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Abstract 
 
 
Mass transport deposits form a significant component of deep marine and slope 

sediments.  Knowledge of the architecture of such deposits is relevant to assessment of 

them as potential geohazards for drilling rigs. The objective of the thesis research is to 

explain the structural relationships in the Early Cenozoic Thorvald Mass Transport 

Deposit and to use these findings to relate the internal structures to kinematics of the 

failure process. 

 

The Thorvald Mass Transport Deposit within the Jeanne d'Arc Basin has distinct 

structural domains, known as the head, translational region, and toe, which are analogs to 

structural elements within fold and thrust belts.  The intricate distribution of the thrust 

faults, back thrusts, lateral transfers and extensional faults signifies the forces present 

upon the failure. This distribution is mapped in the Thorvald Mass Transport Deposit 

(MTD), offshore Newfoundland. This analog enables better understanding of the 

processes of failure and deformation. 

 

The MTD is defined by conventional seismic mapping and enhanced by seismic 

attributes within the Flying Foam 3-D dataset from the Jeanne d’Arc Basin.  
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Chapter One 
 

1.0 Introduction 
 
A mass transport deposit (MTD) is a body of sediment that was relocated by gravitational 

force in which the grain-to-grain contact was maintained during transport (Mulder and 

Alexander, 2001). MTDs are a growing area of study for Earth scientists because of (i) 

their contribution to the stratigraphic record in the modern deep water and slope 

environment and in ancient basins; (ii) their significance in exploration for hydrocarbon 

resources (iii) their potential as hazards to seabed exploration and development. The 

Jeanne d’Arc Basin, offshore Newfoundland, is an example of a basin rich in 

hydrocarbons that has several MTDs from Late Cretaceous to Early Paleogene age. One 

of them - the Thorvald MTD (Deptuck et al., 2003) is the focus of this thesis.  

1.0.1 Significance 
 
Mass transport deposits necessitate special consideration by the oil and gas industry due 

to geohazards and geological impact (Frey-Martinez et al., 2011). MTDs are geologically 

significant because they have the ability to transport sediment from shallow water to 

deep-water settings (Mosher et al., 2004). The economic potential of ancient MTDs is 

high because they can act as seals to a hydrocarbon reservoirs. Alternatively, sediment 

mass failures that create MTDs can be economically devastating because of their 

associated hazard to exploration and production operations (Prior and Coleman, 1984, 

Shipp et al., 2004, Mosher and Campbell, 2011). 
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Modern sediment mass failure can have adverse effects on the safety of offshore 

personnel and facilities (Shipp et al, 2004). In addition, the deposits of such events can 

present engineering constraints to drilling. Submarine installation engineers pay close 

attention to such MTDs to determine stability, presence of over-pressurized zones (gas 

and/or fluids), potential boulders (Nardin et al., 1979) and overcompacted surficial 

sediment, any of which could impede drilling and risk the safety of a drill rig.  

 

Submarine landsides are of interest for several reasons. A consequence of sediment mass 

failure is the potential for generating damaging tsunamis (Dawson, 1999), and instability 

of coastal areas. Predicting tsunamis to alert the public (National Oceanic and 

Atmospheric Administration) in low-lying coastal areas has increasingly become an area 

of study for the United States to prevent disasters. In particular, the US Nuclear 

Regulatory Commission is researching the tsunami hazard level for nuclear power plants 

in coastal areas (Kammerer et al., 2008; Chaytor et al., 2009).    

 

Climate change researchers have also taken a keen interest in submarine landslides. Gas 

hydrates occur abundantly in marine sediments. Gas hydrate is a solid consisting of 

methane molecules, which are stable in deep ocean floor sediments (Schmuck and Paull, 

1993). Alteration of temperature or pressure, caused by shifting ocean currents or sea 

level change, could destabilize hydrate and release gas thus destabilizing sediment in 
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areas along continental margins causing mass failure and the release of methane into the 

atmosphere (Schmuck and Paull, 1993; Paull, 1996; Maslin, 1998).  

 

Ancient and modern MTDs are of great interest to exploration geoscientists. MTDs are 

common in sedimentary basins as part of sedimentary slope and shelf records in modern 

and ancient deep water environments (Normark, and Piper, 1991; Einsele, 1996; Romans 

et al., 2009). These deposits are typically muddy and have low porosity and low 

permeability (Shipp et al., 2004). They have a tendency to recur on certain existing 

planes of weakness (Bünz et al., 2005; Canals et al., 2004).  Each single episode of slope 

failure results in a single mass transport deposit (MTD) which  can combine with others 

into vast depositional bodies known as Mass Transport Complexes (MTCs) (Mulder and 

Cochonat, 1996). An important aspect of MTDs, and MTCs  (also called paleomarine 

landslides), is the evacuation of sediment upslope, its deposition downslope and the basal 

surface which guides it downslope (Hampton et al., 1996).  MTDs may erode portions of 

the sedimentary record creating unconformities and form an effective stratigraphic seal 

for hydrocarbons. 

Exploration and hydrocarbon development in the North Sea has been greatly impacted by 

mass transport complexes (Bryn et al., 2005). The Storegga Slide in the North Sea is a 

modern slide complex and is one of the largest submarine landslide complexes studied to 

date (Haflidason et al., 2005). The Ormen Lange gas field, a massive field boasting 320 

million cubic metres (Royal Dutch Shell Press Release Feb 24, 2010), is located below 



 4 

the scar of the Storegga Slide. Geohazards in the area presented an obstacle to the safe 

development of the field. The subsea infrastructure is close to the steep headwall of the 

Storegga Slide, which presents a great risk, should there be another failure (Bryn et al., 

2005). 

 

1.1 Definition of Geological Problem 

The two principal questions posed in this thesis are as follows. 

Can the structures of mass transport deposits, as exemplified by the Thorvald MTD, be 

mapped to provide insights into the way the deposit moved and why? 

Can the internal structures of MTDs, as exemplified by the Thorvald MTD, be usefully 

considered as analog examples of larger geological structures, such as fold thrusts belts?   

1.2 Hypothesis 
 
The Thorvald Mass Transport Deposit within the Jeanne d'Arc Basin has distinct 

structural domains, known as the head, translational region, and toe, which are analogs to 

structural elements within fold and thrust belts.  This analog enables better understanding 

of the processes of failure and deformation.  

1.3 Objectives 
 

This thesis is a detailed study of the Flying Foam area focusing on the Late Cretaceous-

Early Paleogene sequences of the Thorvald Mass Transport Deposit. Specific objectives 

of the thesis research are: 
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• To interpret and understand the internal structure of the Early Cenozoic Thorvald 

Mass Transport Deposit; 

• To explain the structural relationships in the mass transport deposit; 

• To use geological information to categorize mass transport deposits into areas of 

organization; 

• To use these findings to relate MTD structures to kinematics of the failure 

process. 

1.4 Outline of Thesis 

Chapter 1 of this thesis defines its objectives and their significance. The second chapter 

provides an overview of the published regional geological knowledge of the Jeanne 

d’Arc Basin and description of mass transport deposits. Chapter 3 is a description of data 

and methodology used to formulate observations described. Chapter 4 is a description of 

the Thorvald MTD, its internal character and structures, and interpretation of flow, 

analyzed through detailed evaluation of 3D seismic data and analogs of other studied 

MTDs. Chapter 5 presents a comparison of structures observed to fold-thrust belts and 

other descriptions of mass transport deposits. Chapter 6 is a summary of findings and 

suggestions for further research. 
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Chapter Two: Geological Background 
 

Slope failures are part of the deepwater sedimentary record. The mass failure process has 

the capacity to deform and rework sediment (Hampton et al., 1996). In the Jeanne d'Arc 

Basin, a mass movement of sediment resulted in a deposit with distinct features 

distinguishing it from the surrounding sediment. The deposit is named the Thorvald Mass 

Transport Deposit. It sits atop the Flying Foam Structure in the Jeanne d'Arc Basin. As 

previously stated, this work focuses on the internal structure of the mass transport deposit 

and secondly these structures are compared with other large scale geological structures 

such as fold and thrust belt systems. Chapter Two commences with a present-day 

regional overview of the geological setting of the Jeanne d'Arc Basin, followed by the 

regional tectonic evolution and stratigraphy of the basin to give the reader context. Then 

an overview of historical literature of mass transport deposits is presented.  The chapter is 

concluded by a high level description of fold and thrust belts.  

2.1 Present-day Regional Geological Setting 
 
Off Eastern Canada, the Grand Banks is a broad continental shelf that extends 450 km 

seaward of Newfoundland (Figure 2.1). It is bounded by transform faults; to the north by 

the Charlie Gibbs Fracture Zone (CGFZ), and to the south by the Newfoundland Fracture 

Zone (NFZ) ( Enachescu, 1987; Keen et al., 1987; Tankard and Welsink, 1987).  
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Figure 2.1 Map of sedimentary basins, Newfoundland Margin, shown in grey, after Keen et al., 1990. 
The Grand Banks area is shown in yellow and the study area is highlighted in red. 
 

The Grand Banks is composed of several Mesozoic basins. The Jeanne d’Arc Basin is a 

Mesozoic rift basin (Manspeizer and Cousminer, 1988) located on northeastern margin of 

the Grand Banks. The basin has half-graben geometry, plunges north, and has a width of 

100 km in the north, narrowing to 42 km in the south, covering 10,000 km2 (Arthur, 

1982).  The basin is filled with Mesozoic-Cenozoic sedimentary deposits up to 20 km 

thick (Tankard and Welsink, 1989; Driscoll et al., 1995a) and is bounded by a series of 

prominent faults (Enachescu, 1987; Keen et al., 1987). 

 



 8 

Two major fault systems are identified in the Grand Banks region from interpretation of 

gravity, magnetic and seismic data. The first is a basin-bounding extensional normal 

system, which defines the Jeanne d'Arc Basin geometry and includes associated antithetic 

and synthetic faults.  The basin-bounding faults trend north-south. The second fault 

system is a less influential east-west system that is relatively orthogonal to the margins 

(Enachescu, 1987) (Figure 2.2).  

 
 

 
Figure 2.2 Map of the Jeanne d’Arc Basin showing major structural elements of the basin and some 
well locations highlighting Flying Foam area. Courtesy of Canadian-Newfoundland and Labrador 
Offshore Petroleum Board (CNLOPB), 2007 (simplified). 
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The basin-bounding fault on the west side of the Jeanne d'Arc Basin dips steeply 

eastward. It is named the Murre Fault to the south of the Hibernia field, and the Mercury 

Fault to the north. This fault flattens and soles 22-26 km to basement and updip it 

penetrates the Paleocene section (Tankard and Welsink, 1989). The strata are rotated 

away from the fault in the hanging wall, and have variable thickness due to variable fault 

movement and growth into the accommodation space (Figure 2.3). 

 

 
Figure 2.3 Schematic illustration of the Jeanne d'Arc Basin (modified from Tankard and Welsink, 
1987). The rollover anticline into the Murre Fault is the structure drilled for the Hibernia field. The 
Ben Nevis, Avalon SS (sandstone), and Hibernia SS formations are highlighted. 
 

2.2 Regional Tectonic Evolution  
 

The Grand Banks sedimentary basins, including the Jeanne d’Arc Basin, are rift basins 

formed during the gradual break-up of Pangaea that started in the Late Triassic (~225 
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m.y.) (Tankard et al., 1987). This extension resulted in the Atlantic Ocean divide 

between North America, Europe and Africa. The sedimentary basins record several 

successive rifting phases and a final pronounced thermal subsidence stage (Enachescu, 

1987 and 1988; Keen et al., 1987; Tankard et al., 1987).   

 

The first rifting phase initiated the split of Pangaea into North America and Africa (Grant 

et al., 1990). Rifting deformation was not initially significant enough to allow ocean crust 

formation (Hiscott and Wilson, 1987), however a series of NE-SW trending rift valleys, 

created by NW-SE tensional stresses, were filled with sediment during the Triassic 

(Arthur et al., 1982; Sinclair, 1988). This initial rifting was the first event in the gradual 

and sequential opening of the North Atlantic, which occurred from south to north in a 

zipper-type opening (Manspeizer and Cousminer, 1988). After the initial phase of rifting, 

thermal subsidence in the rift basin occurred while seafloor spreading started between 

North America and north-west Africa in the mid-Jurassic (Enachescu, 1987 and 1988; 

Tankard et al., 1987). 

 

A second phase of rifting in the NW-SE direction, started in the Late Jurassic lasting into 

Early Cretaceous. This episode was followed by thermal subsidence and the initiation of 

seafloor spreading between Newfoundland and Iberia in Early Cretaceous, possibly mid-

Valanginian (Enachescu, 1986 and 1987; Sinclair, 1988) or later in the mid-Aptian (Jansa 

and Wade, 1975; Hubbard et al., 1985; Tankard et al., 1987; Tankard and Welsink, 1989; 
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Tankard and Balkwill, 1989; Hiscott et al., 1990; McAlpine, 1990; Driscoll and Hogg, 

1995). 

 

 The next and final stage of rifting in the NW Atlantic region occurred in the 

Albian with NE-SW directed extension developed along NW-SE trending normal faults 

(Sinclair, 1988; Enachescu, 1986; 1987) that may have been transfer faults in the earlier 

rifting phases. This rifting is associated with the propagation of seafloor spreading 

between Labrador and Greenland, and between Greenland and northern Europe, 

influencing the stratigraphic succession in basins on the Grand Banks (Grant et al., 1986; 

McAlpine, 1990) (Figure 2.4). 

 

 A major thermal subsidence of the North Atlantic margin followed the third rifting 

phase. Synchronously, deposition of ~10 km thick sediment filled the extensional zone 

(Enachescu, 1986 and 1987).  

 

2.3 Stratigraphy of the Jeanne D’Arc Basin 
 
The stratigraphy of the Jeanne d'Arc Basin, as captured in the stratigraphic and 

lithostratigraphic chart in Figure 2.4, begins in the Triassic with the basin formation and 

has stratigraphy indicative of hot climates and shallow troughs (Jansa and Wade, 1975) 

to the infilling of marine water into these ‘microbasins’ in an environment of alternating 

evaporation and incursion (McAlpine, 1990) (Figure 2.4). 
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From the Late Jurassic to Early Cretaceous, sedimentation continued with deposition of 

clastics interbedded with minor carbonates as the second phase of rifting ensued 

(Tankard et al., 1989).  

 

By the Early Cretaceous, extension influenced drainage pathways and sedimentation 

patterns. The sedimentary succession during this time indicates a shallow, low-energy 

environment, potentially lagoonal (Driscoll and Hogg, 1995a). In the Late Cretaceous, 

the basin was characterized as a well-developed shelf and slope system. The newly 

formed passive margin began to subside and undergo a regression (Deptuck, 2003; 

DeSilva, 1993). As a result, the basin began to fill, creating a wedge of undeformed Late 

Cretaceous and Paleogene strata that accumulated along the margins of a shallow-shelf 

sea (Jansa and Wade, 1975).  
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Figure 2.4 Stratigraphic and lithostratigraphic chart of the Northern Jeanne d'Arc Basin, Grand 
Banks, Newfoundland and Labrador. Courtesy of CNLOPB, 2009. 
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2.4 Geology of Flying Foam Area 
 
The Flying Foam area is relatively under-explored and had few systematic investigations 

that were made public, except for a few references in regional papers (e.g., Enachescu 

1987 and 1988; Edwards, 1989; Deptuck et al., 2003; Withjack and Callaway, 2000). 

 

The Flying Foam structure was first described by Enachescu in 1987 and is located in the 

northwestern part of the Jeanne d’Arc Basin (Figure 2.2). The Flying Foam structure is a 

large, faulted anticline created by the Mercury normal fault that dips eastward during the 

last rifting stage (Coflin, 1995). The anticline fold developed an inclined fold axis. The 

structure was partially truncated by the Aptian “break-up” unconformity (Enachescu, 

1987) (Figure 2.5). The mass transport deposit that is the topic of this investigation, the 

Thorvald MTD, lies in the area identified as the Flying Foam structure. 

