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Abstract

The coordinate regulation of HLA class II (HLA-II) is controlled by the class II transactivator, CIITA, and is crucial for the
development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-c levels, reduced
expression of the estrogen receptor (ER) and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E2)
and ERa signaling contribute to the regulation of IFN-c inducible HLA-II in breast cancer cells. Using a panel of established
ER2 and ER+ breast cancer cell lines, we showed that E2 attenuated HLA-DR in two ER+ lines (MCF-7 and BT-474), but not in
T47D, while it augmented expression in ER2 lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s), we used
paired transfectants: ERa+ MC2 (MDA-MB-231 c10A transfected with the wild type ERa gene) and ERa2 VC5 (MDA-MB-231
c10A transfected with the empty vector), treated or not with E2 and IFN-c. HLA-II and CIITA were severely reduced in MC2
compared to VC5 and were further exacerbated by E2 treatment. Reduced expression occurred at the level of the IFN-c
inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory
effects, signifying an antagonistic role for activated ERa on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA
pIV activation, and selected STAT1 regulated genes were variably downregulated by E2 in transfected and endogenous ERa
positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERa2 breast cancer cells. Collectively,
these results imply immune escape mechanisms in ERa+ breast cancer may be facilitated through an ERa suppressive
mechanism on IFN-c signaling.
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Introduction

Antigen presentation by major histocompatibility complex

(MHC) class II molecules (MHC-II), known as HLA-II (HLA-

DR, -DP, -DQ) in humans and co-chaperones HLA-DM and the

invariant chain (Ii) are important for the development of adaptive

immune responses including anti-tumor immunity [1–4]. Typi-

cally, HLA-II expression is limited to professional antigen

presenting cells (pAPC), but is induced by IFN-c on most cell

types including those derived from cancer [5,6]. HLA-DR positive

tumor cells have been described in several malignancies, such as

melanoma [7], colon [8,9] and breast [10–12], but the underlying

mechanisms are likely diverse. The number of HLA-II positive

tumor cells in breast cancer is directly associated with tumor

infiltrating immune cells and levels of IFN-c [12–14], but other

cytokines, hormones, growth factors and oncogenes are also

implicated in regulating HLA-II expression [15–20].

HLA-II expression is controlled at the transcription level by a

highly conserved regulatory module, located in the promoter of

genes encoding the a- and b-chains of all HLA-II molecules and in

the gene encoding the Ii co-chaperone [21–26]. This regulatory

module forms a platform for the class II transactivator (CIITA), a

non-DNA binding protein, which acts as a transcriptional

integrator by connecting transcription factors, bound to the

MHC-II promoter with components of the general transcriptional

machinery [23,27–30]. The central role of CIITA is evident from

lack of constitutive or IFN-c inducible HLA-II in bare lymphocyte

syndrome [31,32].

CIITA expression is controlled by three distinct promoters:

promoter I (pI) for constitutive expression in dendritic cells;

promoter III (pIII), for constitutive expression in B cells; promoter

IV (pIV) for IFN-c inducible expression [21,26,33]. This promoter

system is crucial for controlling CIITA messenger RNA (mRNA)

and protein levels, and they, in turn, regulate HLA-II expression.

The molecular regulation of CIITA pIV is intricately linked to the

classical IFN-c signaling pathway. IFN-c, binds to IFN-c receptors

(IFNGR) on the cell surface, resulting in autophosphorylation of

Janus kinase 2 (JAK2) and JAK1, followed by phosphorylation,

dimerization and nuclear translocation of signal transducer and

activator of transcription 1 (STAT1) [34,35]. Phosphorylated

STAT1 (pSTAT1) binds to IFN-activated sites (GAS) in the

promoter of target genes including the IFN-regulatory factor 1

(IRF1), thus stimulating its expression. IRF1 binds cooperatively

with IRF2 to its associated IRF element (IRF-E) in CIITA pIV,
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and concomitant pSTAT1 binding to GAS in CIITA pIV results

in transcriptional activation of CIITA [33,36]. Moreover,

signaling pathways such as mitogen activated protein kinases

(MAPK) and PI3K/Akt that are frequently activated in breast

cancer cells [37] modulate expression of IRF1 and STAT1 [38–

40], further impacting the levels of IFN-c inducible CIITA and

subsequent HLA-II expression on tumor cells.

Previously, we showed that HLA-II (HLA-DR, HLA-DM and

Ii) was discordantly expressed on tumor cells in human breast

cancer tissues [12]. Furthermore, tumor cell expression of HLA-

DR and Ii, but not HLA-DM, correlated with reduced expression

of estrogen receptors (ER) and reduced age at diagnosis.

Importantly, tumors with coordinate expression of HLA-DR, Ii

and HLA-DM had the highest IFN-c mRNA levels and correlated

with increased patient survival [12]. Undoubtedly, the mecha-

nisms governing tumor cell expression of HLA-II in breast

carcinoma are likely multifaceted, involving IFN-c secreted by

infiltrating immune cells [12], circulating and tumor-associated

estrogens [41] and activation of growth factor and hormone

receptor pathways in the tumor cells [42,43]. Estradiol and anti-

estrogens, tamoxifen and fulvestrant or ICI 180,720 (ICI), were

shown to modulate IFN-c inducible MHC-II in various cell types

[17,19,44,45] through mechanisms not involving ligand activation

of the estrogen receptor (ER) pathway.

In this study, using established human ER2 and ER+ breast

cancer cell lines (BCCL) and an ERa-transfected BCCL, we

investigated the specific and combined effects of estradiol (E2) and

ERa on HLA-II regulation. We found IFN-c inducible HLA-II

expression was modulated by E2-ER activation at the level of the

CIITA pIV. Furthermore, E2-treatment of ERa+ BCCL and

ERa2 BCCL differentially affected various components of the

IFN-c signaling pathway that are required for transactivation of

CIITA pIV.

