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Abstract

This thesis provides a method that combines numerical detection and semi-empirical

formulas to solve the ship-level ice interaction in time domain which can be applied

to studying ship manoeuvring and autopilot in level ice. Numerical implementation

has been accomplished by using programming language FORTRAN90 under Linux

Operation System.

The ship-ice interaction and the ice breaking process is simulated by adopting a 2-D

Discrete Element Method (DEM). A new detection technique name Polygon-Point

Algorithm is developed to identify the contact area. Different Pressure-Area (P-A)

relation and flexural ice plate model are included and studied. Full 3DOF ice induced

load is derived in this thesis. The method is validated by using the data from two

model ship tests and one full scale sea trial.

A Line-of-Sight (LOS) guidance system and PID controllers for path following and

velocity maintaining are also developed. Detail has been provided in solving discon-

tinuity of commanded heading angle. The path following ability has been examined

and presented.

Recommendations for future works is also provided in the thesis.
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Chapter 1

Introduction

1.1 Background

Estimating the performance of a ship or an offshore structure operating in ice-covered

water is not new to naval architects. A number of researchers have studied this topic,

and the earliest research can be traced back to Runeburg in 1888 (Jones, 2004). In

recent decades, the increase of oil and gas exploration in Arctic and Sub-Arctic regions

and the potential of transportation through the Northern Sea Route has resulted in

a renewed interest in the ship-ice interaction and the controllability of a ice-going

vessel.

The ship-ice interaction includes various aspects: the hull-ice interaction, the rudder-

ice interaction, and the propeller-ice interaction. The ice resistance on the ship hull

has been investigated since early 18th century (Liu, 2009). A considerable effect

was put to measuring ice resistance on different ships and establishing mathematical

models for predicting ice resistance.

Comparing to the relatively well investigated ice resistance, the ship manoeuvrability

in ice, on the other hand, was drawn less attention in the literature. The manoeuvra-

1
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bility is one aspect of the controllability. According to Lewis (1988), controllability

is defined as “regulating a ship’s trajectory, speed, and orientation at sea as well as

in restricted waters where positioning and station keeping are of particular concern”,

and the manoeuvrability is the ability of the change in the direction of motion un-

der control. The investigation of a ship’s manoeuvrability in ice is necessary because

the ship will navigate in confined passageways to avoid hazards. Various methods,

including full scale sea trials, model tests, and numerical simulations, are applied to

study the ship manoeuvring problem.

1.2 Literature Review

Ship manoeuvring in ice fields has attracted people’s attention for many years. Re-

cently increasing interests in oil and gas exploration in Arctic and Sub-Arctic regions

and transportation through the Northern Sea Route requires a better understanding

of vessel-ice interactions and vessel’s manoeuvring performance in ice. Considerable

efforts have been made in this research area. The global ice loads on the hull have

been studied, but most of the previous works focus on ice resistance only (Liu, 2009).

Jones (1989, 2004) has reviewed the research on ship resistance in level ice from 1888

to 2004. In this chapter, the numerical models including ice resistance models and ma-

noeuvring models since 2004. Existing models for hull-ice interaction in a continuous

ice breaking process were collected and evaluated.

1.2.1 Empirical Solutions

Kashteljan et al. (1969) proposed a formula which was considered as the first ana-

lytical solution to level ice resistance by breaking it down into its components. In

his model, the total resistance in ice consisted of four parts: the resistance caused by
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breaking the ice plate (R1); the resistance connected with weight (i.e. submerging

and turning broken ice floes, changing position of the icebreaker, and dry friction re-

sistance, denoted as R2); the resistance caused by traveling through broken ice (R3);

and water viscous influence and wave-making resistance (R4).

RT OT = R1 +R2 +R3 +R4 (1.1)

Lewis and Edwards (1970) modified Kashteljan’s formula based on a regression analy-

sis of available full-scale and model test data. They considered three different compo-

nents: the component attributes to ice breaking and friction, the component attributes

to ice buoyancy, and the component attributes to momentum exchange between the

ship and broken ice. Non-dimensional coefficients were further used and good fits with

full-scale and model-scale tests of Wind-class, Raritan, M-9 and M-15 were obtained

Ri = C0σh
2 + C1ρigBh

2 + C2Bhv
2 (1.2)

The first term is related to ice breaking. It can be seen that the ice flexural strength

and thickness are significant in ice breaking mechanism. The second term represents

the resistance that attributes to ice buoyancy. It is related to submerged ice volume

and its density. The third term accounts for the influence due to momentum loss of

the ship so that it is proportional to velocity square. Lewis and Edwards’ method is

of great value because it isolates one key factor, e.g., the ship velocity, from others.

However, this method is not perfect. The buoyancy, for instance, should be related

to the density difference between ice and water.

Significant contributions were made by Enkvist (1972) to the study of ship perfor-

mance in level ice (Jones, 2004). Similar to Lewis and Edward’s works, a three-

component model was applied in Enkvist’s study. Model tests of three ships, Moskva-
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class, Finncarrier, and Jelppari, were carried out at creep speed to investigate the

effect of ship velocity. He then conducted tests in pre-sawn ice conditions to isolate

the submergence term. He was the first person to describe such test procedure in

detail and able to determine the “relative importance of different terms” in his model

(Jones, 2004). Enkvist suggested the following formula on ice resistance:

RT OT = C1Bhσ + C2BhTρ∆g + C3Bhρiv
2 (1.3)

The three terms represent the resistance due to ice breaking, ice buoyancy, and mo-

mentum loss. Comparing to Eq. 1.2, we can see that Enkvist concluded the ice

breaking resistance was proportional to ice thickness and ship width instead of thick-

ness square. He also concluded the ice buoyancy resistance is related to the density

difference between the ice and the water.

In his later work, Enkvist (1983) applied his technique to 16 full-scale ship tests to

investigate the relation between the submersion and ice breaking components in level

ice resistance. He obtained the expression of submersion term and extrapolated it to

zero-speed resistance in order to achieve breaking component in full scale. He reached

a conclusion that the percentage of breaking resistance in total low-velocity resistance

varied between 40% and 80%, with the higher figure for the smaller ships.

Milano (1972) studied the resistance from an energy perspective for a ship moving

in level ice. The total energy loss consisted of five terms: energy that made ship

moving through ice-filled channel (E1), energy that absorbed during local crushing

caused by impact with cups wedge (E2), energy that lifted the ship onto the ice

(E3), energy that caused inner fracture (E4), and energy that made the ship moving

forward, forcing the broken ice downward (E5). The conceptual equation was given

as Eq. 1.4. An explicit analytical expression was derived and good correlation was
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obtained between his prediction and full-scale test data of the Mackinaw. He also

proposed the speed dependence, known as “Milano hump”, and explained how it was

related to the different mechanisms involved in the energy equations.

ET = E1 + E2 + E3 + E4 + E5 (1.4)

Lindqvist (1989) proposed an analytical method to calculate ice resistance for an

ice-going ship. He simplified hull form as several flat plates, identified three main

components of ice resistance, and approximated their contribution with main princi-

ples of the ship and “simple but physically sound formulas”. He stated the energy of

the ship will be absorbed by crushing ice at the stem (Rc), by bending the ice plate

and further causing breaking (Rb), and by interacting with broken ice pieces (Rs).

Each phenomenon must generate a force on the ship; therefore, three different com-

ponents were achieved separately. He also considered the effect of speed by coming up

with a linear relationship between ship speed and ice resistance. Finally, he verified

his formulas with three different ships (JELPPARI, OTSO KONTIO, and VLADI-

VOSTOK) in Baltic conditions. This method balances the submersion component

and breaking component and is easy to carry out since only main principles of the

ship are required.

Rice = (Rc +Rb) × g1(v) +Rs × g2(v) (1.5)

Colbourne (1989) presented a detailed review of the work done previous in his PhD

dissertation. He came up with a method to analyse the icebreaking model test and

further applied the conclusion to full scale ships. The method broke the total ice

resistance down into breaking resistance, clearing resistance, and viscous drag (skin

friction). It is a combination of the model test and the analytical solution. The basic

steps in the method were presented in his dissertation. The ship would be towed
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through intact level ice, as well as pre-sawn ice, and resistance will be measured. Vis-

cous drag was achieved by using ITTC method and further subtracted from pre-sawn

resistance to yield the ice clearing term. Breaking term can be obtained by subtract-

ing pre-sawn resistance from level ice resistance. Non-dimensional numbers are used

to apply model test conclusions to full scale ships. In his dissertation, Colbourne

applies the method to four different ships.

Spencer (1992) used a similar regression model and the experiment procedure to

Colbourne’s. He split the total resistance into ice breaking, clearing, buoyancy, and

open water resistance. Standard test procedure and Standard analysis procedure were

introduced in his paper. Further, this method was applied to predicting ice resistance

of Canadian Coast Guard “R-Class” icebreakers in (Spencer and Jones, 2001). The

regression formula of ice resistance is achieved from model tests. Good agreement

between calculated total resistance and measured resistance can be observed in their

work.

Rtot = Rw + CbrρiBhiv
2 + CclρiBhiv

2 + Cb∆ρghiBT (1.6)

where Rw stands for open water resistance, Cbr, Ccl, and Cb are empirical coefficients

for ice breaking resistance, ice clearing resistance, and ice buoyancy resistance. Cb is

constant, while the other two are determined by

Cbr = f1(Fh) (1.7)

Ccl = f2(SN) (1.8)

where

Fh =
v√
ghi

(1.9)
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is the ice Froude number, and

SN =
v

√

σf hi

ρiB

(1.10)

is the ice strength number.

Keinonen (1996) suggested a formula for the total resistance of an icebreaker in level

ice on the basis of a large database of sea trials of 16 CCGS R-Class icebreakers

(Keinonen, 1996; Keinonen et al., 1989, 1991). The total resistance at speed v (R(v)t)

was expressed in terms of three components: open water resistance at speed v m/s

(R(v)ow); ice breaking resistance at 1 m/s (R(1m/s)ice) that included the major ice

breaking component plus ice submergence and clearing components that was done

by Keinonen et al. (1991); the increase in icegoing resistance above that at 1m/s

(R(> 1m/s)ice). Two practical formulas were achieved in their work to calculate the

third component (R(> 1m/s)ice) of either round hull form icebreaker or chinned hull

form icebreaker.

R(v)t = R(v)ow +R(1m/s)ice +R(> 1m/s)ice (1.11)

Although those reviewed methods vary from one to another, the researchers share

some common knowledge, which is to separate the total resistance into different com-

ponents according to one specific interaction event, in addressing ice resistance. The

real ship-ice interaction is complicated and not fully understood. The physical pro-

cess involves solid-solid interaction, solid-fluid interaction and a series of events that

are joint together. It is crucial to simplify the real physical process by determining

the major factors, isolating each of them and finding its contribution to the total

resistance. This core idea is also accepted by the numerical approaches.
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1.2.2 Numerical Solutions

In the recent decades, efforts have been put onto development of numerical methods

based on the empirical formulas. They can be used to simulate continuous structure-

ice interaction process, i.e., Daley’s conceptual model of ice failure as “a nested hi-

erarchy of discrete failure events” (Daley et al., 1998). In particular, one numerical

approach, named Discrete Element Method (DEM), which discretize continuous ice

material and the structure into many small elements, is widely applied in solving

structure-ice interaction (Lau et al., 2004; Liu, 2009; Nguyen, 2011; Nguyen et al.,

2009; Sawamura et al., 2009a,b; Su et al., 2010; Tan et al., 2013; Wang, 2001).

Daley et al. (1998) proposed a conceptual model which described ice failure as “a

nested hierarchy of discrete failure events” which was based on observation and was

a continuation of his previous work (Daley, 1991, 1992). In the model, each discrete

process was happening with another discrete process and comprised of a continuous

process and a series of limit events. Due to the iterative nature and hierarchy of differ-

ent limit mechanisms, this concept is more general and further applied to numerically

simulate structure-ice interaction by many researchers.

Wang (2001) adopted Daley’s conceptual framework and simplified it as a continuum

process of crushing, bending, and rubble formation in her study of conical structure

breaking level ice. She proposed a geometric grid method to simulate continuous con-

tact between the structure and level ice. Analytical formulas are applied to achieve

crushing force and bearing capability, while geometric grid method is used to numer-

ically detect ice-structure contact and update ice profile after bending failure. She

also assumed the broken ice floes have circular shape and their size is related to ship

speed, V , and ice characteristic length, l. She gave the Eq. 1.12 to calculate ice

floe size without reference without detailed interpretation. This strategy to simulate

ice-fixed structure interaction is widely extended to solving the interaction between
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ice and moving structures.

R = Cll(1 + CvV ) (1.12)

Lau et al. (2004) proposed a model that decomposes the total yaw moment into its

components which is analogous to the formation of ice resistance in (Spencer, 1992).

He divided total moment into hydrodynamic, breaking, submergence, and ice clearing,

components and further derived the formulas for breaking and submergence terms.