 
 
Figure 2.5 Schematic of time-migrated seismic section HBV83-195 of the northern Jeanne d' Arc 
Basin (after Withjack and Callaway, 2000). 
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2.5 Thorvald Mass Transport Deposit 

The Thorvald Mass Transport Deposit is a volume of sediment that has undergone 

postdepositional deformation and transported to its current location in the Flying Foam 

Structure vicinity and is intersected by the Thorvald P-24 well (Deptuck et al., 2003). 

The Thorvald MTD has the descriptive elements of a mass transport deposit represented 

in the published literature; including internal reflection characteristics, shape, and upper 

boundary morphology (Piper et al, 1997; Posamentier and Kolla, 2003; Moscardelli et al, 

2006). The deposit sits on the Base Paleogene Unconformity, a regional unconformity in 

the post-rift stage of the development of the Jeanne d'Arc Basin (Piper and Normark, 

1989; Piper et al., 2005) (Figure 2.4 and 2.5). The time period is synchronous with a 

marine regression (Deptuck et al., 2003).  

2.6 Mass Transport Deposits 
 

2.6.1 Definition 
 
Mass transport deposits result from cohesive and non-cohesive flows of sediment driven 

by gravitational instability. They include slides, slumps, and creeps, and non-cohesive 

laminar flows such as debris flows. Turbidity currents, concentrated density flows, and 

hyper-concentrated density flows are considered non-cohesive flows (Mulder and 

Alexander, 2001). 

 

The geological literature has various definitions of the terminology of mass transport 

deposits. Some researchers use ‘submarine landslide complexes’ as a term that 
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encompasses all slope failures (Masson et al., 2006; Gee et al., 1999; Gee et al., 2006). 

Others use ‘mass movements’ or ‘mass transport deposits’ or ‘mass transport complexes’ 

(Piper et al., 1997; and Newton et al., 2004). The issue becomes even more pronounced 

when the type of deposit is further categorized.  Several authors have addressed the 

nomenclature issue (Dott, 1963; Hampton et al., 1996; Mulder and Alexander, 2001; 

Canals, 2004; and Gani, 2004) but the story of the classification of mass movements has 

only just begun. With perpetual developments in data techniques and increases in the 

level of detail obtained from deposits, the classification of mass movement will remain 

dynamic for the foreseeable future. 

 

Mass transport deposits or complexes are subdivided into cohesive (slide, slump, and 

creep) and non-cohesive flows (debris flow) (Mulder and Cochonat, 1996). The 

following are accepted definitions in modern literature: 

 

Slide (translational slide): a coherent mass of sediment that moves 

downslope bounded by distinct failure planes (Mulder and 

Cochonat, 1996). 

Slump (or rotational slide): blocks of sediment that move downslope 

exhibiting rotation and subsequent internal deformation (Mulder 

and Cochonat, 1996). 

Creep: a coherent mass of sediment that very slowly moves downslope 

with no identifiable failure surface, and little internal deformation. 
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Debris flow: flow of sediment with plastic rheology and a fine-grained 

matrix and laminar state with a high level of deformation (Masson 

et al., 2006; Mulder and Cochonat, 1996). 

 

Table 2.1 modifies the work of Dott (1963), Nardin et al. (1979), and Mulder and 

Cochonat (1996) in order to illustrate the classification scheme used in this work. This 

work considers only mass transport deposits and not turbidity currents. 

 

Table 2.1 Classification of gravity flows, modified with changes after Dott 1963, Nardin et al. 1979, 
Mulder and Cochonat 1996, and Moscardelli and Wood 2008. 

 

2.6.2 Nature of MTDs 
 

Mass transport deposits take a variety of shapes (laterally), forms (vertically) and sizes 

(by volume) (Cronin et al., 2005)(Figure 2.6). MTDs can extend for hundreds of 

kilometres and build impressive thicknesses (Posamentier and Kolla, 2003), and 

therefore comprise a large volume of sediment. An example is the submarine failure 
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offshore Labrador, the Hopedale-Makkovik failure complex. The complex covers 85,000 

km2 and is comprised of four failure events (Deptuck et al., 2007). The slope-break off 

the Makkovik Bank is steep (<5°) and is prone to failure from the Pleistocene to modern 

era. Deptuck et al., (2007) estimates the original thickness of the Hopedale-Makkovik 

failure complex was greater than 300m. The complex comprises a headwall scarp, 

rotational blocks, and internal structures (Deptuck et al., 2007) (Figure 2.7).  

 

The Storegga Slide is another example, displacing 3000 km3 of sediment, affecting 

95,000 km2 with a runout of 800 km downslope into the Norwegian Basin (Haflidason et 

al., 2005). This area is equivalent to 90% of the total area of the island of Newfoundland 

(108,860 km2). These two examples illustrate the magnitude of sediment that can be 

transported and re-deposited hundreds of kilometres downslope. 

2.6.2.1 Seismic Character 
 
MTDs have been studied for some time, but only recently has technology advanced to 

improve seismic imaging to the point of detailing their internal characteristics and 

structures (Posamentier, 2004).  A mass transport deposit can be identified initially in 

seismic profiles as a seismic unit that is highly incoherent and is large enough to be 

considered a stratigraphic unit (Frey-Martinez et al., 2005)(Figure 2.6). The resolution of 

seismic data must be sufficient to identify the deposit as a separate unit and to determine 

the “chaotic” sense of the deposit. If the resolution is not sufficient or the unit too thin, it 

would be difficult to distinguish a mass transport deposit from other types of sedimentary 

deposits. 
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Figure 2.6 Seismic analog examples of features and elements of mass transport deposits. 
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Figure 2.7 is an example of a seismic profile through a MTD studied in Deptuck et al., 

work (2007). This example of a MTD is used to illustrate the difference in seismic 

character between the semi-chaotic or mixed look of the MTD and the parallel, 

undisrupted look of the sediment surround the MTD. 

 

 

 

Figure 2.7 An example of a mass transport deposit illustrated in seismic data. This example is from 
part of the Hopedale-Makkovik failure complex. The MTD has distinct features that are in the 
interval between the detachment surface and the upper boundary (after Deptuck et al., 2007). 
 

In seismic data that has a resolution sufficient to resolve internal structures in MTD, 

several seismic facies are common in mass transports deposits.  In recent literature, the 

internal character divides into the following seismic facies.  

1. Areas that exhibit discontinuous seismic reflections affected by compressional 

structures (Frey-Martinez et al., 2005). These areas are interpreted as fold and thrust 

zones (Frey-Martinez et al., 2005; Moscardelli et al., 2006).  
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2. Areas of high-amplitude reflection packages that are coherent represent blocks 

(Moscardelli et al., 2006). These blocks are interpreted as undeformed units transported 

within the flow (Moscardelli et al., 2006; Frey-Martinez et al., 2005). Another 

interpretation explains these units as in situ coherent units which are part of the base 

substrate and have not travelled (Bull et al., 2009).  

3. Areas of plane-parallel and laterally continuous reflections cut by extensional concave 

structures (Frey-Martinez et al., 2005). These structural features are interpreted as listric 

normal faults (Frey-Martinez et al., 2005).  

 

Seismic facies form the fundamental basis of interpretation. These models are then used 

to interpret processes and sedimentary environments, based on the distribution of the 

seismic facies, the internal character reflections, lateral changes, and boundaries 

(Mitchum et al., 1977b). 

2.6.2.2 Basal Surface 
 
The basal surface is an important element of MTDs. The basal surface is the failure 

surface where the slip occurs. This detachment of sediment exhibits terminations in the 

stratigraphy similar to unconformities (Figure 2.6). The basal surface is distinguished as 

a boundary between the mass transport deposit and the underlying undeformed slope 

stratigraphy by a significant difference in character (Frey-Martinez et al., 2005) (Figure 

2.6). The MTD will have a highly disturbed character, as mentioned previously, and a 

strong basal reflection.  In Figure 2.7, the detachment surface is the lower boundary. It is 

often continuous in seismic profiles of MTDs because of the hydroplaning effect (Ilstad 
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et al., 2004) but irregularities can occur and then the MTD is considered to be an erosive 

MTD (Bull et al., 2009).   

 

Most literature on MTDs illustrates some evidence of movement on the basal surface in 

the form of erosional features (Martinsen, 1994) (Figure 2.6). The movement of the 

sediment mass is preserved in the sedimentary record by incisions called slide 

scours/lineaments/linear grooves (Posamentier and Kolla, 2003) or striations (Gee et al., 

2006). These incisions in the substrate hold valuable information on the MTD, including 

flow direction and force fluctuation (Continental margin Norway and Levant margin: 

Bull et al., 2009; Rockall Bank, Offshore Ireland: Elliot et al., 2010; Orphan Basin: Li et 

al., 2012).  

 

It is common for MTDs to exist in multiple areas along the same basal surface (Newton 

et al., 2004; and Masson et al., 2006) or have multiple slips in the same area resulting in 

layered or stacked deposits referred to as mass transport complexes (MTCs).   The 

literature offers several explanations for failures along a common surface. These fall into 

two general categories, one is that geological parameters change, causing failure, and the 

other is the occurrence of a transient external event (Masson et al., 2006). The external 

event could be an earthquake, for example.  
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2.6.2.3 Upper Boundary 
 
The upper boundary of buried MTDs has lateral variability and is commonly hummocky 

in nature (Figure 2.6). In some cases, the upper boundary is not well defined in areas, 

perhaps due to sediment reworking or evolution of the flow to turbidity current (Newton 

et al., 2004). In general, the upper boundary has less definition than the basal boundary 

unless a hemipelagic drape is overlies the MTD, then the upper boundary can easily be 

differentiated from the underlying highly disturbed sediments (Mosher and Campbell, 

2011). Hemipelagic drapes are usually continuous and have a high amplitude response 

(Frey-Martinez, et al., 2005). An example of hemipelagic drape is in Mosher and 

Campbell (2011), illustrated in Figure 2.8, the drape buries the MTD in approximately 30 

m of post-failure sediment (Mosher and Campbell, 2011).   Another indicator of the 

upper boundary is onlap or downlap, typically found adjacent to the upper boundary in 

the localized depressions and topographically elevated areas of the MTD.  

 

Figure 2.8 Seismic profile illustrating hemipelagic drape over a mass transport deposit, Barrington 
MTD,  western Scotia Slope off eastern Canada (after Mosher and Campbell, 2011). 
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Topographically elevated areas of the upper boundary may be indicative of pressure 

ridges. Pressure ridges are topographical highs in the main body of the MTD typically 

near the toe of the deposit, caused by compression (Nissen et al., 1999; Sutton and 

Mitchum, 2011) (Figure 2.6). These pressure ridges preserve the structures of the flow as 

it stopped, e.g. thrust and fold systems (Masson et al., 1993; Gee et al., 2006). The ridges 

are visible at the top of the MTDs and are more likely to be near the termination of the 

flow. The local elevated topography is indicative of underlying thrust faults (Posamentier 

and Kolla, 2003) produced when the flow collides into the underlying sediment creating 

a wrinkle effect. 

 

 

2.6.2.4 Structural Elements 
 
The structure of MTDs varies and is in part dependent on the controlling parameters of 

the flow, such as slope length, slope gradient, flow discharge, sand-to-mud ratio, and the 

micro-topography of the seafloor (Posamentier and Kolla, 2003). Regardless of the 

controlling parameters, there are structural features common to all MTDs.  An MTD is 

divided into several components, the head (upslope), the translation zone, and the toe 

(downslope) (Frey-Martinez et al., 2006) (Figure 2.9).  

 

In a typical/type MTD, the head is composed of extensional features, normal faults and 

horst and graben structures (Figure 2.6 and 2.9).  Further updip from the head region 

commonly is an erosional scar called a headscarp or a headwall scarp. The headwall 
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scarp is the initial point of failure and in profile is seen as a curved feature where strata 

terminate.  Downslope of the scarp is a sediment depletion zone followed by a 

topographical high of disturbed sediment (Frey-Martinez et al., 2006). These headwall 

scarps have slopes of 10-35° (Masson et al., 2006). 

 

The toe region is the compression zone of the MTD. This is where the downslope 

movement of flow was arrested. Fold and thrust systems dominate the compression zone 

(Lewis, 1971; Martinsen, 1989; Frey-Martinez et al., 2005). In models, this movement 

generates a compressional strain wave that radiates through the remainder of the flow and 

creates back thrusts (Farrell, 1984). 

 

  2.6.2.5 Glide tracks and Blocks 
 
Outrunner blocks are cohesive blocks of sediment that out run the debris flow and are 

deposited downslope of the main debris flow body (Nissen et al., 1999). The outrunner 

blocks leave behind glide tracks (Figure 2.6 and 2.9). These glide tracks are longitudinal 

markings along the basal surface which record the pathway of outrunner blocks (Nissen 

et al., 1999) (Figure 2.9). Typically, the glide tracks are normal to the headwall scarp. 

These features, if seen out of context, could be misinterpreted as channels. 
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Figure 2.9 Conceptual model of the morphology of a mass transport deposit outlining distinct 
elements and features, modified after Bull et al., 2009. 

 

2.6.2.5 Frontally Confined and Frontally Emergent 
 
The morphometric characteristics of mass transport deposits and complexes are studied 

in many basins around the world (e.g., Newton et al., 2004, Masson et al., 2006; Frey-

Martinez et al., 2006; Posamentier and Kolla 2003). Frey-Martinez et al., 

(2006) analyzed fold and thrust systems in sliding masses and created a two end-member 

model for the downslope compressional domain, the toe region; 1) frontally confined and 

2) frontally emergent (Figure 2.10). Frontally confined refers to the front or toe being 

buttressed against the undisturbed strata. This is an abrupt change from the deformed 

semi-chaotic region within the MTD to the undeformed, undisturbed and continuous 

strata. The frontally emergent type is the second end-member. It includes an overrun of 

the top of the downslope strata (Figure 2.10), such that the strata ramp up over the 



 27 

undisturbed strata, spilling in an unconfined pattern over the sea bottom retaining their 

original stratigraphic structure.   

 

Figure 2.10 Frey-Martinez's (2006) schematic of submarine landslide types references their frontal 
emplacement, A) is Frontally emergent landslide, where the sediment of the deposit over runs the 
basal surface and is unconfined; B) is frontally confined landslide, where the sediment of the deposit 
is confined to the original basal displacement, and does not over run the basal surface, modified after 
Frey-Martinez 2006. 
 
 
 

2.7 Fold and Thrusts Belts 
 
Features within MTDs can be compared with those of fold thrust belts, especially those 

complemented by up-dip extensional zones. The next section is an overview of fold 

thrust belts. 

 
2.7.1 Occurrences of Fold Thrust Belts  
 
Features of a fold and thrust belt are important for the classic model of plate collision, 

however, the same features are also recognized in sediment underplating (Moore et al., 

1982; Platt et al., 1985), out of sequence faulting (Morley, 1988) and extension (Platt, 
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1986). These authors and others (Platt, 1987; Westbrook et al., 1988; Chapple, 1978; 

Stockmal, 1983 ) agree that fold and thrust belts behaved as a mechanical entity. It is this 

idea that suggests a comparison of thrust belts to mass transport deposits. 

 

Fold belts occur in compressional tectonic regimes. The compression forces shorten and 

thicken crustal material resulting in folds and thrusts. The deformation pattern of fold-

thrust belts is well studied (Dahlstrom, 1969; Elliott, 1976; Chapple, 1978; Morley, 1988; 

McClay, 1992). The rock composition is mainly consolidated sedimentary rock in 

sequences generally hundreds to thousands of metres thick. The faults form as a result of 

brittle failure (Sornette et al., 1990). 

