

A Framework for Information Integration using

Ontological Foundations

by

© Yoones Asgharzadehsekhavat

A Thesis submitted to the

School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Ph.D.

Department of Computer Science

Memorial University of Newfoundland

May 2014

St. John’s Newfoundland

ii

ABSTRACT

With the increasing amount of data, ability to integrate information has always been a

competitive advantage in information management. Semantic heterogeneity reconciliation

is an important challenge of many information interoperability applications such as data

exchange and data integration. In spite of a large amount of research in this area, the lack

of theoretical foundations behind semantic heterogeneity reconciliation techniques has

resulted in many ad-hoc approaches. In this thesis, I address this issue by providing

ontological foundations for semantic heterogeneity reconciliation in information

integration. In particular, I investigate fundamental semantic relations between properties

from an ontological point of view and show how one of the basic and natural relations

between properties – inferring implicit properties from existing properties – can be used

to enhance information integration. These ontological foundations have been exploited in

four aspects of information integration. First, I propose novel algorithms for semantic

enrichment of schema mappings. Second, using correspondences between similar

properties at different levels of abstraction, I propose a configurable data integration

system, in which query rewriting techniques allows the tradeoff between accuracy and

completeness in query answering. Third, to keep the semantics in data exchange, I

propose an entity preserving data exchange approach that reflects source entities in the

target independent of classification of entities. Finally, to improve the efficiency of the

data exchange approach proposed in this thesis, I propose an extended model of the

column-store model called sliced column store. Working prototypes of the techniques

proposed in this thesis are implemented to show the feasibility of realizing these

iii

techniques. Experiments that have been performed using various datasets show the

techniques proposed in this thesis outperform many existing techniques in terms of ability

to handle semantic heterogeneities and performance of information exchange.

iv

ACKNOWLEDGEMENTS

This thesis could not be possible without help of a number of people. First and foremost, I

would like to extend thanks to my supervisor, Prof. Jeffrey Parsons for continuous

academic and support of my study and research. I really appreciate his insights and

comments, motivation, immense knowledge, and expertise that added considerably to this

thesis. What I have accomplished academically as a doctoral student would not have

happened without him and his guidance. He provided me with encouragement, advice and

sincere support I needed to complete my doctoral studies. He taught me how to rationally

think big, and follow big goals. Jeff has been a caring and supportive advisor who has

always believed in me, allowing me to pursue independent work. I also acknowledge his

financial support which helped me pursue my graduate studies more easily.

I also would like to thank my supervisory committee members Dr. Jian Tang, and

Dr. Orland Hoeber for their meticulous review of my thesis. In particular, I appreciate Dr.

Hoeber’s great care and insightful comments on my work. I enjoyed and learned very

much working with him during a joint project. I also thank Dr. Renée Miller for providing

test schemas for the experiments.

Appreciation goes out to the staff and faculty of the Computer Science who

offered me assistance in many levels of my graduate studies. Special thanks go out to Dr.

Adrian Fiech and Dr. Jim Wyse. Adrian’s enthusiasm in holding social gatherings helped

boost the sense of community among students and faculty members. Jim has been a very

supportive teacher and a very good friend to me. I experienced Newfoundland boating

with him, and I will never forget his kindness. I would like to thank Darlene Oliver,

v

Brenda Hiller, Elaine Boone, Nolan White, and Paul Price for their help and support

during completion of my program. I also acknowledge the financial contributions of the

School of Graduate Studies of Memorial University which supported my graduate studies.

Thanks to the fellow students in the department of Computer Science for their

friendship and support. I will never forget soccer games and badminton tenements

through which I have found many good friends. I also thank their comments and

constructive criticism during the presentation of some parts of my research.

I express my greatest gratitude to my family, my parents, Parvin and Hasan, my

brothers, Mohamad Reza and Hadi. I thank them for offering me their endless love and

support through my entire life.

Finally, special recognition goes to my wife, Saeedeh, who inspired me and

provided constant encouragement during the entire process. There are no words to convey

how much her unconditional love has helped me to not only survive, but also enjoy this

journey. I also thank her for editing my thesis.

vi

Table of Contents

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

Table of Contents ... vi

List of Tables .. x

List of Figures .. xi

List of Symbols, Nomenclature or Abbreviations ... xiii

Co-Authorship Statement ... xiv

Chapter 1 Introduction and Overview ... 1
1.1 Context and Problem ... 1

1.2 Research Questions ... 5

1.3 Research objectives ... 6

1.4 Research Methods ... 7

1.5 Thesis Organization ... 8

1.6 References ... 12

Chapter 2 Literature Review .. 15
2.1 Schema Mapping ... 15

2.1.1 Mapping Types .. 17

2.1.2 Schema Mapping Generation ... 18

2.1.3 Mapping Verification and Ambiguous Mappings 19

2.2 Data Exchange ... 23

2.2.1 Data Exchange Formalism ... 24

2.2.2 Universal and Core Solutions .. 25

2.3 Data Integration ... 27

2.3.1 Query Rewriting ... 27

2.3.2 Query Processing ... 28

2.3.3 Ontological Queries ... 29

2.3.4 Peer to Peer (P2P) Data Integration ... 30

2.3.5 Incremental Data Integration ... 31

2.4 Semantic Interoperability in Information Integration ... 32

2.4.1 Semantic Heterogeneity Reconciliation ... 32

vii

2.4.2 Challenges in Semantic Reconciliation.. 34

2.5 Theoretical Foundations for Semantic Information Integration 36

2.5.1 Rationale to Use Ontological Foundations .. 37

2.5.2 Using Bunge’s Ontology as a Theoretical Foundation 38

2.6 References ... 44

Chapter 3 SESM: Semantic Enrichment of Schema Mappings 52
3.1 Introduction ... 52

3.2 Need for Semantic Heterogeneity Reconciliation ... 55

3.3 Related Work ... 57

3.4 Schema mapping: from Clio to SESM .. 59

3.4.1 SESM: Semantic Enrichment of Schema Mapping 60

3.5 Experience ... 68

3.6 Conclusion and Future Work .. 72

3.7 References ... 73

Chapter 4 Semantic Schema Mapping and Configurable Data Integration Using

Property Precedence Relations ... 76
4.1 Introduction ... 76

4.2 Data Integration based on Property Correspondences .. 81

4.3 Theoretical Foundations for Semantic Heterogeneity Reconciliation 89

4.3.1 Ontological Foundations .. 89

4.3.2 Formalism .. 90

4.4 Toward Semantically Enhanced and Configurable Data Integration 94

4.4.1 Mappings Enhancement Using Local Property Precedence 96

4.4.2 Generating Semantically Enhanced Mappings .. 100

4.4.3 Query Rewriting Using Manifestation-based Mappings 106

4.4.4 Theoretical Analysis of the Query Rewriting Algorithm........................... 109

4.5 Evaluation .. 112

4.5.1 Experimental Setting .. 112

4.5.2 Datasets and Queries .. 113

4.5.3 Evaluation of Semantically Enhanced Mappings 114

4.5.4 CDI: The Tradeoff between Accuracy and Completeness......................... 118

4.6 Related Work ... 123

4.7 Conclusion and Future Work .. 127

viii

4.8 References ... 128

Chapter 5 EDEX: Entity-Preserving Data Exchange: An Ontological Approach 134
5.1 Introduction ... 134

5.2 Overview and Background .. 139

5.2.1 Motivating Example: Ambiguity in Data Exchange 139

5.2.2 Background and Formalism ... 142

5.3 Towards the Entity Preserving Approach ... 145

5.4 EDEX: Entity preserving Data EXchange .. 150

5.4.1 Step 1: Super Entity Generation .. 151

5.4.2 Step 2: Pruning Redundant Information .. 153

5.4.3 Step 3: Host Selection .. 155

5.4.4 Step 4: Entity Residing .. 158

5.5 EDEX and Core Solution .. 161

5.6 Ambiguity Resolution in EDEX ... 164

5.7 Evaluation .. 166

5.7.1 Experimental Settings .. 167

5.7.2 Datasets .. 169

5.7.3 Phase 1: Quality of Data Exchange.. 170

5.7.4 Phase 2: Efficiency .. 174

5.8 Related Work ... 185

5.9 Conclusion and Future Work .. 188

5.10 References.. 188

Chapter 6 Sliced Column-Store (SCS): Ontological Foundations and Practical

Implications

 ... 192

6.1 Introduction ... 192

6.2 SCS: Ontological Foundations and Practical Implications 196

6.2.1 From Row Store to Column Store ... 196

6.2.2 From Column Store to Sliced Column Store (SCS) 201

6.3 Column Slicing Techniques .. 204

6.4 Column Slicing vs. Database Cracking, Sorting and Bitmap Index 207

6.5 Experiments ... 210

6.5.1 Phase1: The Pure Effect of Slicing on Query Operations 210

6.5.2 Phase2: TPC-H Benchmark ... 213

ix

6.5.3 The Side Effects of Column Slicing Approach .. 214

6.6 Conclusion and Future Work .. 215

6.7 References ... 216

Chapter 7 Summary ... 219
7.1 Overview of the problems and contributions .. 219

7.2 Significance of the Thesis ... 221

7.3 Realization of Research Goals .. 223

7.4 Future Work .. 229

7.5 References ... 230

Bibliography ... 233

x

List of Tables

Table ‎3-1: Ambiguous mappings generated in scenarios C1 and C2 71

Table ‎3-2: New mappings generated based on sequence of relations 72

Table ‎4-1: Examples of different types of property precedence relations extracted from

Amalgam Database (SPP: Simple Property Precedence, COPP: Co-Property Precedence,

CPP: Compound Property Precedence) ... 115

Table ‎5-1: Characteristics of datasets employed in the experiments 170

Table ‎5-2: The number and percent of tables negatively affected in ambiguous scenarios

as well as the effect of error prone scenarios on precision and recall 174

Table ‎6-1: Execution time of TPC-H queries on CS and SCS (ms) 214

xi

List of Figures

Figure ‎1-1: The overview of the research methodology employed in this thesis 7

Figure ‎1-2: The overall architecture of the thesis .. 9

Figure ‎2-1: An example of schema mapping (mp1) between source schema and target

schema using property correspondences (c1, c2) and referential integrity constraints (r1, r2

r3) .. 16

Figure ‎3-1: A generalization relation (a) and its different implementations (b) 56

Figure ‎3-2: An example of sequence of relations in schema mapping 57

Figure ‎3-3: Graphical representation of Lemma 1 ... 66

Figure ‎3-4: forming a composite from two components.. 67

Figure ‎4-1: Two source schemas and a target schema (a), schema mapping expressions

representing relations between sources and the target (b), and instances of src1 and src2 . 82

Figure ‎4-2: Canonical instance and PNF instance based on mappings in Figure ‎4-1(b) and

source instances in Figure ‎4-1(c) ... 88

Figure ‎4-3: An example of applying simple property precedence 97

Figure ‎4-4: An example of applying compound property precedence............................... 99

Figure ‎4-5: Precision and recall computed for six different data integration scenarios .. 117

Figure ‎4-6: Precision and recall computed using Exp-Spc, and query rewriting without

query expansion (None) ... 120

Figure ‎4-7: Precision and recall computed using Query Expansion through generalization

(Exp-Gen) and query rewriting without query expansion (None) 122

Figure ‎5-1: An example of a generalization relation (a) and its different implementations

in the relational database (b) .. 140

Figure ‎5-2: An example of a data exchange setting including source and target schemas in

++Spicy .. 140

Figure ‎5-3: A relational schema (a) and the schema graph of this relational schema (b) 147

Figure ‎5-4: An instance of the relational schema shown in Figure ‎5-3 147

Figure ‎5-5: Relational Ancestor Trees for each relation of the schema in Figure ‎5-3 148

Figure ‎5-6: The target schema residing the source instance .. 156

xii

Figure ‎5-7: RATs constructed for each relation in the target .. 156

Figure ‎5-8: RATs for the target schema .. 165

Figure ‎5-9: The overall architecture of entity preserving approach................................. 168

Figure ‎5-10: Execution time of ++Spicy, SESM and EDEX in Data exchange scenarios

shown in Table ‎5-1 ... 176

Figure ‎5-11: The effect of using redundancy remover component on execution time of

EDEX ... 178

Figure ‎5-12: Execution time of EDEX using SQL Server 2012 (row-store) and SCS

(Sliced Column Store) .. 180

Figure ‎5-13: Execution times of EDEX on data sources of different size (a), different

average depth of RATs (b) and average number of edges(c) .. 182

Figure ‎5-14: Storage space required to run EDEX on Scenarios in Table ‎5-2 using row-

store (RS) and Sliced Column Store (SCS) ... 183

Figure ‎5-15: Storage space required to run EDEX on data sources of different size (a),

different average depth of RATs (b) and different number of edges(c) 185

Figure ‎6-1: Scanned data in row-store, column-store and sliced column-store for a query

including particular values of A and B .. 200

Figure ‎6-2: An example of partitioning technique for nominal (A) and string (B) attributes

 .. 205

Figure ‎6-3: An example of slicing a string property (property B in Figure ‎6-2) 207

Figure ‎6-4: Execution time of QS, QA and QJ for different number of nominal values . 212

xiii

List of Symbols, Nomenclature or Abbreviations

HL7 - Health Level 7

SESM - Semantic Enrichment of Schema Mappings

CDI - Configurable Data Integration

EDEX - Entity Preserving Data Exchange

HSRC - Health System Resident Component

PHIN - Public Health Information Network

NEDSS - National Electronic Disease Surveillance System

Exp-Spc - Query expansion through specialization

Exp-Gen - Query expansion through generalization

xiv

Co-Authorship Statement

I have conducted the research project of this thesis under supervision of Dr. Jeffrey

Parsons. His comments have helped me to revise the ideas and improve the quality of this

thesis. In the following, I elaborate my role in the preparation of this thesis.

Design and identification of the research proposal: I have proposed the research topic

of this thesis after consultation with Dr. Jeffrey Parsons. Early meetings with him and

discussing theoretical foundations in information systems have inspired me to propose the

main ideas. Although the general topic was constrained to deal with ontological

foundations, I independently decided to research ontological foundations for data

integration and data exchange.

Practical aspects of the research: The practical aspects of the research including

literature review, proposing ideas, design of prototypes, development of prototypes, and

performing experiments were undertaken by me. In particular, I have designed, developed

and tested the working prototypes. Dr. Parsons helped me to design and select evaluation

techniques in various parts of the thesis. However, I have designed test cases and

experiments. In addition, I have independently conducted the experiments.

Data analysis: I analyzed the primary results of the experiments. Then, initial results

were investigated in meetings with Dr. Parsons to revise the experiments and prototypes.

I have conducted the final interpretation of the results and evaluating the outcomes.

Manuscript preparation: I have been the primary author of this thesis with Dr. Parsons

being co-author. I wrote a first draft of each paper (chapter). Then, the papers were

xv

revised in an interactive process based on reviews and comments of Dr. Parsons. He has

assisted in improving the quality of this manuscript.

1

Chapter 1 Introduction and Overview

1.1 Context and Problem

The evolution of the Internet is driving data volume growth at an increasing rate.

According to (Beath et al., 2012), the volume of data is expanding annually around 50

percent. Distributing this data over different sources for security, efficiency, reliability, or

other purposes has resulted in creating islands of data. Such islands of data form a

heterogeneous environment in which each data island may hold only part of the data that

is required to fulfill information requests. Although the rapid increase of data is

considered as one of the main reasons for difficulty in finding information, data

fragmentation and existence of data in different heterogeneous data sources is a deeper

problem (Haas, 2006)

Being able to manage and cope with distributed data requires that data be

integrated for decision making and analysis. One possible option to deal with data

heterogeneity is an a priori approach in which database designers follow existing

standards in a domain for data modeling. However, as discussed in (Hentschel et al.,

2009), even if such standards are used, diversity and heterogeneity still exist because data

schemas are developed independently by different people in different contexts. An

alternative solution can be accepting the existence of data heterogeneity and trying to

reconcile it through information integration techniques. Information integration is a

solution for fulfilling information requests in a heterogeneous environment by

establishing connections among data islands. According to Ventana research (San, 2012),

2

more than 57 percent of organizations integrate six or more data sources, which is

expected to reach 68 percent by the end of 2014. Information integration can be

performed through data exchange, in which data is combined and integrated in a single

data source (Fagin et al., 2005), or data integration, in which a query interface works as a

mediator to access data while data remains in the sources. Whether data integration or

data exchange is used, information integration is generally performed based on schema

mappings. Such mappings represent high level relationship between data sources

independent of implementation details (Bonifati et al., 2011). Generating mappings is

considered the first step in information integration and requires a considerable effort

(Halevy, 2010; Doan et al., 2012). A simple search on a travel website such as Expedia

requires integrating tens of data sources powered by schema mapping as the glue to tie

these data sources together.

Generally, information integration is performed in a heterogeneous environment

involving several data sources that are designed and maintained independently by

different parties. In such an environment, local users of data sources are only aware of the

dictionary of the database to which they pose a query. As a result, due to heterogeneities

among different data sources, the terms that a user employs to build a query may not

match the terms in other data sources. Moreover, there might be values in the database

that seem different but are semantically equivalent to the user terms and express the same

intention of the user. To deal with this heterogeneity, considering the semantics of

information content is necessary. Inability to reconcile semantic heterogeneity results in

improper interpretation of concepts, terminology, and metadata, that ultimately hinders

3

proper communication among different information sources (Arch-Int et al., 2003). In

spite of a large amount of research on information integration, semantic heterogeneity

reconciliation is not adequately addressed. In this thesis I identify and address several

problems in existing information integration techniques that are consequences of ignoring

semantics.

First, many existing schema mapping techniques ignore the semantics of relations,

which can result in many ambiguous scenarios (Bonifati et al., 2005; Marnette et al.,

2011; Popa et al., 2002; ten Cate et al., 2013). In such ambiguous scenarios, it is not

possible to decide which mappings should be employed to integrate data solely based on

metadata. In Chapter 3, I argue that since a relational model is not expressive enough to

show the semantics originally contained in a conceptual model, not all semantics are

preserved in translating a conceptual model to a relational model. I contend that without

high level knowledge to reconcile semantic heterogeneities, it is not possible to identify

the semantics behind different types of associations in schema mapping.

Second, past research on schema mapping has largely dealt with the case where

simple property correspondences between properties (representing equivalent properties)

are used to generate mappings. In Chapter 4, I show why such correspondences between

similar properties are not able to handle complex semantic heterogeneities. I argue that

other relationships between properties and the ability to infer a property from a

completely different property are largely ignored in previous work. Using indirect

relationships between properties and inferring implicit properties from existing explicit

4

properties are key points in binding two heterogeneous data sources that have not been

well studied in information integration.

Third, existing data integration techniques employ query rewriting algorithms that

are lossless and consist of statements asserting that some portion of the data is equal to

some other portion of the data. This approach may prevent full data integration because it

ignores bindings between two similar properties that are presented at different levels of

abstraction. Consequently, some potential answers that may satisfy the original query are

ignored. However, an intelligent data integration system must be able to find those

potential answers in addition to exact answers even if this compromises accuracy. This

problem has led this thesis to a new information integration approach that provides

tradeoff between accuracy and completeness in information integration. This does not

mean finding exact answers is less important than finding additional, possibly incorrect,

answers. Rather, I argue that this approach allows discovering some potential answers

that can be pruned to find accurate answers.

Forth, one of the main problems of schema mapping based data exchange is that

this approach only deals with schema level relations between source and target schemas.

In spite of independent progress in schema level and data level approaches for data

exchange, semantic heterogeneities are not completely resolved because of the gap

between these two approaches (Haas et al., 2009). I argue that such semantic

heterogeneities may result in ambiguous scenarios in schema mappings and consequently

improper data exchange. In this thesis, I attribute this problem to confining schema

mapping expressions in class definitions.

5

In this thesis I argue that, due to problems such as these, information integration

has witnessed limited progress in practice. According to Ventana’s research (San, 2012)

in data integration, less than 15 percent of organizations who perform information

integration activities use formal and automated data integration techniques. As discussed

in (Haas, 2006), we lack “a deep understanding of what fundamental operations are

needed to integrate information” and we are not sure if current operations for data

integration through query processing are complete and precise. The lack of theoretical

foundation behind semantic reconciliation techniques has been cited as the main reason

for limited progress in this area (Parsons & Wand, 2003).

In this thesis, I turn to ontology to address the problem of the lack of theoretical

foundations for semantic heterogeneity reconciliation. In particular, I use some

fundamental notions from Mario Bunge’s ontology (Bunge, 1977) for this purpose. The

rationale for choosing this ontology is that it deals with systems in general, it is a

comprehensive ontology covering many other ontologies, and it is well-formalized in

terms of set-theory. In addition, Bunge’s ontology has been widely considered as a

theoretical foundation for conceptual modeling both in theoretical analysis (Parsons &

Wand, 2000; Wand et al., 1999) and in empirical studies (Gemino & Wand, 2004;

Parsons, 2011; Shanks et al., 2002).

1.2 Research Questions

In this thesis, the following primary research questions are addressed:

a) What are the root problems of existing information integration techniques?

6

b) How can ontological foundations be used to enrich semantic heterogeneity

reconciliation techniques?

c) What does it mean to accurately or completely answer a query given semantically

enriched relations among data items?

d) How is it possible to address the problem of ambiguous scenarios in data exchange

and data integration? Can ontological foundations be used to address these problems?

e) How can we improve the performance of data exchange processes using ontological

foundations?

1.3 Research objectives

The goal of this thesis is to propose an information integration framework based on

ontological foundations. To attain this goal, the specific research objectives of this thesis

are:

a) Study deficiencies of the current data integration and data exchange techniques to

handle semantic heterogeneities.

b) Propose ontological foundations for semantic heterogeneity reconciliation.

c) Design and development of a novel data integration system that exploits rich semantic

knowledge to improve the quality of data integration.

d) Design and development of a semantically enriched data exchange system to address

ambiguous mappings in data exchange.

e) Improve the performance of data exchange based on ontological foundations.

f) Comparison of the proposed techniques with common existing techniques.

7

1.4 Research Methods

An overview of the research methodology employed in this thesis is summarized in

Figure 1-1. The research started with an extensive literature review in information

integration. The thesis has been conducted in three main phases including theoretical

analysis of the problems in information integration, constructing prototypes, and

experiments. The research methodology shown in Figure 1-1 is an incremental model that

unlike many sequential models (e.g., waterfall method) allows developing the system step

by step while mitigates the risk of failure by developing prototypes.

Figure 1-1: The overview of the research methodology employed in this thesis

 In the phase of theoretical analysis, the current problems of information

integration techniques were studied. This analysis performed with the goal of finding root

8

problems of semantic heterogeneity reconciliation in information integration to address

the problem of the lack of theoretical foundations for semantic heterogeneity

reconciliation. In particular, we used some basic notions from Mario Bunge’s ontology

(Bunge, 1977). Using these foundations guided the proposition of new approaches in

information integration that are compatible with the basis of this ontology.

In the phase of prototype construction, working prototypes of each of various

components of the information integration framework were implemented. components

were developed feature by feature, and then were tested and evaluated using synthesized

data. In the experimental phase, different real-world datasets from a variety of domains as

well as some synthesized datasets were used. For each component, a comparison between

existing techniques and the technique proposed in this thesis was conducted.

1.5 Thesis Organization

This thesis is presented in manuscript format. Specifically, Chapter 2 provides a

comprehensive review of the literature in information integration. Chapter 3 is a paper

published in ICDE Workshop on Data Engineering Meets Semantic Web (DESWEB’13).

Chapter 4 is a an extended version of a conference paper published in IEEE International

Conference on Semantic Computing (ICSC’12). Chapter 5 is an extended version of a

conference paper accepted in International Conference on Data Management

Technologies and Applications (DATA’13). Finally, Chapter 6 is a conference paper

published in International Conference on Conceptual Modeling (ER’12). The overall

architecture of the thesis proposing a framework for semantic information integration is

shown in Figure 1-2. This architecture shows how different components (each component

9

presented as chapter) provides the semantic information integration services at different

levels of abstraction. More specifically, the architecture in Figure 1-2 represents the

components of the thesis from the theoretical foundations layer to the physical storage

layer. The main components are Data Integration and Data Exchange components that

employ enriched schema mappings and store data at physical storage layer provided by

Sliced Column Store component

Figure 1-2: The overall architecture of the thesis

In Chapter 2, I provide a comprehensive review of the literature in information

integration. In this chapter, schema mapping techniques, different types of mappings,

various methods to generate schema mappings, validation of schema mappings and

uncertainty in mappings are discussed. In addition, ambiguous mappings and current

techniques to resolve such ambiguities in schema mapping are elaborated. This chapter

follows with an overview of data integration techniques based on schema mappings.

Query rewriting, query answering, query processing, and various existing query

10

reformulation techniques are elaborated for data integration. Then, an overview of the

data exchange techniques and challenges to exchange data in distributed and peer to peer

settings are discussed. This chapter continues with semantic heterogeneity reconciliation

as one of the basic components of information integration. In addition, challenges in

semantic heterogeneity reconciliation and fundamental issues in existing techniques are

discussed. Some ontological principles regarding semantic reconciliation techniques to

boost semantic information integration are provided.

In Chapter 3, I propose a set of schemas mapping generation algorithms, in which

relational schemas are enriched by conceptual model semantics, to resolve mapping

ambiguity. In this chapter I show how jointly considering mappings results in exploring

some new plausible mappings that are not generated in many existing techniques. While

existing proposals rely on the key role of user-feedback or data examples to verify

mappings after mapping generation, the approach I propose in this chapter allows the

direct reuse of expert knowledge. I argue that it would be much easier for a domain expert

to prepare a conceptual schema (or domain ontology) than to judge the correctness of

complex schema mappings and resolve ambiguous mappings after each mapping

generation.

In Chapter 4, I propose principled extensions to schema mapping generator

components of data exchange and data integration systems. In the technique proposed in

this chapter, mappings are enhanced incrementally using auxiliary information in terms of

natural relations between properties. I show how complex semantic heterogeneities can be

grounded in ontological foundations that provide a theoretical basis for semantic

11

heterogeneity reconciliation. I argue that direct and indirect inferences can be used to bind

two different data sources. To this end, I first discuss how schema mapping algorithms

can employ such inferences to reconcile semantic heterogeneities. Then, I show how

mappings can be enhanced by using such inferences. I discuss what it means to accurately

or completely answer a target query given some basic relations between properties in

different data sources.

In Chapter 5, to fill the gap between data centric and schema centric approaches

for data exchange, I propose an entity preserving approach that focuses on preserving

source entities in the target independent of classification. In this approach, property

correspondences are directly used to find the best relations in which source entities can be

located without generating schema mappings. I argue that schema mapping expressions

are not expressive enough to convey the whole semantics in data exchange. This chapter

is an extension of Chapter 3, in which instead of using conceptual models to semantically

enhance schema mappings, a solution is proposed that relies solely on source and target

data sources as well as correspondences between properties. In this chapter I employ an

improved data storage model proposed in Chapter 6 to improve the efficiency of data

exchange.

In Chapter 6, I address the problem of efficiency in data exchange. To speed up

processing the entity preserving approach I have proposed in Chapter 5, I suggest a new

data storage model based on ontological foundations. Using these theoretical foundations,

I show that existing column-store data storage models can be improved by column

slicing. Although the column slicing technique proposed in Chapter 6 is an independent

12

paper to improve read-oriented queries, the rationale for adding this chapter to the thesis

is that the column slicing technique is used in Chapter 5 to speed up the data exchange

process. Moreover, the slicing technique proposed in Chapter 6 is also motivated by the

ontological foundations.

Finally, in Chapter 7, I summarize the techniques proposed in this thesis. In

particular, I show the significance and importance of the problems and solutions

discussed in this thesis. I also show how each of the research questions has been

addressed in the thesis. In addition, I highlight the main contributions of the thesis and

discuss opportunities that ontological foundations can contribute to various aspects of

information integration.

1.6 References

Arch-Int, N., Li, Y., Roe, P., & Sophatsathit, P. (2003). Query processing the

heterogeneous information sources using ontology-based approach. Proceedings of

the 18th International Conference on Computers and their Applications, Honolulu,

HI, USA. 438-441.

Beath, C., Becerra-Fernandez, I., Ross, J., & Short, J. (2012). Finding value in the

information explosion. MIT Sloan Management Review, 53(4), 18.

Bonifati, A., Chang, E. Q., Lakshmanan, A. V. S., Ho, T., & Pottinger, R. (2005).

HePToX: marrying XML and heterogeneity in your P2P databases. Proceedings of

the 31st International Conference on Very Large Data Bases, Trondheim, Norway.

1267-1270.

Bonifati, A., Mecca, G., Papotti, P., & Velegrakis, Y. (2011). Discovery and correctness

of schema mapping transformations. In Bellahsene, Z., Bonifati, A. & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 111-147). Berlin, Heidelberg: Springer-

Verlag.

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston,

MA: Reidel.

13

Doan, A., Halevy, A. Y., & Ives, Z. (2012). Principles of Data Integration, Waltham,

MA: Morgan Kaufmann.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: semantics and

query answering. Theoretical Computer Science, 336(1), 89-124. doi:

10.1016/j.tcs.2004.10.033

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual

modeling techniques. Requirements Engineering, 9(4), 248-260. doi:

10.1007/s00766-004-0204-6

Haas, L. M. (2006). Beauty and the beast: the theory and practice of information

integration. Proceedings of the 11th International Conference on Database Theory,

Barcelona, Spain. 28-43. doi: 10.1007/11965893_3

Haas, L. M., Hentschel, M., Kossmann, D., & Miller, R. J. (2009). Schema AND data: a

holistic approach to mapping, resolution and fusion in information integration.

Proceedings of the 28th International Conference on Conceptual Modeling,

Gramado, Brazil. 27-40. doi: 10.1007/978-3-642-04840-1_5

Halevy, A. Y. (2010). Technical perspective schema mappings: rules for mixing data.

Communications of the ACM, 53(1), 100-101.

Hentschel, M., Kossmann, D., Florescu, D., Haas, L. M., Kraska, T., & Miller, R. J.

(2009). Scalable data integration by mapping data to queries. ETH Zurich, Computer

Science, Technical Report, 633.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., & Santoro, D. (2011). ++Spicy: an

open-source tool for second-generation schema mapping and data exchange.

Proceedings of the VLDB Endowment, 4(12), 1438-1441.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

Parsons, J., & Wand, Y. (2003). Attribute-based semantic reconciliation of multiple data

sources. Journal on Data Semantics, 2800(1), 21-47. doi: 10.1007/978-3-540-39733-

5_2

Parsons, J. (2011). An experimental study of the effects of representing property

precedence on the comprehension of conceptual schemas. Journal of the Association

for Information Systems, 12(6), 1.

14

Popa, L., Velegrakis, Y., Hernández, M. A., Miller, R. J., & Fagin, R. (2002). Translating

Web data. Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China. 598-609.

San, R. (2012). Ventana research 2012 value index for data integration. (Research). CA,

USA: Ventana Research.

Shanks, G., Tansley, E., Nuredini, J., Tobin, D., & Weber, R. (2002). Representing part-

whole relationships in conceptual modeling: an empirical evaluation. Proceedings of

the 23rd International Conference on Information Systems, Barcelona, Spain. 89-100.

ten Cate, B., Kolaitis, P. G., & Tan, W. (2013). Schema mappings and data examples.

Proceedings of the 16th International Conference on Extending Database

Technology, Genoa, Italy. 777-780. doi: 10.1145/2452376.2452479

Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the relationship

construct in conceptual modeling. ACM Transactions on Database Systems, 24(4),

494-528. doi: 10.1145/331983.331989

15

Chapter 2 Literature Review

In this chapter, a comprehensive review of the literature in information integration

including schema mapping, data integration, data exchange, semantic issues in

information integration and ontological foundations for semantic heterogeneity

reconciliation is provided.

2.1 Schema Mapping

The first step toward information integration is identifying relationships between source

and target. For this purpose, the database research community has introduced the concept

of schema mapping. A schema mapping is a high level expression using logical

formalism that represents relations between source and target. These high level

abstractions allow separating the specification of the relationships between data sources

from the implementation details. The use of schema mappings helps to better understand

and reason about the relationships between data sources. Such mappings can be

automatically compiled to executable scripts in various databases.

Clio (Miller et al., 2000; Popa et al., 2002) is one of the leading projects in

information integration providing different levels of abstraction in information integration

in an incremental fashion. This system employs the semantics in simple correspondences

between data items in source and target as well as semantics of constraints embedded in

schemas to determine a set of mappings between source and target. This approach has

been used in many recent information integration systems such as HeptoX (Bonifati et al.,

2005; Bonifati et al., 2010) and ++Spicy (Marnette et al., 2011), and the general

16

algorithm has been subsequently extended in several ways to support nested schemas

(Fuxman et al., 2006a), semantic integration (An et al., 2007), and visual languages

(Bohannon et al., 2006; Raffio et al., 2008)

A concrete example of schema mapping between a source and a target schema is

shown in Figure 2-1. The schema mapping is shown by a sentence in first order logic.

This sentence states that whenever the source relation patient contains (x1, x2, x3), and

observation contains the triple (x1, x4, x5), then there exist values y1, y2, y3 and y4 such that

the target relation person contains (x1, y1, y2), and examination contains (x1, y3, y4). This

schema mapping is created from a set of referential integrity constraints (r1, r3) in the

source and target schemas, and property correspondences (c1, c2). In data exchange, such

mappings are used to transform a source instance to a target instance, and on the data

integration side, these mappings are used to rewrite the query posed to a target schema to

a set of queries that are applicable to source schemas.

Figure 2-1: An example of schema mapping (mp1) between source schema and target schema using

property correspondences (c1, c2) and referential integrity constraints (r1, r2 r3)

17

2.1.1 Mapping Types

GAV (Global-As-View) and LAV (Local-As-View) are two important types of mappings.

In GAV, each element of the target schema is specified using a view over the source

schema. For example, ∀x1,…,x5 Observation(x1,x2,x3), Doctor (x2, x4, x5) → ∃ y1

Person(x1, x2, y1) is an example of GAV mapping for the source and target schemas in

Figure 2-1 in which the right hand side of the mapping expression is a single atomic

formula. In this setting, to answer a query posed to the target, symbols in target query are

replaced with their definition in terms of the sources. On the other hand, in the LAV

approach, source items are specified in terms of queries over a (virtual) target schema.

For example, ∀x1,…,x3 Observation(x1,x2,x3) → ∃ y1,y2,y3 Person(x1, y1, y2),

Examination(x1,x2, y3) is an example of LAV mapping in which the left hand side of the

mapping expression is a single atomic formula. In this way, precise semantics is assigned

to sources. As discussed in (Calvanese et al., 2013), the LAV approach may not be

practically realizable since schemas of legacy sources are not well defined enough to

generate a clean description in terms of a query over the target. On the other hand, GLAV

(Global-Local-As-View) are the most general form of mapping assertions, specifying

relations between a view over the source and a view over the target. In other words,

GLAV mappings are generalization of both GAV and LAV. This type of mapping is a

sound mapping where the answers to the view on the source are a subset of the answers to

the view on the target (Calvanese et al., 2013). As discussed in (ten Cate et al., 2009), in

spite of the syntactic simplicity of GLAV mappings, these mappings are able to define

many data interoperability tasks. GLAV mappings are also known as source-to-target

18

tuple generating dependencies (st-tgd) asserting that, if a set of entities exist in the source,

then another set of entities must exist in the target. A source to target dependency is

statement of the form ∀x (ϕ(x) ⇒ ∃y ψ(x,y)) where ϕ(x) is a conjunction of atomic

formulas with free variable x over S, and ψ(x,y) is conjunction of atomic formulas over T

with variables x and y. An example of such source to target dependency is mp1 in Figure

2-1. This thesis focuses on GLAV mappings as the most general expression representing

relations between source and target schemas.

Time specific mappings have also been considered recently (Roth & Tan, 2013).

Generally, in scientific databases, data is accompanied with an implicit time component

representing the publication date. In addition, data may include time specific properties

such as date of birth, graduation date, and transaction date. To handle such time-aware

data, a new approach for schema mapping to support data integration and data exchange

across time was proposed in Roth & Tan (2013). In particular, they proposed a formal

framework for data integration and data exchange across time that allows generating

integrated longitudinal knowledge about entities. This longitudinal knowledge of an

entity indicates when one knows what one knows about the entity.

2.1.2 Schema Mapping Generation

Automatically or semi automatically generating schema mappings is an important step

towards information integration that is already considered in many data integration and

data exchange systems (Bohannon et al., 2006; Bonifati et al., 2005; Bonifati et al., 2010;

Fuxman et al., 2006a; Fuxman et al., 2006b; Marnette et al., 2011; Miller et al., 2000;

Popa et al., 2002; Raffio et al., 2008; An et al., 2007). Generally, mappings are generated

19

using direct correspondences between properties (representing equivalent relations) as

well as integrity constraints. Property correspondences can be identified manually in a

visual interface by users (drawing lines between properties of source and target), or they

can be generated automatically using schema matching techniques (through string

similarities data types, structure similarities).

As an alternative way to generate mappings, a technique based on data examples

was proposed in (ten Cate et al., 2013). In this technique, called example-driven schema

mapping, pairs of source and target examples conforming to the source and target

schemas are used to generate mappings. In (Qian et al., 2012), mappings are generated in

real time using users’ examples without need for direct property correspondences. In this

system, users are isolated from semantics of the source and target schema where there is

no need for users to understand operations required to map source and target. In

(Elmeleegy et al., 2011), a technique is proposed for schema mapping in which query

logs of data sources being mapped are used to increase the quality of mappings generated.

In this technique, an aggressive Chase algorithm is used that allows generation of

different mappings including many-to-many relations. This technique uses a conflict

resolution technique to resolve the attribute correspondence conflicts between logical

relations of the two schemas.

2.1.3 Mapping Verification and Ambiguous Mappings

Mapping generation techniques may result in generating some ambiguous scenarios

where there is more than one way to interpret a transformation rule. Examples of schema

mapping scenarios, in which mapping scenario can be interpreted in several different

20

ways, are discussed in (Alexe et al., 2008). Inability to resolve such ambiguities can lead

to unexpected results in data integration or data exchange systems using such mappings.

We classify existing ambiguity resolution techniques into four categories: verification

using domain ontologies, verification by mapping designer, verification using examples,

mapping debugging, and uncertainty modeling.

A. Verification using domain ontologies: In (Embley et al., 2004), a domain specific

ontology is used to explore relationships in terms of Merge/Split and Superset/Subset

between data sources to resolve ambiguous scenarios. However, as discussed in (Wang &

Pottinger, 2008), generating this type of domain ontology may not be practical in real data

integration scenarios. In (Cappellari et al., 2010), a mapping verification technique, in

which mappings are checked against semantic annotations in source and target schemas is

proposed. This technique assumes that the reconciliation knowledge of experts is

represented as annotations in source and target schemas. This technique allows reusing

this knowledge without direct interference of users in mapping generation process.

However, generating such annotated schemas can also be expensive.

B. Verification by mapping designers: Based on four properties of mappings (mapping

satisfiability, mapping inference, query answerability and mapping losslessness), a

mapping validation technique is proposed in (Rull et al., 2013) in which the system asks a

mapping designer if the mappings satisfy these properties. These properties are used to

check if there is an instance of the database for which the query can return some tuples.

To resolve ambiguous mappings, (Chiticariu et al., 2008) proposed an interactive

21

technique in which user feedback is used to refine mappings. In particular, users are asked

to select what merging technique must be used in each ambiguous case. Unlike Clio’s

mapping generation algorithm, this mapping algorithm resolves ambiguity by taking full

advantage of users’ knowledge in terms of how the integrated schema is generated.

However, this assumption may limit the usage of this approach in large schemas where

many ambiguous cases must be resolved by users. In addition, users must completely be

aware of the semantics of the source and target schema. In a similar approach, to employ

users’ knowledge in schema mapping, a system developed in (Lu et al., 2011) where

semantics of data are interpreted through the tags provided by users in mapping

generation. In this system, the input query is also checked against the tags provided by

users to interpret the semantics of the input query. In (Mandreoli & Martoglia, 2011), a

technique to convert the input structures into a common format is proposed in which users

assign a context to mappings regarding structure characteristics.

C. Verification using examples:

Muse (Alexe et al., 2008) is another example-driven technique using data examples in

which data examples are used to indicate the best mappings among a set of candidate

mappings. This system assists mapping designers to understand and refine mappings.

This system is able to extract the desired semantics based on users’ actions on a set of

examples. In EIRENE (Alexe et al., 2011), given a set of data examples, the algorithm

decides whether or not there exists a schema mapping fitting these data examples. In the

case when no mapping is generated, EIRENE allows users to modify data examples. In

(Bonifati et al., 2008), it is argued that the existence of several possible interpretations

22

results in ambiguity problems affecting the quality of mappings. They proposed a system

to verify mappings (called spicy) in which a mapping verification component checks

candidate mappings and selects those mappings that are consistent with target constraints.

D. Mapping debugging: TRAMP (TRAnsformation Mapping Provenance) (Glavic et al.,

2010) is a mapping debugger tool which allows tracing schema mappings. In this system,

data provenance is considered in terms of transformation provenance and mapping

provenance. Using this technique, it is possible to understand relations between data

transformed and mappings. This technique makes it possible to deal with large complex

schemas in schema mapping. However, debugging integration is a very expensive

process. In SPIDER (Alexe et al., 2006), candidate mappings are first generated using

match driven techniques and then refined through debugging the mappings by users.

E. Uncertainty modeling: As argued in (Das Sarma et al., 2011), because the semantics

of mappings between a mediated schema and sources can be approximate, schema

mapping techniques must be able to handle uncertainty in schema mappings. Moreover,

as discussed in (Dong et al., 2009), it is not possible to find exact mappings due to the

fact that sometimes structured data are extracted from unstructured data. In the case of

using keyword search, modeling uncertainty also allows extracting many possible results

ranked based on the probability of matching. The notion of uncertain query answering has

resulted in a new technique for query answering called probabilistic query answering.

This technique returns a set of ranked top-k results to an input query. In (Dong et al.,

2009), a technique to answer queries using a set of probabilistic schema mappings is

23

proposed. This notion has also been considered in data exchange where the purpose is

generating a target instance as consistent as possible to mappings. In (Magnani et al.,

2005), a technique to generate a set of alternative mediated schemas using probabilistic

relations between data items in source and target is proposed. An empirical study by

(Magnani & Montesi, 2007) shows that using top-k schema mappings in query answering

can result in increasing recall.

2.2 Data Exchange

Data exchange is the process of residing and materialization of source data in the target

such that transformed data conforms to target constraints. In other words, data exchange

entails restricting source data in the target such that source data is reflected as accurately

and completely as possible in the target. In addition to practical tools and systems to

exchange data, there have also been theoretical studies on data exchange that have been

conducted several years after practical development of these systems (Mecca, Papotti, &

Raunich, 2012). These theoretical studies include formalizing the notion of data exchange

(Fagin et al., 2005a; Fagin et al., 2005c), composing schema mappings (Fagin et al.,

2005b), inverting mappings (Fagin, 2007), and many other studies. Formalizing the data

exchange problem has been an important step towards developing data exchange tools.

Several extensions of data exchange setting are discussed in (Pablo, 2009). In

(Fuxman et al., 2006b), a technique, in which target to source dependencies as well as

source to target dependencies are taken into account for data exchange, is proposed. This

forms a peer to peer data exchange setting in which different peers interact autonomously

to exchange data.

24

2.2.1 Data Exchange Formalism

This thesis follows the formalized notions proposed by (Fagin et al., 2005a). In the data

exchange problem, source and target databases are considered as sets of relations. A

relational schema is a finite collection R={R1,..,Rk} of relations in which Ri has a fixed

arity (number of properties). In this setting, source S={S1,..,Sn} and target T={T1,..,Tm} are

two disjoint schemas. An instance I of a schema S is a set of instances over relations of S

where an instance of a relation {A1,...,Ak} is a finite set of tuples in the form of

R(A1:v1,...,Ak:vk).

Different types of dependencies are used in the data exchange context to specify

mappings between source and target. These dependencies include tuple generating

dependencies (tgds) and equality generating dependencies (egds) (Bonifati et al., 2011).

Tuple generating dependencies include source-to-target tuple generating dependencies (s-

t tgds) and target tuple generating dependencies (target tgds). A s-t tgds is a dependency

in which source relations are used in the premise and target relations are used in the

conclusion. This type of dependency is used to specify how a tuple is generated in the

target given a tuple in the source. On the other hand, in a target tgd, only target symbols

are used that are typically employed to specify foreign-keys in the target. Target equality

generating dependencies (egds) are used to show primary key constraints in the target.

In this formalized setting, data exchange is a quadruple (S, T, Σst, Σt) in which S

and T represent source and target schema, respectively. Σst is a set of source-to-target

dependencies representing relations between source and target, and Σt is a set of

constraints in the target. In this setting, the data exchange problem is known as finding a

25

target solution J over T given source instance I over S such that (I, J) satisfy Σst together,

and J satisfies Σt. Instance J is known as a solution for this data exchange.

