on a falling edge D flip-flop

states do not change. Hence, there is no change in the state of the circuit (until the

57

Figure 5.5: Power consumption of alternate D flip-flop at the falling edge (in watts)

versus time (in seconds), when (a) D = 0 and Q = 0; (b) D = 0 and Q = 1; (c)

D = 1 and Q = 0; (d) D = 1 and Q = 1.

subsequent rising edge) and power consumption of combinational logic for feedback

or output does not interfere with measurements on the falling edge. In contrast, on

the rising edge of the clock, the state of the circuit changes and the measured power

consumption is the consumed power of D flip-flops followed by the consumed power

of combinational circuits including feedback and output. Hence, on the falling edge,

we expect to have better correlation between the measured power consumption of

the circuit and subsequent changes in the register bits then at the rising edge. That

is, the values of PDt determined by measurement should have fewer errors for the

falling edge and the Hamming distance model used in SPA would seem to be more

accurate for the falling edge, rather than the rising edge. However, this turns out

to not be the case. Consider that, as shown in Figure 5.4, the power consumption

curve of a D flip-flop at the falling edge has sharp tips in comparison to the power

58

consumption graph for the rising edge (for our cryptographic circuits, we have used

the D flip-flop of Figure 5.1 (a)). Hence, in circuits with multiple D flip-flops, when

the clock signal has small differences in delay to the flip-flops, the tips may not

align. As a result, the power consumption at the falling edge for the overall circuit

will not necessarily correlate exactly to the sum of the individual D flip-flops’ power

consumption. Therefore, we expect that, due to variation in clock propagation delays

in large CMOS circuits, challenges will exist with FESPA. However, although it may

be difficult to use FESPA on its own, as we shall see, the extra information derived

from the falling edge is useful in combination with information from the rising edge

for a practical application of SPA.

Most of the proposed architectures for D flip-flops are based on master-slave

structure. Consider a D flip-flop based on master-slave structure at time t. At the

falling edge of the clock, the master stores the value of the input. If the stored value

in the master at time t−1 is different than the input value of the D flip-flop at time t,

storing the new value in the master makes a change in the gate and transistor states

of the master of the D flip-flop. Hence, if the input value at time t is different than

input value at time t − 1 (which is equal to the output of the D flip-flop at time t)

definitely we expect power consumption in the master part of the D flip-flop. If the

stored value at time t − 1 and input at time t are identical, a major change is not

expected in the master and therefore large power consumption is not expected.

The same concept is applicable on rising edge and slave part of the D flip-flops.

If the stored value of the master at time t is different than the output value of the D

flip-flop (or slave), we expect change in the states of the slave and/or its transistors

and gates. If the stored value at time t − 1 at the slave and its input at time t are

59

identical, no major change and power consumption is expected in the slave part of

the D flip-flop. As result, in general, we expect more power consumption for master-

slave based D flip-flops when D 6= Q rather than when D = Q. Therefore we expect

the proposed techniques in this research to be applicable to most of the master-slave

based D flip-flop structures.

5.2 Developing Falling Edge SPA of LFSR/NLFSR

In this section, we consider the application of SPA on an LFSR or NLFSR based on

power consumption information from the falling edge. As shown in Figure 5.4 and

Figure 5.5, based on D and Q values of the D flip-flop at the falling edge, D flip-

flops consume different values of power. To describe the consumed power for different

inputs, we define a new variable representing the Hamming distance, ∆(i), between

D and Q for bit i of the register. If D = 0 and Q = 0, or D = 1 and Q = 1 (when

the power consumption of the D flip-flop is small), ∆(i) = 0. If D = 0 and Q = 1, or

D = 1 and Q = 0 (when the power consumption of the D flip-flop is large), ∆(i) = 1.

Assume an LFSR or NLFSR with the size of L. At time t, we represent the

state of the i-th D flip-flop as st(i), 0 ≤ i < L, The overall power consumption of the

register at the falling edge for time t is proportional to

HDt =
L−1∑
i=0

∆t(i), (5.1)

where ∆t(i) is the Hamming distance between D and Q for st(i), the register bit

i at time t. Note that we label time t in the context of the falling edge as the

falling edge preceding the rising edge at time t. Hence, ∆t(i) = st(i) ⊕ st−1(i) and

60

∆t(i) is proportional to the power consumption of the corresponding D flip-flop. At

the time t + 1, the state of each register bit is shifted to the next register (that is,

st(i + 1) = st+1(i)) and we can write ∆t(i + 1) = ∆t+1(i) or ∆t(i) = ∆t+1(i − 1).

Then, the power consumption of the LFSR/NLFSR at the falling edge of time t + 1

is proportional to

HDt+1 =
L−1∑
i=0

∆t+1(i)

=
L−1∑
i=0

∆t(i+ 1) (5.2)

=
L∑
i=1

∆t(i).

The theoretical power difference of the LFSR/NLFSR at time t + 1 and t is defined

as PDt (as for the rising edge) and is equal to

PDt = HDt+1 −HDt

=
L∑
i=1

∆t(i)−
L−1∑
i=0

∆t(i) (5.3)

= ∆t(L)−∆t(0).

As a result, using the definition of ∆t(i), we get

PDt = [st(L)⊕ st−1(L)]− [st(0)⊕ st−1(0)], (5.4)

which is identical to equation (4.1) except that the power difference refers to the power

difference of the falling edge prior to the rising edge at time t. Hence, measuring the

difference of the power consumption of the LFSR/NLFSR at two consecutive falling

edges of each clock helps us to guess PDt and, consequently, the relation between

st(L), st−1(L), st(0) and st−1(0).

61

Similar to the rising edge, if the measured power difference is small (which cor-

responds to PDt = 0), then:

st(L)⊕ st−1(L) = st(0)⊕ st−1(0). (5.5)

When the measured power difference is significant and positive (PDt = +1)

st(L)⊕ st−1(L) = 1

st(0)⊕ st−1(0) = 0,

(5.6)

and when the measured power difference is significant and negative (PDt = −1)

st(L)⊕ st−1(L) = 0

st(0)⊕ st−1(0) = 1.

(5.7)

These relations are similar to equations (4.1), (4.2) and (4.3) from rising edge

SPA (RESPA). Hence, we can theoretically use the same technique to analyze LFSRs

or NLFSRs for the falling edge as for the rising edge power analysis outlined in the

previous sections.

5.3 Categorization of Power Measurements

So far, the proposed simple power analyses of stream ciphers have ignored the effect

of inaccurately mapping from analog MPD values to discrete theoretical PD values

caused by effects such as power consumption sources other than the flip-flops (i.e., the

combinational logic in the feedback or output functions) and clock skew. In this sec-

tion, we study the effect of inaccuracies in categorizing measured power consumption

for simple power analysis based on experimental results from simulation.

62

When we measure the power consumption of the circuit and subtract their values

at consecutive rising/falling edges (to obtain MPD), we have analog values, which

we should map to discrete PD values, where PD ∈ {+1, 0,−1}. For convenience, we

often drop the subscript t when referring to power difference values. In the following,

we offer a method to map or categorize MPD values to {+1, 0,−1}. Then we of-

fer some techniques to distinguish incorrectly categorized MPD, that is, incorrectly

determined values for PD. The categorized value for MPD is denoted by PDg,

while the correct theoretical power difference based on actual data in the register is

simply notated PD. Hence, when we map the measured power difference at time t,

MPDt, to a categorized power difference PDg
t , a correct categorization would mean

that PDg
t = PDt.

It should be noted that if measured power differences are randomly mapped to a

category of {−1, 0,+1}, the probability that the categorization would be correct, is

given by ∑
i∈{−1,0,+1}

P (PDg = i|PD = i) · P (PD = i) (5.8)

where P (PD = i) represents the probability that a power difference equals i and

the conditional probability is calculated as P (PDg = i|PD = i) = P (PDg = i) =

P (PD = i) since the categorization is random relative to the actual PD value. Since

it is reasonable to assume in an LFSR or NLFSR that the probabilities of generating

0 and 1 are equal, the probability of PD = +1, PD = 0 and PD = −1 are .25, .5

and .25, respectively. This results in the probability of correct categorization being

37.5% and the probability of an incorrect categorization being 62.5%.

63

5.3.1 Categorizing MPD

Since it is reasonable to assume in an LFSR or NLFSR that the probability of gener-

ating 0 and 1 are equal, the probability of PD = +1, PD = 0 and PD = −1 are .25,

.5 and .25, respectively. In one simple approach to categorize the measured power

difference (MPD) to their corresponding PDg values, at first we sort MPD values

for different t in order of their value. The smaller 25% of MPD values should be

categorized to PDg = −1. The largest 25% of MPD values should be categorized to

PDg = +1. The remaining MPD values should be categorized to PDg = 0.

In our analysis, we use this method to categorize MPD. However, this method is

not perfect and some MPD values may be categorized incorrectly. We have applied

this method to an 80-bit NLFSR, although the approach would be equally applicable

to an LFSR. For the implemented NLFSR we have used the classical D flip-flop

structure shown in the Figure 5.1 (a). The NLFSR is prototyped in TSMC 180 nm

standard cell CMOS technology. The supply voltage is 1.8 V and the rise time for the

clock is 500 ps. The NLFSR used is equivalent to the NLFSR used in the Grain-v1

64

stream cipher [8] and its feedback is defined as

bt(80) = bt(62)⊕ bt(60)⊕ bt(52)⊕ bt(45)⊕ bt(37)⊕ bt(33)⊕ bt(28)

⊕bt(21)⊕ bt(14)⊕ bt(9)⊕ bt(0)⊕ bt(60) · bt(63)⊕ bt(37)

·bt(33)⊕ bt(9) · bt(15)⊕ bt(45) · bt(52) · bt(60)⊕ bt(33) · bt(28)

·bt(21)⊕ bt(9) · bt(28) · bt(45) · bt(63)⊕ bt(60) · bt(52) · bt(37) · bt(33)

⊕bt(63) · bt(60) · bt(21) · bt(15)⊕ bt(63) · bt(60) · bt(52) · bt(45) · bt(37)

⊕bt(9) · bt(15) · bt(21) · bt(28) · bt(33)⊕ bt(21) · bt(28) · bt(33) · bt(37)

·bt(45) · bt(52) (5.9)

We use cadence to implement and simulate the power consumption of the NLFSR.

All D flip-flops of the NLFSR loaded with one and ran for 20000 clock cyles. After

collecting around 20000 power samples through simulation and applying our catego-

rization method, we found about 16 percent of rising edge MPD values were cate-

gorized incorrectly. Incorrect categorization occurred for falling edge MPD values

in about 32 percent of the cases. More analysis on the experimental results shows

the probabilities of incorrectly categorizing an actual PD = +1 (or PD = −1) to

PDg = −1 (or to PDg = +1) is negligible. In other words, virtually all categorization

errors occur by incorrectly assigning +1 or −1 to 0, or 0 to +1 or −1.

Because of the abovementioned categorization errors, we must modify the pro-

posed SPA in Sections 4.1 and 5.2 for real applications. In doing so, we must ensure

that we can identify correctly categorized power differences with high probability and

must reject power differences for which we are not confident in their correct catego-

rization.

We have also applied our simulations to the full NLFSR based on the alternate

65

D flip-flop shown in Figure 5.1 (b) using a clock with a 50 ps transition time. Uti-

lizing the power measurement categorization techniques resulted in measured power

differences being incorrectly categorized 38% of the time for the rising edge and 50%

of the time for the falling edge. Such probabilities are significantly different than the

62.5% probability of incorrectly categorizing if the power differences were randomly

categorized and may therefore form the basis for a power analysis attack. However,

compared to 16% and 32% for the classical D flip-flop, the incorrect categorization

probability is substantially worse and we would expect that the attack will not have

as much success as the results for the classical D flip-flop.

We conjecture that these poorer results occur because, as can be seen in Fig-

ures 5.3 and 5.5 the spikes of power consumption do not correlate in time well for this

D flip-flop. So that the overall power consumption on a rising clock edge does not

correlate well to the Hamming distance in the NLFSR data compared to the classical

D flip-flop. In the dissertation, we have used the power consumption data generated

from simulation of an NLFSR constructed using the classical D flip-flop structure of

Figure 5.1 (a) to illustrate the potential applicability of the attack.

5.4 Basic Methods to Determine Correctly Cate-

gorized PD

Here we offer some techniques which help us to find, with high probability, correct

PDg, i.e., correctly categorized MPD values such that the measurement determined

power difference, PDg, equals the power difference that should result from the actual

66

data, PD. For each of the proposed methods, we have determined experimentally

(through simulation of the 80-bit NLFSR constructed from the D flip-flop shown in

Figure 5.1 (a)) the probability of correct categorization, as well as the probability that

the condition has occurred to allow us to categorize an MPD value with confidence.

5.4.1 Rising Edge/Falling Edge Equivalence

When we measure the power consumption of the circuit in simple power analysis, we

can assume we have access to power consumption at both rising and falling edges.

Based on experiments for our NLFSR, the probability of an incorrect PDg in RESPA

and FESPA are .160 and .320, respectively. Then, for any clock cycle, if the cat-

egorized values are the same (i.e., PDg
Rising = PDg

Falling) and we assume that the

probability of correctness for the rising edge and the falling edge are independent, the

probability that the categorized PD is incorrect is determined as the probability that

both values are wrong and is therefore given by .160 × .320 = .051. In other words,

if categorization using falling edge and rising edge show the same value, this value is

correct with a theoretical probability of .949, which is similar to the experimentally

measured probability of .950. This represents a much higher level of confidence then

taking, on their own, either the rising edge or falling edge categorization (which have

probabilities of .840 and .680, respectively). Our experiments show that we can use

this technique to ensure correct categorization for about 60% of the measurements

from different clock cycles, with this high probability.

67

5.4.2 Robust Threshold

Another technique to help categorize MPD values accurately is using a more robust

threshold value. In this technique, we change the threshold and, instead of 25%, we

categorize the smallest and largest 12.5% as PD = −1 and PD = +1, respectively,

and the middle 25% as PD = 0. In this approach, categorizations are correct with

higher probability. We refer to the assigned PD values by this method as robust PDg

and use the label PDrg.

Obviously, this technique can be applied to 50% of the MPD (for both rising edge

and falling edge). Our experiments show, using this approach, PDrg for rising edge

is correct with a probability of .955, while for the falling edge PDrg, the probability

of correctness is .750.

5.4.3 Sequence Consistency

Another technique, which we call the sequence consistency method, can be used to

improve categorization success by distinguishing correct categorizations from incor-

rect ones. To find the incorrect categorizations, we can use equation (4.6). In (4.6),

the right side of the equation cannot be larger than +1 or smaller than −1; hence, at

the left side PDt+L cannot be equal to PDt, unless both are equal to zero. Extrapo-

lating equation (4.6), if we add j consecutive PD terms separated by L clock cycles,

we get

PDt + PDt+L + . . .+ PDt+(j−1)L

= [st(jL)⊕ st−1(jL)]− [st(0)⊕ st−1(0)].

(5.10)

68

The right side must be from the set {−1, 0,+1} and, hence, the summation of any

j consecutive PD values L bits apart can never be larger than one or smaller than

minus one. Hence, if PDt = +1, then PDt+L and PDt−L must be either 0 or −1.

Similarly, PDt = −1 implies PDt+L = 0 or +1 and PDt−L = 0 or +1. If in any

sequence of PDg
t+iL values, we see two consecutive +1 values, we know that at least

one of them is categorized incorrectly. In other words, a correct sequence of PDg

values separated by L clock cycles, starting with a value of PDg = +1, must be

followed by a string of some number of values of PDg = 0 and then PDg = −1.

In contrast, a +1 value, any number of 0 values and then +1 indicates an incorrect

categorization, i.e., at least one PDg value is wrong. Similar analysis is true for a

sequence starting with PDg = −1.

In applying the sequence consistency technique, consider a sequence of three cat-

egorized values: {PDg
t−L, PDg

t , PD
g
t+L}. We can increase our confidence in a correct

categorization of PDg
t by considering the full sequence. For example, in RESPA, if

we have categorized each value of sequence {PDg
t−L, PDg

t , PD
g
t+L} as {+1,−1,+1}

independently, the probability that PDg
t is correct is .840 (as determined by exper-

iment). However, using the sequence consistency method, the probability of cor-

rectness of PDg
t for this sequence is increased to .984. If the categorized sequence

is {+1,−1,+1}, it means the actual PD sequence could be {0,−1, 0}, {0,−1,+1},

{+1,−1, 0}, {+1,−1,+1}, {0, 0, 0}, {0, 0,+1} or {+1, 0, 0}. Sequences like {−1, 0, 0}

are not possible as the actual sequence because we assume the probability of catego-

rizing an actual PD = −1 as PDg = +1 is negligible. If any of the first four sequences

is the actual sequence, our categorization of PDg
t = −1 is correct and if any of the

last three cases is the actual sequence, our categorization is incorrect. The probability

69

of occurrence for each sequence is equal to 1
16

, except {0, 0, 0} which is 1
8
. If we let

the probability of any individual PDt being correctly categorized be represented by

Pcr, then the probability of an individual PDt = 0 incorrectly categorized as +1 is

equal to 1
2
(1−Pcr) (A similar probability occurs for incorrectly categorizing 0 to −1).

