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Abstract

Analyzing multivariate categorical data is an important and practical research topic.

Even though there exist many studies on the analysis of bivariate (possibly multivari-

ate) categorical data, the modeling of correlations among the bivariate multinomial

variables is, however, not adequately addressed. In this thesis, we develop three cor-

relation models for bivariate multinomial data. The first model accommodates fully

specified marginal probabilities and uses a bivariate normal type conditional prob-

ability relationship to model the correlations of the bivariate multinomial variables.

Next, we propose a random effects based familial type model to accommodate the

correlations, where conditional on the random effects the marginal probabilities are

fully specified. The third model is developed by considering the marginal probabili-

ties of one variable as fully specified, and using conditional multinomial logistic type

probability model to accommodate correlations. The estimation of the parameters for

all three models is discussed in details through both simulation studies and analysis

of real data.
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Chapter 1

Introduction

There are many practical situations, for example, in many biomedical studies, where

categorical responses are collected from a large number of independent individuals.

In these situations, covariates are also collected. For example, in the Wisconsin Epi-

demiologic Study of Diabetic Retinopathy (WESDR) [Williamson, Kim and Lipsitz

(1995)], diabetic retinopathy status on a ten point interval scale for left and right

eyes, along with information on various associated covariates such as duration of dia-

betes, glycosylated hemoglobin level and so on, were collected from 996 independent

patients. For convenience, the responses collected on ten point interval scale were

grouped into four categories: none, mild, moderate and proliferative. These authors

addressed the scientific question whether or not covariates have any effects on the

categorical/multinomial retinopathy status of the left and right eyes. The modeling

and analysis for this type of bivariate multinomial data will be discussed in Section

1.2 and subsequently in other chapters of the thesis. Note that when bivariate data

are modeled, it requires the modeling of correlations on top of the marginal probabili-
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ties for each of the multinomial variables. Before we begin discussing such correlation

models, we first review the existing modeling for univariate categorical data involving

individual level or categorical covariates.

1.1 Models for univariate multinomial data

Let Yi denote the multinomial response variable, for example, the right eye diabetic

retinopathy status in the above WESDR study. If there are J categories or status for

the response, then we denote this variable by Yi = (Yi1, . . . , Yij, . . . , Yi,J−1)
′. Assuming

that the response belongs to the jth (j = 1, . . . , J) category, one represents this jth

category response by y
(j)
i , which is naturally a realized value of yi. Thus

y
(j)
i =


(y

(j)
i1 , . . . , y

(j)
ij , . . . , y

(j)
i,J−1)

′ = (0′j−1, 1,0
′
J−1−j)

′, j = 1, . . . , J − 1,

(0, . . . , 0, . . . , 0)′, j = J.

(1.1)

Because covariates play a role for an individual response to be in a particular category,

it is standard to use the regression based multinomial logits to model the probability

for such responses. Let xi = (xi1, . . . , xim, . . . , xip)
′ be the p-dimensional covariate

associated with yi. One then expresses the marginal probabilities for yi = y
(j)
i as

P [Yij = 1] = Pr(Yi = y
(j)
i ) =


exp(βj0+x

′
iβj)

1+
∑J−1

u=1
exp(βu0+x′iβu)

, j = 1, . . . , J − 1,

1

1+
∑J−1

u=1
exp(βu0+x′iβu)

, j = J.

(1.2)

= π
(j)
iy , j = 1, . . . , J.

This type of marginal probability for a multinomial response to be in a particular

category has been well discussed in the literature. For example, we refer to Agresti

(2002, Section 7.1.3, Eqn. (7.2)). The basic properties of this model can be written

as follows.

2



1.1.1 Basic properties of the univariate multinomial model

Because E(Yij) = P [Yij = 1] = π
(j)
iy , the mean vector of the multinomial response Yi

is given by

E(Yi) = [E(Yi1), . . . , E(Yij), . . . , E(Yi,J−1)]
′

= (π
(1)
iy , . . . , π

(j)
iy , . . . , π

(J)
iy )′,

= πiy,

with π
(j)
iy as given in (1.2). Similarly, the covariance matrix of Yi has the form

Cov(Yi) =



var(Yi1) . . . cov(Yi1, Yij) . . . cov(Yi1, YiJ)

...
...

...

var(Yij) . . . cov(Yij, YiJ)

...
...

...

cov(Yi1, YiJ) . . . . . . . . . var(YiJ)


,

where var(Yij) = π
(j)
iy (1− π(j)

iy ) and cov(Yij, Yiu) = −π(j)
iy π

(u)
iy for j 6= u.

1.1.2 Likelihood estimation for the univariate multinomial

logit model

In the multinomial probability model (1.2), βj0 denotes the intercept parameter under

the jth category with βJ0 = 0, and βj is the effect of xi on yij for j = 1, . . . , J−1 with

βJ = (0, . . . , 0)′ by convention. One may use the likelihood method and estimate

β = (β10, β
′
1, . . . , βj0, β

′
j, . . . , βJ−1,0, β

′
J−1)

′ (1.3)

3



by maximizing the multinomial likelihood function

L(β) =
n∏
i=1

J∏
j=1

(π
(j)
iy )yij . (1.4)

It is equivalent to solving the log likelihood estimating equation for β∗j = (βj0, β
′
j)
′

∂L(β)

∂β∗j
=

∂

∂β∗j

 n∑
i=1

J−1∑
j=1

(1xi)
′β∗j −

n∑
i=1

ln

1 +
J−1∑
j=1

(1xi)
′β∗j


 yij

=
n∑
i=1

[
(1xi)yij − (1xi)π

(j)
iy

]
=

n∑
i=1

[
(1xi)(yij − π

(j)
iy )

]

[Agresti (2002, Section 7.1.4, p. 273)], leading to the likelihood equation

∂L(β)

∂β
=

n∑
i=1

î
IJ−1

⊗
(1xi)
ó
(yi − πiy) = 0, (1.5)

for the estimation of β. One can use the well-known Newton-Raphson method to

solve this equation.

1.1.3 Contingency table based univariate multinomial logit

model

1.1.3.1 One categorical covariate with L levels

Note that the multinomial probability model (1.2) is written using individual level

general covariate xi. But in practice, the covariates may be of categorical nature with

various levels. If all covariates involved in the study are categorical, one may then

express the likelihood function in (1.4) in a simpler product multinomial likelihood

function form. We demonstrate this below for single covariate (p = 1) with L levels.

In this case we can write xi only for xi1. Suppose that we use L−1 dummy covariates

4



xi(1), . . . , xi(l), . . . , xi(L−1) to represent the L levels. These covariates can take the

values as follows.

(xi(1), . . . , xi(l), . . . , xi(L−1)) =



(1, 0, . . . , 0), level 1

...

(0′l−1, 1,0
′
L−l−1), level l

...

(0, . . . , 0, 1), level L− 1

(0, . . . , 0), level L.

(1.6)

Following (1.2) we may then write the marginal probabilities π
(j)
iy for yi = y

(j)
i as

π
(j)
iy = Pr(yi = y

(j)
i ) =


exp(βj0+

∑L−1
l

xi(l)βjl)

1+
∑J−1

u=1
exp(βu0+

∑L−1
l=1

xi(l)βul)
, j = 1, . . . , J − 1,

1

1+
∑J−1

u=1
exp(βu0+

∑L−1
l=1

xi(l)βul)
, j = J,

(1.7)

where βjl is the effect of xi(l) on yij with βJl = 0 (l = 1, . . . , L) and βjL = 0 (j =

1, . . . , J). Next, suppose that for the individuals with covariate level l (l = 1, . . . , L),

the probability that the response of an individual in this group belongs to the jth

category is denoted by π
(j)
y(l). Note that in this problem n individuals can be grouped

into L distinct (or non-overlapping) subgroups based on their covariate levels. For

this reason, we use the notation i ∈ l to represent that the ith individual has covariate

level l and for this group i ranges from 1 to nl, such that
∑L
l=1 nl = n. We express

5



Table 1.1: Contingency table in the cross-sectional setup based on one covariate with

L levels.

X \ Y 1 . . . j . . . J Total

level 1 n[1]1 . . . n[1]j . . . n[1]J ñ1

...
...

...
...

...

level l n[l]1 . . . n[l]j . . . n[l]J ñl

...
...

...
...

...

level L n[L]1 . . . n[L]j . . . n[L]J ñL

Total n1 . . . nj . . . nJ n

π
(j)
y(l) as

π
(j)
y(l) = Pr(Yi = y

(j)
i |i ∈ l)

=



exp(βj0+βjl)

1+
∑J−1

u=1 exp(βu0+βul)
, j = 1, . . . , J − 1; l = 1, . . . , L− 1

1

1+
∑J−1

u=1 exp(βu0+βul)
, j = J ; l = 1, . . . , L− 1

exp(βj0)

1+
∑J−1

u=1
exp(βu0)

, j = 1, . . . , J − 1; l = L

1

1+
∑J−1

u=1
exp(βu0)

, j = J ; l = L.

(1.8)

Suppose that the observed counts under all levels (l = 1, . . . , L) are given as in

Table 1.1 above.

Now using (1.8), the product multinomial likelihood function for the observed

data in Table 1.1 may be written as

L =
L∏
l=1

L(l), (1.9)

6



where

L(l) =
ñl!∏J

j=1 n[l]j!

J∏
j=1

(π
(j)
y(l))

n[l]j . (1.10)

Note that one may estimate the parameters involved in (1.8) by maximizing

the product multinomial likelihood in (1.9). However, by expressing the exponents

in the probabilities (1.8) in a linear regression form involving all parameters, one

may obtain a simpler likelihood estimating equation. For this purpose, let θ∗ =

(β∗
′

1 , . . . , β
∗′
j , . . . , β

∗′
J−1)

′ denote the vector of parameters involved in model (1.8), with

β∗j = (βj0, β
′
j)
′, where βj = (βj1, . . . , βjl, . . . , βjL−1)

′. Next let Xl denote the matrix

of dummy covariates for the lth level, which is defined as follows:

Xl =



x′[l]1
...

x′[l]j
...

x′[l](J−1)

x′[l]J



(1.11)

=



1 0′l−1 1 0′L−l−1 . . . 0 0′L−1 . . . 0 0′L−1

...
...

...

0 0′L−1 . . . 1 0′l−1 1 0′L−l−1 . . . 0 0′L−1

...
...

...

0 0′L−1 . . . 0 0′L−1 . . . 1 0′l−1 1 0′L−l−1

0 0′L−1 . . . 0 0′L−1 . . . 0 0′L−1



,
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for l = 1, . . . , L− 1, and

XL =



x′[L]1
...

x′[L]j
...

x′[L](J−1)

x′[L]J



=



1 0′L−1 . . . 0 0′L−1 . . . 0 0′L−1

...
...

...

0 0′L−1 . . . 1 0′L−1 . . . 0 0′L−1

...
...

...

0 0′L−1 . . . 0 0′L−1 . . . 1 0′L−1

0 0′L−1 . . . 0 0′L−1 . . . 0 0′L−1



. (1.12)

By using the jth row (x′[l]j) of the J×(J−1)L matrix Xl, we rewrite the probabilities

in (1.8) with exponents in linear regression form as

π
(j)
y(l) =

exp(x′[l]jθ
∗)∑J

u=1 exp(x′[l]uθ
∗)
, j = 1, . . . , J. (1.13)

Now putting (1.13) in (1.10), one may obtain the likelihood estimating equation for

8



θ∗ as

f(θ∗) =
∂l(θ∗)

∂θ∗
=
∂logL(θ∗)

∂θ∗

=
∂

∂θ∗

L∑
l=1

J∑
j=1

n[l]jlogπ
(j)
y(l)

=
L∑
l=1

J∑
j=1

n[l]j

Ñ
x[l]j −

∑J
j=1 exp(x′[l]jθ

∗)x[l]j∑J
j=1 exp(x′[l]jθ

∗)

é
=

L∑
l=1

J∑
j=1

n[l]j

Ñ
x[l]j −

J∑
j=1

π
(j)
y(l)x[l]j

é
=

L∑
l=1

 J∑
j=1

n[l]jx[l]j −
J∑
j=1

n[l]j

J∑
j=1

π
(j)
y(l)x[l]j


=

L∑
l=1

 J∑
j=1

n[l]jx[l]j − ñl
J∑
j=1

π
(j)
y(l)x[l]j


=

L∑
l=1

 J∑
j=1

x[l]j
(
n[l]j − ñlπ(j)

y(l)

)
=

L∑
l=1

X ′l

ïÄ
n[l]1, . . . , n[l]j, . . . , n[l]J

ä′ − ñl (π(1)
y(l), . . . , π

(j)
y(l), . . . , π

(J)
y(l)

)′ò
=

L∑
l=1

X ′l
î
nl − ñlπy(l)

ó
= 0, (1.14)

where

nl =
î
n[l]1, . . . , n[l]j, . . . , n[l](J−1), n[l]J

ó′
J×1 ,

and

πy(l) =
[
π
(1)
y(l), . . . , π

(j)
y(l), . . . , π

(J−1)
y(l) , π

(J)
y(l)

]′
J×1

.

Notice that this likelihood equation in (1.14) has a simple form which is easy to solve

for θ∗. Also note from (1.8) that the exponent in the probability functions does not

use any linear addition of the regression parameters and hence there does not arise

any question of confounding one parameter with another. Thus, all parameters unlike

in (1.15) below do not encounter any identification problems. Furthermore even if βj0

9



is added to many other parameters, this βj0 parameter is common at all probability

levels making it different than other parameters.

Note that the equation (1.14) is similar to the likelihood equation (8.22) in Agresti

(2002) developed for the log linear models. To be specific, θ∗ from (1.14) may be

obtained iteratively by using

θ̂∗k+1 = θ̂∗k −
ñ
∂2l(θ∗)

∂θ∗∂θ∗′

ô−1
k

ñ
∂l(θ∗)

∂θ∗

ô
k

,

where

∂2l(θ∗)

∂θ∗∂θ∗′
=

∂

∂θ∗

[
L∑
l=1

X ′l
Ä
nl − ñlπy(l)

ä]
,

which can be reexpressed as

∂2l(θ∗)

∂θ∗∂θ∗′
=

L∑
l=1

ñlX
′
l

î
Diag(πy(l))− πy(l)π′y(l)

ó
Xl,

where Diag(πy(l)) = diag[π
(1)
y(l), . . . , π

(j)
y(l), . . . , π

(J−1)
y(l) , π

(J)
y(l)]J×J . The variance of θ̂∗ is

given by

V ar(θ̂∗) =

[
L∑
l=1

ñlX
′
l

î
Diag(πy(l))− πy(l)π′y(l)

ó
Xl

]−1
.

Note that some of the existing studies model the relationship between y and

x ignoring the fixed covariate nature of x, i.e., by treating x also as a response

variable. See, for example, the modeling for the heart attack and aspirin use data

discussed by Agresti (2002, Section 2.1.1, Table 2.1). In this approach, by considering

the treatment (aspirin use/placebo) as a response variable, for example, the joint

probability for the bivariate response is written as

π∗lj =
exp(αl + βj + λlj)∑L

l=1

∑J
j=1 exp(αl + βj + λlj)

, l = 1, . . . , L, j = 1, . . . , J. (1.15)

To be specific, π∗lj represents the probability for yi to be in the jth category with

xi at the lth level. Here βj is the jth category effect as βj0 defined in (1.7); and αl

10



determines the effect of the lth level of the x variable. Furthermore, λlj (l = 1, . . . , L,

j = 1, . . . , J) denotes the interaction effect between y and x variables. Note that the

parameters involved in (1.15) are supposed to satisfy the restrictions:
∑L
l=1 αl = 0,∑J

j=1 βj = 0, and
∑L
l=1 λlj =

∑J
j=1 λlj = 0. However, this type of modeling encounters

several confusions. This is because λlj in (1.15) represents the effect of xi(l) for y to

be in the jth category. This is well understood from the probability model for π
(j)
iy

given in (1.7). Notice that (1.7) contains βj0 which is the same as βj in (1.15), and

βjl, which is the same as λlj in (1.15) when x is a fixed covariate. In such cases when

x is fixed covariate, αl is redundant. Thus, this approach of treating a fixed covariate

as a categorical response variable is inappropriate. This may further be explained

through interpreting λlj. For example, λlj in (1.15) is treated to be an odds ratio

parameter which is a function of some correlations between two random variables.

But, when x is a fixed covariate, the correlation interpretation is quite inappropriate.

To make it even clearer, notice that the modeling by (1.7) cannot incorporate any

correlation or odds ratio parameters, rather it is a regression way of modeling.

1.1.3.2 Remarks on an alternative loglinear model

Note that to analyze the data shown in the contingency table 1.1, it is standard

to use multinomial distribution as indicated in (1.10). However, there exists a basic

alternative loglinear model (see, for example, Agresti (2009), Chapter 7 and Chris-

tensen (1997)) where poisson distributions are fitted. To be specific, in such a setup,

it is assumed that

n[l]j ∼ Poisson(µ[l]j = exp(β∗ + βYj + βXl )) (1.16)

11



with category dependent restrictions
∑J
j=1 β

Y
j =

∑L
l=1 β

X
l = 0. It is further assumed

that these cell counts are independent. It then follows that n =
∑L
l=1

∑J
j=1 n[l]j has the

poisson distribution with parameter µ =
∑L
l=1

∑J
j=1 µ[l]j =

∑L
l=1

∑J
j=1 exp(β∗ + βYj +

βXl ). Thus, realizing that n is a random variable, an independent poisson likelihood,

i.e.,
L∏
l=1

J∏
j=1

e−µ[l]jµ
n[l]j

[l]j

n[l]j!
(1.17)

is fitted to estimate the parameters β∗, βYj (j = 1, . . . , J−1) and βXl (l = 1, . . . , L−1).

However, there are at least two reasons why multinomial distribution is preferred

to the poisson distribution for analyzing such contingency table based data. First,

in many studies in practice, n is prespecified, and then these n individuals are dis-

tributed in JK cells according to their individual responses. For this reason, con-

ditional inference, where n is a specified value from a poisson distribution becomes

more appropriate. Consequently, the cell counts with given n follow the multinomial

distribution. Notice however that, because we have written Table 1.1 for X covari-

ate with L levels, we have given a product multinomial instead of a full multinomial

likelihood function.

Second, when multinomial likelihood (1.9) is used instead of the poisson likelihood

(1.17), the multinomial model does not contain β∗ any more, which is sensible in

categorical data analysis. This is because β∗ does not contribute any additional

information when categories are compared, but the poisson approach requires this

parameter to be estimated.

Moreover, when n is given, the category dependence, that is, the structural corre-

lations of the responses are understood well from the multinomial setup, as opposed

12



to the poisson setup.

For the above reasons, we will deal with the multinomial model only in this thesis.

1.1.3.3 More than one categorical covariate having interactions

Suppose that there are more than one categorical covariate associated with the multi-

nomial response yi. To be specific, for simplicity, we consider two categorical covari-

ates xi1 and xi2 with L and Q levels, respectively. Note that this can be generalized

to accommodate any number of categorical covariates. Because L levels of a covariate

can be represented by L − 1 dummy covariates, we denote the dummy covariates

for xi1 as xi1(1), . . . , xi1(l), . . . , xi1(L−1), and the Q − 1 dummy covariates for xi2 as

xi2(1), . . . , xi2(q), . . . , xi2(Q−1). Remark that in some situations, the two such covariates

may have interactions. For generality we use the interaction factor in modeling the

probabilities for the multinomial response yi. Similar to the one categorical covariate

case (1.6), we write the values for the two covariates as follows.

(xi1(1), . . . , xi1(l), . . . , xi1(L−1)) =



(1, 0, . . . , 0), level 1

...

(0′l−1, 1,0
′
L−l−1), level l

...

(0, . . . , 0, 1), level L− 1

(0, . . . , 0), level L,

(1.18)
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and

(xi2(1), . . . , xi2(q), . . . , xi2(Q−1)) =



(1, 0, . . . , 0), level 1

...

(0′q−1, 1,0
′
Q−q−1), level q

...

(0, . . . , 0, 1), level Q− 1

(0, . . . , 0), level Q.

(1.19)

Suppose that βjl denotes the effect of xi1(l) on yij, β̃jq as the effect of xi2(q) on yij,

and we further denote λjlq as the effect of the interaction between xi1(l) and xi2(q) on

yij. By treating the Lth level of xi1 and the Qth level of xi2 as the reference level,

one requires the following restrictions on the values of βjl, β̃jq and λjlq:

βJl = 0, l = 1, . . . , L, βjL = 0, j = 1, . . . , J,

β̃Jq = 0, q = 1, . . . , Q, β̃jQ = 0, j = 1, . . . , J,

λJlq = 0, l = 1, . . . , L, q = 1, . . . , Q,

λjLq = 0, j = 1, . . . , J, q = 1, . . . , Q,

λjlQ = 0, j = 1, . . . , J, l = 1, . . . , L.

Now as an extension of the one categorical covariate case (1.7), we accommodate two

covariates along with their interactions and write the marginal probabilities as

π
(j)
iy = Pr(yi = y

(j)
i )

=


exp(βj0+

∑L−1
l=1

xi1(l)βjl+
∑Q−1

q=1
xi2(q)β̃jq+

∑L−1
l=1

∑Q−1
q=1

xi1(l)xi2(q)λjlq)

1+
∑J−1

u=1
exp(βu0+

∑L−1
l=1

xi1(l)βul+
∑Q−1

q=1
xi2(q)β̃uq+

∑L−1
l=1

∑Q−1
q=1

xi1(l)xi2(q)λulq)
, j = 1, . . . , J − 1,

1

1+
∑J−1

u=1
exp(βu0+

∑L−1
l=1

xi1(l)βul+
∑Q−1

q=1
xi2(q)β̃uq+

∑L−1
l=1

∑Q−1
q=1

xi1(l)xi2(q)λulq)
, j = J.

