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ABSTRACT 

 Human leukocyte antigen (HLA) class II molecules [HLA-DR, HLA-DM, 

invariant chain (Ii)] are crucial for anti-tumor immune responses. Regulation of HLA 

class II occurs mainly at the transcription level through the class II transactivator (CIITA) 

that is induced by interferon gamma (IFN-γ). In addition, mitogen activation protein 

kinase (MAPK) regulates HLA class II expression at the protein and the transcriptional 

level in antigen presenting cells (APC) and some tumors.  

Previously, our laboratory reported that tumor cell expression of HLA-DR in 

breast cancer correlated with decreased estrogen receptor (ER) levels and younger age at 

diagnosis. In this study we used established ERα+ and ERα- breast cancer cell lines 

(BCCL) from ATTC and showed that, estradiol (E2) resulted in down regulation of HLA-

DR expression in MCF-7 (ERα+) and BT-474 (ERα+), but not in T47-D (ERα+), nor in 

SK-BR-3 (ERα-) and MDA-MB-231 (ERα-). Altogether, these data suggest that the E2-

ER pathway plays a significant role in HLA class II expression in breast carcinoma. We 

further postulated that the higher expression of HLA-DR in ERα-, as compared to ERα+ 

breast cancer cells is due to MAPK activation. 

 To study the mechanism(s) involved in the regulation of HLA class II expression 

in breast cancer cells, we used a cell line model of an ERα+ cell line, MC2 (MDA-MB-

231 transfected with the wild type ERα gene) and ERα- cell line, VC5 (MDA-MB-231 

transfected with the empty vector). These cells were subjected to different hormonal 

treatments [E2, Tamoxifen (TAM) and Fulvestrant (ICI 182,780)], cytokine treatments 
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(IFN-γ) and MAPK inhibitors (U0126, SP 600125 and SB 202190), to determine their 

effects on HLA class II regulation.  

 Inducible CIITA and HLA class II expression were markedly reduced at the 

protein and transcription levels in MC2, compared to VC5. Moreover, CIITA and IFN-γ 

activated sequence (GAS) luciferase activities were reduced in MC2 and were further 

inhibited by E2-treatment. In parallel, E2 decreased GAS luciferase activity in the same 

pattern in MCF-7 (ERα+) and BT-474 (ERα+). The MAPK pathway played a role in 

HLA-DR surface expression in the breast cancer cell lines (BCCL) regardless of ERα 

status. In aggregate, these results indicate that the E2-ER and MAPK signaling pathways 

modulate HLA class II expression in BCCL.  
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Chapter 1: Introduction 

1.1. The major histocompatability complex 

1.1.1. Overview 

 The major histocompatibility complex (MHC) is a group of highly polymorphic 

genes that spans a region of approximately 4000 kilobase (kb) on the short arm of 

chromosome six (6p21.3) and is referred to as human leukocyte antigen (HLA) in humans 

and the H-2 complex in mice. This region is comprised of a series of about 200 tightly 

linked pseudogenes, expressed genes and genes of unknown function (1). MHC is divided 

into three regions called class I, class II and class III.  

 The classical HLA class I genes code for HLA-A, B and C molecules which are 

important in presenting peptides of 8-10 amino acids in length from endogenously 

synthesized proteins to CD8+ cytotoxic T-cells (2). HLA class I glycoproteins form 

heterodimers with β2-microglobulin and are expressed in nearly all nucleated cells. The 

non-classical HLA genes code for HLA-E,-F,-G, and MHC class I related chain A 

(MICA) & MICB (3), which have a significant role in innate immunity by acting as a 

natural killer (NK) cell inhibitory (4, 5) and activating ligands (6) respectively. 

 The HLA class II region spans 1000 kb and contains numerous pseudogenes as 

well as the classical HLA class II genes (HLA-DRA, DRB, DPA, DPB, DQA and DQB), 

which code for class II α chain and β chain glycoproteins. Both chains form heterodimers 

and are important in sampling exogenous antigenic peptides, of 12-24 amino acids 

residues in length to CD4+ T helper cells (3). Constitutive expression of HLA class II 

molecules is largely restricted to antigen presenting cells (APC), namely dendritic cells 
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(DC), B cells and macrophages. HLA class II expression is regulated in these cells in a 

maturation-dependent manner, such that HLA expression on DC increases with 

maturation, whereas B cells downregulate expression following their differentiation into 

plasma cells. HLA class II is also expressed on thymic epithelial cells (TEC) and 

activated T cells. Various cytokines such as interferon gamma (IFN-γ) may upregulate 

expression on most other HLA negative cell types such as fibroblasts, endothelial and 

epithelial cells (7-9). The class II region also encodes for the non-classical HLA-DM, 

which acts as peptide editor for proper antigen presentation (10, 11), and HLA-DO, which 

is important in negative regulation of HLA-DM (3). The transporter associated with 

antigen processing (TAP) and low molecular weight proteins (LMP), which are involved 

in HLA class I antigen presentation pathway (12), are also encoded by genes in the class 

II region (3).  

 HLA class III regions contain 57-60 structural genes, most of which code for 

proteins that have important molecular functions in the immune response. These include 

tumor necrosis factor (TNF)-α, lymphotoxin and complement factors C2 and C4 (2).  

 The genes encoded in each of these sub-regions play an important role in the 

adaptive immune system, development of autoimmunity, and response to tumor antigens. 

Since this thesis concerns HLA class II molecules and breast carcinoma, this part of the 

review will focus on HLA class II genes.  
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1.1.2. Structure of human leukocyte antigen class II molecules 

The HLA class II molecule is a heterodimer, composed of four external domains, 

two in each chain (α1, α2 and β1, β2), a transmembrane (TM) piece and a short intra-

cytoplasmic domain (Figure 1.1). The peptide-binding groove is composed of two alpha 

helices above a beta-pleated sheet represented by α1 and β1 domains and is open-ended to 

accommodate long peptides (12-24 amino acid residues). The amino acid sequence 

around the peptide-binding groove is the most variable site in the HLA molecule, leading 

to a high degree of peptide-binding specificity. HLA-DRα is considered monomorphic, 

with absent functional variation in the mature HLA-DRA alleles. Thus, the polymorphism 

of HLA-DR is mainly through the HLA-DRβ chain with about 1200 alleles listed in 

IMGT/HLA Database Version Report-3.11.0 (2013-01) (13). In contrast, both α and β 

chains are responsible for the polymorphism of HLA-DP and HLA-DQ while little 

polymorphism is reported for the non-classical HLA-DM and HLA-DO (3, 14). 

 

1.1.3. Human leukocyte antigen class II antigen presentation pathway 

 Alpha and beta chains of HLA class II molecules are synthesized in the rough 

endoplasmic reticulum along with a third molecule, the invariant chain (Ii) (Figure 1.2), 

that is important in the HLA class II presentation pathway. The Ii has several functions; 

firstly, it acts as a co-chaperone and ensures proper folding and stability of the α and β 

chains of HLA class II molecules.  This occurs through the formation of a nine subunit 

complex consisting of three class II α and β dimers associated with one Ii trimer  (αβ)3Ii3 

(15). Secondly, Ii binds to the peptide-binding groove of the HLA class II during its
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Figure 1.1 Human leukocyte antigen class II molecule structure.  

Human leukocyte antigen (HLA) class II molecules consist of two glycoprotein trans-

membrane chains (α and β), which are non-covalently linked. The HLA class II 

molecules are anchored in the plasma membrane by the transmembrane (TM) domain and 

cytoplasmic tail. Adapted from (14). 
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assembly in the endoplasmic reticulum, thereby preventing non-specific peptide binding 

(16). Lastly, Ii molecules harbor sorting signals in its cytoplasmic tail which play a 

significant role in transportation of (αβ)3Ii3 complex to the Golgi apparatus (17). 

 Ii transits from the Golgi apparatus to the endocytic compartment, including early 

endosomes, late endosomes and lysosomes. Lysosomes fuse with the late endosome-like 

compartment to form MHC class II loaded compartments (MIIC) that contain abundant 

HLA class II complexes (17). In the MIIC, limited proteolysis of Ii occurs by the 

lysosomal protease, cathepsin S, leaving a class II associated Ii peptide (CLIP) in the 

peptide-binding groove (18). CLIP is exchanged for antigenic peptides, a process that is 

catalyzed by HLA-DM molecules, which function as a “peptide editor”, exchanging CLIP 

and low affinity binding peptides from the peptide-binding groove, with high affinity 

peptides (19). HLA-DM is always found in close association with HLA class II molecules 

in MIIC compartment with very small amounts detected on the cell surface (20). Besides 

being a “peptide editor”, HLA-DM stabilizes unbound class II molecules, thus, 

preventing HLA-DR from aggregating (21). HLA-DM negative cells do not undergo this 

peptide exchange and CLIP remains bound within the groove (22), leading to unstable 

HLA/peptide complex. 

 HLA-DO is a heterodimer encoded by HLA-DOB and HLA-DNA genes (now 

referred to as HLA-DOA) and acts as a negative modulator of HLA-DM (23, 24). The 

action of HLA-DO is maintained by stably associating with HLA-DM, thus, inhibiting the 

catalytic action of HLA-DM on class II peptide loading. Additionally, HLA-DO affects 

the peptide repertoire that is ultimately presented to the immune system by HLA class II 

molecules (25). Recently, it was shown by X-ray crystallography that HLA-DO can act 
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Figure 1.2 Biology of antigen presentation by human leukocyte antigen class II.  

Human leukocyte antigen (HLA) class II heterodimers are synthesized in the endoplasmic 

reticulum and form a peptide-binding groove that is bound by Invariant chain (Ii). Ii 

associates with HLA class II to form (αβ)3Ii3 complex. (αβ)3Ii3 complexes move into 

MHC class II loading compartment (MIIC) where Ii is degraded by cathepsin S with the 

class II associated Ii peptide (CLIP) fragment remaining (orange). HLA-DM, which is 

associated with HLA-DO, assists in exchange of CLIP for a high affinity stable peptide 

(green). HLA-DM and DO dissociate from the complex and loaded HLA class II are 

transported to the cell surface to interact with CD4+ helper T cells. Adapted from (26).      
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as a competitive inhibitor for HLA-DM. HLA-DO binds to HLA-DM in the same site 

involved in HLA class II interaction, which results in prevention of association of HLA-

DM with HLA class II molecules (27). Ultimately, HLA class II molecules, which are 

properly loaded with the stable peptide complexes, are then transported to the plasma 

membrane for presentation to CD4+ T cells (15). 

 

1.1.4. Regulation of human leukocyte antigen class II gene expression 

 Regulation of HLA class II gene expression occurs mainly at the transcriptional 

level, by a highly conserved regulatory module that is located in the promoter of genes 

encoding the α-chain and β-chain of all HLA class II molecules and Ii. This HLA class II 

specific regulatory module, known as the SXY module, consists of four sequences: the S, 

X, X2 and Y boxes (28) (Figure 1.3). This module is bound by transcription factors to 

form the multi-protein complex known as the HLA class II enhanceosome (29). A 

trimeric complex composed of regulatory factor X 5 (RFX5), RFX-associated ankyrin-

containing protein (RFXANK; RFX-B) and RFX-associated protein (RFXAP), referred to 

as RFX, is bound to the X box (30-33). X2 binding protein (X2BP) and cAMP response 

element binding protein (CREB) are bound to the downstream X2 box (34). A trimeric 

complex composed of nuclear transcription factor YA (NF-YA), NF-YB, and NF-YC, 

together known as NF-Y, is bound to the Y box (35). The transcription factor that binds to 

the S-box remains unclear, although it has been shown that RFX could bind to the S box 

in vitro (36).  

Although all the previously described transcription factors are ubiquitously and
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Figure 1.3 Regulation of human leukocyte antigen class II expression.  

Human leukocyte antigen (HLA) class II is regulated at the transcriptional level by 

binding of regulatory factor X (RFX), cAMP response element-binding (CREB), nuclear 

transcription factor Y (NF-Y) to the S, X, Y module present in the promoter of HLA class 

II genes. These form a landing pad for class II transactivator (CIITA), which recruits 

more transcription machinery and aids in HLA class II expression. Adapted from (37). 
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constitutively expressed, most of the cells lack the ability to induce HLA class I 

expression on their own. Yet, they form the enhancesome complex, which acts as a 

landing pad for the class II transactivator (CIITA)  (38-40) (Figure 1.3).  

 

1.1.5. Class II transactivator overview 

 The CIITA is a non-DNA binding protein that acts as a transcriptional integrator 

by connecting transcription factors bound to the HLA class II promoter with components 

of the general transcriptional machinery. CIITA interacts with general transcription 

factors thymine adenine thymine adenine (TATA) binding protein-associated 

transcription factors IIB (TFIIB), tein-associated factors II 32 and II 70 (TAFII32 and 

TAFII70), which help transcription initiation (41, 42); positive elongation factor b (p-

TEFb), which promotes transcription elongation and promoter clearance (42, 43); and 

cAMP response element-binding (CREB) protein (CBP) involved in chromatin 

remodelling (44, 45). Moreover, CIITA interacts with cyclin-dependent kinases 7 

(CDK7) and CDK9, and facilitates their ability to phosphorylate the carboxy-terminal 

domain of RNA polymerase II (Pol II), thereby starting promoter clearance and mRNA 

synthesis (46). 

 CIITA expression directly correlates with expression of class II genes, thus, the 

term “master regulator” of HLA class II genes is usually used to describe CIITA (47). 

Furthermore, CIITA regulates other genes that facilitate the class II antigen-processing 

pathway that contains S-X-Y boxes in their promoter (48). It was previously thought that 

CIITA contribute to the expression of HLA class I through interaction with a region in the 

promoter, which shows sequence similarity to the S-X-Y module (49-51). Recent data 
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showed that nucleotide-binding oligomerization domain (NOD) like receptor family 

CARD domain containing 5 (NLRC5) acts in a manner similar to CIITA and binds to 

transcription factors bound to those regulatory elements (52). 

 

1.1.6. Class II transactivator structure 

 CIITA belongs to a family of large proteins known as NOD protein family, 

caspase-recruitment domain (CARD), transcription enhancer, R (purine)-binding, pyrin, 

leucine-rich repeats (LRRs), which make up the CATERPILLER protein family. This 

family is characterized by an amino (N) terminal domain, which is the variable region, a 

carboxy (C) terminal region containing LRP (53, 54) and a region in between known as 

NOD (Figure 1.4). 

 There are some features of CIITA protein that are unique from the 

CATERPILLER family members. The N-terminal transcription activation domain (AD) 

(residues 1-125) is rich in acidic amino acids. The proline-serine-threonine (PST) rich 

domain (residues 126-336) encloses several phosphorylation sites (55-57) and harbors an 

intrinsic histone acetyltransferase (HAT) domain (58). The guanosine triphosphate (GTP) 

binding domain (residues 337-702) is located in the center of the CIITA protein and is 

involved in protein self-association and nuclear import. This segment also contains the 

p300 binding (37), and provides the interaction surface for histone acetlylase CBP and 

RFXANK (59-61). Lastly, the C terminus contains the LRP domain (residues 930-1130), 

which has the same role as GTP-binding domain (62, 63). Three nuclear localization 

signals (NLS) have been identified in the CIITA protein: the N-terminal (residues 141-

159); the GTP domain (residues 405-414); and the LRP (residues 955-959) (62, 64, 65).  
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Figure 1.4 Structure and epigenetic control of class II transactivator protein.  

Class II transactivator (CIITA) consist of four domains (Acidic, proline-serine-threonine 

(PST), guanosine triphosphate (GTP) and leucine rich repeat (LRR) domains) and 3 

nuclear localization sequences (NLS1, NLS2, NLS3). Multiple epigenetic mechanisms 

are involved in CIITA regulation, which include histone deacytylase (HDAC), histone 

acetyltransferase (HAT), histone methylase and Brahma-related gene 1 (BRG1). Bars 

underneath the CIITA scheme represent the HAT binding site. Adapted from (38, 66).   
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1.1.7. Class II transactivator regulation 

1.1.7.1. Epigenetic regulation 

 CIITA is involved in activation and regulation of HLA class II genes through 

different mechanisms, which result in covalent modifications of nucleosomes and are 

known as epigenetic regulation (Figure 1.4). Epigenetic regulations include histone 

acetylation, methylation, phosphorylation, and ubiquitination, which result in chromatin 

remodeling and either enhance or repress gene transcription (66). CIITA plays a 

significant role in histone 3 (H3) and H4 acetylation at HLA class II promoters through 

recruitment of multiple histone acetyl transferases (HATs). HATs involved in class II 

activation, include cyclic AMP responsive-element-binding protein (CBP), p300/CBP-

associated factor (pCAF), and steroid receptor co-activator 1 (SRC1) (67). Similarly, 

CIITA is involved in histone methylation through recruitment of histone 

methyltransferases (HMTs), including co-activator-associated arginine-methyltransferase 

1 (CARM1), which is important in H3 methylation at arginine 17 in class II promoters. 

This epigenetic modification is required for constitutive and IFN-γ induced class II 

expression (68). Another important epigenetic control of HLA class II expression is 

recruitment of brahma-related gene 1 (BRG1), which is an adenosine triphosphate 

(ATP)ase that drives chromatin–remodeling complex SWItch/sucrose non-fermentable 

(SWI-SNF) and has been linked to IFN-γ mediated induction of CIITA (69). Moreover, 

ubiquitination through a degradation independent pathway may enhance the activation of 

CIITA by increasing its association with HLA class II transcription factors and gene 

promoters (70). 
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 Although CIITA acts as a gene activator, it may result in gene silencing, through 

recruitment of histone deacytylase (HDACs) and demethylases. This process is reversible 

by using drugs such as trichostatin-A (TSA) that inhibit HDAC and results in enhancing 

HLA class II gene transcription (71-73). Silencing of CIITA through epigenetic 

mechanism may occur in tumor cells and result in immune escape  (discussed in Chapter 

7) (74). 

 

1.1.7.2. Regulation of the gene encoding class II transactivator 

As previously mentioned, regulation of CIITA occurs mainly at the transcriptional 

level; however, additional changes may occur through post-transcriptional modifications 

or by modulating protein stability (75, 76). Transcriptional activation of CIITA is driven 

by a large regulatory region, which spans over 12 kb and contains four independent 

promoters, known as pI, pII, pIII and pIV (Figure 1.5). Promoter I, pIII, and pIV are 

highly conserved between human and mouse. Promoter II (pII) is not expressed in mice 

and its function in humans remains unknown (77). Each promoter is followed by a unique 

exon 1 that is spliced with the other shared exons (2-19 exons) to form three isoforms of 

the CIITA mRNA (I, III, and IV). In type IV CIITA mRNA translation is initiated in exon 

2. On the other hand, translation is initiated in exon 1 in type I and III CIITA mRNA, 

which results in CIITA transcripts with a specific N terminal protein sequence of 101 and 

24 amino acids respectively. As a result, three CIITA isoforms [121, 124, and 132 kilo 

Dalton (kDa)] are produced which differ in their N terminal end (77, 78).  
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Figure 1.5 Regulation of class II transactivator.  

Class II transactivator (CIITA) is under the control of four promoters. Activation of these 

promoters results in splicing of first exon to the shared downstream exons (exons 2-19). 

This results in the formation of three different isoforms that differ in their first exon but 

share exon 2-19. pII is of unknown significance. Adapted and modified from (37). 
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 Promoter I (pI) is a myeloid cell specific promoter and drives CIITA in 

conventional DC and IFN-γ activated macrophages. Promoter III (pIII) is a lymphoid cell 

specific and drives CIITA in B cells, activated T cells, and plasmacytoid DC (77). Lastly, 

promoter IV (pIV) is responsible for IFN-γ inducible expression of CIITA in non-bone 

marrow-derived cells (endothelial, epithelial, fibroblasts and astrocytes) (79), and 

responsible for constitutive expression in thymic epithelial cells (TEC) (80). 

 

1.1.7.2.1. Molecular regulation of promoter I of class II transactivator  

 The molecular regulation that controls the DC specific activity of pI remains 

unknown. A 400 bp promoter region has been previously described to contain sequence 

motifs for essential binding sites for known transcription factors. These include activating 

protein 1 (AP1), CAAT, nuclear factor for interleukin 6 (NF-IL6) and early region 2a 

(E2A). None of these promoter-binding sites have been confirmed through functional 

studies (81). 

 

1.1.7.2.2. Molecular regulation of promoter III of class II transactivator  

 Molecular regulation that underlies the activation of CIITA transcription from pIII 

has been studied in various cell lines. Promoter III is a 320 bp promoter region that 

contains five sequence motifs, activation response element 1 (ARE1), ARE2, enhancer 

box (E-box), E-twenty six-interferon-sensitive response element (ETS-IRSE), and IFN-γ 

activated sequence (GAS)  (77, 82, 83) (Figure 1.6). ARE1 and ARE2 are the main 

binding sequences for pIII in B-cell lines (83, 84). Transcription factors, acute myeloid 
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leukemia 2 (AML2) and CREB, bind to ARE1 and ARE2 respectively (37).  Upstream of 

the ARE motif are the E-box motif, which serves as a binding site for the E47 

transcription factor, and the ETS-IRSE motif binding site, which recruits the PU.1 and 

IFN-regulatory factor  (IRF) 4 transcription factors (85). During the maturation of B-cells 

to plasma cells, the CIITA gene is switched off by the binding of B-lymphocyte-induced 

maturation protein 1 (BLIMP1) to the ISRE site in pIII of CIITA (86, 87). An additional 

distal enhancer about five kb from the pIII regulatory element has been found to be 

activated by signal transducer and activator of transcription 1 (STAT1) in response to the 

classical IFN-γ mediated induction. Activation of this enhancer element is only cell 

specific in human glioblastoma and fibrosarcoma cell lines and not conserved in mice 

(88, 89). 

 

1.1.7.2.3. Molecular regulation of promoter IV of class II transactivator  

 Since pIV is responsible for IFN-γ expression of CIITA, it depends on IFN-γ 

signaling pathway for its activation. A conserved 120 bp promoter region that contains 

three cis-acting sequences, a GAS, an E box, and (IRF) element (IRF-E), all function in 

synergy and are important for induction of pIV (37) (Figure 1.7). Binding of IFN-γ to its 

receptor activates and phosphorylates Janus activating kinases (JAK) 1 and JAK2, which 

lead to phosphorylation, dimerization, and nuclear import of STAT1. STAT1 and 

upstream stimulatory factor 1 (USF1) cooperatively bind to the GAS sequences and the 

adjacent E box motif respectively, which are present in the pIV regulatory region (80). 

STAT1 also activates the expression of IRF1, which binds to IRF-E and results in  
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Figure 1.6 Molecular regulation of promoter III of class II transactivator.  

Promoter (pIII) is controlled by a 320 bp promoter region, which includes several 

regulatory binding sites [enhancer box (E-box), E-twenty six-interferon-sensitive 

response element (ETS-IRSE), activation response element 1 (ARE1) and ARE2]. An 

additional distal enhancer, interferon gamma activated sequence (GAS), which is present 

approximately 5 kb from transcription ignition site, is activated by signal transducer of 

transcription 1 (STAT1) in response to the classical interferon gamma (IFN-γ)-mediated 

induction pathway. Adapted from (37).          
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subsequent induction of CIITA expression (90). 

Promoter III (pIII) is induced directly by STAT1 phosphorylation, while pIV 

requires IRF1 in addition to STAT1 for proper induction of CIITA, which may explain 

the enhanced response of pIV to IFN-γ (89). Activation of STAT1 is an immediate 

response of IFN-γ signaling, while activation of IRF1 is a delayed response, because IRF1 

protein is synthesized first and later binds to the IRF-E site in pIV of the CIITA gene. 

Therefore, STAT1 mediates a faster IFN-γ response via pIII and a slower response via 

pIV (90). 

 

1.1.8. Expression of human leukocyte antigen class II in breast cancer 

1.1.8.1. Overview 

 Resting breast epithelial cells do not express HLA class II, whereas, lactating 

breast cells express HLA class II (91, 92), in which prolactin has been claimed for this 

upregulation (93). Furthermore, HLA class II is upregulated in approximately 50% of 

breast cancer lesions (94). An important research question, which has not been 

completely answered yet, is why and how breast cancer cells within the tumor 

microenvironment upregulate HLA class II molecules? 

 A considerable number of studies have reported that HLA class II can be induced 

in various breast cancer cell lines by IFN-γ (95), interleukin (IL)-1α, IL-1β, estradiol (E2) 

(96), tumor necrosis factor -α (TNF-α) (97), and IL-4 (98). These suggest a mechanism 

by which breast tumors can upregulate HLA class II through release of various cytokines 

in the tumor microenvironment from infiltrating cells of the immune system and secretion  
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Figure 1.7 Molecular regulation of promoter IV of class II transactivator. 

Promoter IV (pIV) is activated in response to the classical interferon-γ (IFN-γ)-mediated 

signaling pathway.  The promoter region spans 120 bp and contains an IFN-γ activated 

sequence (GAS) binding site, an enhancer box (E-Box) and interferon regulatory factor 

element (IRF-E) binding site. Interferon regulatory factor 1 (IRF1) induction is dependent 

on IFN-γ and thus explains the reason for the delayed kinetics of pIV CIITA. Adapted 

from (37).   
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of hormones from adipose tissues (99, 100). In addition, non-neoplastic breast epithelial 

cells adjacent to lymphocytic infiltrating cells also upregulte HLA-DR, thus suggesting 

that HLA class II is modulated in benign breast epithelium by cytokines (101). 

Alternatively, molecular changes induced as a result of hyperplasia in benign breast 

epithelium may suggest a different mechanism of HLA class II modulation independent 

of cytokines modulation (91, 102, 103). Differential HLA class II expression has been 

reported in breast cancer with HLA-DR more frequently expressed followed by DP and 

then DQ (101, 104). HLA-DM is rarely expressed and DRB alleles are differentially 

expressed in HLA-DR tumor (105, 106). This modulation of HLA class II expression 

may be due to promoter polymorphisms. Moreover, discrepancies between DRB 

promoter activity and of DRB mRNA levels suggest that DRB gene expression is 

regulated at both transcriptional and post-transcriptional levels (107). Thus, cross talk 

between signaling pathways activated during tumor progression may have a role in 

transcriptional and post-transcriptional regulation of HLA-DR expression on breast 

cancer cells. 

 

1.1.8.2. Significance of human leukocyte antigen class II expression in breast cancer 

 The significance of HLA class II expression on breast carcinoma cells is 

contradictory, and previous studies have not provided a clear association between HLA 

class II expression and disease outcome (102, 108). The absence of any association could 

be a result of the lack of co-stimulatory molecule expression by tumor cells, which are 

required to initiate an optimal CD4+ T-cell response (109). More importantly, the 

expression of co-inhibitory molecules such as programmed cell death ligand 1 (PD-L1) 
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by some tumours can result in inhibition of T cell activation, as reviewed by Driessens et. 

al. (2009) (110). Co-stimulatory molecules expressed in APC are necessary to initiate a 

proper immune response in lymphoid tissues (111). However, if an antitumor immune 

response results in effector T cells homing to the tumour site, they may be activated in the 

absence of co-stimulation (110).  

There is significant experimental evidence to support a role for tumor cell HLA 

class II antigen expression in induction of anti-tumor immunity. It has been shown that 

HLA class II antigen positive breast carcinoma cells can generate and present the relevant 

tumor associated antigen (TAA) derived peptides and activate effector CD4+T-cells (112-

114). This occurs in a HLA class II antigen restricted manner and results in elimination of 

the tumor both in mice (115-117) and in humans (112-114).  

 The expression of HLA class II co-chaperone molecules (Ii and HLA-DM) in 

breast carcinoma plays a significant role in the outcome and the prognosis (106). Ii is 

expressed in a greater subset of breast carcinomas than HLA-DR, and is associated with a 

poor prognosis (118, 119). High levels of Ii attached to the groove of the HLA class II 

molecules may prevent TAA presentation to CD4+ T cells and, thus, decreased ability to 

induce allogeneic CD4+ T cells and result in autologous CD4+ T cells stimulation instead.  

 Coordinate expression of HLA-DM, with DR and Ii on tumor cells in breast 

cancer tissues is associated with high tumoral IFN-γ, better prognosis, and higher survival 

rate (106).  As previously noted, HLA-DM acts as a peptide editor (120), in which CLIP 

is replaced by peptides derived from TAA that have undergone enzymatic proteolysis in 

the endocytic pathway. Thus, improved survival of patients with coordinate expression of 
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HLA class II and HLA-DM over patients with discordant HLA class II tumors (HLA-

DR+, Ii+, HLA-DM-) may be due to differences in antigen presentation, which result in 

recruitment of a different subset of T cells and a different response. Therefore, the 

expression of HLA-DM by tumor cells may be an indicator of improved survival in breast 

carcinoma. Furthermore, tumor cells that coordinately express HLA class II and co-

chaperones may function as effective APC, in activating effector T helper type 1 (Th1) 

cells, resulting in effective antitumor immunity. Alternatively, high levels of IFN-γ from 

Th1 response may be required for coordinate expression of HLA class II and co-

chaperones. Thus, the interaction of these factors together with hormones and cytokines 

especially IFN-γ in tumor microenvironment may result in modulation of HLA class II 

antigen expression by tumor cells. 

 

1.2. Interferon-gamma signaling 

1.2.1. Interferons 

 Since their initial discovery, interferons (IFNs) are identified as agents that 

interfere with viral replication (121). They are sub-classified into type I (IFN-α, IFN-β), 

type II (IFN-γ) and type III (IFN-λ) based on receptor binding (122). The main sources of 

IFN-γ are cells of the innate immune system  (NK cells and NKT cells), which provide 

the first line of defence against pathogens, and cells of adaptive immune system including 

CD4+ Th1 cells and CD8+ cytotoxic T-lymphocytes (123). IL-12 initially secreted by 

APC during early infection controls IFN-γ production by attracting NK cells to the site of 

infection and promotes IFN-γ production by the same cells.  
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1.2.2. Interferon gamma receptor 

 IFN-γ binds to IFN-γ receptor (IFNGR) (123). IFNGR is comprised of two 

IFNGR1 chains, which are responsible for ligand binding, and two IFNGR2 chains, 

which are responsible for signal transduction (124). IFN-γ signaling is mainly regulated 

by IFNGR2 being tightly regulated according to the cell’s needs, while IFNGR1 is 

constitutively expressed and present in excess (125, 126). Both receptors are deficient in 

kinase/phosphatase activity and they must bind to the other members of IFN-γ machinery 

to facilitate signal transduction. The cytoplasmic domain of IFNGR1 contains binding 

sites for JAK1 and STAT1. The JAK1 binding site leucine, proline, lysine, serine (LPKS) 

is located at residues 266–269 and the STAT-binding site tyrosine, aspartic acid, lysine, 

proline, histidine (YDKPH) is located at residues 440–444. The Y440 phosphorylation site 

is phosphorylated during signal transduction to allow STAT1 recruitment to the receptor. 

The remaining residues 441DKPH444 are responsible for the binding specificity (127, 128). 

The cytoplasmic domain of IFNGR2 contains binding sites for the JAK2. IFN-γ was 

thought to bind to IFNGR2 in the presence of IFNGR1, indicating that IFNGR2 binds 

only to the complex IFNGR1: IFN-γ, (129, 130); however, newer techniques have shown 

that the receptor is assembled before binding to the ligand (131). 

 

1.2.3. Janus kinase 

 JAKs are a family of four non-receptor tyrosine kinases, JAK1, JAK2, JAK3 and 

TYK2, which selectively activate STATs (132). JAK protein structure is composed of 

seven regions, which are highly conserved, Janus homology domains (JH)1-JH7. JH1 is 
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important for the kinase activity. JH2 represents a pseudokinase domain, which aids in 

JH1 catalytic activity (Figure 1.8). The amino-terminal (JH3-JH6) domains have been 

involved in receptor association (133) and JH7 is of unknown function. JAK1 and JAK2 

are involved in IFN-γ signaling where JAK1 is important in ligand binding to the 

receptor, whereas, JAK2 is important in signal transduction (134). 

 
1.2.4. Signal transducer and activator of transcription 1 

 STAT1 is a member of the signal transducers and activators of transcription 

family. Crystallography of STAT1 identified one divergent domain, carboxy-terminal 

transcriptional activation domain (TAD) and five conserved domains: amino-terminal 

domain (N); the coiled-coiled domain (CCD); the DNA binding domain (DBD); the 

linker domain; and the Src Homology 2 (SH2)/tyrosine activation domain (132) (Figure 

1.8). N-terminal dimerization aids in binding to GAS elements (135), interaction with the 

transcriptional co-activator CBP/p300 (136), and regulates nuclear translocation (137). 

The CCD is important for protein-protein interaction and for nuclear export of STAT1 

(138, 139). The DBD recognizes bases in the most proximal half of the GAS element. 

The linker domain joins the DBD with the SH2/dimerization domain, which plays an 

important role in receptor recruitment, dimerization and DNA binding (140-142). 

 

1.2.5. Interferon regulatory factors  

  IRF gene family is an important intermediate for type I and type II IFN signaling 

with nine members identified. IRF1, IRF2 and IRF9 take part in IFN-γ signaling. IRF9 

was initially discovered as a DNA-binding subunit of the transcription factor interferon 
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stimulated gene factor 3 (ISGF3), and was previously termed p48/ISGF3 (143). Although 

IRF1 and IRF2 mRNAs are ubiquitously expressed, IRF1 is significantly upregulated by 

IFN stimulation.  