One of the important questions in data exchange is that given a source dataset,

target schema, and a set of mappings between the source and the target, what would be

the best target instance that must be materialized in the target. In (Bonifati et al., 2011), a

desirable target instance is defined as a legal instance satisfying correspondences between

the source and the target, and integrity constraints in the target. Such instance contains all

source information while no piece of information is reported twice. From the theoretical

point of view, several studies have been conducted on the concept of universal solution,

which is a solution satisfying all mapping expressions (Fagin et al., 2005a) , and core

solution, which is an optimal solution among universal solutions without redundancies

(Fagin et al., 2005c). Core solution has been considered as a good and natural solution

because of irredundancy and completeness. As shown in Chapter 5, the entity preserving

approach proposed in this thesis generates a core solution for the data exchange problem.

2.2.2 Universal and Core Solutions

The notion of homomorphism among two solutions must be defined to formalize

universal solution and core solution. According to the formalism in (Fagin et al., 2005a),

the set of all constant values that may occur in source instances is denoted Const, and an

infinite set of variables (called labeled nulls) are denoted Var such that Var ∩ Const = ∅.

In generating target solutions, variables are used to create new values in the target that are

not in the source. Each element of a tuple t={a1,a2,...,an} over a relation from an instance

is a member of Const ∪ Var. Given K1 and K2 denoting two instances over a relational

26

schema R with values in Const ∪ Var, a homomorphism h: K1 → K2 is a mapping from

Const ∪ Var (K1) to Const ∪ Var (K2) such that:

(1) h(c) = c for every c ∈ Const;

(2) for every fact Ri(t) of K1, Ri(h(t)) is a fact of K2 where, if t = (a1,...,an), then (t)=

(h(a1),..., h(an)).

 Using the concept of homomorphism between instances, a universal solution is

defined as follows: If I is a source instance, then a universal solution for I is a solution J

such that for every solution J´ for I, there exists a homomorphism h: J → J´. Several good

properties of universal solutions justify its choice as a good target solution in a data

exchange problem. This solution is considered as the most general possible solution

because it can be homomoriphically mapped to any arbitrary solution. In addition, as

discussed in (Fagin et al., 2005a), universal solutions of a given source instance in a data

exchange problem are homomophically equivalent. Generally, the Chase algorithm (Popa

& Tannen, 1999) is used to generate universal solutions. This algorithm starts with a

source instance and an empty target instance. In each Chase step, source-to-target

dependencies and target dependencies are applied on the source and target instances as

long as they satisfy these dependencies.

 The solution with smallest size among universal solutions is called the core

solution (Fagin et al., 2005c). Because of the minimality and uniqueness of the core

solution among universal solutions, this solution is considered as an ideal solution for

data exchange. A target instance J among universal solution is called a core solution if

there is no proper subinstance J´ ⊆ J such that there is a homomorphism h: J→J´. A

27

general technique to generate the core solution in a relational data exchange problem is

generating a universal solution using the Chase algorithm and then post processing the

universal solution to remove redundancies. In (Fagin et al., 2005c) a greedy algorithm is

proposed where given a source instance I, a universal solution J generated. Then, each

tuple is checked against source-to-target dependencies and target constraints to find

redundant tuples.

2.3 Data Integration

Data integration is known as virtual information integration in which a query interface

works as a mediator to access data. As argued in (Haas et al., 2009), data integration must

be considered as a process including understanding data, cleaning data, matching

application needs, and representing and standardizing data across data sources. Data

integration can be performed to fulfill different goals. While some applications such as

financial applications require perfect accuracy, in some other applications fast response is

more important than accuracy and completeness. On the other hand, as discussed in

Chapter 4, accuracy can be compromised to achieve complete results. In the following, a

review of some important issues in data integration including query rewriting, query

processing, peer to peer data integration, ontological queries and incremental data

integration is provided.

2.3.1 Query Rewriting

In (Arenas et al., 2004), query rewriting is defined as the following problem: For a query

q, find a query q´ such that given a source instance, the answers of q over the source

28

returns the same result as evaluating q´ over the target. They proposed a technique to

indicate the possibility of rewriting an input query. Query rewriting has also been

considered for keyword query. In (Fagin et al., 2011), an example of keyword query is

proposed in which auxiliary data extracted from rewriting rules are used to reformulate an

input query to generate a set of alternative queries. They proposed a formalized notion of

rewriting based on rewriting rules in which an input keyword query augmented by

additional queries are executed against the underlying search index. In (Marnette et al.,

2010), a rewriting algorithm is proposed in which a set of source to target dependencies

and equality generating dependencies are rewritten to some dependencies without

equality generating dependencies. Then, SQL scripts are used to implement such

dependencies. In this technique the overlap between dependencies is employed for

rewriting.

2.3.2 Query Processing

In query processing using schema mappings, a query posed to the target schema is

answered using source databases and also mappings between sources and target. Query

processing can be performed using two different approaches. First, finding certain

answers, which are answers in all target databases satisfying the schema mapping with

respect to the source. The concept of certain answers originated in the study of

incomplete databases. The concept of certain answers ensures that if a tuple t belongs to

certain answers of a query posed to the source, then t belongs to the result of the query

posed to the target on every solution J for I. On the other hand, in the query rewriting

approach, the target query is reformulated using mappings. Then the rewritten queries are

29

evaluated over the source schema. In the case of different rewritings, the best rewriting is

selected which is the rewriting guaranteeing the maximal set of answers. This approach

ensures returning certain answers. Differences and relations between query rewriting and

query answering are elaborated in (Calvanese et al., 2013). Query rewriting can be

considered as a means to perform query answering while query answering can be

achieved using query rewriting.

Different query processing approaches are proposed depending on various types

of schema mapping expressions. As discussed in (Calvanese et al., 2013), in query

processing using GAV mappings, each target atom is mapped to a query over the source,

and in LAV mappings, each source atom is mapped to a query over the target. On the

other hand, in the general case, queries over the source are mapped to queries over the

target, which is called Query processing under GLAV mappings.

In data integration through query processing, the data integration setting is defined

as: what does answering query q over T mean given a source instance I over the source

schema S, and a set of source-to-target dependencies between source S and target T. As

discussed in (Fagin et al., 2005a) because there may exist more than one target solution J

satisfying Σst, q(J) may return different results. To address this problem Fagin et al.,

(2005a) proposed the concept of certain answers as the answers satisfying intersection of

all q(J)’s where J is any possible target instance satisfying Σst.

2.3.3 Ontological Queries

Another approach in query answering is using domain ontologies in which an input query

is evaluated over ontological constraints as well as a database. Generally, in this approach

30

an input query is rewritten such that the semantics of ontologies are satisfied in the

rewritten query. In (Orsi & Pieris, 2011), an algorithm to compute the perfect rewriting of

a conjunctive query with respect to a linear Datalog± ontology is proposed. An

ontological query answering technique is proposed in (Calì et al., 2012) in which an

extended version of entity relationship diagram (including is-a relations) is used for query

answering. In this technique, chasing a database against a set of inclusion dependencies is

an important step to find answers in an ontological query answering.

2.3.4 Peer to Peer (P2P) Data Integration

Peer to peer data integration is an extension of data integration in which rather than

creating and relying on a mediated schema, peers collaborate directly to integrate data

(Doan & Halevy, 2005). This can be an ideal architecture for organizations to share data

where no peer wants to be in charge of generating and maintaining mediated schema and

mappings between schemas and the mediated schema.

In the P2P architecture, traversing semantic paths of mappings allows finding

answers to a query from other peers that are reachable from the peer to which a query is

posed. Generally, query rewriting techniques are used to reformulate queries. In

(Tatarinov & Halevy, 2004) a technique is proposed to prune paths in the rewriting

process for reducing the number of queries generated. In P2P query answering, first

immediate peers are investigated to find answers. Then, neighbors of peers are taken into

account and so on. The main idea behind this approach is that peers may not have the

complete answers, and thus, the final result will be the union of the results returned from

all peers.

31

The most important advantage of P2P architecture is that there is no need to

generate a mediated schema before information integration. In addition, in this

architecture, peers are free to select from which peer they want to obtain data without

affecting other peers. Moreover, local mapping between peers allows a peer to build a

query using its own vocabulary, where there is no need to know about other peers’

schemas. In the P2P architecture, data integration is conducted locally in each peer where

semantic mappings between data sources of peers must be established. As discussed in

(Halevy et al., 2006; Tatarinov & Halevy, 2004), this is a complex data integration

scenario that requires handling semantics between peers in general while mappings are

distributed between peers. There are also some challenges in peer to peer query

answering. First, finding semantic paths and pruning paths is not a trivial task as some

peers who have the answer may be pruned at an early stage to improve efficiency. On the

other hand, this architecture can result in generating redundant answers.

2.3.5 Incremental Data Integration

The need for incremental data integration has resulted in a new approach in data

integration called pay-as-you-go data integration (Das Sarma et al., 2008). The main

advantage of this approach is that there is no need for full integration of data to provide

useful services for users. In this approach, the integration system starts with few semantic

mappings (can be unsound), and over time, these mappings are refined and improved.

Then, a set of on-the-fly mappings are created that are revised over time. At any point

during incremental data integration, the system must be able to answer queries as best as

possible based on available semantic relationships. This is different from traditional data

32

integration that requires a complete knowledge of semantic relationships before query

answering.

 PAYGO (Madhavan et al., 2007) is an example of pay-as-you-go data integration

systems without need for generating a single mediated schema. In this system,

approximate semantic mappings are established between data sources. Consequently,

uncertainty is modeled in mappings as well as underlying data. An important feature of

this system is that PAYGO does not return a single true answer to a given query. Instead,

the system returns a ranked list of potential answers.

2.4 Semantic Interoperability in Information Integration

According to (Hakimpour & Geppert, 2001), semantic heterogeneity problems occur in

information integration when different data sources use different terms to refer to the

same concept, or they use the same term to refer to different concepts in the real-world.

Such semantic heterogeneities are the consequence of different interpretations of concepts

that usually happens during conceptualization of the real world in a data source (George

& Preston, 2005). This is due to the fact that different people with different background

and vocabularies may design data sources. Such semantic heterogeneity can also be the

consequence of presenting the same concepts at different levels of abstraction.

2.4.1 Semantic Heterogeneity Reconciliation

Semantic reconciliation is a fundamental process required to make intelligent systems and

interaction between them. Semantic reconciliation is required because different people

collect features of the same object in the real-world in a different way. This process

33

should be considered at earlier steps of information integration because secondary

analysis and revising data can be much harder and error prone.

In spite of considerable improvements in information integration to simplify the

schema mapping process, semantic issues are not considered as much as syntax issues in

these systems. However, as discussed earlier, neglecting the semantics of data in data

integration can hinder proper information interoperability. Properly handling semantics

provides common agreement on accurate and complete transformation semantics that can

empower data integration and data exchange processes. In addition, considering

semantics can improve a large and growing body of research on mappings’ management

activities such as mapping inversion, mapping composition, mapping evolution and

mapping maintenance.

Manually extracting semantics of data from documentations and designers

knowledge cannot be a practical solution (Doan & Halevy, 2005). In addition, relying on

clues such as data type, data structure, referential integrity constraints and string

similarities cannot handle full semantic heterogeneities as these clues address only

syntaxes and representations of concepts. Fully reconciling semantics heterogeneities

requires knowledge outside the syntax of data sources. As argued in (Hassanzadeh et al.,

2009), because a real-world concept or characteristic can be represented through different

syntactic representations in different data sources, higher level information such as

domain knowledge is necessary for schema mapping. A general approach for semantic

heterogeneity reconciliation is through relying on a domain ontology as common sense

including explicit definition of terms used in different schemas. In (Embley et al., 2004),

34

a domain-specific ontology is used to explore relationships in terms of Merge/Split and

Superset/Subset between data sources. However, as discussed in (Wang & Pottinger,

2008), generating such domain ontologies may not be practical in real data integration

scenarios. In (Pankowski, 2013) data exchange operations are represented in a formalized

and knowledge based system using shared domain ontologies.

2.4.2 Challenges in Semantic Reconciliation

Despite the large amount of research on information integration techniques, semantic

heterogeneity reconciliation is not well studied for this purpose.

From the schema mapping point of view, identifying property correspondences

representing equivalent relations between properties of the source and the target is the key

to generate mappings. Although generating such property correspondences can be

automated using schema matching techniques, and understanding and maintaining them

can be easily performed by users using visual interfaces, such property correspondences

are not expressive enough to convey the full semantics of a data exchange or data

integration. In (Bonifati et al., 2011), this issue is attributed to the problem of inherent

ambiguity in direct correspondences between properties. More specifically, while

mappings may conform to a set of property correspondences, they may not express the

same semantics. As discussed in (Wang & Pottinger, 2008), deepening the mapping

semantics results in generating richer information integration application. In SeMap

(Wang & Pottinger, 2008), a semantically richer mapping including generalization-

specialization, and ‘Has-a’ relations are used for this purpose.

35

Considering a set of different types of relations between source and target in

schema mapping is not a trivial task because of need to reconcile conflicts between

different matches. This requires handling a larger number of correspondences compared

to equivalent correspondences. Enhanced matching techniques are required for this

purpose, which is a different area of research under schema matching.

Unlike many existing mapping techniques, in which semantic heterogeneity

reconciliation is performed through matching attributes that have similar or the same

meaning in different data sources, an attribute-based semantic heterogeneity

reconciliation proposed in (Parsons & Wand, 2003) uses relations between properties

instead of their actual meaning. They showed how structurally different attributes can

manifest the same higher level property, that consequently can be used for semantic

heterogeneity reconciliation. This thesis shows that relations between properties of

different instances can also be used to describe semantic similarities. More specifically, I

show how complex semantic heterogeneities can be grounded in ontological foundations

that provide a theoretical basis for semantic heterogeneity reconciliation techniques.

In (Pottinger & Bernstein, 2008), it is argued that simple correspondences

between properties of source and target cannot handle the full semantics in schema

mapping. As a result, formal semantics regarding overlapping elements is required to

generate mappings. They employed conjunctive queries that are expressive enough to

address this problem. In this technique, that performs mapping on set of relational

schemas, each relation schema R includes a set of attributes denoted attr(R). A

conjunctive query Q is shown in the form of q(X):- e1(X1), …, en(Xn), in which q and e(X)

36

are relation names. In this formula, the tuples X1, …,Xn have the same arity similar to their

relations. Every variable in X also exists in e1(X1), …, en(Xn). To answer such a query,

constants are assigned to the variable X such that for some assignment of constants to the

variables of their query, e1(X1), …, en(Xn) is true. Consequently, the final answer is the

union of the answers of the queries in the set.

The gap between data centric and schema centric integration activities has been

another drawback in existing information techniques. In Chapter 4, I discusse how

schema mapping expressions can be enhanced considering data centric and metadata

centric information simultaneously. Preserving data semantics in data exchange is a

fundamental issue in data exchange where neglecting this issue can result in improper

data exchange.

2.5 Theoretical Foundations for Semantic Information Integration

Although a large amount of research has been conducted in information integration, there

has been a limited progress in practical use of these techniques (San, 2012). As discussed

in (Haas, 2006), there is a lack of a deep understanding of what fundamental operations

are required to integrate information. In (Parsons & Wand, 2003) it is argued that the lack

of theoretical foundation behind semantic reconciliation techniques has been the main

reason for limited progress in this area. This thesis searches for a solution for this problem

using upper-level ontology, which considers concepts (in particular things and properties)

to describe the real world. Ontology is a branch of philosophy that considers “what is out

there” in the real world (Wand et al., 1999). Unlike domain ontologies used in Artificial

Networks representing a specific domain, ontology can be considered as an “upper-level

37

ontology”, “meta ontology” or “top-level ontology”. Carnap’s ontology (Carnap &

George, 1969) and Bunge’s ontology (Bunge, 1977) are instances of such upper-level

ontologies. In (Milton, 2004), it is argued that upper-level ontologies can provide

theoretical foundations for representation and modelling in information systems to design

more reliable applications and better quality database design.

2.5.1 Rationale to Use Ontological Foundations

As discussed in (Parsons & Wand, 2003), the first step towards semantic heterogeneity

reconciliation in information integration is understanding the meaning and semantics of

what data represent. Since databases represent the characteristics and properties of things

and concepts in the real world, ontological principles can be used to deal with concepts,

things and properties in the real world. In (Fonseca, 2007), the role of ontological

principles for development of information systems is discussed. In (Ceusters et al., 2004),

it is argued that a top-level ontology can be used to support data integration and

information interoperability.

As contended in (Mutis & Issa, 2012), the lack of meaning definition in

conceptual models and data models are the consequence of using representations to map

the world into models. Understanding of a modeller requires answering philosophical

questions such as “What does exist in the real world?”, “What representations should be

used to correctly perform interpretations?” Data modellers use data modeling items as

logical structures of information to represent data that must be understandable by

computers and human. These data representations can be structured when they reflect

38

information based on logic or reflect a description of the logical relations between data

elements in such a way that computer languages or systems can process them.

Organization of data representations in a logical model forms a schema indicating

data content and relationships between them. In (Wand, 1996), it is contended that a real-

world system can be represented using an information system. To analyze the deep

structure of the information system and investigate the role of information systems in

representing the real world, a generalized model of reality is required. To address this

issue, Bunge’s ontology is used in (Wand, 1996) as a basis for information system

modelling. This ontological approach uses fundamental ontological principles as

theoretical foundations for information system modelling.

2.5.2 Using Bunge’s Ontology as a Theoretical Foundation

In this thesis, I use Bunge’s ontology as theoretical foundation for semantic heterogeneity

reconciliation in information integration. To this end, I use some notions from Mario

Bunge’s ontology (Bunge, 1977). The rationale for choosing Bunge’s ontology is that this

ontology deals with systems in general; it is a comprehensive ontology covering many

other ontologies; it is well-formalized in terms of set-theory; it has been widely

considered as a theoretical foundation for conceptual modeling both in theoretical

analyses (Parsons & Wand, 2000; Wand et al., 1999) and in empirical studies (Gemino &

Wand, 2004; Parsons, 2011; Shanks et al., 2002). A UML model and an OWL model of

Bunge’s ontology is proposed in (Evermann, 2009) to make Bunge’s ontology more

accessible to researchers in both the Conceptual Modelling and Semantic Web

community. Note that ontological foundations are only one of the possible foundations

39

for modelling knowledge about the world. As discussed in (Wand, 1996), linguistics and

cognitive sciences can also be studied for this purpose.

According to Bunge’s ontology (Bunge, 1977), the world is made of things that

possess properties. Regardless of data models, databases contain information about the

properties of things. More precisely, databases represent human (data modelers)

perceptions of existing things. Consequently, data items in a database may exist or be

perceived to exist. As theoretical foundations for information integration, I used two

important notions of Bunge’s ontology (Bunge, 1977) including property precedence and

composites. These notions are explored and used in Chapter 3 and Chapter 4. In addition,

we used the concept of assumption of inherent classification advanced by (Parsons &

Wand, 2000) to analysis of the schema mapping techniques.

A. Property precedence: According to Bunge’s ontology (Bunge, 1977), the semantics

of a property can be defined based on its relationships with other properties. In this

thesis, property precedence is used as one of the basic and fundamental types of

relations between properties that can play a significant role to identify the semantics

of properties. In particular, property P1 precedes property P2, if and only if, the set of

things possessing P2 is a subset of things possessing P1. For example, the property of

‘having color’ precedes the property of ‘having red color’ since the set of instances

that are red is a subset of the set of instances that have color. In this definition, the

preceding property is more common property than preceded property.

This notion of Bunge’s ontology has an important role in the context of

classification, and identifying properties and relations between properties. In

40

particular, classes are specified using generic properties, while an instance of a class

possesses specific properties of these generic properties. Possessing a specific

property implies possessing the general property, or in other words, possessing a

general property precedes possessing its specific properties. For example, gender is a

general property of a person class while female is a specific property of gender that

might be possessed by any instance of person class. Each instance having a specific

gender can be a member of a class that includes in its definition “has gender.”

(Parsons & Wand, 2000).

The concept of precedence also plays a crucial role in identifying the semantics of

properties that can provide basis to support semantic information interoperability.

Integrating data from multiple heterogeneous data sources requires identifying data

fields in these data sources that represent the same meaning. Since data is expressed

in terms of properties of things, we need to identify properties that are similar in some

sense. In (Parsons & Wand, 2003), a new definition for similarity using property

precedence notion is proposed. According to this definition, two properties P1 and P2

can be considered as similar if there exists a general property PG such that PG precedes

P1 and P2. According to this definition, P1 and P2 are specific properties manifesting

PG. This notion can provide a new approach for information interoperability showing

that properties that appear different may be manifestations of a higher-level property

that has the same meaning across sources. In other words, the same higher level

concept can be represented through different manifestations that have different

structures. For example, the query to find patients who are in critical condition can be

41

accomplished by a query that searches for patients who have high diastolic blood

pressure in one data source, or by a query that searches for patients with high body

temperature in another data source. In other words, although diastolic blood pressure

and body temperature are not similar properties, and also they are not generalizations

or specializations of the critical condition, they are manifestations of the same higher

level property, which is ‘being in a critical condition’. This is an example of a new

approach in which similarities are not necessarily found in similar structures. Instead,

similarities are inferred from different structures when they are manifestation of the

same higher level concept. This example shows that there may exist different point of

view to interpret similarity. In this example, although diastolic blood pressure and

body temperature are two completely different symptoms, from patients’ point of

view, they are considered as a critical condition.

The property precedence notion has also been used as a theoretical rationale for

explicitly modelling dependence in conceptual schemas (Parsons & Cole, 2004). They

designed and performed an experimental framework to assess the impact of explicitly

representing precedence relations to show semantics of a domain in conceptual

modeling. Their experiments showed the positive impact of including precedence

semantics in class diagrams where properties can be expressed in a hierarchy from

more general to more specific.

In chapters 2 and 3, the concept of property precedence is used for semantic

heterogeneity relations.

42

B. Inherent Classification: According to Bunge’s ontology (Bunge, 1977), things exist

independent of any classes. In other words, existence of things are first recognized

without assigning them to specific class, and then, classes are formed to organize the

knowledge about the characteristics of individual things. As discussed in (Parsons &

Wand, 2000), classification theory also adheres to independence of existence of things

from classification. On the contrary to this fact, as argued in (Parsons & Wand, 2000),

an underlying assumption in information modeling is that everything that is modeled

in a domain of interest in an information system is treated as an instance of a class (or

entity) in an Object-Oriented model (or Entity Relationship model). In (Parsons &

Wand, 2000), this is termed as the assumption of inherent classification. Even though

this is not stated explicitly, the assumption of inherent classification dominates

information modeling where identifying classes of things is considered the first step in

information system modeling. As discussed in (Parsons & Wand, 2000), the

assumption of inherent classification contradicts some theoretical notions in Bunge’s

ontology and also cognitive science. They claim that many difficulties and

complexities in information integration, schema evolution, and information

interoperability in a large extent are the consequence of the assumption of inherent

classification. They also contend that information system modeling based on this

assumption can result in database operation problems including: handling exceptional

instances, reclassifying instances, manipulating instances, and modifying classes.

 Another important consequence of the assumption of inherent classification in

information system modeling is that the semantics of properties of instances must be

43

identified within semantics of being an instance of class. This prevents defining and

assigning an independent semantic to an individual property. However, according to

Bunge’s ontology (Bunge, 1977), properties are basic constructs in the real world

providing the basis to determine similarity of things and to establish classes. Chapter

4 shows how an entity preserving approach avoids the assumption of inherent

classification in data exchange. In Chapter 5, the row store technique is also analysed

based on the assumption of inherent classification. The new storage model proposed

in this thesis (SCS) uses these theoretical foundations to improve query performance

in read-oriented queries.

C. Composites: According to Bunge’s ontology (Bunge, 1977), things in the real world

are either simple or composite which are involved in composition relationships.

Ontological principles postulate that things can be combined to form a “composite”.

Composites possess at least one “emergent property” not possessed by any

component. An emergent property is a property that is derived from properties of its

parts, but it is not reducible to them. For example, a computer can be considered as a

composite thing made up of many parts including processor, memory and other parts.

Properties such as the capacity of memory or CPU speed are hereditary properties of

this computer while a property such as computer power is an emergent property of

this computer as a composite. For another example, considering “a student who is

enrolled in a course” as a composite, the grade of a student is an emergent property of

this composite while student’s age and course name are “hereditary” properties.

44

 According to Bunge’s ontology (Bunge, 1977), every composite possesses at

least one emergent property that is not inherited from any of the parts. As discussed in

(Shanks et al., 2004), a composite thing can be represented as a separate entity class,

or a relationship class (associations) in a conceptual model.

According to (Evermann & Wand, 2005), in a composition relationship, the parts

of the composite are existentially dependent on the composite which cannot be part of

any other composite at the same time. He contends that the Object-Oriented

aggregation semantics are equivalent to the ontological notion of composition. In

Chapter 2, the composite notion of Bunge’s ontology is used as a theoretical

foundation to describe the concept of sequence of relations in schema mappings.

2.6 References

Alexe, B., Chiticariu, L., & Tan, W. (2006). Spider: A schema mapping debugger.

Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,

Korea. 1179-1182.

Alexe, B., Chiticariu, L., Miller, R. J., & Wang-Chiew Tan. (2008). Muse: mapping

understanding and design by example. Proceedings of the IEEE 24rd International

Conference on Data Engineering, Cancún, México. 10-19. doi:

10.1109/ICDE.2008.4497409

Alexe, B., ten Cate, B., Kolaitis, P. G., & Tan, W. (2011). EIRENE: Interactive design

and refinement of schema mappings via data examples. Proceedings of the VLDB

Endowment, 4(12), 1414-1417.

An, Y., Borgida, A., Miller, R. J., & Mylopoulos, J. (2007). A semantic approach to

discovering schema mapping expressions. Proceedings of the IEEE 23rd

International Conference on Data Engineering, Istanbul, Turkey. 206-215. doi:

10.1109/ICDE.2007.367866

Arenas, M., Barceló Pablo, Fagin, R., & Libkin, L. (2004). Locally consistent

transformations and query answering in data exchange. Proceedings of the 23rd ACM

45

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Paris,

France. 229-240. doi: 10.1145/1055558.1055592

Bohannon, P., Elnahrawy, E., Fan, W., & Flaster, M. (2006). Putting context into schema

matching. Proceedings of the 32nd International Conference on Very Large Data

Bases, Seoul, Korea. 307-318.

Bonifati, A., Chang, E. Q., Lakshmanan, A. V. S., Ho, T., & Pottinger, R. (2005).

HePToX: marrying XML and heterogeneity in your P2P databases. Proceedings of

the 31st International Conference on Very Large Data Bases, Trondheim, Norway.

1267-1270.

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., & Summa, G. (2008). Schema

mapping verification: the spicy way. Proceedings of the 11th International

Conference on Extending Database Technology: Advances in Database Technology,

Nantes, France. 85-96. doi: 10.1145/1353343.1353358

Bonifati, A., Chang, E., Ho, T., Lakshmanan, L. V., Pottinger, R., & Chung, Y. (2010).

Schema mapping and query translation in heterogeneous P2P XML databases. The

VLDB Journal, 19(2), 231-256. doi: 10.1007/s00778-009-0159-9

Bonifati, A., Mecca, G., Papotti, P., & Velegrakis, Y. (2011). Discovery and correctness

of schema mapping transformations. In Bellahsene, Z., Bonifati, A. & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 111-147). Berlin, Heidelberg: Springer-

Verlag.

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston,

MA: Reidel.

Calì, A., Gottlob, G., & Pieris, A. (2012). Ontological query answering under expressive

Entity–Relationship schemata. Information Systems, 37(4), 320-335.

Calvanese, D., De Giacomo, G., Lenzerini, M., & Vardi, M. Y. (2013). Query processing

under GLAV mappings for relational and graph databases. Proceedings of the 39th

International Conference on Very Large Data Bases, Trento, Italy. 61-72.

Cappellari, P., Barbosa, D., & Atzeni, P. (2010). A framework for automatic schema

mapping verification through reasoning. Proceedings of the IEEE Data Engineering

Workshops, Long Beach, CA, USA, 245-250. doi: 10.1109/ICDEW.2010.5452703

Carnap, R., & George, R. A. (1969). The logical Structure of the World: and,

Pseudoproblems in Philosophy. Berkley, CA: Open Court Publishing.

46

Ceusters, W., Smith, B., & Fielding, J. M. (2004). LinkSuiteTM: formally robust

ontology-based data and information integration. Data Integration in the Life

Sciences, 2994(1), 124-139.

Chiticariu, L., Kolaitis, P. G., & Popa, L. (2008). Interactive generation of integrated

schemas. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Vancouver, Canada. 833-846. doi: 10.1145/1376616.1376700

Das Sarma, A., Dong, X. L., & Halevy, A. Y. (2008). Bootstrapping pay-as-you-go data

integration systems. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Vancouver, Canada. 861-874. doi: 10.1145/1376616.1376702

Das Sarma, A., Dong, X. L., & Halevy, A. Y. (2011). Uncertainty in data integration and

dataspace support platforms. In Bellahsene, Z., Bonifati, A., & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 75-108). Berlin, Heidelberg: Springer-

Verlag.

Doan, A., & Halevy, A. Y. (2005). Semantic integration research in the database

community: a brief survey. AI Magazine, 26(1), 83-94.

Dong, X. L., Halevy, A. Y., & Yu, C. (2009). Data integration with uncertainty. The

VLDB Journal, 18(2), 469-500. doi: 10.1007/s00778-008-0119-9

Elmeleegy, H., Elmagarmid, A., & Lee, J. (2011). Leveraging query logs for schema

mapping generation in U-MAP. Proceedings of the ACM SIGMOD International

Conference on Management of Data, Athens, Greece. 121-132. doi:

10.1145/1989323.1989337

Embley, D. W., Xu, L., & Ding, Y. (2004). Automatic direct and indirect schema

mapping: experiences and lessons learned. SIGMOD Record, 33(4), 14-19. doi:

10.1145/1041410.1041413

Evermann, J., & Wand, Y. (2005). Ontology based object-oriented domain modelling:

fundamental concepts. Requirements Engineering, 10(2), 146-160. doi:

10.1007/s00766-004-0208-2

Evermann, J. (2009). A UML and OWL description of Bunge’s upper-level ontology

model. Software & Systems Modeling, 8(2), 235-249. doi: 10.1007/s10270-008-0082-

3

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005a). Data exchange: semantics and

query answering. Theoretical Computer Science, 336(1), 89-124. doi:

10.1016/j.tcs.2004.10.033

47

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. (2005b). Composing schema mappings:

second-order dependencies to the rescue. ACM Transactions on Database Systems,

30(4), 994-1055. doi: 10.1145/1114244.1114249

Fagin, R., Kolaitis, P. G., & Popa, L. (2005c). Data exchange: getting to the core. ACM

Transactions on Database Systems, 30(1), 174-210. doi:10.1145/1061318.1061323

Fagin, R. (2007). Inverting schema mappings. ACM Transactions on Database Systems,

32(4), 25-53. doi: 10.1145/1292609.1292615

Fagin, R., Kimelfeld, B., Li, Y., Raghavan, S., & Vaithyanathan, S. (2011). Rewrite rules

for search database systems. Proceedings of the 30th ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, Athens, Greece. 271-282.

doi: 10.1145/1989284.1989322

Fonseca, F. (2007). The double role of ontologies in information science research:

research articles. Journal of the American Society for Information Science and

Technology, 58(6), 786-793. doi: 10.1002/asi.v58:6

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., Papotti, P., & Popa, L. (2006a).

Nested mappings: schema mapping reloaded. Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea. 67-78.

Fuxman, A., Kolaitis, P. G., Miller, R. J., & Tan, W. (2006b). Peer data exchange. ACM

Transactions on Database Systems, 31(4), 1454-1498. doi:

10.1145/1189769.1189778

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual

modeling techniques. Requirements Engineering, 9(4), 248-260. doi:

10.1007/s00766-004-0204-6

George, D., & Preston, U. (2005). Understanding structural and semantic heterogeneity in

the context of database schema integration. Journal of the Department of Computing,

UCLAN 4(1), 29-44.

Glavic, B., Alonso, G., Miller, R. J., & Haas, L. M. (2010). TRAMP: understanding the

behavior of schema mappings through provenance. Proceedings of the VLDB

Endowment, 3(1-2), 1314-1325.

Haas, L. M. (2006). Beauty and the beast: the theory and practice of information

integration. Proceedings of the 11th International Conference on Database Theory,

Barcelona, Spain. 28-43. doi: 10.1007/11965893_3

48

Haas, L. M., Hentschel, M., Kossmann, D., & Miller, R. J. (2009). Schema AND data: a

holistic approach to mapping, resolution and fusion in information integration.

Proceedings of the 28th International Conference on Conceptual Modeling,

Gramado, Brazil. 27-40. doi: 10.1007/978-3-642-04840-1_5

Hakimpour, F., & Geppert, A. (2001). Resolving semantic heterogeneity in schema

integration. Proceedings of the International Conference on Formal Ontology in

Information Systems, Ogunquit, ME, USA. 297-308. doi: 10.1145/505168.505196

Halevy, A. Y., Rajaraman, A., & Ordille, J. (2006). Data integration: the teenage years.

Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,

Korea. 9-16.

Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R. J., & Wang, M. (2009). A

framework for semantic link discovery over relational data. Proceedings of the 18th

ACM Conference on Information and Knowledge Management, Hong Kong, China.

1027-1036. doi: 10.1145/1645953.1646084

Lu, M., Agrawal, D., Dai, B. T., & Tung, A. K. (2011). Schema-as-you-go: on

probabilistic tagging and querying of wide tables. Proceedings of the ACM SIGMOD

International Conference on Management of Data, Athens, Greece. 181-192.

Madhavan, J., Jeffery, S., Cohen, S., Dong, X. L., Ko, D., Yu, C., & Halevy, A. Y.

(2007). Web-scale data integration: you can only afford to pay as you go.

Proceedings of the Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA. 342-350.

Magnani, M., Rizopoulos, N., McBrien, P., & Montesi, D. (2005). Schema integration

based on uncertain semantic mappings. Proceedings of the 24th International

Conference on Conceptual Modeling, Klagenfurt, Austria. 31-46. doi:

10.1007/11568322_3

Magnani, M., & Montesi, D. (2007). Uncertainty in data integration: current approaches

and open problems. Proceedings of the VLDB Workshop on Management of

Uncertain Data, Vienna, Austria. 18-32.

Mandreoli, F., & Martoglia, R. (2011). Knowledge-based sense disambiguation (almost)

for all structures. Information Systems, 36(2), 406-430. doi: 10.1016/j.is.2010.08.004

Marnette, B., Mecca, G., & Papotti, P. (2010). Scalable data exchange with functional

dependencies. Proceedings of the VLDB Endowment, 3(1-2), 105-116.

49

Marnette, B., Mecca, G., Papotti, P., Raunich, S., & Santoro, D. (2011). ++Spicy: an

open-source tool for second-generation schema mapping and data exchange.

Proceedings of the VLDB Endowment, 4(12), 1438-1441.

Mecca, G., Papotti, P., & Raunich, S. (2012). Core schema mappings: scalable core

computations in data exchange. Information Systems, 37(7), 677-711. doi:

10.1016/j.is.2012.03.004

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query

discovery. Proceedings of the 26th International Conference on Very Large Data

Bases, Cairo, Egypt. 77-88.

Milton, S. K. (2004). Top-level ontology: the problem with naturalism. Proceedings of

the International Conference on Formal Ontology in Information Systems, Torino,

Italy. 85-94.

Mutis, I., & Issa, R. R. (2012). Framework for semantic reconciliation of construction

project information, Journal of Information Technology in Construction, 17(1), 1-24

Orsi, G., & Pieris, A. (2011). Optimizing query answering under ontological constraints.

Proceedings of the VLDB Endowment, 4(11), 1004-1015.

Pablo, B. (2009). Logical foundations of relational data exchange. SIGMOD Record.,

38(1), 49-58. doi: 10.1145/1558334.1558341

Pankowski, T. (2013). Semantics preservation in schema mappings within data exchange

systems. Proceedings of the 16th International Conference on Knowledge

Engineering, Machine Learning and Lattice Computing with Applications, San

Sebastian, Spain. 88-97. doi: 10.1007/978-3-642-37343-5_10

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

Parsons, J., & Wand, Y. (2003). Attribute-based semantic reconciliation of multiple data

sources. Journal on Data Semantics, 2800(1), 21-47. doi: 10.1007/978-3-540-39733-

5_2

Parsons, J., & Cole, L. (2004). An experimental examination of property precedence in

conceptual modelling. Proceedings of the 1st Asian-Pacific Conference on

Conceptual Modelling, Dunedin, New Zealand. 101-110.

50

Parsons, J. (2011). An experimental study of the effects of representing property

precedence on the comprehension of conceptual schemas. Journal of the Association

for Information Systems, 12(6), 1.

Popa, L., & Tannen, V. (1999). An equational chase for path-conjunctive queries,

constraints, and views. Proceedings of the 7th International Conference on Database

Theory, Jerusalem, Israel. 39-57.

Popa, L., Velegrakis, Y., Hernández, M. A., Miller, R. J., & Fagin, R. (2002). Translating

Web data. Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China. 598-609.

Pottinger, R., & Bernstein, P. A. (2008). Schema merging and mapping creation for

relational sources. Proceedings of the 11th International Conference on Extending

Database Technology: Advances in Database Technology, Nantes, France. 73-84.

doi: 10.1145/1353343.1353357

Qian, L., Cafarella, M. J., & Jagadish, H. V. (2012). Sample-driven schema mapping.

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Scottsdale, AZ, USA. 73-84. doi: 10.1145/2213836.2213846

Raffio, A., Braga, D., Ceri, S., Papotti, P., & Hernandez, M. A. (2008). Clip: a visual

language for explicit schema mappings. Proceedings of the IEEE 24th International

Conference on Data Engineering, Cancún, México. 30-39. doi:

10.1109/ICDE.2008.4497411

Roth, M., & Tan, W. (2013). Data integration and data exchange: it’s really about time.

Proceedings of the Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA. 342-350.

Rull, G., Farré C., Teniente, E., & Urpí Toni. (2009). MVT: a schema mapping validation

tool. Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, Saint Petersburg, Russia. 1120-1123.

doi: 10.1145/1516360.1516492

Rull, G., Farré, C., Teniente, E., & Urpí, T. (2013). Validation of schema mappings with

nested queries. Computer Science and Information Systems, 10(1), 79-104.

San, R. (2012). Ventana research 2012 value index for data integration. (Research). CA,

USA: Ventana Research.

Shanks, G., Tansley, E., Nuredini, J., Tobin, D., & Weber, R. (2002). Representing part-

whole relationships in conceptual modeling: an empirical evaluation. Proceedings of

the 23rd International Conference on Information Systems, Barcelona, Spain. 89-100.

http://dl.acm.org/author_page.cfm?id=81100186551&coll=DL&dl=ACM&trk=0&cfid=213011817&cftoken=23696339
http://dl.acm.org/author_page.cfm?id=81100152033&coll=DL&dl=ACM&trk=0&cfid=213011817&cftoken=23696339

51

Shanks, G., Tansley, E., & Weber, R. (2004). Representing composites in conceptual

modeling. Communications of the ACM, 47(7), 77-80. doi: 10.1145/1005817.1005826

Tatarinov, I., & Halevy, A. Y. (2004). Efficient query reformulation in peer data

management systems. Proceedings of the ACM SIGMOD International Conference

on Management of Data, Paris, France. 539-550. doi: 10.1145/1007568.1007629

ten Cate, B., Chiticariu, L., Kolaitis, P., & Tan, W. (2009). Laconic schema mappings:

computing the core with SQL queries. Proceedings of the VLDB Endowment, 2(1),

1006-1017.

ten Cate, B., Kolaitis, P. G., & Tan, W. (2013). Schema mappings and data examples.

Proceedings of the 16th International Conference on Extending Database

Technology, Genoa, Italy. 777-780. doi: 10.1145/2452376.2452479

Wand, Y. (1996). Ontology as a foundation for meta-modelling and method engineering.

Information and Software Technology, 38(4), 281-287. doi: 10.1016/0950-

5849(95)01052-1

Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the relationship

construct in conceptual modeling. ACM Transactions on Database Systems, 24(4),

494-528. doi: 10.1145/331983.331989

Wang, T., & Pottinger, R. (2008). SeMap: a generic mapping construction system.

Proceedings of the 11th International Conference on Extending Database

Technology: Advances in Database Technology, Nantes, France. 97-108. doi:

10.1145/1353343.1353359

52

Chapter 3 SESM: Semantic Enrichment of Schema Mappings
1

Abstract

Schema mapping is becoming pervasive in information integration through data exchange

and data integration. In this thesis, we show that current schema mapping generation and

verification techniques are not capable of reconciling some semantic heterogeneity

because of ambiguities in interpreting different types of relations. To address this

problem, we enrich the mapping generation process using conceptual models to recover

the semantics of relations. The technique we propose in this chapter not only avoids

generating ambiguous mappings, but also generates some new semantic mappings that are

neglected in many schema mapping techniques because existing techniques ignore

implicit associations between single and composite relations.

3.1 Introduction

Schema mappings are logical expressions representing relations between a source and a

target schema used for either data integration or data exchange. Several different schema

mapping systems have been developed to facilitate the process of data integration. Clio

(Fagin et al., 2009; Miller et al., 2000; Popa et al., 2002) and HePToX (Bonifati et al.,

2005) are two prominent examples of such systems. The prevailing approach in schema

mapping generation has been based on attribute correspondences, where each

correspondence represents a semantic relationship between an attribute of the target and

an attribute in the source. Such correspondences can be created manually by users in a

visual interface, or automatically by schema matchers (Bellahsene, 2011). Previous

1 Sekhavat, Y. A., & Parsons, J. (2013). SESM: Semantic enrichment of schema mappings. Proceedings of 4th ICDE

International Workshop on Data Engineering Meets Semantic Web, Brisbane, Australia. (to appear).

53

research in schema mapping shows that relying solely on simple attribute correspondence

is not enough because schema mapping algorithms using such correspondences are

incapable of reconciling some semantic heterogeneities. As discussed in (Alexe et al.,

2011), no schema matching tool is capable of generating perfect matching and

consequently, schema mapping algorithms based on them may produce inconsistent and

erroneous mappings. In addition, they may generate ambiguous mappings where several

alternative ways of mapping the source into the target are generated. Moreover, some

semantic mappings are neglected by these algorithms.

 We argue that such deficiencies in schema mapping result from the lack of high

level information required to specify the semantics of schemas. In practice, usually

human intervention is necessary to analyse and validate mappings. As a result, it is the

user or subject matter expert’s responsibility to inspect mappings and select preferred

ones among a set of mappings. As an alternative option, some schema mapping

techniques (e.g., (Alexe et al., 2011)) rely on sample source and target data examples to

refine mappings and resolve ambiguities. However, the quality of refinement is strongly

dependent on the quality of available data examples where they may not be perfectly

representative of data sources. Consequently, human intervention is still required to judge

the quality of mappings generated. In addition, data examples may not be available due to

privacy or commercial limitations. Alternatively, a mapping verification technique is

proposed in (Cappellari et al., 2010) by automatically checking mappings based on

semantic annotations and tuning the mappings using a domain ontology. In this approach,

the knowledge of experts (represented formally in a domain ontology) is used to refine

54

mapping expressions. Each mapping expression is evaluated separately where the verifier

algorithms decide whether a given mapping is valid or not. However, as we discuss in the

next section, considering mappings jointly may result in generating some new mappings

that are not originally generated by common schema mapping algorithms such as Clio

(Fagin et al., 2009; Miller et al., 2000; Popa et al., 2002). In other words, mapping

verification does not necessarily entail generating complete mappings. We argue that

domain knowledge must be considered at the outset of mapping generation rather than in

post-processing of mappings. We show this approach not only prevents generating

ambiguous mappings, but also generates some new semantic mappings that are not

achievable in traditional approaches.

 In this chapter, we use conceptual models as domain knowledge to capture

semantics of schema elements. Generally, conceptual models (e.g., Entity Relationship or

Class diagrams) represent domain knowledge in an implementation-independent fashion,

and are commonly used to guide database design. Since a relational model representation

(using tables containing attributes and relations between tables) is not expressive enough

to show the semantics originally contained in a conceptual model, not all semantics in a

conceptual model are preserved in a relational model representation. We argue that

without high level knowledge to reconcile semantic heterogeneities, a schema mapping

algorithm is not capable of identifying the semantics behind different types of relations

represented using the same technique. This can result in ambiguity in interpreting the

relations that consequently may lead to incorrect mappings.

55

 In particular, our contributions in this chapter are as follows: To avoid generating

ambiguous mappings, we propose a set of schema mapping generation algorithms based

on Clio (Fagin et al., 2009; Miller et al., 2000; Popa et al., 2002), but in which relational

schemas are enriched by semantics of conceptual models before schema mapping. This

technique also explores some new plausible mappings that are not generated using Clio

(Fagin et al., 2009; Miller et al., 2000; Popa et al., 2002). While existing proposals rely on

the key role of user-feedback or data examples to verify mappings after mapping

generation, our approach allows the direct reuse of expert knowledge. We argue that it

would be much easier for a domain expert to prepare a conceptual schema (or domain

ontology) than to judge the correctness of complex schema mappings and resolve

ambiguous mappings after each mapping generation. We built a prototype system

(SESM), and evaluate the technique by applying it on a case study including three

schemas in the healthcare domain.

3.2 Need for Semantic Heterogeneity Reconciliation

The need for semantic reconciliation emerges because different data structures and

elements may be used to realize the same concept. In particular, two relational data

sources might differ in the choice of tables and relations between them. This

heterogeneity results in ambiguity in interpreting relations that consequently leads to

generating some ambiguous mappings.