(1.20)
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Note that these probability models are available in many standard textbooks. See,

Agresti (2002, Section 8.2.1, eqn. (8.8)), for example, for similar modeling for Poisson

count data.

Next, based on the covariates levels, we group the individuals into LQ levels, the

observed data is given in Table 2 below.

Let

θ̃∗ = (β̃∗
′

1 , . . . , β̃
∗′
j , . . . , β̃

∗′
J−1)

′
(J−1)LQ×1

denote the vector of parameters involved in model (1.20), with

β̃∗j = (βj0, β
′
j, β̃
′
j, λ
′
j)
′
LQ×1,

where

βj = (βj1, . . . , βjl, . . . , βjL−1)
′,

β̃j = (β̃j1, . . . , β̃jq, . . . , β̃jQ−1)
′,

and λj = (λj11, . . . , λjlq, . . . , λjL−1,Q−1)
′.

Similar to the single categorical covariate case discussed in Section 1.1.3.1, by ex-

pressing the exponents in a regression form involving all parameters in θ̃∗, we write

the marginal probabilities in (1.20) as

π
(j)
y(ν) =

exp(x′[ν]j θ̃
∗)∑J

u=1 exp(x′[ν]uθ̃
∗)
, j = 1, . . . , J, (1.21)

where for ν = 1, . . . , LQ, x′[ν]j is the jth row of the J × (J − 1)LQ matrix Xν , which
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Table 1.2: Contingency table of multinomial response with two categorical covariates.

xi1 xi2 Level ν 1 . . . j . . . J Total

1 1 1 n[1]1 . . . n[1]j . . . n[1]J ñ1

...
...

...
...

...
...

q q n[q]1 . . . n[q]j . . . n[q]J ñq

...
...

...
...

...
...

Q Q n[Q]1 . . . n[Q]j . . . n[Q]J ñQ

...
...

...
...

...
...

...

l 1 (l − 1)Q+ 1 n[(l−1)Q+1]1 . . . n[(l−1)Q+1]j . . . n[(l−1)Q+1]J ñ(l−1)Q+1

...
...

...
...

...
...

q (l − 1)Q+ q n[(l−1)Q+q]1 . . . n[(l−1)Q+q]j . . . n[(l−1)Q+q]J ñ(l−1)Q+q

...
...

...
...

...
...

Q lQ n[lQ]1 . . . n[lQ]j . . . n[lQ]J ñlQ

...
...

...
...

...
...

...

L 1 (L-1)Q+1 n[(L−1)Q+1]1 . . . n[(L−1)Q+1]j . . . n[(L−1)Q+1]J ñ(L−1)Q+1

...
...

...
...

...
...

q (L-1)Q+q n[(L−1)Q+q]1 . . . n[(L−1)Q+q]j . . . n[(L−1)Q+q]J ñ(L−1)Q+q

...
...

...
...

...
...

Q LQ n[LQ]1 . . . n[LQ]j . . . n[LQ]J ñLQ

Total n1 . . . nj . . . nJ n
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has the form

Xν =



x′[ν]1
...

x′[ν]j
...

x′[ν](J−1)

x′[ν]J



.

Following the one categorical covariate case (1.14), we may write the likelihood equa-

tion for θ̃∗ as

f(θ̃∗) =
LQ∑
ν=1

X ′ν
î
nν − ñνπy(ν)

ó
= 0, (1.22)

which can be solved iteratively for the estimation of θ̃∗.
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1.2 Existing bivariate multinomial models

In this section, we provide a brief review of the existing modeling and inference for

bivariate multinomial data. This type of bivariate multinomial data exhibit two types

of structural correlations. First, the marginal multinomial responses for one response

variable are correlated. Second, the multinomial responses of one variable is correlated

to the multinomial responses for the other variable. This correlation is referred to as

the familial correlation which is caused by a common individual random effect shared

by both response variables. Thus, for two multinomial responses with dimensions J

and K, respectively, there is a (J − 1) × (K − 1) structural correlation matrix for

a given individual. It is important to take these correlations into account to obtain

consistent and as efficient as possible estimates for the effects of the covariates. For

the purpose, in this section we indicate how some of the existing inference approaches

are developed and also indicate their drawbacks.

Let yi and zi denote the two multinomial response variables with J ≥ 2 and K ≥ 2.

We denote them as yi = (yi1, . . . , yij, . . . , yi,J−1)
′ and zi = (zi1, . . . , zik, . . . , zi,K−1)

′.

Recall from Section 1.1 that we represented the jth category response of yi by y
(j)
i ,

similarly, we represent the kth category response of zi by z
(k)
i . Thus

z
(k)
i =


(z

(k)
i1 , . . . , z

(k)
ik , . . . , z

(k)
i,K−1)

′ = (0′k−1, 1,0
′
K−1−k)

′, k = 1, . . . , K − 1,

(0, . . . , 0, . . . , 0)′, k = K.

(1.23)

In this setup, one is interested in understanding the association between the two

multinomial variables. The marginal effect of each variable is also of interest. This

requires one to model the joint probabilities for understanding the associations. Note

that the modeling for the joint probabilities is, however, not so straightforward. Many
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Table 1.3: Marginal and joint probabilities for bivariate multinomial responses Y and

Z.

Zi \ Yi 1 . . . j . . . J

1 πi11 . . . πi1j . . . πi1J

... . . . . . . . . . . . . . . .

k πik1 . . . πikj . . . πikJ

... . . . . . . . . . . . . . . .

K πiK1 . . . πiKj . . . πiKJ

existing studies have modeled these joint probabilities directly. To be specific, when

the data are available in a contingency table form, the joint probabilities are modeled

using functions similar to (1.15). To make it more clear how these joint probabilities

are modeled for an individual, we, for convenience, display the joint probabilities for

the response of an individual to be in a particular cell out of all KJ cells in Table 1.3.

Note that when all n individuals in a study are categorized based on the two

responses only, one may write πikj ≡ πkj for all i. This gives the contingency (or

cross-classified) Table 1.4 containing observed cell counts along with their joint prob-

abilities.

As pointed out earlier, the probabilities shown in Table 4 can be modeled in the

fashion similar to (1.15) without considering any covariates. Thus, in the existing

modeling approach ( see for example, Agresti (2002), Eqn. (8.4), Fienberg (2007))
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Table 1.4: Bivariate multinomial observed data and underlying marginal and joint

probabilities with no covariate.

Z \ Y 1 . . . j . . . J

1 n11, π11 . . . n1j, π1j . . . n1J , π1J

... . . . . . . . . . . . . . . .

k nk1, πk1 . . . nkj, πkj . . . nkJ , πkJ

... . . . . . . . . . . . . . . .

K nK1, πK1 . . . nKj, πKj . . . nKJ , πKJ

one writes

πkj = Pr(zi = z
(k)
i , yi = y

(j)
i )

=
exp(αk + βj + λkj)∑K

k=1

∑J
j=1 exp(αk + βj + λkj)

, k = 1, . . . , K, j = 1, . . . , J, (1.24)

along with the restrictions:
∑K
k=1 αk = 0,

∑J
j=1 βj = 0, and

∑K
k=1 λkj =

∑J
j=1 λkj =

0, or equivalently αK = −∑K−1
k=1 αk, βJ = −∑J−1

j=1 βj and λKJ = −∑J−1
j=1 λKj =

−∑K−1
k=1 λkJ =

∑K−1
k=1

∑J−1
j=1 λkj.

Now let θ = (α1, . . . , αK−1, β1, . . . , βJ−1, λ11, λ12, . . . , λK−1,J−1)
′
(KJ−1)×1 denote the

vector of parameters involved in the joint probability (1.24), one may then estimate θ

by solving appropriate likelihood equations derived from the likelihood function given

by

L(θ) =
n!∏K

k=1

∏J
j=1 nkj!

K∏
k=1

J∏
j=1

π
nkj
kj . (1.25)

Next, for simplicity of writing the likelihood estimating equation, we express the
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exponents in (1.24) in a regression form involving all parameters in θ as

πkj =
exp(ω′kjθ)∑K

k=1

∑J
j=1 exp(ω′kjθ)

, (1.26)

where ωkj is the (KJ − 1)-dimensional dummy covariate vector corresponding to the

(k, j)th cell of Table 4, yielding the KJ × (KJ − 1) dummy covariate matrix W ,

which is defined as

W =



ω′11

ω′12

...

ω′1J

ω′21

ω′kj

...

ω′KJ



,

with

ω′kj =
î
0′(k−1)×1, 1,0

′
(K−k−1)×1,0

′
(j−1)×1, 1,0

′
(J−j−1)×1,0

′
[(k−1)(J−1)+j−1]×1, 1,0

′
[(K−k)(J−1)−j]×1

ó
,

k = 1, . . . , K − 1, j = 1, . . . , J − 1,

ω′kJ =
î
0′(k−1)×1, 1,0

′
(K−k−1)×1,−1′(J−1)×1,0

′
(k−1)(J−1)×1,−1′(J−1)×1,0

′
[(K−k−1)(J−1)]×1

ó
,

k = 1, . . . , K − 1,

ω′Kj =
î
−1′(K−1)×1,0

′
(j−1)×1, 1,0

′
(J−j−1)×1,0

′
(j−1)×1,−1,0′(J−j−1)×1, . . . ,0

′
(j−1)×1,−1,0′(J−j−1)×1

ó
,

j = 1, . . . , J − 1,

ω′KJ =
î
−1′(K−1)×1,−1′(J−1)×1,1

′
(K−1)(J−1)×1

ó
.

Let Y = (n11, . . . , n1J , n21, . . . , nkj, . . . , nKJ)′ denote theKJ×1 vector of counts for all

KJ cells and Π = (π11, . . . , π1J , π21, . . . , πkj, . . . , πKJ)′ be the vector of corresponding
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cell probabilities. Then, by using (1.25) and (1.26), the log likelihood estimating

equation for θ can be written as

f(θ) = W ′(Y − nΠ) = 0, (1.27)

where n =
∑K
k=1

∑J
j=1 nkj.

We point out the following advantages and drawbacks of this modeling approach

below.

Advantages:

The advantage of modeling joint probabilities by (1.24) is that the estimation of the

parameters by solving (1.25) is relatively straightforward. To be specific, θ̂ for θ can

be obtained by using the simple iterative equation

θ̂k+1 = θ̂k − [f ′(θ)]
−1
θk=θ̂k

[f(θ)]θk=θ̂k ,

where f ′(θ) = nW ′ [Diag(Π)− ΠΠ′]W withDiag(Π) = diag[π11, . . . , πkj, . . . , πKJ ]KJ×KJ .

Drawbacks:

(1) The joint probabilities (1.24) yield complicated marginal probabilities given by

Pr(zi = z
(k)
i ) =

J∑
j=1

πkj =

∑J
j=1 exp(αk + βj + λkj)∑K

k=1

∑J
j=1 exp(αk + βj + λkj)

, (1.28)

and similarly for Pr(yi = y
(j)
i ). For simplicity, consider the bivariate binary case with

J = 2 and K = 2. Using the restrictions α1 +α2 = 0, β1 + β2 = 0, and λ11 + λ12 = 0,

λ21 +λ22 = 0, λ11 +λ21 = 0, and λ12 +λ22 = 0, the marginal probability for zi = z
(1)
i ,

has the formula

Pr(zi = z
(1)
i ) = π11 + π12

=
exp(α1 + β1 + λ11) + exp(α1 − β1 − λ11)

exp(α1 + β1 + λ11) + exp(α1 − β1 − λ11) + exp(−α1 + β1 − λ11) + exp(−α1 − β1 + λ11)
.
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It is clear that this marginal probability is a complicated function of all marginal

and association parameters, namely, α1, β1 and λ11. Similarly, Pr(yi = y
(j)
i ) is also

a complicated function of all marginal and association parameters. Thus, there is no

clear cut marginal parameters to define the marginal probabilities. Furthermore, the

use of association parameters to explain marginal probabilities appears to be counter

intuitive. This difficulty to explain marginal probabilities through all parameters arise

because of modeling the joint probabilities first.

(2) The association parameter λkj in (1.24) are also referred to as odds ratio param-

eters. For example, for the above bivariate binary case, λ11 satisfies the formula

λ11 =
1

4
log

π11π22
π12π21

,

which is proportional to the log of odds ratio. However, when this type of odds ratio

change from individual to individual because of individual level covariate effects, the

analysis becomes difficult and many existing studies (see for example, Williamson,

Kim and Lipsitz (1995)) attempted to model such variable odds ratios through some

’working’ linear models, which is however arbitrary. This ’working’ modeling approach

is described further in the following section.

1.2.1 Existing bivariate multinomial models involving indi-

vidual level covariates

Suppose now that there are individual level covariates associated with the two multi-

nomial responses. Let xi1 and xi2 denote the covariate vector associated with zi and

yi, respectively. Note that xi1 and xi2 may contain certain common and fixed covari-

ates. It is of scientific interest to understand the effect of xi1 on zi and the effect of

23



xi2 on yi as well. Let αk (k = 1, . . . , K − 1) and βj (j = 1, . . . , J − 1) represent the

intercept parameters reflecting the categories, and let θ1 and θ2 denote the effects of

xi1 on zi and xi2 on yi, respectively. Some authors, for example, Williamson, Kim

and Lipsitz (1995), write the marginal probabilities for the multinomial variable zi as

π
(k)
iz = Pr(zi = z

(k)
i ) =

exp(αk + x′i1θk1)

1 +
∑K−1
q=1 exp(αq + x′i1θq1)

, for k = 1, . . . , K − 1,

and π
(K)
iz = Pr(zi = z

(K)
i ) = 1−

K−1∑
k=1

π
(k)
iz =

1

1 +
∑K−1
q=1 exp(αq + x′i1θq1)

. (1.29)

Similarly, the marginal probabilities for the multinomial variable yi are given by

π
(j)
iy = Pr(yi = y

(j)
i ) =

exp(βj + x′i2θj2)

1 +
∑J−1
l=1 exp(βl + x′i2θl2)

, for j = 1, . . . , J − 1,

and π
(J)
iy = Pr(yi = y

(J)
i ) = 1−

J−1∑
j=1

π
(j)
iy =

1

1 +
∑J−1
l=1 exp(βl + x′i2θl2)

. (1.30)

It then follows that the marginal mean, variance and structural covariance of these

two multinomial variables are given by:

E(Zik) = π
(k)
iz , V ar(Zik) = π

(k)
iz (1− π(k)

iz ), Cov(Zik, Ziq) = −π(k)
iz π

(q)
iz , k 6= q; (1.31)

and E(Yij) = π
(j)
iy , V ar(Yij) = π

(j)
iy (1− π(j)

iy ), Cov(Yij, Yil) = −π(j)
iy π

(l)
iy , j 6= l.

On top of the marginal properties (1.29), it is necessary for the bivariate multino-

mial data analysis to model the joint probabilities for yi and zi, so that correlations

between yi and zi can be accommodated for any inferences mainly for the parameters

involved in the marginal probabilities. To address the above correlation issues, that

is, (1) estimation of αk and θk1 using marginal information zi = z
(k)
i and similarly

estimating βj and βj2 by exploiting yi = y
(j)
i can not be the same thing as estimating

these parameters by accommodating correlations between yi and zi. It is well known

that in such cases the marginal estimates loose efficiency. (2) Further because in the
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bivariate binary or multinomial setup, it is also important to know the joint probabil-

ities πikj = Pr(yi = y
(j)
i , zi = z

(k)
i ). However, it should be clear that if correlations are

ignored and joint probabilities πikj are computed using πikj = π
(k)
iz π

(j)
iy , then they will

be biased estimates for actual probabilities. For these two reasons, it is important to

model πikj as a function of suitable dependence between yi and zi.

There exist many studies, see for example, Williamson, Kim and Lipsitz (1995) for

bivariate multinomial data analysis at a cross-sectional setup; and Lipsitz, Laird and

Harrington (1991), Yi and Cook (2002), Ten Have and Morabia (1999) for correlated

binary data in longitudinal setup. In these studies, the marginal probabilities are

modeled in a fashion similar to the models (1.29) and (1.30), but, as indicated in the

last section, the joint probabilities are defined through certain odds ratios approach.

To be specific, the odds ratio in terms of the joint probability πikj corresponding to

response (zi = z
(k)
i , yi = y

(j)
i ) is defined as:

τikj =
Pr(zi = z

(k)
i , yi = y

(j)
i )Pr(zi 6= z

(k)
i , yi 6= y

(j)
i )

Pr(zi = z
(k)
i , yi 6= y

(j)
i )Pr(zi 6= z

(k)
i , yi = y

(j)
i )

=
πikj(1− πikj)

(π
(k)
iz − πikj)(π

(j)
iy − πikj)

,

for k = 1, . . . , K−1 and j = 1, . . . , J−1. Notice that if these odds ratio parameters are

the same for all i (which is however in general not the case in practice), then τikj ≡ τkj,

which is related to λkj used in the last section where λkj = 1
4
logτkj. Further notice

that, the computation of the joint probabilities using the above odds ratio parameters

naturally become complex. This complexity is clear from the relationship:

πikj =


fikj−[f2ikj−4τikj(τikj+1)π

(j)
iy π

(k)
iz ]

1
2

2(τikj+1)
(τikj 6= 1),

π
(k)
iz π

(j)
iy (τikj = 1),

(1.32)

where fikj = 1 + τikj(π
(k)
iz + π

(j)
iy ) (see Lipsitz et al. (1991), Yi and Cook (2002), for

example). Remark that for the purpose of computing the joint probabilities by (1.32),
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one needs to estimate the individual specific odds ratios τikj for all individuals, which

is however not possible without further modeling or assumptions. Thus, Williamson

et al. (1995) (see also Williamson and Kim (1996)), for example, have used the linear

regression model

logτikj = ∆ + ∆k + ∆̃j + ∆kj + ζx′ic, (1.33)

where ∆ is an intercept parameter, ∆k and ∆̃j are the effects of z and y, respectively,

∆kj is the interaction parameter and x′ic is a suitable vector of covariates responsible

to correlate y and z, and ζ is the effect of x′ic. This type of regression model to

explain association parameters lacks theoretical justification and hence appears to be

arbitrary. More specifically, because odds ratios are equivalent to correlations between

the multinomial responses, and because correlations are usually functions of the main

covariate through the marginal probabilities, this extra model (1.33), however, does

not address this issue at all.

1.2.2 Existing bivariate multinomial models with categorical

covariates

In this section, we briefly review the modeling of bivariate multinomial responses with

categorical covariates. For simplicity, suppose that we deal with a situation where

the models (1.29)-(1.30) contain one covariate xi instead of xi1 and xi2. Also suppose

that xi is a categorical covariate with L levels. To represent these L levels, we use

L − 1 dummy covariates xi1, . . . , xil, . . . , xi,L−1. As pointed out in Section 1.1.3.1

(Eqn. (1.15)), some authors treated the categorical covariate x also as a multinomial

response, see, for example, Agresti (2002, Section 8.4.2, Table 8.8). Thus, treating
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X as the third response variable, the joint probability for a response to be in the lth

level of x, jth and kth categories of y and z, respectively, has been written as

π∗lkj =
exp(ψl + αk + βj + λXZlk + λXYlj + λZYkj + λXZYlkj )∑L

l=1

∑K
k=1

∑J
j=1 exp(ψl + αk + βj + λXZlk + λXYlj + λZYkj + λXZYlkj )

, (1.34)

[Agresti (2002), Eqn. (8.12), Fienberg (2007), Eqn. (3.11)], where ψl, αk and βj are

the level/category effect of x, z and y to influence the response to be in the (l, k, j)th

cell. In (1.32), λXZlk , λXYlj , and λZYkj are second order interaction effects between x, z;

x, y; and z, y, respectively. Also λXZYlkj is the third order interaction effect among x,

y and z. These parameters in (1.34) are supposed to satisfy the following restrictions:

L∑
l=1

ψl = 0,
K∑
k=1

αk = 0,
J∑
j=1

βj = 0,

L∑
l=1

λXZlk =
K∑
k=0

λXZlk = 0,
L∑
l=1

λXYlj =
J∑
j=0

λXYlj = 0,

K∑
k=1

λZYkj =
J∑
j=1

λZYkj = 0,

L∑
l=1

λXZYlkj =
K∑
k=1

λXZYlkj =
J∑
j=1

λXZYlkj = 0.

This type of joint probability models constructed by treating a categorical covari-

ate as a response variable suffers from several drawbacks. For example, as pointed out

for (1.15), ψl parameters would be redundant when x is a fixed covariate. This means

one has to use product multinomial modeling instead of full multinomial models. By

the same token, because y and z are two response variables, the interaction effect

λZYkj is quite meaningful to interpret the association between y and z, whereas λXZlk ,

for example, can not be used as an association parameter when x is a fixed covariate.

Furthermore, even if x is a true categorical response variable, the joint probability in
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(1.34) produces extremely complicated marginal probabilities. For example,

Pr(yi = y
(j)
i ) =

∑L
l=1

∑K
k=1 exp(ψl + αk + βj + λXZlk + λXYlj + λZYkj + λXZYlkj )∑L

l=1

∑K
k=1

∑J
j=1 exp(ψl + αk + βj + λXZlk + λXYlj + λZYkj + λXZYlkj )

,

which involves all parameters to explain the marginal effect of y. Note that we will

return to the proper modeling for this type of bivariate multinomial data in the

presence of one or more categorical covariates in Chapter 2.