 IRF1 and IRF2 are 62% homologous with most of the sequence homology 

occurring in their amino terminal regions (144). IRF1 binds to the IRF-E site in the 

promoter region of many target genes and results in their induction. In addition, the 

binding specificity of IRF1 overlaps with the ISRE binding site. In this manner, IRF1 has 

the ability to activate a full range of IFN-inducible genes. Although IRF2 also binds to the 

IRF-E site, it largely functions to oppose transcription of IRF1-inducible genes through 

its transcriptional repressor domain (145). The IRF1 protein is very unstable with a half-

life of 30 min whereas, IRF2 protein is more stable with a half-life of 8 hr. These early 

experiments indicate that IRF1 acts as transcriptional activator and IRF2 functions as a 

repressor for the IFN-γ genes (146). This role is true in most IFN-inducible genes, 

however, IRF2 has a positive regulatory function when together with IRF1, it binds to 

IRF-E in CIITA promoter (37). 

 

1.2.6. Interferon gamma signaling 

 IFN-γ is a biologically active compound formed by the non-covalent association 

of two polypeptide subunits, thus, two IFNGR1 bind to one IFN-γ dimer (147). IFNGR1 

and IFNGR2 are assembled before ligand binding and are pre-associated with JAK1 and 

JAK2 respectively, which are bound to the intracellular domain of the receptor (123). 

Binding of IFN-γ to IFNGR results in activation, which produces conformational changes  
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Figure 1.8 Schematic cartoon of signal transducer and activator of transcription and 

Janus kinase structure. 

Janus kinase (JAK) harbor seven regions of conserved homology, Janus homology 

domains (JH)1–JH7. Signal transducer and activator of transcription (STAT) also harbour 

several conserved domains, N-terminal domain (NH2), a coiled-coil domain, the DNA 

binding domain (DBD), a linker domain, an Src Homology 2 (SH2) domain, and a 

tyrosine activation domain (circled P) and transcription activating domain (TAD) domain. 

Adapted from (26). 
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in the receptor. Thus, JAK2 and subsequently JAK1 become phosphorylated. The 

activated JAK1 next phosphorylates tyrosine 440 (Y440) on each IFNGR1. 

Phosphorylated Y440 acts as a docking site for the SH2 domain of the STAT1. Next 

STAT1 is phosphorylated on Y701 by JAK2 (147, 148), permitting STAT1 

homodimerization and separation from the receptor. A subsequent phosphorylation on 

serine 727 (S727) occurs, which allows the STAT1 dimer to translocate to the nucleus and 

initiate gene transcription. STAT1 S727 phosphorylation does not influence the STAT1 

homodimer formation, however, it is important for STAT1-mediated transcription (149, 

150). The STAT1 dimer associates with importin-α-1 nucleoprotein interacting protein 1 

(NPI-1), which facilitates nuclear translocation of STAT1 through the nuclear pores 

(151). The nuclear membrane forms an efficient barrier to the inactivated STAT1, and 

entry usually requires activation and dimerization (152). The STAT1 homodimer initiates 

gene transcription by binding to GAS, in the promoter regions of genes. The number of 

GAS binding sites in the promoter of the genes determines the transcriptional activity of 

these genes (153).  Phosphorylation of IFNGR, JAK and STAT occurs within 1 min of 

IFN-γ stimulation (154). However, nuclear entry of STAT1 is observed at 15 min and 

finished by 30 min of IFN-γ stimulation, reviewed in (123) (Figure 1.9). Thus, the whole 

process of early gene transcription takes between 15-30 min. Early IFN-γ regulated genes 

are mainly transcription factors (e.g, IRF1) which, when transcribed, are able to drive the 

regulation of the next wave of late transcription: example, intercellular adhesion molecule 

1 (ICAM-1); CIITA; monokine induced by IFN (MIG)). Recent studies have shown that 

other factors such as activation of other signaling pathways and the presence of certain 
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kinases alters responses to IFN-γ signaling (155). Thus IFN-γ signaling is activated in a 

cell type specific manner. 

 

1.2.7. Regulation of interferon gamma signaling 

 Dissociation of IFNGR from its ligand occurs in the endosomal pathway after 

internalization of the complex followed by recycling of the IFNGR1 back to the cell 

surface, after which the ligand is degraded (156).  Furthermore, IFN-γ signaling may 

result in receptor degradation, and decreased cell surface expression (157). Suppressors of 

cytokine signaling-1 (SOCS-1) protein act as a feedback inhibitor of IFN-γ signaling by 

interfering with JAK 1/2 tyrosine kinase activity (158). SOCS-1 also facilitates 

degradation of different components of the IFN-γ signaling pathway by binding and 

targeting them to the ubiquitin-proteasome pathway (159). SOCS-3 is another protein, 

which negatively inhibits IFN-γ signaling, but not as efficiently as SOCS-1 (160).  

Downregulation of IFN-γ signaling can also result from protein tyrosine 

phosphatase (PTPs), such as SH2-containg tyrosine phosphatase-2 (Shp2), which 

dephosphorylate JAK 1/2 and IFNGR1 (161). Nuclear dephosphorylation of STAT1 

plays an important role in inhibiting STAT1 signaling. Binding of STAT1 to the DNA 

masks an important nuclear export signal (NES) at residues 197–205. However, when 

STAT1 is dephosphorylated by nuclear PTP, this allows the release of STAT1 from DNA 

and exposes NES (162). An export receptor chromosome region maintenance/exportin 1 

(CARM1) recognises NES-containing proteins and facilitates STAT1 translocation 

through the nuclear pore to the cytoplasm (163). 
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Figure 1.9 Schematic presentation of interferon gamma signaling.  

Activation of IFN-gamma receptor  (IFNGR) by interferon gamma (IFN-γ) results in 

conformational changes, which result in Janus kinase (JAK) activation and subsequent 

signal transducer and activater of transcription 1 (STAT1) phosphorylation, dimerization 

and translocation to the nucleus where it binds to the interferon-γ activated site (GAS) 

binding sites. STAT1:STAT1: Interferon regulatory factor (IRF)9 complex and 

STAT1:STAT2:IRF9 (ISGF3) complex can be activated in response to IFN-γ signaling. 

Both of these complexes bind to Interferon-sensitive response element (ISRE) binding 

sites in the promoter of the IFN-γ induced genes. Two sets of genes can be activated by 

IFN-γ, early (e.g IRF1) and late e.g Intercellular Adhesion Molecule 1 (ICAM-1), class II 

transactivator (CIITA), monokine induced by IFN (MIG). Adapted from (123). 
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1.2.8. Non-classical interferon gamma signaling 

  IFN-γ signaling occurs independently of JAK/STAT1 signaling. Evidence arises 

from experiments on STAT1-deficient mice, which are more resistant to viral challenges 

than IFNα/β/γ receptor deficient mice, suggesting that IFN-γ can signal in the absence of 

STAT1 (164). Moreover, microarray studies showed that 30% of IFN-γ stimulated genes 

are upregulated in the absence of STAT1 (165). For example, other members of the 

STAT family such as STAT3 and STAT5 have been shown to be upregulated by IFN-γ in 

the absence of STAT1 activation (166-168). There are other pathways that act fully in 

parallel to JAK/STAT1 signaling, For example: epidermal growth factor receptor 

(EGFR); phosphoinositide-3-kinase (PI3-K/AKT); protein kinase C (PKC); 

calcium/calmodulin kinase II; and mitogen activated protein kinase (MAPK) have been 

shown to phosphorylate STAT1 on S727, reviewed in (169). Activation of these kinases in 

response to IFN-γ is further evidence for non-JAK/STAT signaling pathways.   

 IFN-γ has been shown to activate MAPK in various types of cells through 

different pathways (170, 171) (Figure 1.10). For example, IFN-γ activates rapidly 

accelerated fibrosarcoma 1 (Raf1) which is found in close association with JAK2, 

resulting in phosphorylation of extracellular signal-regulated kinase (ERK) in an 

MAPK/ERK Kinase 1 (MEK1) independent manner (172, 173). ERK activation occurs 

by two mechanisms, a rapid JAK-STAT1 independent activation which occurs within 30 

min and leads to AP1 activation (171), and a slower mechanism, which involves STAT1 

S727 phosphorylation activation and occurs 2 hr after IFN-γ activation (170). IFN-γ 

activates the p38 pathway through recruitment of MyD88 which has been shown to 
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stimulate MAPK kinase 6 (MKK6)/p38 (174). In addition, p38 can be activated by c-Src 

at the IFNGR, which results in activation of calcium dependent pyk2 kinase and, in turn, 

activates MEK Kinase (MEKK4/MKK6/p38 MAPK pathway) (175). IFN-γ has been 

shown to selectively activate c-Jun N-terminal kinases (JNK) pathway that is important 

for genes associated with antigen presentation in macrophages, (176). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 1.10 Schematic presentation of the non-classical interferon gamma signaling.  

Interferon gamma (IFN-γ) signaling can activate multiple pathways including the mitogen 

activated protein kinase (MAPK) [extracellular signal-regulated protein kinases 1 and 2 

(ERK 1/2), p38 and Jun N-terminal kinase (JNK)] pathways through the activation of 

rapidly accelerated fibrosarcoma 1 (Raf1), protein tyrosine kinase (PyK2), and Src. 
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1.3. Mitogen activated protein kinase signaling 

1.3.1. Overview 

 Mitogen-activated protein kinase (MAPK) signaling pathways are a group of 

family related kinases that link gene regulation in the nucleus in response to external 

stimulus, thereby controlling cellular functions such as proliferation, differentiation, 

migration and apoptosis (177, 178) (Figure 1.11). MAPKs are activated by mitogenic 

stimuli such as stress, growth factors, cytokines, and hormones, which generally convey 

their signaling through hormone receptors, growth factor receptors, tyrosine kinases, and 

through the Ras and Rho families of small GTPases, which participate in the process of 

signal initiation (179). 

 The classical MAPK activation consists of a cascade of three consecutive protein 

kinases which start with the phosphorylation of a mitogen-activated kinase kinase kinase 

(MAPKKK) that phosphorylates serine and threonine in a second mitogen activated 

kinase kinase (MAPKK) which then phosphorylates threonine and tyrosine in a third 

mitogen-activated kinase (MAPK) (180, 181). Components of the signaling cascade are 

required to be colocalised within the cell for efficient signal transduction. This occurs by 

direct protein-protein binding or binding through scaffold proteins (182). MAPKs are 

highly evolutionarily conserved and phosphorylation of both threonine and tyrosine 

residues are required for full activation (183). The pattern of phosphorylation is threonine 

-X-tyrosine, where X stands for any amino acids and results in forming tri-peptide motif. 

In mammals, there are many distinctive subfamilies of MAPKs that can be grouped 

together based on amino acids present between the two phosphokinase sites: the threonine 

(T)-glutamic (E) –tyrosine (Y) tripeptide motif usually identifies the extracellular signal-
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regulated protein kinases (ERK 1/2), ERK3s (ERK 3, ERK 4), ERK 5 [(ERK 5) (also 

known as Big Map Kinase), ERK 7s (ERK 7, ERK 8); the T-glycine (G)-Y usually 

identifies the c-Jun N-terminal kinases (JNK 1/2/3), and threonine-proline-tyrosine 

usually identifies the p38s MAPKs (p38α, p38β, p38γ, p38δ), (184, 185). The specificity 

of MAPK activation depends on the tri-peptide motifs present in the activation loop and 

the scaffold protein, which bind signaling molecules, thereby ensuring proper cell 

response and regulating the duration and intensity of MAPK signal output. 

 Once MAPKs are activated, they dissociate from their scaffolding proteins and 

translocate from the cytoplasm to the nucleus after phosphorylating a number of 

downstream proteins. These include transcription factors, co-regulators and protein 

kinases such as ribosomal S6 Kinase (RSK), MAPK-interacting kinase (MNK) families, 

MAPK-activated protein kinase (MAPKAP) and the mitogen and stress-activated protein 

kinase (MSK) family (180, 181). MAPK also inhibits the activity of transcription factors 

through increasing their retention in the cytoplasm by phosphorylation. In this case 

dephosphorylation of these factors is required for their nuclear localisation (186). 

 

1.3.2. Extracellular signal-regulated protein kinase pathway 

 The ERK 1/2, previously known as p44, MAPK1 and p42, MAPK3, respectively, 

were the first MAPKs revealed in mammalian cells and they have been widely studied 

(187). ERK 1/2 are activated by different mechanisms, the most common is through the 

small guanosine triphosphate (GTP) loading of the Ras GTPase, which is initiated at the 

plasma membrane. In turn, activated Ras recruits the MAPKKK cascade (Raf-1, B-Raf
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Figure 1.11 Schematic diagram of mitogen activated protein kinase (MAPK) signaling.  

All MAPK signaling starts with an external stimulus, which leads to a series of MAPK 

events in the cytoplasm and ends with transcription factor activation and translocation to 

the nucleus where genes responsible for cellular function are affected. Adapted from 

(188). 
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and A-Raf) to the plasma membrane in order to induce their activation (189). The 

mechanism of Raf activation is not fully understood but may occur through PKC (190) or 

mixed-lineage kinase-3 (MLK3) (191). Next, the signal is conveyed to the MAPKKs, 

MEK1 and MEK2 (MEK1/2), by phosphorylation of two S residues in activation loops. 

Thereafter, the activated MEK1/2 activates MAPKs, ERK 1/2 by phosphorylating the T 

and Y residues in the T-E-Y domain in their activation loop (192). ERKs stimulate the 

activity of numerous nuclear transcription factors by phosphorylation to regulate gene 

expression. Activator protein 1 (AP1) is one example of an ERK induced transcription 

factor. AP1 is a member of the Jun family of transcription factors (c-Jun, JunB, and JunD) 

that form homodimers or heterodimers within the same group or form complexes with 

Fos family members (c-Fos, FosB, Fra1 and Fra2), thus, forming the AP1 protein 

complex (193). ERKs aid in the induction of AP1 complex by two mechanisms: first, 

through activation of ETS domain-containing protein 1 (Elk-1), which binds to the 

promoter of c-Fos and induces its expression (194), and second, by direct phosphorylation 

of c-Fos, which results in post-translation modification that increases stability and activity 

(195, 196).  

 

1.3.3. The c-Jun N terminal kinase pathway 

 JNK was primarily identified as a 54 kDa protein and known as stress activated 

protein kinase (SAPK). It is important for dual phosphorylation of the N-terminal 

transactivating domain of c-Jun at S63 and S73 (197). The JNKs are encoded by three 

genes (JNKs 1-3), also called MAPKs 8, 9, and 10, respectively. Each JNK gene is 

subject to differential RNA splicing to produce 46 kDa and 54 kDa polypeptides (198). 
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JNK1 and JNK2 are ubiquitously expressed, but JNK3 is expressed only in the brain, 

heart and testis (188). JNK is triggered by various stress stimuli and mitogens (197). For 

example, after activation, the stress and other stimuli convey their signals to members of 

the Rho family of GTPases such as CdcC42 and Rac1 (199), which next activate 

MAPKKK group of kinases, specifically, the MLK1-4 group. MLK3 is primarily 

involved in JNK signaling and phosphorylates MAPKK (200).  

 MKK4 and MKK7 are two MAPKK that have been identified in JNK signaling, 

which can activate JNK by dual phosphorylation on T and Y (201). Scaffold proteins play 

a major role in accomplishing signal specificity through uniting several key components 

of signaling pathways into functional modules. For example, the scaffolding protein, JNK 

interacting protein 1 (JIP), forms a molecular compound with JNK and its upstream 

activators, thus, enabling its rapid activation (202).  

 Next, JNK translocates to the nucleus and phosphorylates activating transcription 

factor (ATF) 2, which binds to the regulatory element within the promoter region of early 

response genes such as c-Jun. In addition, JNK activates c-Jun protein, which forms a 

complex with c-Fos and together form the AP1 complex. AP1 acts as a transcription 

factor and specifically binds to a response element in the promoter region of different 

growth regulated genes such as c-myc (202) and pIII CIITA (203). 

 

1.3.4. p38 Pathway 

 The p38 cascade is another MAPK pathway that shows extensive cross talk with 

the JNK pathway (204). Five isoforms of p38 have been described: p38α, p38β, p38β2, 

p38γ and p38δ (205). Although, all p38s share the tri-peptide dual phosphorylation motif, 
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T-E-Y, in their activation loop, significant differences are found among these members 

(206). Different p38 isoforms show cell specificity with p38α, mainly expressed in 

leukocytes, p38β, in the heart and brain, and p38γ, highly expressed in skeletal muscles 

(207). p38 activation occurs by a number of external stimuli which include stress, 

endotoxin, osmotic stress, as well as inflammatory stimuli such as  TNF-α, IL-1, and 

ultraviolet exposure (205).  

 After receptor activation, the signals are conveyed via adaptor proteins, small 

GTPases, to further activate MAPKKK and are generally analogous to those active in the 

JNK cascade. The signals induce phosphorylation and activation of the MAPKK 

components of the p38 cascade, which are commonly MKK3, MKK6 (208) and MKK4 

(209). All p38 isoforms can be activated at this point. Once active, p38 proteins 

translocate from cytosol to the nucleus where they can activate several substrates.  The 

main substrates for p38 are MAPK-activated protein kinase-2 (MAP-K2) and MAP-K3, 

which are essential for activating heat shock protein-27 (HSP-27), thus, preventing 

apoptosis (207). p38 also phosphorylates the transcription factors activating transcription 

factor 2 (ATF-2) and specificity protein 1 (SP1), which are essential in upregulating anti-

inflammatory proteins (210).  

 

1.3.5. Mitogen activated protein kinase and human leucocyte class II regulation 

 One of the mechanisms by which MAPK regulates gene expression is through 

activation of the AP1 transcription factor (211). Martins and her colleagues in 2007 

showed that activation of CIITA in melanoma cells requires MAPK activation and 
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binding of the AP1 transcription factor to the pIII regulatory element of CIITA (203). 

This finding was supported by the following experiments (1) site directed mutagenesis of 

the AP1 binding site in the pIII regulatory element of CIITA significantly inhibited 

promoter activity. (2) pIII CIITA luciferase activity was decreased by MAPK-JNK 

dominant negative (DN) forms and (3) pIII CIITA mRNA was  downregulated by U0126 

or DN forms of Mek1 and MAPK-JNK. Additionally, in dendritic cells, binding of AP1 

was required for activation of the HLA class II promoter (212). Thus, AP1, which is 

formed as a result of Fos and Jun activation from MAPK signaling, plays an important 

role in HLA class II regulation in different cells through different mechanisms. 

 MAPK upregulates HLA class II expression in macrophages through regulation of 

IFN-γ mediated gene expression in a selective way. JNK1 upregulates CIITA and genes 

encoding MHC II molecules through post-transcriptional regulation of mRNA stability. 

Slight effects were observed for ERK-1/2, whereas p38 has no effect on MHC II 

regulation (176).  

 In contrast, some studies point out a negative regulatory effect of MAPK on HLA 

II expression in immortalised brain endothelial (IBE) cells. Estrogen, through the non-

genomic pathway, activates the JNK MAPK pathway, which leads to hypoacetylation of 

H3 and H4 and decreases CBP levels on the MHC II promoter. This results in 

transcriptional inhibition of MHC II with no effect on CIITA level. (213).  

ERK 1/2 was shown to negatively regulate CIITA activation independent of IFN-γ 

by increasing CIITA nuclear export through activation of the nuclear export factor, 

CRM1 in COS7 cells transfected with wild type CIITA cDNA (214). This result points 
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towards the importance of MAPK in regulating CIITA activity according to the cell’s 

needs.  

 

1.3.6. Mitogen activated protein kinase and estrogen receptor alpha expression in breast 

cancer 

 Several mechanisms have been identified to explain the lack of ERα expression in 

in about 30% of breast cancers. Hypermethylation of ERα promoter was identified as a 

first mechanism, yet was observed only in 25% of ERα- cases (215). Genetic alteration of 

the ERα gene has been suggested by a number of studies, accounts for the minority of 

cases. Therefore, these studies indicate that further mechanisms are involved in producing 

the ERα- phenotype in breast cancer (216, 217). In a recent study, Brinkman et al, 2009 

indicated that overexpression of growth factor receptors especially the erB family: EGFR 

(EGFR/erB1/HER1) and erB2 (erB2/neu/HER2) are inversely correlated with ERα- 

phenotype breast cancer (218). EGFR is activated by extracellular growth factors. Once 

activated, EGFR undergoes dimerization and activation of its kinase function, which 

leads to activation of downstream signaling pathway such as ERK (219). erB2/neu/HER2 

does not have an associated ligand, but can bind with ligand activated EGFR to form a 

heterodimer. This results in similar downstream signaling as ligand-activated EGFR 

(220).   

 Several studies have confirmed the inverse correlation between EGFR and ERα 

expression using double staining immunohistochemistry (221-224). Experimentally it was 

shown that activation of MAPKs in ERα+ MCF-7 cell line by stably transfecting the cells 

with EGFR, erbB-2, c-Raf, and MEK1 resulted in loss of ERα (225).  Furthermore, 



52 
 

blocking MAPK signaling in the same cells resulted in restoration of ERα expression 

(225). These studies have been extended to an established ERα- breast cancer cell line, 

MDA-MB-231, in which a combination of MAPK inhibitors and demethylating agent 

results in re-expression of ERα and restoration of responses to anti-estrogen (226). 

Microarray analysis revealed 400 genes were modulated with MAPK hyper-activation in 

four ERα+ breast cancer cell lines (227). ERα gene (ESR1) and a number of other 

estrogen-inducible genes were downregulated with MAPK activation. Together, these 

data suggest that hyper-activation of MAPK contribute to the downregulation of ERα and 

strongly support the idea that these mechanisms are reversible. 
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1.4. Estrogen receptor signaling 

1.4.1. Overview 

 Estrogen receptors (ER) are expressed in around 80% of breast cancer cases that 

are diagnosed by immunohistochemistry; they are referred to as "ER-positive" or 

hormone dependent tumors, and require estrogen to progress (228). Persistent stimulation 

of breast ductal epithelium by estrogen increases cell proliferation and survival, which 

contributes to the development of cancer (229). Furthermore, the risk is increased in 

individuals with prolonged exposure to endogenous estrogen, as in women who 

experienced early menarche or late menopause (230).  

 Estradiol (E2) is the main estrogen during the reproductive years, synthesized from 

testosterone and androstenedione, by the enzyme aromatase and regulated by 17β –

hydroxysteroid dehydrogenase inter-conversion between E2 and the less active hormone, 

estrone (231). In spite of low serum levels of estrogen, as in menopause, breast 

carcinomas frequently have high estrogen concentrations due to local synthesis and 

upregulation of intratumoral aromatase (232).  

 Estrogen signals through the two classical nuclear receptors, ERα and ERβ. In 

addition, estrogen also signals through the seven-transmembrane G-protein-coupled 

receptor 30 (GPR30), which is mainly responsible for the rapid non-genomic estrogen 

receptor signaling (233). Estrogen plays a role in maturation, proliferation, differentiation, 

and breast cancer development (234). 
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1.4.2. Estrogen receptors  

 ERα/β are members of the nuclear receptor (NR) superfamily, which become 

activated on ligand binding and function as transcription factors (235). ERα was 

discovered in the early 1960s, and was later located on the long arm of chromosome 6 

(236). ERα was assumed to be the sole receptor mediating E2 responses, but three decades 

later ERβ was cloned and located on chromosome 14 (237). Full length ESR1 encodes a 

protein of 595 amino acids with a molecular weight of about 66 kDA, while the full 

length of ERβ gene (ESR2) encodes a protein of 530 amino acids and molecular weight 

of about 54 kDa (238). 

 The ER protein is composed of multiple domains, which form six functional 

regions, the A/B, C, D, E and F domains (Figure 1.12). The N-terminal A/B domain is the 

most variable with approximately 20% amino acid homology between the ERα and ERβ, 

suggesting that this domain is responsible for ER subtype-specific actions on target genes. 

Moreover, the ligand-independent activation function 1 (AF-1) is comprised within this 

region and shows cell-specific activity (239). The central C-domain, which is the most 

conserved domain with 95% structure homology between the two ER subtypes, 

contributes in receptor dimerization and DNA binding, thus, termed the DNA binding 

domain DBD. The D domain or the hinge domain shares 30% structural homology 

between ERα and ERβ. It connects the DBD and the E domain or ligand-binding domain 

(LBD) and because it contains a nuclear localization signal, it facilitates nuclear 

translocation of the ER (240). The LBD shares 55% structural homology between ERα 

and ERβ and harbors a hormone-dependent activation function 2 (AF-2), which is 

important for ligand binding and receptor dimerization (239). The ligand-binding cavity 
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of ERβ is approximately,20% smaller than that of ERα, which may explain why the two 

receptors have different affinities for estrogen (241). Finally, the F-domain, which has an 

unclear function, shares 20% structural homology between the two ER subtypes (238). 

 

1.4.2.1. Estrogen receptor alpha isoforms 

 ESR1 is composed of eight exons and seven promoters and as a result of 

alternative promoter usage, results in three mRNA variants that differ in their 5’ 

untranslated region (UTR) (Figure 1.12). The full length ERα is formed by splicing of the 

first non-coding exon to a common splice acceptor site upstream of the initiation codon of 

ERα, which results in expression of the full-length ERα receptor protein (66-kDa) (235). 

ERα is differentially expressed in cell lines, with 200 fold more in the MCF-7 breast 

cancer cell line, compared to osteoblast cells due to different promoter utilization (242). 

Human ERα-36 (hERα-36 kDa) and hERα-46 kDa are short ERα isoforms that were 

described more recently in MCF-7 cells (243, 244). hERα-36 lacks both transcriptional 

activation domains (AF1&2) and contains an exon coding for myristoylation sites, 

targeting the receptor to interact with the plasma membrane (244). The hERα-46 kDa also 

lacks AF1 and plays an important role in inhibiting the proliferative action of the hERa-

66 isoform in MCF-7 cells (245). 

 

1.4.2.2. Estrogen receptor beta isoforms 

 The ERβ transcripts are produced from eight exons as a result of alternative 

splicing, deletion, or alternative usage of untranslated exons in the 5′ end. As a result, five 

ERβ isoforms may be present, depending on the cell type. These are labeled ERβ1-5 
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(246) (Figure 1.12). ERβ1 codes for the full-length ERβ, which is translated from eight 

exons (247). ERβ2 has a unique C-terminus, due to alternative splicing, which results in 

loss of the AF-2 domain and, thus, it has no affinity for E2. ERβ2 can inhibit ERα 

signaling through different mechanisms. First, ERβ2 inhibits binding of ERα to the 

estrogen response element (ERE), leading to downregulation of ERα-dependent genes 

(248). Moreover, ERβ2 targets ERα for proteasomal degradation, primarily through the 

formation of heterodimers with ERα (249). ERβ4 and β5 can heterodimerize with ERβ1 

and increase its activation in a ligand-dependent manner.  ERβ3 is only expressed in the 

testis and its function remains unknown (247).  

 

1.4.2.3. G-protein-coupled receptor 30 

 The G-protein-coupled receptor was cloned and reported in the late 1990s (250) 

and shortly thereafter was assigned, GPR30, according to its HGMW-approved symbol 

(251). Despite considerable effort using several peptides, no ligands for GPR30 are 

identified; hence, it was called an orphan receptor (250, 252). However, recent studies 

have shown that GPR30 directly binds estradiol and acts as a membrane-bound estrogen 

receptor; thus, the orphan name of GPR30 is no longer applicable (253, 254). 

Interestingly, ERα antagonists such as ICI 182,780 and tamoxifen were reported to act as 

GPR30 agonists (253, 254), suggesting that breast cancer cells which are resistant to ER 

antagonist may be due to cross talk with GPR30.  
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Figure 1.12 Structure and function domains of estrogen receptor alpha and beta isoforms. 

The A-F regions are indicated as boxes with the underlined of domains DNA binding 

domain (DBD), ligand binding domain (LBD), two transcriptional activation functional 

domains, AF-1 and AF-2 and the phosphorylation sites. Estrogen receptor alpha (ERα) is 

presented in three isoforms (66, 46, 36 kDa) with the corresponding amino acid, while 

Estrogen receptor beta (ERβ) is presented in five isoforms (ERβ1, ERβ2, ERβ3, ERβ4, 

ERβ5) with the corresponding amino acids. Percentage of sequence similarity between 

ERα and ERβ as indicated in wild type ERβ. Adapted from (255). 
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Estrogen mediated a rapid phosphorylation of ERK 1/2 in MCF-7 cells, which 

express ERα, ERβ, and GPR30. By contrast, no effect was observed in MDA-MB-231 

cells, which express ERβ but not ERα or GPR30, suggesting a possible role for GPR30 in 

mediating the non-genomic effect of estrogen in MCF-7 (256). Moreover, transfection of 

GPR30 into MDA-MB-231 cells restored responsiveness to estrogen. The same response 

occurred in SK-BR-3 cells, which express GPR30 and not ERα or ERβ. Together, these 

results strongly suggest GPR30 is implicated in mediating cellular responses to estrogen 

(256). Estrogen-mediated increase in Bcl-2 expression in keratinocytes was through 

GPR30 only because silencing the GPR30 in these cells prevented the estrogen-dependent 

response (257). Additionally, GPR30 was involved in activation of the proto-oncogene c-

fos in breast cancer cells by estrogen through ERK 1/2 activation (258). Thus, although 

classical ER signaling is usually associated with gene regulation, this sequence of data 

exposed the ability of GPR30 to modify gene expression in response to estrogen. 

 

1.4.3. Estrogen receptor signaling 

1.4.3.1. Classical estrogen receptor signaling (ligand dependent) 

 Unbound ER is present in the form of a monomer bound by HSP in the cytosol 

(259, 260) (Figure 1.13). Binding of estrogen to ER results in receptor activation followed 

by conformational change and subsequent dissociation from HSPs. Estrogen-bound ERs 

dimerizes and translocate to the nucleus where they function as a transcription factor. ER 

binds to ERE located in the promoter or enhancer regions of target genes (261). The 

classical ERE is a palindromic sequence composed of two-inverted hexanucleotide 
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repeats which allow two ER dimers to bind (259). Binding of ER to the DNA recruits co-

activators, such as SRC1 and p300/CBP, and interacts with basal transcription machinery 

to either help unwind or repress the chromatin structure (262). Ligand-bound ERα and/or 

ERβ may bind to EREs as homo- or heterodimers to alter gene transcription (259, 260). In 

addition to that, some ERα is activated in the absence of ligand and bound to ERE sites of 

target genes in the nucleus (263). 

 Alternatively, E2-ER can interact first with other proteins or transcription factors, 

such as AP1, SP1 and NF-κβ, and then bind indirectly to DNA through protein-protein 

interaction. This type of interaction is important as it can regulate genes which do not 

have an ERE binding site and thus increase the efficiency of ER (264). 

 

1.4.3.2. Ligand independent estrogen receptor signaling 

It is well recognised now that ER is activated by extracellular signals in absence 

of E2 (265). Epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) can 

activate ER and result in increase ER target genes expression (266). Both EGF and IGF-1 

activates various kinases, including MAPK and PI3K/AKT, which act on the multiple 

phosphorylation sites located in the ER (Figure 1.12). S104/106, S118 and S167, which 

are located in the A/B domain, are the most common phosphorylation sites and, therefore, 

contribute in the AF-1 transcription activity. MAPK is constitutively activated in some 

breast cancer cells and contributes for cellular proliferation and progress of cancer (267). 

Furthermore, MAPK activation has been correlated with the loss of ER expression (226).  
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Prolactin plays a role in mammary gland development and its role in breast cancer 

has now been noticeably recognized (268). The hormone and its receptor are both 

expressed by the breast cancer cells, suggesting it can act in an autocrine fashion (269). 

Recently it was shown that prolactin could activate ER in a ligand independent manner 

through phosphorylation of S118 and activation ERE reporter plasmid in MCF-7 and 

T47D (270). Moreover, ICI antagonise the proliferative effect of prolactin by inhibiting 

ERE stimulation, suggesting that ligand independent ER activation by prolactin is 

significant in development of breast cancer by increasing proliferation (270). Other 

hormones such as dehydroepiandrosterone (DHEA), which is an androgen precursor, 

have been shown to experimentally increase cell proliferation in MCF-7 cells. The effect 

of DHEA on cell proliferation was through competing with estradiol to ER binding (271).  

Transcription factor like X box-binding protein 1 (XBP-1), which is highly 

elevated in breast cancer, has been reported to enhance ER transcriptional activity in a 

ligand independent manner (272). Additional signaling pathways have been shown to 

stimulate ERα transcription activity through co-activators, such as AIB1, a member of the 

p160 family (273, 274). ERα activation, arising from the cross talk of ER signaling with 

other signal transduction pathways, is of clinical significance and may alter the response 

of breast cancer to hormonal therapy (275). Based on which signaling pathway is 

activated, a combination of hormonal and protein-kinase inhibitors may be ideal for 

treatment of these resistant cases. 
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1.4.3.3. Non-genomic estrogen receptor signaling 

 The rapid biological effect of estrogen in several tissues indicates that estrogen 

may provoke non-genomic effects, possibly through plasma membrane ER (Figure 1.13). 

Many growth factor receptors, such as IGF-1R, EGFR, and HER2 have been shown to 

associate with membrane ER to form a complex (276-278). According to the cell type, 

this complex may result in downstream activation of other signaling pathways such as 

MAPK and PI3K/AKT (276-278). Considerable controversy surrounds the source of 

membrane ER. It has been suggested that membrane ER originates from nuclear ER for 

two reasons: membrane ER is detected by the same antibody used to detect the nuclear 

ER, suggesting that the two receptors share the same epitiope. Membrane ER was 

detected after transfecting the cells with cDNA encoding the nuclear receptor. An 

alternative theory is that ER shares in the formation of caveolae by binding with caveolin-

1 protein (279). There are many ongoing studies about non-genomic ER signaling and no 

established mechanism has been recognized to date. Furthermore, as a result of technical 

difficulties, the clinical significance of this action has not been evaluated in breast cancer 

(280). 
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Figure 1.13 Mechanisms of estradiol and estrogen receptor signaling.  