In his method, ice-induced force was considered as three concentrated loads among

which two were acting at the bow and the other was on the parallel midship body.

Yaw moment can be easily obtained by multiplying those loads to the corresponding

rotate arms. This strategy is simplified but still valuable. Because ship motion is able

to be involved.

Martio (2007) develops software to numerically simulate the vessel’s manoeuvring

performance in uniform level ice. His work is on the basis of Lindqvist’s ice resistance

model (Lindqvist, 1989). The major contribution of his work is to consider the effect

of bending and submergence terms on sway and yaw motions. In his work, Lindqvist’s

formulas are modified and relationships between resistance and transverse force, as

well as yaw moment, are proposed.

Sawamura et al. (2009a) developed a numerical method, which shared the same strat-

egy with Wang’s work, to calculate the repetitive ice breaking pattern and load with

a circle contact algorithm. In the method, he used small circles, instead of grid in

Wang’s work, to represent discrete ship waterline and the entire ice plate. Contact will

be detected if the distance between the center of hull circle and ice circle is less than

the sum of the radius of the circles. Similar to the geometric grid method in Wang’s

work, the circle contact algorithm still requires discretizing the entire ice plate that

results in inefficient calculation since most circles are not involved in the interaction.
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Nguyen et al. (2009) applied the same strategy but came up with a different DEM

method to simulate vessel-ice interaction. In their work, only the ice edge and ship

waterline profile were discretized into points. Contact or not was determined by

checking the distance between two arbitrary points that one was on ice edge and the

other was on ship waterline. He also assumed the crushing force increases linearly

from zero to the maximum value that leaded to ice breaking by bending. Therefore,

ice-induced force on the ship can be achieved by time past since initial contact instant

and the bearing capability of the ice plate. They numerically calculated the force due

to crushing at the stem and applied Lindqvist’s formula (Lindqvist, 1989) to obtain

bending and submergence force. The discretization strategy is more time efficient

because it avoids discretizing the internal part of ice plate that is not involved in

ship-ice interaction.

Su et al. (2010) followed Nguyen’s DEM strategy that only discretizing the ice edge

and ship waterline. However, the assumption that crushing force increases linearly

was abandoned, and a new contact detecting algorithm was proposed without detail.

He simply assumed ice crushing force is proportional to contact area which will be

determined numerically at each time instant. He also added frictional force into his

model by considering it consists of two parts and each part is proportional to the

corresponding relative velocity component.

Zhou and Peng (2013a) continued the DEM strategy and proposed a different contact

detecting method that categorized ship-ice interaction into four scenarios. They iden-

tified the contact via investigating the relationship between nodes, which represented

ice edge, and the polygon, which represented the ship water line, and applied inter-

polation method to improve calculation accuracy. The 1:21.8 scale Terry Fox model

ship was used to validate the method. In their further study, Zhou and Peng (2013b)

conducted another case study with the 1:20 scale R-Class icebreaker model.
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1.3 Objectives

The mojor work of this study is to develop a numerical simulator that can be used

to investigate the manoeuvrability and the controllability of a vessel in level ice. The

main objectives include:

• To develop a numerical hull-ice interaction model that is able to predict ice load

in 3 Degrees of Freedom in time domain. The model is also able to carry out

prescribed manoeuvres of a ship.

• To develop a a guidance and controller system for a ship’s path following in ice.

• To verify the hull-ice interaction model by comparing to full scale sea trials and

ship model tests.

• To investigate a ship’s manoeuvrability in ice.

• To provide proposals for further work.

1.4 Thesis Outline

This thesis presents a simulation in time domain of ship manoeuvring in level ice.

• Chapter 1 provides the introduction to the entire thesis, reviews previous works

on mathematical modeling and numerical modeling of ship resistance and ma-

noeuvring in level ice, and introduces the objectives and the outline of this

thesis.

• Chapter 2 introduces the theoretical derivation of the numerical model in detail.

The chapter includes a 2-dimensional hull-ice interaction mechanics as well as

the the mathematical models of the hull, the propeller, the rudder and their

interactions.
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• Chapter 3 applies Line-of-Sight method to develop the guidance and control

system. The system is used to accomplish path-following simulations.

• Chapter 4 describes the numerical implementation of the simulation model based

on chapter 2 and 3. In particular, the hull-ice interaction and the Line-of-Sight

guidance system are thoroughly interpreted.

• Chapter 5 provides the the verification of the numerical model. The studies of

the convergence ability and the effects of P-A relationship and flexural ice model

are carried out. Simulation and comparison are conducted with two IOT model

ships and a full-scale CCGS R-Class icebreaker.

• Chapter 6 concludes the current work and provides recommendation for future

research.



Chapter 2

Description of the Numerical

Model

2.1 General

Ship manoeuvring in ice is a complex process that involves solid-solid and solid-fluid

interactions. As proposed by previous researchers, a repeatable and simplified pro-

cedure is applied to simulate the real physical process of the interaction between the

ship and a small ice piece. From the macro perspective, the ice breaking process

occurs equally on both sides of the ship when it transits forward. An approximately

equal amount of ice floes pass along both sides of the ship hull. These ensure the

assumption of symmetrical ice load on the hull in early research. However, the sym-

metry of the ice load is no longer valid when the ship turns in ice. Different amount

of ice floes passing along both sides results in lateral clearing and buoyancy forces.

Furthermore, one side of the hull may contact more intact ice cover so that icebreaking

happens more on this side than on the other one. This also leads to an asymmetrical

breaking force. The ice breaking pattern during the ship-ice interaction is complex

13
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and stochastic. Most previous works adopt cusp breaking patterns and elastic plate

theories. Various ice failure modes exist due to the stochastic nature of ice plate and

the varying flare angle of the hull.

This chapter derives the mathematical model of ship manoeuvring in ice based on pre-

vious works (Lau et al., 2004; Liu, 2009; Nguyen et al., 2009; Sawamura et al., 2009a;

Su et al., 2010; Wang, 2001). It considers the distributed breaking force, buoyancy

force, and clearing force, separately. Two failure modes, crushing and bending, are

involved. Ice floe hydrodynamics is included in clearing force. The hull-ice contact is

numerically detected at each time step. The ice channel is tracked and exported to

files when breaking happens. The ship dynamics, the models of propeller and rudder

are also included in this chapter. The integral numerical model is time efficient and

has the capability of carrying out various tests.

2.2 Kinematics

The developed numerical model only considers the motions of the ship and the ice

plate in the horizontal plane with three degrees of freedom (3DOF). However, for com-

pleteness and further extension, we introduce coordinate systems and transformation

in 6DOF. The transformation is then simplified to 3DOF for further application.

2.2.1 Coordinate Systems

To describe the interaction between the ship and the ice plate, three coordinate sys-

tems, i.e., a global coordinate system and two moving local coordinate systems, are

introduced; one local coordinate system is attached on the ship and the other is at-

tached on the ice plate. Figure 2.1 depicts these coordinate systems in 3-dimension.

These systems use the standard right-hand rule convention.
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Figure 2.1: Sketch of the three coordinate systems

The global coordinate system, named North-East-Down system (denoted as O-NED),

is defined as the tangent plane on the surface of the Earth. This system is used for

Earth navigation of a marine craft. O-NED is assumed inertial such that Nowton’s

laws still apply. The N-axis points towards true North, the E-axis points towards East,

while the D-axis points downwards normal to the Earth’s surface (Fossen, 2011). The

positions and orientation of the vessel and the ice are described relative to O-NED.

The coordinates respect toO-NED frame are expressed as [x̄, ȳ, z̄]T .

The ship-fixed coordinate system (denoted as o-xyz) is the moving local system that

is attached on the ship. The origin o is chosen to coincide with the geometry center

of the water plane. For a vessel, the axes x, y, and z are chosen to coincide with the

principal axes of inertia, and they are usually defined as:

• x - longitudinal axis (directed from aft to fore)

• y - transversal axis ( directed to starboard)

• z - vertical axis (directed from top to bottom)

The linear and angular velocities of the vessel should be expressed in this coordinate

system.
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The ice-fixed coordinate system, denoted as oi-xiyizi, is the moving local system that

is attached on the ice plate. For convenience, the origin is chosen to coincide with an

arbitrary point on the edge of the ice plate, and the axes xi, yi, and zi are initially

chosen to parallel to the corresponding axes of O-NED, respectively. The linear and

angular velocities of the ice plate, as well as the coordinates of the discretized points,

are expressed relative to this system.

2.2.2 Motion Variables and Notations

Six dependent coordinates are required to determine the position and orientation for

a vessel in 6DOF. The first three cooridnates, with their time derivatives, correspond

to the position and translational motions along the x, y, and z axis, while the last

three coordinates and their time derivatives describe the orientation and rotational

motions of the vessel. Generally, the six motion components are defined as surge,

sway, heave, roll, pitch, and yaw. The notation of SNAME (1950) for marine vessels,

as listed in 2.1, is used.

Table 2.1: The notation of SNAME (1950) for marine vessels

Forces and Linear and Position and
DOF moments velocities Euler angles

1 motion in the x direction (surge) X u x
2 motion in the y direction (sway) Y v y
3 motion in the z direction (heave) Z w z
4 rotation aboue the x direction (roll) K p φ
5 rotation aboue the y direction (pitch) M q θ
6 rotation aboue the z direction (yaw) N r ψ
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2.2.3 Transformation Between Different Systems

During the numerical integration scheme, once the translational and rotaional veloci-

ties are obtained in ship-fixed coordinate system, they should be transformed into the

global coordinate system to achieve the changing rate of the coordinates of the origin

of the ship-fixed reference frame. The transformation law is given by:
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where s· = sin(·), c· = cos(·), t· = tan(·).

Rewrite 2.1 in vectorial form :

η̇ = J(Θ) · ν (2.2)

where η = [x̄, ȳ, z̄, φ, θ, ψ]T denotes the positions and orientation vector, Θ = [φ, θ, ψ]T

is a vector of Euler angles,
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is the transformation matrix, and ν = [u, v, w, p, q, r]T denotes the linear and angular

velocity vector that decomposed in the ship-fixed coordinate system.
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Eq. 2.2 presents the transformation between o-xyz frame and O-NED frame. A

similar transformation between oi-xiyizi frame and O-NED frame can be obtained by

replacing Euler angle and velocity vector of the ship to those of the ice plate in Eq.

2.2.

2.2.4 Simplifying to 3DOF

As mentioned, 3DOF is sufficient for this numerical model of ship manoeuvring in

horizontal plane so that we can skip roll, pitch, and yaw motions, i.e., consider the

corresponding Euler angle and velocity components as zero in Eq. 2.1:
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(2.3)

2.3 can be written in vectorial form:

η̇ = R(ψ) · ν (2.4)

where η = [x̄, ȳ, ψ]T is the vector of positions and heading of the ship, R(ψ) is the

transform matrix in 3DOF, and ν = [u, v, r]T is vector of velocities. Eq. 2.4 is used

to achieve positions and heading changing rate.
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2.3 Rigid Body Kinetics

2.3.1 6DOF Model

According to Fossen (1994, 2011), the 6DOF rigid body kinetics in ship-fixed coordi-

nate system can be expressed in a vectorial form:

Mν̇ + C(ν)ν = FT OT (2.5)

where M is the rigid body mass matrix that is given by Eq. 2.6; C(ν), given by Eq.

2.7, is the rigid body Coriolis and centripetal matrix caused by the rotation of o-xyz;

FT OT = [X, Y, Z,K,M,N ]T is the generalized vector of external forces and moments

respect to ship-fixed frame.
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C(ν) =
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where xg, yg, and zg denotes the coordinates of the center of gravity of the ship in o-

xyz, Ix, Iy, Iz denote the moment of inertia about the x, y, and z axes, and Ixy = Iyx,

Ixz = Izx, and Iyz = Izy are the products of interia. They are valid when the ship is

port-starboard symmetrical and fore-aft symmetrical.