Remark that there are some studies on univariate longitudinal multinomial mod-

els. See, for example, Fienberg, Bromet, Follmann, Lambert and May (1985), Conaway

(1989), Frees (2004), Fitzmaurice, Laird, and Ware (2004), Lipsitz et. al. (1991),

Williamson et. al. (1995) and Chen, Yi, and Cook (2009). However, because uni-

variate longitudinal data generates a multivariate distribution for the clustered data,

some authors have used certain correlation structures from such a setup to model

the bivariate binary and/or multinomial data. For example, the odds ratios used in

longitudinal modeling have been exploited to model bivariate or multivariate categor-

ical data including binary cases. For example, one may refer to Chen, Yi and Cook

(2009), Williamson et. al. (1995) and Lipsitz et. al. (1991). But, as we discussed in

Section 1.2, this approach encounters difficulties with the estimation of odds ratios

based correlations. This is because odds ratios are not model parameters, rather,

they are ”working” parameters.

1.3 Plan of the thesis

In Section 1.1 we have reviewed the univariate multinomial model along with existing

approaches for the estimation of the model parameters. Next, the existing extension
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of the univariate multinomial model to the bivariate case has been reviewed in Sec-

tion 1.2. It has been demonstrated that the existing models fall short to address the

correlations between two multinomial variables. For example, it was demonstrated

that when interaction effects based joint probabilities are used to model the correla-

tions, the resulting marginal probabilities remain complicated, more specifically, they

involve the correlation or interaction parameters in a complex way. As discussed in

Section 1.2, some authors use odds ratios to model the correlations and hence joint

bivariate probabilities, but the estimation of the odds ratios is done arbitrarily using

extra ’working’ linear models.

For the above reason, i.e., because the existing models to deal with bivariate

multinomial data are not adequately developed, in this thesis, we address this impor-

tant modeling issue and develop bivariate multinmial correlation models using fully

or partly specified marginal probabilities. Both fixed and mixed effect approaches

are considered to model the correlations where marginal probabilities are kept fully

specified. Conditional model is also considered where marginal probabilities are spec-

ified for one of the two response variables. The estimation of parameters for all these

models is discussed in details both analytically and numerically. Several real life data

analysis are also conducted. The specific plan of the thesis is as follows.

In Chapter 2, we first specify the marginal probabilities and develop a correlation

model between two variables following the bivariate normality model. This model is

referred to as the linear conditional bivariate multinomial (LCBM) fixed model. Both

joint generalized quasi-likelihood (JGQL) and single stage GQL (SSGQL) estimation

methods for this model are given in details. An extensive finite sample simulation

study is conducted to examine the performance of these estimation approaches. A
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real life bivariate diabetic retinopathy data set is reanalyzed, first by using a simpler

bivariate binary model, and then by using a trinomial categories based model for both

response variables.

In Chapter 3, as opposed to the bivariate normal correlation structure used in

Chpater 2, we propose a random effects based bivariate familial model. In this ap-

proach, the marginal probabilities of both multinomial variables are fully specified

conditional on the random effects. Unconditionally the two multinomial variables

become correlated. The joint GQL and likelihood inferences for associated regression

and random effect variance parameters are given in details. Both simulation study

and real life data analysis are given to illustrate the model and estimation empirically.

In Chapter 4, we first specify the marginal probabilities of one response variable

and then develop a conditional multinomial logistic type probability model to accom-

modate correlations. As opposed to the linear conditional probability model discussed

in Chapter 2, this type of partly specified non-linear models produce bivariate cor-

relations satisfying full range. An outline of inferences is given using the likelihood

approach.

The thesis concludes in Chapter 5.
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Chapter 2

Linear Conditional Bivariate

Multinomial (LCBM) Fixed Effects

Model

In Chapter 1, we briefly reviewed the existing modeling for bivariate multinomial

data, namely, the direct modeling approach of joint probabilities available in Agresti

(2002) and Fienberg (2007), for example. However, as discussed there, this type of

joint probabilities produce complex marginal probabilities. To be specific, in this

existing approach, the joint probabilities are modeled without any prior or speci-

fied forms for the marginal probabilities. Thus this approach may be referred to

as the fully unspecified marginal probability approach. Also, in a situation where

joint probabilities should be individual covariates dependent, the use of constant (i.e.

equal) interaction effects or odds ratio parameters in the joint probability formula,

will not be appropriate. Note that as we discussed in Section 1.2.1 (see equations
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(1.30)-(1.31)), many authors such as Williamson et al. (1995) attempted to tackle

the latter problem by using individual covariates dependent odds ratios to define the

joint probabilities. But, as indicated in Section 1.2, this odds ratio approach use an

extra modeling for the estimation purpose, which is arbitrary.

In this chapter, as opposed to the fully unspecified marginal models, we discuss a

fully specified marginal probability based linear conditional bivariate model to com-

pute the joint probabilities and hence covariances and correlations. We explain the

model along with its properties in Section 2.1. The likelihood and quasi-likelihood

approaches are discussed for inferences in Section 2.2. In the same section, the per-

formances of these inference techniques are examined through an intensive simulation

study. Also, we illustrate the application of the model and inference methodologies

by reanalyzing the so-called WESDR (Wisconsin Epidemiologic Study of Diabetic

Retinopathy).

2.1 Fully Specified Marginal Probabilities Based

LCBM Fixed Effects Model and Properties

Recall that the joint bivariate probabilities in (1.22) were modeled without prior

forms for the marginal probabilities, whereas some authors (Williamson et al. (1995))

have used pre-specified marginal probabilities first to define an odds ratio in terms

of the joint and the marginal probabilities, so that the joint probabilities can be

computed as a function of odds ratios (see eqn. (1.30)). But as mentioned earlier this

approach encounters problems in estimating the odds ratios. However, because the
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marginal probabilities are important to understand the variables separately, similar

to Williamson et al. (1995), we prefer to use a pre-specified marginal probabilities

based model, but unlike these authors, in this chapter, we use a standard normal

regression type approach to model the conditional probabilities.

For the purpose, using the notations from Section 1.2, we assume that the cate-

gorical variables Zi : (K−1)×1 and Yi : (J−1)×1, marginally, have the multinomial

distribution given by

π
(k)
iz = Pr(zi = z

(k)
i ) =

exp(αk + x′i1θk1)

1 +
∑K−1
u=1 exp(αu + x′i1θu1)

, for k = 1, . . . , K − 1,

π
(K)
iz = Pr(zi = z

(K)
i ) = 1−

K−1∑
k=1

π
(k)
iz =

1

1 +
∑K−1
u=1 exp(αu + x′i1θu1)

; (2.1)

and

π
(j)
iy = Pr(yi = y

(j)
i ) =

exp(βj + x′i2θj2)

1 +
∑J−1
l=1 exp(βl + x′i2θl2)

, for j = 1, . . . , J − 1,

π
(J)
iy = Pr(yi = y

(J)
i ) = 1−

J−1∑
j=1

π
(j)
iy =

1

1 +
∑J−1
l=1 exp(βl + x′i2θl2)

, (2.2)

respectively. In (2.1) and (2.2), αk (k = 1, . . . , K − 1) and βj (j = 1, . . . , J − 1) are

category oriented parameters that influence the response of the ith individual to be

in the kth and jth categories of the respective response; θk1 and θj2 are the effects of

the covariate vector of dimensions p and q, say, on the response variables zi and yi,

respectively. Note that xi1 and xi2 may contain certain common and fixed covariates.

For example, one may consider

xi1 = (x′iz : 1× p1, x′ic : 1× p2)′ : p× 1, xi2 = (x′iy : 1× q1, x′ic : 1× q2)′ : q × 1,

where xiz and xiy are individual response specific covariates and xic is a common

covariate vector influencing both responses of the ith individual.
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Because yi and zi are recorded from the same ith individual, they are likely to

be correlated. Recall from (1.22) that some of the existing approaches accommodate

this type of correlations or associations by introducing certain joint categorical based

association parameters. But as explained previously, this approach produces compli-

cated marginal probabilities. Also this approach encounters a major problem when

associations are likely to be individual covariates dependent. To avoid this type of

modeling problem, we now discuss a linear probability model by pretending as though

the variables were normal. Thus, we write

η
(y)
ij|k = Pr(yi = y

(j)
i |zi = z

(k)
i )

= π
(j)
iy +

K−1∑
u=1

ρuj(z
(k)
iu − π

(u)
iz ), j = 1, . . . , J − 1, k = 1, . . . , K;

and η
(y)
iJ |k = Pr(yi = y

(J)
i |zi = z

(k)
i )

= 1−
J−1∑
j=1

η
(y)
ij|k, k = 1, . . . , K, (2.3)

where z
(k)
iu is the uth (u = 1, . . . , K − 1) component of z

(k)
i , with z

(k)
iu = 1 if u = k,

and 0 otherwise; ρuj is referred to as the dependence parameter relating yij with ziu.

Note that in writing (2.3), we have used the conditioning on zi, i.e., we assume

that zi acts as a fixed covariate which is the realized value of the random variable

Zi. One may also use alternatively the conditional probability for zi given yi. To be

specific, by changing the dependence parameters, this can be written as

η̃
(z)
ik|j = Pr(zi = z

(k)
i |yi = y

(j)
i )

= π
(k)
iz +

J−1∑
l=1

ρ̃lk(y
(j)
il − π

(l)
iy ), k = 1, . . . , K − 1, j = 1, . . . , J ; (2.4)

and η̃
(z)
iK|j = Pr(zi = z

(K)
i |yi = y

(j)
i )

= 1−
K−1∑
k=1

η̃
(z)
ik|j, j = 1, . . . , J.
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However, in this chapter, we follow the model in (2.3) only. Remark that if necessary

one can derive the relationship between {ρuj} and {ρ̃lk}. For example, in the simple

bivariate binary case, suppose the response variable zi follows a binary distribution

with marginal probability πiz = Pr(zi = 1), and the other binary response variable

yi has marginal probability πiy = Pr(yi = 1). Following model (2.3) We then write

ρiyz = corr(yi, zi) =
πi11 − πizπiy»

πiz(1− πiz)πiy(1− πiy)

= ρ11

Ã
πiz(1− πiz)
πiy(1− πiy)

, (2.5)

where πi11 = Pr(yi = 1, zi = 1) = Pr(zi = 1)P (yi = 1|zi = 1) = πizη
(y)
i1|1 =

πiz[πiy + ρ11(1 − πiz)]. Similarly, we can write ρiyz = ρ̃11

…
πiy(1−πiy)
πiz(1−πiz) by using the

alternative modeling in (2.4), yielding that ρiyz =
√
ρ̃11ρ11.

Note that some authors have studied correlated multinomial data in the univariate

longitudinal setup. See, for example, the unpublished PhD thesis by Chowdhury

(2011). In that thesis, for example, when a univariate categorical response yi for

the ith individual is collected at T = 2 time points, i.e., yi = (y
(j)
i1 , y

(k)
i2 ), it is of

scientific interest to understand the correlations between yi1 and yi2. Similar to but

different than this univariate longitudinal setup, in this thesis we deal with correlated

bivariate multinomial responses collected from the same person at a single point of

time. Because the two responses are collected from the same person, it is also of

scientific interest to understand the correlations between them.

Remark that conditional linear models similar to (2.3) were also used in the litera-

ture (Zeger, Liang and Self (1985), Qaqish (2003)) to explain the dependence among

repeated binary responses. The difference lies in the dimensions as in the present

model one usually deals with K ≥ 2, and J ≥ 2. Further remark that the depen-
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dence parameter ρkj (k = 1, . . . , K − 1, j = 1, . . . , J − 1) in the linear conditional

relationship (2.3) has to satisfy certain range restrictions. For example, when J = 2

and K = 2, the dependence parameter ρ11 in the conditional probability of yi given

zi has the restriction given by

max{− πiy
1− πiz

,−1− πiy
πiz

} ≤ ρ11 ≤ min{1− πiy
1− πiz

,
πiy
πiz
},

where πiy = Pr(Yi = 1) and πiz = Pr(Zi = 1), respectively. Note that this range

indicates that correlations can be negative. See, for example, Sutradhar (2011, Table

7.1, P255) for correlation ranges under different models. Further note that these

correlation parameters, whether they take positive or negative values, ultimately play

roles to influence the joint probabilities. In the thesis, we are interested in studying

models for joint probabilities in the bivariate multinomial setup. Further note that

these range restrictions are usually taken care of during estimation of the parameters

by checking the range for conditional probabilities at every stage. In general, if a

proper efficient method is used for estimation, one can obtain the estimates for these

parameters whatever narrow ranges they might have to satisfy.

As we will discuss below, this linear conditional model is very simple for inferences.

However, we will deal with alternative bivariate modeling in Chapters 3 and 4 which

do not have any range restrictions for the dependence parameters of the model. As

far as the estimation of the regression parameters involved in marginal (2.1)-(2.2)

and conditional probabilities (2.3) (also functions of the marginal probabilities) in

this chapter is concerned, the regression parameters in the marginal probabilities do

not arise through any addition among them and the covariates involved in xi1 and

xi2 are independent (mutually exclusive). Consequently there does not arise any
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identification problems among these parameters.

We now provide the basic properties of the model (2.1)-(2.3) in Section 2.1.1. The

inferences will be discussed in Section 2.2.

2.1.1 Basic properties of the LCBM fixed effects model

The marginal means and variances of the bivariate responses are given in Lemma 2.1,

and the joint moment between two multinomial responses are given in Lemma 2.2.

Lemma 2.1: For i = 1, . . . , n, the unconditional mean vector and the covariance

matrix of the multinomial response vector Zi = (Zi1, . . . , Zik, . . . , Zi,K−1)
′ have the

forms

E(Zi) = (π
(1)
iz , . . . , π

(k)
iz , . . . , π

(K−1)
iz )′ = Πiz, (2.6)

and

V ar(Zi) = diag[π
(1)
iz , . . . , π

(k)
iz , . . . , π

(K−1)
iz ]− ΠizΠ

′
iz; (2.7)

similarly, the unconditional mean vector and the covariance matrix of the multinomial

response vector Yi = (Yi1, . . . , Yij, . . . , Yi,J−1)
′ have the forms

E(Yi) = (π
(1)
iy , . . . , π

(j)
iy , . . . , π

(J−1)
iy )′ = Πiy, (2.8)

and

V ar(Yi) = diag[π
(1)
iy , . . . , π

(j)
iy , . . . , π

(J−1)
iy ]− ΠiyΠ

′
iy. (2.9)

Proof: These properties follow from the assumed marginal distributions of Zi and

Yi given by:

f(Zi1 = zi1, . . . , Zi,K−1 = zi,K−1) =
1!

zi1! . . . ziu! . . . ziK !

K∏
u=1

(
π
(u)
iz

)ziu
,
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and

f(Yi1 = yi1, . . . , Yi,J−1 = yi,J−1) =
1!

yi1! . . . yil! . . . yiJ !

J∏
l=1

(
π
(l)
iy

)yil
.

respectively. This is because it can be shown that Zik, for example, follows the binary

distribution Bin(π
(k)
iz ), yielding

E(Zik) = π
(k)
iz ,

and V ar(Zik) = π
(k)
iz (1− π(k)

iz ).

Furthermore, cov(Zik, Ziu) for k 6= u is given by

cov(Zik, Ziu) = E(ZikZiu)− E(Zik)E(Ziu) = −π(k)
iz π

(u)
iz ,

as the quantity ZikZiu represents an impossible event.

Lemma 2.2: For i = 1, . . . , n, the covariance matrix Cov(Zi, Y
′
i ) of the bivariate

multinomial responses Zi and Yi is given by:

Cov(Zi, Y
′
i ) = [V ar(Zi)] Φ : (K − 1)× (J − 1), (2.10)

where V ar(Zi) is given in (2.5), and Φ is the (K − 1) × (J − 1) matrix involving

dependence parameters ρkj : k = 1, . . . , K − 1, j = 1, . . . , J − 1, and is given by

Φ =

Ç
ρkj

å
(K−1)×(J−1)

= [ρ1, . . . , ρj, . . . , ρJ−1]

=



ρ11 . . . ρ1j . . . ρ1,J−1

ρ21 . . . ρ2j . . . ρ2,J−1

...

ρk1 . . . ρkj . . . ρk,J−1

...

ρK−1,1 . . . ρK−1,j . . . ρK−1,J−1



. (2.11)
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Proof: To prove (2.8), we first derive the covariance between two general elements

Zik and Yij for k = 1, . . . , K − 1 and j = 1, . . . , J − 1. That is, we write

cov(Zik, Yij) = E(YijZik)− E(Zik)E(Yij)

= πikj − π(k)
iz π

(j)
iy ,

where by (2.1) and (2.3), one computes

πikj = π
(k)
iz η

(y)
ij|k = π

(k)
iz

[
π
(j)
iy +

K−1∑
u=1

ρuj(z
(k)
iu − π

(u)
iz )

]
, (2.12)

yielding the covariance as:

cov(Zik, Yij) = π
(k)
iz

[
π
(j)
iy +

K−1∑
u=1

ρuj(z
(k)
iu − π

(u)
iz )

]
− π(k)

iz π
(j)
iy

= π
(k)
iz

K−1∑
u=1

ρuj(z
(k)
iu − π

(u)
iz )

= ρkjπ
(k)
iz (1− π(k)

iz )−
K−1∑

u=1,u 6=k
ρujπ

(k)
iz π

(u)
iz . (2.13)

Now, following (2.11) we write the K − 1 covariance quantities in cov(Zi, Yij) =

[cov(Zi1, Yij), . . . , cov(Zik, Yij), . . . , cov(Zi,K−1, Yij)]
′ as follows:

cov(Zi1, Yij) = ρ1jπ
(1)
iz (1− π(1)

iz )−
K−1∑
u=2

ρujπ
(1)
iz π

(u)
iz ,

...

cov(Zik, Yij) = ρkjπ
(k)
iz (1− π(k)

iz )−
K−1∑

u=1,u6=k
ρujπ

(k)
iz π

(u)
iz ,

...

cov(Zi,K−1, Yij) = ρK−1,jπ
(K−1)
iz (1− π(K−1)

iz )−
K−2∑
u=1

ρujπ
(K−1)
iz π

(u)
iz ;
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which, in a matrix form, is given by:

cov(Zi1, Yij)

...

cov(Zik, Yij)

...

cov(Zi,K−1, Yij)



=



π
(1)
iz (1− π(1)

iz ) . . . . . . . . . −π(1)
iz π

(K−1)
iz

...
...

...
...

...

−π(k)
iz π

(1)
iz . . . π

(k)
iz (1− π(k)

iz ) . . . −π(k)
iz π

(K−1)
iz

...
...

...
...

...

−π(K−1)
iz π

(1)
iz . . . . . . . . . π

(K−1)
iz (1− π(K−1)

iz )





ρ1j

...

ρkj

...

ρK−1,j


= [diag(Πiz)− ΠizΠ

′
iz]ρj

= V ar(Zi)ρj. (2.14)

We now combine the results from (2.12) for every j = 1, . . . , J − 1, and write

Cov(Zi, Y
′
i ) = [V ar(Zi)ρ1, . . . , V ar(Zi)ρj, . . . , V ar(Zi)ρJ−1]

= V ar(Zi) [ρ1, . . . , ρj, . . . , ρJ−1]

= V ar(Zi)Φ.

Hence Lemma 2.2 follows.

Lemma 2.3: The joint probabilities based on (2.1)-(2.3) retain the specified marginal

probabilities.

Proof: Note that πikj = Pr(zi = z
(k)
i , yi = y

(j)
i ) = π

(k)
iz η

(y)
ij|k holds for any specified
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marginal probability for zi, i.e., for π
(k)
iz . Now because

K∑
k=1

πikj =
K∑
k=1

π
(k)
iz η

(y)
ij|k

=
K∑
k=1

π
(k)
iz

[
π
(j)
iy +

K−1∑
u=1

ρuj(z
(k)
iu − π

(u)
iz )

]

=
K∑
k=1

π
(k)
iz π

(j)
iy +

K∑
k=1

π
(k)
iz

K−1∑
u=1

ρuj(z
(k)
iu − π

(u)
iz )

= π
(j)
iy +

K−1∑
u=1

ρuj

[
K∑
k=1

π
(k)
iz z

(k)
iu −

K∑
k=1

π
(k)
iz π

(u)
iz

]

= π
(j)
iy +

K−1∑
u=1

ρuj(π
(u)
iz − π

(u)
iz )

= π
(j)
iy ,

one may use any desired formula for π
(j)
iy .

Note from (2.11) that on top of the marginal probabilities π
(k)
iz , the correlation

between Yij and Zik, say corr(Zik, Yij), is a function of the components of ρj vector,

where ρj = (ρ1j, . . . , ρkj, . . . , ρK−1,j)
′. In this sense, ρkj can also be viewed as a

correlation index parameter. Further note that the LCBM fixed model defined by

(2.1)-(2.3) may also be referred to as the bivariate multinomial fixed effects (BMFE)

model. This is because the covariates used in marginal probabilities (2.1) and (2.2)

are considered to be fixed.

In the next section, we demonstrate how the marginal and joint moment prop-

erties given in Lemmas 2.1-2.2 of the LCBM fixed model (2.1)-(2.3) can be ex-

ploited for developing suitable estimating equations for all regression parameters

ψ = (α1, . . . , αK−1, θ
′
1,

β1, . . . , βJ−1, θ
′
2)
′, with θ1 = (θ′11, . . . , θ

′
k1, . . . , θ

′
K−1,1)

′ and θ2 = (θ′12, . . . , θ
′
j2, . . . , θ

′
J−1,2)

′;

and correlation index parameters ρ∗ = (ρ′1, . . . , ρ
′
j, . . . , ρ

′
J−1)

′ = (ρ11, ρ21, . . . , ρK−1,1,
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ρ12, . . . , ρkj, . . . , ρK−1,J−1)
′.

2.2 Estimation for the LCBM fixed model

Let φ = (ψ′, ρ∗
′
)′ denote the vector of all regression and correlation index parameters.