Three different ER signaling pathways are indicated: 1, classical ligand-dependent, 

estradiol-estrogen receptor (E2-ER) complexes bind to estrogen response element (ERE) 

in target genes or indirectly through protein–protein interaction. 2, Growth factors 

activate intracellular kinase pathways, leading to phosphorylation and activation of ER. 3, 

Non-genomic ER signaling through membrane ER or more recently through GPR30. 

Adapted from (265). 
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1.5. Rationale and Hypothesis 

 Previous work in our laboratory, arising from Sharon Oldford’s study on breast 

cancer tissues, showed that HLA-DR expression on breast carcinoma in situ is 

significantly associated with reduced ERα, lower age at diagnosis and increased levels of 

IFN-γ mRNA (106). Taken together, these observations suggest that the estrogen 

receptor, hormones and cytokines modulate HLA class II expression on breast tumor 

cells. Moreover, estrogen treatment prior to abdominal aorta allograft transplantation in 

rodents results in significant reduction of MHC class II, which is associated with better 

graft survival (281-283). Additionally, it was shown that ovariectomy results in 

upregulation of IFN-γ induced MHC class II expression on macrophages in mice (284), 

and, E2 downregualtes IFN-γ induced MHC class II expression on astrocytes, 

fibrosarcoma cells, macrophages and brain endothelial cells. All these reports suggest that 

E2 modulates the IFN-γ induced activation of MHC class II expression. Moreover, 

signaling pathways such as MAPK that are activated in breast cancer cells modulate 

MHC class II expression (267). Adamski and Benveniste showed that, through the non-

genomic signaling pathway E2 activates the MAPK-JNK signaling pathway, which 

correlates with MHC class II downregulation. (285). In 2007 Martins and her colleagues, 

demonstrated that MAPK-ERK and MAPK-JNK are required for the regulation of CIITA 

and MHC II expression in melanoma cells through an AP1-responsive motif in pIII 

CIITA (203). These reports suggested that MAPK plays a significant role in HLA class II 

regulation.  

Based on these previous reports, I hypothesised that hormones, their receptors and  
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cross talk between signaling pathways such as ER, IFN-γ and MAPK play a differential 

role in HLA class II regulation in ERα+ and ERα- breast cancer cells. 

 

1.6. Objectives 

1- To compare HLA class II expression in ERα+ and ERα- breast cancer cell lines 

with or without IFN-γ- treatment.  

2- To determine if HLA class II is modulated by physiological concentrations of 

hormone treatment in ERα+ and ERα- breast cancer cell lines. 

3- Identify the possible mechanisms involved in HLA class II modulation by the E2-

ER pathway. 

4- To investigate the possible role of MAPK on HLA class II regulation in breast 

cancer cell lines. 
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Chapter 2: Materials and methods  

 
2.1. Cell culture 

 A panel of five established breast cancer cell lines (BCCL) were used in this 

study: ERα+ (MCF-7, T47D, and BT-474); and ERα- (SK-BR-3, MDA-MB-231 (Table 

2.1). Cells cultured in Iscove’s modified Dulbecco’s medium (IMDM) (Invitrogen) 

supplemented with 10% heat inactivated fetal bovine serum (FBS) (Hyclone), 2 mM L-

glutamine (Invitrogen), antibiotic-antimycotic mixture (Invitrogen) (100 Units/ml 

penicillin G sodium, 100 µg/ml streptomycin sulfate, and 0.25 µg/ml amphotericin B as 

Fungizone®). Cultures were incubated at 37oC in a 5% CO2 atmosphere in 10 cm2 culture 

plates (VWR International). The medium was refreshed every 3 days and cells were 

harvested when 80-100% confluent. 

 MDA-MB-231 clone 10A and the two stable transfectants, MC2 (MDA-MB-231 

transfected with the wild type ESR1 (NM_000125) and VC5 (MDA-MB-231 transfected 

with an empty pCMV-Neo vector) were generous gifts from Dr. Craig Jordan (286, 287). 

Cells were maintained as adherent culture in estrogen-depleted medium consisting of 

phenol red-free (PRF) minimum essential medium (MEM) supplemented with 5% heat 

inactivated charcoal/dextran fetal bovine serum (CDFBS) (Hyclone), recombinant human 

insulin 6 ng/ml (Invitrogen), 2 mM L-glutamine, antibiotic-antimycotic mixture. VC5 and 

MC2 were maintained under selective condition by using 50 µg/ml G418 (Geneticin) 

(Invitrogen). Cell lines had been validated by Allison D. Edgecombe (MSc. Thesis, 

2002).
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Table 2.1 Description of human breast cancer cell lines used in this study. 
*American type Culture Collection (Manassas,VA). Adapted from (293, 294).  

Breast 
Cancer Cell 
Line 

Origin Age 
Years 

ATCC* 
Identification 

Type of Cancer Classification Immunoprofile Reference 

MCF-7 Pleural 

effusion 

69 HTB-22 Adenocarcinoma Luminal A ER+, PR+/–, 

HER2– 

(288)  

T47D Pleural 

effusion 

54 HTB-133 Ductal Carcinoma Luminal A ER+, PR+/–, 

HER2– 

(289) 

BT-474 Breast 74 HTB-20 Invasive Duct 

Carcinoma 

Luminal B ER+, PR+/–, 

HER2+ 

(290)  

MDA-MB-

231 

Pleural 

effusion 

51 HTB-26 Medullary 

Carcinoma 

Basal ER–, PR–, 

HER2– 

(291)  

SK-BR-3 Pleural 

effusion 

43 HTB-30 Adenocarcinoma HER2 ER–, PR–, 

HER2+ 

(292) 
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 Non-adherent B cell lines RAJI and SAVC, which constitutively express HLA 

class II, were used as positive controls. Cells were grown as suspension culture in 25 cm2 

cell cultures flasks (Corning) and maintained in Roswell Park Memorial Institute (RPMI) 

medium (Invitrogen) supplemented with 2 mM L-glutamine, antibiotic-antimycotic 

mixture and 10% heat inactivated FBS. 

 

2.2. Estrogen-depleted medium 

 For some experiments, it was necessary to exclude exogenous steroids and 

estrogen-like compounds from FBS and media, respectively (290, 291). The use of 

dextran-coated charcoal has been used to reduce estrogen levels in FBS. Moreover, 

medium that contains phenol red as pH indicator has been shown to stimulate estrogenic 

activity in some ERα+ breast cancer (292). Therefore, it was necessary to switch our 

standard cell culture medium to PRF-MEM supplemented with 5% CDFBS at least 24 hr 

prior the experiment and maintain them in this medium for the duration of the 

experiment. 

 

2.3. Breast cancer cell line harvesting 

 Phase contrast microscopy was used to determine when cells were 80-100% 

confluent and ready for harvesting. The medium was aspirated from the adherent cells 

and the cells were washed once with phosphate buffered saline (PBS) and incubated with 

0.25% trypsin (Invitrogen) in PBS for 3-4 min or until cells started to detach from the 

plate. An equivalent amount of medium was added to quench trypsin activity, mixed and 

transferred to a 15 ml centrifuge tube.  Cells were centrifuged at 500 x g for 7 min at 8oC, 
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followed by discarding the supernatant and washing the cells again in medium as before. 

After the last wash the cells were re-suspended in 5 ml medium, mixed and counted using 

a haemocytometer and phase contrast microscopy. To maintain healthy growing cells, a 

volume of 5 x 105 cells was re-plated into 10 cm2 cell culture plates in a final volume of 

10 ml medium. 

 

2.4. Hormonal treatment and interferon gamma stimulation of breast cancer cell line 

To determine the effects of hormone treatment on HLA class II expression, BCCL 

were treated with either E2 (10-9M), Fulverstrant (ICI 180, 720) (ICI) (10-6M), Tamoxifen 

(TAM) (10-6M) (Sigma) combinations of the above treatment or vehicle control (ethanol). 

They were then left un-stimulated or stimulated with IFN-γ (BD Biosciences) (100 

Units/ml) for the indicated time: 24 and 96 hr for CIITA and HLA class II protein 

expression, respectively; 4 and 12 hr for CIITA and HLA class II mRNA expression, 

respectively; and 6-24 hr for reporter gene assay (depending on optimal time point for 

each promoter activity).  

At the time of the experiment, each cell line was harvested using 0.25% trypsin 

and seeded into 6-well plates (VWR International) at 3 x 105 cells/well or seeded into 96-

well plates (VWR International) at 2 x 104 cells/well. After 24-hr incubation, the medium 

was aspirated and replaced with fresh medium containing the hormone of interest or 

vehicle control (ethanol) for 1 hr. The cells either left un-stimulated or stimulated with 

IFN-γ (100 Units/ml) for the indicated time depending on the experiment.   
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2.5. Mitogen activated protein kinase inhibitors  

A panel of MAPK inhibitors was used in the study described in Chapter 6. The 

MDA-MB-231 cell line was either treated with 10 µM U0126 (MEK inhibitor) 

(Calbiochem), 25 µM SP 600125 (JNK inhibitor) (Sigma), 25 µM SB 202190 (p38 

inhibitor) (Sigma) or DMSO (Sigma) as a diluent control for 1 hr. The cells either left un-

stimulated or stimulated with IFN-γ (100 Units/ml) for the indicated time depending on 

the experiment. 

 

2.6.Flow cytometry 

2.6.1. Cell surface protein expression 

HLA class I, HLA-DR, CLIP and CD119 surface expression was detected by flow 

cytometry. Adherent BCCL were harvested as previously described and a B cell line was 

used as positive control. Cells were re-suspended in FACS buffer (0.2% CDFBS, 0.02% 

sodium azide (BDH chemicals, Poole, England) in PBS to give a final concentration of 3 

x 106 cells/ml. Two hundred thousand cells (50 µl of cell suspension) were incubated with 

25 µl of the appropriate antibody (diluted in FACS buffer) (Table 2.2) in 5 ml polystyrene 

round-bottom tubes (Falcon), for 30 min on ice.  

 After this incubation, the cells were washed twice using 2 ml FACS buffer and 

centrifuged at 600 x g for 5 min at 8oC. The supernatant was discarded after the second 

wash and 25 µl of secondary antibody (1/40 dilution in FACS buffer), goat anti-mouse 

immunoglobulin-G labeled with phycoerythrin fluorochrome (Jackson ImmunoResearch) 

were added to each tube. The cells were incubated for 30 min on ice in the dark to avoid 
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fluorescence bleaching. Following this incubation, cells were washed twice and fixed by 

adding 200 µl of 1.0% paraformaldehyde (PFA) (Sigma) in PBS, and 10,000 cells were 

analyzed using a FACStarPlus flow cytometer (Becton Dickinson) and CellquestPro 

software (Becton-Dickinson).  

 

2.6.2. Intracellular flow protein expression 

 CIITA, HLA-DM and Ii intracellular expression was also detected by flow 

cytometry. Adherent BCCL were harvested as previously described and a B cell line was 

used as positive control. Cells were re-suspended in PBS and fixed with 2% PFA for 1 hr 

on ice. Following incubation, the cells were washed once with complete MEM medium 

and once with PBS. Next, the cells were permeabilised with 0.02% tween 20 prior for 1 

hr, and then washed once with intracellular FACS buffer (5% bovine serum albumin 

(Sigma), 0.02% Tween 20 (Sigma) in PBS) and re-suspended in intracellular FACS 

buffer at the same concentration as above. The rest of the steps were similar to surface 

flow cytometry except the antibodies were diluted in intracellular FACS buffer.  

 

2.6.3. Interpretation of flow cytometry results 

Surface and intracellular expression were determined as: 

 Mean Fluorescence Intensity (MFI) Test – MFI Negative control 

Results were considered positive if values were at least twice the background in the three 

replicate experiments, data were averaged and standard errors of the mean were 

calculated. 
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Table 2.2 Primary antibodies used to detect human leukocyte class II co-chaperone protein expression by flow cytometry, 

immunocytochemistry and immunoblotting.  

*NT=Not tested 

Antibody Isotype Specificity Concentration Source 
Flow W.B I.H.C 

W6/32 
supernatant 

Mouse 
IgG2a 

Pan HLA-Class I 1/10 
dilution 

NT* NT ATCC 

TAL 1B5 Mouse 
IgG1 

HLA-DRα NT 40 ng/ml NT Abcam 

L243 purified 
supernatant 

Mouse 
IgG2a 

Pan HLA-DR 2.4 µg/ml 10 ng/ml 2.4 µg/ml ATCC (295)  

MaP.DM1 Mouse 
IgG1 

HLA-DM 10 µg/ml NT 10 µg/ml BD Biosciences  

TAL18.1 Mouse 
IgG1 

HLA-DMα NT 40 ng/ml NT Abcam 

CD74-LN2 Mouse 
IgG1 

Recombinant human 
CD74 protein 

5 µg/ml 200 ng/ml 5 µg/ml BD Biosciences  

CD74-PIN-1 Mouse 
IgG1 

12-28 aa of Ii NT 1 µg/ml NT Abcam 

CD-74-CerCLIP.1 Mouse 
IgG1 

81-104 aa of Ii Check NT NT BD Biosciences  

CD119 IgG2 IFNGR1 Check NT NT GenScript 
MOPC-21 Control IgG1 5 µg/ml NT NT BD Biosciences  
NSG2a Control IgG2a 2.5 µg/ml NT NT Local source 
1D5 Mouse  

IgG1 
ERα NT NT 7.5 µg/ml Abcam 
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2.7. Western blots 

2.7.1. Preparation of whole cell lysates 

Cell cultures and treatment were as previously described in Sections 2.1, 2.4 and 

2.5. Whole cell lysates were prepared by washing the adherent cells once with ice cold 

PBS, followed by addition of 1 ml radioimmunoprecipitation assay (RIPA) buffer (PBS 

pH 7.4, NP-40 1% (Sigma), 0.1% sodium dodecyl sulfate (SDS) (Bio-Rad), 0.5% sodium 

deoxcycholate (Sigma)) or 1% Triton X-100 buffer/107 cells (20 mM Tris pH 8.0, 1% 

Triton X-100 (Sigma), 10% glycerol (Sigma), 2 M ethylene-diaminetetraaccetic acid 

(EDTA) (Sigma), 137 nM NaCl (Sigma)), containing protease inhibitor aprotinin (1 

µg/ml), leupeptin (1 µg/ml), pepstatin A 100µg (1 µg/ml),  phenylmethylsulfonyl fluoride 

(PMSF) (10 ug/ml) (Sigma) and Halt phosphatase inhibitor cocktail 10 µl/1 ml buffer 

(Thermo Scientific). After addition of the lysis buffer, the cells were scraped using a 

rubber policeman (Fisher Scientific), followed by transfer of the lysates into a 1.5 ml 

centrifuge tube.  Lysates were mixed on a rotator at 4oC for 1 hr, after which they were 

centrifuged at 11,000 x g for 10 min at 4°C.  The supernatant was carefully collected, 

without disturbing the pellet and transferred to a clean tube and stored at -80oC.  

 

2.7.2. Quantification of protein in cell lysates 

Proteins were quantified using a bicinchoninic acid (BCA) protein assay kit 

(Thermo Scientific). Fifty microliters of each sample  (1/10 dilution) and known amounts 

of BSA: 0 µg, 31.25 µg, 62.5 µg, 125 µg, 250 µg and 500 µg, were loaded in duplicate 

into 5 ml polystyrene round-bottom tube (Falcon, Becton Dickson Bioscience). One ml 

BCA protein assay working reagent (50:1, reagent A: reagent B) was added to each 
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sample or standard and the tubes were incubated for 30 min at 37oC. Tubes were read at 

562 nm using a spectrophotometer (Beckman Coulter DU® 530) and protein 

concentrations were calculated based on the standard curve.  

 

2.7.3. Co-immunoprecipitation 

Protein lysate was pre-cleared by mixing 30 µl of protein A agarose beads 

(Thermo Scientific) with 200 µg protein lysate in a total volume of 500 µl Triton X-100 

buffer and rocking for 1 hr at 4oC. Following the incubation period, the lysate was 

centrifuged at 13,000 x g for 1 min at 4°C and the pre-cleared lysate was transferred to a 

new centrifuge tubes with care not to touch the beads.  Cross linking the antibody with 

agarose beads was done by incubating 1 µg of the specific antibody in each tube, and left 

rocking overnight at 4oC. Co-immunoprecipitation (CO-IP) was achieved by adding 30 µl 

protein A agarose beads to each tube and mixing for 4 hr at 4oC. The lysate was 

centrifuged at maximum for 1 min, followed by discarding the supernatant and washing 

the beads three times with 500 µl of cold Triton X-100 lysis buffer. For the final wash, all 

the supernatant was discarded. The beads were eluted by re-suspending in 50 µl of 

reducing buffer (2-Mercaptoethanol (ME), 5% SDS (Bio-Rad), 10% glycerol (Sigma), 

bromophenyl blue (Sigma) to color) and boiling for 7 min, followed by centrifugation at 

13,000 x g for 1 min at 4°C. The supernatant was transferred to a fresh centrifuge tube, 

and 20 µl were loaded onto sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE) 

for immunoblotting. 
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2.7.4. Electrophoresis of cell lysates 

Equal amounts of protein (typically 10-20 µg per lane) were analyzed by SDS-

PAGE. The SDS-PAGE was formed of two parts: stacking gel (250 µl acrylamide (Bio-

Rad), 380 µl stacking buffer (0.5M Tris HCL buffer (Bio-Rad)) pH 6.8, 15µl 10% SDS, 

860 µl H2O), 1.5 µl tetramethylethylenediamine (TEMED) (Bio-Rad), and 15 µl 10% 

ammonium persulfate (APS) (Bio-Rad)) and 8% running gel (1 ml acrylamide, 1 ml 

running buffer (1.5M Tris HCL buffer (Bio-Rad)) pH 8.8, 40 µl 10% SDS, 1.25 ml H20), 

2 µl TEMED, and 40 µl 10% ammonium persulfate (APS)).  

An appropriate volume of lysate was removed from each sample to give the 

indicated protein concentration and denatured by boiling the sample at 100oC after adding 

reduced sample buffer (Section 2.7.3). To estimate protein product size, gels were 

simultaneously loaded with 4 µl PageRulerTM pre-stained protein ladder (Fermantas).  

Mini-PROTEIN® Cell electrophoresis chamber (Bio-Rad) containing running buffer (25 

mM Tris HCL pH 8.8, 0.1% SDS, 190 mM glycine (Sigma)) was used to separate the 

proteins at 100 volt (V) for 2 hr. 

 

2.7.5. Electrophoretic protein transfer 

Following electrophoresis, the proteins were transferred onto nitrocellulose 

membrane. Nitrocellulose membranes were first activated by soaking the membranes in 

transfer buffer (25 mM Tris HCL pH 8.8, 190 mM glycine, 20% methanol) for 15 min 

together with the filter papers and foam pads. Gels were removed from electrophoresis 

apparatus. The transfer sandwich cassette was assembled as follows: plastic base, foam 

pad, two filter papers, gel, nitro cellulose membrane, two filter papers, foam pad and 
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plastic cover. The sandwich cassette was placed in the Trans-blot cell (Bio-Rad) and 

transfer was carried out at 100 V for 1 hr.  

 

2.7.6. Immunodetection of proteins 

 Following transfer, the membranes were incubated in blocking solution (5% milk 

in Tris-buffered saline (TBS-T)-Tween 20 (0.15 M NaCl, 0.05 M Tris pH 7.4, 0.05% 

Tween 20) for 1 hr. The appropriate concentration of the primary antibodies (Table 2.2 & 

2.3) was added to 4 ml of blocking solution for each blot in a small sealed plastic box and 

left rocking at 4oC overnight. Membranes were washed three times, 5 min each with TBS-

T while rocking, and an appropriate concentration of horseradish peroxidase conjugated 

secondary antibodies (Table 2.4) was added for 1 hr with rocking at room temperature. 

The membranes were washed extensively to remove unbound secondary antibodies, and 

then signal detection was achieved using Immobilon Western Chemiluminescent HRP 

Substrate (Millipore). Blots were imaged using the ImageQuant LAS 4000 Station (GE 

health care), and protein band densities were analyzed using the spot density analysis 

software (ImageQuant TL8.1) provided with the image station. 

 

2.7.7. Reprobing membranes 

Membranes were stripped by immersion in stripping buffer (TBS pH 2.0) for 10 

min three times and then washed with TBS-T three times, 10 min each.  
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 Table 2.3 Primary antibodies used in immunoblotting. 
 

 

 

 

Antibody Isotype Specificity Concentration Source 
Antiserum # 21  Rabbit 

IgG 
CIITA 1/4000 Viktor Steimle’s lab (296)  

HC-20 Rabbit 
IgG 

ER 500 ng/ml Santa Cruz Biotechnology 

Phospho-Ser118 Rabbit 
IgG 

ER 1 µg/ml GenScript 

#06-501 Rabbit 
IgG 

STAT1-T 200 ng/ml Upstate Biotechnology 

Phospho-Tyr701 Rabbit 
IgG 

STAT1-P 200 ng/ml GenScript 

Phospho-Ser727 Rabbit 
IgG 

STAT1-P 200 ng/ml GenScript 

BD-20 Mouse 
IgG1 

IRF1 125 ng/ml BD Biosciences PharMingen 

C-20 Rabbit 
IgG 

ISGF-3 400 ng/ml Santa Cruz Biotechnology 

T-18 Goat 
IgG 

GILT 125 ng/ml Santa Cruz Biotechnology 

Phospho-Tyr1022 Rabbit 
IgG 

JAK1-P 200 ng/ml GenScript 

Phospho-Tyr1007 Rabbit 
IgG 

JAK2-P 200 ng/ml GenScript 

Ab-1022 Rabbit 
IgG 

JAK1-T 200 ng/ml GenScript 

Ab-1007 Rabbit 
IgG 

JAK2-T 200 ng/ml GenScript 

Thr202/Tyr204 Rabbit 
IgG 

ERK p44/42 5 µg/ml Cell Signaling  

K-23  Rabbit 
IgG 

ERK-1 Total 200 ng/ml Santa Cruz Biotechnology 

5E10 Mouse 
IgG2b 

P84 1 µg/ml Abcam 

Ab8245 Mouse 
IgG1 

GAPDH 1 ng/ml Abcam 

B-7 Mouse 
IgG2a 

αTubulin 250 ng/ml Santa Cruz Biotechnology 
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Table 2.4 Secondary antibodies used in immunoblotting 
 

Antibody Isotype Specificity Concentration Source 

HRP-conjugated affiniPure 

f(ab)2 fragment goat anti-

mouse (GAM) Fc specific 

Goat 

IgG 

Mouse IgG 1/10000 Jackson 

Immunoresearch 

HRP-conjugated affiniPure 

f(ab)2 fragment goat anti-rabbit 

(GAR) Fc specific 

Goat 

 IgG 

Rabbit IgG 1/10000 Jackson 

Immunoresearch 

Donkey anti-goat  

IgG-HRP 

Donkey 

IgG 

Goat IgG 1/5000 Santa Cruz 
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2.8. Immunocytochemistry and confocal microscopy 

2.8.1. Chamber slide set-up 

BCCL were grown in 8-well chamber slides at 2.5 x 104 cells/well, with the 

indicated treatment. On the day of the assay the medium was aspirated and cells washed 

once with PBS and left to dry overnight followed by fixation in acetone for 15 min at -

20°C, and then left to air dry for at least 1 hr.  

 

2.8.2. Cytocentrifuge preparations 

B cell lines, used as positive controls, were counted using haemocytometer and an 

aliquot containing 6 x 105 cells was added to a 15 ml centrifuge tube and centrifuged at 

500 x g for 7 min at 8oC. Following centrifugation, medium was removed and the cells 

were washed once with PBS and re-suspended in 6 ml PBS (1 x 105 cells/ml). Cells were 

permanently adhered to microscope slides by adding 500 µl cells (5 x 104 cells) to the 

cytocentrifuge sample chamber, in which a filter card (Shandon Inc., Pittsburg, PA) was 

assembled between chamber and the microscope slide. Cells were centrifuged at 500 x g 

for 5 min and left to dry overnight followed by fixation with acetone as previously 

described in Section 2.8.1. 

 

2.8.3. Protocol for immunocytochemistry 

Acetone-fixed cells were rehydrated by adding PBS for 5 min, followed by adding 

1% hydrogen peroxide in PBS to release endogenous peroxidase activity. Slides were 

washed once with washing buffer (WB) (PBS containing 0.5% bovine serum albumin 

(BSA) (Sigma), 0.05% Tween 20). Washing was done by adding 400 µl of WB to each 
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well of the chamber slides, left for 5 min followed by careful removal with a Pasteur 

pipette or by immersing slides in WB with mixing for 5 min on a magnetic stirrer. Next, 

the slides were blocked using 15% goat anti serum in PBS for 1 hr of blocking, followed 

by removal of excess blocking buffer and incubation with 100 µl of the primary antibody 

(Table 2.1)  (optimally diluted in WB) at room temperature in a humid chamber. The 

slides were then washed three times for 5 min with WB and incubated with 100 µl of 

secondary antibody (antimouse IgG) (Vector Immpress Reagent), following by three 

washes for 5 min with WB. Antibody binding was detected with peroxidase substrate 

(Nova Red) or DAKO EnVison depending on the assay for 10-15 min at room 

temperature. 

Cells were washed with distilled water and, counterstaining was done with Vector 

hematoxylin (Vector Labs) for 30 seconds. Excess dye was removed by washing cells in 

tap water; the slides were immersed in bluing solution (1.5 ml NH4OH (30% stock) + 

98.5 ml 70% ethanol) for 1 min. Cells were dehydrated by immersion in 70% ethanol for 

1 min, 95% ethanol for 1 min, 2 changes of 100% ethanol for 1 min each and in 2 

changes of xylene for 2 min each. Cells were permanently mounted in Micromount 

(SurgiPath) and examined by light microscopy 

 

2.8.4. Protocol for confocal microscopy (parallel or simultaneous immunofluorescence) 

Acetone fixed cells were rehydrated by adding PBS and left for 5 min followed by 

blocking using 15% goat serum in PBS. After 1 hr of blocking, excess blocking buffer 

was removed and cells incubated with 100 µl mixture of the two primary antibodies 

(Table 2.1) (optimally diluted in WB (0.5% BSA in PBS) for 1 hr. The slides were 
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washed in WB as in Section 2.8.3 and 100 µl of the mixture of the secondary antibodies 

goat anti-mouse (GAM) conjugate labeled with Alexaflor 555 (IgG1-specific) and 

Alexaflor 488 (IgG2a-specific) were incubated with the cells for 1 hr in dark. The cells 

were washed three times in WB, and three times in PBS in the dark, and then mounted 

with VECTASHIELD® mounting medium with DAPI (Vector labs). Cells were 

examined with a confocal laser-scanning microscope (Olympus FluoView 300). 

 

2.8.5. Interpretation of data 

Immunocytochemistry (ICC) and confocal microscopy were visualised 

independently by three different individuals (AM, SD and DC) blind to antibody and 

treatment. The percentage of positive cells was determined with a cut off value of less 

than 10% considered negative. Staining and subcellular localisation were also noted. 

 

2.9. Standard reverse transcriptase polymerase chain reaction 

2.9.1. RNA extraction 

Medium was aspirated from adherent breast cancer cell lines growing in a 6-well 

plate, and cells were detached by adding 400 µl TRIZOL® reagent (Invitrogen). 

Detached cells were transferred to 1.5 ml centrifuge tube and incubated for 5 min at room 

temperature for cell lysis. Following the incubation period, 80 µl chloroform (Sigma) 

were added and mixed vigorously for 15 seconds. The mixture was centrifuged at 12,000 

x g for 15 min at 4oC. After centrifuging, the top aqueous phase, which contains the RNA, 

was carefully removed, without disturbing the other layers to avoid DNA contamination, 
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and placed in a new 1.5 ml centrifuge tube. An equivalent volume of isopropanol (Sigma) 

was added and left for 10 min at room temperature. 

Precipitation of RNA was done by centrifugation at 12,000 x g for 15 min at 4oC.  

The supernatant was discarded and the pellet was washed with 1 ml 75% ethanol and re-

centrifuged at 7,500 x g. Following centrifugation, the supernatant was discarded and the 

pellet left to air-dry for 5 min at room temperature. RNA was re-suspendeed in 10 µl 

diethyl procarbonate (DEPC) water and quantified using a NanoDrop (Thermo 

Scientific). 

 

2.9.2. DNase treatment of RNA 

Contaminating DNA from the RNA extract was removed using TURBO DNA-

free™ DNase treatment and removal reagents kit (Ambion®).  One microliter of 10X 

DNase buffer and 1 µl DNA-free DNase were added to the RNA samples and incubated 

in a water bath at 37oC for 30 min. Following the incubation period, 1.2 µl of DNase 

inactivation reagent was added to the mixture and left at room temperature for 2 min. 

Samples were centrifuged at 12,000 x g for 1 min and the supernatant was transferred to a 

clean centrifuge tube.  

 

2.9.3. cDNA synthesis 

First strand cDNA synthesis kit one (Amersham Pharmacia Biotech) was used for 

preparation of cDNA. One microgram of total RNA was diluted in a total volume of 8 µl 

DEPC water in 0.2 ml PCR tubes and placed in the cycler (Biometra T-Gradient) 

(Montreal Biotech Inc.) at 65oC for 10 min to denature the RNA. Samples were then 
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placed on ice and the polymerase chain reaction (PCR) reaction mixture (5 µl Bulk First-

Strand Reaction Mix, 1 µl Not I-d (T)18 primer and 1 µl of dithiothreitol (DTT)) was 

added. Samples were returned to the cycler for 1 hr at 37oC and 10 min at 70oC.  cDNA 

was stored at -80oC until use. 

 

2.9.4. Reverse transcriptase polymerase chain reaction primers 

Primers used to analyse mRNA transcription of CIITA, HLA class II expression 

(DRA, DRB, DMA, DMB, Ii) and GAPDH, purchased from Invitrogen, were based on 

published data (Table 2.5). OligoTech Analysis software (Wilsonville, OR) was used to 

determine the G+C content and melting temperature. The number of PCR cycles required 

to fall into the exponential phase of the amplification reaction was experimentally 

determined for each set of primers using RAJI mRNA, by removing small aliquots from a 

trial PCR reaction, every two cycles starting at cycle 16 and ending at cycle 36. 

Amplicons at each time point were compared by agarose gel electrophoresis with 

ethidium bromide staining and the amplicon intensities were calculated and plotted on a 

semi-log curve for quantification. To minimize the formation of spurious products, when 

a high number of amplification cycles are used, the minimal number of cycles in the 

exponential phase sufficient to detect the expected PCR products was selected. Preparing 

a 10-fold cDNA dilution series and repeating the PCR using the indicated cycle number 

further confirmed the correct cycle. Amplicon intensities were calculated and plotted on a 

semi-log curve for quantification. Evenly spaced amplification curves should produce a 

linear curve, which confirms the efficiency, and linearity of RT-PCR. The optimized 

conditions are summarized in Table 2.6. 
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2.9.5. Polymerase chain reaction amplification 

A 49 µl aliquot of PCR master mix (200 mM Tris-HCl buffer (pH 8.4), 500 mM 

KCl, 10 mM (deoxyribonucleotide triphosphates) dNTP, 50 mM MgCl2, 0. 2 µl Taq DNA 

polymerase), 1 µl of both forward and reverse primers, and UltraPure™ DNase/RNase-

Free distilled water (Invitrogen)) was added to 0.2 ml thin walled polypropylene PCR 

tube followed by adding 1 µl of cDNA or 1 µl of H20 as a negative control. Concentration 

of the primers and components of PCR reaction master mix varied depending on the gene 

of interest (Table 2.7).  Next, PCR was amplified by placing PCR microtubes into 

Biomed T-Gradient cycler according to the optimized PCR protocol. 

 

2.9.6. Electrophoresis of polymerase chain reaction products 

One microliter of loading buffer was mixed with 5 µl of PCR product and loaded 

onto a 1.5% agarose gel. The gel was premade by adding 0.6 g agarose (Invitrogen) into 

40 ml 0.5X Tris/borate/EDTA (TBE) buffer (50 mM Tris, 50 mM borate and 5 mM 

EDTA) and 0.5 µg/ml ethidium bromide. In order to identify the product size, gels were 

also loaded with 3 µl of 100 bp DNA ladder (Invitrogen) that was mixed with the loading 

buffer. PCR products were separated by electrophoresis for 25 min at 120 V using Mini-

Sub cell DNA electrophoresis chamber (Bio-Rad) filled with 0.5X TBE buffer. Following 

separation, PCR products were visualised by UV light using Kodak Imager.  
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Table 2.5 Primers used to detect human leucocyte class II and class II co-chaperone 

transcription by polymerase chain reaction. 

 

 

 

 

 

 

 

 

 

 

 

Gene Sense Anti-Sense Size (bp) Reference 
DRA cttctgctgcattgcttttgcgca cgagttctatctgaatcctgacca 643 (297)  
DRB ccccacagcacgtttcttg ccgctgcactgtgaagctct 274 Allison D. 