Ix =
∫

m
(y2 + z2) dm (2.8)

Iy =
∫

m
(x2 + z2) dm (2.9)

Iz =
∫

m
(x2 + y2) dm (2.10)

Ixy =
∫

m
xy dm (2.11)

Ixz =
∫

m
xz dm (2.12)

Iyz =
∫

m
yz dm (2.13)
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Merging Eqs. 2.6 and 2.7 into Eq. 2.5, we can achieve the expanded equations of

motion of a ship:

m[u̇− vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)] = X

m[v̇ − wp+ ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp+ ṙ)] = Y

m[ẇ − uq + vp− zg(p2 + q2) + xg(rp− q̇) + yg(rq + ṗ)] = Z

Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+m[yg(ẇ − uq + vp) − zg(v̇ − wp+ ur)] = K

Iyq̇ + (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz

+m[zg(u̇− vr + wq) − xg(ẇ − uq + vp)] = M

Izṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx

+m[xg(v̇ − wp+ ur) − yg(u̇− vr + wq)] = N

(2.14)

2.3.2 External Forces and Moments

In order to solve Eq. 2.5, the generalized external forces and moments must be

described in proper mathematical forms. The modular modelling approach and the

principle of superposition are applied. The total forces and moments are given by:

FT OT = FH + FP + FR + FE (2.15)

Each term consists of six elements that correspond to the six-motion components. The

terms with subscript “H”, “P”, and “R” represent the hydrodynamic forces on the

bare hull, the propeller, and the rudder, respectively. The interactions among them

are included in each term. The term with subscript “E” represents the environmental

force, such as the forces due to wind, wave, current, and ice. The present work

assumes ice load is dominant in ice covered sea so that other environmental forces can
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be neglected. Hence:

FT OT = Fice + FH + FP + FR (2.16)

2.3.3 Simplifying to 3DOF

To achieve the kinetic equations for a rigid body moving in horizontal plane, we simply

skip the acceleration and velocity that are associated with roll, pitch, and heave. It is

also common to assume the vessel is port-starboard symmetrical so that the center of

gravity lies in the longitudinal center plane of the vessel, i.e., yg = 0. The equations

of motions can be given by:

mu̇−mvr −mxgr
2 = Xice +XH +XP +XR

mv̇ +mxg ṙ +mur = Yice + YH + YP + YR

Izṙ +mxg v̇ +mxgur = Nice +NH +NP +NR

(2.17)

2.4 Ice Induced Force

The real mechanism of the ship-level ice interaction (icebreaking process) is compli-

cated and remains unclear. However, many researchers have provided simplified pro-

cesses to describe it (Colbourne, 1989; Enkvist et al., 1979; Keinonen, 1996; Lindqvist,

1989; Spencer, 1992). Based on those descriptions, the interaction during the ship

continuously advancing into the ice plate involves three phases.

Initially, the vessel contacts with the ice plate and generates a force on the plate. The

interaction force is perpendicular to the contact surface and causes ice crushing as well

as vertical deflection. The force keeps increasing as the ship is moving forward until

ice is broken by bending and then a cusp forms. In the case of thick ice or a vessel

with a large flare angle, only crushing failure might occur, i.e., the flexural capacity

of the ice plate would not be reached. When an ice floe is broken off the plate, it
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continues moving downward. The floe is also rotated and accelerated simultaneously

until it is parallel to the wet surface of the hull. Finally, ice pieces slide along the hull

until they leave it.

Though it is questionable (Enkvist et al., 1979), the methodology in which the total ice

load is divided into its components that represent the corresponding physical processes

has been widely used. Considering the fore-mentioned processes, the total ice induced

force is divided into three independent components, i.e., breaking, buoyancy, and

clearing force components (Colbourne, 1989; Spencer, 1992; Spencer and Jones, 2001):

Fice = Fbr + Fb + Fcl (2.18)

where each term denotes a force vector that consists of three elements: surge force,

sway force, and yaw moment. The subscript “ice”, “br”, “b”, and “cl” refer to the

total ice force, the breaking force component, the buoyancy force component, and the

ice clearing force component, respectively. Eq. 2.18 can be expanded as:

Xice = Xbr +Xb +Xcl

Yice = Ybr + Yb + Ycl

Nice = Nbr +Nb +Ncl

(2.19)

The following sections 2.4.1 and 2.4.2 derive each term in Eq. 2.19 respectively.

2.4.1 Breaking Force Component

2.4.1.1 Ship-Ice Contact

Wang (2001) proposed a geometric Grid Method to detect the contact between the

ship and the ice; Sawamura et al. (2009a) proposed a circle contact algorithm which is

similar to the geometric Grid Method. These methods require discretizing the entire
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domain into elements. Lau et al. (2004) came up with a DEM to deal with this issue;

this method is also applied by Nguyen et al. (2009) and Su et al. (2010). The DEM

only requires discretizing the ship water line and a certain segment of the ice edge.

A new detecting strategy, named Polygon-Point Algorithm, is proposed in this study.

It is a modification of the DEM proposed by Su et al. (2010).

The algorithm is on the basis of Ray casting method, which is a simple way of finding

whether a point is inside or outside a simple polygon. Ray casting algorithm is based

on a simple observation that if a point moves along a ray from the probe point to

infinity and if it crosses the boundary of the polygon an odd number times, the probe

point is inside the polygon. During the process of contact detecting, the ship water

line is first considered as a simple polygon while the discrete ice edge is considered as

scattered probe points. Every point is investigated to see if it is inside the polygon or

not. After that, the ice plate will be treated as a polygon and each point on the ship

water line will be investigated. Based on the detecting result, the ship-ice contact is

identified as four alternative scenarios (illustrated in Figure 2.2):

• no points are involved

• contact involves points both on the ship water line and the ice edge

• contact involves points only on the ice edge

• contact involves points only on the ship water line

The first scenario means the ship does not contact with the ice while the rest scenarios

denote they contact with each other.

2.4.1.2 Crushing Force

As long as the hull contacts with the ice edge, ice crushing starts at the contact point.

It continues until the ice plate is broken by bending. More than one contact zone
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(1) (2)

(3) (4)

Figure 2.2: Sketch of four interaction scenarios

could exist at the same instant time. In each contact zone there is a crushing force

on the hull. The value of the crushing force within one contact zone is given by:

Fcr = pave · Acr (2.20)

where Fcr is the value of crushing force, and which is perpendicular to the contact

surface and pointing inward to the ship; pave is the average pressure on the contact

surface, and it is achieved by process pressure-area relationship; Acr is the area of the

contact surface which is numerically achieved.

(1) average pressure

Previous numerical models implement constant contact pressure (crushing strength,

σcr) when calculating the crushing force (Lau et al., 2004; Liu, 2009; Martio, 2007;

Nguyen et al., 2009; Sawamura et al., 2009a; Su et al., 2010; Wang, 2001). However,
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analysis on Full-scale data shows that contact pressure is varying as the surface area

changes. A form of power relation between average pressure and area (P-A curve or

P-A relation) is widely accepted:

pave = p0 ·Aex
cr (2.21)

where p0 is the constant nominal pressure; ex is the constant exponent.

Daley (2004) stated that there are two different pressure distribution models to derive

a P-A relation: spatial pressure distribution which describes the variation of pressure

within the contact at one point in time; process pressure distribution which describes

the pressure-area relation at different time steps. He also mentioned that a decrease

trend of pressure when area increases can be observed in spatial pressure distribution,

i.e., ex has a negative value; however, this trend is not necessary to process pressure

distribution.

(2) contact surface area

Figure 2.3: Sketch of two contact surface shapes

As illustrated in Figure 2.3, the contact surface has two shapes: triangular and trape-
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zoidal. The area is given by:

Acr =



















1
2
Lh

Lc

sin(β′)
if Lc ≤ hi · tan(β ′)

1
2

[

Lh + Lh
Lc−hi/ tan(β′)

Lc

]

hi

cos(β′)
if Lc ≥ hi · tan(β ′)

(2.22)

where Lh is the maximum width of the contact surface; Lc is the maximum penetra-

tion; hi is ice thickness; β ′ is normal frame angle of the hull. Lh and Lc are determined

from Polygon-Point Algorithm.

2.4.1.3 Frictional Force

Besides the crushing force, the friction, which is related to relative velocity between

the ship and the ice as the ice slides along the hull, should also be considered. Both

the crushing force and the friction should be decomposed into three components that

coincide with the three axes of the ship-fixed frame. The method proposed in Su et al.

(2010) is applied to calculate the friction. It is assumed that the friction, which is

proportional to crushing force, consists of two parts (shown in Figure 2.4): one is in

horizontal plane, and the other is in vertical plane. The value of each component was

related to the corresponding relative velocity:

fh = µFcr
vτ

√

v2
τ + v2

n,1

(2.23)

fv = µFcr
vn,1

√

v2
τ + v2

n,1

(2.24)

where µ is the frictional coefficient; vτ is the tangential relative velocity in horizon-

tal plane; vn,1 is the relative velocity along the hull in normal section; fh and fv

are the horizontal and vertical frictional forces, respectively, and their directions are

illustrated in Figure 2.4.
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Figure 2.4: Directions of force and velocity components

2.4.1.4 Breaking Force

Sections 2.4.1.1 to 2.4.1.3 provide the method to achieve the ice force (crushing force

and frictional force) within one contact zone. To obtain the total ice force, i.e., the

breaking force, the crushing force and frictional force have to be projected onto ship-

fixed coordinate system. Based on previous analysis, the projected components are

given by:

Xbr =
[

sin(β ′) tan(α) + µ
√

1 + tan2(α) cos2(β ′)
]

· Fcr (2.25)

Ybr =



sin(β ′) − µ tan(α)
cos(α) − cos2(β ′)

√

cos2(α) + sin2(α) cos2(β ′)



 · Fcr (2.26)

Zbr =



cos(β ′) − µ
sin(α) sin(β ′) cos(β ′)

√

cos2(α) + sin2(α) cos2(β ′)



 · Fcr (2.27)

where α is the water line angle at contact location; Xbr and Ybr are breaking force

components that are in the horizontal plane; Zbr is the vertical breaking force compo-

nent that is perpendicular to the horizontal plane. Zbr is further compared to bearing

capability of the ice plate to investigate whether bending failure will happen or not.
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The breaking yaw moment is given by:

Nbr = −Xbr · y + Ybr · x (2.28)

where x and y are coordinates of the contact point that refer to o-xyz frame.

The total ice breaking force is achieved by integrating all the crushing and frictional

forces along the hull.

2.4.1.5 Breaking by Bending

The vertical force component increased as the ship is penetrating into the ice plate.

As long as it exceeds the bearing capability of the ice sheet, bending failure would

happen and a circular ice floe would be broken off the plate. The bearing capability

is calculated by Kashtelyan (Kerr, 1976):

Pbear = Cf

(

θ

π

)2

σfh
2
i (2.29)

where θ is the open angle of the ideal ice wedge as illustrated in Figure 2.2; σf is the

flexural strength of the ice; Cf is an empirical coefficient. The above formula expresses

the bearing capacity in quasi-static condition that is fail to consider the effect of ship

velocity. It is only suitable for low velocity cases. However, the ice plate dynamics is

beyond the scope of the current study; therefore, we assume the above formula fits

all velocity range.

Kashtelyan (Kerr, 1976) suggested a small value (around 1.0) for the constant param-

eter, Cf , while Nguyen et al. (2009) used a value of 4.5 with no explanation. In Su

et al. (2010), a study of determining Cf was carried out and a value of 3.1 was finally

adopted. The coefficient is considered tunable in this study.
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2.4.1.6 Ice Edge Updating

As long as both vertical breaking force, Zbr, and the bearing capability of the ice,

Pbear, are obtained, flexural failure can be investigated. If Zbr ≤ Pbear, the ice edge

will only be crushed; otherwise, flexural failure will happen. A circular shaped ice

piece will be broken off the plate. Figure 2.5 shows the ice plate breaks and updates

pattern of a 1:21.8 scale Terry Fox ship model in a simulated towed straight motion

test. The red points and segments represent the new generated ice edge, while the

blue points and segments are current ice edge. It can be seen that three updating

zones exist at the same time: one is at the stem, and the other two are at shoulder

region. It is also clear to see that the updating zones at shoulder region do not involve

discrete points on the ship waterline.

zoom in 

Figure 2.5: Ice edge update in a simulated tow test of a 1:21.8 scale Terry Fox ship
model

The size of the ice floe mainly depends on the characteristic length of the ice and

the relative velocity component that is perpendicular to the contact surface. It is

determined by Wang (2001) formula:

R = Cl · l(1 + Cv · vn,2) (2.30)

where vn,2 is the relative velocity component that is normal to the contact surface; Cl
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and Cv are tunable coefficients. Cl has a positive value, and Cv has a negative value.

l is the characteristic length of the ice that is given by:

l =

[

Eh3
i

12(1 − ν2)ρwg

]1/4

(2.31)

where E is Young’s modulus of the ice; ν is Poisson’s ratio; ρw is sea water density;

g is gravitational acceleration.

2.4.1.7 Effect of Ice Flexural Deflection

Valanto (1989) reported a rapid flexural failure was observed in the experiment when

flexural strength ratio had a large value (E/σf = 6400), while in low ratio case

(E/σf = 1400), considerably more time was required. Valanto also pointed out

that the difference was important since it would significantly affect the average ice

resistance. However, in previous works (Nguyen et al., 2009; Su et al., 2010; Wang,

2001), a rigid ice plate model was assumed so that vertical deflection by bending was

not considered. This model was unable to simulate what was observed in Valanto’s

experiment.

The real ice dynamics during the interaction is quite complex. According to Daley

(2010) and Enkvist et al. (1979), a high pressure zone forms under the bottom of

the ice sheet and provides additional support against the ice deflection. The high

pressure zone depends on the velocity of the downward deflected ice sheet and the

acceleration force of the ice mass and the entrained mass of water (Enkvist et al.,

1979). In addition, during the interaction both the vessel and the ice have vertical

movement which results in the 3DOF model insufficient.