Results

Estradiol differentially modulates HLA-DR expression in
breast cancer cell lines

Stemming from our previous finding that HLA-II expression in

breast carcinoma tissues correlates with increased IFN-c mRNA,

reduced age at diagnosis and reduced ER levels [12] we

questioned whether E2, in the absence or presence of its cognate

receptor ERa, modulates HLA-DR expression in established ER2

and ER+ BCCL, treated or not with IFN-c for 96 hours. Analysis

of ER2 BCCL using flow cytometry (Figure 1A & 1B) revealed low

basal expression of HLA-DR in MDA-MB-231, but not in SK-

BR-3 while IFN-c induced strong expression in both cell lines. E2-

treatment augmented IFN-c inducible HLA-DR, although this

was significant for only SK-BR-3 (Figure 1B). These results,

confirmed by Western blot analysis of cell lysates (Figure 1C &

1D), suggest E2 may modulate HLA-DR expression in ER2 breast

cancer through an ERa independent mechanism [46].

Since the least HLA-DR in human breast carcinoma tissues

occurred in ER+ tumors [12] we hypothesized that E2-activation

of the ERa pathway inhibits HLA-DR expression. Analysis of ER+

BCCL, treated as described above, revealed a variable pattern of

IFN-c inducible HLA-DR expression with amounts that were

barely detectable, moderate and abundant in BT-474, MCF-7,

and T47D, respectively (Figure 1E & 1F). Constitutive HLA-DR

was detected at the cell surface in only T47D (Figure 1E).

Furthermore, E2 treatment significantly reduced HLA-DR in

MCF-7 and BT-474, but not in T47D (Figure 1E). Similar results

were obtained from Western blot analysis of cell lysates (Figure 1G

& 1H). Notably, ERa levels were not altered by IFN-c but E2

treatment increased the amount in the nucleus, indicating ligand

activation of the ERa pathway (Figure. 1G). Taken together these

data suggest that E2-inhibition of HLA-II expression in ERa+

BCCL is mediated through activation of ligand-dependent ERa
pathway.

Transfection of ESR1 in an ER- cell line diminishes IFN-c
inducible HLA-II proteins

To further explore the role of ERa on IFN-c inducible HLA-

DR, we used two stably transfected cell lines, derived from MDA-

MB-231 clone 10A [47,48]: MC2 expresses wild type ERa and

VC5 expresses the empty vector. Since MDA-MB-231 clone 10A

was selected for negative expression of ERa and ERb [47], the

transfected pair is a suitable model to assess ERa mediated effects

on HLA-II without interference from other ERs including GPR30,

reported to be deficient in MDA-MB-231 [48,49]. The cells,

treated and analyzed for HLA-DR expression as described above,

revealed significantly reduced cell surface HLA-DR in MC2, as

compared to VC5 and MDA-MB-231 clone 10A (Figure 2A &

2B). Moreover, E2-treatment greatly diminished HLA-DR in

MC2 but not in VC5 and MDA-MB-231 clone 10A. These results

were confirmed by Western blot analysis of cell extracts

(Figure 2C). Again, HLA-DR protein in the ERa+ MC2 was

severely reduced and exacerbated by E2, whereas MDA-MB-231

clone10A and VC5 expressed abundant HLA-DR in the presence

and absence of E2. As the only known difference between MC2

and VC5 is the expression of ERa, these results further implicate

ERa in negatively regulating HLA-DR expression.

Although HLA-II genes are coordinately regulated [25], we

found most breast cancer lesions with HLA-DR+ tumor cells do

not have detectable HLA-DM expression [12]. We reasoned that

if ERa and its activation by E2 coordinately down regulates HLA-

II, then blocking ER signaling with ICI, a selective anti-estrogen

that degrades ER, should reverse the inhibition. To test this

hypothesis, MC2 and VC5 were pretreated with 1026 M ICI in

the presence or absence of 1029 M E2. Following stimulation with

IFN-c for 96 hours, HLA-DR, -DM and Ii were analyzed by flow

cytometry and Western blot. HLA-DR, -DM and Ii expression

levels were significantly reduced in MC2 compared to VC5

(Figure 3A–3C), while E2-treatment further diminished HLA-II

expression in MC2, but not in VC5. Although ICI-treatment,

alone or with E2, did not restore HLA-II in MC2 to VC5 levels, it

clearly reversed the E2-inhibitory effect on HLA-II expression.

Western blot analysis (Figure 3D–3G) and immunocytochemistry

(data not shown) confirmed the reduced expression of HLA-DR, -

DM and Ii in MC2 and the involvement of ERa signaling in the

inhibitory effect of E2 on HLA-II expression.

Activation of the ERa signaling pathway impedes CIITA
expression

Since HLA-II expression is coordinately regulated by CIITA,

we predicted that ERa interfered with CIITA expression in ERa-

expressing MC2. MC2 and VC5 were pretreated with E2 and/or

ICI, as described above, followed by addition of IFN-c for

24 hours. Western blot analysis of nuclear and cytoplasmic

extracts showed inducible CIITA expression in MC2 was about

70% of VC5 levels (Figure 4A & 4B). E2-treatment further reduced

CIITA in MC2 while increasing the amount of nuclear ERa; in

contrast, ICI reversed the inhibitory effect of E2 on CIITA

expression, coincident with ICI-mediated reduced ER levels

(Fig 4A Lanes 7 and 8). These results indicated that E2 inhibits

HLA-II expression by downregulating CIITA expression.