Edgecombe MSc. 
Thesis, 2002 

DMA ccaatgtggccagatgacctgc gcgtgaacacttcagcgatag 303 Allison D. 
Edgecombe MSc. 
Thesis, 2002 

DMB gcagaagtgactatcacgtgg ccgccagctgatcacaccaag 296 Allison D. 
Edgecombe MSc. 
Thesis, 2002 

Ii tcccaagcctgtgagcaagatg ccagttccagtgactctttcg 340 (298)  
CIITA caagtccctgaaggatgtgga acgtccatcacccggagggac 266 (299) 
ESR1 gctgcaaggccttcttcttcaa tcatcaggatctctagccag 550 (300)  
GAPDH catcaccatcttccaggagcg tgaccttgcccacagccttg 443 (301)  
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Table 2.6 Polymerase chain reaction conditions used to amplify human leucocyte class II 

and co-chaperone mRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Cycler Condition Number of cycles 

DRA 94-1’, 55-1’, 72-3’ 25 

DRB 94-1’, 60-1’, 72-1’ 28 

DMA 94-1’, 60-1’, 72-3’ 28 

DMB 94-1’, 60-1’, 72-3’ 28 

Ii 94-1’, 55-1’, 72-3’ 23 

CIITA 94-1’, 60-1’, 72-3’ 32 
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Table 2.7 Polymerase chain reaction mixtures used in cDNA amplification. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 DRA DRB DMA DMB Ii CIITA PIII,PIV GAPDH 
pMol 20 25 10 10 20 20 20 20 
10X 
PCR 
buffer  
(µl) 

5 5 5 5 5 5 5 5 

dNTp`s 1 1 1 1 1 1 1 1 
MgCl  
(µl) 

1.5 2 1.5 1.5 1.5 1.5 2 2 

Primer 
+ (µl) 

1 1 1 1 1 1 1 1 

Primer 
-( µl) 

1 1 1 1 1 1 1 1 

taq (µl) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Mol   
H20 (µl)  

39.3 38.8 39.3 39.3 39.3 39.3 38.8 38.8 
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2.10. Real time reverse transcriptase polymerase chain reaction  

2.10.1. Overview 

Real time reverse transcriptase polymerase chain reaction (RT-PCR) analysis was 

carried out using StepOne Real Time PCR systems and Software (Applied Biosystems, 

Life Technologies). RNA extraction and DNase treatment were done as previously 

described in Section 2.7.1 and 2.7.2. 

 

2.10.2. cDNA synthesis 

High Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Life 

Technologies) were used for preparation of cDNA. Two micrograms of total RNA were 

diluted in a total volume of 10 µl DEPC water in 0.2 ml PCR tubes and 10 µl RT master 

mix (2 µl RT buffer, 0.8 µl dNTP’s 100 mM, 2 µl RT random primers, 1 µl multiscribe 

RT, 1 µl RNase inhibitor, 3.2 µl molecular H20) were added to the same tube and placed 

in the cycler (Biometra T-Gradient) at 25oC for 10 min, followed by 2 hr at 37oC and last 

extension step for 5 seconds at 85oC.  cDNA was stored at -800C until use. 

 

2.10.3. Real time reverse transcriptase polymerase chain reaction primers 

Real time PCR was performed using TaqMan® probe-based gene expression 

analysis kit for CIITA (Hs00172106_m1) and GAPDH (Hs99999905_m1) that include 

pre-designed primers and probes for optimal amplification (Applied Biosystems) along 

with TaqMan® universal PCR master mix (Applied Biosystem). All gene expression 

assays have a carboxyfluorescein (FAM) reporter dye at the 5’ end of TaqMan minor 

groove binder (MGB) probe and non-fluorescent quencher at the 3’ end of the probe. 
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2.10.4. Real time reverse transcriptase polymerase chain reaction primers amplification  

All samples were assayed in triplicate to ensure accuracy with a reaction volume 

of 20 µl. Ten microliters of TaqMan gene expression master mix (Amplitaq® Gold DNA 

polymerase Ultra-Pure, Uracil DNA glycosylase, dNTP’s , ROXTM which act as a passive 

reference) were mixed with 1 µl of specific primer, 1 µl of cDNA and 8 µl UltraPure™ 

DNase/RNase-Free distilled water. The optimal concentration of cDNA was 

predetermined using a 10-fold serial dilution to generate a standard curve. Ideally, 10-fold 

dilution increases the cycle threshold (CT) value about 3.33 cycles. The amplification 

efficiency is calculated from the slope, which should lie between 85-100%.  The thermal 

cycler protocol included an initial 2 min at 50oC, 10 min at 95oC, followed by 40 cycles 

of 15 seconds at 95oC and 1 min at 60oC 

 

2.10.5. Real time RT-PCR interpretations  

Real-time PCR amplification was performed by the comparative cycle threshold 

(ΔΔCT) method and normalized to GAPDH. A control sample without RNA and a 

reference sample (RAJI, B cell line) were included in each experiment. The ΔΔCT 

method is used to determine the relative quantity (RQ) in samples. The software 

determines the RQ of target in each sample by subtracting normalized target quantity in 

each sample from normalized target quantity in the reference sample. Therefore, the 

formulas used to calculate RQ are: 
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CTCIITA - CTGAPDH =ΔCT (both in samples and reference control) 

ΔCTsample- CTreference control = ΔΔCT 

Relative quantity =2-
ΔΔ

CT 

 

2.11. Vectors and constructs 

2.11.1. Experimental and control plasmid constructs 

Several plasmid constructs were used in this study. Table 2.8 summarizes all the 

experimental and control plasmids that were used for various experiments. 

 

2.11.2. Plasmid construct preparation 

2.11.2.1. Preparing plasmid 

Some of the plasmids used in this study were commercially available and were 

purchased from different vendors, while others were custom made and gifts from 

different laboratories (Table 2.8).  These plasmids were sent to us either pre-diluted in 

Tris/EDTA (TE) buffer or spotted on a thick filter paper with 1 cm circle traced around 

the plasmid. In order to extract the plasmid, half of the circle was cut and placed with 

clean forceps in a 1.5 ml microcentrifuge tube. Fifty microliters of TE buffer pH 8.0 

(Invitrogen) were pipetted over the filter paper in the microcentrifuge tube, vortexed for 5 

min and left incubating for another 5 min at room temperature. Following the incubation 

period, the centrifuge tube was spun for 5 min at 12,000 x g at room temperature and the 

supernatant was transferred into a clean microcentrifuge tube and the DNA was measured 

using NanoDrop.  
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Table 2.8 Summary of the plasmid constructs used in this study. 
 

 

 

 

 

 

 

 

 

 

 

Plasmid Construct Plasmid Backbone Promoter Insertion 

pIII CIITA PGL2-BASIC 7Kb pIII CIITA Luciferase 

pIV CIITA PGL2-BASIC -346-+50 bp pIV CIITA 

Luciferase 

Ii PGL4.11 CD74 promoter Luciferase 

DRA PGL3-Basic DRA promoter Luciferase 

SV40 PRL-SV40 SV40-Luciferase 

PGL2 PGL2-BASIC N/A 

GFP pEGFP-C3 CMV promoter-GFP 

Wild Type ESR1 pcDNA3 WT ESR1 ORF isoform 1 

Mutant ESR1 pcDNA3 V>G ESR1 ORF isoform 1 
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2.11.2.2.  Bacterial transformation 

 In order to replenish laboratory stocks of the various reporter genes and plasmid 

constructs, subcloning efficiency DH5α™ competent Escherichia coli (E.coli) cells 

(Invitrogen) were transformed with respective reporter genes or plasmid constructs.  One 

tube of DH5α cells (500 µl) was thawed on ice, gently mixed and 50 µl of were dispensed 

into 1.5 ml microcentrifuge tubes on wet ice.  Any unused cells were frozen in the dry 

ice/ethanol bath for 5 min before returning to the -80°C freezer. Cells were transfected 

with 1 to 5 µl (1-10 ng) of DNA, mixed gently and the tube was incubated on ice for 30 

min. Cells were then heat-shocked for 20 seconds in a 42°C water bath without shaking 

then placed on ice for 2 min. Nine hundred and fifty microliters of pre-warmed lysogeny 

broth (LB) broth (1% Bacto-tryptone (Sigma), 0.5% yeast extract (Sigma), 1% NaCl2
 

(Sigma)) were then added, followed by incubation at 37°C for 1 hr and shaking at 225 x 

g. One hundred microliters of the transformed cells were then spread on pre-warmed 

selective plates (LB broth, 1.5% agar, 100 µg ampicillin (Sigma)) and incubated 

overnight at 37°C.  The remaining transformation reaction was stored at 4°C.  

 

2.11.2.3. Preparation of miniprep 

Miniprep was prepared using QIAprep® Miniprep (Qiagen) according to the 

manufacturer’s instruction.  Four different colonies were picked from the transformed 

bacteria growing in LB amp plate and inoculated into 5 ml of LB broth containing 100 µg 

/ml ampicillin and incubated at 37oC shaking at 225 rpm overnight. Cells were then 

harvested by centrifugation of 1.5 mL cells in a centrifuge tube at 8000 x g for 3 min at 

room temperature. All supernatant was aspirated and an extra 1.5 ml cells were added to  
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the same tube and cells were harvested as before. All traces of supernatant were removed 

by inverting the open centrifuge tube until all medium has been drained. Pelleted bacterial 

cells were re-suspended in 250 µl buffer P1 in which RNase and 0.25 µl of lyse blue was 

added and vortexed until no cell clumps were visible. Two hundred and fifty microliters 

of buffer P2 were added and mixed thoroughly by inverting the tube 4–6 times until the 

cell suspension turned homogeneous blue without localised colorless regions. 

Immediately after, 350 µl buffer N3 were added and mixed by inverting the tube 4-6 

times, or until all trace of blue was gone and the suspension turned a cloudy white in 

color. Genomic DNA is precipitated by centrifuging for 10 min at 12,000 x g, after which 

a white compact pellet forms. Next, the supernatant was pipetted to the QIAprep spin 

column and spun for 1 min to discard the flow-through, followed by washing the 

QIAprep spin column by adding 0.5 ml buffer PB and spun for 30 seconds at 12,000 x g. 

After discarding the flow-through the QIAprep spin column was centrifuged again for an 

additional min to remove residual wash buffer.  The QIAprep column was next placed in 

a clean 1.5 ml microcentrifuge tube and in order to elute the DNA, 50 µl buffer EB (10 

mM Tris·Cl, pH 8.5) were added to the center of the QIAprep spin column, left for 1 min, 

and then centrifuged for 1 min. Miniprep was collected and DNA quantified using a 

NanoDrop. 

 

2.11.2.4. Restriction analysis of purified plasmid recombinants 

The conventional method of selecting the desired recombinant plasmid is to 

characterize plasmid clones by restriction enzyme digestion. In this study, various types 

of reporter gene constructs with different plasmid backbones were used, thus, a set of 
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different combinations of restriction enzyme(s) and reaction buffers were used to identify 

these plasmids as summarized in Table 2.9. One microgram of plasmid DNA was 

digested with 1 unit of each enzyme in the presence of 1 µl of the appropriate buffer and 

UltraPure™ DNase/RNase-Free distilled water was added to complete a total 10µl 

reaction volume of. All reactions were incubated in a water bath at 37oC for 90 min and 

the whole reaction products were resolved in 1% agarose gel together with a control un-

digested plasmid construct. The final product was identified by the correct expected 

molecular weight based on loading 3 µl 1 Kbp DNA ladder (Invitrogen). The remaining 

transformed cells in LB broth from the selected clone were frozen by pipetting 500 µl of 

transformed cells with 500 µl glycerol and stored in -80oC for future use as glycerol 

stock.  

 

2.11.2.5. Preparation of midiprep 

Midiprep was prepared using QIAprep® Midiprep (Qiagen) according to the 

manufacturer’s instruction. Starter cultures were prepared by diluting 50 µl from the 

transformed bacterial glycerol stock with 2.5 ml LB broth amp in a 15 ml conical tube 

with loose cover and incubating for 7 hr with shaking at 225 rpm at 37oC. Following the 

incubation period, 1 ml of the starter culture was further diluted in 100 ml LB broth amp 

medium and left shaking over night at 225 rpm at 37oC. Bacteria were harvested by 

centrifugation at 6000 x g for 15 min at 4°C. The supernatant was discarded and the 

pelleted cells re-suspended in 4 ml buffer P1 in which RNase and 4 µl of lyse blue were 

added and vortexed until no cell clumps were visible. Four millilitres of buffer P2 were 

added and mixed thoroughly by inverting the tube 4-6 times until the cell suspension
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 Table 2.9 Restriction enzymes used to digest the plasmid constructs. 

 

 

 

 

 

 

 

 

 

 

 

Construct Restriction Enzymes Reaction Buffer 

pIII CIITA HindIII/Kpn NEB2, BSA (NewEngland) 

pIV CIITA HindIII/Kpn NEB2, BSA (NewEngland) 

Ii BamHI NEB1 (NewEngland) 

DRA HindIII/XbaI NEB2, BSA (NewEngland) 

SV40 HindIII/XbaI NEB2, BSA (NewEngland) 

PGL2 HindIII/Kpn NEB2, BSA (NewEngland) 

GFP NheI/KpnI NEB4 (NewEngland) 

Wild Type ESR1 BgIII/BamHI NEB2, BSA (NewEngland) 

Mutant ESR1 BgIII/BamHI NEB2, BSA (NewEngland) 
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turned homogeneous blue without localised colorless regions and incubated at room 

temperature for 5 min. Following the incubation period, 4 ml buffer P3 were added and 

mixed by inverting the tube 4-6 times, or until all trace of blue was gone and the 

suspension turned a cloudy white color, at which point it was incubated on ice for a 

further 5 min. Genomic DNA was precipitated by centrifuging for 30 min at 12,000 x g, 

which produced a white compact pellet. The supernatant was transformed into a clean 

tube and centrifuged for another 15 min at 12,000 x g. Following this, the supernatant was 

applied to QIAGEN-TIP 100 column, pre-equilibrated with 4 ml of buffer QBT. The 

column was then washed twice with 10 ml buffer QC and the DNA was eluted with 5 ml 

buffer QF. DNA was precipitated by adding 3.5 ml isopropanol, mixed by inverting and 

incubated for 10 min, followed by centrifugation at 12,000 x g for 30 min at 4oC.  

Precipitated DNA was washed with 500 µl 75% ethanol, centrifuged at 12,000 x g for 10 

min at 4oC and the supernatant discarded. The pellet was left to air dry for 5-10 min, 

reconstituted in 100 µl TE buffer pH 8.0 and quantified by a NanoDrop. 

 

2.12. Reporter gene assays 

2.12.1. Day 1: Seeding 

BCCL were seeded in a 96-well tissue culture plate at a density of 2 x 104 

cells/well in 100 µl culture medium. Five replicate wells were prepared for each 

experimental each condition to control for variation in transfection efficiency. 
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2.12.2. Day 2: Transfection 

All transfection reagent and plasmids were brought to room temperature. Optimal 

transfection conditions were established using Fugene HD (Roche) transfection reagent 

according to the manufacturer’s protocol. Briefly, the master mix was prepared by 

diluting the appropriate plasmid with Opti-MEM (Invitrogen) to a concentration of 0.02 

µg/µl; Fugene HD (Roche) was added to the same mixture in the ratio of 7:2 (Fugene HD 

in µl:plasmid DNA in µg), pulse vortexed for 2 seconds and left for 20 min at room 

temperature.  

In case of dual transfection, the test plasmid (expressing firefly luciferase) was 

mixed with control plasmid (green fluorescence protein (GFP) reporter or SV40-Renilla 

luciferase constructs) at a ratio of 9:1 in Opti-MEM for a final concentration of 0.02 

µg/µl. Following incubation, 5 µl of this mixture were used to transfect the cells without 

changing the media. The wells were returned to the incubator for a further 24 hr.  

 

2.12.3. Day 3: Treatment and interferon gamma stimulation 

The medium was aspirated and replaced with fresh medium containing the 

appropriate treatment as in described in Section 2.4 and incubated for a further 6-24 hr 

depending on the predetermined optimum time for the test reporter activity response.  

 

2.12.4. Measuring luciferase or green florescense activity 

Luciferase activity was measured using Dual-Luciferase® reporter assay system 

(Promega). Medium was aspirated from all wells and cells were washed once with PBS 

followed by addition of 20 µl of passive lysis buffer (PLB). The plates were placed on an 
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orbital shaker with gentle shaking to ensure complete and even coverage of the cell 

monolayer with PLB at room temperature for 15 min. Ten microliters lysates from each 

well were transferred to a new 96-well opaque white plate and mixed with 50 µl 

luciferase assay reagent II (LARII), previously prepared by re-suspending the provided 

lyophilized luciferase assay substrate in 10 ml of the supplied luciferase assay buffer II. 

Only 5 wells were transferred at a time and LARII was added to each well at 10-second 

intervals to compensate for the lag time inherent by the luminometer (Fluoroskan Ascent 

Fl, Labsystems). Stop & Glo® Substrate (Promega) was used to measure the Renilla 

luciferase activity by adding 50 µl of substrate, prepared immediately before the assay by 

adding 1 volume of 50 x Stop & Glo® Substrate to 50 volumes of Stop & Glo® buffer in 

an eppendorf tube. The Stop & Glo® substrate was added to each well at 10 second 

intervals and luciferase activity was measured at the same wavelength.  When the GFP 

reporter construct was used to control for transfection efficiency, the remaining 10 µl of 

lysates were transferred to a new 384-well black plate and fluorescence activity was 

measured using (Fluoroskan Ascent Fl, Labsystems) with fluorescence filter (excitation 

475-495 nm, and emission 520- 560 nm). 

 

2.12.5. Data analysis and interpretation 

Background was subtracted by measuring the luciferase or GFP activity from 

cells, which were either non-transfected or transfected with a mock vector. Transfection 

efficiency was expressed as a ratio of the test plasmid over the control plasmid. 

 

 



101 
 

2.13. Site directed mutagenesis study 

2.13.1. Generation of deletion constructs in promoter IV of class II transactivator. 

The anticipated ERE binding sites in pIV CIITA were predicted using three 

different computer software programs; http://tfbind.hgc.jp/, http://alggen.lsi.upc.es/, 

http://www.cbrc.jp/index.eng.html. Different sets of deletion mutants of pIV CIITA were 

generated by site-directed mutagenesis using QuikChange Lightning Site-Directed 

Mutagenesis Kit (Stratagene) according to the manufacturer’s instructions. Mutagenic 

primers were designed with Agilent’s web-based QuikChange Primer Design Program 

(www.genomics.agilent.com.) and are listed in Table 2.10 

 

2.13.2. Amplification of the mutant construct 

PCR reaction master mix was prepared in 0.2 ml thin walled polypropylene PCR 

tubes as follows: 1x QuikChange lightning reaction buffer, 25 ng pIV CIITA dsDNA 

template; 125 ng of each oligonucleotide primer; 1 µl dNTP’s, 1.5 µl QuikSolution 

reagent, UltraPure™ DNase/RNase-Free distilled water to a final volume of 50 µl 

followed by adding 1 µl of QuikChange Lightning Enzyme. Next, PCR was amplified by 

placing PCR microtubes into Biometra T-Gradient cycler. The thermal cycler protocol 

included initial 2 min at 95oC, followed by 18 cycles of 20 seconds at 95oC, 10 seconds at 

60°C, 30 seconds at 68°C and 5 min at 68oC. Following PCR amplification, 2 µl of the 

provided Dpn I restriction enzyme was added directly to each amplification reaction, 

mixed by pipetting the solution up and down several times and the reaction mixture was 

spun down immediately and incubated at 37°C for 5 min to digest the parental, non-

mutated, supercoiled dsDNA. 
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Table 2.10 List of mutagenic primers designed with Agilent’s web-based QuikChange 

Primer Design Program.  

 

 

 

 

 

 

 

 

 

 

Site 1 Original template ctcaacctctctttgtctctgggtgggtccccacccctg 

Primers Del -328/-324 Fw 5'-ttggagagaaacagcacccaggggtggg-3' 

Del -328/-324 Rv 5'-cccacccctgggtgctgtttctctccaa-3' 

Site 2 Original template gacgttgagtcctgaacgtctagtgaacgggttcaccgaggga 

Primers Del -280/-276 Fw 5'-caactcaggacttgcacttgcccaagtggctc-3' 

Del -280/-276 Rv 5'-gagccacttgggcaagtgcaagtcctgagttg-3' 

Site 3 Original template agaggggcttcaccccgaccggtgacactccttggctgacctccgtccctg 

Primers Del -209/-191 Fw 5'-ccccgaagtgggggactggaggcagg-3' 

Del -209/-191 Rv 5'-cctgcctccagtcccccacttcgggg-3' 

Site 4 Original template cttgacgcccctccgcccctccatcctactggtcgcctgctcgacggtgt 

Primers Del -33/-14 Fw 5'-ctgcggggaggcggacgagctgcc-3' 

Del -33/-14 Rv 5'-ggcagctcgtccgcctccccgcag-3' 
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2.13.3. Transformation of XL10-Gold ultracompetent cells 

XL10-Gold ultracompetent cells were thawed on ice and 45 µl of cells was 

transferred to a pre-chilled 14-ml BD Falcon polypropylene round-bottom tube. Two 

microliters of the provided β-ME mix were added and the tube was swirled gently, 

followed by 2 min incubation on ice. Cells were transfected with 2 µl Dpn I-treated DNA 

and bacterial transformation was done as described in Section 2.10.2.2.  

 

2.14. Silencing estrogen receptor alpha by small interfering RNA  

2.14.1. Cell plating 

BCCL were seeded in a 6-well tissue culture plate at a density of 3 x 105 cells/well 

in 2 ml culture medium with no antibiotic, as antibiotics decrease sensitivity of 

transfection, and incubated at 37°C with 5% CO2 overnight. Each experiment included 

untreated cells, positive control siRNA (targeting a GAPDH gene), negative control small 

interfering RNA (siRNA) (non-targeting or scrambled) and ESR1 siRNA. 

 

2.14.2. Transfection  

Transfection conditions were established using Thermo Scientific DharmaFECT 

transfection reagents (Thermo Scientific Dharmacon RNAi technology) according to the 

manufacturer’s protocol. On-TARGETplus SMARTpool, siRNA was supplied as a 

lyophilised powder at 5 nmol concentration. A stock of 20 µM siRNA was prepared by 

re-suspending the siRNA into 250 µl of siRNA buffer (prepared by mixing four volumes 

of sterile RNase-free water with one volume of 5X siRNA buffer (300 mM KCl, 30 mM 

HEPES-pH 7.5, 1.0 mM MgCl2)) which was aliquoted and frozen at -80oC. At the time of 
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the experiment one aliquot was thawed and pre-diluted with siRNA buffer to final 

concentration of 5 µM. Transfection-complex was prepared for each transfection by 

prediluting 10 µl of siRNA (5 µM) into 190 µl DharmaFECT cell culture reagent 

(DCCR). In a separate tube, 4 µl of DharmaFECT reagent was prediluted in 196 µl of 

DCCR tube and left incubating at room temperature for 5 min. Following the incubation 

period, the contents of the two tubes were mixed together in a 15 ml conical tissue culture 

tube and left for a further 20 min at room temperature. Next, 1.6 ml of MEM medium 

without antibiotic was added to transfection complex, mixed well and used to transfect 

the cells. The transfected cells were incubated at 37°C with 5% CO2 for 24 hr. Following 

the incubation time, the medium was aspirated and replaced with fresh medium 

containing the appropriate treatment as in described in Section 2.4 and incubated for a 

further 4-24 hr depending on the type of assay. 

 

2.15. Transient transfection of estrogen receptor alpha gene 

MDA-MB-231 and SK-BR-3 were seeded in 10 cm plates at 3 x 106 cells/plate 

and left to adhere overnight. Transfection was done exactly as previously described in 

Section 2.11.2 and left for 72 hr.  

 

2.16. Viability testing using crystal violet staining 

BCCL were seeded in 96-well plate at a density of 2 x 104 cells/well and left to 

adhere overnight. In the next day medium was replaced with medium containing the 

appropriate treatment, using three replicate wells for each treatment and incubated for the 

indicated time, depending on the experiment. Medium was then aspirated and cells were 
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washed once with PBS and cell viability was established using crystal violet staining.  

One hundred microliters of crystal violet (0.5% crystal violet in 10% neutral buffered 

formalin (VWR-EMD) were added for 30 min at room temperature. At the end of 

incubation period, crystal violet was aspirated, the plate was washed under tap water, 

blotted on filter paper and left to dry for 5 min at room temperature. The remaining 

crystal violet, which represents viable cells, was detected by dissolving it in 100 µl of 

30% acetic acid in water. The plate was shaken for 1 min and the absorbance read 595 nm 

on an ELISA reader (Bio-Rad model 3550).  

 

2.17. Statistical analysis 

Analysis was performed using Microsoft Excel 2010 software. Comparison within 

groups (different cell lines with different treatment) was analyzed using one-way analysis 

of variance (ANOVA) and Tukey post hoc. Student t-test was used for comparing of two 

different treatments. All tests were two-sided and difference between groups were 

considered significant if p<0.05. In the text the average of three experiments is reported 

as mean + standard errors of the mean (SEM). 
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Chapter 3: Human leukocyte antigen class II is differentially expressed in estrogen 

receptor alpha positive and estrogen receptor alpha negative breast cancer cell lines 

with or without estradiol treatment. 
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3.1. Rationale and objectives  

Human leukocyte antigen (HLA) class II molecules are not usually expressed on 

normal mammary epithelium; however, they are upregulated in lactating breast cells, 

most likely due to prolactin (302). HLA class II expression in breast cancer cell lines 

(BCCL) is modulated by cytokines such as interleukin 1 alpha (IL1α), tumor necrosis 

factor alpha (TNFα), interferon gamma (IFN-γ) (303), and by hormones such as estradiol 

(E2) (304). Previous work in our laboratory, arising from Sharon Oldford’s study on 

breast cancer tissues, showed that HLA-DR expression on breast carcinoma in situ is 

significantly associated with reduced estrogen receptor (ER)α, reduced progesterone 

receptor, reduced age at diagnosis, and increased levels of IFN-γ mRNA (106).  

Altogether these findings suggest a role of cytokines, hormones and their receptors in 

modulation of HLA class II expression in breast cancer cells. 

 

1. To compare HLA class II expression in ERα+ and ERα- BCCL with or without IFN-γ. 

2. To determine if HLA class II is modulated by physiological concentrations of E2 

treatment in ERα+ and ERα- BCCL. 

3. To study the role of ERα on HLA class II expression in a BCCL model. 
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3.2. Estradiol enhances HLA-DR expression in ERα- breast cancer cell lines  

 To determine whether estrogen, in the absence of its cognate receptor ERα 

modulates the HLA class II pathway, we analyzed constitutive and IFN-γ inducible HLA-

DR in established ERα- BCCL, MDA-MB-231, and SK-BR-3. The cells were grown in an 

estrogen-depleted medium and treated with E2 and stimulated, or not, with IFN-γ. HLA-

DR expression was measured using L243 antibody (pan HLA-DR) and analysed by 

surface flow cytometry. 

The results for MDA-MB-231 differed from SK-BR-3 as MDA-MB-231 

constitutively expressed, albeit weakly, HLA-DR with 30% of cells positive for L243 

(Figure 3.1A) and an average mean fluorescence intensity (MFI) of 60 (Figure 3.1B). 

IFN-γ strongly upregulated HLA-DR in both cell lines, with 98% and 55% of the cells, 

respectively positive for L243 (Figure 3.1A) and an average MFI of 543 and 390 (Figure 

3.1B).   

To confirm flow cytometry results, immunoblots were performed on cytoplasmic 

extracts from the same cells treated as previously described. The relative expression was 

determined by measuring the density of each band in the form of pixels and expressed as 

a ratio of the band density for the loading control α tubulin (Figure 3.1D). No constitutive 

HLA-DR expression was detected in both cell lines using the HLA-DRα antibody (TAL 

1B5); however, IFN-γ strongly induced HLA-DR (Figure 3.1C). E2 significantly 

augmented IFN-γ-induced HLA-DR expression in SK-BR-3 (p<0.001), and resulted in 

negligible increase in MDA-MB-231 as detected by flow cytometry and immunoblotting.  
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Figure 3.1 Estradiol enhances HLA-DR expression in ERα- breast cancer cell lines. 

MDA-MB-231 and SK-BR-3 were treated with vehicle (ethanol) or E2 (10-9 M) and 

stimulated or not with IFN-γ (100 Units/ml) for 96 hr. (A) HLA-DR surface expression 

(detected by L243) was analysed by flow cytometry. Shaded histogram = isotype control, 

black line = HLA-DR expression with the indicated % of cells (B) Bar graphs represent 

the average MFI for HLA-DR expression from three independent experiments. (C) HLA-

DRα expression (detected by TAL 1B5) was analysed by immunoblotting from a 

cytoplasmic cell extract.  (D) HLA-DRα levels were normalized to α tubulin and the 

average band intensity after normalization is presented in the bar graph. Error bars 

represent the ± standard errors of the mean (SEM) of three independent experiments. 

(***p value <0.001). 
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3.3. Estradiol differentially modulates HLA-DR in ERα+ breast cancer cell lines 

 Although estrogen can activate other signaling pathways (277), it acts primarily 

through ERα (235). Since the least HLA-DR expression in human breast carcinoma 

tissues was observed for ERα+ tumors (106), we hypothesized that E2-activation of the 

ER pathway would inhibit HLA-DR expression. To test this, we used established ERα+ 

BCCL, MCF-7, BT-474, & T47D, which were treated as described above for the ERα- 

cell lines. Analysis of HLA-DR expression was done as previously described. 

The flow cytometry results (Figure 3.2A-B) show that T47D, but not MCF-7 or 

BT-474 expressed very low levels of constitutive HLA-DR, with a small number of 

positive cells (8%), (Figure 3.2A) and an average MFI of 17 (Figure 3.2B). E2-treatment 

had no detectable effect on constitutive HLA-DR expression.  IFN-γ inducible HLA-DR 

varied substantially among the cell lines. Although more than 90% of cells were HLA-DR 

positive in both MCF-7 and T47D (Figure 3.2A), the MFI varied markedly with MFI of 

900 in T47D compared to MFI of 380 in MCF-7 (Figure 3.2B), suggesting that T47D 

expresses more surface HLA-DR molecules. E2 significantly reduced IFN-γ-induced 

HLA-DR expression in MCF-7 (p<0.05) and BT474 (p<0.001). On the other hand, E2 had 

no significant effect on HLA-DR expression in T47D cell line, suggesting that E2 

downregulation of IFN-γ-induced HLA-DR expression may be cell specific.  

Immunoblot analysis was next performed to confirm the flow cytometry data. The 

three ERα+ BCCL were treated exactly as described above, followed by preparation of 

cytoplasmic and nuclear extracts for easier ERα tracking, since hormonal treatment 

mobilises ERα between the nucleus and cytoplasm. The bands densities were relatively 
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quantified as previously described for the ERα- cell lines. HLA-DR basal expression was 

not detected in either of three ERα+ BCCL cells; however, IFN-γ strongly induced HLA-

DR (Figure 3.2C) in MCF-7 and T47D. HLA-DR was barely detected in BT-474, and 

thus the membrane was overexposed in order to detect the signal. Similar to the flow 

cytometry results, E2-treatment inhibited HLA-DR expression in MCF-7 and BT-474, but 

variably increased HLA-DR in T47D. Analysis of ERα expression in cytoplasmic and 

nuclear extracts showed no significant effect of IFN-γ treatment on ERα levels in either 

cells (Figure 3.2C). As expected, E2-treatment significantly decreased cytoplasmic, and 

increased nuclear ERα in the three cell lines, indicating ligand activation of the ER 

pathway. E2 significantly attenuated the IFN-γ-induced HLA-DR expression in MCF-7 

(p<0.01) and in BT474 (p<0.05), but no statistically significant change was seen by E2 on 

IFN-γ-induced HLA-DR expression in T47D (Figure 3.2D). Thus, immunoblot analysis 

confirmed the results found by flow cytometry.  

Overall, E2 augmented HLA-DR expression in ERα- cell lines, while 

downregulating HLA-DR in two out of three ERα+ cell lines. These results are consistent 

with the previous in vivo study (106), which found higher HLA-DR expression in ERα-  

tumors from younger women with breast cancer. This suggests that estrogen in the 

absence of ERα has a modulatory effect on regulation of the HLA class II pathway. 

Moreover, our in vitro data suggest that down modulatory effects of E2 on HLA class II 

expression is likely dependent on ERα. 
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Figure 3.2 Estradiol differentially modulates HLA-DR in ERα+  breast cancer cell lines  

MCF-7, BT-474, and T47D were treated with vehicle (ethanol) or E2 (10-9M) and 

stimulated or not with IFN-γ (100 Units/ml) for 96 hr. (A) HLA-DR surface expression 

(detected by L243) was analysed by flow cytometry. Shaded histogram = isotype control, 

black line = HLA-DR expression with the indicated % of cells (B) Bar graphs represent 

the average MFI for HLA-DR expression from three independent experiments. (C) 

Immunoblot analysis was performed on cytoplasmic and nuclear extracts for ERα 

expression (HC-20) and on cytoplasmic extracts for HLA-DRα (TAL 1B5).  (D) HLA-

DRα levels were normalized to α tubulin and the average band intensity after 

normalization is presented in the bar graph. Error bars represent ± SEM of three 

independent experiments (*p<0.05, **p<0.01 and ***p<0.001). 
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3.4. Transfection of ERα gene in an ERα- cell line decreases IFN-γ inducible HLA-DR 

proteins 

To further define the role of ERα on IFN-γ inducible HLA-DR expression, two 

stable transfectants, derived from MDA-MB-231 clone10A were used: MC2 expresses 

wild type ERα and VC5 expresses the empty vector. The cells were grown in an estrogen-

depleted medium and stimulated with IFN-γ or left untreated. HLA-DR expression was 

measured using L243 antibody and analysed by surface flow cytometry. 

