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Abstract 

Initially, the fluxional solution dynamics of the terpyridine (tpy) ligand in 

[Ru(bpy-d8)2(η
2-tpy)]2+ were studied by proton NMR spectroscopy, prior to a study of the 

excited state dynamics. Variable temperature 1H NMR data reveals that the pendant 

pyridine ring of the tpy ligand wobbles or rotates rather than undergoing an exchange or 

tick-tock twist mechanism. Then, the excited state dynamics of [Ru(bpy)2(η
2-tpy)]2+ were 

studied. Protonation of the pendant pyridine ring of [Ru(bpy)2(η
2-tpy)]2+ demonstrates 

that intra ligand charge transfer (ILCT) occurs between the pendant pyridine and adjacent 

bpy ligand in the [Ru(bpy)2(η
2-tpy)]2+ complex. Thus, addition of trifluroacetic acid 

(TFA) results in slight spectral changes which have been assigned to the protonation of 

the pendant pyridine of [Ru(bpy-d8)2(η2-tpy)]2+. The protonation of the pendant pyridine 

increases the lifetime from 0.082 ns to 2.6 ns. Mulliken-Hush analysis of the ILCT of 

[Ru(bpy)2(η2-tpy)]2+ has been done and compared with  that  of  [Ru(bpy)3]
2+.  The  value  

for  the  electronic  coupling  element  (HDA)  for [Ru(bpy)2(η2-tpyH+)]3+ suggests  that  

the electronic coupling between bpy and the pendant pyridne is quite strong.  

A preliminary study on photoinduced ligand loss from [Ru(bpy)2(py)2]
2+ has been 

made. The photolysis of cis-[Ru(bpy)2(py)2]
2+

 in the presence of trifluoroacetic acid, 

using broad band, white light excitation, leads to a shift in λmax from 458 nm to 472 nm, 

consistent with a substitution reaction of the pyridine by THF. A flash photolysis study 

was also performed to investigate the excited state changes of [Ru(bpy)2(py)2]
2+  in THF.  
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Chapter 1  Background Review  

 1 

Chapter 1 Background Review 

This chapter describes photoinduced electron transfer and its importance; the 

principles of photochemical reactions; molecular orbital diagrams of transition metal 

complexes; the photophysical and photochemical behavior of Ru(II) polypyridyl 

complexes; the energy gap law and the ligand field states of transition metal complexes. 

These topics are required to understand the role of proton transfer dynamics in ground 

and excited state Ru(II) polypyridyl complexes, which is the focus of this thesis.  

1.1 Introduction 

Photoinduced Electron Transfer (PET) reactions form the mechanistic basis of 

natural photosynthesis and a fundamental understanding of PET is a prerequisite for the 

development of artificial systems for the conversion and storage of solar energy.1  

En
e r
g y

 

Scheme 1.1 Excitation of a donor followed by electron transfer. 

 
These PET reactions involve photoexcitation of molecules that can act as both strong 

oxidizing and reducing species. The free energy change to form [D+•-A−•] is significantly 
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endogonic (∆G >> 0), such that the rate constant for electron transfer is negligible in the 

ground state [D-A] adduct (Scheme 1.1). Photon capture by the [D-A] assembly is 

followed by an electron transfer from an electron donating species (D) to an electron 

accepting species (A). The photoinduced radical pair may be formed rapidly and 

efficiently when the quenching process is energetically favored.2 

The sun is the main source of energy on the earth. Natural photosynthetic 

apparatus converts the sun light into chemical energy, where energy and electron transfer 

processes take place. Figure 1.1 demonstrates a natural photosynthesis system. 

 

Figure 1.1 Photosynthesis at the thylakoid membrane. (Reprinted with permission from 

reference 3. Copyright © 2002, John Wiley & Sons, Inc.). 

 

In the first step, sunlight is absorbed by an antenna, consisting of pigments, 

chlorophylls and carotenoids. This antenna array helps to enhance the light absorbing 

capacity of the photosynthetic apparatus. Thus, absorption of light and its conversion, 

results in the formation of molecular excited states. In a short time, the energy is 
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transferred between the chromophores and eventually reaches the reaction center. 

Consequently, the light energy is converted into chemical energy by multiple electron 

transfer steps in the reaction center.4 However, it is both difficult and challenging to 

design artificial photosynthetic assemblies similar to that of natural photosynthesis. 

Artificial photosynthesis is a concept to mimic the photosynthesis of plants and other 

photosynthetic organisms. In order to construct an efficient artificial photosynthetic 

device many points have to be considered, such as the efficiency of the device to collect 

light, conversion of light into chemical energy and transportation of that energy to where 

the reaction will take place. Moreover, the effectiveness of the artificial device depends 

on the donor-acceptor distance, orientation of the molecular orbitals, and excited state life 

time of the chromophores. Considering the vital role of electron-transfer (ET) in many 

processes and in photochemical applications it is very important.5 

 

1.2 Principles of Photochemical Reactions 

The most important part in a photophysical or photochemical process is the 

absorption of light by a molecule that usually generates an excited state species, which 

possesses a different electronic structure to the ground state species.  For a two state 

system, the excited state of the molecule always remains higher in energy than the ground 

state.  The interaction of the oscillating electric fields of the incident light interact with 

the electron density of the molecule and result in a redistribution of electron density of 

the ground state molecule thereby forming an excited state species, Figure 1.2. 
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Figure 1.2 Schematic representation of electron transfer upon photoexcitation. 

The excited electronic state that is formed, has an increased energy content and can 

undergo deactivation in a variety of different ways such as; photochemical reactions; 

radiationless deactivation; emission of light (luminescence); and other quenching 

processes to reform the ground state (Figure 1.3).6 

 

 

 

 

 

  

 

 

                                                                                         

 

 
Figure 1.3 Deactivation pathways of excited state molecules in photochemical 
processes.
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The excited state intramolecular dynamics are illustrated by the Jablonski diagram 

shown in Figure 1.4.6 In the absence of spin orbit coupling, three states are involved in a 

photochemical process (the ground state, singlet excited state and triplet excited state). 

The lowest excited state (triplet) cannot be directly populated by light absorption as spin 

must be conserved during absorption of a photon. However, it can be indirectly populated 

via partial deactivation of a singlet excited state. The diagram shows various deactivation 

processes, where kf, kic, kisc, kp and k´isc are the rate constants for fluorescence, internal 

conversion, S1→T1 intersystem crossing, phosphorescence and T1→So intersystem 

crossing, respectively.6  

 

Figure 1.4 Schematic representation of a Jablonski diagram.6 

 

1.3 Bonding and Electronic Structure 

Transition metal complexes consist of metal ions and ligands. To understand the 

spectroscopic, redox and kinetic properties of transition metal complexes it is convenient 

to consider a schematic molecular orbital diagram as shown in the Figure 1.5.  
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Figure 1.5 Schematic energy-level diagram for an octahedral [M(L)6] where M is a 2nd 
row d6 metal center transition metal complex and L is a chromophoric ligand.7  

 

As illustrated in Figure 1.5, the σ and π bonding orbitals of the ligands have lower 

energies than the metal d-orbitals. Combinations of metal and ligand orbitals result in the 

formation of bonding and antibonding molecular orbitals where the σL, πL and πM orbitals 

are entirely filled. However, the higher energy molecular orbitals remain empty. 

Absorption of light causes changes in population of the higher orbitals through electronic 

transitions, more accurately a redistribution of electron density. It is well-documented 

that three primary types of electronic transition occur in transition metal assembilies.7 i) 

Transitions between molecular orbitals localized on the central metal are called metal 

centered (MC), ligand-field or d-d transitions. ii) Transitions between MOs localized on a 

ligand are called ligand-centered or intraligand transitions. iii) Transitions between MOs 
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localized on different parts of the complex, which cause a displacement of electronic 

charge between the metal and ligands, are called charge-transfer (CT) transitions or 

ligand-to-metal charge-transfer (LMCT) or metal-to-ligand charge transfer (MLCT) 

transitions.  

 

1.4 Electronic Spectroscopy 

[Ru(bpy)3]
2+ is one of the most studied and most used ruthenium polypyridyl 

complexes in the field of photochemical and photophysical research.8 The absorption 

spectrum of [Ru(bpy)3]
2+ at room temperature is shown in Figure 1.6.  
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Figure 1.6 Absorption spectrum of [Ru(bpy)3]

2+ in CH3CN at 298 ± 3 K. 

[(dπ)6→ 1[(dπ)5(π2
*)1] + vibronic components  

[(dπ)6→1[(dπ)5(π1
*)1] 

 

[π1→π2
*] 

[π1→π1
*] 

[(dπ)6→3[(dπ)5(π1
*)1] 
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The bands in the UV region at 244 and 287 nm are assigned to ligand-centered 

π→π∗ transitions. The relatively intense and broad absorption band at 450 nm in the 

visible region is due to spin-allowed metal-to-ligand charge transfer (MLCT) 

[(dπ)6→1[(dπ)5(π1
*)1] transitions and their vibronic components. The low energy tail is 

assigned to the [1(dπ)6→3[(dπ)5(π1
*)1] transition which arises from a direct MLCT 

transition from the ground state to the lowest-energy MLCT triplet state to give 

[Ru(bpy)3]
2+* by direct excitation. The energy splitting between the lowest singlet and 

triplet states is 1700 cm-1.9c In addition, one set of MLCT bands appear between 300 to 

350 nm. This MLCT is assigned to the π*
2 level on the bpy ligands [(dπ)6→ 1[(dπ)5(π2

*)1]. 

The presence of spin-forbidden [1(dπ)6]→3[(dπ)5(π1
*)1] transitions in the absorption 

spectrum of [Ru(bpy)3]
2+ is due to spin-orbit coupling. Spin-orbit coupling mixes orbital 

and spin character in the electronic wave functions with the extent of singlet character 

dictating absorptivity.9c  

Structurally, [Ru(tpy)2]
2+ is more attractive than [Ru(bpy)3]

2+, considering there is 

only one  isomer for [Ru(tpy)2]
2+.9a The absorption spectrum of [Ru(tpy)2]

2+ has been 

reported and is shown in Figure 1.7. The very intense bands in the UV region at 308, 270 

and 230 nm are assigned to ligand-centered π →π∗ transitions. The relatively intense 

and broad absorption band at 476 nm in the visible region, which is responsible for the 

deep red color, is due to a spin-allowed metal-to-ligand charge transfer (MLCT) 

[(dπ)6→1[(dπ)5(π1
*)1] transition. The band envelopes are broad due to many underlying 

MLCT transitions and their vibronic components.9b The low energy tail is assigned to a  

[(dπ)6→3[(dπ)5(π1
*)1] transition which is formally spin forbidden, however spin-orbit 
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coupling mixes the 1MLCT and 3MLCT excited states such that the spin selection rule is 

relaxed. Therefore, the use of spin labels is an approximation.9c 
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Figure 1.7 Absorption spectrum of [Ru(tpy)2]
2+  in CH3CN at 298 ± 3 K. 

 
 
Comparison of the intensities and energetics for the [(dπ)6→1[(dπ)5(π1

*)1] and 

[(dπ)6→3[(dπ)5(π1
*)1] transitions in closely related systems of ruthenium polypyridyl are 

given in Table 1.1.  

 
 
 
 
 
 
 
 
 
 
 

[(dπ)6→3[(dπ)5(π1
*)1] 

[(dπ)6→1[(dπ)5(π1
*)1]  

[π1→π2
∗] 
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Table 1.1 Comparison of absorption band energies and intensities for Ru(II) polypyridyl 
complexes in CH3CN 

λmax(abs), nm (ε, M-1cm-1) and Energies (cm-1)  

Transitions [Ru(tpy)2]
2+  [Ru(tpy)(4-Etpy)3]

2+a 

 
[Ru(bpy)2(η

2

-tpy)]2+ 
 [Ru(bpy)3]

2+ 

(dπ)6→ 
1[(dπ)5(π1

*)1] 
 

476 (14,931)  
21010 

504 (5,400)b 

19840 
449 (14,086) 

22270 
451 (16,636) 

22170 

(dπ)6→ 
3[(dπ)5(π1

*)1] 
 

520 (3768) 
19230 

610 (560)b 

16390 
505 (663) 

19800 
510 (1245) 

19608 

   a  In 4:1 EtOH/H2O solution; 4-Etpy = 4-ethylpyridine,  b Reference 9b.  
 

 

1.5 Electronic Structure (Ground State)  

Kober et al.
10a developed an electronic structure model for the absorption spectra 

of [M(bpy)3]
2+ (M = FeII, RuII, OsII), incorporating spin-orbit coupling and assuming 

single electron transitions between molecular orbitals. The result of the electronic 

structure model depends on four parameters which were derived for [M(bpy)3]
2+ in D3 

symmetry using the coordinates  shown in Figure 1.8.    

 

Figure 1.8 (A) Octahedral coordinate system for [M(bpy)3]
2+ (B) Symmetry coordinate 

system for [M(bpy)3]
2+. (Adapted from 10a)  
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The lower case letters x, y and z are assigned to the octahedral axes whereas the upper 

case letters X, Y and Z are selected as the symmetry axes in the point group of D3. The 

bipyridine ligands are designated by p, q and r. The metal M is in the origin at Z (C3) 

symmetry axis which is perpendicular to the plane of the page and goes by the origin 

point M in the octrahedral system. 

 

 
Figure 1.9 Molecular orbital diagram for [M(bpy)3]

2+. Δ is positive and Γ is negative. 

(Adapted from 10a) 
 

The molecular orbital scheme derived from the analysis is shown above, and 

energetics which include the dπ splitting (Δ), π* splitting (Γ), the magnitude of the 

exchange (K) and spin-orbit coupling (λ) are summarized in Table 1.2.10a 

Γ 

Δ 
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Table 1.2 Molecular orbital scheme analysis for [M(bpy)3]
2+ 

M Δ Γ K λa 

Fe2+ 100 -1500 800 440 

Ru2+ 500 -1600 850 1200 

Os2+ 800 -2100 850 3000 
aThe symbol for spin-orbit coupling is currently ξ  

Following [(dπ)6 → 1[(dπ)5(π1
*)] excitation, the electron spin of the excited 

electron in the π1
* orbital and the one electron in the dπ5 manifold will couple to yield a 

thermally equilibrated triplet excited state. The magnitude of the singlet-triplet splitting is 

governed by the electron exchange integral Knm given by the following eqn. 1.1: 10a 

1

* *
1 1 2 1

12

1
(1) (1) (2) (2)

mnm n m n
K d d d dπ π π π τ τ

 
=  

Γ 
∫ ∫     (1.1) 

Where the subscripts n and m designate the orbitals where n =A1, E and m = A2, E and 

dτ1 and dτ2 are to indicate integration over the electron co-ordinates. The singlet-triplet 

energy difference EST (EST = 2Knm) arises from the difference in exchange energies which 

is ~1700 cm-1.10b 

 

1.6 Electronic Structure (Excited State) 

Experimentally, Crosby et al.
14

 determined the energy level splitting for the lowest 

excited dπ* states for ruthenium(II) cations that range from 18 to 65 cm-1. However, the 

manifold of 3MLCT states kinetically behave as a single state at 77 K as the states are 

Boltzmann populated. The 3MLCT excited state is split by low symmetry and spin-orbit 

coupling into three closely spaced states as shown in Figure 1.10. 
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Figure 1.10 Energy level splitting for the ruthenium(II) cation. 

Transient IR and transient resonance Raman studies have shown that the excited 

electron is localized on a single bpy ligand, [RuIII(bpy•−)(bpy)2]
2+* rather than delocalized 

over all three bpy ligand, [RuIII(bpy•−1/3)3)]
2+* in the thermally equilibrated excited state.11 

The excited-state properties of  [Ru(bpy)3]
2+  are shown in the Table 1.3.15 

Table 1.3 Excited state properties of [Ru(bpy)3]
2+  

 
State 

 
Energy 

cm-1 

 

knr, s
-1 

 

kr, s
-1 

 
φem 

 

3 

 

61.2 

 

1.0 x 106 

 

5.9 x 105 

 

0.404 

2 10.1 4.1 x 104 1.2 x 104 0.230 

1 0 4.8 x 103 9.2 x 102 0.167 

 

Kober et al.15 also developed an electronic structure model for the localized 

excited states of [M(bpy)3]
2+ (M = Fe, Ru, Os) complexes. The coordinate system used 

for this analysis is shown in Figure 1.11(a). The promoted electron from the ground state 
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is considered to exist in the π* orbital of bpy ligand p, that results in C2 symmetry of the 

molecule.     

M
NN

N N

N

N

p Z

Y

q

r              

dA1 B2

dB2 B2

dA2 B2

G

F

d 6

*

*

*

Energy

 

(a)                                                                      (b) 
 
Figure 1.11 (a) Electronic structure model for the localized excited states of [M(bpy)3]

2+ 

(M = Fe, Ru, Os) complexes.15 (b) Relative energies of the (dπ)5(π*B2)
1 excited state and 

the (dπ)6 ground state. (Adapted from 15) 
 

As an electron is promoted from the (dπ)6 ground state to the (dπ)5(π*B2)
1 excited 

state, three different configurations of excited states may exist  as shown in Figure 

1.11(b). Here, F and G are two parameters that describe the relative energies from 

2 2

*( )( )A Bd π  to 
2 2

*( )( )B Bd π  and  
2 2

*( )( )A Bd π  to 
1 2

*( )( )A Bd π , respectively.15       

At room temperature, solutions of [Ru(tpy)2]
2+ are not luminescent and its excited 

state life time was reported as 250 ps from transient absorption laser flash photolysis 

experiments.11 However, at 77 K in a rigid solvent glass matrix [Ru(tpy)2]
2+ exhibits a 

long-lived luminescence characteristic of a triplet metal to ligand charge transfer 

(3MLCT) with φem= 0.48 and τ = 11.0 µs. The φem and τ are temperature dependent. As 
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the temperature increases, from 2 K to 77 K, the luminescence intensity increases (Figure 

1.12).12      

 
Figure 1.12 Emission spectra of [Ru(tpy)2]

2+ as a function of temperature. (Reprinted 

with permission from reference 12. Copyright ©1982, Elsevier). 
 

 

The changes in lifetime with temperature are consistent with triplet MLCT states which 

kinetically behave as a single MLCT state at 77 K. Fitting the lifetime and temperature 

data give rise to splitting of the energy-level and intrinsic life-time (Figure 1.13).  

 

Figure 1.13 Temperature dependence of the decay time of the emission of [Ru(tpy)2]
2+. 

(Reprinted with permission from reference 12. Copyright ©1982, Elsevier).
 

K 
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The 3MLCT excited state is split by low symmetry and spin-orbit coupling into three 

closely spaced states. The energy-level splitting of [Ru(tpy)2]
2+ (12 cm-1, 55 cm-1)  with  

coresponding life-times 340 µs, 67 µs and 1.5 µs  are  shown in Figure 1.14.12 

                                            

16,200 cm-1~
~

~
~2Knm ~ 1700 cm-1

55 cm-1

12 cm-1
0 cm-1

1MLCT1(3d 5 *1)

3MLCT1(3d 5 *1)

1GS(1d 6)      

Figure 1.14 Energy level splitting for [Ru(tpy)2]
2+. 

 
The temperature dependence of the emission of [Ru(tpy)2]

2+ from 77 K to 298 K 

is due to the intervention of the thermally activated 3MLCT state to 3[d-d] state 

interconversion. Meyer et al.
13 suggested that the unfavorable bite angle of the tpy ligand 

results in a weak ligand field for [Ru(tpy)2]
2+. This situation allows a thermally activated 

surface crossing into low-lying MC states and also increases the magnitude of knr.  

 

1.7 Excited State Decay  

Light absorption is rapid on the time scale for nuclear motions. Photon capture 

leads to formation of Franck-Condon excited states. Thus, an excited state formed by 
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excitation has the electronic coordinates of the excited state but still possesses the nuclear 

and solvent coordinates of the ground state. Following photon capture, relaxation to the 

equilibrium nuclear coordinates via vibrational cooling in the excited state manifold 

occurs in tens of femtoseconds to picoseconds and in picoseconds for the solvent 

response. The absorption spectrum of [Ru(bpy)3]
2+ is dominated by manifold MLCT and 

π to π* absorptions that occur from the singlet ground state, dπ6, to the lowest lying 

singlet 1MLCT excited state  which undergoes subpicosecond intersystem crossing to a 

long-lived 3MLCT excited state. The dynamics of excited state decay for Ru(II) 

polypyridyl complexes have been extensively studied. An energy level diagram for 

[Ru(bpy)3]
2+* is shown in Figure 1.15.  

 

Figure 1.15 Energy level diagram for [Ru(bpy)3]
2+*.13 

 
Following the MLCT excitation, the 1[MLCT] excited state undergoes rapid intersystem 

crossing (kisc ~ (20 ± 15 fs-1) to form the vibrationally hot 3[MLCT] excited states. 

Thermally activated 3MLCT→3dd transitions are common for ruthenium polypyridyl 
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complexes. From the temperature dependent life time data it has been observed that for 

[Ru(tpy)2]
2+, the energy barrier between 3MC and 3MLCT states is 1500 cm-1 which is 

significantly smaller than that of 4000 cm-1 obtained for [Ru(bpy)3]
2+.13  

 

1.8 Excited State Reactivity 

Ruthenium(II) polypyridyl complexes are one of the most thoroughly investigated 

classes of all coordination compounds owing to their extremely rich photophysical and 

redox properties. They possess an exclusive combination of chemical stability, redox 

properties, excited state reactivity, luminescence and long excited state lifetimes.6 The 

combination of these properties has given rise to applications of ruthenium(II) 

polypyridyl complexes as photosensitizers, photocatalysts for the production of 

hydrogen, and in dye-sensitized solar cells, photon-induced switches, and molecular 

machines and devices.6, 16 For example, the most interesting feature of [Ru(bpy)3]
2+

 is the 

presence of metal-to-ligand charge-transfer (MLCT) bands in the visible region.17 Here, 

the electronic transitions occur when an electron is promoted from a metal-based dπ 

orbital to a low-lying π* level on a bpy ligand (Figure 1.16). The electronic structures of 

the ground and excited states have been described in sections 1.5 and 1.6.   
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π∗(bpy)
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Figure 1.16 Molecular orbital diagram of [Ru(bpy)3]
2+. 

[Ru(bpy)3]
2+ is both a good reductant and a good oxidant in its 3MLCT excited 

state. The reduction potentials (Eo') of [Ru(bpy)3]
2+* can be calculated by using the 

following eqn.:9c  

E
o'([Ru(bpy)3]

2+*/+) = Eo'([Ru(bpy)3]
2+/+) + ∆GES/nF = +0.85 V             (1.2) 

E
o'([Ru(bpy)3]

3+/2+ *) = Eo'([Ru(bpy)3]
3+/2+) - ∆GES/nF = -0.92 V           (1.3) 

The E
o' values for [Ru(bpy)3]

2+* in CH3CN vs SCE are shown in the redox potential 

diagram in Figure 1.17  

                              

 

 

 

 

 

 

Figure 1.17 Redox potential diagram for [Ru(bpy)3]
2+* in CH3CN vs SCE.9c  

[Ru(bpy)3]3+ [Ru(bpy)3]2+ [Ru(bpy)3]+

(1MLCT)[Ru(bpy)3]2+*

+1.27 V -1.34 V

+0.85 V-0.92 V

2.19 eV

dπ6dπ5 dπ6π∗1

dπ5π*1
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 The redox and excited state properties of [Ru(bpy)3]
2+ can be tuned by synthetic 

modifications of the ligands or ligand substituents.18 The 3MLCT excited state generally 

decays to the ground state [Ru(bpy)3]
2+ by radiative (kr) and non-radiative (knr) processes. 