 Example 1: As discussed in (An et al., 2010), a generalization relation can be

realized through different techniques in a relational model, as shown in Figure 3-1.

Suppose the generalization relation shown in Figure 3-1(a) is implemented using

56

technique G3 in the source and technique G1 in the target. Without considering mapping

refinement, Clio generates mp1: ∀x1,..,x5 Person(x1, x2 ,x3, x4, x5) → Employee(x2, x3),

Doctor(x2, x4) and mp2: ∀x1,..,x5 Person(x1, x2 ,x3, x4, x5) → Employee(x2, x3), Nurse(x2,

x5) as two independent mappings. However, the generalization relation in Figure 3-1(a) is

a disjoint generalization indicating that only one of these mappings is applicable given a

tuple in the source according to the value of role in the source. In addition, in the case of

using technique G4 in the source, the first mapping is applicable when specialty is not

specified in the source, and the second mapping is applicable when degree is not

specified.

Figure 3-1: A generalization relation (a) and its different implementations (b)

Example 2: Consider two relational schemas in Figure 3-2 that represent patients

examined by doctors. For this example, Clio generates:

mp3:∀x1,x2 Patient(x1),ExaminedBy(x1,x2),Doctor(x2) →∃x3 ExaminedIn(x1,x3)

mp4:∀x1,x2 Doctor(x1), WorksFor(x1,x2)Hospital(x2)→∃x3ExaminedIn(x3,x2).

Although these are correct mapping expressions, given the sequence of relations

in Figure 3-2, another mapping exists between the source and target considering the

correlation between mp3 and mp4 which is mp5:∀x1,..,x3 Patient(x1), ExaminedBy(x1, x2),

57

Doctor(x2) WorksFor(x2, x3), Hospital(x3) → ExaminedIn(x1,x3). This problem is

discussed in (An et al., 2007) as a sequence of relations.

Figure 3-2: An example of sequence of relations in schema mapping

Abstracting from these examples because the same technique (i.e., using

key/foreign keys to implement referential integrity constraints) is employed to implement

functional and generalization relations, there are ambiguities in interpreting these

relations. In addition, mapping expressions based on only class-level properties (e.g.,

name, role) are not expressive enough to convey the whole semantics of the mappings,

and some specific properties (e.g., specialty = “surgeon”) are required for this purpose. In

addition, the inability to correlate mappings results in some typical problems including

data duplication (i.e., multiple tuples are generated in the target for a specific tuple in the

source), and loss of associations (i.e., tuples generated in the target are not associated

correctly).

3.3 Related Work

There have been different approaches to add data semantics during schema mapping. A

method is proposed in (Chiticariu et al., 2008) that generates mapping expression through

interaction with users and gain the knowledge of users to refine intermediate schemas

created during mapping generation. A validation tool that allows mapping designers to

58

decide if a given mapping expression has certain desirable properties is proposed in (Rull

et al., 2009). This feedback is used to indicate whether the mappings adequately meet the

intended requirements of users. Spider (Alexe et al., 2006) is a mapping debugging tool in

which users select a set of target tuples, and the system shows how these tuples are

transformed to target tuples through given mappings. In the system proposed in

(Belhajjame et al., 2010) users annotate, select and refine schema mappings by

commenting on results of queries evaluated using the mappings. Alternatively, mapping

refinement is performed using data examples in (Alexe et al., 2011) where each data

example is used as a partial specification of semantics to refine mappings. Spicy (Bonifati

et al., 2008) refines schema mappings by comparing generated target instances with a

sample target instance. In this system, mappings are ranked and finally selected by a

mapping designer. In (Alexe et al., 2008), data examples are employed to help mapping

designers in understanding and refining mapping expressions. This system interacts with

users to infer desired grouping semantics and selecting best mappings among alternative

interpretations of an ambiguous mapping. However, relying on a small set of data

examples may not reveal all the potential pitfalls during mapping refinement. Recently,

global domain knowledge has been used to refine and verify mappings. In (Cappellari et

al., 2010) schema mappings are verified by checking whether each mapping expression is

consistent with semantic annotations in source and target schemas. The technique we

propose in this thesis is based on enhancing schema mappings by enriching schemas

using domain knowledge. The main difference between our approach and mapping

verification and refinement techniques based on domain ontologies is that we use domain

59

knowledge in the first phase of mapping generation to avoid ambiguities, rather than

mapping refinement based on domain knowledge.

3.4 Schema mapping: from Clio to SESM

The technique we propose generates semantic mappings between relational schemas,

which is defined as a finite collection of relations R={R1,..,Rk} with fixed number of

attributes in each relation. In a relational schema, integrity constraints are provided

through key/foreign key constraints where each relation R is accompanied with some

constraints ΣR in terms of foreign keys denoted (R, ΣR).

To generate schema mappings, Clio (Fagin et al., 2009; Miller et al., 2000; Popa

et al., 2002) first identifies the logical relations in both the source and target schemas.

Such logical relations (called paths) are extracted by enumerating all paths from the root

to any intermediate class in a schema. For example, in Figure 3-1(b), PT1: ∀x,y

Employee(x, y), PT2: ∀x,y Doctor(x, y) and PT3: ∀x,y,t Employee(x, y), Doctor(x, t) are

examples of paths for G1. We use the concept of path to define integrity constraints for

mapping expressions which is formally defined as (∀ PTi ∃ PTj, E) where PTi and PTj are

paths, and E is a conjunction of equalities of the form e1=e2, in which e1 is an expression

depending on one of the variables of the PT1 and e2 is an expression depending on one of

the variables of the PT2. For example, the referential integrity constraint r1 regarding the

source schema in Figure 3-1(b) is: ∀x, y Employee(x, y), ∃x', y' Doctor(x', y'), (x=x'). Clio

(Fagin et al., 2009; Miller et al., 2000; Popa et al., 2002) employs logical associations as

well as a set of attribute correspondences to generate mappings. Formally, a

correspondence between a property p1 in path PT1 and property p2 in path PT2 is a triple

60

‹PT1, PT2, p1=p2› which is denoted: p1↔p2. Logical associations allow compiling

attribute correspondences in a meaningful way. The mappings are generated based the

intuition that when there exists a set of correspondences between source and target

schemas, if all elements of the source all occur in an association of the source schema,

and all elements of the target all occur in the same association of the target schema, these

correspondences can be processed together.

3.4.1 SESM: Semantic Enrichment of Schema Mapping

We use a similar approach used in Clio (Fagin et al., 2009; Miller et al., 2000; Popa et al.,

2002) to capture logical associations, with the difference that schemas are annotated with

the semantics of conceptual models before mapping generation. For this purpose, using

conceptual models corresponding to relational models in source and target, foreign keys

are annotated with generalization (g) or functional (f) relations. Mapping between a

conceptual model and a relational schema is a different research problem which is beyond

the scope of this thesis. Without loss of generality and in order to simply explain the

algorithm, we assume the same name is used for concepts (entities) in conceptual models

and relations (tables) in a relational schema. In the case of a generalization relation, this

algorithm finds a set of entity pairs (a1, a2) where a1 is a subclass and a2 is a superclass.

Then, for each pair, the algorithm finds corresponding tables and marks foreign keys

implementing these relations as generalization (g). Accordingly, foreign keys

implementing functional relations are labeled as (f). The details of this process are shown

in Algorithm I.

61

──

Algorithm I (Schema Annotator): Preprocessing a schema based on a conceptual model

──

Input: Relational schema RS=(R, null), Conceptual model CM

Output: Annotated relational schema AR= (R, ΣR=null)

1: S ← extract the set of relations in CM

2: foreach relation r in S

3: Extract entity pair (a1, a2) where r is the relation between a1 and a2

4: such that a1 references a2

5: T← Type of the r in CM //that can be functional (f) or generalization (g)

6: (x1, x2) ← find corresponding entities in RS such that there exists a

7: foreign key between x1, and x2 having x1=a1 and x2=a2

8: Mark the foreign key related to this relation as T

9: Add the path related to this foreign key (i.e., ∀ PTi ∃PTj, (E, T)) to ΣR

10: Return AR

──

We use different techniques to generate logical associations based on

generalization and functional relations. In the case of functional relations, the Chase

algorithm is applied on a path PT based on a referential integrity constraint (∀PT1 ∃PT2,

E) where in each step, when PT1 is subsumed in PT but PT2 is not subsumed in PT, a new

path with PT2 added to existing associations (Fagin et al., 2009). In the case of

generalization, we use a modified version of the Chase that finds maximal generalization

associations. A maximal generalization association is defined as a path from the highest

superclass to a lower subclass. For a given generalization relation g1, Algorithm II checks

if there exists another generalization g2 such that the superclass of g2 is the subclass of g1.

Once the algorithm finds a g2 with this condition, (g1, g2) is added as a logical

generalization association. In the next round, the last item in each sequence is checked

with other generalization relations to see if it can be expanded. The algorithm continues

62

until no generalization relation can be added to the existing set of associations. The final

set is returned as a maximal set of generalization associations.

──

Algorithm II (Association Generator): Generating logical generalization associations

──

Input: Annotated relational schema AR

Output: A set of logical generalization associations GA

1: S ← set of relations in AR marked with g (indicating generalization)

2: GAcollection ← null

3: foreach relation r in S

4: if r= (e1, e2) and e1 is a root class, then add (e1, e2) to GAcollection

5: do {GA ← GAcollection

6: GAcollection ← null;

7: foreach (e1, e2) in GA

8: If there exist e3 in AR such that e3 is a subclass of e2, then

9: Add (e1, e2, e3) to GAcollection

10: Else Add (e1,e2) to GAcollection

11: }while (GA != GAcollection)

12: return GA

──

Clio (Fagin et al., 2009; Miller et al., 2000; Popa et al., 2002), uses the triple ‹A
S
, A

T
, E› to

represent a mapping expression where A
S
 and A

T
 are logical associations in the source and

target schemas, respectively, and E is a conjunction of equalities between class level

properties of A
S
 and A

T
. However, as discussed in Section 3.2, class-level properties are

not capable of conveying the full semantics of mapping as some mappings exist based on

possessing specific properties. To address this problem, we use the concept of

manifestation which is a specific value v∈D assigned to property p where D is the domain

of values of p. Using this concept, we employ a new structure for mappings supporting

specific properties called manifestation-based mapping.

Definition 1: A manifestation-based mapping (mp) is a statement in form of: mp:

A
S
 in S, A

T
 in T [with M]

63

In this formula, A
S
 and A

T
 are logical associations in source (S) and target (T),

respectively. A mapping statement can have a set of manifestations M (i.e., constraints in

terms of possessing specific properties)

that represents conditions under which a mapping

statement exists. The semantics of a mapping statement is that for a logical association A
S

in source, there exists a logical association A
T
 in target regarding manifestations in M.

3.4.1.1 Ontological Foundations

Upper-level ontology has been widely used as a theoretical foundation for conceptual

modeling, both in theoretical analyses (Parsons & Wand, 2000) and in empirical studies

(Gemino & Wand, 2004). Using ontology, we aim to address some problems in schema

mapping that have origins in specifications used to represent data in heterogeneous data

sources. Resolving ambiguities in schema mapping requires carefully studying structures

and relations between them in data models. In (Sekhavat, 2012; Sekhavat & Parsons,

2012), we showed how ontological foundations can be used for semantic heterogeneity

reconciliation in data integration. In this thesis, we use these foundations to enhance

schema mapping. In particular, we employ some aspects of Bunge’s ontology (Bunge,

1977) to resolve semantic heterogeneities and reconcile ambiguities. According to this

ontology, a domain of interest is a set of things, where each thing possesses at least one

property (the term thing refers to any phenomenon exists in the domain in a specific

period of time). Properties are the basic constructs in Bunge’s ontology that represent the

characteristics of existing things in the real world. In particular, we use property

precedence and composite notions in Bunge’s ontology to provide foundations for

enhanced schema mapping.

64

Property precedence in Bunge’s ontology provides a basis to study relations

between properties in information and database systems (Wand & Weber, 1990). Property

P1 precedes property P2 (denoted: P2 → P1) if and only if the set of things possessing P2 is

a subset of things possessing P1 (e.g., the property ‘having gender’ precedes the property

‘being female’ since the set of instances that are female is a subset of instances that have

gender). We use this concept for mapping generation to infer general properties of a class

from its specific properties for semantic heterogeneity reconciliation purposes. In

(Sekhavat & Parsons, 2012), we showed how property precedence relations in a schema

can be used to infer implicit properties and enhance mapping expression.

3.4.1.2 Mapping Generation for Generalizations Relations

Abstracting from the definition of property precedence, a generalization relation is a

special case of property precedence. According to this definition, when property p1

precedes property p2, everything possessing p2 also possess p1. This implies that

possessing p1 by an instance can be inferred from the fact it possesses p2. In the same

way, in a generalization relation, possessing a specific property of a subclass implies

possessing general properties of its superclass. In other words, properties of a superclass

precede specific properties of the subclasses. For example, in Figure 3-1(a), having SIN

precedes specialty of a doctor, or in other words, possessing specialty implies possessing

SIN. To recover the concept of generalization, we use correspondences between

properties in source and target schemas as well as property precedence relations in the

target. More specifically, it is possible to infer a property precedence relation between

two properties in the source if there exists a property precedence relation between their

65

corresponding properties in the target. The details of the process to generate mapping

expressions based on generalization are shown in Algorithm III.

──

Algorithm III (Mapping Generator): Generating mapping expressions based on generalization

──

Input: Set of logical generalization associations GA

 Relational schema in the source RS and target RT

 Set of property correspondences CR

Output: Set of mapping MP

1: // Step1 (using lemma 1 to recover property precedence relations)

2: foreach property precedence pp = p'2 → p'1 in RT

3: foreach relation rs in the source

4: If there exist p1, p2 ∈ rs such that p1↔ p'1 and p2↔ p'2 then

5: Add p2 → p1 to ΣRS

6: //Step2 (creating mappings based on logical generalization associations)

7: foreach generalization association g in RT

8: sb ← the final subclass of g

9: P←set of properties in sb that are not in their superclass

10: foreach relation rs in the RS

11: If there is property precedence p2 → p1 in ΣRS such that p1 has

12: a correspondence c1 in CR between properties p1 and p'1

13: in superclass of sb, and a correspondence c2 between p2

14: and p'2 in sb then

16: If there is a property in rs indicating the type of subclass // G3

17: Create manifestation M regarding the value representing

18: the subclass

20: else // G4

21: Create manifestation M such that for each property p in rs

22: representing other subclasses p=null is added to M

23: add mapping [mp: rs in S, g in T with M] to MP

24: return MP

──

Lemma 1: let p1 and p2 denote two properties in the source, and p'1 and p'2 two

properties in the target. The relation p2 → p1can be inferred from p'2 → p'1 if there exist

correspondences p1↔p'1 and p2↔p'2.

Proof: A correspondence p1↔ p'1 implies that there exists a path PT1 with property

p1 and PT'1 with property p'1 such that p1=p'1. Accordingly, p2↔p'2 implies that there

66

exists a path PT2 and PT'2 such that p2=p'2. As a result, by replacing the equivalent

properties in p'2 → p'1 (p1 with p'1, and p2 with p'2), we can infer p2 → p1. Lemma 1 is

depicted in Figure 3-3.

Figure 3-3: Graphical representation of Lemma 1

3.4.1.3 Mapping Generation for Sequence of Relations

According to Bunge’s ontology (Bunge, 1977), things can be combined to form a

“composite”. Composites possess at least one “emergent property” not possessed by any

component. An emergent property is a property that is derived from properties of its parts,

but it is not reducible to them. For example, considering “a student who is enrolled in a

course” as a composite, the grade of a student is an emergent property of this composite

while student’s age and course name are “hereditary” properties. According to Bunge’s

ontology, every composite possesses at least one emergent property that is not inherited

from any of the parts (Bunge, 1977). As discussed in (Shanks et al., 2004), a composite

thing can be represented as a separate entity class, or a relationship class (associations) in

a conceptual model.

67

When two entities and an association between them represent a composite, the

properties of this association can be considered as emergent properties of the composite

(i.e., not properties of its parts), and the properties of parts can be considered as

hereditary properties of this composite. For example, as shown in Figure 3-4, considering

a “doctor who works for a hospital” as a composite, the hereditary properties of this

composite will be the properties of a doctor and a hospital, and the mutual properties

between a doctor and a hospital (the properties of worksFor) will be the emergent

properties of this composite. Considering a “doctor who work for a hospital as a

composite”, and the examined relation between patient and this composite, there is an

indirect relation between a patient and a hospital (as a part of this composite).

Figure 3-4: forming a composite from two components

To generate new mappings based on the concept of sequence of relations, the algorithm

proposed in this chapter generates composite in the first step as shown in Algorithm IV.

Starting from simple entities and functional relations between them, this algorithm

generates composites by adding the properties of parts as hereditary properties, and the

68

properties of a relation between parts as emergent properties. Formally, we define a

composite as a combination of two entities E1 (with properties P1), and E2 (with properties

P2) and relations between them r (with properties Pr) and denoted: (Ph, Pe) where Ph =

P1∪P2 is the set of hereditary properties, and Pe=Pr (Pe ≠ ∅) is the set of emergent

properties.

──

Algorithm IV (Mappings for Composites): Generating mappings based on a sequence of

relations

──

Input: Relational schema in the source RS and target RT

 Set of property correspondences CR

Output: Set of mappings MP

1: // Step1 (generating composites)

2: S ←a subset of relations in RS having at least one extra property except

3: the IDs of entities connected through this relation

4: foreach relation r in S

5: (e1, e2) ← a pair of entities that are connected through r

6: create comp = (properties of e1∪properties of e2, properties of r)

7: Add comp to CS

// set of composites in the source

8: Repeat Step 1 for RT

and generate T and CT

9: // Step2 (generating mappings from a set of entities and composites)

10: AS (and AT) ← logical associations generated from entities and CS

11: (and CT) in the source (target)

12: A (and B)← a subset of associations in AS (and AT) such that covers at

13: least one source (target) path in correspondences of CR

14: foreach pair <a, b> in A×B

15: C ← {c| c∈ CR and c is covered by <a, b>}

16: If C = null then continue;

17: Let C= {c1,...,cm}

18: foreach ci in C

19: let e the equality in ci

20: update variables of a and b according to e

21: m = a in S b in T ; MP←MP ∪ {m}

22: Return MP

──

3.5 Experience

We built a prototype system (SESM) and conducted a case study to indicate the

effectiveness of our algorithms. The current version of SESM does not have a visual

69

interface, and relational schemas including entities, properties and constraints as well as

conceptual models, property precedences, and attribute correspondences, are provided as

text files for the system. SESM is compared with ++Spicy (Marnette et al., 2011) which

is an open source implementation of Clio’s schema mapping algorithms, in which schema

matching is built in schema mapping process. Through this study, we aim to indicate to

what extent mappings generated by SESM are capable of resolving ambiguities, and if

there is a sufficient number of such mappings to make a considerable improvement in

data integration process. We employed three real-world physical relational schemas in the

healthcare domain including HSRC, PHINand NEDSS that are different physical

implementations of HL7 (Health Level 7) reference model including 48, 36 and 42 tables,

respectively. Considering each of these schemas as a source or target, we formed a setting

including six states in the form of schema1-schema2 in which schema1 and schema2 are

source and target schemas, respectively. We identified two different scenarios C1 (a

generalization relation is realized through technique G3 in schema1, and technique G1 in

schema2), C2 (a generalization relation is realized through technique G4 in schema1, and

technique G1 in schema2). According to examples discussed in Section 3.2, these

scenarios are error prone scenarios that result in generating ambiguous mappings. HSRC,

PHIN and NEDSS include 15, 24 and 20 generalization relations, respectively. As shown

in Table 3-1, for the scenarios C1 and C2, a significant number of ambiguous mappings is

generated by ++Spicy when the semantics of generalization relations are ignored. For

example, in HSRC, relation Individual is realized through technique G4 (see Figure 3-1)

in which table Entity is used to store Person and nonPerson organism. On the other hand,

70

two separate tables (i.e., Person, nonPerson) are used in PHIN where common properties

are stored in Entity table. In this case, ++Spicy generates two ambiguous mappings (one

for mapping Person to Entity and one for mapping nonPerson to Entity) that must be

resolved manually by a mapping designer. However, SESM generates two different

mappings including specific properties indicating which mapping must be applied in data

integration regarding the value those properties. Note the focus of this evaluation is on the

ability to handle ambiguity in the presence of generalization relations. In the remaining

scenarios, similar mappings are generated for both systems.

To understand difference between SESM and ++Spicy in schema mapping, we

review an example. Suppose the source schema includes relation Instructor (Name,

STNo, EMPNo), and the target includes relations Grads (name, STNo) and Profs (name,

EmpNo). Given these schemas and property correspondences between name in source

(Instructor) and name in target (Grad and Prof) as well as correspondences between STNo

and EMPNo in the source and target, the following schema mapping expressions m1, m2

are generated by ++Spicy.

m1: for each x1, x2, x3: Instructor (Name: x1, STNo: x2, EMPNo: x3) → Grad (name: x1,

STNO: x2).

m2: for each x1, x2, x3: Instructor (Name: x1, STNo: x2, EMPNo: x3) → Prof (name: x1,

EMPNO: x3).

Given a source instance [Instructor(I1, st1, null), Instructor(I2, null, emp1)],

++Spicy uses these mappings to generate the target instance:

[Grad(I1, st1), Grad(I2, null), Prof(I1, null), Prof(I2, emp1)].

71

The problem is that for a given tuple in Instructor, ++Spicy generates two different

mappings while only one of them is acceptable according to STNo and EMPNo. This

ambiguity between m1 and m2 results in generating redundant information in the target

while Grad(I2, null) and Prof(I1, null) are unacceptable.

On the other hand, SESM generates the mappings n1 and n2 where:

n1: for each x1, x2, x3: Instructor (Name: x1, STNo: x2, EMPNo: x3) → Grad (name: x1,

STNO: x2) with EMPNO = null

n2: for each x1, x2, x3: Instructor (Name: x1, STNo: x2, EMPNo: x3) → Prof (name: x1,

EMPNO: x3) with STNo = null

In these mappings, EMPNO = null and STNo = null provide conditions under

which a mapping is applied. Such mappings avoid generating redundant tuples Grad(I2,

null) and Prof(I1, null) for the source instance [Instructor(I1, st1, null), Instructor(I2, null,

emp1)] in comparison to ++Spicy.

Table 3-1: Ambiguous mappings generated in scenarios C1 and C2

Source-target
++Spicy SESM

C1 C2 C1 C2

HSRC-PHIN 9 2 - -

HSRC-NEDSS 8 6 - -

PHIN-HSRC - 8 - -

PHIN-NEDSS 15 8 - -

NEDSS-HSRC 14 4 - -

NEDSS-PHIN 7 13 - -

The number of functional relations between a single entity and a composite within

a schema indicates to what extent that schema has potential to generate mappings based

on sequence of relations. As shown in Table 3-2, a considerable number of mappings are

generated based on this concept in all six settings that shows the importance of

identifying composites and relations between them for capturing semantic relations

among entities. The importance of generating these new mappings is identifying more

72

complete associations between source and target schemas. Such complete set of mappings

prevents generating redundant tuples when these mappings are used to generate the target

instance. Repetitive composites are pruned by assigning a unique identifier for each entity

and assigning a concatenation of ids of parts to each composite.

Table 3-2: New mappings generated based on sequence of relations

Source-

Target

HSRC-

PHIN

HSRC-

NEDSS

PHIN-

HSRC

PHIN-

NEDSS

NEDSS-

HSRC

NEDSS-

PHIN

++Spicy - - - - - -

SESM 36 31 36 45 31 45

3.6 Conclusion and Future Work

In this chapter, we discussed how ignoring the semantics of generalization relations can

results in generating ambiguous mappings. Unlike many existing works that try to resolve

ambiguities and verify mappings after mapping generation, we proposed a set of

algorithms that address this problem by preprocessing relational schemas and recovering

the semantics of generalization relations based on conceptual models and property

precedences. We used the property precedence notion in Bunge’s ontology (Bunge, 1977)

to differentiate between class-level and specific properties when properties are

represented at the same level in the same relation. We also used the concepts of

composites and emergent properties as an ontological foundation for the problem of

sequence of relations. Using these concepts, we showed how indirect relations between

entities in a schema can be employed to create some new plausible semantic mappings

that cannot be identified in traditional techniques (Marnette et al., 2011). We built a text-

based version of our algorithm (SESM), and used a case study in the healthcare domain to

73

show the effectiveness of our approach in heterogeneity avoidance without need for

human intervention after generating mappings.

One direction for future work involves exploring other implicit semantics in

conceptual models to generate new plausible mappings. Using this technique, we can

expect to generate some new complex mapping expressions that cannot be generated by

current mapping techniques.

3.7 References

Alexe, B., Chiticariu, L., & Tan, W. (2006). Spider: A schema mapping debugger.

Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,

Korea. 1179-1182.

Alexe, B., Chiticariu, L., Miller, R. J., & Wang-Chiew Tan. (2008). Muse: mapping

understanding and design by example. Proceedings of the IEEE 24rd International

Conference on Data Engineering, Cancún, México. 10-19. doi:

10.1109/ICDE.2008.4497409

Alexe, B., ten Cate, B., Kolaitis, P. G., & Tan, W. (2011). Designing and refining schema

mappings via data examples. Proceedings of the ACM SIGMOD International

Conference on Management of Data, Athens, Greece. 133-144. doi:

10.1145/1989323.1989338

An, Y., Borgida, A., Miller, R. J., & Mylopoulos, J. (2007). A semantic approach to

discovering schema mapping expressions. Proceedings of the IEEE 23rd

International Conference on Data Engineering, Istanbul, Turkey. 206-215. doi:

10.1109/ICDE.2007.367866

An, Y., Hu, X., & Song, I. (2010). Maintaining mappings between conceptual models and

relational schemas. Journal of Database Management, 21(3), 36-68.

Belhajjame, K., Paton, N. W., Embury, S. M., Fernandes, A. A. A., & Hedeler, C. (2010).

Feedback-based annotation, selection and refinement of schema mappings for

dataspaces. Proceedings of the 13th International Conference on Extending Database

Technology, Lausanne, Switzerland. 573-584. doi: 10.1145/1739041.1739110

74

Bellahsene, Z., Bonifati, A. & Rahm, E. (2011). Schema Matching and Mapping. Berlin,

Heidelberg: Springer-Verlag.

Bonifati, A., Chang, E. Q., Lakshmanan, A. V. S., Ho, T., & Pottinger, R. (2005).

HePToX: marrying XML and heterogeneity in your P2P databases. Proceedings of

the 31st International Conference on Very Large Data Bases, Trondheim, Norway.

1267-1270.

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., & Summa, G. (2008). The spicy

system: Towards a notion of mapping quality. Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data, Vancouver, Canada.

1289-1294. doi: 10.1145/1376616.1376757

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston,

MA: Reidel.

Cappellari, P., Barbosa, D., & Atzeni, P. (2010). A framework for automatic schema

mapping verification through reasoning. Proceedings of the IEEE Data Engineering

Workshops, Long Beach, CA, USA, 245-250. doi: 10.1109/ICDEW.2010.5452703

Chiticariu, L., Kolaitis, P. G., & Popa, L. (2008). Interactive generation of integrated

schemas. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Vancouver, Canada. 833-846. doi: 10.1145/1376616.1376700

Fagin, R., Haas, L. M., Hernández, M., Miller, R. J., Popa, L., & Velegrakis, Y. (2009).

Conceptual modeling: foundations and applications. In A. Borgida, er T., V. K.

Chaudhri, P. Giorgini & E. S. Yu (Eds.), Essays in Honor of John Mylopoulos (pp.

198-236). Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-02463-4_12

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual

modeling techniques. Requirements Engineering, 9(4), 248-260. doi:

10.1007/s00766-004-0204-6

Marnette, B., Mecca, G., Papotti, P., Raunich, S., & Santoro, D. (2011). ++Spicy: an

open-source tool for second-generation schema mapping and data exchange.

Proceedings of the VLDB Endowment, 4(12), 1438-1441.

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query

discovery. Proceedings of the 26th International Conference on Very Large Data

Bases, Cairo, Egypt. 77-88.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

75

Popa, L., Velegrakis, Y., Hernández, M. A., Miller, R. J., & Fagin, R. (2002). Translating

Web data. Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China. 598-609.

Rull, G., Farré C., Teniente, E., & Urpí Toni. (2009). MVT: a schema mapping validation

tool. Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, Saint Petersburg, Russia. 1120-1123.

doi: 10.1145/1516360.1516492

Sekhavat, Y. A. (2012). Semantic heterogeneity reconciliation in data integration.

Proceedings of the PhD Workshop of 38th International Conference on Very Large

Data Bases, Istanbul, Turkey. 19-24

Sekhavat, Y. A., & Parsons, J. (2012). Semantic schema mapping using property

precedence relations. Proceedings of the IEEE 6th International Conference on

Semantic Computing, Palermo, Italy. 210-217. doi: 10.1109/ICSC.2012.24

Shanks, G., Tansley, E., & Weber, R. (2004). Representing composites in conceptual

modeling. Communications of the ACM, 47(7), 77-80. doi: 10.1145/1005817.1005826

Wand, Y., & Weber, R. (1990). Mario Bunge's ontology as a formal foundation for

information systems concepts. In Weingartner, P., Dorn, & G. J. W. (Ed.), Studies on

Mario Bunge's Treatise (pp. 123-149). Atlanta: Rodopi.

http://dl.acm.org/author_page.cfm?id=81100186551&coll=DL&dl=ACM&trk=0&cfid=213011817&cftoken=23696339
http://dl.acm.org/author_page.cfm?id=81100152033&coll=DL&dl=ACM&trk=0&cfid=213011817&cftoken=23696339

76

Chapter 4 Semantic Schema Mapping and Configurable Data

Integration Using Property Precedence Relations
1

Abstract

Information integration is a challenging issue in information management. Generally, data

integration is performed through schema mapping representing high level information

between heterogeneous data sources. Such mappings are generated using direct

correspondences between data elements of source and target schemas, while other

semantic relations are neglected. In this chapter, we focus on semantic heterogeneity

reconciliation in schema mapping generation and data integration. We first use local

property precedence relations as fundamental semantic relations between properties

within source and target to semantically enhance schema mappings. Then, we use global

property precedence relations between source and target elements to achieve

Configurable Data Integration (CDI). In this configurable setting, two different query

expansion algorithms are proposed allowing tradeoff between accuracy and completeness

in query answering. Experiments using a working prototype of CDI show the feasibility

of using this approach in various data integration scenarios.

4.1 Introduction

 Distributing data for security, efficiency, reliability, or other purposes has resulted in

islands of data, each of which may hold only part of the data required to fulfill

information requests. This has led to a growing need for information integration across

heterogeneous sources. Two prevailing approaches in information integration are data

1 An extended version of: Sekhavat, Y. A., & Parsons, J. (2012). Semantic schema mapping using property precedence

relations. Proceedings of ICSC’12 IEEE International Conference on Semantic Computing, Palermo, Italy, 210-217.

77

exchange, in which data structured under a source schema is converted to data under

target schema, and data integration, in which integration is performed by querying across

multiple autonomous and heterogeneous data sources. Data integration and data exchange

are usually performed based on logical expressions called schema mappings that

represent the relationships between different data sources independent of implementation

(Fagin et al., 2009a; Fuxman et al., 2006a; Fuxman et al., 2006b). Such mappings help to

better understand and reason about the relationships between data sources, and they can

automatically be compiled to executable scripts in either data integration or data

exchange.

One important issue in data integration is properly handling semantic

heterogeneities. Generally, data integration is performed in a heterogeneous environment

including a set of data sources that are designed and managed independently. Such an

environment typically results in semantic heterogeneity in which the same concept can be

represented in different ways. As a result, there might be values in different data sources

that seem different but are semantically equivalent (Sekhavat & Parsons, 2012). Inability

to reconcile semantic heterogeneity results in improper interpretation of concepts that

consequently prevents proper data integration. In spite of substantial progress in schema

mapping techniques for data integration (Fagin et al., 2009; Popa et al., 2002), semantic

heterogeneity reconciliation is not well understood. As argued in (Haas, 2006), the lack of

a deep understanding of the meaning of data and operations to integrate data has been the

main problem for semantic heterogeneity reconciliation. In addition, the lack of a

theoretical foundation behind semantic heterogeneity reconciliation techniques has also

78

resulted in limited progress in this area (Parsons & Wand, 2003). In (Sekhavat, 2012), we

provided theoretical foundations for semantic heterogeneity reconciliation using Bunge’s

ontology (Bunge, 1977). Then, we developed schema mapping techniques using these

theoretical foundations (Sekhavat & Parsons, 2012). In this chapter, we show how data

integration systems based on query processing can exploit such mappings to improve

semantic data integration.

Generally, two types of information are required to generate schema mappings:

relations between data items within a data source (through finding referential integrity

constraints), and relations between data items among different data sources (direct

correspondences between the same properties in different data sources) (Bonifati et al.,

2011).

In this chapter, we argue that schema mapping techniques based on simple

property correspondences are not capable of handling some forms of semantic

heterogeneity. Such techniques have largely dealt with cases where correspondences

between properties are established between two properties representing the same concept

in two different data sources. Due to semantic heterogeneity, the same concepts can be

shown using different representations. In addition, other semantic relations between

properties are largely ignored. As shown in (Parsons & Wand, 2003) structurally different

attributes can manifest the same higher level property that consequently can be used for

semantic heterogeneity reconciliation. For example, “high GPA” and “large number of

publications” can manifest “scholarship eligibility” even though these are conceptually

two different properties. We argue both direct and indirect inferences can be used to bind

79

two different data sources. First, it is possible to infer an implicit property of a thing from

its explicit, but completely different, properties. For example, the gender of a patient

suffering from a gender specific disease can be inferred from that specific disease even

though the gender property does not exist explicitly (e.g., patients who suffer from

prostatitis are male). Second, it is also possible to infer a property of a thing from a

property of another thing. For example, the specialty of a doctor (e.g., eye specialist) can

be inferred from activities of that doctor (e.g., lasik surgery). We argue that identifying

implicit properties of instances through inference can improve schema mapping relative

to common schema mapping techniques that consider only explicit properties.

In this chapter, we first discuss how schema mapping algorithms can exploit such

inferences to reconcile semantic heterogeneities. Since the syntactic representation of

concepts in different data sources does not necessarily comply with the semantics of those

concepts, using auxiliary information illustrating such correspondence is required. For

this purpose, we employ one of the fundamental relations between properties based on

Bunge’s ontology (Bunge, 1977) called property precedence relations described in

Section 4.3. Using such relations enables the creation of some new semantically enhanced

mappings that are not achievable in existing techniques (Fagin et al., 2009; Miller et al.,

2000; Popa et al., 2002). To address ambiguous mappings where it is not possible to

decide which mappings should be employed solely based on metadata, we propose a data-

metadata oriented technique that takes into account data level heterogeneities as well as

schema level heterogeneities. In this technique, mapping expressions are specified in

terms of specific properties (values assigned to properties) as well as class level

80

properties (e.g., having color is a class level property while having red color is a specific

property).

Then, we use mappings enhanced using inferences to integrate data through query

rewriting. In query rewriting, a query posed to the target is rewritten to sub queries

applicable on the source without materializing the source data in the target. Unlike many

common query rewriting techniques that look for similar structures in different data

sources (Fagin et al., 2009), we propose a technique that binds similar properties in

different data sources that are manifested at different levels of abstractions. In particular,

we study what it means to accurately or completely answer a target query given that the

property precedence relations between properties are specified between different data

sources. An important implication of this approach would be a data integration system

that allows tradeoff between accuracy and completeness. This approach is called

Configurable Data Integration (CDI) in which accuracy can be compromised to achieve

more complete results. Unlike many rewriting systems that are lossless and consist of

statements asserting that some portion of data is equal to some other portion of the data,

the configurable query rewriting algorithm proposed in this thesis allows users to balance

between accuracy and completeness. Completeness can be an important consideration in

applications where the results of a query undergo further processing or analysis to support

business intelligence, during which time unsound results generated in initial integration

phase may be removed. For example, an intelligent application looking for security

threats may compromise accuracy to achieve a complete list of potential intrusions and

threats.

81

In the following, we first review the common existing approach for data

integration through property correspondences. In Section 4.3.1, we discuss ontological

foundations for semantic heterogeneity reconciliation, elaborate property precedence

relations, and show how different types of property precedence relations can be used to

reconcile different kinds of semantic heterogeneities. Then, we propose mapping

generation algorithms using auxiliary information in terms of property precedence

relations. In Section 4.4.3, we propose query rewriting algorithms using these mappings.

We conclude by evaluating, analyzing and discussing implications of the techniques

proposed for schema mapping and query rewriting.

4.2 Data Integration based on Property Correspondences

Data integration is achieved through query answering that aims to compute the set of

answers of a query posed to the target by rewriting this query to a set of subqueries

applied on the source. The first step toward query rewriting is to find how the elements of

source and target relate to each other. Typically, this relationship is provided through

property correspondences in which an atomic element (property) of a source schema is

mapped to an element of the target schema. A correspondence shows an equivalence

relationship between two properties that can be provided manually by a user, or

automatically through schema matching techniques (Bonifati et al., 2011). For example,

as shown in Figure 4-1, c1…c6 are property correspondences between source and target

where ci represents an equivalency between two properties in the source and the target.

Correspondences, as well as referential integrity constraints, in the source and the target

are used to generate high level expressions between source and target in which groups of

82

elements in different tables (in the case of relational data sources) or nesting of records

(in hierarchal structures such as XML) are mapped together. Such high level expressions

are called schema mappings. In Figure 4-1, mp1 and mp2 are two examples of such

schema mappings for the source and the target schema. Clio (Miller et al., 2000; Popa et

al., 2002), HePToX (Bonifati et al., 2005) and Spicy (Bonifati et al., 2008) are examples

of data integration systems that employ property correspondences to generate schema

mappings.

Figure 4-1: Two source schemas and a target schema (a), schema mapping expressions representing

relations between sources and the target (b), and instances of src1 and src2

In this thesis, we consider data integration between relational schemas. We follow

the formalized notions proposed by (Fagin et al., 2005a; Fagin et al., 2005b). Formally, a

relational schema is a finite collection R={R1,..,Rk} of relations (tables), where each

relation has a fixed arity indicating the number of properties. Source and target schemas

are two disjoint schemas shown as S={S1,..,Sn} and T={T1,..,Tm}, respectively. An

instance I of a schema S is a set of instances over relations of S where an instance of a

83

relation Ri:{A1,...,Ak} is a finite set of tuples in form of R(A1:v1,...,Ak:vk) whose arities

match those of the relation symbols in Ri. We define an atomic formula as an expression

of the form R(x), where R is a relation with variable x which is a vector of variables

x1,…,xt. For example, {Observation} in src1 and {Person, Examination} in src2 are

examples of atomic formulas shown in Figure 4-1(a).

The basic algorithm for mapping generation is explored in (Fagin et al., 2009;

Popa et al., 2002) and refined later in (Fuxman et al., 2006a) to support nested mappings.

Such mappings are generated by identifying paths and logical associations in source and

target schemas that are elaborated in the following. Definitions adapted from (Fagin et al.,

2009) are indicated with an *.

Definition 1
*
(primary and relative path): A primary path regarding a schema root

is a sequence of R1(x1),...,Rn(xn) where xi= (xi
1
, xi

2
,…, xi

t
) is a vector of variables

representing a tuple of relation Ri. In this formula, R1 is a relation depending only on the

root (there is no variable in x1 referencing the primary key of another relation), and

Ri(i≥2) is only dependent on Ri-1 (there is a variable in xi which is the primary key of xi-1).

On the other hand, in a relative path, R1 is a relation depending on other relations rather

than the root.

In Figure 4-1(a), primary paths at the first level are PT1: ∀x,y,z,t Observation(x, y,

z, t) and PT2: ∀x,y,z,t,u Person(x, y, z), Examination(x, t, u). On the other hand,

PT3:∀x,y,z Examination(x, y, z) is a relative path because x in Examination is a variable

depending on Person. Primary and relative paths are extracted in the mapping generation

84

process, as they represent relations between data items within a schema in terms of

integrity constraints.

Definition 2
*
: A referential integrity constraint is an expression of the form: ∀

PTi ∃PTj, E where PTi is a primary path, PTj is either a primary or relative path. E is a

conjunction of equalities of the form e1=e2, in which e1 is an expression depending on one

of the variables of PTi and e2 is an expression depending on one of the variables of PTj.

An example of a referential integrity constraint is r1 in Figure 4-1(a) which is

defined as (∀x, y, z Patient(x, y), ∃x', y', z',t' Test(x', y', z', t'), x=x'. Primary paths in

association with referential integrity constraints specify the semantic relations between

schema elements within a schema. In the source schema src2, every record in Patient is

related to one or more records in Test through referential integrity constraint r1.

Accordingly, every record of Test is also related to one or more records in Doctor

considering r2. This can result in the following new association:

 ∀x1,...,x6 Patient(x1,x2), Test(x1,x3,x4, x5,), Doctor(x5, x6)

Such a maximal association that cannot be expanded anymore considering other

schema elements is called a logical association (Fagin et al., 2009; Popa et al., 2002).

Logical associations are generated using the Chase algorithm (Popa & Tannen, 1999) that

is originally used to explore functional dependencies. This algorithm involves a set of

chase steps in which a chase step is applied on a Path PTk using the referential integrity

constraint (∀PT1 ∃PT2, E). In each step, when PT1 is subsumed in PTk but PT2 is not

subsumed in PTk, a new path including PT2 and condition E is added to existing

associations. The Chase algorithm continues until no chase step can be executed

85

regarding existing referential integrity constraints. To form a mapping expression, logical

associations covering property correspondences between the source and the target are

considered together. The details of this process are discussed in (Fagin et al., 2009a).

Definition 3
*
(property correspondence): A correspondence from a property p1 in

path PT1 to property p2 in path PT2 is a triple ‹PT1, PT2, p1=p2›.

Typically, correspondences are generated automatically using schema matching

techniques (which is a different research issue not addressed in this thesis). In Figure

4-1(a), c1,...,c6 are correspondences shown in dashed lines.

To find the maximal set of correspondences that can be interpreted together

regarding relations between classes in the source and the target, it is necessary to indicate

how a property correspondence is related to a pair of logical associations in the source

and the target. Examples of two mapping expressions between source schemas and the

target schema are shown in Figure 4-1(b). These mappings are created from property

correspondences and referential integrity constraints in Figure 4-1(a). The semantics of

these mappings states a containment assertion between a query over the source, Qs, and a

Query over the target, Qt, where, for each tuple returned by Qs, there must exist a

corresponding tuple in Qt. For example, mapping mp1 states that for each Observation

tuple in src1, there must exist tuples in Person and Examination in the target.

The second step in data integration is using schema mappings for query rewriting

to integrate data. A data integration system can be either LAV (local-as-view), in which a

mapping statement relates an element of the source schema to a query (view) over the

global schema, or GAV (global-as-view), in which a mapping statement relates each

86

element of the global schema to a query (view) over local schemas. GLAV (global-and-

local-as-view) is the generalization of LAV and GAV, in which a query over the source

schema is related to a query over the target schema (Halevy et al., 2006). As discussed in

(Yu & Popa, 2004), GLAV mappings provide the language of sound but not necessarily

complete assertions when restricted to relational schemas. In data integration through

virtualization, a query posed to a target schema is rewritten based on mapping expressions

such that the union of the evaluation of the rewritten queries returns the same result as

evaluating the target query on the target. In (Yu & Popa, 2004), a query q is defined as an

expression of the form:

 q:= in P where E return T

This formula indicates that given a path P, which is a sequence of relations

R1(x1),..., Rn(xn), and a set of equality dependencies E, return a set of tuples corresponding

to a sequence of properties t1,..,tn in T, in which the conjunction of conditions implicitly

indicated by path P is true. In this formula, both target and source elements can be used to

form a query, and during query rewriting, a query is answered using source and target

instances. For example, regarding the target schema in Figure 4-1(a), an example of a

query is:

 q1:= in ∀x1,...,x6 Person(x1, x2, x3), Examination(x4, x5, x6)

 where x1=x4

 return Person.prName, Examination.result

This query, which is formed using target data elements, asks for name of patients

and their examination results. It is also possible to state tuples of Persons and

Examinations implicitly in a path (e.g., ∀x1,...,x5 Person(x1, x2, x3), Examination(x1, x4,

87

x5)), in which a variable of a Person is corresponded to a sequence of variables in

Examination. Given source and target data sources, we are interested to answer the query

q1 using mappings between source and target schemas. Generally, there are two

approaches to answer a target query. One involves finding target instance J that is

consistent with mapping expressions and source instance I, and then performing the target

query on this target instance. In this approach, which is called data exchange, the target

instance J is materialized before query answering. In the second (or data integration)

approach, a target query is rewritten into some source queries (applicable on the source)

without need for materialization in the target. In the data exchange approach, in order to

avoid data redundancies in the target instance a technique to generate a canonical instance

has been proposed (Yu & Popa, 2004). Briefly, for each combination of tuples in the

sources matching the left side of a mapping expression between source and target, tuples

satisfying the right hand side of that mapping are added to the target. The atomic values

that are added to the target instance are equal to the source values if correspondences

between the source and the target exist. Otherwise, “unknown” (shown by NA) values are

created for target properties. In our example, the canonical instance regarding mapping

mp1 and mp2 and source instances in Figure 4-1(c) is shown in Figure 4-2(a). To remove

some redundancies of canonical answers, a procedure is used to create an instance called

Partitioned Normal Form (PNF) (Yu & Popa, 2004). Finally, as a post-processing step,

target constraints are applied on the target solution to find a logically correct instance in

the target. Gottlob & Nash (2008) propose an algorithm to compute the core solution in

88

polynomial time using target constraints. Finally, the target query is evaluated on this

materialized target instance to find the result.