As shown in Figure 3.3A-B, IFN-γ upregulated HLA-DR expression in all three 

cells. Interestingly, inducible HLA-DR as measured by MFI was significantly decreased 

in VC5, compared to the parent cell line, MDA-MB-231, even though the percentage of 

HLA-DR positive cells was the same for both. This suggests that the empty plasmid is 

interfering with HLA-DR expression. Transfecting the ERα gene into the ERα- BCCL 

resulted in drastically reduced HLA-DR expression in MC2 when compared to VC5 and 

MDA-MB-231 clone 10A. Taken together, these results suggest that expression of ERα, 

even in the absence of E2, downregulates HLA-DR expression in breast cancer cells. 

To ensure that diminished IFN-γ-induced HLA-DR expression in MC2 was 

reproducible by alternative techniques, immunocytochemistry (ICC) and immunoblotting 

were used to evaluate IFN-γ inducible HLA-DR expression in MC2, VC5 and MDA-MB-

231. The advantage of ICC is that it will detect differential localisation of the HLA-DR 

expression in these cells. As shown in Figure 3.3C, the cells were clearly positive for 

cytoplasmic and membranous staining of HLA-DR. Membrane and cytoplasmic HLA-DR 

staining were detected in MC2, but the percentage of positive cells was only 30%, 
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compared to 70% in MDA and VC5. Interestingly, HLA-DR positive cells showed large 

granules distributed in the cytoplasm in all three cells examined, which were not present 

in the normal B cell control, SAVC. 

 Immunoblotting of cell lysates, confirmed reduced HLA-DR in MC2 as compared 

to VC5 and MDA (Figure 3.3D). Since expression of ERα varies with different culture 

conditions (305, 306), we examined ERα in the same lysates to ensure its expression in 

estrogen-depleted conditions. (In this experiment, we examined ERα expression in the 

whole cell lysates but later (Section 4.4) cellular localisation of ERα was determined). 

The observation ERα was strongly expressed in MC2 while HLA-DR expression was 

dramatically reduced, added support to our hypothesis that ERα modulates HLA-DR 

expression. 

  

3.5.Estradiol downregulates HLA-DR expression in MC2 in a dose dependent manner 

 We next examined the effect of ligand activation of ERα on HLA-DR expression. 

The physiological level of estrogen varies during the lifetime of females (307). The 

highest levels of estradiol, nearly 10-6 M, are reached during pregnancy. Intermediate 

levels, ranging from 10-9 M to 10-8 M, are found during normal reproductive age and vary 

with the menstrual cycle. The lowest levels, ranging from 10-12 M to 10-11 M, occur during 

menopause, which is also variable, ranging from 40-61 years (307). To study the effect of 

physiological levels of estradiol on HLA-DR expression in breast cancer cells, VC5 and 

MC2 breast cancer cells were treated with exogenous E2 ranging from 10-6M-10-12M and 

IFN-γ for 96 hr. HLA-DR surface expression was then examined by flow cytometry. 
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Figure 3.3 Differential expression of HLA-DR in the breast cancer cell line model.  

MDA-MB-231 clone 10 A, VC5 and MC2 were cultured either in estrogen-depleted 

medium and stimulated with IFN-γ (100 Units/ml) for 96 hr. (A) HLA-DR cell surface 

expression (L243) was analysed by flow cytometry: shaded histogram, isotype control; 

black line, HLA-DR expression with the indicated % of cells (B) Bar graphs represent the 

MFI ± SEM for HLA-DR expression of three independent experiments. (**p<0.01, 

***p<0.001). C) Cytopreps were prepared and acetone fixed, HLA-DR was detected 

using L243 and visualised by NovaRed stain, nucleus was stained with haematoxylin for 

counterstain. A. Mostafa, S. Drover and D. Codner read the slides in a blinded manner. 

Figure represents one experiment. D) Whole cell lysates were prepared using Triton X-

100 1% lysis buffer and HLA-DR detected by Tal 1B5 and ER by HC-20. Figure 

indicates one experiment. 
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As shown in Figure 3.4A, HLA-DR expression in MC2 and the concentration of 

E2 were inversely correlated, suggesting that E2 mediated decreased HLA-DR expression 

through the E2-ER signaling pathway. Higher concentrations of E2 (10-6-10-8 M) had no 

further effect on HLA-DR expression, which implies that ERs were completely saturated 

at 10-9 M E2.  On the contrary, E2-treatment in VC5 had no significant effect on HLA-DR 

expression. Based on the results, 10-9 M E2 was selected to investigate the physiological 

effect of E2 on HLA class II expression in the BCCL model.  

To confirm the E2-ER-mediated downregulation on HLA-DR, immunoblotting 

was performed on whole cell lysates from VC5 and MC2 cells. Figure 3.4B shows 

abundant IFN-γ induced HLA-DR proteins in VC5. Conversely, HLA-DR protein was 

reduced in the ERα expressing MC2, and further diminished by E2-treatment. As the only 

known difference between MC2 and VC5 is the presence of ERα (Figure 3.4B), these 

results implicate ERα in negatively regulating HLA-DR expression.  

Overall, these results are consistent with reduced HLA-DR expression by E2 in 

wild type ERα+ lines, MCF-7 and BT-474 (Figure 3.2).  

 

3.6. The classical E2-ER activation resulted in downregulation of HLA class II proteins  

 Since HLA class II genes are coordinately regulated, we next tested whether the 

inhibitory effects of ERα and E2 on HLA-DR expression extended to the co-chaperones, 

HLA-DM and Ii.  As shown in Figures 3.5A-F, only MDA-MB-231 clone 10A cells 

constitutively expressed small amounts of HLA-DR, Ii and HLA-DM. Ethanol and E2 had 

no effect on expression.  IFN-γ treatment upregulated HLA-DR, Ii and HLA-DM in all 
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Figure 3.4 E2-ER signaling mediated downregulation on HLA-DR expression.  

(A) MC2 and VC5 were treated with log fold dilutions of E2 (10-6-10-12 M) and stimulated 

with IFN-γ (100 Units/ml) for 96 hr. HLA-DR surface expression (detected by L243) was 

analysed by flow cytometry. The data are expressed as the ratio of MFI of E2-treated 

cells/MFI ethanol-treated cells ± SEM of three independent experiments. (B) HLA-DRα 

(detected by TAL 1B5) and ERα (HC-20) expression was analysed by immunoblotting 

from a whole cell extract. Figure indicates one experiment. 
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cell lines as indicated by increased percentage of positive cells for HLA-DR, Ii and HLA-

DM (Figure 3.5A, C, E) and increased MFI (Figure 3.5B, D, F). E2 or ethanol treatment 

had no significant effect on IFN-γ inducible HLA class II expression in either VC5 or 

MDA MB 231 clone 10A. MC2 significantly expressed less HLA-DR, Ii and HLA-DM 

(p<0.001) compared to VC5 and MDA-MB-231 clone 10A, as detected by low number of 

positive cells (Figure 3.5A, C, E) and low MFI (Figure 3.5B, D, F). Furthermore, addition 

of E2 significantly reduced expression of HLA class II molecules (p<0.001) compared to 

the vehicle control (Figure 3.5A-F), suggesting that E2-activation of ER signaling further 

potentiated the downregulation of HLA class II expression and co-chaperones. 

In the absence of HLA-DM expression, most HLA-DR peptide complexes on the 

cell surface are CLIP peptides with very few antigenic peptides derived from the 

endocytic pathway (308). IFN-γ induced surface CLIP expression was analyzed by flow 

cytomtery in the BCCL model. Two B cell lines were used as positive control, SAVC, 

which expresses the wild type form of HLA-DM, and 9.5.3, which does not express 

HLA-DM due to mutation of HLA-DMB gene (309). As depicted in Figure 3.6, all BCCL 

expressed little (if any) CLIP compared to the SAVC and 9.5.3 B cell lines in which 35% 

and 99% of the cells expressed CLIP, respectively. These results suggest that only a small 

amount of HLA-DM (Figure 3.5E-F) is required for proper antigen presentation in the 

non-professional APC, as the presence of low surface expression of CLIP is indicative of 

functional HLA-DM. On the other hand, the absence of CLIP surface expression in MC2 

is probably due to low Ii or HLA-DR expression (Figure 3.5C-D). 
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Figure 3.5 E2-ER signaling causes coordinate downregulation of HLA class II proteins. 

MDA-MB-231 clone 10, VC5 and MC2 were treated with vehicle (ethanol) or E2 (10-9 

M) and stimulated or not with IFN-γ (100 Units/ml) for 96 hr.  SAVC (B cell line) was 

used as positive control. (A-B) HLA-DR surface expression (L243), (C-D) Ii expression 

(CD74) and (E-F) HLA-DM (DM.1) were analyzed by intracellular flow cytometry. 

Shaded histogram = isotype control, black line = HLA class II proteins expression with 

the indicated % of cells. Bar graphs represent the MFI for HLA class II expression from 

three independent experiments. Error bars represent the ± SEM of three independent 

experiments. (***p <0.001). 
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Figure 3.6 HLA-DR/CLIP complexes are poorly expressed in breast cancer cell line.  

 MDA-MB-231 clone 10A, VC5 and MC2 were stimulated with IFN-γ (100 Units/ml) for 

96 hr. CLIP surface expression (detected by Cer-CLIP) was analyzed by flow cytometry. 

SAVC and 9.5.3 were used as positive controls. Grey histograms represent isotype 

controls and black lines represent CLIP expression. Figure indicates one experiment. 
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3.7. E2-ER signaling does not interfere with HLA class I expression in ERα+ breast 

cancer cell model 

 We next questioned if the downregulation of HLA class II by ER-E2 is due to 

global downregulation of HLA on BCCL surface. Analysis of constitutive and IFN-γ 

induced HLA class I surface expression by flow cytometry showed that MDA MB 231 

clone 10A, VC5 and MC2 cells expressed similar HLA class I as indicated by the 

percentage of positive cells  (Figure 3.7A), and average MFI (Figure 3.7B). Moreover, E2 

did not have any significant effect on HLA class I expression. This suggests that ERα 

transgene in the presence or absence of E2 did not interfere with HLA class I expression, 

nor is the downregulation of HLA class II proteins due to global interference with the 

IFN-γ signaling pathway because both class I and II are induced by IFN-γ. 

 

3.8. Effect of transient transfection of wild type and mutant ERα on HLA class II 

expression.  

 The significant correlation between HLA class II expression and ER status in our 

BCCL model raised the question whether this could be cell line specific. To address this, 

SK-BR-3, which is a luminal ER- and HER2+ BCCL was transiently transfected with 

either ERα gene or an empty vector (pcDNA3) and stimulated with IFN-γ. Whole cell 

lysates were prepared and subjected to immunoblotting.   
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Figure 3.7 E2-ER signaling did not modulate HLA class I proteins.  

MDA-MB-231 clone 10, VC5 and MC2 were cultured in estrogen-depleted media, 

treated with vehicle (ethanol) or E2 (10-9 M) and stimulated or not with IFN-γ (100 

Units/ml) for 96 hr. (A) HLA class I expression (detected by W6/32) was analyzed by 

surface flow cytometry. Shaded histogram = isotype control, black line = HLA class I 

expression with the indicated % of cells (B) Bar graphs represent the MFI for HLA class I 

expression from three independent experiments. Error bars represent the mean ± SEM of 

three independent experiments. 

 

 

 

 

 

 
A 



137 
 

 

 

MDA-231 

Untreated 

IFN-γ 

E2 

IFN-γ + E2 

Vehicle 

IFN-γ +  
Vehicle 

VC5 MC2 

98% 

98% 

98% 

98% 

98% 

97% 

97% 

98% 

98% 

99% 

98% 

97% 

99% 

99% 

99% 

99% 

99% 

99% 

HLA class I MFI 
(W6/32) 

C
ou

nt
s 



138 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 
IFN-γ  +E2 

IFN-γ  + Vehicle 

E2 

IFN-γ  

IFN-γ  +E2 

IFN-γ  + Vehicle 

E2 

IFN-γ  

IFN-γ  +E2 

IFN-γ  + Vehicle 

E2 

IFN-γ  



139 
 

As shown in Figure 3.8A, HLA-DR was barely detected in cells transfected with 

ERα, compared to cells transfected with empty plasmid. This result is consistent with our 

findings for the ERα transfectants MC2 (Figure 3.3) and S30 cells (data not shown).  

Taken together, these results strongly suggest that ERα, even in the absence of E2 

downregulates IFN-γ inducible HLA-DR expression. 

To further confirm that E2 downregulates HLA class II through the classical ERα 

pathway, MDA-MB-231 was transfected with a mutant form of ERα that has a valine for 

glycine substitution (V>G) at position 400 (MDAmutER). This mutation alters ligand 

binding (310). As a mock control, MDA-MB-231 clone 10A was transiently transfected 

with the empty vector (pcDNA3). The cells were treated with E2 or vehicle control 

(ethanol) and stimulated with IFN-γ. As expected, E2 treatment did not result in 

downregulation of the ERα (Figure 3.8B). In contrast to diminished HLA class II proteins 

observed for MC2 and the transiently ERα transfected SK-BR-3 (Figure 3.8A), 

transfection of ERαmut construct resulted in increased expression of HLA class II proteins, 

as compared to the mock transfected MDA-MB-231 cells. Moreover, there was no 

indication that any of HLA class II proteins are downregulated in the presence of E2. 

MC2 cells were used as a positive control for ERα. These results suggest that E2 

activation of wild type ERα is responsible for the downregulation of IFN-γ inducible 

HLA class II expression in breast cancer cells. 
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Figure 3.8 Transient transfection of wild type and mutant ERα in breast cancer cell line.  

(A) SK-BR3 was transiently transfected with the wild type ERα plasmid and the empty 

plasmid vector PCDNA3. The cells were stimulated for 24 hr with IFN-γ (100 Units/ml) 

and subjected to immunoblotting from whole cell lysates. Figure represents one 

experiment. 

(B) MDA-MB-231 was left untransfected or transfected with ERαmut or empty plasmid 

(PCDNA3). Cells were either treated with vehicle control (ethanol) or E2 (10-9M) and 

both were stimulated with IFN-γ (100 Units/ml) for 24 hr. Whole cell lysates were 

prepared and probed with the indicated antibodies. Figure indicates one experiment. 
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3.9.  Discussion 

 Previous studies in our laboratory have shown that HLA-DR positive breast 

tumors negatively correlate with ERα+ tumors and age of the patients (106). These 

observations suggest that both ERα and hormones play a role in HLA-DR regulation.  In 

the present work, E2 inhibited HLA-DR expression in two established ERα+ BCCL, 

however, in established ERα- BCCL, E2 increased HLA-DR expression. In parallel, 

inducible HLA class II expression was significantly reduced in the ERα BCCL, MC2, 

compared to VC5. Additionally, E2 resulted in further reduction of HLA class II 

expression in MC2. These data implicate E2-ER signaling in HLA class II regulation and 

support our previous findings in breast tumors (106). 

 Although both MCF-7 and T47D are classified as luminal A breast cancer cells 

(ER+, PR+/-, HER2-), ERα expression is higher in MCF-7 than in T47D, as detected by 

enzyme immune assay (311), real time PCR (312) and as shown by immunoblotting 

(Figure 3.2). Differential expression of HLA-DR expression has previously been reported 

between MCF-7 and T47D (95). This is consistent with our data (Figure 3.2), and 

combined with our data on the BCCL model (Figure 3.3) suggest that cells which have 

higher levels of ERα such as MCF-7 and MC2 model have reduced HLA-DR expression. 

The effects of E2 on gene regulation depend on the proportion between ERα and ERβ 

subtypes (238). E2 binds to ERβ and ERα with high affinity (313); however, activation of 

ERβ results in negative regulation of ERα through inhibition of ERα recruitment to the 

estrogen response element (ERE) in the target genes, leading to the suppression of ERα-

regulated genes (249). Moreover, ERβ2 induces proteasome-dependent degradation of 
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ERα, mainly through the formation of ERβ2/ERα heterodimers (249). T47D expresses the 

highest levels of ERβ2, compared to MCF-7 and BT-474, and addition of E2 results in 

upregulation of ERβ mRNA only in T47D with no effect in MCF-7 and BT-474 (314). 

Thus, we speculate that increased expression of ERβ in T47D may interfere with the E2-

ERα mediated downregulation of HLA-DR expression that was observed for MCF-7 and 

BT-474.  

 The inhibitory effect of E2 on class II expression had been studied previously by 

Tzortzakaki et. al. (2003), who linked it to the E2 mediated squelching of steroid receptor 

co-activator (SRC1) (304). SRC1, which aids in the proper assembly and transcription of 

IFN-γ induced CIITA, is also essential for ER-regulated gene transcription (60, 262). On 

activation of ER by E2, SRC1 binds to ER and recruits other transcription machinery 

factors. In the previous study, SRC1 was not shown to be the sole factor responsible for 

IFN-γ induced HLA-DR downregulation by E2
 because recruitment of SRC1 to the HLA-

DR promoter was only partially reduced, suggesting other mechanisms are involved in 

this downregulation. Moreover, studies in mouse models using an immortalized brain 

endothelial (IBE) cell line showed that E2-mediated inhibition of class II expression is 

linked to E2 activation of JNK/MAPK. Furthermore, they showed that the class II 

inhibition correlated with histone 3 (H3) and H4 hypoacetylation and by treating the cells 

with MAPK inhibitors they reversed the hypoacetylation and restored class II expression 

(213, 315).  

Since estrogen is known to have non-ER modulatory effects on expression of 

various genes (316), we examined its effects on HLA-DR expression in ERα- BCCL. As 
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opposed to the ERα+ BCCL, E2 upregulated HLA-DR expression in both MDA-MB-231 

and SK-BR-3, suggesting that non-genomic (non-classical) estrogen signaling was 

implicated in the IFN-γ inducible HLA class II pathway. Moreover, MDA-MB-231 and 

SK-BR-3 express EGFR and HER2 receptors respectively, and both receptors are 

associated with activation of other signaling pathways such as NFκB and MAPK 

pathways (317, 318). The latter pathways have been involved in HLA class regulation 

(203, 319) (discussed in Chapter 6). Estrogen activates other signaling pathways, like 

MAPK through a non-genomic pathway that does not involve the classical ER. Estrogen, 

through the GPR30 receptor, can activate MAPK by transactivation of EGFR (253, 256). 

GPR30 is constitutively expressed in both MDA-MB-231 and SK-BR-3 cell lines at the 

mRNA level (320), however, it is expressed in higher levels at the protein level in SK-

BR-3 and has barely detectable levels in MDA-MB-231 (256). We speculate that 

increased expression of HLA-DR by E2 in SK-BR-3 (Figure 3.1) could be due to 

activation of MAPK through GPR30, but further investigations are required to confirm its 

involvement. In conclusion, the interpretation of differential expression of HLA-DR upon 

E2 treatment of the cell lines, which endogenously express the ERα (MCF-7, BT-474, 

T47D), was challenging due to cell specific signaling pathways, beside the expression of 

different levels of ERα, ERβ and GPR30 as previously discussed.  

 Comparing HLA-DR surface expression between MDA-MB-231 and VC5, we 

noticed that only MDA-MB-231 constitutively expressed HLA class II, albeit at low 

levels. Moreover, IFN-γ stimulation resulted in significantly higher MFI for HLA-DR 

surface expression in MDA-MB-231 compared to VC5 without affecting the percentage 
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of positive cells. The only difference between these cells is the presence of the vector 

plasmid, suggesting that the vector plasmid is somehow interfering with HLA-DR 

expression on a per cell basis. Vector plasmid transfection in different kinds of cells can 

cause them to behave differently from parent cells with no explanation for this 

phenomenon (321). Alternatively, differences in cell line passage numbers may have an 

impact on expressing certain molecules due to acquired mutations, or treatment of VC5 

with the selective drug G418 may have a suppressive effect on class II surface molecules 

(322).  

 Since E2 also supressed HLA-DR expression in MCF-7 and BT-474, we do not 

think that its inhibitory effects on HLA class II in MC2 is due to experimental artifacts in 

transfectants expressing non-physiological amounts of ERα (data not shown).  This is the 

first report to demonstrate an inhibitory effect of E2 on the HLA class II co-chaperone 

molecules, Ii and HLA-DM in BCCL. Despite the almost complete absence of HLA-DM 

in MC2, we did not observe increased levels of HLA-DR/Clip complexes. Certainly, in 

professional APC such as B-cells, HLA-DM acts as a peptide editor by removing CLIP 

from the peptide-binding groove and replacing it with highly stable peptides, and cells 

without HLA-DM express high levels of surface CLIP (323). The lack of HLA-DR/CLIP 

complexes in MC2 and their reduced expression in VC5 and MDA-231 may suggest that 

cancer cells, even when activated by IFN-γ, do not behave like professional APC. 

Cathepsin S is responsible for the final degradation of Ii to form CLIP, which covers the 

peptide-binding groove of HLA-DR molecules. Different levels of cathepsin S between 

cells may affect the degradation of Ii and thus, result in different level of CLIP (324). 
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Furthermore, the reduced levels of Ii and HLA-DR in MC2 (Figure 3.8C-D) may simply 

explain the absence of surface CLIP in these cells. These results agree with a previous 

report on thyroid epithelial cells that showed no CLIP complexes were detected with low 

HLA-DM expression (325). Notably, our results appear contradictory to a previous study 

on neuroendocrine epithelial cells, which reported CLIP complex found in DM-, Ii+, DR+ 

but not in DM+, Ii+, DR+ (326). Furthermore, Spurrell et. al. (2004), showed CLIP on 

synovial fibroblasts is time dependent and HLA-DR allele specific (327). 

 Overall, ERα in the presence or absence of E2 plays an important role in the 

regulation of HLA class II in breast cancer cells. This may explain differences in the 

outcomes between ERα- and ERα+ tumors and also explain how the age and the presence 

of hormones and IFN-γ levels in the context of ERα have an impact on the prognosis of 

breast tumors and tumor immunity. 
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Chapter 4: The effect of selective estrogen receptor modulator on human leukocyte 

antigen class II expression in estrogen receptor alpha positive breast cancer cell 

model 
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4.1. Rationale and objectives  

In a previous study in our lab, human leukocyte antigen (HLA)-DR was 

differentially expressed in estrogen receptor (ER) α+ and ERα- breast tumors (106). 

Moreover, in Chapter 3 we showed that estradiol (E2) treatment reduced HLA-DR in 

ERα+ breast cancer cell line (BCCL), whereas it increased expression in ERα- BCCL, 

suggesting that E2-ER signaling is implicated in HLA class II regulation. Based on these 

findings, we hypothesized that different molecular mechanisms are involved in HLA-DR 

regulation in ERα- and ERα+ breast cancer. Since E2-ER signaling is involved in the 

downregulation of HLA-DR, we predicted blocking ER by selective estrogen receptor 

modulator (SERM) would reverse the downregulatory effect of ER and E2 on HLA-DR 

expression. Additionally, regulation of HLA class II (HLA-DR, invariant chain (Ii) and 

HLA-DM) occurs mainly at the transcription level, through interaction of transcription 

factors with a non-DNA binding protein class II transactivator (CIITA). This suggests 

that E2-ER may be implicated in HLA class II regulation by interfering with the 

transactivation of CIITA. 

 

1. To determine whether selective SERMs, Tamoxifen (TAM) and Fulvestrant (ICI 182, 

780) (ICI) can reverse the inhibitory effect of E2 on HLA class II expression in ERα+ 

breast cancer cells.  

2. To determine if E2-ER signaling interferes with CIITA expression at the mRNA and 

protein level. 

3. To study the role of silencing the ERα gene (ESR1) on CIITA expression. 

 



149 
 

4.2. Tamoxifen mimics E2 inhibition on HLA class II expression 

 The data presented in Chapter 3 clearly showed that HLA class II expression was 

decreased in MC2 as compared to VC5 and was further decreased by E2. To address 

whether the classical ligand-dependent ER pathway is implicated in HLA class II 

regulation, TAM was used to block E2-ER signaling. MC2 and VC5 were treated with 

either exogenous E2 and/or TAM. The cells were stimulated with IFN-γ for 96 hr and 

HLA-DR expression was measured by flow cytometry.  

 As previously shown in Chapter 3, E2 treatment augmented the downregulatory 

effect of ER on HLA-DR expression in MC2 and resulted in more than 60% reduction 

(Figure 4.1). Although TAM is known to block E2-ER signaling, it mimicked the E2-

mediated effect on HLA-DR expression in MC2. Surprisingly, simultaneous treatment of 

TAM and E2 did not result in any further downregulation. These results suggest that both 

TAM and E2 activate ERα signaling, possibly by increasing the nuclear translocation of 

ER from the cytoplasm with no functional ER degradation (328). Thus, TAM may not a 

suitable ERα blocker to address whether ER is implicated in HLA class II expression. In 

VC5 cells, TAM and E2 resulted in slight upregulation of HLA-DR, which could be due 

to the involvement of the non-genomic E2 signaling pathway (315), since these cells lack 

ER. 

 

4.3. Degradation of ERα induced by the pure antagonist Fulvestrant 

 As TAM downregulated HLA-DR expression on MC2 similar to E2, the pure anti-

estrogen compound ICI was used to block ERα signaling. ICI at 10-6M inhibits ER
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Figure 4.1 Tamoxifen mimics the inhibitory effect of E2 on HLA-DR expression.  

VC5 and MC2 were treated with E2 (10-9M) and/or TAM (10-6M) and stimulated with 

IFN-γ (100 Units/ml) for 96 hr. HLA-DR surface expression (detected by L243) was 

analyzed by flow cytometry. Figure indicates one experiment. 
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signaling within 1 hr of treatment (329). To test whether this is an effective concentration, 

MC2 was treated for 1 or 24 hr with ICI (10-6 M) or vehicle control (ethanol) and ERα 

was assayed by immunocytochemistry (ICC). As shown in Figure 4.2A, moderate to 

strong nuclear and cytoplasmic ERα staining was observed in ~90% of vehicle control 

treated MC2 cells compared to ~10% in cells, which were either treated for 1 or 24 hr 

with ICI. Thus, a pre-treatment of 1 hr with ICI was sufficient to knock down ERα.  

We next determined the optimal concentration of ICI that knocked down ERα and 

was minimally toxic over a 96-hr period to MC2 cells. The cells were pre-treated for 1 hr 

with log fold dilutions of ICI (10-10-10-4 M), followed by stimulation with IFN-γ for 96 hr. 

Immunoblotting (Figure 4.2B) revealed dramatic loss of ERα from the cytoplasmic 

extract at 10-9 M to 10-4 M ICI and from the nuclear extract at 10-6 M to 10-4 M ICI. There 

was little difference in the absorbance at all the concentrations used except for those 

higher than 10-5 M, which resulted in 25% less absorbance compared to vehicle control. 

(Figure 4.2C). Overall, these experiments confirmed that 1-hr pre-treatment with ICI 10-6 

M is sufficient to degrade ERα in both the cytoplasm and nucleus and is not cytotoxic to 

MC2 cells. 

 

4.4. Fulvestrant restores HLA class II expression in E2-treated ERα+ cells 

Next, immunocytochemistry (ICC) on MC2 cells assessed expression of ERα, 

HLA-DR, Ii and HLA-DM. As expected, 90% of the cells in the vehicle control samples 

had nuclear staining for ERα (Figure 4.3). Treatment of the cells with ICI resulted 

dramatic loss of the number of labeled nuclei (~70%), (as well as a marked decrease in 
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Figure 4.2 Optimization of Fulvestrant (ICI 182, 780) (ICI) treatment.   

MC2 was treated with increasing concentrations of ICI  (A) ICC, showing ERα protein 

expression using ERα (1D-5) antibody. (B) Immunoblots from nuclear and cytoplasmic 

extracts, ERα was detected using ERα (HC-20) antibody. (C) Crystal violet staining 

expressed as optical density (OD) absorbance. Each figure indicates one experiment. 
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the staining intensity of the nuclei when compared to vehicle control. Although the 

percentage of ERα positive cells in the vehicle control and E2 cells were approximately 

the same, the intensity of nuclear staining was increased in the E2 treated cells, suggesting 

upregulation of ERα upon E2 treatment. Moreover, E2 resulted in reduction of HLA-DR, 

Ii and HLA-DM expression by almost half, which was restored by ICI and the 

combination of E2 and ICI. ICI, in the presence or absence of E2, resulted in slight 

downregulation of HLA-DM as compared to vehicle control. These results suggest that 

downregulation of HLA class II expression correlates with the upregulation of nuclear 

ERα by E2, and support our previous finding (Figure 3.2) in MCF-7 cells. Additionally, 

the restored HLA class II expression by simultaneous treatment of E2 and ICI suggests 

involvement of classical ER signaling in downregulation of HLA class II. 

Thereafter, we compared the effect of ICI on HLA class II expression in both 

ERα+ and ERα- BCCL models. HLA class II analysis by flow cytometry confirmed that 

HLA-DR, Ii and HLA-DM (Figure 4.4A) were significantly reduced in vehicle-treated 

and E2-treated MC2 as compared to VC5 cells. Surprisingly, ICI-mediated knockdown of 

ERα in MC2 resulted in no change in HLA class II compared to vehicle control and did 

not restore HLA class II to the levels of VC5. However, ICI combined with E2 reversed 

the downregulatory effect of E2 on HLA class II and co-chaperones in MC2. Neither ICI 

nor E2 significantly modulated HLA class II in VC5 cells.  Similar results were obtained 

by immunoblotting (Figure 4.4B-C). ICI-treatment resulted in negligible decrease of 

HLA-DR expression in MC2. ERα was upregulated by E2 and was dramatically reduced 

by ICI (~80% reduction), compared to vehicle control. 
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Figure 4.3 Fulvestrant restores HLA class II expression in E2-treated ERα+ breast cancer 

cells.  

MC2 cells were grown in an 8-well chamber. The cells were pre-treated, or not, for 1 hr 

with ICI (10-6M) and/or E2 (10-9M), followed by stimulation with 100 Units/ml IFN-γ for 

96 hr.  Immunocytochemical analysis of ER (anti-ER, 1D5) and HLA-DR (L243), Ii 

(LN2) and HLA-DM (DM.1) was done using light microscopy (A) 10X magnification, 

(B) 40X magnification. Figure indicates one experiment. 
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Figure 4.4 Coordinate down regulation of IFN-γ inducible HLA class II expression by E2 

is reversed by ICI-mediated degradation of ERα in MC2 cells.  

VC5 and MC2 cells were cultured in estrogen-depleted media, treated with vehicle 

(ethanol), E2 (10-9M) or/and ICI (10-6 M) followed by stimulation with IFN-γ (100 

Units/ml) for 96 hr. HLA class II expression was analyzed by (A) flow cytometry using 

anti-DR, (L243),) anti-DM (Map.DM1) and anti-Ii (LN2).  Bar graphs represent the MFI 

± SEM of three independent experiments. (*p<0.05, **p<0.01). (B) HLA class II 

expression was analyzed by immunoblotting whole cell extracts using anti-DRα (TAL 

1B5), anti-DM (TAL18.1) and anti-Ii (LN2). (C) Bar graphs show the ratio of band 

intensities, normalized to GAPDH band intensities and represent the mean ± SEM of 

three independent experiments: (* p<0.05, ** p<0.01). 
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Taken together these results strongly suggest that E2-mediated reduction of HLA 

class II is due to E2 ligand-activation of ERα. Failure of ICI, which clearly degraded ERα, 

to restore HLA class II to VC5 levels suggests additional mechanisms. The coordinate 

downregulation of HLA-DR and the co-chaperones by E2 in the ERα+ BCCL implies that 

CIITA, the master regulator of HLA class II expression, is also negatively impacted. 

 

4.5. CIITA protein is down regulated by activation of the ER signaling pathway 

Since HLA class II and co-chaperones expression are regulated by CIITA, we 

predicted that E2-activation of ER interfered with CIITA and blocking ER signaling in 

MC2 would restore CIITA to VC5 levels. MC2 and VC5 were treated with E2 and/or ICI, 

followed by IFN-γ for 24 hr, which is the optimum time for induced CIITA expression 

(Appendix 1). Immunoblots from cytoplasmic and nuclear extracts revealed significantly 

reduced CIITA expression in untreated and treated MC2 as compared to VC5 (Figure 

4.5). Similar to our results for HLA class II, E2 further reduced CIITA in MC2 while 

increasing the amount of nuclear ER; by contrast, ICI reversed the inhibitory effect of E2 

on CIITA expression, coincident with reduced ER levels. Yet, ICI alone or in 

combination with E2 did not restore CIITA to VC5 levels even though ICI significantly 

reduced cytoplasmic and nuclear ER (Figure 4.5A, Lane 7). Although there was a 

decrease of CIITA in ICI-treated MC2, this decrease was insignificant. As noted 

previously, the failure of ICI to restore HLA class II, and now CIITA to levels observed 

in VC5, which differs only by the ERα transgene, suggests an alternate mechanism of 

HLA class II and CIITA downregulation in MC2. 
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Figure 4.5 CIITA is downregulated by activation of the ERα signaling pathway.  