One may estimate these parameters by solving likelihood estimating equations where

the likelihood construction requires knowledge of joint probabilities. To be specific,

the likelihood function for φ may be written as:

L(φ) =
n∏
i=1

πzi1yi1i11 . . . π
zikyij
ikj . . . πziKyiJiKJ .

Note, however, that because

πikj = π
(k)
iz

[
π
(j)
iy +

K−1∑
u=1

ρuj(z
(k)
iu − π

(u)
iz )

]
,

solving the exact likelihood equations, i.e.,

∂lnL(φ)

∂φ
=

n∑
i=1

K∑
k=1

J∑
j=1

zikyij
∂logπikj
∂φ

,

by exploiting the complicated second order derivatives is algebraically cumbersome.

Thus we will exploit an alternatively simpler user-friendly GQL (generalized quasi-

likelihood) [Sutradhar (2004)] approach to estimate the parameters in φ.

Remark that the GQL approach was suggested by Sutradhar (2003) [see also

Sutradhar (2004), Sutradhar (2010) (a), and Sutrahdar (2010) (b)] as a generalization

of the quasi-likelihood (QL) approach for independent data suggested by Wedderburn

(1974). To be specific, this approach minimizes a generalized quadratic distance

function, where the distance function is constructed based on true mean, variance,

and correlation structures of the data, whereas the QL approach was constructed
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based on true mean and variance structures only. To be precise and clear, consider Zi

variable which has mean Πiz(ψz) and covariance structure V ar(Zi) = Σiz involving

variances and correlations. One then write the GQL estimating equation for ψz by

f(ψz) =
n∑
i=1

∂Π′iz
∂ψz

Σ−1iz (zi − Πiz(ψz)) = 0,

[Sutradhar (2003), Section 3].

Turning back to the estimation of φ, we discuss two versions of the GQL approach,

namely, (i) a joint GQL (JGQL) approach for φ = (ψ′, ρ∗
′
)′, and (ii) a single stage

GQL (SSGQL) for ψ.

2.2.1 JGQL approach

In this approach, we exploit the marginal and product moments directly to construct

the desired JGQL estimating equation for φ. Note that this type of equation, as shown

below, requires only first derivative of the moments with respect to the parameters.

Recall from Lemma 2.1 that the first order moments

Πiz = (π
(1)
iz , . . . , π

(k)
iz , . . . , π

(K−1)
iz )′, and Πiy = (π

(1)
iy , . . . , π

(j)
iy , . . . , π

(J−1)
iy )′

are functions of ψ only, whereas ρ∗ is involved in the second order moments in (2.10).

Consequently, to estimate ψ and ρ∗ jointly, we develop a GQL estimating equation

based on first and second order responses. To be specific, we exploit zi, yi and the

elements of the ziy
′
i matrix to construct the estimating equations. Let

gi = (zi1yi1, . . . , zi1yi,J−1, zi2yi1, . . . , zikyij, . . . , zi,K−1yi,J−1)
′

be a stacked vector of second order responses from the ziy
′
i matrix and we write its
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expectation as

Πizy = E(gi) = (πi11, . . . , πi1,J−1, πi21, . . . , πikj, . . . , πiK−1,J−1)
′.

Note that the joint probabilities in Πizy are functions of both ψ and ρ∗ parameters.

We may now write the joint GQL estimating equations for φ as

f(φ) =
n∑
i=1

∂(Π′iz,Π
′
iy,Π

′
izy)

∂φ
Σ−1i


zi − Πiz

yi − Πiy

gi − Πizy

 = 0, (2.15)

[Sutradhar (2004)]. In (2.13) Σi is the covariance matrix of (z′i, y
′
i, g
′
i)
′, which has the

form

Σi = V ar



Ü
zi

yi

ê
gi

 =

Ü
Σi11 Σi12

Σi22

ê
,

where

Σi11 = V ar

Ü
zi

yi

ê
=

Ü
V ar(zi) Cov(zi, y

′
i)

V ar(yi)

ê
=

Ü
diag(Πiz)− ΠizΠ

′
iz [diag(Πiz)− ΠizΠ

′
iz]Φ

diag(Πiy)− ΠiyΠ
′
iy

ê
,

with Φ as given in (2.9). Next,

Σi12 =

Ü
Cov(zi, g

′
i)

Cov(yi, g
′
i)

ê
,

and

Σi22 = V ar(gi) = diag(Πizy)− ΠizyΠ
′
izy.
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2.2.2 SSGQL approach

The SSGQL (single-stage GQL) is slightly different than the JGQL approach. In this

approach, for known ρ∗, we exploit the first order moments to estimate ψ parameter

at the first stage. Once an estimate of ψ is available, we use it as a known value of ψ

in the estimating equation for ρ∗, which is developed exploiting both first and second

order moments. Thus we first write the GQL estimating equation for ψ as

f(ψ) =
n∑
i=1

∂(Π′iz,Π
′
iy)

∂ψ
Σ−1i11

Ü
zi − Πiz

yi − Πiy

ê
= 0, (2.16)

where Σi11 is given in (2.13). At the second stage we estimate ρ∗ or equivalently Φ

by using the well-known method of moments (MM). Recall from (2.8) that

Cov(Zi, Y
′
i ) = [V ar(Zi)] Φ.

Because this relationship holds for all i = 1, . . . , n, by taking averages on both sides,

we obtain the moment estimator of Φ as

Φ̂MM =

[
1

n

n∑
i=1

ˆV ar(Zi)

]−1 [
1

n

n∑
i=1

ˆCov(Zi, Y
′
i )

]
, (2.17)

where ˆcov(Zik, Yij) in ˆCov(Zi, Y
′
i ), for example, has the formula, ˆcov(Zik, Yij) = (zik−

π̂
(k)
iz )(yij − π̂(j)

iy ).

Note that as mentioned earlier the dependence parameters ρkj in Φ have certain

range restrictions. This is because the conditional probabilities in (2.3) may not

satisfy the range 0 < η
(y)
ij|k < 1 for all values of ρkj. However, the aforementioned

inference procedures, specifically the method of moments for the estimation of Φ by

(2.15) yields consistent estimates for the true parameter values whatever their range
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may be. In any cases, because the LCBM fixed model discussed in this chapter, in

spite of its simplicity, encounters the range restriction problem discussed above, we

will develop a random effects based general non-linear bivariate multinomial model

in Chapter 3, which is not adequately discussed in the literature.

2.2.3 A simulation study

In this section, we conduct a small sample study to examine the relative performance

of the JGQL and SSGQL methods discussed in Sections 2.2.1 and 2.2.2, respectively.

For sample size we consider n = 200.

Note that we consider these two GQL estimation approaches in this simulation

study, as they are founded on the same principle of the GQL approach which is

known to produce consistent estimates. However, their empirical performances may

be slightly different from each other because of the different ways the correlations are

estimated. Further note that even though we have included (1) ”working” odds ratio

and (2) joint probability modeling approaches in our discussion in Section 1.2.1 and

1.2.2, these approaches however do not appear to be feasible for any comparison with

the above GQL approaches. To be specific, even though we are considering some

common covariates, there is no guidence to chose xic covariate vector in the extra

model (1.31) for odds ratios. Also, as we indicated in Section 1.2.1, even though

it is quite reasonable to model individual based odds ratio (τikj) in terms of few

parameters, there is no justification why a linear model is appropriate. In fact, there

is no unique way of choosing the ”working” model. Thus we do not include such

arbitrary model based estimation approach in our comparison.
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As far as the joint probability modeling in Section 1.2.2 is concerned, this type

of joint modeling does not produce our marginal probabilities. Consequently, this

approach is not feasible for comparison.

We now turn back to consider the GQL approaches. To generate the data following

models (2.1)-(2.3) in a given simulation, we first consider the simulation design as

follows:

Covariate selection and marginal specification:

• We set K = J = 3 for number of categories for z and y.

• To represent the category effects we specify the marginal probabilities as in

(2.1)-(2.2) using α1 = 0.4, α2 = 0.3; and β1 = 0.35, β2 = 0.25.

• Next, we consider that xi1 and xi2 are of dimension 2× 1, with xi1 = (xiz, xic)
′

and xi2 = (xiy, xic)
′, where xiz is the covariate specific to response variable z

and xiy is the covariate specific to response variable y, and xic is the common

covariate shared by both response variables. We choose the covariates design

as follows:

xiz ∼ Binary(0.4), xiy ∼ Binary(0.7), and xic ∼ Standardized U(0, 1).

Design selection:

With regard to selection of regression parameters, namely, θ1 ≡ (θz1, θcz1, θz2, θcz2)
′,

θ2 ≡ (θy1, θcy1, θy2, θcy2)
′ and ρ∗ ≡ (ρ11, ρ21, ρ12, ρ22)

′, we consider the following eight

designs with various magnitude (small and big) for the parameters:

• Design 1 (D1):
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θz1 = θz2 = θz = 0.25, θy1 = θy2 = θy = 0.4, θcz1 = θcz2 = θcy1 = θcy2 = θc = 0.2;

ρ11 = 0.4, ρ21 = 0.2, ρ12 = 0.15 and ρ22 = 0.35.

• Design 2 (D2):

θz1 = θz2 = θz = 0.25, θy1 = θy2 = θy = 0.4, θcz1 = θcy1 = θc1 = 0.2,

θcz2 = θcy2 = θc2 = 0.3;

ρ11 = 0.4, ρ21 = 0.2, ρ12 = 0.15 and ρ22 = 0.35.

• Design 3 (D3):

θz1 = 0.25, θz2 = 0.35, θy1 = 0.4, θy2 = 0.5, θcz1 = θcy1 = θc1 = 0.2, θcz2 =

θcy2 = θc2 = 0.3;

ρ11 = 0.4, ρ21 = 0.2, ρ12 = 0.15 and ρ22 = 0.35.

• Design 4 (D4):

θz1 = 0.25, θz2 = 0.35, θy1 = 0.4, θy2 = 0.5, θcz1 = θcy1 = θc1 = 0.2, θcz2 =

θcy2 = θc2 = 0.3;

ρ11 = 0.2, ρ21 = 0.0, ρ12 = 0.0 and ρ22 = 0.1.

• Design 5 (D5):

θz1 = 0.25, θz2 = 0.35, θy1 = 0.4, θy2 = 0.5, θcz1 = θcy1 = θc1 = 0.2, θcz2 =

θcy2 = θc2 = 0.3;

ρ11 = 0.4, ρ21 = −0.2, ρ12 = −0.2 and ρ22 = 0.4.

• Design 6 (D6):

θz1 = 0.25, θz2 = 0.35, θy1 = 0.4, θy2 = 0.5, θcz1 = 0.2, θcz2 = 0.3, θcy1 = 0.35,

θcy2 = 0.45;

ρ11 = 0.4, ρ21 = 0.2, ρ12 = 0.15 and ρ22 = 0.35.
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• Design 7 (D7):

θz1 = 0.25, θz2 = 0.35, θy1 = 0.4, θy2 = 0.5, θcz1 = 0.2, θcz2 = 0.3, θcy1 = 0.35,

θcy2 = 0.45;

ρ11 = 0.2, ρ21 = 0.0, ρ12 = 0.0 and ρ22 = 0.1.

• Design 8 (D8):

θz1 = 0.25, θz2 = 0.35, θy1 = 0.4, θy2 = 0.5, θcz1 = 0.2, θcz2 = 0.3, θcy1 = 0.35,

θcy2 = 0.45;

ρ11 = 0.3, ρ21 = −0.2, ρ12 = −0.2 and ρ22 = 0.3.

Data generation:

As far as the generation of response variables zi and yi are concerned, we follow the

steps given below:

• Step 1: We first generate the trinomial response zi following model (2.1) by

using suitable regression parameters selected above.

• Step 2: Given the value of zi, we follow models (2.2) and (2.3) to generate the

response yi by taking suitable regression and correlation index parameters into

consideration.

Simulation results:

In a given simulation, we then use the data along with design covariates to estimate

the parameters by the JGQL (Section 2.2.1) and SSGQL (Section 2.2.2) approaches.

These approaches require initial estimates for all regression and correlation param-

eters, we have chosen these initial values close to zero. The data generation and

estimation is repeated for 500 times. The convergence of estimates was quick in all
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cases and initial values were not any issue. The simulated mean (SM), simulated stan-

dard error (SSE), mean squared error (MSE), and estimated standard error (ESE) of

the JGQL and SSGQL estimates under the above eight designs are reported in Tables

2.1-2.8, respectively.

The results from Table 2.1-2.8 show that both methods are performing well in

estimating parameters involved in the LCBM fixed model. However, for some designs

the JGQL approach appears to produce estimates with larger standard errors than

the SSGQL approach, but for some other designs the SSGQL approach produces

estimates with larger standard errors. This can happen because of the design matrix

used in the study, not because of any convergence problems for the method themselves.

Thus, the two approaches appear to be quite competitive because the overall MSEs

are not too different under these two approaches. For example, under D1, the JGQL

estimated θy = 0.4 as θ̂y,JGQL = 0.382 with standard error 0.316, and the SSGQL

estimated this parameter as θ̂y,SSGQL = 0.388 with standard error 0.373, which is

larger than the SSE under the JGQL approach. On the other hand, under D2, the

JGQL approach estimated β1 = 0.35 as β̂1,JGQL = 0.344 with standard error 0.328,

whereas β̂1,SSGQL = 0.345 with standard error 0.301, which is smaller than the SSE

under JGQL. Now because we have considered a wide range of designs to examine

the performances of JGQL and SSGQL approaches, based on the simulation results

in Tables 2.1-2.8, we can see that both approaches are competitive. Note, however,

that the SSGQL approach is simpler than the JGQL approach computationally, even

though it is slightly less efficient.

Next, the aforementioned tables show that the estimated standard errors (ESE) of

the JGQL and SSGQL estimation approaches are close to their corresponding SSE’s.
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For example, under D1, the JGQL approach estimates α2 = 0.3 as α̂2,JGQL = 0.314

with SSE equal to 0.213 and ESE equal to 0.211; similarly the SSGQL approach

estimates the same parameter as α̂2,SSGQL = 0.317 with SSE equal to 0.234 and ESE

equal to 0.230. Note that in both cases the ESE’s are very close to the corresponding

values of SSE. Furthermore, under D5, the JGQL approach estimates θz2 = 0.35 as

θ̂z2,JGQL = 0.357 with SSE equal to 0.359 and ESE equal to 0.360, and the SSGQL

approach estimates the same parameter as θ̂z2,SSGQL = 0.379 with SSE equal to 0.379

and ESE equal to 0.389, showing that the ESE under the two estimation approaches

are again close to their corresponding SSE’s. Thus, in general, the estimated standard

errors formulas obtained from the estimating equations (2.13) and (2.14), for the

JGQL and SSGQL approaches, respectively, work well, as expected.

With regard to the role of the correlation index parameters on the regression

estimates, we observe from the Tables 2.1-2.8 that when correlations change, the

standard errors of the regression estimates appear to change sometimes substantially.

For example, when Tables 2.3, 2.4, 2.5 are compared, the same regression parameters

θz1 = 0.25 and θz2 = 0.35 are estimated with standard errors 0.191 and 0.173 under

Table 2.4 with ρ11 = 0.2, ρ21 = 0.0, ρ12 = 0.0 and ρ22 = 0.1; and were estimated with

standard errors 0.177 and 0.152 under Table 2.3 with ρ11 = 0.4, ρ21 = 0.2, ρ12 = 0.15

and ρ22 = 0.35; and they are estimated with standard errors 0.122 and 0.129 under

Table 2.5 with ρ11 = 0.4, ρ21 = −0.2, ρ12 = −0.2 and ρ22 = 0.4.

Note that the JGQL and SSGQL approaches were developed by accommodating

the correlations between bivariate responses. This was done to obtain improved re-

gression estimates in the sense of MSE efficiency as compared to the independence

assumption based such as the quasi-likelihood (QL) and other possible approaches.
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Now to understand the efficiency gain due to the use of correlations involved in JGQL

and SSGQL approaches, we include the QL approach (does not involve correlations)

as well in two of our simulation experiments, namely, the studies using designs D3

and D4. For convenience, we provide below the QL estimating equations for the

regression parameters, where no correlation parameters are needed:

f(ψ) =
n∑
i=1

∂(Π′iz,Π
′
iy)

∂ψ
[Σ∗i11]

−1

Ü
zi − Πiz

yi − Πiy

ê
= 0, (2.18)

with

Σ∗i11 =

Ü
V ar(zi) 0

V ar(yi)

ê
=

Ü
diag(Πiz)− ΠizΠ

′
iz 0

diag(Πiy)− ΠiyΠ
′
iy

ê
.

The simulation results under the QL approach are added to Table 2.3 for D3 and

Table 2.4 for D4. Due to space limitation, the mean squared errors are not reported

but they can be easily computed by using the SM and SSE values along with the true

parameter values. The results of these tables show that the QL estimates are also

almost unbiased, indicating that the correlation index parameters do not play any

roles in producing unbiased and hence consistent estimates. However, when SSEs

and/or MSEs under the QL approach are compared with those of the JGQL and

SSGQL approach, the QL approach, as expected, appears to be relatively inefficient.

For example, when ρ11 = 0.4, ρ21 = 0.2, ρ12 = 0.15 and ρ22 = 0.35, the SSGQL ap-

proach estimated θz1 and θz2 with MSEs 0.154 and 0.159, respectively, whereas the QL

approach produced the estimates with larger MSEs, namely, 0.177 and 0.180, respec-

tively. Similar comparative results follow for Table 2.4 where the SSGQL approach

appeared to be slightly competitive in the sense of MSE efficiency. This is because

the correlations are not so large, namely they are ρ11 = 0.2, ρ21 = 0.0, ρ12 = 0.0 and
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ρ22 = 0.1. Note that these behavior of the simulation results are not unexpected,

because in finite sample cases one method may produce slightly different estimates

and/or standard errors than the other. But overall both methods produce consistent

estimates.
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Table 2.1: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and SSGQL esti-

mates under D1 with sample size n=200.

JGQL SSGQL

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.403 0.218 0.047 0.208 0.405 0.225 0.051 0.227

α2 = 0.3 0.314 0.213 0.046 0.211 0.317 0.234 0.055 0.230

θz = 0.25 0.262 0.291 0.085 0.260 0.275 0.335 0.113 0.347

β1 = 0.35 0.379 0.316 0.101 0.275 0.371 0.323 0.105 0.314

β2 = 0.25 0.289 0.316 0.101 0.277 0.278 0.329 0.109 0.316

θy = 0.4 0.382 0.316 0.100 0.280 0.388 0.373 0.140 0.371

θc = 0.2 0.197 0.195 0.038 0.143 0.208 0.153 0.024 0.125

ρ11 = 0.4 0.403 0.083 0.007 0.077 0.403 0.074 0.006 -

ρ21 = 0.2 0.200 0.084 0.007 0.078 0.197 0.078 0.006 -

ρ12 = 0.15 0.145 0.081 0.007 0.077 0.142 0.076 0.006 -

ρ22 = 0.35 0.351 0.082 0.007 0.080 0.348 0.082 0.007 -
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Table 2.2: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and SSGQL esti-

mates under D2 with sample size n=200.

JGQL SSGQL

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.413 0.241 0.058 0.217 0.411 0.239 0.057 0.231

α2 = 0.3 0.322 0.244 0.060 0.220 0.319 0.240 0.058 0.234

θz = 0.25 0.248 0.310 0.096 0.252 0.256 0.342 0.117 0.344

β1 = 0.35 0.344 0.328 0.108 0.274 0.345 0.301 0.090 0.290

β2 = 0.25 0.253 0.348 0.121 0.276 0.250 0.296 0.087 0.292

θy = 0.4 0.411 0.364 0.132 0.285 0.413 0.363 0.132 0.355

θc1 = 0.2 0.193 0.195 0.038 0.160 0.201 0.167 0.028 0.137

θc2 = 0.3 0.292 0.196 0.039 0.162 0.307 0.168 0.028 0.141

ρ11 = 0.4 0.408 0.098 0.010 0.076 0.405 0.076 0.006 -

ρ21 = 0.2 0.204 0.099 0.010 0.077 0.196 0.081 0.007 -

ρ12 = 0.15 0.145 0.085 0.007 0.076 0.140 0.074 0.006 -

ρ22 = 0.35 0.348 0.089 0.008 0.080 0.347 0.081 0.007 -
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Table 2.3: The SM (simulated mean), SSE (simulated standard error), and ESE

(estimated standard error) of the JGQL, SSGQL and QL estimates under D3 with

sample size n=200.

JGQL SSGQL QL

Parameter SM SSE ESE SM SSE ESE SM SSE ESE

α1 = 0.4 0.414 0.243 0.219 0.403 0.225 0.230 0.411 0.238 -

α2 = 0.3 0.315 0.240 0.224 0.314 0.228 0.235 0.314 0.238 -

θz1 = 0.25 0.268 0.421 0.315 0.272 0.392 0.394 0.268 0.421 -

θz2 = 0.35 0.376 0.389 0.319 0.366 0.398 0.397 0.374 0.423 -

β1 = 0.35 0.371 0.328 0.274 0.373 0.304 0.316 0.351 0.319 -

β2 = 0.25 0.276 0.333 0.280 0.266 0.322 0.325 0.263 0.332 -

θy1 = 0.4 0.390 0.400 0.308 0.381 0.402 0.398 0.420 0.406 -

θy2 = 0.5 0.495 0.419 0.315 0.506 0.418 0.405 0.516 0.413 -

θc1 = 0.2 0.201 0.243 0.178 0.202 0.167 0.138 0.220 0.159 -

θc2 = 0.3 0.303 0.286 0.191 0.301 0.162 0.140 0.315 0.162 -

ρ11 = 0.4 0.397 0.080 0.077 0.401 0.074 - - - -

ρ21 = 0.2 0.192 0.075 0.077 0.199 0.073 - - - -

ρ12 = 0.15 0.148 0.099 0.076 0.143 0.075 - - - -

ρ22 = 0.35 0.351 0.096 0.080 0.343 0.085 - - - -
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Table 2.4: The SM (simulated mean), SSE (simulated standard error), and ESE

(estimated standard error) of the JGQL, SSGQL and QL estimates under D4 with

sample size n=200.