Hence, the probability of actual sequence {0,−1,+1} categorized as {+1,−1,+1} is

equal to 1
2
(1 − Pcr)PcrPcr. The probability of observing a sequence as {+1,−1,+1}

is equal to summation of the probabilities of occurrence of each sequence (either 1
16

or 1
8
) times the probability of categorizing that sequence as {+1,−1,+1}.

From all possible sequences, we have selected 8 sequences with high probability

for our purpose and list them in Table 5.1. In Appendix A, we have listed the prob-

abilities for all possible sequences. Using the occurrence of these sequences on either

the rising or falling edge as indicators of correct categorizations could increase the

probability of categorizing MPD values correctly to a probability of .913 (as deter-

mined by experiment) and could be applied to 78% of all measured power differences.

5.5 Advanced Categorization Methods

In our analysis, we require PDg with high probability of correctness. In the previous

section, we have introduced some methods to distinguish PDg which are likely to be

correct. In this section, we derive PDg with even higher probability of correctness by

selecting PDg values for which at least two of the above techniques are applicable.

We list them as follows:

(I) RE/FE Equivalence and Robust Threshold on RE

70

Sequence Probability of PDg
t = PDt Probability of PDg

t = PDt

{PDg
t−L, PD

g
t , PD

g
t+L} for rising edge for falling edge

{+1,−1,+1} .984 .918

{−1,+1,−1} .984 .918

{+1, 0,−1} .968 .852

{−1, 0,+1} .968 .852

{0,+1,−1} .906 .781

{0,−1,+1} .906 .781

{−1,+1, 0} .906 .781

{+1,−1, 0} .906 .781

Table 5.1: Probability of PDg
t = PDt for sequences of three PDg values for rising

edge (Pcr = .840) and falling edge (Pcr = .680).

71

In this case, two categorized PDg values of rising edge and falling edge that

are the same and consistent with the robust threshold of the rising edge are

assumed correct. Notationally, we represent it as PDg
Rising = PDg

Falling and

PDg
Rising = PDrg

Rising.

The experimental results from the 80-bit NLFSR show that the probability of

correctness for this case is .992, while the probability that such consistency

occurs for a given clock cycle is .315.

(II) RE/FE Equivalence and Robust Threshold on FE

A similar approach could be taken based on consistency with the categorization

based on the falling edge robust threshold. The experimental results show the

probability of correctness for this case is .974, while the probability of occurrence

of this case is .326.

(III) RE/FE Equivalence and Sequence Consistency

In this case, the two categorized values of rising edge and falling edge are the

same and the sequence consistency method confirms their correctness. Nota-

tionally, we represent this as PDg
Rising = PDg

Falling and PDg
Rising = PDsg

Rising or

PDg
Rising = PDsg

Falling, where PDsg is used to represent a categorization of an

MPD value based on the sequence consistency method.

Our experiments show the correctness of PDg values in this case are .987, while

the probability of such an occurrence is .326.

(IV) Robust Threshold on RE/FE and Sequence Consistency

In this case, the PDg value is determined by the robust threshold of RESPA or

72

FESPA and the sequence method confirms it. Experiments show the probabil-

ities of correctness and occurrence are .998 and .219, respectively.

73

C
on

d
it

io
n

of
P
D

P
ro

b
ab

il
it

y
of

co
rr

ec
tn

es
s

(P
c
)

P
ro

b
ab

il
it

y
of

o
cc

u
rr

en
ce

(P
o
)

P
D
g R
is
in
g

.8
40

1

P
D
g F
a
ll
in
g

.6
80

1

P
D
g R
is
in
g

=
P
D
g F
a
ll
in
g

.9
49

.6
00

R
ob

u
st

T
h
re

sh
ol

d
.9

55
.5

00

S
eq

u
en

ce
C

on
si

st
en

cy
.9

13
.7

80

P
D
g R
is
in
g

=
P
D
g F
a
ll
in
g

R
ob

u
st

T
h
re

sh
ol

d
R

E
.9

92
.3

15

P
D
g R
is
in
g

=
P
D
g F
a
ll
in
g

R
ob

u
st

T
h
re

sh
ol

d
F

E
.9

74
.3

26

P
D
g R
is
in
g

=
P
D
g F
a
ll
in
g

S
eq

u
en

ce
C

on
si

st
en

cy
.9

87
.3

26

R
ob

u
st

T
h
re

sh
ol

d
F

E
/F

E
S
eq

u
en

ce
C

on
si

st
en

cy
.9

98
.2

19

(I
)

or
(I

I)
or

(I
II

)
or

(I
V

)
.9

75
.4

67

T
ab

le
5.

2:
P

ro
b
ab

il
it

y
of

co
rr

ec
tn

es
s

fo
r
P
D

fo
r

d
iff

er
en

t
m

et
h
o
d
s

74

In Table 5.2 we summarize the experimental data. During the determination

for any PDg, if at least one of cases I, II, III or IV occurs, we assume that the

categorization is correct. Based on the experimental results, the probability of at

least one of the mentioned cases occurring for a PDg is .467 and the probability of

correctness is .975.

5.6 Analyzing an NLFSR

Although the techniques outlined here are equally applicable to LFSRs and NLFSR,

in order to illustrate the approach we now consider the application of simple power

analysis to the 80-bit NLFSR, using the probabilities derived from experimental re-

sults for the categorization methodologies previously described. On average, upon

categorization of power measurement values, we expect that at least one of cases I,

II, III, and IV occurs for .467× 80 ≈ 37 PDg values of the 80 bits and the resulting

PDg values are correct with high probability of about .975. However, half of these

PDg values will be equal to 0 and, as indicated in the Section 4.1, we cannot use

them to obtain information on the NLFSR state bits.

Based on equations (4.2), (4.3) and (4.4), if we know PDt−L = +1 or −1, we can

find st(0) ⊕ st−1(0). Similarly, there are many scenarios for which knowing PDt−2L,

PDt+L, or PDt+2L are equal to +1 or −1 will allow us to determine st(0)⊕ st−1(0).

In Table 5.3, we have listed possible scenarios for PDg
t−2L, PDg

t−L, PDg
t , PD

g
t+L and

PDg
t+2L that we could use to guess the relationships between st(0) and st−1(0). In the

table, if from cases I, II, III or IV, PDg = ±1, we present it as ±1 and, if from cases I,

II, III or IV, PDg = 0, we present it as 0. If cases I, II, III and IV are not applicable

75

Scenario PDg
t−2L PDg

t−L PDg
t PDg

t+L PDg
t+2L Probability

A X X ±1 X X .233

B X ±1 Ĉ X X .124

C X ±1 0 X X .054

D ±1 0 Ĉ X X .029

E ±1 0 0 X X .013

F Ĉ Ĉ 0 ±1 X .016

G 0 Ĉ 0 ±1 X .007

H Ĉ 0 0 ±1 X .007

I 0 0 0 ±1 X .003

J Ĉ Ĉ 0 0 ±1 .004

K Ĉ 0 0 0 ±1 .002

L 0 Ĉ 0 0 ±1 .002

M 0 0 0 0 ±1 .001

N ±1 Ĉ 0 0 ±1 .002

Table 5.3: Cases used to determine st(0)⊕ st−1(0).

76

to PDg, we cannot be confident in the categorization of PDg and we present it as

Ĉ. If the value of PDg is not critical to defining the scenario in the table, we show it

with “X” (i.e., the value is a “don’t care”).

The probability of occurrence for each scenario in the table is given in the right

column. To calculate the listed probabilities, we assume the probability of PDg
t = +1

or −1 is equal to the probability of PDg
t = 0 and is therefore given by .467

2
= .233.

The probability of PDg
t = Ĉ is 1− .467 = .533. Hence, the probability of scenario A

is equal to the probability of PDg
t = +1 or −1 and is therefore .233. The probability

of scenario B is the probability of PDg
t−L = +1 or −1 and PDg

t = Ĉ, which is

.233 × .533 = .124, where we have made the reasonable assumption that the power

differences at times separated by L clock cycles are independent. For scenario C, the

probability is calculated as .233 × .233 = .054, which is equal to the probability of

PDg
t−L = +1 or −1 and PDg

t = 0. The rest of the probabilities of Table 5.3 are

calculated similarly.

All cases in the table are mutually exclusive; hence, the sum of the right column,

which equals about .49, is the probability that one of the scenarios occurs. Therefore,

we have about 80 × .49 ≈ 39 relationships of pairs of consecutive bits with high

probability of correctness and we can guess the remaining 80− 39 = 41 relationships.

Considering the scenarios of Table 5.3, on average we would need about 55 PDg

values with high probability in order to determine the 39 Xor relationships with high

probability. This is explained as follows. If either scenario A or B occurs, (which

will happen with a probability of .233+.124=.357), we need only one PDg with high

probability. If scenarios C, D or F occur (which will happen with the probability of

.099), we need two PDg values with high probability of correctness. For scenarios E,

77

G, H and J, we need to know three PDg values and for I, K, L and N, we have to

know four PDg values. For M, we need to know five PDg values. Hence, on average,

we need to know 80× (1× .357 + 2× .099 + 3× .031 + 4× .009 + 5× .001) ≈ 55 PDg

values with high probability of correctness to know 39 bits of the NLFSR. The 55

PDg values are drawn from power consumption data spanning from t− 2L to t+ 2L

for values of t spanning L = 80 bits of the register. Hence, power trace information

is required over a span of 5L = 400 clock cycles.

As studied before, if any of cases I, II, III or IV could be applied to determine

a PDg value, it is correct with the probability of .975. Hence, assuming 55 PDg

values are used to generate the 39 Xor expressions and the correctness of each PDg

is independent, the set of 39 Xor expressions are correct with the probability of

.97555 = .248. In other words, if we apply our analysis using a typical set of power

consumption values, our analysis will be successful about 25% of the time.

If we have enough power samples and we could apply our analysis to 16 inde-

pendent sets of measured power consumption values, with the probability of 1− (1−

.248)16 = .990, we have at least one successful analysis. The resulting overall com-

plexity of the analysis can be derived by considering the exhaustive search for the

41 Xor expressions not found from the PDg values for each of the 16 applications of

the analysis giving a computational complexity of about 16 × 241 ≈ 245 operations,

where an operation involves the analysis of the PDg values for the cases of Table 5.3.

In comparison, a cryptanalysis based on exhaustively searching for the proper state

of the NLFSR would be expected to take about 280 steps. Hence, significant reduc-

tion in the analysis complexity can be achieved by examining the power consumption

information and applying simple power analysis.

78

To decrease the complexity of the analysis, we can expand the cases of I, II, III

and IV to include the basic categorization techniques of Section 5.5. For example,

we may assume that, if PDg from the falling edge and rising edge are the same,

this PDg is correct with high probability. Also, if the robust threshold on the rising

edge (not falling edge) is applicable, the PDg may be assumed to be correct with

high probability. Now if one of cases I, II, III, or IV or the categorizations based

on Sections 5.4.1 or 5.4.2 can be used, the probability of correctness of PDg values

is decreased to .964. However, one of these cases occurs with a probability of .784.

Hence, the presented probabilities in Table 5.3 change. For example, the probabilities

for scenarios A, B, and C change to .392, .085, and .154, respectively. We have listed

the new probabilities in Table 5.4. The summation of the probabilities for all scenarios

is now about 80%. Using the new probabilities, we can obtain about .80 × 80 ≈ 64

Xor relationships based on about 107 PDg values (spanning 5L = 400 clock cycles)

which are all correct with an expected probability of about .964107 ≈ .02. This gives

an expected success rate for the analysis of only 2%. However, we can increase the

probability of success to more than 98%, if we repeat the analysis on 200 independent

sets of power trace data. The resulting complexity would be about 200 × 216 ≈ 224

operations.

Although, the first approach has higher complexity (245 operations), it requires

fewer power samples (i.e., 16× (5× 80) = 6400 clock cycles of power samples for the

80-bit NLFSR). However, the second approach, with lower computational complexity

(224 operations) needs more power samples (i.e., 200× (5× 80) = 80000 samples).

As mentioned earlier, although we have focused our experiments and analysis on

an NLFSR, the techniques could be applied to LFSR. However, in the next section

79

Scenario PDg
t−2L PDg

t−L PDg
t PDg

t+L PDg
t+2L Probability

A X X ±1 X X .392

B X ±1 Ĉ X X .085

C X ±1 0 X X .154

D ±1 0 Ĉ X X .033

E ±1 0 0 X X .060

F Ĉ Ĉ 0 ±1 X .007

G 0 Ĉ 0 ±1 X .013

H Ĉ 0 0 ±1 X .013

I 0 0 0 ±1 X .023

J Ĉ Ĉ 0 0 ±1 .002

K Ĉ 0 0 0 ±1 .005

L 0 Ĉ 0 0 ±1 .005

M 0 0 0 0 ±1 .009

N ±1 Ĉ 0 0 ±1 .005

Table 5.4: Recalculated probabilities for determining st(0)⊕ st−1(0).

80

we consider an improved analysis technique which is only applicable to LFSRs.

5.7 An Improved Approach to SPA of LFSR Based

Stream Ciphers

In the previous section, we have proposed and applied a simple power analysis attack

to an NLFSR based stream cipher with inaccurate measured data. Evidently, the

proposed method is also applicable to LFSR based stream ciphers. In this section we

propose an improved simple power analysis method useful with inaccurate measured

data and applicable merely to LFSR based stream ciphers. In the methods studied in

the previous sections the complexity of the attack increases significantly with increas-

ing noise. In this dissertation we use the term noise for inaccurate measurements

or incorrect mapping of measured data and theoretical power difference values. The

advantage of the proposed simple power analysis in this section is that the complexity

of the attack does not increase with increasing noise. However, increasing noise does

increase the required number of power samples.

The proposed cryptanalysis method in this section is based on an algebraic

method. Applying algebraic techniques for side channel attack (known as algebraic

side channel attack) was at first proposed in [67] and later developed in other research

such as [68] and [69]. All the proposed attacks have been applied to block ciphers

(AES and PRESENT). AES and PRESENT are designed to be very resistant for

algebraic attacks and the obtained system of equations are very difficult to solve (the

degree of the system of equation is very high). In [67, 68] and [69] the attacker uses

81

side channel information to provide better equations (with lower degree) and uses

them as additional equations to solve the system of equation. Since they assume

their system is an error-free system (they assume all the measured power consump-

tions match the theoretical values of the cryptosystem), the obtained equations from

power measurements are linear and reduce the complexity of the classical algebraic

attack, significantly.

The main difference of an LFSR and an NLFSR is that in an LFSR there is

always a linear relation between the bit values of the state bits at different times,

while for NLFSR these relations are nonlinear. In other words, in an LFSR, state

bits at time t′, st′(i), 0 ≤ i < L, can be described by a linear relationship of state bits

at time t, st(j), where 0 ≤ j < L. Hence, if we have a system of equations in which

the unknown values are st′(i), we can transform it to a system of equations in which

the unknown variables are st(j), where 0 ≤ j < L. Since, the relationships between

st′(i) and st(j) are linear in an LFSR, the transform does not change (increase) the

degree of the system of equations.

In an ideal circumstance of power analyzing an LFSR, it is assumed that we

can exactly determine the theoretical power difference values (PD ∈ {−1, 0,+1}),

from real power consumption measurements (which are analogue values in the unit

of watts). The theoretical PD values are used directly to determine the register

bit values of the LFSR. In practice this is somewhat challenging and some power

differences are determined incorrectly. Since, it is not clear which PD are categorized

correctly and which are categorized incorrectly, direct use of equation (4.1) provides a

system of linear equations in which some equations are correct and some are incorrect.

This system of equations is studied as MAX-LIN in many papers [70, 71, 72]. The

82

complexity of the proposed methods to solve this system of equations are still high

(no polynomial complexity has been offered for the MAX-LIN problem). 1

As described in Section 5.3.1, analyzing the experimental results shows the prob-

ability of incorrectly categorizing an actual PD = +1 to PDg = −1 is negligible.

Similarly, the probability of incorrectly categorizing a PD = −1 to PDg = +1 is

negligible. In other words, virtually all categorization errors occur by incorrectly as-

signing PD = ±1 to PDg = 0 or PD = 0 to PDg = ±1. Hence, for any PDg = +1,

we know the actual PD is +1 or 0. As well, for any PDg = −1, the actual PD value

is −1 or 0.

For an LFSR with bits st(i), equation (4.1) can be written as

PDt = gt − ht (5.11)

where

gt = st(L)⊕ st−1(L) (5.12)

ht = st(0)⊕ st−1(0).

For any PD 6= +1 (or PDg = −1) the possible values for (g, h) are (0, 0), (0, 1) and

(1, 1). Similarly, for any PD 6= −1 (or PDg = +1) the possible values for (g, h) are

(0, 0), (1, 0) and (1, 1). These values are summarized in Table 5.5. From Table 5.5

for any PDg
t = +1 we can write

(gt ⊕ 1) · ht = 0 (5.13)

1Other proposed methods to solve such a system is include Artificial Intelligence algorithms, such

as Genetic Algorithms. However, our simulation shows using AI is not practical over finite fields and

stream ciphers (especially with increasing noise (or decreasing Pcr)).