However, we can avoid the dynamic pressure and the vertical movement of the vessel

and develop a relatively simplified model to study the effect of ice deflection on the
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interaction.

Water under the ice sheet is considered as an elastic foundation. As the ship is

moving forward, the ice plate will be bent. Since ice deflection is small comparing

to ice characteristic length, we further assume a parallel downward movement of ice

plate instead of bending. The contact force, Fcr , leads to ice crushing and flexural

deflection simultaneously.

δ δc

δe

β'
δs

Figure 2.6: Flexural deflection of the ice plate

As illustrated in Figure 2.6, the ship penetrates into the ice by δs from the initial

contact time instant to the calculating time instant, resulting in a vertical elastic

deflection, δe, and a vertical crushing height, δc. They satisfy the following equation:

δe + δc = δs · tan(β ′) (2.32)

δe and δc are caused by the same force, the vertical component of Fcr. Therefore, they

must satisfy:

Fcr,v = f1(δc) = f2(δe) (2.33)

where f1(·) is given by Eqs. 2.20, 2.21, 2.22, and 2.27; f2(·) is obtained by considering

the dynamics of an infinite ice plate to a concentrated load. The dynamic equation
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is given by:

d4w

dx4
+ 2

d4w

dx2dy2
+
d4w

dy4
=
P − ρwgw

D
(2.34)

where w is the deflection of the ice plate; P is the concentrated load; D is the flexural

rigidity of the ice plate that is given by

D =
Eh3

i

12(1 − ν2)
(2.35)

The maximum deflection, wmax, exists where the concentrated load is placed and is

given by

wmax =
P

8
√
ρwgD

(2.36)

Consider that the crushing force is placed at the apex of an ice wedge with the open

angle of θ, f2(·) is given by

Fcr,n =
2π

θ
· 8
√

ρwgD · δe (2.37)

As long as f1(·) and f2(·) are obtained, Eqs. 2.32 and 2.33 can be combined to solve

δc and δs. According to triangular similarity, the contact surface area is modified by

multiplying (δc/δv)2, i.e., the effect of ice flexural deflection diminishes the contact

area.

2.4.2 Clearing and Buoyancy Force Components

The ice resistance (x-component) due to buoyancy and clearing is calculated by

Spencer and Jones (2001):

Xcl = CclF
EXcl

h ρiBhiu
2 (2.38)

Xb = Cbρ∆ghiBT (2.39)
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where Fh = u/
√
ghi is the ice Froude number; B is the ship beam; T is the ship draft;

ρi is the ice density; ρ∆ is the density difference between ice and sea water; Ccl, Cb,

and EXcl are empirical coefficients from model tests.

To derive the model of y-component of buoyancy and clearing forces, we assume

the effect of buoyancy and clearing forces on sway direction are equivalent to three

concentrated loads: one is acting somewhere on the parallel midship body, denoted

with the subscript of “mid”, and the other two are on each side of bow, denoted with

the subscript of “bow”. Under the assumption of port-starboard symmetry in ship

geometry, each bow force is given by:

Yi,bow =
Ybr

Xbr
· Xi

2
(2.40)

where subscirpt “i” is either ”cl” or ”b”, representing either clearing force component

or buoyancy force component; Xbr and Ybr are x-component and y-component due to

ice breaking given by Eqs. 2.25 and 2.26, respectively. Therefore,

Yi,bow =
Xi

2
·

sin(β ′) − µ tan(α) cos(α)−cos2(β′)√
cos2(α)+sin2(α) cos2(β′)

sin(β ′) tan(α) + µ
√

1 + tan2(α) cos2(β ′)
(2.41)

The net sway force at bow would be:

∆Yi,bow = Yi,bow,port + Yi,bow,starboard (2.42)

If the ship is moving straight forward, due to the symmetrical geometry and move-

ment, the ice load should also be symmetrical, i.e., the net sway force at bow should

be zero. However, when the ship starts to turn, the load on each sides will no longer

be the same.

We can also achieve the concentrated load on the midship by assuming the load is
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proportional to its corresponding motion velocity:

Yi,mid = Cmid ·Xi · v
u

(2.43)

where Cmid is an empirical coefficient.

To summarise, the sway force due to either clearing or buoyancy can be achieved by:

Yi = ∆Yi,bow + Yi,mid (2.44)

where ∆Yi,bow is given by Eq. 2.42, and Yi,mid is given by Eq. 2.43

2.5 Hydrodynamic Force

The hydrodynamic force is assumed to just depend on velocity and acceleration com-

ponents that is well known as “quasi-steady approach”. The part that is associated

with acceleration is named added mass, and the part that is associated with velocity

is known as damping. According to Fossen (2011), Perez and Blanke (2002) and Gong

(1993), the hydrodynamic forces and moment are given by:

XH = −Xu̇u̇+X(u) + (Yv̇ +Xvr)vr (2.45)

YH = −Xu̇ur − Yv̇v̇ − Yṙṙ + Yvv + Yrr + Yv|v|v|v| + Yr|r|r|r| + Yvrvr (2.46)

NH = −Nṙṙ −Nv̇v̇ +Nvv +Nrr +Nvrvr +Nv|v|v|v| +Nvvrvvr +Nvrrvrr

+Nr|r|r|r| + xG(Yvv + Yrr + Yvrvr + Yv|v|v|v| + Yr|r|r|r|) (2.47)

The coefficients are known as hydrodynamic coefficients. They are formulated as

partial derivatives of the force under consideration with respect to the multiplicand

motion variables. They can be determined by model test, CFD method, or analytical
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formulas (Gong, 1993). X(u) represents water resistance and is calculated by Holtrop

and Mennen’s initial design prediction method (Holtrop and Mennen, 1982) which

can be seen in Appendix A.

2.6 Propeller Thrust

We consider the propeller is operating in the first quadrant, i.e., both the ship speed

and the shaft revolution correspond to ahead progress. By avoiding the propeller

rotating in oblique flow or asymmetrical wake, the effect on sway force and yaw

moment can be neglected. Hence:

YP = NP = 0 (2.48)

According to ITTC (2002), the mathematical model for propeller thrust is given by:

XP = (1 − t)ρwn
2D4

PKT (JP ) (2.49)

where t is the thrust deduction that accounts for the interaction between the hull

and the propeller; n is shaft speed in unit of resolution per second (rps); DP is the

propeller diameter; JP is advance coefficeint given by Eq. 2.50; KT is the thrust

coefficient of the propeller given by Eq. 2.51.

JP =
u(1 − wP )

nDP
(2.50)

where wP is the wake fraction coefficient.

KT = a0 + a1 · JP + a2 · J2
P (2.51)
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where a0, a1, and a2 are coefficients.

2.7 Rudder Force

The mathematical model of the rudder force can be seen in (Bhawsinka, 2011; Gong,

1993; Hirano, 1981; Toxopeus, 2011). The derivative of the model is out of the scope

of the present thesis. The rudder force is given by:

XR = −(1 − tR)FN sin(δ) (2.52)

YR = −(1 + αH)FN cos(δ) (2.53)

NR = −(xR + αHxH)FN cos(δ) (2.54)

where δ is the rudder defleciton; tR is the rudder drag correction factor; xR is the

x-coordinate of the rudder with respect to o − xyz; αH and xH are coefficients that

account on hull-rudder interaction; FN is the rudder normal force given by:

FN =
1

2
ρ

6.13Λ

Λ + 2.25
ARU

2
R sin(αR) (2.55)

where Λ is the rudder aspect ratio; AR is the projected rudder area; UR is the effective

rudder inflow; αR is the effective rudder inflow angle.

2.8 Summary

This chapter derives a 2D ship-ice interaction model. The model directly simulates

the physical ice-hull interaction process in time-domain by empirical approach with

numerical implementation. This model is capable of simulating various tests.



Chapter 3

Guidance and Control System

3.1 General

One important manoeuvring problem in many offshore applications is to steer a vessel,

a submersible or a rig along a desired route with a prescribed speed (Fossen et al.,

2003). This is further specified as two tasks: the Geometric Task, which is to converge

to and follow a desired route or path (usually defined parametrized or in terms of

way-points); and the Dynamic Task, which is to satisfy a speed assignment (defined

in terms of a prescribed speed) along the path (Skjetne et al., 2011). The motion

control system that is assigned to implement the pre-mentioned tasks is known as

Autopilot or Auto-steering gear.

When designing a control system for a vessel, it is important to distinguish between

fully actuated vessel and underactuated vessel. According to Fossen (2011), a fully

actuated vessel has equal or more independent control inputs than the number of

DOF of the vessel, while an underactuated vessel has less independent control inputs

than the number of DOF.

For slow speed control of floating rigs and supply vessels, fully actuated is commonly

38
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referred to as dynamic positioning (DP) where control forces and moments are avail-

able in all 3DOFs (surge, sway, and yaw). However, conventional ships are usually

equipped with main propellers for forward speed control and rudders for turning

control. This means only two independent control inputs are available so that it is

specified as an underactuated situation.

One solution to a conventional and underactuated vessel is to reduce the output

space from 3DOF to 2DOF, and leave the other uncontrolled. A autopilot system is

involved to generate the commanded heading such that the cross-track error can be

minimized. This can be done by including an additional cross-track error control loop

or by adopting multivariable controller (Fossen et al., 2003).

The Line-of-Sight (LOS) method controller is widely used for a path-following of a

underactuated vessel (Breivik, 2003; Fossen et al., 2003; Moreira et al., 2007; Skjetne

et al., 2011). It generates a commanded heading signal and gradually guides a vessel

to turn to the desired heading angle. The convergence to the desired heading also

leads to the convergence to the desired position simultaneously. This requires only

one control input and leaves the other to dynamically maintain the forward speed.

In this chapter, the guidance system and controller based on LOS method will be

introduced. The output includes the commanded heading angle and surge speed.

The Geometric Task is achieved by the rudder, while the Dynamic Task is performed

by the main propeller. Section 3.2 derives the LOS guidance system. This includes

a desired heading algorithm and a way-point switching algorithm. A reference model

is also introduced in section 3.3 in order to avoid rapid change in the heading signal.

The control law, which is based on the guidance system and the reference model, is

provided in section 3.4.
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3.2 Line-of-Sight Guidance

According to Breivik (2003, 2010) and Fossen (2011), two different methods can be

applied to achieve the desired heading angle: the enclosure-based method and the

lookahead-based method. This section present both methods. The lookahead-based

method is further implemented due to its lower complexity in calculation.

3.2.1 Enclosure-based Method

x-axis

pk-1

pk

pLOS

pship

ψ

ψLOS

pproj

N(x)

E(y)

Rk

pk+1

e(t)

αk-1

LOS vector

ψr(t)

Figure 3.1: Line-of-Sight guidance principle

Figure 3.1 illustrates the principle of LOS guidance method. Assuming at a time

instant t, the ship is located at pship = [x̄0, ȳ0]
T and has a heading angle of ψ in

O-NED. pk−1 denotes the previous way-point and pk denotes the current way-point,

and both are from the way-point table provided by the operator. The desired path is

defined as the straight line segment between pk−1 and pk. plos = [x̄los, ȳlos]
T is called

the LOS position that is located somewhere on the path and moving towards pk. e(t)

is called the cross-track error. We force the ship pointing towards the LOS position all

the time such that the ship location will converge to the desired path (Breivik, 2003).
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The LOS angle is the heading when the ship is pointing towards the LOS position,

and it is given by:

ψlos = atan2(ȳlos − ȳ, x̄los − x̄) (3.1)

where atan2 is the quadrant function:
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(3.2)

The definition of the quadrant function ensures

ψlos ∈ [−π, π] (3.3)

According to the above interpretation, the Geometric Task can be expressed as:

lim
t→∞

(ψ − ψlos) = 0 (3.4)

To achieve the coordinates of the LOS position, the enclosure-based method introduces

a sufficient large circle enclosing the ship’s current location pship. The circle will

intersect the desired path at two points. One of them is chosen to be the LOS points

according to the direction of travel. Therefore, the following equations must be solved
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online:

ȳlos − ȳk−1

x̄los − x̄k−1
=
ȳk − ȳk−1

x̄k − x̄k−1
= tan(αk−1) (3.5)

(x̄los − x̄)2 + (ȳlos − ȳ)2 = R2
los (3.6)

plos is obtained by solving Eqs. 3.5 and 3.6. After that, Eq. 3.1 is used to achieve

the LOS angle ψlos. A controller for steering is finally applied to accomplish the

Geometric Task.

3.2.2 Lookahead-based Method

To avoid solving Eqs. 3.5 and 3.6, the lookahead-based method is introduced. As

illustrated in Figure 3.1, the ship location has a projection on the path, denoted as

pproj. According to the travel direction, find the LOS position on the path which is

∆ ahead the projection point. The LOS angle can be calculated in another way:

ψlos = ψr(e) + αk−1 (3.7)

where

ψr(e) = arctan
(−e

∆

)

(3.8)

where e is the cross-track error.