HLA Class II Expression in ERa Breast Cancer
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To further determine the inhibitory effect of E2 on CTIIA gene

expression, VC5 and MC2 cells were pretreated with E2 and/or

ICI for 1 hour and then stimulated with and without IFN-c for

4 hours, an optimal time for CIITA mRNA expression [50].

CIITA transcription was induced in both VC5 and MC2, but the

induction of CIITA mRNA in MC2 was about half in VC5

(Figure 4C). E2 further decreased CIITA mRNA in MC2, while

ICI reversed the E2-mediated effect on CIITA.

To confirm the above results, we silenced the ERa transgene in

MC2 using ESR1 siRNA and then treated with E2 or vehicle

Figure 1. E2 differentially modulates inducible HLA-DR expression in ERa+ and ERa2 breast cancer cell lines. MDA-MB-231, SK-BR-3,
MCF-7, BT-474, and T47D were cultured in E2-depleted media, treated with vehicle (ethanol) or E2 (1029 M) and stimulated or not with IFN-c (100 U/
ml) for 96 hours. (A & E) HLA-DR cell surface expression (L243) was analyzed by flow cytometry: grey line, isotype control; black line, constitutive
expression; shaded histogram, IFN-c induced expression. (B & F) Bar graphs represent the MFI (mean florescence intensity) 6 SEM for HLA-DR
expression of three independent experiments. (C & G) Western blot analysis was performed on cytoplasmic and nuclear extracts for ERa expression
(HC-20) and on cytoplasmic extracts for HLA-DRa (TAL 1B5). Protein loading controls included a-tubulin (B-7) and P84 (5E10) for cytoplasmic and
nuclear proteins, respectively. (D & H) Bar graphs show the ratio of band intensity for HLA-DRa, normalized to the a-tubulin band intensity and
represent the mean 6 SEM of three independent experiments (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0087377.g001

HLA Class II Expression in ERa Breast Cancer
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control followed by IFN-c stimulation for 24 hours. VC5, treated

in the same way, was used as a control. Western blot analysis of

cell lysates showed ERa was greatly reduced in MC2 transfected

with ESR1 siRNA, but not with scrambled siRNA (Figure 5A).

Similar to the ICI-mediated effects, ESR1 siRNA clearly reversed

the E2-mediated inhibition observed in the scrambled siRNA

transfectants. E2 increased CIITA in the ER2 VC5, whether

transfected with scrambled or ESR1 siRNA. Analysis of CIITA

transcripts using real time PCR on siRNA-treated cells (Figure 5B),

revealed equivalent levels of CIITA transcripts in ESR1 and

scrambled siRNA transfectants; again, ESR1-siRNA abolished the

inhibitory effect of E2 on constitutive and induced CIITA

transcripts. These results suggest a mechanism whereby E2-

activated ER interferes with CIITA transcription induced by IFN-

c in breast cancer cells.

E2 activated ERa inhibits CIITA promoter IV activity
Since IFN-c inducible HLA-II expression requires activation of

CIITA pIV [33], we hypothesized that E2 activation of ERa
interferes with CIITA pIV activity. We transfected VC5 and MC2

with a CIITA pIV luciferase construct and treated the cells with E2

and/or ICI, followed by stimulation or not with IFN-c for

12 hours. E2-treatment further reduced both basal and IFN-c
induced CIITA pIV activity in MC2, while ICI reversed the

inhibitory effect of E2 in MC2 cells (Figure 6). Treatment with ICI

and/or E2 did not significantly affect constitutive or IFN-c
inducible CIITA pIV activity in VC5.

To determine whether E2 directly regulates CIITA pIV activity,

we searched for presence of ERE sites using three different

computer software programs (http://tfbind.hgc.jp/, http://

alggen.1si.upc.es/ and http://www.cbrc.jp/index.eng.html) and

identified four putative ERE sites in CIITA pIV (Figure 7A, bold

letters in boxes). Sites 1 to 3 are upstream of the STAT1 and IRF1

binding sites. Site 4 is downstream of these sites and precedes the

start codon. To determine if either of these sites serves as an ERa
repressor of CIITA transcription, three deletion mutant constructs

(Site 1/2 deletion mutant, Site 3/4 deletion mutant and Site 1–4

deletion mutant) were created (Figure 7A, open boxes). VC5 and

MC2, transfected with one of the mutant CIITA pIV constructs,

were pretreated with E2 or vehicle control and then stimulated

with IFN-c for 12 hours, followed by measurement of luciferase

activity (Figure 7B, left panel). All three deletion constructs

demonstrated significantly reduced IFN-c stimulated CIITA pIV

activity in E2-treated MC2, similar to that observed in MC2

transfected with the wild type CIITA pIV plasmid. By comparison

CIITA pIV activity was similar in E2 or vehicle treated VC5 cells

whether transfected with wild type or deletion constructs.

Intriguingly, constructs Del 3 & 4 and Del 1–4 resulted in

dramatic and significant loss of CIITA pIV activity in both cell

lines, suggesting there may be other or overlapping sites in CIITA

pIV that interact with currently unknown transcription factors for

a fully active promoter. Alternatively, the deletion of these sites

may have led to the creation of a novel site that has an inhibitory

effect on CIITA pIV activity. Importantly, these results do not

support the hypothesis that diminished CIITA pIV activity in

MC2 treated with E2 occurs via ERE sites in the proximal region

of CIITA pIV.

E2-ERa interferes with STAT1 signaling in ERa transfected
MC2 cells

To explore whether STAT1 signaling, necessary for activation

of CIITA pIV, is adversely affected by ERa activation, we

transfected the 8 X GAS luciferase plasmid in VC5 and MC2,

followed by treatment, or not, with E2 and/or IFN-c for 6 hours.