83

PDt 6= +1 PDt 6= −1

gt ht gt ht

0 0 0 0

0 1 1 0

1 1 1 1

Table 5.5: Possible values of gt and ht, for PDt = ±1

and for any PDg
t = −1, we can write

(ht ⊕ 1) · gt = 0. (5.14)

Since h and g for any time, can be described with state bits of the LFSR, St, for a

certain time, t, using linear equations, the degrees of equations (5.13) and (5.14) after

substituting h and g with the corresponding relationships using st(i) (0 ≤ i < L) are

still two. Collecting enough PDg = ±1 we can set a system of equations with h

and g and then using equations (5.12), (5.13) and (5.14) and feedback relation we

can convert it to a system of nonlinear equations of degree two, where its unknown

variables are st(i), where 0 ≤ i < L for any value of t. Solving this system of

equations, recovers the state bits of the LFSR at a particular time t. The systems of

equations can be solved using conventional algebraic methods such as relinearizion

[52] or XL [73] and appropriate mathematical tools such as Sage [63]. A similar

approach applied to Grain will be discussed in detail in Chapter 7.

84

5.8 Analyzing an LFSR

The complexity of this attack is the same as the complexity of solving the nonlinear

system of equations described above. Since the degree of the system of equations is

low, the complexity of solving is not very high. The conventional algebraic methods to

solve a system of nonlinear equations (relinearizion and XL) are described in Appendix

A. To solve a system of nonlinear equations, we should convert it to a system of linear

equations. In the new linear system of equations, any products of unknown variables

of the primary or nonlinear system is assumed as a new variable in the secondary

system of equations. For example, if in a primary system of equations, st(i) and st(j)

(where 0 ≤ i, j < L) are two unknown variables, in the secondary system of equation,

st(i) · st(j) = xij is assumed to be an unknown variable. Hence, in our cryptanalysis

method, the maximum number of unknown variables to attack an LFSR with the size

of L bits is
(
L
2

)
+ L. Letting L = 80, the number of unknown variables, U , is

U =

(
80

2

)
+ 80 = 3240 ≈ 211.66. (5.15)

After converting the system of nonlinear equations to a system of linear equations,

we can use the conventional algorithms such as Gaussian elimination to solve it. The

complexity of using Gaussian elimination to solve a linear system of equations with

U unknown variables is U3 [74]. Then, the complexity of the attack for an 80 bit

LFSR is 235. A more conventional algorithm to solve a system of linear equations is

the proposed algorithm in [75]. Using the proposed method in [75], the complexity

of solving the system of equations is at most 7 × (2U)
log27. For an 80 bit LFSR this

complexity is 7× (211.66)
log27 = 236. Hence, the total complexity of cryptanalyzing an

80 bit LFSR with the proposed method is 235.

85

If we use XL method to solve a system of nonlinear equations with 80 unknown

variables, we need more equations to confirm we can generate enough linearly inde-

pendent equations. Assume from 100 equations, with high probability we can generate

enough linearly independent equations in the secondary system of equations. This

assumption is consistent with similar assumptions in [53, 73]. Since, each PDg = +1

or PDg = −1 generates an equation for the primary system of equations, the ex-

pected number of required power samples to have 100 equations is 2 × 100 = 200

power samples (assuming the probability of categorizing PDg = +1 or PDg = −1 is

.5).

If we have N power samples, the probability of obtaining at least U ′ useful power

samples where PDg = ±1 (or we call it target PD values) is

Ps =
N∑

i=U ′

(
N

i

)
(
1

2
)N . (5.16)

For example, if we have collected 300 power samples, with the probability of greater

than 99.99%, we have more than 100 target PDg values. Note that PDg = 0 is not

a target value and such cases are ignored.

Here, we assumed the the probability of categorizing actual PD = +1 to −1

and PD = −1 to +1 is negligible. With increasing the noise (or the rate of incorrect

categorization), it is possible that will not be the case. In that case, we can use other

proposed techniques in Section 5.4 to choose target PDs. Using the other PD values

does not change the degree of the system of equations, however more power samples

will be needed to set up the system of equations. In that scenario, the probability of

success (Ps) in equation (5.16), is changed to

Ps =
N∑

i=U ′

(
N

i

)
(p)i(1− p)N−i, (5.17)

86

where p is the probability of categorization of a target PD value. For example, with

robust threshold method, it should be assumed that if PDrg
t = +1, then the actual

PDt is not equal to −1 (PDt 6= −1). As well for PDrg
t = −1 it should be assumed

the actual PDt is not equal to +1 (PDt 6= +1). In this case the expected number of

power samples is 4×100 = 400, assuming the probability of occurrence of PDrg
t = +1

or PDrg
t = −1 is .25, and if we have 600 power samples, the probability of collecting

at least 100 target PD values is greater than 99.99%.

5.9 Summary

In this chapter, we have proposed a simple power analysis of NLFSR, a component

typically found in stream ciphers, in a non-ideal environment where the measured dif-

ference is not perfectly categorized. Also, we consider power consumption of a typical

CMOS D flip-flop and propose use of power samples at the falling (or non-triggering)

edge of the clock for the analysis. Furthermore, we applied the analysis to an 80-bit

NLFSR using practical simulated power trace data for a 180 nm CMOS circuit. We

have shown that if we use falling edge and rising edge power consumption informa-

tion and the proposed techniques in this paper, we can successfully analyze with high

probability the NLFSR with time complexity of about 245 operations using about

6400 power samples or 224 using about 80000 power samples. This is significantly less

than the complexity of 280 for exhaustive search for the NLFSR state. It should be

noted that the techniques applied to the 80-bit NLFSR in this paper, apply equally

to an LFSR. The proposed method can be improved by using Error Correction Code

or ECC techniques. However the complexity of the attack or limit of computation

87

will be same.

Furthermore, we have studied a simple power analysis of LFSR, which is ap-

plicable on stream ciphers with inaccurate measurements. We have shown that the

proposed method is applicable to an 80 bit LFSR, with the timing complexity of 235

and only a few hundred power samples.

These results indicate that practical implementations of stream ciphers based

on either LFSRs and/or NLFSRs are vulnerable to side channel analysis attacks

even when ideal assumptions are not applicable and care must be taken to design

implementations which do not leak power consumption information.

88

Chapter 6

Using Simple Power Analysis for

Correlation Attack

The correlation attack is a mathematical method of cryptanalyzing FSR-based stream

ciphers proposed in [59]. It is a divide-and-conquer technique, applicable to stream

ciphers constructed with multiple LFSR/NLFSRs. Modern stream ciphers are de-

signed in a way to be invulnerable against it and correlation attack is not applicable

to recent stream ciphers. In this section, a developed correlation attack to be ap-

plicable in side channel cryptanalysis is described. This crypanalyzing method is

applicable to stream ciphers constructed with multiple LFSRs and/or NLFSRs. The

results presented in this chapter may be found in [76].

6.1 Preliminaries: Correlation Attack

A correlation attack is a known-plaintext attack, based on finding a correlation be-

tween the state bits of an individual FSR in the stream cipher with multiple FSRs

89

Figure 6.1: Nonlinear combination generator

and the output bits or keystream bits of the cipher. Assume a keystream genera-

tor or a stream cipher containing k FSRs where the output is given by a nonlinear

function of the FSRs’ bits (Figure 6.1). This is a classical stream cipher construction

and referred to as a nonlinear combination generator. A generic attack which always

applies to this type of cipher is the exhaustive search for the initial states of the FSRs.

For each possible initial configuration, the generated keystream should be calculated

and the correct initial state is deduced when the produced sequence by the combining

function is the same as the observed keystream. Such a generic attack requires at

least 2
∑
Li trials, where Li is the bit size of the i-th FSR. In typical stream ciphers,

this time complexity is too large, making this attack infeasible.

Let sit(j) denote the j-th bit of i-th FSR at time t and zt denote the output

keystream at the same time. Since the output keystream is a function of FSR bits,

we can write zt = f(s1t (0), s2t (0), · · · , skt (0)). To produce an unbiased sequence, f

must be a balanced function, i.e., produce 0 and 1 with the same probability of 1
2
.

90

The main aim of correlation attack is to find the state bits of the stream cipher. The

probability of zt = sit(0) is denoted with P (zt = sit(0)) and is equal 1
2

+ εi. Large

values of |εi| make the stream cipher more vulnerable to the correlation attack.

Assume that a segment of N keystream bits is being observed by an attacker.

In a correlation attack, the attacker does an exhaustive search over one FSR’s state

bits. For each guess he should calculate N LFSR output bits, i.e., sit(0) for different

t. Then, he should compare the observed zt and calculated sit(0) to check the rate of

the equality of zt and sit(0). If N is big enough, for the correct guess, this rate is close

to the probability of equality of zt and sit(0), P (zt = sit(0)). Since f is a balanced

function, for incorrect guesses this rate is close to 1
2
. This process should be done for

each LFSR and NLFSR of the stream cipher. The complexity of recovering the state

bits of FSR i is 2Li operations, where an operation consists of the analysis of the N

keystream bits. Hence, the complexity of recovering all state bits of the stream cipher

is
∑k

i=1 2Li and the complexity of an attack to recover some state bits is 2Lmin , where

Lmin = min{L1, L2, ..., Lk}. This complexity is much smaller than the complexity of

a brute-force attack or exhaustive search, which is 2L1+L2+..+Lk . The required number

of samples in correlation attack depends on εmin and is given in [77] to be

N ∈ Ω
(
ε−2min

)
(6.1)

or

N ∝ ε−2min. (6.2)

Therefore, an attack of a stream cipher needs a time of [77]

T ∈ O
(
2Lmax × ε−2min

)
. (6.3)

91

where Lmax is the bit size of largest FSR and each operation consists of an examination

of the equality of the keystream bit and the output of FSR.

6.2 Categorization of Measured Power Difference

Values

To apply SPA to an LFSR/NLFSR based on the measured power consumption of

the LFSR/NLFSR, we should map the measured power differences (an analog vari-

able measured in watts) to a categorized power difference, represented as PDg where

PDg ∈ {−1, 0,+1} for an individual LFSR or NLFSR. In an ideal circumstance the

attacker would determine PDg to be the theoretical PD value with 100% likelihood

(as is assumed in Chapters 3 and 4). In practical applications, the power differences

measured on clock edges cannot be mapped perfectly to the theoretical power differ-

ences due to factors such as power consumption sources that are not flip-flops (eg.,

the combinational logic in the feedback and output functions), clock skew, and static

power consumption. In most attacks based on power analysis, to overcome these

types of inaccuracies, differential power analysis is used where the power consump-

tion measurements are repeated and the average of the observed data is used to filter

out noise. However, for stream ciphers, such as Grain, this approach is limited in

applicability and can only be applied by making use of power traces from numerous

resynchronizations [46, 78]. The correlation attack based on side channel analysis

developed in this chapter is applicable even with high rate of error in the mapping of

measured power differences to cipher data.

92

As described in Chapter 5, if we assume that the bits generated by the LFSR

and/or NLFSR are random such that the probability of 0 and 1 are both equally likely,

then the probabilities of PD = −1, PD = 0 and PD = +1 for each LFSR/NLFSR

are .25, .5 and .25, respectively. In order to map the measured power differences to

a PDg value, we can sort all the measured power differences and then categorize the

largest positive 25% of them to PDg = +1. Similarly, we can categorize the smallest

(i.e., most negative) 25% of the measured power differences to PDg = −1. The rest

of the measured power differences should be categorized to PDg = 0. This method of

categorization can be applied to a system with one LFSR or NLFSR and was studied

in Section 5.3.

In order to categorize the measured power differences of stream ciphers with two

FSRs such as Grain, we can use a similar method. For the Hamming distance power

model, we know that the overall power consumption of stream ciphers with multiple

FSRs, such as Grain, is approximated by the summation of power consumption of

the LFSRs and the NLFSRs (assuming power consumed in other parts of the circuit

is negligible) and measuring the power at the triggering edge of the clock embodies

the power consumption of the D flip-flops of the LFSRs and NLFSRs. For Grain, if

we assume the power consumption of the circuit at time t (at the triggering edge)

is the summation of the power consumption of the LFSR and NLFSR (which is

also proportional to the Hamming distance of their consecutive states), then we can

conclude the overall dynamic power dissipation of the circuit at the triggering edge of

the clock is proportional toHDLFSR
t +HDNLFSR

t . Hence, we can define the theoretical

93

power difference of the circuit as

PDGrain
t = [HDLFSR

t+1 +HDNLFSR
t+1]

−[HDLFSR
t +HDNLFSR

t] (6.4)

= PDLFSR
t + PDNLFSR

t .

Assuming that the probability of generating 0 and 1 in the LFSR and NLFSR

are both equal to 1
2
, based on (6.4), the probabilities of occurrence of possible PD

values are easily calculated and listed in Table 6.1. For example, if PD of Grain is

+2, both PD values of LFSR and NLFSR should be +1. This will happen with the

probability of .25 for each of them. Then, the probability of PD = +2 for Grain is

1
4
× 1

4
= .0625.

Similar to the proposed method for one FSR systems, to categorize measured

PD values of Grain, we sort the measured power differences. Then the 6.25% largest

positive measured power differences should be categorized as PDg = +2 and the

6.25% most negative measured power differences should be categorized as PDg = −2.

Correspondingly, the next 25% of the most positive and negative measured power

differences should be categorized as PDg = +1 and PDg = −1, respectively. The

remaining values are categorized as PDg = 0.

6.3 Practical Categorization for Grain

Here, we investigate the practical issues by simulating circuits in CMOS. The circuits

are prototyped in TSMC 180 nm standard cell CMOS technology. We have used

Cadence Virtuoso Spectre Circuit Simulator version 5.10.41 to obtain the power con-

94

Table 6.1: Probability of occurrence of PD values in stream ciphers with two

LFSR/NLFSRs such as Grain.

PD value Probability

−2 1
16

= .0625

−1 1
4

= .25

0 3
8

= .375

+1 1
4

= .25

+2 1
16

= .0625

sumption of the circuits. The power supply of all circuits is 1.8 volts. The simulations

have been done at room temperature and default noise. In our implementations, we

have used the classical D flip-flop shown in Figure 5.1 (a).

Obtaining experimental results from a CMOS implementation of Grain, we have

collected 11700 power samples simulated through the Cadence tools. Applying the

categorization method of Section 6.2, we found that experimentally only 46.56% of

measured power differences were categorized correctly. Although this value is low

(that is, well below 100%), it is significantly different than the 27.34% probability of

correctly categorizing the measured power differences by random. This is calculated

as follows. Let P (PDg = i) represent the probability of a measured PD value to be

categorized (randomly) as i, P (PD = i) represent the probability that the theoretical

PD is equal to i, and P (PDg = i|PD = i) represent the conditional probability. The

95

Figure 6.2: Measured power difference categorization results for Grain given theoret-

ical PD values.

probability of correctness is given by

Pcorr =
∑

i={−2,...,+2}

P (PDg = i|PD = i) · P (PD = i)

=
∑

i={−2,...,+2}

P (PDg = i) · P (PD = i)

= (
1

16
)2 + (

1

4
)2 + (

3

8
)2 + (

1

4
)2 + (

1

16
)2

= .2734,

where P (PD = i) = P (PDg = i) which can be obtained from Table 6.1 and where

the conditional probability becomes unconditional due to the randomness assumption

of the categorization.

To further illustrate the nature of incorrect categorization, we present the follow-

ing discussion. Based on our experimental results, in Figure 6.2, we have presented

a graph which shows measured power differences and their corresponding theoreti-

96

cal PD values. As shown in the graph, there are many ranges of measured power

differences where there are power samples corresponding to multiple theoretical PD

values. For example, there are a total of 646 power samples that have measured power

differences falling in the range from 0 to +4.5× 10−5. Of these, 400 have theoretical

values of PD = 0 and 130 have theoretical values of PD = +1. (The remaining 116

power samples have other PD values.) Since the measured power differences in this

range are close to zero, we might reasonably expect that the correct categorization

would be PDg = 0, but to categorize in this way, will clearly incorrectly categorize

a number of values for which PD = +1 (as well, as other PD values). Clearly, any

proposed method to attack stream ciphers based on simple power analysis should

mitigate the problem of incorrect categorization.

6.4 Divide-and-Conquer Method

The theoretical attacks on stream ciphers presented in Chapter 3 and Chapter 4,

assume that power measurements can be used to determine with certainty the theo-

retical power difference, PD, and thereby relate power measurements to the cipher

data. In a practical attack, this expectation is naive, since there are many factors

which make the mapping between the measured power difference and theoretical PD

inaccurate.

This issue is discussed thoroughly in Chapter 5, which examines the implica-

tions of simple power analysis applied to a simulated CMOS implementation of an

individual LFSR and NLFSR. However, since the techniques of Chapter 5 focus on

extracting information from only one FSR (LFSR or NLFSR), it is not immediately

97

practical to apply these to ciphers using multiple LFSRs/NLFSRs such as Grain.

6.4.1 Using Power Measurements in a Brute Force Attack

Assume a stream cipher includes k FSRs and a nonlinear combining function. We

assume the overall power consumption of the circuit is determined by the summation

of the power consumption of each LFSR/NLFSR. Hence, the overall measured power

difference of the circuit is the summation of measured power differences of each in-

dividual FSR. Consequently, the possible PD values for the complete circuit satisfy

−k ≤ PD ≤ k.