  

2.7.1.1 Rocky Mountains 
 
The Rocky Mountains are a major mountain range that runs north-northwest to south –

southeast along the western portion of North America spanning almost 5,000 km. The 

mountain range is a result of tectonic plate collision (Condie, 1997). The Rocky 

Mountains are made up of the main ranges, the front ranges, and the foothills and 

together these areas make up a classic foreland fold-thrust belt (Figure 2.11). The thrust 

faults increase in number and in angle in the foreland basin area, i.e. the foothills region 

in this case (Jordan et al., 1983). 
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Figure 2.11 Balanced cross section of the Rocky Mountain fold-thrust belt after Price and Fermor 
(1985). The cross section is from west to east. Note the increase in fault density in the Foothills 
region. 
 

2.7.1.2 Appalachians Mountains 
 
The Valley and Ridge Province of the Appalachians Mountain range is another fold-

thrust belt. This mountain range is on the eastern side of North America and runs 

northeast to southwest and spans 2,400 km. This fold-thrust belt formed when the Iapetus 

Ocean plate started to collide with and began subduction beneath the North American 

plate (Torsvik et al., 1996). The Appalachian orogeny began to form along the 

continental margin.  Thrust faulting, residual shortening and older rocks pushed over 

younger rocks dominated the geology of the sedimentary strata (Torsvik et al., 1996). 

Figure 2.12 illustrates the thrust and folds on a cross section in the Appalachian 

Mountain range. 

 

2.7.2 Internal stages of Fold Thrust Belts 

The geometries of thrust systems were described by Bally et al., (1966), Dahlstrom 

(1969) and Boyer and Elliott (1982). Most work in the current literature are based on the 

fundamentals proposed by those works. Boyer and Elliott (1982) published the 
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fundamental classification system. Thrust systems have since been divided into a 

classification system based on this geometric framework. The classification divides the 

thrust systems into imbricate fan and duplex thrust systems, and then these are further 

subdivided into further classes based on the three dimensional relations between the 

faults (Boyer and Elliott, 1982) (Figure 2.13).  

 

 

Figure 2.12 Example of geological cross section of the central Appalachian Mountains after 
Spraggins and Dunne 2002. 
 

2.7.2.1 Imbricate Fan System 
 
An imbricate fan system is an array of branching faults that overlap like roof tiles or fish 

scales. They are composed of deformed sedimentary rocks, where the layers of deposited 

sediment are folded and duplicated by thrust faults.  

 

When several adjoining faults appear together to form a closely related branching array, 

it is known as a thrust family or thrust system (Rodgers, 1953). When faults are repeated 

along a detachment surface and overlap like overlapping fish scales, the thrust system is 

known as an imbricate thrust system or imbricate fan (Dennis, 1967; Boyer and Elliott, 

1982; Marshak and Mitra, 1988) (Figure 2.13). 
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2.7.2.2 Duplexes 
 
Thrust faults that cut up­section from a basal detachment and merge at a higher 

stratigraphic level to form another continuous detachment form a duplex (Dahlstrom 

1970) (Figure 2.13). In a duplex, the lower detachment is the floor thrust and the upper 

detachment is the roof thrust (Marshak and Mitra, 1988) and the series of faults emerging 

from the floor thrust and soling out at the roof thrust are known as a “herd of horses” 

(Boyer and Elliott 1982).  Boyer and Elliot (1982) subdivided the duplexes into three 

types: a) hinterland dipping duplex; b) antiformal stack; and c) foreland dipping duplex 

(Figure 2.13). 
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Figure 2.13 Classification of different systems of thrusts, modified after Boyer and Elliott 1982. 
 

The internal structures of a duplex are characterized by a syncline-anticline fold system. 

The strata within a fault series of a duplex has bedding that is comparable to the 

undisturbed bedding below the duplex, yet is folded in a syncline-anticline fold pattern 

(Spraggins and Dunne 2002) (Figure 2.12).  
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2.8 Delta Collapse Systems 

Areas in delta systems sometimes undergo basinward, gravitationally driven translation 

where sediment updip is moved downdip via gravitational forces. Gravity-driven 

deformation in deltas is studied in major river systems and mouths around the world, 

(Gulf of Mexico, e.g Bruce, 1973; Niger Delta: e.g. Bilotti and Shaw, 2005; Cohen and 

McClay, 1996; Damuth, 1994;  Brunei: e.g. Morley et al., 2003.; Nile Delta: e.g. Gaullier 

et al., 2000). 

The deformation style of delta gravity collapse systems include an updip area of 

extension, an area of translation with little deformation, and a downdip area of 

compression with fold and thrust features (Damuth, 1994; Cohen and McClay, 1996; 

McClay et al., 2000; Rowen et al., 2004; For an example of frontal thrusts in deltas see 

Figure 3 in Bilotti and Shaw, 2005).  

 

The force initiating displacement of gravity-driven deformation in deltas is static 

differential load (Cobbold and Szatmari, 1991; Gemmer et al., 2004; Gemmer et al., 

2005). The extension distance and rate are dependent on the sediment supply to the delta. 

The greater the sediment load, the further the extension (Rouby et al., 2011). 

   

2.9 Salt Tectonics and Associated Structures 
 

The gravitational collapse of deltas is often facilitated by salt or overpressured shale, in 

other words, an incompetent stratum that prompts the basal detachment of the 

deformation system. Inboard extensional and outboard contractional structures are 
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usually associated with salt tectonics. Contractional salt tectonics can be present along 

the outboard extent of divergent margins, and extensional structures present along 

inboard regions. Figure 2.14 shows an example of contraction salt tectonics and the 

associated thrusts. It illustrates the differences in thrust style in salt tectonics versus mass 

transport complexes, or fold-thrust belts and gravity-driven deformation in deltas.  

 

 

Figure 2.14 Example of outboard contractional structures caused by salt tectonics.  This is a doubly 
vergent Cretaceous thrust belt in a broad Neogene anticline in the Lower Congo Basin, after Cramez 
and Jackson 2000. 
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Chapter Three: Data and Methodology 
 

 

3.1 Dataset 
 
The study area is located in the western Jeanne d’Arc Basin, Grand Banks, offshore 

Newfoundland and Labrador. The primary source of data used in this study is 

conventionally acquired 3D seismic reflection data, named the Flying Foam 3D dataset. 

These data were donated to Memorial University by WesternGeco. The full dataset 

consists of 38 x 38 km grid of inlines and crosslines.  Wireline logs for six wells within 

and around the seismic survey area were donated by Stratalog and IHS and used to 

correlate stratigraphic tops. Checkshot data were provided courtesy of C-NLOPB. The 

checkshot data were used to depth-convert seismic reflection time profiles. 

 

3.1.1 Flying Foam Seismic Acquisition 
 
The seismic survey was acquired with a single survey vessel using a triple source system 

with a volume of 59 litres (3600 cu in), operating at pressure of 14,000 kPa (2000 psi). 

The group interval is 25 m and a shotpoint interval of 75 m, with a fold of 32. The 

streamers are 4800m in length. The survey is 1995 vintage. 

 

The survey consists of east-west-oriented shotlines (in-lines) ranging from 1 to 1532 

spaced 25 m apart. The crosslines (traces) are oriented north- south, range from 100 to 

3150, and are spaced 12.5 m apart. 
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3.1.2 Seismic Profiles 
 
Seismic data used in this study are from the Flying Foam dataset, which is a 3D seismic 

volume. Seismic sections illustrated in this thesis are oriented predominantly along 

survey lines. Unless otherwise stated, lines are oriented left to right as west-east for 

shotlines (lines), and south-north for crosslines (traces). In all other seismic illustrations, 

line locations are illustrated on a location map with the figure. Seismic sections that are 

not along a shotline or a crossline, are termed ‘arbitrary’ lines, and can be shown in any 

direction. All maps illustrated in this thesis are oriented with geographic North toward 

the top of the page. All horizons are picked along a peak or trough of the reflection.  

 

 

Figure 3.1 Survey map (38 km x 38 km) of the Flying Foam 3D. Well locations are posted. The inside 
box is a smaller area of the dataset used for detailed analysis and referred to in the work as the study 
area (20 km x 20 km). 
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For detailed analysis, a small subset of the Flying Foam dataset was selected, referred to 

as the study area (Figure 3.1). The study area is outlined in location maps that are placed 

in the top right corner on figures.  

3.1.3 Flying Foam Seismic Processing 

The Flying Foam 3D dataset is a post-stack time-migrated volume. The seismic 

processing flow is outlined in Figure 3.2.  

 

The data are near zero phase with American polarity, meaning that the peak signature 

indicates an increase in the acoustic impedance (Brown, 1999). Acoustic impedance is 

expressed as the product of bulk density, ρ, and seismic velocity, ν, equation (3.1).  

 

(3.1)  v*ρ=Ζ  

 

Reflections are generated at a change in impedance (equation 3.2). The magnitude of the 

difference in acoustic impedance over an interface between two stratigraphic units 

determines the strength or amplitude of the reflection. Acoustic impedance is represented 

in seismic profile as reflection character, which can be interpreted as geological bedding. 

The polarity of a reflection is determined by the sign of the impedance change, i.e. 

whether travelling from a lower impedance layer to a higher impedance layer (positive) 

or higher to lower (negative). The Zoeppritz equation illustrates this point (Telford et al., 

1990) (equation 3.2). 
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3.1.4 Resolution 
 
Resolution refers to the minimum measurable separation of two objects such that they 

can be distinguished as two distinct entities (Sheriff and Geldart, 1995). It is vital to 

understand the resolution limitations of data for subsurface evaluation. The vertical 

resolution has a direct correlation to the seismic signal bandwidth, which is related to 

wavelength characteristics of the acoustic source, and sound velocity within the medium. 

Both factors vary with depth in a dataset and therefore the average velocity is calculated 

over the interval of interest. The wavelength is estimated using velocity and peak 

frequency according to equation (3.3a) and the vertical resolution is calculated by using 

equation (3.3b) known as the Rayleigh criterion where υ is the velocity and ƒ is the 

dominant frequency (Yilmaz, 1987). 

 

(3.3a) fv /=λ  

(3.3b) 4/λ=vR  
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Figure 3.2  Seismic Processing Flowchart for Flying Foam 3D Dataset, WesternGeco 
 
 
 

In the Flying Foam dataset, the interval of interest is between the Eocene and Base 

Paleogene where the mass transport deposit is present, lying at 1660 ms to 2095 ms two-
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way travel time. The dominant wavelet frequency in this interval is 25 Hz and the 

average interval velocity (between Eocene and Base Paleogene) is 3400 m*s-1. Using 

equation (3.3b) the vertical resolution is estimated at 34 m. 

 

The width of the Fresnel Zone, a measure of horizontal resolution for the seismic data is 

given by equation 3.4. For a depth (Z) of 4000 m and a dominant wavelength (λ ) of 130 

m, the diameter of the Fresnel zone (RF) is about 500 m. Migration reduces this diameter 

potentially to zero, but noise, imprecise migration, etc., prevents such a high resolution 

being achieved. Assuming migration has reduced the Fresnel Zone to near zero, 

horizontal resolution is limited by the coarsest shot spacing (bin size) which is 25 m. 

Line separation of 25 m also limits resolution across the lines (Sheriff and Geldart, 

1995).  

             (3.4)              
RF = (λZ/2)1/2

 

3.2 Borehole Data 

3.2.1 Well Control 

Six wells lie within the bounds of the Flying Foam 3D dataset (Figure 3.3). These six 

wells were used to tie formation tops and unconformities to the seismic sections (Figure 

3.2 and Table 3.1). The Schedule of Wells (2007) supplied by C-NLOPB were used in 

this study to provide formation tops and unconformity picks. Well ties were adjusted to 

accommodate Kelly Bushing height. Wireline logs of these six wells were donated by 

Stratalog and IHS. Metadata of these wells are presented in Table 3.1. 
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Figure 3.3 Location of wells on the Flying Foam 3D Survey area map. 
 
 

Well data were loaded into Landmark© workstations at Memorial University of 

Newfoundland (Figure 3.4), as well as on Petrel 2010© Windows stations. It was 

necessary to tie the wells to the Flying Foam 3D dataset based on geological tops 

interpreted by C-NLOPB (Figure 3.3). Well history reports provided descriptions of 

cuttings, and samples. 
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Table 3.1 Metadata of relevant wells in the Flying Foam region (C-NLOPB 2007 and 2009). The 
location uses NAD 83 (North American Datum), and RT is the rotary table length. 
Well Number Location 

NAD 83 
Water 
Depth 

(m) 

RT (m) Total 
Depth 

(m) 

Year 
Drilled 

Flying Foam I-13 47° 02’ 41.64” N 

48° 46’ 27.08” W 

90.8 29.9 3683.2 1973 

Hibernia B-44 46° 43’ 03.80” N 

48° 51’ 26.31” W 

75 23 3663 2002 

Mercury K-76 46° 55’ 34.31” N 

48° 56’ 30.61” W 

84.1 24.4 5212.8 1985 

Nautilus C-92 46° 51’ 03.23” N 

48° 44’ 16.75” W 

84.4 27.4 4109 1981 

Thorvald P-24 46° 53’ 55.72” N 

48° 48’ 10.91” W 

86.2 24.9 3810 1991 

West Flying Foam 

L-23 
47° 02’ 43.49” N 

48° 49’ 13.12” W 

92 26.8 4554 1981 

 

3.2.2 Checkshot Surveys 

Checkshot surveys measure the seismic time-travel from the surface to a known depth in 

the borehole. Using time-depth pairs in checkshot data, interval velocities were derived 

and used to convert borehole depths to time. This conversion allows for correlation 

between seismic facies and lithofacies descriptions in the well report. Checkshot velocity 

data are also used to convert seismic reflection times to depth. Checkshot data were 

obtained courtesy of C-NLOPB for Thorvald P-24 (Table 3.2), West Flying Foam L-23, 

Flying Foam I-13, and Nautilus C-92 wells. An interval velocity of 3400m/s is used in 

this work for conversion to depth based on the checkshot data from Thorvald P-24 (Table 

3.2). 
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Figure 3.4 A) Seismic profile, line 290, through the Thorvald P-24 well showing the well ties 
imported from CNLOPB. The vertical scale is in two-way travel time in ms. The horizontal scale is 
indicated at the bottom. B) Close-up of the well ties (see Figure 2.4 for stratigraphic information). 
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Table 3.2 Thorvald P-24 Checkshot data from Canada-Newfoundland and Labrador Offshore 
Petroleum Board (CNLOPB). 

MD 
(Metres)  

TWT 
(ms) 

MD 
(Metres)  

TWT 
(ms) 

MD 
(Metres)  

TWT 
(ms) 

MD 
(Metres)  

TWT 
(ms) 

MD 
(Metres)  

TWT 
(ms) 

408.5 440 899.8 920 1468.2 0 1400 2113.9 0 1880 2988.5 0 2360 
425.7 460 920.1 940 1493 0 1420 2146.9 0 1900 3027.7 0 2380 
442.9 480 940.7 960 1517.2 0 1440 2179.3 0 1920 3063.9 0 2400 
460.2 500 961.4 980 1541 0 1460 2211.8 0 1940 3101.4 0 2420 
477.4 520 982.6 1000 1565.3 0 1480 2244.3 0 1960 3139 0 2440 
494.6 540 1004.1 0 1020 1589.5 0 1500 2277.1 0 1980 3177.2 0 2460 
516.9 560 1026.1 0 1040 1613.9 0 1520 2310.3 0 2000 3216.3 0 2480 
541.7 580 1048.4 0 1060 1637.8 0 1540 2344 0 2020 3258.6 0 2500 
566.4 600 1070.5 0 1080 1662.8 0 1560 2380.6 0 2040 3303 0 2520 
591.1 620 1094.5 0 1100 1686.9 0 1580 2417.4 0 2060 3348 0 2540 
612.9 640 1118.2 0 1120 1711 0 1600 2452.9 0 2080 3394.1 0 2560 
633.2 660 1142.3 0 1140 1735.7 0 1620 2488 0 2100 3440.3 0 2580 
653.4 680 1166.5 0 1160 1760.5 0 1640 2522.4 0 2120 3486.3 0 2600 
673 700 1190.9 0 1180 1785.2 0 1660 2557.5 0 2140 3532 0 2620 

692.7 720 1215.6 0 1200 1810.8 0 1680 2599.1 0 2160 3577.6 0 2640 
713.4 740 1241.4 0 1220 1838.9 0 1700 2638.3 0 2180 3622.9 0 2660 
734.3 760 1267.4 0 1240 1869 0 1720 2677.2 0 2200 3667.9 0 2680 
755.4 780 1293.2 0 1260 1897.3 0 1740 2709.1 0 2220 3713.3 0 2700 
776.5 800 1318.5 0 1280 1925.9 0 1760 2746.9 0 2240 3760.7 0 2720 
797.9 820 1343.6 0 1300 1957.4 0 1780 2786.3 0 2260 3809 0 2740 
819 840 1367 0 1320 1986.1 0 1800 2825.6 0 2280 

839.3 860 1390.1 0 1340 2015.9 0 1820 2864.3 0 2300 
858.2 880 1415.8 0 1360 2046.7 0 1840 2908.7 0 2320 
879.1 900 1442.2 0 1380 2080.4 0 1860 2949.4 0 2340 

 

 

3.3 Software Programs Used 
 
The primary seismic interpretation software used in this study was PetrelTM 2009 and 

PetrelTM 2010. Petrel is a Windows-based geoscience software package. The two main 

applications used in PetrelTM were 3D seismic interpretation and 3D mapping. 