JGQL SSGQL QL

Parameter SM SSE ESE SM SSE ESE SM SSE ESE

α1 = 0.4 0.402 0.259 0.236 0.402 0.237 0.238 0.407 0.243 -

α2 = 0.3 0.311 0.261 0.243 0.301 0.241 0.243 0.329 0.240 -

θz1 = 0.25 0.275 0.437 0.376 0.282 0.401 0.387 0.278 0.434 -

θz2 = 0.35 0.370 0.415 0.386 0.398 0.382 0.390 0.359 0.407 -

β1 = 0.35 0.344 0.348 0.320 0.370 0.330 0.345 0.345 0.324 -

β2 = 0.25 0.246 0.354 0.329 0.279 0.345 0.352 0.261 0.343 -

θy1 = 0.4 0.419 0.446 0.382 0.405 0.413 0.417 0.421 0.399 -

θy2 = 0.5 0.524 0.465 0.391 0.503 0.411 0.423 0.514 0.421 -

θc1 = 0.2 0.213 0.163 0.147 0.215 0.152 0.140 0.210 0.152 -

θc2 = 0.3 0.315 0.169 0.141 0.315 0.148 0.142 0.309 0.146 -

ρ11 = 0.2 0.200 0.096 0.087 0.199 0.086 0.007 - - -

ρ21 = 0.0 -0.005 0.086 0.086 -0.003 0.086 0.007 - - -

ρ12 = 0.0 0.001 0.094 0.086 -0.003 0.084 0.007 - - -

ρ22 = 0.1 0.110 0.094 0.089 0.101 0.090 0.008 - - -
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Table 2.5: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and SSGQL esti-

mates under D5 with sample size n=200.

JGQL SSGQL

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.366 0.223 0.051 0.231 0.392 0.236 0.056 0.237

α2 = 0.3 0.284 0.222 0.050 0.235 0.303 0.239 0.057 0.242

θz1 = 0.25 0.266 0.349 0.122 0.355 0.275 0.397 0.159 0.386

θz2 = 0.35 0.357 0.359 0.129 0.360 0.369 0.379 0.144 0.389

β1 = 0.35 0.397 0.377 0.144 0.338 0.355 0.345 0.119 0.335

β2 = 0.25 0.306 0.347 0.124 0.313 0.267 0.340 0.116 0.342

θy1 = 0.4 0.339 0.426 0.185 0.375 0.409 0.428 0.183 0.410

θy2 = 0.5 0.445 0.410 0.171 0.352 0.499 0.414 0.171 0.416

θc1 = 0.2 0.183 0.141 0.020 0.141 0.203 0.157 0.025 0.139

θc2 = 0.3 0.296 0.140 0.020 0.150 0.309 0.154 0.024 0.141

ρ11 = 0.4 0.388 0.086 0.008 0.081 0.401 0.087 0.008 -

ρ21 = −0.2 -0.195 0.079 0.006 0.071 -0.198 0.077 0.006 -

ρ12 = −0.2 -0.183 0.076 0.006 0.074 -0.198 0.072 0.005 -

ρ22 = 0.4 0.400 0.090 0.008 0.081 0.398 0.082 0.007 -
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Table 2.6: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and SSGQL esti-

mates under D6 with sample size n=200.

JGQL SSGQL

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.410 0.241 0.058 0.231 0.407 0.240 0.057 0.234

α2 = 0.3 0.329 0.210 0.045 0.235 0.321 0.237 0.057 0.238

θz1 = 0.25 0.263 0.347 0.121 0.311 0.261 0.392 0.154 0.392

θz2 = 0.35 0.342 0.347 0.121 0.313 0.344 0.390 0.152 0.396

β1 = 0.35 0.371 0.267 0.072 0.279 0.361 0.326 0.106 0.340

β2 = 0.25 0.287 0.288 0.084 0.284 0.262 0.334 0.112 0.347

θy1 = 0.4 0.380 0.344 0.119 0.318 0.412 0.409 0.167 0.417

θy2 = 0.5 0.484 0.363 0.132 0.324 0.531 0.404 0.164 0.423

θcz1 = 0.2 0.222 0.223 0.050 0.190 0.209 0.192 0.037 0.190

θcz2 = 0.3 0.328 0.208 0.044 0.192 0.322 0.204 0.042 0.193

θcy1 = 0.35 0.306 0.266 0.072 0.159 0.368 0.209 0.044 0.202

θcy2 = 0.45 0.412 0.208 0.045 0.167 0.473 0.213 0.046 0.203

ρ11 = 0.4 0.381 0.080 0.007 0.077 0.400 0.080 0.006 -

ρ21 = 0.2 0.175 0.079 0.007 0.077 0.198 0.078 0.006 -

ρ12 = 0.15 0.153 0.081 0.007 0.076 0.145 0.081 0.007 -

ρ22 = 0.35 0.361 0.085 0.007 0.079 0.347 0.083 0.007 -
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Table 2.7: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and SSGQL esti-

mates under D7 with sample size n=200.

JGQL SSGQL

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.413 0.220 0.049 0.226 0.413 0.237 0.056 0.238

α2 = 0.3 0.317 0.237 0.056 0.233 0.319 0.250 0.063 0.242

θz1 = 0.25 0.260 0.421 0.178 0.389 0.259 0.409 0.167 0.397

θz2 = 0.35 0.387 0.414 0.173 0.398 0.356 0.394 0.156 0.399

β1 = 0.35 0.348 0.310 0.096 0.295 0.339 0.327 0.107 0.333

β2 = 0.25 0.263 0.313 0.098 0.303 0.252 0.324 0.105 0.340

θy1 = 0.4 0.410 0.371 0.137 0.367 0.441 0.418 0.177 0.411

θy2 = 0.5 0.489 0.369 0.137 0.376 0.536 0.413 0.172 0.417

θcz1 = 0.2 0.198 0.196 0.038 0.189 0.202 0.202 0.041 0.192

θcz2 = 0.3 0.298 0.188 0.035 0.192 0.313 0.195 0.038 0.195

θcy1 = 0.35 0.360 0.217 0.047 0.181 0.388 0.199 0.041 0.201

θcy2 = 0.45 0.448 0.210 0.044 0.185 0.487 0.207 0.044 0.203

ρ11 = 0.2 0.203 0.091 0.008 0.086 0.201 0.089 0.008 -

ρ21 = 0.0 -0.004 0.084 0.007 0.085 -0.006 0.083 0.007 -

ρ12 = 0.0 -0.002 0.084 0.007 0.085 0.000 0.087 0.007 -

ρ22 = 0.1 0.113 0.087 0.008 0.088 0.108 0.094 0.009 -
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Table 2.8: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and SSGQL esti-

mates under D8 with sample size n=200.

JGQL SSGQL

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.354 0.228 0.054 0.234 0.393 0.222 0.049 0.236

α2 = 0.3 0.292 0.220 0.048 0.237 0.294 0.224 0.050 0.241

θz1 = 0.25 0.271 0.350 0.123 0.368 0.255 0.355 0.126 0.390

θz2 = 0.35 0.327 0.368 0.136 0.371 0.355 0.368 0.136 0.394

β1 = 0.35 0.385 0.317 0.102 0.300 0.327 0.332 0.111 0.316

β2 = 0.25 0.309 0.317 0.104 0.298 0.257 0.342 0.117 0.321

θy1 = 0.4 0.337 0.382 0.149 0.356 0.437 0.409 0.169 0.397

θy2 = 0.5 0.446 0.379 0.147 0.355 0.523 0.424 0.180 0.402

θcz1 = 0.2 0.211 0.189 0.036 0.187 0.202 0.178 0.032 0.189

θcz2 = 0.3 0.318 0.182 0.033 0.189 0.307 0.192 0.037 0.193

θcy1 = 0.35 0.346 0.194 0.038 0.176 0.351 0.198 0.039 0.197

θcy2 = 0.45 0.438 0.198 0.040 0.177 0.443 0.197 0.039 0.198

ρ11 = 0.3 0.290 0.095 0.009 0.084 0.305 0.085 0.007 -

ρ21 = −0.2 -0.199 0.084 0.007 0.077 -0.195 0.074 0.006 -

ρ12 = −0.2 -0.189 0.080 0.007 0.076 -0.202 0.081 0.007 -

ρ22 = 0.3 0.301 0.088 0.008 0.085 0.301 0.086 0.007 -
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Figure 2.1: MSE comparison of regression parameters between JGQL and SSGQL

under D1 for n=200, 300 and 1000.
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Figure 2.2: MSE comparison of correlation index parameters between JGQL and

SSGQL under D1 for n=200, 300 and 1000.

2.2.4 Diabetic retinopathy data analysis

In the last section, we demonstrated through an intensive simulation study that the

JGQL and SSGQL approaches perform very well in estimating the effects of the asso-

ciated covariates on the bivariate multinomial responses. In this section, we illustrate

an application of these inference techniques by fitting the proposed LCBM model to

the so-call WESDR (Wisconsin Epidemiologic Study of Diabetic Retinopathy), which

was analyzed earlier by some authors such as Williamson et al. (1995).
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Figure 2.3: MSE comparison of category regression parameters between JGQL and

SSGQL under D7 for n=200, 300 and 1000.

We explain the WESDR data set in brief as follows. This data set contains diabetic

retinopathy status on a ten point interval scale for left and right eyes of 996 indepen-

dent patients, along with information on various associated covariates. Some of the

important covariates are: (1) duration of diabetes (DD), (2) glycosylated hemoglobin

level (GHL), (3) diastolic blood pressure (DBP), (4) gender, (5) proteinuria (Pr), (6)

dose of insulin per day (DI), and (7) macular edema (ME). There are 743 subjects

with complete response and covariate data.

Because the bivariate responses from an individual are supposed to be correlated,
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Figure 2.4: MSE comparison of covariate regression parameters between JGQL and

SSGQL under D7 for n=200, 300 and 1000.

it is of interest to accommodate bivariate correlations and examine the effects of

these covariates on the bivariate responses. Williamson et. al. (1995) used four

categories, namely, none, mild, moderate, and proliferative, and exploited an odds

ratio approach to accommodate the correlations and they used estimating equations

approach to compute the effects of the covariates.

Note however that as mentioned in Section 1.2, this odds ratio approach use an

extra arbitrary or ’working’ regression relationship to model the association through

odds ratios. To avoid this arbitrariness in modeling correlations, we have used the
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Figure 2.5: MSE comparison of correlation index parameters between JGQL and

SSGQL under D7 for n=200, 300 and 1000.

LCBM model in this chapter. We now fit the model to the DR data by estimating

the parameters through proposed JGQL and SSGQL approaches.

2.2.4.1 An application of the linear conditional bivariate binary (LCBB)

fixed model

In this section, for simplicity, we collapsed the four categories of left and eye diabetic

retinopathy status in Williamson et. al. (1995) into 2 categories for each of the

bivariate responses. The DR responses in the bivariate binary format is shown in
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Table 2.9.

Table 2.9: Descriptive statistics of left and right eyes diabetic retinopathy status.

right eye \ left eye Y=1 (presence of DR) Y=0 (absence of DR) Total

Z=1 (presence of DR) 424 31 455

Z=0 (absence of DR) 39 249 288

Total 463 280 743

As far as the covariates are concerned, we denote the 7 covariates as follows. First,

we categorize duration of diabetes (DD) into three categories, to do so we use two

dummy covariates xi11 and xi12 defined as follows:

(xi11, xi12) =



(1, 0), DD < 5 years

(0, 0), DD between 5 and 10 years

(0, 1), DD > 10 years.

The other six covariates are denoted as:

xi2 =
GHLi −GHL
se(GHL)

, xi3 =


0, DBP < 80

1, DBP ≥ 80,

xi4 =


0, male

1, female,

xi5 =


0, P r absence

1, P r presence,

xi6 =


0, DI ≤ 1

1, DI ≡ 2,

xi7 =


0, ME absence

1, ME presence.

For convenience we now use xi = (xi11, xi12, xi2, xi3, xi4, xi5, xi6, xi7)
′ to represent all 7

covariates, and θ = (θ11, θ12, θ2, θ3, θ4, θ5, θ6, θ7)
′ to represent the effects of xi on the

binary response variables yi and zi. Note that in addition to xi, the probabilities

for the response variables zi and yi are functions of marginal parameters α1 and β1,
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respectively. Thus, following Section 2.1, we now spell out the linear conditional

bivariate binary (LCBB) model relating y and z with x as follows,

LCBB Model:

πiz = Pr(zi = 1) =
exp(α1 + x′iθ)

1 + exp(α1 + x′iθ)
,

πiy = Pr(yi = 1) =
exp(β1 + x′iθ)

1 + exp(β1 + x′iθ)
,

and η
(y)
i1|k = Pr(yi = 1|zi, xi) = πiy + ρ11(zi − πiz), k = 0, 1. (2.19)

The JGQL and SSGQL estimates of all model parameters and their estimated

standard errors (ESE) are reported in Table 2.10. Note that following (2.13) the

estimated standard errors for φ̂ = (α̂1, β̂1, θ̂, ρ̂11)
′ under the JGQL approach were

computed from the covariance matrix of φ̂ given by

Cov(φ̂) =

{
n∑
i=1

ñ
∂(Π′iz,Π

′
iy,Π

′
izy)

∂φ

ô
Σ−1i

ñ
∂(Π′iz,Π

′
iy,Π

′
izy)

∂φ

ô′}−1
. (2.20)

Similarly, following (2.14), the estimated standard error of ψ̂ = (α̂1, β̂1, θ̂)
′ under the

SSGQL approach were computed from the covariance matrix of ψ̂ given by

Cov(ψ̂) =

{
n∑
i=1

ñ
∂(Π′iz,Π

′
iy)

∂ψ

ô
Σ−1i11

ñ
∂(Π′iz,Π

′
iy)

∂ψ

ô′}−1
. (2.21)

From Table 2.10 we can see that the JGQL estimates are very close to the SSGQL

estimates. The simulation results reported in Tables 2.1-2.8 appear to support this

closeness. Next, when ESEs are compared, it is clear that the ESEs of the JGQL esti-

mates are smaller than the corresponding SSGQL estimates, which is also supported

by simulation results shown in Tables 2.1-2.8 and Figures 2.1-2.5.

The results in Table 2.10 show that the propensity of diabetic retinopathy (prob-

ability of having diabetic retinopathy problem) tends to increase with longer DD,
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Table 2.10: JGQL and SSGQL estimation results for the diabetic retinopathy data

under the LCBB model.

Approach JGQL SSGQL

Parameter (Effect of) Estimate ESE Estimate ESE

α1 -0.3166 0.1974 -0.3203 0.2005

β1 -0.2146 0.1968 -0.2379 0.2003

θ11 (DD low) -2.0402 0.2741 -2.1187 0.2867

θ12 (DD high) 2.2349 0.2064 2.2376 0.2096

θ2 (GHL) 0.3871 0.0925 0.4168 0.0951

θ3 (DBP) 0.5729 0.1889 0.5538 0.1926

θ4 (Gender) -0.2491 0.1829 -0.2297 0.1867

θ5 (Pr) 0.5271 0.3208 0.5099 0.3274

θ6 (DI) 0.0026 0.1835 0.0177 0.1874

θ7 (ME) 2.0638 1.0428 2.6025 1.3779

ρ11 0.6372 0.0393 0.6361 -

higher GHL, higher DBP, male gender, presence of Pr, more DI per day and pres-

ence of ME. Note that the estimates of effects of DD and ME are found to deviate

from zero clearly, indicating that these two covariates are important risk factors of

diabetic retinopathy problem. To be specific, (1) the marginal parameter estimates

α̂1,JGQL = −0.3166 and β̂1,JGQL = −0.2146 indicate that when other covariates are

fixed, an individual has small probabilities to develop left and right eye retinopathy

problem. Next, because DD was coded as (0, 0) for duration between 5 and 10 years,
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the large positive value of θ̂12,JGQL = 2.2349 and negative value of θ̂11,JGQL = −2.0402

show that as DD increases, the probability of an individual to have retinopathy prob-

lem increases. (3) The positive values of θ̂2,JGQL = 0.3871 and θ̂3,JGQL = 0.5729,

indicate that an individual with high GHL and DBP has greater probability to have

retinopathy problem given the other covariates fixed, respectively. (4) The negative

value of θ̂4,JGQL = −0.2491 indicate that males are more likely to develop retinopathy

problem compared with females. Next, θ̂5,JGQL = 0.5271 show that presence of Pr

(proteinuria) increases one’s probability to develop retinopathy compared with those

who don’t have Pr problem. (6) The small values of θ̂6 under both approaches, to be

specific, θ̂6,SSGQL = 0.0177, indicate that dose of insulin per day (DI) does not have

much influence on one’s propensity to have retinopathy problem. (7) The regression

effect of ME (macular edema) on the probability of having diabetic retinopathy in

left or right eye was found to be θ̂7,SSGQL = 2.60. Because ME was coded as x7 = 1

in the presence of ME, this high positive value θ̂7,SSGQL = 2.60 indicates that ME has

great effects on the retinopathy status.

Next, the correlation index parameter ρ̂11,JGQL = 0.6372 (ρ̂11,SSGQL = 0.6361) im-

plies that right eye retinopathy status is highly correlated with the retinopathy status

of left eye. This high correlation appears to reflect well the correlation indicated by

the observations in Table 2.9. Note that this correlation value was accommodated in

obtaining the above efficient regression estimates under both approaches. Note that

the aforementioned regression estimates (effects of risk factors) also agree with the

corresponding estimates obtained by Williamson et al. (1995, Table 2), for example.

However, in our approach, unlike Williamson et al. (1995), we do not require any

extra modeling for any association such as their odds ratio parameters. By the same
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token, we have avoided the odds ratio based models used by Agresti (2002) which

complicates the marginal probabilities involving marginal parameters of both vari-

ables. In contrary, in fitting the LCBB model to the data we easily computed the

correlation parameter ρ̂11 which appears to be quite high under both estimation ap-

proaches. Thus, the present approach explains both marginal effects and correlations

relatively easily.

Now because regression effects and correlation index parameter are estimated, we

can examine the bivariate correlation pattern by computing the individual correlations

which will be functions of ψ and ρ11. To be specific, Recall from (2.5) that ρiyz =

corr(yi, zi) = ρ11

…
πiz(1−πiz)
πiy(1−πiy) . Now, by using the model parameter estimates given in

Table 2.10, we can calculate the correlation ρiyz for each i = 1, . . . , n. This we do by

using the SSGQL estimates. We give the histogram of correlations in Figure 2.6 below.

From Figure 2.6 we can see that a large number of individuals have big correlations

such as 0.66 or even higher. To be precise, the minimum of ρiyz is found to be 0.6120,

and the maximum is 0.6628, with average of ρiyz given by ρ̄yz = 0.6426. Thus,

the present model helps to understand the correlation between bivariate multinomial

data, the binary data being the special case.

2.2.4.2 An application of the linear conditional bivariate multinomial

(LCBM) model

In the last section, the LCBB model was fitted to the bivariate binary diabetic

retinopathy (DR) data set and it was found that duration of diabetes (DD) and

macular edema (ME), among other covariates, have played an important role on

dichotomous diabetic retinopathy status. Note that when DR is present, it may be
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Figure 2.6: Histogram of correlations between left and right eye binary retinopathy

status under the LCBB model.

useful to understand the effects of associated covariates on various levels of DR. To be

specific, when DR is present, it may be however severe or non-severe. For this reason,

in this section, we categorize the diabetic retinopathy status into three categories,

namely, absence of DR, non-severe DR, and severe DR; and fit the LCBM model to

this data set by applying the SSGQL method to examine the effects of selected co-

variates on DR. To represent three categories of right eye diabetic retinopathy status,

we use two dummy variables zi1 and zi2 defined as follows:

(zi1, zi2) =



(1, 0), non− severe DR (category 1)

(0, 1), severe DR (category 2)

(0, 0), absence of DR (category 3).
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Similarly, we use two dummy variables yi1 and yi2 to represent the three categories

of left eye diabetic retinopathy status as follows:

(yi1, yi2) =



(1, 0), non− severe DR (category 1)

(0, 1), severe of DR (category 2)

(0, 0), absence of DR (category 3).

The distribution of the 743 individuals under 3 categories of each of y and z are shown

in Table 2.11.

Table 2.11: Descriptive statistics of left and right eyes diabetic retinopathy status.

right eye \ left eye non-severe DR severe DR absence of DR Total

non-severe DR 354 15 31 400

severe DR 12 43 0 55

absence of DR 39 0 249 288

Total 405 58 280 743

As far as the covariates are concerned, in the bivariate binary analysis in the last

section, we consider 7 covariates. However, one of the covariates, namely, dose of

insulin per day (DI) was found to have no obvious effect on DR evident from the

JGQL and SSGQL estimates for this effect, which were found to be θ̂6,JGQL = 0.0026

and θ̂6,SSGQL = 0.0177. Thus, we do not include DI in the present multinomial anal-

ysis. The rest of the covariates are: (1) duration of diabetes (DD), (2) glycosylated

hemoglobin level (GHL), (3) diastolic blood pressure (DBP), (4) gender, (5) protein-

uria (Pr), and (6) macular edema (ME); and it is of interest to find the effects of the 6
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covariates on the trinomial status of DR. Furthermore, unlike in the previous section,

in this section, we use standardized DD to estimate the effect of DD on DR. There

are two obvious advantages of doing so, first the total number of model parameters

can be reduced by two, yielding simpler calculations; second it is easier to interpret

effects of DD on different categories of DR. We give the formula for standardizing DD

as follows:

xi1 =
DDi −DD
se(DD)

.