Let the summation of the size of all FSRs be Ltot so that Ltot = L1+L2+ ...+Lk,

where Li is the size of FSR i. In a brute-force attack, we try all possible bit configura-

tions for the LFSRs and NLFSRs (i.e., all values for Ltot bits). Then we should check

whether our guess is correct, typically using known plaintext/ciphertext data with

the resulting complexity of this method being 2Ltot . However, as we shall explain,

power consumption measurements can be used in place of the plaintext/ciphertext

data used in the check of each guess.

Assume that we have collected N power samples and categorized the measured

power differences. In applying brute force based on simple power analysis, after each

guess, we should calculate PD values of the cipher based on the guessed bit values

of the FSRs for N clock cycles and compare with the categorized measured power

differences. In an ideal environment (where there would be no mapping errors from

measured PD to PDg), if the categorized values match the PD values corresponding

to the guess, we know our guess for the bits is correct. In a practical implementation,

98

we will have some number of errors during categorization of measured power differ-

ences. If the number of errors between guessed PD values and categorized measured

power differences, PDg, is large (as would be expected for random mappings), we can

conclude that some number of the guessed bit values for the cipher FSRs are wrong.

Based on our experiments on Grain, when the guess is correct, the probability

of categorized measured power differences being correct should be .4656 and, hence,

PDg values are in error with a probability of .5344. In comparison, PDg values for

incorrect guesses, should have the probability of error of about 1 − .2734 = .7266.

This difference can be used to accurately distinguish the correct guess of FSR bits

from incorrect guesses, assuming that N is large enough.

Other approaches can also be used to distinguish the correct guess. Consider Ta-

ble 6.2 which lists the probabilities for different combinations of categorized measured

power differences and PD. The table shows that, for some PD values, some measured

power differences will not happen or have very low probabilities of occurrence. For

example, when the theoretical PD = −2, the probability of categorized measured

power differences being +2 was found to be 0 and, for theoretical power differences of

+2, the probability of PDg = −2 was also found to be 0. These (virtually) impossi-

ble mappings could help us to distinguish incorrect guesses since they will (virtually)

never occur with a correct guess but may occur with an incorrect guess.

In another approach, using the provided probabilities of the last two columns in

Table 6.2, we can compare the probability of correctness for specific PD values. For

example, if, for all PD = +2 based on our guess, the probability of the corresponding

PDg = +2 is close to .0625, we can conclude that our guess is incorrect and, if that

probability is close to .3076, we can conclude the guess is correct.

99

Table 6.2: Experimental probability of measured power difference categorization in

Grain used for brute force attack.

Theoretical PDcipher PDg,cipher Probability of PDg,cipher = y Probability of

(x) of cipher (y) given theoretical PDcipher = x PDg,cipher = y

+2 +2 .3076 .0625

+2 +1 .5211 .250

+2 0 .1475 .375

+2 −1 .0239 .250

+2 −2 0 .0625

+1 +2 .1196 .0625

+1 +1 .4553 .250

+1 0 .2987 .375

+1 −1 .1196 .250

+1 −2 .0057 .0625

0 +2 .0342 .0625

0 +1 .2010 .250

...

−1 −1 .4610 .250

...

−2 +2 0 .0625

...

−2 −2 .2649 .0625

100

The complexity of applying this method of a brute-force attack to Grain is 2160

since we expect that we will need to try guesses for all possible values of the LFSR

and the NLFSR. The high complexity of this attack makes it impractical for serious

cyptanalytic threat to a stream cipher. However, in the next section we propose a

method to reduce the complexity of the attack, thereby potentially compromising the

security of practical stream cipher implementations.

6.4.2 SPA Attack Using Divide-and-Conquer on Stream Ci-

phers with Multiple FSRs

To decrease the complexity of the attack we can apply a divide-and-conquer approach

by guessing each LFSR/NLFSR independently and then checking whether the guessed

bits for the FSR are correct or not. Note that this divide-and-conquer approach is

similar to classical correlation attacks applied to nonlinear combination keystream

generators [59].

6.4.2.1 General Attack

One approach to attacking an FSR-based stream cipher, using a divide-and-conquer

approach, takes advantage of the impossibility of certain PDg values for the cipher

occurring given one of the FSR PD values. Table 6.3 illustrates such error scenarios

for different numbers, k, of FSRs in the system, when all PDg values matched with

the actual values of PD with the probability of 100%. For example, for k = 2, if

one FSR is assumed to have values of PD = +1 at various points in time, then if

this assumption is correct, no value of PDg = −2 or −1 for the overall cipher must

101

Table 6.3: Error scenarios for categorized PD

of FSRs Guessed PDFSR Impossible PDg,cipher

(one FSR) (overall cipher)

+1 −2, −1

2 0 −2, +2

−1 +1, +2

+1 −3, −2

3 0 −3, +3

−1 +2, +3

+1 −4, −3

4 0 −4, +4

−1 +3, +4

+1 −k, −(k − 1)

k 0 −k, +k

−1 +(k − 1), +k

occur at any of these points in time. If it does, it is reasonable to assume that the

assumption is incorrect and the assigned PDg value to the FSR is incorrect. (Of

course, in practice, inaccuracies in categorization of measured power differences may

make there be a small non-zero probability that such an error will occur.)

In a divide-and-conquer approach, we can guess the bit values of one FSR, de-

termine the corresponding PD values for the FSR and examine whether impossible

PDg values occur. From this we can determine the error probability as the fraction

of impossible PDg values of the cipher (given by the 3rd column of the Table 6.3).

102

From this error probability, we can determine whether our guess for the bits of the

FSR was correct. For example, for k = 2, for all FSR values with PD = +1 based on

the guess of the FSR bits, the error probability for the cipher PDg = −2 is expected

to be about 0.0625 if the categorization is random relative to the PD values based on

the guessed FSR bits (that is, corresponding to an incorrect guess of the FSR bits),

while the error probability should in theory be 0 (or, in practice, very close to 0)

when the correct bits of the FSR are guessed.

Using these concepts, an algorithm to attack a stream cipher with multiple FSRs

is proposed as follows:

1. Measure the power consumption of the circuit and calculate a number, N , of

measured power difference (MPD) values.

2. Categorize the measured power differences of the circuit to obtain PDg values.

3. For each of the k FSRs of the cipher, repeat the following until the correct guess

is determined.

(a) Try a new guess of the bit values of the FSR.

(b) Calculate N consecutive theoretical PD values of the FSR based on the

guessed bits.

(c) Compute the error probability based on the calculated PD values of the

FSR and the PDg values of whole circuit.

(d) Compare the computed error probability with the probability of catego-

rizing measured power differences randomly. If the probability is close to

103

the probability of randomly categorized values, we can conclude the guess

is incorrect; if the probability is 0 (or very close to it), the guess is correct.

4. Return the correct guess for each FSR.

The computational complexity of this algorithm is determined by the need to

systematically guess bit values for each FSR individually. This will take the longest

for the largest FSR and therefore, the complexity is 2L1+2L2+...+2Lk < k2Lmax power

trace analyses, where Lmax is the bit size of the largest FSR in the cipher. A power

trace analysis consists of the assessment of the N power differences for each guess of

an FSR value and is therefore comprised of the steps (a)-(d) of step 3 in the algorithm.

Example stream ciphers which are vulnerable to divide-and-conquer attack are the

Geffe generator [62] and E0 [6] and other stream ciphers based on combining FSRs.

In the next section, we apply this divide-and-conquer attack approach to Grain in a

practical environment where inaccurate categorizations of measured power differences

can occur.

6.4.2.2 Applying the Attack to Grain

In this section, we examine the experimental results of applying a divide-and-conquer

approach to a practical implementation of Grain. Having obtained experimental data

for an implementation of Grain, we outline a slightly different approach to checking

our guess for the FSR bits than is used in the previous section, where the impossible

scenarios of Table 6.3 were used to distinguish correct and incorrect guesses. More

generally, we can use the probability of any or all PDg values of the cipher given PD

values of one FSR, not just the impossible scenarios, where this probability is zero.

104

Grain consists of an LFSR and an NLFSR (i.e., k = 2). In Table 6.4, we

present the probability that, when a PD value of one of Grain’s FSRs is x, the

categorized power difference for the whole Grain circuit takes on a value of y. The

provided data in the table is based on 11700 power samples of Grain determined from

simulations for 180 nm CMOS. Note that the first column of Table 6.4 represents

the PD value associated with only one FSR; this is different than the data in Table

6.2 whose first column represents the PD value of the entire cipher. Also, note

that, since these results now reflect practical power measurements, the error scenarios

given in Table 6.3 are not impossible to observe since practical inaccuracies occur

during the categorization process. However, the error scenarios occur with very small

probabilities, eg. the probability of observing PDg,cipher = +2 given the PDFSR = −1

is only 1.05%, well below the 6.25% of values expected to be PDcipher = +2.

After collecting power samples from the circuit, we have to systematically guess

the bit values of the FSR. Based on the guessed bits, we should determine guessed

theoretical PD values of one FSR and compare them with the categorized power

difference, PDg, values of the overall cipher determined from the measured power

consumption. If the resulting experimentally determined conditional probabilities

are similar to the fifth column of Table 6.4, we know that our guess for the bit values

of the FSR is incorrect, but, if the probabilities are close to the third column, we can

assume the guessed bits are correct. The fourth column, representing the theoretical

conditional probabilities (i.e., where no mapping errors occur in categorization), is

presented for comparison. In order to complete the attack, the cryptanalyst must

individually exhaustively try all values for both the NLFSR and the LFSR, which

will take, at most, 280 + 280 = 281 analyses of the available power samples.

105

Table 6.4: Probability of measured power difference categorization in Grain used for

divide-and-conquer attack.

PDFSR PDg,cipher P (PDg,cipher = y| P (PDg,cipher = y| P (PDg,cipher = y)

(x) (y) PDFSR = x) PDFSR = x) (theoretical)

(experimental) (theoretical)

+1 +2 .1440 .250 .0625

+1 +1 .4075 .500 .250

+1 0 .3216 .250 .375

+1 −1 .1111 0 .250

+1 −2 .0158 0 .0625

0 +2 .0475 0 .0625

0 +1 .2407 .250 .250

0 0 .4215 .500 .375

0 −1 .2398 .250 .250

0 −2 .0505 0 .0625

−1 +2 .0105 0 .0625

−1 +1 .1096 0 .250

−1 0 .3352 .250 .375

−1 −1 .4109 .500 .250

−1 −2 .1338 .250 .0625

106

In order to succeed, the attack needs enough power samples, N , to accurately

calculate probabilities and the probability of success in the attack increases by in-

creasing the number of collected measured power differences. In the next section we

study the relationship between the probability of success and the required number of

power samples.

Given the complexity of the attack, the proposed attack is more effective than

a brute force approach at guessing the 160 bits of the keystream generator state.

However, in Grain the unknown state is initialized through the combination of an

80-bit key and a known 64-bit IV. Hence, the proposed attack does not improve on

the complexity of an exhaustive key search attack on Grain. Since the key size of

Grain is only 80 bits, it is reasonable to expect that Grain can be attacked for a

publicly known IV value, by trying 280 different guesses for the key and verifying the

correct guess by matching a couple hundred bits of actual keystream to the keystream

generated based on the guessed bits. The results on Grain are therefore for illustration

purposes only and circumstances for which the attack will be more successful than

other approaches are discussed in Section 6.4.1.

6.4.2.3 Analysis of Attack on Grain

In order to determine the practical applicability of the attack on Grain, it is necessary

to determine the number of required power samples, N . In order to analyze this,

consider the case presented in the Table 6.4 corresponding to a guessed theoretical

PD value of an FSR of +1, resulting in the overall categorized PDg value for the

cipher of +1. Experimental analysis shown in the table indicates that, if our guess

for the bits of the FSR is correct, the probability of the cipher PDg value being +1

107

when the FSR PD = +1 is about .4 (experimentally, .4075 and, theoretically, .5),

while, if the guess for the FSR bits is incorrect, the probability is .25. Similarly, for

cases where the guessed bits of the FSR imply a PD value of −1 for the FSR, the

cipher PDg value should be −1 with a probability of about .4 (experimentally, .4109

and, theoretically, .5) if the guess is correct, with PDg = −1 with probability of .25

when the guess is incorrect. Since for an FSR, on average, 50% of the PD values are

+1 or −1, we can make use of about half of the measured power samples and the

resulting PDg to verify these two conditional probabilities.

For simplicity, assume that out of N power samples, exactly half correspond to

cases of PD = +1 or PD = −1 for the guessed bits of the targeted FSR in the

divide-and-conquer attack. (The exact number is a random variable following the

binomial distribution with a mean of N
2

, but variations in this number do not make

a significant difference to the analysis, so the assumption is reasonable.) Let M

represent the number of guessed PD values of +1 or −1 for which the cipher PDg

value is the same. The probability of occurrence for a particular value of M is given

by the binomial distribution:

Peq(M) =

(
N
2

M

)
× ΛM × (1− Λ)

N
2
−M , (6.5)

where Λ represents the conditional probability of PDg for the overall cipher given the

guessed PD value of the FSR and Λ = .4 when the FSR guess is correct and Λ = .25

when the FSR guess is incorrect.

For the correct guess, the number of occurrences for which the guessed FSR

PD is the same as the cipher’s PDg should be, on average, .4× N
2

. For the incorrect

guess, the number of such occurrences will average .25× N
2

. So, in order to distinguish

108

between a correct guess for the FSR bits and an incorrect guess, we can set a threshold,

γ, such that, if the value of M is greater than or equal to the threshold, it is assumed

that the correct guess has been made. Otherwise, the incorrect guess has been made.

In this case, the probability of correctly distinguishing the correct guess is given by

calculating the probability that M ≥ γ for the probability distribution associated

with the correct guess of the FSR value. We can refer to this as a case of a true

accept and its probability is given by

Pta =

N
2∑

M=γ

(
N
2

M

)
× (.4)M × (.6)

N
2
−M , (6.6)

which is simply derived from (6.5) with the value Λ = .4. The probability of erro-

neously accepting an incorrect guess as correct is given by calculating the probability

that M ≥ γ for the probability distribution associated with the incorrect guess of the

FSR value. We can refer to this as a case of false accept and its probability is given

by

Pfa =

N
2∑

M=γ

(
N
2

M

)
× (.25)M × (.75)

N
2
−M , (6.7)

which is simply derived from (6.5) with the value Λ = .25.

In order for the attack on Grain to be a success, we can set the reasonable

requirements of Pta = 99% and Pfa < 2−80. Setting these requirements will result in

a very high likelihood that, after testing all 280 guesses of the FSR value, the only

guess distinguished as being correct is indeed the correct value of the FSR state.

We can then use (6.6) and (6.7) to determine the number of power samples, N , to

satisfy these requirements. We can do so most easily by approximating the binomial

distributions implied by (6.5) as a Gaussian distribution, where for an incorrect FSR

109

guess, the mean and variance are given by:

µ0 = .25 · n/2

σ2
0 = (N

2
)× .25× (1− .25) = .1875× N

2
.

(6.8)

For the correct FSR guess, the mean and variance of the Gaussian approximation are

given by:

µ1 = .4 · N
2

σ2
1 = (N

2
)× .4× (1− .4) = .24× N

2
.

(6.9)

Based on the constraints on Pta and Pfa, the threshold must be set to at least

10.22σ0 above µ0 and at least 2.33σ1 below µ1, resulting in the following constraint:

10.22σ0 + 2.33σ1 ≤ µ1 − µ0 (6.10)

Substituting (6.8) and (6.9) into (6.10) results in N ≥ 2750. Hence, we must use

about 3000 power samples from the cipher to determine 3000 values of PDg which

may be used to verify which guess of the FSR state is correct. Hence, we may conclude

that using 281 tests on about 3000 power samples is sufficient to attack the cipher,

which is substantially less effort than a brute force search on the full Grain state of

160 bits.

Note that we have only used the probabilities of having PDg
cipher = +1 or −1,

conditioned on PDFSR = +1 or −1, respectively, and it would also be possible to

make use of all cases in Table 6.4 to possibly reduce the number of required power

samples further. Using a chi-square goodness-of-fit test, one could analyze all cases

to determine whether the experimental conditional probabilities of column 3 corre-

sponding to a correct guess of the FSR is a better fit than the probabilities of column

5 associated with an incorrect guess of the FSR.

110

6.4.3 General Applicability of the Attack to Multiple FSR

Ciphers

As discussed in Section 6.4.2.2, the effectiveness of the attack on Grain is limited

by the fact that the size of key is the same as the register sizes used in the cipher

structure. Hence, a divide-and-conquer approach that targets guessing one register at

a time does not improve on exhaustively searching through the key. We have focused

on Grain in this thesis to illustrate the concepts on an existing cipher proposal.

However, this attack has broad applicability to any stream cipher constructed using

multiple FSRs and in many cases, the divide-and-conquer approach may indeed prove

to be substantially more effective than either a brute force search through all possible

keystream generator states or an exhaustive key search.