 

The secondary seismic interpretation software used in this study was Landmark’s 

OpenWorksTM software package. Part of this software package is Landmark's 
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SeisWorks/3DTM software which is an interpretation and analysis package for 3D seismic 

data. Well logs can be imported and used to correlate formations with seismic events.  

 

Seismic interpretation and mapping for this project were carried out with Petrel and 

Seisworks software packages. The full 38 km x 38 km dataset was viewed in 

Seisworks/3DTM and the smaller study area was evaluated using PetrelTM 2010. The large 

dataset could not be managed in PetrelTM 2010. 

 

3.4 Mapping Methodology 

3.4.1 Seismic Sequence Stratigraphy 

Developed as a seismic interpretation technique during the 1970s, seismic sequence 

stratigraphy is the study of stratigraphic differentiation into units, or sequences (Mitchum 

et al., 1977a; Vail et al., 1984). A sequence is defined as, “a stratigraphic unit composed 

of a relatively conformable succession of genetically related strata and bounded at its top 

and base by unconformities or their correlative conformities” (Mitchum et al., 1977a). 

Differentiating between sequences is based on recognition of patterns and characteristics 

of a genetic package and observing critical surfaces (bounding unconformities) to 

provide the chronostratigraphic framework for basin analysis. In seismic stratigraphy, the 

eustatic sea-level, the surface of the ocean in relation to the centre of the earth, is 

suggested as the controlling mechanism for sequence development (Vail et al., 1984). 

Sediment supply, tectonic factors such as subsidence or uplift, or some combination of 

these factors also contribute to the sequence development (Coe, 2003). This approach 
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will be relevant when viewing the Eocene horizon and Base Paleogene Unconformity 

horizon in detail in Chapter 4. 

 

Reflection terminations such as toplap, onlap, downlap, truncation, and drape are 

important features in sequence stratigraphy (Mitchum et al., 1977a). Figure 3.5 illustrates 

different types of reflection terminations. 1) Toplap is the result of an unconformity in 

proximal section changing to a correlative conformity in distal areas (Figure 3.5). 2) 

Onlap is the result of sediments deposited on top of a truncation erosional surface (Figure 

3.5). Onlap is an indication of transgressive surfaces. 3) Downlap geometries of 

clinoforms are present in seismic reflections when the clinoform terminates downdip 

against a near horizontal surface. 4) Erosional truncation is the abrupt terminations of 

sediments due to erosion such as a channel. 5) Drape is the uniform sediment settling 

from a low energy environment (Mitchum et al., 1977a). 

 

 
 
Figure 3.5 Seismic stratigraphic reflection terminations and boundary discontinuities within a 
seismic sequence, after Mitchum et al., 1977a. 
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 3.4.1.1. Seismic Facies 
 

Facies combines features of sediment that can be condensed into packages that 

characterize sedimentary processes or environments (Walker, 1992). Facies are packages 

of features from recent or ancient sedimentary rocks that can be used as interpretation 

and prediction tools (Walker, 1992). Seismic facies are groups of seismic reflections with 

similar acoustic characteristics. These groups can be combined into seismic units to aid 

in interpreting the geological environments of deposition and structural patterns 

(Mitchum et al., 1977a).  

3.4.2 Horizon Mapping 

Horizon interpretations were carried out using software options such as autotracking and 

autopicking. Lithostratigraphic horizons of petrophysical well logs were converted to 

two-way travel time (TWTT) using checkshot data, described in Section 3.2.2, and then 

tied to seismic-reflection profiles to provide interpretation groundtruth. Lithostratigraphic 

horizons were correlated with pronounced seismic reflections. Interpreted horizon ages 

were inferred from well chronostratigraphies, and traced away from the reference point 

using autopicker or autotracker. Autopicking automatically tracks a horizon between two 

points, where the user can indicate the horizon to be traced along the maximum 

amplitude, zero crossing, or minimum amplitude of the seismic reflection. Autotracking 

uses a search window and an operator length set by the user or by a default option. The 

autotracker searches the window for “similar” characteristics of the horizon. This 

procedure can decrease interpretation time in some cases allowing the user to select a 
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seed point at each end of the seismic section and autotracker will correlate the horizon. 

This process is only useful for highly coherent reflectors.  

 

Interpretation of the Flying Foam 3D Survey was carried out in a grid method. The 

interpretation grid for the whole dataset (38 x 38 km) used every fiftieth inline and every 

one hundredth crossline (trace), for a 1250 m x 1250 m grid, regional interpretation. For 

the smaller subset, called the study area (Figure 3.1), the interpretation grid was every 

tenth inline and every twentieth crossline (trace) (Figure 3.6); generally a 250 m x 250 m 

grid. These grids provided the seed points for the 3D automatic horizon-tracking package 

called ZAP!TM in the Landmark suite of software. ZAP!TM allows accurate interpretation 

in regions of complex geology such as faulted zones and unconformities. ZAP!TM 

extracts both time and amplitude data, and can generate both time-structure and 

amplitude maps. The three main horizons essential to the research were checked 

carefully, and difficult areas were “manually” re-picked with an autopicker, if necessary. 

These horizons were the Eocene top, the MTD top, and the Base Paleogene. 
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Figure 3.6  Grid lines illustrating the grid method used to interpret seismic data. The regional 
dataset was interpreted using every 50th inline, represented by the long blue lines, and every 100th 
crossline, represented by the long green lines. The study area was interpreted using every 10th inline 
and every 20th crossline represented by the short green and blue lines. 
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Each horizon was tracked from the corresponding well tie or inferred and tracked along 

the interpretation grid using tie-ticks (ties from intersecting lines) as guides. A seismic 

3D cube can be viewed from any angle, and specific data can be extracted that is 

otherwise “hidden” in the vast quantity of data. Methods for viewing 3D seismic data that 

enhanced the efficiency of horizon interpretation included vertical seismic section, 

arbitrary lines, zigzag, and chair displays, time-slices, and horizon slices.   

 

Vertical seismic sections are seismic profiles from 3D volumes taken in any orientation, 

including diagonally across the dataset, in loop displays, or multi-panel displays. Using 

these methods, an interpreter can view orthogonal and dip displays of complex features. 

Vertical seismic sections are used to map horizons determining the external morphology 

and to view the internal seismic character of a seismic sequence or facies.   

 

Time slices are sections containing the seismic response at a particular two-way travel 

time. This type of display is useful in mapping high angle structures such as channels. 

Horizons can be tracked along a time slice domain. Time slices can be taken in amplitude 

data, or from coherence or semblance data. Time slices can cross strata of different 

geological ages. Another way of viewing data is to capture a slice of strata of the same 

geological age or horizon, referred to as horizontal slices (Brown, 1999). To obtain this 

view, a seismic horizon must be interpreted and then flattened throughout the dataset, 

then a parallel slice can be extracted from above producing an image similar to a time-

slice. 



 51 

3.4.3 Fault Mapping 

Fault mapping was executed with the fault tool in each software package. Regional faults 

were mapped every 50th line and small faults illustrating the internal structure of the mass 

transport deposit were mapped every 5th line, or every line for areas of difficult 

interpretation.  

3.4.4 Map Generation 

Time-structure maps represent the structure of an interpreted seismic horizon in two-way 

travel time. These maps were generated using the PetrelTM 2010 software package 

drawing on the seed points explained in Section 3.4.2. Figure 3.7 is an example of a time 

structure map from the study area in the Flying Foam dataset. 

 

Figure 3.7 An example of a time structure map, Base Paleogene horizon shown in milliseconds.  
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Isochron maps represent the thickness in two-way travel time between two mapped 

horizons. Isopach maps represent thickness in depth units between two mapped horizons. 

Isopach maps illustrate the thinning and thickening patterns in each depositional unit.  In 

isopach maps, the calculations of depth are dependent on interval velocity data.  An 

isochron map is generated by subtracting the time of a shallower horizon from a deep 

horizon. To generate an isopach map, the isochron (time) is divided by two because the 

map is in two-way time and then multiplied by the interval velocity, and the map 

displayed in depth. Isochron maps are used in the research to illustrate the thickness of 

the studied mass transport deposit. 

 

3.5 Seismic Attributes 

The seismic amplitude profile is the most common method of studying seismic traces. 

The bulk initial interpretation of geology, structure and reservoir potential comes from 

amplitude profile study. There are other attributes for evaluating seismic data and 

extracting detail from seismic traces other than amplitudes, however (Brown, 1999). 

 

The notion of a seismic trace is regarded as the superposition of reflections from many 

subsurface interfaces where there is a change in the acoustic impedance response 

(Gadallah and Fisher, 2005). This concept describes the correlation between a seismic 

wavelet, acoustic impedance change, and the relationship between the signal and 

amplitude. The seismic trace is a mathematical result of convolving the wavelet with the 
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Earth’s reflectivity (Gadallah and Fisher, 2005). This is the root of seismic data from 

which seismic attributes are derived. 

 

A seismic attribute “is necessarily a derivative of a basic seismic measurement” (Brown, 

2004). Amplitude, time, frequency, and phase, which are the fundamentals of most 

seismic attributes, need to be extracted from the seismic data and viewed in a meaningful 

display.  

 

A number of seismic attributes, described in the following sections, were tested for 

significance throughout the evaluation of the Flying Foam dataset. All attributes were 

based on the interpreted horizons, or interval windows above or below interpreted 

horizons, or time slices. 

3.5.1 Amplitude 

The amplitude attribute is measurement of the amplitude of the reflected seismic wave. 

Relative amplitude is a function of reflection coefficient and spreading losses 

(Enachescu, 1993). The relative amplitude represents a positive or a negative value at the 

peak or tough of a horizon. When shown in map view, the relative amplitude patterns 

represent changes in acoustic impedance. Acoustic impedance is caused by changes in 

velocity and/or density between beds. Changes in the velocity and/or density in beds is 

related to contrasts in lithology (grain mineralogy) fluid content, porosity, and bed-

thickness (tuning effects) (Mitchum, et al., 1977b). The amplitude response is non-unique 
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and different combinations of these factors may produce similar results. However, 

relative amplitude is a useful tool and it is used in this thesis. 

 

3.5.2 Variance  

Variance is a volume attribute that detects reflection discontinuities (and therefore, 

impedance discontinuities) from trace to trace that are caused by changes in lithology, 

pore fluids, stratigraphy, or structure (Chopra and Marfurt, 2007).  

 

The variance algorithm was a normalized cross-correlation of three adjacent traces when 

first introduced (Bahorich and Farmer, 1995). However, the sample was so small that the 

signal-to-noise ratio was a problem, corrected by using a 3-D semblance search over a 

larger number of dip and azimuth pairs (Marfurt, et al., 1998).  Further advancement used 

multitrace time-domain eigenstructure. This algorithm gave a higher resolution than 

previous and eliminated the noise component (Gersztenkorn and Marfurt, 1999). 

However, the drawback is that low-coherence artifacts were generated in areas of high 

structural dip because the reflector dip was not factored into the algorithm (Marfurt and 

Kirlin, 2000).  In the Flying Foam dataset, variance is calculated over a 3 x 3 trace (3 

inlines and 3 crosslines) with a window of 0.10s  and 15 % smooth of the dip as per the 

Bahorich and Farmer (1995) method. A 5 x 5 trace method was also tested and the result 

was noisy.  
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Variance is often used to detect faults because it provides high spatial resolution of 

lateral changes in signal beyond that viewed in conventional seismic profile data (Chopra 

and Marfurt, 2007). This effect enhances the discontinuities from trace to trace (i.e., 

potential fault areas). Subtle features are visible especially when evaluating slip surfaces 

of mass transport deposits. Variance is also known by synonyms such as coherency and 

similarity, semblance, continuity, and antonyms such as chaos and dissemblance. The 

Petrel software refers to coherency as variance. Mathematically, the difference between 

coherency and variance is that variance is expressed as one minus the coherency value 

(Chopra and Marfurt, 2007).  
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Chapter Four: Description and Interpretation of an Early 

Paleogene Mass Transport Deposit  

 

In this chapter, a detailed description of the Thorvald Mass Transport Deposit and 

interpretation of the processes involved in failure are provided.  3D seismic (profiles and 

maps) data are used to describe the internal structures of the Thorvald Mass Transport 

Deposit and its boundaries (top surface, basal surface, ‘beginning,’ ‘end,’ sides).  

Features of the internal structures of the MTD are then used to interpret processes that 

occurred during the submarine failure. In Chapter 5, the MTD structures are compared 

and contrasted with large-scale, well-studied geological features elsewhere.  

4.1 MTD Description  
 

Mass transport deposits are distinguished from the undisturbed strata by seismic 

character that is chaotic or semi-chaotic (Posamentier and Kolla, 2003). The 

interpretation of the Thorvald Mass Transport deposit is based on three criteria that were 

established in previous studies of mass transport deposits (Posamentier and Kolla, 2003, 

Frey-Martinez et al., 2005, Gee et al., 2005). First, the overall look of the Thorvald MTD 

is chaotic or highly disturbed (Frey-Martinez et al., 2005) (Figure 4.1 and 4.2), i.e., the 

internal reflections consist of short segments (100 m-150 m long), separated by gaps. 

Correlation of the short coherent segments across the gaps may be possible in some 

cases, but rare.  Second, a sharp, high amplitude, continuous base representing the basal 
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surface (Farrell, 1984), distinguishable as the boundary between highly disturbed 

reflection character of the MTD and continuous undeformed seismic facies below. And 

third, an upper boundary capping the highly disturbed sediment (Frey-Martinez et al., 

2005) and separating it from the overlapping undeformed strata. 

 

Mass transport deposits are defined by two basic seismic facies; (i) coherent reflection 

character outside the deposit, and (ii) incoherent and discordant to transparent seismic 

reflection character within the deposit (Moscardelli and Wood, 2007). In the literature 

seismic facies (i) is described as a coherent reflection character consisting of parallel, 

continuous, low-amplitude reflections that are interpreted as representing an undisturbed 

sequence. It seems to typify marine sedimentation deposited by release of suspended 

particles in the water column creating stratified layers or beds  (Posamentier and Kolla, 

2003). Alternatively, seismic facies (ii) is described as a reflection character that has 

chaotic character with low-amplitude and semitransparent reflections interpreted as 

representing highly disturbed sediments (Moscardelli and Wood, 2007, Posamentier and 

Kolla, 2003). Chaotic means that reflections occur in short segments with correlation 

from segment to segment unclear. Segments have variable dips.  