Compared to VC5, STAT1 signally was clearly reduced in MC2

(Figure 8A & 8B); moreover, E2 significantly reduced basal and

induced GAS promoter activity by about 44% and 40%,

respectively, in MC2 (Figure 8B). Although E2 increased basal

GAS promoter activity by about 28% in VC5, this was not

significant; E2 had no effect on induced activity (Figure 8A).

To test whether reduced GAS activity in MC2 was the result of

reduced pSTAT1, we performed Western blot analysis on lysates

from cells treated or not with IFN-c for 15 minutes. As shown in

Figure 8C, total STAT1 and pSTAT1 at tyrosine (Y) 701 and

serine (S) 727 were reduced in MC2, compared to VC5. Similar

Figure 2. IFN-c inducible HLA-DR is down regulated in the ERa+

transfected breast cancer cell line, MC2. MDA-MB-231 clone 10A
(MDA-231 c10A), VC5 (MDA-231 c10A, transfected with the empty
plasmid vector) and MC2 (MDA-231 c10A, transfected with wild type
ESR1) were cultured in E2-depleted medium and stimulated or not with
IFN-c (100 U/ml) for 96 hours. (A) HLA-DR cell surface expression (L243)
was analyzed by flow cytometry: grey line, isotype control; black line,
constitutive expression; shaded histogram, IFN-c induced expression.
(B) Bar graphs represent the MFI 6 SEM for HLA-DR expression of three
independent experiments (***p,0.001). (C) Western blot analysis was
performed on whole cell lysates for HLA-DRa (TAL 1B5) and ERa (HC-
20).
doi:10.1371/journal.pone.0087377.g002

HLA Class II Expression in ERa Breast Cancer
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results were observed in an experiment in which cells were also

treated with E2 for 4 hours, followed by IFN-c treatment for 15

minutes; moreover, E2 did not alter levels of phosphorylated or

total STAT1 in MC2 or in VC5 (Figure 8D). We next examined

IRF1 expression, also essential for CIITA pIV activation, in MC2

and VC5, treated with E2 and stimulated with IFN-c for 96 hours

(Figure 8E). We found IRF1 levels were significantly decreased in

MC2, compared to VC5, that E2-treatment had only a trivial

effect on IRF1 in MC2, whereas it significantly increased the levels

in VC5. Collectively, these results show that ectopic expression of

ERa and, moreover, its activation by E2 attenuates STAT1

signaling, however, E2 has only a marginal inhibitory effect on

IRF1 levels in MC2. These findings imply that attenuation of

CIITA pIV and subsequent reduced HLA-II expression in ERa
positive breast cancer may be due to defects in STAT1 regulation.

E2 differentially affects IFN-c signaling in established
ERa+ and ERa2 breast cancer cells

To ensure that attenuated STAT1 signaling in MC2 was not

merely a peculiarity of the transfected model, we further analyzed

Figure 3. Coordinate downregulation of IFN-c inducible HLA-II expression by E2 is reversed by ICI-mediated degradation of ERa in
MC2 cells. VC5 and MC2 cells were cultured in E2-depleted media, treated with vehicle (ethanol), E2 (1029 M) or/and ICI (1026 M) followed by
stimulation with IFN-c (100 U/ml) for 96 hours. HLA-II expression was analyzed by surface flow cytometry using (A) anti-DR, (L243), and intracellular
flow cytometry using (B) anti-DM (Map.DM1) and (C) anti-Ii (LN2). Bar graphs represent the MFI 6 SEM of three independent experiments. (*p,0.05,
**p,0.01). (D) Western blot analysis was performed on whole cell extracts using for HLA-DRa (TAL 1B5), HLA-DM (TAL18.1) and Ii (LN2); GAPDH
(Ab8245) is the protein loading control. Bar graphs show the ratio of band intensities, normalized to GAPDH band intensities and represent the mean
6 SEM ratio of three independent experiments: (E) HLA-DRa/GAPDH (F) HLA-DM/GAPDH, and (G) Ii/GAPDH (* p,0.05, ** p,0.01).
doi:10.1371/journal.pone.0087377.g003

HLA Class II Expression in ERa Breast Cancer
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GAS promoter activity in endogenously ERa+ BCCL: MCF-7,

BT-474 and T47D and ERa2 BCCL: MDA-MB-231 and SK-

BR-3. E2 significantly decreased IFN-c induced GAS activity in

MCF-7 and BT-474, (Figure 9A & 9B) but not in T47D

(Figure 9C). To further confirm the inhibitory effect of E2 on

IFN-c signaling in BCCLs, other than HLA-DR (Figure 1), we

conducted Western blot analysis of IFN-c inducible proteins.

These included STAT1, IRF1, IRF9, a member of the IRF family

of transcription factors that is not implicated in CIITA expression

[51], and gamma-interferon-inducible lysosomal thiol reductase

(GILT), a STAT1 regulated but CIITA-independent protein, that

is important for antigen processing [52] Basal and IFN-c inducible

STAT1 levels were not substantially altered by E2 in either cell line

(Figure 9D–9F); however, STAT1 regulated proteins, IRF1, IRF9

and GILT were differentially modulated in E2-treated MCF-7 and

BT-474 (Fig 9D & 9E).

In contrast to the E2-inhibitory effect on GAS promoter activity

in the ERa+ lines, E2 noticeably enhanced GAS promoter activity

in ERa2 BCCL, MDA-MB-231 and SK-BR-3 (Figure 9G & 9H).

Furthermore, E2-treatment augmented expression of IRF1 and

GILT in MDA-MB-231 cells, and of STAT1 in SK-BR-3

(Figure 9I & 9J). Taken together, the results suggest that E2

differentially modulates the IFN-c and HLA-II pathways in ERa+

and ERa2 BCCL.