For example, consider the applicability to a nonlinear combination generator

comprised of k FSRs (which can be either LFSRs or NLFSRs), where the sizes of the

registers are L1, L2, ..., Lk. The total number of state bits in the keystream generator

is given by Ltot = L1+L2+...+Lk. In this case, a brute force attack on the state of the

generator would require a complexity of 2Ltot and a basic time-memory tradoff attack

[19] would require a complexity of 2Ltot/2 in time and memory. However, an SPA-based

divide-and-conquer attack would require a time complexity of 2Lmin and, perhaps, a

few hundred power samples, where Lmin = min{L1, L2, ..., Lk} to recover some of the

state bits. For Lmin � Ltot, this implies that the SPA attack represents a significant

improvement over brute force and time/memory tradeoff attacks. Also, if Lmin is

significantly smaller than the size of the key, then SPA is potentially significantly

more successful than exhaustive key search. In the case of Grain, L1 = L2 = 80,

111

Lmin = 80, and Ltot = 160. Hence, the SPA attack is a significant improvement over

brute force search of the state space and improvement on a time-memory tradeoff,

which requires large memory resources. However, since the key size is equal to Lmin,

there is no improvement over exhaustive key search.

6.5 Summary

In this chapter we have proposed a simple power analysis attack, applicable to stream

ciphers based on multiple LFSRs and/or NLFSRs. The proposed method is based

on divide-and-conquer approach and is similar to correlation attack in the mathe-

matical cryptanalysis of stream ciphers. The practical implications of the attack are

demonstrated by examining simulated power trace measurements from a CMOS im-

plementation of the Grain stream cipher. These results show that a large category

of FSR based stream ciphers are practically vulnerable to simple power analysis and

care must be taken to design implementations which do not leak power consumption

information.

112

Chapter 7

Using Fast Correlation Attack for

Simple Power Analysis

As described in Chapter 6, Siegenthaler [59] shows that if there exists a measure

of correlation between the keystream sequence and the output of the FSRs in an

stream cipher, it is possible to determine the initial state of each FSR, independently.

Thereby he reduced the cryptanalytic attack to a divide and conquer attack with

approximate complexity of
∑

i 2
Li . The correlation attack significantly reduces the

complexity of the cryptanalysis of stream ciphers but it requires an exhaustive search

over entire states of each FSR. To avoid an exhaustive search, the fast correlation

attack was proposed in [79].

The main goal of the fast correlation attack is to convert the cryptographic

problem into a decoding problem. In the fast correlation attack the number of required

keystream bits is more than the number of required keystream bits in the correlation

attack, and a precomputation step should be done before the attack. In the next

113

section, we briefly review fast correlation attack and then we will develop it to be

applicable to simple power analysis.

7.1 Preliminaries: Fast Correlation Attack

A typical methodology for producing random-like sequences from LFSRs in a stream

cipher is to combine LFSR’s bits using a nonlinear function, f . As shown in [80, 81]

there is always a correlation between the output of the nonlinear function, f , and a

linear combination of its inputs. In other words, if f has n inputs and is characterized

by (n−1) resilient functions 1 (but not n resilient functions), then there is a correlation

which can be shown as

P (z = c1 · u1 ⊕ c2 · u2 ⊕ c3 · u3 · · · ⊕ cn · un) 6= .5, (7.1)

where ui and z are the inputs and output of f , respectively, and ci are fixed values

(0 < i ≤ n). Increasing the resiliency of f will decrease the nonlinearity of the

function, resulting in a higher vulnerability to algebraic attacks [60].

Instead of an exhaustive search over state bits of the LFSR as originally sug-

gested in the correlation attack, fast correlation attacks are based on using certain

parity check equations created from the feedback polynomial of the LFSR. All fast

correlation attacks use two phases [79, 84, 85]. In the first phase, the attacker finds

a set of parity check equations stemming from the LFSR’s feedback. This phase

is generally done as a precomputational process. In the second phase, the attacker

1An n-input m-output t-resilient function is a function runs through every possible output m-

tuple an equal number of times when t arbitrary inputs are fixed and the remaining n− t inputs run

through all the 2n−t input tuples once [82, 83].

114

uses the generated parity check equations in a fast decoding algorithm to recover the

transmitted codeword and the initial state of an LFSR.

Assume the stream cipher contains an LFSR with the bit length of L. The

probability of equality of st(i) and zt is shown as P (st(i) = zt) = 1
2

+ ε. In well

designed stream ciphers, |ε| is very small (smaller than .01) [77]. Using the correlation

attack, the attacker can guess st(i) with the probability of 1
2

+ ε. To increase this

probability, we can use certain parity check equations. Let the feedback of the LFSR

be defined as st(L) = a0 · st(0) ⊕ a1 · st(1) ⊕ · · · aL−1 · st(L − 1), and assume that it

includes d nonzero terms or
∑L−1

i=0 ai = d. Therefore, we can write

st(L) = a0 · st(0)⊕ a1 · st(1)⊕ · · · aL−1 · st(L− 1)

st(L+ 1) = a0 · st(1)⊕ a1 · st(2)⊕ · · · aL−1 · st(L)

st(L+ 2) = a0 · st(2)⊕ a1 · st(3)⊕ · · · aL−1 · st(L+ 1) (7.2)

:

st(2L− 1) = a0 · st(L− 1)⊕ a1 · st(L)⊕ · · · aL−1 · st(2L− 2).

For any arbitrary bit of the LFSR, st(i), 0 ≤ i < L, we can generate d number of

parity check equations using (7.2).

It is also possible to write another set of equations which are generated from

P (xq) = P q(x) (where q = 2j and P (x) is the feedback polynomial for the LFSR

and P (x) =
⊕L−1

i=0 ai · xi). This increases the number of parity check equations and

hence improves the probability of a successful attack. For example, assume a finite

field with the primitive polynomial of x4 ⊕ x3 ⊕ 1 = 0. The corresponding feedback

is P (x) = x3 ⊕ 1, or st(4) = st(3)⊕ st(0). For the first set of equations for st(10), we

115

can write

st(10) = st(5)⊕ st(6)

st(11) = st(10)⊕ st(7)

st(14) = st(13)⊕ st(10)

or

st(10) = st(5)⊕ st(6)

st(10) = st(11)⊕ st(7)

st(10) = st(13)⊕ st(14).

For the second set of equations when q = 21, we can write

P (x2) = P 2(x)

= x8 ⊕ x6 ⊕ 1

=
(
x4 ⊕ x3 ⊕ 1

)2
= 0

Since, x8 ⊕ x6 ⊕ 1 = 0 is corresponding to st(8)⊕ st(6)⊕ st(0) = 0, we can write the

following set of equations for st(10)

st(10) = st(8)⊕ st(2)

st(12) = st(10)⊕ st(4)

st(18) = st(16)⊕ st(10)

116

or

st(10) = st(8)⊕ st(2)

st(10) = st(12)⊕ st(4)

st(10) = st(16)⊕ st(18).

Using P (xq) = P q(x) for different q is dependent on the number of observable

keystream bits, N . Using these proposed techniques, for any arbitrary bit of the

LFSR, we can write m = (d+1) log(N
2L

) equations (where log uses base 2) [79]. In the

precomputation step, the attacker sets up these parity check equations and calculates

the probability of the correctness of a guess for each st(i).

In the second phase, the attacker employs a decoding algorithm to find the

hidden state bits of the LFSR. In the primary paper [79], there are two algorithms

proposed for this purpose, called algorithm A and algorithm B. In algorithm A, from

the calculated probabilities of correctness for different st(i), the attacker chooses L

bits which have the highest probabilities. From the selected st(i), the state bits of the

LFSR are calculated and its correctness is checked using the observed keystream of

the cipher. This process continues until the right values for st(i) and the state bits of

the LFSR are found. In algorithm B, the attacker selects a threshold probability and,

for each st(i), the probability of the correctness which are smaller than the threshold

causes the values of st(i) to flip. This process will continue until the correct values of

the LFSR state bits are discovered. The efficiencies of both algorithms are studied in

[79] and some implementation results are summarized there.

The improvement in fast correlation attack can be done in both phases, finding

parity check equations and using the calculated probabilities to find the correct st(i).

117

The efficiency of the first phase has potential for improvement through the discovering

of more or better parity check equations (that is low weight parity check equations).

As described in [77, 85], the required number of keystream bits to attack an

LFSR in a stream cipher is:

N ∝
(

1

2|ε|

) 2(d−2)
d−1

2
L

d−1 , (7.3)

where d is the weight of the LFSR or the number of nonzero terms of the feedback

of the LFSR, i.e. d =
∑L−1

i=0 ai. The time complexity of the precomputation step (or

first phase) where the attacker is looking for the parity check equations is [77, 85]

Tpre ∈ O
(

Nd−2

(d− 2)!

)
. (7.4)

This complexity can be reduced by using a time-memory trade off technique, proposed

in [86]. Finally, the time complexity of phase two of the attack is roughly [77, 85]:

Ta ∈ O

((
1

2|ε|

) 2d(d−2)
d−1

2
L

d−1

)
. (7.5)

The complexities presented in equations (7.3), (7.4) and (7.5) may differ in var-

ious papers based on the algorithms employed. The best proposed attack is depen-

dent on various input parameters. These parameters include correlation (ε), received

keystream length (N), LFSR size (L), and the form of feedback polynomial. Other

factors of consideration are the cost of precomputation time, memory and platform of

computations. Even given these factors, it is still difficult to determine the time com-

plexity of many proposed algorithms. For specific algorithms, a theoretical derivation

can be made on the complexity as a function of the correlation. For others, there are

mainly just simulation results [84].

118

7.2 Using Fast Correlation Attack in Simple Power

Analysis

Chapter 6 summarized applications for the correlation attack in simple power anal-

ysis. Similar to the correlation attack, the proposed simple power analysis needs an

exhaustive search over the LFSR or NLFSR state bits. This fact makes an attack in-

feasible for stream ciphers with long FSRs, such as Grain. In a fast correlation attack,

decoding techniques are used to avoid exhaustive search and reduce the complexity

of the attack. The obtained parity check equations stem from the feedback relation

of the LFSR. In this section, similar to fast correlation attack, decoding techniques

are implemented to reduce the complexity of the proposed technique in Chapter 6,

applied to stream ciphers based on the nonlinear combination of the LFSRs.

Similar to correlation attack based on power analysis, the attacker should mea-

sure the power consumption of the cryptographic core and calculate the measured

power differences, MPD, at the edges of the clock. The second step is to map the

measured power differences of the LFSR, MPD, to discrete PD values, {−1, 0,+1},

denoted as PDg. Such methods are discussed in Section 5.3. The categorization or

mapping the analogue MPD to discrete PDg, usually has some deviation from the

theoretical PD of the LFSR. Incorrect PDg values makes the implementation of the

attack difficult, because of the errors introduced to the ultimate system of equations.

The errors are analogous to the differences between an LFSR bit values and keystream

bit values as considered in the correlation attack.

To apply fast correlation attack in simple power analysis, one must show at first

the same relationships which are applicable to st(i) of an LFSR, are also applicable

119

to PD of the LFSR. The use of proposed decoding techniques (in a fast correlation

attack) on PD (instead of st(i)) will result in L consecutive PD of the LFSR. After

this, the attacker can use either the proposed technique in Section 4.1 or use the

mathematical approach. The mathematical approach involves setting up a system of

linear equations and using appropriate tools, such as Sage, to solve it and recover

state bits of the LFSR.

Let the feedback of the LFSR be defined as

st(L) = a0 · st(0)⊕ a1 · st(1)⊕ · · · aL−1 · st(L− 1). (7.6)

If we substitute L at the left side with L, L−1, 0 and −1, the following four equations

are obtained.

st(L) = a0 · st(0)⊕ a1 · st(1)⊕ · · · ⊕ aL−1 · st(L− 1)

st(L− 1) = a0 · st(−1)⊕ a1 · st(0)⊕ · · · ⊕ aL−1 · st(L− 2)

st(0) = a0 · st(−L)⊕ a1 · st(1− L)⊕ · · · ⊕ aL−1 · st(−1) (7.7)

st(−1) = a0 · st(−L− 1)⊕ a1 · st(−L)⊕ · · · ⊕ aL−1 · st(−2).

Adding the four equations over GF(2) and using the (2.11) notation gives us:

|PDt| = a0 · |PDt−L| ⊕ a1 · |PDt−L+1| ⊕ · · · aL−1 · |PDt−1|. (7.8)

Hence, the same feedback relation applicable to the bits of the LFSR is applicable

to |PDt|. Similarly, we can extend other relationships such as P (xq) = P q(x) (where

q = 2j and P (x) =
⊕L

i=0 ai · xi) to |PD| values. Extending st(i) relationships to

|PDt|, allows the use of the same parity check equations and decoding techniques for

|PDt|, that would be applicable in fast correlation attack.

120

In the first phase of the simple power analysis using fast correlation, the attacker

sets up parity check equations for |PDt| values. It is possible that the attacker uses

one of the techniques proposed in [84, 86, 87, 88, 89, 90, 91, 92, 93, 94] to find low

weight parity check equations. This phase can be done as a precomputation step.

After collecting the parity check equations, an algorithm such as Algorithm A,

Algorithm B [79] or other proposed algorithms in [86, 92, 95, 96, 97] can be used to

find the correct values of |PDt| from |PDg
t |. In the original algorithms proposed for

the second phase of the fast correlation attack, the attacker uses zt or the keystream

bits as the guessed values of st(i). However, in simple power analysis, we use |PDg
t |,

as the guessed value for |PDt|. Executing the algorithm, gives us actual |PDt| values.

Once the actual |PDt| values are determined, we can set up a system of equations

and using appropriate tools or use the described method in Section 4.1 to calculate

state bits St of the LFSR.

In simple power analysis, the probability of equality of PDt and PDg
t is de-

fined as the probability of correctness of PDg or Pcr = P (PDt = PDg
t). Typically,

this probability is much higher than the probability of correlation of zt and st(i).
2

Therefore, ε, in simple power analysis is defined as:

ε = Pcr −
1

2
. (7.9)

Hence, we can use the same equations provided in Section 7.1 to calculate the required

number of power samples, (7.3), the precompuation time complexity of the attack,

(7.4), and its time complexity, (7.5).

For example, consider an LFSR studied in Chapter 2 for Grain. The bit length

2 In practical stream ciphers, ε for mathematical approaches are smaller than .01 [77]

121

of the LFSR is 80, and the feedback is st(80) = st(67) ⊕ st(57) ⊕ st(42) ⊕ st(29) ⊕

st(18) ⊕ st(0). Therefore, the feedback weight of the LFSR is d = 6. Assume the

probability of categorizing the |PDg| values of the LFSR correctly is the same as

the probability of categorizing the |PDg| values of the NLFSR correctly, studied in

Chapter 5. This probability is Pcr = 0.840. Therefore, ε is .34. Substituting these

values in equations (7.3) and (7.5), gives the time complexity of the attack to be

Ta ≈ 221.4 and the required number of power samples is N ≈ 217. The time complexity

of precomputation step is Tpre ≈ 263.4. The complexity of this method (excluding the

precomputation step) is significantly smaller than the proposed method in Section

5.6 which has the time complexity of 245 or 224, depending on the number of observed

power samples. Also this complexity is smaller than the complexity of the proposed

method in Section 5.7 which is 235. However, the required number of power samples,

in this method is more than the proposed method in the previous sections. The

required number of power samples for the proposed methods in Section 5.6 are 6400

and 80000 (which are approximately 212.6 and 216.3), while the proposed method in

Section 5.7 needs only 200 power samples.

Another example of direct application of this method is the Toyocrypt [43, 98].

The Toyocrypt consists of a 128 bit LFSR and a filter function. The feedback of the

LFSR is initialized at the beginning of the encryption and may change for different

applications (depending on IV or a secondary key). If we assume the probability of

categorizing |PDg| values of the LFSR correctly is 84% (Pcr = 0.840), then ε is .34.

For different feedbacks, equations (7.3) and (7.5), gives the different computation time

and required number of power samples. For d = 5, the time complexity of the attack

is 236.2 and the required number of power samples is 233. The precomputation process

122

d Time complexity of Required number of The complexity of

the attack (Ta) power samples (N) precomputation phase (Tpre)

5 236.2 233 297.5

6 231 226.4 2101

7 230.3 222.2 2104.1

Table 7.1: The complexity of the attack on Toyocrypt for different d (ε = .34)

needs 297.5 bit operations. For d = 6, the time complexity of the attack is 231, the

required number of power samples is 226.4 and the complexity of the precomputation

process is 2101 bit operations. These values are summarized in the Table 7.1

It should be noted that the precomputation step needs to be done only once.

When the parity check equations for an ε are calculated, they can be used for any

other circuit with the greater ε.

7.3 Application of Fast Correlation Attack to Grain

In this section, we investigate the practical issue of the fast correlation attack in

power analysis by applying our attack to a Grain circuit. This section will use the

same simulation results, which were studied in Chapter 6 for correlation attack on

Grain-v1. The implemented circuit is prototyped in TSMC 180 nm standard cell

CMOS technology. Cadence Virtuoso Spectre Circuit Simulator version 5.10.41 is

used to obtain the real-time power consumption of the circuit. The power supply of

the circuit is 1.8 volt. The simulations were done in room temperature default noise.

A total of 11700 power samples of Grain were collected.

123

To attack Grain, at first we should categorize the measured PD values. Since,

the attacker can only measure MPD of the whole circuit, i.e. MPDGrain, a method

to realize the PD values of the LFSR from MPDGrain must be contemplated. Then,

by the applying fast correlation attack to |PDg| of the LFSR, the LFSR state bits

can be uncovered. Finally, we offer a technique to calculate the NLFSR state bits

using algebraic methods.