We assume the linear desired path has a direction from pk−1 to pk in Figure 3.1, and

it can be expressed in mathematical form as:

ax+ by + c = 0 (3.9)

where a, b, and c are coefficients that can be determined by the coordinates of pk−1
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and pk. Hence, the cross-track error can be achieved by:

e(t) =
ax̄0 + bȳ0 + c√

a2 + b2
(3.10)

where x̄0 and ȳ0 are the coordinates of pship. It is easy to notice that if the ship

location is on the left side of the path, e(t) < 0; if it is on the right side, e(t) > 0; if

it is right on the path, e(t) = 0.

The lookahead-based method and the enclosure-based method could be identical if

we apply a time variant ∆(t) that satisfies:

e(t)2 + ∆(t)2 = R2
los (3.11)

Hence, ∆(t) is determined by:

∆(t) =
√

R2
los − e(t)2 (3.12)

According to Fossen (2011), Eq. 3.8 can be expressed as a proportional control law:

ψr(e) = arctan(−Kpre) (3.13)

where Kpr = 1/∆ > 0.

A integral term and a differential term can be added so that ψr will be calculated by

a PID controller which is able to increase the response and minimize the steady error:

ψr(e) = arctan
(

−Kpre−Kdrė−Kir

∫ t

0
e(τ)dτ

)

(3.14)

where Kdr > 0 is the differential gain, and Kir > 0 is the integral gain.

As long as ψr is determined, Eq. 3.7 is used to calculate the LOS angle. αk−1 is the
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heading angle of the path that is given by:

tan(αk−1) =
ȳk − ȳk−1

x̄k − x̄k−1
(3.15)

3.2.3 Way-point Switching Algorithm

A criteria for updating desired path from pk−1pk to pkpk+1 is implemented by in-

troducing a circle of acceptance located at the current way-point pk. The circle is

illustrated in Figure 3.1. If the ship’s location pship at some instant satisfies:

(x̄k − x̄)2 + (ȳk − ȳ)2 ≤ R2
k (3.16)

the current way-point will be updated to the next way-point in the way-point table.

Rk denotes the radius of the circle of acceptance at current way-point. They could be

assigned an arbitrary value and stored together with the coordinates of the way-points.

For simplicity, the radii are assumed constant in this study.

3.3 Reference Model

A reference model is usually required to avoid sending rapid changing signals to a

controller. For the path-following purpose, the reference model is also able to filter

out high frequency motions. A 2nd order reference model is applied in this study

since both the desired heanding angle and its time derivative are need. The 2nd order

reference model is given by:

xd(s)

xr(s)
=

ω2
n

s2 + 2ξωns+ ω2
n

(3.17)
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where ξ is the relative damping ratio, and ωn is the natural frequency. Eq. 3.17 is

equivalent to a second order ordinary derivative equation:

ẍd + 2ξωnẋd + ω2
nxd = ω2

nxr (3.18)

The 4th-order Runge-Kutta method is used to solve the ordinary derivative equation.

xd and its first order time derivative, ẋd, can be obtained from Eq. 3.18 by specifying

ξ, ωn, and the input signal xr. After that, they will be exported to the controller.

3.4 LOS Controller

Various techniques are available for controller design in modern control theories such

as PID control, linear quadratic optimal control, and backstepping control. Among

all of them, the PID control is the simplest but practical one so that it is widely

used in industrial systems. Due to the decoupling of surge motion from sway and

yaw motions, i.e., the speed control is separated from steering control, separated

Single-Input-Single-Output (SISO) PID controllers will be designed to accomplish

the Geometric Task and the Dynamic Task in this section. The strategy of feedback

is applied in the design.

As mentioned, the Geometric Task can be expressed as:

lim
t→∞

(ψ − ψlos) = 0 (3.19)

Similarly, the Dynamic Task can be expressed as:

lim
t→∞

(u− usp) = 0 (3.20)



46

ν(t)
SHIPPROPELLER    

MODELCONTROLLER

FILTER

+ -
e(t) FP

Fice, 

FH

rpmset-point

Figure 3.2: Diagram of the speed control feedback loop

Figure 3.2 illustrates the diagram of speed control system. The speed set-point is

assumed constant and provided by the operator. The feedback speed signal must go

through a filter to filter out high frequency component. The speed difference between

the filtered speed and the set-point will be imported into the controller to generate the

commanded shaft resolution. After that, Eq. 2.49 is applied to obtain the propeller

thrust. Finally, the equations of the ship motions are solved to achieve a new speed.

We define the filtered speed is denoted as û, the speed difference is denoted as ũ =

usp − û. Hence, the PID control law for speed is given by:

τ1 = Kp1 · ũ+Kd1 · ˙̃u+Ki1

∫

ũ dt (3.21)

where τ represents the output command signal, Kp, Kd, and Ki are the proportional

gain, the derivative gain, and the integral gain, respectively, and the subscript “1”

represents the surge speed control. Since the speed set-point is constant, it is easy to

find that

˙̃u = −u̇ (3.22)
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Similarly, the PID control law for steering is given by:

τ3 = Kp3 · ψ̃ +Kd3 · ˙̃ψ +Ki3

∫

ψ̃ dt (3.23)

where ψ̃ = ψref − ψ is the heading difference.

η(t), ν(t)

ψlosψref

.
ψref

SHIPRUDDER   
MODELCONTROLLER

GUIDANCE 
SYSTEM

REFERENCE 
MODEL

+ -
e(t) FR

Fice, 

FH

way-point

δ

Figure 3.3: Diagram of the steering control feedback loop

The ψref is the reference heading which is generated by the guidance system based on

the input way-point table. Due to the existence of the reference model illustrated in

Figure 3.3, the time derivative of the reference heading is available; hence, the time

derivative of heading difference is given by:

˙̃ψ = ψ̇ref − ψ̇ (3.24)

3.5 Summary

This chapter introduces the LOS guidance system and two SISO PID controllers for

a ship to converge to the desired path as well as maintaining the required speed. The
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path is generated by the guidance system based on the operator-defined way-point

table. Low pass filters and the reference model are applied prior to the controllers

to filter out high frequent components of the signals and to avoid rapid change in

signals.



Chapter 4

Numerical Implementation of the

Model

This chapter presents the numerical simulation program developed as part of the

research. The program is implemented with programming language FORTRAN 90,

under Linux operating system.

Various tests can be simulated by using this program. They can be categorized as

Planar Motion Mechanism (PMM) tests, manoeuvring tests, and control-involved

tests. The ship can be simulated either in open water or in level ice. Table 4.1 lists

all the applicable tests.

Table 4.1: simulation test matrix

item numbering in water in ice

PMM tests
straight 1 ✕

pure sway 2 ✕

pure yaw 3 ✕

Manoeuvring tests
straigth 4 ✕ ✕

turning circle 5 ✕ ✕

Control involved test path-following 7 ✕ ✕

The program is developed as modules, i.e., each particular function is enveloped

49
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in a module so that it is easy to use or be replaced. The major modules include:

“lib_level_ice.mod” which is to simulate the hull-ice interaction, “line_of_sight.mod”

which is to apply LOS guidance method, “controller.mod” which is to achieve required

shaft resolution and rudder deflection angle, “hydrodynamics.mod” which is to calcu-

late hydrodynamic force, “control_force.mod” which is to calculate propeller thrust

and rudder force, “statederive.mod” which is to solve 3DOF equations of the ship

motions, and “selection.mod” which is to select a prescribed test to simulate.

start

Select simulation

Variables assignment

Controller 
(if needed)

External force calculation

Ship motions

Data exports to files

End

Figure 4.1: flow chart of the main routine

A main routine is also developed, and those pre-mentioned modules are used in this

routine. Figure 4.1 illustrates the flow chart of the main routine. Each block in the

chart will call one or more subroutines to accomplish a certain task. For instance,

the block, “external force calculation”, is to achieve the total force acting on the
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ship. It calls three modules at each point in time: “lib_level_ice.mod” for ice load,

“hydrodynamics.mod” for hydrodynamic force, and “control_force.mod” for propeller

thrust and rudder force.

The main contributions of the study are to develop a numerical method of hull-ice

interaction and a guidance and controller system for automatical operation. Section

4.1 and 4.3 will introduce the numerical implementation of these two parts. Others,

such as ship motions, hydrodynamics, and propeller and rudder, will not be included

in this chapter.

4.1 Ship-Ice Interaction

As discussed in section 2.4, ice load is decomposed into three components: breaking

term, buoyancy term, and clearing term. The first term is determined numerically,

while the latter two are achieved by empirical formulas. Hence, two separate subrou-

tine are developed.

Figure 4.2 shows the flow chart of the subroutine that is to obtain breaking force.

First, it reads kinematic and geometric data such as position, velocities, and the

coordinates of the discretized points on the ice edge and the ship water line. All

the data is then transformed from either O-NED frame or oi-xiyizi frame to o-xyz

frame. After that, contact scenarios is detected. If the ship does not contact with

the ice plate, the ice load is assigned as zero. However, if the ship contacts with

the ice plate, the first contact zone will be identified, and the ice load, as well as ice

bending capability, will be calculated. The bending capability is then compared to the

vertical force component to determine if breaking happens. If the bending capability

is exceeded by the vertical force, this contact zone will be stored for updating, and the

investigation will be moved to the next contact zone until the last one is investigated.
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Figure 4.2: flow chart of ship-ice interaction
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The ice edge will be updated when all the contact zones are finished, and the new

coordinates are transformed back to oi-xiyizi frame. Finally, the 3DOF ice load and

the new ice edge will be exported.

The other subroutine which is to obtain buoyancy term and clearing term is much

easier than the previous one. It reads ship velocities as input and implements Eq.

2.38 to 2.44. It outputs buoyancy force and clearing force in 3DOF.

4.2 Contact Detecting and Ice Edge Updating

To numerical implement the Point-in-Polygon algorithm to detect the interaction area

is the core issue to this simulation. In order to conduct the simulation effectively, a

certain segment ice edge is stored (three times of the ship waterline length) and

discretized into a constant number of points, which is dependent on total segment

length and the discrete length. The ship waterline is also discretized into a constant

number of points which is simply dependent on the offset table. A flag variable is

assigned to each point to represent if it is involved in the interaction. For example, if

the flag variable has a value of +1, it is involved in the interaction; but if the variable

is -1, the point is not involved.

At the beginning of each computational step, all the flag variables will be assigned

+1 or -1. Different contact zones and their included points can be easily identified by

check the value of the corresponding flag variables. After that, analysis of interaction

force is conducted within one contact zone followed by another. If within one contact

zone, the vertical force exceeds the ice plate bearing capacity, the involved ice discrete

points will be temporally stored. They will be used for ice edge updating after every

contact zone has been analysed.

Ice edge update starts when the analysis of the interaction has been completed as
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illustrated in Figure 2.5. The open angle of the ideal wedge will be achieved based on

those saved discrete points, Eq. 1.12 will be used to obtain the new circumferential

crack, and the crack will be discretized into points. In order to maintain the number

of the total ice discrete points, the number of new generated points will be compared

to the number of the involved points. If more points should be generated, some points

behind the ship, which will not involved in the interaction, will be exported to file

and deleted. There will be a shift among the points in order to insert the new points

in the right place. however, if less points will be generated, the discrete length will be

modified to ensure the number of new points is the same as the number of involved

points. If this is the case, new points will replace the old ones so that there is no

points shift nor points export. When update has been completed, simulation time

will increase by one time step and the same procedure will be repeated.

4.3 Mapping for LOS guidance system

This section is mainly based on Breivik (2003). The lookahead-based method is

applied in the program since it is less complex in calculation. Hence, Eqs. 3.7, 3.10,

and 3.14 are implemented.

The atan2-function is used in Eq. 3.14 which results in discontinuity of ψr(e) at the

−π/π-junction (i.e., the LOS angle, ψlos, is discontinuous at (−π+αk−1)/(π+αk−1)-

junction). If the path is predefined such that the ψr(e) must cross the −π/π-junction

at some instant, inappropriate performance will be observed.

For convenience, we consider a case that αk−1 = 0; hence, the LOS angle is also

discontinuous at −π/π-junction. At the current instant, the LOS angle is given as ψ1

in the third quadrant in Figure 4.3. At the next instant, the angle is given as ψ2 in

the fourth quadrant. practically, the ship should turn counter-clockwise and go across
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Figure 4.3: Definitions of quadrants

the negative N -axis to ψ2; however, due to the discontinuity at the junction, the ship

will turn clockwise towards ψ2. Figure 4.4 illustrate this phenomenon. The blue line

represents the desired path, and it is set keeping changing across the −π/π-junction.

The red line and the orange line represent the ship actual tracks that one is with

the mapped LOS guidance and the other is with the non-mapped LOS guidance. It

is obvious that without a mapping function, the ship is unable to turn across the

junction.