 

 

The Thorvald MTD is distinct in seismic profile (Figure 4.1 and 4.2) The surrounding 

sediment is interpreted as undisturbed while the sediment inside the Thorvald MTD is 



 58 

interpreted as highly disturbed, although there may be some internal sections with short 

intervals of coherent reflectivity.  

 

4.1.1 Internal Character 
 

The Thorvald MTD has internal character that show particular geometries of the 

reflection character. Reflection geometry represents stratification patterns of the 

sedimentary unit in seismic profile and reflection continuity represents laterally 

continuous strata (Mitchum et al., 1977b ).  One reflection geometry type is reflections 

that are broken up into segments which override one another (Figure 4.4A). Another 

reflection geometry type is reflections that are broken up, with gaps between the 

correlatable elements (Figure 4.4C). In other cases, the high-amplitude reflections are cut 

into short segments that cannot be readily correlated across the gaps (Figure 4.4E). The 

combination of these features appearing in the data enable various internal seismic facies 

to be defined.  

 4.1.1.1 Seismic Facies 
 
Seismic facies are a group of similar acoustic characteristics of reflection seismic 

combined in a package to aid interpretation (Walker, 1992). Using seismic facies of 

previously studied MTDs helps to ascertain seismic facies in the Thorvald MTD. There 

are several seismic facies identified that are based on the reflection geometries, which are 

critical to the discussion later in this chapter. 
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Within the limits of the Thorvald MTD, defined by its overall chaotic reflectivity and 

bounding reflection horizons, there are zones of less chaotic, more coherent reflectivity. 

Internal reflection character of other MTDs contains regions of semi-deformed mixtures 

of low and high amplitude reflections that show particular reflection geometries (e.g. 

Frey-Martinez et al., 2005, 2006, Moscardelli et al., 2006). In the Thorvald MTD, these 

semi-deformed mixtures are divided into seismic facies based on their reflection 

geometries. 

 

There are three seismic facies identified within the Thorvald MTD that have similarities 

with other studied MTDs (Figure 4.4). Seismic Facies 1 (SF1) - discontinuous seismic 

reflections with low- and high- amplitude reflections that appear to be affected by 

contractional structures (Frey-Martinez et al., 2005). Seismic Facies 2 (SF2) - sub-

parallel, laterally continuous seismic reflections with high amplitudes that appear to be 

affected by extensional structures (Frey-Martinez et al., 2005). Seismic Facies 3 (SF3) -  

chaotic reflectivity or where the limit of resolution exceeds the wavelength needed to 

resolve the intricate details of that zone (Figure 4.4). 
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Figure 4.1 Seismic profile display from the Flying Foam dataset which shows a unique area of 
disturbed sediment. A) Arbitrary dip line through the study area, the highlighted area in yellow is 
the deposit studied in this work. B) Close-up of the arbitrary line showing the disturbed area. The 
yellow dashed line is the upper boundary between the disturbed sediment and the undisturbed 
sediment and the dashed green line is the lower boundary. The vertical scale is in time (ms). The 
approximate vertical scale in metres is 100ms = 340 m. The horizontal scale is in metres for both A 
and B. The amplitude is relative with negative amplitude represented by red to yellow and positive 
amplitude represented by dark blue to light blue.  
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Figure 4.2 Three representative seismic profiles ~2500m apart through the Thorvald Mass Transport 
Deposit, from west to east along inline (shotline). A, Line 496, B, Line 410, C, Line 310. These 
profiles illustrate the internal character of the MTD. The vertical scale is in time (ms) and the 
horizontal scale is in metres. The amplitude is relative with negative amplitude represented by red to 
yellow and positive amplitude represented by dark blue to light blue.  
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Figure 4.3 Examples of seismic facies. A) Seismic facies illustrating disturbed sediment in the Flying 
Foam dataset, B) Seismic facies illustrating undisturbed sediment from the Flying Foam dataset, C) 
Previously studied and accepted patterns of seismic facies for disturbed sediment, on the left, and 
undisturbed, on the right, modified after Elliot et al., (2010).  
 
 

These seismic facies can be grouped to form unique zones in the Thorvald MTD. In the 

Thorvald MTD where the segments have sufficient character to be correlated across 

breaks overlapping of such reflections is indicative of contractional features, by contrast 

a gap between reflections is taken to represent extensional features (Frey-Martinez et al., 

2005). The peak-trough relationship in the seismic data is considered to be related 

directly to bedding relationship. When there is a discontinuity in bedding, it is considered 

to be a fault displacement. The discontinuities in mass transport deposits are faults 

(Posamentier and Martinsen, 2011). Based on these criteria, the seismic facies collate to 

form unique zones in the Thorvald MTD, that are described in the next sections. 
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Figure 4.4 Seismic facies types from the Thorvald MTD and samples of seismic facies from MTDs 
around the world. A) SF1 - Discontinuous seismic reflections with low- and high-amplitude 
reflections that appear to be affected by contractional structures, a dashed line represents the 
contractional feature, B) Seismic facies of a thrust front from a MTD in the Gulf of Mexico, after 
Posamentier and Martinsen, 2011, C) SF2 - Sub-parallel, laterally continuous seismic reflections with 
high amplitude that appear to be affected by extensional structures from the Thorvald MTD, the 
dashed line represents the extensional feature, D) Seismic facies illustrating a extensional structure 
in a MTD in the south Texas Gulf Coast, after Ogiesoba and Hammes, 2012, E) SF3 - Chaotic 
character facies, cut-up reflections from the Thorvald MTD,  F) Chaotic seismic facies from offshore 
Morroco's east margin, Dunlap et al., 2010.  
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 4.1.1.2 Zones of contractional deformation 

Seismic facies affected by contractional structures are prone to certain areas in MTDs. 

Within the Thorvald MTD, Seismic Facies 1, discontinuous seismic reflections with low- 

and high- amplitude reflections that are cut and override similar seismic character 

features are interpreted as thrusts resulting form contractional deformation (Figure 4.5). 

Recognized in mass transports previously studied, the areas where reflections are incised 

and overlap strata are compressional deformation and interpreted as thrusts (e.g. Gee et 

al., 2005, Lastras et al., 2004).  

 

 4.1.1.3 Zones of extensional deformation 

Seismic Facies 2 is only identified in the south west portion of the Thorvald MTD and in 

association with blocky segments. In these areas of the MTD, seismic reflections 

illustrate vertical displacement. The displacement surface has a convex shape in dip-

profile (Figure 4.6). The top of MTD surface has a step down over the displacement area. 

A displacement surface with a hanging wall moved downward relative to the footwall is 

a normal fault. Normal faults are present in MTDs (Frey-Martinez et al., 2005). These 

areas represent areas of extension in the Thorvald MTD (Figure 4.6).  
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Figure 4.5 Seismic profile illustrating strong amplitude peak-trough pairing of wavelets in  the 
compression zone in the Thorvald MTD. A) A reference view of the MTD, arbitrary line; B) Close-
up of the arbitrary line, dashed lines are meant to highlight the discussion features, and the x-x, y-y, 
z-z are coherent reflectors incised by a contractional feature; C) Time structure map of the MTD to 
show location of the line relative to the whole side. The vertical scale is in time (ms) and the 
horizontal scale is in metres.  The amplitude is relative amplitude with negative amplitude 
represented by red to yellow and positive amplitude represented by dark blue to light blue.  
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 4.1.1.4 Zone of semi-chaotic to chaotic deformation  

Another zone that is distinguishable from the compressional zone and from the extension 

zone is an area of deformation dominated by a semi-chaotic to chaotic seismic character 

(Figure 4.7). This zone in seismic profile shows small parcels of alternating high and low 

amplitude reflections representing Seismic Facies 3. At the limits of resolution of the 

seismic data, the small parcels of alternating high and low amplitudes represent 

deformation (Figure 4.7) from breaks in reflectivity that are so common that the pattern 

of deformation cannot be resolved. 

 

4.1.2 Boundaries of the Thorvald MTD 

The boundaries of the Thorvald MTD are clearly defined. The top is the boundary 

between disturbed sediment of the MTD and uniform sediment above the MTD, outlined 

in yellow in Figure 4.1. Its base is the boundary marked by the seismic character 

difference between the disturbed sediment of the MTD and the strata below the MTD, 

represented by parallel, high amplitude reflections outlined in green (Figure 4.1).  The 

base shows a strong positive amplitude reflection in the seismic profile. The lateral flanks 

of the Thorvald MTD are also well defined with onlapping of uniform strata against the 

disturbed sediment. 
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Figure 4.6 Arbitrary seismic profile showing displacement of sediment in the Thorvald MTD. A) A 
reference view of the arbitrary line through the MTD, B) Close-up of the arbitrary line illustrating 
the displacement of sediment downward, A-A and B-B illustrate correlation of reflections, C) Time 
structure map of the Thorvald MTD to show the location of the line in relation to the whole MTD. 
The vertical scale is in time (ms) and the horizontal scale is in metres. 
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Figure 4.7 Seismic profile showing chaotic seismic character inside the Thorvald MTD. A) A 
Reference view of the MTD, arbitrary line; B) Close-up of the arbitrary line showing chaotic internal 
character of the MTD; C)Time structure map of MTD to show location of arbitrary line relative to 
the structure. The vertical scale is in time (ms) and the horizontal scale is in metres. The amplitude is 
relative amplitude with negative amplitude represented by red to yellow and positive amplitude 
represented by dark blue to light blue. 
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The boundaries of the MTD are mapped as horizon surfaces within the study area of the 

Flying Foam dataset. The top of the MTD is simply named MTD in profile. The basal 

surface of the MTD is named based on age, Base Paleogene. Age control measures are 

discussed in Chapter 4. 

 

 4.1.2.1 Shape of the MTD top surface 
 

The upper boundary or the top of the Thorvald MTD (Figure 4.2) is marked by high 

amplitude reflections. Upper boundaries of MTDs tend to be demarcated by high 

amplitude reflections and hemiplegic drape yet in places discontinuous (Mosher and 

Campbell, 2011; Moscardelli et al., 2006). The upper boundary reflections were 

correlated through the study area and used to create time-structure maps representing the 

upper surface. In map view, the upper surface of the Thorvald MTD is hummocky 

(Figure 4.8). The surface presently dips northeast. In the southwest of the MTD are two 

mounds, the structural high points of the deposit. The top of the Thorvald MTD dips 

locally into a defined valley that trends north-south between the two mounds, named 

Block 1 and Block 2 (Figure 4.8). 
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Figure 4.8 Time structure map of the Thorvald MTD in the study area. The scale ratio is 1:150000. 
 

 4.1.2.2 Map of the basal surface 
 

The lower boundary of  MTDs is named the basal surface and is the surface on which the 

mass transport deposit slipped (Frey-Martinez et al., 2005). The lower boundary in the 

Thorvald MTD is marked by a strong positive amplitude reflection.  This basal surface is 

a stratigraphic marker. Many studies identify this stratigraphic marker as the Base 

Tertiary Unconformity (MacLean and Wade, 1992; Piper et al., 2005). Tertiary is no 
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longer accepted as a period by the International Commission on Stratigraphy. Instead 

Paleogene is used as the period between 65 and 1.8 Ma. In this thesis, Base Paleogene 

Unconformity is used in line with current ICS standards. The basal surface is traced in 

profiles throughout the study area in the Flying Foam dataset and a time structure map 

was rendered representing the Base Paleogene Unconformity across the study area 

(Figure 4.9).  

 

In map view, the Base Paleogene Unconformity horizon ranges from 1.39s to 2.74s two-

way travel time (TWTT). There is a structural high in the southwest corner of the study 

area. The dip is to the northeast near the high and changes to east-northeast. In the 

southern portion of the map, a low-elevation ridge plunges east-northeast, the dip 

steepens to the east nearest the ridge and then decreases. There is a canyon in the 

northwest portion of the study area. To the east of the canyon, but still inside the bounds 

of the study area, the Base Paleogene Unconformity plateaus locally and then the dip 

steepens to the structural low in the northeast (Figure 4.9). The basal surface is smooth 

compared with the top surface. 

 

 4.1.2.3 Thickness 
 
The thickness of the Thorvald MTD varies. Based on the interval velocity of 3400 m/s 

using checkshot data from Thorvald P-24 well, the MTD has a maximum thickness of 

~400 m. The thickest parts of the MTD are to the east and extend north (Figure 4.10). 
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Minor pits in horizon maps should be regarded as uncertain variability in the 

interpretation pick. 

 

 

 

 

 

Figure 4.9. Time structure map of the basal surface on which the MTD sits within the study area. 
The scale ratio is 1:150000. 
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Figure 4.10 Time thickness (Isochron) map of the Thorvald MTD. Thickness is the difference of 
reflection time between the MTD upper boundary and the lower boundary. Thickness is shown is 
millisecond. For the estimated interval velocity of the MTD (3400ms-1), 100 millisecond = 170m. 
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4.1.3 Basal Surface Seismic Attributes 

 

The Base Paleogene Unconformity variance map shows a distinct pattern in the area 

occupied by the MTD. In the variance map (Figure 4.11B), the area surrounding the 

MTD has no distinguishing features and is smooth in comparison. The edges of the MTD 

are well defined, particularly on the southeast and northwest sides where they are marked 

by edge-parallel lineations separated by areas of low variance. Lineations dominate 

throughout the area occupied by the Thorvald MTD and are grouped according to pattern 

into three zones. In the southwest part, the lineations run north-south, similar orientation 

to the variations in amplitude (Figure 4.11A). In the middle, the lineations are both 

concave and convex to NE, and generally have a wider spacing (Figure 4.11B). In the 

northeast portion, the lineations are tightly-spaced, convex to NE. These lineations form 

semi-circle lobe-like patterns. There are three distinct lobe-like patterns, each changing 

axis orientation from ENE to NNE (Figure 4.11B). There are in addition, regions of 

linear low variance features running SE-NW. 

 

The amplitude map of Base Paleogene Unconformity, the basal surface, shows a 

difference between the area occupied by the MTD and the area of broad, uniform low 

amplitude surrounding the MTD (Figure 4.11A). The outline of the MTD as defined on 

the variance is outlined on the amplitude map (Figure 4.11A). The amplitude map of the 

basal surface shows variable amplitude beneath the area of the MTD. The southeast 
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portion of the area occupied by the MTD has north-south panels of alternating high to 

low amplitude patterns. The middle section has closely spaced high and low amplitudes 

with a chaotic pattern. The northeast portion of the area occupied by the MTD has the 

patterns of high amplitude that are convex to the northeast and are separated by thinner, 

low amplitude intervals. As explained in Section 3.5.1, the main factor that influences 

amplitude is the reflectivity of the interface (Enachescu, 1993).  

 

4.2 MTD Interpretation 
 

4.2.1 Transport Direction 
 
The transport direction of MTDs are determined based on several criteria used in 3D 

seismic interpretation. The full spatial view of the Thorvald MTD allows the principal 

direction to be analysed from two different aspects: features on the basal surface (Brami 

et al., 2000, Posamentier and Walker, 2006 ) and features in the morphology of the MTD 

(Frey-Martinez et al., 2005, Gee et al., 2006) .  
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Figure 4.11 Seismic attributes of Base Paleogene unconformity, the basal surface, in the study area. 
A) Relative amplitude map. B) Variance map, white is plain-parallel reflections, black is highly 
discontinuous strata (Newton et al., 2004).   
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The basal surface of the Thorvald MTD has preserved erosional features that indicate the 

principal direction of movement. Parallel lineation on a variance slice along the basal 

surface are interpreted to be lateral margins (Figure 4.12B). The lateral margins separate 

the smooth, undisturbed region of the seafloor and the region affected by failure (Figure 

4.12). Zooming in on the lateral margin to the north, the feature in seismic profile shows 

as a channel-like feature (Figure 4.13). The lateral margin channel is approximately 60 to 

70 m wide and up to 22 m deep (based on checkshot data). The lateral margins on both 

sides represent sidewalls of the flow, one to the north trending downdip, northeast, and 

the other on the southern side, also trending downdip northeast indicating flow to the 

northeast (assuming overall dip has not been reversed by later deformation). The 

orientations of the lateral margins on the basal surface indicate that the transport direction 

is NE (down slope).  