VC5 and MC2 cells were cultured in estrogen-depleted media treated with vehicle 

(ethanol), E2 (10-9M) or/and ICI (10-6M) and stimulated with IFN-γ (100 Units/ml) for 24 

hr.  (A) Immunoblot analysis was performed on cytoplasmic and nuclear extracts for 

CIITA (antiserum #21) and ERα (HC-20). (B) Cytoplasmic CIITA and nuclear CIITA 

were normalized to GAPDH and P84 respectively. Bar graphs represent the average ± 

SEM of three independent experiments  (**p<0.01, * p<0.05). 
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Earlier (Section 4.1), we showed that TAM mimics the inhibitory effect of E2 on 

HLA-DR expression in ERα+ BCCL but not in the ERα- cell line. Since E2 (Figure 4.5A) 

and TAM (328) increase ERα localization in the nucleus, we predicted that their 

inhibitory effect on HLA class II expression was through down regulation of CIITA. To 

address this question, MC2 and VC5 were pre-treated with E2, ICI, and TAM 

and/combination, followed by stimulation with IFN-γ for 24 hr and preparation of nuclear 

and cytoplasmic lysates. As shown in Figure 4.6, most of ER was localized in the nuclear 

fraction of MC2, treated with TAM, E2 or in combination. This correlated with CIITA 

downregulation. ICI treatment resulted in ER degradation, which correlated with 

increased CIITA expression, thus confirming our previous observations (Figure 4.5). By 

contrast, TAM, E2 and ICI treatment in VC5 resulted in a slight upregulation of CIITA. 

These data support the hypothesis that downregulation of HLA class II expression by 

either E2 or TAM activation of ER is through CIITA. 

 

4.6. HLA class II and CIITA expression are downregulated in MC2 at the transcriptional 

level 

Regulation of HLA class II gene expression occurs mainly at the transcription 

level by a highly conserved regulatory module located in the promoter genes encoding the 

α-chain and β-chain of all HLA class II molecules (330). To determine whether the 

inhibitory effect of ERα on HLA class II expression is at the transcription level, VC5 and 

MC2 were stimulated with IFN-γ for 12 hr, followed by RNA extraction. As shown in 

Figure 4.7, the overall transcription level for CIITA and the downstream genes controlled
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Figure 4.6 CIITA expression inversely correlates with expression of ERα.  

VC5 and MC2 cells were cultured in estrogen-depleted media, pre-treated with the 

following SERM combinations: E2 (10-9M), ICI (10-6M), TAM (10-6M) and vehicle 

(ethanol), followed by stimulation with IFN-γ (100 Units/ml) for 24 hr.   Immunoblot 

analysis was performed on cytoplasmic and nuclear extracts for CIITA (antiserum #21) 

and ERα (HC-20). GAPDH and P84 were used as a loading control for cytoplasmic and 

nuclear extracts respectively. Figure indicates one experiment. 
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by CIITA [HLA-DR (A,B), HLA-DM (A,B) and Ii] were reduced in MC2 compared to 

VC5 suggesting that ER in the absence of E2 has a significant role in the downregulation 

of inducible CIITA. Furthermore, Ii and DMA were constitutively expressed in the 

absence of constitutive CIITA expression by RT-PCR. This could be due to the existence 

of some regulatory elements in the promoters of HLA-DM not shared by HLA class II 

promoters (331). 

Since CIITA appeared to be the critical molecule affected by the E2-ER signaling 

(Figure 4.5 and 4.6) and downregulation of CIITA in ERα+ cells is at the transcription 

level, we examined the effect of various treatments on CIITA transcription using real time 

PCR. The optimal time for IFN-γ induced CIITA mRNA expression was determined 

using VC5. The cells were treated with IFN-γ and RNA extraction was done every 2 hr up 

to 10 hr.  In agreement with the results of others (332), we found that CIITA expression 

was first observed at 2 hr, followed by a sharp increase at 4 to 6 hr and plateau from 8 to 

10 hr (Figure 4.8A). Thus, IFN-γ treatment for 4 hr was optimal for CIITA upregulation 

in this breast cancer cell model.  

Next, we examined if E2 and/or ICI affected CIITA transcription in VC5 and 

MC2. The cells were pre-treated with ICI and/or E2, and stimulated with and without 

IFNγ for 4 hr, followed by RNA extraction. Quantitative real time PCR was performed 

using a primer specific for CIITA. As shown in Figure 4.8B, induced CIITA transcripts 

were significantly less in MC2 compared to VC5. E2 further decreased CIITA mRNA 

transcripts in MC2, while ICI reversed the E2-mediated effect, but did not restore CIITA 

transcripts to VC5 levels, consistent with the results (Figure 4.5) for protein
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Figure 4.7 IFN-γ inducible HLA class II expression is downregulated in MC2 at the 

mRNA level.  

VC5 and MC2 cells were cultured in estrogen-depleted medium and stimulated with IFN-

γ (100 Units/ml) for 12 hr. Total RNA was isolated and subjected to RT-PCR analysis 

using primers specific for CIITA and HLA class II genes. Figure represents one 

experiment. 
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Figure 4.8 E2-ER signaling downregulates CIITA mRNA expression in ERα+ breast 

cancer cell lines.  

(A) Kinetics of IFN-γ induced CIITA expression in VC5.  Cells were treated with IFN-γ 

(100 Units/ml) at the indicated time points and assayed for CIITA mRNA expression. (B) 

VC5 and MC2 cells were cultured in estrogen-depleted media, treated with vehicle 

(ethanol), E2 (10-9M) or/and ICI (10-6M) and stimulated or not with IFN-γ (100 Units/ml) 

for 4 hr. CIITA mRNA expression was measured by real time PCR using Taqman gene 

expression assay. GAPDH was used as an endogenous control and the data were 

expressed relative to a control B cell line (RAJI). Bar graphs represent the mean ± 

standards errors of the mean (SEM) of three replicate assays (**p<0.01). 
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expression. Very low CIITA transcripts were observed in the two cell lines in the non-

IFN-γ induced cells, with no significant difference between them. These data suggest that 

ER and E2 downregulate HLA class II expression by interfering with CIITA at the 

transcriptional level. 

ICI had been reported to activate downstream signaling pathways independent of 

ER status through non-genomic ER signaling (315, 330, 333). To confirm that ICI 

reversed the downregulatory effect of E2 on CIITA expression was through ER and not 

through the non-genomic effects of ICI, we used ESR1-siRNA to silence the ERα 

transgene. Validation of ESR1 was done on MC2. The cells were transfected with the 

ESR1-siRNA and time-dependent response was assessed by preparing whole cell lysates 

and examining ERα protein expression at various time points using ERα antibody (HC-

20) and immunoblotting. As depicted in Figure 4.9A, ERα protein was severely decreased 

in ESR1 siRNA-transfected MC2 by 48 hr and this persisted up to 144 hr. Thus, the 

optimal transfection time chosen for subsequent experiments was 48 hr to avoid cell 

toxicity due to longer exposure of the transfection reagents. 

Next, we used ESR1-siRNA to silence the ERα transgene in MC2 treated or not 

with E2, followed by IFN-γ stimulation for 24 hr. VC5, treated in the same manner, was 

used as a control. ERα was greatly diminished by transfection of ESR1-siRNA as 

compared to the scrambled siRNA in MC2 (Figure 4.9B). Although ESR1-siRNA 

silencing in MC2 did not upregulate CIITA protein level, it negated the effect of E2-

downregulation of CIITA that was apparent with the scrambled siRNA. By contrast, E2 
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increased CIITA protein expression in the ERα- VC5, whether transfected with scrambled 

or ESR1-siRNA. Taken together, these results strongly support a role for E2-activated 

ERα in regulating the CIITA pathway.  

Subsequently, we corroborated these findings at the mRNA level. As shown in 

Figure 4.10A, ESR1-siRNA dramatically reduced ERα mRNA expression as compared to 

control siRNA without significant changes in GAPDH expression, as indicated by RT-

PCR. Although CIITA transcripts were not increased (Figure 4.10B), ESR1-siRNA 

clearly abolished the inhibitory effect of E2 on CIITA transcripts. These results, together 

with those showing that ICI-mediated degradation of ERα reverses the E2-mediated 

inhibition of CIITA (Figure 4.5) and HLA class II (Figure 4.4), indicate that E2-activated 

ER somehow interferes with CIITA expression at the transcription level.   
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Figure 4.9 Silencing the ERα by siRNA reversed the inhibitory effect of E2 on CIITA 

protein expression.  

(A) Temporal response to silencing ESR1 by siRNA in MC2 and detection of ERα 

expression by immunoblotting. (B) ERα was silenced (ESR1 siRNA) or not (scrambled 

siRNA) in MC2; VC5 served as a control. Cells were treated with vehicle (ethanol) or E2 

(10-9 M) and stimulated with IFN-γ (100 Units/ml) for 24 hr. Nuclear lysates were 

prepared and probed for CIITA (antiserum #21), ERα (HC-20), and p84. Figure 

represents one experiment. 
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Figure 4.10 Silencing the ESR1 by siRNA reversed the inhibitory effect of E2 on CIITA 

mRNA expression.  

ERα was silenced (ESR1 siRNA) or not (scrambled siRNA) in MC2; VC5 served as a 

control. Cells were treated with vehicle (ethanol) or E2 (10-9 M) and stimulated or not 

with IFN-γ (100 Units/ml) for 4 hr. (A) RT-PCR for ER mRNA showing the effect of 

siRNA on ER transcripts (B) CIITA mRNA was measured by real time PCR using 

Taqman gene expression assay. GAPDH was used as an endogenous control for and the 

data were expressed relative to a control B cell line (RAJI). Bar graphs represent the 

mean ± SEM of three replicate assays (*** p<0.001). 
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4.7. Discussion 

Regulation of HLA class II expression occurs primarily at the transcriptional level 

by CIITA (38, 334). Herein, we have shown that E2
 and TAM in the presence of ERα also 

result in downregulation of CIITA at the transcription level (Figure 4.7). The effect of E2 

on HLA class II and CIITA was reversed by ICI and ER-siRNA suggesting that E2-ER 

signaling is interfering with HLA class II expression through its genomic signaling. 

Although 10-6 M TAM was effective in antagonising the E2 effect in a number of studies 

including breast cancer cells (213, 328), it mimicked the E2 effect in this study (Figure 

4.1, 4.6). Johnson et al, (1989), also showed that TAM in estrogen depleted medium can 

increase proliferation and gene regulation and mimics the effect of E2 in MCF-7 cells 

(335). Both TAM and E2 increase ER binding to the estrogen response element (ERE) 

with similar affinities, which explains why TAM may produce effects similar to estrogen 

(263). On the other hand, ICI, which degrades the ER, as discussed in Section 4.2 and 

shown in Figures 4.4 and 4.5, successfully reversed the inhibitory effect of E2 on HLA 

class II and CIITA expression.  

The effective physiological level of TAM in serum and breast cancer tissue is 10-

12 M and 10-11 M, respectively, which is reached after administration of 1 mg of TAM 

daily (336). Nevertheless, in our study we used 10-6 M, suggesting that in vitro blocking 

of the ER requires higher concentration. This could be due to reduced bioavailability of 

the drug during experiment time, however, the presence of cytochrome p450, which is 

abundant in breast adipose tissue (337), increases the drug bioavailability through 

conversion of the drug into more active metabolites (338). Additionally, the concentration 

of ICI was also higher than the physiological plasma level of ICI (10-10 M) when the drug 
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is administrated intramuscularly to patients with breast cancer (339), This is in agreement 

with other studies (213, 315), but not those suggesting a smaller dose (328, 340).  

To the best of our knowledge, this is the first report showing that E2-ER 

downregulates HLA class II expression through inhibiting CIITA expression. The 

inhibition of CIITA expression may be due to direct physical interaction of ER with 

CIITA or through activation of other signaling pathways. E2 and TAM through their non-

genomic effect results in MAPK upregulation and has been reported to interfere with 

class II expression by hypoacetylation of histone 3 (H3) and H4 (213, 315). Although, in 

Adamski et. al. (2004) had claimed that E2 acts non-genomically by reducing class II 

expression; ER was recruited to the class II promoter in the presence of E2 suggesting the 

involvement of the classical E2-ER signaling effect (315).  In agreement with our results, 

TAM has been shown to supress the maturation of DC, which expresses the ER and 

downregulates the expression of HLA class II molecules on the cell surface (341). On the 

other hand, the observation that TAM and E2 downregulated CIITA expression was 

contradicted by other studies showing no effect on CIITA expression by PCR and western 

blot (213, 304, 315).   

Although the effect of TAM and ICI on E2-mediated downregulation of HLA 

class II was not the same in the current study, Adamski et al, (2005), found that neither 

ICI nor TAM reversed the inhibitory effect of E2 on class II expression in immortalised 

brain endothelial (IBE) cells and thus, E2, TAM and ICI act non-genomically in inhibiting 

class II expression (213). Moreover, this suggests that the action of SERM on HLA class 

II expression is cell specific and dose dependent, as E2 used in the previous study was 

three fold higher. It has been reported that ICI prevents estrogen-induced MAPK 
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activation (342). However, another study reported that ICI activates MAPKs in breast 

cancer lines (256). MAPK is important in HLA class II regulation (Chapter 6), thus the 

action of ICI on HLA class II expression in E2-treated cells may be due to its activation of 

MAPK. Yet, the results of theER-siRNA suggested that knocking down ER reversed the 

downregulatory effect of E2, thus, suggesting implication of E2-ER signaling in this 

downregulation. The failure of ICI and ESR1-siRNA to upregulate the IFN-γ induced 

HLA class II in MC2 to VC5 level could be due to residual ERα in MC2, since neither 

ICI nor ESR1-siRNA completely knocked down ERα. Moreover, Tzukerman et. al. 

(1990) had shown that very low levels of ERα can bind ERE even in the absence of 

ligand (263). 

 Ongoing and future studies would be useful to identify the mechanism(s) involved 

in downregulation of HLA class II expression in ERα+ breast, because downregulation of 

HLA class II expression occurs in ERα+ breast tumor with advanced age (106).  
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Chapter 5: Estradiol-estrogen receptor signaling downregulates class II trans 

activator expression by interfering with the interferon gamma signaling pathway 
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5.1. Rationale and objectives  

Regulation of human leukocyte antigen (HLA) class II occurs mainly at the 

transcriptional level, through interaction of transcription factors with the class II 

transactivator (CIITA) (343). In the previous chapters, we have shown that estradiol (E2) 

estrogen receptor (ER) signaling downregulates IFN-γ inducible HLA class II and CIITA 

expression. Downregulation of CIITA occurred at the transcriptional level, suggesting 

that activation of ER by its ligand inhibits CIITA transcription. IFN-γ induced CIITA 

transcription depends mainly on promoter IV (pIV) CIITA (343). Thus it is important to 

establish whether pIV CIITA is activated or repressed by ER activation. Repression of 

pIV CIITA may be due to interaction of ER with CIITA activation or due inhibitory 

effect of ER activation on IFN-γ signaling pathway. Based on our findings and previous 

reports from literature (304), it is plausible that activation of ER diminishes CIITA 

activation by interfering with the IFN-γ signaling pathway.  

 

1. To test whether E2-ER signaling interferes with CIITA expression at the promoter 

level in a breast cancer model. 

2. To determine if ER directly inhibits pIV CIITA activity. 

3. To test whether E2-ER interferes with the interferon gamma (IFN-γ) signaling 

pathway. 

4. To determine if E2-ER interferes with the IFN-γ signaling pathway in breast cancer 

cells that endogenously express the ERα.  
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5.2. ERα and E2 disrupts the activity of IFN-γ induced promoter IV CIITA activity 

 As previously described in Section 1.1.7.2, CIITA is under the control of three 

different promoters in professional antigen presenting cells (APC). IFN-γ primarily 

induces pIV, but pIII was shown to be constitutively expressed in some cancer cell lines 

including melanoma and breast cancer cells (203, 344). Therefore, to test which promoter 

is active and responsible for inducible CIITA expression in our breast cancer cell line 

model, we used pIII CIITA and pIV CIITA luciferase constructs.   

 VC5 and MC2 were transfected with a pIV CIITA luciferase construct and treated 

with E2 and/or Fulvestrant (ICI 182,780; ICI), followed by stimulation with IFN-γ for 10 

hr, which is optimal (89, 345) (Appendix 2). As expected, constitutive pIV CIITA activity 

was very low (Figure 5.1) while IFN-γ strongly induced pIV CIITA activation in both 

cells. However, inducible activity was greatly reduced in MC2, compared to VC5. E2-

treatment significantly reduced constitutive and IFN-γ induced pIV CIITA activity in 

MC2. ICI alone, or combined with E2, did not restore the pIV CIITA activity in MC2 to 

the VC5 level, but reversed the inhibitory effect of E2. Although there was a trend of 

decreased CIITA promoter activity with ICI-treatments compared to diluent control in 

MC2 cells, this was not significant (p0.06). Treatment with ICI and/or E2 had no 

significant effect on luciferase activity in VC5. Downregulation of pIV CIITA activity by 

E2-ER signaling was consistent with downstream HLA class II genes promoter activity 

(Appendix 3). These results parallel our previous findings described in Chapter 4, and 

suggest that E2-ER activation is involved in CIITA regulation at the promoter level. 
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Figure 5.1 The E2-ER signaling pathway interferes with promoter IV CIITA activity in 

MC2.  

VC5 and MC2 cells were transfected with (A) pIV CIITA luciferase constructs or (B) pIII 

CIITA luciferase constructs. The next day, the cells were either treated or not with (E2) 

or/and ICI stimulated or not with IFN-γ (100 Units/ml) for 10 hr. pIV CIITA activity is 

expressed as fold induction over the PGL2 basic empty plasmid after controlling for 

transfection efficiency using cells dual transfected with green fluorescence protein (GFP). 

Error bars represent the mean ± standard errors of the mean (SEM) of three independent 

experiments (**p<0.0, * p<0.051). pIII CIITA is expressed in the form of raw data 

(relative light unit (RLU)) and is a representative of one experiment.  
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Since the IFN-γ induced pIII CIITA response depends on the cell context (345), 

we questioned if pIII was activated in response to IFN-γ in our BCCL model. VC5 and 

MC2 were transiently transfected with pIII CIITA as described for pIV CIITA. No 

significant difference was noted between the basal and the IFN-γ induced pIII CIITA 

activities in the two cell lines. Additionally, there was no significant difference in pIII 

CIITA activity between the VC5 and MC2 cell lines (Figure5.1B). These results suggest 

that ER does not interfere with CIITA at the pIII level. 

 

5.3. Mutation of ERE in pIV CIITA does not enhance pIV CIITA activation in MC2. 

 As these data further support involvement of ERα signaling in repressing CIITA 

transactivation, we questioned whether ERα bound directly to pIV CIITA. Computer 

analysis software (Section 2.13.1) revealed four estrogen response element (ERE) in pIV 

CIITA (Figure 5.2A, bold letters), which could potentially bind ERα and repress pIV 

CIITA transactivation. To test this, three mutant constructs were created (Figure 5.2A, 

open boxes) and together with the wild type pIV CIITA plasmid were used to transfect 

VC5 and MC2 (Figure. 5.2B, left panel). Cells were treated with E2 or vehicle control and 

stimulated with IFN-γ for 12 hr, followed by determination of luciferase activity. 

Comparing the mutants to wild type, it can be seen that the plasmid containing four 

successive deletion fragments significantly reduced promoter activity in both VC5 and 

MC2 (Figure 5.2 B, right panels). However, the plasmid containing deletions one and two 

and the plasmid containing deletions three and four did not affect pIV CIITA promoter 

activity. 
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Figure 5.2 Mutation of ERE in pIV CIITA does not enhance pIV CIITA activation in 

MC2. 

 (A) pIV CIITA sequence with the predicted ERE. Site directed mutagenesis was used to 

perform deletion of the predicted ERE. (B) VC5 and MC2 were transfected with pIV 

CIITA constructs with the selected deletions, followed by replacment with fresh medium 

containing vehicle (ethanol) or E2 (10-9M) and stimulated with IFN-γ (100 Units/ml) for 

10 hr. Cells were lysed in passive lysis buffer and luciferase activity was measured and 

expressed in the form of raw data (relative light unit (RLU)). Bar graphs represent the 

mean ± SEM of three independent experiments (**p<0.01). Yumiko Komastsu created 

the deletion constructs in this study. 
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The deletion constructs in E2-treated MC2 (Figure 5.2B, right panel) resulted in 

reduced activity, which was similar to that observed for transfection of the wild type pIV 

CIITA plasmid.  This, combined with lack of restoration of pIV CIITA activity in MC2, 

makes it unlikely the mechanism by which ER-E2 or ER mediates down regulation of pIV 

CIITA activity is ERα repression via binding to ERE in pIV CIITA. This does not 

preclude ER binding to other regulatory elements within CIITA. However, considering 

the negative impact of E2-ER activation on pIV CIITA, which is activated by IFN-γ, we 

hypothesized that the E2-ER activation may negatively impact another factor required for 

CIITA activation such as IRF1.  

 

5.4. ERα interferes with IRF1 expression in ERα+ breast cancer cells  

 IFN-γ-inducible expression of CIITA and subsequent HLA class II expression 

requires interferon regulatory factor I (IRF1) (35). IRF1 is induced early by IFN-γ 

through a signal transducer and transactivation 1 (STAT1) dependent mechanism and acts 

as a transcriptional activator for CIITA expression (37). To determine if E2-ER signaling 

inhibits IRF1 expression in ERα+ breast cancer cells, MC2 and VC5 were treated with E2 

or vehicle control and stimulated with IFN-γ. Whole cell lysates were prepared and 

analyzed by immunoblotting.  

  Overall expression of IRF1 was significantly reduced (p<0.01) in MC2 compared 

to VC5 (Figure 5.3A). Moreover, the relative expression of IRF1 for three independent 

experiments revealed that E2-treatment increased constitutive IRF1 in VC5, and 

somewhat reduced its expression in MC2 (Figure 5.3A-lower panel, Appendix 4). 
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Figure 5.3 IRF1 is significantly reduced in MC2 compared to VC5.  

VC5 and MC2 were treated with vehicle (ethanol), E2 (10-9M) stimulated or not with 

IFN-γ (100 Units/ml). A) Whole cell lysates after 96 hr of IFN-γ stimulation probed with 

IRF1 antibody and GAPDH as a loading control. B) RT-PCR using IRF1 specific primers 

after 4 hr of IFN-γ stimulation. IRF1 were normalized to GAPDH. Bar graphs represent 

the mean ± SEM of three independent experiments (**p<0.01, * p<0.05). 
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Further, analysis of IRF1 transcripts by RT-PCR (Figure 5.3B-upper panel) confirmed 

significant reduction of IRF1 in MC2 compared to VC5 (p<0.05) (Figure 5.3B-lower 

panel).  

 

5.5. ERα interferes with IFN-γ signaling in MC2 

 Since IRF1 and CIITA expression are both dependent on IFN-γ signaling, we 

speculated that the downregulation observed in MC2 cells, was due to global 

downregulation of IFN-γ signaling. To test this hypothesis, VC5 and MC2 were 

transfected with the 8X IFN-γ activated sequence (GAS) luciferase plasmid, followed by 

E2 treatment and stimulation, or not, with IFN-γ. We observed that GAS promoter activity 

in IFN-γ treated MC2 was about 50% of that for VC5. Moreover, E2-treatment further 

diminished GAS activity in MC2, but not in VC5 (Figure. 5.4). As expected, GAS 

promoter activity was low in the absence of IFN-γ, however, it is notable that while E2-

treatment had a negligible effect on constitutive GAS activity in VC5, it significantly 

reduced activity in MC2. 

 These data suggest that E2-ER signaling indirectly decreases CIITA 

transactivation, by repressing IFN-γ signaling. To determine which element in the IFN-γ 

pathway is involved, MC2 and VC5 were treated with either E2 or vehicle control. The 

cells were stimulated with IFN-γ and IFN-γ receptor 1 (IFNGR1) expression was 

measured using CD119 antibody and analyzed by surface flow cytometry. As shown in 

Figure 5.5, both cells express IFNGR1 constitutively and the number of CD119 positive 

cells (Figure 5.5A) and staining intensity (Figure 5.5B) were approximately the same for 
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Figure 5.4 E2-treatment reduces GAS promoter activity in MC2, but has no effect in 

VC5.  

VC5 and MC2 were transfected with 8X GAS construct. On the subsequent day, the cells 

were treated with vehicle (ethanol), E2 (10-9 M) and stimulated or not with IFN-γ (100 

Units/ml) for 6 hr. Firefly luciferase activities in samples were normalized to Renilla 

luciferase activities in the same sample and expressed as fold induction over the un-

stimulated mock. Error bars represent the mean ± SEM of three independent experiments 

(*p<0.05, ** p<0.01). 

 

 

 

 

 

 

 



196 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E2 E2 

IFN-γ (+) 

IFN-γ (-) 



197 
 

both MC2 and VC5, regardless of E2-treatment. IFN-γ stimulation resulted in decreased 

surface IFNGR1 as shown by the decreased number (Figure 5.5A) and staining intensity 

of CD119 positive cells (Figure 5.5B). This is likely due to increased internalisation of 

the receptor by IFN-γ treatment as has been described by others (346). Furthermore, no 

significant changes were detected in the E2 treated cells, suggesting that E2-ER signaling 

does not interfere with IFN-γ signaling by downregulation of IFNGR1 in this BCCL 

model.  

 IFNGR1 lacks intrinsic kinase/phosphatase activity and thus depends on other 

kinases like Janus kinase (JAK)1, JAK2 and STAT1 for signal transduction (346). To 

determine which IFN-γ pathway element is involved, MC2 and VC5 were stimulated, or 

not, with IFN-γ for 15 min and whole cell lysates were prepared and subjected to 

immunoblotting. JAK1 and JAK2 were constitutively phosphorylated and expressed in 

both VC5 and MC2 (Figure 5.6). Surprisingly, phosphorylation of both JAK1 and JAK2 

was greater in MC2 than VC5 and correlated with JAK1 and JAK2 total expression. This 

indicates that ER interference with IFN-γ signaling is not because of lack of JAK1/2 

phosphorylation.  On the other hand, STAT1 phosphorylation at both sites, Y701 and S727, 

was diminished in MC2 compared to VC5, and the same pattern was noticed in total 

STAT1. Interestingly, the activation of ERα in the absence of ligand as indicated by S118 

phosphorylation suggests that, signaling pathways other than E2 induce its activation 

(347). This activated ER may account for the downregulation of HLA class II expression 

seen in the absence of ligand activation (Chapter 3). Overall, these results suggest that 

ERα interferes with STAT1 activation and, thus, downregulates IFN-γ signaling in MC2. 
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Figure 5.5 No significant difference in expression of IRF1 in BCCL model. 

VC5 and MC2 were cultured in estrogen-depleted media, treated with vehicle (ethanol) or 

E2 (10-9 M) and stimulated or not with IFN-γ (100 Units/ml) for 96 hr. (A) IFNGR1 

surface expression (detected by CD119) was analysed by flow cytometry. Shaded 

histogram = isotype control, black line = IFNGR1 expression with the indicated % of 

cells (B) Bar graphs represent the mean fluorescence intensity (MFI) for IFNGR1 

expression. Figure indicates one experiment. 
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Figure 5.6 ERα interferes with STAT1 activation in MC2.  

VC5 and MC2 cells were cultured in estrogen-depleted media and stimulated with or 

without IFN-γ (100 Units/ml) for 15 min and whole cell RIPA lysates were prepared and 

subjected for immunoblotting using the indicated antibodies. Figure indicates one 

experiment. 
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We questioned whether E2 further downregulates STAT1 phosphorylation in MC2 

since E2 downregulated inducible HLA class II expression (Chapter 3). To test this, MC2 

and VC5 were treated with E2 and/or ICI, followed by stimulation with IFN-γ.  

Immunoblotting of whole cell lysates showed overall STAT1 phosphorylation was 

diminished in MC2, no matter the treatment, compared to VC5 (Figure 5.7A). 

Surprisingly, E2 treatment did not further downregulate STAT1 phosphorylation in MC2, 

and similar results were seen with ICI or the combination of ICI and E2. These results 

may suggest that ER downregulates IFN-γ signaling by interfering with STAT1 

phosphorylation, however, the additional downregulation of IFN-γ signaling by E2 in 

ERα+ BCCL is through an alternative mechanism. 

We next asked whether STAT1 directly interacts with ERα in MC2 cells. STAT1 

and ERα were co-immunoprecipitated from MC2 cells after stimulation with IFN-γ and 

immune complexes were probed for ER and STAT1, respectively, by ERα or STAT1 

total antibody.  Figure 5.7B showed that neither STAT1 nor ER co-immunoprecipitated, 

suggesting that there is no direct interaction between both proteins.  

 

5.6. E2 modulates IFN-γ signaling and IFN-γ induced proteins in endogenous ERα+ 

BCCL 

To ensure that diminished IFN-γ signaling in MC2 was not merely a peculiarity of 

the transfected cell model, we further analyzed GAS promoter activity in endogenous 

ERα+ BCCL: MCF-7, BT-474 and T47D, and ERα- BCCL: MDA-MB-231 and SK-BR-3. 

Comparing E2 to vehicle-treated cells, E2 decreased constitutive and IFN-γ induced GAS  
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Figure 5.7 E2-ER signaling doesn’t impede with STAT1 phosphorylation.  

(A) VC5 and MC2 cells were cultured in estrogen-depleted media, treated with vehicle 

(ethanol), E2 (10-9 M) and /or ICI (10-6 M), for 4 hr and stimulated with IFN-γ (100 

Units/ml) for 15 min. Whole cell RIPA lysates were then prepared and subjected to 

immunoblotting. STAT1 phosphorylation was expressed relative to GAPDH using 

densitometry. Figure indicates one experiment. 

(B) No direct interaction between STAT1 and ERα. MC2 was subjected to 

immunoprecipitation with anti-STAT1 and anti-ERα antibody followed by 

immunoblotting with antibodies as indicated. Whole cell lysate from MC2 was used as a 

positive control. Figure indicates one experiment. 
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activity in all ERα+ cell lines (Figure 5.8A-C), however, the difference between vehicle 

and E2 was significant for IFN-γ inducible activity in MCF-7 and BT-474, (Figure 5.8A-

B) but not for T47D (Figure 5.8C). To determine whether the diminished GAS activity 

resulted in reduction in IFN-γ inducible proteins other than HLA class II, we 

immunoblotted lysates described in Figure 3.1 and Figure 3.2 for STAT1 and selected 

downstream STAT1 activated components. These included IRF1, essential for pIV CIITA 

activity and subsequent HLA class II expression; IRF9, a member of the IRF family of 

transcription factors that is not implicated in CIITA expression (348); gamma-IFN-

inducible lysosomal thiol reductase (GILT), an enzyme regulated by STAT1 but CIITA-

independent protein, that is important for antigen processing(349).  

 Despite the E2-mediated reduced GAS activity, basal and IFN-γ inducible STAT1 

levels were not substantially altered by E2 in either cell line, (Figure 5.8D-F); however, 

STAT1 regulated proteins were differentially modulated in E2-treated MCF-7 and BT-474 

(Figure 5.8D-E). IRF1 and IRF9 were slightly decreased in MCF-7, while GILT was 

markedly reduced (Figure 5.8D). Notably, IRF1 was abolished in BT-474 (Figure 5.8E); 

IRF9 was reduced and GILT, which was present constitutively, was barely modulated by 

E2. E2-treated T47D cells (Figure 5.8F), which displayed decreased GAS promoter 

activity (Figure 5.8C), showed slightly reduced basal levels of STAT1 and IRF9, while 

IFN-γ inducible proteins were similar in E2-treated and untreated cells.  

In contrast to E2-mediated inhibitory effect on GAS promoter activity in the ERα+ 

lines, E2 slightly enhanced GAS promoter activity in ERα- BCCL, MDA-MB-231, and 

SK-BR-3 (Figure. 5.8G-H). Furthermore, E2-treated MDA-MB-231 augmented IRF1 and  
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GILT expression, whereas E2-treated SK-BR-3 augmented STAT1 expression (Figure 

5.8I-J). Taken together, the results support an opposing role for E2 modulation of the IFN-

γ and HLA II pathways in ERα+ and ERα- BCCL. 
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Figure 5.8 E2 differentially downregulates IFN-γ signaling and IFN-γ induced proteins in 

endogenous ERα+ BCCL.   

(A) MCF-7, (B) BT-474, (C) T47D, (G) MDA-231, and (H) SK-BR-3 were cultured in 

estrogen-depleted media and transfected with 8X GAS construct. The next day, cells were 

treated with vehicle (ethanol), E2 (10-9M) and stimulated with IFN-γ (100 Units/ml) for 6 

hr. Firefly luciferase activities in samples were normalized to Renilla luciferase activities 

in the same sample and expressed as fold induction over the un-stimulated control.  (D) 

MCF-7, (E) BT-474, (F) T47D, (I) MDA-MB-231 and (J) SK-BR-3 were cultured in 

estrogen-depleted media, treated with vehicle (ethanol), or E2 (10-9M) and stimulated or 

not with IFN-γ (100 Units/ml) for 96 hr. Immunoblot analysis on cytoplasmic extracts 

was performed for expression of IFN-γ inducible proteins: STAT1 (06-501), IRF1 (BD-

20), IRF9 (C-20), GILT (T-18), HLA-DRα (Tal 1B5). Each figure represents one of three 

independent experiments. 
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5.7. Discussion  

 Expression of CIITA in antigen presenting cells is cell specific and under the 

control of 3 different promoters as discussed in Section 1.1.7.2. Similarly, in cancer cells 

the activation of these promoters is also cell specific and dependent on other activated 

signaling pathways (203, 344). Herein, we have shown that pIII CIITA luciferase activity 

was constitutively active and IFN-γ did not result in further activation. This was 

inconsistent with RT-PCR results using primers specific for pIII CIITA (Appendix 5). In 

the latter, IFN-γ induced CIITA isoform III expression in both VC5 and MC2, and the 

expression was less in MC2 compared to VC5. The mechanism of IFN-γ induction on pIII 

CIITA activity is somewhat controversial. It has been suggested that both pIII and pIV 

may act by enhancing each other due to the short genomic distance between the two 

promoters (77). However, Piskurich et. al. (1998) reported that the presence of a STAT1 

binding site, which is located in the enhancer region of pIII that is 5 Kb from the 

transcription initiation site, is responsible for IFN-γ induced activation through 

JAK/STAT1 signaling pathway (89). This mechanism is likely to be cell specific and not 

a generalised mechanism (350-352). Inactivation of IFN-γ induced pIII CIITA is in 

agreement with others using breast cancer cells (353) and non-breast cancer cells (88). 