The radiative decay (kr) involves spontaneous emission of a photon of light. Conversely, 

in non-radiative decay (loss of heat), the energy is distributed through internal molecular 

vibrations in the molecule by the population of the metal-centred 3MC, 3dd, or ligand-

field state, which itself is non-emissive and can give rise to ligand loss.   

The emission spectrum provides information about the efficiency of excited state 

formation, lifetime, and on the dynamics of consequent electron transfer events.19 An 

alternative deactivation process of the lowest lying 3MLCT can also occur via metal 

centered 3
dd excited states. These thermally populated dd states may exist from ps to ns 

depending on the ligand and lead to the loss of ligands and decomposition of the complex 

as they are antibonding in nature.20 

 

Scheme 1.2 The excited state dynamics of [Ru(bpy)3]
2+.20
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Schmehl et al.,21 studied phenyl substituted [Ru(phen)(bpy-d8)2]
2+ (phen = 1, 10-

phenanthroline) complexes (Figure 1.20) which are structurally analogous to 

[Ru(bpy)2(η
2-tpy)]2+.  Investigations on the crystal structures revealed that in Ru(II) 

complexes having 2-phenyl substituted phen ligands, the phenyl substituents of the phen 

ligand are oriented nearly perpendicular to the phen ring and π-stack with adjacent 

coordinated 2,2-bipyridyl ligands (Figure 1.18). 

 

Figure 1.18 Molecular model of [Ru(bpy-d8)2(2-phenylphen)]2+. (Reprinted with 

permission from reference 21, Copyright © 1999 American Chemical Society). 
 

At room temperature, these complexes (Figure 1.20) are nonluminescent. The 

temperature-dependent luminescence has been reported and suggests that the non-

radiative relaxation in solution is dominated by rapid thermally activated internal 

conversion from the initially populated 3MLCT state which decays through a low-lying 

3
dd state which decays rapidly to the ground state. The arrangement of the phenyl 

substituent in 2-phenylphen depends on the dihedral angle α. The phenyl group is 



Chapter 1  Background Review  

 22 

coplanar if α is 0o (Figure 1.19 A) and perpendicular if α is 90o (Figure 1.19 B) with 

phen.21  

 
Figure 1.19 Arrangement of phenyl substituents in phenanthroline. 

 

Figure 1.20 Structures of 2-phenyl substituent in Ru(II) complexes. 

Room temperature absorption and emission properties for the ruthenium 

phenanthroline complexes are shown in Table 1.4.21  

Table 1.4 Photophysical properties of Ruthenium Phenanthroline complexes.21 
 

Complex 
 

 
λmax(abs) 

nm 

 
λmax(em) 

nm 

 
φem 

 
τem(ns) 

[Ru(phen)(bpy)2]
2+ 448 615 0.06 760 

[Ru(a)(bpy)2]
2+ 447 622 0.007 5 

[Ru(b)(bpy)2]
2+ 447 618 0.003 3 

[Ru(c)(bpy)2]
2+ 444 624 0.004 <1 

[Ru(d)(bpy)2]
2+ 444    
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In CH3CN solution the complexes have absorption maxima that range from 440 to 

450 nm which are due to MLCT charge transfer transitions. The room temperature 

emission was observed for all the complexes within the range of 610 nm to 625 nm, 

except [Ru(d)(bpy-d8)2]
2+. However, low temperature emission spectra for the ruthenium 

phenanthroline complexes do not differ much from the parent [Ru(phen)(bpy-d8)2]
2+ 

complex. Hence, the steric and electronic environment introduced by phenyl substitution 

in the 2-position of the phenanthroline causes only slight changes in the spectroscopic 

parameters. Conversely, [Ru(d)(bpy-d8)2]
2+ with the naphtho-fused phenanthroline 

derivative and the only ligand with extended unsaturation, behaves differently. The 

phenyl substituent in [Ru(a)(bpy-d8)2]
2+ can rotate freely and allows the optimal π-

stacking with the adjacent bpy ligand.  

 

 

 

 

 

 

 
Figure 1.21 Temperature dependence of luminescence decay rate constants for 

[Ru(a)(bpy)2](PF6)2 (Δ), [Ru(b)(bpy)2](PF6)2 (●), and [Ru(phen)(bpy)2](PF6)2 (о). 

(Reprinted with permission from Reference 21, Copyright © 1999 American Chemical 

Society).  
 

For other complexes, bridging between the 2-phenyl substituent and the phen 

hinders the rotation of the phenyl ring and the π-stacking interaction with bpy. The 

N N
X

a X = H, H
b X= CH2CH2
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temperature dependent luminescence study suggests (Figure 1.21) that introduction of 

phenyl moieties in the 2-position of phen lowers the energy of the LF excited states as the 

activation barrier for populating the LF state is lowered significantly relative to the parent 

complex [Ru(phen)(bpy-d8)2]
2+.21 However, the ability of the 2-phenyl group to π-stack 

with adjacent bpy ligands serves to stabilize the LF state compared to the complexes 

having a sterically controlled 2-phenyl substituent.  

 

1.9 Non-Radiative Decay 

The photophysical properties of transition metal complexes displaying MLCT 

excited states are dominated by non-radiative decay processes.22 According to the energy 

gap law, the non radiative decay rate (knr) is found to decrease exponentially with 

increasing emission energy for a homogenous series of complexes. That increasing the 

energy gap for the 3MLCT → ground state transition results in attenuation of knr is 

counterintuitive. However, complexes with low energy absorption bands are weak 

emitters with short-lived excited states and high energy emitters possess longer lifetimes 

within a series of structurally related complexes. The idea of the energy gap law is 

quantified by the application of the Fermi Golden Rule given by the following eqn. 

(1.4):22d  

' 2 ' 2 '( )( )el el vib vibe r E Eω ψ ψ ψ ψ δ χ〈 〉 = 〈 〉 〈 〉 −∑
v

    (1.4) 

where ω is the probability for the transition and δ(E'-E) is the Dirac delta function which 

is required to conserve energy. Application of the Born-Oppenhiemer and Condon 

approximations allows the separation of the electronic (Ψel) wave functions and 
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vibrational (Ψvib) wavefunctions and (Ψ'el) and (Ψ'vib) are electronic and vibration wave 

function for the excited state, r
v

 is the Hamiltonian operator which describes the radiative 

absorption or emission processes. Ψel also contains the wave functions that govern spin 

interconversion. It follows from equation (1.5) that the rate constant for the non-radiative 

decay is given by   

2
2 / ( )

nr k
k V FCWDπ= h             (1.5) 

where Vk is the vibrationally induced electronic coupling matrix element and FCWD is 

the Franck-Condon weighted density of states that contains the vibrational coupling and 

energy gap dependence for the 3MLCT → ground state transition. Assuming a single 

averaged promoting mode of quantum spacing ħωκ  and Qk  coordinate, Vk is given by    

, , . .k el f el i k f k i

k k k

V v v
M Q Q

χ χ
∂ ∂

= Ψ Ψ
∂ ∂

h
 

                                 

1/2 1/2

, ,1/2 2 2
k k

el f el i k

k k

C
M Q

ω ω∂    
= Ψ Ψ =   

∂    

h hh
        (1.6) 

The mixing coefficient α, is introduced for a spin state change from triplet to 

ground state (3MLCT → 1GS), which is technically spin forbidden, since spin-orbit 

coupling mixes singlet character into the spin wave function for the excited state allowing 

the transition to take place (eqn 1.7)       

                    

1/2

, , , ,1/2

1

1
, ,

2
k

el f el i el f el i

k k k

el f el i

k

M Q Q

Q

ω

α

∂ ∂ 
Ψ Ψ = Ψ Ψ 

∂  

∂
= Ψ Ψ

hh

  (1.7a) 
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                                     ( )31 1 3/el SO el el elH E Eα = Ψ Ψ −              (1.7b) 

                                          ( )
1/21 2 31

el el el
α αΨ = Ψ + − Ψ                (1.7c) 

In the single mode approximation and if the energy gap law is restricted to the 

condition of ħωκ >>kBT  and / 1E S ω∆ >>h , then knr is given by eqn. 1.8 

( )
( ) ( )

2
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2

k k
nr M o
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k S S Z Z
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∆  hh
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         
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                                                     1
M M

E
ln

S
γ

ω

 ∆ 
= − 

 h
                    (1.8d) 

Where, ∆E is the internal energy change, ωM (= 2πνM) is the angular frequency of the 

acceptor vibration in the ground state, and SM = (1/2)∆M
2 is the electron-vibrational 

coupling constant or Huang-Rhys factor. ∆M is the fractional displacement between the 

thermally equilibrated ground and excited states. ω  is the mean frequency for coupled 

low-frequency modes including the surrounding medium. So = (1/2)∆o
2 is a dimensionless 

parameter that is related to the vibrational reorganization energy upon formation of the 

excited state, and ∆o is the fractional bond displacement change between ground and 

excited state.23 
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In the single-mode approximation, knr can be written as shown in eqn (1.9) with 

the parameters Eo, ∆υo,1/2, SM and 
M

ωh available by emission spectral fitting. The energy 

gap, E0, is related to the experimentally observed emission energy Eem, by |∆E| =  

0 , ,o L em o L
E Eλ λ+ ≈ +  with the reorganization energy λo,L defined in eqn (1.10) 
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                                               ,o L o oSλ ω= h                                  (1.10) 

The logarithim of, knr is given by the follwing eqn. 

                                      0ln ln[ ( )]
nr

k ln FC calcβ= +                       (1.11) 

In a single mode approximation the eqn is 
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Equation 1.12 is the famous ‘‘energy gap law’’ for excited-state non-radiative decay 

which relates non=radiative decay dynamics to the energy gap between excited and 
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ground states.22d At room temperature, excited state decay of polypyridyl complexes is 

dominated by non=radiative processes where φem << 1. This decay rate constant knr is 

related to the energy gap between the ground and excited state. knr increases as the energy 

gap decreases. Due to this effect, the compounds with low energy absorption bands 

usually have short-lived excited states with weak emission. Microscopically, non-

radiative decay to a first approximation is a quantum mechanical tunnelling process.23 

The potential energy surfaces are shown in Figure 1.22.  The energy gap has an influence 

over the vibrational overlap between the initial and final states as transfer of the excited 

electron results in a change in the equilibrium displacement (∆Qe) or frequency (ν = 

ω/2π) between the two electronic states.  The rate constant for non-radiative decay (knr) 

increases with the increase of vibrational overlap. Figure 1.22 illustrates the influence of 

the energy gap and change in equilibrium displacement (∆Qe) on vibrational overlap. 

Thus, vibrational overlap and knr increase with increasing of ∆Qe.
23 

 

Figure 1.22 Potential energy diagram and associated vibrational wave functions (A) 
illustrating the effects of energy gap (B) and changes in equilibrium displacement (C) on 
vibrational wave function overlaps. (Reprinted with permission from reference 23, 
Copyright © 1995 American Chemical Society).  



Chapter 1  Background Review  

 29 

1.10 Photoinduced Ligand Loss 

Photoinduced ligand loss reactions are well-known and have been extensively studied 

since the pioneering work done by Adamson.24 These types of reactions involve loss of a 

ligand from a metal complex which can be replaced by a solvent, a counter ion or an 

added ligand.25 Most ruthenium(II) complexes undergo ligand photolabilization reactions 

which are attributed to population of ligand field states. It is difficult to quantify the d-d 

energetics as the transitions are masked by strong charge transfer transitions. The 

molecular orbital diagram for Ru(II) polypyridyl complexes with octahedral symmetry 

shows three main types of electronic transitions occurring at low energies. Promotion of 

an electron from a dπ metal orbital to a π* ligand orbital gives rise to a metal-to-ligand 

charge transfer (MLCT) excited state. The excited states of d6 octahedral complexes are 

strongly displaced with respect to the ground state along the metal-ligand vibration 

coordinates. When the lowest lying excited state is assumed to be a “3
dd” state, it is 

short-lived and undergoes fast radiationless deactivation to the ground state or causes 

ligand-loss photochemistry (Figure 1.23). As a result the luminescence emission does not 

decrease with increasing temperature. On the other hand, metal-to ligand charge transfer 

3MLCT excited states are not strongly displaced compared to the ground state geometry. 

When the lowest excited state is 3MLCT, luminescence is observed. However, at high 

temperature, thermally activated radiationless deactivation via upper lying MC excited 

states may occur.6  
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Figure 1.23 Schematic representation of MLCT and dd excited states. 

 

The existence of low-lying dd states limits the use of polypyridyl complexes of 

Ru(II) for the studies of photoinduced electron and energy transfer in molecular 

assemblies in solution. However, complications arising from dd states can be avoided in 

several ways, such as, the use of analogous complexes like those of Os(II) or Re(II). For 

these metals 10 Dq is 20-30% greater than for Ru(II) complexes and dd states are not 

thermally accessible at room temperature or below.26 Moreover, appropriate 

combinations of ligands can also reduce the dd-MLCT energy gap, increasing the 

MLCT→dd barrier. Rigid media such as cellulose acetate, poly(ethylene oxide), zeolites, 

poly(methyl methacrylate)(PMMA), and SiO2 sol-gel monoliths are known to inhibit the 

reactivity of dd states.26   

 

(Ru-N) 

(dd) 
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1.11 Thesis Overview 

This thesis consists of the following five chapters:  
 
This chapter has briefly described an overview; dynamics of excited state processes; 

photoinduced electron transfer; and photoinduced ligand loss reactions.  

Chapter 2 describes the ground state fluxional dynamics of the terpyridine ligand in 

the [Ru(bpy-d8)2(η
2-tpy)]2+ complex which is important to studies of the excited state 

dynamics of that complex. 

Chapter 3 deals with the study of excited state charge transfer dynamics of the  

[Ru(bpy)2(η
2-tpy)]2+ complex.  

Chapter 4 describes preliminary investigations into measuring rate constants for 

excited-state ligand loss. 

Chapter 5 reviews the synthetic chemistry of metal polypyridyl complexes, and 

provides experimental details for the work described in this thesis.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1  Background Review  

 32 

1.12 References 

1.  a) Meyer, T. J. Acc. Chem. Res. 1989, 22, 163; b) Huynh, M. H. V.; Dattelbaum, D. 

M.; Meyer, T. J. Coor. Chem. Rev. 2005, 249, 457; b) Wasielewski, M. R. Acc. 

Chem. Res. 2009, 42, 60208; c) Carraro, M.; Sartorel, A.; Toma, F. M.; Puntoriero, 

F.; Scandola, F.; Campagna, S.; Prato, M.;  Bonchio, M. Top Curr Chem. 2011, 303, 

121.  c) Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. Proc. Natl. 

Acad. Sci. USA. 2012, 109, 15560.    

2. Gaillard, E. R.; Whitten, D. J. Acc. Chem. Res., 1996, 29, 292. 

3. Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry, New York: Wiley, 

2002.  

4. a) Sykora, M.; Maxwell, K. A.; DeSimone, J. M.; Meyer, T. J. Proc. Natl. Acad. Sci. 

USA. 2000, 97, 7687. b) Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; 

Iwata, S. Science 2004, 303, 1831.  

5. a) Balzani, V. Electron Transfer in Chemistry Vol 4, Wiley-VCH, Weinheim, 2001. 

b) Wasielewski, M. R. Chem. Rev. 1992, 92, 435. c) Gust, D.; Moore, T. A.; Moore, 

A. L. Acc. Chem. Res. 2001, 34, 40. d) Arakawa, H.; Aresta, M.; Armor, J. N.; 

Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; et al. Chem. 

Rev. 2001, 101, 953. 

6. a) Dixon, I. M.; Lebon, E.; Sutra, P.; Igau, A. Chem. Soc. Rev. 2009, 38, 1621. b) 

Lewis. N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.   c) 

Juris, A.; Balzani, V. Coor. Chem. Rev. 1988, 84, 85. 

7. Balzani, V.; Juris, A.; Campagna, M. V.; Serroni, S. Chem. Rev. 1996, 96, 759. 



Chapter 1  Background Review  

 33 

8. Thompson, D. W; Fleming, C. N.; Myron, B. D.; Meyer, T. J. J. Phys. Chem. B 2007, 

111, 6930. 

9. (a) Fang, Y. Q.; Taylor, N. J.; Hanan, G. S.; Loiseau, F. R,; Passalacqua, R.; 

Campagna, S.; Nierengarten, H.; Dorsselaer, A. V. J. Am. Chem. Soc. 2002, 124, 

7912. (b) Coe, B. J.; Thompson, D. W.; Culbertson, C. T.; Schoonover, J. R.; Meyer, 

T. J. Inorg. Chem. 1995, 34, 3385. (c) Thompson, D. W.; Ito, A.; Meyer, T. J. Pure 

Appl. Chem. 2013 in press.  

10. (a) Kober, E. M.; Meyer, T. J. Inorg. Chem.  1982, 21, 3967. (b) Lever, A. B. P; 

Gorelsky, S. I. Coord. Chem. Rev. 2000, 208, 153. 

11. Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1987, 109, 2381. 

12. Agnew, S. F.; Stone, M. L.; Crosby, G. A. Chem. Phys. Lett. 1982, 85, 57. 

13. Calvert, J. M.; Caspar, J. V.; Binstead, R. A.; Westmoreland, T. D.; Meyer T. J. J. 

Am. Chem. Soc. 1982, 104, 6620.  

14. G. D. Hager, G. D.; Crosby, G. A. J. Am. Chem. Soc., 1975, 97, 7031. 

15. Kober, E. M.; Meyer, T. J. Inorg. Chem.  1984, 23, 3877. 

16. Schramm, F.; Meded, V.; Fliegl, H.; Fink, K.; Fuhr, O.; Qu, Z.; Klopper, W.; Finn, 

S.; Keyes, T. E.; Ruben, M. Inorg. Chem., 2009, 48, 5677. 

17. Ballardini, R.; Balzani, V., Credi, A.; Gandolfi, M. T.; Venturi, M.  International 

Journal of Photoenergy, 2001, 3, 63. 

18. Bargawi, K. R.; Llobet, A.; Meyer, T. J. J. Am. Chem. Soc., 1988, 110, 7751.  

19. Thompson, D. W.; Wishart, J. F.; Brunschwig, B. S.; Sutin, N. J. Phys. Chem. A, 

2001, 105, 8117. 



Chapter 1  Background Review  

 34 

20. a) Crosby, G. A. Acc. Chem. Res. 1975, 8, 231.  b) Kalyanasundaram, K. Coord. 

Chem. Rev. 1982, 46, 159. c) Meyer, T. J. Pure Appl. Chem., 1986, 58, 1193  d) 

Thompson, D. W.; Fleming, C. N.; Myron, B. D.; Meyer, T. J. J. Phys. Chem. B, 

2007, 111, 6930.  

21. Wu, F.; Riesgo, E.; Pavalova, A.; Kipp, R. A.; Schmehl, R. H.; Thummel, R. P. 

Inorg. Chem. 1999, 38, 5620. 

22. a). Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. J. Am. Chem. Soc., 1982, 

104, 630; b) Kober, E. M.; Marshall, J. L.; Dressick, W. J.; Sullivan, B. P.; Caspar, J. 

V.; Meyer, T. J. Inorg. Chem., 1985, 24, 2755; c) Kober, E. M.; Caspar, J. V.; 

Lumpkin, R. S.; Meyer, T. J. J. Phys. Chem., 1986, 90, 3722. (d) Ito, A.; Meyer, T. J. 

Phys. Chem. Chem. Phys., 2012, 14, 13731. 

23. Strouse, G. F.; Schoonover, J. R.; Duesing, R.; Boyde, S.; Jones, W. E. Jr.; Meyer, T. 

J. Inorg. Chem., 1995, 34, 473.  

24. Adamson, A. W. J. Phys. Chem. 1967, 71, 798. 

25. Adelt, M.; Devenney, M.; Meyer, T. J.; Thompson, D. W.; Treadway, J. A. Inorg. 

Chem., 1998, 37, 2616. 

26. Fleming, C. N.; Dattelbaum, D. M.; Thompson, D. W.; Ershov, A. Y.;  Meyer, T. J. J. 

Am. Chem. Soc. 2007, 129, 9622. 

 

 

 



Chapter 2                                                The  Fluxional  Dynamics of Terpyridine in [Ru(bpy-d8)2(η
2
-tpy)]

2+
                                    

 35 

Chapter 2 The Fluxional Dynamics of Terpyridine in 
[Ru(bpy-d8)2(ηηηη

2-tpy)]2+ 
 

 This chapter describes the fluxional dynamic behaviour of the terpyridine (tpy) 

ligand in the [Ru(bpy-d8)2(η
2-tpy)]2+ complex.  Here, ground state dynamics and 

fluxional behaviour of tpy in [Ru(bpy-d8)2(η
2-tpy)]2+ have been documented as a prelude 

to the excited state measurements outlined in Chapter 3.       

 

2.1 Introduction 

The 2,2′:6′,2′′-terpyridine (tpy) ligand was first isolated by Morgan and Burstall 

in 1932.1 Usually, the tpy ligand is chelated in a tridentate fashion when sufficient co-

ordination sites are available on a metal ion. Still, there are some complexes where tpy 

appears as monodentate, bidentate or as a bridging ligand (Figure 2.1).2  

 

 

 

 

Figure 2.1 Various bonding modes of terpyridine with metals. 

Here, the focus of this study will be on complexes where the tpy ligand acts as a bidentate 

ligand. The structures for the pertinent ligands for the systems discussed in this chapter 

are given in chart 2.1.   

 

N
N N

M

η1
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2.2 Literature Review 

2.2.1 Crystal Structures  

Crystal structures for [Ru(bpy)3]
2+, [Ru(tpy)2]

2+ and [Ru(bpy)2(η
2-tpy)]2+ have 

been published.3 The structures for the [Ru(bpy)3](PF6)2, [Ru(tpy)2](PF6)2 and 

[Ru(bpy)2(η
2-tpy)](PF6)2 salts are shown in Figure 2.2 and pertinent bond lengths (Å) and 

bond angles (deg) are summarized in Table 2.1.  

In [Ru(bpy)3]
2+, the average Ru-N bond distance is 2.056(2) Å. The N-Ru-N' 

(78.7(1)) and N-Ru-N" (89.1(1)) bond angles are less than the ideal 90o.3a However, for 

N'-Ru-N" (96.3(1)), the angle is greater than the ideal 90o. The angle N'-Ru-N"' 

(173.0(1)) is less that the ideal 180o.3a For [Ru(tpy)2]
2+,3c the bite angle for N1-Ru-N4 is 

78.9o, significantly smaller than an ideal 90o bite. This structural feature has ramifications 

for non-radiative decay in the excited states of [Ru(tpy)2]
2+ (see below). In the case of  

[Ru(bpy)2(η
2-tpy)]2+,3b the Ru-N bond lengths range from 2.052(6) to 2.133(6) Å, longer 
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than those reported for [Ru(bpy)3]
2+ [2.056(2) Å].3c The pendant pyridine is within the 

Van der Waals contact distance of the adjacent bpy [2.1133(6) Å]. The dihedral angle 

between the pendant pyridyl substituent is 52.3o relative to the ligated portion of the tpy 

ligand. The dihedral angle is similar to those of [Ru(bpy)2(phen-R)]2+ complexes [R is an 

aryl substituent] where the average dihedral angle is 54.6o.4 The staggered cofacial 

arrangement between the pendant pyridyl and adjacent bpy ligand results in a steric 

interaction giving rise to elongated Ru-Nbpy bonds.4 

 

 

 

 

 

 

 

 

 

 

  



Chapter 2                                                The  Fluxional  Dynamics of Terpyridine in [Ru(bpy-d8)2(η
2
-tpy)]

2+
                                    

 38 

a) 
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N
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Figure 2.2 ORTEP view for (a) [Ru(bpy)3]

2+, (b) [Ru(tpy)2]
2+ and (c) [Ru(bpy)2(η

2-
tpy)2]

2+. (Reprinted with permission from reference 3a & 3c, Copyright © 1992 & 1999 

American Chemical Society). 
 