 

The features of the morphology of the upper and lower surface of mass transport deposits 

preserve valuable information that contributes to evidence of flow direction (Mosher and 

Campbell, 2011; Gee at al., 2006). The upper surface and internal character preserves 

stopping structures (Masson et al., 1993). The Thorvald MTD upper surface has features 

that capture deposition flow. The upper surface is hummocky (Figure 4.8) and has a 

lobate character in map view, indicating deposition flow (Mosher and Campbell, 2011) to 

NE, perpendicular to the lobes. In the amplitude map, the convex, lobate structures are 

evident and concentrated in one area of the MTD, in the northeast area. According to Gee 
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et al., structures similar to these are evidence of slumps and slump scarring (Figure 

4.12A) (Gee et al., 2006). Pressure ridges are evident in the variance map of the basal 

surface and are consistent with similar findings in other MTD studies that indicate 

principal movement (Posamentier and Martinsen, 2011, Prior et al., 1984). The lobate 

structures are convex downslope (Posamentier and Martinsen, 2011) thus indicating 

direction of transport in the Thorvald MTD to the northeast, consistent with the evidence 

on the basal surface.  

 

4.2.2 Internal Structures 
 
Although the seismic facies of the Thorvald MTD are dominated by disturbed seismic 

facies, there is sufficient seismic resolution to correlate structures within the MTD. 

Sufficient coherence permits identification of zones of internal deformation. 

4.2.2.1 Thrusts  
 
The Thorvald MTD has internal character exhibiting thrust faults. Seismic Facies 1 is 

discontinuous seismic reflections with low- and high- amplitude reflections that appear to 

be affected by contractional structures. These low- and high- amplitude reflections are 

cut by and override similar seismic character features. Based on similar features 

described from other MTDs, (Frey-Martinez et al., 2005, Moscardelli et al 2006) these 

reflection packages are interpreted as thrust faults (Figure 4.14). 
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Figure 4.12. Seismic attribute maps of the basal surface, Base Paleogene Unconformity. A) relative 
amplitude map. B) Variance map (black is edge reflections, white is plain-parallel reflections. 
Lateral margins and transfer faults are highlighted. 
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Figure 4.13 Lateral margins associated with Thorvald Mass Transport Deposit. A, Variance map of 
basal surface. The map indicates lateral margins. B, Seismic profile through the Thorvald MTD 
showing the channel-like reflector pattern. The lateral margins reflect sediment transport along the 
Base Paleogene Unconformity in the northeast direction. C, A chair cut display of vertical seismic 
profile and horizontal variance displayed along the basal surface. 
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A series of thrust faults, spanning from the basal surface to the roof, are imbricated 

thrusts (Frey-Martinez et al., 2005). Some thrust faults in the Thorvald MTD are 

detached from the basal surface and ramp up to the top of the MTD. These failure 

surfaces are present in multiple, parallel configuration in the Thorvald MTD (Figure 

4.15). It is interpreted, therefore that these structures represent imbricate thrust systems.  

Imbricate thrust systems express shortening in mass transport deposits (Frey-Martinez et 

al., 2005). In the Thorvald MTD, thickening of the MTD occurs in the area of the 

imbricate thrust systems (Figure 4.10). 

 

Imbricated thrust systems are identifiable in flattened horizontal variance slices. The 

imbricated thrust systems show as concentric arcs in the variance slice (Frey-Martinez et 

al., 2005). These features are concentric ridge-like structures, pressure ridges, with the 

axis of the of concentric form an indicator of dip, and the convex form in the downslope 

direction (Figure 4.12B) (Frey-Martinez et al., 2005). The imbricate thrust system 

direction is consistent with the transport direction determined by features in the basal and 

upper surfaces (Figure 4.15). The inferred transport direction and the presence of thrust 

and imbricate thrust systems suggest a compressional domain in the northeastern portion 

of the Thorvald MTD. 

 
Thrust faults are at a low-angle to bedding, measured to be 15°-18° on average, and span 

from the detachment surface (the basal surface) to the roof (the top of the MTD). The 

angle of the thrust fault relative to the basal surface is measured on a dip line using 

equation 4.2, where t∆  is the vertical difference in two-way travel time relative to the 
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basal surface, and d∆ is the horizontal difference in meters. The interval velocity used is 

3400ms-1, from the checkshot data. 

 

 (4.1)  
d
vt

d
z

∆
∆

=
∆
∆

=
2
*

tan intθ  

           

(4.2)   θ=
∆

∆− )
2

/3400*(tan 1

d
smt  

 

 4.2.2.2 Back thrusts  
 
MTDs can contain back thrusts (Moscardelli and Wood, 2008; Frey-Martinez et al., 

2005, 2006), which are faults with the hanging wall higher relative to the footwall in the 

opposite direction of the trend of movement. The Thorvald MTD has several back thrust 

faults throughout the MTD. The most notable is one at the southwest portion of the MTD 

(Figure 4.16). The Thorvald MTD principal direction of movement is northeast making 

the southwest portion the head of the MTD.  
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Figure 4.14 Arbitrary dip-oriented seismic profile through the Thorvald MTD. A) with no 
interpretation, B) same line with thrust fault highlighted, C) time structure map of the Thorvald 
MTD to show location. The vertical scale is in time (ms) (the approximate vertical scale in metres is 
100ms = 340 m based on interval velocity of 3400 m/s), and the horizontal scale is in metres. The 
amplitude is relative amplitude with negative amplitude represented by red to yellow and positive 
amplitude represented by dark blue to light blue. 
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Figure 4.15 Arbitrary seismic dip-oriented profile observing the seismic reflections of the imbricate 
thrust, A) no interpretation, B) with interpretation highlighting the imbricate thrust system. The 
vertical scale is in time (ms) (the approximate vertical scale in metres is 100ms = 340 m based on 
interval velocity of 3400 m/s), and the horizontal scale is in metres. The amplitude is relative 
amplitude with negative amplitude represented by red to yellow and positive amplitude represented 
by dark blue to light blue. 
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Figure 4.16  Arbitrary dip-oriented seismic profile shows back thrust and fore thrusts at the head of 
the Thorvald MTD, A) no interpretation, B) with interpretation, the back thrust is bolded. The 
vertical scale is in time (ms) (the approximate vertical scale in metres is 100ms = 340 m based on 
interval velocity of 3400 m/s) and the horizontal scale is in metres. The amplitude is relative 
amplitude with negative amplitude represented by red to yellow and positive amplitude represented 
by dark blue to light blue. 
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Figure 4.17 Seismic profile showing extensional evidence within the MTD.  A) A Reference view 
of the arbitrary line through the MTD; B) Close-up of arbitrary dip line with no interpretation;  
C) Close-up of arbitrary dip line with interpretation; D) Time structure map of MTD to show 
location of the arbitrary line in relation to the whole MTD. The vertical scale is in time (ms) and the 
horizontal scale is in metres. The amplitude is relative amplitude with negative amplitude represented 
by red to yellow and positive amplitude represented by dark blue to light blue. 
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4.2.2.3 Extensional Faults 

The Thorvald MTD has an internal character that exhibits structures interpreted as 

extensional faults. Seismic Facies 2 is sub-parallel, laterally continuous seismic 

reflections with high amplitude that appear to be affected by extensional structures. 

These high amplitude reflections are cut and form a gap with the hanging wall down 

relative to the footwall interpreted as normal extension faults in other MTD studies 

(Frey-Martinez et al., 2005, Posamentier and Kolla, 2003) (Figure 4.17). 

4.2.3 Domains of Thorvald MTD 
 
The flow direction of the Thorvald MTD is northeast as intrepreted in Section 4.2.1. In 

previous studies, the toe domain in MTDs is the downslope region and the head  domain 

is the upslope region (Brunsden, 1984, Gawthorpe and Clammy, 1985). In recent studies, 

Frey-Martinez et al., 2005 and others (Posamentier and Kolla, 2003, Posamentier and 

Martinsen, 2011, Bull et al., 2008) divided MTDs into domains based on frequency of 

seismic facies and associated structural features still consistent with the aforementioned 

system. The toe domain typically has compression structures and the head typically has 

extensional structures. These zones are used to interpret the kinematic history of MTDs 

(Frey-Martinez et al., 2005).  Thorvald MTD is divided into three domains based on 

Frey-Martinez criteria. This section will show how the Thorvald MTD is divided into 

these domains.  
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4.2.3.1 Toe Domain 
 
The toe domain is the northeast region of the Thorvald MTD (Figure 4.18). The toe 

domain of MTDs is expressed as the downslope region identified in seismic facies by 

contractional structures (Posamentier and Martinsen, 2011). The downslope boundary of 

the Thorvald MTD toe domain is defined by the sharp contrast between the undisturbed 

seismic facies beyond the toe and the disturbed seismic facies behind it,  in the northeast, 

downslope region (Figure 4.19).  

 

In seismic profile, the Thorvald MTD toe region is dominated by thrust faults (Figure 

4.19). The toe region has a high concentration of tightly-spaced thrust faults e.g., Figure 

4.15. The sediment of the toe appears to be buttressed (i.e. frontally-confined, Frey-

Martinez et al., 2006). 

 

 Seismic attributes of the basal surface of the Thorvald MTD has confirmatory evidence 

of compression in the toe region. Compression ridges are folds associated with thrust 

sheets overtaking one another and shortening the sediment (Frey-Martinez et al., 2005 

and 2011). The amplitude map of the basal surface also shows convex patterns of high 

amplitude separated by thinner, low amplitude convex patterns in the toe region (Figure 

4.12A). The amplitude patterns are interpreted as contraction structures (Bull et al., 2009) 

and slump scars (Newton et al., 2004) and are consistent with other MTDs studied with 

similar features (Frey-Martinez et al., 2005; Posamentier and Martinsen, 2011; Prior et 

al., 1984). 
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Figure 4.18 Time structure map of the Thorvald MTD within the Study Area, with MTD zones and 
points of interest indicated. 
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Figure 4.19 Toe region seismic profile illustrating thrust faults.  A)  Close-up of arbitrary line 
showing detailed internal structures of the MTD at the toe region; B) Time structure map of MTD to 
show location of arbitrary line relative to the whole slide. The vertical scale is in time (ms) and the 
horizontal scale is in metres. The amplitude is relative amplitude with negative amplitude 
represented by red to yellow and positive amplitude represented by dark blue to light blue. 
 

 4.2.3.2 Head domain 
 
The head domain is the southeast region of the Thorvald MTD (Figure 4.18). The head 

domain is the upslope area of MTDs and is dominated by extensional features (Frey-
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Martinez et al., 2005). The head domain upslope is clearly defined in Figure 4.20.  The 

Thorvald MTD starts with a back thrust, the fault separating the undisturbed sediment 

from the disturbed sediment.  

 

In the amplitude map view of the basal surface, under the head region, rectangular panels 

aligned approximately north-south have alternating high and low amplitude (Figure 

4.11A). The variance map of the basal surface, under the head region, has well-defined 

edge reflections, evenly spaced. The upper surface of the MTD in the head region has a 

high amplitude, well-defined boundary (Figure 4.11B). The head region of the Thorvald 

MTD has two slide blocks (Block 1 and Block 2) (Figure 4.8 and 4.13).  The lack of 

dominant extensional structures in the domain is discussed later (see Section 4.2.5). 

 4.2.3.3 Intermediate domain 
 
The features present in the domain between the head and the toe are highly deformed and 

not translational slip features. Therefore, the domain is referred to as intermediate and not 

translational. The intermediate domain in the Thorvald has a mixed array of faulting, 

extension, thrust, back thrusts, and areas of chaotic seismic character. The contractional 

features interpreted as thrust faults in 4.5.7.3 are present throughout the Thorvald MTD, 

although the toe domain has the highest concentration of thrust faults in the MTD. The 

thrust faults and back thrusts are well spaced in the southwest portion and middle 

regions. The thickest parts of the MTD are in the intermediate domain or in the toe 

domain on the east side (Figure 4.10). The extensional features discussed in Section 

4.2.2.3 are mainly present at the head region or the head-intermediate domain boundary. 
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The head domain is the thinnest area of the MTD. Due to seismic resolution limits and 

the nature of the mass transport deposits, chaotic regions are abundant in the Thorvald 

MTD. The chaotic seismic character discussed in Section 4.1.1.4 appeared in the 

intermediate domain more than in the toe region, and does not occur in the head region at 

all.  

4.2.3.3.1 Megaclasts 
 
The Thorvald MTD has coherent undeformed blocks with the MTD. The Thorvald MTD 

exhibits packages of coherent layers of continuous low- and high amplitude seismic 

reflections. Blocks of undisturbed seismic reflections are observed in MTDs and are a 

distinctive characteristic in MTDs (Frey-Martinez et al., 2005; Moscardelli et al., 2006). 

These packages are laterally concordant units surrounded by disturbed seismic facies in 

the Thorvald MTD. The units are separated from the disturbed seismic facies by 

extensional or contractional faults (Figure 4.17). 

 

These units of coherent reflections are interpreted as megaclasts based on similar features 

described from other MTDs (Moscardelli et al., 2006; Dunlap et al., 2010). Megaclasts 

may have been transported with the parent flow as a coherent block (Lee et al., 2004), or 

it may be a unit belonging to the original substrate material (Bull et al., 2009) and the 

flow material propagated around the unit. If the unit was part of the original substrate the 

variance map would be smooth beneath the coherent package. In the Thorvald MTD, it is 

not likely the unit was part of the original substrate because the variance map of the basal 
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surface does not show undisturbed segment beneath the block. Therefore, the megaclast 

was part of the original failed material but did not undergo internal deformation.  

 

 
Figure 4.20 Seismic profiles showing a back thrust fault at the start of the MTD and forethrust faults  
in block 1 of MTD. A) A Reference view of the MTD, arbitrary dip-oriented line; B) Close-up of the 
arbitrary dip-oriented line showing detailed internal structures of the MTD;  thrust faults, and a 
back fault; C) Time structure map of MTD to show location of arbitrary line relative to the whole 
slide. The vertical scale is in time (ms) (the approximate vertical scale in metres is 100ms = 340 m 
based on interval velocity of 3400 m/s), and the horizontal scale is in metres. The amplitude is 
relative amplitude with negative amplitude represented by red to yellow and positive amplitude 
represented by dark blue to light blue. 
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4.2.4 Single Episode  
 
In general, each single episode of slope failure results in a single mass transport deposit 

(MTD) which can stack with others into a vast depositional body known as a mass 

transport complex (MTC) (Table 1 and Figure 1.2) (Mulder and Cochonat, 1996). If the 

Thorvald MTD had occurred in multiple episodes, the deformation character between the 

top of the MTD and the basal surface would show a vertical piling of clearly separable 

phases, throughout. In the Thorvald MTD, the top of the flow acts as a roof for fault 

surfaces, and the Base Paleogene Unconformity, the basal surface, acts as the lower 

detachment surface (Figure 4.14). If there were multiple episodes there would be 

evidence of another detachment or roof within the MTD: this is not observed. Thus, the 

Thorvald Mass Transport Deposit appears to have resulted from a single complex event 

and not multiple events separated by significant intervals of time.  

 

4.2.5 Absence of Headwall Scarp 

In modern mass failures, headwall scarps are found updip of the mass transport deposit 

(Bull et al., 2009). The headwall scarp is the point of origin for a mass transport deposit 

(Posamentier and Martinsen, 2011). In time-slice amplitude maps, the headwall is 

represented as arcuate slump scars (Posamentier and Martinsen, 2011). In seismic profile, 

the headwall shows as a concave listric fault and is the division between undisturbed 

seismic facies and disturbed seismic facies (Frey-Martinez et al., 2005) and the top of the 

MTD is depressed near the headwall in respect to the pre-failed reflections, according to 
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Frey-Martinez et al. (2005). This description suggests the MTD is thinner near the 

headwall than the pre-failure sediment template upslope (Frey-Martinez et al., 2005).  