Next, to specify the bivariate multinomial probabilities following (2.1)-(2.2), we

use the notation xi = (xi1, xi2, xi3, xi4, xi5, xi6)
′ to represent aforementioned 6 co-

variates, and use θ1 = (θ11, θ21, θ31, θ41, θ51, θ61)
′ to represent the effects of xi on the

response variables yi1 and zi1, and θ2 = (θ12, θ22, θ32, θ42, θ52, θ62)
′ to represent the

effects of xi on the response variables yi2 and zi2. For example, θ11 is the effect of DD

on non-severe DR, and θ12 represent the effect of DD on severe retinopathy problem.

Note that in addition to xi, the probabilities for the response variables zi1 and zi2 are

functions of marginal parameters α1 and α2, respectively; similarly, the probabilities

for the response variables yi1 and yi2 are functions of marginal parameters β1 and β2,

respectively. Following (2.1)-(2.2), we now spell out the linear conditional bivariate

binary (LCBM) fixed model relating y and z with x as follows,

LCBM Model:

π
(1)
iz = Pr(zi = z

(1)
i ) =

exp(α1 + x′iθ1)

1 + exp(α1 + x′iθ1) + exp(α2 + x′iθ2)
,

π
(2)
iz = Pr(zi = z

(2)
i )) =

exp(α2 + x′iθ2)

1 + exp(α1 + x′iθ1) + exp(α2 + x′iθ2)
, (2.22)

π
(3)
iz = Pr(zi = z

(3)
i ) = 1− π(1)

iz − π
(2)
iz ,
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π
(1)
iy = Pr(yi = y

(1)
i ) =

exp(β1 + x′iθ1)

1 + exp(β1 + x′iθ1) + exp(β2 + x′iθ2)
,

π
(2)
iy = Pr(yi = y

(2)
i ) =

exp(β2 + x′iθ2)

1 + exp(β1 + x′iθ1) + exp(β2 + x′iθ2)
, (2.23)

π
(3)
iy = Pr(yi = y

(3)
i ) = 1− π(1)

iy − π
(2)
iy ;

and

η
(y)
i1|1 = Pr(yi = y

(1)
i |zi = z

(1)
i ) = π

(1)
iy + ρ11(1− π(1)

iz )− ρ21π(2)
iz ,

η
(y)
i2|1 = Pr(yi = y

(2)
i |zi = z

(1)
i ) = π

(2)
iy + ρ12(1− π(1)

iz )− ρ22π(2)
iz ,

η
(y)
i3|1 = Pr(yi = y

(3)
i |zi = z

(1)
i ) = 1− η(y)i1|1 − η

(y)
i2|1,

η
(y)
i1|2 = Pr(yi = y

(1)
i |zi = z

(2)
i ) = π

(1)
iy − ρ11π

(1)
iz + ρ21(1− π(2)

iz ),

η
(y)
i2|2 = Pr(yi = y

(2)
i |zi = z

(2)
i ) = π

(2)
iy − ρ12π

(1)
iz + ρ22(1− π(2)

iz ), (2.24)

η
(y)
i3|2 = Pr(yi = y

(3)
i |zi = z

(2)
i ) = 1− η(y)i1|1 − η

(y)
i2|1,

η
(y)
i1|3 = Pr(yi = y

(1)
i |zi = z

(3)
i ) = π

(1)
iy − ρ11π

(1)
iz − ρ21π

(2)
iz ,

η
(y)
i2|3 = Pr(yi = y

(2)
i |zi = z

(3)
i ) = π

(2)
iy − ρ12π

(1)
iz − ρ22π

(2)
iz ,

η
(y)
i3|3 = Pr(yi = y

(3)
i |zi = z

(3)
i ) = 1− η(y)i1|1 − η

(y)
i2|1.

The SSGQL estimates of all model parameters and the estimated standard errors

(ESE) of all regression parameters (α1, α2, β1, β2, θ1 and θ2) are reported in Table

2.12.

The results in Table 2.12 show that the propensity of diabetic retinopathy (prob-

ability of having diabetic retinopathy problem) tends to increase with longer DD,

higher GHL, higher DBP, male gender, presence of proteinuria, and presence of ME.

This observation agrees with the results in Table 2.10 under the bivariate binary

analysis. To be specific, (1) the marginal parameter estimates α̂1,SSGQL = 0.6817 and
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α̂2,SSGQL = −2.5275, along with the marginal parameter estimates β̂1,SSGQL = 0.7531

and β̂1,SSGQL = −2.3879, indicate that when other covariates are fixed, an diabetic

patient tends to develop retinopathy problem. However, the probability to have

moderate (non-severe) retinopathy problem is larger as compared to the probability

of having severe retinopathy problem. This observation agrees with the descrip-

tive statistics in Table 2.11. (2) The large positive value of θ̂11,SSGQL = 2.1768 and

θ̂12,SSGQL = 2.5909 show that as DD increases, the probability of an individual to have

retinopathy problem increases, the longer DD, the severer retinopathy status will be.

(3) The positive values of θ̂31,SSGQL = 0.6728 and θ̂32,SSGQL = 1.1458 indicate that

an individual with higher DBP has greater probability to have retinopathy problem

given the other covariates fixed. The positive values of θ̂21 and θ̂22 give similar inter-

pretation of the effects of GHL on one’s retinopathy status. (4) The negative value

of θ̂41,SSGQL = −0.1899 and θ̂42,SSGQL = −0.3735 indicate that males are more likely

to develop retinopathy problem as compared to females, and males are more likely

to develop severe retinopathy problem than females. (5) The large positive values

of θ̂61 = 2.0768 and θ̂62 = 4.1538 indicate that ME has a strong influence on one’s

propensity of diabetic retinopathy, and that presence of ME leads to severe DR more

likely than moderate retinopathy problems.

Next, the large correlation index parameter values ρ̂11,SSGQL = 0.6405 and ρ̂22,SSGQL =

0.6740, and the small values of ρ̂21,SSGQL = 0.0173 and ρ̂12,SSGQL = 0.0086 imply that

right eye retinopathy severity is highly correlated with the retinopathy severity of left

eye. For example, for individuals whose left eye retinopathy status is non-severe, it is

highly possible for them to have non-severe right eye retinopathy problem. Similarly,

for those who have severe left eye retinopathy problem, it is greatly possible for them
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to have severe right eye retinopathy problem as well. This high correlation appears

to reflect well the correlation indicated by the observations in Table 2.11.
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Table 2.12: SSGQL estimation results for the diabetic retinopathy data under the

LCBM model.

Parameter (Effect of) Estimate ESE

α1 0.6817 0.1473

α2 -2.5275 0.3120

β1 0.7531 0.1479

β2 -2.3879 0.3083

θ11 (DD on non-severe DR) 2.1768 0.1412

θ12 (DD on severe DR) 2.5909 0.1772

θ21 (GHL on non-severe DR) 0.3667 0.0695

θ22 (GHL on severe DR) 0.3911 0.1321

θ31 (DBP on non-severe DR) 0.6728 0.1415

θ32 (DBP on severe DR) 1.1458 0.2868

θ41 (Gender on non-severe DR) -0.1899 0.1383

θ42 (Gender on severe DR) -0.3735 0.2609

θ51 (Pr on non-severe DR) 0.5446 0.2454

θ52 (Pr on severe DR) 1.7405 0.3348

θ61 (ME on non-severe DR) 2.0768 1.0346

θ62 (ME on severe DR) 4.1538 1.0504

ρ11 0.6405 -

ρ21 0.0173 -

ρ12 0.0086 -

ρ22 0.6740 -
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Chapter 3

Individual Random Effects Based

Bivariate Multinomial Mixed

(BMM) Model

In the last chapter, we have discussed the LCBM (linear conditional bivariate multino-

mial) fixed model where the correlations between two multinomial variables were in-

troduced through a conditional linear relationship between two multinomial response

variables. There are however situations in practice where the correlations between

two responses from the same individual may arise because of the influence of common

individual random effect shared by both responses. This type of random effects model

produces in general equal-correlations and they are referred to as structural or familial

correlations. Familial correlations, specially in the GLMM (generalized linear mixed

models) set up [Breslow and Clayton (1993), Lee and Nelder (1996), Sutradhar (2011,

Chapter 5)], are usually constructed among the responses of the members of the same
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family, whereas in the present setup, we develop correlations between bivariate re-

sponses as they may share the same individual specific invisible random effect. Thus,

in this chapter, we generalize the GLMM for binary data to the multinomial setup

for an individual with bivariate multinomial responses. Further note that this type

of model, unlike the LCBM fixed model discussed in Chapter 2, does not encounter

any restrictions on correlations. This is mainly because in this approach a common

random effect is added to the linear predictions involved in the marginal multinomial

probabilities for both multinomial variables causing the responses to be correlated.

The correlations mainly arise through the variance of the random effects whatever

large or small this variance may be. We describe the proposed model in the following

section.

3.1 The model

Suppose that the marginal multinomial probabilities for Zi = (Zi1, . . . , ZiK−1)
′ and

Yi = (Yi1, . . . , YiJ−1)
′ defined in (2.1) and (2.2), respectively, are now influenced by

a common random effect γ∗i
iid∼ N(0, σ2

γ) associated with the ith individual for all

i = 1, . . . , n.

3.1.1 Marginal probabilities conditional on individual spe-

cific random effect

As a generalization of the existing GLMM for binary data, in this section we consider

similar mixed model but for the multinomial data. To do this, we recall the fully

specified marginal multinomial probabilities from (2.1)-(2.2) and introduce random
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effects to the linear predictors involved in these probabilities. To be specific, let γi =

γ∗i
σγ

iid∼ N(0, 1), where σγ is a common scaler parameter irrespective of the categories.

Next, suppose that the marginal probabilities conditional on the individual random

effects are given by:

π̃
(k)
iz (γi) = Pr(zi = z

(k)
i |γi) =

exp(αk + x′i1θk1 + σγγi)

1 +
∑K−1
q=1 exp(αq + x′i1θq1 + σγγi)

, k = 1, . . . , K − 1,

π̃
(K)
iz (γi) = Pr(zi = z

(K)
i |γi) =

1

1 +
∑K−1
q=1 exp(αq + x′i1θq1 + σγγi)

; (3.1)

and

π̃
(j)
iy (γi) = Pr(yi = y

(j)
i |γi) =

exp(βj + x′i2θj2 + σγγi)

1 +
∑J−1
l=1 exp(βl + x′i2θl2 + σγγi)

, j = 1, . . . , J − 1,

π̃
(J)
iy (γi) = Pr(yi = y

(J)
i |γi) =

1

1 +
∑J−1
l=1 exp(βl + x′i2θl2 + σγγi)

. (3.2)

Note that σγγi is added to the linear predictor αk +x′i1θk1 involved in the probability

for Zi = Z
(k)
i , and it is added to the linear predictor βj + x′i2θj2 involved in the

probability for Yi = Y
(j)
i .

3.1.2 Unconditional moment properties of the model

(a) Unconditional means:

It follows from (3.1)-(3.2) that the unconditional marginal probabilities have the forms

π
(k)
iz = Pr(zi = z

(k)
i ) = EγiE[Zik|γi] = Eγi [π̃

(k)
iz (γi)|γi], (3.3)

and π
(j)
iy = Pr(yi = y

(j)
i ) = EγiE[Yij|γi] = Eγi [π̃

(j)
iy (γi)|γi].

Note that there is no closed form expressions for these expectations. However, they

can be computed empirically.
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(b) Unconditional covariance and joint moment:

The unconditional covariance between zi and yi may be computed using

Cov(Yi, Z
′
i) = E(YiZ

′
i)− E(Yi)E(Z ′i),

where E(YiZ
′
i) is computed by

E(ZikYij) = πikj = EγiE[ZikYij|γi] = Eγi [E(Zik|γi)E(Yij|γi)]. (3.4)

Note that the computation of the above marginal probabilities in (3.3) and the joint

probability in (3.4) requires the distribution of γi to be known. Under normality

assumption (see Breslow and Clayton (1993) for binary case), these moments for

example, π
(j)
iy and E(YijZik) can be calculated as

π
(j)
iy = Pr(yi = y

(j)
i ) = Eγi(π̃

(j)
iy |γi) =

∫ ∞
−∞

π̃
(j)
iy fN(γi)dγi,

and E(YijZik) =
∫ ∞
−∞

π̃
(k)
iz π̃

(j)
iy fN(γi)dγi,

where fN(γi) =
exp(

−γ2
i

2
)√

2π
.

Further note that because σγ is involved in all conditional probabilities (π̃
(k)
iz (γi), π̃

(j)
iy (γi))

and unconditional probabilities (π
(k)
iz , π

(j)
iy ), this parameter (σγ) plays a complex role in

the correlations between yi and zi. However, as this parameter is essential to explain

the joint probability for yi and zi, it is important that we estimate this parameter.

In some situations, the correlations themselves may be of interest for the purpose of

data interpretation.

3.1.3 Remarks on similar random effects based models

Note that some authors such as MacDonald (1994) used individual random effects

to construct correlation models for repeated binary data. Various scenarios for the
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distribution of the random effects are considered. This approach appears to be more

suitable in the present bivariate multinomial setup as opposed to the univariate longi-

tudinal setup. We however, use normal random effects similar to Breslow and Clayton

(1993), for example, and develop the familial correlation model through such random

effects. Further note that a binary mixed model similar to (3.1)-(3.2) was used by

Ten Have and Morabia (1999) in a familial longitudinal setup. They have used two

different random effects for two binary responses to represent possible overdispersion,

which however do not cause any familial or structural correlations between the bi-

variate binary responses at a given time. Thus, it remains as a short fall of these

approaches as the familial or structural correlations have to be accommodated. The

bivariate association between the two binary responses was modeled through certain

additional random effects based odds ratios, but the estimation of the odds ratios

requires extra regression modeling as pointed out in Chapter 1, which is a limitation

to this approach.

3.2 Inferences for the BMM model

Recall that the LCBM model (2.1)-(2.3) contains regression parameters ψ and the

linear dependence parameter ρ∗, whereas the present BMM model (3.1)-(3.2) involves

the regression parameter ψ (which has different interpretation than ψ parameter in

(2.1)-(2.2)) and the variance of the random effects σ2
γ. Note that the roles played

by the correlation index parameters are, however, different in these models. This is

because in the LCBM fixed model, the marginal probabilities are not influenced by

the correlation index parameters, whereas in the present BMM model the marginal
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probabilities are functions of σγ, the correlation index parameter. In fact, for this

complex role of σγ, we find it reasonable to use the JGQL approach as opposed to

the SSGQL approach under the LCBM model. Thus, in this section, we use the

JGQL approach to estimate all parameters, we will also use the likelihood approach.

The estimation performance of these two approaches will be compared through a

simulation study. Furthermore, the bivariate binary diabetic retinopathy data will be

reanalyzed by fitting the BMM model.

3.2.1 Joint GQL approach

Note that the computation for the marginal mean, variance and covariances to con-

struct the GQL estimating equations under the present BMM model are relatively

cumbersome. This is because the moments computation under the BMM model re-

quires an integration (3.3)-(3.4) over the distribution of the random effects γi. To

be clear and precise, we therefore, write the GQL estimating equations with slightly

different notations than in (2.13) for the LCBM fixed model. The GQL estimating

equations now have the form

f(φ∗) =
n∑
i=1

∂(Π̄′iz, Π̄
′
iy, Π̄

′
izy)

∂φ∗
[Σ̄i]

−1


zi − Π̄iz

yi − Π̄iy

gi − Π̄izy

 = 0, (3.5)

where φ∗ = (ψ′, σγ)
′, and by using binomial approximation, for example, for the

integration (Ten Have and Morabia (1999)), the probabilities involved in Π̄iz, Π̄iy,
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and Π̄izy have the formulas

π̄
(k)
iz =

N∑
ν=0

π̃
(k)
iz (γiν)(

N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

π̄
(j)
iy =

N∑
ν=0

π̃
(j)
iy (γiν)(

N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

and π̄ikj =
N∑
ν=0

π̃
(k)
iz (γiν)π̃

(j)
iy (γiν)(

N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

respectively, for k = 1, . . . , K − 1, and j = 1, . . . , J − 1, where γiν = ν−N(0.5)√
N(0.5)(0.5)

, and

we use N = 40 for the simulation study in Section 3.2.3.

3.2.2 MLE approach

In this section, we discuss the maximum likelihood estimation approach for the BMM

model. Given the individual specific random effect γi, the two multinomial response

variables zi and yi are known to be independent, and the conditional likelihood func-

tion can be written as follow:

L(φ∗) =
n∏
i=1

∫
γi

K∏
k=1

[
π̃
(k)
iz (γi)

]zik J∏
j=1

[
π̃
(j)
iy (γi)

]yij
fN(γi)dγi, (3.6)

and after some algebras, it reduces to

L(φ∗) = exp

[
n∑
i=1

K−1∑
k=1

zik(αk + x′i1θk1)

]
× exp

 n∑
i=1

J−1∑
j=1

yij(βj + x′i2θj2)


×

n∏
i=1

∫
γi

exp[σγγi(
∑K−1
k=1 zik +

∑J−1
j=1 yij)]

[1 +
∑K−1
q=1 exp(αq + x′i1θq1 + σγγi)][1 +

∑J−1
l=1 exp(βl + x′i2θl2 + σγγi)]

fN(γi)dγi.

Next, for notational simplicity, by using

Vi =
∫
γi

exp(δiγi)ui(γi)vi(γi)fN(γi)dγi,

with δi = σγ(
∑K−1
k=1 zik +

∑J−1
j=1 yij), and ui(γi) = [1 +

∑K−1
q=1 exp(αq + x′i1θq1 + σγγi)]

−1

and vi(γi) = [1+
∑J−1
l=1 exp(βl+x′i2θl2+σγγi)]

−1, the log-likelihood function from (3.6)
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has the form

l(φ∗) = logL(φ∗) =
n∑
i=1

K−1∑
k=1

zik(αk + x′i1θk1) +
n∑
i=1

J−1∑
j=1

yij(βj + x′i2θj2) +
n∑
i=1

lnVi,

yielding the desired likelihood estimating equations for αk and θk1 (k = 1, . . . , K− 1)

as

∂l(φ∗)

∂αk
=

n∑
i=1

zik +
n∑
i=1

Miαk

Vi
= 0, (3.7)

∂l(φ∗)

∂θk1
=

n∑
i=1

zikxi1 +
n∑
i=1

Miθk1

Vi
= 0, (3.8)

and for βj and θj2 (j = 1, . . . , J − 1) as

∂l(φ∗)

∂βj
=

n∑
i=1

yij +
n∑
i=1

Miβj

Vi
= 0, (3.9)

∂l(φ∗)

∂θj2
=

n∑
i=1

yijxi2 +
n∑
i=1

Miθj2

Vi
= 0, (3.10)

and for σγ as

∂l(φ∗)

∂σγ
=

n∑
i=1

Miγ

Vi
= 0, (3.11)

where, for example, for k = 1, . . . , K − 1,

Miαk =
∂Vi
∂αk

= −
∫
γi

exp(δiγi)ui(γi)vi(γi)π̃
(k)
iz fN(γi)dγi,

Miθk1 =
∂Vi
∂θk1

= −
∫
γi

exp(δiγi)ui(γi)vi(γi)π̃
(k)
iz xi1fN(γi)dγi,

and for j = 1, . . . , J − 1, Miβj and Miθj2 can be computed similarly. Furthermore, in

(3.11,)

Miγ =
∂Vi
∂σγ

=
∫
γi

exp(δiγi)ui(γi)vi(γi)γi[
K−1∑
k=1

zik +
J−1∑
j=1

yij − (2− π̃(K)
iz − π̃

(J)
iy )]fN(γi)dγi.

Let θ1 = (θ′11, . . . , θ
′
k1, . . . , θ

′
K−1,1)

′ and θ2 = (θ′12, . . . , θ
′
j2, . . . , θ

′
J−1,2)

′. The likeli-

hood estimating equation for φ∗ is given by

f(φ∗) =

Ç
∂l(φ∗)

∂α1

, . . . ,
∂l(φ∗)

∂αK−1
,
∂l(φ∗)

∂θ′1
,
∂l(φ∗)

∂β1
, . . . ,

∂l(φ∗)

∂βJ−1
,
∂l(φ∗)

∂θ′2
,
∂l(φ∗)

∂σγ

å′
= 0.

(3.12)
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Note that the aforementioned likelihood estimating equations involve Vi which re-

quires an integral over the distribution of γi. Similar to Section 3.2.1, we approximate

this integral by using the binomial approximation technique and use V̄i for Vi, where

V̄i =
N∑
ν=0

exp(δiγiν)ui(γiν)vi(γiν)(
N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

with γiν = ν−N(0.5)√
N(0.5)(0.5)

, where N = 40 is used for the simulation study in Section 3.2.4

and the diabetic retinopathy data analysis in Section 3.2.5.

3.2.3 Remarks on properties of JGQL and MLE estimates

Once the JGQL and MLE estimates for φ∗ are found by solving (3.5) and (3.12),

respectively, it is important to compute the estimated variances of these estimates.

As far as the asymptotic property of φ̂∗MLE is concerned, we note that as n→∞,

φ̂∗MLE converge to φ∗ in probability (Newey and McFadden (1993)), with the covari-

ance matrix computed from the Fisher information matrix Cov(φ̂∗) = −[E( ∂
2l(φ∗)

∂φ∗∂φ∗′
)]−1.

However, the computation of this covariance matrix for the likelihood estimators and

its estimation is relatively complex because of the involvement of integration over

γi to compute the second derivatives. In the next section, we rather concentrate on

the finite sample performance of the MLE of φ∗ through simulations. To be more

specific, we will examine the relative performance of the MLE approach to the JGQL

approach discussed in Section 3.2.1 by comparing the estimates and their standard

errors.