7.3.1 Categorizing the MPD of Grain

As described in [8, 14, 15], Grain contains an LFSR and an NLFSR. The power con-

sumption of the circuit includes the power consumption of the LFSR, NLFSR and

the power consumption of the combining function. As studied in previous chapters,

at the triggering edges of the clock, we can ignore the power consumption of the

combining functions and the feedbacks of the FSRs. For an ideal power consump-

tion model for an FSR, the theoretical PD can be {−1, 0,+1}. For a circuit with

two FSRs such as Grain, theoretical power differences of the cipher circuit can be

{−2,−1, 0,+1,+2}. To categorize the analogue MPD values of the Grain circuit

to the discrete {−2,−1, 0,+1,+2} values, we use the same method as described in

Section 6.2. In this method, we assume the power consumption of the circuit at time

t (at the triggering edge) is the summation of the power consumption of the LFSR

and the NLFSR (which is also proportional to the Hamming distance of their con-

secutive states). Therefore, we can conclude the overall dynamic power dissipation of

the circuit at the triggering edge of the clock is proportional to HDLFSR
t +HDNLFSR

t .

124

The resulting equation (6.4) gives

PDGrain
t = PDLFSR

t + PDNLFSR
t . (7.10)

The first requirement is to hypothesize the PD of the LFSR from the measured power

consumption of the circuit. There are two methods that can be used to obtain the

power difference of the LFSR. The first method hypothesizes PDg of the LFSR from

categorized PD of Grain, PDg,Grain. The second method guesses PDg of the LFSR

directly from measured PD values of the circuit.

In the first method, after collecting enough power samples to calculate the MPD

values of Grain, the measured power differences are sorted in ascending order. The

results are separated using Table 6.1. The 6.25% largest positive measured power

differences are categorized as PDg,Grain = +2. Conversely, the 6.25% most negative

measured power differences are categorized as PDg,Grain = −2. Correspondingly, the

next 25% of the most positive and negative measured power differences should be cat-

egorized as PDg,Grain = +1 and PDg,Grain = −1, respectively. The remaining values

are categorized as PDg,Grain = 0. Experimental results have shown the probability

of correctly categorizing an MPD in this method is 46.65%.

The next step is to generate the power difference values of the LFSR, PDg,LFSR,

from PDg of Grain. For an ideal power consumption model of Grain, at differ-

ent values of PDGrain, the possible values of PDLFSR and their probabilities (i.e.,

P
(
PDLFSR = i|PDGrain = j

)
, −1 ≤ i ≤ +1 and −2 ≤ j ≤ +2) are summarized in

Table 7.2.

As shown in Table 7.2, only for two values of PDGrain (PDGrain = +2 and

PDGrain = −2), the PD of the LFSR can be inferred with the probability of 100%.

125

Table 7.2: Possible PD values for LFSR/NLFSR, for different PDGrain and their

probabilities.

PDGrain Possible values Probability

for PDFSR P
(
PDFSR|PDGrain

)
−2 −1 1

−1 −1 .5

0 .5

−1 .25

0 0 .5

+1 .25

+1 +1 .5

0 .5

+2 +1 1

126

For the rest of PDGrain values (PDGrain ∈ {−1, 0,+1}), a method to map PDg

of Grain to PDg of the LFSR is required. The PDg of the LFSR at time t is a

function of the categorized PDGrain of the same time (i.e. PDg,Grain
t). If PDg,Grain

t =

+2 or PDg,Grain
t = +1, we determine PDg,LFSR

t = +1, and if PDg,Grain
t = −2 or

PDg,Grain
t = −1, we determine PDg,LFSR

t = −1. For PDg,Grain
t = 0, we set PDg,LFSR

t

to 0.

This method of categorizing PDg for the LFSR is imperfect and as such some

PDLFSR
t will be categorized incorrectly. Assuming all PDg,Grain values are categorized

correctly, the probability of correctly categorizing a PDg,LFSR
t is calculated as follow

Pcr
(
|PDg,LFSR|

)
= P

(
PDLFSR = +1 or − 1 | |PDGrain| = 2

)
· P
(
|PDGrain| = 2

)
+P

(
PDLFSR = +1 or − 1 | |PDGrain| = 1

)
· P
(
|PDGrain| = 1

)
+P

(
PDLFSR = 0||PDGrain| = 0

)
· P
(
|PDGrain| = 0

)
= 1× 0.0625 + 1× 0.0625 + .5× .25 + .5× .25 + .5× .375

= .5625

To use the conventional fast correlation attack, the guessed |PDg| should be 0 or

1. Hence, we use the absolute values of PDg,LFSR, i.e. |PDg,LFSR|. This method is

applied to the implemented Grain-v1 circuit. The simulation results show 55.04% of

the |PDg,LFSR| are guessed correctly, by first categorizing the inaccurate Grain PD

values. As expected this is a little less than the calculated theoretical value of 56.25%

which assumed no noise in the categorization process. Hence, |PD| of the LFSR can

be guessed with the probability of 0.5504, which is 0.0504 better than the probability

of random guessing.

127

The second method of guessing |PD| of the LFSR, is directly from MPD of

the circuit. After measuring the power consumption of the circuit and obtaining

the MPD values of the circuit, we sort them. For the 25% largest positive measured

power differences, the corresponding |PDg,LFSR
t | should be categorized to +1. For the

25% largest negative MPDt, the corresponding |PDg,LFSR
t | should be categorized to

−1. The rest of |PDg,LFSR
t | should be categorized to 0. We have applied this method

of categorization to the measured power consumption of the circuit. The experimental

results shows that the probability of correctly categorizing |PDg,LFSR| in this method

is 55.70% which is slightly more than the previous method.

7.3.2 Deriving the LFSR State Bits of Grain

In the previous section, we describe two methods to guess the |PD| values of the

LFSR from measured power consumption of the circuit. To obtain state bits of the

LFSR, St, at first we calculate L consecutive |PD| values of the LFSR. To calculate L

consecutive |PDLFSR|, we use fast correlation attack technique, described in Section

7.1 and 7.2. Then, we set up a system of equations to obtain st(i), 0 ≤ i < L, or state

bits of the LFSR. As studied in Section 7.3.1, the probability of guessing |PDLFSR|,

are .5504 and .5570 for two the proposed methods. The attacker, through the use

of proposed techniques to collect enough parity check equations for |PDg,LFSR| and

the proposed algorithms in [79, 92, 95, 96, 97] (substituting zt with |PDg,LFSR| in

the algorithms), computes the actual |PDLFSR|. The timing complexity of obtaining

PDLFSR can be calculated using (7.5). The value of ε obtained from equation (7.9),

for the first method of categorization is 0.0504 and for the second method is 0.057.

128

The bit length of LFSR of Grain is 80 (L = 80) and d for the LFSR feedback of

Grain is 6. Substituting these values in (7.3), gives the required number of power

samples, which are on the order of 221.3 and 221 for the first and second method of

guessing |PDg,LFSR|, respectively. The time complexities of calculating |PDLFSR|,

are 247.8 and 246 bit operations, respectively. The time complexities of the first phase

or precomputation steps are 281 and 280 bit operations.

7.3.3 Deriving the NLFSR State Bits of Grain

There are two methods for exploring the NLFSR bits which we will consider. The

first method is applicable to Grain-v0. It is fully explained in [17] by Berbain, Gilbert

and Maximov. The paper discusses a simple approach to calculate NLFSR bits after

obtaining LFSR state bits. For the second method, the focus is on using power

differences and keystream bits to calculate the NLFSR state bits. It is applicable to

Grain-v1.

7.3.3.1 Deriving the NLFSR State Bits of Grain-v0

In [17], the authors employed a second order fast correlation attack to Grain-v0

resulting in recovery of the LFSR state bits (Their approach was purely mathematical

and did not make use of power measurements.). The time complexity of the attack

was 243 with 242 bits of memory and 238 keystream bits. The LFSR state bits serve

as input to calculate the NLFSR state bits.

The output combining function of Grain-v0 is defined as

zt = bt(0)⊕ bt(63) · pt ⊕ qt, (7.11)

129

where bt(i) represents the i-th bit of the NLFSR and pt and qt are functions of LFSR

bits st(i) at time t,

pt = 1⊕ st(64)⊕ st(46) (st(3)⊕ st(25)⊕ st(64)) (7.12)

qt = st(25)⊕ st(3) · st(46) (st(25)⊕ st(64))⊕ st(64) (st(3)⊕ st(46)) .

When the initial state of the LFSR has been recovered, each output keystream

bit (zt) can be expressed by a linear relation of the NLFSR state bits (Bt). Using

equation (7.11), for each zt one of the following four equations (depending on the

initial state of the LFSR), can be written

zt = bt(0) for pt = 0 and qt = 0

zt = bt(0)⊕ 1 for pt = 0 and qt = 1

zt = bt(0)⊕ bt(63) for pt = 1 and qt = 0 (7.13)

zt = bt(0)⊕ bt(63)⊕ 1 for pt = 1 and qt = 1.

Since, p and q are balanced functions, each equation has the same probability of

occurrence.

For any zt, if one of the two first equations is applicable (zt = bt(0) or zt = bt(0)⊕

1), the attacker can recover the corresponding bit of the NLFSR, bt(0), instantly. For

any zt which involves two bits (zt = bt(0) ⊕ bt(63) or zt = bt(0) ⊕ bt(63) ⊕ 1), the

attacker should consider both the equations for zt and zt+63. With probability 1
2
, the

equation for zt+63 provides the value of bt(63) for the attacker, instantly (i.e. zt+63

is of the form of zt+63 = bt+63(63) or zt+63 = bt+63(63) ⊕ 1.). If the corresponding

equation for zt+63 provides the value of bt(63), the attacker can substitute it in the

130

corresponding equation of zt and obtain bt(0). With probability 1
2
, the equation

for zt+63 also involves two bits. Then the equation of zt+2×63 should be considered,

which can also either involve only one bit or two bits and we have to consider more

equations to solve. Consequently the probability that a chain is of length n is 1
2n+1

and the probability that a chain is of length strictly larger than n is 1
2n+1 .

Lets N be the number of available keystream bits and equal n× 63. The prob-

ability that the length of a chain becomes larger than N is 1
2n+1 . The probability of

all chains being smaller than 10, or 630 keystream bits being enough for the attack

is more than 96% which is calculated as
(
1− 1

2n+1

)80
, where n = 10. However, if one

or two chains become longer than 10, the NLFSR state bits, are still recoverable by

the means of a brute force approach.

7.3.3.2 Deriving the NLFSR State Bits of Grain-v1

In 2007, the designers of Grain made a change in the combining output function

of Grain-v0, to make it immune to the proposed attacks such as [17]. The second

method of recovering the NLFSR state bits relies on the use of both keystream and

simple power analysis techniques. As explained in Section 2.2, the output combining

function is

zt = bt(0)⊕ st(25)⊕ bt(63)⊕ st(64) · st(3)⊕ st(64) · st(46)

⊕st(46) · st(25) · st(3)⊕ st(64) · st(46) · st(3) (7.14)

⊕bt(63) · st(46) · st(3)⊕ bt(63) · st(64) · st(46).

If we know the LFSR state bits (St) and keystream bits (zt), the nonlinear relation

between NLFSR state bits (Bt) will be removed and a linear relation between NLFSR

131

state bits can be written. For example, if st(64) · st(46) = 1, we can write:

bt(63) = zt ⊕ bt(0)⊕ st(25)⊕ bt(63)⊕ st(64) · st(3)

⊕st(64) · st(46)⊕ st(46) · st(25) · st(3) (7.15)

⊕st(64) · st(46) · st(3)⊕ bt(63) · st(46) · st(3),

where zt, st(3), st(25), st(46) and st(64) are known values. Hence, the first step is to

write the linear relationships between bt(i) (where 0 ≤ i < 80) for different t, based

on the available keystream bits, zt, and LFSR state bits, St. It should be noted that

any known zt gives us a new linear relationship between NLFR state bits.

The second step is to calculate the PDg,NLFSR. After categorizingMPD of Grain

and obtaining the PD of the LFSR, the calculation of the PDg of the NLFSR, results

from subtracting PDLFSR from PDGrain. Therefore, the PDNLFSR is calculated as

PDg,NLFSR
t = PDg,Grain

t − PDLFSR
t . (7.16)

The PD of the NLFSR gives us the relation

PDNLFSR
t = [bt(L)⊕ bt(L− 1)]− [bt(0)⊕ bt−1(0)]. (7.17)

The rest of attack is similar to the proposed attack in Section 5.7, which is applying

simple power analyzing to LFSR based stream cipher in noisy environments. Similar

to Section 5.7, we can rewrite (7.17) for PDg,NLFSR
t :

PDg,NLFSR
t = gt − ht, (7.18)

where

gt = bt(L)⊕ bt−1(L) (7.19)

ht = bt(0)⊕ bt−1(0).

132

PDNLFSR
t 6= −1 PDNLFSR

t 6= +1

PDg,Grain
t PDLFSR

t PDg,Grain
t PDLFSR

t

+2 −1 −2 +1

+2 0 −2 0

−1 +1 +1 −1

Table 7.3: The target PDg,NLFSR
t

The possible values of g and h for different PDg,NLFSR
t are summarized in Ta-

ble 5.5. Identical to the proposed method in Section 5.7 the goal is to find target

PDg,NLFSR
t with their corresponding actual PDNLFSR

t not equal to +1, PDNLFSR
t 6=

+1 (or not equal to −1, PDNLFSR
t 6= −1). Due to high rate of error in PDg,NLFSR

t ,

the proposed method in Section 5.7 is not directly applicable for PDg,NLFSR
t . In

other words, if PDg,NLFSR
t = +1 (or PDg,NLFSR

t = −1) it does not imply the actual

PDNLFSR
t is definitely not equal −1 (or +1).

Studying the experimental results of the circuit shows that if categorized PDg,Grain
t =

+2 and the calculated PD of LFSR is 0 or −1, then the probability of PDNLFSR
t = −1

is negligible. Similarly, if categorized PDg,Grain
t = −2 and the calculated PD of

LFSR is 0 or +1, then the probability of PDNLFSR
t = +1 is negligible. Also, when

PDg,Grain
t = +1 (or PDg,Grain

t = −1) and the calculated PD of LFSR is −1 (or

+1), then the probability of PDNLFSR
t = −1 (or PDNLFSR

t = +1) is negligible. We

summarize the target PDg,NLFSR
t in Table 7.3. The experimental results show the

probability of occurrence of a target PDg,NLFSR
t is .054.

After collecting enough power samples, we have to find target PDg,NLFSR which

imply PDNLFSR
t 6= +1 or PDNLFSR

t 6= −1. For each target PD, we can write a

133

second order equation based on g and h. The conversion of equations from g and h

to bt(i), where 0 ≤ i < 80 and t can be any value is possible, using equations (7.19).

For bt(i), when t+ i ≥ L we can use equation (7.15) or the provided linear equations

in the first step (based on known zt and LFSR state bits, St) to convert it to a linear

relation of bt(i), where 0 ≤ i < 80, for a specific t. Therefore, we have a system of

equations in which the unknown variables are bt(i) where 0 ≤ i < 80 for a specific t

and the degrees of the system of equations are two.

The last step is to solve the nonlinear system of equations, through the use of the

conventional algebraic methods such as relinearization or XL algorithms. Converting

the system of nonlinear equations to a linear system of equations (using the XL

method), the maximum number of unknown variables is(
80

2

)
+ 80 = 3240 ≈ 211.66. (7.20)

Using the proper tools such as Sage [63] and Gaussian elimination, the complexity of

calculating bt(i) for 0 ≤ i < 80 for the initial state (t = 0) is cubic in the number of

known variables and this will take no more than 235 bit operations.

In order to solve a system of nonlinear equations using the XL method, provided

that after linearization there will be enough linearly independent equations, more

than 80 equations are required. A system with 100 equations or target PD and

80 unknown variables is solvable with high probability [73]. In order to set up 100

nonlinear equations, 100 target PDg,NLFSR
t values are needed. Since, the probability

of occurrence of a target PDg,NLFSR
t is 0.054, the collection of 100 target power

difference requires on average we need 100 × .054−1 or 1852 power samples. Hence,

on average with 1852 power samples and keystream bits and the complexity of 235,

134

the NLFSR state bits may be determined.

Since, Grain consists of an LFSR and an NLFSR and a nonlinear combining

function, recovering the state bits of both FSRs results in the recovering state bits of

the stream cipher. As described above, determining the LFSR state bits needs 246 bit

operations (following a precomputation of 280 bit operations) and calculating NLFSR

state bits needs 235 bit operations.

7.4 Summary

In this chapter, we have improved the method of recovering LFSR state bits using

simple power analysis. This method is applicable when the measured power con-

sumption of the circuit is not accurate. In other words, when the attacker can not

map the measured power consumption of the circuit to the actual state bits of the

circuit, this method is very useful. In previous chapters, we developed a correlation

attack and use it in simple power analysis, however the complexity of the attack was

still high. Here, we have combined the simple power analysis technique and fast cor-

relation attack to reduce the time complexity of the attack. The proposed technique

is applicable on LFSR based stream ciphers.

In order to demonstrate the applicability of the attack, the simulated power

consumption of a CMOS implemented circuit of Grain-v0 and Grain-v1 were collected.