 

Within the existing Flying Foam 3D data volume, there is no obvious headwall scarp. 

The upper edge of the original slide has been obscured by post-slide events, or it lies up-

slope beyond the limits of the data set. This may account for the lack of extensional 

structures in the head domain, as noted in previous sections. 

 

4.2.6 Frontally Confined 
 
The Thorvald MTD sediment is buttressed against the undisturbed strata in the downdip 

direction parallel strata with lower relative amplitude (Figure 4.21) e.g. frontally 

confined (Frey-Martinez et al., 2006). The displacement surfaces extend from a common 

surface at the base to the top of the MTD, defined by the disturbed seismic character, and 

are closely spaced. Frontally confined or frontally emergent dependents on the regional 

gradient and the frictional stress of the basal surface. 
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Figure 4.21 Seismic profile illustrating the compression zone in the Thorvald MTD.  A)  Close-up of 
arbitrary line showing internal character of the MTD where the disturbed sediment is buttressed 
against the undisturbed strata of frontally emergent (Frey-Martinez et al., 2006); B) Time structure 
map of MTD to show location of arbitrary line relative to the whole slide. The vertical scale is in time 
(ms) and the horizontal scale is in metres. The amplitude is relative amplitude with negative 
amplitude represented by red to yellow and positive amplitude represented by dark blue to light 
blue.  
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4.2.7 Kinematic summary  
 
Internal structures are the foundation of the mass transport deposit classification systems 

(Masson et al., 2006). The degree of deformation is dependent on grain-size, fluid 

content, and compaction (Mulder and Cochonant, 1996). Classification systems generally 

divide MTDs into creep, slides, slumps, and debris flows. MTDs resulting from slides 

have little or no internal deformation (Martinsen, 1994). MTDs resulting from slump 

processes are cohesive and have internal deformation. In slump deposits, the primary 

bedding is often identifiable although disturbed (Martinsen, 1989). MTDs resulting from 

debris flow processes are noncohesive and highly deformed (Piper et al., 1999). 

However, mass movement of sediment may include several of these processes 

(Posamentier and Martinsen, 2011). The one factor common to all processes is that the 

failure is dependent on the shear strength being less than the applied shear stress 

(Posamentier and Martinsen, 2011). The features described in this chapter from the 

Thorvald MTD combine to provide evidence for interpretation of processes during 

transport. 

 

The Thorvald MTD has features that provide information on the temporal and spatial 

behaviour of the mass transport deposit. In the head domain, the material failed in 

megaclasts and blocky slumps (Figure 4.17 and 4.18) and deformed downslope. The head 

domain is coherent and blocky in character (Figure 4.20). Therefore, the head domain 

underwent fewer deformational processes than the rest of the MTD. As previously stated, 

the megaclast was part of the original failed material and does not undergo deformation. 
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Further evidence is found in the basal variance map. In the head domain, the faults are 

organized, continuous, and uniform in character, such faults are not characteristics of 

chaotic failures (Figure 4.12B) (Posamentier and Martinsen, 2011). The head domain in 

the seismic attributes exhibits basal lineations with a near north-south orientation due to 

slumping of the sediment in that area (Figure 4.11 and 4.12).  

 

Extension in mass transport deposits can occur when sediment of different areas in the 

flow travel faster than in other areas (Frey-Martinez et al., 2005). Figure 4.17 illustrates 

an example where the downdip region potentially moved more than the updip region 

creating an extensional fault between. The differences in displacement could be caused 

by differences in the dynamic friction along the basal surface. Friction is dependent on (i) 

mass weight, i.e. the mass weight of areas of the MTD could have varied enough to 

change downdip shear stress; (ii) contact pressure, i.e., the pore water pressure may have 

changed from region to region, reducing the effective frictional resistance; and (iii) 

surface roughness. 

 

Fore thrusts and back thrusts are exhibited in areas of the MTD (Figure 4.15, 4.19 and 

4.20). Forethrusts dominate within the MTD and are characteristic of fold-thrust belts 

sliding on incompetent rock bases and produce low angle thrusts due to low friction. The 

fore thrust and back thrusts result from deformation during compression related to the 

deceleration of the flow (Marr et al., 2001, Moscardelli and Wood, 2007). There are low-

angle thrust faults that mirror duplex thrusts in foreland basins with a roof and floor 
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detachment (Figure 4.15). These contractional structures are an arrangement of duplex 

faults that are approximately parallel and individually could extend over 250 m (Figure 

4.15).  

 

Mass transport deposits have internal structures that indicate kinematic history of the 

flow. In the Thorvald MTD, the kinematic factors show a range of depositional processes 

that represent continual degradation in deformation of original strata downslope.   

4.2.8 Coulomb Criterion 
 
The Thorvald MTD developed through multiple processes involving slide, slump and 

debris flow. The deformation of the sediment in the flow involving these processes is 

controlled by Coulomb behaviour (Piper et al., 2012). Coulomb behaviour is used to 

determine the relationship between shear strength and normal stress in a failure. In 

Coulomb’s hypothesis of failure, failure will occur according to equation 4.2, where τ is 

shear strength, σ is normal stress, φ is the angle of internal friction, and C is the cohesive 

strength, 

 (4.2)   C+= )tan(φστ   

This means that the cohesive strength is a factor for failure. All failure of mass sediment 

is in response to shear strength being exceeded by shear stress. The cohesive strength of a 

sedimentary unit is dependent on porosity, permeability, water content, material type, 

degree of lineation and pore pressure (Posamentier and Martinsen, 2011). As pore 

pressure increases, cohesive strength can be reduced leading to failure. Changes in pore 

pressure may directly relate to the distance the MTD travels (Posamentier and Martinsen, 
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2011). Shear stress on ancient mass is the gravitational pull on an included surface, thus 

it is a function of the mass of the body and the angle of inclination. The latter parameter, 

therefore, determines the stress on any given mass. In assessing why and where the 

Thorvald MTD failed, more background on regional structure and stratigraphy is 

required to assess the mass of the unit that failed and the original dip of the failure 

surface.  

 

4.3 Regional context and pre-conditioning factors of the failure 
 
Stratigraphic units are interpreted in the regional context using geologic tops from 

Canada-Newfoundland and Labrador Offshore Petroleum Board (CNLOPB), published 

literature and sequence stratigraphy. The geologic tops from CNLOPB are available from 

CNLOPB’s website. Geologic tops for the Thorvald P-24 well are plotted in the software 

package using checkdata for depth conversion (Figure 4.22 well). The Base Paleogene 

Unconformity and the Eocene are regional stratigraphic markers established in published 

literature (Wade and MacLean, 1990; Piper and Normark, 1989) and are used to support 

the interpretation. 
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Figure 4.22 Seismic profile, line 290, through the Thorvald P-24 well showing the well ties imported 
from CNLOPB and illustrating the interpreted regional markers. The vertical scale is in two-way 
travel time in ms. The horizontal scale is indicated at the bottom. B) Close-up of the well ties. 
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The stratigraphic position of the Thorvald MTD is important in understanding the pre-

conditioning factors of the failure. The area of interest is framed within a larger area 

involving a history of breakup and rifting as discussed in Chapter 2 (Regional Geology). 

The Thorvald MTD sits on the Base Paleogene Unconformity, (Deptuck et al., 2003), and 

marks the boundary between the Mesozoic and Cenozoic eras (Figures 4.22 - 4.24) that is 

part of the post-rift sequence in the basin.  

 

Below the Base Paleogene Unconformity, rift structures are prominent (Figures 4.23 and 

4.24). Figure 4.24 is a cross section of the Flying Foam structure, for which the area is 

named. The anticline and the basin-bounding Mercury Fault are dominant features in the 

section. The Mercury K-76 well penetrated the rollover anticline, a similar structure to 

the Hibernia oil play south of the region. The Flying Foam and Hibernia structures were 

formed at a similar time. 

 

Pre-conditioning factors of the failure of the Thorvald MTD are high sedimentation rates 

and a high slope angle, both known features in the area (Deptuck et al., 2003). Given the 

steepness of the slope, and a regression environment (Deptuck et al., 2003) where coarser 

sediments were deposited on finer sediments, the finer-grained, beds were loaded causing 

overpressures. These beds were presumably the weak layers that were prone to failure. 

The trigger to initiate the Thorvald MTD is unknown.  
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4.3.1 Stratigraphic Context 
 
Three horizons with relevance to the mass transport deposit are mapped over the study 

area of the Flying Foam dataset: the Base Paleogene Unconformity, top Eocene, and top 

MTD. The Base Paleogene Unconformity is the surface that the mass transport deposit 

slipped on. Eocene is the top of the Eocene strata and is the strongest, continuous marker 

above the Thorvald MTD and it has a well tie validating its age. The horizon labeled 

MTD, is the top of the mass transport deposit.  

 

 
Figure 4.23 Seismic profile from the Flying Foam dataset, full length. Line 410 through well Mercury 
K-76. Vertical scale is in milliseconds two-way time. Horizontal scale is in metres.  
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4.3.1.1 Base Paleogene Unconformity 

 

The start of the Cenozoic sub-era in the Grand Banks is denoted by a region-wide 

unconformity, called the Base Paleogene Unconformity, formerly referred to as the Base 

Tertiary Unconformity. In time structure map view, the Base Paleogene Unconformity 

dips east-northeast (Figure 4.9). 

 
 
 
 

 
Figure 4.24 Seismic profile through the Flying Foam dataset. Line 920 through wells West Flying 
Foam L-23 and Flying Foam I-13. This line is a cross section of the Flying Foam Anticline. The 
Mercury Fault is a basin-bounding fault of the Jeanne d’Arc Basin. Vertical scale is in milliseconds 
two-way time. Horizontal scale is in metres.  
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 4.3.1.2 Eocene Horizon 
 
In profile, the Eocene horizon is a well-defined regional reflection that marks the top of a 

moderately dipping reflection sequence (Sequence 2, Figure 4.23) that onlaps Base 

Paleogene regionally. The internal reflections within the Eocene and Paleogene 

(Sequence 2) are conformable and are laterally continuous. Sequence 2 thickens to the 

east-northeast (Figures 4.23), and is related to a major eustatic event (Ascoli, 1990). The 

top Eocene horizon is correlated with the Eocene biostratigraphic top at the Thorvald P-

24 well. This well lithology indicates that the top Eocene reflection is generated by a 

chalk layer. 

 

Within the Flying Foam 3D dataset, the Eocene horizon ranges from 1.14s to 1.68s 

TWTT (Figure 4.25). The horizon dips gradually to the northeast from a structural high 

in the southwest part of the survey. A low, east-northeast trending valley occurs in the 

west-central part of the survey area. The undulating Eocene horizon dips more uniformly 

to the northeast in the eastern region of the survey area. The dip increases in the eastern 

region, north of the aforementioned valley. The Eocene surface is offset by the Mercury 

Fault on the western region of the survey area (Figure 4.23 and 4.24).  
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Figure 4.25 Time structure map of Eocene within the Study Area. The ratio is 1:150,000. 
 

4.3.2 Basal Surface: Slope Change 

A major factor influencing control on mass transport deposits is the regional gradient 

(Piper et al., 2012). The regional gradient of the basal shear surface of the Thorvald MTD 

is an important factor in the termination of the deposit. Flattening the Eocene horizon 

provides an approximation to the dip of the basal surface of the MTD -at Base 

Paleogene- as it would have been at the time of deposition of the Thorvald MTD (Figure 
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4.26).  The Eocene horizon is the deepest overlying regional event that is readily 

correlated (Figure 4.23). Sequence 2, the Eocene – Base Paleogene Unconformity unit, is 

a wedge that thickens slightly to the east so there is an unresolved residual slope left at 

the base of the Sequence 2 after flattening the top of the Eocene.  

 

Analyzing the gradient of the slope when the Thorvald terminated gives insight into the 

forces that stopped the flow. The gradient of the slope was determined on a dip seismic 

profile using equation 4.1, where t∆  is the vertical difference in two-way travel time, and 

d∆ is the horizontal difference in metres. The interval velocity used is 3400ms-1, 

determined from the checkshot data. 

           

(4.3)   )
2

/3400*(tan 1

d
smt

∆
∆−  

The slope of the Base Paleogene Unconformity is categorized into three areas; updip of 

the MTD, beneath the MTD, and downdip. Updip the slope is approximately 3.6°, which 

is a moderate gradient for marine slope environment. On the western side of the study 

area, yet beneath the MTD, the Base Paleogene Unconformity has a steep flank of 5.4°, 

measuring from the horizontal profile. The morphology of Base Paleogene Unconformity 

exhibits a change of slope approximately in the centre to southern part of the study area 

from steep (5.4°) to a significant reduction (1.7°) (Figure 4.26B). Downslope of the 

MTD, the dip of the seafloor remains relatively consistent at 1.7°. Assuming the 

morphology of Base Paleogene Unconformity in the horizontal profile is a close 

approximation to the slope during deposition of sediment post Paleogene, then 5.4° is at 
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the higher end of normal slope gradient for a marine sedimentary setting in a slope 

environment (Pinet, 1996), considering slope gradient is usually between 1° and 6° (Piper 

et al. 2012).  

 

The slope beneath the MTD is determined to be 5.6°. The slope downdip of the MTD is 

1.7°.  As the slope decreases, the gravitational force acting on the mass downdip would 

decrease. Therefore, the movement of the MTD might cease. At that point, the shear 

strength would be greater than the shear stress. The result is a thicker deposit at the point 

of slope change (Figure 4.10 and 4.26), and the reason the thickest part of the MTD lie 

close to its toe (Figure 4.10). 

 

4.3.3. Pre-conditioning factors  
 
Pre-conditioning factors of failure mass transport deposits include high sedimentation 

rates and release of basinal fluids (Mosher and Campbell, 2011). Although the headwall 

scarp is unknown, the vicinity of the Thorvald MTD does not have documented or 

obvious gas hydrates, pockmarks, or chimneys. However, the marine slope environment 

has high sedimentation rate from the erosion of the nearby continents (Piper et al., 2012). 

A pre-conditioning factor for Thorvald MTD is high sedimentation rates on a continental 

marine slope environment.  

 

The slope gradients measured on the basal surface, using the method described in Section 

4.3.2, are variable and <6°. According to Mosher et al., (1994), on the modern Scotian 
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Slope, slope gradients <6° are stable unless a trigger initiates failure. A possible trigger to 

initiate a failure is earthquake movement (Mosher et al., 1994). The trigger to initiate the 

Thorvald MTD is unknown.  

 

4.4 MTD  Summary 
 

The Flying Foam 3D seismic dataset reveals significant features of the Thorvald MTD. 

From the study, it is concluded that the MTD is divided into three zones: head, 

intermediate, and toe. It is determined that using seismic attributes provide evidence that 

the MTD failed and moved toward the Northeast. It is proven that MTDs have fore 

thrusts, back thrusts, and extensional faults. The contractional features of the toe area are 

thrusts and associated folds. The roof of the thrusts is the top of the MTD and the thrusts 

sole-out on the basal surface. If this research is taken one step further, the internal fault 

features of the Thorvald MTD can be compared and contrasted to larger, well-studied 

features such as fold-thrust belts. 
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Figure 4.26 Arbitrary dip line through the Flying Foam Dataset, (B) Same line with Eocene Horizon 
made horizontal to illustrate the gradient of the basal surface. 
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Chapter Five: Comparison of Thorvald MTD to Thrust Belts 
and other MTDs 

 

Recent advances have been made in understanding mass transport deposits (Posamentier 

and Kolla, 2003; Newton et al. 2004; Masson et al. 2006; Frey-Martinez et al. 2006) as a 

result of high resolution seismic data. The structural deformation of these deposits are a 

new field of study. This section compares structures of MTDs with other geological 

deformation zones, such as fold-thrust belts, salt tectonics, and gravity-driven delta 

collapse systems, similar to mass transport structures. 