Figure 4-2: Canonical instance and PNF instance based on mappings in Figure 4-1(b) and source

instances in Figure 4-1(c)

On the other hand, in the data integration approach, in which a target query is

rewritten into some source queries, there is no need for materializing the target solution.

More specifically, in this approach query answering is performed through query

rewriting. In our example, query q1 is rewritten using mapping mp1 and mp2 where the

rewritten queries are:

 r1: in ∀x1,...,x4 Observation(x1, x2, x3,x4)

 return Observation.pName, Observation.result

 r2: in ∀x1,...,x6 Patient(x1, x2), Test(x3, x4, x5, x6)

 where x1=x4

 return Patient.pName, Test.result

Queries r1 and r2 are rewritten forms of q1 based on mappings mp1 and mp2 .The

union of evaluating r1 and r2 on the sources src1 and src2, respectively returns the same

results as evaluating q1 on the materialized target instance. Differences between data

exchange and data integration approaches are already elaborated in many research papers

89

(Fagin et al., 2009; Hernández et al., 2008). In this thesis, we focus on semantic

heterogeneity reconciliation in the data integration approach.

4.3 Theoretical Foundations for Semantic Heterogeneity Reconciliation

We argue that property correspondences representing equivalence relations between

similar properties in heterogeneous data sources are not enough for complete semantic

heterogeneity reconciliation in data integration. To address this, we employ property

precedence relations as fundamental relationships between properties to reconcile

semantic heterogeneities as elaborated in the following.

4.3.1 Ontological Foundations

Many problems in information integration have origins in specifications used to represent

relationships between schemas. Relying solely on property correspondences stated in

terms of equivalency between two properties is not enough to handle some semantic

heterogeneity. In looking for more comprehensive relations between properties, we turn

to ontology, the branch of philosophy that deals with the order and structure of reality in

the broadest way possible. Ontological principles have been widely considered as a

theoretical foundation for conceptual modeling both in theoretical analyses (Parsons &

Wand, 2000; Wand et al., 1999) and in empirical studies (Gemino & Wand, 2004;

Parsons, 2011). Ontology deals with describing the real world, and information systems

represent models of this world. In particular, we adapt Bunge’s ontology (Bunge, 1977)

for this purpose. The rationale for this choice is that this ontology has already been

applied to different types of systems. In addition, this ontology is well-formalized in

90

terms of set theory and extensively references other philosophical ontologies (Wand &

Weber, 1990).

To reconcile semantic heterogeneity in data integration, we focus on properties

and relations between properties in Bunge’s Ontology (Bunge, 1977), as properties are

the basic constructs in information systems. To this end, we study the property

precedence notion of Bunge’s ontology, and employ this fundamental type of relation

between properties in data integration. Property p1 precedes property p2, if and only if, the

set of things possessing p2 is a subset of the set of things possessing p1. For example, the

property of “being female” precedes the property of “being mother” since the set of

entities that are mother is a subset of entities who are female. In (Sekhavat & Parsons,

2012), we have shown the potential of using property precedence relations in semantic

heterogeneity reconciliation.

4.3.2 Formalism

In Bunge’s ontology (Bunge, 1977), a domain of interest is a set of things in which each

thing possesses at least one property. In (Parsons & Wand, 2008) a domain of interest is

defined as a set of instances (I) where each instance can be a material object, action,

event, or any other phenomenon. In this definition, “property” is a statement about the

characteristics of an instance. When a property depends only on one thing, it is called an

intrinsic property representing an inherent characteristic (e.g., the height of a person). On

the other hand, when a property depends on more than one thing, it is called a mutual

property (e.g., surgeryDate that represents the date on which a patient is operated on by a

surgeon). In our formalism, predicate p(i) indicates that the instance i possesses the

91

intrinsic property p. Accordingly, predicate s(i1, i2) indicates that instances i1 and i2 jointly

possess the mutual property s.

Definition 4: Let D denote the domain of values of property p. A manifestation of

p is a specific value v∈ D of p assigned to p denoted: m꞉꞊‹p,v›.

If an instance possesses a manifestation m꞉꞊‹p,v›, it also possesses p. For example,

possessing the manifestation m꞉꞊‹color, red› by an instance indicates also that the

instance has color. In the case of intrinsic properties, the predicate m(i) shows whether or

not the instance i possesses the manifestation m. In the case of possessing a mutual

property, m(i1, i2) is the predicate indicating if the manifestation m is jointly possessed by

instances i1 and i2.

Definition 5: The scope of a manifestation m is the set of instances possessing m.

According to this definition, if m is the manifestation of an intrinsic property,

scope(m) is the set of instances possessing this manifestation, and if m is the

manifestation of a mutual property, scope(m) is a set of pairs ‹i1, i2› such that m is jointly

possessed by i1 and i2. Using this concept, we define property precedence relations.

Definition 6: Simple Property Precedence (SPP): Let m1 and m2 the

manifestations of properties p1 and p2, respectively. m1 is said to precede m2, if and only

if, scope(m2) ⊆ scope(m1) which is denoted: m2→ m1.

According to this definition, the manifestation of a property p1 precedes the

manifestation of property p2, if and only if, every instance i possessing m2, also possesses

m1. In this definition, m2 is the preceded (inferring) property, and m1 is the preceding

(inferred) property. We categorize simple property precedence relations in three groups as

92

follows: Generalization (spp1), which is a special case of simple property precedence in

which a general property is inferred from a specific properly. For example, m1:=

‹diseaseType, “leukemia”›→m2:= ‹diseaseCategory, “cancer”› shows that “cancer” is a

more general term than “leukemia” since it includes many other cancer types (e.g., lung

cancer, thyroid cancer). The second group (spp2) is a simple property precedence in

which a specific manifestation of an intrinsic property precedes a subset of possible

values of another property. For example, ‹sugarLevel, “[140, 200]”› → ‹sugarDegree,

“high”› states that a particular manifestation ‹sugarDegree, “high”› precedes a range of

values of sugarLevel. Finally, in the third group (spp3), property precedences are stated in

terms of inference where the preceding property is inferred from the preceded property.

For example, a specific disease (e.g., kidney failure) of a patient can be inferred from the

type of a treatment (e.g., dialysis).

It is also possible that two properties simultaneously precede each other, which is

termed co-precedence. Manifestations of two different properties co-precede each other if

everything that possesses one manifestation also possesses the other manifestation.

Similar to the “property correspondences” concept used in Clio (Miller et al., 2000; Popa

et al., 2002), a co-precedence indicates two equivalent properties in different data sources.

For example, gender and sex are two different representations of the same characteristic

that simultaneously precede each other. However, co-precedence is a more general

concept than property correspondence because co-precedence may also exist between two

different properties. For example, ‹diseaseName, “kidneyFailure”› co-precedes m2:=

93

‹treatment, “dialysis”› that sates patients suffering from kidney failure receive dialysis

treatment, and only patients with this problem receive such treatment.

It is also possible to infer a property of an instance from properties of another

instance if these two instances jointly possess a mutual property. Unlike simple property

precedence, which confines the existence of a precedence relation among properties of a

particular instance, we propose it is possible to state property precedences among

different instances. We term this type of precedence a “compound precedence”.

Definition 7: Compound Property Precedence (CPP): Let i1 and i2 denote two

instances in a schema. A compound property precedence exists between two

manifestations m1 and m2 if possessing m2 by i2 can be inferred from possessing m1 by i1,

and i1 and i2 mutually possess s. The compound precedence is denoted:

 (m1,i1) 
s

 (m2,i2).

Compound property precedence may exist between the same or different

properties. In compound property precedence between the same intrinsic properties

(cpp1), which is denoted [m1:= ‹p1, vi›, m1(x1)]  
)(2,1 xxs

[m1:= ‹p1, vi›, m1(x2)], any

specific manifestation m1 of an intrinsic property p1 of an instance x2 precedes the same

manifestation of the same property of another instance x1, if x1 and x2 jointly possess the

mutual property s. For example, the compound property precedence [m1:= ‹address,

“add”›, m1(x1)]  
)(2,1 xxcouple

[m1:= ‹address, “add”›, m1(x2)] implies that for any two

persons x1 and x2 that are known as a couple, by knowing the address of x1, we can infer

the address of x2. On the other hand, in compound property precedence between different

94

intrinsic properties (cpp2), which is denoted [m1:= ‹p1, v1›, m1(x1)]  
)(2,1 xxs

[m2:= ‹p2,

v2›, m2(x2)], a specific manifestation m2 of an intrinsic property p2 of an instance x2

precedes the manifestation m1 of a different property p1 of another instance x1, where x1

and x2 jointly possess the mutual property s. For example, suppose only heart specialists

who have open heart surgery certification can conduct heart valve leakage surgery. The

compound property precedence for this example can be shown as [m1:= ‹disease,

heartValveLeakage›, m1(x1)]  
surgery

(m2:=‹specialty, openHeartSurgery›, m2(x2)].

This compound property precedence relation states that the specialty of a doctor can be

inferred from disease of a patient who has been under surgery by that doctor. In this

example, surgery is a mutual property jointly possessed by a doctor and a patient.

4.4 Toward Semantically Enhanced and Configurable Data Integration

There are a number of unresolved issues regarding semantic heterogeneity reconciliation

in data integration including: how to integrate the same concepts and properties

represented by different manifestations; how to integrate similar concepts represented in

different levels of abstraction; and how to use implicit properties inferred from existing

explicit properties to bind two data sources? In the following, we discuss how these issues

are addressed to enhance data integration. We argue that relying solely on mapping

expressions generated from property correspondences (i.e., equivalence relations between

data items in source and target) is not enough to handle all semantic heterogeneities in

query rewriting.

95

The concept of semantic relations between data items in different data sources is

ignored in many data integration techniques. Two different structures in different data

sources may represent the same concept. However, because the structures are different,

they do not appear in property correspondences. As a result, semantic relations between

them are ignored during schema mapping generation. We employ property precedence

relations to reconcile such semantic heterogeneities. Property precedence relations not

only cover property correspondences and subsumption relations, but also make it possible

to infer implicit properties and discover semantically richer relations between data

sources. We show how data integration can be enhanced using semantic relations between

properties stated in terms of property precedence. We assume that property precedence

relations are already created automatically or manually by users (issues in developing a

property precedence schema are outside the scope of this thesis – see (Parsons & Chen,

2008) for a discussion on creating precedence schemas).

We first use local property precedence relations in the source and the target to find

implicit properties of instances that can be used to bind two different data sources. In

particular, we propose two algorithms that employ simple and compound property

precedence relations for this purpose. When there is no explicit and direct relation

between two properties, exploring implicit properties may make it possible to bind two

data sources to integrate data. Mapping generation based on property precedence relations

is a non-trivial task that requires systematic extension of the schema mapping algorithms.

The novelty of this technique is in considering implicit relations between schema

elements as well as explicit property correspondences. In this technique, mappings can be

96

enhanced incrementally using auxiliary information in terms of precedence relations

between properties (discussed in Sections 4.4.1 and 4.4.2).

In the second phase, we use global property precedence relations to enhance data

integration techniques through query rewriting. Global precedence is used to rewrite

target queries considering new implicit semantics. The technique we propose for query

rewriting not only considers equivalency between properties through property

correspondences, but also takes into account similar properties represented at different

levels of abstraction. Binding properties of source and target schemas through this type of

relation provide some flexibility in data integration in terms of accuracy and

completeness discussed in Section 4.4.3.

4.4.1 Mappings Enhancement Using Local Property Precedence

In this section, we discuss how schema mappings can be enhanced semantically using

property precedence relations. Mappings generated in our technique are manifestation-

based associations in which mappings are accompanied with conditions in terms of

possessing some specific values. Unlike the concept of logical association (representing

semantic relations between data items within a schema) discussed in Section 4.2, we

generate a new type of logical association called manifestation-based association by

applying simple and compound property precedence relations on existing logical

associations already created by the Chase algorithm.

Definition 8: A manifestation-based association is a pair ma:‹AS, M›, where AS is

a logical association and M is a set of manifestations.

97

Unlike logical associations, in which equalities are stated between class level

properties (e.g., Observation.pName = Examination.patient), in a manifestation-based

association, equalities are the specific values assigned to properties (e.g., specialty =

‘surgeon’). In a manifestation-based association, associations between data elements exist

only if such specific values are assigned to properties according to M. Note that a

manifestation-based association is a fine-grained association in which data and metadata

are taken into account simultaneously to specify logical relations within a data source.

The difference between manifestation-based associations and logical associations is that

implicit properties of instances are taken into account in the former.

The main idea behind using constraints in terms of property precedence relations

is to extract implicit properties of instances inferred from existing explicit properties for

use in binding two data sources. In Figure 4-3(a), sp1 and sp2 are simple property

precedences stating that the disease of a patient precedes the treatment for specific

manifestations of that disease. In this example, kidney failure can be inferred from

dialysis, and cancer can be inferred from chemotropic.

Figure 4-3: An example of applying simple property precedence

Algorithm I is proposed to enhance logical associations using simple property

precedence relations. This algorithm uses a set of simple property precedence relations

SP= {sp1, sp2,…,spn}, in which spk = mi→mj, i≠ j. When there exists mi→mj such that the

98

property of mi is equal to one of the properties of relations in the schema, a new

association ‹ai, MT› is generated. Accordingly, given mi+1→mj+1, in which mi+1 = mj, a

new association ‹ai+1, MT+1› is created with a new manifestation set such that MT+1 = MT

∪ mj+1. The Algorithm terminates when there is no simple property precedence spk that

can be expanded using existing manifestations. Intuitively, for an acyclic and finite set of

property precedence relations, Algorithm I finally terminates because each spk in SP

generates at most one new association. The result of applying this algorithm on logical

association A1: ∀x1,...,x5 patient(x1,x2,x3), treatment(x1,x4,x5) and simple property

precedences (sp1,sp2) is shown in Figure 4-3(b). Using this algorithm, property disease is

added to the relation patient. In this example, disease did not exist originally in the

patient relation, and it is added after applying property sp1 and sp2.

───────────────────────────────────

Algorithm I (SPP enhancer): Enhancing logical associations using SPP relations

───────────────────────────────────

Input: Set of logical associations AS

 Set of simple property precedence relations SP

Output: Set of manifestation-based associations MA

GenerateSPPEnabledAssociations

1: MA←copy items in AS with null manifestation

2: do {

3: endFlag ←true

4: foreach association ai in MA

5: create a new manifestation-based association mai =‹ai, Mt=null›

6: Ri← Extract the relations of ai

7: foreach relation ri in Ri

8: create a new relation rt = ri

9: foreach property pi in ri

10: If there exist a simple property precedence

11: m1:=‹p1,v1›→m2:=‹p2,v2› in SP and pi=p1then

12: add p2 to relation rt

13: add {m1, m2} to Mt

14: endFlag ←false

15: if (rt≠ri) then replace ri with rt in ai

16: add mai to MA

17: }While (endFlag = false)

99

18: return MA

───────────────────────────────────

Constraints in terms of local compound property precedence relations can also be

used to explore different manifestations of the same concepts. A compound property

precedence (m1,i1) 
s

 (m2,i2) implies that, for each pair of instances i1, i2 that mutually

possess property s, the predicate m2(i2) can be inferred from m1(i1). Possessing a mutual

property can be represented using referential integrity constraints in a relational schema.

Figure 4-4(a) shows how implicit properties can be inferred from compound property

precedence relations. In this Figure, cp1 and cp2 are compound property precedences

stating that the specific specialty of a doctor precedes some specific types of procedures

performed by that doctor. For example, assuming that lasik surgeries can be performed

only by eye specialists, it is possible to infer a specialty of doctor from the type of

treatment that has performed by that doctor.

Figure 4-4: An example of applying compound property precedence

The details of activities to infer such implicit properties using compound property

precedence relations are shown in Algorithm II. In this algorithm, the set of relations in

an input association is checked to find pairs of relations (ri, rj) such that rj is dependent on

ri, and there exists a compound property precedence m1:=‹p1,v1› → m2:=‹p2,v2› matching

100

these relations. When such pair is found, a new manifestation-based association is created

in which specific properties (manifestations) of cpi are included. The result of applying

this algorithm on logical association Ai: ∀x1,...,x6 doctor(x1, x2, x3, x4), treatment(x5, x2, x6)

and compound property precedences cp1 and cp2 is shown in Figure 4-4(b).

Manifestation-based associations take into account specific values of properties as

well as class level properties. These manifestation-based associations are used to find new

mappings called manifestation-based mappings that are elaborated in the next section.

───────────────────────────────────

Algorithm II (CPP Enhancer): Enhancing associations using CPP

───────────────────────────────────

Input: Set of associations AS

 Set of compound property precedences CP

Output: Set of manifestation-based associations MA

GenerateCPPEnalbledAssociations

1: MA←null

2: foreach association ai in AS

3: create a new manifestation-based association mai =‹ai, MT=null›

4: RSi← Extract the sequence of relations of ai

5: foreach two sequential relations (ri, rj) in RSi

6: If there exist a precedence m1:=‹p1,v1› →m2:=‹p2,v2›in CP

7: such that p1 is in ri and p2 is in rj then

8: add {m1, m2}to MT

9: If (MT≠ null)then

10: add mai to MA

11: return MA

───────────────────────────────────

4.4.2 Generating Semantically Enhanced Mappings

Logical associations enhanced using simple and compound property precedences are used

in conjunction with a set of property correspondences to generate schema mappings. A

property correspondence shows an equivalence relation between two properties in

different data sources. We use manifestation-based associations to combine such

correspondences in a meaningful way. The main idea behind the algorithm for mapping

101

generation (Algorithm III) is that correspondences from source to target schema are

considered together to generate a complex mapping expression when the following

conditions hold: (1) all elements of the sources in those correspondences all occur in an

association of the source schema, and (2) all elements of the target in those

correspondences all occur in the same association of the target schema. As a result,

Algorithm III finds the maximal set of correspondences that can be interpreted together

by ensuring the elements they match belong to the same logical association in the source

and in the target schema. Note that the focus of this thesis is on semantic heterogeneities

rather than structural heterogeneities. As discussed in (Fagin et al., 2009), conversion

functions like p1=f(p2) can be used instead of p1=p2 to reconcile such structural

heterogeneities (e.g., concat(creditCardNo, expDate) = creditCardInfo).

To find the maximal set of correspondences that are related together, it is

necessary to indicate how a property correspondence is related to a pair of manifestation-

based associations in the source and the target. To that end, we take into account the

concept of coverage among a manifestation-based association and a property

correspondence. A pair of manifestation-based association ‹MA
S
, MA

T
› covers the

property correspondence c:‹PT1, PT2, p1=p2› if MA
S
 covers PT1 and MA

T
covers PT2. A

manifestation-based association is a pair ‹AS, M› where AS is a logical association and M

is a set of manifestations. As a result, when MA
S

and MA
T
 cover PT1 and PT2,

respectively, the sequence of relations in PT1, and PT2 is the subset of sequence of

relations in the logical association related to MA
S

and MA
T
.

102

In Clio (Fagin et al., 2009; Miller et al., 2000; Popa et al., 2002), a mapping is

defined as a triple ‹A
S
, A

T
, E› in which A

S
and A

T
are logical associations in the source and

the target where E is a conjunction of equalities representing associations between class

level properties of A
S
 and A

T
. In this thesis, we introduce and generate manifestation-

based mappings in which mappings are accompanied with specific properties

(manifestations).

Definition 9 (Manifestation-based mapping): A manifestation-based mapping is a

statement in form of [mp: MA
S

in S, MA
T

in T with M], where MA
S
 and MA

T
 are

manifestation-based associations in source (S) and target (T) schemas, respectively. M is

a set of manifestations representing some constraints in terms of possessing specific

values by some properties in source and target schemas. In this definition, equalities

regarding the referential constraints implicitly exist in MA
S
 and MA

T
.

───────────────────────────────────

Algorithm III (Mapping generator)

───────────────────────────────────

Input: Manifestation-based associations of the source MA
S

Manifestation-based associations of the target MA
T

 Correspondences between source and target CR

Output: A set of Mappings MP

1: A← manifestation-based associations in (MA
S
) that cover at least

2: one path in the source side of correspondences in CR

3: B← manifestation-based associations in (MA
T
) that covers at least

4: one path in the target side of correspondences in CR

5: foreach pair <a, b> in A×B

6: C←{c| c∈CR and c is covered by<a, b>}

7: If C = null then continue;

8: Let C= {c1,...,cm}

9: m
S
← {manifestations of a}

10: m
T
← {manifestations of b}

11: foreach ci in C

12: let e the equality in ci

13: If (m
T
 =null or m

T⊆m
S
)

14: update variables of a and b according to e

15: mp: a in S, b in T with m
S

103

16: MP←MP∪{mp}

17: Return MP

───────────────────────────────────

The manifestation-based mapping [MA
S

in S, MA
T

in T with M] states that, for a

path in MA
S
 regarding manifestations in M, a path exists in MA

T
. Algorithm III shows the

details of generating manifestation-based mappings from manifestation-based

associations and a set of property correspondences. Unlike Clio (Fagin et al., 2009; Miller

et al., 2000; Popa et al., 2002), which checks each pair of logical associations in the

source and the target to find mutual correspondences, our proposed approach overcomes

the problem of handling a large number of associations by pruning the set of associations

and considering only those items covering at least one path of correspondences. Using

this approach, the number of combinations of source and target associations checked to

find a maximal set of correspondences is significantly reduced.

We use an example to illustrate how Algorithm III works. Suppose source schema

S consists of relations patient and observation, and the target schema T includes relations

person and examination as follows:

 S: patient(pName, disease), observation(patient, doctorName, type)

 T: person(prName, gender, role), examination(pName, result)

Suppose correspondences c1 and c2 show property correspondences between S and

T as follows:

 c1:‹∀x,y,z patient(x, y), ∀x',y',z' person(x', y', z'), x=x'›

 c2:‹∀x,y,z observation(x, y, z), ∀x',y' examination (x', y'), x=x'›

104

Using Algorithms I and II, the following manifestation-based associations are

generated that are inputs for Algorithm III. In this example, only correspondence c1 can

be applied on logical associations as the path in ma
T
 does not cover the path of c2.

 ma
S
: ‹∀x,y,z patient(x, y, z), {y=‘ovarian cancer’, z= ‘female’}›

 ma
T
: ‹∀x',y',z' person(x', y', z'), null›

Finally, using these manifestation-based associations and property

correspondences, the following mapping is generated:

 mp1: ∀x,y,z patient(x, y, z) in S, ∃x' person(x, y ,x') in T

 with {y=‘ovarian cancer’, z= ‘female’}

However, for this example, ++Spicy (Marnette et al., 2011) (an open source

implementation of Clio’s algorithms) generates mapping mp'1 in which the

correspondence between the implicit property of patient (i.e., sex) and property gender in

person relation is neglected:

 mp'1: ∀x,y patient(x, y) in S, ∃x', y' person(x, x', y') in T

As another example, considering manifestation-based associations ma
S

and ma
T
,

compound property precedences c1 and c2 can be applied in Algorithm III such that:

 ma
S
: ‹(∀x,y,z,t,r patient(x, y, z), observation (x, t, r)), {y=‘ovarianCancer’, z= ‘female’}›

 ma
T
: ‹(∀x',y',z', t' person(x', y', z'), examination (x', t')), null›

Using such manifestation-based associations and property correspondences

between patient.pName and person.prName and also between properties of observation

and examination, the following manifestation-based mapping is created:

 mp2: ∀x,y,z,t,r patient(x, y, z), observation (x, t, r) in S,

 ∃x',y'person(x, z, x'), examination (x, y') in T

105

 with {y=‘ovarian cancer’, z= ‘female’}

On the other hand, since ++Spicy (Marnette et al., 2011) does not consider the

implicit property (sex) in the source and its correspondence to gender in the target, the

following mapping is created in which source and target schemas are not bound regarding

gender and sex:

 mp'2: ∀x,y,z,t,r patient(x, y), observation (x, z, t) in S,

 ∃x', y', z'person(x, x', y'), examination (x, z') in T

Using property precedence relations has two important implications that

differentiate our approach from ++Spicy (Marnette et al., 2011). First, property

correspondences are specified among class level properties in ++Spicy; consequently,

mappings are stated in terms of class level properties. However, such class level

properties are not expressive enough to capture the full semantics of concepts and

relations. On the other hand, in the technique proposed in this thesis, mappings are

expressed using data level properties that allow specifying some new mappings between

explicit properties as well as implicit properties inferred from existing explicit properties.

Second, unlike general mappings generated by ++Spicy (Marnette et al., 2011), the

manifestation-based mappings generated in our approach are accompanied with some

constraints that specify under what conditions a mapping expressions is applicable. Such

conditions make it possible to define fine-grained mappings between source and target

schemas.

106

4.4.3 Query Rewriting Using Manifestation-based Mappings

In the schema mapping generation phase, we used local property precedence relations in

the source and the target to find implicit properties used to bind two data sources. In the

query processing phase, we use global property precedence relations, including

precedences between source and target items. This global precedence schema relates

similar concepts represented at different levels of abstraction. Unlike matching equivalent

properties (i.e., through property correspondences), matching properties at different levels

of abstraction provides opportunities to obtain new potential answers to a query.

In this section, we propose a new approach for data integration through query

answering in which different query rewriting algorithms can be performed depending on

users’ preference for complete or sound answers. In this approach, which is called

Configurable Data Integration (CDI), a general term in the target query (preceding

property in a simple property precedence relation) can be replaced with a more specific

term in the source (preceded property in that property precedence relation) to return

tuples of the source matching this specific property. This type of query rewriting, which

we call query expansion through specialization (Exp-Spc), increases the completeness of

the answers without losing accuracy. On the other hand, in query expansion through

generalization (Exp-Gen), a specific term in the target query is replaced with a more

general term in the source, that consequently results in returning some new correct tuples

as well as some unwanted incorrect tuples. Therefore, query expansion results in

increasing the completeness of answers at the expense of compromising accuracy. Note

that although conventional query rewriting techniques (Fagin et al., 2009; Miller et al.,

107

2000; Popa et al., 2002) employ equivalence relations (i.e., property correspondences) to

generate sound rewritings, they may return incomplete answers as they ignore semantic

relations between properties that are represented at different levels of abstraction. To

provide comprehensive semantic relations between source and target properties, the

technique proposed in this chapter (CDI) employs global property precedence schema for

query rewriting including a set of simple property precedence relations.

In query rewriting, an input query posed to the target is transformed to a set of

subqueries applied on source datasets where different representations of the concepts of

the target are used in these subqueries (Bonifati et al., 2011). Based on a user’s preference

in terms of accuracy or completeness in data integration, query rewriting can be fulfilled

using different query rewriting algorithms. The details of query rewriting based on Exp-

Spc and Exp-Gen are elaborated in Algorithm IV. In Exp-Gen, by relaxing query

predicates, which is stating the query predicate at a higher level of abstraction (through

replacing a more specific property with a generic property), some new semantically

correct tuples are returned at the expense of returning some unsound answers. Such query

expansion is an important characteristic of CDI that allows finding hidden potential

answers in applications in which completeness is critical. In other words, in some

applications (e.g., identifying malicious behaviors and intrusions) finding a complete set

of answers is crucial even if the answers include some false-positive results. Query

expansion through generalization (Exp-Gen) allows exploring some potential answers

that are not extracted using direct binding (property correspondence) between source and

target properties. Additional processing can remove incorrect query results.

108

───────────────────────────────────

Algorithm IV (Query Rewriter): Query rewriting through Exp-Gen and Exp-Spc

───────────────────────────────────

Input: query constraint c, set of simple PP relations ∑i={σ1, σ2,…, σt}

 Where σi is in form of m1:= ‹p1,v1›→ m2:=‹p2,v2›,

 source database Di , and the target database Dj

 RT: //Rewriting Type (can be Exp-Gen or Exp-Spc)

Output: result (rewritten query predicate)

Begin

result← c

foreach manifestation m in c do {

 if RT= Exp-Gen then{

if there exist a i in ∑I such that m1 = m and m1 is known in Dj then

result← m2 ⋃ (c - {m1})}

else if RT= Exp-Spc then {

if there exist a i in ∑I such that m2 = m and m2 is known in Dj then

result← m1 ⋃ (c - {m2})}

}
If (result = c) then

return null;

else
 return result;

End
───────────────────────────────────

CDI provides two different options in rewriting of a target query. If the purpose of

query rewriting is to maximize recall at the expense of possibly lower precision (because

of creating some false positive results), then Exp-Gen as well as Exp-Spc algorithms are

applied. On the other hand, if the purpose is to increase recall without losing precision,

only Exp-Spc is employed in query rewriting.

Given the mapping mp1 that was generated in Section 4.4.2,

 mp1: ∀x,y,z patient(x, y, z) in S, ∃x' person(x, y ,x') in T

 with {y=‘ovarian cancer’, z= ‘female’}

Suppose the target query q2 was:

 q2:= in∀x,y,z Person(x1, x2, x3), Examination(x4, x5, x6)

 where x1=x4, x3= “leukemia”

109

 return Person.prName, Examination.result

This query asks for the name of patients and examination that have been

performed on the patients who suffer from leukemia. Using mapping mp1, and property

precedence relation m1:= ‹diseaseType, “leukemia”›→m2:= ‹disease, “cancer”›, the

query rewriting algorithm (Algorithm IV) generates the following query using Exp-Gen:

 q2:= in∀x, y, z Observation(x1, x2, x3, x4)

 where x4 = “Cancer”

 return Person.prName, Examination.result

Using this rewritten query, and given the source instance in src1 in Figure 4-1(c),

{(p1, p), (p3, p)} is returned, while no result is returned using ++Spicy (Marnette et al.,

2011) because no record matches the query condition (x3= “leukemia”). Note that P1

and/or P3 may represent patients with other types of cancer. However, since the names of

diseases are not shown in the source, P1 and P3 are potential answers representing

patients that may have leukemia. In other words, although this result certainly includes

those patients who suffer from Leukemia (if there exist such patients), it may include

some unsound answers. This is a different approach for query answering compared to

sound rewriting techniques in which accuracy may be compromised to find potential

answers. Further analysis can be performed on the potential set of answers to prune

unsound answers.

4.4.4 Theoretical Analysis of the Query Rewriting Algorithm

The quality of query rewriting algorithms is analyzed based on accuracy and

completeness of answers returned. The need for measuring the quality of query answering

110

arises from the fact that query processing systems are built based on some semantic

reconciliation techniques that may not exactly reconcile semantic heterogeneities. In this

section, we analyze Algorithm IV based on precision (accuracy of results) and recall

(completeness of results). Given an input target query q, we calculate the number of True

Positives TP (i.e., tuples that satisfy the query predicate of q, and the query processor

returns them), True Negatives TN (i.e., tuples that do not satisfy the query predicate of q,

and the query processor does not return them), False Positive FP, (i.e., tuples that do not

satisfy the query predicate, but the query processor returns them), and False Negative FN,

(i.e., tuples that satisfy the query predicate, but the query processor does not return them).

Based on these items, precision and recall are computed as: precision = TP/(TP+FP) and

recall = TP/(TP+FN).

Let n be the number of tuples that satisfy target query predicate in source src1.

Suppose mx:=‹px, vx›, is a generic manifestation that precedes a set of manifestations

m1:=‹p1,v1›,, m2:=‹p2,v2›,, … , mk:=‹pk,vk›. Assume that src1 employs a generic

manifestation mx:=‹px,vx›, and b is the number of instances that satisfy mx in this database.

The target data source employs specific manifestations m1,…,mk, and a1,…,ak are the

number of instances that satisfy m1,…,mk, respectively. Suppose a query with the

predicate cx that includes mx is posed to the target. In Exp-Spc, the query rewriter engine

rewrites cx by replacing a generic manifestation mx with specific manifestations. As a

result, c1,…, ck will be the rewritten query predicates of cx. In this case, Algorithm IV

generates c1=(cx-mx) ⋃ m1, c2=(cx-mx) ⋃ m2,…, ck=(cx-mx) ⋃ mk. According to these

rewritten queries, TPCx=b, TPCx,C1=b+a1, TPCx,C1,C2=b+a1+a2,…,

111

TPCx,C1,C2,...,Ck=b+a1+a2+…+ak. Hence, FNCx=n-b, FNCx,C1=n-(b+a1), FNCx,C1,C2=n-

(b+a1+a2),…, FNCx,C1,C2,…,Ck=n-(b+a1+a2+ …+ak). FP is zero in all cases since no extra

results are created by replacing a general concept with a more specific one. Based on

these items, precision is not affected using Exp-Spc. This is due the fact that the target

query includes a generic manifestation where through query expansion, a specific

manifestation (which is also a generic manifestation) is replaced with that generic

manifestation. On the other hand, recallCx=b/n, recallCx,C1=(b+a1)/n,…, recallCx,C1,..,Ck=

(b+a1+…,+ak)/n=1 that indicate Exp-Spc increases the completeness of the answers. The

amount of increase depends on the number of manifestations represented through

property precedence relations. In the best case, when all specific manifestations

(m1,…,mk) of a generic manifestation (mx) are identified and used for query rewriting, the

recall is 1.

In query expansion through generalization (EXP-Gen), a specific manifestation in

an input query predicate is replaced with a more generic manifestation. Let a1,…,ak be the

number of instances that satisfy m1,…,mk in src1, and b1,…,bk be the number of instances

that satisfy m1,…,mk in target. Suppose the target query predicate includes one of the

specific manifestations mi where 1<i<k. As a result, the rewritten query constraint will

be: cx=(ci-mi) ⋃ mx. Consequently, TPCi=ai and TPCx,Ci=ai+bi, FNCi=bi, FNCx,Ci=0,

FPCi=0 and FPCx,Ci= b1+b2+…+bk-bi. Based on these items, precision and recall are

computed as: precisionCi=1, precisionCx,Ci=(ai+bi)/((ai+bi)+ (b1+b2+...+bk-bi)),

recallCi=ai/(ai+bi) and recallCx,Ci=(ai+bi)/((ai+bi)+0)=1. According to these results, by

replacing a generic manifestation with a specific manifestation, the recall is increased

112

from ai/(ai+bi) to 1. However, this may result in a reduction in precision. We already

expected such a decrease in precision because query rewriting through replacing a

specific manifestation with a generic manifestation results in returning some unsound

answers corresponding to other specific manifestations rather than the manifestation in

the input query.

4.5 Evaluation

In this section, we report the experiments have been performed to evaluate CDI in terms

of the quality of schema mapping and query rewriting. For this purpose, a working

prototype of CDI is implemented using Java. Generally, evaluating mapping systems is a

quite challenging task as there is no standard input methodology for mapping generation,

and there are many factors unique to each mapping system. (Alexe et al., 2008) propose a

benchmark to evaluate schema mapping techniques based on the ability to support

different types of mappings. This basic mapping suite represents a minimum set of

transformation functions that should be supported by a mapping system. However,

evaluating the effectiveness of a schema mapping technique solely based on the notion of

successful implementation of mapping scenarios does not guarantee the effectiveness of

data integration because the frequency of these mapping scenarios may vary in different

schemas.

4.5.1 Experimental Setting

CDI is tested in several real integration scenarios. For this purpose, we used data

integration scenarios provided by AIM lab available at (http://aimlab.cs.uoregon.edu).

113

Each data integration scenario includes two data sets (each dataset can appear as source or

target) as well as a set of mappings between these data sources. The experiments were

conducted in two phases. We first evaluated the quality of schema mappings generated by

CDI. In particular, we studied if the schema mappings enhanced using simple and

compound property precedence relations can improve semantic heterogeneity

reconciliation in schema mapping. The mapping component of CDI is compared with

++Spicy (Marnette et al., 2011), which is an open source implementation of Clio

algorithms. Then, we studied the effect using different query expansion algorithms in

query rewriting. Given a pair of datasets (db1, db2), we formed two scenarios, db1-db2 and

db2-db1, where the first database represents the source and the second database represents

the target.

4.5.2 Datasets and Queries

As discussed in (Köpcke & Rahm, 2010), to evaluate a mapping system data from

different domains must be considered. For this purpose, six datasets in three different

domains (two datasets as source and target in each domain). These datasets include

(DBLP1, DBLP2), (Amalgam1, and Amalgam2) and (UTDB, UTCS). UTCS and UTDB

are two databases about Computer Science department and the database group at

University of Toronto. DBLP1 and DBLP2 are relational schemas for the DBLP

bibliography representing this domain using different schemas. Amalgam datasets include

different schemas of the same data in computer science bibliography domain developed

separately by different people in the Clio project. These datasets form a heterogeneous

environment in which different representations are used for the same concepts in a

114

particular domain. Considering these datasets, six data integration scenarios were formed

including DBLP1-DBLP2, DBLP2-DBLP1, Amalgam1-Amalgam2, Amalgam2-

Amalgam1 and UTCS-UTDB and UTDB-UTCS. The correct mappings in each scenario

are already provided by AIM lab.

To evaluate the effectiveness of mappings generated and used by CDI, the

following queries were used. For Amalgam datasets, we designed 12 queries

(QA1,…,QA12) including: four queries referencing at least one property that is used in

simple property precedence schema (QA1,…,QA4), four queries referencing at least one

property that is used in compound property precedence schema (QA5,…,QA8), and four

queries not referencing any property in simple and compound property precedence

schemas (QA9,…,QA12). Accordingly, we generated 12 queries (QU1,…,QU12) for UTCS

and UTDB. Among 12 queries for each pair of datasets, six queries (Q1, Q2, Q5, Q6, Q9,

Q10) were used in db1-db2 scenario while the rest of queries (Q3, Q4, Q7, Q8, Q11, Q12)

were used in the reverse scenario (db2-db1). Consequently, each data integration scenario

is tested for six queries including: two queries referring simple precedences, two queries

referencing compound precedences, and two queries not referencing simple or compound

precedences. In the case of DBLP, we designed 12 queries (QD1,…,QD12) based on

queries provided by SP
2
Bench (Schmidt et al., 2012) in which some items were modified

to be compatible with DBLP1 and DBLP2 schemas.

4.5.3 Evaluation of Semantically Enhanced Mappings

In the first phase, we aim to indicate to what extent manifestation-based mappings

generated by CDI affect the quality of schema mapping. Direct comparison of two sets of

115

schema mapping expressions is not possible as mappings are high level expressions that

show relations between source and target schemas. However, it is possible to compare the

effect of using such mappings in a data integration or a data exchange scenario. For this

purpose, we compared the target instance generated by CDI with the target instance

generated by ++Spicy (Marnette et al., 2011). We followed a similar approach used in

++Spicy (Marnette et al., 2011) to generate a target instance from a set of schema

mapping expressions with a modification that checks manifestations (as conditions of

mappings) to generate a target instance. Given the target instances generated by ++Spicy

(Marnette et al., 2011) and CDI, we performed queries elaborated in Section 4.5.2 to

evaluate the quality of mappings.

The quality of query answering on a target instance is measured in terms of

precision and recall regarding the answers returned by each system. As discussed earlier

in Section 4.5.2, each data integration scenario includes six queries including two queries

referencing a property in a simple property precedence relation, two queries referencing a

property in a compound property precedence relation, and two queries without using any

property referenced in simple or compound property precedence relations. Two simple

and two compound property precedence relations in each scenario were manually

extracted. Examples of simple precedence, compound precedence, and co-precedence

relations extracted for Amalgam dataset are shown in Table 4-1.

Table 4-1: Examples of different types of property precedence relations extracted from Amalgam

Database (SPP: Simple Property Precedence, COPP: Co-Property Precedence, CPP: Compound

Property Precedence)

SPP1 m1:= ‹loc, “USA, WA”›→ m2:= ‹loc, “UnitedStates”›

SPP2 m1:= ‹Descriptor, “queryProcessing”›→ m2:= ‹class, “database”›

SPP3 m1:= ‹publisher, “ACM”› → m2:= ‹Language, “english”›.

116

COPP1 m1:= ‹loc, vi› co-proceeds m2:= ‹countryofOrigin, vi›

COPP2 m1:= ‹type, “techRep”› co-proceeds m2:= ‹type, “technicalReport”›

CPP1 [m1:= ‹countryOfPublication, “vi”›, m1(x1)]  
),(21 xxlocated

 [m2:= ‹location, v2›, m2(x2)]

CPP2 [m1:= ‹Source, “IEEE Int. Conf. Data Eng”›, m1(x1)]  
),(21 xxRecorded

 [m2:= ‹classificationCategory, “database”›, m2(x2)]

Since schema mapping in CDI considers some implicit properties in addition to

existing explicit properties, a more complete set of mappings between source and target is

provided using CDI in comparison to ++Spicy (Marnette et al., 2011). Consequently, we

expect to generate a more complete target instance using such mappings. The results of

experiments for six data integration scenarios elaborated in Section 4.5.2 support this

claim (Figure 4-5). The results show that using semantically enhanced mappings can

increase the completeness of query answering without affecting the accuracy. This is due

to the fact that no false negative answers are retuned because only tuples satisfying

mapping expressions are returned. In the case of referencing simple property precedence

relations (QX1, QX2, QX3, QX4 where x can be D, A, and U representing DBLP, Amalagam

and UTCS, respectively), CDI increases recall because some new tuples satisfying new

query predicates are returned. However, the amount of this increase varies in different

data integration scenarios. This difference in more considerable for DBLP1-DBLP2 and

DBLP2-DBLP1 scenarios where a larger number of tuples satisfy the new query

predicates. On the other hand, in QA1, QA2 in Amalgam1-Amalgam2 scenarios, there is no

improvement in recall because there is no tuple satisfying property precedence relations.

This implies two conditions to increase the recall: (1) the query must reference a property

for which there exists a property precedence relation; and (2) there must be tuples

satisfying implicit properties obtained by applying property precedence relations. For the

117

same reason, there is no improvement in the recall for queries QU7, QU8 in UTCS-UTDB

scenarios where there is no tuple satisfying compound property precedences referenced in

these queries. In the remaining scenarios, CDI improves query processing in terms of

increasing the completeness. As shown in Figure 4-5, this improvement is achieved

without negatively affecting precision.

Figure 4-5: Precision and recall computed for six different data integration scenarios

118

4.5.4 CDI: The Tradeoff between Accuracy and Completeness

Experiments were performed to evaluate different types of query expansion techniques in

CDI. These two techniques provide configurable query answering. To evaluate the query

expansion techniques, we designed a data integration setting including three different

scenarios. In the first scenario (Exp-Spc), only query expansion through specialization is

used for query rewriting. In the second scenario (Exp-Gen), only query expansion through

generalization is used. These scenarios are compared with a query rewriting without

query expansion (None).

The Amalgam datasets were selected to study configurable query answering. We

extracted 24 simple property precedence relations between source and target where, in the

twelve of these precedences, a property in the source precedes a property in the target,

and the remaining, a property in the target precedes a property of the source. Query

answering scenarios were performed on the Amalgam1-Amalgam2 scenario including

twelve queries already explained in Section 4.5.2. The results of experiments in different

query expansion scenarios are shown in Figure 4-6 and Figure 4-7 that are elaborated in

the following.

A. Query Expansion through Specialization (Exp-Spc)

As shown in Figure 4-6, in the case of using Exp-Spc recall for query rewriting, recall is

increased without the loss of precision compared to the query rewriting without using

Exp-Spc. This result is expected because in Exp-Spc, a generic property is replaced with a

more specific property in the query predicate that still satisfies the query predicate of the

original query. Since the final result is the union of the original query and rewritten

119

queries, some new tuples that satisfy a different manifestation of the original query

predicate are added to the final result. However, there are some exceptions. In Q4, and

Q9, there is no change in recall using Exp-Spc. The reason is that there is no data

regarding property precedence relations corresponding to these queries. In other words,

although existence of at least one property precedence relation between source and target

ensures generating a new subquery, there may not exist tuples satisfying this new

subquery in the source. As a result, this type of query expansion increases recall to the

extent that such specific properties (preceded properties) exist in the source.

The amount of increase in recall using Exp-Spc varies in different queries

depending on the number of precedences referenced in a query. The more complete a set

of simple property precedence relations, the more increase in the recall for queries that

reference a generic property. In the best case, when all specific manifestations of a

generic property are identified, the maximum recall is achieved through query expansion.

For example, in query Q2 that asks for all publications of a specific person, because all

manifestations of publications (including journal paper, conference paper, manual, book,

and technical report) are identified through property precedence relations between source

and target schemas, the recall is increased to 1. As shown in Figure 4-6, precision is not

changed using Exp-Spc because no unsound result is added to the final answers, and

precision is not changed. Since precision remain intact by using Exp-Spc, increasing

recall results in increasing f-measure (i.e., harmonic mean of precision and recall)

120

Figure 4-6: Precision and recall computed using Exp-Spc, and query rewriting without query

expansion (None)

B. Query Expansion through Generalization (Exp-Gen)

In the query expansion through generalization, a specific term in a query predicate is

replaced with a more general term. In the theoretical analysis, we showed query

expansion through generalization can result in returning more complete results with a

possibility of returning some unsound answers that may affect precision. In this section,

we show how this important feature can be exploited in real data sources to provide

configurable query answering through the tradeoff between accuracy and completeness.