Chapter 2                                                The  Fluxional  Dynamics of Terpyridine in [Ru(bpy-d8)2(η
2
-tpy)]

2+
                                    

 39 

Table 2.1 Selected bond lengths (Å) and bond angles for [Ru(bpy)3]
2+, [Ru(tpy)2]

2+ 

and [Ru(bpy)2(η
2-tpy)]2+.4 

Selected Bond  Length (Å) for 
[Ru(bpy)3]

2+ 

 

Ru-N 
N-C(1) 
N-C(5) 

C(1)-C(2) 
C(1)-C(1')  
C(1)-C(3) 
C(1)-C(4) 

2.056(2) 
1.354(3) 
1.354(4) 
1.369(4) 
1.474(4) 
1.474(5) 
1.348(5)  

Selected Bond Angles (deg) for 
 [Ru(bpy)3]

2+ 

 
N-Ru-N' 
N-Ru-N'' 
N-Ru-N''' 
N'-Ru-N'' 

 
 

78.7(1) 
89.1(1) 

173.0(1) 
96.3(1) 

 
 
 
  

Selected Bond  Length (Å) for 
[Ru(tpy)2]

2+ 

 

Ru-N(1) 
Ru-N(4) 
Ru-N(7) 

Ru-N(19) 
Ru-N(22) 
Ru-N(25) 

 
 

2.07(1) 
         1.99(1) 

2.05(1) 
2.09(1) 
1.96(1) 
2.07(1) 

 
 

Selected Bond Angles (deg) for 
[Ru(tpy)2]

2+ 

N(1)-Ru-N(4) 
N(4)-Ru-N(7) 

N(1)-Ru-N(19) 
N(1)-Ru-N(22) 
N(1)-Ru-N(25) 
N(4)-Ru-N(19) 
N(4)-Ru-N(22) 
N(4)-Ru-N(25) 
N(7)-Ru-N(19) 
N(7)-Ru-N(22) 

 

78.9(4) 
79.3(4) 
90.0(4) 

101.4(4) 
93.8(4) 

102.7(4) 
177.5(4) 
98.6(4) 
94.2(4) 

101.0(4) 

 

Selected Bond  Length (Å) for 
 [Ru(bpy)2(ηηηη

2-tpy)]2+ 

 

Ru-N(1) 
Ru-N(2) 
Ru-N(3) 
Ru-N(4) 
Ru-N(5) 
Ru-N(6) 

 
 

2.064(6) 
         2.056(6) 

2.088(5) 
2.106(6) 
2.052(6) 
2.133(6) 

 

 
 
 
 

Selected Bond Angles (deg) for 
 [Ru(bpy)2(ηηηη

2-tpy)]2+ 

 
 

N(1)-Ru-N(3) 
N(1)-Ru-N(5) 
N(1)-Ru-N(4) 
N(2)-Ru-N(3) 
N(2)-Ru-N(5) 
N(3)-Ru-N(6) 
N(2)-Ru-N(6) 
N(4)-Ru-N(5) 
N(4)-Ru-N(6) 
N(1)-Ru-N(6) 
N(1)-Ru-N(2) 

84.4(2) 
97.3(2) 
98.4(2) 
97.6(2) 
88.2(2) 
99.8(2) 

101.9(2) 
95.3(2) 
81.3(2) 

175.6(2) 
78.7(2)  
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2.2.2 Ground State Solution Structures and Their Dynamics 

Abel et al. first reported2 that bidentate tpy ligands exhibit fluxional behavior. 

Temperature dependent 1H NMR studies of the complexes fac-[ReBr(CO)3(η
2-tpy)], cis-

[W(CO)4(η
2-tpy)] and  fac-[PtClMe3(η

2-tpy)] revealed a dynamic conformation process 

occurring on the NMR time scale in fluid solution. Analysis of the temperature dependent 

1H NMR data revealed an intramolecular ligand exchange process where the tpy ligand is 

bound in a bidentate fashion, but oscillates between two equivalent binding modes, 

through the formation of a seven coordinated transition state, as shown in Figure 2.3. 

This dynamic process was termed as the “tick-tock twist” mechanism.  

M

L1

L4

L2

L3N N

N
M

L2

L4

L3N
N

N

L1

M

L1

L4

L2

L3N N

N

 
Figure 2.3 “Tick-tock twist” mechanism. 

A summary of literature examples of analogous fluxional systems, activation 

parameters and free energies is given in Table 2.2. Also included are dihedral angles 

available from reported crystal structures. The activation energies have been calculated 

from the coalescence temperature, the temperature at which the appearance of the 

spectrum changes from that of two separate peaks to that of a single peak. The †
S∆ values 

are negative for the platinum complexes which is consistent with an associative (A) 

mechanism. However, the values are positive for other systems which may be   
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Table 2.2 Activation parameters for fluxional tpy for d6 complexes.  
Complex Dihedral 

Angle (o) 
Coord. no in 
Transition 

State 

†H∆  
kJmol-1 

†
S∆  

Jmol-1K-1 

†
G∆ , 

kJ mol-1 
T= 298 K 

Tc 

(K) 

[ReCl(CO)3(η
2-tpy)]a 52.9 7 77.2±1.4 23.2±4.0 70.3±0.2  

[ReBr(CO)3(η
2-tpy)]a  7 79.8±1.7 27.5±4.8 71.6±0.3 343 

[ReI(CO)3(η
2-tpy)]a  7 76.3±0.9 11.1±2.4 73.0±0.1  

[W(CO)4(η
2-tpy)]b  7 69.7±1.9 45.9±6.7 56.1±0.1 283 

[PtClMe3(η
2-tpy)]b  7 57.90±1.41 -13.7±4.3 61.97±0.12 303 

[PtBrMe3(η
2-tpy)]b  7 52.90±0.99 -28.8±3.0 61.48±0.10  

[PtIMe3(η
2-tpy)]b 52.1 7 58.10±2.26 -14.8±6.9 62.53±0.20  

[Mo(CO)4(η
2-tpy)]c  7 52.4±1.6 13.3±6.6 48.4±0.4  

[RuCl2(CO)2(η
2-tpy)]c  7 88.3±1.4 41.8±4.1 75.8±0.2  

[RuBr2(CO)2(η
2-tpy)]c  7 86.2±2.6 29.4±7.5 77.4±0.3  

[RuI2(CO)2(η
2-tpy)]c  7 83.1±0.9 14.8±2.6 78.7±0.1  

a From Reference 5, b From Reference 6, c From Reference 7.  
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consistent with a dissociative (D) mechanism. Correlation of †H∆ and †
S∆  in an 

isokinetic plot is given for the complexes in Figure 2.4.7d   
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Figure 2.4 Isokinetic plot for [Re(CO)3(η
2-tpy)Cl] (1), [Re(CO)3(η

2-tpy)Br] (2),  
[Re(CO)3(η

2-tpy)I] (3), [W(CO)4(η
2-tpy)] (4), [PtMe3(η

2-tpy)Cl] (5), [PtMe3(η
2-tpy)Br] 

(6), [PtMe3(η
2-tpy)I] (7),  [Mo(CO)4(η

2-tpy)] (8) and [Ru(CO)2(η
2-tpy)Cl2] (9), 

[Ru(CO)2(η
2-tpy)Br2] (10), [Ru(CO)2(η

2-tpy)I2] (11) complexes.7d 
 
The observation of a correlation between †H∆ and †

S∆ is consistent with a common 

transition state. 7d The correlations are remarkable given the differing ligand sets for the 

compounds given in Table 2.2. There appear to be two separate correlations both 

possessing a slope of 0.5. It must be recognized that †
S∆   values determined from Eyring 

plots possess large errors due to an extrapolation of over 250 K. Even so the calculated 

†
S∆ values are statistically distinct. The formation of a seven coordinate transition state 



Chapter 2                                            The  Fluxional  Dynamics of Terpyridine in [Ru(bpy-d8)2(η
2
-tpy)]

2+
 

 43 

involves the synchronous formation and cleavage of two bonds and the degree of bond 

cleavage as reflected by †H∆ . However, the formation is difficult to assess since the 

transition state is not experimentally detectable.     

The minimum energy required for the exchange of two equivalent nuclei by an 

intramolecular process is dictated by an activation energy (Ea), which is experimentally 

determined from the temperature dependence of the rate constant (k) using the Arrhenius 

eqn. given by  

                                                  exp a
E

k A
RT

−
=                     (2.1) 

         ln (1/ ) ln( )a
E

k T A
R

= − +                (2.2) 

A plot of ln (k × 1s) vs 1/T gives a straight line with slope =           (where R is the gas 

constant).  

The Arrhenius equation is an empirical equation that describes the temperature 

dependence of the rate constant. As such, the equation does not provide microscopic 

information on the molecular dynamics. Eqn. 2.2 is useful in characterizing the 

temperature dependence of rate constants in complicated systems that are difficult to 

characterize at the molecular level, i.e biological enzymatic processes where the 

structures may not be known. Transition state theory provides a theoretical scaffold to 

understand and quantify molecular properties that dictates the temperature dependence of 

the rate constant.  

The temperature dependence of the rate constant interpreted using transition state 

theory provides parameters that allow an understanding of the dynamics at a molecular 

a
E

R
−
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level. Transition state theory requires the assumptions that the system is at thermal 

equilibrium at all points along a reaction coordinate and that the transition state is in 

equilibrium with the reactants. Under these conditions, the temperature dependence of the 

rate constant is given by  

                        

†

' exp B A

G

k N T

o
k k

−∆

=                (2.3) 

where †
G∆ is Gibb’s energy of activation, '

o
k  is the rate constant for the reaction in the 

absence of a kinetic barrier, kB is Boltzman’s constant, NA is Avogadro’s number, and T is 

the temperature. The product (kBNA) is equal to R, the ideal gas constant. The Gibb’s 

energy of activation ( †
G∆ ) is related to †H∆ , the enthalpy of activation and entropy of 

activation by  

                       † † †
G H T S∆ = ∆ − ∆                  (2.4) 

The temperature dependence of the rate constant given by equation 2.2 can be expanded 

by substitution of equation 2.4 into 2.3 which yields  

                 
† †

' expo

H S
k k

RT R

 −∆ ∆
= + 

 
             (2.5) 

Plots of lnk vs 1/T (Eyring plots) should be linear with a slope of  
†

H

R

−∆
 and an intercept 

of 
†

S

R

∆
.  

The data given in Table 2.2 provide insight into the dynamic behaviour of 

molecular systems containing η2-tpy, as a function of the metal center. Values of †
G∆ (T 

= 298 K) are 10 - 15 kJmol-1 larger for ruthenium and rhenium carbonyl complexes than 
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that of platinum, molybdenum and tungsten complexes. Transition states for all the 

systems listed in the Table 2.2 are thought to be seven coordinate.  

Fluxionality of tpy has also been studied in ruthenium carbonyl halide complexes, 

[RuX2(CO)2(tpy)] (X = CI, Br or I) and some metal tetracarbonyl complexes 

[M(CO)4(tpy)] (M = Cr, Mo or W). Unfortunately, the ruthenium based complexes react 

to form the thermodynamically stable tridentate ligand species under the conditions of the 

reported experiments. However, in light of the isoelectronic nature of the metals (M = 

RuII, Cr, Mo, W) and structural similarity it has been concluded that the tick-tock twist 

mechanism is most likely to be functioning for these complexes.7  

Constable et al.
3b studied a series of complexes containing bidentate tpy with the 

general formula [Ru(L)2(η
2-tpy]2+ [L = bpy or 1,10-phenanthroline] where the dynamic 

behavior of the tpy ligand was concluded to be a process analogous to the “ring 

wobbling”.  

 

Ru

N

N

N

N
N

N

N

2+

               

Ru

N

N

N

N
N

N

N

2+

                      

(a)                                                   (b) 

Figure 2.5 (a) Rotation and (b) Ring wobbling processes.  

Schmehl et al. reported4 a series of [Ru(bpy-d8)2(L)]2+ complexes where L is a 2-

phenyl- or 2,9-diphenyl substituted phenanthroline ligand. The use of bpy-d8 instead of 

bpy, significantly reduces the complexity of the 1H NMR spectra.  
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Figure 2.6 Structures of substituted 1,10-phenanthroline ligands. 
 

The 1H NMR data analysis revealed the temperature dependence of the NMR 

bands assigned to the 2-phenyl ring in the [Ru(bpy-d8)2(a)]2+ complex. The dihedral angle 

for the ligated 2-phenylphen ring is close to 55o as determined from the crystal structure, 

significantly larger than that of 28o calculated for the free ligand. Moreover, the twisted 

conformation that is stabilized by the noticeable π-stacking between the 2-phenyl ring 

and one of the adjacent bpy-d8 ligands, is evident from the upfield shifted signals of the 

five protons of the pendant ring. At 298 K, the 1H NMR spectrum shows broadening of 

signals for these five protons which indicates the restricted movement of the 2-phenyl 

ring. As the temperature is increased to 338 K, the phenyl ring freely rotates on the NMR 

time scale and the signals become sharper as the protons H2, H3, H5 and H6 start to 

coalesce. The H4 proton remains unaffected due to its position. However, the free 

rotation of the phenyl ring can be restricted by adding a bridging substituent as shown in 

Figure 2.6.    

Gafney et al.8a extensively studied the protonation chemistry of [Ru(bpy)2(dpp)]2+ 

(dpp = 2,3-bis(2-pyridyl)pyrazine) in the ground and excited states. Figure 2.7 shows the 
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protonated structure of [Ru(bpy)2(dpp)]2+ and the steric repulsion between the 3C and 3B 

protons. It has been reported that in the excited state, MLCT increases the basicity of the 

dpp peripheral nitrogen in [Ru(bpy)2(dpp)]2+.8a In the ground state, protonation of the 

peripheral N of dpp pendant pyridine takes place as evident from the 1H NMR data.8a The 

1H NMR spectrum of [Ru(bpy)2(dpp)]2+ shows signals for 26 protons as expected. 

However, increasing the acidity with the addition of D2SO4, changes the chemical shift of 

five protons to a lower field. Four of them have been assigned to the protons from the dpp 

pendant pyridyl rings (3C-6C) and one from the coordinated pyridyl ring in dpp (3B).           

 

Figure 2.7 Structure of protonated [Ru(bpy)2(dpp)]2+.8a  

 
Ground-state protonation of the dpp peripheral pyridine is also evident from the 

emission and absorption spectra, as changes occur in the emission spectra of the complex. 

Initially the pendant pyridine remains perpendicular to the dpp ligand. Protonation twists 

the pendant pyridine into the plane of the coordinated pyridine and pyrazine portions of 

the coordinated dpp. The protonated [Ru(bpy)2(dpp)]2+ then takes on a cyclic structure as 

the proton bridges both peripheral dpp nitrogens (Figure 2.7). This might be due to the 
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electron accepting ability of the protonated pyridine.8b However, the proton is not equally 

shared and is more closely associated with the dpp peripheral pyridine rather than the 

peripheral pyrazine nitrogen which is evident from the NMR spectrum.         
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2.3 Objectives 

Recently, tpy-based ruthenium polypyridyl complexes have received much more 

attention as they exhibit important photochemical and electrochemical properties. Related 

investigations performed as a part of this thesis will be described in chapter 3.   

The properties of tpy as an acceptor ligand in excited states have been 

characterized by resonance Raman, emission spectral fitting, temperature-dependent 

lifetimes and quantum yields. To address the excited states in bidentate tpy based 

complexes, it is a prerequisite to characterize the ground state properties. The purpose of 

our present study is to investigate the ground state dynamics and the fluxional behavior of 

tpy in a stable octahedral ruthenium polypyridyl complex, prior to studying the excited 

states of [Ru(bpy-d8)2(η
2-tpy)]2+.  

A previously published study was completed with the [Ru(bpy)2(η
2-tpy)]2+ 

complex where 1H NMR spectra were too complicated for the detailed evaluation of 

temperature dependent torsional and other conformational changes.3b In this study, 

[Ru(bpy-d8)2(η
2-tpy)]2+ has been used to obtain simplified 1H NMR spectra. Thus, 

deuteration of bpy assisted the interpretation of the fluxional dynamics as the signals due 

the tpy ligand only appear in the 1H NMR spectrum.   
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2.4 Results and Discussion  

2.4.1 Ground State Dynamics of [Ru(bpy-d8)2(ηηηη
2-tpy)]2+ 

Deuteration of polypyridyl ligands is a powerful approach to simplify the 

complexity of 1H NMR spectra to facilitate the characterization of complexes and 

possible dynamic conformational processes.9 In this work, the replacement of bpy with 

bpy-d8 was made to render the bpy ligands NMR silent in the 1H NMR of [Ru(bpy-

d8)2(η
2-tpy)]2+ derivatives. The synthetic protocols are described in Chapter 5. 

At ambient temperature the 1H NMR spectrum of  the [Ru(bpy)2(η
2-tpy)]2+

 

complex in CD3CN solution is exceedingly complicated because all the protons are non-

equivalent giving rise to 27 peaks, all of which are coupled, Figure 2.8.  

 

Figure 2.8 Overlaid spectra of [Ru(bpy-d8)2(η
2-tpy)][PF6]2 (brown) and [Ru(bpy)2(η

2-
tpy)][PF6]2 (blue). 

Ru

N
N

N

N
N

N

N

D

D D

D

D
D

D
D

D D
D
D

D

D
DD

2+

Ru

N
N

N

N
N

N

N

2+



Chapter 2                                            The  Fluxional  Dynamics of Terpyridine in [Ru(bpy-d8)2(η
2
-tpy)]

2+
 

 51 

The aromatic region of the 1H NMR spectrum of [Ru(bpy-d8)2(η
2-tpy)]2+ and 

assignments are shown in Figure 2.9.  

 

 

 

 

 

 

 

 

 

 

Figure 2.9 500 MHz 1H NMR spectrum (aromatic region) of [Ru(bpy-d8)2(η
2-tpy)]2+ in 

CD3CN at 298 K. 
 

Since the bpy ligands are deuterated, only the resonances associated with the tpy 

ligand are observed in the 1H NMR spectrum of the [Ru(bpy-d8)2(η
2-tpy)]2+ complex 

together with small signals from bpy-d8 impurities (NMR spectrum for bpy-d8 is shown in 

Chapter 5, section 5.2).  

Overlaid 1H NMR spectra for [Ru(bpy)2(η
2-tpy)]2+  and [Ru(bpy-d8)2(η

2-tpy)]2+ 

complexes are shown in Figure 2.8. It is apparent that the tpy resonances are identical for 

the [Ru(bpy)2(η
2-tpy)]2+ and [Ru(bpy-d8)2(η

2-tpy)]2+ complexes. The 1H NMR spectrum 

for [Ru(bpy-d8)2(η
2-tpy)]2+ consists of one broad singlet, two doublets, two triplets, one 
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doublet of doublets and one multiplet. The assignments were made by comparison to the 

[Ru(bpy)2(η
2-tpy)]2+ complex. The doublet at δ 8.59 (J = 10 Hz) is due to the 3A and 3B 

protons of the tpy ligand. Another doublet at δ 7.51 (J = 5 Hz) is caused by the 6A proton 

of the tpy ligand. Triplets at δ  7.27 (J = 10) and 6.95 (J = 5 Hz) can be attributed to the 

4C and 5C protons, respectively. The multiplet at δ  8.10 is as a result of the 4A, 4B and 

6C protons. The doublet of doublets at δ  7.33 can be assigned to the 5A and 5B protons. 

The broad singlet at δ  6.78 is due to the 3C proton of the tpy ligand.  

 

Figure 2.10 Structure of the [Ru(bpy-d8)2(η
2-tpy)]2+ complex.  

The 1H NMR data are dynamic in the δ 6.4 to δ 8.8 ppm region. Temperature dependent 

1H NMR spectra, recorded for [Ru(bpy-d8)2(η
2-tpy)][PF6]2 are shown in Figure 2.11.   

2+
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Figure 2.11 Variable temperature 1H NMR spectra of [Ru(bpy-d8)2(η
2-tpy)]2+

 in CD3CN 
over the temperature range 253-323 K. 
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At room temperature the 1H NMR spectrum of [Ru(bpy-d8)2(η
2-tpy)]2+ shows one 

broad signal (δ 6.78) assigned to the 3C proton of the tpy ligand which was shifted 

upfield at lower temperatures. Upon cooling to 0 oC the band width of this resonance 

increased whereas the resolution of the room temperature spectrum is consistent with a 

process which is rapid on the NMR time scale. By -20 oC, the upfield signal is fully 

broadened, and is barely observable and there is a large upfield shift (δ 6.66), together 

with significant changes in the positions and bandwidths of the bands assigned to the 4C 

and 5C protons at δ  7.27 and 6.95 ppm, respectively. These changes can be attributed to 

the wobbling (Figure 2.12) of the pendant pyridine ring of the tpy ligand at low 

temperature based on comparison with the [Ru(bpy-d8)2(phen-R) systems (see section 

2.1.2) where the rotation is restricted.  

 

 

 

 

 

 

 

Figure 2.12 Wobbling of the pyridine ring.  

The 3C signal keeps broadening since the 3C proton moves far away from the 3B 

proton to which it is coupled. At T = 253 K, there exists a broad resonance at δ 6.66, that 

is barely perceptible and slightly shifted to upfield. This shift is caused by transient 
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electron shielding of the 3C proton as it rotates close to the electron rich adjacent bpy 

ligand.7a The change in the 3C proton position affects the signals assigned to the 5C, 4C, 

and 6C protons, Figure 2.11. Increasing the temperature above 298 K, the signal intensity 

increases rapidly with temperature. At 323 K, the broad singlet due to 3C becomes a 

doublet. Pseudo triplets due to the 4C and 5C protons become sharp triplets and the 

intensity of other signals increases slightly which indicates free rotation of pendant 

pyridine on the NMR time scale. The broad signal at δ 6.78 ppm which is assigned to the 

3C proton, changes as the pyridine ring rotates from position A to B at high temperature 

(Figure 2.13). 

 

Figure 2.13 Rotation of the pyridine ring.  

For the exchange or tick-tock mechanism, the signals that appear in the variable 

temperature 1H NMR due to the central ring proton 4B, would remain unaltered and the 

exchange dynamics between the ring A and C of the tpy ligand would change the proton 
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signals that are due to ring A and C. However, we do not observe any change in the 

signals for the 3A and 3B protons, even with the variation of temperature. This important 

observation suggests that the dynamics associated with this system do not follow the 

exchange or tick-tock mechanism described in section 2.2.2. The data suggest that for 

[Ru(bpy-d8)2(η
2-tpy)]2+ the ligation remains constant and cleavage of Ru-N1 and Ru-N2 

bonds is not an important process in this family of complexes.           

 

2.4.2 Protonation of the Pendant Pyridine 

Excess trifluroacetic acid (TFA) (0.1M) was added to a CD3CN solution of 

[Ru(bpy-d8)2(η
2-tpy)]2+ and the NMR spectra before and after addition of TFA are shown 

in Figure 2.14.   