 

5.1 Comparison of Internal Structures of the Thorvald MTD to Thrust-

belt Structures 

The structures in mass transport deposits are at least an order or two smaller in magnitude 

than those of fold-thrust belts.  Nevertheless comparisons may yield valuable insights 

into deformation processes in MTDs. In the case of the Thorvald MTD, internal 

structures compare to internal structures of thrust fold belts. The features that both the 

MTDs and thrust fold belts have in common are low-angle thrust, undisturbed strata 

above and below the structures, a common roof and detachment, and a vergence 

direction. 

5.1.1 Thrusts are low-angle 
 
Thrust faults are found in areas of compression-like thrust fold belts and result in 

shortening of strata. The hanging wall moves up relative to the foot wall; in this process 
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older strata of the hanging wall overlie younger strata in the foot wall. Thrust faults in 

fold-thrust belts occur at low angles that dip less than 45°(King, 1960). In the Thorvald 

MTD, reverse faults are low-angle thrust faults and are present throughout the 

compression area in the toe region (Figure 4.19). The low-angle thrusts present are 

inclined at approximately 15° to the basal surface. The steeper duplexes in the MTD are 

at 35° closer to the angle ranges in fold-thrust belts. 

 

5.1.2 The bedding outside the duplex above and below is comparatively 
undisturbed 
 
In a thrust fold belt system, the bedding outside the duplex or faulted zone is 

comparatively undisturbed (Mitra and Boyer, 1986, McClay, 1992). The bedding above 

the roof thrust and below the floor thrust or the detachment surface may not have any 

deformation related to the tectonic event. The Thorvald MTD has sharp boundaries 

defining both the roof thrust and the floor thrust with parallel undeformed bedding above 

and below the duplex structures (Figure 4.14 and 4.15). 

 

5.1.3 The thrusts have a common roof and detachment surface. 
 
Single detachment surfaces are common in both fold-thrust belts and mass transport 

deposits. Strata of a lower stratigraphic position are pushed over higher strata. The 

detachment surface is a common surface to a series of thrust faults with masses being 

pushed up due to a weakness in the basal layer and contractional forces. In an imbricate 

system, the basal surface is an incompetent layer and the thrust masses reach the seafloor 



 113 

and fall over due to the sediments being pushed into the water column. In a thrust belt, 

the roof decollement is also a relative weak layer, where all the thrusts meet and 

propagate along the upper roof thrust. In a mass transport deposit the sediment is not 

restricted on top, however the energy of the thrust series is translated from the basal 

detachment surface to the roof thrust, which is the top of the MTD, and may be the 

seabed (Figure 4.15). 

5.1.4 Vergence direction 
 
The vergence direction is the direction of thrusting in a fold-thrust belt system. The 

vergence direction is parallel to strike of the thrust sheets. In the Thorvald MTD, the 

propagation of thrust sheets is northeast, the same as the sediment transport direction 

(Figure 4.14). Thus, the dominate direction of thrusts are northeast and the back thrust 

direction is southwest. 

5.1.5 Summary and experimental analog support for structural elements 
 

Experimental analog models of structural style show vergence direction, low-angle 

thrusts, common detachment and roof surfaces and undisturbed strata above and below. 

The work of Rowan et al. (2004) proves that the structural style of gravity driven thrust 

systems are dependent on rheology of basal surface. Two experiments are conducted by 

Rowan et al., (2004) with different basal shear surfaces, frictional and viscous. A basal 

shear surface that is highly frictional lends itself to an imbricate fan of low-angle thrusts.  

A basal shear surface with low friction exhibits symmetrical folding and higher angle, yet 

minimal faulting (Rowan et al., 2004) (Figure 5.1). If the structure of the Thorvald MTD 
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is compared to the models in Figure 5.1, the comparable structural features are the 

imbricates faults structures shown in Figure 5.1 (B) and not the salt driven folds shown in 

Figure 5.1 (A) nor the symmetrical folds shown in Figure 5.1 (C), although the somewhat 

variable vergence in the Thorvald MTD shows some similarities with (A) and (C).  

 

 

 

Figure 5.1  Physical analog model photos from McQuarrie 2004: a) salt pinch-out showing 
deformation in salt detachment fold-thrust belts b) Fold-thrust belt with a frictional detachment 
surface in physical analog model form; c) Fold-thrust belt with a ductile detachment surface in 
physical analog model form, the vergent direction of the folds are not consistent.  
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Figure 5.2 Comparison of structures in the experimental analog to the Thorvald MTD, A) Fold-
thrust belt with a frictional detachment surface in physical analog model form with imbricate thrusts 
superimposed (modified after McQuarrie 2004;) B) Imbricate thrusts illustrated in a seismic dip line 
in the Thorvald MTD. 

 

5.2 Summary of Comparison Between Systems 
 

Fold-thrust belts, gravity-driven deformation in deltas, and mass transport complexes 

have several deformation features in common: (i) displacement appears to be controlled 

by a mechanically weak layer resulting in the detachment surface; (ii) areas of extension, 

compression, and displacement are structural elements of the system; (iii) thrusts 

dominantly verge towards the foreland but there are exceptional back thrusts.  
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The main difference between fold-thrust belts and gravity-driven deformation in deltas 

and mass transport deposits is the scale in distance and time. The fold-thrust belts involve 

sequences that may be ten to twenty kilometres thick, whereas gravity-driven 

deformation and mass transport complexes range from metres to hundreds of metres in 

thickness. The time scale is a significant difference between fold-thrust belts and the 

gravity-driven deformation and MTDs; fold-thrust belts develop over millions of years 

and gravity-driven deformation and MTDs occur over short time periods, from instant to 

a slow creep over tens or hundreds of years. However, resulting structures are similar in 

form at different scales. 

 

5.3 Comparison of Internal Structures of the Thorvald MTD with other 

Mass Transport Deposits 

5.3.1 Israel Margin  

The Levant margin off the coast of Israel is a non-glaciated margin and resides in a 

tectonically active setting. The Levant Basin is subsiding and accumulating a thick 

sedimentary section mainly derived from the Nile River. Redistribution of the sediment 

occurs presently, and has been since the Pliocene, in the form of mass transport deposits, 

slumping, block and slab sliding, creep, and mudflows (Almagor 1979).  
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In the Levant Basin, Frey-Martinez, et al. (2005) studied a series of slumps, defined as 

the downslope movement of sediments. The MTDs studied are Pliocene and Holocene in 

age and are linked to subsidence and transgression events. Frey-Martinez et al. (2005) 

uses conventional 2D and high resolution 3D seismic to map the MTDs and use seismic 

attribute analysis to determine transport direction. The MTDs are similar to the Thorvald 

MTD in that they share a similar geometry; they have rounded toe regions, their length is 

greater than their width, they have relatively straight sides, and they are confined deposits 

with buttressed toe regions against the outer continuous strata. Frey-Martinez et al. 

(2005) divide the MTDs into two zones; a depletion zone and an accumulation zone. The 

depletion zone has extensional and contractional features similar to the Thorvald MTD. 

The accumulation zone consists of shortening features such as imbricate thrusts and fold 

systems, also consistent with contraction features of the Thorvald MTD (Frey-Martinez, 

et al., 2005). 

 

5.3.2 Offshore Trinidad 

Moscardelli, et al. (2006) identified similar features in a near-seafloor mass transport 

complex (MTC) in the Columbus Basin, offshore Trinidad, as those identified in the 

Thorvald MTD. The sediment mass studied by Moscardelli et al. (2006), using 3D 

seismic data, is from a shelf environment. The numerous episodes characterizing the 

MTCs are differentiated by lateral surfaces of different seismic character. The MTC has 

similar geometric features to the Thorvald MTD. Both have rounded toe regions, 

mounded seismic facies, erosional edges, and scours. The MTC has a maximum 



 118 

thickness of 250 m, whereas the Thorvald has a maximum thickness of 400 m. Although, 

the reflection cycles were limited, Moscardelli et al. (2006) were still able to identify 

thrust imbricate fields in the core area of the MTC that were related to topographic 

confinement of the flow. In this case, the confinement was by mud volcanoes. The main 

conclusion was different processes (i.e. slump, slide, debris flow) can occur 

simultaneously within MTD/MTC deposits, which is what is inferred for the Thorvald 

MTD. 
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Chapter Six:  Conclusions and Further Research 
 

 
Mass transport deposits represent a major component of the continental shelf edge and 

slope transport systems (Hampton et al., 1996, Posamentier and Martinsen, 2011). Mass 

transport deposits refer to all types of transport systems, (e.g. creep, slump, slide,) and 

have a vast range of scale. The processes that a transport system undergoes on the 

journey can be diverse and result in different types of deformation.  

 

The value of understanding the structure of MTDs and the processes that form them is in 

their potential as hydrocarbon reservoirs/seals and as geohazards. A detailed study of the 

internal structure from 3D seismic data has allowed better understanding of the Thorvald 

MTD and the links to other mass transport deposits around the world. 

 

6.1 Elements of the Thorvald Mass Transport Deposit 

 

The Thorvald MTD is characterized by multiple process regimes at unique locations 

along the flow. The processes are inferred from features in seismic data and compared to 

analog studies of MTDs previously published. The inferred collection of elements, 

processes and related kinematics is summarized: 

 

• The principal direction of the mass movement of the Thorvald MTD is 

determined to be southwest to northeast. The transport direction is based on 
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preserved erosional features on the shear basal surface and the morphology. 

These features are similar to evidence of flow direction in other studies (Mosher 

and Campbell, 2011 and Gee et al., 2006 for example).  

 

• The seismic facies inside the Thorvald MTD are comparable to seismic facies in 

other studies MTDs (Moscardelli and Wood, 2007; Frey-Martinez et al., 2006). 

These seismic facies help determine internal features and processes for the 

Thorvald MTD. 

 

• Contractional features are evident in the MTD. These contractional features are 

determined to be thrust faults and ridges. The thrust faults have a common 

element to thrust belts and other geological settings and follow Coulomb's 

criterion of failure. 

 

• Extensional faults are identified in upslope areas of the MTD. It is determined 

that areas of the Thorvald MTD underwent extension during failure, which is 

consistent with other MTD studies (Frey-Martinez et al., 2006). 

 

• The Thorvald MTD is categorized into three domains consistent with the 

literature. The toe domain is the downdip portion of the MTD and exhibits the 

most contraction. The head domain is the updip portion of the MTD, typically the 

area of extension, although dominated by back thrusts with some extension in the 
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Thorvald MTD. The region in between the head and toe domain is expressed as 

an intermediate domain because it has considerable deformation and not just 

translational slip. 

 

• Megaclasts are identified in the MTD. It is determined that the megaclasts slipped 

with the initial failure and are not consolidated competent insitu remnants. 

 

• The Thorvald MTD was a single episode failure. It is determined that the thrust 

faults span from the top of the MTD to the basal surface. Multiple episodes of 

failure would show layering of sequential thrust faults terminating within the 

MTD, indicating multiple tops (Moscardelli and Wood, 2007). 

 

• The Thorvald MTD is frontally confined. The toe of the MTD is buttressed 

against the undeformed strata downdip. 

 

• The head of the Thorvald MTD is a back thrust. The headscarp is not visible in 

the dataset. However, the back thrust at the head indicates multiple processes are 

at play. Frontally confined MTDs produce back thrusts.  

 

• The timing of the MTD is uncertain but key factors suggest the MTD is time 

equivalent to the thickness of the strata against which the toe of the MTD is 

buttressed. 
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• The kinematic processes suggest the head underwent fewer processes than the 

remainder of the MTD. The remainder of the MTD also moved faster than the 

head resulting in areas of extension potentially caused by differences in dynamic 

friction between the flow sediment and the shear basal surface. 

 

• The regional context of the MTD sheds some light on why the MTD stopped. The 

reduction in slope at the toe reduces the shear stress driving the flow. Thus, the 

shear stress became less than the shear strength and the MTD came to a rest. 

 

6.2 Comparison of Internal Features of the Thorvald MTD to other 
Geological Systems of Movement  
 
 
The Thorvald MTD has an extensional region updip, labeled the head, an intermediate 

region with moderate deformation, and a toe region consisting of compressional features. 

Throughout the MTD, however, there are areas of thrusts and extension that are related to 

inconsistent friction (probably variable pore-water pressure) on the basal surface. 

Therefore, the updip area may have a mixture of extensional and compressional features.  

This is broadly comparable to the gravity-driven deformation of deltas consisting of 

updip extension, translation zone, and a basinward compression area with fold and thrust 

features. 
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The internal features of the Thorvald MTD show many similarities to other structural 

systems. It has dominant downdip vergence of thrusts with some back thrusts. This 

feature is congruent with frontally confined MTD, but also suggests that there is some 

incompetence in the basal surface. This observation is a feature that is similar to fold-

thrust belts moving on a somewhat incompetent base. 

 

The Thorvald MTD has a duplex system consistent with those in fold-thrust belts with 

the basal surface as the detachment. And the roof is located at seabed at that time. The 

thrust sheets fall over at the seabed creating the thrust-bend fold geometry. This 

geometry is similar to fold-thrust belts and gravity-driven deformation deltas.   

 

The scale is the most significant difference between fold-thrust belts and mass transport 

deposits or gravity-driven deformation in deltas. Fold-thrust belts are related to crustal 

plate tectonics and are on the thickness scale in kilometres.  MTDs and gravity-driven 

deformation in deltas are on the thickness scale in tens to hundreds of metres. 

 

The time scale is also significant between fold-thrust belts and mass transport deposits or 

gravity-driven deformation in deltas. Fold-thrust belts are developed over millions of 

years, and MTDs from instant to tens of years.  

 

The Thorvald MTD has more variability in the internal structures. For the most part fold-

thrust belts have older thrusts at the hinterland and younger thrusts near the foreland 
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basin. Likewise, gravity-driven deformation in deltas has an updip zone of extension, and 

middle zone of translation, and a downdip zone of contractionl features. In a MTD, 

broadly speaking the updip area is an extensional area and the downdip area is a 

contractional area. However, the compression and extension areas depend upon the 

friction of the basal surface. When the friction on the basal surface is variable, sediment 

in sections of the mass transport deposit can travel at different rates creating areas of 

extension, if relatively faster than the updip sediment.  

 

Dip of the thrust angles in fold-thrust belts are less than 45° and a typical range being 

between 25° to 30°. In the Thorvald MTD, some thrusts lie at 15° to the basal surface, 

but the steeper inclined horses are at higher dips of 30° to 35°. Potentially, this is due to a 

rotation the horses undergo after they were formed at lower angle (perhaps because of the 

high friction). 

 
As is described in earlier chapters, this thesis provides evidence that the Thorvald Mass 

Transport Deposit has internal structures that reveal its organization and the processes of 

deformation.  

 

This is highly significant because understanding the structure of mass transport deposits 

will provide valuable information for understanding overlying and underlying strata, and 

will aid in risk analysis for the safety of potential subsea facilities. Furthermore, it 

provides critical information for drilling exploration wells where mass transport deposits 

will be penetrated. 
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6.3 Recommendations for Future Research 
 

For further research, consideration should be given to the resolution of seismic data. In 

this work, 3D seismic data were used. The data were originally collected as multi-client 

data for oil and gas exploration. Detailed further research of mass transport deposits 

would require high resolution seismic. High resolution 2D lines through the Flying Foam 

area that could be tied to the 3D Flying Foam seismic survey would help resolve the 

internal structures to give a clearer picture, a level of detail that could not be reached in 

this study. 

 

A broader study area of the overall morphology of the Base Paleogene would reveal the 

headwall associated with the Thorvald MTD. As well, it would identify any other mass 

transport deposits that have slipped on the Base Paleogene. Further evaluation of multiple 

slips may lead to knowledge of conducive conditions of failure. 

 

Studies of mass transport deposits near hydrocarbon plays could lead to valuable insight 

to potential seal and source locations for future development. The mass transport deposits 

could play a role in potential movement of mud prone sediment failure over reservoir 

quality sandstone. Such studies would add value to the hydrocarbon exploration industry. 
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