The results of performing query expansion algorithm in the Amalgam1-

Amalgam2 data integration scenario are shown in Figure 4-6. As expected, recall is

increased for all queries in this scenario. Those potential tuples satisfying a query

predicate that references a generic term are returned, as well as tuples satisfying the

original query predicate (referencing a more specific term). For example in Query Q4, the

original query addresses a specific property (i.e., select technical reports published in year

2000), where through query expansion, this property is replaced with a more general

121

query predicate (i.e., select articles published in year 2000). In Amalgam1, publications

are classified into book, journal, manual and technical reports. On the other hand, in

Amalgam2, publications are classified into books, journals and series. Without query

expansion through generalization, no result is returned for the original target query

because there is no direct property correspondence between TechnicalReports in

Amalgam1 and Series in Amalgam2. However, this type of query expansion allows

extracting publications in Amalgam2 that are potentially technical reports. The amount of

increase in recall varies in different data integration scenarios depending on the number

of tuples satisfying the specific property (indicated in query predicate) in comparison to

the number of other specific properties preceded by the generic property.

Despite returning some new potential answers using Exp-Gen, some unsound

answers are also returned in this technique. Such unsound answers can negatively affect

the accuracy of results. For example, as shown in Figure 4-7, precision for all queries is

reduced when this query expansion algorithm is used (except for Q5, and Q7 where there

is no tuple satisfying rewritten queries in the source). The amount of this decrease varies

depending on the number of property precedence relations between a generic property

and specific properties as well as the number of tuples satisfying each specific property in

a query. As shown in Figure 4-7, despite decreasing precision values by using Exp-Gen,

f-measure is increased in most of the cases because of considerable improvements in

recall values.

122

Figure 4-7: Precision and recall computed using Query Expansion through generalization (Exp-Gen)

and query rewriting without query expansion (None)

To overcome the problem of unsound results, further processing and analysis is

required to support business intelligence through which results are pruned using some

other constraints. Extracting such constraints requires understanding the underlying data

and queries. For example, in query Q4 that asks for technical reports published in 2000,

the result of this query after query expansion includes some other publications such as

manuals and book chapters. To prune such unsound results, it is possible to filter based on

some exclusive properties of technical reports. For example, the name of the institution

publishing a technical report is a property existing only for technical reports while this

property is not used in journal papers and proceedings. Such analysis is one direction for

extending our configure data integration technique in the future.

The tradeoff between completeness and accuracy is the main idea behind the

configurable query answering where accuracy can be compromised to achieve more

complete results. This approach can be useful in many applications where finding a

complete set of results is critical even with generating some unsound answers. For

example, identifying the complete list of potential diseases of a patient is crucial even

123

when some false positives results are returned. The results are required to go under

further processing to reduce false alarms.

4.6 Related Work

All scenarios in which a data is accessed from multiple heterogeneous datasets entails

schema mapping (Halevy, 2010). In this section we review related work in information

integration.

In (Bonifati et al., 2011), a comprehensive survey of schema mapping and data

integration techniques through query rewriting is proposed. Clio (Fagin et al., 2009;

Miller et al., 2000; Popa et al., 2002), is one of the leading projects in data integration

providing schema matching and schema mapping tools. In this system, a set of mapping

expressions is generated using property correspondences and referential integrity

constraints. ++Spicy (Marnette et al., 2011) is an open source implementation of Clio

algorithms. In (Jiang, Ho, Popa, & Han, 2007) an extension of Clio is proposed in which

mappings and data exchange processes are performed between XML data. An important

challenge in XML data is addressing target constraints according to multilevel hierarchies

in the target schema.

Semantic heterogeneity reconciliation in data integration is an important step for

schema mapping and query answering. Different approaches have been proposed to

reconcile semantic heterogeneities in schema mapping. A method to generate schema

mappings through collaboration with users proposed in (Chiticariu et al., 2008). In this

technique, intermediate schemas are refined based on feedback received from users. In

(Fletcher & Wyss, 2006), users actively participate in mapping generation by providing

124

data examples. Mapping refinement using data examples is considered in (Alexe,

Hernández, Popa, & Tan, 2010), where each data example is a partial specification of

semantics to refine mappings. Another approach employed to add semantics in schema

mapping is employing a global domain ontology (or conceptual model) to represent

higher level mappings between a source and a target schema (Mena, Illarramendi,

Kashyap, & Sheth, 2000). However, designing a global domain ontology or a conceptual

model can be very expensive. An & Song (2008) propose a technique that looks for

complex mappings and semantic associations between two conceptual models. This is

performed through making a mapping graph from the cross product of graphs of each

conceptual model.

As discussed in (Hassanzadeh et al., 2009), because a real world concept or

characteristic can be represented via different syntactic representations in different data

sources, higher level information such as domain knowledge is necessary for schema

mapping. An attribute-based semantic heterogeneity reconciliation method proposed in

(Parsons & Wand, 2003) that employs relations between properties instead of their actual

meaning. They showed how structurally different attributes can manifest the same higher

level property that consequently can be used for semantic heterogeneity reconciliation.

Ontological foundations for semantic heterogeneity reconciliation in data

integration through query processing are proposed in (Sekhavat, 2012), in which a set of

query rewriting rules are proposed based on property precedence relations. In (Sekhavat

& Parsons, 2012a), we studied the fundamental semantic relations between properties

from an ontological point of view and showed how inferring implicit properties from

125

existing properties using property precedence relations can be exploited to enhance

schema mapping expressions. As argued in (Haas et al., 2009), schema mapping and data

mapping are complementary techniques. As a result, when schema mapping and data

mapping generate the same output, this represents the correctness of the mapping.

A data mapping technique is employed in (Kementsietsidis et al., 2003), in which

mapping tables including a set of relations between data values in different data sources

are used for semantic heterogeneity reconciliation. They proposed a method for inferring

new associations from data by exploring existing associations.

Data integration through query rewriting has been widely studied for information

interoperability. The basic query rewriting algorithms are already discussed in (Yu &

Popa, 2004). An algorithm to rewrite a set of source to target mappings from which SQL

scripts are generated to compute target instances is developed in (ten Cate et al., 2009).

Schema mapping and query rewriting techniques based on the extension of classical

logical formalisms such as Datalog are proposed in (Calì et al., 2009). In (Yu & Popa,

2004), algorithms proposed to rewrite a target query based on source schemas using

mappings and target constraints. In the case of target constraints, data transferred using

mapping expressions are checked against target constraints for consistency in the target.

There has been substantial interest for data integration in distributed database

management systems. Piazza (Ives et al., 2004) is a distributed mapping system in which

each peer stores mappings with other peers where each mapping is an equivalency or a

subsumption between different queries. In this system, mappings as well as storage

descriptions are used to rewrite a query. In Orchestra (Ives et al., 2008), mappings

126

generated in other systems are used to generate Datalog statements. This system performs

keyword queries rather than structured queries.

Data integration with uncertainty is discussed in (Das Sarma et al., 2011) where

correspondences between schema elements are accompanied with the probability of

certainty. These probabilities represent to what extent a concept is similar to other

concepts. In this probabilistic query rewriting, final query answers are also accompanied

with probabilities that show to what extent the results are reliable. In (Halevy et al., 2006)

an incremental data integration technique is proposed where sources are added with no

conflict to the target, and then, the system continuously evolves to map between data

sources. To deal with uncertainty, a technique that keeps top-K mappings between two

schemas is proposed in (Gal, 2006) where each mapping has a probability between 0 and

1. Top-k schema mappings also used in (Magnani & Montesi, 2007; Magnani et al., 2005)

to increase the recall of data integration. In this method, all possible schema mappings are

created and used given probabilistic schema matching. A technique, in which query

rewriting is provided through mapping between ontologies (corresponding to each data

source) using SPARQL queries is proposed in (Correndo et al., 2010). In this technique, a

list of entity alignments is used to rewrite a triple for fitting a new ontology.

Pottinger & Bernstein (2008) develop a method to create a mediated schema given

a pair of two relational schemas and mappings between them. In this system, mappings

are a set of select-project-join queries. Wang & Pottinger (2008) propose a technique to

generate complex mappings that allows users to specific relations between schema

elements in a generic and accurate way.

127

4.7 Conclusion and Future Work

In this chapter, we discussed the importance of semantic heterogeneity reconciliation in

data integration, and proposed a data integration technique based on ontological

foundations. We showed why current techniques relying only on equivalence relations

and property correspondences are not enough to reconcile some semantic heterogeneity.

To address the problem, we turned to ontology and used fundamental relations between

properties called property precedence relations. First, we showed how schema mapping

techniques can exploit auxiliary information in terms of local property precedence

relations to enhance the mapping formalism. In particular, we used this information to

find implicit properties of instances that can be used to bind different data sources. We

introduced a new type of mapping expression called manifestation-based mapping, in

which relations between source and target schemas are accompanied with some

conditions in terms of possessing some specific values.

In the second part of this chapter, we proposed a query rewriting technique to rewrite

target queries based on mappings expressions generated in the first phase. The technique

rewrites a query posed to the target into a set of source queries where evaluating the union

of these queries on the source returns the same result as running the target query on the

materialized target instance. Using this information and also a set of global property

precedence relations, we proposed a configurable query rewriting technique that allows

tradeoff between accuracy and completeness in data integration. Two query expansion

algorithms were proposed to provide this feature in query rewriting. In the case of Query

Expansion through generalization, the results of experiments show that recall can be

128

increased when a query references a property for which there exists a property precedence

relation, and also there are tuples satisfying implicit properties obtained by applying these

property precedence relations. We also showed that the amount of increase in recall using

query expansion through specialization depends on the number of property precedence

relations referenced in a query.

 Several open questions remain, including: Are property precedence relations

comprehensive enough to capture all kinds of semantic heterogeneity? Is it possible to

directly employ local property precedence relations for query rewriting? How can a

combination of query expansion techniques proposed in this chapter be used to achieve

certain levels of completeness or soundness?

4.8 References

Alexe, B., Hernández, M., Popa, L., & Tan, W. (2010). Mapmerge: correlating

independent schema mappings. Proceedings of the VLDB Endowment, 3(1-2), 81-92.

Alexe, B., Tan, W., & Velegrakis, Y. (2008). Stbenchmark: towards a benchmark for

mapping systems. Proceedings of the VLDB Endowment, 1(1), 230-244.

An, Y., & Song, I. (2008). Discovering semantically similar associations (SeSA) for

complex mappings between conceptual models. Proceedings of the 27th International

Conference on Conceptual Modeling, Barcelona, Spain. 369-382. doi: 10.1007/978-3-

540-87877-3_27

Bonifati, A., Chang, E. Q., Lakshmanan, A. V. S., Ho, T., & Pottinger, R. (2005).

HePToX: marrying XML and heterogeneity in your P2P databases. Proceedings of

the 31st International Conference on Very Large Data Bases, Trondheim, Norway.

1267-1270.

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., & Summa, G. (2008). Schema

mapping verification: the spicy way. Proceedings of the 11th International

Conference on Extending Database Technology: Advances in Database Technology,

Nantes, France. 85-96. doi: 10.1145/1353343.1353358

129

Bonifati, A., Mecca, G., Papotti, P., & Velegrakis, Y. (2011). Discovery and correctness

of schema mapping transformations. In Bellahsene, Z., Bonifati, A. & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 111-147). Berlin, Heidelberg: Springer-

Verlag.

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston,

MA: Reidel.

Calì, A., Gottlob, G., & Lukasiewicz, T. (2009). Datalog±: a unified approach to

ontologies and integrity constraints. Proceedings of the 12th International Conference

on Database Theory, St. Petersburg, Russia. 14-30. doi: 10.1145/1514894.1514897

Chiticariu, L., Kolaitis, P. G., & Popa, L. (2008). Interactive generation of integrated

schemas. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Vancouver, Canada. 833-846. doi: 10.1145/1376616.1376700

Correndo, G., Salvadores, M., Millard, I., Glaser, H., & Shadbolt, N. (2010). SPARQL

query rewriting for implementing data integration over linked data. Proceedings of

the EDBT/ICDT Workshops, Lausanne, Switzerland. 4:1-4:11. doi:

10.1145/1754239.1754244

Das Sarma, A., Dong, X. L., & Halevy, A. Y. (2011). Uncertainty in data integration and

dataspace support platforms. In Bellahsene, Z., Bonifati, A., & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 75-108). Berlin, Heidelberg: Springer-

Verlag.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005a). Data exchange: semantics and

query answering. Theoretical Computer Science, 336(1), 89-124. doi:

10.1016/j.tcs.2004.10.033

Fagin, R., Kolaitis, P. G., & Popa, L. (2005b). Data exchange: getting to the core. ACM

Transactions on Database Systems, 30(1), 174-210. doi:10.1145/1061318.1061323

Fagin, R., Haas, L. M., Hernández, M., Miller, R. J., Popa, L., & Velegrakis, Y. (2009).

Conceptual modeling: foundations and applications. In A. Borgida, er T., V. K.

Chaudhri, P. Giorgini & E. S. Yu (Eds.), Essays in Honor of John Mylopoulos (pp.

198-236). Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-02463-4_12

Fletcher, G. H., & Wyss, C. M. (2006). Data mapping as search. Advances in Database

Technology, 3896(1), 95-111. doi:10.1007/11687238_9

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., Papotti, P., & Popa, L. (2006a).

Nested mappings: schema mapping reloaded. Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea. 67-78.

130

Fuxman, A., Kolaitis, P. G., Miller, R. J., & Tan, W. (2006b). Peer data exchange. ACM

Transactions on Database Systems, 31(4), 1454-1498. doi:

10.1145/1189769.1189778

Gal, A. (2006). Managing uncertainty in schema matching with top-K schema mappings.

Journal on Data Semantics, 4090(1), 90-114. doi: 10.1007/11803034_5

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual

modeling techniques. Requirements Engineering, 9(4), 248-260. doi:

10.1007/s00766-004-0204-6

Gottlob, G., & Nash, A. (2008). Efficient core computation in data exchange. Journal of

the ACM, 55(2), 9:1-9:49. doi: 10.1145/1346330.1346334

Haas, L. M. (2006). Beauty and the beast: the theory and practice of information

integration. Proceedings of the 11th International Conference on Database Theory,

Barcelona, Spain. 28-43. doi: 10.1007/11965893_3

Haas, L. M., Hentschel, M., Kossmann, D., & Miller, R. J. (2009). Schema AND data: a

holistic approach to mapping, resolution and fusion in information integration.

Proceedings of the 28th International Conference on Conceptual Modeling,

Gramado, Brazil. 27-40. doi: 10.1007/978-3-642-04840-1_5

Halevy, A. Y., Rajaraman, A., & Ordille, J. (2006). Data integration: the teenage years.

Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,

Korea. 9-16.

Halevy, A. Y. (2010). Technical perspective schema mappings: rules for mixing data.

Communications of the ACM, 53(1), 100-101.

Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R. J., & Wang, M. (2009). A

framework for semantic link discovery over relational data. Proceedings of the 18th

ACM Conference on Information and Knowledge Management, Hong Kong, China.

1027-1036. doi: 10.1145/1645953.1646084

Hernández, M. A., Papotti, P., & Tan, W. (2008). Data exchange with data-metadata

translations. Proceedings of the VLDB Endowment, 1(1), 260-273.

Ives, Z. G., Halevy, A. Y., Mork, P., & Tatarinov, I. (2004). Piazza: mediation and

integration infrastructure for semantic Web data. Web Semantics: Science, Services

and Agents on the World Wide Web, 1(2), 155-175. doi:

10.1016/j.websem.2003.11.003

131

Ives, Z. G., Green, T. J., Karvounarakis, G., Taylor, N. E., Tannen, V., Talukdar, P. P.,

Pereira, F. (2008). The ORCHESTRA collaborative data sharing system. SIGMOD

Record, 37(3), 26-32. doi: 10.1145/1462571.1462577

Jiang, H., Ho, H., Popa, L., & Han, W. (2007). Mapping-driven XML transformation.

Proceedings of the 16th International Conference on World Wide Web, Banff,

Alberta, Canada. 1063-1072. doi: 10.1145/1242572.1242715

Kementsietsidis, A., Arenas, M., & Miller, R. J. (2003). Mapping data in peer-to-peer

systems: semantics and algorithmic issues. Proceedings of the ACM SIGMOD

International Conference on Management of Data, San Diego, CA, USA. 325-336.

doi: 10.1145/872757.872798

Köpcke, H., & Rahm, E. (2010). Frameworks for entity matching: a comparison. Data &

Knowledge Engineering, 69(2), 197-210. doi: 10.1016/j.datak.2009.10.003

Magnani, M., Rizopoulos, N., McBrien, P., & Montesi, D. (2005). Schema integration

based on uncertain semantic mappings. Proceedings of the 24th International

Conference on Conceptual Modeling, Klagenfurt, Austria. 31-46. doi:

10.1007/11568322_3

Magnani, M., & Montesi, D. (2007). Uncertainty in data integration: current approaches

and open problems. Proceedings of the VLDB Workshop on Management of

Uncertain Data, Vienna, Austria. 18-32.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., & Santoro, D. (2011). ++Spicy: an

open-source tool for second-generation schema mapping and data exchange.

Proceedings of the VLDB Endowment, 4(12), 1438-1441.

Mena, E., Illarramendi, A., Kashyap, V., & Sheth, A. P. (2000). OBSERVER: an

approach for query processing in global information systems based on interoperation

across pre-existing ontologies. Distributed and Parallel Databases, 8(2), 223-271.

doi: 10.1023/A:1008741824956

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query

discovery. Proceedings of the 26th International Conference on Very Large Data

Bases, Cairo, Egypt. 77-88.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

132

Parsons, J., & Wand, Y. (2003). Attribute-based semantic reconciliation of multiple data

sources. Journal on Data Semantics, 2800(1), 21-47. doi: 10.1007/978-3-540-39733-

5_2

Parsons, J., & Chen, T. (2008). Using property precedence to enhance the effectiveness of

queries on unstructured data. Proceedings of 18th Workshop on Information

Technology Systems, Paris, France, 73-78.

Parsons, J., & Wand, Y. (2008). Using cognitive principles to guide classification in

information systems modeling. MIS Quarterly, 32(4), 839-868.

Parsons, J. (2011). An experimental study of the effects of representing property

precedence on the comprehension of conceptual schemas. Journal of the Association

for Information Systems, 12(6), 1.

Popa, L., & Tannen, V. (1999). An equational chase for path-conjunctive queries,

constraints, and views. Proceedings of the 7th International Conference on Database

Theory, Jerusalem, Israel. 39-57.

Popa, L., Velegrakis, Y., Hernández, M. A., Miller, R. J., & Fagin, R. (2002). Translating

Web data. Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China. 598-609.

Pottinger, R., & Bernstein, P. A. (2008). Schema merging and mapping creation for

relational sources. Proceedings of the 11th International Conference on Extending

Database Technology: Advances in Database Technology, Nantes, France. 73-84.

doi: 10.1145/1353343.1353357

Sekhavat, Y. A. (2012). Semantic heterogeneity reconciliation in data integration.

Proceedings of the PhD Workshop of 38th International Conference on Very Large

Data Bases, Istanbul, Turkey. 19-24

Sekhavat, Y. A., & Parsons, J. (2012). Semantic schema mapping using property

precedence relations. Proceedings of the IEEE 6th International Conference on

Semantic Computing, Palermo, Italy. 210-217. doi: 10.1109/ICSC.2012.24

ten Cate, B., Chiticariu, L., Kolaitis, P., & Tan, W. (2009). Laconic schema mappings:

computing the core with SQL queries. Proceedings of the VLDB Endowment, 2(1),

1006-1017.

Wand, Y., & Weber, R. (1990). Mario Bunge's ontology as a formal foundation for

information systems concepts. In Weingartner, P., Dorn, & G. J. W. (Ed.), Studies on

Mario Bunge's Treatise (pp. 123-149). Atlanta: Rodopi.

133

Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the relationship

construct in conceptual modeling. ACM Transactions on Database Systems, 24(4),

494-528. doi: 10.1145/331983.331989

Wang, T., & Pottinger, R. (2008). SeMap: a generic mapping construction system.

Proceedings of the 11th International Conference on Extending Database

Technology: Advances in Database Technology, Nantes, France. 97-108. doi:

10.1145/1353343.1353359

Yu, C., & Popa, L. (2004). Constraint-based XML query rewriting for data integration.

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Paris, France. 371-382. doi: 10.1145/1007568.1007611

134

Chapter 5 EDEX: Entity-Preserving Data Exchange: An Ontological

Approach
1

Abstract

Data exchange is the process of generating an instance of a target schema from an

instance of a source schema adhering to source data in the target. Generally, data

exchange is performed using schema mapping expressions that represent high level

relations between the source and the target. In this chapter, we argue that confining the

relations between source and target schemas in terms of relations between a set of classes

prevents conveying the whole semantics in data exchange. We show such class level

schema mappings cannot resolve some ambiguous data exchange scenarios, resulting in

an incorrect data exchange. To address this problem, we propose Entity-Preserving Data

Exchange (EDEX) method that reflects source entities in the target independent of

classification of entities. We show EDEX can reconcile ambiguities while generates the

core solution as the accurate and efficient solution. The experiments show EDEX

outperforms other methods in terms of quality and efficiency of data exchange with a

slight overhead of storage space.

5.1 Introduction

 According to Ventana’s report on Data Integration (San, 2012), the amount of

conventional structured data is growing more than 30 percent annually in two thirds of the

organizations surveyed. According to this report, more than half of organizations

currently integrate six or more data sources. This shows the need for information

1 An extended version of : Sekhavat, Y. A., & Parsons, J. (2013). EDEX: Entity Preserving Data Exchange.

Proceedings of DATA’13 International Conference on Data Management Technologies, Reykjavík, Iceland (to appear).

135

integration with the goal of making high quality data available from various data sources.

Accurate and complete information integration is crucial to ensure efficiency in business

processes.

Information integration can be performed through data integration

(virtualization), which is the process of querying across multiple autonomous and

heterogeneous data sources, or through data exchange (materialization), which is taking

data structured under a source schema, and generating an instance of a target schema that

adheres to the structure of the target schema. In this chapter, we focus on data exchange

in which an instance of the target schema reflecting the source instance is created. The

prevailing approach for this process has been based on schema mappings that are high

level specifications to describe relationships between database schemas (Bellahsene,

2011; Bonifati et al., 2010; Popa et al., 2002). These specifications are usually

represented in a logical formalism capturing the relationships between database schemas

independent of implementation details.

Many leading projects, such as Clio (Fagin et al., 2009; Miller et al., 2000; Popa et

al., 2002), are based on schema mapping. Because of semantic heterogeneities among

different data sources, there are some ambiguous cases that cannot be handled using the

schema mapping based approach. We argue that the main problem of schema mapping

based data exchange is that it only deals with schema level relations between source and

target schemas. However, as argued in (Haas et al., 2009), ignoring data level relations

may result in incomplete capture of relations between data sources, leading to incorrect

data exchange. From the data level point of view, there has been research on data centric

136

heterogeneity reconciliation in data exchange called entity resolution (a.k.a., entity

matching, duplicate identification, record linkage and reference reconciliation) (Talburt,

2011). Generally, entity resolution is used to clean data and create a consistent view of

data from multiple heterogeneous and conflicting representations by identifying entities

referring to the same real world object. For example, in a customer relationship

management system that includes information of customers from different enterprises,

finding different references pointing out to the same customers through entity resolution

is crucial for effective customer management.

In spite of independent progress in schema level and data level approaches for

data exchange, semantic heterogeneities are not completely resolved because of the gap

between these two approaches. Such semantic heterogeneities may result in ambiguous

cases in schema mappings, and consequently, improper data exchange. We contend that

inability to resolve ambiguous cases in the schema mapping based approach emerges

from the assumption of inherent classification in schema mapping. Many difficulties in

information system management such as schema integration and schema evolution can be

attributed to this assumption (Parsons & Wand, 2000). According to the assumption of

inherent classification, every thing modelled in a domain of interest is treated as an

instance of a class or entity (e.g., in an Object-Oriented model or Entity Relationship

model). Although classification is an effort to organize knowledge about existing things,

real world objects do not inherently belong to classes. According to ontological

foundations about the nature of things in the real world, things (specified in terms of a set

of properties) exist prior to and independent of their classification (Bunge, 1977).

137

We argue that, since schema mapping expressions are bounded in class

definitions, they do not convey the whole semantics of data exchange. Although data

exchange based on schema mapping has many advantages in data exchange, neglecting

entities and data level heterogeneities can be problematic. To fill the gap between these

two streams, we propose an entity preserving approach that focuses on preserving source

entities in the target independent of classification. More specifically, given a set of

entities in the source, we search for the best host relations in which source entities can be

resided. An entity resides in a relation (or class) when it is a tuple of that relation (or a

member of that class). Such entity residing is performed in such a way that preserves

source entities without redundancy. This is different from entity resolution that

determines whether two references are referring to the same real-world objects for the

sake of data cleaning (Talburt, 2011).

In conventional data exchange through schema mapping, simple value

correspondences (a.k.a., property correspondences) between properties, as well as

integrity constraints in the source and the target, are used to generate schema mapping

expressions. Then, such mappings are used to generate a target instance. However, in the

entity preserving approach, value correspondences are directly used to find the best

relations, which can reside source entities without generating schema mappings. We

argue although schema mappings can describe relationships between database schemas

independent of implementation details, they are not expressive enough to convey the

whole semantics in data exchange. The entity preserving approach proposed in this thesis

138

addresses this problem by considering data level relations between entities as well as

property correspondences.

In (Sekhavat & Parsons, 2013a), to resolve ambiguous mappings we proposed a

schema mapping algorithm in which conceptual models are used to semantically enhance

schema mappings. Although the experiments shows promising improvement in handling

ambiguous cases, the quality of the final result is strongly dependent on the quality of

conceptual models and matching between conceptual models and relational databases.

However, the entity preserving approach proposed in this thesis is independent of

conceptual models relying solely on source and target schemas, actual data (entities) in

the source, and correspondences between source and target properties. In particular, the

contributions of this chapter are as follows: first we show how data exchange techniques

based on schema mapping expressions are not capable of handling ambiguous cases.

Then, we propose Entity preserving Data EXchange (EDEX) approach which is a hybrid

of data level and schema level approaches. This chapter is an extended version of

(Sekhavat & Parsons, 2013b) including more details about EDEX, theoretical discussions

on the quality of data exchange, and a comprehensive set of experiments. A set of

algorithms is proposed to demonstrate the feasibility of implementing this approach. We

show EDEX generates a core solution (Fagin et al., 2005b) in data exchange as the most

efficient solution. Finally, EDEX is evaluated from two points of view. First, a set of

experiments is performed to assess the quality of data exchange and to compare with two

similar works. Then, the efficiency of the algorithms is evaluated in terms of executions

times, scalability and storage space.

139

5.2 Overview and Background

5.2.1 Motivating Example: Ambiguity in Data Exchange

In practice, usually human intervention is required to analyze and validate ambiguous

schema mappings. Consequently, inspecting mappings and selecting preferred ones is the

responsibilities of users. A mapping expression denotes an ambiguous case when it can be

interpreted in more than one way, and as a result, there is no unique way to generate the

target instance based on it (Alexe et al., 2008a). One of the important ambiguous cases in

data exchange occurs when a generalization relation is implemented using different

techniques in source and target schemas. As shown in Figure 5-1, a generalization

relation can be realized through: G1) allocating separate tables for super class and

subclasses such that there is a foreign key in each subclass referencing the super class,

G2) allocating a separate table for each subclass, and repeating the properties of the super

class in each subclass, G3) collapsing attributes of subclasses in to the super class and

allocating a single table including all properties or G4) collapsing attributes of subclasses

in to the super class, which is accompanied by an additional property that explicitly

indicates the subclass. A generalization relation can result in ambiguous cases for data

exchange through schema mapping techniques because other types of relations including

functional dependencies (e.g. a doctor observes a patient) and self-reference relations are

also realized through the same technique (i.e., key/foreign key). In the following, we

elaborate an important case in which schema mapping based algorithms generate

ambiguous schema mappings.

140

Figure 5-1: An example of a generalization relation (a) and its different implementations in the

relational database (b)

One important type of ambiguous schema mapping occurs when a class in the

source simultaneously refers to more than one class in the target while only one of them

can be acceptable in data exchange based on the values of properties. For example, as

shown in Figure 5-2, each course is taught by an instructor. On the other hand, in the

target schema, a professor or a graduate student can be considered as an instructor of a

course (arrows represent value correspondence between source and target properties, and

dashed lines shows the referential integrity constraints). Given the source and target

schemas shown in Figure 5-2, the following schema mapping expressions m1, m2 and m3

are generated by ++Spicy (an open source implementation of Clio’s schema mapping

algorithms) (Marnette et al., 2011).

Figure 5-2: An example of a data exchange setting including source and target schemas in ++Spicy

141

m1: for each x1, x2, x3: Instructor (Name: x1, STNo: x2, EMPNo: x3) → Grad (name: x1,

STNO: x2).

m2: for each x1, x2, x3: Instructor (Name: x1, STNo: x2, EMPNo: x3) → Prof (name: x1,

EMPNO: x3).

m3: for each x1, x2, x3, x4: Instructor (Name: x4, STNo: x2, EMPNo: x3), Course (CName:

x1, Inst: x4) → Course (CourseName: x1, Instructor: x4).

Using these mappings, given a source instance [Instructor(I1, st1, null),

Instructor(I2, null, emp1), Course(C1, I1), Course(C2, I2)], ++Spicy generates the target

instance as [Grad(I1, st1), Grad(I2, null), Prof(I1, null), Prof(I2, emp1), Course(C1, I1),

Course(C2, I2)]. One obvious problem in the mappings generated by ++Spicy is that for a

given tuple in Instructor, two different mappings are generated while only one of them is

acceptable according to STNo and EMPNo. In other words, when STNO exists for an

instructor in the source, the corresponding record must be generated in the Grad table in

the target. On the other hand, when EMPNO exists for an instructor in the source, the

corresponding record must be generated in the Prof table in the target. This ambiguity

between m1 and m2 results in generating redundant information in the target while

Grad(I2, null) and Prof(I1, null) are unacceptable. This is one of the ambiguous cases

where data exchange techniques based on schema mapping expressions are not able to

handle ambiguity because the values of properties determine which mappings are

applicable. Relying only on schema centric information cannot resolve such ambiguities.

In this thesis, we show how our entity preserving approach takes into account data and

semantic heterogeneities to resolve such ambiguities.

142

5.2.2 Background and Formalism

This thesis follows the formalized notions proposed by (Fagin et al., 2005a; Fagin et al.,

2005b). In the data exchange problem, databases are considered as sets of relations. A

relational schema is a finite set R={R1,..,Rk} of relations in which Ri has a fixed arity

(number of properties). In the context of data exchange in this paper, the source and target

schemas are disjoint, shown as S={S1,..,Sn} and T={T1,..,Tm}, respectively. An instance I

of a schema S is a set of instances over relations of S, where an instance of a relation

{A1,...,Ak} is a finite set of tuples in form of R(A1:v1,...,Ak:vk). Generally, data exchange

systems work based on a set of different types of dependencies to specify mappings

between source and target. These dependencies include tuple generating dependencies

(tgds) and equality generating dependencies (egds) (Bonifati et al., 2011). Tuple

generating dependencies include source-to-target tuple generating dependencies (s-t tgds),

and target tuple generating dependencies (target tgds). A s-t tgds is a dependency in

which source relations are used in the premise and target relations are used in the

conclusion. This type of dependency is used to specify how a tuple is created in the target

given a tuple in a source (e.g., m1, m2 in Figure 5-1are s-t tgds). On the other hand, in a

target tgd, only target symbols are used that are typically employed to specify foreign-

keys in the target (e.g., : ∀x1,x2 Course(x1,x2) →∃x3 Prof(x1,x3)). Target equality

generating dependencies (egds) are used to show primary key constraints in the target

(e.g., :∀x1,x2 Prof(x1,x2),Course(x3, x2) →x1=x3).

In (Bonifati et al., 2011), a desirable target instance is defined as a legal instance

satisfying correspondences between source and target and integrity constraints in the

143

target. Such an instance contains all source information while no piece of information is

reported twice. In the schema mapping based data exchange, a mapping scenario is

denoted M=(S, T, Σst, Σt), where S is a source schema, T is a target schema, Σst is a set of

s-t tgds (i.e., source-to-target dependencies) and Σt is a set of target constraints.

If I is an instance of S and J is an instance of T, then J is called a solution for M

and I, if I and J satisfy Σst, and J satisfies Σt. Formally, this is shown in the form of J ∈

Sol(M, I) iff ‹I, J› satisfies dependencies in Σst ∪ Σt. In particular, the data exchange

problem is defined as the materialization of the target instance J over target schema T

given an instance I of the source schema S, such that Σt is satisfied by J and Σst is satisfied

simultaneously by I and J. Given M= (S, T, Σst, Σt), multiple solutions may exist for a

source instance because each tgd only states an inclusion constraint without indicating the

content of a target instance. The concept of universal solution, which is a solution with

several good properties justifying its selection as a target solution, is proposed in (Fagin

et al., 2005a).

To formalize the notion of universal solution, we need to introduce the concept of

homomorphism among two solutions. In the data exchange formalism proposed in (Fagin

et al., 2005a), the set of all constant values that may occur in source instances is denoted

Const, and an infinite set of variables (called labeled nulls) are denoted Var such that Var

∩ Const = ∅. In generating target solutions, variables are used to create new values in the

target that do not already exist in the source. Each element of a tuple t={a1,a2,...,an} over

a relation from an instance is a member of Const ∪ Var. In the following, we review some

144

concepts in the context of data exchange. Definitions adapted from Clio (Fagin et al.,

2005a) are indicated with *.

Definition 1 (homomorphism)*. Let K1 and K2 denote two instances over a

relational schema R with values in Const ∪ Var. A homomorphism h: K1 → K2 is a

mapping from Const ∪ Var (K1) to Const ∪ Var (K2) such that: (1) h(c) = c for every c ∈

Const; (2) for every fact Ri(t) of K1, we have that Ri(h(t)) is a fact of K2 where, if t =

(a1,...,an), then h(t)= (h(a1),..., h(an)).

Definition 2 (universal solution)*. Consider a data exchange setting (S, T, Σst,

Σt). If I is a source instance, then a universal solution for I is a solution J such that for

every solution J´ for I, there exists a homomorphism h: J → J´

Several good properties of a universal solution justify its choice as a good target

solution in the data exchange problem. This solution is considered the most general

possible solution because it can be homomorphically mapped to any arbitrary solution. In

addition, as discussed in (Fagin et al., 2005a), universal solutions of a given source

instance are homomorphically equivalent. Generally, the Chase algorithm (Popa &

Tannen, 1999) is used to generate universal solutions. This algorithm starts with a source

instance and an empty target instance. In each Chase step, source-to-target dependencies

and target dependencies are applied on the source and target instances as long as they

satisfy these dependencies.

Among universal solutions, the solution with smallest size is called the core

solution (Fagin et al., 2005b). Because of the minimality and uniqueness of the core

145

solution among universal solutions, this solution is considered as an ideal solution for

data exchange. Formally the core solution is defined as:

Definition 3 (core solution)*. A target instance J among universal solutions is

called a core solution if there is no proper subinstance J´ ⊆ J such that there is a

homomorphism h: J→J´.

A general technique to generate the core solution is generating a universal solution

using the Chase algorithm, and then post processing the universal solution to remove

redundancies. A greedy algorithm is developed in (Fagin et al., 2005b) to generate the

core solution where given a source instance I, a universal solution J is generated. Then,

each tuple is checked against source-to-target dependencies and target constraints to find

redundant tuples. Note that a core solution is still a universal solution with the important

feature that the core is the minimum sized universal solution.

5.3 Towards the Entity Preserving Approach

According to Bunge’s ontology (Bunge, 1977), a domain of interest includes a set of

things each possessing at least one property. An “entity” is defined as a “thing” which can

be distinctly identified (Chen, 1976). For example, a specific person, company, or event

is an entity. In relational database theory, a tuple (row) of a table (i.e., an ordered

sequence of values, which is a finite function that maps attributes to values) can represent

a particular entity, where a primary key uniquely identifies a tuple within tuples of a

relation. In practice, information about one thing (physical object or a concept) may be

split over several relations. For example, information about characteristics of a student

can be stored in three different relations including student, department and university. On

146

the other hand, information about several things can be combined in a single

(unnormalized) relation. For example, information about the program and courses of a

student can be stored in a single profile relation. This different configuration for relations

between tuples and entities is the consequence of different classifications used in various

schemas. Such differences add complexity in data integration, where a data integrator

needs to deal with different classification structures in data sources. In (Parsons & Wand,

2000), this problem is attributed to the assumption of inherent classification, where every

thing in the domain of interest is treated as instance of a class.

To overcome the problem of different classification structures in the source and

target, we propose a solution that preserves entities in the source regardless of

classification. For this purpose, our technique identifies existing entities in the source, and

then finds the best host (or hosts) for these entities with the goal of maximum information

preservation and minimum redundancy.

A relational schema can be represented using a directed graph G=(V, E) where

V={R1,…,Rn} is a set of vertices representing relations (tables), and E is a set of edges.

Each edge shows a directed relation from the referencing table to the referenced table.

Definition 4 (schema graph). Given a schema S, a schema graph G=(V, E) is a

directed graph that defines relation joinability according to foreign key-primary key

relationships in S. It has a vertex Ri for each relation Ri ∈ S and an edge from Ri to Rj for

each foreign key to primary key relationship from Ri to Rj in S.

In a schema graph G, each node has a name representing a table in S, and a set of

properties specifying that table. Each edge from property p1 of Ri to property p2 of Rj is

147

labelled with a pair ‹p1, p2› where p1 references p2. An example of a schema graph for the

relational schema in Figure 5-3(a) is shown in Figure 5-3(b). Representing a schema

using a directed graph, indirect properties of relation Ri can be found in an acyclic graph

representing ancestors of Ri that we refer to as a Relation Ancestors Tree (see Definition 6

below).

Figure 5-3: A relational schema (a) and the schema graph of this relational schema (b)

Figure 5-4: An instance of the relational schema shown in Figure 5-3

Definition 5 (Neighbour). We define neighbours of a relation r denoted N(r) as a

set of relations that are referenced directly by r. Consequently, there is an edge from r to

any relation in N(r). Accordingly, we define neighbours of a tuple t as set of tuples

referenced by t denoted N(t).

148

For example, N(Student) is {Dep, Prof}, and given t as the first tuple of student

instance in Figure 5-4, N(t) = {[(dName: D1), (building: B1)],[(pName: prof1), (degree:

deg1), (profDep:D1)]}.

Definition 6 (Relation Ancestor Tree). A Relation Ancestors Tree (RAT) of a

relation r denoted RAT(r) is a sub graph of schema graph G with the root of r and all

paths from r to N(r), all paths from each relation ri in N(r) to N(ri), and so on until adding

a path does not result in a cycle.

RAT(r) represents all ancestors of r that can be extracted using the breath-first-

search technique and traversing from relation r to all ancestors of r, where that node is not

already visited. Relation Ancestor Tree for each relation of the schema and its schema

graph in Figure 5-3 is shown in Figure 5-5.

Figure 5-5: Relational Ancestor Trees for each relation of the schema in Figure 5-3

We distinguish between class level (generic) and instance level (specific)

properties. A relation in a data model is represented in terms of a set of generic properties

while tuples of a relation possess specific properties represented as a set of property and

value pairs (‹p, v›). An entity possessing a specific property manifests possessing a

149

generic property. For example, (gender, ‘male’) and (gender, ‘female’) are two

manifestations of gender as a generic property. We use P(r) to show properties of relation

r (i.e., a set of generic properties) and P(t) to represent properties of tuple t (i.e., a set of

specific properties ‹p1,v1› specifying t).

Drilling down a tuple from its foreign key(s) to corresponding tuples in referenced

relations (tables), it is possible to extract some indirect properties represented in

neighbour relations. This way, we can extract indirect properties of r. For example, given

the Student relation in Figure 5-4, {(name, s1), (program, p1), (dep, D1), (supervisor,

Prof1)} is the set of properties of the first tuple of Student. On the other hand Student is

referencing Department through (dep, D1) where {(dName, D1), (building, B1)} can be

considered as indirect properties of this student. Accordingly, the properties of the

supervisor {(pName, prof1), (degree, deg1), (profDep, D1)} can also be considered as

indirect properties of this student. In addition, each professor tuple references a particular

department, where properties of that department can also be considered as indirect

properties of that professor.

Definition 7 (Tuple Ancestors Tree). A Tuple Ancestors Tree of a tuple t

denoted TAT(t) is a tree with root t and all paths from t to N(t), all paths from each ti in

N(t) to N(ti), and so on until adding a path does not result in a cycle.

Using the concept of indirect properties, we introduce and define the concept of super

entity.

Definition 8. A Super Entity of a tuple t from relation r (i.e., denoted SE(t)) is a

set of specific properties of t as well as all indirect properties of t that are accessible from

150

TAT(t). Formally, SE(t) = P(t) ∪ P(TAT(t)) where P(TAT(t)) is the set of all specific

properties in TAT(t).

Intuitively, if t is a tuple of relation r with no referring relation, then super entity

of t has the same set of properties as t. A super entity shows complete information of a

tuple including all direct and indirect properties regardless of the classification in a

schema. According to Bunge’s ontology (Bunge, 1977), null properties should not be

considered as properties. As a result, given two different tuples of a relation, they may

have different number of properties. Generating super entities can be considered as a

declassification process that shows information content regardless of any structure and

using a set of properties. We argue that such flat structures (in terms of a set of properties)

can be used for data exchange without difficulties in handling the structure of classes in

the source. Since one of the important characteristics of a good data exchange technique

is the complete translation of source data in the target, we use a set of super entities of all

tuples in the source for this purpose. . Regardless of which class (relation) to which entity

belongs, this technique preserves entity information without redundancies.

5.4 EDEX: Entity preserving Data EXchange

In the following, we elaborate the Entity-preserving Data EXchange (EDEX) approach.

The data exchange process is performed in four steps. First, we extract all super entities

regarding all relations in the source schema. In the second step, redundant entities are

pruned to avoid data redundancies and to speed up the data exchange process. In the third

step, the best host relations for these entities in the target schema are selected given

151

property correspondences between source and target properties. Finally, the pruned super

entities are moved to their proper host tables.

5.4.1 Step 1: Super Entity Generation

The first step towards data exchange in EDEX is extracting all super entities, as they hold

the complete information regarding source entities independent of classification.

According to the definition of a super entity, the super entity of a tuple is the union of

properties of that tuple and properties of its Tuple Ancestor Tree. In a schema graph, an

edge between node v1 to node v2 is a foreign key from a column of v1 to a primary key of

v2. Each foreign key of a tuple references at most one tuple of the table referenced (In

cases where more than one foreign key reference the same table, the tree includes more

than one edge with different labels between those nodes).

A super entity regarding a tuple t is a flat structure that can be defined as a view

over all ancestors of t. Relation Ancestor Tree RAT(r) is the structure that shows how this

view can be built regarding tuples of relation r. To build RAT(r), node r is selected as the

root of this tree. Then, using the schema graph, all outgoing edges from r and their

corresponding nodes R are connected to r. Then, for each node ri in R, their outgoing

edges and corresponding nodes are added to ri if they do not already exist in the RAT(r).

This process continues until adding a new edge results in a loop in RAT(r).

Once Relation Ancestor Trees of all relations in a schema are extracted, super

entities can be extracted using view statements that can be generated by post-order

traversal of these trees. In each step, leaves are joined with parent nodes. The output of

this traverse is a nested view statement representing how nodes are joined. A Relation

152

Ancestor Tree is traversed in post-order manner such that in each step, a join between a

child and its parent is formed. For the four relational ancestor trees shown in Figure 5-5,

the following view statements are generated.

Dep: Dep

Prof: Prof ⋈ Dep

Student: (Student ⋈ Dep) ⋈ Prof

Registration: Registration ⋈ ((Student ⋈ Dep) ⋈ Prof)

Applying these view statements on the source instance (Figure 5-4) results in

generating the following set of super entities:

e1: {(dName, D1), (building, B1)}, src = {Dep}

e2: {(dName, D2), (building, B1)}, src = {Dep}

e3: {(dName, D3), (building, B2)}, src = {Dep}

e4: {(name, S1), (program, P1), (dep, D1),(dName, D1),(building, B1), (supervisor, prof1),

(pName, Prof1),(degree, deg1), (profDep, D1)}, src = {Student}

e5: {(name, S2), (program, P2), (dep, D2), (dName, D2), (building, B1), (supervisor, prof2),

(pName, Prof2),(degree,deg1), (profDep, D1)}, src = {Student}

e6: {(name, S3), (program, P3), (dep, D2), (dName, D2),(building, B1), (supervisor, prof3),

(pName, Prof3),(degree, deg2), (profDep, D2)}, src = {Student}

e7: {(sName, S1), (name, S1), (program, P1), (dep, D1),(dName, D1),(building, B1),

((supervisor, prof1), (pName, Prof1), (degree, deg1), (profDep, D1), (course,C1), (regDate,

dt1)}, src ={Registration}

e8: {(sName, S2), (name, S2), (program, P2), (dep, D2),(dName, D2), (building, B1),

(supervisor, prof2),(pName, Prof2), (degree,deg1), (profDep, D1), (course, C2), (regDate,dt2)},

src ={Registration}

e9: {(sName, S2), (name, S3), (program, P3), (dep, D2),(dName, D2), (building, B1),

(supervisor, prof3), pName, Prof3), (degree, deg2), (profDep, D2), (course, C1), (regDate,dt3)},

src ={Registration}

e10: {(sName, S1), (name, S1),(program, P1), (dep, D1),(dName, D1), (building, B1),

(supervisor, prof1),(pName, Prof1), (degree, deg1), (profDep, D1),(course, C2), (regDate, dt4)},

src ={Registration}

e11: {(pName, Prof1), (degree, deg1), (profDep, D1), (dName, D1), (building, B1)}, src

={Prof}

e12: {(pName, Prof2), (degree, deg1), (profDep, D1), (dName, D1), (building, B1)} , src

={Prof}

e13: {(pName, Prof3), (degree, deg2), (profDep, D2), (dName, D2), (building, B1)} , src

={Prof}

153

In addition to ‹property, value› pairs generated as the output of performing view

statements, the source of each entity is also indicated in each super entity. Note that

properties including null values are removed from tuples since they do not add extra

information.