 

 

 

 

 

 

 

 

 

 

Figure 2.14 Protonation of [Ru(bpy-d8)2(η
2-tpy)]2+ with trifluoroacetic acid (TFA).  
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The 1H NMR spectrum of the [Ru(bpy-d8)(η
2-tpy)][PF6]2 complex in CD3CN 

shows signals for 11 protons as expected. However, five of the eleven protons shift to 

lower field (0.01- 0.1 ppm) with the addition of TFA. The changes in the 1H NMR 

spectrum are consistent with the formation of the cationic species, [Ru(bpy-d8)2(η
2-tpy-

H)]3+. Four of the five protons correspond to the protons on the pendant pyridyl ring (3C-

6C) and one to the 3B proton on the metal coordinated pyridyl ring of tpy.  

 

2.5 Conclusion 

The fluxional solution dynamics of the tpy ligand in the [Ru(bpy-d8)(η
2-tpy)]2+ 

complex were studied by 1H NMR spectroscopy. Variable temperature 1H NMR data 

reveal that the pendant pyridine ring of the tpy ligand in Ru(bpy-d8)2(tpy)]2+ rotates, 

rather than undergoing an exchange or “tick-tock” twist mechanism. The 1H NMR 

spectra illustrate that protonation of the peripheral N on the pendant pyridyl ring of the 

tpy ligand affects the chemical shifts of protons on the tpy pendant pyridyl ring rather 

then the protons on the metal coordinated pyridyl ring of the tpy.       
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Chapter 3 Photoinduced Charge Transfer Dynamics in  
[Ru(bpy)2(ηηηη

2-tpy)]2+  
 

3.1 Introduction and Review  

3.1.1 Excited State Electron Transfer 

Photoinduced electron- and energy-transfer reactions are important considering 

their applications in artificial photosynthesis; the conversion of light into electricity or 

fuels; and other photonic devices, i. e. sensors, molecular motors etc.1, 2
 In a bimolecular 

process, an electron transfer reaction occurs when an electron, upon excitation, is 

transferred from an electron donating species to an electron accepting species and a 

charge transfer state is created. The charge transfer excited state can undergo many 

different processes through energy and electron transfer, with appropriate donors and 

acceptors as shown in Scheme 3.1.1       

*A + B
ken

A + *B energy transfer

*A + B
kox

A+ + B- oxidative electron transfer

*A + B
kred

A-  + B+ reductive electron transfer
 

Scheme 3.1 Charge transfer processes in a bimolecular system. 

 
Photoinitiated electron transfer reactions of ruthenium(II) polypyridyl complexes have 

been extensively studied to establish a fundamental understanding of electron transfer 

and its utility in applications in solar energy conversion and many other processes.2 The 
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excited state electron-transfer quenching of 3[Ru(bpy)3]
2+* by several donors and 

acceptors is well-documented.3 For example, excited state electron transfer quenching of 

3[Ru(bpy)3]
2+* by electron donors such as 10-methylphenothiazine (10-MePTZ) or 

electron acceptors such as methylviologen (MV2+) are known.    

                        

S

N

Me

10-MePTZ          

Figure 3.1 Structure of 10-methylphenothiazine (10-MePTZ) and methylviologen 
(MV2+). 
 

 

Scheme 3.2 Electron transfer quenching of [Ru(bpy)3]
2+*.  

 
Scheme 3.2 illustrates the fundamental concept of artificial photosynthesis where 

[Ru(bpy)3]
2+ can act as a chromophore and a sensitizer. For the oxidative process ΔG

o is -

1.2 eV (eqn. 3.2), whereas for the reductive process the value is +2.5 eV (eqn. 3.3). 

However, the value of ΔG
o is +1.3 eV for the overall reaction (eqn. 3.4).  
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3.1.2 Limitations of Bimolecular Reactions  

There are a number of limitations of bimolecular electron transfer reactions. These 

reactions do not have any vectoral control, as well as no control over special orientation 

adduct (D‖A) complexes. Following photoinduced electron-transfer to create a redox 

separated state, the products are formed within a solvent cage. If back electron-transfer 

(k-et) is competitive with cage escape (ksep), as outlined in Scheme 3.3 the photonic energy 

stored in the transient geminal radical-ion pair is wasted.4  

 

Scheme 3.3 Quenching of an excited-state via electron transfer.4             

 
As a result, the efficiency of the product formation is decreased by competing with the 

separation of the radical ions. The rate of electron transfer reactions from a donor 

molecule to an acceptor in a solvent is controlled by several factors such as:4 the Gibb’s 

energy change of the reaction (ΔG), the total reorganization energy λt, and the electron 

transfer distance (d) between the donor and acceptor groups. The electron transfer rate 

constant ket is given by  

      ket = κelνnexp[-ΔG
*/RT)]                 (3.5) 

where κel = electronic transmission coefficient (κel = ≤ 1), νn is the nuclear frequency that 

is coupled to electron transfer between a donor/acceptor and ΔG
*
 is the Gibb’s energy of 
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activation. When the electron transfer distance d and λt are kept constant, the Gibb’s 

energy of activation ΔG* is given by  

         ΔG* = (λt+ΔG
o)2/(4λt) ………       (3.6) 

Then, the equation [3.5] can be expanded to give  

ket = κelνnexp[-(λt+ΔGo)2/(4λtRT)]  ……(3.7) 

Marcus theory predicts that ket will follow a bell-shaped energy dependence as a function 

of ∆G° under conditions where λt is held constant.4 The maximum of the bell-shaped 

curve occurs when λt equals -∆G°. When -∆G° > λt, the rate constant for electron transfer 

is attenuated as the driving force is increased. This is illustrated in Figure 3.2. The 

parabolic dependence is not often observed in bimolecular reactions due to diffusional 

masking kdiff ~ 1010 M-1s-1. This is a consequence that accrues from the reorganization 

energetics for electron transfer that tend to be large, and -∆G°/λt >> 1 exceeds the 

diffusional limits.4 

Figure 3.2 shows4b that as the reaction progresses from reactants (heavy potential 

energy curve) to products (light potential energy curve) via thermal activation where ∆G
o 

<< λt (where, λt = total reorganization energy) in the Marcus normal region, 
et

k  increases 

as ∆G
o increases. 
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Figure 3.2 Parabolic dependence of the ET rate constant on the free energy driving force. 
The diffusion limit, signified by the horizontal solid line, truncates the parabola.  

(Reprinted with permission from reference 4b, Copyright © 1996 American Chemical 

Society). 
 

When ∆G
o approaches λt, ∆G

o decreases, Figure 3.2(a). When ∆G
o = λt, there is 

no barrier to electron transfer and the dependence of ∆G
o on λt is temperature 

independent, Figure 3.2 (b). In the limit where ∆Go > λt, Figure 3.2(c), the potential 

energy surfaces become nested and the mechanism for electron transfer between the 

redox partners changes from thermally activated surface crossing to a quantum 

mechanical tunnelling process, which can be described using the Fermi Golden Rule 

given by 

                 2 2(4 / )k h V FCπ=                   (3.8) 

Where V2 is the vibrationally induced electron coupling between A and D and FC is the 

weighted density of vibronic states that couple the initial and final states. In the limit 

where ∆G
o >> λt, the Born-Oppenhiemer and Condon approximations are not applicable 

kdiff 

ket 
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as electron motion occurs on the time scale of vibrational motion.4 The electronic states 

are then mixed by coupling to vibrations, leads to new wave functions that are no longer  

orthogonal.    

  

3.1.3 Energy Transfer  

Three types of mechanism are known for energy transfer processes. The trivial 

mechanism is related to the radiative transfer between an emitting molecule and an 

absorbing molecule and considered as an indirect photon hopping mechanism.  

*A B+ A *B+
kent

 

Scheme 3.4 The trivial energy transfer mechanism. 

 
This occurs when there is a significant overlap of the emission and absorption spectra 

between the uncoupled emitting and absorbing molecules. Scheme 3.4 shows the trivial 

energy transfer mechanism where kent is the rate constant for energy transfer.  In addition 

to the trivial mechanism, there are two other mechanisms by which energy is transferred 

between a donor and an acceptor.5 The Förster mechanism requires resonance dipole-

dipole interaction between the donor and acceptor. The Dexter mechanism involves 

exchange coupling between the donor and acceptor.  
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Figure 3.3 The Förster mechanism for energy transfer.5 

 
In the Förster mechanism, energy is transferred via singlet states and direct orbital 

overlap is not required for the donor and acceptor (Figure 3.3).5 However, in this 

mechanism energy transfer requires resonance dipole-dipole interaction i.e. the energy 

emitted by the donor must match that absorbed by the acceptor. Here, energy transfer is 

induced by the transition dipoles of the donor and acceptor and from the donor and the 

acceptor coulombic interactions yields the rate of energy transfer as equation 3.9.  

                   2 2
6

1Forster

ET A Bk D D
R

α=&&                           (3.9) 

where α is a proportionality constant, DA is the transition dipole of the donor, DB is the 

transition dipole of the acceptor, and R is the distance between the donor and the 

acceptor. 
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Energy Transfer

3*A B

BA

A 3*B

LUMO

HOMO

LUMO

HOMO

 

Figure 3.4 The Dexter mechanism for energy transfer. 5  

In the Dexter mechanism, energy transfer takes place after the electron exchange 

interactions between the donor and acceptor, Figure 3.4.5 This interaction results in a rate 

constant for energy transfer via the Dexter mechanism given by equation 3.10. 

 
2

expDexter

ET

R
k KJ

L

− 
′=  

 
                    (3.10) 

where J' is the overlap integral reflecting the extent to which the donor and acceptor 

absorption spectrums overlap, K is an experimental constant which relates to the 

magnitude of the orbital interaction for electron exchange, R is the distance between the 

donor and acceptor, and L is the sum of the Van Der Waals radii of the donor and 

acceptor. The efficiency of energy transfer via the exchange mechanism decreases 

exponentially with donor-acceptor distance.5 

The Dexter mechanism requires direct orbital overlap of the donor and the 

acceptor for an electron exchange interaction to occur. The Förster mechanism, on the 

other hand, does not require direct orbital overlap between the donor and the acceptor. 
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However, both of these mechanisms exist to some extent in reactions. Thus, the observed 

rate of energy transfer is given by: 

                
obsd Forster Dexter

k k k= +&&           (3.11) 

where 
Forster

k && is the rate constant for Förster energy transfer and 
Dexter

k  is the rate constant 

for Dexter energy transfer. 

 

3.1.4 Competition between Energy and Electron Transfer  

Energy and electron transfer are two primarily important processes for the 

quenching of molecular excited states (Scheme 3.1). In the excited states, the molecule 

differs electronically from the ground states.6 Quenching of excited states by either 

electron transfer or energy transfer is well known and a competition between these two 

quenching processes is an active area of research.7 Wrighton et al.,
8 reported the 

quenching of excited [Ru(bpy)3]
2+ and  [Ru(bpz)3]

2+  by ferrocene and its methyl 

derivatives through both energy and electron transfer (Scheme 3.5).  

 

Scheme 3.5 Schematic diagram for the competition of energy and electron transfer 
processes. 
 

 The E1/2 values for the methyl derivatives of ferrocene range from 0.38 to -0.11 V vs 

SCE in CH3CN. Variation of the ferrocene quencher or excited state reagent allows the 

driving force to be changed in favour of electron transfer rather than energy transfer as 
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the lowest excited state energies of ferrocene and [Ru(bpy)3]
2+ are very close, 1.8 eV and 

2.15 eV, respectively. The quenching of [Ru(bpy)3]
2+ by ferrocene occurs with a driving 

force of ~0.4 eV, which is inadequate for energy transfer. However, it was established 

that an electron transfer driving force of ~1.5 eV allows equal quenching of [Ru(bpy)3]
2+ 

by ferrocene through electron and energy transfer.7    

 

 

Figure 3.5 Structures of ferrocene and its methyl derivatives.7 

 
3.1.5 Chromophore-Quencher Complexes 

Ruthenium(II) polypyridyl complexes have dominated research into excited state  

electron and energy transfer due to their long-lived excited states which can undergo both 

oxidative and reductive quenching reactions. The first chromophore-quencher dyad 
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[(bpy)2RuP2]
4+ (here P = 1, 1'-dimethyl-4,4'- bipyridinium) was reported by Sullivan et 

al.,
9 Figure 3.6. This is similar to the [Ru(bpy)3]

2+-paraquat system as it contains attached 

pyridinium redox sites.  

 

Figure 3.6 Structure of [(bpy)2RuP2]
4+ (P = 1, 1'-dimethyl-4,4'- bipyridinium).   

 
Photoexcitation of chromophore-quencher complexes (such as 

[Ru(dmb)(bpyCH2PTZ)(bpyCH2-MV2+)]4+) (dmb = 4,4’-dimethyl-2,2’-bipyridine) 

(Figure 3.7) is known where oxidative or reductive intramolecular electron transfer 

quenching takes place. Photoexcitation of the Ru→bpy charge transfer in [Ru(dmb∙− 

)(bpy∙−CH2PTZ)(bpy∙−CH2-MV2+)]4+ with sequential intramolecular process leads to the 

formation of the charge separated state (PTZ•+)Ru(MV2•+) with relatively high efficiency 

for which the transiently stored free energy is  ~ 1.3 eV and which has a lifetime of 127 

ns in CH3CN, well below the diffusion limit in CH3CN (kdiff ~ 10-10 s-1).10 
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Figure 3.7 Structure of [Ru(dmb)(bpyCH2PTZ)(bpy(CH2)n-MV)]4+. 

In the supramolecular system P-L-Q, excitation of P leads either to energy 

transfer (eq 3.13) or electron transfer (eq 3.14), where P is a photosensitizer and Q is a 

quencher, covalently bound by a tether L.   

 

Scheme 3.6 Energy and electron transfer processes in a supramolecular system. 

 
Photoinduced charge separation is known for P-A and D-P dyads and in D-P-A 

triads where the photosensitizer P is [M(ttpy)2]
2+ (M = Ru, Os) (ttpy = 4'-p-toly1)-

2,2':6',2"-terpyridine).11,12 These systems contain an organo or metallo-organic 

photosensitizer (P) that is covalently linked to electron acceptor (A) and electron donor 

(D) groups, Figure 3.8.   
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Figure 3.8 Dyads and triads where the photosensitizer is M(ttpy)2

2+ (M = Ru, Os). X and 
Y indicate the groups, PTZ, DPAA, MV2+ etc.  
 

The absorption spectral data for [Ru(tpy)2]
2+ and some dyads and triads of [Ru(ttpy)2]

2+ 

complexes are shown in Table 3.1.  

Table: 3.1 Absorption maxima for some dyads and triads of [Ru(ttpy)2]
2 and 

[Ru(tpy)2]
2+.12   

Complex λmax(abs) (nm) (ε , Μ-1, cm-1) 

[Ru(tpy)2]
2+ 476 (17700) 

[Ru(ttpy)2]
2+ 490 (28000) 

Ru(ttpy)2
2+-MV2+ 491 (32000) 

PTZ-Ru(ttpy)2
2+ 490 (31000) 

DPAA-Ru(ttpy)2
2+ 502 (39000) 

PTZ-Ru(ttpy)2
2+-MV2+ 491 (32000) 

DPAA-Ru(ttpy)2
2+-MV2+ 504 (43000) 

 

The absorption band envelopes for [Ru(tpy)2]
2+ and [Ru(ttpy)2]

2+ are similar 

except that λmax(abs) is found at longer wavelengths for [Ru(ttpy)2]
2+. However, the 

larger molar absorption coefficient for [Ru(ttpy)2]
2+ compared to [Ru(tpy)2

2+]  implies 
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that light absorption actually leads to a larger degree of charge transfer character and 

possible delocalization over a larger molecular framework of the accepting ligand.12 

Similarly, electron-withdrawing and electron-donating groups attached to remote 

positions of ttpy in [Ru(ttpy)2]
2+  complexes have influence on the intensity of the 

absorption bands.  

Ferrocene (Fc) is expected to act as an electron donor in multicomponent systems 

designed for the study of charge-separation processes as it is a useful redox agent. 

Systems like D-P (dyads) and D-P-A (triads), where P is the [Ru(ttpy)(phtpy)]2+ 

chromophore, D is ferrocene, and A is an electron acceptor, MV2+ have been synthesized 

with the purpose of utilizing these excited states for photoinduced charge separation. The 

energy level diagram for Ru based Fc-P dyads in Figure 3.9 shows the deactivation of the 

excited Fc-*P dyads.13  

 

Figure 3.9 Energy-level diagram for the Ru based Fc-P dyads.13 
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The competition between electron and energy transfer is an important issue in 

molecular engineering. Here, electron transfer leads to a Fc+-P- state where the driving 

force is −0.34 eV for Ru based Fc-P dyad systems. In contrast, the energy-transfer step 

which involves the 3MLCT state of P as a donor and the triplet of Fc as an acceptor is 

complicated to estimate, as there are some uncertainties on the energy level of the latter.13 

It has been observed that luminescence of the lowest-lying excited state of Fc, which is 

considered to be metal centered (MC) in nature and therefore highly distorted, as ∆Q is 

increased due to the population of a σ* orbital in the excited MC state. However, the 

diagram shows that for Ru-based dyads both electron and energy-transfer are expected to 

be energetically allowed as the lowest triplet energy level of Fc ranges between 1.8 to 1.1 

eV.13 

 

3.1.6 Ground and Excited State Proton Transfer 

Proton transfer plays an important role in many chemical and biological 

processes. Therefore, it is necessary to understand the mechanism of proton transfer 

reactions. Proton transfer is rapid with electronegative centers like oxygen or nitrogen as 

the process involves formation of hydrogen bonded dimers.14 However, for carbon 

centers, the exchange rate is slow. In the case of transition metal centers, the proton 

exchange is slower than nitrogen centered exchange and faster than carbon centered 

exchange. Bimolecular rate constants for proton transfer self-exchange reactions are 

given in Table 3.2.14 The proton exchange rate constants for the amines are considerably 

higher than for the transition metal complexes.   
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Table 3.2 Proton transfer self-exchange rate constants for selected reactions:14 

 Solvent kex, M
-1s-1 

NH4
+ + NH3 H2O 1.3 × 109 

CH3NH3
+ + CH3NH2 H2O 0.4 × 109 

PhNH3
+ + PhNH2 CH3CN ≥  108 

HM(cp)(CO)3 + M(cp)(CO)3
-
  

M = Cr 

M = Mo  

M = W 

CH3CN  

1.8 × 104 

2.5 × 103 

6.5 × 102 

Dimethyl sulfoxide (DMSO)  8 ± 2 

H2O  1.0 × 10-14 

 

Scheme 3.7 shows the mechanism for the proton self-exchange in solution.14 In 

the beginning, the acid and conjugated base diffuse together to form a precursor complex 

(eqn. 3.15) where the distance between the metals is r. Exchange of a proton takes place 

within this complex (eqn. 3.16), followed by dissociation that results in the formation of 

separated products in the final step (eqn. 3.17).  

 

Scheme 3.7 Mechanism for the proton self-exchange.14 
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When the value of r is small, proton transfer is favoured and occurs rapidly in the second 

step (eqn. 3.16). However, electron-electron repulsion (as well as other factors) hinders 

the close attraction of the reactants by a repulsive interaction r
U . Therefore the proton 

transfer of a given system will occur over a range of distances, with a bimolecular rate 

constant k as given below:14 

       
2

1 1

0

4
( ) [exp( / )]

1000
r r

p

Nr
k M s U RT Sk dr

π∞
− − = −∫       (3.18) 

Here, the statistical orientation factor S ≤ 1, N = Avogadro’s number; R = Gas constant; T 

is the temperature and r is expressed in cm. r

pk is the proton transfer rate constant. 

Wrighton et al.,
15 first reported the excited state proton transfer of a metal 

complex which gave them access to determine the pKa of the electronically excited metal 

complex, pKa*. They examined the equilibrium constant for protonation of carboxylic 

acid derivatives of Ru(II) complexes. The ground state pKa was determined by absorption 

spectroscopy as a function of pH in aqueous solution.  

 

Figure 3.10 Structure of dicarboxylic acid. 

The excited state equilibrium constant was measured by luminescence 

spectroscopy as a function of pH. The following equation can be used to estimate the 

pKa
* by using the Förster cycle.  
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             0 2.86
*

2.3apK pKa
RT

ν∆
= +             (3.19) 

where ν∆  in cm-1 is the the difference in emission maxima of the fully protonated and 

deprotonated forms; R is the gas constant and T is the temperature. Equation (3.19) is 

derived from a Förster cycle, which is an indirect method for determining excited state 

equilibria. Knowledge of the ground state pKa and the emission energies of A* and A*H 

allows an estimate of pKa* from the Förster cycle shown in Scheme 3.11.  

 

Figure 3.11 Förster cycle.15   

Sasse et al.
16

 investigated the excited state proton transfer of the carboxylic acid 

derivatives of Ru(II) complexes. However, the results were not similar to those reported 

by Wrighton, previously, as only one ground state and one excited state pKa value were 

observed.15 Sasse found two pKa values for carboxylic acid derivatives of Ru(II) 

complexes in the ground (1.8 and 2.9) and excited states (3.6 and 4.5). This variation in 

pKa in the ground and excited state might be due to the increased electron density 

towards the carboxylate substituents which make the O-H bond of –COOH stronger in 

the excited state. Variation in pKa in the ground and excited state indicate that none, one 

or two protons transfers take place in the excited states (Scheme 3.8).16     
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Scheme 3.8 Excited state proton transfer of the carboxylic acid derivatives.16 

 
The hydrogen ion dependence of the absorption and emission spectra of bis(2,2’-

bipyridyl)2,3-bis(2-pyridyl)pyrazine) ruthenium(II), [Ru(bpy)2(dpp)]2+, is evidence of the 

differences in the acid-base properties of the ground and emissive MLCT state of the 

complex.17  

 

Figure 3.12 Structure of [Ru(bpy)2(dpp)]2+. 

The absorption and emission spectra of [Ru(bpy)2(dpp)]2+ established that the 

population of the dpp localized MLCT state increases the basicity of the peripheral dpp 

nitrogens where most of the transferred charge resides and which take part in the excited 

state acid-base chemistry. Ground state protonation of the dpp peripheral pyridine of 

[Ru(bpy)2(dpp)]2+ is evident from the emission centered at 735 nm. In the excited state, 

the second protonation occurs at the dpp pyrazinyl nitrogen which shows emission 
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centered at 705 nm.   The shortened lifetime and weaker 3MLCT emission in 

[Ru(bpy)2(dppHpy)]
3+* is an expected consequence due to the energy gap law. In most 

cases protonation of a chromophoric ligand lowers the energy gap resulting in a red-

shifted emission maximum and an increase in knr. Protonation of the 

[Ru(bpy)2(dppHpy)]
3+ (ground state)  yields diprotonated complexes [Ru(bpy)2(dppH2)]

4+  

which is evident from nominal changes in the absorption and emission spectra.17  

Hoffman et al.
18 studied the quenching of mixed ligand complexes [Ru(bpy)3-m-

z(bpm)m(bpz)z]
2+ (bpy is 2,2′-bipyridine; bpm is 2,2′-bipyrimidine; bpz is 2,2′-bipyrazine; 

m, z = 0-3; m + z ≤ 3), by H+ in aqueous solution.  