Discussion

We previously reported the frequency of HLA-II positive tumor

cells in ER+ breast carcinomas is decreased, compared to ER2

tumors from younger women [12]. As estrogen levels are high in

breast carcinoma tissues, irrespective of age and menopausal

status[41], we hypothesized a negative role for estrogen-activated

ERa in HLA-II regulation in breast cancer cells. Herein, we

provided experimental evidence that ERa and E2-activated ERa
attenuate HLA-II expression in BCCL. Using paired ERa (MC2)

and vector (VC5) transfected MDA-MB-231 clone 10A cells we

showed: i) E2-treatment coordinately decreased IFN-c inducible

HLA-II and CIITA in ERa+ MC2 but not in ERa2 VC5; ii)

reduction of ERa by ICI or siRNA reversed the E2-inhibitory

effect on HLA-II expression, CIITA pIV activity and transcrip-

Figure 4. E2-ERa signaling down regulates CIITA protein and mRNA expression in ER+ BCCL. VC5 and MC2 cells were cultured in
E2-depleted media, treated with vehicle (ethanol), E2 (1029 M) or/and ICI (1026 M) and stimulated or not with IFN-c (100 U/ml) for 24 and 4 hours, for
CIITA protein and mRNA expression, respectively. (A) Western blot analysis was performed on cytoplasmic and nuclear extracts for CIITA (antiserum
#21) and ERa (HC-20). (B) Cytoplasmic CIITA and nuclear CIITA were normalized to GAPDH and P84 respectively; bar graphs represent the mean 6
SEM ratio of three independent experiments (**p,0.01). (C) CIITA mRNA was relatively quantified by real time PCR using Taqman gene expression
assay. GAPDH was used as an endogenous control and the data were expressed relative to a control B cell line (RAJI). Bar graphs represent the mean
6 SEM of three replicate assays (**p,0.01).
doi:10.1371/journal.pone.0087377.g004

HLA Class II Expression in ERa Breast Cancer
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tional activation of CIITA in MC2; iii) E2-activated ERa adversely

affected IFN-c induced transcription as shown by GAS reporter

assay and expression levels of IFN-c inducible proteins. Impor-

tantly, similar results were observed in the ERa+ BCCL, MCF-7

and BT-474, in which GAS activity, STAT1 regulated genes and

HLA-DR were down regulated by E2; by contrast, E2 augmented

GAS activity and expression of STAT1 regulated genes in the

ERa2 BCCL, MDA-MB-231 and SK-BR-3.

Overall our data support a negative role for E2-ERa signaling in

the regulation of HLA-II in breast cancer cells, but cell-specific

differences are evident. For example, E2 treatment attenuated

HLA-DR in MCF-7 and BT-474, but not in T47D. This finding is

compatible with an older study in which BCCL, cultured in E2-

sufficient medium, exhibited a hierarchy of IFN-c inducible HLA-

DR levels with T47D.MCF-7.BT-474 [6]. Differential HLA-II

in these cells is not surprising, given that ER+ BCCL, although

expressing many of the same genes associated with a luminal

subtype, will differ in expression of many other genes [53], which

may or may not be regulated by E2. Multiple factors including the

ratio and localization of ERa and ERb receptors, levels of

coactivators and corepressors, cell surface receptors such as

GPR30 and EGFR and cross-talk with other signaling pathways

determine which genes are up or down regulated [54]. E2-

activated ERb inhibits recruitment of ERa to ERE in target genes,

thus, suppressing ERa regulated gene expression [55]. Further-

more, activation of the ERb2 isoform results in ERb2/ERa
heterodimers that are targeted for proteasomal degradation [56].

It is noteworthy, then, that E2 increases ERb in T47D but not in

MCF-7 or BT-474 [57] and the ER b:a ratio in T47D is reported

to be greater than in MCF-7[53,58] thus, suggesting that cell-

specific differences in ER subtypes and other receptors may

underlie differential HLA expression in breast cancer.

The most convincing evidence that activated ERa modulates

HLA-II and CIITA expression came from our experiments using

the transfected ERa+ line, MC2. Since MC2 and its ERa2 vector

control, VC5, are derived from MDA-MB-231 clone 10A, which

is negative for both ERa and ERb[47], it should be a valid model

to directly assess the effect of activated ERa on the HLA-II

pathway. Our finding, that E2 attenuation of HLA-II and CIITA

in MC2 could be reversed by knockdown of ERa in MC2 with ICI

(Figures 3D and 4A) or siRNA (Figures 5A), provides compelling

evidence that the classical ERa signaling pathway interferes with

CIITA regulation. However, we were puzzled that even without

adding E2, HLA-II and CIITA were reduced in MC2 and that

knockdown of ERa by ICI and siRNA did not restore CIITA

activity in MC2 to VC5 levels. Although we used phenol red free

medium and E2-depleted FBS, there might still be a minimum

level of E2 in the culture medium, which is sufficient to activate

ERa and suppress CIITA activity. Furthermore, the incomplete

depletion of ERa by ICI or siRNA (Figures 3D, 4A & 5A), may

also explain why HLA-II and CIITA expression were not

completely restored.