5.4.2 Step 2: Pruning Redundant Information

To prevent data redundancy in data exchange, the set of super entities must be pruned to

eliminate repeated information. For this purpose, we introduce and use the concept of

distinct super entity. A distinct super entity is a super entity possessing at least one

property that does not exist in other super entities of an instance. In spite of the simple

definition, finding such a distinct set of instances is not a trivial process. To extract a list

of distinct super entities, a pruner algorithm (Algorithm I) is proposed to check if all

elements of a super entity (the set of ‹property, value› pairs specifying that super entity)

exist in at least one other super entity. A brute force search requires checking all super

entities for a given super entity to check property inclusion. To avoid this naive search,

the pruner algorithm for a given super entity checks only super entities extracted from

neighbours of the source relation of that super entity. Recall the source relation

corresponding to each super entity is already indicated for each super entity. As a result,

given a schema graph the algorithm searches for inclusion only among super entities

tagged as neighbours of the source of that super entity. Consequently, the search space is

reduced such that only potential super entities are checked for inclusion. For example, for

super entities extracted from Dep, only instances of Student and Prof are checked (as

these are the only relations referencing Dep). Accordingly, only super entities extracted

154

from Registration are checked for each super entity extracted from Student. Nothing is

checked for super entities of Registration as there is no relation referencing Registration.

One potential problem in the pruning process is the order of checking super

entities for inclusion because, different checking orders may result in different output. For

example, a super entity x including all items of super entity y may be removed by super

entity z, if z includes all items of x and is processed before y. To address this problem,

once an inclusion is found, instead of physical deleting that entity, the item is marked as

“deleted”. As a result, actual deleting is performed at the end of algorithm once all

inclusion tests are performed.

─────────────────────────────────────

Algorithm I (Super Entity Pruner)

─────────────────────────────────────

Input: a list of super entities suprEnt

 a schema graph regarding a source schema G=(V, E)

Output: a pruned list of super entities

1: foreach super entity e1 in suprEnt

2: src1 = the source of e1

3: refNeighbors = a set of nodes in G referencing src1

4: // there is no node vi in V such that vi is referencing src1

5: If (refNeighbors == null)

6: continue;

7: foreach super entity e2 in suprEnt

8: src2 = the source of e2

9: If (refNeighbors contains src2)

10: If (e1 is included in e2)

11: mark e1 as “deleted”

12: foreach super entity e1 in suprEnt

13: If (remove e1 from suprEnt if e1 is marked as “deleted”)

─────────────────────────────────────

In our example, the Super Entity Pruner algorithm removes super entities e1 as this

super entity is completely included in e4. Accordingly, e2 is removed because of inclusion

in e5 (and e6). Using this algorithm, {e1, e2, e3} are checked for inclusion in {e4, e5, e6, e11,

e12, e13}. In the same way, {e4, e5, e6} are checked for inclusion in {e7, e8, e9, e10, e12}.

155

Nothing is checked for e7, e8, e9, e10 because their source (i.e., Registration) is not

referenced by a relation in the schema graph.

5.4.3 Step 3: Host Selection

After generating the list of super entities in the source, we need to find appropriate

relations (tables) in the target to reside these super entities. Selecting target host relations

requires considering some important issues. First, the same concepts can be shown using

different representations and as a result, two different properties can represent the same

concept in the source and the target. To connect source and target schemas, we use

property correspondences (a.k.a. value correspondence) in form of ‹p1, p2› representing

correspondence between property p1 in the source and property p2 in the target. Each

correspondence shows that an attribute of the target is semantically related to an attribute

in the source. Such correspondences can be created manually by users in a visual

interface, or automatically by schema matchers using structural, statistics, string

similarities and other schema matching techniques (Bellahsene, 2011). Value

correspondences are already used in data exchange techniques based on schema mapping.

However, in our approach, value correspondences are directly used to select best hosts for

source entities regardless of schema mapping.

The second issue is the conditions for selecting best host for source entities. We

propose two conditions as important. Completeness means residing hosts must be able to

recover all properties of source entities in the target. Non-redundancy ensures no

repetitive information is transferred to the target. To satisfy these two conditions, a host

selection algorithm (Algorithm II) is proposed that is elaborated in the following. We use

156

the target schema shown in Figure 5-6 and the following set of value correspondences

{name ↔ stName, program ↔ prog, dName ↔ dpt, supervisor ↔ supervisor, course ↔

courseName, regDate ↔ date} between this schema and source schema in Figure 5-3 to

explain the host selection algorithm.

Figure 5-6: The target schema residing the source instance

Figure 5-7: RATs constructed for each relation in the target

To select the best hosts for entities extracted from the source, we need to take into

account the structure of the target schema. For this purpose, we consider Relation

Ancestor Trees in the target as structures to reside super entities of the source. For this

purpose, we need to extract a RAT corresponding to each relation in the target. Then, we

need to check which structure can properly reside super entities of the source. Regarding

the target schema shown in Figure 5-6, the RATs constructed for each relation are shown

in Figure 5-7.

We assume the existence of a unique property name for each property (to ensure

this, each property can be named using the triple <dbName, tableName, proprtyName>).

We form a hash table from value correspondences where, for each correspondence ‹p1,

157

p2›, the corresponding property of a given property is accessible. The best Relation

Ancestor Tree to reside a given super entity would be the one that has the maximum

number of properties (class-level properties) matching the properties (specific properties)

of that super entity. Among those RATs with the maximum number of matching

properties, a RAT with the minimum number of total properties is selected as this RAT

holds the minimum number of unrelated properties. This host selection process is

summarized in Algorithm II.

─────────────────────────────────────

Algorithm II (Host RAT selector)

─────────────────────────────────────

Input: A list of source super entities suprEnt

 Schema graph regarding the target schema GT=(VT, ET)

 Hash Table htCorr with target properties as keys and

 source properties as values

Output: The list of super entities marked with host names

1: tgt_RAT_collection ← the set of RATs for each relation in GT

2: tgt_property_collection = a collection holding a set of

3: properties for each RAT(r)

4: foreach super entity e in suprEnt

5: matchingCount = new HashTable();

6: foreach property p in e

7: foreach RAT r in tgt_RAT_collection

8: If htCorr[p] in tgt_property_collection[r]

9: matchingCnt[r]++; //values are initialized with 0

10: If there is a single maximum value in matchingCnt

11: assign RAT (r) corresponding to this value to e

12: Else If more than one r exists with max matchingCnt

13: select RAT (r) with minimum number of properties and

14: assign it to e

15: return suprEnt

 ────────────────────────────────────

When no RAT with a matching property is found, this indicates the target schema

is not capable of hosting this super entity. Otherwise, matching at least one property

ensures residing that super entity. In the prototype implemented, such cases are shown to

the data exchange designer as warning messages to reconfigure value correspondences or

158

to modify the target schema. Given the set of super entities extracted in Step 2, the

following host RATs are selected for super entities as follows:

e3→ ST, e4→ ST, e5 → ST, e6 → ST,

e7 →Reg, e8 → Reg, e9 → Reg, e10 → Reg,

e11→ ST, e12→ ST, e13→ ST

5.4.4 Step 4: Entity Residing

The final step of EDEX is residing super entities extracted from the source in host RATs

indicated in Step 3. Although super entities completely included in other super entities are

considered redundant, and they are removed by the pruner algorithm in Step 2, some

super entities may contain information about the same entity. For example, super entity e1

and e2 contain information about the same department. This is an important issue in data

exchange because this information should refer to the same entity in the target to avoid

entity redundancy. To address this problem, we use target egds (equality generating

dependencies) used to encode primary key constraints in the target (Casanova et al.,

1982). We use these constraints to avoid inserting the same entities with different

identifications by checking primary keys. For this purpose, when a request to insert in the

target is made, the algorithm first checks if information regarding the unique properties

already exists. If the values regarding an entity already exist, the insertion command is

aborted and the primary key of the tuple already referring to that entity is returned.

Otherwise the insertion is performed.

One important issue that must be considered in residing super entities is that

information regarding each ancestor must be inserted before inserting information of its

descendants, as each child has at least one property referring to the primary key of its

159

parent. In particular, the structure of the host RAT can provide the proper order of

information insertion. For this purpose, a post-order traversal of each host RAT ensures

insertion in ancestors before insertion in descendants. The details of generating insertion

statements to reside a super entity in a host RAT are shown in Algorithm III. Insertion

statements generated by this algorithm can be easily transformed to SQL insertion

statement as is performed in our EDEX prototype. The host RAT is traversed in the post-

order manner, and the nested structure for insertion is created. For example, given a host

RAT for Reg relation, the following expression is generated representing the order of

insertions.

ex1:Reg(student (ST: stName, prog, dpt, supervisor), cName (Course: courseName,

credit), date)

This structure shows the order of inserting properties, given properties of a super

entity. To generate insertion statements, we start by inserting greatest ancestors. In our

example, ex1 prescribes three insertion statements with the order of ST, Course and Reg.

First, two sets of properties P1 = (stName, prog, dpt, supervisor) and P2 = (courseName,

credit) are inserted as two nested sets of properties. For example, for super entity e7 (e7:

{(sName, S1), (name, S1), (program, P1), (dep, D1),(dName, D1),(building, B1),

((supervisor, prof1), (pName, Prof1), (degree, deg1), (profDep, D1), (course, C1),

(regDate, dt1)}) with Reg as a target host, the algorithm first checks if there is a common

property between properties of e7 and P1. In this case, {stName, prog, dpt, supervisor} are

selected as common properties. Note that value correspondences are taken into account

for finding common properties (e.g., dName in source corresponds to dpt in target). Then,

160

regarding the primary key of the corresponding target relation ST (i.e., stName), the ST

relation is checked to see if information related to this student is already inserted in this

table. If it is not already inserted, a tuple covering these properties is inserted and the

primary key of this tuple is returned as a reference. If this tuple is already inserted, then

no insertion statement is generated, and stName is returned as a reference. In the same

way, for the second nested set of properties (Course: courseName, credit), courseName is

identified as common property between e7 and ex1. Then, Course table is checked to find

if information regarding cName=C1 is already inserted to Course. Finally, since there is

no other nested statement, an insertion statement for Reg is generated. In this case, the

values for student and cName reference ST and Course relations, respectively, that are

already processed as nested expressions.

─────────────────────────────────────

Algorithm III (Entity Residing)

─────────────────────────────────────

Input: Super entity e = {‹p1, v1›‹p2, v2›,...}

 Host Relation Ancestor Tree RAT(r)

1: ex = the nested expression generated from the post-order

2: traversal of RAT(r)

3: Seq = the order of relations from ex for insertion such that

4: inner parentheses come before outer parenthesis

5: HtReferences = null

6: foreach relation r in Seq

7: CP= common properties of e and r

8: If CP is null then

9: continue;

10: Else If information regarding CP is already inserted in r

11: return related reference from HtReferences.

12: Else

13: insert the tuple related to e in r, add the reference to

14: HtReferences, and return this reference

─────────────────────────────────────

Note that, although applying target egds in data exchange prevents inserting

redundant tuples referencing the same entities, it may result in losing some entities of the

161

source. The reason is that inserting a tuple into a table may not be possible due to

integrity constraint checking for primary keys. For example, because information about

students and departments is stored in the same table with stName as a primary key, the

existence of a department depends on existence of a student. In our example, e3 cannot be

inserted to ST because there is no student who is assigned to this department. This is a

tradeoff between data consistency and data completeness, where a designer may relax

some target egds to gain complete data exchange. The algorithm proposed in this chapter

prioritizes integrity constraints and does not allow breaking any target egd constraint. The

most important benefit of this feature is ensuring generation of the core solution as an

efficient solution in data exchange discussed in the next section.

5.5 EDEX and Core Solution

While a large number of techniques have been proposed to generate universal solutions,

only a few have considered generating the core solution. Such solutions are schema

mapping based solutions in which it is assumed that class level relations between source

and target already exist in terms of schema mapping expressions. On the other hand,

EDEX is a schema mapping independent technique that generates the core solution. To

prove this, we first need to show EDEX generates a valid solution regarding target

constraints and value correspondences between source and target. Then, we show the

instance generated by EDEX is a universal solution. Finally, we discuss why the instance

generated by EDEX is the minimal universal solution (i.e., core solution). Lemma I,

Lemma II, and Theorem I elaborate these propositions.

162

Lemma I: Given a source instance I, and a set of value correspondences Σst =V,

EDEX generates a valid target solution.

Proof: An instance K is a valid solution iff ‹I, K› satisfies (Σst ∪ Σt). In this

definition, Σst is a set of source to target dependencies, where each σ∈ Σst represents a

relation between one or more classes in the source and one or more classes in the target.

In EDEX, Σst is a set of simple value correspondences (V) that are independent of

classification. Since no schema mapping expression is used to generate K, the only items

in Σst that must be satisfied are these value correspondences. In Algorithm III, given a

tuple from the source, an insertion statement is exactly generated based on value

correspondences. As a result, given a tuple t inserted to table T, a corresponding property

is retrieved from the hash table of properties. Consequently, if there is a constant value in

the source, that value is inserted to its corresponding column in the target. Otherwise, if a

corresponding property is not found, nothing is inserted. In either case, ‹I, K› satisfies

(Σst). In addition, ‹I, K› satisfies (Σt) because Σt includes egd relations where each

insertion statement checks primary keys and unique values before insertion.

Consequently, ‹I, K› satisfies Σst and Σt which is denoted ‹I, K› satisfies (Σst ∪ Σt). As a

result, the instance K generated by EDEX is a valid solution.

Lemma II: Given a source instance I, EDEX generates a universal solution in the

target.

Proof: According to (Fagin et al., 2005a), a solution K is a universal solution if it

is a valid solution, and it is derived from the source instance. The first condition is already

satisfied using Lemma I. The second condition ensures that no extra information (that

163

does not exist in the source) is generated in the target solution. A solution K is a universal

solution if there is a homomorphism from K to all other valid solutions. Homomorphism

is a constant-preserving mapping used to turn an instance into a subset of another

instance. Suppose there is a solution K1 such that there is no homomorphism from K→K1.

This means that there exists a tuple t in K for which there is no tuple t1 in K such that

h(t)=t1. In this case, for each item in tuple t, one of the following statements is true: 1)

there exists a constant value c such that c is mapped to a labelled null; or 2) c is mapped

to c1 such that c1 is not in I. In the first case, Algorithm III ensures that constant c must be

mapped to constant c1, if there is a value correspondence between c and c1. As a result, c

cannot be mapped to a labelled null. In the second case, this means K1 is not derived from

the source I and as a result, K1 is not a solution. Consequently, there is a homomorphism

from K to every possible solution.

Theorem I: The solution generated by EDEX is a core solution.

Proof: A core solution K is the minimum solution among all possible universal

solutions. The greedy algorithm proposed in (Fagin et al., 2005b) generates a core

solution from a universal solution by stoping removing redundant tuples from the input

universal solution when there is no tuple R(t) in the input solution such that k-{R(t)}

satisfies Σst. Assume that, for a given source instance I, a universal solution K is generated

by EDEX. Now, suppose K is not a core solution. In this case, there is a R(t1) such that

there exists a homomorphism h: R(t) → R(t1). Suppose R(t) includes Const1∪ Var1 and

R1(t) includes Const2∪ Var2. Since there is a homomorphism from R(t) to R(t1), each

constant c in Const1 is mapped to c in Const2. On the other hand, a variable v in Var1 is

164

mapped to a variable v2 in Var2 or a constant c2 in Const2. R(t1) is removed only when

there is a mapping between variable v and constant c in t. As a result, there is σ∈ Σt such

that c references a primary key. This means the primary key of R(t) is a variable, while

the primary key inserted for a R(t1) is a constant. However, Algorithm III prevents this

situation. As a result, there is no R(t1) satisfying the homomorphism h: R(t) → R(t1).

Consequently, K is a core solution.

5.6 Ambiguity Resolution in EDEX

In this section, we discuss how EDEX can address ambiguous cases in data exchange that

are not resolved in many schema mapping based solutions. In the data exchange example

discussed in Section 5.2, we showed how ambiguous schema mapping expressions result

in generating an incorrect target solution. In particular, we showed how ++Spicy

(Marnette et al., 2011) (as a representative of schema mapping based algorithms) is not

capable of handling ambiguous cases when a class in the source simultaneously refers to

more than one class in the target, while only one of them is acceptable. For this example,

we show how EDEX can resolve such ambiguities.

For the source instance [Instructor(I1, st1, null), Instructor(I2, null, emp1),

Course(C1, I1), Course(C2, I2)] in the example in Section 5.2, the following super entities

are generated in the first step of EDEX.

e1= {(Name, I1), (STNO, st1)}, src ={Instructor}

e2= {(Name, I2), (EMPNO, emp1)}, src ={Instructor}

e3= {(CName, C1),(Inst, I1),(Name, I1), (STNO, st1)}, src= {Course}

e4= {(CName, C2), (Inst, I2), (Name, I2), (EMPNO, emp1)}, src ={Course}

165

In step 2, the pruner algorithm of EDEX removes e1 and e2 as they are completely

included in e3 and e4 respectively. Consequently, e3 and e4 are super entities containing all

information of the source instance. In step 3, the host selection algorithm identifies the

following RATs in Figure 5-8 as candidate structures for residing e3 and e4.

Figure 5-8: RATs for the target schema

Given value correspondences (shown by arrows in Figure 5-2), the number of

properties matching e3 and RAT(Course) is four, between e3 and RAT(Grad) is two, and

between e3 and Rat(Prof) is two. Consequently, RAT(Course) is selected as a host RAT

for e3. Accordingly, RAT(Course) is selected for e4. In Step 4, Algorithm III generates a

nested structure by post order traversal of RAT(Course) which is:

 ex1: Course(CourseName, Instructor[(Grad: name, STNO), (Prof: name, EMPNO)])

In the case of residing super entity e3 in RAT(Course), (Grad: name, STNO) and

(Prof: name, EMPNO) are two substructures at the same level that can be a choice for

residing e3. The number of matching properties between properties of e3 and (Grad:

name, STNO) is two, while the number of matching properties between properties of e3

and (Prof: name, EMPNO) is one. Consequently, Course (CourseName, Instructor

[(Grad: name, STNO)]) is selected for residing e3. Accordingly, Course (CourseName,

Instructor [(Prof: name, EMPNO)]) is selected for residing e4. Finally, the entity residing

algorithm inserts [(name, I1), STNO(st1)] in the Grad followed by inserting

[(CourseName, C1) and (Instructor, I1)] to Course. In the case of residing e4, the entity

166

reside algorithm inserts [(name, I2), EMPNO(emp1)] in Prof and then [(CourseName, C1)

and (EMPNO, emp1)] is inserted to Course. Unlike ++Spicy (Marnette et al., 2011) that

generates two distinct values for Prof and Grad (because of ambiguity in interpreting two

mapping expressions at the same level), EDEX generates a correct target solution by

identifying proper corresponding entities in the source. This example shows the

importance of considering data level heterogeneities in addition to schema level

heterogeneities to resolve ambiguous mappings in data exchange.

5.7 Evaluation

EDEX, including the set of algorithms proposed in this chapter, is implemented in a

working prototype using Java. Generally, evaluating data exchange systems is

challenging as these systems work based on mapping expressions where there is no

standard methodology for mapping generation and evaluation. In addition, there are

factors unique to each mapping system in which different measures are used to assess

performance (Alexe et al., 2008b). In this section, we report the results of a wide variety

of experiments performed to evaluate EDEX. Our prototype is compared with ++Spicy

(Marnette et al., 2011), one of the leading data exchange systems based on schema

mapping (which is an open source implementation of Clio) and also with SESM

(Semantic Enrichment of Schema Mapping), which is an earlier version of our data

exchange prototype based on schema mapping in which mappings are enhanced using

conceptual models (Sekhavat & Parsons, 2013a). Post-processing techniques are not

considered in our comparisons because of the deficiency of these techniques to generate

core solution. As discussed in (Mecca et al., 2012), starting around 10k tuples, the

167

experiments take on average several hours as they exhaustively look for homomorphism

among tuples generated in the canonical solution in order to remove variables.

The experiments cover the quality of data exchange as well as the performance of

algorithms. In the first phase of evaluations, we study the quality of data exchange in

terms of accuracy and completeness of the target instance generated by EDEX. In the

second phase, we evaluate performance of EDEX in terms of execution time, scalability

to handle different types and sizes of data sources, and finally, storage space required to

perform EDEX. Various real and synthesized data source are used in the experiments

elaborated in the following.

5.7.1 Experimental Settings

EDEX stores source and target instances as well as intermediate super entities extracted

during data exchange process in SQL Server 2012. However, our prototype is

implemented using a layered architecture in which the data access layer is implemented

as an independent component. In this architecture, the underlying database engine can be

replaced with any other database engines by modifying the data access layer. In the

second phase of the experiments in which the focus is on performance, the experiments

are also performed on a version of EDEX that employs our Sliced Column Store database

(SCS) (Sekhavat & Parsons, 2012) to improve performance. We will discuss how EDEX

can exploit some unique features of SCS to efficiently process intermediate super entities,

and consequently, speed up the data exchange process.

The overall experimental setting, including components, inputs and outputs of

++Spicy (Marnette et al., 2011), SESM (Sekhavat & Parsons, 2013a) and EDEX is shown

168

in Figure 5-9. ++Spicy and many other schema mapping techniques exploit a graphical

user interface by which users can specify and manipulate attribute correspondences.

Then, these correspondences are stored in XML files. On the hand, in SESM and EDEX,

value correspondences are specified and stored manually in XML files that are loaded

into memory before data exchange. EDEX does not have a graphical user interface to

define correspondences, as our focus is on studying the effect of using an entity

preserving approach on ambiguity resolution. ++Spicy and SESM store mapping

scenarios in XML files while mappings are not generated in EDEX, and value

correspondence are directly used to generate a target instance. However, EDEX requires

an auxiliary storage to store super entities temporarily generated during data exchange.

To reduce the extra space required to store super entities, EDEX employs a “process-as-

generate” technique elaborated in Section 5.7.4.

Figure 5-9: The overall architecture of entity preserving approach

169

5.7.2 Datasets

Datasets from variety of domains are used in the experiments. In addition, a set of

synthesized data sets is used to measure the scalability of EDEX. In particular, six pairs

of data sources including (UTDB, UTCS), (DBLP1, DBLP2), (NetworkA, NetworkB),

(Amalgam1, Amalgam2), (Mondial1, Mondial2), (NBA_Official, NBA_Yahoo) are used

where each pair includes two datasets in the same domain storing data using two different

schemas. These data sources are relational data sources provided by AIM lab in computer

Science department of University of Oregon. UTCS and UTDB are two databases about

the Computer Science department and the database group at University of Toronto.

DBLP1 and DBLP2 are relational schemas for the DBLP bibliography representing this

domain using different schemas. NetworkA and NetworkB are two relational data sources

about network configuration describing nodes and connections in a local area network.

Amalgam1 and Amalgam2 are test datasets developed in Clio project. Mondial1 and

Mondial2 are two databases including countries and their geographical features. Some of

SQL scripts to generate these data sources had syntax problems that are manually fixed

before materialization. The details of these data sources are shown in Table 5-1. Schema

mapping expressions between data sources in each pair are also provided by AIM lab.

In the second phase of experiments, to study the scalability and storage space

required to perform EDEX we used a modified version of our data generator (MUNDgen)

(Sekhavat & Parsons, 2012) to provide datasets of varied complexity and size. This data

generator takes into account many factors, such as average number of tuples in the base

and dependent tables and redundancy in non-unique properties.

170

Table 5-1: Characteristics of datasets employed in the experiments

Database Number

of tables

Avg # of prop

in each table

Total #

of tuples

Avg # of tuples

in each table

Avg depth

of RATs

Max depth

of RAT

Avg # of

edges

UTCS 8 4.00 632 79 1.00 2 1.50

UTDB 13 4.23 3242 249 0.90 2 1.23

DBLP1 22 3.04 928 42 1.09 3 2.13

DBLP2 8 2.62 538 67 1.75 3 2.37

NetworkA 18 4.33 1446 80 0.94 2 1.11

NetworkB 19 2.63 1521 80 1.84 3 2.47

Amalgam1 15 6.73 570 38 0.46 1 0.93

Amalgam2 27 1.96 5130 190 0.62 1 0.81

Mondial1 28 3.64 1825 65 0.50 2 1.00

Mondial2 26 4.57 1812 69 1.61 4 2.30

NBA_Official 3 7.60 473 157 0.66 1 1.00

NAB_Yahoo 4 6.50 668 167 1.25 2 1.50

5.7.3 Phase 1: Quality of Data Exchange

In Section 5.2.1, we discussed how different implementations of a generalization relation

can result in ambiguous interpretation for data exchange. In the first phase of evaluation,

we performed a set of experiments to assess the quality of the data exchange process

provided by EDEX in terms of the quality of target instance generated. Through this

study, we have two important goals. First, we aim to determine to what extent EDEX is

capable of handling ambiguity in comparison to ++Spicy and SESM when generalization

relations are implemented using different techniques in relational data sources. Second,

we want to know if such ambiguities exist in real data sources, and if they exist in to a

sufficient degree to make a considerable improvement in data exchange. In (Sekhavat &

Parsons, 2013a), we studied the importance of handling ambiguities in schema mapping

in a sample healthcare data source, and we showed how ignoring this ambiguity can result

in incorrect schema mappings that consequently generate incorrect target instances. Then,

we showed how SESM can address this problem by semantically enriching schemas using

171

conceptual models. The main drawback of the approach used in SESM is that the quality

of target instance is strongly dependent on the quality of conceptual models. However,

the need for properly mapping between a conceptual model and a relational schema might

limit the usage of this approach. Note that SESM is only a schema mapping generator tool

rather than a data exchange tool. As a result, we used for this evaluation an enhanced

version of SESM such that generates a target solution given a source solution and schema

mappings generated by this system.

Two ambiguous scenarios sc1 and sc2 based on different implementation of

generalization relations were identified. In scenario sc1, a generalization relation is

realized through technique G3 in the source and technique G1 in the target (see Figure

5-1). In scenario sc2, a generalization relation is realized through technique G4 in source,

and technique G1 in the target. These are error prone scenarios that result in generating

ambiguous mappings. Given six pairs of data sources in Table 5-1, we formed a setting

including 12 scenarios where each data source can appear as a source or a target. Each

scenario is shown in the form of db1-db2 where db1 and db2 represent source and target,

respectively. Inputs of each scenario are a source instance (including data and schema), a

target schema and a set of property correspondences between source and target. The

output is compared with the existing target data source, which serves as a gold result. In

the case of ++Spicy and SESM, mappings already provided by AIM lab are used as best

schema mapping expressions between source and target schemas.

172

A. Measures

In our experiments, accuracy and completeness is measured at two different levels. First,

as shown in Table 5-2, we consider what portion of tables in the target schema is affected

in the case of existing ambiguity caused by different interpretation of generalization

relations. Then, at a fine grained level, we measure what portion of tuples of a data source

is affected by this ambiguity (Table 5-2). These experiments allow studying to what

extent ambiguity resolution can improve data exchange quality.

The quality of data exchange at the second level is measured in terms of precision

and recall with respect to the target instance generated by a system and the target instance

already existing as a gold result. For a given pair of datasets, let P denote the set of tuples

existing in the target (in all existing tables) without considering the mappings and data

exchange. Let R the set of tuples generated in the target given a source instance using a

data exchange method (including correct and incorrect tuples). For each table, precision is

computed as (P⋂R)/R and recall is computed as (P⋂R)/P. A tuple is considered to be

correct if its properties exactly match the properties of its corresponding tuple in the

golden result. A key issue to validate EDEX is to show this system can increase precision

and recall in the case of ambiguities while still generating correct instances for the rest of

the cases similar to ++Spicy and SESM.

B. Results and Discussion

The number of error prone scenarios identified in each source-target scenario is shown in

Table 5-2. Among 12 scenarios in this table, six scenarios include ambiguous cases that

affect tuples generated in the target. For example in UTCS, staff is realized through

173

technique G4 where adminStaff, academicStaff and technicalStaff represent three different

subtypes of staff. On the other hand, in UTDB, technique G1 is employed to realize this

class, where a single faculty class is used for this purpose. In this case, ++Spicy generates

three ambiguous mappings (mapping adminStaff to faculty, mapping academicStaff to

faculty, and mapping technicalStaff to faculty) that must be resolved manually by a

mapping designer. On the other hand, EDEX directly materializes each tuple of

adminStaff, academicStaff and technicalStaff in the target based on property

correspondences without need to deal with such ambiguous mappings. In this example,

SESM generates three different mappings, including specific properties, that indicates

which mapping must be applied regarding the values of those properties.

Existence of an ambiguous scenario in a db1-db2 setting does not entail that the

reverse scenario (db2-db1) necessarily includes ambiguity. Similar to EDEX, SESM is

also capable of handling ambiguous scenarios sc1 and sc2 and therefore, the result of

experiments on SESM is similar to EDEX. As shown in Table 5-2, existence of an

ambiguous scenario negatively affects recall as well as precision. However, the amount of

this effect is different on various data sources. For example, in scenario 5, (NetworkA-

NetworkB) although 26% of tables are negatively affected by scenario sc1, this has 3%

and 2% negative effect on precision and recall, respectively. On the other hand, in the

reverse scenario (NetworkB-NetworkA), although only 16%of tables are negatively

affected, precision and recall are reduced to 78% and 75%, respectively. This is due the

fact that the tables affected in scenarios 5 have less tuples in comparison to the number of

tuples in remaining tables. However, in scenario 6, problematic tables possess a large

174

number of tuples. This is an important observation indicating that the amount of

improvement in the quality of data exchange using EDEX is a function of the number of

ambiguous scenarios, the number of tables affected, and the number of tuples in these

tables in comparison to the total number of tuples in a data source.

Table 5-2: The number and percent of tables negatively affected in ambiguous scenarios as well as the

effect of error prone scenarios on precision and recall

Scenario

Source-Target # of tables

affected

% of tables

affected

Avg of precision

for each table

Avg of recall for

each table

of error

prone

scenarios

++Spicy EDEX ++Spicy EDEX ++Spicy EDEX ++Spicy EDEX Sc1 Sc2

1 UTCS-UTDB 4 - %30 - 0.86 1 0.81 1 - 2

2 UTDB-UTCS 3 - %37 - 0.88 1 0.87 1 - 1

3 DBLP1-DBLP2 2 - %25 - 0.85 1 0.89 1 3 -

4 DBLP2-DBLP1 - - - - 1 1 1 1 - -

5 NetworkA-NetworkB 5 - %26 - 0.97 1 0.98 1 2 -

6 NetworkB-NetworkA 3 - %16 - 0.78 1 0.75 1 1 -

7 Amalgam1_Amalgam2 - - - - 1 1 1 1 - -

8 Amalgam2_Amalgam1 3 - %20 - 0.81 1 0.83 1 - 1

9 Mondial1-Mondial2 - - - - 1 1 1 1 - -

10 Mondial2-Mondial1 - - - - 1 1 1 1 - -

11 NBAOfficial-NBAYahoo - - - - 1 1 1 1 - -

12 NABYahoo-NBAOfficial - - - - 1 1 1 1 - -

5.7.4 Phase 2: Efficiency

In the second phase of evaluations, we first study the execution time of EDEX to generate

target instances for various real world data sources. We aim to see if ambiguity resolution

in EDEX is achieved with an extra cost in terms of execution time. Then, we study the

scalability of EDEX to determine to what extent EDEX can handle various sizes of data

sources, and if EDEX scales with respect to a large number of tuples. All experiments

were performed on a PC with an AMD (Athlon) 64 X2 dual core processor 2.71GHz CPU

and 2GB RAM. Results reported in each scenario is the average of three run performed

on a fresh start of the program.

175

A. Execution times for target instance generation

In the first phase of evaluations, we showed EDEX can improve the quality of data

exchange. In this section, we determine whether this improvement is achieved with an

extra expense of processing time, or whether EDEX can also improve efficiency in terms

of execution time. For this purpose, the experiments were performed on the data sources

elaborated in Table 5-1 and compared with the results of experiments on ++Spicy and

SESM. The scenarios elaborated in Table 5-2 include ambiguous and unambiguous data

exchange scenarios to find if the existence of an ambiguity in a data exchange scenario

negatively affects processing time. From a theoretical point of view, we do not expect a

considerable difference in the behaviour of EDEX in the case of existing or not existing

ambiguity because EDEX follows the same approach in either case. However, we expect

to see a difference in the behavior of EDEX to process different data sources since each

schema can result in generating different number of intermediate super entities. In

particular, we expect that the number of Relation Ancestor Trees in source and target and

also the depth of them affect the execution time as they directly affect the number of

super entities. Specifications of data source in terms of number of tables, average depth of

RATs, the maximum depths of RATs, and average number of edges in each RAT, are

shown in Table 5-1. In the case of using ++Spicy and SESM, execution time is calculated

as the total time to generate a target instance including generating schema mapping

expressions and generating the target instance.

Execution times for 12 data exchange scenarios in Table 5-2 is shown in Figure

5-10. These scenarios include ambiguous and unambiguous cases. As expected, there is

176

no difference between the behaviour of EDEX to deal with scenarios including or not

including ambiguity. According to Table 5-2, scenarios 3, which is an ambiguous

scenario, has less execution time in comparison to its reverse scenario (scenario 4), which

is an unambiguous scenario. On the other hand, scenario 8, which is an ambiguous

scenario, has more execution time in comparison to its reverse scenario (scenario 7),

which is an unambiguous scenario. These observations support the idea that existence of

ambiguity in a data exchange scenarios does not affect the execution time of EDEX.

In the case of SESM, preprocessing schema mapping expressions to enrich

schemas with conceptual models before target instance generation is an extra overhead

added to execution time compared to ++Spicy. As shown in Figure 10, the experiments

support this claim where the execution time of SESM is more than the execution time of

++Spicy. In Scenarios 11 and 12, this difference is negligible due to few numbers of

tables and relations in the data sources of these scenarios.

Figure 5-10: Execution time of ++Spicy, SESM and EDEX in Data exchange scenarios shown in

Table 5-1

 As shown in Figure 5-10, EDEX has less execution time compared to ++Spicy

and SESM where in eight scenarios (1, 2, 4, 5, 6, 7, 8) this difference is more

177

considerable. Generally, core computation in schema mapping based approaches is

known as an expensive process due to the need for post processing instances that are

generated by applying mapping expressions. However, there is no need for this expensive

process in EDEX because instead of an intermediary step to remove homomorphism from

a canonical solution, EDEX directly generates the core solution without post processing

of the canonical solution or preprocessing schema mapping expressions. This

improvement is achieved with the cost of extra space required to store super entities as

discussed and elaborated in Section D.

As discussed earlier, EDEX is capable of generating the target solution even

without using the redundancy pruner component. Because unique values are checked

before insertion in the target using target egds, redundant tuples are not inserted when a

super entity is included in another super entity. The main purpose of the redundancy

pruner component is improving the efficiency by reducing the processing time for

checking redundant super entities. However, during the experiments, we noticed that in

some cases, the time spent to check redundancy is more than the time required to check

duplicate tuples. This may happen when the number of tuples in independent tables (not

referencing other tables) is much less than the number of tuples in dependent tables,

which consequently results in little redundancy detection. To study this problem, we

performed a set of experiments using a simple data schema in the source including a

master and a details table where details table references a master. This data source was

mapped to a single flat table in the target. We measured execution times for the complete

version of EDEX and the version without the redundancy pruner component. For a

178

constant number of tuples in the master table, we varied the number of tuples in

dependent tables to study how redundancy remover algorithm can affect the overall

performance of EDEX. The results of this experiment are shown in Figure 5-11.

Figure 5-11: The effect of using redundancy remover component on execution time of EDEX

An interesting observation in Figure 5-11 is that removing redundant tuples can

significantly reduce the data exchange time because redundancy checking (where each

checking is a query on the database) is not performed. However, as shown in Figure 5-11,

using the redundancy pruner component may negatively affect the performance when the

reference ratio (which we define as (number of tuples in the base table)/(number of tuples

in the dependent table)) is lower than 0.5. In this state, there are no considerable

redundancies while checking super entity inclusion is an extra overhead. In addition, as

shown in Figure 5-11, for lower values of reference ratio, this negative effect is

substantial. To deal with this problem, we added a tuner module to EDEX such that,

before application of the redundancy pruner algorithm on a specific set of super entities,

the systems checks the reference ratio given the number of tuples in master and details

tables to decide if it is worth applying the redundancy pruner component.

179

As shown in Figure 5-10, there is no considerable improvement in the execution

time of EDEX in scenarios 3, 9 and 10 compared to ++Spicy and SESM. We attribute this

deficiency to the high average depth of RATs in datasets of these scenarios that

consequently results in a large number of intermediate super entities. In addition, due to

the low reference ratio in these data sources, the tuner component does not prescribe

running the redundancy pruner algorithm.

B. EDEX on SCS (Sliced Column Store Database)

Although EDEX outperforms two other systems in execution time, we believe there is

still room to reduce execution time. EDEX is an I/O bound application due to the large

number of database queries. We decided to replace the database engine with a read-

optimized engine to improve query performance for processing super entities. Originally,

EDEX stores all intermediate super entities in a SQL Server 2012 database engine which

is row-store database. As argued in (Stonebraker et al., 2005), column-store databases can

improve read oriented queries. As a read-optimized database, we used our Sliced Column

Store (SCS) (Sekhavat & Parsons, 2012) engine to improve query processing in EDEX.

In SCS, property columns are horizontally partitioned to slices where each slice stores id

of tuples possessing a particular value of that property. The data access layer of EDEX

modified such that all super entities are stored and processed using SCS.

Not surprisingly, as shown in Figure 5-12, using SCS results in a considerable

improvement in data exchange performance. The improvement is more significant in

scenarios 3, 4, 9 and 10 where a large numbers of super entities are generated due to the

large number of RATs and also higher depths of RATs compared to other data sources. In

180

addition, due to the large number of categorical properties used in these data sources, SCS

can better exploit the advantages of slicing for these data sources.

Figure 5-12: Execution time of EDEX using SQL Server 2012 (row-store) and SCS (Sliced Column

Store)

C. Scalability

To evaluate the scalability of EDEX, we designed experiments to test this system in terms

of the number of tuples, average depth of RATs and average number of edges in RATs.

For this purpose, we used a modified version of our data generator (MUNDgen) to

generate data sources of various sizes and specifications (Sekhavat & Parsons, 2012). In

the first set of experiments, to evaluate the scalability of EDEX in terms of the number of

tuples, we generated a set of synthetic data sources with different sizes based on the NBA

Schema. Similar to (Mecca et al., 2012) we performed EDEX on datasets including 10k,

100k, 250k, 500k, and 1M tuples. The results of applying ++Spicy, SESM and EDEX on

these data sources are shown in Figure 5-13(a). These experiments show that execution

times scales up to 1M tuples. As shown in this figure, ++Spicy and SESM show almost

181

the same behaviour as the extra cost of processing schemas based on a simple conceptual

model including 4 tables is negligible.

We were also interested to study the behaviour of EDEX to handle data sources

with high depths of RATs. For this purpose, we formed five scenarios including 100k

tuples with the same number of RATs, while we varied the average depths of RATs from

1 to 5. As shown in Figure 5-13(b), the result of experiments shows that the execution

time of EDEX increases linearly with increasing the average depth of RATs. Similar to

previous experiments, SESM follows the same trend as ++Spicy. Although the execution

time of EDEX is less than the execution time of ++Spicy and SESM in all scenarios, the

experiments show that increasing the average depth of RATs can be problematic for

EDEX because of the increase in the number of super entities generated and processed.

We also tested EDEX over schemas with different average number of edges in

RATs. For this purpose, we generated data sources with 100k tuples, while we varied the

averages of edges from 2 to 10. As expected, increasing the number of edges in RATs

directly results in increasing the number of super entities and consequently increasing the

processing time. In spite of the negative effect of this parameter on the execution time of

EDEX, this system still outperforms ++Spicy and SESM in all scenarios. Note that in real

data exchange scenarios for data sources in Table 5-2, the maximum average depth was

1.75, while in these scalability evaluation experiments, the behaviour of EDEX is

evaluated for data sources with average depths up to 5. Accordingly, the maximum of

average number of edges in Table 5-1 is 2.37, while as show in Figure 5-13(c), EDEX

can properly scale up to 10.

182

Figure 5-13: Execution times of EDEX on data sources of different size (a), different average depth of

RATs (b) and average number of edges(c)

D. Storage Space

The ability to handle ambiguous scenarios, as well as improvement in the efficiency of

EDEX in comparison to ++Spicy and SESM, is achievable with the cost of extra space

required to store intermediate super entities. In this section, we measure how much extra

space is required to perform EDEX in various data exchange scenarios and discuss

techniques to mitigate the negative effects of this drawback. To reduce the extra space

required to store super entities, we employed a “process-as-generate” technique in which

instead of generating all super entities altogether and then processing them, super entities

are processed as generated. In order to find if a super entity is included in other super

entities, we only need to check super entities extracted from descendents of the source of

183

that super entity. As a result, super entity generation and entity residing in the target can

be performed concurrently. Once a set of super entities is finalized (there is no need for

redundancy check), these super entities are entered to the entity residing component.

In spite of the techniques used to reduce the space used by EDEX, this system

requires extra space compared to ++Spicy and SESM. We measured space required to

perform each data exchange scenario for all 12 scenarios in Table 5-2. The results of

experiments for these scenarios using row store database (SQL Server 2012) and SCS

(Sliced Column Store) are shown in Figure 5-14. In the experiments, the space required to

operate EDEX on these scenarios is measured based on the maximum space allocated

during performing each scenario. As shown in Figure 5-14, the version of EDEX using

SCS allocates more space due to extra space required to store metadata regarding

property tables. This is a tradeoff between better performance and extra space which is a

decision made by a data exchange designer.

Figure 5-14: Storage space required to run EDEX on Scenarios in Table 5-2 using row-store (RS) and

Sliced Column Store (SCS)

An important observation in these experiments is that the maximum space

required to perform EDEX on each scenario is less than the size of the source instance in

184

the case of using EDEX with a row-store database. We used the data sources from

scalability evaluation to study what features of data sources may affect the space required

to perform EDEX. For this purpose, we performed three different set of experiments. As

shown in Figure 5-15(a), first we varied the average number of tuples in the source

instance for a constant number of RATs in the same simple schema. The results show

there is a polynomial trend in space required to perform EDEX as the number of tuples

grows. We already expected this trend as the number of super entities generated for each

RAT is directly dependent on the number of tuples. In the second set of experiments, we

varied the average depth of RATs, while the average numbers of tuples in each table as

well as the average number of edges were kept constant. Not surprisingly, as shown in

Figure 15(b), the space required to perform EDEX in all cases is almost the same because

using “process as generate” technique avoids generating all super entities. Finally, we

varied the average depth of RATs over a constant average number of tuples in each

relation. As shown in Figure 5-15(c), space required to perform EDEX is increased with

increasing the average depth of RATs. However, this is not considerable relative to the

size of the dataset. To sum up, the experiments demonstrate that it is feasible to use

EDEX on data sources of various sizes, with a reasonable extra space which would be as

large as the size of the source dataset in the worst case.

185

Figure 5-15: Storage space required to run EDEX on data sources of different size (a), different

average depth of RATs (b) and different number of edges(c)

5.8 Related Work

The prevailing approach in data exchange has been based on schema mapping, in

which schema mapping expressions are used to generate the target instance. Clio (Fagin

et al., 2009; Miller et al., 2000) has pioneered this approach, and many subsequent

research prototypes such as (Bonifati et al., 2010; Hernández et al., 2008) are proposed

based on this project. Alongside studies on practical tools and algorithms for schema

mapping generation, there have been theoretical studies on data exchange to provide a

solid theoretical foundation for data exchange (Fagin et al., 2005a; Fagin et al., 2005b).

The introduction and formalization of universal and core solution concepts has been the

186

key contributions of theoretical studies in data exchange. Generated by many schema

mapping systems such as Clio (Fagin et al., 2009; Miller et al., 2000) and HePToX

(Bonifati et al., 2005), universal solutions are preferred as they are the most general

solution covering the entire space of valid solutions. On the other hand, generating the

core solutions as a minimal universal solution is considered a natural requirement in data

exchange. Two different algorithms (greedy and block) are proposed in (Fagin et al.,

2005b) to compute the core solution. A polynomial algorithm providing a general answer

to the problem of computing core solutions in data exchange is proposed in (Gottlob &

Nash, 2008). An implementation of the core-computation algorithm using SQL is

proposed in (Pichler & Savenkov, 2010).