N
N

N
N

RuII(bpy)2

2+
NH

N

N
N

RuII(bpy)2

2+hν

H+

 

Scheme 3.9 Excited state protonation of [Ru(bpy)2(bpz)]2+.18 
 
The one electron reduced bpm and bpz complexes can be protonated in the 

excited states and the pKa values are within the range of 6.3 to 9.2. It was apparent from 

the protonation of MLCT excited states that the lifetime and the intensities of the 

emissions of [Ru(bpz)2(bpm)]2+ and  [Ru(bpm)2(bpz)]2+ decreased as the solution became 

more acidic.  
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3.1.7 Proton Coupled Electron Transfer 

Proton transfer (PT) and electron transfer (ET) are the basis of most reactions in 

chemistry. Joint involvement of electron and proton transfer is termed as electron proton 

transfer (EPT) reactions. In the case of proton coupled electron transfer (PCET) reactions, 

proton and electron transfer take place together. Both PCET and EPT reactions have 

important roles in various types of chemical and biological processes.19-23 They provide 

reaction pathways in which electron and proton motion are coupled, hence avoiding high 

energy intermediates. When the electron and proton transfer occur together as a hydrogen 

atom, this is known as hydrogen atom transfer (HAT) and is a common mechanism for 

organic free radical chemistry.24 However, Savéant introduced the term CPET instead of 

PCET where “coupled” also means the proton transfer accompanies electron transfer in a 

stepwise reaction.25 The coupling of electron and proton transfer influences both the 

energetics and dynamics of charge transfer reactions. Figure 3.13 shows a general 

overview of PT, ET and PCET reactions.  

 

Figure 3.13 Diagram for the PT, ET, and PCET reactions.19 
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It is apparent from the diagram that when PT and ET reactions occur separately, 

there is formation of a high energy intermediate. On the other hand, proton transfer 

followed by an electron transfer circumvents the formation of a high energy intermediate.    

For example, reduction of the triplet excited state of C60, 
3C60

* by phenol in the 

presence of base such as trimethypyridine (TMP) (eq 3.20-3.22) can be considered.26 

 

   

Scheme 3.10 Quenching of 3C60
* in presence (eq 3.20-3.22) and absence (eq 3.23) of 

base. 
 

In this multiple site electron proton transfer (MS-EPT) reaction, where more than 

one site is involved, concerted proton and electron transfer occurs in the presence of base 

with kobs = 6×108 M
-1

s-1. However, in the absence of base, a high-energy intermediate 

phenol radical is formed and kobs = 1×106 M
-1

s-1 (eqn. 3.22), which is a factor of 600 

lower than that found in the presence of pyridine (eqn. 3.20). Table 3.3 shows a list of 

excited state quenching reactions of 3C60 with various phenols, pyridine and solvent 

systems together with the excited state quenching of [Ru(bpy)3]
2+  by phenol in the 

absence and presence of base. Also, reductive quenching of a hydrogen-bonded adduct 

between H2Q and the excited state of [RuIII(bpy)2(bpz•−)]2+, [RuIII(bpy)2(bpz•−)]2+*-H2Q] 



Chapter 3                                                   Photoinduced Charge Transfer Dynamics in [Ru(bpy)2(η
2
-tpy)]

2+
  

 81 

is shown. It is evident from the table that the rate constants for the quenching reactions of 

the excited states of 3C60 and [Ru(bpy)3]
2+  are significantly higher in presence of base 

than in the absence of base.26   



 

 82 

Table 3.3 Quenching reactions of excited 3C60 and [Ru(bpy)3]
2+   

Reaction Solvent -ΔGapp kqB, 107 M-1s-1 

3C60
* + PhOH Benzonitrile (PhCN)  ≤ 0.1 a 

3C60
* + PhOH + TMP PhCN -0.07 6.0 ( ± 0.3) a 

3C60
* + H2Q PhCN -0.01 1.2( ± 0.2) a 

3C60
* + H2Q + TMP PhCN 0.66 270( ± 10) a 

3C60
* + H2Q + py PhCN 0.59 330( ± 40) a 

3C60
* + catechol PhCN -0.01 2( ± 0.5) a 

3C60
* + catechol + py PhCN 0.42 220( ± 30)a 

[Ru(bpy)3]
2+* + 4-methyl phenol MeCN  0.42b 

[Ru(bpy)3]
2+* + 4-methyl phenol + OH- H2O  150c 

[Ru(bpy)3]
2+*+4-(tert-butyl)phenol+ OH- H2O  120c 

[Ru(bpy)3]
2+* + 4-Ethylphenol + OH- H2O  180c 

[Ru(bpy)2(bpz)]2+* + H2Q CH3CN/H2O -0.55 0.45±0.1d 

a Reference 26. b Reference 27. c Reference 28. d Reference 29. TMP = trimethy pyridine 
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The free energy surfaces for PCET reactions can be presented as two dimensional 

paraboloids as shown in Figure 3.14.23a  

 

Figure 3.14 Graphical presentations of two paraboloids Iµ and IIν as a function of the 
solvent coordinates Zp and Ze. λµν is the reorganization energy and o

Gµν∆  is the 

equilibrium free energy difference. (Reprinted with permission from reference 29, 
Copyright © 2001 American Chemical Society).   

 

At this juncture, a PCET reaction is illustrated as a transition from the reactant paraboloid 

set to a product paraboloid set which is a muldimensional analogue of Marcus theory for 

single electron transfer relating to the one dimension parabolas.30   

Meyer et al.
30

 reported a PCET reaction which involves the reductive quenching 

of [RuIII(bpy)2(bpz)•−]2+* by H2Q as shown in Scheme 3.11.  
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Scheme 3.11 An example of proton coupled electron transfer.30 

 
Photoirradiation of [Ru(bpy)2(bpz)]2+ increases the electron density of the bpz 

ligand in the MLCT excited states and an H-bond is formed between H2Q and the bpz 

ligand of [Ru(bpy)2(bpz)]2+*. The quenching reaction takes place through a concerted 

proton transfer from H2Q to the N of bpz and electron transfer from the oxygen of H2Q to 

Ru(III) on a ~100 ns time scale. For the reductive quenching of [RuIII(bpy)2(bpz•−)]2+* by 

H2Q through electron transfer (ET), ∆G
o is +0.06 eV. However, when the quenching 

process occurs through electron proton transfer (EPT), ∆G
o is -0.55 eV, which reveals 

that EPT avoids high energy ET or PT intermediates. Later on, Meyer and co-workers31 

extended their investigation and studied the pH dependence of the excited state of a 

PCET reaction that involves reductive quenching of the MLCT excited state of 

[Ru(bpy)2(bpz)]2+ by a series of substituted hydroquinones with transient absorption (TA) 

and time resolved electron paramagnetic resonance spectroscopy (TREPR). TREPR is a 

useful technique to detect radical (HQ•) without the interference of the ligand-based 

radical [RuII(bpy)2(bpzH•)]2+, as this radical is TREPR silent due to rapid electron spin 

relaxation induced by the metal center. Modification of the substituent on H2Q ring can 
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influence the acid/base dependence of a PCET reaction. Laser, flash photolysis results 

revealed that in strong basic solutions and with an electron withdrawing group on the 

H2Q ring system, the mechanism changes from a PCET to direct ET quenching. On the 

other hand, variation of ligands on the Ru complex can alter the acid/base dependence of 

the PCET through a series of complex equilibria between protonated and deprotonated 

hydroquinone radicals and anions.31 

In CH3CN, HQ• exists as an organic radical as illustrated in Scheme 3.12(a). 

However, in CH3CN/H2O system, deprotonation of HQ• results in formation of a 

semiquinone anion radical as shown in Scheme 3.12(b).26    

 

Scheme 3.12 HQ• radical in equilibrium in CH3CN/H2O.  

 
Hydroquinones have been identified as H-bonded charge transfer complexes.19 

Quinone and hydroquinone interact with each other through the formation of H-bonds in 

concentrated solutions as shown in Scheme 3.13. This is evident from the low energy 

absorption bands that arise due to the H2Q→Q charge transfer as shown below. 

   

Scheme 3.13 H-bonded charge transfer in Hydroquinones.22  
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3.2 Thermodynamics of PCET Reactions 

When electron transfer occurs in concert with proton transfer, the net result is that 

the formation of high-energy intermediates is circumvented (section 3.1.7). Electron 

transfer, along with proton transfer has an important effect on the rate of a reaction. 

Electron transfer increases acidity with a loss of an electron and eventually influences the 

redox potentials of a reaction. However, there some limiting cases where the pKa value is 

lower as the oxidation number increases. For [RuII(bpy)2(py)(H2O)]2+,19  the pKa value is 

10.7; whereas in higher oxidation state or [RuIII(bpy)2(py)(OH)]2+ the value is remarkably 

lower at 0.85, Scheme 3.14.  

RuII
OH2

py

RuIII
OH

py

RuIV

O

py
-e, -H+ -e, -H+

=
N N
bpy

pKa = 10.0 pKa = 0.85

 

Scheme 3.14 Variation of pKa value with change in oxidation number. 

 
For [Re(bpy)(CO)3(MQ+)]2+,20 the excited state is more basic than the ground state. Here, 

intramolecular π* (bpy−•) → π* (MQ+) electron transfer takes place in the excited state as 

shown in Scheme 3.15. 
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[(bpy)ReII(CO)3(MQ+)]2+* [(bpy)ReII(CO)3(MQ)]2+*

N N+CH3

MQ+

h

 

Scheme 3.15 Excited state reaction of [Re(bpy)(CO)3(MQ+)]2+. 

 
In the ground state 2-napthol21 has the pKa value ~8, whereas in the excited state the pKa* 

value is ~ 2.8, Scheme 3.16. 

 

Scheme 3.16 Excited state reaction of 2-napthol. 

 
A pH dependent redox couple is given by the following equation  

   Ox + n(e-) + m(H+)  Red(H+)m            (3.24) 

where Ox is the oxidized species and Red is the reduced species. The half-wave potential 

(E1/2) can be predicted by the Nernst equation,19 having pH dependency, is given by  

E1/2 = Eo' – [0.059/n]log(Do/Dr)
1/2– 0.059(m/n)pH     (3.25) 

where Do and Dr are the respective diffusion coefficients of the oxidized and reduced 

species, m is the number of protons, n is the number of electrons, E
o' is the formal 

potential at pH = 0. The dependence of redox potentials upon hydrogen ion concentration 

can be conveniently plotted and a plot of E1/2 vs pH for a redox couple which is known as 
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a Pourbaix diagram. The Pourbaix diagram summarizes equilibrium information of 

oxidation-reduction reactions that take place in a solution.22     

 

Figure 3.15 Pourbaix diagram for Ru(IV/III) and Ru(III/II) couples of 
[RuII(bpy)2(py)(H2O)]2+. (Reprinted with permission from reference 22, Copyright © 

2007 American Chemical Society). 
 

The Pourbaix diagrams for the cis-[RuIV-(bpy)2(py)(O)]2+/[RuIII(bpy)2(py)(OH)]2+ 

and cis-[RuIII(bpy)2-(py)(OH)]2+/[RuII (bpy)2m (py)(H2O)]2+ couples is shown in Figure 

3.15 where the variation of E1/2 with pH for the Ru(IV/III) and Ru(III/II) couples  of 

[RuII(bpy)2(py)(H2O)]2+ are summarized. The vertical dotted lines indicate pKa = 10.6 for 

cis-[RuII(bpy)2(py)(H2O)]2+ (RuII-OH2
2+) and pKa = 0.85 for cis-[RuIII(bpy)2(py)(H2O)]3+ 

(RuIII-OH2
3+). Cis-[RuIV(bpy)2(py)(O)]2+ and cis-[RuIII(bpy)2(py)(OH)]2+ are given as 

(RuIV=O2+) and (RuIII-OH2+), respectively in the diagram. Over the range of pH 2-9, cis-

[RuII(bpy)2(py)(H2O)]2+ and cis-[RuIII(bpy)2(py)(OH)]2+ species predominate for the 
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Ru(III/II) couple. The E1/2 decreases with pH by 0.05916 V/pH.  The reactions are a given 

in Scheme 3.17:  

[RuIII(bpy)2py(OH2)]3+ + e- [RuII(bpy)2py(OH2)]+

[RuIII(bpy)2py(OH)]2+ + H+ + e- [RuII(bpy)2py(OH2)]+

[RuII(bpy)2py(OH2)]2+ + e- [RuII(bpy)2py(OH)]+ + H+  

Scheme 3.17 Reactions for Ru(III/II) couples of [RuII(bpy)2(py)(H2O)]2+. 

 
In contrast, at pH < 0.85, cis-[RuIV(bpy)2(py)(O)]2+ and cis-[RuIII(bpy)2(py)(OH)]2+ 

species dominate for Ru(IV/III) couple. The reactions are a given in Scheme 3.18: 

 

Scheme 3.18 Reactions for Ru(IV/III) couples of [RuII(bpy)2(py)(H2O)]2+. 

 
E1/2 decreases with pH by 118 mV/pH as the pH is decreased as shown in the diagram. 

This is in agreement with the loss of two protons when oxidation takes place. 

The pH dependence of H2Q redox couples can also be represented as in Pourbaix 

diagrams. For example, in the quinone/hydroquione (Q/H2Q) system, the equilibrium 

between quinone (Q) and hydroquinone (H2Q) involves a one electron oxidation 

semiquinone intermediate HQ•, as shown in the Figure 3.16.32 In strong acidic solutions, 

the quinone is protonated to give a QH+ species and the equilibrium is represented by the 

vertical line at pH = pKa = -1. At higher pH, hydroquinone undergoes two consecutive 



Chapter 3                                                   Photoinduced Charge Transfer Dynamics in [Ru(bpy)2(η
2
-tpy)]

2+
                          

 90 

deprotonations at pKa = 9.85 (QH-) and pKa = 11.4 (Q2-) as indicated by the vertical lines 

in the diagram.   

 

Figure 3.16 Pourbaix diagram for quinone/hydroquione (Q/H2Q) system. (Reprinted with 

permission from reference 32, Copyright © 1983 Royal Society of Chemistry). 
 
The values of potentials for the pH independent couples, H2Q/H2Q

•+, HQ−/HQ•−, Q2
−/Q•− 

are given horizontally and the changes in pKa values are given vertically in Figure 3.17. 
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Figure 3.17 Quinone/hydroquinone (Q/H2Q) system. 

3.3 Other Excited State Measurements  

At room temperature, [Ru(tpy)2]
2+ is non-emissive with a lifetime of 250 ps in 

H2O.33 The luminescence lifetime for [Ru(tpy)2]
2+ is 8.0 µs in H2SO4/H2O and 

HSO3F/H2O glasses (25% v/v) at 77 K, and 10.2 µs in D2SO4/D2O (25% v/v).33 

However, [Ru(bpy)3]
2+ and [Ru(tpy)2]

2+ do not display any thermal or photochemical 

reactivity in these strongly acidic media at room temperature. The addition of moderate 

concentrations of the powerful oxidizing agent [Fe(OH2)6]
3+ leads to accelerated and 

highly non-exponential [Ru(tpy)2]
2+* decay kinetics where the electron transfer driving 

force is greater than 1.5 eV in aqueous solution.  

H2O as a medium for electron transfer has a unique position as it plays an 

important role in many chemical and biological reactions. However, the large dielectric 

constant of H2O creates a barrier for electron transfers.33 The efficiency of H2O as a 

tunnelling medium has not been clearly reported. From this motivation, Gary et al.,
33

 

investigated electron transfer in aqueous acidic glasses to identify β  values, an 
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exponential distance decay constant (β) that is sensitive to the composition of the 

medium separating the electron donor (D) and acceptor (A). Figure 3.18 shows the 

luminescence decay kinetics for [Ru(tpy)2]
2+ in the absence and presence of [Fe(OH2)6]

3+ 

where the traces are for 0.0, 0.05, 0.10, 0.25, 0.50 M from top to bottom. 

 

Figure 3.18 Luminescence decay kinetics for Ru(tpy)2
2+ in a H2SO4/ H2O glass (at 77 K) 

in the presence of [Fe(OH2)6]
3+.33 (Reprinted with permission from reference 33, 

Copyright © 2000 American Chemical Society). 
 

3.4 Effect of Deuteration on Radiative and Non-radiative Decay 

Deuteration of ligands in a transition metal complex plays an important role on 

the excited state decay.34 The position of deuteration on a 2,2'-bpy yields important 

insights into the mechanism for non-radiative decay processes.34 The deuteration of 

ruthenium polypyridyl complexes enhances their luminescent quantum yield and excited 

state lifetime.34 Van Houten and Watts reported34 that the deuteration of [Ru(bpy)3]
2+ 

increases the lifetime of 3MLCT states, with kH/kD~1.3. The effect of deuteration has been 

explained by Van Houten and Watts in terms of an excited state model concerning partial 
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charge transfer to the solvent (CTTS), which was incorrect.34 However, this interpretation 

has been revised by Kincaid et al.,35 and the position of deuteration was considered to be 

attenuated by the promoting modes that mix the thermalized 3MLCT ground state 

transition. Kincaid experimentally illustrated the lifetime differences for three 

isotopically substituted analogs of [Ru(bpy)3]
2+ and determined the lifetime and non-

radiative decay constants given in the Table 3.4.35  

Table 3.4 3MLCT lifetime and knr values for substituted [Ru(bpy)3]
2+.35  

 
Complex 

 
lifetime± 10ns 

in H2O 

 
knr s

-1 

[Ru(bpy)3]
2+ 580 12.2 × 105 

Ru(bpy-d8)3
2+ 690 9.45 × 105 

Ru(bpy-3,3'-d2)3
2+ 580 12.2 × 105 

Ru(bpy-6,6'-d2)3
2+ 645 10.5 × 105 

Ru(bpy-3,3', 5,5'-d4)3
2+ 655 10.3 × 105 

  
As shown in the table, deuteration at the 3,3'-positions has no significant effect on knr, 

while other deuterated complexes reveal lifetimes that are longer and knr values that are 

lower then that of [Ru(bpy)3]
2+. This is due to the low electron density at the 3,3'-

positions as H/D exchange occurs on the metal complex at these positions.35     
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3.5 Objectives  

In heteroleptic ruthenium polypyridyl complexes containing bpy and N 

heterocycles such as 2,2′-bipyrimidine (bpm) and 2,2′-bipyrazine (bpz), the bpm and bpz 

ligands offer external N-atoms which can act as proton acceptors as shown in Scheme 

3.11. 

Likewise, there is a pendant pyridine in [Ru(bpy)2(η
2-tpy)]2+, which possesses an external 

N-atom.  

 

In chapter 2 the fluxional behaviour of tpy in [Ru(bpy-d8)2(η
2-tpy)]2+ was 

discussed. The purpose of this chapter is as follows: 

i) To obtain fundamental insight into electronic coupling on the excited state surface 

of the protonated pendant pyridine ring in [Ru(bpy)2(η
2-tpy)]2+. 

ii) Explanation of the novel photophysics of [Ru(bpy)2(η
2-tpy)]2+ and its protonated 

form. 

iii) To study the effect of conformational changes on the photophysical properties of 

[Ru(bpy)2(η
2-tpy)]2+ i.e. to observe if there is any relationship between the ground 

state fluxionality and knr. 

iv) As the pendant pyridine in [Ru(bpy)2(η
2-tpy)]2+  contains an external N-atom, it 

might also open a new direction to study electron-proton transfer (EPT) reactions.   
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3.6 Results  

3.6.1 Steady-State Absorption, Emission and Excited State Redox 

Potentials 

Comparative ground state physical properties of [Ru(bpy)2(L)]n+ (where L = dpp, 

2-phenylphen, 6-Mebpy, 6-bpy-cyalamM (M = Ni2+ or 2H+) as shown in Figure 3.19) are 

collected in Table 3.5.  

                                           

                            

Figure 3.19 Structures for (a) [Ru(bpy)2dpp]2+ (b) [Ru(bpy)2(2-phenyl-phen)]2+ (c) 
[Ru(bpy)2(6-Mebpy)]2+ and (d) [Ru(bpy)2(6-bpy-cyclamM) (M = Ni2+ or 2H+). 

 

The overlaid UV-vis spectra of [Ru(bpy)2(η
2-tpy)]2+ and [Ru(bpy)3]

2+ and 

assignments of the electronic transitions are shown in Figure 3.20.
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Table 3.5 Physical properties of [Ru(bpy)2(L)]n+  

L = bpya Mebpya bpy-cyalamH2
a η2-tpyb 2-phenyl-phenc 

λmax, nm(ε x 10-3) 
Lowest Energy Transition 

 

451(14.4) 450(14.3) 448(12.1) 448 (14.0) 447(4.28) 

Ε1/2, (RuIII/II) vs SCE 1.27 1.27 1.34 1.30c 1.32 

Ε1/2, (RuII/I) vs SCE -1.34 -1.34 -1.33 -1.33c -1.28 

Ru-N bond distance, Å av. 2.056  av. 2.076 av. 2.083 av. 2.075 

 

a Reference 36. b For [Ru(bpy)2(η
2-tpy)]2+ 

max
absλ  = 448 nm, ε = 14086 M-1cm-1.c The RuIII/II and RuII/I redox potentials are the 

average of the reduction potentials for [Ru(bpy)2(6-Mebpy)]2+ and [Ru(bpy)2(bpy-cyclam)]2+. c Reference 40.  
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The visible spectra of the [Ru(bpy)2(η
2-tpy)]2+ and [Ru(bpy)3]

2+  in CH3CN are 

dominated by the well-documented [(dπ)]6→1[(dπ)5(π1
*)1] MLCT transitions at ~450 nm 

and ligand based π→π* transitions in the 270-300 nm region.37 The MLCT envelopes 

( max
absλ  = 400-500 nm) are broad due to a series of MLCT transitions and their associated 

vibronic progression (
jωh  ~ 1600 cm-1).37  
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Figure 3.20 Overlaid UV-vis absorption spectra of [Ru(bpy)2(η
2-tpy)]2+ (blue) (1.1x10-6 

M) and [Ru(bpy)3]
2+ (red) (1.3x10-6 M) in CH3CN at 298 (±3) K. Calculated difference 

spectrum (black) between [Ru(bpy)3]
2+ and [Ru(bpy)2(η

2-tpy)]2+ is enlarged in the inset.   
 

The absorption spectrum of [Ru(bpy)2(η
2-tpy)]2+

 displays a similar broad metal-

to-ligand charge transfer (MLCT)  absorption band with λmax at ~450 nm 

[(π)2]→[(π)1(π2*)1] 

[(π)2→1[(π)1(π1*)1] 

[(dπ)6]→1[(dπ)5(π1
*)1]  

[(dπ)6]→3[(dπ)5(π1
*)1]  

[(dπ)6]→1[(dπ)5(π2
*)1]  

∆abs 

1MLCT 
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(ħω ∼ 1600 cm−1)  to the absorption of  [Ru(bpy)3]
2+ in same solvent (∼3-5 nm blue 

shifted), inset Figure 3.20. The absorption (∆A) difference between the bands 460 nm and 

422 nm is 0.013 cm-1M-1; and for 422 nm and 390 nm, the difference is 0.024 cm-1M-1. 

The MLCT maxima and extinction coefficients in Table 3.5 for [Ru(bpy)2(L)]n+ 

analogous (where L = bpy, 6-Mebpy, 6-bpy-cyalamM, η2-tpy, 2-phenylphen ligands) as 

shown above, have similar MLCT energetics and intensities.  