Then, we considered the proposed technique based on the information derived from

the collected power simulations. We have shown that Grain is susceptible to the

proposed attack. The timing complexity of recovering LFSR state bits with our

method is 246 (following a precomputation step of complexity 280) and the timing

135

complexity of recovering NLFSR state bits is 235. It should be considered that the

precomputation phase in cryptanalysis needs to be done only once and the results can

be used for any other attack. This complexity is much smaller than exhaustive search

and correlation attack, described in the previous section. The timing complexity of

exhaustive search to obtain state bits of Grain is 2160 and the timing complexity of

correlation attack is 280.

The proposed complexities to recover the state bits of Grain is calculated for the

standard LFSR defined in [8, 14, 15]. d in the defined LFSR in [8, 14, 15] is 6. If the

number of the tabs in the LFSR was 7, the number of required power samples for a

successful attack would be 218.6 and the timing complexity of the attack would be 250,

following a precomputation step of complexity 285.9. These values when the d = 5 are

224.7, 271.5 and 243.5 for the number of required power samples, the timing complexity

of the attack and the timing complexity of the precomputation step, respectively.

136

Chapter 8

Conclusion

8.1 Summary of Research

In this thesis, we have studied the cryptanalysis of FSR based stream ciphers using

power analysis methods. Several new attacks on stream ciphers based on power anal-

ysis are presented. Theoretical and simulation results concerning their performance

are presented.

We summarize the contributions of our research as follows. We extended the con-

ventional simple power analysis from single to multiple LFSR based stream ciphers.

Through the further development of conventional simple power analysis, we have been

enabled to make it applicable on NLFSR bases stream ciphers. These attacks have

been examined by application to E0, LILI-128 and Grain in an ideal environment,

where there is perfect correlation between measured power consumption and state

bits of the cipher.

As well, we have examined the effect of noise and/or inaccurate power mea-

137

surements in simple power analysis attack. No previous research has studied these

practical issues for power analysis attacks applied to stream ciphers. We developed

the simple power analysis methods to be practical with inaccurate measurements or

power consumption data, proposing an approach to recover the state bits of stream

ciphers including an LFSR or NLFSR with inaccurate power information. The effi-

ciency of these methods have been investigated by application to an 80-bit NLFSR

simulated as a CMOS circuit.

Another main contribution of this research is to apply the classical mathematical

methods of attacking LFSR based stream ciphers in the context of simple power

analysis. For this purpose, we have studied algebraic, correlation and fast correlation

attacks. We have developed an algebraic attack for simple power analysis, to propose

a new attack on LFSR based stream ciphers. This attack is practical with inaccurate

measurement data. The application of this attack has been studied using 80 bit

LFSRs. It has been shown that this attack needs the timing complexity of 235 bit

operations to calculate the state bits of the 80 bits LFSR based on CMOS simulated

data.

Further, we have developed a correlation attack for side channel analysis and

applied it to Grain. By application, we have verified that Grain is vulnerable to

side channel analysis attack with the complexity of 280 which is substantially less

than the brute force recovering of the cipher state. To reduce the complexity of

the attack, we have employed the fast correlation attack. We have shown that fast

correlation techniques can be employed in power analysis to determine LFSR state

bits of a stream cipher. Subsequently, we have applied the fast correlation techniques

in power analysis of Grain. It is shown that Grain is susceptible to the proposed

138

attack even with noisy environments and inaccurate measurements.

This research shows the stream ciphers are more susceptible to power analysis

attacks than they were thought before. In practical hardware implementations of the

stream ciphers, the power analysis of the circuit must be considered as a potential

threat and the hardware cores must designed in a way to stop leaking of power

information data.

8.2 Future Work

Although, we have begun work on this area, there are many issues that still need to

be considered in the application of power analysis to stream ciphers. To apply fast

correlation attack for simple power analysis we have used the proposed techniques in

fast correlation attack to reduce the timing complexity of the attack. These techniques

are mostly mathematical and based on finding more parity check equations to increase

the probability of guessing PD values correctly. Future research could use the power

consumption information to increase the probability of guessing PD values. For that

purpose, we can use the proposed techniques in Chapter 5, such as robust threshold,

sequence consistency and RE/FE equivalence techniques. Using these techniques

along with proposed mathematical approaches can increase the efficiency of the attack

and reduce the timing complexity and required number of power samples.

Other work that remains to be done in future is applying the proposed algebraic

method on block ciphers. Not much research has been done to apply algebraic side

channel attacks in noisy environments on block ciphers. The proposed algebraic

technique in this dissertation for noisy environments is applicable on block ciphers

139

and can helps the attacker to use it for practical implementations.

Another complement for this research is finding countermeasure techniques for

simple power analysis. This research shows the necessity of designing and developing

countermeasure circuits beside the implemented cryptographic cores and care must be

taken to design implementations which do not leak power consumption information.

140

Bibliography

[1] I. N. Bronshtein and K. A. Semendyayev, Handbook of mathematics (3rd ed.).

London, UK, UK: Springer-Verlag, 1997.

[2] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied

Cryptography. Boca Raton, FL, USA: CRC Press, Inc., 1st ed., 1996.

[3] H. C. A. V. Tilborg, Fundamentals of Cryptology: A Professional Reference and

Interactive Tutorial. Norwell, MA, USA: Kluwer Academic Publishers, 1st ed.,

1999.

[4] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Inf.

Theor., vol. 22, pp. 644–654, Sept. 1976.

[5] European Telecommunications Standards Institute, “Digital cellular telecommu-

nications system (phase 2+); technical realization of the short message service

(sms); point-to-point (pp).” (TS 100 901, GSM 03.40 version 7.3.0 Release 1998),

November 1999.

[6] B. Sig, Specifications of the Bluetooth System - Version 1.1 B, 2001.

141

[7] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners. Springer-Verlag New York Inc, 2010.

[8] M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for constrained

environments,” Int. J. Wire. Mob. Comput., vol. 2, pp. 86–93, may 2007.

[9] C. D. Canniere and B. Preneel, “Trivium specifications,” vol. 2006, 2005. url

http://www.ecrypt.eu.org/stream/.

[10] B. Tsaban and U. Vishne, “Efficient linear feedback shift registers with maximal

period,” Finite Fields and Their Applications, vol. 8, no. 2, pp. 256–267, 2002.

[11] A. Klein, Stream Ciphers. Dresden, SA, Germany: Springer-Verlag, 2013.

[12] F. Masoodi, S. Alam, and M. U. Bokhari, “An analysis of linear feedback shift

registers in stream ciphers,” International Journal of Computer Applications,

vol. 46, no. 17, pp. 46–49, 2012. Published by Foundation of Computer Science,

New York, USA.

[13] “ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932,”

2005. url http://www.ecrypt.eu.org/stream/.

[14] M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for constrained

environments,” 2005. url http://www.ecrypt.eu.org/stream/.

[15] M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain family of stream

ciphers,” in New Stream Cipher Designs - The eSTREAM Finalists (M. J. B.

Robshaw and O. Billet, eds.), vol. 4986 of Lecture Notes in Computer Science,

pp. 179–190, Springer, 2008.

142

[16] A. Maximov, “Cryptanalysis of the Grain family of stream ciphers,” in Pro-

ceedings of the 2006 ACM Symposium on Information, computer and commu-

nications security, ASIACCS ’06, (New York, NY, USA), pp. 283–288, ACM,

2006.

[17] C. Berbain, H. Gilbert, and A. Maximov, “Cryptanalysis of Grain,” in Proceed-

ings of the 13th international conference on Fast Software Encryption, FSE’06,

(Berlin, Heidelberg), pp. 15–29, Springer-Verlag, 2006.

[18] S. Khazaei, M. Hassanzadeh, and M. Kiaei, “Distinguishing attack on Grain,”

2005. url http://www.ecrypt.eu.org/stream/.

[19] A. Biryukov and A. Shamir, “Cryptanalytic Time/Memory/Data Tradeoffs for

stream ciphers,” in Proceedings of the 6th International Conference on the Theory

and Application of Cryptology and Information Security: Advances in Cryptol-

ogy, ASIACRYPT ’00, (London, UK, UK), pp. 1–13, Springer-Verlag, 2000.

[20] T. Bjorstad, “Cryptanalysis of Grain using Time

/ Memory / Data Tradeoffs v1.0,” 2008. url

http://www.ecrypt.eu.org/stream/papersdir/2008/012.pdf.

[21] C. De Cannière, O. Küçük, and B. Preneel, “Analysis of Grain’s initialization al-

gorithm,” in Proceedings of the Cryptology in Africa 1st international conference

on Progress in cryptology, AFRICACRYPT’08, (Berlin, Heidelberg), pp. 276–

289, Springer-Verlag, 2008.

143

[22] F. Armknecht, “Algebraic attacks on stream ciphers..” ECCOMAS - 4th Euro-

pean Congress on Computational Methods in Applied Sciences and Engineering,

technical paper to the given talk, 2004.

[23] Y. Shaked and A. Wool, “Cryptanalysis of the bluetooth E0 cipher using

obdd’s,” in Proceedings of the 9th international conference on Information Secu-

rity, ISC’06, (Berlin, Heidelberg), pp. 187–202, Springer-Verlag, 2006.

[24] A. Clark, E. Dawson, J. Fuller, J. D. Golic, H.-J. Lee, W. Millan, S.-J. Moon, and

L. Simpson, “The LILI-II keystream generator,” in Proceedings of the 7th Aus-

tralian Conference on Information Security and Privacy, ACISP ’02, (London,

UK, UK), pp. 25–39, Springer-Verlag, 2002.

[25] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks

Inc., 2010.

[26] X. Huang, W. Huang, X. Liu, C. Wang, Z. jing Wang, and T. Wang, “Re-

constructing the nonlinear filter function of LILI-128 stream cipher based on

complexity,” CoRR, vol. abs/cs/0702128, 2007.

[27] P. P. Deepthi and P. Sathidevi, “Hardware stream cipher based on LFSR and

modular division circuit,” International Journal of Electrical and Computer En-

gineering, pp. 791–799, 2008.

[28] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems,” in Proceedings of the 16th Annual International Cryptol-

ogy Conference on Advances in Cryptology, CRYPTO ’96, (London, UK, UK),

pp. 104–113, Springer-Verlag, 1996.

144

[29] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis of

product ciphers,” J. Comput. Secur., vol. 8, pp. 141–158, Aug. 2000.

[30] N. P. Smart, “Physical side-channel attacks on cryptographic systems.,” Software

Focus, vol. 1, no. 2, pp. 6–13, 2000.

[31] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Petrel: Power and timing

attack resistant elliptic curve scalar multiplier based on programmable arithmetic

unit,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 58,

no. 8, pp. 1798–1812, 2011.

[32] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Comput.

Netw., vol. 48, pp. 701–716, Aug. 2005.

[33] E. D. Win and B. Preneel, “Elliptic curve public-key cryptosystems - an in-

troduction,” in State of the Art in Applied Cryptography, Course on Computer

Security and Industrial Cryptography - Revised Lectures, (London, UK, UK),

pp. 131–141, Springer-Verlag, 1998.

[34] J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede,

“State-of-the-art of secure ECC implementations: a survey on known side-

channel attacks and countermeasures,” in 2010 IEEE International Symposium

on Hardware-Oriented Security and Trust (HOST), pp. 76–87, 2010.

[35] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Revised Papers

from the 4th International Workshop on Cryptographic Hardware and Embedded

Systems, CHES ’02, (London, UK, UK), pp. 13–28, Springer-Verlag, 2003.

145

[36] N. Hanley, M. Tunstall, and W. P. Marnane, “Information security applica-

tions,” ch. Unknown Plaintext Template Attacks, pp. 148–162, Berlin, Heidel-

berg: Springer-Verlag, 2009.

[37] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the

Secrets of Smart Cards (Advances in Information Security). Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2007.

[38] A. Amara, F. Amiel, and T. Ea, “FPGA vs. ASIC for low power applications,”

Microelectronics Journal, vol. 37, pp. 669–677, Aug. 2006.

[39] A. Moradi, M. Salmasizadeh, M. T. Manzuri Shalmani, and T. Eisenbarth, “Vul-

nerability modeling of cryptographic hardware to power analysis attacks,” Integr.

VLSI J., vol. 42, pp. 468–478, Sept. 2009.

[40] S.-M. S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis &

Design. New York, NY, USA: McGraw-Hill, Inc., 3 ed., 2003.

[41] S. Burman, D. Mukhopadhyay, and K. Veezhinathan, “LFSR based stream ci-

phers are vulnerable to power attacks,” in Proceedings of the cryptology 8th

international conference on Progress in cryptology, INDOCRYPT’07, (Berlin,

Heidelberg), pp. 384–392, Springer-Verlag, 2007.

[42] B. Qu, D. Gu, Z. Guo, and J. Liu, “Differential power analysis of stream ciphers

with LFSRs,” Computers and Mathematics with Applications, vol. 65, no. 9,

pp. 1291 – 1299, 2013. Advanced Information Security.

146

[43] M. Mihaljevic and H. Imai, “Cryptanalysis of Toyocrypt-HS1 stream cipher,”

IEICE Transactions on Fundamentals, vol. E85-A, pp. 66–73, 2002.

[44] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proceedings of

the 19th Annual International Cryptology Conference on Advances in Cryptology,

CRYPTO ’99, (London, UK, UK), pp. 388–397, Springer-Verlag, 1999.

[45] B. P. J. Lano, N. Mentens and I. Verbauwhede, “Power analysis of syn-

chronous stream ciphers with resynchronization mechanism,” in Proceedings

of the SASC 2004 - The State of the Art of Stream Ciphers, (Brugge,

Belgium), pp. 327–333, Springer-Verlag, October 2004. Available at

http://www.ecrypt.eu.org/stvl/sasc/record.html.

[46] W. Fischer, B. M. Gammel, O. Kniffler, and J. Velten, “Differential power analy-

sis of stream ciphers,” in Proceedings of the 7th Cryptographers’ track at the RSA

conference on Topics in Cryptology, CT-RSA’07, (Berlin, Heidelberg), pp. 257–

270, Springer-Verlag, 2006.

[47] Y. Han, X. Zou, Z. Liu, and Y. cheng Chen, “Efficient DPA attacks on AES

hardware implementations.,” IJCNS, vol. 1, no. 1, pp. 68–73, 2008.

[48] J. Ambrose, N. Aldon, A. Ignjatovic, and S. Parameswaran, “Anatomy of differ-

ential power analysis for AES,” in Symbolic and Numeric Algorithms for Scien-

tific Computing, 2008. SYNASC ’08. 10th International Symposium on, pp. 459–

466, 2008.

[49] M. E. Hellman, “A cryptanalytic Time-Memory Tradeoff,” IEEE Transactions

on Information Theory, vol. 26, no. 4, pp. 401–406, 1980.

147

[50] P. Oechslin, “Making a faster cryptanalytic Time-Memory Tradeoff,” in Advances

in Cryptology - CRYPTO 2003 (D. Boneh, ed.), vol. 2729 of Lecture Notes in

Computer Science, pp. 617–630, Springer Berlin Heidelberg, 2003.

[51] M. Albrecht, “Algebraic attacks on the Courtois Toy cipher,” Cryptologia,

vol. 32, pp. 220–276, July 2008.

[52] A. Kipnis and A. Shamir, “Cryptanalysis of the HFE public key cryptosystem by

relinearization,” in Proceedings of the 19th Annual International Cryptology Con-

ference on Advances in Cryptology, CRYPTO ’99, (London, UK, UK), pp. 19–30,

Springer-Verlag, 1999.

[53] N. T. Courtois, “Higher order correlation attacks, XL algorithm and cryptanal-

ysis of Toyocrypt,” in Proceedings of the 5th international conference on In-

formation security and cryptology, ICISC’02, (Berlin, Heidelberg), pp. 182–199,

Springer-Verlag, 2003.

[54] N. T. Courtois, “Cryptanalysis of Sfinks,” in Proceedings of the 8th international

conference on Information Security and Cryptology, ICISC’05, (Berlin, Heidel-

berg), pp. 261–269, Springer-Verlag, 2006.

[55] N. T. Courtois and W. Meier, “Algebraic attacks on stream ciphers with linear

feedback,” in Proceedings of the 22nd international conference on Theory and

applications of cryptographic techniques, EUROCRYPT’03, (Berlin, Heidelberg),

pp. 345–359, Springer-Verlag, 2003.

148

[56] N. T. Courtois, “Algebraic attacks on combiners with memory and several out-

puts,” in Proceedings of the 7th international conference on Information Security

and Cryptology, ICISC’04, (Berlin, Heidelberg), pp. 3–20, Springer-Verlag, 2005.

[57] C. Cid and S. Murphy, Algebraic Aspects of the Advanced Encryption Standard.

Springer Publishing Company, Incorporated, 1st ed., 2010.

[58] M. S. Mohamed, J. Ding, J. Buchmann, and F. Werner, “Algebraic attack on

the MQQ public key cryptosystem,” in Proceedings of the 8th International Con-

ference on Cryptology and Network Security, CANS ’09, (Berlin, Heidelberg),

pp. 392–401, Springer-Verlag, 2009.

[59] T. Siegenthaler, “Decrypting a class of stream ciphers using ciphertext only,”

IEEE Trans. Comput., vol. 34, pp. 81–85, Jan. 1985.