Identification of putative ERE binding sites in the proximal

region of CIITA pIV (Figure 7A) led us to explore a direct role for

Figure 5. Silencing ERa with ESR1 siRNA reversed the
inhibitory effect of E2 on CIITA expression. (A) ERa was silenced
(ESR1 siRNA) or not (scrambled siRNA) in MC2; VC5 served as an ERa
negative cell control. Cells were treated with vehicle (ethanol) or E2

(1029 M) and stimulated or not with IFN-c (100 U/ml) for 24 hours.
Nuclear lysates were prepared and probed for CIITA (anti-serum #21),
ERa (HC-20), and p84. Each figure represents one of three individual
experiments. (B) ESR1 siRNA and scrambled siRNA transfected MC2 cells
were treated with either vehicle (ethanol) or E2 (1029 M) followed by
stimulation with or without IFN-c (100 U/ml) for 4 hours and CIITA
mRNA was relatively quantified by real time PCR using Taqman gene
expression assay. GAPDH was used as an endogenous control and the
data were expressed relative to a control B cell line (RAJI). Bar graphs
represent the mean 6 SEM of three replicate assays (*** p,0.001).
doi:10.1371/journal.pone.0087377.g005

Figure 6. E2-ERa signaling pathway interferes with CIITA pIV
activity in MC2. VC5 and MC2 cells were cultured in E2-depleted
media followed by transfection with CIITA pIV luciferase constructs. On
the following day, cells were treated with vehicle (ethanol), E2 (1029 M)
and/or ICI (1026 M), and stimulated or not with IFN-c (100 U/ml) for
12 hours. Data are expressed as fold induction over the PGL2 Basic
empty plasmid after controlling for transfection efficiency using cells
dual transfected with GFP (Green Florescent Protein). The effect of ERa
on the transcription activation of CIITA PIV was determined from
relative luciferase activities in transfected MC2. Error bars represent the
mean 6 SEM of three independent experiments (**p,0.01).
doi:10.1371/journal.pone.0087377.g006
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Figure 7. Mutation of putative ERE sites in CIITA pIV does not enhance CIITA pIV activation in MC2. (A) CIITA pIV nucleotide sequence
from 2346 to +50 with the GAS and IRF1 binding sites (shaded hexagon) and the predicted ERE (clear rectangles) were identified using online
transcription factor prediction software, (http://tfbind.hgc.jp/, http://alggen.lsi.upc.es/ and http://www.cbrc.jp/index.eng.html). Site directed
mutagenesis was used to perform deletion of the predicted ERE. (B) VC5 and MC2 were transfected with CIITA pIV constructs, then treated with
vehicle (ethanol) or E2 (1029 M) and stimulated with IFN-c (100 U/ml) for 12 hours, followed by determination of luciferase activity. Bar graphs
represent the mean 6 SEM of three independent experiments (**p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0087377.g007

Figure 8. GAS promoter activity, STAT1 activation and IRF1 expression were reduced in MC2 as compared to VC5. (A) VC5 and (B)
MC2 were cultured in E2-depleted media and transfected with 8 X GAS binding sequence construct, then treated with vehicle (ethanol), E2 (1029 M)
and stimulated or not with IFN-c (100 U/ml) for 6 hours. Firefly luciferase activities in samples were normalized to Renilla luciferase activities in the
same samples and expressed as fold induction over the un-stimulated mock. Error bars represent the mean 6 SEM of three independent experiments
(*p,0.05, ** p,0.01). (C) VC5 and MC2 were stimulated with IFN-c (100 U/ml) for 15 minutes, STAT1 activation was detected using STAT1 Phospho-
Tyrosine701 and Phospho-Serine 727 antibodies. (D) VC5 and MC2 were treated or not with E2 (1029 M) for 4 hours, followed by stimulation with IFN-c
(100 U/ml) for 15 minutes, STAT1 activation was detected using STAT1 Phospho-Tyrosine701. (E) Western blot analysis of whole cell lysates, prepared
from VC5 and MC2 stimulated with IFN-c (100 U/ml) for 96 hours, for IRF1 (BD-20) expression. Error bars represent the mean 6 SEM of three
independent experiments (*p,0.05, *** p,0.001).
doi:10.1371/journal.pone.0087377.g008
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Figure 9. E2 differentially down regulates IFN-c signaling and IFN-c induced proteins in endogenous ER+ breast cancer cell lines. (A)
MCF-7, (B) BT-474, (C) T47D, (G) MDA-MD-231, and (H) SK-BR-3 were cultured in E2-depleted media, transfected with 8 X GAS binding sequence
construct, then treated with vehicle (ethanol), E2 (1029 M) and stimulated or not with IFN-c (100 U/ml) for 6 hours. Firefly luciferase activities in
samples were normalized to Renilla luciferase activities in the same samples and expressed as fold induction over the un-stimulated mock. (D) MCF-7,
(E) BT-474, (F) T47D, (I) MDA-MB-231 and (J) SK-BR-3 were cultured in E2-depleted media, treated with vehicle (ethanol), or E2 (1029 M) and stimulated
or not with IFN-c (100 U/ml) for 96 hours. Western blot analysis of cytoplasmic extracts was performed for expression of IFN-c inducible proteins:
STAT1 (06-501), IRF1 (BD-20), IRF9 (C-20), GILT (T-18). Each figure represents one of three independent experiments.
doi:10.1371/journal.pone.0087377.g009

HLA Class II Expression in ERa Breast Cancer

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e87377



ERa as a suppressor of CIITA pIV activation. Although

mutagenesis of these sites did not reverse the inhibitory effect of

ERa or E2-activated ERa on CIITA pIV activity (Figure 7B), the

experiments do not completely exclude direct ERa suppression of

CIITA activity as there may be other unidentified ERE sites in

either the proximal or distal region of CIITA pIV through which

this effect is mediated. Alternatively, ERa may indirectly suppress

CIITA pIV activation through interacting with another factor

such as AP1 or NFKb that may bind CIITA pIV [21], or by

interacting with factors such as CREB, SRC-1 and CBP/p300

[59] that interact with the regulatory elements of CIITA pIV and

HLA-II promoters [23,60,61]. This remains to be further studied.