In the weak coupling limit the ground state absorption should be comparable to 

that of [Ru(bpy)3]
2+, Figure 3.20. It should be noted that the similarity of the UV-vis 

spectra of [Ru(bpy)2(η
2-tpy)]2+ and  [Ru(bpy)3]

2+ point to weak coupling between the 

pendant pyridine and the [Ru(bpy)3] like coordination sphere in [Ru(bpy)2(η
2-tpy)]2+ in 

the ground state. The crystal structure yields a dihedral angle of 52o between the pendant 

pyridine and bpy fragment. The UV π→π* transitions for the η2-tpy system vary slightly 

in intensities with a heteroleptic mixed ligand Ru(II) complex as expected.38 The low 

energy tail is assigned to a spin forbidden [(dπ)6→3[(dπ)5(π1
*)1] transition which gains 

intensity due to mixing of the 1MLCT and 3MLCT states by spin-orbit coupling.39 As 

such, the use of spin labels is an approximation.   

The absorption and emission spectra of [Ru(bpy)2(η
2-tpy)]2+

 in CH3CN solution 

are shown in Figure 3.21. The 3MLCT emission from [Ru(bpy)2(η
2-tpy)]2+ with max

emλ  at 

615 nm is much weaker (Φem = 7.2 × 10-5) than the emission of [Ru(bpy)3]
2+ (Φem = 

0.062), but there is no apparent shift in the energy of the 3MLCT → ground state 

transition. The values are quite distinct from those measured by Schmehl et al.
40 for most 
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of the [Ru(bpy-d8)2(phen-R)]2+ complexes in CH3CN where φem ∼ 7×10-5. It should be 

noted that the rigidity of the phen ligand results in increased lifetimes and emission 

quantum yields.41 The similarity of absorption and emission data compared to 

[Ru(bpy)3]
2+ spectroscopic data confirm that in solution [Ru(bpy)2(η

2-tpy)]2+ has a six co-

ordinated structure with three bidentate ligands. The X-ray structures in the solid state are 

described in chapter two.  
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Figure 3.21 Absorption (blue) and emission (red) spectra of [Ru(bpy)2(η
2-tpy)]2+ in 

acetonitrile at 298 (±3) K, under 1 atm Ar. 
 

Comparative excited state properties of Ru(bpy)2(L)]n+  complexes (where L is a 

6-R-bpy ligand; R = H, Me, 6-cyclam, py) are given in Table 3.6. Room temperature 

luminescence is observed from all [Ru(bpy)2(L)]n+ complexes with maxima between 600 

and 625 nm.  
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Table 3.6 Excited State Properties of [Ru(bpy)2(L)]n+  complexes in CH3CN  

L = 2-phenyl-phenc bpy 6-Mebpya 6-cyclam-bpya η2-tpyb 

max ,em nmλ (eV) 622 (2.0) 620 (2.0 )  621 (1.98) 615 ( 2.05) 

φem 7x10-4 0.062   7x10-5 

τ, ns (298 K) 5 670 8 2 0.082 

τ, ns (165 K)  1920 1600 1200, 170  

Ε1/2, (RuIII/II*) Vvs SCE -0.68 -0.92  -0.64 -0.74c 

Ε1/2, (RuII*/I) Vvs SCE +0.72 +0.85  +0.64 +0.74c 

 
a Reference 36.b The RuIII/II* and RuII*/I excited state redox potentials are calculated using equation 3.28 and 3.29. See text for 
details. c Reference 40. 
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The estimated reduction potentials for the excited states acting as oxidants  

  (3.26) 

or reductants 

(3.27) 

are included in Table 3.6. The excited state reduction potentials were calculated from the 

ground-state potentials by using the following equation.30  

 

The E1/2 and max
emE are the ground state redox potentials and emission maxima of 

[Ru(bpy)2(η
2-tpy)]2+ in Volts, respectively.    

 

3.6.2 Photochemistry  

Steady-state photolysis of [Ru(bpy)3]
2+ in the presence of a series of anions (such as Cl-, 

Br-, NCS-)30 leads to photoinduced ligand substitution given by 

 

Scheme 3.19 Photoinduced ligand substitution reaction. 

 [Ru(bpy)2(η
2-tpy)]2+  was photolyzed with broad band light excitation (400 W Xe 

Arc Lamp) and no significant changes were observed in the UV-vis spectrum over a 

period of one hour, under 1 atm N2. No photochemistry occurred for [Ru(bpy)2(η
2-
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tpy)]2+, which implies that the complex is relatively inert to photosubstitution in line with 

the observations described by Schmehl for [Ru(bpy)2(2-phenylphen)]2+.40 This is an 

important observation given the steric demands of the tpy ligand, yet the compound 

appears to be photoinert. This point will be elaborated on below. 

 

3.6.3 Time-Resolved Spectroscopy 

Transient absorption difference spectra obtained following laser flash excitation 

of [Ru(bpy)2(η
2-tpy)]2+ are shown in Figure 3.22.  
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Figure 3.22 Transient absorption spectra for [Ru(bpy)2(η
2-tpy)]2+ where where λexc = 405 

nm in CH3CN at 298 (±3) K.  
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 At the earliest time the transient absorption difference spectra displayed a prompt 

growth which is assigned to a (π→π∗) transition of a reduced bpy∙- ligand at λ = 370. 

There is concomitant bleaching at 460 nm which is due to loss of the [(dπ6→1[dπ)5π1*)] 

ground state absorption. Furthermore, there is a prompt weak transient absorption that 

extends from 460 to 650 nm, which is assigned to an excited state [π2(dπ)5→ π(dπ)6] 

LMCT.30 The TA spectra evolve in time and the spectral features closely parallel those 

found for [Ru(bpy)3]
2+, however, the lifetime is five orders of magnitude larger than that 

of [Ru(bpy)3]
2+*.30 Following excitation and inter system crossing (ISC) to the emissive 

3[MLCT] state one observes an exponential decay with a life-time of 82 ps with a point at 

~470 nm (∆A(mOD) = 0) which is consistent with a single kinetic step without detectable 

formation of transient intermediates (Figure 3.23). The kinetics were found to be 

independent of excitation and monitoring wavelength.  

 

Figure 3.23 Diagram for the excitation and relaxation of [Ru(bpy)2(η
2-tpy)]2+.  
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The excited state emission lifetime of [Ru(bpy)2(η
2-tpy)]2+ in CH3CN,  is shown 

in Figure 3.24.  
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Figure 3.24 Emission lifetime spectrum for [Ru(bpy)2(η
2-tpy)]2+, where λexc = 365 nm; 

λmax = 620 nm in CH3CN at 298 (±3) K. The time-resolved emission of [Ru(bpy)2(η
2-

tpy)]2+ with fitting (solid)    
 

3.6.4 Protonation of Pendant Pyridine  

Addition of two equivalents of trifluoroacetic acid (TFA) to a CH3CN solution 

containing [Ru(bpy)2(η
2-tpy)]2+ results in subtle changes in the intensity of the  

[(dπ)6→(dπ)5(π1*)1] envelope, Figure 3.25. The addition of TFA gives rise to increased 

absorptivity between 325 nm and ~540 nm.  
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Figure 3.25 UV-vis spectra for [Ru(bpy)2(η
2-tpy)](2.49×10-5 M), before (─) and after 

(· · · ·) the addition of two equivalents of TFA; [TFA] = 0.1 M  in CH3CN at 298 (±3) K, 
under 1 atm  N2.    
 
These spectral changes are due to the protonation of the pendant pyridine [Ru(bpy)2(η

2-

tpy)]2+  given by 

 

 

The equilibrium constant for the protonation of the pendant pyridine is 

                 

There is evidence for several new transitions based in the difference spectrum shown in 

Figure 3.26.  
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Figure 3.26 Difference spectrum for [Ru(bpy)2(η

2-tpyH+)]3+ relative to  [Ru(bpy)2(η
2-

tpy)]2+, as calculated from the data shown in the Figure 3.25.  
 

The band centered at 21192 cm-1 (λmax = 471 nm) appears in concert with a new 

emission band at 550 nm (see below). The difference spectrum also shows a complex 

band envelope in the 22000-28000 cm-1 region.  

The emission spectra of [Ru(bpy)2(η
2-tpy)]2+

 and its protonated form in 

acetonitrile are shown in Figure 3.27. 
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Figure 3.27 The emission spectra of [Ru(bpy)2(η

2-tpy)]2+ (red) and [Ru(bpy)2(η
2-

tpyH+)]2+ (blue) in acetonitrile at 298 (±3) K. Excitation energy, λexc = 355 nm. 
 

The emission band appears at lower wavelength for the protonated [Ru(bpy)2(η
2-

tpy)]2+ compared to [Ru(bpy)2(η
2-tpy)]2+. With λexc at 355 nm, the emission intensity of 

[Ru(bpy)2(η
2-tpyH+)]2+  shows a band at 520 nm with greater quantum efficiency 

(Φem=2.0×10-4) than that of [Ru(bpy)2(η
2-tpy)]2+ at 615 nm (Figure 3.27).  

An emission lifetime spectrum of protonated [Ru(bpy)2(η
2-tpyH+)]2+ is shown in 

Figure 3.28. The excited state lifetime of [Ru(bpy)2(η
2-tpyH+)]2+ is 2.6 ns, greater  than 

that of the parent complex, 0.082 ns. This is a remarkable observation as protonation 

enhances the lifetime which may open a new dimension of research. Increase in lifetime 

may lead to the exploration of new types of excited state reactions such as charge 

transfer, electron transfer, proton coupled electron transfer and other catalytic substitution 

reactions.    
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Figure 3.28 Emission life time spectrum of [Ru(bpy)2(η
2-tpyH+)]2+. The time-resolved 

emission of [Ru(bpy)2(η
2-tpyH+)]2+ with fitting (solid). 

 
 

Transient absorption difference spectra were also obtained following laser flash 

excitation of [Ru(bpy)2(η
2-tpyH+)]2+ at 388 nm (5 mJ/pulse). Selected time traces from 

the transient absorption spectra are shown in Figure 3.29.  
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Figure 3.29 Femtosecond transient absorption of Ru(bpy)2(η
2-tpy) 2+ + 5 equivalents H+ 

in acetonitrile. 

 

Femtosecond transient absorption of [Ru(bpy)2(η
2-tpy)]2+  and its protonated form 

were taken in CH3CN, Figure 3.30(A).34 The kinetic traces at 450 nm of [Ru(bpy)2(η
2-

tpy)]2+  and [Ru(bpy)2(η
2-tpyH+)]2+ are given in Figure 3.30(B). 
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Figure 3.30 (A) Femtosecond transient absorption of [Ru(bpy)2(η

2-tpy)]2+ in acetonitrile 
(blue line) and femtosecond transient absorption of [Ru(bpy)2(η

2-tpy) ]2+ + 5 equivalents 
H+ in acetonitrile (purple circle). (B) Kinetic traces at 450 nm of [Ru(bpy)2(η

2-tpy) ]2+ 
(blue) and [Ru(bpy)2(η

2-tpy) ]2+ + 5 equivalents H+ (purple).  
 
 

Sub-ns transient absorption spectra of protonated [Ru(bpy)2(η
2-tpy)]2+  in 

acetonitrile are shown in, Figure 3.31(A), together with kinetics at 375 nm and 450 nm in 

Figure 3.31(B). 
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Figure 3.31 (A) Sub-ns transient absorption of Ru(bpy)2(η
2-tpy)2+ + 5 equivalent H+ in 

acetonitrile. (B) Kinetics at 375 nm and 450 nm. 
 
 

Table 3.7 summarizes the emission data for the unprotonated and protonated 

complexes and the respective values of the radiative, kr and nonradiative knr, rate 

constants derived from the following relationships:  

             τ = 1/kr+knr                      (3.33) 
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em isc i
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k

k k
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         (3.34) 
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Table 3.7 Photophysical parameters and radiative and nonradiative rate constants for 
3[Ru(bpy)2(η

2-tpy)]2+* ,  3[Ru(bpy)2(η
2-tpyH)]3+* and [Ru(bpy)3]

2+*: 
Parameters 3[Ru(bpy)2(η

2-tpy)]2+* 3[Ru(bpy)2(η
2-tpyH)]3+* [Ru(bpy)3]

2+* 

max ,em
nmλ  615 515 620 

1, ( )emE cm eV
−  16580 (2.06) 19310 (2.40) 16200 (2.0) 

, (298 )ns Kτ  0.082 2.6 670 

em
φ  7 × 10-5 2 × 10-4 0.062 

1,ssE cm
−  5640 1980 1700 

1
,rk s

−  8 × 108 9.52 × 10-4 5.9 × 105 

1,nrk s
−  1 × 1010 5 × 108 1.0 × 106 
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3.7      Discussion 

3.7.1 Spectroscopic Analysis  

           Absorption spectra of [Ru(bpy)(η2-tpy)]2+ and the protonated complex in CH3CN 

are shown in Figure 3.25. Evidence for a new transition in the difference spectrum is 

given in Figure 3.26. The band centered at 21192 cm-1 (λmax = 470 nm) appears in concert 

with a new emission band at 550 nm and is presumably due to polarization of the 

electronic wave function (ψπ*) on to the pyridyl ring adjacent to the PyH+ substituent. It 

follows that removal of electron density in the σ-bonded framework would lower the π 

and π* energies of the pyridyl ring as it would experience an increased positive electro-

static attraction from the carbon atoms that make up the pyridyl ring. As such the π* 

levels would be stabilized.40  

A Franck-Condon analysis42 of the intra ligand charge transfer (ILCT) transition 

is revealing. The bandwidth is related to CT energy (EIT) and the free energy differences 

between the electron donor and electron acceptor by   

                2
1/2( ) 16( ) ln 2o

IT BE G k Tν∆ = − ∆              (3.37) 

with 1/2ν∆  of 1900 cm-1, EIT = 21192 cm-1, o
G∆  = 19620 cm-1 ( E∆ = 2.43 eV) and T = 

298 K.42 The RuIII/II based reduction potential is -1.30 V vs SCE and the oxidation 

potential of the pyH+ acceptor is calculated to be -1.16 V vs SCE and is comparable to -

0.9 V for the MQ+• Couple, Table 3.5.  

The oscillator strength (fosc) of the RuII→pyH+ transition is related42 to the 

transition dipole moment by  
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2max

122

8
( )

3
e

osc

m
f d

he

π ν
ε ν ν µ= =∫

v                       (3.38) 

where ( )dε ν ν∫ is the integrated band intensity; me is mass of the electron, maxν is the 

energy of the band maximum, h is Plank’s constant, e is the charge of the electron and 

12µ
v

 is the transition dipole moment. The magnitude of the fosc of a Gaussian charge 

transfer band can be determined experimentally by42  

                             9
max 1/24.61 10 ( )oscf ε ν−= × ∆                           (3.39) 

where maxε  is the extinction coefficient at maxν and 1/2ν∆  is bandwidth which has been 

defined above. Using maxε = 1000 M-1cm-1 and 1/2ν∆  = 1900 cm-1, the magnitude of the 

calculated oscillator strength (fosc) for [Ru(bpy)2(η
2-tpy)]2+ CT band is 0.0876, close to 

the value of  calculated oscillator strength (fosc)  of [Ru(bpy)3]
2+, Table 3.8.  
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Table 3.8 Spectroscopic parameters derived from a Mulliken-Hush analysis of the 
spectral band envelopes for the Ru→pyH+ and MLCT transition  
 

Parameter [(dπ)6]→1[(dπ)5(π∗pyH)] [(dπ)6]→1[(dπ)5(π1
∗)] 

1
max , ( )abs

nm cmλ −  471 (21192) 451 (22173) 

1 1, M cmε − −  1000 14.4 ×103 

1
1/2 ,cmν −∆  1900 752 

osc
f  0.0876 0.0498 

12 ,eµ Α
ov

 
0.2 0.11 

1, ( , )DAH cm d
− Α

o

 
2300 (3.0) 2705(1.6) 

α  0.11 0.12 

1,s cmε −  200 340 

 
 

The magnitude of 12µ
v

for the [Ru(bpy)2(η
2-tpy)]2+ CT transition is given by 

rearrangement of eqn. 3.38 as  

                               
2

12 5
max(1.08 10 )

oscf
µ

ν−
=

×

v                        (3.40) 

where the constants given in equation 3.38 are 1.08x10-5, maxν is 21192 cm-1, and 12µ
v

 is 

0.2 eÅ, consistent with the proposed RuII→pyH+ photoinduced charge transfer transition 

and close to the value of the calculated transition dipole moment ( 12µ
v

) of [Ru(bpy)3]
2+ 

(0.1 eÅ).43   
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The extent of orbital mixing between the dπ and π* orbitals is given by the 

electronic coupling element HDA. The Mulliken-Hush expression44 for determining the 

electronic coupling matrix element HAD is given by  

                              [ ]
1/2

max 1/2 max

0.0205
( ) .DAH

d
ε ν ν= ∆                   (3.41) 

where d is the charge transfer distance between the donor and the acceptor. maxε is the  

extinction coefficient in M-1cm-1, 1/2ν∆ is the full width at half-height in cm-1 and maxν is 

the energy of the peak maximum in cm-1. Here, d is the charge transfer distance between 

bpy and the pendant pyridine of [Ru(bpy)2(η
2-tpyH+)]3+  and is estimated to be ~ 3.0 Å  

and   the electronic coupling matrix element HDA  is 2300 cm-1. Similar types of strong 

coupling were observed in [Ru(bpy)3]
2+ and the calculated electronic coupling matrix 

element HDA is 2705 cm-1 for [Ru(bpy)3]
2+.44  

Strong electronic coupling between a donor and acceptor can result in 

configurational mixing and thus modifies the properties of both donor and acceptor 

perturbationally.38 According to this perturbation theory analysis, the ground state is 

stabilized by an amount εs and can be calculated from the following relation44  

                          2 2[( ) / (1 ) /s DA DAH Eε α= −                   (3.42) 

                                                      = 200 cm-1  

where . .DA e s g sH Hψ ψ= 〈 〉  is the electronic coupling matrix element, .e s
ψ  and .g sψ  are 

the unmixed wavefunction of the excited state and  ground state; H is a Hamiltonian 

operator. The Frank-Condon excited state is destabilized by an equal amount as shown in 

Figure  3.32.  
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Figure 3.32 The effect of configuration interactions for the pendant pyridine.  

 
In a strongly coupled donor-acceptor system, α = /

DA DA
H E  where α is the 

mixing parameter that describes the extent of mixing of electronic wave functions. EDA is 

the energy difference between the ground and excited states. The values for the oscillator 

strength (fosc), the transition dipole moment ( 12µ
v

); the electronic coupling element (HDA) 

and the mixing parameter α for [Ru(bpy)2(η
2-tpyH+)]3+  CT and [Ru(bpy)3]

2+, calculated 

with the eqn. 3.37-3.42, are given in Table 3.8.   

The absence of photochemistry for [Ru(bpy)2(η
2-tpy)]2+ is counter intuitive given 

the steric bulk of the pendant pyridine which gives rise to longer Ru-N bond lengths 

relative to [Ru(bpy)3]
2+. Since the cofacial orientation of the pendant pyridine of the tpy 

ligand with the adjacent bpy in [Ru(bpy)2(η
2-tpy)]2+ may facilitate π-stacking with the 

adjacent bpy similar to that of [Ru(bpy)2(phen-R)]2+ complexes, this may contribute to 

the barrier for ligand loss.40 The temperature-dependent luminescence data for 

[Ru(bpy)2(phen)]2+  demonstrates the weakened ligand field that permits the crossover 

es
ψ

.g sψ

s
ε

s
ε
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from the 3MLCT to 3LF state. The efficiency of populating the 3LF state ηLF = 1.0 for 

[Ru(bpy)2(phen)]2+*, was estimated using eqn. 3.43.40 

' '[ exp( / )] / exp( / )]LF a o ak E RT k k E RTη = − + −       (3.43) 

where Ea = 1660 cm-1 k' = 7 ×1011 s-1; ko = τ−1 = kr + knr 

The ligand field state is known to be more labile than the MLCT state. However, 

photochemical and photophysical data reveal that the LF state of [Ru(bpy)2(2-

phenylphen)]2+  is stabilized which may be attributed to the π-π interactions between 2-

phenylphen and adjacent bpy.46  

 

Figure 3.33 Potential energy surface diagram illustrating the 3MLCT state. 

 

Electrostatic models have been developed to explain the octahedral ligand 

splitting as a function of the five metal-ligand distances.46 Accordingly, 10 Dq for 

[Ru(bpy)2(η
2-tpy)]2+ have been calculated using the following eqn: 
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This indicates that the dd states are more accessible and result in rapid non-

radiative decay in [Ru(bpy)2(η
2-tpy)]2+ through a 3MLCT-dd state transition followed by 

rapid decay of the metal centred excited state.46  The 10 Dq values for [Ru(bpy)2(bpy-

cyclam)]2+ and [Ru(bpy)2(2-phenylphen)]2+ are 3.70 eV and 3.71 eV, respectively. The 

potential energy diagram for [Ru(bpy)3]
2+ and [Ru(bpy)2(η

2-tpy)]2+ is shown in Figure 

3.34. 

(d (d

1

[Ru(bpy)3]2+

E

[Ru(bpy)2( 2-tpy)]2+

(d (d

3.98 3.64

 

Figure 3.34 Potential energy diagram for [Ru(bpy)3]
2+ and [Ru(bpy)2(η

2-tpy)]2+. 

 



Chapter 3                                                   Photoinduced Charge Transfer Dynamics in [Ru(bpy)2(η
2
-tpy)]

2+
                          

 120 

The variation in the life-time and intensity of quenching of [Ru(bpy)2((η
2-tpy)]2+ 

by H+ clearly indicates the dynamic behaviour of the reaction. The increase in life-time 

when the pendant pyridine is protonated is an important observation which to the best of 

our knowledge is unprecedented in transition metal systems. Conformational changes 

play an important role and have a significant effect on the life-time and intensities of 

bipyridine-based metal to ligand charge transfer (MLCT) transitions. In [Ru(bpy)2(η
2-

tpy)]2+, the pendant pyridine ring of the terpyridine ligand has access to π-π  interactions  

with the adjacent bpy ligand which might stabilize the ligand field states.  

 

3.7.2 Transient Absorption Spectral Analysis 

Transient absorption difference spectra were obtained following laser flash 

excitation of protonated [Ru(bpy)2(η
2-tpy)]2+. Selected time traces from the transient 

absorption spectra have been shown in Figure 3.29. The initial traces (pink) feature a 

bleach near 450 nm corresponding to the depletion of the ground state MLCT absorption, 

concomitant with a broad absorption at longer wavelengths which is attributed to the 

ligand-to-metal charge transfer (LMCT) transition from the neutral bpy to the Ru3+ center 

and a π→π* transition arising from the reduced bpy. These features are characteristic of a 

thermally relaxed 3MLCT excited state.37 This state is achieved within approximately 1 

ps. Subsequent traces show decay in these features as well as a positive absorbance 

growing in at 500 nm. In the last time trace (black), the broad long wavelength 

absorbance has not decayed back to zero. The high energy emission and increase in 

lifetime for the protonated [Ru(bpy)2(η
2-tpy)]2+ can be attributed to the formation of a 
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ligand-based radical of the [Ru(bpy)2(η
2-tpy)]2+ complex. Scheme 3.20 illustrates the 

proposed mechanism for the formation of that ligand-based radical species.       

 
 

Scheme 3.20 Proposed mechanism for the protonated excited state of [Ru(bpy)2(η
2-

tpy)]2+.     
 