Others have shown that pIII is induced by IFN-γ in cancer cell lines such as U373-MG, a 

human glioblastoma astrocytoma, and 2fTGH, a human fibrosarcoma cell (89).  

To the best of our knowledge, this is the first report, which shows that ER and E2 

reduce pIV CIITA activity. These results likely explain the reduced HLA class II surface 
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expression, signifying that downregulation of HLA class II expression is at the promoter 

level of CIITA.  

 One of the mechanisms responsible for downregulation of IFNγ-induced CIITA 

transcription is hypermethylation of pIV CIITA DNA (353, 354). In addition to 

hypermethylation, it has also been suggested that downregulation of IFN-γ induced 

CIITA in several cancer types is linked to increased histone deacetylase activity (71, 72). 

The ability of ER to influence gene activity depends on a number of co-activators, 

including SRC1, CBP, p300, PCAF, CARM1, co-repressors such as silencing mediator 

for retinoid or thyroid-hormone receptors (SMRT), nuclear receptor co-repressor (NCoR), 

metastasis associated gene 1 protein (MTA1), and histone modifying enzymes, which are 

frequently associated to form multi-protein complexes (355-357). Some of these co-

activators are shared with IFN-γ signaling such as SRC1 (358), CBP/p300 (359) and 

CARM1 (360), which may explain why certain IFN-γ inducible genes, but not all of them 

are downregulated by E2-ER signaling (Figure 5.8).  E2 and ER were shown to deregulate 

cellular epigenetic processes through alteration of DNA methylation and histone 

modifications (361). Moreover, E2 in the absence of its cognate receptor results in 

hypoacetylation of histone 3 (H3) and H4, which results in gene repression (213). Since 

the only difference between MC2 and VC5 is the presence of ER, the diminished pIV 

activity and subsequently, the downregulation of HLA class II expression could be 

explained by E2-ER epigenetically targeting pIV CIITA or other genes required for its 

activation like STAT1, IRF1 and USF1. This was strengthened by Ginter et. al. (2012), 

where they showed that hypoacetylation of STAT1 is required for IFN-γ to induce 
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STAT1 activation (362). ERα directly or indirectly may interact through the various 

acetylases/deacetylases and methylases/demethylases and affect essential post-

translational histone modifications of CIITA. Thus future studies are needed to 

understand the mechanism(s) involved.   

  Seventy five percent of ER gene regulation occurs by binding of ER to ERE 

binding sites (363). We hypothesised that E2-ER binds directly to the predicted ERE in 

pIV CIITA, and acts as a repressor for pIV CIITA. Our results did not support this 

hypothesis, but they do not exclude an alternative binding site such as AP1 or SP1. 

Furthermore, we only explored the 5’ untranslated proximal CIITA region for ERE 

binding sites and it was recently shown using genome wide analysis that only 10% of 

ERE are identified in the 5’ untranslated region. The majority of the ERE are present in 

the intronic or intergenic regions of all target genes (363). Thus, ER can regulate genes 

distally from their transcription initiation site, which could be further evaluated in the 

CIITA gene. 

 The suppresser effect of ER on IRF1 was not surprising since it was previously 

shown that IRF1 was constitutively expressed in the ERα- BCCL: SK-BR-3, MDA-MB 

468, and BT-20, but not in the ERα+ BCCL: MCF-7. Moreover, following IFN-γ 

stimulation, MCF-7 expressed 50% less nuclear staining for IRF1 and 50% more IRF2 

when compared to the ER- BCCL, suggesting that ER interferes with nuclear localisation 

of IRF1 (364). Activated IRF1 should be expressed in the nucleus while the inactivated 

form is in the cytoplasm (365). Indeed cytoplasmic IRF1 expression was shown to 

positively correlate with ERα+ breast tumors (366), suggesting that ER may regulate IRF1 
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expression, possibly by interfering with its synthesis or its cellular distribution. Parallel to 

this finding, ICI, which results in ER degradation, induces IRF1 expression in MCF-7 in a 

dose dependent manner. The latter results correlate with our finding (Appendix 6) in 

which ICI induced CIITA expression in MCF-7 in a dose dependent manner.  ERα+ breast 

cancer cells are reported to suppress IRF1 as a way to develop anti-estrogen resistance 

(367), because upregulation of IRF1 by IFN-γ resulted in increased sensitivity of ERα+ 

BCCL sensitivity to ICI (368). The significant downregulation of IRF1 by E2 detected in 

ERα+ cells was consistent with that reported by Bouker et al. (2004), who showed that E2- 

treated MCF-7 had significantly decreased IRF1 expression (369).  

 The lack of transactivation of pIV CIITA is not due to global defective IFN-γ 

signaling. HLA class I, which is also induced by IFN-γ was not diminished by ER and E2 

(Figure 3.7). This suggests that ER-E2 is targeting specific IFN-γ inducible genes. 

Although HLA class I is constitutively expressed in all nucleated cells, IFN-γ is still 

required for enhancement of expression by a number of mechanisms either directly or 

indirectly (370). IFN-γ via JAK/STAT signaling induces HLA class I expression by 

upregulating NFκβ and IRF1, which bind to enhancer A and ISRE binding sites, 

respectively, in the promoter of HLA class I genes to enhance transcription (371). 

Moreover, activation of HLA class I by IFN-γ is not only dependent on STAT1 and IRF1, 

but other factors have been shown to be involved and function independently of STAT1 

and IRF1. Binding-IFN-γ activated factor (BIGAF) is a nuclear transcription factor which 

can bind to the enhancer in HLA class I genes and aid in the process of IFN-γ induced 

activation (372). Additionally, STAT1 may form a complex with STAT2 and IRF9 (P48) 
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and bind to ISRE in the HLA class I gene promoter (373). Recently, it was reported that 

nucleotide-binding oligomerization domain (NOD) like receptor family CARD domain 

containing 5 (NLRC5) acts in a manner similar to CIITA and binds to transcription 

factors bound to those regulatory elements (52). This suggests that HLA class I regulation 

is a multifaceted mechanism and depends on a number of regulatory factors.  Unlike the 

CIITA, they are not totally dependent on STAT1 activation. 

 Although we did not find any difference with regards to IFNGR1 expression 

between MC2 and VC5, future studies are needed to localize IFNGR1 after IFN-γ 

stimulation. Nuclear localisation sequences  (NLS) are present in the C-terminus of 

IFNGR1, which direct the receptor to the nucleus after IFN-γ stimulation for direct 

interaction with STAT1 (346). It is possible that this may result in cross talk with ER in 

the nucleus. 

 Upregulation of JAK1 and JAK2 in MC2 was somewhat surprising since it was 

previously shown that both JAKs correlate negatively with ERα status in breast tumors 

and cell lines (374, 375). Moreover, it was shown that E2-ER signaling upregulates 

suppressors of cytokine signaling (SOCS)-2, which result in inhibition of JAK 

phosphorylation (376). These data suggest that E2-ER can negatively regulate IFN-γ 

signaling by altering JAK2 phosphorylation through SOCS-2 upregulation. Cells that 

endogenously express ER may behave differently from cells that have been stably 

transfected to express the ER (287). Moreover, a human neuroblastoma cell line that had 

been stably transfected with ERα upregulated both JAK1 and JAK2 as confirmed by 

microarray analysis (377). Recently, it was shown E2 activation of ER in MCF-7 resulted 
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upregulation of JAK2 expression as detected by immunoblotting (378). JAK activation 

was not reduced in MC2 compared to VC5 cells, thus, excluding any defect in upstream 

signalling such as IFNGR2, which is the" limiting" factor" of" IFNγ" signalling. Since 

phosphorylation of STAT1 at Y701 and S727 was diminished in MC2, as compared to 

VC5 and correlated with reduced GAS activity, it is likely that reduced CIITA promoter 

activity in MC2 was due to decreased activation of STAT1, which is critical for induction 

of pIV CIITA. Although our results clearly showed that E2 and ICI had no effect on 

STAT1 phosphorylation, this does not exclude the possibility that E2 may interfere with 

STAT1 hypoacetylation, dimerization, nuclear localisation, and binding to a specific 

promoter (362). E2 was reported to interfere with nuclear localisation of STAT1 and 

result in post-translational modification in the form of STAT1 truncation (379). 

Identifying STAT1 function by studying phosphorylation alone is not sufficient because, 

the level of phosphorylation may not be affected, but the recruitment to pIV CIITA can be 

reduced (380). 

 Estrogen can mediate its action by a non-genomic signaling pathway through 

interaction with other transcription factors. Therefore, we investigated the effect of direct 

interaction of ER with STAT1 after IFN-γ stimulation. There was no evidence of direct 

interaction of STAT1 and ER in the whole cell lysates but this did not exclude the 

possibility of interaction in the nuclear matrix or at the DNA binding site. Thus, future 

studies are needed to investigate the effect of E2 on STAT1 and should look for STAT1 

expression in different cell compartments.  
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The MC2 cell model of ERα+ breast cancer cells showed that E2-ER regulates 

inducible HLA class II expression by interfering with the IFN-γ signaling pathway. This 

finding was similar to the results seen in endogenously ERα+ BCCL in which we showed 

that E2 decreased GAS activity in MCF-7 and BT-474. These findings paralleled HLA-

DR surface expression. Moreover, immunoblotting confirmed that other IFN-γ inducible 

proteins are reduced by E2 treatment in the same ERα+ breast cancer cells, but not in ERα- 

breast cancer cells. These results suggest the presence of common mechanisms for 

downregulation of HLA-DR expression in ER+ breast cancer cells, which is probably by 

interfering with element(s) of IFN-γ signaling pathway. E2 has been shown to interfere 

with IFN-γ genes and proteins in a number of occasions. For example in keratinocytes of 

psoriatic skin lesions, E2 inhibited the production of interferon-induced protein of 10 kDa 

(IP-10), and indirectly inhibited STAT1 activation by stimulating adenylate cyclase, 

which resulted in upregulating 3', 5’-adenosine cyclic monophosphate and inhibition of 

STAT1 phosphorylation (381). Consistent with our data, E2 was shown to result in 

downregulation of IRF1 (369) and HLA-DRα (304) in MCF-7 cells. The effect of 

estrogen on IFN-γ induced proteins was not only restricted to human and breast cancer 

cells, but male mice treated with estrogen resulted in decreased STAT1 expression (379). 

Furthermore, E2-treatment of immortomouse brain endothelial (IBE) cell line resulted in 

downregulation of HLA class II expression (315). Likewise, E2 treatment abolished IFN-γ 

inducible class II antigen expression in rat vascular allograft and improved graft survival 

(283).  
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In conclusion, E2-ER signaling supresses specific IFN-γ inducible genes, 

especially genes involved in HLA class II antigen processing and presentation. This may 

explain why some breast tumors do not upregulate HLA class II molecules, in spite of 

high level of IFN-γ in tumor microenvironment. 
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Chapter 6: Abrogation of mitogen activation protein kinase activity in breast cancer 

cells results in loss of human leukocyte antigen class II expression on the cell surface. 
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6.1. Rationale and objectives  

 Patients with estrogen receptor alpha negative (ERα-) tumors have a worse 

prognosis as they are resistant to antiestrogens and commonly present with 

overexpression of growth factor receptors. Activation of certain pathways like nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen activated 

protein kinase (MAPK) signaling is associated with abrogation of ERα expression, which 

suggests significant cross talk between ERα and these signaling pathways (382). 

Moreover, it has been suggested that breast cancer cells employ a number of different 

mechanisms to stop expressing ERα as the tumor progresses. These mechanisms include, 

promoter hypermethylation, estrogen withdrawal, hypoxia, or hyperactivation of MAPK 

(383).   

In melanoma cells, MAPK- extracellular regulated kinase (ERK) and MAPK- c-

jun N-terminal kinase (JNK) are required for the regulation of class II transactivator 

(CIITA), through binding to the activation protein 1 (AP1) responsive element in the 

enhancer of promoter III (pIII) CIITA (203). Moreover, MAPK activation is important in 

regulation of human leukocyte antigen (HLA) class II in professional antigen presenting 

cells (APC) such as dendritic cells (DC) and macrophages (176, 384) and non-

professional APC such as fibroblast cells (214). 

 Based on a previous report, that MAPK activation drives HLA class II expression 

in melanoma cells and the finding that activation of MAPK results in downregulated ERα 

(382), my hypothesis is that MAPK activation leads to upregulation of HLA class II in the 
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ERα- breast cancer cells. To address this, I used MDA-MB-231 breast cancer cell line 

(BCCL), which is both ERα- and exhibits hyperactivation of the MAPK pathway (226).  

 

1. To ascertain the role of MAPK in human leukocyte antigen  (HLA) class II expression 

in ERα- breast cancer cells. 

2. To identify the role of different classes of MAPK inhibitors on HLA class II 

regulation in breast cancer cells. 

 

6.2. Preliminary experiments to assess the effect of U0126 on MDA-MB-231 viability  

The recommended and effective concentration of U0126 for inhibiting MEK 

activity is 10 µM according to a number of different cell lines examined, including BCCL 

(225, 384, 385). Kinetics studies of U0126 were done on MDA-MB-231 cells. The cells 

were treated with either U0126 (10 µM) or DMSO (vehicle control). Cell confluence was 

examined every 24 hr up to 96 hr using an inverted phase microscope, and the estimated 

growth was recorded. On day 5, the cells were harvested and counted using a 

haemocytometer. As shown in Figure 6.1A, the percentage of cells growing in DMSO 

increased steadily, whereas U0126 suppressed cell proliferation. After 96 hr, U0126-

treatment decreased cell counts compared to DMSO-treated cells (Figure 6.1B). 

To confirm that 10 µM U0126 is effective in inhibiting MEK activation without 

affecting cell viability, MDA MB 231 cells were treated for 72 hr with serial dilutions of 

U0126. Crystal violet staining and immunoblotting were done to determine cell viability 

and ERK activation, respectively. 
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U0126 treatment resulted in a dose-dependent inhibition of proliferation as shown 

by gradual decrease of proliferation with increasing U0126 concentration (Figure 6.1C) 

with an IC-50 (half-maximal inhibitory concentration) of 10 µM. Furthermore, the 

activation of ERK as detected by immunoblotting for pERK was decreased in a dose 

dependent manner with activation barely detected at 10 µM U0126 (Figure 6.1D). 

Overall, these preliminary experiments confirmed the previous literature and 

established that 10 µM was sufficient to inhibit MEK activation in MDA MB 231. In 

addition, the 72-hr time point was used in all our subsequent experiments for detecting 

the effect of U0126 on HLA-DR protein expression. 

 

6.3. U0126 inhibited constitutive and IFN-γ induced surface HLA-DR expression 

The aim of this experiment was to determine if ERK is involved in the regulation 

of HLA-DR in BCCL by blocking MEK activation with U0126. MDA-MB-231 was 

treated with U0126 or DMSO and stimulated or not with IFN-γ for 48 and 72 hr. HLA-

DR expression was measured at the indicated time points using L243 antibody and flow 

cytometry. As shown in Figure 6.2A-B, approximately 20% of the cells constitutively 

expressed HLA-DR. IFN-γ strongly upregulated HLA-DR expression at 48 and 72 hr 

with 96% positive cells. U0126 down regulated constitutive and IFN-γ induced HLA-DR 

expression. Although the number of HLA-DR positive cells was reduced only by 16% in 

U0126 and IFN-γ treated cells, the staining intensity was significantly decreased (p<0.01) 

(Figure 6.2C). Similarly, U0126 had the same effect on surface HLA-DR expression on 

VC5 and MC2 cells (Appendix 7). These results suggest that ERK is important for
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Figure 6.1 Effect of the MEK inhibitor, U0126, on proliferation of MDA-MB231 and 

ERK 1/2 activation.  

MDA-MB-231 was treated with various concentrations of U0126 for the indicated time 

points (A) line graph showing the percentage of confluent cells as estimated by inverted 

phase microscope at the indicated time points and U0126 concentrations. (B) Bar graphs 

showing the cell count after 96 hr of treatment with the indicated U0126 concentrations. 

(C) Bar graphs showing the cell viability, as measured by crystal violet staining at the 

indicated concentrations of U0126. (D) ERK activity was detected by immunobloting 

using p-ERK 1/2 (Thr 202/Tyr 204) antibody from whole cell lysates. Figures indicate 

one experiment. 

 

 

 



222 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B A 

D C 

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

DMSO" U0126"

Ce
lls
%C
ou
nt
/m

l% x%
10
00
00
%

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0 24 hrs 48 hrs 72 hrs 96 hrs 

%
 o

f C
on

flu
en

ce
  

U0126 

DMSO 



223 
 

 

 

 

 

 

 

Figure 6.2 Effect of MEK inhibitor, U0126, on HLA-DR expression in MDA-MB-231.  

MDA-MB-231 cells were treated with 10 µM U0126 or vehicle (DMS0) and stimulated 

or not IFN-γ (100 Units/ml) for various time points as indicated. (A) HLA-DR surface 

expression (detected by L243) was analysed by flow cytometry. Shaded histogram = 

isotype control, black line = HLA-DR expression with the indicated % of positive cells 

(B) Bar graphs represent the mean fluorescence intensity (MFI) for HLA-DR expression 

(C) Bar graphs represent the MFI ± standard errors of the mean (SEM) for HLA-DR 

expression of three independent experiments after 72 hr of IFN-γ and U0126 treatment 

(**p<0.01). 
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HLA-DR expression. 

We next tested the effect of ERK inhibition on HLA class II expression in our 

ERα- and ERα+ BCCL model. MDA-MB-231, VC5 and MC2 were treated with either 

DMSO or U0126 and stimulated with IFN-γ for 24, 48, and 72 hr. Whole cell RIPA 

lysates were prepared and examined by SDS-PAGE gel under reduced conditions and 

immunoblotted for CIITA, HLA class II, and ERK activation. 

 The results depicted in Figure 6.3 showed no constitutive expression of CIITA or 

HLA-class II proteins in VC5 and MC2 cell lines. CIITA basal expression was noticed 

only in MDA-MB-231 cells, which is consistent with Figure 3.5. IFN-γ stimulation 

upregulated CIITA and HLA class II proteins. Unexpectedly, the combined treatment of 

U0126 and IFN-γ resulted in augmented upregulation of CIITA and HLA class II 

expression at all time points in all the three cell lines examined.  

Upregulation of HLA-DR expression by U0126 at 72 hr (Figure 6.3) was 

inconsistent with HLA-DR surface expression detected by flow cytometry (Figure 6.2). 

This suggests that ERK inhibition prevents transport of HLA-DR to the cell surface. 

HLA-DR could be trapped in the endocytic vesicles, or Golgi apparatus and prevented 

from being expressed.  HLA-DM and Ii were coordinately upregulated by the 

combination of U0126 and IFN-γ, suggesting that this upregulation is secondary to 

increased CIITA expression. The effect of ERK was the same for all the three cell lines, 

suggesting that ERK-dependent modulation of HLA class II expression occurs regardless 

of ERα.  We focused on MDA-MB-231 to address possible mechanisms. 
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Figure 6.3 U0126-treatment differentially modulates HLA class II expression in the 

BCCL model.  

MDA-MB-231, VC5, MC2 cells were treated with vehicle (DMSO), 10 µM U0126 

followed by stimulation with IFN-γ (100 Units/ml) at the indicated time points. HLA 

class II and CIITA proteins from whole cell extracts were analyzed by SDS-PAGE under 

reduced condition, followed by immunoblotting using CIITA (antiserum #21) anti-DRα 

(TAL 1B5), anti-DM (TAL18.1) and anti-Ii (LN2). P-ERK and T-ERK were used to test 

the efficiency of U0126. Figure indicates one experiment. 
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The discrepancy between flow cytometry and immunoblotting for HLA-DR 

expression may be due to different antibody specificities. The L243 antibody used for 

flow cytometry detects a conformational epitope on HLA-DR molecules (386); however, 

the Tal 1B5 (HLA-DRα antibody) used for immunoblotting detects HLA-DRα monomer 

(387). Based on the fact that MAPK signaling modulates protein stability and cell surface 

expression of some proteins (388), we hypothesized that U0126-treatment decreases the 

stability of HLA-DR molecules, which may explain the increase of HLA-DRα at the 

expense of a decrease in HLA-DR dimers.  To test this idea, we used the same whole cell 

lysates and examined them by SDS using non-reducing conditions. Notably, HLA-DRα 

monomer (29 kDa) was strongly upregulated after 24 hr of IFN-γ stimulation (Figure 6.4), 

but the HLA-DR dimer (55 kDa) was weakly expressed, which was expected as the 

mature molecule takes a longer time to form (389). The HLA-DRα antibody detected a 

higher molecular weight band (∼70 kDa) after 24 and 48 hr of combined U0126 and IFN-

γ treatment. This high MW band may suggest an associated invariant chain monomer, 

because it correlates with Ii upregulation as detected by two different antibody clones 

(LN2 and Pin1). 

HLA-DR stable dimers (55 kDa) as detected by L243 appeared to have decreased 

after 48 and 72 hr of combined IFN-γ and U0126 treatment. Although, this may appear to 

be inconsistent with Figure 6.2, the sum of the three bands (~29 kDa, ∼55 kDa and ∼70 

kDa) (Figure 6.4) detected by TAL 1B5 accounts for this ostensible loss. This suggests 

that U0126 treatment may interfere with formation of mature HLA-DR molecules. The 

results of HLA-DM and Ii followed the same pattern as in the reduced
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Figure 6.4 U0126-treatment differentially modulates HLA class II expression in MDA-

MB-231 cells.  

MDA MB 231 cells were treated with vehicle (DMSO) or 10 µM U0126 followed by 

stimulation with IFN-γ (100 Units/ml) at the indicated time points. HLA class II protein 

from whole cell extracts was analyzed by SDS-PAGE under non-reduced condition, 

followed by immunoblotting using pan HLA-DR antibody (L243), anti-DRα (TAL 1B5), 

anti-DM (TAL18.1) and anti-Ii (LN2). Figure indicates one experiment. 
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SDS-PAGE condition. 

Overall, U0126-treatment downregulated HLA-DR surface expression and 

resulted in its intracellular accumulation, which suggests a possible role of ERK in HLA-

DR trafficking. Moreover, upregulation of CIITA, HLA-DM, and Ii by U0126 treatment 

suggested that ERK rather than upregulate interferes with CIITA expression, possibly at 

the mRNA level since its regulation occurs mainly at the transcription level. 

 

6.4. U0126 upregulated IFN-γ induced HLA class II mRNA expression   

 Since inhibition of ERK activity by U0126 increased CIITA and intracellular 

accumulation of HLA class II molecules, we questioned whether this occurred at the level 

of CIITA or HLA class II gene transcription. To address this, MDA-MB-231 was treated 

with vehicle control (DMSO) or U0126 and stimulated with IFN-γ for 12 hr, followed by 

RNA extraction. RT-PCR was performed using primers specific for CIITA, HLA class II, 

and co-chaperone genes. As shown in Figure 6.5, CIITA, and downstream genes 

controlled by CIITA (HLA DR [A,B], HLA DM [A,B] and Ii) were upregulated by 

U0126. 

In conclusion, ERK pathway in MDA-MB-231 downregulates IFN-γ inducible 

CIITA transcription (and consequently, HLA class II transcription), but, interestingly, 

ERK activiton is required for expression of stable HLA-DR/peptide complexes and their 

cell surface expression. 
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Figure 6.5 CIITA and HLA class II expression is upregulated by U0126 in MDA-MB-

231 at the mRNA level.  

MDA-MB-231 was treated with either DMSO or 10 µM U0126 and stimulated with IFN-

γ (100 Units/ml) for 12 hr. Total RNA was isolated and subjected to RT-PCR analysis 

using primers specific for CIITA and HLA class II genes. Figure indicates one 

experiment. 
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6.5. ERK is important for HLA-DR trafficking  

 ERK 1/2 was previously shown to regulate HLA class I trafficking through a 

clathrin-independent pathway (390). To test whether ERK plays a role in HLA-DR 

trafficking, we performed immunocytochemistry (ICC) and confocal microscopy to 

visualise and localize HLA-DR and Ii molecules before and after inhibiting ERK 

activation.  MDA-MB-231 cells were grown in an 8-well chamber slide and treated with 

DMSO or U0126, followed by stimulation with IFN-γ for 72 hr. Cells were acetone-fixed 

and parallel immunofluorescence was performed using HLA-DR and Ii antibodies. 

 In DMSO-treated cells, HLA-DR expression was seen as strong green 

fluorescence and homogenous staining of the cytoplasm and membrane, while Ii was seen 

as red fluorescence and homogeneous cytoplasmic staining around the nucleus. DAPI was 

used for nuclear staining (Figure 6.6). The association of Ii and HLA-DR was detected in 

the overlayed image in the form of yellow localised areas. In contrast to DMSO, U0126-

treated cells showed noticeable downregulation of HLA-DR membrane expression, but it 

was strongly expressed in endocytic vesicles. HLA-DR and Ii were strongly expressed in 

SAVC with strong membranous and intra-cytoplasmic staining respectively. The negative 

controls, isotype matched irrelevant antibodies, showed minimal background. In 

conclusion, these results suggest that either HLA-DRα/β dimers are trapped in the 

endosomes, having never made their way to the cell surface, or they rapidly recycle from 

the cell surface back to early endosomes. This will need to be addressed in future studies. 
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Figure 6.6 ERK is important for HLA-DR trafficking.  

MDA-MB-231 was treated with either DMSO or U0126 and stimulated with IFN-γ (100 

Units/ml) for 72 hr. Cytopreps were prepared and acetone fixed, HLA-DR was detected 

using L243 and visualised by Alexafluor 488 (green stain), Ii was detected by LN2 and 

visualised by Alexafluor 555 (red stain). Nuclei were stained blue with DAPI. Figure 

represents one of three experiments. 
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6.6. The role of other MAPK proteins on HLA class II expression 

JNK and p38 are other members of the MAPK that were previously shown to play 

a significant role in HLA class II regulation in macrophages (176). We wished to examine 

the effect of these members on HLA class II expression in ERα- breast cancer cells. 

Preliminary experiments were done to ensure that optimal inhibitory concentrations for 

SP 600125 (JNK inhibitors) and SB 202190 (p38 inhibitors) did not significantly reduce 

cell viability. MDA-MB-231 cells were treated for 72 hr with serial dilutions (50 – 3.125 

µM) of either SP 600125 or SB 202190; DMSO was used as mock control. The results 

depicted in Figure 6.7A-B showed that SP 600125 or SB 202190 resulted in a dose 

dependent inhibition of proliferation.  The IC-50 ranged between 25- 50 µM for SB 

202190 and was approximately 50 µM for SP 600125. 

Next, MDA-MB-231 was treated with SP600125 and SB202190 or DMSO and 

stimulated with IFN-γ for 72 hr. Whole cell RIPA lysates were prepared and examined by 

immunoblotting. As shown in Figure 6.8 CIITA, HLA-DR, HLA-DM, and Ii were 

downregulated with both drugs. Although there was downregulation of all HLA class II 

proteins, SP600125 and SB202190 were only effective at 25µM as seen by a decrease of 

the phosphorylation of p38 and JNK respectively. These results suggested that both p38 

and JNK have a positive effect on CIITA and HLA class II expression. 

We next examined the effect of SP600125 and SB202190 on CIITA and HLA 

class II mRNA expression.  MDA-MB-231 was treated as above and stimulated with 

IFN-γ for 12 hr. SP600125 and SB202190 did not modulate CIITA, HLA-DMA or Ii 

expression at the mRNA level, but resulted in decreased HLA-DRA and HLA-DRB



238 
 

 

 

 

 

 

 

 

 

 

Figure 6.7 Cell viability assay for SP 600125 (JNK inhibitors) and SB 202190 (p38 

inhibitors).  

MDA-MB-231 was treated with indicated concentrations of (A) SP 600125 and (B) SB 

202190 for 72 hr. Line graph show the absorbance reading for crystal violet staining. 

Figures indicate one experiment, which was conducted by Jillian Green. 
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Figure 6.8 SP 600125 and SB 202190 differentially modulate human leukocyte class II 

expression.  

MDA MB 231 cells were treated with vehicle (DMSO), 12.5 and 50 µM (A) SB 202190   

and (B) SP 600125 followed by stimulation with IFN-γ (100 Units/ml) for 72 hr. HLA 

class II expression was analyzed by immunoblotting from whole cell extracts using anti-

DRα (TAL 1B5), anti-DM (TAL18.1) and anti-Ii (LN2), anti P-p38, and anti p-JNK. 

Figures indicate one experiment, which was conducted by Jillian Green. 
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mRNA expression (Figure 6.9), which was consistent with downregulation of HLA-DR 

protein expression (Figure 6.8).  As opposed to pERK, which decreases CIITA and HLA 

class II expression and affects transport of HLA-DR molecules to the cell surface, p38 

and JNK are associated with increased expression (Figure 7.2). 

The mechanism of MAPK regulation of HLA class II has only been partially 

resolved and future experiments are need to study HLA class II promoter activity, since 

the AP1 binding site is present in most of HLA class II gene promoters. 
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Figure 6.9 p38 and JNK inhibitors selectively down regulate HLA class II genes.  

MDA MB 231 cells were treated with vehicle (DMSO), 12.5 and 25 µM SP 600125 and 

SB 202190 followed by stimulation with IFN-γ (100 Units/ml) for 12hr. Total RNA was 

isolated and subjected to RT-PCR analysis using primers specific for CIITA and HLA 

class II genes. Figure indicates one experiment. 
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6.7. Discussion 

In the present study, we clearly demonstrated that ERK plays an important role in 

regulating HLA-DR surface expression in MDA-MB-231. Using U0126 to inhibit the 

ERK pathway, we showed downregulation of HLA-DR surface expression was not the 

result of ERK-inhibition of CIITA.  In fact ERK inhibition resulted in increased CIITA 

and synthesis of downstream HLA class II proteins. The observed downregulation of 

surface HLA-DR expression by U0126 was not due to technical issues as HLA-DR stable 

dimers were also reduced as shown by immunoblotting under non-reducing conditions. 

Immunoblotting displays stable HLA-DR/peptide complexes, both intracellularly and at 

the plasma membrane. Possible explanations for the difference in cell surface and 

intracellular expression of HLA-DR are: 1) ERK is important in the stability of HLA-DR 

molecules, 2) ERK is important in the transport of HLA-DR molecule to cell surface. 

Overall, ERK appears to have dual opposing mechanisms in regulating HLA-DR 

expression; ERK negatively regulates CIITA expression and positively regulates HLA-

DR surface expression.  

The role of MAPK in regulating HLA class II has been studied in professional and 

non-professional APC with contradictory findings. These differences may be due to a 

number of reasons; lack of studying all HLA class II molecules (HLA-DR, Ii and HLA-

DM), the use of various MAPK inhibitors, which result in different outcomes, the 

difference between human and mouse model system examined, and the use of different 

cell lines and tissues. For example: in mesenchymal stem cells (MSCs), activation of 

ERK resulted in upregulation of basal HLA-DR surface expression secondary to 

increased CIITA transcription, but had no effect on IFN-γ-induced CIITA expression 



246 
 

(391). In contrast, Yongxue Yao et. al. (2006) demonstrated that activation of ERK in 

murine macrophages resulted in hypoacetylation of histone 4 (H4) at the CIITA promoter 

and decreased CIITA expression (384). Martins et. al. (2007)  showed activation of ERK 

and JNK in melanoma cell lines are required for regulation of constitutive CIITA 

expression. This occurs by binding of the AP1 responsive element in the enhancer of pIII 

CIITA (203). However, this mechanism was not sufficient in CIITA regulation and other 

factors like CXCL1, CXCL8 and NFκB p50 subunit were later shown to be required 

(319). In another study, ERK inactivation resulted in augmentation of IFN-γ induced 

CIITA expression in mouse bone marrow-derived DC (384). This suggests that ERK 

activation negatively regulates CIITA expression, probably through inhibition of pIV 

CIITA (77). These results propose that the difference in regulation of CIITA by ERK is 

species and cell specific and depends on which CIITA promoter is involved. Further 

studies are required to investigate the potential mechanisms involved in this regulation.  