[60] T. Siegenthaler, “Correlation-immunity of nonlinear combining functions for

cryptographic applications (corresp.),” IEEE Trans. Inf. Theor., vol. 30, pp. 776–

780, Sept. 2006.

[61] A. A. Zadeh and H. M. Heys, “Applicability of simple power analysis to stream

ciphers constructed using multiple LFSRs,” in Proceedings of the 25th Annual

Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–

6, IEEE, 2012.

[62] P. Geffe, “How to protect data with ciphers that are really hard to break,”

Electronics, vol. 46, pp. 99–101, Jan. 1973.

149

[63] W. A. Stein et al., Sage Mathematics Software (Version 5.6). The Sage Devel-

opment Team, 2013. http://www.sagemath.org.

[64] C. L. Chen, “Linear dependencies in linear feedback shift registers,” IEEE Trans.

Comput., vol. 35, pp. 1086–1088, Dec. 1986.

[65] A. A. Zadeh and H. M. Heys, “Theoretical simple power analysis of the Grain

stream cipher,” in Proceedings of the 26th Annual Canadian Conference on Elec-

trical and Computer Engineering (CCECE), pp. 1–5, IEEE, 2013.

[66] A. A. Zadeh and H. M. Heys, “Simple power analysis applied to nonlinear feed-

back shift registers,” IET Information Security (In Press), 2013.

[67] M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon, “Algebraic side-channel

attacks on the AES: Why time also matters in DPA,” in CHES (C. Clavier

and K. Gaj, eds.), vol. 5747 of Lecture Notes in Computer Science, pp. 97–111,

Springer, 2009.

[68] C. Carlet, J.-C. Faugre, C. Goyet, and G. Renault, “Analysis of the algebraic side

channel attack,” Journal of Cryptographic Engineering, vol. 2, no. 1, pp. 45–62,

2012.

[69] M. Mohamed, S. Bulygin, M. Zohner, A. Heuser, M. Walter, and J. Buchmann,

“Improved algebraic side-channel attack on AES,” Journal of Cryptographic En-

gineering, pp. 1–18, 2013.

[70] J. Haastad, “Some optimal inapproximability results,” J. ACM, vol. 48, pp. 798–

859, July 2001.

150

[71] R. Crowston, G. Gutin, M. Jones, E. J. Kim, and I. Z. Ruzsa, “Systems of linear

equations over F2 and problems parameterized above average,” in Proceedings

of the 12th Scandinavian conference on Algorithm Theory, SWAT’10, (Berlin,

Heidelberg), pp. 164–175, Springer-Verlag, 2010.

[72] S.-W. Zhao and X.-S. Gao, “Note: minimal achievable approximation ratio for

MAX-MQ in finite fields,” Theor. Comput. Sci., vol. 410, pp. 2285–2290, May

2009.

[73] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms

for solving overdefined systems of multivariate polynomial equations,” in Pro-

ceedings of the 19th international conference on Theory and application of

cryptographic techniques, EUROCRYPT’00, (Berlin, Heidelberg), pp. 392–407,

Springer-Verlag, 2000.

[74] M. Mezard and A. Montanari, Information, Physics, and Computation. New

York, NY, USA: Oxford University Press, Inc., 2009.

[75] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic pro-

gressions,” in Proceedings of the nineteenth annual ACM symposium on Theory

of computing, STOC ’87, (New York, NY, USA), pp. 1–6, ACM, 1987.

[76] A. A. Zadeh and H. M. Heys, “Application of simple power analysis to stream

ciphers constructed using feedback shift registers,” Submitted to The Computer

Journal, 2013.

151

[77] A. Canteaut, “Fast correlation attacks against stream ciphers and related open

problems,” in Theory and Practice in Information-Theoretic Security, 2005.

IEEE Information Theory Workshop on, pp. 49–54, Oct.

[78] J. Lano, N. Mentens, B. Preneel, and I. Verbauwhede, “Power analysis of syn-

chronous stream ciphers with resynchronization mechanism,” in ECRYPT Work-

shop, SASC - The State of the Art of Stream Ciphers, (Brugge,BE), pp. 327–333,

2004.

[79] W. Meier and O. Staffelbach, “Fast correlation attacks on certain stream ci-

phers,” Journal of Cryptology, vol. 1, pp. 159–176, 1989. 10.1007/BF02252874.

[80] G. Z. Xiao and J. L. Massey, “A spectral characterization of correlation immune

combining functions,” IEEE Trans. Inf. Theor., vol. 34, pp. 569–571, Sept. 2006.

[81] J. D. Golic, “Correlation via linear sequential circuit approximation of combiners

with memory,” in Proceedings of the 11th annual international conference on

Theory and application of cryptographic techniques, EUROCRYPT’92, (Berlin,

Heidelberg), pp. 113–123, Springer-Verlag, 1993.

[82] X. mo Zhang and Y. Zheng, “Cryptographically resilient functions,” IEEE Trans-

actions on Information Theory, vol. 43, pp. 1740–1747, 1997.

[83] B. Chor, O. Goldreich, J. Hstad, J. Friedman, S. Rudich, and R. Smolensky,

“The bit extraction problem of t-resilient functions (preliminary version),” in

FOCS, vol. 26, pp. 396–407, IEEE Computer Society, 1985.

152

[84] M. Agren, C. Londahl, M. Hell, and T. Johansson, “A survey on fast correlation

attacks,” Cryptography Commun., vol. 4, pp. 173–202, Dec. 2012.

[85] M. Hell, T. Johansson, and L. Brynielsson, “An overview of distinguishing at-

tacks on stream ciphers,” Cryptography and Communications, vol. 1, no. 1,

pp. 71–94, 2009.

[86] P. Chose, A. Joux, and M. Mitton, “Fast correlation attacks: An algorithmic

point of view,” in Proceedings of the International Conference on the Theory

and Applications of Cryptographic Techniques: Advances in Cryptology, EURO-

CRYPT ’02, (London, UK, UK), pp. 209–221, Springer-Verlag, 2002.

[87] M. J. Mihaljevic and J. D. Golic, “A fast iterative algorithm for a shift register

initial state reconstruction given the noisy output sequence,” in Proceedings of the

international conference on cryptology on Advances in cryptology, AUSCRYPT

’90, (New York, NY, USA), pp. 165–175, Springer-Verlag New York, Inc., 1990.

[88] V. Chepyzhov and B. Smeets, “On a fast correlation attack on certain stream ci-

phers,” in Proceedings of the 10th annual international conference on Theory and

application of cryptographic techniques, EUROCRYPT’91, (Berlin, Heidelberg),

pp. 176–185, Springer-Verlag, 1991.

[89] W. T. Penzhorn and G. J. Kuhn, “Computation of low-weight parity checks for

correlation attacks on stream ciphers,” in Proceedings of the 5th IMA Conference

on Cryptography and Coding, (London, UK, UK), pp. 74–83, Springer-Verlag,

1995.

153

[90] W. Penzhorn, “Correlation attacks on stream ciphers: Computing low-weight

parity checks based on error-correcting codes,” in Fast Software Encryption

(D. Gollmann, ed.), vol. 1039 of Lecture Notes in Computer Science, pp. 159–172,

Springer Berlin, Heidelberg, 1996.

[91] J. Golic, “Computation of low-weight parity-check polynomials,” Electronics Let-

ters, vol. 32, no. 21, pp. 1981–1982, Oct.

[92] T. Johansson and F. Jonsson, “Improved fast correlation attacks on stream ci-

phers via convolutional codes,” in Proceedings of the 17th international confer-

ence on Theory and application of cryptographic techniques, EUROCRYPT’99,

(Berlin, Heidelberg), pp. 347–362, Springer-Verlag, 1999.

[93] A. Canteaut and M. Trabbia, “Improved fast correlation attacks using parity-

check equations of weight 4 and 5,” in Proceedings of the 19th international con-

ference on Theory and application of cryptographic techniques, EUROCRYPT’00,

(Berlin, Heidelberg), pp. 573–588, Springer-Verlag, 2000.

[94] D. Wagner, “A generalized birthday problem,” in Proceedings of the 22nd Annual

International Cryptology Conference on Advances in Cryptology, CRYPTO ’02,

(London, UK, UK), pp. 288–303, Springer-Verlag, 2002.

[95] V. V. Chepyzhov, T. Johansson, and B. Smeets, “A simple algorithm for fast

correlation attacks on stream ciphers,” in Proceedings of the 7th International

Workshop on Fast Software Encryption, FSE ’00, (London, UK, UK), pp. 181–

195, Springer-Verlag, 2001.

154

[96] T. Johansson and F. Jnsson, “Fast correlation attacks based on turbo code tech-

niques,” in Advances in Cryptology CRYPTO 99 (M. Wiener, ed.), vol. 1666 of

Lecture Notes in Computer Science, pp. 790–790, Springer Berlin / Heidelberg,

1999.

[97] M. J. Mihaljevic, M. P. C. Fossorier, and H. Imai, “A low-complexity and high-

performance algorithm for the fast correlation attack,” in Proceedings of the 7th

International Workshop on Fast Software Encryption, FSE ’00, (London, UK,

UK), pp. 196–212, Springer-Verlag, 2001.

[98] E. Dawson, A. Clark, H. Gustafson, B. Millan, and L. Simpson, Evaluation of

TOYOCRYPT-HS1. User manual, 2001.

155

156

Appendix A

Complete Table of Probabilities for Sequence Consistency

Method

157

Sequence Probability of PDg
t = PDt Probability of PDg

t = PDt

{PDg
t−L, PD

g
t , PD

g
t+L} for rising edge for falling edge

{+1,−1,+1} .984 .918

{−1,+1,−1} .984 .918

{+1, 0,−1} .968 .852

{−1, 0,+1} .968 .852

{0,+1,−1} .906 .781

{0,−1,+1} .906 .781

{−1,+1, 0} .906 .781

{+1,−1, 0} .906 .781

{+1,+1,−1} .475 .438

{−1,−1,+1} .475 .438

{+1,−1,−1} .475 .438

Table A.1: Probability of PDg
t = PDt for sequences of three PDg values for rising

edge (Pgr = .840) and falling edge (Pgr = .680) (part 1).

158

Sequence Probability of PDg
t = PDt Probability of PDg

t = PDt

{PDg
t−L, PD

g
t , PD

g
t+L} for rising edge for falling edge

{−1,+1,+1} .475 .438

{+1,+1,+1} .475 .438

{−1,−1,−1} .475 .438

{−1, 0,−1} .473 .439

{+1, 0,+1} .473 .439

{+1,+1, 0} .456 .405

{−1,−1, 0} .456 .405

{0,+1,+1} .456 .405

{0,−1,−1} .456 .405

{0, 0,−1} .860 .680

{0, 0,+1} .860 .680

{0,−1, 0} .860 .680

{0,+1, 0} .860 .680

{−1, 0, 0} .860 .680

{+1, 0, 0} .860 .680

Table A.2: Probability of PDg
t = PDt for sequences of three PDg values for rising

edge (Pgr = .840) and falling edge (Pgr = .680) (part 2).

159

Appendix B

Algebraic Attack

B.1 Linearization

Let us assume, the goal is to solve a system of multivariate quadratic equations, with

n variables, x1, x2, · · · , xn and m equations. Obviously, to find at least one unique

answer for this system of equations, the number of equations should be more than or

equal to the number of unknown variables (m ≥ n). The idea of linearization is very

simple. It is systematically replacing every quadratic term in a system of multivariate

quadratic equations by a new variable.

To perform linearization, every quadratic term, xi × xj should be replaced by

a new term, yij. Replacing all quadratic terms transforms the system of quadratic

equations into a system of linear equations. Using conventional algorithms such as

Gaussian elimination, it is straightforward to solve a system of linear equation. As

stated above, there must be as many equations as unknowns variables. Therefore,

there is a big restriction on using this method. To have enough equations in the linear

system of equations the number of equations, in the nonlinear system of equations

160

must be at least m ≥ n2

2
.

The relinearization technique works for the MQ problem (or system of multi-

variate quadratic equations), if the number of equations is at least εn2, where n is

the number of variables and 0 ≤ ε ≤ 1
2

[52]. If there exist a system of multivariate

quadratic equations which meets this requirement, the first step to solve such a system

is to replacement the monomials with new variables as done in linearization. That

is, replace every quadratic term xi × xj by a new variable yij. Then more equations

should be constructed using connections between the new variables. For example,

x1 × x2 × x3 × x4 = y12 × y34 = y13 × y24 = y14 × y23.

Now more equations are produced, but all the new equations have quadratic

terms in them. So linearization is executed again to get a system of linear equations.

In fact, relinearization is just a method to generate new equations and solve the

system of nonlinear equations with fewer available equations.

B.2 XL

XL (which stands for eXtended Linearization) was proposed in [73]. let A be a system

of multivariate quadratic equations, li = 0 (1 < i ≤ m) where li is a multivariate

polynomial fi(x1, x2, · · · , xn)− bi. Hence, li = fi(x1, x2, · · · , xn)− bi and the system

to solve is:

A :



l1(x1, x2, · · · , xn) = 0

l2(x1, x2, · · · , xn) = 0

· · ·

lm(x1, x2, · · · , xn) = 0

(B.1)

161

The problem is to find at least one solution at the form of X = (x1, x2, · · · , xn) ∈

{0, 1}n. In XL, it is assumed that the system has a unique solution.

The maximum degree of the equations is K ≥ 2. In the XL algorithm, equations

are created in the form
(∏k

j=1 xi,j

)
× li = 0, where xi,j ∈ {x1, x2, · · · , xn}. The

generated equations from this method are denoted by xkl. Let D ∈ N (It should be

noted over GF(2) for any variable, x2 = x). We consider all xkl equations with degree

smaller than D and we represent them with ID. Therefore, ID will be the linear space

generated by all the equations of the form xkl for 0 ≤ k < D − 1. In XL algorithm,

at first all ID equations are generated. Then, each monomial of ID is considered as

a new unknown variable (the degree of all monomials are smaller than D). If ID

includes enough equations, it is possible to use Gaussian elimination algorithms to

solve the system of equations. Following estimation for D is offered in [73].

D ≥ n√
m
. (B.2)

After picking D, the list of original variables are selected and a new list of vari-

ables are constructed with every possible power less than or equal to D − 2. For

example, if the list of variables is (x, y, z) and D = 4, then the new list will be

(x, y, z, xy, xz, yz). Each original equation should be multiplied by each variable from

the new list. This operation generates more linearly independent equations. It is not

necessarily true that all the new equations are linearly independent, but most of them

will be.

As a matter of fact, XL is an algorithm to generate more equation (similar to

relinearization method) such that the system is solvable using linearization method.

162

163

	Acknowledgements
	Abstract
	Introduction
	Background
	Linear and Nonlinear Feedback Shift Registers
	Grain
	E0
	LILI-128
	Side Channel Analysis
	Timing Attack
	Template Attack
	Power Analysis Attack
	Simple Power Analysis
	Differential Power Analysis

	Classical Attack of Stream Ciphers
	Time-Memory Trade off Attack
	Algebraic Attack
	Correlation and Fast Correlation Attack

	Summary

	Applicability of Simple Power Analysis to Stream Ciphers Constructed Using Multiple LFSRs
	Extension of Simple Power Analysis to Ciphers with Multiple LFSRs
	Application of the Attack to the E0 Stream Cipher
	Application of the Attack to Irregular Clocking Stream Cipher, LILI-128
	Summary

	Side Channel Analysis of NLFSR Based Stream Ciphers
	Idealized SPA Applied to NLFSRs
	Complexity vs Available Power Samples
	Applying SPA to Grain
	Summary

	Practical Application of SPA
	Power Consumption of a Single D Flip-Flop
	Power Consumption of the D Flip-flop at the Rising Edge of the Clock
	Power Consumption of the D Flip-flop at the Falling Edge of the Clock

	Developing Falling Edge SPA of LFSR/NLFSR
	Categorization of Power Measurements
	Categorizing MPD

	Basic Methods to Determine Correctly Categorized PD
	Rising Edge/Falling Edge Equivalence
	Robust Threshold
	Sequence Consistency

	Advanced Categorization Methods
	Analyzing an NLFSR
	An Improved Approach to SPA of LFSR Based Stream Ciphers
	Analyzing an LFSR
	Summary

	Using Simple Power Analysis for Correlation Attack
	Preliminaries: Correlation Attack
	Categorization of Measured Power Difference Values
	Practical Categorization for Grain
	Divide-and-Conquer Method
	Using Power Measurements in a Brute Force Attack
	SPA Attack Using Divide-and-Conquer on Stream Ciphers with Multiple FSRs
	General Attack
	Applying the Attack to Grain
	Analysis of Attack on Grain

	General Applicability of the Attack to Multiple FSR Ciphers

	Summary

	Using Fast Correlation Attack for Simple Power Analysis
	Preliminaries: Fast Correlation Attack
	Using Fast Correlation Attack in Simple Power Analysis
	Application of Fast Correlation Attack to Grain
	Categorizing the MPD of Grain
	Deriving the LFSR State Bits of Grain
	Deriving the NLFSR State Bits of Grain
	Deriving the NLFSR State Bits of Grain-v0
	Deriving the NLFSR State Bits of Grain-v1

	Summary

	Conclusion
	Summary of Research
	Future Work

	Bibliography
	
	
	Linearization
	XL