 

After photo excitation of 3.1 at 355 nm (Scheme 3.20), there is an increase in the electron 

density on the ligands due to the MLCT transition. Scheme 3.20 illustrates the two bpy 

ligands and one tpy ligand in [Ru(bpy)2(η
2-tpy)]2+  with the excited electron in the lowest 

triplet MLCT state 3(dπ5π*
1) 3MLCT in π∗1 of the tpy ligand. The corresponding hole is 

dπ5 aligned along the π* acceptor in the dipole state which maximizes electrostatic 

interactions with the excited electron. As the electron resides mainly on the tpy ligand 

(Scheme 3.20, 3.2a), the other two additional MLCT excited states of bpy are off set to 

higher energy. Protonation of the pendant pyridine of the tpy ligand drives the electron 

towards this ring and the electron becomes localized on the protonated pyridine, 3.3, as 

shown in Scheme 3.20. The transient absorption spectrum of the protonated complex 
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(Figure 3.30) shows a prompt growth at 600 nm which has been assigned to the formation 

of a [Ru(bpy)2(η
2-tpyH)•−]2+  ligand-based radical. The high energy emission from the 

protonated complex at 520 nm might be due to the formation of this ligand-based radical.  

Resonance stabilization energy can be approximated by the degree of overlap of 

the 2pz orbitals of the six carbon atoms of pyH+ with the 2pz
1 orbitals of the adjacent ring 

i.e. the magnitude of the overlap integral between two rings.47 The overlap integral for 

hydrogenic 2pz orbitals is given by47  

                      '
22 2 (2 / )[exp( / 2 )]

z z
p p K a Z L ZL a cosθ= − −          (3.45) 

where K is a constant, Z is the effective nuclear charge, a is the Bohr radius, L is the 

distance between two nuclei and θ is the dihedral angle. The term cosθ is the origin of the 

dihedral angle dependence of π electronic coupling. If the two rings are coplanar θ = 0o, 

and cosθ = 1 and the overlap is maximum.  
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Figure 3.35 Relation between the dihedral angle and the relative coupling. 
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On the other hand, when the rings are perpendicular, θ = 90o and cosθ = 0, where 

there is no π electron delocalization. Figure 3.35 illustrates the relationship between the 

dihedral angle and the relative coupling.    

There exists a strong body of resonance Raman data on [Ru(mmb)3] and [Ru(py-

pyz)3]
2+  where the excited state spin density is localized on the ring system bearing a Me 

group for [Ru(mmb)3] and pyz fragment in [Ru(py-pyz)3]
2+ (Figure 3.36).48 

Me

N N

N

(a) (b)

 

Figure 3.36 Structure of a) 4-methy bipyridine and b) 2-(2-pyridyl)pyrazine.   

 
In the case of the [Ru(bpy)2(η

2-tpy)]2+ complex, the pendant pyridine of the tpy ligand 

rotates, and the coupling between the pendant pyridine and the adjacent bpy ligand 

depends on the dihedral angle and changes as shown in the Figure 3.35. However, 

protonation of the pendant pyridine restricts the rotation and thus stabilizes the complex. 

Thus, the lifetime for the protonated species increases over that of the complex itself. 

Also, the polarization of the electron density towards the protonated pyridine will result 

in lower π and π* levels of the pyridine because the π and π* levels will experience a 

greater electrostatic interaction with the nuclei of the pyridyl atoms and thus the MOs 

will be stabilized.40   
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3.8 Conclusion 

The ground and excited state dynamics of [Ru(bpy)2(η
2-tpy)]2+ have been 

discussed. In the ground state, electronic coupling between the pendant pyridine and 

adjacent bpy in [Ru(bpy)2(η
2-tpy)]2+ is very weak, which is evident from the overlaid 

absorption spectra of [Ru(bpy)2(η
2-tpy)]2+ and [Ru(bpy)3]

2+. However, addition of 

trifluroacetic acid (TFA) results in slight spectral changes which have been assigned to 

protonation of the pendant pyridine of [Ru(bpy)2(η
2-tpy)]2+. A new transition band has 

been identified, assigned to a 3MLCT interligand charge transfer transition, based on the 

differences between the spectra of [Ru(bpy-)2(η
2-tpyH+)]3+ and [Ru(bpy)2(η

2-tpy)]2+.  

The excited state lifetime of [Ru(bpy)2(η
2-tpy)]2+ is 82 ps. However, there is a 

remarkable increase in lifetime of the protonated [Ru(bpy)2(η
2-tpy)]2+ complex. With λexc 

= 355 nm, the emission intensity of the protonated [Ru(bpy)2(η
2-tpy)]2+ is at 520 nm with 

quantum efficiency  Φem = 2.0×10−4 and increased lifetime of 2.6 ns. The high energy 

emission and increase in lifetime for the protonated [Ru(bpy)2(η
2-tpy)]2+ can be attributed 

to the formation of a ligand-based radical of [Ru(bpy)2(η
2-tpyH+)]2+ complex.  

Mulliken-Hush analysis of the ILCT of [Ru(bpy)2(η
2-tpy)]2+ has been done and 

compared with that of [Ru(bpy)3]
2+. The value for the electronic coupling element (HDA) 

for [Ru(bpy)2(η
2-tpyH+)]3+ suggests that the electronic coupling between bpy and the 

pendant pyridne is quite strong. In [Ru(bpy)2(η
2-tpy)]2+, the pendant pyridine of the tpy 

ligand rotates and the coupling between the pendant pyridine and adjacent bpy ligand 



Chapter 3                                                   Photoinduced Charge Transfer Dynamics in [Ru(bpy)2(η
2
-tpy)]

2+
                          

 125 

depends on the dihedral angle. However, protonation of the pendant pyridine restricts the 

rotation and thus stabilizes the complex.  
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Chapter 4 Time Resolved Ligand Loss from  
cis-[Ru(bpy)2(py)2]

2+  
 

4.1 Introduction 

Ruthenium polypyridyl complexes are recognized for their unique combination of 

chemical stability, redox properties, reactivity, and their extensively documented excited 

state dynamics.1 These complexes have metal-to-ligand charge transfer (MLCT) excited 

states which can be frequently used in a variety of applications. Several attempts have 

been made to understand the structures and reactivity of the excited states which includes 

temperature-dependent lifetime, resonance Raman, emission spectral fitting and most 

recently laser flash photolysis experiments.2  

 

Figure 4.1: Potential Energy Diagram for (dπ)6 MLCT excited states.2  
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At low temperature, excitation of the MLCT band of a chromophore leads to the 

population of low-lying states where the deactivation process is dominated by radiative 

(kr) or nonradiative (knr) decay. However, at higher temperature, dd states are populated 

and influence the photophysical and photochemical properties of the complexes.3 The 

energies of dd states vary as a function of ligand field strength and the electronic energy 

level pattern is distorted with respect to ground state. These states are formed by a 

thermally activated electron transfer and the excited electron moves from a π*(bpy) to a 

dσ* orbital which is anti-bonding in character, (dπ)5(π*)1→(dπ)5(dσ*)1. The low lying dd 

states are close in energy to the emitting MLCT states as shown in Figure 4.1. The dd 

states can play a significant role in the photochemical and photophysical properties of a 

complex as they are short lived and their anti-bonding character leads to ligand loss, and 

decomposition of the complex. However, photochemistry of the dd states can be 

exploited by Photoinitiated ligand loss for various applications such as 

i. Forming a vacant co-ordination site on a metal oxide for H2O oxidation,  

ii. Drug delivery (Photodynamic Therapy), 

iii. Exploration of interactions of very labile weak ligands with ruthenium, 

iv. Solar energy conversion, 

v. Molecular switches, 

vi. O2 and C-H activation.  
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The dd transitions in [Ru(bpy)3]
2+ and analogous complexes have not been directly 

observed since the metal centered transitions are masked by the more intense charge 

transfer and intraligand transitions. However, the involvement of dd states decreases the 

lifetimes of [Ru(bpy)3]
2+ oxidation states as is evident from the study of temperature-

dependent emission yields and lifetime measurements.2 In order to study the dd states of 

[Ru(bpy)3]
2+ extensively, Sutin et al.,4 generated high-lying excited states through 

sequential two-photon capture by [Ru(bpy)3]
2+ or electron capture by [Ru(bpy)3]

2+ as 

shown in Figures 4.2 and 4.3. The pulse radiolysis experiments suggest that solvated 

electron capture by [Ru(bpy)3]
2+ takes place at close to the diffusion-controlled rate and  

forms three species. The yields of the ground state complex, 3MLCT excited state and 

nonemitting transient species were 7, 38 and 55 percent, respectively.4       

   

 

Figure 4.2 Electron capture by [Ru(bpy)3]
2+. (Adapted from Reference 4)  
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 However, sequential two photon excitation of [Ru(bpy)3]
2+ followed the 

mechanism shown in Figure 4.3.4 In the ground state, [Ru(bpy)3]
2+ absorbs a single 

photon to form the 1MLCT excited state followed by intersystem crossing to the  3MLCT 

excited state. The 3MLCT excited state is long-lived and thus there is a significant 

probability of photon capture using 355 nm excitation to create a higher excited state 

3[Ru(bpy•−)(bpy)2]
2+ that was found to be 5.6 eV above the ground state.   

 

Figure 4.3 Sequential two photo excitation of [Ru(bpy)3]
2+. (Adapted from Reference 4) 

 

The deactivation process of the higher lying dd excited states (higher than the singlet 

MLCT excited states) of [Ru(bpy)3]
2+ is given in Figure 4.4.  
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Figure 4.4 Sequential two photo excitation of [Ru(bpy)3]
2+.4 

 

The deactivation process may take place in three different ways. It may come 

back through intersystem crossing to the 3MLCT state or directly deactivate  to the 

ground state, or cleavage of a Ru-pyridyl bond may occur together with ligand 

rearrangement to form [Ru(bpy)3]
2+. It was anticipated that the cleavage of a Ru-N bond 

in [Ru(bpy)3]
2+ forms [Ru(bpy)2(η

1-bpy)]2+, followed by a pyridyl ring rotation or 

transient formation of a [Ru(bpy)2(π-bpy)]2+ complex where the pendant ring is ligated in 

an  η1 or π fashion or through a three centered agostic bonding motif, Figure 4.5.4  
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Figure 4.5 Bonding pattern. a) η1 b) three centred agostic c) π fashion.     

  

Photosubstitution reactions of ruthenium pentaammine complexes [Ru(NH3)5L]
2+ 

in aqueous solution (where L  is  a  py, substituted pyridine, or  a  related aromatic 

nitrogen heterocycle) are well-documented.5 Ford et al.
5a

 investigated the flash photolysis 

of ruthenium(II)-amine complexes [Ru(NH3)5(py-X)]2+  in  aqueous solution (where py-X  

is  a  substituted pyridine). Irradiation into the visible MLCT band of [Ru(NH3)5(py)]2+ 

results in the photosubstitution of pyridine with H2O (Scheme 4.1). This was evident 

from the bleaching of the charge transfer absorption band. The complex ion 

[Ru(NH3)5(H2O)]2+ exhibits an intense and broad absorption band at 407 nm due to a 

MLCT transition.            

[Ru(NH3)5py]2+ + H2O +   py
hν

N

py =

[Ru(NH3)5(H2O)]2+

 

Scheme 4.1 Photosubstitution reaction of pyridine with H2O.5 
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 The absorption spectra of polypyridyl complexes of Ru(II) are dominated by the 

MLCT transitions [RuII(bpy)3]
2+ → [RuIII(bpy)2(bpy•−)]2+. However, in the excited state, 

the appearance of thermally activated low-lying dd states results in rapid decay of the 

excited complex to the ground state or leads to photoinduced ligand loss chemistry as 

shown in the Scheme 4.2.6  

 

Scheme 4.2 Photosubstitution reactions of [Ru(bpy)3]
2+ and Ru(bpz)3]

2+.6 

 
Recently, Turro et al.,

7 reported the direct measurement of ligand exchange 

kinetics on the picosecond time scale and detected a pentacoordinated Ru(II) intermediate 

of [Ru(bpy)2(CH3CN)2]Cl2 that is formed upon irradiation. Steady state irradiation of 

[Ru(bpy)2(CH3CN)2]Cl2 in H2O results in the replacement of CH3CN with H2O and forms 

a monoaqua complex [Ru(bpy)2(CH3CN)(H2O)]2+
 which  is evident from the changes in 

the electronic absorption spectrum during the photolysis. The process for the formation of 

the pentacoordinated Ru(II) intermediate and monoaqua complex 

[Ru(bpy)2(CH3CN)(H2O)]2+
  are shown in Figure 4.6. The formation of monoaqua 

[Ru(bpy)2(CH3CN)(H2O)]2+  complex from the pentacoordinated Ru(II) intermediate 

occurs within 77 ps.  
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Figure 4.6 Diagram for the ultrafast dynamics of [Ru(bpy)2(CH3CN)2]Cl2  in H2O. 
(Adapted from Reference 7). 
  

Similar types of results were obtained from the steady state irradiation of 

Ru(bpy)2(CH3CN)2Cl2 in CH3CN which provide additional support for the ligand loss and 

recombination of  Ru(bpy)2(CH3CN)2Cl2  in H2O as shown in Figure 4.7.             

 

Figure 4.7 Diagram for the ultrafast dynamics of [Ru(bpy)2(CH3CN)2]Cl2  in CH3CN. 
(Adapted from Reference 7).  



Chapter 4                                                                   Time Resolved Ligand Loss from cis-[Ru(bpy)2(py)2]
2+            

 137 

  Most recently, Lamberti et al.,
8 introduced a Time-Resolved Wide Angle X-ray 

Scattering (TR-WAXS) technique to study the photochemistry of [Ru(bpy)2(py)2]Cl2. 

Upon excitation of the MLCT band of [Ru(bpy)2(py)2]Cl2, one pyridine ligand is released 

and consequently a solvent molecule (H2O) coordinates. The TR-WAXS technique was 

employed to detect the release of the pyridine ligand and the coordination of the solvent 

molecule within 800 ns of  laser excitation as shown in Figure 4.8.  

 

Figure 4.8 Photodissociation scheme for cis-[Ru(bpy)2(py)2]
2+ in H2O. (Reprinted with 

permission from reference 8, Copyright © 2010 American Chemical Society). 
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4.2 Objectives 

Ruthenium complexes containing labile ligands have been studied extensively in 

the field of pharmaceutical chemistry.2 They have high intensity metal-to-ligand charge 

transfer (MLCT) absorption bands and long lived excited states. Upon excitation with 

visible light, an electron moves to 1MLCT, followed by an intersystem crossing to 

3MLCT through internal conversion due to spin-orbit coupling. Photosubstitution 

reactions have been reported for cis-[Ru(bpy)2(L)2]
2+ (L = py, NH3, CH3CN) with H2O. 

Here, preliminary results of a flash photolysis study of cis-[Ru(bpy)2(py)2]
2+ and 

[(tpm)Ru(bpy)(py)]2+ in THF are reported. 

The purposes of our study are as follows: 

i) To study the excited state dynamics of cis-[Ru(bpy)2(py)2]
2+ and 

[(tpm)Ru(bpy)(py)]2+ in THF.  

ii) To observe the loss of THF as a ligand in photosubstituted products that can 

be exploited in O2 and C-H activation and some other potential applications.      

iii) To compare the results with those that obtained for the previously reported 

similar types of compounds.  
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4.3 Results and Discussion 

4.3.1 Steady-State Absorption 

Cis-[Ru(bpy)2(py)2][PF6]2 and [(tpm)Ru(bpy)(py)][PF6]2 were prepared according 

to published procedures as discussed in Chapter 5. 

The electronic absorption spectra for cis-[Ru(bpy)2(py)2]
2+

 and 

[(tpm)Ru(bpy)(py)]2+, have been previously reported.1 The absorption spectrum obtained 

in this work for cis-[Ru(bpy)2(py)2]
2+  in CH3CN is shown in Figure 4.9.  
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Figure 4.9 Absorption spectrum of [cis-[Ru(bpy)2(py)2][PF6]2  in CH3CN at 298 (±3) K. 
 

The absorption spectrum shows π→π* transitions centred on the bpy ligand that 

appear at 244 and 289 nm.  A shoulder from 300 nm to 350 nm has been assigned to 

300 
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n→π* transitions.2 The broad intense absorption in the visible region at 457 nm is due to 

the metal-to-ligand charge transfer (MLCT) transition.   
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Figure 4.10 Absorption spectrum of [(tpm)Ru(bpy)(py)][PF6]2 in CH3CN at 298 (±3) K. 
 

The absorption spectrum for [(tpm)Ru(bpy)(py)][PF6]2 in CH3CN is shown in 

Figure 4.10. The absorption spectrum shows a broad band at 344 nm which has been 

previously assigned9 as the overlapping contributions from dπ→π∗ (tpm), dπ→π*(py), 

and dπ→π*(bpy) transitions. At higher energies, the spectrum is dominated by 

π→π1
*(bpy) and π→π1

*(tpm), at 286 nm and by a π→π2*(bpy) transition at 245 nm. 

However, the low-energy absorption bands at 420 nm and 476 nm are due to a 

dπ→π*(bpy) transition which is characteristic of bpy-containing complexes.9     
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  At room temperature cis-[Ru(bpy)2(py)2]
2+

 is not emissive.10 On the other hand, 

significant emission is observed for [(tpm)Ru(bpy)(py)]2+ complex.   

 

4.3.2 Photolysis in THF 

Spectral changes take place from the photolysis of cis-[Ru(bpy)2(py)2]
2+

 in the 

presence of  TFA (4 eq) by using broad band, white light excitation, which  leads to a 

shift in λmax from 458 nm to 472 nm, consistent with the substitution reaction of the 

pyridine by THF (Scheme 4.3). The product that is formed from the photolysis is 

monosubstituted, cis-[Ru(bpy)2(THF)(py)]2+ and has an absorption maximum of 472 

nm.7    

 

Scheme 4.3 Photosubstitution reaction of the pyridine by THF. 

            Pyridine (4.0 eq) was added with a vision to restore the starting cis-

[Ru(bpy)2(py)2]
2+

  complex. However, there was no spectral change after adding pyridine. 

This can be explained by the formation of pyridinium ion in the presence of TFA in 

solution which prevents the pyridine ligand from replacing THF.    
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Figure 4.11 Change in absorption spectrum after photolysis of [Ru(bpy)2(py)2]
2+ in 

presence of TFA( 4eq) ; before (black) and after photolysis.  
 
 
4.3.3 Charge Transfer  

Visible spectra of cis-[Ru(bpy)2(py)2]
2+ in the absence and presence of pyridinium 

ion are shown in Figure 4.12. There is a difference between the low-energy ultraviolet 

spectral regions in the presence of pyridinium ion which can be attributed to the effect of 

ion pairing on the intramolecular transitions.11 The low-energy charge transfer (CT) band 

that is observed at 458 nm is shifted to 476 nm.This is due the pairing of ions which helps 

to minimize the energy level which is evident from the spectral change.        
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Figure 4.12 Absorption spectra of [Ru(bpy)2(py)2]
2+ (1.2 × 10-5 M); before (black) and 

after addition of pyridinium ion (pyH+).  
 

 

4.3.4 Flash Photolysis Study 

Laser flash photolysis experiments were carried out to investigate the excited state 

of [Ru(bpy)2(py)2]
2+  in THF. Excitation at different wavelengths was recorded and gave 

rise to the kinetic traces. Following excitation a very fast bleach and recovery with 

wavelength dependent amplitude was observed. Exponential decay fits for the kinetic 

traces of [Ru(bpy)2(py)2]
2+  in THF at λ = 370, 390, 420 and 450 nm are shown in Figure 

4.13.  
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Figure 4.13 Exponential decay fits for kinetic traces of [Ru(bpy)2(py)2]
2+ in THF at 

excitation wavelength (a) λ = 370 nm, b) λ = 390 c) λ = 420 nm, d) λ = 450 nm.   

(a) (b) 

(c) (d) 
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These are the initial results that were obtained from the study of photoinduced ligand loss 

of [Ru(bpy)2(py)2]
2+ . On the basis of these results and review from the literature a 

mechanism of the excited state reaction of [Ru(bpy)2(py)2]
2+ in THF has been proposed in 

Scheme 4.4. Following its formation by MLCT excitation and MLCT-dd barrier crossing, 

the dd state returns to the MLCT state and then decays to the ground state by a 

combination of nonradiative decay and ligand loss followed by recoordination.2 On the 

basis of our analysis, decay through this state is comparable in time scale to decay of the 

MLCT state and they are kinetically coupled. kdd represents all decay pathways which 

deactivate the dd excited state. This includes radiative and nonradiative decay (we found 

no evidence for dd emission in our studies) and photoinduced ligand loss. In solution the 

MLCT-dd barrier crossing is irreversible because ligand loss is rapid relative to reverse 

barrier crossing.2 
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Scheme 4.4 Proposed mechanism for the photoinduced ligand loss of [Ru(bpy)2(py)2]

2+ 

in THF. 
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Similar types of experiments were performed for [(tpm)Ru(bpy)(py)]2+. However, we did 

not get any kinetic traces to report.  

 

4.4 Conclusion 

Photoinduced ligand exchange in metal complexes is an emerging field. Here, 

flash photolysis of [Ru(bpy)2(py)2]
2+ in THF was studied. It has been reported previously 

that in [Ru(bpy)2(L)2]
2+ (L= py, CH3CN, NH3, etc), ligand L gets replaced by the 

solvent.7 The solvent coordinated complexes are labile enough to get replaced by another 

ligand. In [Ru(bpy)2(py)2]
2+, pyridine was replace by THF, which is evident from a very 

fast bleach and recovery with wavelength dependent amplitude in the flash photolysis 

experiment. Moreover, spectral changes take place from the photolysis of 

[Ru(bpy)2(py)2]
2+

 in THF which is consistent with the substitution reaction of the pyridine 

by THF.  
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Chapter 5 Experimental 

This chapter describes the sources of the reagents and the protocols followed for 

the syntheses of the complexes. The synthesis and purification of all compounds in this 

thesis have been reported previously. These procedures are included here for 

completeness. At this juncture it is useful to review the synthetic protocols to illustrate 

some findings. 

 

5.1 Review of the Literature 

We report here on the polypyridyl complexes of ruthenium based on terpyridine 

(tpy) and pyridine (py) containing [Ru(bpy-d8)2X] and [Ru(bpy)2X] [where X = Cl2, tpy, 

(py)2] chromophoric units:  

a. [Ru(bpy-d8)2Cl2]  

b. [Ru(bpy-d8)2(η
2-tpy)](PF6)2 

c. [Ru(bpy)2Cl2] 

d. [Ru(bpy)2(py)2](PF6)2 

Deuteration is a powerful approach that simplifies identification of many 

complexes.1 The use of bpy-d8 as a co-ligand to simplify the identification of complexes 

is well-established in the literature. In the beginning, we started with a procedure which is 

time consuming, dangerous and ends up with incomplete deuteration, for the synthesis of 

bpy-d8.
2 Afterwards, a simplified and straightforward procedure was followed where 

complete deuteration takes place and no high pressure reactors are required.3 
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Commercially available pyridine-d5 is refluxed with 10% Pd/C to yield bpy-d8 through a 

dedeuteration followed by coupling reaction (Scheme 5.1).3    

N

Pd/C, 10%

N N

DD

D

D

DD

D

D
D

D

D
D

D
 

Scheme 5.1 Preparation of bpy-d8. 

This process can be made cost effective by recycling the unreacted solvents through 

distillation and the Pd/C catalyst by removing the ligand by washing. The 1H NMR 

spectrum (aromatic region) of bpy-d8 in CDCl3 is given in Figure 5.1.  