The discontinuity problem can be solved by adopting a mapping for the LOS angle

from [−π, π] to [−∞,∞]. The continuous angle is further used for control purpose.

As mentioned by Breivik (2003), “memory variables” are required when mapping a

narrower region, such as [−π, π] to a wider region, such as [−∞,∞]. Consider a unity

circle as shown in Figure 4.3. It is evenly divided into four quadrant, and they are

consecutively numbered clockwise as in the figure. Consider two LOS angles: one,

denoted as ψlast, is for the previous instant, and the other, denoted as ψnow, is for
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the current instant. The variable that is to store LOS angle change is denoted as

∆ψ. Another variable, denoted as ψΣ ∈ [−∞,∞], is to store the accumulative and

continuous LOS angle. It must be pointed out that

∆ψ 6= ψnow − ψlast (4.1)

in general due to −π/π discontinuity. 16 different cases are specified to achieve ∆ψ

based on the relationship between ψnow and ψlast.

• case 1 to case 4: if ψlast is in the first quadrant

– ψnow is in the first quadrant, ∆ψ = ψnow − ψlast, i.e., the angle either

increases or decreases without crossing the junction;

– ψnow is in the second quadrant, ∆ψ = ψnow −ψlast, i.e., the angle increases

without crossing the junction;

– ψnow is in the third quadrant, if ψnow satisfies

|ψnow| + ψlast ≤ π (4.2)

∆ψ = ψnow − ψlast, which indicates the angle decreases without crossing

the junction; otherwise, ∆ψ = ψnow −ψlast + 2π, which indicates the angle

increases, rotates clockwise, and crosses the −π/π-junction;

– ψnow is in the fourth quadrant, ∆ψ = ψnow −ψlast, i.e., the angle increases

without crossing the junction.

• case 5 to case 8: if ψlast is in the second quadrant

– ψnow is in the first quadrant, ∆ψ = ψnow − ψlast, i.e., the angle either

increases or decreases without crossing the junction;
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– ψnow is in the second quadrant, ∆ψ = ψnow −ψlast, i.e., the angle increases

without crossing the junction;

– ψnow is in the third quadrant, ∆ψ = ψnow − ψlast, i.e., the angle increases

without crossing the junction.

– ψnow is in the fourth quadrant, if ψnow satisfies

|ψnow| + ψlast ≤ π (4.3)

∆ψ = ψnow − ψlast, which indicates the angle decreases without crossing

the junction; otherwise, ∆ψ = ψnow −ψlast + 2π, which indicates the angle

increases, rotates clockwise, and crosses the −π/π-junction;

• case 9 to case 12: if ψlast is in the third quadrant

– ψnow is in the first quadrant, if ψnow satisfies

ψnow + |ψlast| ≤ π (4.4)

∆ψ = ψnow − ψlast, which indicates the angle decreases without crossing

the junction; otherwise, ∆ψ = ψlast −ψnow + 2π, which indicates the angle

increases, rotates counter-clockwise, and crosses the −π/π-junction;

– ψnow is in the second quadrant, ∆ψ = ψnow − ψlast, i.e., the angle either

increases or decreases without crossing the junction;

– ψnow is in the third quadrant, ∆ψ = ψnow − ψlast, i.e., the angle increases

without crossing the junction;

– ψnow is in the fourth quadrant, ∆ψ = ψnow −ψlast, i.e., the angle increases

without crossing the junction.
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• case 13 to case 16: if ψlast is in the fourth quadrant

– ψnow is in the first quadrant, ∆ψ = ψnow − ψlast, i.e., the angle either

increases or decreases without crossing the junction;

– ψnow is in the second quadrant, if ψnow satisfies

ψnow + |ψlast| ≤ π (4.5)

∆ψ = ψnow − ψlast, which indicates the angle decreases without crossing

the junction; otherwise, ∆ψ = ψlast −ψnow + 2π, which indicates the angle

increases, rotates clockwise, and crosses the −π/π-junction;

– ψnow is in the third quadrant, ∆ψ = ψnow − ψlast, i.e., the angle increases

without crossing the junction;

– ψnow is in the fourth quadrant, ∆ψ = ψnow −ψlast, i.e., the angle increases

without crossing the junction.

When the angle change, ∆ψ, is obtained, the accumulative LOS angle, ψΣ and the

previous LOS angle, ψlast, will be updated by:

ψΣ = ψΣ + ∆ψ (4.6)

ψlast = ψnow (4.7)

The accumulative LOS angle will be used for control purpose.

4.4 Summary

This chapter introduces the computer program that is to simulate ship-ice interaction,

ship manoeuvring, and ship autopilot. Particularly, the numerical implementation of
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the ship-ice interaction and the mapping method to continue LOS angle are inter-

preted with detail. The program is capable of conducting prescribed PMM tests, ship

manoeuvring tests, and path-following tests. It is developed based on the model de-

scribed in chapter 2 and chapter 3. The performance of this program will be presented

in the next chapter.



Chapter 5

Results, Validation, and Analysis

The numerical simulation method need to be validated prior to applying to any prac-

tical use. The validation process or the benchmark process is accomplished by com-

paring the simulation results to model tests results or full scale sea trials data. Two

ships, one is a Canadian Coast Guard icebreaker, CCGS Terry Fox, and the other is

a R-Class icebreaker, Sir John Franklin, are selected for validation in this chapter.

The benchmark data includes: the model-scale straight progress tests of CCGS Terry

Fox (Derradji-Aouat, 2002; Lau, 2006), the model-scale PMM tests of the R-Class

icebreaker Sir John Franklin (Newbury, 1992; Shi, 2002), and the full-scale sea trials

of the R-Class icebreaker Sir John Franklin (Keinonen, 1996; Keinonen et al., 1991).

Prior to the validation, studies on convergence of the program, the effect of different

P-A relations, and the effect of flexural ice plate model are conducted. At last, the

performance of the guidance and controller is investigated and presented in section

5.7.
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5.1 Convergence Study

The time step and the discrete length, which is defined as the distance between two

adjacent nodes on the ice edge, are two key factors that will affect the accuracy of

the numerical method. The effects are studied in this section. The length ratio of

discrete length to ship width, denoted as

ratio = lDL/B (5.1)

is used to study the effect of discrete length.

This study is accomplished with a 1:21.8 scale Terry Fox model ship at the speed of

0.3m/s and 0.6m/s, and a 300-second period is simulated. The ratio’s range is set

from 0.001 to 0.1, and the time step has a range from 0.05 to 0.0005. The mean global

ice resistance and the computational time cost are selected as the criteria.
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Figure 5.1: Simulated global resistance as a function of discrete length of ice with
time step of 0.01s
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Figure 5.1 presents the effect of discrete length of the ice edge on the simulated global

resistance, Figure 5.2 illustrate the effect of discrete length of the ice edge on the

computational time cost. It is easy to observe that the simulated ice resistance is not

greatly affect by the length ratio, especially when ratio ≤ 0.01. This conclusion is

valid for the velocities of 0.3m/s and 0.6m/s. However, the computational time cost

and the number of the nodes significantly increase as the discrete length decreases.

Approximately exponential relationship between time consumption and time step can

be observed in Figure 5.2.

Figure 5.3 and Figure 5.4 illustrate the effect of time step on mean ice resistance and

real time consumption for simulation. Comparing to Figure 5.1 and Figure 5.2, we

conclude that the time step has more significant influence on computational accuracy

and time consumption than discrete length does. To balance the computational time

cost and the convergence, the length ratio is chosen as 0.004, and the time step is
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chosen as 0.002s. The simulated result is then filtered at 5Hz to match the sampling

frequency in model tests.

5.2 Study of P-A relation

The P-A relation is expressed by Eq. 2.21. We assume the nominal crushing pressure

is constant (p0 = σc = 130KPa), and the exponent is varying (-0.4, -0.2, -0.1, 0.0, 0.1,

0.2, 0.4). Figure 5.5 sketches the mean ice resistance against velocity with different

values of the exponent. The results from Lau (2006) and Derradji-Aouat and Thiel

(2004) are also plotted. We can observe that the lines in the figure are approximately

parallel which indicate that different exponents will lead to different mean resistance

but will not change the relationship between the velocity and the mean resistance. It

also can be seen that most tests points fall around line that ex = 0. Therefore, the

exponent value is chosen as 0.0 in the following study.
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Figure 5.5: Mean ice resistance at different velocity with different exponent values
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5.3 Study of the Ice Plate Deflection

According to section 2.4.1.7, the flexural deflection of the ice plate is considered in the

research. This section will conduct a study that investigates a single crushing-bending-

breaking cycle at stem to determine the effect of the ice flexibility and how significant

it is. Valanto (1989) observed rapid flexural failure when the flexural strength ratio

E/σf was 6400 and longer interaction duration when the ratio was 1400. Similarly to

Valanto (1989), we assume the high ratio is 7000 and the low ratio is 2000. The ice

models are listed in Table 5.1. The investigation is completed with full scale R-Class

icebreaker and four different ice models. The interaction duration and the deflection

ratio δe/δv (see Figure 2.6) are of the interest.

Table 5.1: Different ice model

name ice model E/σf

rigid 7000 rigid ice plate 7000
rigid 2000 rigid ice plate 2000

flexural 7000 flexural ice plate 7000
flexural 2000 flexural ice plate 2000

Table 5.2: Duration, mean resistance and deflection ratio of different ice model

item
duration, s mean resistance, MN deflection ratio

rigid flexural rigid flexural δe/δv

E/σf = 2000 0.125 0.167 -0.460 -0.501 0.25
E/σf = 7000 0.125 0.154 -0.404 -0.428 0.19

Figure 5.6 illustrates the time history of resistance during a single interaction cycle

at stem. It can be observed that ice resistance starts to increase when the ship is

contacting with the ice. It keeps increasing until vertical component reaches the

bearing capability of the ice plate. When breaking happens, the ice load falls. It also

can be seen that the lines of “rigid 7000” and “rigid 2000” coincide with each other

which means flexural strength ratio does not affect the interaction process when the
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Figure 5.6: Ice resistance with the a single interaction cycle at stem

ice plate is rigid. However, when it is flexural and can be bent downward, the ice

load increases slower and the interaction lasts longer. The ice plate with low ratio

has longer loading duration than that with high ratio. When the ice load increases

slower and lasts longer during a single interaction process, higher mean value can be

achieved. Therefore, the ship interacts with flexural ice plate has higher mean ice

resistance than that with rigid ice plate. The data is listed in Table 5.2.

Another issue that interests the author is how much the ice plate will be bent if

the flexural ice plate model is applied. The deflection starts to occur since the ship

contacts with ice plate and keeps increasing until breaking by bending happens. The

ratio of maximum elastic deflection to total vertical deflection is listed in Table 5.2.

The ratio is 0.25 for low flexural strength ratio ice model and 0.19 for high ratio

model. It can be seen that flexure of ice plate is significant to the interaction and the

ice resistance. Softer (lower flexural strength ratio) the ice plate is, more significant

the effect will be.
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5.4 Benchmark with Terry Fox Model Test

5.4.1 Descriptions

According to Derradji-Aouat (2004),Derradji-Aouat and Thiel (2004), Lau (2006),

and Liu (2009), the IOT Terry Fox model ship is a 1:21.8 scale model of the Canadian

icebreaker, M.V. Terry Fox. The water line profile is illustrated in Figure 5.7, and the

main dimensions are listed in Table 5.3.
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Figure 5.7: IOT Terry Fox model ship water line profile

Table 5.3: Main dimensions of the IOT Terry Fox Model Ship

parameter notation unit value
Length water line LW L m 3.74

Draft T m 0.368
Beam B m 0.0.789
Mass M kg 625.8

Block coefficient CB m 0.577
Wet Surface Awet m2 3.984

5.4.2 Straight Motion Test

Resistance tests results of IOT Terry Fox model ship can be seen in Derradji-Aouat

and Thiel (2004) and Lau (2006). The ice had flexural strength of 35KPa and thickness

of 0.4m. The simulation is conducted with the same ice condition. A 300-second

duration is simulated and mean ice resistance is calculated and compared to the
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test data and the results from the empirical method proposed by Spencer and Jones

(2001). Figure 5.8 presents a sample of time history of ice resistance when the ship is

travelling at 0.3m/s. The red line in the figure indicates the mean value. Figure 5.9

illustrates the mean resistance at different velocities.
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Figure 5.8: Time history of ice resistance when u=0.3m/s

We can see, from Figure 5.8, that ice resistance is fluctuating. The peak value is high

which is mainly due to ice breaking, but the mean value is relatively low. It is valid

because the the ice breaking force only exists in a very short time. The simulated mean

resistance is approximately consistent with the model test results and the empirical

calculations as shown in Figure 5.9. A nonlinear relationship between mean resistance

and velocity was seen in model tests; however, a linear relationship can be observed

in simulation.