Although others have shown an E2 inhibitory effect on MHC

class II expression [17,19,44,45], the described mechanisms were

not CIITA dependent. Tzortzakaki et al (2003) reported E2-

inhibition of IFN-c inducible HLA-DR in both MCF-7 and

T47D, whereby the mechanism involved sequestering the steroid

receptor co-activator 1 (SRC-1) away from the HLA-DRA

promoter by the E2-activated ER [17]. Our study did not assess

cofactors, but similarly, we found E2-inhibition of DR expression

and DRA promoter activity with only slightly reduced CIITA in

MCF-7 (Figure 1 and data not shown). However, our results for

T47D conflict with theirs, as we found no E2 inhibition of HLA-

DR in this cell line. This could be due to differences in the

amounts of E2, as their study used 3–4 log fold more than ours.

Higher than physiological concentrations of E2 were also used to

show an E2 inhibitory effect on murine MHC-II that did not

involve reduced CIITA[45]. Here the E2 inhibitory effect was

mediated through reduced association of the histone acetylation

transferase, CBP, with the MHC-II promoter. Since CBP is

required for acetylation of histones 3 and 4 in the MHC-II

promoter, this resulted in decreased transcription of MHC-II.

Intriguingly, the cell lines in this study expressed both ER

subtypes, which bound to the MHC I-Eb promoter, but as neither

ICI nor tamoxifen reversed the E2 inhibitory effect on MHC-II

promoter, they concluded the mechanism was ER-independent.

Subsequently, they showed the E2 inhibitory effect on CBP was

mediated through E2 activation of JNK MAPK pathway [45].

Although these studies are not directly comparable to ours, they do

suggest additional factors may have contributed to E2-inhibition of

HLA-DR. However, the underlying mechanisms for E2-ERa
inhibition of CIITA transactivation and STAT1 signaling in breast

cancer are likely to be more diverse and complex.

Studies investigating deficient CIITA and MHC class II

expression in various cancer cell lines have identified epigenetic

modifications that result in transcriptional silencing [61,62]. These

include histone deacetylation of the CIITA pIV in squamous cell

carcinomas [63] and rhabdomyosarcomas [64], and hypermethy-

lation of the CpG islands in CIITA pIV colon and gastric

carcinoma lines. Hypermethylation and recruitment of dysregu-

lated methyltransferases were hypothesized as mechanisms for

defective CIITA and HLA-II expression in metastatic breast

cancer [65,66], but these studies were based on a presumed breast

cancer cell line MDA-MB-435. This cell line and its metastatic

variants have a controversial history [67], as there is strong

evidence that they originated from a melanoma cell line [68].

However, it is conceivable that epigenetic modifications are

implicated in the E2-liganded ERa deleterious effect on CIITA

pIV, as numerous epigenetic modifications have been described in

breast cancer that include silencing of ERa in the MDA-MB-231

cell line and downregulation of tumor suppressor genes [69–73].

In our study the E2 mediated downregulation of CIITA pIV

and HLA-II expression in the ERa+ BCCL appears likely due to

aberrant STAT1 signaling with reduced expression of IRF1 or

reduced ability to bind the CIITA promoter. Others have shown

that STAT1 and IRF1 are aberrantly expressed in some ER+

breast cancer tissues and cell lines [74–77] and both have tumor

suppressor properties. Chan et al (2012) reported significantly

decreased STAT1 in human neoplastic tissue of ER+ breast

tumors and showed that knocking out STAT1 in a mouse model

correlated with the development of ER+PR+ luminal A adeno-

carcinoma [77]. Intriguingly, the reduced phosphorylation of

STAT1 and reduced levels of total STAT1 in MC2, compared to

VC5 (Figure 8C), whether treated or not with E2 (Figure 8D)

implies that ERa somehow negatively regulates STAT1 activation

and signaling. We speculate this could occur via direct interaction

of ERa with STAT1, possibly interfering with dimerization and

nuclear translocation or indirectly by interfering with STAT1

promoter activation. Whatever the mechanism, aberrant STAT1

signaling is likely to result in reduced IRF1 levels and subsequently

reduced CIITA activation. However, as ICI treatment of MC2 did

not substantially increase STAT1 levels (data not shown), nor

completely degrade ERa, more studies are required to test this

concept.

A potential explanation for the dramatic reduction of CIITA

pIV activity in MC2 is decreased IRF1 (Figure 8D), which is

essential for IFN-c inducible CIITA transcriptional activation and

HLA-II expression [50,78,79]. Furthermore, E2 diminished IRF1

in MCF-7 and dramatically reduced its expression in BT-474, a

cell line that expresses insignificant amounts of HLA-DR in the

presence and absence of E2 (Figures 1 & 9). In contrast, ERa2

lines appear to have an intact IFN-c signaling pathway that is not

inhibited by E2. We did not investigate mechanisms underlying

E2-mediated increase in GAS and STAT1 activity, but others have

shown a dependency on SRC kinase activity [80]. Furthermore,

E2 also activates other pathways such as MAPK and PI3K

pathways that interact with the JAK-STAT1 pathway [40,81,82].

In conclusion, our results show that HLA-II expression is

regulated differently by estrogen in ER2 and ER+ breast cancer

cells. To our knowledge this report is the first to show that

activation of ERa by its ligand E2, results in downregulation of

CIITA pIV activity. Although the mechanism is not fully

elucidated, the data suggest that the dysregulation occurs at the

level of STAT1 activation. Such a mechanism would explain the

HLA-DR negative tumor cells in breast carcinomas despite

infiltrating T-cells and high levels of IFN-c and has further

implications for tumor immune escape.