Note that unlike the computation for the ML estimators, one may however obtain

the asymptotic properties of the JGQL estimators relatively easily. To be specific, to

find the asymptotic variance of the JGQL estimates, we first write the Gauss-Newton
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iterative equation to solve the JGQL estimating equation (3.5). The iterative equation

has the form:

φ̂∗JGQL,(r+1) = φ̂∗JGQL,(r) +

 n∑
i=1

∂(Π̄′iz, Π̄
′
iy, Π̄

′
izy)

∂φ∗
Σ̄−1i

(
∂(Π̄′iz, Π̄

′
iy, Π̄

′
izy)

∂φ∗

)′−1
(r)

×


n∑
i=1

∂(Π̄′iz, Π̄
′
iy, Π̄

′
izy)

∂φ∗
Σ̄−1i


zi − Π̄iz

yi − Π̄iy

gi − Π̄izy




(r)

= φ̂∗JGQL,(r) +

[
n∑
i=1

D′iΣ̄
−1
i Di

]−1
(r)

×
[
n∑
i=1

D′iΣ̄
−1
i (fi − ξi)

]
(r)

, (say)

where ( )r denotes that the expression within the square bracket is evaluated at

φ∗ = φ̂∗JGQL,(r), the estimate obtained for the r-th iteration. Note that the iterative

convergence to obtain the final JGQL estimates, i.e., φ̂∗JGQL, requires

[
n∑
i=1

D′iΣ̄
−1
i Di

]−1
×
[
n∑
i=1

D′iΣ̄
−1
i (fi − ξi)

]
→ 0

in probability. This probability convergence is achieved because E(fi) = ξi. This

implies that E(φ̂∗JGQL) = φ∗. The convergence also requires that

V ar

Ñ[
n∑
i=1

D′iΣ̄
−1
i Di

]−1
×
[
n∑
i=1

D′iΣ̄
−1
i (fi − ξi)

]é
to be finite, where the variance is given by

[
n∑
i=1

D′iΣ̄
−1
i Di

]−1 [ n∑
i=1

D′iΣ̄
−1
i Cov(fi)Σ̄

−1
i Di

] [
n∑
i=1

D′iΣ̄
−1
i Di

]−1

=

[
n∑
i=1

D′iΣ̄
−1
i Di

]−1
,

which is also the variance of φ̂∗JGQL. In fact, for n → ∞, by applying Lindeberg-

Feller central limit theory (Amemiya (1985), Theorem 3.3.6, p. 92), developed based
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on non-identical distributions for independent random variables, one may show that

φ̂∗JGQL follows the p−dimensional multivariate normal distribution, that is

√
n(φ̂∗JGQL − φ∗) ∼ N

Ö
0, n

 n∑
i=1

∂(Π̄′iz, Π̄
′
iy, Π̄

′
izy)

∂φ∗
Σ̄−1i

(
∂(Π̄′iz, Π̄

′
iy, Π̄

′
izy)

∂φ∗

)′−1
è
,

(3.13)

where φ∗ has p dimensions.

3.2.4 A simulation study

In this section, we fit the proposed BMM model discussed in Section 3.1 to examine

the role of common random effects that cause the correlation between two multinomial

response variables. Because the random effects variance σ2
γ is involved in all marginal

and joint probabilities, obtaining a reasonable estimate would require large sample

size. For this reason, in the simulation study we use n = 1000, whereas for the LCBM

model in Chapter 2 we use sample size as small as 200, where marginal probabilities

were fully specified and free from correlation index parameters.

Simulation design:

Similar to the simulation study for the LCBM model, we consider K = J = 3 for

the response variables z and y. Also we consider the same marginal parameter values,

namely, α1 = 0.4, α2 = 0.3; and β1 = 0.35, β2 = 0.25. As far as selection of covariates

xiz, xiy and xic is concerned, we use same covariates structure as in the LCBM model

based simulation study. That is, we consider xi1 and xi2 as xi1 = (xiz, xic)
′ and

xi2 = (xiy, xic)
′. We choose the covariates design as follows:

xiz ∼ Binary(0.4), xiy ∼ Binary(0.7), and xic ∼ Standardized U(0, 1).
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Next, we consider a set of regression parameters, namely, θz1 = 0.25, θz2 = 0.35,

θy1 = 0.4, θy2 = 0.5, θcz1 = θcy1 = θc1 = 0.2, θcz2 = θcy2 = θc2 = 0.3. We choose both

small and large values for σγ, specifically, we use σγ = 0.1, 0.35 and 0.5 to reflect

small correlations between zi and yi; and we use σγ = 0.75 and 1.0 to reflect large

correlations.

Data generation:

To generate

zi = (zi1, zi2)

=



(1, 0), category 1

(0, 1), category 2

(0, 0), category 3

and

yi = (yi1, yi2)

=



(1, 0), category 1

(0, 1), category 2

(0, 0), category 3

for i = 1, . . . , 1000, we first generate γi for i = 1, . . . , 1000 from the standard normal

distribution, namely, N(0, 1). Note that we have chosen the size n = 1000 because in

socioeconomic studies the sample size are in general large. We then use σγγi = γ∗i in

(3.1) and (3.2) to compute the multinomial probabilities for zi and yi, respectively.

We then use these probabilities and use IMSL subroutine to generate the multinomial

observations zi = (zi1, zi2) and yi = (yi1, yi2).

Estimation:
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We estimate the regression and variance component (σγ) parameters by using the

JGQL and MLE estimation approaches. Specifically, we solve the JGQL estimating

equation (3.5) and MLE estimating equation (3.12) to obtain the estimates at a given

simulation. We repeat the simulations for 500 times. The simulated mean (SM),

simulated standard error (SSE) and mean squared error (MSE) for estimates of all

model parameters are reported in Tables 3.1-3.5. In addition, we report the estimated

standard errors (ESE) of the JGQL estimates in Tables 3.4 and 3.5. Note however

that due to the computational complexity involved in the covariance matrix of the

MLE estimates, we choose not to compute the ESE’s under the MLE approach and

thus there is no reporting on the ESE’s of MLE estimates in Tables 3.4 and 3.5.

Simulation results:

From simulation results reported in Tables 3.1-3.5, we can see that both JGQL and

MLE approaches produced almost unbiased estimates for all regression parameters

in general. For example, when σγ = 0.5, the JGQL approach yielded the estimate

of β2 = 0.25 as β̂2,JGQL = 0.244 with mean squared error 0.024, and β̂2,MLE = 0.235

with MSE 0.045. Thus both estimates are close to the true value of the parameter.

However, in general the MLE approach appear to produce regression estimates with

same or larger SSE as compared to the JGQL approach. Consequently, the MLE

approach produced regression estimates with same or larger MSE as compared to the

JGQL approach. For example, when σγ = 0.75, the results in Table 3.4 showed that

the MLE approach estimated θz1 = 0.25 as θ̂z1,MLE = 0.246 with SSE 0.169 and MSE

0.029, whereas θ̂z1,JGQL = 0.245 and the SSE and MSE for this estimate are 0.268

and 0.072, respectively. Remark that MLE produces consistent estimates similar to

the GQL estimates. However, finite sample behavior can vary. In fact, MLE is known
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to produce optimal (highly efficient) estimates.

Next, it is clear from Tables 3.4 and 3.5 that the JGQL approach produces close

ESE to the corresponding SSE values when σγ = 0.75 and σγ = 1.0, respectively. For

example, when σγ = 0.75, the JGQL approach estimates σγ as σ̂γJGQL = 0.736 with

ESE equal to 0.169, which is very close to the SSE value of 0.162. When σγ = 1.0,

the JGQL approach estimates α2 = 0.3 as α̂2,JGQL = 0.274 with SSE 0.125 and ESE

0.127, showing that the SSE and ESE are very close to each other. Thus, in general,

the estimated standard error formula derived from the JGQL estimating equation

works well as expected.

As far as the estimation of σγ is concerned, the MLE approach produced more

biased estimates with larger SSE than the JGQL approach. This makes the MLE

approach worse than the JGQL approach in the sense of MSE efficiency. For example,

for small σγ, such as σγ = 0.5, σ̂γ,MLE = 0.346 with SSE 0.281 as compared to

σ̂γ,JGQL = 0.508 with SSE 0.182. Thus, in this case, MLE produced an estimate with

MSE 0.102 and JGQL estimated this parameter with MSE 0.033. The performance

of MLE becomes worse when σγ increases. For example, for σγ = 1.0, MLE estimated

this parameter as σ̂γ,MLE = 0.866 with MSE 0.642, whereas σ̂γ,JGQL = 0.983 with

MSE 0.021. Thus MLE performed much worse when σγ = 1.0 as compared to the

case for σγ = 0.5.

Now to understand the effect of correlation index parameter σγ on regression esti-

mates, we have used the quasi-likelihood (QL) estimation technique for the regression

parameters by ignoring the correlations for all simulation designs with different values

of σγ, namely, σγ = 0.1, 0.35, 0.5, 0.75 and 1.0. For convenience, we first write the

92



QL estimating equation for the regression parameter vector ψ as follows

f(ψ) =
n∑
i=1

∂(Π̄′iz, Π̄
′
iy, Π̄

′
izy)

∂ψ
[Σ̄i]

−1


zi − Π̄iz

yi − Π̄iy

gi − Π̄izy

 = 0, (3.14)

where π̄
(k)
iz in Π̄iz, for example, has the formula

π̄
(k)
iz =

N∑
ν=0

π̃
(k)
iz (γiν)(

N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

=
N∑
ν=0

exp(αk + x′i1θk1 + 0× γiν)
1 +

∑K−1
q=1 exp(αq + x′i1θq1 + 0× γiν)

(Nν )(
1

2
)ν(1− 1

2
)N−ν ,

with σγ = 0 and γiν = ν−N(0.5)√
N(0.5)(0.5)

, and N = 40 is used for the simulation study.

The simulation results under the QL approach were reported in Tables 3.1-3.3

for correlation index parameter values σγ = 0.1, 0.35, and 0.5, respectively. With

regard to the QL estimation results under σγ = 0.75 and 1.0, we chose not to report

them due to two fold problems encountered by the QL approach. One problem is

that the QL approach produces biased estimates when correlation index parameter

σγ gets larger. This is evident from the pattern exhibited in Tables 3.1-3.3. The

other problem is that the QL approach encountered serious convergence problems

especially in large correlation scenarios, namely, the QL estimating equation (3.14)

failed to produce appropriate inverse matrix [Σ̄i]
−1 in a large number of simulations

where σγ was large.

From the results in Tables 3.1-3.3 we can see that with small correlation, namely,

when σγ = 0.1, the QL approach, as expected, produced competitive regression pa-

rameter estimates as compared with the JGQL and MLE estimates. However, as σγ

increased, the QL approach was found to yield significantly biased estimates for the
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regression parameters along with larger SSE and MSE. For example, when σγ = 0.35,

the QL approach estimated α2 = 0.3 as α̂2,QL = 0.253 with SSE 0.105 and MSE 0.075,

whereas the JGQL approach yielded α̂2,JGQL = 0.312 with SSE 0.108 and MSE 0.012,

indicating larger bias in the QL approach. By the same token, when σγ = 0.5, the QL

approach estimated θz1 as θ̂z1,QL = 0.188 with SSE 0.178 and MSE 0.036, whereas the

JGQL approach yielded θ̂z1,JGQL = 0.255 with SSE 0.176 and MSE 0.031. Thus, by

applying the QL method to the BMM model, unlike for the LCBM model discussed

in Chapter 2, we see that the QL method would produce biased regression estimate

when σγ is ignored. This indicates that one should estimate regression and correlation

index parameters jointly as far as consistent estimation for the regression parameters

is desired under the BMM model. This also means that unlike the LCBM model, the

proposed BMM model is more general, but, the joint estimation of the correlation

index parameter is needed.

94



Table 3.1: The SM (simulated mean), SSE (simulated standard error) and MSE

(mean squared error) of the JGQL, MLE and QL estimates for selected regression

parameter values and σγ = 0.1.

JGQL MLE QL

Parameter SM SSE MSE SM SSE MSE SM SSE MSE

α1 = 0.4 0.425 0.108 0.012 0.427 0.137 0.019 0.390 0.104 0.011

α2 = 0.3 0.333 0.116 0.014 0.313 0.147 0.022 0.292 0.109 0.012

θz1 = 0.25 0.263 0.180 0.033 0.279 0.192 0.038 0.259 0.178 0.032

θz2 = 0.35 0.353 0.175 0.031 0.397 0.195 0.040 0.353 0.173 0.030

β1 = 0.35 0.380 0.146 0.022 0.374 0.245 0.061 0.345 0.150 0.023

β2 = 0.25 0.280 0.139 0.020 0.285 0.266 0.072 0.237 0.156 0.024

θy1 = 0.4 0.431 0.186 0.036 0.434 0.217 0.048 0.402 0.180 0.032

θy2 = 0.5 0.529 0.184 0.035 0.507 0.214 0.046 0.511 0.184 0.034

θc1 = 0.2 0.209 0.058 0.003 0.206 0.058 0.003 0.202 0.059 0.003

θc2 = 0.3 0.312 0.064 0.004 0.306 0.061 0.004 0.305 0.061 0.004

σγ = 0.1 0.355 0.161 0.091 0.292 0.237 0.093 - - -
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Table 3.2: The SM (simulated mean), SSE (simulated standard error) and MSE

(mean squared error) of the JGQL, MLE and QL estimates for selected regression

parameter values and σγ = 0.35.

JGQL MLE QL

Parameter SM SSE MSE SM SSE MSE SM SSE MSE

α1 = 0.4 0.416 0.109 0.012 0.403 0.122 0.015 0.352 0.100 0.134

α2 = 0.3 0.312 0.108 0.012 0.317 0.131 0.018 0.253 0.105 0.075

θz1 = 0.25 0.267 0.191 0.037 0.259 0.201 0.040 0.287 0.174 0.113

θz2 = 0.35 0.366 0.179 0.032 0.345 0.226 0.051 0.397 0.176 0.188

β1 = 0.35 0.374 0.151 0.023 0.320 0.214 0.047 0.326 0.142 0.127

β2 = 0.25 0.265 0.145 0.021 0.222 0.220 0.049 0.220 0.157 0.073

θy1 = 0.4 0.393 0.184 0.034 0.449 0.188 0.038 0.384 0.178 0.179

θy2 = 0.5 0.506 0.176 0.031 0.557 0.178 0.035 0.496 0.192 0.282

θc1 = 0.2 0.198 0.062 0.004 0.201 0.086 0.007 0.192 0.058 0.040

θc2 = 0.3 0.304 0.064 0.004 0.298 0.091 0.008 0.288 0.055 0.086

σγ = 0.35 0.428 0.166 0.034 0.321 0.204 0.043 - - -
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Table 3.3: The SM (simulated mean), SSE (simulated standard error) and MSE

(mean squared error) of the JGQL, MLE and QL estimates for selected regression

parameter values and σγ = 0.5.

JGQL MLE QL

Parameter SM SSE MSE SM SSE MSE SM SSE MSE

α1 = 0.4 0.417 0.111 0.013 0.363 0.194 0.039 0.360 0.107 0.013

α2 = 0.3 0.321 0.106 0.012 0.272 0.198 0.040 0.260 0.108 0.013

θz1 = 0.25 0.255 0.176 0.031 0.305 0.189 0.039 0.188 0.178 0.036

θz2 = 0.35 0.354 0.171 0.029 0.385 0.183 0.035 0.294 0.169 0.032

β1 = 0.35 0.356 0.156 0.024 0.333 0.215 0.047 0.333 0.149 0.022

β2 = 0.25 0.244 0.155 0.024 0.235 0.211 0.045 0.228 0.150 0.023

θy1 = 0.4 0.427 0.188 0.036 0.412 0.183 0.034 0.325 0.174 0.036

θy2 = 0.5 0.538 0.181 0.034 0.508 0.154 0.024 0.431 0.176 0.036

θc1 = 0.2 0.228 0.061 0.005 0.189 0.065 0.004 0.214 0.056 0.003

θc2 = 0.3 0.331 0.062 0.005 0.288 0.060 0.004 0.319 0.055 0.003

σγ = 0.5 0.508 0.182 0.033 0.346 0.281 0.102 - - -

97



Table 3.4: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and MLE estimates

for selected regression parameter values and σγ = 0.75.

JGQL MLE

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.368 0.114 0.014 0.120 0.546 0.757 0.594 -

α2 = 0.3 0.268 0.116 0.014 0.122 0.459 0.752 0.591 -

θz1 = 0.25 0.246 0.169 0.029 0.178 0.245 0.268 0.072 -

θz2 = 0.35 0.351 0.172 0.030 0.180 0.333 0.258 0.067 -

β1 = 0.35 0.378 0.153 0.024 0.164 0.531 0.739 0.578 -

β2 = 0.25 0.279 0.162 0.027 0.168 0.421 0.754 0.598 -

θy1 = 0.4 0.320 0.181 0.039 0.192 0.358 0.248 0.063 -

θy2 = 0.5 0.416 0.195 0.045 0.195 0.468 0.240 0.059 -

θc1 = 0.2 0.171 0.063 0.005 0.065 0.226 0.285 0.082 -

θc2 = 0.3 0.271 0.059 0.004 0.066 0.322 0.264 0.070 -

σγ = 0.75 0.736 0.162 0.026 0.169 0.809 1.019 1.041 -
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Table 3.5: The SM (simulated mean), SSE (simulated standard error), MSE (mean

squared error), and ESE (estimated standard error) of the JGQL and MLE estimates

for selected regression parameter values and σγ = 1.0.

JGQL MLE

Parameter SM SSE MSE ESE SM SSE MSE ESE

α1 = 0.4 0.372 0.116 0.014 0.124 0.429 0.580 0.338 -

α2 = 0.3 0.274 0.125 0.016 0.127 0.309 0.540 0.292 -

θz1 = 0.25 0.220 0.174 0.031 0.185 0.242 0.279 0.078 -

θz2 = 0.35 0.323 0.180 0.033 0.186 0.340 0.277 0.077 -

β1 = 0.35 0.310 0.157 0.026 0.164 0.296 0.198 0.042 -

β2 = 0.25 0.215 0.163 0.028 0.167 0.191 0.160 0.029 -

θy1 = 0.4 0.402 0.188 0.035 0.196 0.505 0.615 0.389 -

θy2 = 0.5 0.494 0.192 0.037 0.198 0.623 0.576 0.347 -

θc1 = 0.2 0.211 0.063 0.004 0.070 0.221 0.279 0.078 -

θc2 = 0.3 0.310 0.067 0.005 0.071 0.323 0.281 0.080 -

σγ = 1.0 0.983 0.145 0.021 0.145 0.866 0.790 0.642 -

99



3.2.5 Reanalysis of diabetic retinopathy data

In this section, we reanalyze the diabetic retinopathy data by using the BMM model

discussed in this chapter, whereas the same data were analyzed earlier in Section 2.2.4

by fitting the LCBM model.

3.2.5.1 An application of the bivariate binary mixed (BBM) model

Similar to Section 2.2.4.1, we treat the diabetic retinopathy status as a binary (ab-

sence or presence) variable. But the correlation between two such binary variables are

thought to be generated through individual random effects common to both response

variables. Considering zi and yi as the binary retinopathy status of left and right

eyes, respectively, we now precisely write the bivariate binary mixed (BBM) model

as follows as a special case of the BMM model described in (3.1)-(3.2). The BBM

model is given by

π̃iz(γi) = Pr(zi = 1|γi) =
exp(α1 + x′iθ + σγγi)

1 + exp(α1 + x′iθ + σγγi)
, (3.15)

and π̃iy(γi) = Pr(yi = 1|γi) =
exp(β1 + x′iθ + σγγi)

1 + exp(β1 + x′iθ + σγγi)
. (3.16)

In (3.15) and (3.16), xi = (xi11, xi12, xi2, xi3, xi4, xi5, xi6, xi7)
′ is the 8-dimensional

covariate vector as in (2.17). Further, as in (3.1)-(3.2), γi in (3.15) and (3.16) is

the common random effect of the ith individual causing zi and yi to be correlated

unconditionally. That is, as discussed in (3.4), πi11, to be precise, πi11(σγ) = Pr(zi =

1, yi = 1) =
∫∞
−∞ π̃izπ̃iyfN(γi)dγi involves the correlation through (σγ) between zi and

yi. It is important to accommodate these correlations in order to obtain θ, the effect

of xi on yi and zi. We need to compute α1, β1 and σγ as well. Thus we estimate
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φ∗ = (α1, β1, θ
′, σγ)

′.

Next, to estimate φ∗, we turn back to the JGQL and ML estimation equations

(3.5) and (3.12), respectively. By solving them iteratively, as discussed in Sections

3.2.1 and 3.2.2, we obtain the estimates of φ∗. The JGQL estimates were obtained

in 10 iterations and ML estimates in 35 iterations. As far as the standard errors of

these estimates are concerned, as discussed in Section 3.2.3, the computation of the

standard errors by MLE is very complicated due to integration over the distribution

of γi. However, the standard errors of JGQL estimates were obtained easily by using

(3.13). We, therefore, provide the JGQL and ML estimates but the standard errors

for JGQL estimates only. These estimates and standard errors are reported in Table

3.6.