 

Figure 5.1 500 MHz 1H NMR spectrum (aromatic region) of bpy-d8 in CDCl3 at 298 K. 

The 1H NMR spectrum of bpy-d8 exhibited four peaks at δ 8.69 (s, 1H), 8.40 (s, 

1H), 7.82 (s, 1H), 7.31 (s, 1H) due to protic impurities. 

The complexes [Ru(L)2Cl2] (Where L = 2,2'-bipyridine, 2,2'-bipyridine-d8) were 

prepared from the reaction of the ruthenium chloride monohydrate and the coordinating 

ligand L (Scheme 5.2).4  

N N
1

2

34
4 

3 2 1 
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Scheme 5.2 Preparation of [Ru(L)2Cl2] (Where L = bpy or bpy-d8). 

The structure of [RuCl3].H2O is not known. It exists as a polymer which has never 

been characterized (taken as 40% ruthenium by mass). In order to suppress the formation 

of [Ru(L)3]
2+ species, the reaction was carried out in the presence of an excess of chloride 

ions in the form of LiCl in the reaction. The reaction was carried out in dimethyl 

formamide (DMF, 97%). The main impurities in DMF are amines (NR3). However, 

amine helps to reduce RuIII to RuII with formation of a putative [RuII(DMF)4Cl2] complex 

which is extremely labile. Finally, [RuII(DMF)4Cl2] reacts with ligand L (bpy or bpy-d8) 

to form [Ru(L)2Cl2]. A common impurity in this reaction is [Ru(L)3]Cl2 which is removed 

by washing the isolated solid with several aliquots of H2O as [Ru(L)3]Cl2 is soluble in 

H2O and [Ru(L)2Cl2] is not, followed by diethyl ether. The methanolic solution of 

[Ru(L)2Cl2] is red as the -OH group of methanol coordinate with the Cl. However, the 

solid is purple.           

 [Ru(bpy-d8)2(η
2-tpy)]2+ was prepared from the reaction of [Ru(bpy-d8)2Cl2] and 

tpy in methanol (Scheme 5.3).5 The complex was characterized on the basis of 1H NMR 
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spectroscopy, and UV-vis spectroscopic methods. Details have been discussed in 

Chapters 2 and 3.  

    

Scheme 5.3  Preparation of [Ru(bpy-d8)2(η
2-tpy)]2+ 

Complex [Ru(bpy)2(py)2]
2+ was prepared from the reaction of [Ru(bpy)2Cl2] with 

pyridine in methanol/H2O (Scheme 5.4).6     

Ru(bpy)2Cl2.2H2O +
N Methanol/H 2O

Ru

N

N
N

N

N

N

2+

 

Scheme 5.4 Preparation of [Ru(bpy)2(py)2]
2+. 

The 1H NMR spectrum of cis-[Ru(bpy)2(py)2]
2+ is given in Figure 6.3. The 

spectrum consists of doublets and triplets as expected. The spectrum shows peaks at 

δ 8.90 (d, 2H), 8.34 (d, 2H), 8.26 (m, 6H), 8.12 (t, 2H), 7.90 (m, 4H), 7.84 (t, 2H), 7.76 

(t, 2H), 7.35 (t, 2H) and 7.28 (t, 4H). Multiplets at δ 8.26 and 7.90 arise due to the 

overlapping of two doublets and one doublet triplet, respectively.6        
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Figure 5.2 1H NMR spectrum (aromatic region) of [Ru(bpy)2(py)2][PF6]2 in CDCl3 at 298 
K in 500 MHz. 

 

 We also prepared compounds containing [Ru(tpm)(bpy)X]2+ (X= Cl, H2O, py] 

chromophoric units. Here, tris(1-pyrazolyl)methane (tpm) is a tridentate ligand which 

conforms to a facial geometry at the metal.    

                                            

N NCH 3
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L

L

N

N
L

C

H

 

Figure 5.3 Structure of tpm and its geometry. 

As part from our program to synthesize the metal complexes of tpm we carefully 

investigated the preparative procedure of the ligand. The original procedure7 was direct 

reaction of the appropriate pyrazolate and CHCl3 and for one case, a liquid-liquid phase 
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transfer condition was used.7 However, it has been determined that standard CHCl3–H2O 

phase transfer conditions and replacing the K2CO3 with a large excess of Na2CO3, leads 

to higher yields (60%) and substantially less darkening of the reaction solutions over the 

3 days at reflux (Scheme 6.6).  

N NH

Na2CO3

Bu4NBr

H2O/CHCl3
CH

N N

NN

N N

 

Scheme 5.5 Preparation of tris(1-pyrazolyl)methane (tpm) ligand. 

In this reaction tetra-n-butylammonium bromide (Bu4NBr) acts as a phase transfer 

catalyst.  The tpm ligand was characterized on the basis of 1H NMR spectroscopy (Figure 

6.6). The spectrum shows peaks at δ 8.72 (s, 1H), 7.87 (d, 3H for 3-H pz), 7.62 (d, 3H for 

5-H pz), 6.40 (m, 3H for 4-H pz). Melting point 101oC.7    

 

Figure 5.4 1H NMR spectrum for tris(1-pyrazoyl)methane in CD3COCD3. 
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 [(tpm)RuCl3]1.5H2O was prepared from the reaction of [RuCl3].xH2O and tpm in 

ethanol( Scheme 5.6). 

 

Scheme 5.6 Preparation of  [(tpm)RuCl3]1.5H2O. 

 Then, [(tpm)RuCl3]1.5H2O was heated to reflux with bpy in the presence of LiCl 

and Et3N to yield the [(tpm)(bpy)RuCl]Cl.2H2O complex in ethanol-water (Scheme 5.7).7  

 

 

Scheme 5.7 Preparation of [(tpm)(bpy)RuCl]Cl.2H2O.  

[(tpm)(bpy)RuCl]Cl.2H2O was treated with AgNO3 and heated at reflux in 

acetone-water in the absence of light. AgCl was filtered off and NH4PF6 was added to the 

solution which results in formation [(tpm)(bpy)Ru(H2O)][PF6]2.
6 

 

Scheme 5.8 Preparation of [(tpm)(bpy)Ru(H2O)][PF6]2. 

The 1H NMR spectrum of [(tpm)Ru(bpy)(H2O)][PF6]2 is shown in the Figure 5.5. 

The spectrum shows peaks at δ 9.47 (s, 1H), 8.72 (d, 2H), 8.56 (d, 2H), 8.45 (d, 2H), 8.25 

(m, 1H ), 8.21(d, 2H), 8.08 (d, 2H), 7.51 (m, 2H), 6.73 (m, 2H), 6.56 (m, 1H), 6.19 (m, 

1H). The singlet at δ 9.47 is due to the methylenic proton. The chemical shifts for tpm 

and bpy protons appear as reported previously.8 
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Figure 5.5 1H NMR spectrum (aromatic region) of [(tpm)Ru(bpy)(H2O)][PF6]2 in D2O at 
298 K in 500 MHz. 
 
 Finally, [(tpm)Ru(bpy)(H2O)][PF6]2 was dissolved in 0.1 M NH4PF6 ethanolic 

solution. Pyridine was added to that solution and refluxed for 6 h under nitrogen. Then 

the solution was cooled down to room temperature and distilled water was added. The 

volume of the solution was reduced on a rotary evaporator until an orange crystalline 

solid of [(tpm)Ru(bpy)(py)][PF6]2 (Scheme 5.9).  

 
 

 

 

Scheme 5.9 Preparation of [(tpm)Ru(bpy)(py)][PF6]2. 

The 1H NMR spectrum of [(tpm)Ru(bpy)(py)][PF6]2 is shown in the Figure 5.6. 

The spectrum shows peaks at δ  9.75 (s, 1H), 8.75 (d, 2H), 8.51(t, 1H), 8.16(dd, 4H), 

8.02(s, 2H), 7.87 (d, 3H), 7.78(d, 2H), 7.32(t, 2H), 6.99 (d, 1H), 6.84(t, 2H), 6.81(dd, 

2H), 6.51(d, 2H), 6.48 (t, 1H). The singlet at δ 9.75 is due to the methylenic proton. The 

chemical shifts for tpm and bpy protons appear as reported previously.8      

(tpm)Ru(bpy)(H 2O)][PF6]2 +
N

0.1 M NH4PF6

ethanolic soln

20 mL, reflux, 6 h
(tpm)(bpy)Ru II((py)][PF6]2

pyridine



Chapter 5                                                                                                                                       Experimental 

 156 

 

 

Figure 5.6 1H NMR spectrum (aromatic region) of [(tpm)Ru(bpy)(py)][PF6]2 in 

CD3COCD3 at 298 K in 500 MHz.  
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5.2  Experimental Section 

Materials. All reagents purchased were used without further purification. 

Materials purchased for this work include: Pd/C (Strem Chemicals, 10%), py-d5 (Sigma-

Aldrich, 99 atom %D), RuCl3.H2O (Sigma Aldrich), 2,2´:6´:2˝-terpyridine (tpy) (Alfa 

Aesar, 97%), 2,2´-bipyridine (bpy) (Alfa Aesar, 98%), pyridine (Sigma-Aldrich, 99.5%), 

ammonium hexaflourophosphate (Alfa Aesar, 99.5%) tetra-n-butyl ammonium bromide 

[TBA] (Sigma Aldrich, 98%), diethyl ether (ACP, 99.5%) , sodium sulphate (Merck, 

99%), chloroform (ACP, 99.8%), NaCO3 (ACP, 99.5%), hydroquinone (H2Q) (Fisher 

Scientific, 99%), Trifluroacetic acid (TFA)(Sigma Aldrich, 99%), tetrahydrofuran (THF) 

(Sigma Aldrich, ˃99.5%), acetonitrile (MeCN)(Burdick and Jackson 98.0%),  dimethyl 

foramide (DMF) and other chemicals were available from previous studies.   

Preparations.  

bpy-d8. Pd/C (10%, 1.0 g) was heated in a 500 mL round bottom flask at 150 oC 

under vacuum for 1 h. Pyridine-d5 (4 mL, 0.05 mol) was added, and the slurry heated to 

140 oC under nitrogen for three days. The excess pyridine-d5 was removed by vacuum 

distillation. Then the residual solid was heated at reflux successively in 100 mL each of 

toluene, chloroform and 10% methanol in chloroform (Volume of the solvents 300 mL), 

and then filtered while hot. Then the solvents were removed under vacuum to give a 

brown solid (0.6 g). The solid was purified by flash chromatography (silica gel, 250 

mesh; chloroform/MeOH (99% v/v 1%)). Yield: 0.450 g, 5.5%.2 1H NMR (CDCl3): δ 

8.69 (s, 1H), 8.40 (s, 1H), 7.82 (s, 1H), 7.31 (s, 1H).3   
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 [Ru(bpy-d8)2Cl2]. In a 100 mL round bottom flask, RuCl3.H2O (0.1 g, 0.19 

mmol), bpy-d8 (0.147 g, 0.90 mmol), LiCl (0.7 g) and DMF (20 mL) were heated at 

reflux for 8 h. Then the reaction mixture was cooled to room temperature and 100 mL of 

acetone was added. The resultant solution was cooled at 0 oC overnight. The solution was 

filtered to yield a red to red violet solution and a dark green-black micro-crystalline 

product. The solid was washed with six 25 mL portions of H2O followed by three 25 mL 

portions of diethyl ether, and then dried in vacuo. Yield: 0.075 g, 75% (based on 

ruthenium).4 

[Ru(bpy-d8)2(ηηηη
2-tpy)](PF6)2. In a 100 mL round bottom flask, Ru(bpy-

d8)2Cl2.2H2O (0.05 g, 0.1 mmol) and tpy were heated at reflux in 15 mL of methanol for 8 

h. The colour of the solution changed from red to orange during this period. The solution 

was filtered and the solvents were removed in vacuo. The product was redissolved in 

acetone and precipitated with aqueous NH4PF6 (0.5 g, 10 mL H2O). The orange solid was 

collected by filtration and dried by vacuum pump. Yield: 0.075g, 80%. 1H NMR 

(CDCl3): δ 8.59(d, 2H), 8.10 (m, 3H), 7.51 (d, H), 7.33 (d,d 2H), 7.27(t, H), 6.95(t, H), 

6.78 ( s, H).5  

[Ru(bpy)2Cl2]. In a 100 mL round bottom flask, RuCl3.H2O (0.1 g, 0.19 mmol), 

bpy (0.147 g, 0.90 mmol), LiCl (0.7 g) and DMF (20 mL) were heated at reflux for 8 h. 

The reaction mixture was cooled to room temperature and 100 mL of acetone was added. 

The resultant solution was cooled at 0 oC overnight. The solution was filtered to yield a 

red to violet solution and a dark green-black micro-crystalline product. The solid was 
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washed with three 25 mL portions of H2O and three 25 mL portions of diethyl ether, and 

then dried by suction. Yield: 0.075 g, 75% (based on starting ruthenium).4 

[Ru(bpy)2(py)2](PF6)2. A mixture of Ru(bpy)2Cl2.2H2O (0.1 g, 0.103 mmol) and 

pyridine (0.2 mL) in methanol/H2O was heated to reflux for 2 h. The bright orange 

solution was filtered and the product was precipitated with the addition of an excess of 

aqueous NH4PF6. Yield: 0.075 g, 75% (on the basis of starting ruthenium). 1H NMR 

(CDCl3): δ 8.90 (d, 2H), 8.34 (d, 2H), 8.26 (m, 6H), 8.12 (t, 2H), 7.90 (m, 4H), 7.84 (t, 

2H), 7.76 (t, 2H), 7.35 (t, 2H) and 7.28 (t, 4H).6     

 Tris(1-pyrazolyl)methane (tpm). 30 mL distilled water was taken in a 250 mL 

round bottom flask containing a mixture of pyrazole (2.0 g) and tetra-n-buthylammonium 

bromide (0.47 g). Sodium carbonate (18.7 g) was added gradually to the reaction mixture 

with vigorous stirring. Chloroform (14.5 mL) was added to the reaction mixture after 

cooling the solution near to room temperature. Then the flask was equipped with a reflux 

condenser and heated at gentle reflux for 3 days. The colour of the mixture turned pale 

yellow during this period. The mixture was allowed to cool to room temperature and 

filtered through a Buchner funnel to remove excess base. The filtrate was treated with 

diethyl ether (50 mL) and H2O (30 mL). The combined organic layer was separated and 

the aqueous layer extracted with diethyl ether (20 mL × 3). The combined organic layer 

was treated with charcoal and dried over sodium sulfate. The mixture was filtered and the 

solvent removed by rotary evaporator. The resulting pale yellow solid was dried under 

vacuum.Yield: 1.20 g, 60%. 1HNMR (CD3COCD3): δ 8.72 (s, 1H), 7.87 (d, 3H for 3-H 

pz), 7.62 (d, 3H for 5-H pz), 6.40 (m, 3H for 4-H pz). Melting point 101oC.7 
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 [(tpm)RuCl3]1.5H2O. RuCl3.xH2O (1.00 g) and tpm (0.82 g) were taken in 500 

mL round bottom flask and heated to reflux for 4 h in 350 mL of absolute ethanol. The 

color of the solution turned brown during this period. The greenish brown solid was 

filtered in Buchner funnel, washed with absolute ethanol and acetone and air dried. Yield: 

1.28 g, 71%.7 

[(tpm)(bpy)RuCl]Cl.2H2O. [(tpm)RuCl3]1.5H2O (0.25 g) and bpy (0.10 g) were 

heated to reflux for 5 min in 50 mL of ethanol-water (3:1) containing 0.25 g of LiCl. 6 

drops of NEt3 were added and the solution was heated to reflux for another 10 min. The 

brown solution was filtered hot. The volume of the solution was reduced to 15 mL in 

rotary evaporator and chilled overnight. The resulting brown crystals were collected in a 

Buchner funnel, washed with a minimum amount of cold water and air dried. Yield: 0.16 

g, 42%.8 

[(tpm)Ru(bpy)(H2O)][PF6]2. [(tpm)(bpy)RuCl]Cl.2H2O (0.10 g, 0.17 mmol) and 

AgNO3 (0.05 g, 0.294 mmol) were heated at reflux for 2 h in 20 mL of acetone-water 

(3:1) under dark. AgCl was filtered off and NH4PF6 (0.50 g) was added to the solution. 

The volume of the mixture was then reduced in a rotary evaporator and kept into 

refrigerator for overnight. The resulting orange crystals were filtered, washed with a 

small amount of cold water and air dried.6 1HNMR (D2O): δ 9.47 (s, 1H), 8.72 (d, 2H), 

8.56 (d, 2H), 8.45 (d, 2H), 8.25 (m, 1H ), 8.21(d, 2H), 8.08 (d, 2H), 7.51 (m, 2H), 6.73 

(m, 2H), 6.56 (m, 1H), 6.19 (m, 1H).8       

[(tpm)Ru(bpy)(py)][PF6]2. 0.05 g of [(tpm)(bpy)Ru(H2O)][PF6]2 was dissolved 

in 20 mL of a 0.1 M NH4PF6 ethanolic solution. 3 mL of pyridine was added to that 
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solution and refluxed for 6 h under nitrogen. Then the solution was cooled down to room 

temperature and 5 mL of distilled water was added. The volume of the solution was 

reduced on a rotary evaporator until orange crystalline solid began to form. The solid was 

filtered and washed with water (3 x 10 mL). Yield: 0.06 g, 70%. 1H NMR (CD3COCD3): 

δ  9.75 (s, 1H), 8.75 (d, 2H), 8.51(t, 1H), 8.16 (dd, 4H), 8.02(s, 2H), 7.87 (d, 3H), 7.78 (d, 

2H), 7.32 (t, 2H), 6.99 (d, 1H), 6.84(t, 2H), 6.81(dd, 2H), 6.51(d, 2H), 6.48 (t, 1H).8      

 
5.3  Sample Preparation 
 
The following protocols were carried out for all excited state measurements. 

i) The absorption spectrum of the solvent was obtained using air as a reference. This 

allowed assessing the absorbing impurities of the solvent. 

ii) Emission spectra of the solvent were obtained (to note emitting impurities), using 

2-3 excitation wavelengths from 320 to 600 nm, depending on the nature of the 

chromophores. 

iii) After screening the solvent, the sample was dissolved and the absorption spectrum 

was obtained. The absorption spectra for air sensitive samples were obtained after 

purging with N2.   

iv) Emission spectra of the compound in the solvent. 

v) UV/vis spectra were taken after laser flash photolysis experiments to monitor the 

integrity of the sample. 

Thus, the procedure allows less time expended for trouble shooting for anomalous 

behaviour during analysis of the data.  All the samples were prepared gravimetrically and 
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dissolved in the solvents using the above mentioned procedure. The samples were purged 

by N2 (99.9%) for 5 minutes. UV-vis spectra were taken before and after data acquisition 

to ascertain that the sample did not degrade during the course of the experiment.   

 

5.4  Measurements 

Steady-State Techniques.  

UV-Vis. Absorption spectra were acquired using an Agilent 8543 diode array 

spectrophotometer with a wavelength range from 190 to 1100 nm interfaced to a 

computer. Data analysis and manipulation of spectra were carried out using Chem-Station 

software provided by Agilent. A 1 cm path length UV-vis quartz cuvette, supplied by 

Starna was used for all measurements.  

Emission Spectroscopy. Emission spectra were recorded using a Photon Technology 

International (PTI) Quantumaster 6000 emission spectrometer. The source of excitation 

energy was a 175 USH10 Xenon arc lamp. The emitted energy was collected at 90o to the 

excitation source and detected by a Hamamatsu R-928 photomultiplier tube (PMT) in 

photon counting mode. The measurements were recorded using high-quality quartz 

fluorescence cells.   

Emission Lifetimes. The PTI laser subsystem equipped with N2 GL-3000 laser 

(fundamental line at 337.1 nm) was used as the excitation source. Data collection was 

accomplished using a proprietary stroboscopic technique which requires a 40 ns delay 

time provided by a 40 foot fiber optic delay line. The intensity vs. time profiles are 

collected in a manner similar to a box car data acquisition system. The time intervals for 
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data intregration are computer controlled; and the kinetic trace is a histogram of the 

photons emitted per time interval at set time delays. The stroboscopic technique then 

allows acquisition of decay data that occurs within the laser pulse. The pulsewidth of the 

N2 laser is 450 ± 50 ns on a shot per shot basis. The integration coupled to prior 

acquisition of a high quality instrument response function (IRF) allows for the 

deconvolution of τ < 400 ps to be extracted from the data.  

 The timing of the laser pulse and data acquisition was performed using a Stanforg 

Research System Model DG535 four-channel digital delay pulse generator. Kinetic 

analysis of the lifetime data was accomplished using software provided by PTI or was 

exported and fit using Origin software. The IRF data were collected prior to data 

acquisition for the sample by use of a scattering solution (coffee mate in water).  

Transient Absorption. The excitation source of the instrument utilized the third 

harmonic of a Q-switched Quanta-Ray Brilliant B DCR-2A Nd-TAG (neodymium-doped 

yttrium aliminum garnet) laser that generates pulses of light at 355 nm with duration of 8 

h. The time-resolved transient absorption signals were acquired using pulse laser 

excitation from a Quantel Brilliant B laser coupled to a tripling NLO crystal, for 355 nm 

(8 ns pulse width; 5-10 mJ/pulse; 20 Hz) pulsed excitation. The probe beam was oriented 

90o to the excitation source.  
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NMR Spectroscopy. NMR spectra were recorded on a Bruker AVANCE 500 MHz 

spectrometer and references to residual protons  in the deuterated solvent. 

Infrared Spectroscopy. Infrared spectra were recorded as KBr pellets on a Bruker 

Tensor 27 FT-IR spectrometer. 
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Chapter 6 Future Work 
 

Following the investigations illustrated in chapter 2 & 3 regarding [Ru(bpy)2(η
2-

tpy)]2+, a number of projects can be carried out as mentioned below 

i. Further study can be done with derivatized tpy ligands in [Ru(bpy)2(η
2-

tpy)]2+  which will allow comparative studies of the dynamic behaviour of 

tpy in [Ru(bpy)2(η
2-tpy)]2+. This might help to extend studies on the 

electron transfer, charge transfer and many types of catalytic reactions.   

ii. Photophysical investigation of derivatized [Ru(bpy)2(η
2-tpy)]2+  complexes 

may open a new arena in PCET reactions as these complexes have free 

nitrogen in the pendant tpy.    

Secondly, the possibility of driving long-range energy-transfer processes in 

complexes of high nuclearity is a subject of current interest.  

 

 

 
 

 

 

 

 

Figure 6.1 Sensitization of photolabile complexes via energy transfer. 

Ru

N
N N

N N
N

Ru

N
N N

N N
N

Ru

N
N N

N L
L

Light

Metal Oxide Surface

kent

kent

Photolabile ligand



Chapter 6                                                                                                                                      Future Work 

 166 

Excited state ligand loss can create a co-ordinatively unsaturated metal complex 

for photo-redox catalysis, O2 activation, production of H2 from H2O, CH4 from CO and 

energy storage as shown in Figure 6.1. Photoinduced ligand loss of [Ru(bpy)2(py)2]
2+ 

may play an important role in this regard. A long range future goal of this research 

project is the sensitization of photolabile complexes via energy transfer from antenna 

chromophores on metal oxide surfaces. These assemblies would find utility in creating 

catalytic sites for eletrocatalysis of substrates under bias conditions.  
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