Few data exchange systems based on schema mapping have considered producing

executable scripts to compute the core solution. There have been two different approaches

for generating the core solution. In the post-processing approach, the target solution

generated by a system is pruned and processed to generate the core solution (Gottlob &

Nash, 2008; Pichler & Savenkov, 2010). As argued in (Marnette et al., 2010), this

technique may result in high redundancies that consequently impairs efficiency and

quality of a data exchange system. On the other hand, in pre-processing approaches such

as ++Spicy (Marnette et al., 2011), schema mapping expressions are rewritten such that

refined mappings directly generate the core solution. The concept of homomorphism

among mapping expressions is used to find mappings that may result in generating

redundant tuples. In (ten Cate et al., 2009), schema mapping expressions are rewritten

187

into a laconic schema mapping (specified by first-order s-t tgds). Such laconic schema

mappings can directly generate the core solution.

One important issue in data exchange based on schema mapping is ability to

resolve ambiguous cases. As discussed in (Alexe et al., 2008), a schema mapping is

ambiguous if it specifies in more than one way how an atomic target schema element can

be created. Muse (Alexe et al., 2008) allows a mapping designer to select desired

mapping among alternative interpretations of an ambiguous mapping.

As argued in (Qian et al., 2012), providing examples of target instance would be

simpler for users rather than establishing matching between corresponding properties in

source and target schemas. They proposed a sample-driven schema mapping technique

that automatically constructs schema mappings from sample target instances provided by

users. This technique generates mapping expressions given each pair of sample source

and target instances. Then, the validity of these mappings is checked within the limit of

acceptable noise. In EIRENE (Alexe et al., 2011), data examples are used to refine

schema mappings rather than generating mapping expressions.

Another approach employed to gain the semantics of the data for ambiguity

resolution is employing a domain ontology (or conceptual model) to represent higher

level mappings between a source and a target schema. Sekhavat & Parsons (2013a)

propose a technique in which schema mapping expressions are enhanced using

conceptual models. The main drawback of this approach is the difficulty of designing a

global domain ontology and conceptual model. In addition, maintaining mappings

188

between global and local domain ontologies is expensive when data sources are designed

and maintained independently.

5.9 Conclusion and Future Work

In this chapter, we showed that schema mapping expressions representing relations

between a set of classes in the source and the target are not able to handle many

ambiguous cases in data exchange. We attributed this problem to the assumption of

inherent classification in schema mapping. To address this problem, we proposed an

entity preserving approach (EDEX) for data exchange in which the focus is on preserving

source entities in the target no matter to what class they belong in the source. We

introduced the concept of super entities to capture indirect properties of entities. We

showed that, unlike many schema mapping based data exchange systems, EDEX can

resolve ambiguous cases. In addition, EDEX can directly generate the core solution as a

desirable solution for data exchange. There are interesting issues that remain open.

Developing a mapping language expressing relations between source and target

independent of classification in source and target is one of particular interest.

5.10 References

Alexe, B., Chiticariu, L., Miller, R. J., & Wang-Chiew Tan. (2008a). Muse: mapping

understanding and design by example. Proceedings of the IEEE 24rd International

Conference on Data Engineering, Cancún, México. 10-19. doi:

10.1109/ICDE.2008.4497409

Alexe, B., Tan, W., & Velegrakis, Y. (2008b). Stbenchmark: towards a benchmark for

mapping systems. Proceedings of the VLDB Endowment, 1(1), 230-244.

189

Alexe, B., ten Cate, B., Kolaitis, P. G., & Tan, W. (2011). EIRENE: Interactive design

and refinement of schema mappings via data examples. Proceedings of the VLDB

Endowment, 4(12), 1414-1417.

Bellahsene, Z., Bonifati, A. & Rahm, E. (2011). Schema Matching and Mapping. Berlin,

Heidelberg: Springer-Verlag.

Bonifati, A., Chang, E. Q., Lakshmanan, A. V. S., Ho, T., & Pottinger, R. (2005).

HePToX: marrying XML and heterogeneity in your P2P databases. Proceedings of

the 31st International Conference on Very Large Data Bases, Trondheim, Norway.

1267-1270.

Bonifati, A., Chang, E., Ho, T., Lakshmanan, L. V., Pottinger, R., & Chung, Y. (2010).

Schema mapping and query translation in heterogeneous P2P XML databases. The

VLDB Journal, 19(2), 231-256. doi: 10.1007/s00778-009-0159-9

Bonifati, A., Mecca, G., Papotti, P., & Velegrakis, Y. (2011). Discovery and correctness

of schema mapping transformations. In Bellahsene, Z., Bonifati, A. & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 111-147). Berlin, Heidelberg: Springer-

Verlag.

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston,

MA: Reidel.

Casanova, M. A., Fagin, R., & Papadimitriou, C. H. (1982). Inclusion dependencies and

their interaction with functional dependencies. Proceedings of the 1st ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, Los Angeles, California.

171-176. doi: 10.1145/588111.588141

Chen, P. P. (1976). The entity-relationship model-Toward a unified view of data. ACM

Transactions on Database Systems, 1(1), 9-36. doi: 10.1145/320434.320440

Das Sarma, A., Dong, X. L., & Halevy, A. Y. (2011). Uncertainty in data integration and

dataspace support platforms. In Bellahsene, Z., Bonifati, A., & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 75-108). Berlin, Heidelberg: Springer-

Verlag.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005a). Data exchange: semantics and

query answering. Theoretical Computer Science, 336(1), 89-124. doi:

10.1016/j.tcs.2004.10.033

Fagin, R., Kolaitis, P. G., & Popa, L. (2005b). Data exchange: getting to the core. ACM

Transactions on Database Systems, 30(1), 174-210. doi:10.1145/1061318.1061323

190

Fagin, R., Haas, L. M., Hernández, M., Miller, R. J., Popa, L., & Velegrakis, Y. (2009).

Conceptual modeling: foundations and applications. In A. Borgida, er T., V. K.

Chaudhri, P. Giorgini & E. S. Yu (Eds.), Essays in Honor of John Mylopoulos (pp.

198-236). Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-02463-4_12

Gottlob, G., & Nash, A. (2008). Efficient core computation in data exchange. Journal of

the ACM, 55(2), 9:1-9:49. doi: 10.1145/1346330.1346334

Haas, L. M., Hentschel, M., Kossmann, D., & Miller, R. J. (2009). Schema AND data: a

holistic approach to mapping, resolution and fusion in information integration.

Proceedings of the 28th International Conference on Conceptual Modeling,

Gramado, Brazil. 27-40. doi: 10.1007/978-3-642-04840-1_5

Hernández, M. A., Papotti, P., & Tan, W. (2008). Data exchange with data-metadata

translations. Proceedings of the VLDB Endowment, 1(1), 260-273.

Marnette, B., Mecca, G., & Papotti, P. (2010). Scalable data exchange with functional

dependencies. Proceedings of the VLDB Endowment, 3(1-2), 105-116.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., & Santoro, D. (2011). ++Spicy: an

open-source tool for second-generation schema mapping and data exchange.

Proceedings of the VLDB Endowment, 4(12), 1438-1441.

Mecca, G., Papotti, P., & Raunich, S. (2012). Core schema mappings: scalable core

computations in data exchange. Information Systems, 37(7), 677-711. doi:

10.1016/j.is.2012.03.004

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query

discovery. Proceedings of the 26th International Conference on Very Large Data

Bases, Cairo, Egypt. 77-88.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

Pichler, R., & Savenkov, V. (2010). Towards practical feasibility of core computation in

data exchange. Theoretical Computer Science, 411(7-9), 935-957. doi:

10.1016/j.tcs.2009.09.035

Popa, L., & Tannen, V. (1999). An equational chase for path-conjunctive queries,

constraints, and views. Proceedings of the 7th International Conference on Database

Theory, Jerusalem, Israel. 39-57.

191

Popa, L., Velegrakis, Y., Hernández, M. A., Miller, R. J., & Fagin, R. (2002). Translating

Web data. Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China. 598-609.

Qian, L., Cafarella, M. J., & Jagadish, H. V. (2012). Sample-driven schema mapping.

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Scottsdale, AZ, USA. 73-84. doi: 10.1145/2213836.2213846

San, R. (2012). Ventana research 2012 value index for data integration. (Research). CA,

USA: Ventana Research.

Sekhavat, Y. A., & Parsons, J. (2012). Sliced column-store (SCS): ontological

foundations and practical implications. Proceedings of the 31st International

Conference on Conceptual Modeling, Florence, Italy. 102-115. doi: 10.1007/978-3-

642-34002-4_8

Sekhavat, Y. A., & Parsons, J. (2013a). SESM: semantic enrichment of schema

mappings. Proceedings of 4th ICDE International Workshop on Data Engineering

Meets Semantic Web, Brisbane, Australia (to appear).

Sekhavat, Y. A., & Parsons, J. (2013b). EDEX: Entity Preserving Data Exchange.

Proceedings of DATA’13 International Conference on Data Management

Technologies, Reykjavík, Iceland (to appear)

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E.,

Lin, A., Madden, S., O'Neil, E., O'Neil, P., Rasin, A., Tran, N., Zdonik, S. (2005). C-

store: a column-oriented DBMS. Proceedings of the 31st International Conference on

Very Large Data Bases, Trondheim, Norway. 553-564.

Talburt, J. R. (2011). Entity Resolution and Information Quality, Burlington, MA:

Morgan Kaufmann.

ten Cate, B., Chiticariu, L., Kolaitis, P., & Tan, W. (2009). Laconic schema mappings:

computing the core with SQL queries. Proceedings of the VLDB Endowment, 2(1),

1006-1017.

192

Chapter 6 Sliced Column-Store (SCS): Ontological Foundations and

Practical Implications
1

Abstract

Advances in business intelligence systems based on processing large data volumes are

driving efforts toward read-optimized databases. Recently, the use of column-store

approaches as a solution for such databases has become quite popular. The main idea

behind the column-store approach is reducing I/O requirements through vertical

partitioning of data in which only those attributes that are required to answer a query are

read. This chapter offers two contributions to column-store data models. First, we show

that such models can be grounded in ontological foundations that provide a theoretical

basis for column-store databases based on representational adequacy. Second, we use

these ontological foundations as the basis to propose an extended model of the column-

store model called Sliced Column Store (SCS), and show that this model outperforms

column-store models for read-oriented queries.

6.1 Introduction

The performance of query-intensive systems is strongly dependent on the performance of

underlying databases and query processing engines. These systems require read-

optimized database engines in which efficiently answering read-oriented ad-hoc queries

has priority over write-oriented queries. Relational databases are optimized for Online

Transaction Processing (OLTP) in which handling a large number of small inserts and

1 Sekhavat, Y. A., & Parsons, J. (2012). Sliced column-store (SCS): Ontological foundations and practical implications.

Proceedings of ER’12 International Conference on Conceptual Modeling, Florence, Italy. 102-115.

193

updates in an acceptable time is more important than reducing query answering time for

complex read-oriented queries. These databases are implemented based on the row-store

approach in which records (rows of tables) are contiguously stored in memory such that a

single disk write is usually enough to write all fields of a record on a disk, and provides

acceptable query performance in sequential access to the data. However, relational

databases are not optimized for read-oriented tasks such as querying data warehouses. In

terms of read-oriented queries, such architecture usually requires a full table scan where

many data columns are projected out since not all attributes are required to answer a

query. Consequently, many irrelevant properties are read, even though they are not

necessary to process a query. As a result, relational systems are not I/O efficient because

they use I/O bandwidth for reading unnecessary data. Based on this fact and the simple

idea of reading only those attributes that are required to answer a query, the Column Store

(CS) approach has been proposed. Unlike the row-store model in which the properties of

a record are stored contiguously in memory, in the column-store approach, the values of

each property for different records are stored contiguously. Recent years have witnessed

the introduction of many database systems based on the column-store approach (Boncz et

al., 2005; Larson et al., 2011; MacNicol & French, 2004; Stonebraker et al., 2005).

In addition to improving the performance of read-oriented queries, some research

has also shown the potential of the column-store approach in addressing other problems

in database management. Vertical table partitioning that uses the column store approach,

is one of the major techniques used in database management to address difficulties in

managing large database systems. As discussed in (Herodotou et al., 2011), table

194

partitioning can increase the manageability of database systems by allowing parallel

access to different properties, easier backup, and a fine grained access control through

providing facilities to enforce different access-right policies for different partitions. In

addition to query efficiency and database manageability, the column-store approach

provides other advantages such as supporting multi-value attributes, handling null values

and efficient handling of wide tables with sparse data.

Based on these promising advantages of the column-store model, in this chapter

we explore a theoretical foundation that provides a basis for the column-store approach.

While prior research treats the model only as an ad-hoc approach used for physical data

storage, we examine the question whether it is possible to provide a theoretical foundation

that can further improve the performance of query processing. Answering this question is

crucial since the answers can direct further efforts to improve data storage models based

on the column-store approach.

We first discuss ontological foundations behind the column-store approach. We

show that, unlike the row-store approach, the column-store approach is more compatible

with a particular ontological view of the nature of reality represented in information

systems. In particular, we show how the assumption of inherent classification (Parsons &

Wand, 2000) has permeated the design of row-oriented model. We show the column-store

model represents one step forward towards addressing this problem by vertical

partitioning of data. Using these theoretical foundations, we show the column-store model

can be improved by column slicing. We suggest two different query independent column

slicing technique for nominal and string attributes. We argue that Sliced Column Store

195

(SCS), which is a step towards full data partitioning, is more compatible with the nature

of data. The main advantage of column slicing techniques is that only those values

specified in query predicates are read. We show how column slicing results in reducing

the cost of selection operations and consequently speeding up join operations compared to

the pure column store model.

The horizontal reorganization of data in column-store approach is already

considered in terms of database cracking (Idreos et al., 2007; Idreos et al., 2011). This

approach is a type of partial sorting in which each request for a particular result set

(through posing queries) is an advice for partitioning columns to smaller parts. The

rationale behind this technique is that future queries are somehow similar to previous

queries that are already posed by users, and as a result, they are more likely to have

similar query predicates. We argue that reorganizing physical storage of data based on

input queries has some drawbacks. First, business intelligence applications usually

involve many new ad-hoc queries that are not based on previous queries. For such

queries, reorganization of columns may even worsen the query performance because of

the extra effort required for reorganization of data, while future queries may not take

advantages of this reorganization. Second, reorganizing before or during query answering

not only requires extra time that negatively affects query answering, but also provides

many concurrency and consistency problems that require additional consideration.

Moreover, inserting new data requires reorganization of data in columns by shifting data.

The proposed column slicing technique in this chapter is an effort to address these issues

in which instead of sorting, the list of instances possessing the same value of a property

196

are physically stored in different slices. Our experiments show the effectiveness of using

column slicing techniques to improve query performance as well as to address many

problems of database cracking and column sorting.

6.2 SCS: Ontological Foundations and Practical Implications

Although reducing I/O overhead to improve query performance is considered as the main

technical motivation behind column-oriented databases, to our knowledge no theoretical

foundation has been proposed for this model. In this section, we propose a theoretical

foundation behind the column store model and show why this model is appropriate for

processing read-oriented queries. We also aim to find whether it is possible to improve

query performance by refining the column store model by adopting a suitable theoretical

foundation.

6.2.1 From Row Store to Column Store

Ontological Foundations. To explore the theoretical foundations behind the column

store approach, we turn to formal ontology, the branch of philosophy that deals with the

order and structure of reality in the broadest way possible. Ontology has been widely used

as a theoretical foundation for conceptual modeling, both in theoretical analyses (Parsons

& Wand, 2000) and in empirical studies (Gemino & Wand, 2004). The rationale behind

using ontological principles is that it provides a meta-model of existing things in the real

world, and database systems represent knowledge or facts about the real world. As a

result, understanding the actual components and relations between things in the real world

helps in designing databases that better reflect this reality. More specifically, we show

197

how the row-oriented approach has been the consequence of the assumption of inherent

classification in information system modeling (Parsons & Wand, 2000). Many difficulties

in information system management, such as schema integration, schema evolution and

ability to exchange information between heterogeneous data sources, can be attributed to

this assumption. According to the assumption of inherent classification, everything that is

modeled in a domain of interest in an information system is treated as an instance of a

class in an object-oriented model (or an entity belonging to an entity type in the Entity

Relationship model). Contrary to this assumption, although classification is one of the

rudimentary abilities of humans in understanding the things of interest in any domain, real

world objects do not inherently belong to classes; rather, classification is a consequence

of an effort to organize knowledge about existing things. Inherent classification is

incompatible with ontological assumptions about the nature of things in the real world

where things and their properties exist prior to and independent of their classification

(Parsons & Wand, 2000).

From this perspective, the row-store model can be viewed as a consequence of the

assumption of inherent classification that pervades database design. An implementation

consequence of this assumption is that information about instances that belong to the

same class is stored contiguously in memory. However, based on ontological foundations,

data is not inherently classified; rather, classification is an outcome of humans’ efforts to

organize information. Thus, there is no fundamental reason why instances belonging to

the same class should be stored contiguously in memory. The row-store model (i.e., based

on contiguously storing records that are in the same class) adds complexity to data

198

extraction that consequently affects query answering time. This complexity is the result of

extra operations required to filter data based on query predicates. We argue that query

answering in a database is nothing but a set of data partitioning and data combining

operations based on query predicates. For example, in the relational model, data

partitioning is provided through selection, projection, intersection, difference, and

division operations. On the other hand, combinations are provided through operations

such as join, union, and Cartesian product. In the row-store model, the properties of

instances belonging to the same class (tuples in a relation) are stored contiguously in

memory. However, to answer many queries, there is no need for simultaneously

extracting these properties. Therefore, extra selections and projections are required to

answer these queries.

To address this problem of relational databases, an Instance-Based Data Model

(IBDM) is proposed in (Parsons & Wand, 2000) that separates the definition of instances

(records) from the definition of classes. IBDM has a two-layer architecture, in which the

first (instance) layer specifies the existing things in a domain by defining their properties

or attributes independent of their membership in a class. The second (class) layer

specifies which properties belong to each class, where one property may belong to more

than one class. From an implementation point of view, instances are represented through

unique identifiers plus pointers to intrinsic properties (those depending on only one

instance, such as ‘gender’ of a patient), and mutual properties (those depending on two or

more instances, such as ‘date of surgery’ depending on a patient and a doctor). In

particular, intrinsic properties can be stored as a set of (InstanceID, Value) pairs, and

199

mutual properties as a set of (InstanceId1, InstanceId2, Value) triples. In this model, each

intrinsic property can be represented as a binary table where the name of the table is the

unique identifier of that property. The first column of this table is the unique identifier of

the instances (InstanceID) that possess this property, and the second column is the value

of that property for each instance (value). Accordingly, a mutual property can be

represented through a three-column table in which the first and second columns are

unique identifiers of the instances that jointly possess this mutual property, and the third

column is the value of that mutual property. From this description, IBDM can be viewed

as a column-store model originally proposed as a solution for the problem of inherent

classification.

Practical Implications. As argued in (Abadi et al., 2008), “There is in fact something

fundamental about the design of column-store systems that makes them better suited to

data warehousing workloads.” From the implementation point of view, relational

databases are based on the row-store approach in which data is stored in two dimensional

relations (tables) including a set of properties (columns) for each record of data (row).

Since data rows are stored contiguously in memory, this approach wastes I/O bandwidth

as all attributes of a table are read even if not all of them are required to answer a query.

The column-store approach is proposed as a solution to address this problem by limiting

the number of attributes to those required to answer a given query. As shown in Figure

6-1, regarding a query that only address property A and property B in its query predicate,

the whole table is scanned for the row-store model while columns C and D are not

scanned in the column-store model. As discussed in (Harizopoulos et al., 2006) reducing

200

the amount of data read has a significant effect on reducing the time required to execute

queries where I/O is the main bottleneck.

Figure 6-1: Scanned data in row-store, column-store and sliced column-store for a query including

particular values of A and B

In the architecture of column-store databases, every n-ary relation is represented

by a group of binary relations that are stored in form of two-column tables. The tuples of

each binary relation are stored physically adjacent to speed up scanning data in these

tables. Recently, there has been considerable effort devoted to improving the column-

store based database systems (Boncz et al., 2005; Larson et al., 2011; MacNicol &

French, 2004; Stonebraker et al., 2005). C-store (Stonebraker et al., 2005) is one of the

leading column-store projects in which data is stored in groups of correlated columns

called projections. In this architecture, the same property may appear in different

projections with different sorting orders. Each projection is stored in a different physical

storage structure. In this model, relations between different properties of the same record

(data row) are provided through implementing join indexes. These join indexes are

necessary to reconstruct the original table from existing projections.

201

6.2.2 From Column Store to Sliced Column Store (SCS)

Ontological Foundations. From the ontological point of view, characteristics of existing

things in the real world are represented by ‘properties,’ which are the basic constructs in

data models (Wand et al., 1999). To study the relations between properties, we use the

property precedence notion of Bunge’s ontology (Bunge, 1977). According to this notion,

property P1 precedes property P2 if and only if the set of things possessing P2 is a subset

of things possessing P1. For example, the property of ‘having color’ precedes the property

of ‘having red color’ since the set of instances that are red is a subset of the set of

instances that have color. We focus on property precedence since it has special

importance in the context of classification. A class in a data model is represented in terms

of set of generic properties while instances of that class possess specific properties

implying those generic properties (Parsons & Wand, 2003). In other words, possessing a

specific property manifests possessing a generic property. For example, ‘gender=male’

and ‘gender=female’ are two specific properties of a generic property ‘having gender’.

According to Bunge’s ontology [13], things and their properties exist prior to and

independent of any classification. However, in the relational model (and consequently the

row-store model based on it), an instance should be member of a class before insertion to

the database. In this thesis, we distinguish between the classification based on generic

properties (that constitutes the definition of classes in a data model) and classification

based on specific properties (different manifestations of a generic property).

Classification of instances based on generic properties prior to existence of things and

their properties results in the problem of inherent classification. However, classification

202

of instances based on specific properties after insertion to the database is not in

contradiction with ontological foundations. In addition, this type of classification is more

compatible with the nature of read-oriented queries. Query answering in read-oriented

queries is nothing but selecting instances from a database based on specific properties

(manifestations). As a result, if these different manifestations are classified and stored

contiguously on the memory, a query processor needs to read only those manifestations

that are indicated in query predicates. The notion of classification based on manifestations

constitutes the main idea behind the sliced column-store model (SCS). Although the

column-store approach has addressed the problem of inherent classification by reading

only the relevant properties, the query processor still needs to read all values of these

relevant properties even if only particular values (that are indicated in query predicates)

are required to answer a query.

In particular, the row-store model is the consequence of the classification of

instances based on a set of generic properties where each set constitutes a class. This

model prescribes instances that belong to the same class should be stored contiguously in

memory. In the CS model, all values of a specific property are stored contiguously for the

instances that possess that property. In SCS, classification in the manifestation layer

propagates to the storage where identifications of instances possessing a specific

manifestation are stored contiguously on the memory.

Practical Implementation. Sliced Column Store (SCS) model is an extended version of

the column-store model that exploits the advantages of this model while providing better

query performance by narrowing the search space in query processing. Column-store

203

techniques reduce the amount of data read by considering only those attributes that are

necessary to answer a query. SCS goes beyond this idea, and not only ignores irrelevant

attributes, but also reads only those particular values that are specified in query predicates

(selection criteria). This is achieved through slicing property tables based on different

values. For example, a gender column that stores gender of people in a column in the

column store model is sliced and stored in two columns gender_male and gender_female

such that each slice stores the ID of instances that possess each particular property value.

In SCS, the value of properties is implicit in the name of properties. As shown in Figure

6-1, if the CS model is an effort to reduce I/O by vertically narrowing search space, SCS

narrows this space by further partitioning of the search space. Note that unlike the

common horizontal data partitioning in which the main table is horizontally partitioned

(all partitions have the same data schema), in SCS partitioning is performed on binary

tables that are already partitioned vertically according to the column-store model.

In spite of the advantages discussed earlier, the column store model has some

limitations. The main problem is the cost of materialization (Abadi et al., 2007). Column

store databases store data in a set of binary tables, while users request data in the form of

row-style tuples that requires merging existing column (i.e., called materialization).

Materialization is an important issue in column-store databases since it directly affects

query processing. Two common techniques in materialization are Early Materialization

(EM), that involves forming intermediate tuples from set of columns as they are accessed,

and Late Materialization, in which intermediate tuples are not formed until after some

part of the query is performed based on query predicates. For example, for a query over

204

three columns A, B and C with selection operations σ1 , σ2 and σ3 , EM technique reads a

block of A, B and C, and creates a row-style tuple (A, B, C). Then, it applies selection

operations on these tuples. However, in LM, first the query processor reads tuples

satisfying σ1 from A, then reads B and C based on σ2 and σ3 respectively. Finally, these

items are stitched together. According to (Agrawal et al., 2004), the total cost of joins

among many small partitions with few properties is much less than a join between two

tables with many properties. Although simple joins are required because joins are

between two-column tables, the cost of these join operations are not negligible. As a

result, any step towards reducing the cost of materialization in column store databases can

have an important effect on the overall query answering performance. The column slicing

technique diminishes the cost of materialization by reducing the cost of joins. This is

achieved by eliminating the cost of selection operations in joins since IDs of instances

possessing the same value of a particular attribute are stored in the same slice.

6.3 Column Slicing Techniques

The main contribution of this chapter is the basic idea of column slicing that can be

implemented with any appropriate column slicing techniques. To implement this idea, in

this thesis we propose two different slicing techniques for nominal and string data types,

and we defer slicing techniques for numerical and other data types for future work. In the

following, the details of these partitioning techniques are elaborated. An example of

column slicing on a sample column store database is shown in Figure 6-2.

In the case of categorical properties, in accordance with the concept of

classification based on manifestations, each binary table in the column-store model for a

205

nominal property (with domain of n possible values) is split to n single-column slices

where each slice stores the unique identifiers of instances possessing a particular value of

that property. The name of each slice implicitly shows the value of that property for those

instances that are stored in that slice (i.e., property_value). Unlike the column store

approach in which the values of properties are stored as data, in the column slicing

approach, values of properties are considered as a metadata (i.e., the name of slice)

representing the class of objects that possess a particular value of a property. For

example, as shown in Figure 6-2 the nominal property A with the domain of values a1,

a2, a3, a4 and a5 is split to five single-column slices A_a1, A_a2, A_a3, A_a4, A_a5 that

stores ID of instances possessing each particular value of A.

Compression, which is used widely in column store databases to reduce the size of

databases and speeding up the query answering (Lemke et al., 2010; Stonebraker et al.,

2005), is implicit inside the column slicing approach for nominal properties since each

particular value of a property is stored one time as a metadata in the name of the single-

column slice, and only ID of instances possessing this particular value are stored in that

slice.

Figure 6-2: An example of partitioning technique for nominal (A) and string (B) attributes

206

In the case of string properties, we propose an α-level slicing technique based on

the concept of trie data structure (Heinz et al., 2002). A trie is a tree-based data structure

that is useful for handling strings over alphabet. In the trie data structure, information

about the content of each node is stored in the path from the root to the node, rather than

the node itself. We use this notion to classify the values of string properties based on their

characters starting from the first character. More specifically, the first level includes 26

classes (a-z) where each class represents a class of strings starting with a particular

English letter. In the case of lower- and upper-case letters, the number of classes will be

52 (a..z, A…Z) and in the case of all ASCII characters, the total number of classes in the

first level is 128). At each level, nodes are further classified based on the next character.

An example of this classification for data of Figure 6-2 is shown in Figure 6-3.

A path from the root to each leaf node (i.e., an order of characters) represents the

name of the slice that stores the IDs of instances possessing string values starting with

that path. Note that the concept of the trie data structure is used only for the purpose of

explaining the slicing and classifying string properties, and there is no need to store this

structure in the database since the name of each slice implicitly indicates the value of

string properties starting with that name. For example, B_be represents a slice of property

B that stores instances that their value for B starts with be. Since not all slices are created

in the beginning, and slices are created in the record insertion time, there is no slice

without a value. That way, we control the number of slices by avoiding empty slices.

However, the number of slices can growth exponentially with increasing α. The effect of

207

applying different values for α on query answering and database size is discussed in the

evaluation section.

Figure 6-3: An example of slicing a string property (property B in Figure 6-2)

6.4 Column Slicing vs. Database Cracking, Sorting and Bitmap Index

Column-stores are heavily optimized to perform materialization as tuple reconstruction is

the main cost of column-store query plans. Having unaligned columns is always

something to avoid in order to reduce random accesses during tuple reconstruction. This

is why C-store (Stonebraker et al., 2005) uses column-store projections where data is

replicated, sorted and then compressed. Similarly, database cracking (Idreos et al., 2007)

replicates columns in multiple orders but performs the sorting partially (i.e., only for the

range of values referenced in query predicates). In this section we discuss how these

techniques are different from column slicing.

Database cracking (Idreos et al., 2007; Idreos et al., 2011) is a dynamic

partitioning technique for numerical properties such that the physical organization of data

is continuously updated based on input queries. More specifically, based on the query

predicate of input queries, those values of a numerical column that satisfy the query

predicate are partially sorted. The main idea behind dynamic reorganization of data based

208

on input queries is that the way that users request data in the future is similar to the way

they requested data in the past. We argue that database cracking has three main

drawbacks. First, Business Intelligence applications usually deal with many new ad-hoc

queries in which the behavior of users in query building is not necessarily the function of

their behavior in the past. As a result, dynamic reorganization can worsen query

performance of queries in which there is no overlap between the query predicates of past

and future queries. However, the proposed column slicing technique in this thesis is a

query independent technique in which the same manifestations of a property are classified

and stored contiguously on the memory. Such a query independent technique is more

appropriate to answer new ad-hoc queries. Second, the cost of reorganization of data in

database cracking during query processing is an additional overhead that is added to the

cost of query answering time. However, in the column slicing technique, physical

reorganization and query processing are two independent processes performed in two

different phases, and physical reorganization of data does not negatively affect query

processing time. Third, in database cracking, inserting new data to the database may

result in full reorganization of data since it will require shifting and physical

reorganization of data. This would not be a problem for our column slicing technique as

new records are stored in predefined slices that there is no need for reorganization of data.

Column sorting (in which binary tables are sorted) is a more general solution

compared to database cracking (i.e., partially sorting column based on query predicates).

Although column sorting can significantly reduce the cost of selection operations and

consequently the cost of record materialization by reducing the cost of join operations, we

209

argue that column slicing works better than column sorting. Assume a binary table

including n rows of (ID, value) for a property. To answer a query including a selection

operation on a specific property, a binary search with the cost of O(log n) is required to

select data from a sorted column. However, in the case of full data partitioning, the list of

instances satisfying the selection operation already exist in a single-column slice where

the name of each slice implicitly indicates its contents.

The Sliced Column Store (SCS) technique proposed in thesis is also different from

the bitmap index technique (Chan et al., 1998). In the bitmap index, the unique identifier

of an instance possessing a specific value is an index key while a boolean value (0 or 1)

for each distinct value of that property is stored. For example, the gender property is

stored as:

Instance id male Female

I1 0 1

I2 0 0

I3 1 0

I4 1 0

This structure is implemented using bit arrays (commonly called bitmaps) that

supports performing query answering using fast bitwise logical operations on these

bitmaps. However, in SCS, we do not store boolean property values for each instance.

Instead, we only store unique identifiers of instances possessing a specific value of a

property to reduce time required to select instances based on specific values. While SCS

has some similar benefits to bitmap indexes, such as reducing the time it takes to filter on

a column with a small number of distinct values, the underlying structure is different.

210

6.5 Experiments

In this Section, we evaluate the effect of applying the column slicing technique on query

answering; as well, we explore the side effects of this technique. SQL Server 2012

(Larson et al., 2011) is used as a database engine. The new added feature in this database

engine (called column store index) is a pure column-store system in which data for

different columns are stored on separate pages. As a result, performing the column index

on a column ensures physically creating a column store database. The hardware setting

of the employed database server is AMD Athlon, 64 X2 Dual Core 2.71 GH, 1GB RAM,

and 280 GB HD. To gain an understanding of column slicing techniques, we conducted

experiments in two phases with two different datasets. In the first phase, a dataset

generated by our simple data generator (MUN-DGen) is used to explore the pure effect of

slicing on query operations. In the second phase, TPC-H benchmark (www.tcp.org) with

data that typically found in data warehousing and business intelligence applications is

used.

6.5.1 Phase1: The Pure Effect of Slicing on Query Operations

In the first phase, we have conducted a set of experiments on a simple database. The

purpose of using this simple database for exploring the pure effect of slicing is controlling

over the number of tables, number of properties, types of the properties and number of

categorical values. We implemented a data generator (MUN-Dgen) that automatically

generates column store and sliced column store datasets for a big table. This big table A

includes m sting properties A_SP , n integer properties A_IP, and k categorical

211

(represented by a integer data type.) properties A_CP. In the case of categorical properties

in SCS, A_CPi_j is the value j of the categorical property A_CPi.

Simple Selections. In the case of column slicing, we expect better performance compared

to the pure column store technique for simple selection queries with high selectivity query

predicates because they access only few records compared to the whole column scanning

in column store. To explore this effect, we take into account a query QS= πInId (σ A_CP1=

‘CP1-1’ (A)) that selects instances from a single table based the value of a categorical

property (A_CP1 is the referenced categorical property, and CP1-1 is a specific value of

this property). Let r the number of records in table A and s the average size of allocated

space by a nominal property (that can be shown by an integer or a string data type). The

amount of data scanned in CS is rs this amount is rs/t for SCS where t is the average

number of categorical values. In SCS, the selection criterion is implicit in the name of

table, and there is no need for explicit filtering of data. The experiment supporting this

idea is shown in Figure 6-4. With increasing the number of categorical values, the

execution time of QS on SCS is reduced because of increasing the selectivity of the query

predicate.

Aggregation Functions. To explore the effect of slicing on queries including aggregate

functions, we consider the query QA = π A_CP1,Count(A-ID)(A) that adds an aggregation

operator on top of the selection query. Since the list of instances possessing each specific

value of a categorical property is stored in different slices, aggregate functions access

those data directly. However, since all records must be scanned in both CS and SCS, there

212

is no considerable improvement on aggregate functions running on SCS. The experiments

regarding QA are shown in Figure 6-4.

Join Operations. We expect a considerable improvement in performance of queries

including join operations because of reducing the cost of materialization (reconstructing

row-style tuples from a set of columns) in SCS. Reduction in the cost of the

materialization is the consequence of reducing the cost of selections operations on

columns since the list of instances are pre-categorized in a set of column slices. In the

case of joining multiple columns, all relevant columns (including columns that will be

materialized and columns that are referenced in the query predicates) participate in the

join operation. Since only pre-selected values of columns are entered into join operations,

we expect considerable improvement for SCS. Recall that according to (Agrawal et al.,

2004), the join between two tables with m>2 properties is more expensive than joins

between m tables with two properties. To study the effect of slicing technique on the join

operations, we used the query QJ: πInId, A_CP1,A_SP1,A_1P1 [σ A_CP2= ‘CP2-1’ (A)]. As shown in

Figure 6-4, as the number of categorical values increases, the execution time of QJ

decreases.

Figure 6-4: Execution time of QS, QA and QJ for different number of nominal values

213

6.5.2 Phase2: TPC-H Benchmark

In the second phase of experiments, in order to evaluate the effect of column slicing on

real business intelligence and data warehousing dataset, an instance of TPC-H at scale 1

is generated using the TPC-H data generator where the total database size is around 1GB.

The database generator program in TPC-H was modified such that creates equivalent

databases in three different states: 1) slicing only nominal attributes, 2) slicing only string

attributes, and 3) slicing both nominal and string attributes. This categorization allows

gaining an understanding about both pure and mutual effects of different column slicing

techniques on the performance of query processing.

Among 22 Queries in TPC-H benchmark (Http://www.tcp.org), queries Q3, Q10,

Q12 were selected to explore the pure effect of partitioning nominal attributes because at

least one nominal attribute exists in their predicates while there are no string attributes.

These queries were performed on an instance of the TPC-H dataset in which only

columns regarding nominal attributes were sliced. The query answering time is compared

with running these queries on original instances of the generated database (Table 6-1).

To explore the effect of slicing string properties, Queries Q2, Q5, Q7, Q11, Q17

and Q20 were selected from TPC-H benchmark queries as they include at least one string

property in their query predicates with no nominal property. Three different instances of

TPC-H dataset (regarding α = 1, 2, 3) in which all string properties are sliced were

created. The results of these experiments regarding these queries are shown in Table 6-1.

We do not suggest more than three levels of slicing for TPC-H dataset as exponentially

increasing the number of slices negatively affects the advantages of column slicing. The

214

effect of increasing slices and consequently increasing the database size is discussed in

Section 5.3.

Among TPC-H queries, Q8, Q19 and Q21 are queries that both nominal and string

attributes are addressed in their query predicates. To explore the effect of slicing nominal

properties in conjunction with string properties, instances of TPC-H dataset are generated

in which all nominal and string properties were sliced. As shown in Table 6-1, our

experiments demonstrate that the proposed techniques for slicing nominal and string

properties can increase the performance of read-oriented queries.

Table 6-1: Execution time of TPC-H queries on CS and SCS (ms)

Category Nominal -No string String-No Nominal Nominal and string

Query Q3 Q10 Q12 Q2 Q5 Q7 Q11 Q17 Q20 Q8 Q19 Q21

CS 1086 6103 1573 196 2376 1116 246 4090 1186 876 1913 2716

SCS (α=1) 724 2878 953 109 1033 791 161 2763 878 515 865 1364

SCS (α=2) - - - 91 865 721 124 2235 687 406 723 1148

SCS (α=3) - - - 85 791 702 113 2103 654 389 631 1007

6.5.3 The Side Effects of Column Slicing Approach

Increasing the number of slices by increasing the diversity of property values is the main

side effect of column slicing approach. In the case of string attributes, at most 128^n

slices in level n can be created. One obvious consequence of applying full column slicing

on a property with a large domain of values would be increasing a large number of slices

while each slice stores only a few items. The result of increasing the number of slices will

be increasing the metadata required to store these slices. With increasing the number of

slices, we may reach a point where the advantage of slicing is offset by the extra cost to

store and manage metadata regarding large number of slices. In other words, column

slicing in SCS is acceptable only to the extent that the amount of growth for database is

215

not a big issue in an application. As shown in Table 6-1, there is only slight improvement

in performance of SCS(α=2) to SCS(α=3) that shows the negative effect of increasing the

number of slices. Unlike column sorting and column cracking technique in which data

insertion is expensive and requires reorganization of physical storage, insertion is not

problematic in SCS as identification of new instances possessing a particular value of a

property must be saved in one of the fixed and predefined slices.

6.6 Conclusion and Future Work

In this chapter, we discussed the ontological foundations behind the column-store data

model and we showed that how this model can be a solution for the problem of inherent

classification in the row-store model. Unlike the row-store model, which prescribes

contiguously storing properties of instances that are in the same class, in the column store

model the problem of inherent classification is alleviated by allocating a separate property

table for each property and contiguously storing all values of each property. In this

thesis, we go beyond this approach and contended that from ontological point of view,

there is no rationale behind storing all values of a property in the same column where

extra selection operations are required to access a particular value of that property. We

proposed the Sliced Column Store model in which property columns are horizontally

partitioned to some slices, where each slice stores the identification of instances that

possess a particular value of that property. We suggested a full slicing technique for

nominal properties, and the α-level slicing technique for string properties. We conducted

a set of experiments to study the effect of column slicing on the performance of query

processing. The pure effect of each partitioning technique and the mutual effect of them

216

were explored using both a simple dataset (generated by MUN-DGEN data generator)

and the TPC-H benchmark. Unlike the column-store approach in which the whole

property table is scanned to find instances possessing a specific value, the major

consequence of column slicing in SCS is eliminating this effort by directly reading only

those instances that possess this property. We argued that this virtue can result in

significant improvement in query processing from two points of view. First, improving

query performance by reducing the cost of selection operations through reducing I/O

amount; this is achieved by reading only those property values that are indicated in query

predicates since instances possessing particular values are stored in separate slices.

Second, by reducing the cost of join operations through decreasing the cost of selection

operations, resulting in simple joins (i.e., joins between columns having smaller records).

These improvements are achievable with a slight cost of increasing the size of database.

In this chapter, we sketched a research landscape with a large number of

opportunities that slicing can contribute to database design, and we suggested two slicing

techniques for string and nominal properties. For future work, we focus on efficient

slicing techniques for other data types. We also aim to implement an SQL-independent

prototype of SCS to study the scalability this method to handle big data.

6.7 References

Abadi, D., Myers, D. S., DeWitt, D. J., & Madden, S. R. (2007). Materialization

strategies in a column-oriented DBMS. Proceedings of the IEEE 23rd International

Conference on Data Engineering, Istanbul, Turkey. 466-475. doi:

10.1109/ICDE.2007.367892

217

Abadi, D. J., Madden, S. R., & Hachem, N. (2008). Column-stores vs. row-stores: how

different are they really? Proceedings of the ACM SIGMOD International Conference

on Management of Data, Vancouver, Canada. 967-980. doi:

10.1145/1376616.1376712

Agrawal, S., Narasayya, V., & Yang, B. (2004). Integrating vertical and horizontal

partitioning into automated physical database design. Proceedings of the ACM

SIGMOD International Conference on Management of Data, Paris, France. 359-370.

doi: 10.1145/1007568.1007609

Boncz, P. A., Zukowski, M., & Nes, N. (2005). MonetDB/X100: hyper-pipelining query

execution. Proceedings of the Biennial Conference on Innovative Data Systems

Research, Asilomar, CA, USA. 225-237.

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston,

MA: Reidel.

Chan, C., Ioannidis, Y. E. (1998). Bitmap index design and evaluation. Proceedings of the

1998 ACM SIGMOD international conference on Management of data. Seattle,

Washington, USA, 355-366. doi: 10.1145/276304.276336

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual

modeling techniques. Requirements Engineering, 9(4), 248-260. doi:

10.1007/s00766-004-0204-6

Harizopoulos, S., Liang, V., Abadi, D. J., & Madden, S. (2006). Performance tradeoffs in

read-optimized databases. Proceedings of the 32nd International Conference on Very

Large Data Bases, Seoul, Korea. 487-498.

Heinz, S., Zobel, J., & Williams, H. E. (2002). Burst tries: a fast, efficient data structure

for string keys. ACM Transactions on Information Systems, 20(2), 192-223. doi:

10.1145/506309.506312

Herodotou, H., Borisov, N., & Babu, S. (2011). Query optimization techniques for

partitioned tables. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Athens, Greece. 49-60. doi: 10.1145/1989323.1989330

Idreos, S., Kersten, M. L., & Manegold, S. (2007). Database cracking. Proceedings of the

Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA.

342-350.

Idreos, S., Manegold, S., Kuno, H., & Graefe, G. (2011). Merging what's cracked,

cracking what's merged: adaptive indexing in main-memory column-stores.

Proceedings of the VLDB Endowment, 4(9), 586-597.

218

Larson, P., Clinciu, C., Hanson, E. N., Oks, A., Price, S. L., Rangarajan, S., Surna, A., &

Zhou, Q. (2011). SQL server column store indexes. Proceedings of the ACM

SIGMOD International Conference on Management of Data, Athens, Greece. 1177-

1184. doi: 10.1145/1989323.1989448

Lemke, C., Sattler, K., Faerber, F., & Zeier, A. (2010). Speeding up queries in column

stores: a case for compression. Proceedings of the 12th International Conference on

Data Warehousing and Knowledge Discovery, Bilbao, Spain. 117-129.

MacNicol, R., & French, B. (2004). Sybase IQ multiplex - designed for analytics.

Proceedings of the VLDB Endowment, 30(1), 1227-1230.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

Parsons, J., & Wand, Y. (2003). Attribute-based semantic reconciliation of multiple data

sources. Journal on Data Semantics, 2800(1), 21-47. doi: 10.1007/978-3-540-39733-

5_2

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E.,

Lin, A., Madden, S., O'Neil, E., O'Neil, P., Rasin, A., Tran, N., Zdonik, S. (2005). C-

store: a column-oriented DBMS. Proceedings of the 31st International Conference on

Very Large Data Bases, Trondheim, Norway. 553-564.

TPC-H benchmark specification. Retrieved from Http://www.tcp.org

Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the relationship

construct in conceptual modeling. ACM Transactions on Database Systems, 24(4),

494-528. doi: 10.1145/331983.331989

219

Chapter 7 Summary

7.1 Overview of the problems and contributions

In this thesis, I exploited two fundamental notions of Bunge’s ontology (property

precedence and composites) as well as the concept of assumption of inherent

classification developed in (Parsons & Wand, 2000) to provide theoretical foundations for

information integration. All components of the information integration framework

proposed in this thesis are developed based on these foundations.