The results in Table 3.6 show that the propensity of diabetic retinopathy (prob-

ability of having diabetic retinopathy problem) tends to increase with longer DD,

higher GHL, higher DBP, male gender, presence of Pr, more DI per day and presence

of ME. This observation agrees with the diabetic retinopathy data analysis results

reported in Table 2.10 under the LCBB model perfectly, even though the magni-

tude of the covariate estimates along with the estimates of the intercepts were found

to be different under the BBM and LCBB models. For example, because DD was

coded as (0, 0) for duration between 5 and 10 years, the large negative value of

θ̂11,JGQL = −5.780 and positive value of θ̂12,JGQL = 6.423 under the present BBM

model show that as DD increases, the probability of an individual to have retinopa-

thy problem increases, whereas under the LCBB model the estimates of θ11 and θ12

were found to be θ̂11,SSGQL = −2.1187 and θ̂12,SSGQL = 2.2376, respectively. But the

differences in magnitude are reasonable, because under the LCBB model correlation
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Table 3.6: JGQL and MLE estimation results for the diabetic retinopathy data under

the BBM model.

JGQL MLE

Parameter (Effect of) Estimate ESE Estimate ESE

α1 -0.853 0.582 -0.848 -

β1 -0.624 0.579 -0.620 -

θ11 (DD low) -5.780 0.942 -5.728 -

θ12 (DD high) 6.423 0.870 6.365 -

θ2 (GHL) 1.120 0.285 1.110 -

θ3 (DBP) 1.515 0.551 1.502 -

θ4 (Gender) -0.668 0.515 -0.660 -

θ5 (Pr) 1.512 0.885 1.497 -

θ6 (DI) 0.016 0.514 0.017 -

θ7 (ME) 4.596 2.154 4.567 -

σγ 4.528 0.563 4.484 -

index parameters do not enter into the marginal probabilities, whereas in the present

BBM model the marginal probabilities are defined as functions of correlation index

parameter σγ. Next, the regression effect of ME (macular edema) on the probability

of having diabetic retinopathy in left or right eye was found to be θ̂7,JGQL = 4.596,

since ME was coded as x7 = 1 in the presence of ME, this high positive value indicates

that ME has great effects on retinopathy status.

Note that the random effect parameter estimate, i.e., σ̂γ,JGQL = 4.528 implies that
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retinopathy status of left and right eyes are highly correlated, this also agrees with

the large correlation index parameter value for ρ11, i.e., ρ̂11,SSGQL = 0.6361, found

based on the LCBB model. Note however that it is not possible to find any theoretical

relationship between σγ and ρ11 as the models are completely different.

Now similar to Section 2.2.4 where we have used the estimated regression ef-

fects (ψ) and correlation index parameter ρ11 to examine the bivariate correlation

pattern between left and right eye retinopathy status by computing the individual

correlations, under the present BBM model, we can also use the estimated regres-

sion parameter (ψ) and correlation index parameter (σγ) to calculate the individual

correlations. To be specific, we compute

ρiyz = corr(yi, zi) =
π̄i11 − π̄izπ̄iy»

π̄iz(1− π̄iz)π̄iy(1− π̄iy)
, (3.17)

where

π̄iz =
N∑
ν=0

π̃iz(γiν)(
N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

π̄iy =
N∑
ν=0

π̃iy(γiν)(
N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

and π̄i11 =
N∑
ν=0

π̃iz(γiν)π̃iy(γiν)(
N
ν )(

1

2
)ν(1− 1

2
)N−ν ,

respectively, with γiν = ν−N(0.5)√
N(0.5)(0.5)

and N = 40 as before.

Next, by using the JGQL estimates given in Table 3.6, we can calculate the

correlation ρiyz for each i = 1, . . . , n. We give the histogram of correlations in Figure

3.1 below. From Figure 3.1 we can see that most correlations lie between 0.58 and

0.68, the minimum of ρiyz is found to be 0.2376, and the maximum is 0.6727. To be

specific, the average of ρiyz under the BBM model is given by ρ̄yz = 0.6050. When

these correlations under the present BBM model are compared with those in Figure 2.6
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under the LCBB model, the later model produced average correlation ρ̄yz = 0.6426.

These average values are close to each other.

Figure 3.1: Histogram of correlations between left and right eye binary retinopathy

status under the BBM model.

3.2.5.2 An application of the bivariate multinomial mixed (BMM) model

In this section, similar to Section 2.2.4.2, we treat the diabetic retinopathy status as a

multinomial variable with three categories: absence, non-severity, and severity status

of DR. However, as opposed to the LCBM model, here we consider the 3 category

based BMM model, which is an extension of the BBM model discussed in the last

section. Thus, on top of the notations used in the LCBM model, we now incorporate

random effects which cause correlations among the two trinomial responses. More
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specifically, following (3.1)-(3.2), we display the trinomial mixed model as follows:

π̃
(1)
iz (γi) = Pr(zi = z

(1)
i |γi) =

exp(α1 + x′iθ1 + σγγi)

1 + exp(α1 + x′iθ1 + σγγi) + exp(α2 + x′iθ2 + σγγi)
,

π̃
(2)
iz (γi) = Pr(zi = z

(2)
i |γi) =

exp(α2 + x′iθ2 + σγγi)

1 + exp(α1 + x′iθ1 + σγγi) + exp(α2 + x′iθ2 + σγγi)
,(3.18)

π̃
(3)
iz (γi) = Pr(zi = z

(3)
i |γi) =

1

1 + exp(α1 + x′iθ1 + σγγi) + exp(α2 + x′iθ2 + σγγi)
;

and π̃
(1)
iy (γi) = Pr(yi = y

(1)
i |γi) =

exp(β1 + x′iθ1 + σγγi)

1 + exp(β1 + x′iθ1 + σγγi) + exp(β2 + x′iθ2 + σγγi)
,

π̃
(2)
iy (γi) = Pr(yi = y

(2)
i |γi) =

exp(β2 + x′iθ2 + σγγi)

1 + exp(α1 + x′iθ1 + σγγi) + exp(β2 + x′iθ2 + σγγi)
,(3.19)

π̃
(3)
iy (γi) = Pr(yi = y

(3)
i |γi) =

1

1 + exp(β1 + x′iθ1 + σγγi) + exp(β2 + x′iθ2 + σγγi)
.

In (3.18) and (3.19), xi = (xi1, xi2, xi3, xi4, xi5, xi6)
′ is the 6-dimensional covariate

vector as in (2.21)-(2.22).

To estimate the parameters in the mixed model, we have used the JGQL approach

and these JGQL estimates and their standard errors are reported in Table 3.7.

When results in Table 3.7 are compared to those of Table 2.11, the effects of

covariates appear to have similar interpretation, except the magnitude of the ef-

fects are different. For example, the large positive value of θ̂11,JGQL = 5.0229 and

θ̂12,JGQL = 5.4474 under the present BMM model show that as DD increases, the

probability of an individual to have retinopathy problem increases, and that longer

DD leads to more severe retinopathy problem. Also Table 3.7 shows the estimate

of σγ as σ̂γ,JGQL = 4.9945 as the standard deviation of the random effect or corre-

lation index parameter. This large positive estimate of σγ implies that retinopathy

status of left and right eyes are highly correlated. This large positive estimate σ̂γ

also agrees with the large correlation index parameter values for ρ11 and ρ22, i.e.,

ρ̂11,SSGQL = 0.6405 and ρ̂22,SSGQL = 0.6740, found based on the LCBM model. Note
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that the results of Table 3.7 also agree with the binary analysis based results in Table

3.6, except that Table 3.7 provides more detailed information on effects of covaraites

on various levels of DR status. For example, the regression effect of ME (macular

edema) on the probability of having non-severe diabetic retinopathy in left or right

eye was found to be θ̂61,JGQL = 5.3394, and the regression effect of ME on the prob-

ability of having severe diabetic retinopathy was found to be θ̂62 = 7.4150 under the

present trinomial analysis, whereas in the binary case, θ̂7,SSGQL = 2.6025 shows the

effect of ME on presence of DR.
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Table 3.7: JGQL estimation results for the diabetic retinopathy data under the BMM

model.

Parameter (Effect of) Estimate ESE

α1 1.1527 0.4917

α2 -2.0704 0.5644

β1 1.3746 0.4970

β2 -1.7808 0.5668

θ11 (DD on non-severe DR) 5.0229 0.6490

θ12 (DD on severe DR) 5.4474 0.6575

θ21 (GHL on non-severe DR) 1.1222 0.2915

θ22 (GHL on severe DR) 1.1315 0.3125

θ31 (DBP on non-severe DR) 2.5025 0.6028

θ32 (DBP on severe DR) 2.9889 0.6526

θ41 (Gender on non-severe DR) -0.6301 0.5353

θ42 (Gender on severe DR) -0.8000 0.5793

θ51 (Pr on non-severe DR) 2.5618 0.9609

θ52 (Pr on severe DR) 3.7453 0.9870

θ61 (ME on non-severe DR) 5.3394 2.4511

θ62 (ME on severe DR) 7.4150 2.4577

σγ 4.9945 0.5914
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Chapter 4

Nonlinear Conditional Bivariate

Multinomial (NLCBM) Fixed

Model

Recall that in Chapter 2, we exploited the linear conditional bivariate multinomial

(LCBM) fixed model for bivariate multinomial data analysis, which consists of fully

specified marginal probabilities for both multinomial response variables zi and yi, as

well as linear conditional probability that describes the correlation between zi and yi.

In this LCBM model, we used the so-called dependence parameters ρkj to indicate

the conditional relationship between zik and yij, which, however, as expected, suffers

from certain range restriction problems. In the present chapter, similar to but differ-

ent than the LCBM fixed model, we use a fully specified marginal probability model

for one multinomial response variable, for example, zi, and use a multinomial logistic

approach to model the conditional probabilities of yi given zi through dependence
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parameters δkj, k = 1, . . . , K − 1 and j = 1, . . . , J − 1, whereas in the LCBM model

the conditional probabilities of yi given zi were treated to be linear. We refer to this

proposed model as the nonlinear conditional bivariate multinomial (NLCBM) fixed

model. Note that in this model, the dependence parameters δkj, unlike their coun-

terparts ρkj in the LCBM fixed model, do not have any range restriction problems,

as δkj can range from −∞ to ∞. However the present NLCBM fixed model is a

partly specified model, this is because in this model, the marginal probabilities for

one response variable, say, zi are prespecified only, as opposed to the LCBM fixed

model in Chapter 2. To be more clear, the marginal probabilities of the other multi-

nomial response variable, say, yi are not prespecified, instead, they can be obtained

through summation of suitable joint probabilities computed by using certain marginal

probabilities of zi and conditional probabilities of yi given zi.

4.1 The model

To develop the desired NLCBM fixed model, as indicated above, we first consider

that the multinomial response variable zi has the specified marginal probability as in

(2.1) under the LCBM fixed model. That is, we write

π
(k)
iz = Pr(zi = z

(k)
i ) =

exp(αk + x′i1θk1)

1 +
∑K−1
u=1 exp(αu + x′i1θu1)

, k = 1, . . . , K − 1,

π
(K)
iz = Pr(zi = z

(K)
i ) = 1−

K−1∑
k=1

π
(k)
iz =

1

1 +
∑K−1
u=1 exp(αu + x′i1θu1)

, (4.1)

where xi1 = (x′iz : 1×p1, x′ic : 1×p2)′ : p×1 as in the model (2.1), and θk1 = (θ′kz, θ
′
kc)
′ is

the p−dimensional vector of regression effects of xi1 on zik. However, unlike the linear

conditional probability considered in (2.3), we now model the conditional probability
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of yi given zi = z
(k)
i as follows:

η
(y)
ij|k = Pr(yi = y

(j)
i |zi = z

(k)
i )

=
exp[βj + x′iyθjy +

∑K−1
u=1 δuj(z

(k)
iu − π

(u)
iz )]

1 +
∑J−1
l=1 exp[βl + x′iyθly +

∑K−1
u=1 δul(z

(k)
iu − π

(u)
iz )]

,

j = 1, . . . , J − 1, k = 1, . . . , K;

and η
(y)
iJ |k = Pr(yi = y

(J)
i |zi = z

(k)
i )

= 1−
J−1∑
j=1

η
(y)
ij|k, k = 1, . . . , K, (4.2)

where z
(k)
iu is the uth (u = 1, . . . , K − 1) component of z

(k)
i , with z

(k)
iu = 1 if u = k,

and 0 otherwise; δuj is referred to as the dependence parameter relating yij with

ziu. Notice that in writing the conditional probability in (4.2), we have used the

individual response specific covariate xiy, whereas in (2.3), the marginal probability

for yi contains the covariates xi2 = (x′iy, x
′
ic)
′. This is quite reasonable, as the common

covariates are already used in (4.1) to construct the probability model for zi, because

yi depends on zi through (4.2), it implies that the probability model for yi uses

the common covariates through zi. Further note that one may compute the joint

probability πikj = Pr(zi = z
(k)
i , yi = y

(j)
i ) as πikj = π

(k)
iz η

(y)
ij|k for k = 1, . . . , K and

j = 1, . . . , J .

Note that in writing (4.2), we have used the conditioning on zi. One may also use

alternatively the conditional probability for zi given yi. To be specific, one can write

the marginal probabilities for yi as

π
(j)
iy = Pr(yi = y

(j)
i ) =

exp(βj + x′i2θj2)

1 +
∑J−1
l=1 exp(βl + x′i2θl2)

, j = 1, . . . , J − 1,

π
(J)
iy = Pr(yi = y

(J)
i ) = 1−

J−1∑
j=1

π
(j)
iy =

1

1 +
∑J−1
l=1 exp(βl + x′i2θl2)

, (4.3)
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where xi2 = (x′iy, x
′
ic)
′. Next, by changing the dependence parameters, the conditional

probabilities of zi given yi can be written as

η̃
(z)
ik|j = Pr(zi = z

(k)
i |yi = y

(j)
i )

=
exp[αk + x′izθkz +

∑J−1
l=1 δ̃lk(y

(j)
il − π

(l)
iy )]

1 +
∑K−1
u=1 exp[αu + x′izθuz +

∑J−1
l=1 δ̃lu(y

(j)
il − π

(l)
iy )]

, (4.4)

k = 1, . . . , K − 1, j = 1, . . . , J ;

and η̃
(z)
iK|j = Pr(zi = z

(K)
i |yi = y

(j)
i )

= 1−
K−1∑
k=1

η̃
(z)
ik|j, j = 1, . . . , J.

However, in this chapter, we follow the models in (4.1)-(4.2) only.

4.2 Likelihood estimation for the NLCBM fixed

model

Notice that the marginal model (4.1) involves the regression parameter ψ∗ = (α1, . . . ,

αk, . . . , αK−1, θ
′
1z, . . . , θ

′
kz, . . . , θ

′
K−1,z, θ

′
1c, . . . , θ

′
kc, . . . , θ

′
K−1,c)

′, which are also involved

in the conditional probability (4.2) through π
(k)
iz . Furthermore, the conditional prob-

ability involves the additional new parameter vector ζ = (β1, . . . , βj, . . . , βJ−1, . . . ,

θ′1y, . . . , θ
′
jy, . . . , θ

′
J−1,y, δ11, . . . , δk1, δK−1,1, δ21, . . . , δkj, . . . , δK−1,J−1)

′. In order to de-

rive the desired likelihood estimating equations for ψ∗ and ζ, we first write the full
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likelihood function for ψ∗ and ζ as

L(ψ∗, ζ) =
n∏
i=1

K∏
k=1

J∏
j=1

(πikj)
zikyij

=
n∏
i=1

K∏
k=1

J∏
j=1

(π
(k)
iz η

(y)
ij|k)

zikyij

=
n∏
i=1

K∏
k=1

(π
(k)
iz )zik

J∏
j=1

(η
(y)
ij|k)

zikyij

 , (4.5)

where π
(k)
iz is defined in (4.1) and the conditional probability η

(y)
ij|k is defined in (4.2).

Next, we take the logarithm of L(ψ∗, ζ) given above and obtain the log likelihood

function for (ψ∗, ζ) as follows

l(ψ∗, ζ) = logL(ψ∗, ζ) =
n∑
i=1

K∑
k=1

ziklogπ
(k)
iz +

n∑
i=1

K∑
k=1

J∑
j=1

zikyijlogη
(y)
ij|k. (4.6)

4.2.1 Estimation of the parameters

One may then construct the likelihood estimating equations for the parameters

involved in the model (4.1)-(4.2).

Likelihood equation for ψ∗

By taking the derivatives of l(ψ∗, ζ) in (4.6) with respect to the components of ψ∗,

we obtain the likelihood estimating equations for αk and θk1 (k = 1, . . . , K − 1) as

∂l(ψ∗, ζ)

∂αk
=

n∑
i=1

(zik − π(k)
iz )−

n∑
i=1

K∑
k=1

J−1∑
j=1

zikδkj(yij − η(y)ij|k)π
(k)
iz (1− π(k)

iz ) = 0,(4.7)

∂l(ψ∗, ζ)

∂θk1
=

n∑
i=1

(zik − π(k)
iz )xi1 −

n∑
i=1

K∑
k=1

J−1∑
j=1

zikδkj(yij − η(y)ij|k)π
(k)
iz (1− π(k)

iz )xi1

= 0. (4.8)

Likelihood equation for ζ

Next, By taking the derivatives of l(ψ∗, ζ) in (4.6) with respect to ζ, we obtain the
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likelihood estimating equation for βj, θjy (j = 1, . . . , J − 1) as

∂l(ψ∗, ζ)

∂βj
=

n∑
i=1

K∑
k=1

zik(yij − η(y)ij|k) = 0, (4.9)

∂l(ψ∗, ζ)

∂θjy
=

n∑
i=1

K∑
k=1

zik(yij − η(y)ij|k)xiy = 0, (4.10)

and for δkj (k = 1, . . . , K − 1 and j = 1, . . . , J − 1) as

∂l(ψ∗, ζ)

∂δkj
=

n∑
i=1

K∑
u=1

ziu(yij − η(y)ij|u)(z
(k)
iu − π

(k)
iz ) = 0. (4.11)

Note that these likelihood equations in (4.7)-(4.11) can be solved jointly which

will however requires extensive second derivatives computation. This computational

burden can be reduced by solving these equations in two stages. To be specific, in

the first stage, we solve (4.7)-(4.8) for ψ∗ assuming that ζ is known, i.e., using some

initial values for the parameters involved in ζ. In the second stage, the estimate of

ψ∗ obtained at the first stage is used in solving the estimating equation for ζ. This

will constitute a cycle of iterations, and the iterations will continue until convergence

is reached. For simplicity, we write the likelihood iterative equations for these two

stages as follows.

Stage 1: Iterative equation for ψ∗

The iterative equation for ψ∗ is given by:

ψ̂∗r+1 = ψ̂∗r −
ñ
∂2l(ψ∗, ζ)

∂ψ∗∂ψ∗′

ô−1
r

Ç
∂l(ψ∗, ζ)

∂ψ∗

å
r

,

where the second derivatives can be computed from (4.7)-(4.8), which is straightfor-

ward but would require lengthy calculations. These are not given here as our purpose

is to demonstrate how the likelihood method can be exploited.
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Stage 2: Iterative equation for ζ

Similarly, the iterative equation for ζ is given by:

ζ̂r+1 = ζ̂r −
ñ
∂2l(ψ∗, ζ)

∂ζ∂ζ ′

ô−1
r

Ç
∂l(ψ∗, ζ)

∂ζ

å
r

,

where the second derivatives can be computed from (4.9)-(4.11).

Note that one may also develop JGQL estimating equation approach to estimate

the parameters ψ∗ and ζ, which will naturally be more complicated as compared to

the JGQL approach developed in Chapter 2.

Further note that in view of the computational results discussed in Chapters 2

and 3, it is reasonable to expect that both likelihood and the JGQL approaches will

perform well in estimating the parameters of the model (4.1)-(4.2). We however do

not undertake any further numerical computations at this stage.
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Chapter 5

Concluding Remarks

Even though in many practical situations bivariate categorical responses are collected

in a cross sectional setup, the existing inferences have drawbacks in analyzing this type

of data due to improper modeling and/or difficult model parameter interpretation

[Agresti (2002)] or arbitrary extra modeling posed on the correlations between two

responses [Williamson et. al. (1995)]. In the thesis, we have developed three types of

conditional probability models. One such model is constructed by linear probability

function conditioning one response on the other, where marginal probabilities are

fully specified. The second model is constructed by conditioning on suitable random

effects so that unconditionally two multinomial variables become correlated. Also we

have considered a conditional model similar to the first model but using a logistic

(non-linear) probability function conditioning one response on the other.

As far as the inferences are concerned, because the likelihood approach for the

first model considered in Chapter 2 is relatively complicated, we have used the JGQL

(joint generalized quasi-likelihood) and SSGQL (single stage GQL) approaches for
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the estimation of the parameters of this model. The simulation study conducted in

this chapter shows that these two estimation approaches are competitive and they

estimated the parameters well. However, for simplicity, we have recommended the

use of SSGQL as compared to the JGQL approach.

Note that the second conditional model discussed in Chapter 3 accommodates the

correlations between two multinomial variables through common individual random

effects. In developing this model, it was assumed that conditional on the common

random effects, the marginal probabilities have specified multinomial logistic forms.

Consequently this model allows full range for the correlations. The estimation of the

parameters including the random effects variance (correlation index parameter) was

done by using the JGQL and likelihood approaches. It was found that the JGQL

approach estimates better or as well as the likelihood approach. However, because

the likelihood estimation method for mixed model is computationally more involved,

we prefer the JGQL approach over the likelihood approach.

In this thesis we have mainly dealt with bivariate multinomial responses collected

from the same individual at a given point of time. However, there may be situations

where more than two multinomial responses are collected from the same individual

at a given point of time. The analysis of this type of data will require generalization

of the bivariate multinomial data analysis discussed in this thesis. Furthermore,

there may be situations that bivariate (possibly multivariate) multinomial data are

collected from the same person over a short period of time. This type of longitudinal

data analysis will require the generalization of the existing univariate longitudinal

models (e.g., Chowdhury (2011)) to the multivariate setup. This generalization will

be naturally more complex and is beyond the scope of the present thesis.
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