70

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

ic
e 

re
si

st
an

ce
, N

surge speed, m/s

Simulated Results
Spencer and Jones, 2001

Lau, 2006
Derradji-Aouat and Thiel, 2004

Figure 5.9: Mean ice resistance against ship velocity in straight motion tests

5.5 Benchmark with R-Class Icebreaker Model Test

5.5.1 Descriptions

According to Liu (2009), Newbury (1992), and Shi (2002), the IOT R-Class model

ship is a 1:20 scale model of the CCG Sir John Franklin. The water line profile is

illustrated in Figure 5.10, and the main dimensions are listed in Table 5.4.
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Figure 5.10: IOT R-Class model ship water line profile
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Table 5.4: Main dimensions of the IOT R-Class Model Ship

parameter notation unit value
Length water line LW L m 4.65

Draft T m 0.35
Beam B m 0.96
Mass M kg 965.00

Block coefficient CB m 0.624
Wet Surface Awet m2 4.627

5.5.2 Pure Yaw Tests

In the pure yaw tests, the ship model is forced to move along a predefined path such

that the centreline is always tangent to the path. The predefined path is given by:

x̄ = x̄0 · t (5.2)

ȳ = ȳ0 · sin(ω · t) (5.3)

ψ = ψ0 · cos(ω · t) (5.4)

where x0, y0, and ψ0 are user-defined parameters, and ω is the frequency. The pa-

rameters should be chosen to satisfy:

v = cos(ψ) · ˙̄x+ sin(ψ) · ˙̄y = 0 (5.5)

In 1996, Spencer conducted the pure yaw tests with the 1:20 scale R-Class model.

During the tests, x̄0 is set as 0.5 and 0.7, ȳ0 is set as 2.5, ψ0 is set as 0.436, and ω is

set as 0.1257. The tests were conducted continuous and divided into several segments.

In each segment, mean value of the measured variables, including surge velocity, yaw

rate, resistance, sway force, and yaw moment, are recorded as one test point. In order

to compare to the test data, similar data processing method is applied. We simulate

a full cycle (50s) and calculate a mean value every 2s. The following pictures compare
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the time history of resistance, sway force, and yaw moment between the simulations

and the model tests. The linear relationship between yaw rate and yaw moment is

also compared.

Figure 5.11 to Figure 5.14 illustrate the comparisons when x̄0 = 0.5, and Figure 5.15

to Figure 5.18 illustrate the comparisons when x̄0 = 0.7. Comparing the time history

of the simulated resistance and the measured resistance, we can conclude that the

mean values are consistent with each other as shown in Figures 5.11 and 5.15. Good

agreement can also be observed in time history of yaw moment in Figures 5.13 and

5.17. However, the simulated result has smaller maximum value of yaw moment than

the model test does.

The simulated sway force is not consistent with that in model test especially in Figure

5.16. The reason for the phenomenon is unclear and should be studied in the future.

In Figures 5.14 and 5.18, the yaw moment is plotted against the yaw rate. Linear

relationship is assumed and the fitting line is also presented. The simulated yaw

moment is smaller than the measured yaw moment which is also observed in yaw

moment time history. under the assumption of the hull geometrical symmetry, the

yaw moment should be zero when yaw rate is zero. This can be found in simulated

results. However, a non-zero offset value is observed in the model test.

5.6 Benchmark with R-Class Icebreaker Full Scale

Sea Trials

5.6.1 Descriptions

Sea trials data of Canadian Coast Guard (CCGS) R-Class icebreaker is available in

many papers (Browne et al., 1989; Keinonen, 1996; Keinonen et al., 1991; Williams
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Figure 5.11: Ice resistance during a 50-second continuous pure yaw test, ˙̄x = 0.5m/s
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Figure 5.13: Ice induced yaw moment during a 50-second continuous pure yaw test,
˙̄x = 0.5m/s
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Figure 5.14: Linear regression model between yaw rate and yaw moment, ˙̄x = 0.5m/s
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Figure 5.15: Ice resistance during a 50-second continuous pure yaw test, ˙̄x = 0.7m/s
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Figure 5.16: Ice induced sway force during a 50-second continuous pure yaw test,
˙̄x = 0.7m/s
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Figure 5.17: Ice induced yaw moment during a 50-second continuous pure yaw test,
˙̄x = 0.7m/s
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Figure 5.18: Linear regression model between yaw rate and yaw moment, ˙̄x = 0.7m/s
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et al., 1992). This section presents the comparison between the simulated results and

the sea trials data of a full scale CCGS R-Class icebreaker, CCGS Sir John Franklin.

Two manoeuvres are included: straight motion and turning a circle.

The profile of the water line is similar to what is illustrated in Figure 5.10. The main

dimensions are listed in Table 5.5.

Table 5.5: Main dimensions of the full scale CCGS R-Class icebreaker

parameter notation unit value
Length water line LWL m 93

Length between perpendiculars LPP m 87.96
Draft T m 6.94
Beam B m 19.37

Block coefficient CB m 0.611
Number of propellers Np – 2
Propeller diameter Dp m 4.12

Pitch/diameter ratio P/Dp – 0.775

5.6.2 Straight Motion

This test is to validate the total resistance and propulsive performance of the ship. Full

scale free running tests are conducted both in open water and virgin level ice. Simu-

lated propeller thrust and total resistance are compared to sea trial data (Keinonen,

1996). The speed range of the test in open water is from 6.34 m/s to 8.35 m/s, and

that of the test in level ice is from 2.3 m/s to 6.3 m/s. Ice thickness varies from 0.489

m to 0.592 m. Simulation is conducted by restricting sway and yaw motion of the

ship. Comparison is conducted among simulation, empirical calculation and sea trial

data.

Figure 5.19 and Figure 5.20 present the resistance and propeller thrust against ship

speed in open water. It can be observed that the simulated water resistance and

thrust follow the same trend of sea trial results but are slightly smaller.



78

-0.5

-0.4

-0.3

-0.2

-0.1

 0
 6  6.5  7  7.5  8  8.5  9

re
s
is

ta
n

c
e

, 
M

N

ship speed, m/s

resistance in open water

measured data
simulated results

Figure 5.19: Resistance of R-Class in water
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Figure 5.22: Thrust of R-Class in level ice
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The total resistance and thrust in ice are presented in Figure 5.21 and Figure 5.22.

Comparisons are conducted among three sources: sea trial data, empirical calculation

given by Spencer and Jones (2001), and numerical method proposed in this paper.

Simulated resistance shows consistence with empirical calculation. However, propeller

thrust between simulation and empirical calculation are not consistent with each

other. From energy perspective, the phenomenon may result from the impulsive

characteristics of ice load that requires more energy. In empirical method ice load

is calculated as a constant value; however, in this numerical method, ice load is

determined by detecting the contact between ice and ship so that it has a nature

of randomization and variation. This may cause more energy loss. Therefore, to

maintain the speed, more energy is required which means higher propeller thrust

is needed. Good agreement can be observed between sea trials and the other two

methods.

5.6.3 Turning a Circle

Turning performance was also investigated during sea trials both in open water and in

level ice (Keinonen, 1996). All trials were conducted with starboard rudder. Compar-

ison of steady speed in turn and turning diameter between sea trials and simulations

are listed in Table 5.6. Turning circles and ice breaking channel are presented in

Figure 5.23. Sample time history of ship velocity and ice load in surge, sway, and yaw

directions in ice field are presented in Figure 5.25 and Figure 5.24.

Table 5.6: Turning performance - steady speed in turn and turning diameter

Condition
Shaft Speed Speed, m/s Diameter, D/DW L

RPM Sea Trial SIMU Sea Trial SIMU
Level Ice 170 5.3 5.14 13.12 12.80

Open Water 120 3.8 3.9 4.21 4.1
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Figure 5.23: Turning track and broken ice channel
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Figure 5.25: Time history of simulated velocities during turning

In the simulation, the ship was kept straight for 600m then turned to full rudder

angle (35 ◦). The initial speed is 6.17 m/s (12.0 knots). The shaft speeds are 170

rpm in ice and 120 rpm in water. The steady speeds and turning circle diameters

are listed in Table 5. Good agreement between sea trials and simulation ensures that

this numerical method is able to reproduce the turning performance of the ship. The

turning circles are shown in Figure 5.23 in which the dashed line represents the track

of geometric center of the ship in open water and the black line represents the breaking

ice channel.

Figure 5.25 presents 3DOF ship speed during full simulation time (700s) and Figure

5.24 presents 3DOF ice load in a time span of 40s during turning in level ice. The

ship starts turning at 90.48s and achieves a stable speed (5.14 m/s) at 200s. The

steady sway speed is 0.58 m/s to port side and the yaw rate is 0.5 deg/s clockwise.
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The mean resistance during steady turning is 0.566 MN which is consistent with the

parameter tuning result shown in Figure 11. The mean value of yaw moment is 11.93

MNm. The speed and ice load in sway and yaw direction have non-zero value due to

turning. They are oscillating around the mean value due to ice breaking process.

Another character of the turning path attracts the author’s interest is the advance

that is defined as the longitudinal distance from the point where the ship starts to

turn to the point where the x-axis of the ship has turned 90 degrees. The advance is

highly related to the path following capability because it is the minimum value when

the ship is required to change heading by 90 degrees. In this simulation, the ship

starts to turn at (600, 0), the advance is 375m and 700m for turning in water and in

ice, respectively.

5.7 Study of Path-Following Ability

Previous sections mainly investigate the manoeuvrability of a ship in ice. In this

section, the controllability is examined with the full scale R-Class icebreaker CCGS

Sir John Franklin. The ship is simulated under the command of the LOS guidance and

control system both in water and in ice. The performances of the ship are provided

during a single convergence action and different path-following cases. The control

signals are also provided and analyzed in the single convergence action.

5.7.1 Analysis of a Single Convergence Action

Before investigating the performance in a fully path-following process, a single conver-

gence action is analyzed. It is sketch in Figure 3.1, i.e., we assume the ship’s current

position, as well the reference and target points, and let the ship automatically oper-

ate until it converges to the desired path. The goal of conducting such analysis is to
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tune the PID controller to avoid steady error and inappropriate overshot in heading

and position. It is also considered as a preliminary examination of the path-following

ability.

When the ship is in open and calm water, the current position is assumed as (0, 0); the

reference and the target points are located at (400, 0) and (1000, 1200), respectively;

and the speed setpoint is 6.17m/s (12.0knots). The PID coefficients are listed in Table

5.7. Figure 5.26 illustrates the simulation result in water, and Figure 5.27 shows the

heading signals and the rudder angle in the single convergence action. Figure 5.28

illustrate the surge speed control and the shaft resolution.

Table 5.7: Value of PID coefficients for control in water

Control Object Kp Kd Ki

shaft resolution 0.1 3.0 0.001
rudder angle 2.8 70.0 0
LOS guidance system 0.003 0.55 0

From Figure 5.26, it can be observed that the ship eventually converges to the path

and heads towards the target point. Under the command of the LOS guidance and

control system, the underactuated ship is able to accomplish the Geometric Task in

3DOF. We observe that the rapid change in heading signal is avoided by introducing

a reference model in Figure 5.27. However, a phase lag is generated due to applying

a low-pass filter as the reference model. Actual heading increases from initial value

and finally converges to the target value. Good performance of surge speed control

can also be seen in Figure 5.28.

Table 5.8: Value of PID coefficients for control in ice

Control Object Kp Kd Ki

shaft resolution 0.1 3.0 0.001
rudder angle 2.8 70.0 0
LOS guidance system 0.003 0.55 0
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Figure 5.26: Simulated ship track of a specific single convergence action in water
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Figure 5.27: Simulated heading signals of a specific single convergence action in water
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Figure 5.28: Simulated surge speed of a specific single convergence action in water
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Figure 5.29: Simulated ship track of a specific single convergence action in ice
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Figure 5.30: Simulated heading signals of a specific single convergence action in ice
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Due to operating in open and calm water, the ship lacks oscillating disturbance, such

as waves or ice load, so that the control signals are smooth. However, it is no longer

true when the ice load is introduced. We assume the ship’s current location is at (0, 0),

that the reference point is at (750, 0), and that the target point is at (1000, 1200).

Different reference points are used in simulations in water and in ice. This is due to

different turning abilities of the ship. As mentioned in section 5.6.3, the advance is

375m and 700m for turning in water and in ice. The distance between the reference

points and the initial locations are selected slightly larger than the advance. Because

if it is selected too small, the controller will never be tuned so that the ship can

converges to the path without crossing it. The ship speed is 5.14m/s (10.0knots).

Different PID gains are listed in Table 5.8 for control in level ice condition. Figure

5.29 to Figure 5.31 illustrates the simulations in ice.

Similar results can be observed comparing the simulation in water to that in ice. The

most significant difference between them is that the commands of the rudder (Figure

5.30) and the propeller (Figure 5.31) in ice are not as smooth as that in water. This

phenomenon is due to the ice breaking force which is noisy and randomized.