 Although CIITA is regulated at the transcription level (392), post-translational 

modification events can still control its activation and nuclear transport (63, 64). Voong et 

al 2008,  (214) demonstrated that ERK 1/2 could directly interact with CIITA and target 

phosphorylated S288 in the amino terminal end. This phosphorylation can enhance binding 

of the CIITA to the nuclear export factor, CARM1 which results in decreased nuclear 

concentration. As a result of decreased CIITA nuclear localisation, HLA-DR promoter 

activity is reduced. We noticed that inhibition of ERK 1/2 by U0126 in MDA-MB-231 

resulted in upregulation of CIITA as determined by RT-PCR and immunoblotting using 

whole cell lysates (WCL). In WCL, the concentration of the nuclear protein is usually 
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diluted by the vast array of cytoplasmic proteins.  Thus, further studies are needed to 

determine levels of nuclear and cytoplasmic CIITA, and properly address the mechanism 

by which MAPK regulates CIITA in BCCL 

 The significant U0126-mediated downregulation of surface HLA-DR expression, 

despite abundant intracellular proteins in MDA-MB-231 suggested that ERK 1/2 is 

important in the transport of HLA-DR to the cell surface. Indeed this was supported by 

immunofluorescence results showing abundant membrane and homogeneous HLA-DR 

staining in untreated cells as compared to little or no surface HLA-DR staining and large 

clumps of intracellular HLA-DR in the presence of U0126. The fact that Ii and HLA-DR 

colocalized in these endocytic-like vesicles, also suggests they are trapped in endocytic 

vesicles or alternatively, recycle to these vesicles. Future studies using endocytic tracker 

or colocalization with other endocytic markers are necessary to properly identify these 

vesicles. Although, we did not identify the mechanism by which HLA-DR transport is 

modulated by ERK, it may be similar to a mechanism described for HLA class I. 

Robertson et. al. (2006) showed that ERK signaling regulates endosomal trafficking 

through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-regulated 

endosomal pathways (390). U0126 resulted in inactivation of ERK and expansion of Arf6 

compartment, which negatively correlated with HLA class I expression. ERK may 

regulate recycling of HLA class II under the same mechanism involved in class I, since 

clathrin independent endocytosis is responsible for recycling of HLA class II from the 

cell surface (393).                 

 The global downregulation of the all HLA class II molecules seen by p38 and 

JNK inhibitors is due to downregulation of CIITA, the master regulator of HLA class II 
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molecules at the protein level with no effect on mRNA. The discrepancy between the 

protein and mRNA expression of CIITA in MDA-MB-231 may suggest a post-

transcriptional regulation of mRNA stability. These findings are supported by Valledor et 

al 2008, where they showed that JNK inhibitor decreased CIITA mRNA stability in 

macrophages and subsequently resulted in loss of class II induction (176).   

 Overall, our original hypothesis that MAPK activation is important in 

upregulating HLA class II expression in ERα- could not be confirmed. Apparently, 

MAPK is important for HLA class II expression regardless the ERα status. The role of 

MAPK on HLA class II regulation is still an open area of research and more studies are 

needed to determine the potential mechanism. This may aid in the development of 

successful anti-tumor therapy by targeting component of MAPK signaling and thus 

modulating antigen processing and presentation in breast tumor cells.  
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Chapter 7 Summary and future directions 

 

7.1.Overview 

 The immune response in humans is regulated by the interaction of CD4+ T-cells 

with human leukocyte antigen (HLA)-DR molecules that display peptides from antigens 

that have undergone proteolysis in the endocytic pathway. Peptide loading of HLA-DR 

molecules also requires the co-chaperones, invariant chain (Ii) and HLA-DM.  Previous 

studies in our laboratory showed that HLA-DR and Ii were expressed in 40-50% of breast 

carcinomas, whereas HLA-DM was expressed in only 10% (106). Moreover, HLA-DR 

and Ii, but not HLA-DM, correlated with estrogen receptor (ER) α- tumors and reduced 

age at diagnosis. On the other hand, coordinate expression of HLA class II molecules and 

co-chaperones were associated with increased levels of intratumoral T-cells and 

interferon gamma (IFN-γ). As these findings suggested an important role for cytokines 

and hormones in HLA class II regulation in breast cancer, a major goal of this project was 

to directly assess the individual and combined effects of estradiol and ERα on 

constitutive and IFN-γ inducible HLA class II expression in breast cancer cell lines. A 

secondary goal was to evaluate the role of mitogen-activated protein kinase (MAPK) on 

HLA class II expression. The rationale for this was based on the knowledge that the 

MAPK pathway is frequently over activated in breast cancer, especially in ERα- tumors 

(226, 227) and reports showing that MAPK regulates HLA class II expression in 

professional antigen presenting cells (APC)  (176, 384) and melanoma (203).  
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7.2. Summary of major findings 

The research work described in this thesis examined the mechanisms involved in 

regulation of HLA class II expression in ERα+ and ERα- breast cancer cell lines (BCCL). 

Regulation of HLA class II in professional APC has been examined in detail and is 

reviewed in (37). Nevertheless, there remain large gaps in our knowledge of the 

mechanism(s) involved in regulation of HLA class II expression in cancer cells.  

To test the hypothesis that estrogen differentially regulates HLA class II 

expression in ERα+ and ERα- and breast cancer cells, a panel of an established ERα+ and 

ERα- breast cancer cell lines was used. E2 downregulated IFN-γ induced HLA-DR 

expression in two ERα+ breast cancer cells (MCF-7 and BT474), but not in T47D, 

suggesting that the effect of E2-ER signaling on IFN-γ induced HLA-DR expression 

expression may be cell specific, perhaps depending on what other pathways may be 

activated. Interestingly, we found a negative correlation between amounts of ERα and 

expression of HLA-DR in T47D and MCF-7 suggesting that any potential impact of E2-

activation of ERα on HLA-DR expression, could depend on the levels of ERα or as 

discussed in Chapter 3, the expression of other receptors such as ERβ. Although BT474 is 

ERα+ it over expresses HER2 receptors, which could be an alternative mechanism 

responsible for HLA class II regulation. In support of that, blocking HER2 receptor by 

Lapatinib resulted in upregulation of CIITA and HLA class II expression in BT474 

(Tracey Dyer, Honour thesis). Moreover, ERα+HER2+ breast tumors were completely 

HLA-DR negative (unpublished data), whereas a significant proportion of other breast 

cancer subtypes expressed HLA-DR (106).  In addition, several studies reported that 
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overexpression of HER2 downregulates HLA class I expression and IFN regulated genes 

such as, PA28, LMP, and TAP, which are involved in the HLA class I antigen-processing 

pathway (394-396).  In conclusion, these data suggest crosstalk between the ERα, growth 

factor receptor pathways and components of IFN-γ signaling. 

As opposed to the ERα+ BCCL, estradiol (E2) upregulated HLA-DR expression in 

ERα- BCCL (MDA-MB-231 and SK-BR-3), implying the involvement of non-genomic 

estrogen signaling in the IFN-γ inducible HLA class II pathway. These results indicate 

that E2 differentially modulates HLA-DR expression in ERα- and ERα+ BCCL, which 

supported our previous finding in breast carcinoma (106).  

To further study the mechanism(s) involved in downregulation of HLA-DR 

expression in ERα+ breast cancer cells, we used a cell line model system of ERα+ line, 

MC2 (MDA-MB-231 transfected with the wild type ERα gene) and ERα- line, VC5 

(MDA-MB-231 transfected with the empty vector). As described in Chapter 3, 

transfection of the ERα+ gene into an ERα- BCCL resulted in significant reduction of 

IFN-γ inducible HLA-DR expression. Supporting our initial findings, the addition of 

exogenous E2 further downregulated IFN-γ induced HLA-DR expression in ERα+ MC2 

but not in ERα- VC5. Indeed, the inhibitory effect of E2 and ER was not only restricted to 

IFN-γ induced HLA-DR, but included the two co-chaperones (HLA-DM and Ii), which 

are normally coordinately expressed with HLA-DR.  We thought it unlikely that the 

inhibitory effect of E2-ER on IFN-γ induced HLA class II expression was due to global 

interference with IFN-γ signaling because constitutive and IFN-γ induced HLA class I 

surface expression were not downregulated by E2 in MC2. 
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Since our data supported a mechanism by which E2-activation of ER interfered 

with HLA class II expression, we predicted that blocking the ER signaling pathway with 

Tamoxifen (TAM) would overcome the inhibitory effect of E2. Unexpectedly, TAM 

mimicked the downregulatory effect of E2 on HLA-DR expression. However, further 

analysis of immunoblotting results revealed that both TAM and E2 treatments increased 

nuclear translocation of ER from the cytoplasm with no functional ER degradation. The 

upregulation of nuclear ERα negatively correlated with CIITA expression. Thus, TAM 

may not be a suitable ERα blocker for this study; this is also supported by the fact that 

TAM non-genomically inhibits MAPK (397, 398), which plays a role in HLA class II 

regulation (as discussed in Chapter 6).  

Because TAM blocks E2-ER activation but does not degrade ER, we investigated 

whether the pure anti-estrogen compound Fulvestrant (ICI), which degrades ERα, would 

restore HLA-DR in MC2.  Although ICI-treatment clearly knocked down ERα in MC2, it 

did not restore HLA class II protein to the levels of VC5; however, ICI in the absence and 

presence of E2 reversed the downregulatory effect of E2 on HLA class II and co-

chaperones in MC2, which was detected by immunocytochemistry, flow cytometry and 

immunoblotting. Moreover, the degradation of ERα by ICI inversely correlated with 

CIITA protein and mRNA expression. Overall, these findings suggest that E2-activated 

ERα clearly mediates decreased HLA class II and can be restored by ICI and silencing of 

ER by siRNA. On the other hand, ER downregulates HLA class II expression but ICI 

failed to be restore this downregulatory effect. The latter may suggest a physical 

interaction with CIITA, because ICI inhibited ER in a dose dependent manner and 

correlated with CIITA expression in MCF-7 cells. Alternatively, neither ICI nor ER-
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siRNA completely knocked down ERα and thus, the amount of remaining ERα may have 

been sufficient to bind to the ER binding sites in target genes that are implicated in CIITA 

transactivation (Chapter 5). 

  To the best of our knowledge, this study is the first to show that E2 downregulated 

CIITA expression in ERα+ breast cancer cells. pIV CIITA activity was inhibited by E2 in 

MC2. ICI alone, or combined with E2 did not restore the pIV CIITA activity in MC2 to 

the VC5 level. These results are in parallel with our HLA class II protein expression and 

further suggest that E2-ER activation is implicated in CIITA regulation at the promoter 

level. Inhibition of pIV CIITA activity in MC2 was not due to direct binding of ER to the 

predicted ERE binding site in PIV CIITA as detected by the deletion studies. Since pIV 

CIITA is primarily regulated by IFN-γ we examined the IFN-γ signaling pathway. IFN-γ 

activated sequence (GAS) luciferase activity was inhibited by E2 in ERα+ breast cancer 

cells suggesting attenuation of IFN-γ signaling pathway by E2-ER signaling; however, the 

inhibition is not due to global attenuation of IFN-γ signaling, as other important functions 

mediated by this cytokine, such as signal transducer and transactivation 1 (STAT1) 

activation (Chapter 5) and HLA class I expression, remained intact in the presence of E2 

(Chapter 3). E2 decreased GAS luciferase activity without inhibiting STAT1 

phosphorylation as detected by immunoblotting. Although STAT1 phosphorylation was 

not affected by E2-ER activation, this doesn’t exclude the possibility that E2-ER 

activation may interfere with STAT1 binding to the GAS promoter (Figure 7.1).  

One of our goals was to discover if MAPK, which is frequently over activated in 

ERα- breast cancer cells, might be responsible for increased HLA class II, as detected in 
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the human ERα- breast tumors (218) and in the ERα- cell lines MDA-MB-231 and VC5 

(Chapter 3). Indeed the work described in chapter 6, showed that MAPK plays an 

important role in regulating IFN-γ inducible HLA class II expression in the BCCL; 

however, this was independent of ER status. By using MAPK inhibitors that targeted 

different components of the MAPK pathway, I showed a differential effect on HLA class 

II expression. For example ERK is responsible for HLA-DR surface expression, while 

both p38 and JNK are important for HLA class II expression at the transcription level. 

These initial data aided in better understanding the role of different MAPK in HLA class 

II regulation and future work is needed to identify the possible mechanisms involved 

(Figure 7.2).  

Thus, while my thesis strongly supports a role for E2-ER signaling in repressing 

HLA class II expression in ERα+ breast cancer cells through interference with the IFN-γ 

pathway, the mechanism is likely to be more complex and may involve other pathways 

such as MAPK or EGFR, which are overexpressed in MC2, or HER2 signaling pathway, 

which is overexpressed in BT474. 
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Figure 7.1 Activation of ER by E2 interferes with IFN-γ signalling pathway 

Estradiol (E2) enters the cell by simple diffusion, binds to ER, which results in activation 

of ER. Activated ER dimerizes, dissociates from HSP and enters the nucleus. The 

activated ER decreases activation of STAT1 regulated genes and diminishes CIITA 

transcription. 
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Figure 7.2 Differential regulation of HLA class II by MAPK in breast cancer cells. 

ERK activation has dual role in regulation of HLA class II. First, ERK is important for 

the transport of HLA-DR to the cell surface. Second, ERK inhibits CIITA and HLA class 

II expression. P38 and JNK are important in inducing CIITA and HLA class II protein 

expression. 
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7.3. Potential implications of findings  

In the last few years, we have seen substantial progress in the field of tumor 

immunotherapy; however, there are still many gaps and challenges. While there have 

been numerous successes at the bench, in clinical trials and even to the bedside, it is still 

difficult to predict which responses are sustained. Moreover, some of responses are short 

lived and cause autoimmunity in some cases (399). For example treatment of melanoma 

with adoptive immunotherapy that involves the isolation of lymphocytes from patients 

and their activation and expansion in vitro, followed by infusion into patients resulted in 

melanocyte destruction, vitiligo, ocular toxicity and autoimmune thyroiditis, as reviewed 

by Amos et. al. (2011) (400). Conversely, immunotherapies such as those targeting B-

cells (Anti CD19) for treating lymphomas can lead to immunodeficiency (401). 

If these hurdles are cleared, then many cancer patients could benefit from a 

strategy to boost their immune system. Proper understanding of the mechanism of tumor 

immunity is key for development of proper vaccine therapy. The mechanisms responsible 

for modulation of HLA class II in breast cancer cells is still uncertain. Herein, we 

provided experimental evidence that E2-activation of ERα adversely affected STAT1 

activated genes as shown by reduced GAS and CIITA promoter activity in MC2, but not 

in VC5. Importantly, similar results were observed in ERα+ BCCL, MCF-7 and BT-474, 

in which GAS activity, STAT1 regulated genes and HLA-DR were all downregulated by 

E2. In contrast E2 augemented GAS activity and STAT1 regulated genes in the ERα- 

BCCL, MDA-MB-231 and SK-BR-3.  

One pathway by which tumors escape the immune system involves deregulation 

of cell surface HLA class II expression, which is crucial for CD4+ T cell activation (402). 
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Some tumors fails to upregulate of HLA class II molecules even in the presence of IFN-γ, 

which has been attributed to defect in CIITA synthesis, the master regulator of HLA class 

II genes (403). Such mechanisms include impaired CIITA synthesis by pIV CIITA 

hypermythlation and decreased transcription, as was shown by De Lerma Barbaro et., al., 

2008 as a mechanism for reduced CIITA expression in promyelocytic cancer (404). 

Recently, epigenetic targeting of CIITA in breast cancer cells through recruitment of 

histone methyltransferase resulted in inhibition of CIITA expression (74). Deficient class 

II expression in the mouse adencocarcinoma cell line was due to decreased CIITA protein 

stability (405). 

Dysregulation of CIITA expression is not only restricted to tumors as a way to 

escape immune recognition, but pathogens evade the immune system by similar 

mechanisms. For example, the IFN-γ signaling pathway is altered by Cytomegalovirus, 

which results in CIITA repression and, thus, downregulation of HLA class II molecules 

(406). Moreover, murine macrophages infected by Mycobacterium bovis BCG, have 

decreased STAT1α phosphorylation, thus decreasing CIITA expression (407). Likewise, 

Chlamydia infection results in degradation of the upstream stimulatory factor 1 (USF1), 

an important transcription factor for CIITA synthesis (408). All these previous studies 

provide strong evidence that cancer cells and different pathogens have targeted CIITA as 

a way to evade the immune system, suggesting its important role in regulating the 

immune response.  

 The significance of CIITA expression and subsequently, HLA class II in cancer 

remains controversial. In some studies, overexpression of HLA class II in different types 

of tumors, including breast, has been associated with poor outcome and tumor 
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progression (409, 410). It has been speculated that HLA class II positive tumors escape 

from immune surveillance through activating regulatory T-cells results in suppression of 

the immune system (411). On the other hand, hypermethylation of CIITA promoter and 

subsequently, the loss of IFN-γ induced HLA class II expression has been regarded as a 

way of generating immune privilege to cancer cells and preventing their recognition by 

cells of the immune system (404). A possible hypothesis for the different anti-tumor 

immune response may be related to which isoforms of CIITA is activated. For example 

pIII CIITA is responsible for constitutive HLA class II expression, while pIV CIITA is 

responsible for IFN-γ induced HLA class II expression. Yet, IFN-γ is an indicator of 

better immune responses. (106). This suggests that IFN-γ plays a significant role in 

upregulating these molecules in breast cancer cells. Since pIV CIITA is dependent on 

IFN-γ, which is produced by Th1 and cytotoxic T cells that may be present in the tumor 

microenvironment and functions to kill tumor cells, one would expect that the tumor will 

try to shut down the mechanism of IFN-γ induced activation by hypermethylation of the 

CIITA promoter. On the other hand, pIII CIITA, which is constitutively activated and 

correlates with a bad prognosis (203), could be due to the activation of other signaling 

pathways. An example is MAPK in cancer cells, which discordantly express HLA class II 

molecules in the absence of co-stimulatory molecules and thus, stimulate T regulatory 

cells (203, 412). Thus, future studies could attempt to correlate differential class II 

expression and antigen processing with the expression of pIII or pIV CIITA transcripts.  

There is strong experimental evidence to support a positive role for class II 

expression in anti-tumor immunity. For example, studies show that transfecting a murine 
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mammary adenocarcinoma cell line with either the IFN-γ (413) or the CIITA gene (117) 

resulted in tumor rejection in a CD4+ T cell dependent manner by upregulating class II 

antigens. In contrast, other studies suggest that overexpression of CIITA may be harmful 

in tumor therapy due to increased expression of Ii, which favours presentation of 

exogenous antigens and possibly suggests that class II-transfected tumors are more 

immunogenic due to their ability to present endogenous peptide (414, 415). In agreement, 

upregulation of Ii expression in tumor cells was associated with poor prognosis (119, 

416). HLA-DR+ Ii+ and HLA-DM- breast tumors were associated with worse prognosis 

regardless of the ER status (106). The upregulation of Ii may impede an effective HLA 

class II restricted anti-tumor immune response. Probably, Ii blocks the HLA class II 

peptide binding-groove, thus, resulting in inefficient presentation of the endogenous 

tumor specific antigen (TSA) or tumor-associated antigen (TAA) by HLA class II 

molecules (414, 417, 418). Moreover, in the absence of DM, stable exogenous peptides 

(e.g. peptides from tumor antigens that intersected the endocytic pathway) are unable to 

bind. The negative association of HLA-DR and Ii expression with ER in breast carcinoma 

(106), together with our finding that MC2 expressed significantly less HLA class II than 

VC5, suggests that ER negatively modulates HLA class II expression in cancer (Figure 

7.3).  

Normal proteasomal degradation of Ii by cathepsin S in the endosomal 

compartment results in degradation of the Ii chain such that only the CLIP peptide 

remains bound to the peptide-binding groove of HLA class II molecules (18). HLA-DM, 

which acts as a ‘peptide editor’, exchanges CLIP and low affinity binding peptides from 

the peptide-binding groove, with stable and high affinity peptides (11). Although the role 
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of HLA-DM in antigen presentation in the APC is significant, its role in tumor cells is the 

subject of argument. In one study, sarcoma cells transfected with class II without 

coexpression of Ii and DM was highly immunogenic, while tumors cells, which 

coordinately expresses the class II, and two co-chaperones were not effective 

immunogens (414). In contrast, our lab demonstrated that coordinate expression of HLA-

DR and the co-chaperone in breast carcinoma is an independent predictor of survival and 

is associated with Th1 cytokine profile (106). This was also supported by another study 

on ovarian cancer cells that showed high levels of HLA-DMB were associated with 

improved survival (419). HLA-DM is important in preventing surface CLIP expression, 

thus avoiding Th2 type responses (420). In support of that, van Luijn et. al. (2011) 

showed that leukemic blasts of AML patients, which lacked surface CLIP expression, 

stimulated activation of CD4+ Th1 response (421).  

In this study, it was clearly shown that IFN-γ induced CIITA and HLA class II 

were differentially expressed between ERα- and ERα+. This followed on a study from our 

lab showing an increased frequency of HLA class II positive tumor cells in ERα- breast 

carcinoma from younger women as compared to ERα+ tumors from older women (106). 

Since breast carcinomas contain high levels of estrogen, irrespective of menopausal status 

(100), these observations implied that E2 negatively regulates HLA class II in ERα+ but 

not in ERα- tumor cells. Although in vitro studies showed that breast cancer cells 

upregulated HLA class II and behaved as an APC and engaged CD4+ T cells (114), it is 

still not known whether the same mechanism occurs in vivo. However, since several 

studies have shown that HLA class II positive tumors are associated with favourable 

outcomes (103, 106, 410), it suggests that breast tumors can engage CD4+ T cells 
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efficaciously. On the other hand, there are other mechanisms by which tumor cells escape 

immune surveillance. For example, tumor cells that express HLA class II in the absence 

of the co-stimulatory molecules may anergize tumor specific T cells (111, 422).  

Notably, in our study E2-ERα activation interfered with IFN-γ signaling, 

explaining the absence of HLA class II molecules in ERα+ breast tumors even in the 

presence of high IFN-γ (106). Investigations such as this provide improved understanding 

that ERα- and ERα+ breast cancer cells differentially regulate HLA class II expression and 

hence, have different antigen processing and presentation capacities. Thus, targeting 

antigen-processing deviation for the development of successful tumor immunotherapy 

may be different for ERα- and ERα+ breast tumors.  
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Figure 7.3 Significance of HLA class II expression in breast cancer cells 

Coordinate expression of HLA class II (HLA-DR, DM and Ii) are important in proper 

presentation of tumor associated antigen (TAA) to CD4+ Th1 cells. Activation of Th1 

cells supresses tumour growth directly by Fas-Fas Ligand inhibition or indirectly by 

secretion of IFN-γ. Cancer cells can evade immune elimination by modulation of IFN-γ 

signalling pathway. 

Expression of HLA-DR on the cell surface in the absence of HLA-DM, results in the 

formation of unstable HLA-DRα/β dimers. Morover, nonspecific peptides or CLIP may 

be presented in the context of HLA-DR and activate CD4+ T regulatory cells. CD4+ T 

regulatory cells may inhibit tumour suppression by inhibiting activation of CD4+ Th1 

cells. 
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7.4. Study limitations 

7.4.1. Cell lines 

A panel of ERα- and ERα+ breast cancer cells were used in this study as in vitro 

models for breast cancer. These established cell lines are representative of the initial 

breast tumors as described in Table 2.1. The prognosis and treatment are different for 

each subtype (423). Luminal A and luminal B subtypes are ERα+, thus, they can be 

targeted by hormonal therapy (424). Similarly, the HER2 breast cancer can be treated 

with trasuszumab therapy (425). Basal subtype is characterized by the absence of ER, PR 

and HER2 expression and they are known as triple negative, which represents the most 

aggressive, and challenging group for treatment (426). Although the BCCL are reportedly 

representative of the various breast cancer subtypes and have the advantage of 

immortality, easy handling and culturing, they have the disadvantage that prolonged 

culture may modify the cells and alter their genetic properties. For example, MCF-7 cells 

obtained from different laboratories appear morphologically normal, but they differ in 

their rate of growth and response to hormones. This is due to different levels of ER being 

expressed by the cells (427). In addition, some argue that MDA-MB-231, MCF-7, T47D 

and SK-BR-3, which are not derived from the primary tumor, but rather from pleural 

effusion, may behave differently because they are more aggressive and more metastatic 

(294).  

7.4.2. Transfection of ESR1 into an ERα- cell line may not be representative of 

endogenously expressed ERα  
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Transfection is a potent tool used to study gene expression, protein function and 

regulation by introducing genetic materials into the cells. In most of my studies, I used a 

BCCL model of ERα+ line, MC2 (MDA-MB-231 stably transfected with the wild type 

ERα gene) and ERα- line, VC5 (MDA-MB-231 stably transfected with the empty vector), 

to study the mechanism of regulation of HLA class II by ERα. In addition, transient 

transfection of ERα was also carried in a number of experiments. Stable transfections of 

ER are integrated into the host genome and expressed after the cells replicate. In contrast, 

transient transfections of ER are only expressed for a limited period of time and lost by 

cell division (428). Overexpression of ER is toxic to the cells, possibly through 

squelching effects that result in alteration of gene function (429). Moreover, growth was 

inhibited when MDA-MB-231 was transfected with an exogenous ERα cDNA plasmid 

(286). Thus, experimental results obtained by ectopic expression of ERα in cells that lack 

ERα receptor expression might not be entirely applicable to cells that endogenously 

express the receptors. Stable transfection of ERα into MDA-MB-231 resulted in 

morphological changes in the cells to become more luminal than basal (430); however, 

this resulted in decreased cell proliferation as noticed by our lab (unpublished) and other 

(431), which was claimed due to suppression of COX-2 and VEGF-C.  

 

7.4.3. Reporter gene assays 

As an indirect way to measure gene promoter activity, identify estrogen response 

element (ERE) regions and do mutational analysis, luciferase reporter gene assays were 

performed. Luciferase activity has a high sensitivity, is an easy technique, and not 

normally expressed in mammalian tissues (432). However, some of the drawbacks 
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include lack of chromatin structure, regulatory coding regions and distal regulatory 

elements in the promoters; moreover, addition of exogenous components to the cells may 

results in cell toxicity(433). Thus, in order to overcome these issues, we validated the 

reporter assay by testing the downstream effect on genes and proteins by immunoblotting 

and PCR.  

 

7.5.Future directions 

The work described in this thesis provides insight into the complexity of, and 

cross talk between different signaling pathways and HLA class II regulation in ERα+ and 

ERα- breast cancer cells. Despite a large number of experiments and important findings, 

there are still several questions to be addressed in future studies. 

1) We demonstrated that E2-ER signaling adversely affected STAT1 activated 

genes as shown by reduced GAS activity in ERα+. However, due to the complexity of the 

pathways involved and time limitations, the exact mechanisms were not totally resolved. 

To better understand and identify the pathways dysregulated by ERα in the presence of 

IFN-γ, global gene expression analysis by microarray would be the standard technique to 

apply. Microarray analysis identifies gene expression profiling and measures the 

differential downstream gene expression between ERα+ and ERα- breast cancer cell lines. 

MC2 and VC5 cells should be the perfect models for microarray analysis, since they only 

differ by ERα expression. Next, a panel of established ERα+ and ERα- cell lines can be 

examined by microarray analysis and the genes with statistically increased or decreased 

expression between the two groups can be identified. Gene ontology analysis can be 
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performed to determine the biological process associated with the significant dysregulated 

genes as well as in identifying the possible pathways involved. 

 

2) Although our results clearly showed that E2 and ICI had no effect on STAT1 

phosphorylation, they do not exclude the possibility that E2 may interfere with STAT1 

dimerization, nuclear localisation, and binding to a specific promoter. Fluorescence 

microscopy can be done using antibodies specific for phosphorylated STAT1 to identify 

subcellular localization. Furthermore, this technique would allow us to determine if ERα 

interferes with the normal nuclear localisation of STAT1 as compared to ERα- cell lines. 

In order to assess if ERα interferes with STAT1 binding to GAS sequence located in the 

regulatory element of STAT1 activated genes, chromatin immuneprecipitation would be 

the gold standard technique to apply. 

 

3) We determined that the suppressive effect of E2-ER on CIITA promoter activity 

is unlikely to be through direct binding of the predicted ERE in pIV CIITA. This does not 

exclude an alternative-binding site such as AP1 or SP1.  We only explored the 5’ 

untranslated proximal CIITA region for ERE binding sites; however, it was recently 

shown that only 10% of ERE are identified in this region and the majority of the ERE are 

present in the intronic or intergenic regions (363). Thus, ER can regulate genes distally 

from their transcription initiation site, which could be further evaluated in the CIITA gene 

using binding site prediction programs and evaluated them directly by site directed 

mutagenesis and chromatin immunoprecipitation assays. 
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4) Studying the effect of other hormones such as prolactin in the regulation of 

HLA class II expression in breast cancer is of great importance. Prolactin contributes to 

the initiation or progression of breast cancer and is important in HLA class II expression 

in benign breast tumours and MCF-7 cells (91, 93, 434). Several studies have suggested 

cross talk of prolactin and ERα signaling pathways in breast cancer cells (435-437). 

Moreover, prolactin has been implicated directly in several pathways such as; 

JAK2/STAT5 and JAK1/STAT3 and indirectly through cross talk with other signaling 

such as; Src family kinases (PI3K)/Akt and Raf/MEK/ERK in cancer cell lines as 

reviewed in (438). Some of these pathways have been involved in regulation of HLA 

class II expression as previously mentioned (Chapter 6). This may suggest that prolactin 

interacts with one of these pathways to regulate HLA class II expression in breast cancer 

cells. 

 

5) IRF-2 in contrast to IRF1 has oncolytic activity, thus the ratio between IRF1 

and IRF-2 is very important in cells to maintain proper cell cycle and any imbalance in 

this ratio may lead to cancer (439). Both IRF1 and IRF-2 compete for the same binding 

site in the promoter of the genes, but in CIITA, both transcription factors bind 

simultaneously to the same sequence (440). Due to technical problems with antibody 

detection, we were not able to detect specific bands for IRF-2 in immunoblotting. In fact, 

others have discussed similar technical issues (364). Future studies will need to address 

optimization of the antibody as it was shown previously that IRF-2 was the causative 

factor for downregulation of IRF1 in ERα+ cells (441). 
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6) The mechanism behind regulation of HLA-DR transport by ERK is not fully 

understood.  However one study established that ERK signaling regulates endosomal 

trafficking through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-

regulated endosomal pathways. U0126 resulted in inactivation of ERK and expansion of 

the Arf6 compartment, which negatively correlated with HLA class I expression (390). 

ERK may regulate recycling of HLA class II under the same mechanism involved in class 

I, since clathrin independent endocytosis is responsible for recycling of HLA class II from 

the cell surface (393). Thus further identification of the mechanism by which ERK 

regulates HLA-DR should form the basis of future studies. 
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Appendix 1 Kinetics of IFN-γ effect on CIITA expression in VC5.   

Cells were cultured in the presence of IFN-γ (100 Units/ml) for various times and assayed 

for CIITA expression using CIITA #21 antibody and intracellular flow cytometry. The 

graph represents one experiment. 
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Appendix 2 Kinetics for CIITA promoter activity in VC5 cells.  

 Cells were cultured in the presence of IFN-γ (100) Units/ml for various time points and 

assayed for A) pIII CIITA activity using pIII CIITA luciferase construct B) pIV CIITA 

activity using pIV CIITA luciferase construct. CIITA promoter activity is expressed in 

the form of raw data (relative light unit (RLU)) and is a representative of one experiment. 
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Appendix 3 E2-ER signaling pathway interferes with HLA-DRA and invariant chain 

promoter activity in MC2.   

VC5 and MC2 cells were cultured in estrogen-depleted media overnight followed by 

transfection with (A) HLA-DRA luciferase constructs and (B) Ii luciferase constructs. On 

the subsequent day, the cells were treated with vehicle (ethanol), E2 (10-9 M) and /or 

Fulvestrant (ICI; 10-6 M), and stimulated or not with IFN-γ (100 U/ml) for 24 hr. Error 

bars represent the mean ± standard errors of the mean (SEM) of 5 replicates (**p<0.01).  

Promoter activity is expressed in the form of raw data (relative light unit (RLU)) and is a 

representative of one experiment. 
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Appendix 4 IRF1 is significantly reduced in MC2 compared to VC5.  

VC5 and MC2 were treated with vehicle (ethanol), E2 (10-9 M) stimulated or not with 

IFN-γ (100 Units/ml) for 24 hr. Cytoplasmic and nuclear lysates were prepared and 

subjected to immunoblotting probed with IRF1 antibody, GAPDH and/or P84 antibodies 

as a loading control. Figure represents one experiment. 
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Appendix 5 IFN-γ inducible CIITA expressions is downregulated in MC2 at the mRNA 

level.  

VC5 and MC2 cells were cultured in estrogen-depleted medium and stimulated with IFN-

γ (100 Units/ml) for 12 hr. Total RNA was isolated and subjected to RT-PCR analysis 

using primers specific for pIII and pIV CIITA. Figure represents one experiment. 
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Appendix 6 Fulvestrant induces CIITA expression in a dose dependent manner.   

MCF-7 were pre-treated with increasing concentration of Fulvestrant (ICI) as indicated, 

followed by IFN-γ (100 Units/ml) stimulation. Whole cell RIPA lysates were prepared 

and subjected to immunoblotting using ERα antibody (HC-20) and CIITA antibody (#21). 

CIITA and ERα were normalized to GAPDH and the band intensity after normalization is 

presented in the line graph in the form of the ratio of ICI/vehicle. Figure represents one 

experiment. 
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Appendix 7 Effect of MEK inhibitor, U0126, on HLA-DR expression in VC5 and MC2 

cells.  

VC5 and MC2 cells were treated with 10 µM U0126 or vehicle (DMS0) and stimulated or 

not with IFN-γ (100 Units/ml) for 72 hours. HLA-DR surface expression (detected by 

L243) was analysed by flow cytometry. Shaded histogram = isotype control, black line = 

DMSO, grey line = U0126. Figure represents one experiment. 
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