Information integration has always been one of the important problems in

effective management of data, providing building blocks for business intelligence, data

analysis, decision making and many other applications. Generally, information integration

is performed based on schema mappings, which are high level expressions that show

relations between different data sources independent of implementation details. Such

mappings are used either in data integration or data exchange. One of the important

challenges in information integration is understanding the meaning of data in different

data sources – known as semantic heterogeneity reconciliation. The need for semantic

heterogeneity reconciliation emerges from the fact that same concept can be shown using

different representations. In either data integration or data exchange approaches for

information integration, appropriately handling semantic heterogeneities is a key success

factor.

In spite of a large amount of research in information integration, semantic issues

are not well studied. First, many existing techniques for schema mapping (Alexe et al.,

220

2008; Bohannon et al., 2006; Bonifati et al., 2005; Bonifati et al., 2010; Fagin et al., 2009;

Fuxman et al., 2006; Marnette et al., 2011; Miller et al., 2000; Popa et al., 2002; Raffio et

al., 2008; An et al., 2007) are not able to handle ambiguous mappings. Second, some

intuitive mappings are neglected by these systems. To address these problems, I proposed

a technique to semantically enrich schema mapping using conceptual models called

SESM (Chapter 3). This technique recovers the semantics of generalization relations

based on the semantics of conceptual models. The result of a case study performed on the

SESM shows that a considerable number of ambiguous mappings can be addressed using

this technique. Moreover many new mappings based on the concept of composites in

Bunge’s ontology (Bunge, 1977) can be generated that are largely ignored in many

existing works. I showed the success of using SESM varies based on the characterisations

of source and target schemas (e.g., the number of generalization relations that are

implemented differently in various data sources).

In this thesis, I showed that relying solely on direct property correspondences is

not capable of handling all semantic heterogeneities (Chapter 4). As a result, data

integration or data exchange systems that employ these mappings fail to capture a rich set

of relations between data sources. I contended that gaining the full semantics in schema

mapping requires establishing a comprehensive set of relations. For this purpose, I used

local and global property precedence schemas (representing fundamental relations

between properties). The experiments performed on various datasets in different domains

confirmed that this technique can result in a more complete binding between source and

target that consequently generates a more complete set of schema mappings. Using a

221

global property precedence schema that represents relations between two similar

properties at different levels of abstraction, I proposed a new approach in data integration

in which a user can compromise accuracy to achieve a more complete result (Chapter 4).

Experiments performed on various data sources showed how different query rewriting

algorithms proposed in this thesis can provide such flexibly in data integration.

In the materialization technique for information integration (data exchange), the

prevailing approach has been based on schema mapping, in which schema mapping

expressions are used to generate the target instance. Clio (Fagin et al., 2009; Miller et al.,

2000; Popa et al., 2002) has pioneered this approach, and many subsequent research

prototypes such as (Bonifati et al., 2010; Hernández et al., 2008) are proposed based on

this approach. I showed that data exchange based on schema mapping expressions cannot

handle all semantic heterogeneities because the semantics of the data transformation are

confined in the semantics of classes (tables). I showed how the assumption of inherent

classification (Parsons & Wand, 2000) in mapping expression has resulted in this

problem. To address this issue, I proposed an Entity Preserving Data Exchange (EDEX),

in which transformation is performed independent of classification of instances in the

source and the target (Chapter 5). The experiments performed on various data sources

shows the effectiveness of using this approach compared to ++Spicy (Marnette et al.,

2011), one of the leading existing projects and open source implementation of Clio.

7.2 Significance of the Thesis

The significance of this thesis is in providing ontological foundations for semantic

information integration and exploiting these foundations to improve quality and

222

efficiency of information integration. Unlike existing information integration techniques

that fail to capture the details and richness of relationships between concepts, I have

proposed a set of semantic heterogeneity reconciliation techniques to address this

problem by semantic enrichment of information integration process.

One important aspect of this thesis is introducing a new approach to capture

similarities in information integration. Unlike many existing works that look for

similarities in similar structures, I have proposed a semantic heterogeneity reconciliation

approach in which implicit similarities are inferred from existing data and metadata. The

importance of this approach is that allows establishing rich semantic associations between

structures that seem different, but they are semantically similar. The key consequence of

the semantic enrichment of association between data sources is sketching a new insight

into data integration which provides flexibility and tradeoffs between complete and sound

data integration. Moreover, human attention and semantic clues about the data, metadata

and relationships can be reused to speed up information integration.

Another significance of this thesis is in identifying and addressing ambiguous data

exchange scenarios in existing data exchange. In particular, I claim that confining the

relations between data sources in terms of associations between a set of classes is the root

problem of ambiguity in data exchange. To address this problem, I proposed a new

approach for data exchange in which data transformation is performed independent of

classification of entities. This approach not only alleviates the problems of ambiguous

data exchange scenarios, but also outperforms many existing approach in terms of the

quality of data exchange and execution time.

223

 Although the techniques proposed in thesis have made many improvements in

information interoperability, there are some drawbacks that must be addressed. First,

although users’ knowledge is reused by employing property precedence schemas, the

quality of semantic enhancement technique proposed in Chapter 4 depends on the quality

of property precedence schemas. Second, increasing the quality of data exchange

technique proposed inChapter 5 is achieved at the cost of extra storage space required to

exchange data. Although this problem is partially addressed using a “process-as-generate”

technique, there is room to completely address this problem.

7.3 Realization of Research Goals

This section briefly summarizes how the how research questions in Chapter 1 are

addressed in this thesis.

a) What are the root problems of existing information integration techniques?

In this thesis, I argued that relying solely on syntax and structure of data and neglecting

rich semantics between data items hinders effective information integration. I showed that

simple correspondences between properties that do not contain semantic knowledge

beyond the simple rule of “this property in source matches that property in that target,”

are not able to fully reconcile semantic heterogeneities in information integration. I

showed such simple correspondences could fail to capture the detail and richness of

relationships that might exist between concepts and may miss valid semantic connections

between two data sources.

224

 I contend that existing information integration technique suffer from the lack of

theoretical foundations to show how some portion of the data is equivalent to some other

portion of the data. I showed how ontological principles can provide theoretical

foundations to reconcile semantic heterogeneities in information integration.

Another important root problem in existing information integration techniques is

that they only deal with schema level relations between source and target schemas. I

argued that semantic heterogeneities in many data integration and data exchange

scenarios are not completely resolved because of the gap between data level and schema

level approaches. I showed how this gap can result in ambiguity in interpreting schema

mappings and consequently improper information integration.

b) How can ontological foundations be used to enrich semantic heterogeneity

reconciliation techniques?

I proposed three different techniques to enhance semantic heterogeneity

reconciliation techniques. In the first technique, I used implicit semantics of conceptual

models to recover the semantics of associations in the relational database. In the second

technique, I used property precedence relations to bind similar properties that are

presented at different levels of abstracts. In the third technique, I used the concept of

composite in Bunge’s ontology to explore some new semantic mappings that are

neglected in existing schema mapping techniques.

In the first technique, I proposed an algorithm in Section 3.4.1 to recover the

semantics of generalization relations from a conceptual model (Algorithm I). Then, I used

these enhanced schemas to generate new type of mappings (called manifestation-based

225

mappings) by employing Algorithms II and Algorithms III. Unlike many existing post

processing techniques that attempt to resolve ambiguities and verify mappings after

mapping generation, these algorithms addresses this problem by preprocessing relational

schemas and recovering the semantics of generalization relations based on conceptual

models. Table 3-1 in Section 3.5 shows that for error prone mapping scenarios, a

significant number of ambiguous mappings is generated by ++Spicy (representative of

existing Clio-based algorithms), while the technique I have proposed in this thesis is able

to resolve such ambiguities without negatively affecting unambiguous scenarios.

In the second technique, in Chapter 4, I showed how the concept of property

precedence can be used to enhance schema mappings. Using simple property precedence

relations, an implicit property of an instance can be inferred from its other properties

(Algorithm I in Section 4.4.1). On the other hand, using compound property precedence, a

property of an instance can be inferred from properties of another instance (under the

condition of possessing some specific properties by those instances) (Algorithm II in

Section 4.4.1). Using property precedence relations, I introduced and generated an

extended version of the logical association (called manifestation based association),

which is a logical association enhanced by semantics of relations. I proposed a mapping

generator algorithm that generates a set of manifestation based mappings, in which

mappings are accompanied with some specific properties to resolve ambiguous cases

(Algorithm III in Section 4.4.2). As shown in Figure 4-5, using property precedence

relations can result in increasing the completeness of query answering compared to Clio-

based mapping generator. The experiments in Section 4.5 show that these algorithms find

226

some new mappings regarding the semantics of implicit relations between properties that

are generated in traditional Clio-based mapping algorithms.

 In the third technique, I used the concepts of composites and emergent properties

as an ontological foundation for the problem of sequence of relations (Section 3.4.1.3).

Using these concepts and Algorithm IV in Section 3.4.1.3, I showed that indirect relations

between entities in a schema can be employed to create some new plausible semantic

mappings that are not identified in many existing techniques (Marnette et al., 2011; Miller

et al., 2000; Popa et al., 2002). I performed a case study in the healthcare domain to show

the effectiveness of this approach in heterogeneity avoidance without need for human

intervention after generating mappings. As shown in Table 3-2 in Section 3.5, a

considerable number of mappings are generated based on the concept of composites in

many mapping scenarios, which shows the importance of identifying composites and

relations between them for capturing semantic relations between entities.

c) What does it mean to accurately or completely answer a query given

semantically enriched relations between data items?

As an important consequence of binding similar properties that are represented at

different levels of abstraction, I proposed a new data integration approach that allows

exploring potential answers in data integration with the cost of losing accuracy. This new

approach provides tradeoff between accuracy and completeness.

In Chapter 4, I proposed the Configurable Data Integration (CDI) approach that

provides a flexible query rewriting. This configurable and flexible query rewriting is

realized through implementing two different query expansion algorithms presented in

227

Algorithm IV in Section 4.4.3. CDI rewrites a query posed to the target into a set of

source queries where evaluating the union of these queries on the sources results in the

same outcome as running this query on the instance that is materialized in the target. CDI

employs global property precedence schemas to bind similar properties that are

represented at different levels of abstraction. Using this auxiliary information, CDI allows

establishing the tradeoff between accuracy and completeness in query answering. This is

achieved through using different approaches for query expansion in replacing general

terms with more specific terms or vice versa. Different query rewriting scenarios using

these query expansion algorithms show what it means to accurately or completely answer

a query given global property precedence relations between properties of source and

target.

d) How is it possible to address the problem of ambiguous scenarios in data

exchange and data integration? Can ontological foundations be used to address

these problems?

In Chapter 5, I investigated many existing data exchange systems which are based

on schema mappings. I showed that class based mapping expressions are not capable of

handling many ambiguous cases in data exchange, that finally result in generating

incorrect target instances. I attributed this problem to the assumption of inherent

classification in schema mapping. In Section 5.2.1, I discussed why confining the

semantics of data transformation in the semantics of classes is in contradiction with a

fundamental concept in Bunge’s ontology (which adheres to the fact that things exist in

the real-world regardless of the classes they belong). This provided a basis for a new

228

approach which is independent of classification and provides unambiguous data

exchange.

To address the problem of the assumption of inherent classification in existing

schema mapping based data exchange techniques, I proposed an entity preserving

approach (EDEX) for data exchange, in which the focus is on preserving source entities

in the target regardless of the classes they belong to in the source. I introduced the

concept of super entity to capture indirect properties of an entity in Section 5.4. Several

experiments were performed on many data exchange scenarios to show the effectiveness

of using EDEX to resolve ambiguous scenarios. Table 5-2 shows that using EDEX can

results in resolving many ambiguous cases that cannot be handled properly by many

existing data exchange systems. The result of experiments in Section 5.7 shows that the

ability of EDEX in reconciling semantic heterogeneities varies depending on different

characteristics of data.

e) How can we improve the performance of data exchange process using ontological

foundations?

In Chapter 6, to improve the performance of EDEX, I proposed a Sliced Column

Store (SCS) model to improve read-oriented queries. This storage model speeds up the

overall process of data transformation through improving read-oriented queries. Similar

to other components of the information integration framework proposed in this thesis,

SCS is also grounded in ontological foundations providing a theoretical basis for column-

store databases based on representational adequacy. Two different sets of experiments

performed on this storage model showed the performance of SCS compared to row store

229

and pure column store techniques. The experiments performed in Section 5.7.4 showed

that this storage model can improve the efficiency of data exchange in terms of execution

time with a slight increase in the storage space required to perform data exchange.

7.4 Future Work

This thesis opens a new research area for future work towards semantic data integration

and data exchange. Development of a mapping language to express relations between

source and target schemas independent of classification can be useful to formalize the

approach proposed in this thesis. Another direction for future work would be exploring

implicit semantics in conceptual models to generate new plausible mappings. Using this

technique, it can be expected to generate some new complex mapping expressions that

cannot be generated by current mapping techniques.

Although this thesis showed the usefulness of using property precedence relations

to semantically enrich schema mappings and query answering, further research is required

to automatically generate property precedence relations and validate them. In particular, I

believe machine learning techniques such as associations rule mining technique can be

used for this purpose. In addition, as many large knowledge bases such as YAGO

(Suchanek et al., 2007) and Freebase (Suchanek et al., 2008) are publicly available, they

can be used to discover semantic relations between properties to enhance the schema

mapping process.

Since the experiments in this thesis are performed on enterprise level data, further

comprehensive experiments are required to find if property precedence relations can be

extracted and used on big data. In addition, finding semantic mappings between big

230

knowledge bases and enterprise level data in terms of property precedence relations

would be an interesting problem for future work.

The configurable data integration approach proposed in this thesis can also be

extended in many different directions. First, we need to know how certain query

expansion algorithm can be combined to achieve a certain level of completeness or

soundness. Improving the efficiency of data exchange system proposed in this thesis can

be another direction for future research. In particular, generating intermediate super

entities during data exchange process is one of the bottlenecks of EDEX where further

research is required to address this problem.

7.5 References

Alexe, B., Chiticariu, L., Miller, R. J., & Wang-Chiew Tan. (2008). Muse: mapping

understanding and design by example. Proceedings of the IEEE 24rd International

Conference on Data Engineering, Cancún, México. 10-19. doi:

10.1109/ICDE.2008.4497409

An, Y., Borgida, A., Miller, R. J., & Mylopoulos, J. (2007). A semantic approach to

discovering schema mapping expressions. Proceedings of the IEEE 23rd

International Conference on Data Engineering, Istanbul, Turkey. 206-215. doi:

10.1109/ICDE.2007.367866

Bohannon, P., Elnahrawy, E., Fan, W., & Flaster, M. (2006). Putting context into schema

matching. Proceedings of the 32nd International Conference on Very Large Data

Bases, Seoul, Korea. 307-318.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J. (2008). Freebase: a

collaboratively created graph database for structuring human knowledge. Proceedings

of the 2008 ACM SIGMOD international conference on Management of data.

Vancouver, Canada, 1247-1250.

Bonifati, A., Chang, E. Q., Lakshmanan, A. V. S., Ho, T., & Pottinger, R. (2005).

HePToX: marrying XML and heterogeneity in your P2P databases. Proceedings of

231

the 31st International Conference on Very Large Data Bases, Trondheim, Norway.

1267-1270.

Bonifati, A., Chang, E., Ho, T., Lakshmanan, L. V., Pottinger, R., & Chung, Y. (2010).

Schema mapping and query translation in heterogeneous P2P XML databases. The

VLDB Journal, 19(2), 231-256. doi: 10.1007/s00778-009-0159-9

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston,

MA: Reidel.

Fagin, R., Haas, L. M., Hernández, M., Miller, R. J., Popa, L., & Velegrakis, Y. (2009).

Conceptual modeling: foundations and applications. In A. Borgida, er T., V. K.

Chaudhri, P. Giorgini & E. S. Yu (Eds.), Essays in Honor of John Mylopoulos (pp.

198-236). Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-02463-4_12

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., Papotti, P., & Popa, L. (2006).

Nested mappings: schema mapping reloaded. Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea. 67-78.

Hernández, M. A., Papotti, P., & Tan, W. (2008). Data exchange with data-metadata

translations. Proceedings of the VLDB Endowment, 1(1), 260-273.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., & Santoro, D. (2011). ++Spicy: an

open-source tool for second-generation schema mapping and data exchange.

Proceedings of the VLDB Endowment, 4(12), 1438-1441.

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query

discovery. Proceedings of the 26th International Conference on Very Large Data

Bases, Cairo, Egypt. 77-88.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

Popa, L., Velegrakis, Y., Hernández, M. A., Miller, R. J., & Fagin, R. (2002). Translating

Web data. Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China. 598-609.

Raffio, A., Braga, D., Ceri, S., Papotti, P., & Hernandez, M. A. (2008). Clip: a visual

language for explicit schema mappings. Proceedings of the IEEE 24th International

Conference on Data Engineering, Cancún, México. 30-39. doi:

10.1109/ICDE.2008.4497411

232

Suchanek, F. M., Kasneci, G., Weikum G. (2007). YAGO - A Core of Semantic

Knowledge. Proceedings of the 16th international conference on World Wide Web.

Banff, Alberta, Canada, 697-706

233

Bibliography

Abadi, D., Myers, D. S., DeWitt, D. J., & Madden, S. R. (2007). Materialization

strategies in a column-oriented DBMS. Proceedings of the IEEE 23rd International

Conference on Data Engineering, Istanbul, Turkey. 466-475. doi:

10.1109/ICDE.2007.367892

Abadi, D. J., Madden, S. R., & Hachem, N. (2008). Column-stores vs. row-stores: how

different are they really? Proceedings of the ACM SIGMOD International Conference

on Management of Data, Vancouver, Canada. 967-980. doi:

10.1145/1376616.1376712

Agrawal, S., Narasayya, V., & Yang, B. (2004). Integrating vertical and horizontal

partitioning into automated physical database design. Proceedings of the ACM

SIGMOD International Conference on Management of Data, Paris, France. 359-370.

doi: 10.1145/1007568.1007609

Alexe, B., Chiticariu, L., & Tan, W. (2006). Spider: A schema mapping debugger.

Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,

Korea. 1179-1182.

Alexe, B., Chiticariu, L., Miller, R. J., & Wang-Chiew Tan. (2008). Muse: mapping

understanding and design by example. Proceedings of the IEEE 24rd International

Conference on Data Engineering, Cancún, México. 10-19. doi:

10.1109/ICDE.2008.4497409

Alexe, B., Tan, W., & Velegrakis, Y. (2008). Stbenchmark: towards a benchmark for

mapping systems. Proceedings of the VLDB Endowment, 1(1), 230-244.

Alexe, B., Hernández, M., Popa, L., & Tan, W. (2010). Mapmerge: correlating

independent schema mappings. Proceedings of the VLDB Endowment, 3(1-2), 81-92.

Alexe, B., ten Cate, B., Kolaitis, P. G., & Tan, W. (2011). EIRENE: Interactive design

and refinement of schema mappings via data examples. Proceedings of the VLDB

Endowment, 4(12), 1414-1417.

Alexe, B., ten Cate, B., Kolaitis, P. G., & Tan, W. (2011). Designing and refining schema

mappings via data examples. Proceedings of the ACM SIGMOD International

Conference on Management of Data, Athens, Greece. 133-144. doi:

10.1145/1989323.1989338

An, Y., Borgida, A., Miller, R. J., & Mylopoulos, J. (2007). A semantic approach to

discovering schema mapping expressions. Proceedings of the IEEE 23rd

234

International Conference on Data Engineering, Istanbul, Turkey. 206-215. doi:

10.1109/ICDE.2007.367866

An, Y., & Song, I. (2008). Discovering semantically similar associations (SeSA) for

complex mappings between conceptual models. Proceedings of the 27th International

Conference on Conceptual Modeling, Barcelona, Spain. 369-382. doi: 10.1007/978-3-

540-87877-3_27

An, Y., Hu, X., & Song, I. (2010). Maintaining mappings between conceptual models and

relational schemas. Journal of Database Management, 21(3), 36-68.

Arch-Int, N., Li, Y., Roe, P., & Sophatsathit, P. (2003). Query processing the

heterogeneous information sources using ontology-based approach. Proceedings of

the 18th International Conference on Computers and their Applications, Honolulu,

HI, USA. 438-441.

Arenas, M., Barceló Pablo, Fagin, R., & Libkin, L. (2004). Locally consistent

transformations and query answering in data exchange. Proceedings of the 23rd ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Paris,

France. 229-240. doi: 10.1145/1055558.1055592

Beath, C., Becerra-Fernandez, I., Ross, J., & Short, J. (2012). Finding value in the

information explosion. MIT Sloan Management Review, 53(4), 18.

Belhajjame, K., Paton, N. W., Embury, S. M., Fernandes, A. A. A., & Hedeler, C. (2010).

Feedback-based annotation, selection and refinement of schema mappings for

dataspaces. Proceedings of the 13th International Conference on Extending Database

Technology, Lausanne, Switzerland. 573-584. doi: 10.1145/1739041.1739110

Bellahsene, Z., Bonifati, A. & Rahm, E. (2011). Schema Matching and Mapping. Berlin,

Heidelberg: Springer-Verlag.

Bohannon, P., Elnahrawy, E., Fan, W., & Flaster, M. (2006). Putting context into schema

matching. Proceedings of the 32nd International Conference on Very Large Data

Bases, Seoul, Korea. 307-318.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J. (2008). Freebase: a

collaboratively created graph database for structuring human knowledge. Proceedings

of the 2008 ACM SIGMOD international conference on Management of data.

Vancouver, Canada, 1247-1250.

Boncz, P. A., Zukowski, M., & Nes, N. (2005). MonetDB/X100: hyper-pipelining query

execution. Proceedings of the Biennial Conference on Innovative Data Systems

Research, Asilomar, CA, USA. 225-237.

235

Bonifati, A., Chang, E. Q., Lakshmanan, A. V. S., Ho, T., & Pottinger, R. (2005).

HePToX: marrying XML and heterogeneity in your P2P databases. Proceedings of

the 31st International Conference on Very Large Data Bases, Trondheim, Norway.

1267-1270.

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., & Summa, G. (2008). Schema

mapping verification: the spicy way. Proceedings of the 11th International

Conference on Extending Database Technology: Advances in Database Technology,

Nantes, France. 85-96. doi: 10.1145/1353343.1353358

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., & Summa, G. (2008). The spicy

system: towards a notion of mapping quality. Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, Vancouver, Canada. 1289-1294.

doi: 10.1145/1376616.1376757

Bonifati, A., Chang, E., Ho, T., Lakshmanan, L. V., Pottinger, R., & Chung, Y. (2010).

Schema mapping and query translation in heterogeneous P2P XML databases. The

VLDB Journal, 19(2), 231-256. doi: 10.1007/s00778-009-0159-9

Bonifati, A., Mecca, G., Papotti, P., & Velegrakis, Y. (2011). Discovery and correctness

of schema mapping transformations. In Bellahsene, Z., Bonifati, A. & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 111-147). Berlin, Heidelberg: Springer-

Verlag.

Bunge, M. (1977). Treatise on Basic Philosophy: the Furniture of the World. Boston, MA:

Reidel.

Calì, A., Gottlob, G., & Lukasiewicz, T. (2009). Datalog±: a unified approach to

ontologies and integrity constraints. Proceedings of the 12th International Conference

on Database Theory, St. Petersburg, Russia. 14-30. doi: 10.1145/1514894.1514897

Calì, A., Gottlob, G., & Pieris, A. (2012). Ontological query answering under expressive

Entity–Relationship schemata. Information Systems, 37(4), 320-335.

Calvanese, D., De Giacomo, G., Lenzerini, M., & Vardi, M. Y. (2013). Query processing

under GLAV mappings for relational and graph databases. Proceedings of the 39th

International Conference on Very Large Data Bases, Trento, Italy. 61-72.

Cappellari, P., Barbosa, D., & Atzeni, P. (2010). A framework for automatic schema

mapping verification through reasoning. Proceedings of the IEEE Data Engineering

Workshops, Long Beach, CA, USA, 245-250. doi: 10.1109/ICDEW.2010.5452703

Carnap, R., & George, R. A. (1969). The logical Structure of the World: and,

Pseudoproblems in Philosophy. Berkley, CA: Open Court Publishing.

236

Casanova, M. A., Fagin, R., & Papadimitriou, C. H. (1982). Inclusion dependencies and

their interaction with functional dependencies. Proceedings of the 1st ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, Los Angeles, California.

171-176. doi: 10.1145/588111.588141

Ceusters, W., Smith, B., & Fielding, J. M. (2004). LinkSuiteTM: formally robust

ontology-based data and information integration. Data Integration in the Life

Sciences, 2994(1), 124-139.

Chan, C., Ioannidis, Y. E. (1998). Bitmap index design and evaluation. Proceedings of the

1998 ACM SIGMOD international conference on Management of data. Seattle,

Washington, USA, 355-366. doi: 10.1145/276304.276336

Chen, P. P. (1976). The entity-relationship model-Toward a unified view of data. ACM

Transactions on Database Systems, 1(1), 9-36. doi: 10.1145/320434.320440

Chiticariu, L., Kolaitis, P. G., & Popa, L. (2008). Interactive generation of integrated

schemas. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Vancouver, Canada. 833-846. doi: 10.1145/1376616.1376700

Correndo, G., Salvadores, M., Millard, I., Glaser, H., & Shadbolt, N. (2010). SPARQL

query rewriting for implementing data integration over linked data. Proceedings of

the EDBT/ICDT Workshops, Lausanne, Switzerland. 4:1-4:11. doi:

10.1145/1754239.1754244

Das Sarma, A., Dong, X. L., & Halevy, A. Y. (2008). Bootstrapping pay-as-you-go data

integration systems. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Vancouver, Canada. 861-874. doi: 10.1145/1376616.1376702

Das Sarma, A., Dong, X. L., & Halevy, A. Y. (2011). Uncertainty in data integration and

dataspace support platforms. In Bellahsene, Z., Bonifati, A., & Rahm, E.

(Ed.), Schema Matching and Mapping (pp. 75-108). Berlin, Heidelberg: Springer-

Verlag.

Doan, A., & Halevy, A. Y. (2005). Semantic integration research in the database

community: a brief survey. AI Magazine, 26(1), 83-94.

Doan, A., Halevy, A. Y., & Ives, Z. (2012). Principles of Data Integration, Waltham,

MA: Morgan Kaufmann.

Dong, X. L., Halevy, A. Y., & Yu, C. (2009). Data integration with uncertainty. The

VLDB Journal, 18(2), 469-500. doi: 10.1007/s00778-008-0119-9

237

Elmeleegy, H., Elmagarmid, A., & Lee, J. (2011). Leveraging query logs for schema

mapping generation in U-MAP. Proceedings of the ACM SIGMOD International

Conference on Management of Data, Athens, Greece. 121-132. doi:

10.1145/1989323.1989337

Embley, D. W., Xu, L., & Ding, Y. (2004). Automatic direct and indirect schema

mapping: experiences and lessons learned. SIGMOD Record, 33(4), 14-19. doi:

10.1145/1041410.1041413

Evermann, J., & Wand, Y. (2005). Ontology based object-oriented domain modelling:

fundamental concepts. Requirements Engineering, 10(2), 146-160. doi:

10.1007/s00766-004-0208-2

Evermann, J. (2009). A UML and OWL description of Bunge’s upper-level ontology

model. Software & Systems Modeling, 8(2), 235-249. doi: 10.1007/s10270-008-0082-

3

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: semantics and

query answering. Theoretical Computer Science, 336(1), 89-124. doi:

10.1016/j.tcs.2004.10.033

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. (2005). Composing schema mappings:

second-order dependencies to the rescue. ACM Transactions on Database Systems,

30(4), 994-1055. doi: 10.1145/1114244.1114249

Fagin, R., Kolaitis, P. G., & Popa, L. (2005). Data exchange: getting to the core. ACM

Transactions on Database Systems, 30(1), 174-210. doi:10.1145/1061318.1061323

Fagin, R. (2007). Inverting schema mappings. ACM Transactions on Database Systems,

32(4), 25-53. doi: 10.1145/1292609.1292615

Fagin, R., Haas, L. M., Hernández, M., Miller, R. J., Popa, L., & Velegrakis, Y. (2009).

Conceptual modeling: foundations and applications. In A. Borgida, er T., V. K.

Chaudhri, P. Giorgini & E. S. Yu (Eds.), Essays in Honor of John Mylopoulos (pp.

198-236). Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-02463-4_12

Fagin, R., Kimelfeld, B., Li, Y., Raghavan, S., & Vaithyanathan, S. (2011). Rewrite rules

for search database systems. Proceedings of the 30th ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, Athens, Greece. 271-282.

doi: 10.1145/1989284.1989322

Fletcher, G. H., & Wyss, C. M. (2006). Data mapping as search. Advances in Database

Technology, 3896(1), 95-111. doi:10.1007/11687238_9

238

Fonseca, F. (2007). The double role of ontologies in information science research:

research articles. Journal of the American Society for Information Science and

Technology, 58(6), 786-793. doi: 10.1002/asi.v58:6

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., Papotti, P., & Popa, L. (2006).

Nested mappings: schema mapping reloaded. Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea. 67-78.

Fuxman, A., Kolaitis, P. G., Miller, R. J., & Tan, W. (2006). Peer data exchange. ACM

Transactions on Database Systems, 31(4), 1454-1498. doi:

10.1145/1189769.1189778

Gal, A. (2006). Managing uncertainty in schema matching with top-K schema mappings.

Journal on Data Semantics, 4090(1), 90-114. doi: 10.1007/11803034_5

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual

modeling techniques. Requirements Engineering, 9(4), 248-260. doi:

10.1007/s00766-004-0204-6

George, D., & Preston, U. (2005). Understanding structural and semantic heterogeneity in

the context of database schema integration. Journal of the Department of Computing,

UCLAN 4(1), 29-44.

Glavic, B., Alonso, G., Miller, R. J., & Haas, L. M. (2010). TRAMP: understanding the

behavior of schema mappings through provenance. Proceedings of the VLDB

Endowment, 3(1-2), 1314-1325.

Gottlob, G., & Nash, A. (2008). Efficient core computation in data exchange. Journal of

the ACM, 55(2), 9:1-9:49. doi: 10.1145/1346330.1346334

Haas, L. M. (2006). Beauty and the beast: the theory and practice of information

integration. Proceedings of the 11th International Conference on Database Theory,

Barcelona, Spain. 28-43. doi: 10.1007/11965893_3

Haas, L. M., Hentschel, M., Kossmann, D., & Miller, R. J. (2009). Schema AND data: a

holistic approach to mapping, resolution and fusion in information integration.

Proceedings of the 28th International Conference on Conceptual Modeling,

Gramado, Brazil. 27-40. doi: 10.1007/978-3-642-04840-1_5

Hakimpour, F., & Geppert, A. (2001). Resolving semantic heterogeneity in schema

integration. Proceedings of the International Conference on Formal Ontology in

Information Systems, Ogunquit, ME, USA. 297-308. doi: 10.1145/505168.505196

239

Halevy, A. Y., Rajaraman, A., & Ordille, J. (2006). Data integration: the teenage years.

Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,

Korea. 9-16.

Halevy, A. Y. (2010). Technical perspective schema mappings: rules for mixing data.

Communications of the ACM, 53(1), 100-101.

Harizopoulos, S., Liang, V., Abadi, D. J., & Madden, S. (2006). Performance tradeoffs in

read-optimized databases. Proceedings of the 32nd International Conference on Very

Large Data Bases, Seoul, Korea. 487-498.

Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R. J., & Wang, M. (2009). A

framework for semantic link discovery over relational data. Proceedings of the 18th

ACM Conference on Information and Knowledge Management, Hong Kong, China.

1027-1036. doi: 10.1145/1645953.1646084

Heinz, S., Zobel, J., & Williams, H. E. (2002). Burst tries: a fast, efficient data structure

for string keys. ACM Transactions on Information Systems, 20(2), 192-223. doi:

10.1145/506309.506312

Hentschel, M., Kossmann, D., Florescu, D., Haas, L. M., Kraska, T., & Miller, R. J.

(2009). Scalable data integration by mapping data to queries. ETH Zurich, Computer

Science, Technical Report, 633.

Hernández, M. A., Papotti, P., & Tan, W. (2008). Data exchange with data-metadata

translations. Proceedings of the VLDB Endowment, 1(1), 260-273.

Herodotou, H., Borisov, N., & Babu, S. (2011). Query optimization techniques for

partitioned tables. Proceedings of the ACM SIGMOD International Conference on

Management of Data, Athens, Greece. 49-60. doi: 10.1145/1989323.1989330

Idreos, S., Kersten, M. L., & Manegold, S. (2007). Database cracking. Proceedings of the

Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA.

342-350.

Idreos, S., Manegold, S., Kuno, H., & Graefe, G. (2011). Merging what's cracked,

cracking what's merged: adaptive indexing in main-memory column-stores.

Proceedings of the VLDB Endowment, 4(9), 586-597.

Ives, Z. G., Halevy, A. Y., Mork, P., & Tatarinov, I. (2004). Piazza: mediation and

integration infrastructure for semantic Web data. Web Semantics: Science, Services

and Agents on the World Wide Web, 1(2), 155-175. doi:

10.1016/j.websem.2003.11.003

240

Ives, Z. G., Green, T. J., Karvounarakis, G., Taylor, N. E., Tannen, V., Talukdar, P. P.,

Pereira, F. (2008). The ORCHESTRA collaborative data sharing system. SIGMOD

Record, 37(3), 26-32. doi: 10.1145/1462571.1462577

Jiang, H., Ho, H., Popa, L., & Han, W. (2007). Mapping-driven XML transformation.

Proceedings of the 16th International Conference on World Wide Web, Banff,

Alberta, Canada. 1063-1072. doi: 10.1145/1242572.1242715

Jurisica, I., Mylopoulos, J., & Yu, E. (2004). Ontologies for knowledge management: an

information systems perspective. Knowledge and Information Systems, 6(4), 380-401.

doi: 10.1007/s10115-003-0135-4

Kementsietsidis, A., Arenas, M., & Miller, R. J. (2003). Mapping data in peer-to-peer

systems: semantics and algorithmic issues. Proceedings of the ACM SIGMOD

International Conference on Management of Data, San Diego, CA, USA. 325-336.

doi: 10.1145/872757.872798

Köpcke, H., & Rahm, E. (2010). Frameworks for entity matching: a comparison. Data &

Knowledge Engineering, 69(2), 197-210. doi: 10.1016/j.datak.2009.10.003

Larson, P., Clinciu, C., Hanson, E. N., Oks, A., Price, S. L., Rangarajan, S., Surna, A., &

Zhou, Q. (2011). SQL server column store indexes. Proceedings of the ACM

SIGMOD International Conference on Management of Data, Athens, Greece. 1177-

1184. doi: 10.1145/1989323.1989448

Lemke, C., Sattler, K., Faerber, F., & Zeier, A. (2010). Speeding up queries in column

stores: a case for compression. Proceedings of the 12th International Conference on

Data Warehousing and Knowledge Discovery, Bilbao, Spain. 117-129.

Lu, M., Agrawal, D., Dai, B. T., & Tung, A. K. (2011). Schema-as-you-go: on

probabilistic tagging and querying of wide tables. Proceedings of the ACM SIGMOD

International Conference on Management of Data, Athens, Greece. 181-192.

MacNicol, R., & French, B. (2004). Sybase IQ multiplex - designed for analytics.

Proceedings of the VLDB Endowment, 30(1), 1227-1230.

Madhavan, J., Jeffery, S., Cohen, S., Dong, X. L., Ko, D., Yu, C., & Halevy, A. Y.

(2007). Web-scale data integration: you can only afford to pay as you go.

Proceedings of the Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA. 342-350.

Magnani, M., Rizopoulos, N., McBrien, P., & Montesi, D. (2005). Schema integration

based on uncertain semantic mappings. Proceedings of the 24th International

241

Conference on Conceptual Modeling, Klagenfurt, Austria. 31-46. doi:

10.1007/11568322_3

Magnani, M., & Montesi, D. (2007). Uncertainty in data integration: current approaches

and open problems. Proceedings of the VLDB Workshop on Management of

Uncertain Data, Vienna, Austria. 18-32.

Mandreoli, F., & Martoglia, R. (2011). Knowledge-based sense disambiguation (almost)

for all structures. Information Systems, 36(2), 406-430. doi: 10.1016/j.is.2010.08.004

Marnette, B., Mecca, G., & Papotti, P. (2010). Scalable data exchange with functional

dependencies. Proceedings of the VLDB Endowment, 3(1-2), 105-116.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., & Santoro, D. (2011). ++Spicy: an

open-source tool for second-generation schema mapping and data exchange.

Proceedings of the VLDB Endowment, 4(12), 1438-1441.

Mecca, G., Papotti, P., & Raunich, S. (2009). Core schema mappings. Proceedings of the

ACM SIGMOD International Conference on Management of Data, Providence, RI,

USA. 655-668. doi: 10.1145/1559845.1559914

Mecca, G., Papotti, P., & Raunich, S. (2012). Core schema mappings: scalable core

computations in data exchange. Information Systems, 37(7), 677-711. doi:

10.1016/j.is.2012.03.004

Mena, E., Illarramendi, A., Kashyap, V., & Sheth, A. P. (2000). OBSERVER: an

approach for query processing in global information systems based on interoperation

across pre-existing ontologies. Distributed and Parallel Databases, 8(2), 223-271.

doi: 10.1023/A:1008741824956

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query

discovery. Proceedings of the 26th International Conference on Very Large Data

Bases, Cairo, Egypt. 77-88.

Milton, S. K. (2004). Top-level ontology: the problem with naturalism. Proceedings of

the International Conference on Formal Ontology in Information Systems, Torino,

Italy. 85-94.

Mutis, I., & Issa, R. R. (2012). Framework for semantic reconciliation of construction

project information, Journal of Information Technology in Construction, 17(1), 1-24

Orsi, G., & Pieris, A. (2011). Optimizing query answering under ontological constraints.

Proceedings of the VLDB Endowment, 4(11), 1004-1015.

242

Pablo, B. (2009). Logical foundations of relational data exchange. SIGMOD Record.,

38(1), 49-58. doi: 10.1145/1558334.1558341

Pankowski, T. (2013). Semantics preservation in schema mappings within data exchange

systems. Proceedings of the 16th International Conference on Knowledge

Engineering, Machine Learning and Lattice Computing with Applications, San

Sebastian, Spain. 88-97. doi: 10.1007/978-3-642-37343-5_10

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in

information modeling. ACM Transactions on Database Systems, 25(2), 228-268. doi:

10.1145/357775.357778

Parsons, J., & Wand, Y. (2003). Attribute-based semantic reconciliation of multiple data

sources. Journal on Data Semantics, 2800(1), 21-47. doi: 10.1007/978-3-540-39733-

5_2

Parsons, J., & Cole, L. (2004). An experimental examination of property precedence in

conceptual modelling. Proceedings of the 1st Asian-Pacific Conference on

Conceptual Modelling, Dunedin, New Zealand. 101-110.

Parsons, J., & Chen, T. (2008). Using property precedence to enhance the effectiveness of

queries on unstructured data. Proceedings of 18th Workshop on Information

Technology Systems, Paris, France, 73-78.

Parsons, J., & Wand, Y. (2008). Using cognitive principles to guide classification in

information systems modeling. MIS Quarterly, 32(4), 839-868.

Parsons, J. (2011). An experimental study of the effects of representing property

precedence on the comprehension of conceptual schemas. Journal of the Association

for Information Systems, 12(6), 1.

Pichler, R., & Savenkov, V. (2010). Towards practical feasibility of core computation in

data exchange. Theoretical Computer Science, 411(7-9), 935-957. doi:

10.1016/j.tcs.2009.09.035

Popa, L., & Tannen, V. (1999). An equational chase for path-conjunctive queries,

constraints, and views. Proceedings of the 7th International Conference on Database

Theory, Jerusalem, Israel. 39-57.

Popa, L., Velegrakis, Y., Hernández, M. A., Miller, R. J., & Fagin, R. (2002). Translating

Web data. Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China. 598-609.

243

Pottinger, R., & Bernstein, P. A. (2008). Schema merging and mapping creation for

relational sources. Proceedings of the 11th International Conference on Extending

Database Technology: Advances in Database Technology, Nantes, France. 73-84.

doi: 10.1145/1353343.1353357

Qian, L., Cafarella, M. J., & Jagadish, H. V. (2012). Sample-driven schema mapping.

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Scottsdale, AZ, USA. 73-84. doi: 10.1145/2213836.2213846

Raffio, A., Braga, D., Ceri, S., Papotti, P., & Hernandez, M. A. (2008). Clip: a visual

language for explicit schema mappings. Proceedings of the IEEE 24th International

Conference on Data Engineering, Cancún, México. 30-39. doi:

10.1109/ICDE.2008.4497411

Roth, M., & Tan, W. (2013). Data integration and data exchange: it’s really about time.

Proceedings of the Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA. 342-350.

Rull, G., Farré C., Teniente, E., & Urpí Toni. (2009). MVT: a schema mapping validation

tool. Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, Saint Petersburg, Russia. 1120-1123.

doi: 10.1145/1516360.1516492

Rull, G., Farré, C., Teniente, E., & Urpí, T. (2013). Validation of schema mappings with

nested queries. Computer Science and Information Systems, 10(1), 79-104.

San, R. (2012). Ventana research 2012 value index for data integration. (Research). CA,

USA: Ventana Research.

Sekhavat, Y. A. (2012). Semantic heterogeneity reconciliation in data integration.

Proceedings of the PhD Workshop of 38th International Conference on Very Large

Data Bases, Istanbul, Turkey. 19-24

Sekhavat, Y. A., & Parsons, J. (2012). Semantic schema mapping using property

precedence relations. Proceedings of the IEEE 6th International Conference on

Semantic Computing, Palermo, Italy. 210-217. doi: 10.1109/ICSC.2012.24

Sekhavat, Y. A., & Parsons, J. (2012). Sliced column-store (SCS): ontological

foundations and practical implications. Proceedings of the 31st International

Conference on Conceptual Modeling, Florence, Italy. 102-115. doi: 10.1007/978-3-

642-34002-4_8

http://dl.acm.org/author_page.cfm?id=81100186551&coll=DL&dl=ACM&trk=0&cfid=213011817&cftoken=23696339
http://dl.acm.org/author_page.cfm?id=81100152033&coll=DL&dl=ACM&trk=0&cfid=213011817&cftoken=23696339

244

Sekhavat, Y. A., & Parsons, J. (2013). SESM: semantic enrichment of schema mappings.

Proceedings of 4th ICDE International Workshop on Data Engineering Meets

Semantic Web, Brisbane, Australia (to appear).

Sekhavat, Y. A., & Parsons, J. (2013). EDEX: Entity Preserving Data Exchange.

Proceedings of DATA’13 International Conference on Data Management

Technologies, Reykjavík, Iceland (to appear)

Shanks, G., Tansley, E., Nuredini, J., Tobin, D., & Weber, R. (2002). Representing part-

whole relationships in conceptual modeling: an empirical evaluation. Proceedings of

the 23rd International Conference on Information Systems, Barcelona, Spain. 89-100.

Shanks, G., Tansley, E., & Weber, R. (2004). Representing composites in conceptual

modeling. Communications of the ACM, 47(7), 77-80. doi: 10.1145/1005817.1005826

Suchanek, F. M., Kasneci, G., Weikum G. (2007). YAGO - A Core of Semantic

Knowledge. Proceedings of the 16th international conference on World Wide Web.

Banff, Alberta, Canada, 697-706

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E.,

Lin, A., Madden, S., O'Neil, E., O'Neil, P., Rasin, A., Tran, N., Zdonik, S. (2005). C-

store: a column-oriented DBMS. Proceedings of the 31st International Conference on

Very Large Data Bases, Trondheim, Norway. 553-564.

Talburt, J. R. (2011). Entity Resolution and Information Quality, Burlington, MA:

Morgan Kaufmann.

Tatarinov, I., & Halevy, A. Y. (2004). Efficient query reformulation in peer data

management systems. Proceedings of the ACM SIGMOD International Conference

on Management of Data, Paris, France. 539-550. doi: 10.1145/1007568.1007629

ten Cate, B., Chiticariu, L., Kolaitis, P., & Tan, W. (2009). Laconic schema mappings:

computing the core with SQL queries. Proceedings of the VLDB Endowment, 2(1),

1006-1017.

ten Cate, B., Kolaitis, P. G., & Tan, W. (2013). Schema mappings and data examples.

Proceedings of the 16th International Conference on Extending Database

Technology, Genoa, Italy. 777-780. doi: 10.1145/2452376.2452479

TPC-H benchmark specification. Retrieved from Http://www.tcp.org

Wand, Y., & Weber, R. (1990). Mario Bunge's ontology as a formal foundation for

information systems concepts. In Weingartner, P., Dorn, & G. J. W. (Ed.), Studies on

Mario Bunge's Treatise (pp. 123-149). Atlanta: Rodopi.

245

Wand, Y. (1996). Ontology as a foundation for meta-modelling and method engineering.

Information and Software Technology, 38(4), 281-287. doi: 10.1016/0950-

5849(95)01052-1

Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the relationship

construct in conceptual modeling. ACM Transactions on Database Systems, 24(4),

494-528. doi: 10.1145/331983.331989

Wang, T., & Pottinger, R. (2008). SeMap: a generic mapping construction system.

Proceedings of the 11th International Conference on Extending Database

Technology: Advances in Database Technology, Nantes, France. 97-108. doi:

10.1145/1353343.1353359

Yu, C., & Popa, L. (2004). Constraint-based XML query rewriting for data integration.

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Paris, France. 371-382. doi: 10.1145/1007568.1007611