5.7.2 Path-Following Performance

In the previous section, the single convergence action has been investigated, and the

controller has been tuned. The performance in full path-following is then simulated by

adopting the PID coefficients provided in the previous. Two disired path are provided

to examine the controllability of the ship both in ice and in water. The paths are

given as way-point table which can be found in Table and Table. The initial position

of the ship is (0, 0), and the heading angle is 0 which means the ship is towards north.

The target velocity is 6.17m/s (12.0knots) in water and 5.14m/s (10.0knots) in ice.

The radius of the circle of acceptance is set as 370m. The simulated tracks of the
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Figure 5.32: Simulated performance of path following capability, case 1
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center of the ship are illustrated in Figure 5.32 and Figure 5.33.
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Figure 5.33: Simulated performance of path following capability, case 2

It can be observed in Figure 5.32 that large cross-track error inevitably occurs when

the heading angle changes between the adjacent paths exceeds 90 degrees. The phe-

nomena can be seen at way-point 2, 4, and 5 in Figure 5.32. When the path heading

angle change is less than 90 degrees, good path following capability can be seen. To

verify this conclusion, another path is applied. The path is defined such that every

heading angle change is around 45 degrees. The simulation results in Figure 5.33 show
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good path following capability of the ship.

The phenomenon that poor path following capability appears when heading angle

change larger than 90 degrees results from the turning capability of the ship.

It can also be observed that larger cross-track error exists during heading change in

ice than that in water if the same radius of the circle of acceptance is applied. This

result from the fact that the turning ability in ice is poorer than it in water.

5.8 Summary

This chapter provides the studies of the convergence of the program, the effect of

different P-A relations, and the effect of introducing the flexural ice plate model.

Based on the studies, the basic parameters, such as time step, discrete length and the

exponent factor in P-A relation, are determined. After that, simulations are carried

out with two model ships and one full-scale ship. Prescribed tests are conducted so

that the simulation results can be compared to the measured data in the tests. Good

agreements can be observed which is able to validate the feasibility of applying the

method introduced in section 2 to the study of ship manoeuvring in ice. Finally, the

path following ability is investigated with the full-scale R-Class icebreaker. The signals

out from the guidance and control systems are studies. The simulated tracks following

the pre-defined path indicate the LOS guidance system and the PID controller are

capable of automatically operating a ship in water and in level ice conditions.



Chapter 6

Conclusions and Recommendations

6.1 Conclusions

This thesis provided a method that combines numerical detection and semi-empirical

formulas to solve the ship-level ice interaction in time domain which can be applied

to studying ship manouevring in level ice. The LOS guidance system and the PID

controller were also introduced, and simulations of path following performance of a

ship in ice were carried out.

The main contributions of the thesis include:

• A literature review on analytical solutions and numerical solutions to ship-level

ice interactions is provided, especially the numerical solutions published after

2004. All the analytical solutions break the total ice load into its components so

that different mechanics of ship-ice interaction can be isolated and studied. This

strategy is also applied by the numerical solutions. Those solutions presented

different methods to numerically detect ship-ice contact. After that, analytical

formulas would be applied to achieve the load due to interaction. Single or

multiple ice failure modes can be simulated simutanenously in those numerical
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solutions.

• A new ship-ice interaction detecting method named Polygon-Point Algorithm

is developed. The method is able to detect the 2D contact by investigating

whether a point is inside a polygon or not. An interpolation mechanism is also

included in the method so that good balance between calculation accuracy and

time consumption can be achieved. The Polygon-Point Algorithm can also be

used in other 2D geometrical overlap detecting problems such as the interaction

of a ship and small ice floes.

• The Pressure-Area relationship and the flexural ice plate model are included in

the numerical method. Parametric studies on their effects of ship-ice interaction

and global ice load on ships are conducted.

• A mathmatical model that expresses the influence of ice buoyancy and ice clear-

ing resistances on sway and yaw motions during turning actions is derived. It

considers the ship’s motion status and hull geometry when deriving the sway

force and yaw moment from the resistances. Combining with numerically de-

termined 3DOF ice breaking force, this thesis develops a full 3DOF ice load

model.

• The validation of this numerical method is carried out with the tests of the Terry

Fox ship model, the R-Class icebreaker ship model, and the full scale CCGS R-

Class icebreaker. Straight motion test, pure yaw test, and self propulsion test are

simulated and compared with measured data. The capability of this numerical

method is thoroughly verified and validated with an extensive set of test data.

• The Line-of-Sight guidance system and the PID controller is designed, and the

controllability and path following ability is investigated. Due to the fluctuating
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nature of the ice breaking force, the actuators should change frequently. How-

ever, the simulated heading angle gradually converges to the desired value, and

the simulated surge velocity oscillates in a small range which is close to the re-

quired speed. These indicate that the LOS guidance system and PID controller

is sufficient for ship autonomous operation in level ice conditions.

• A stand-alone software is developed by using FORTRAN 90 language which

provides a simulation platform based on the numerical method. It simulates ice

load and ship motions. The software is capable of simulating multiple predefined

tests such as turning tests, PMM tests, and self propulsion tests. The software

is also able to simulate automatic ship operation both in calm water and in level

ice.

6.2 Recommandations

The ultimate goal of the whole study is to develop a software that could be an alter-

native method to model tests to study ship-ice interaction. It is also expected that

the software is able to help train operators in ice and to be used to study dynamic

positioning in ice. This thesis, which establishes a simplified ship-level ice interaction

and studies the possibility of path following in level ice, is the first step towards the

ultimate goal. Future effort can be made to the following aspects:

• Empirical models are implemented in the current model to calculate ice bearing

capacity and ice breaking length. Meanwhile, it simplifies the problem and

make it solvable but less realistic. It would be beneficial if future studies is on

establishing a relation between the empirical coefficients and ship motions, hull

geometries, and ice characteristics.
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• Empirical formulas are used when achieving ice buoyancy and ice clearing forces

since the dynamics of a single broken ice piece and its interaction with the

ship are not included in the current numerical model. Meanwhile, only two ice

failure modes, crushing and breaking, are simulated. Future works on those

issues would make the software capable of simulating ship manoeuvring in any

ice conditions.

• Current model assumes a semi-infinite ice plate with uniform thickness and

ice strength. This can barely be seen in the field, not even in ice tank tests.

Statistical variation of ice characteristics, especially ice thickness and strength,

should be considered in future work.

• This study only deals with ship manoeuvring in 3DOF. The motions of pitch,

heave, and roll are out of the scope. Tan et al. (2013) did the preliminary study

of pitch and heave motions during ship-level ice interaction in 6DOF. More effort

should be made in order to better understanding of a ship’s motion.

• From the guidance perspective, the LOS guidance system should be extended

from straight line path following to curve path following. The nature of ice

load, such as max value and frequency, should be thoroughly studied so that

feedforward control law or optimal control lwa could apply. Effort should also

be devoted to designing multi-controllers that could automatically manage the

ship in different environments.
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Appendix A

Ship resistance estimated by

Holtrop and Mennen

The total resistance of a vessel is determined by:

Rtotal = RF (1 + k1) +Rapp +Rw +RB +RT R +RA (A.1)

where:

RF frictional resistance

1 + k1 form factor

Rapp resistance of appendages

Rw wave-making and wave-breaking resistance

RB additional pressure resistance of bulbous bow near the water surface

RT R additional pressure resistance of immersed transom stern

RA model-ship correlation resistance

The form factor is estimated by prismatic coefficient, CP , the water line length, L,

the longitudinal position of the centre of buoyancy forward of 0.5L as a percentage of
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L.

1 + k1 = c13

[

0.93 + c12(B/LR)0.92497(0.95 − CP )−0.521448(1 − CP + 0.0225lcb)0.6906
]

(A.2)

where:

LR/L = 1 − CP + 0.06CP lcb/(4CP − 1)

C12 =







































(T/L)0.2228446 if T/L > 0.05

48.20(T/L− 0.02)2.078 + 0.479948 if 0.02 < T/L < 0.05

0.479948 if T/L < 0.02

c13 = 1 + 0.003Cstern

In above formulas, T is the average moulded draught. Cstern is given by the following

table:

Table A.1: Stern Shape Factor

Afterbody form Cstem

V-shaped sections -10
Normal section shape 0
U-shaped sections with Hogner stern +10

A.1 Frictional Resistance

The frictional resistance is estimated from:

RF =
1

2
ρSU2CF (A.3)

where:
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S wetted surface area of a ship

CF frictional coefficient, follow ITTC 1957 Line

S = L(2T +B)
√

CM (0.453 + 0.4425CB − 0.2862CM

−0.003467B/T + 0.3696Cw) + 2.38ABT/CB

CF = 0.075/(log10 Rn − 2)2

where:

ABT transverse sectional area of a bulbous bow at the position

where the water surface intersects the stem

Rn Reynolds number (= UL/ν)

CB block coefficient

CM midship section area coefficient

ρ density of water

ν kinematic viscosity of water

U ship resultant velocity

A.2 Appendage Resistance

Rapp =
1

2
ρSappU

2(1 + k2)eqCF (A.4)

where:

Sapp total wetted surface area of appendages (=
∑

Si)

(1 + k2)eq equivalent appendage form factor (=
∑

(1 + k2)iSi/Sapp)

(1 + k2)i form factor of individual appendage in the following table

Si wetted surface of individual appendage
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Table A.2: Approximate Values of Form Factor for Various Appendages

Appendages (1 + k2)i

Rudder behind Skeg 1.5 - 2.0
Rudder behind Stern 1.3 - 1.5
Twin-Screw Balance Rudder 2.8
Shaft Brackets 3.0
Skeg 1.5 - 2.0
Strut Bossings 3.0
Hull Bossings 2.0
Shafts 2.0 - 4.0
Stabilizing Fins 2.8
Dome 2.7
Bilge Keels 1.4

A.3 Wave Resistance

Rw =







































C1C2C5∇ρg exp [m1F
−0.9
n +m4 cos(λF−2

n )] if Fn ≤ 0.4

C17C2C5∇ρg exp [m3F
−0.9
n +m4 cos(λF−2

n )] if Fn ≥ 0.55

(Rw)Fn=0.4 + (10Fn − 4) [(Rw)Fn=0.55 − (Rw)Fn=0.4] /1.5 if 0.4 < Fn < 0.55

(A.5)

where

C1 = 2223105C3.78613
7 (T/B)1.07961(90 − iE)−1.37565

C2 = exp
[

−1.89
√

C3}
]

C3 = 0.56A1.5
BT/

[

BT (0.31
√
ABT + TF − hB)

]

C5 = 1 − 0.8AT/(BTCM)

C7 =







































0.229577(B/L)1/3 (B/L ≤ 0.11)

B/L (0.11 < B/L < 0.25)

0.5 − 0.0625L/B (B/L ≥ 0.25)
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C15 =







































−1.69385 (L3/∇ ≤ 512)

−1.69385 + (L/∇1/3 − 8)/2.36 (512 < L3/∇ < 1726.91)

0 (L3/∇ ≥ 1726.91)

C16 =



















8.07981CP − 13.8673C2
P + 6.984388C3

P (CP < 0.8)

1.73014 − 0.7067CP (CP > 0.8)

C17 = 6919.3C−1.3346
M (∇/L3)2.00977(L/B − 2)1.40692

m1 = 0.0140407L/T − 1.75254∇1/3/L− 4.79323B/L− C16

m3 = −7.2035(B/L)0.326869(T/B)0.605375

m4 = 0.4C15 exp −0.034F−3.29
n

λ =



















1.446CP − 0.03L/B (L/B ≤ 12)

1.446CP − 0.36 (L/B > 12)

iE = 1 + 89 exp
[

−(L/B)0.80856(1 − Cw)0.30484(1 − CP − 0.0225lcb)0.6367 (A.6)

(LR/B)0.34574(100∇/L3)0.16302
]

where

TF draft at FP

(hB vertical position of the center of ABT above the keel (hB ≤ 0.6TF )

AT immersed part of the transverse area of the transom stern at rest

iE half angle of entrance

A.4 Pressure Resistance due to Bulbous Bow

RB = 0.11ρg
exp

(

−3P−2
B

)

F 3
niA

1.5
BT

1 + F 2
ni

(A.7)

where
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PB measure for the emergence of the bow

= 0.56
√
ABT /(TF − 1.5hB)

Fni Froude Number based on bow immersion

= U/
√

g(TF − hB − 0.25
√
ABT ) + 0.15U2

A.5 Pressure Resistance due to Transom Immer-

sion

RT R =
1

2
ρU2ATC6 (A.8)

where

C6 =



















0.2(1 − 0.2FnT ) (FnT < 5)

0 (FnT ≥ 5)

FnT = U/
√

2gAT/(B +BCw)

A.6 Model-Ship Correlation Resistance

RA =
1

2
ρU2SCA (A.9)

where

CA = 0.006(L+ 100)−0.16 − 0.00205 + 0.003
√

L/7.5C4
BC2(0.04 − C4)

C4 =



















TF/L (TF/L ≤ 0.04)

0.04 (TF/L > 0.04)
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