Materials and Methods

Cells
Breast cancer cell lines, obtained from ATCC, included: ERa+

(MCF-7, T47D, and BT-474) and ERa2 (SK-BR-3, MDA-MB-

231 (MDA-231). Cells were grown in Iscove’s Modified Dulbecco’s

Medium (IMDM) (Gibco) supplemented with 10% heat inactivat-

ed fetal bovine serum (FBS) (Gibco), 2 mM L-glutamine,

antibiotic-antimycotic mixture (100 units/ml penicillin G sodium,

100 mg/ml streptomycin sulfate, and 0.25 mg/ml amphotericin B

as FungizoneH), all from Invitrogen. MDA-MB-231 clone 10A and

two stably-transfected lines, MC2 (MDA-MB-231 clone 10A

transfected with ESR1 (NM_000125) and VC5 (MDA-MB-231

clone 10A transfected with an empty vector) were generous gifts

from Dr. Craig Jordan. Cells were grown in phenol red free

minimum essential medium (MEM) (Invitrogen) supplemented

with 5% charcoal/dextran heat inactivated FBS (CD FBS)

(Hyclone), MEM non-essential amino acids, 6 ng/ml recombinant

human insulin, 2 mM L-glutamine and antibiotic-antimycotic

mixture (all from Invitrogen). MC2 and VC5 were maintained
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under selective conditions with G418, 5 mg/ml (Sigma). For

experiments cell lines were detached with 0.25% trypsin (Invitro-

gen) and plated at 36105 cells/well in 6-well plates or

26104 cells/well in 96-well plates. After 24 hours medium was

replaced with fresh medium containing 1029 M E2 and/or

1026 M ICI (Sigma) or vehicle control (ethanol) and left un-

stimulated or stimulated with IFN-c, 100 units/ml (BD Biosci-

ences) for the indicated times depending on the experiment.

Antibodies
Expression of HLA-II and CIITA was determined as follows:

HLA-DR conformers, clone L243 [83] ATCC, purified IgG2a

from supernatant diluted to 2.4 mg/ml for flow cytometry (FC) or

10 ng/ml for Western blot analysis; HLA-DRa, mouse IgG1

(clone Tal 1B5, Abcam, 40 ng/ml, IB); Ii, mouse IgG1 (clone

LN2, BD Biosciences, 5 mg/ml, FC or 200 ng/ml, IB); HLA-DM,

mouse IgG1 (clone MaP.DM1, BD Biosciences, 10 mg/ml, FC

and clone TAL18.1, Abcam, 40 ng/ml, IB); CIITA (rabbit

antiserum # 21, diluted 1/4000), prepared in Dr. Viktor Steimle’s

laboratory [84]. Other antibodies used for Western blotting

included anti-ERa, rabbit IgG (HC-20, Santa Cruz Biotechnol-

ogy, 500 ng/ml); STAT1, rabbit IgG (06-501, Upstate Biotech-

nology, 200 ng/ml); STAT1 Phospho-Tyrosine701 and Phospho-

Serine 727, both rabbit IgG (GenScript, 500 ng/ml); ISGF-3c p48

(IRF9), rabbit IgG (C-20, Santa Cruz Biotechnology, 400 ng/ml);

IRF1, mouse IgG1 (clone BD-20, BD Biosciences, 125 ng/ml);

GILT, goat polyclonal IgG (T-18, Santa Cruz Biotechnology,

250 ng/ml). Isotype-matched nonspecific monoclonal antibodies

(mAbs) included: IgG2a (clone NSG2a) from a local source and

IgG1 (clone MOPC-21, BD Biosciences). Housekeeping proteins

were detected with anti-GAPDH, mouse IgG1 (clone 6C5,

Abcam, 1 ng/ml); a-tubulin, mouse IgG1 (clone B-7, Santa Cruz

Biotechnology, 250 ng/ml) and anti-nuclear matrix protein p84,

mouse IgG2b (clone 5E10, Abcam, 1 mg/ml). Horse Radish

Peroxidase (HRP)-conjugated affiniPure F(ab)2 fragment goat anti-

mouse (GAM) IgG, Fc specific and HRP-conjugated affiniPure

F(ab)2 fragment goat anti-rabbit (GAR) IgG, Fc specific antibodies,

were purchased from Jackson Immunoresearch and HRP

conjugated donkey anti-goat (DAG) antibody IgG, was purchased

from Santa Cruz Biotechnology.

Flow cytometry
Flow cytometry was performed as previously described [85].

Briefly, trypsin-harvested cells, 26105 cells/tube, were incubated

with 25 ml of appropriate mAbs in wash buffer (0.2% CDFCS,

0.02% NaN3 in PBS) for 30 minutes at 4uC. Antibody binding was

detected with phycoerythrin (PE) labeled goat anti-mouse (GAM)

conjugate (Jackson Immunoresearch), followed by fixation in 1.0%

paraformaldehyde (PFA) and analyzed using a FACS Calibur flow

cytometer (Becton-Dickinson). For intracellular staining, the cells

were fixed in 2% PFA and permeabilized with 0.2% Tween 20 in

PBS (Sigma) prior to adding primary antibodies, diluted in wash

buffer containing 0.2% Tween 20 and 0.5% BSA.

Western Blotting
Nuclear and cytoplasmic extracts were prepared using Nuclear

Extract Kit (ActiveMotif) according to the manufacture’s protocol.

Whole cell lysates (WCL) were prepared in either Triton X-100

buffer (PBS pH 7.4,Triton X-100 1%, 0.5 M ethylene-diaminete-

traaccetic acid) or RIPA buffer (PBS, pH7.4, 1% NP40, 0.5%

sodium deoxycholate, 0.1% sodium dodecyl sulfate) containing

protease inhibitors aprotinin (1 mg/ml), leupeptin (1 mg/ml),

pepstatin A (1 mg/ml) and phenylmethylsulfonyl fluoride

(10 mg/ml). Proteins, quantified using a BCA protein assay kit

(Thermo-Fisher Scientific), were reduced with 2-mercaptoethanol

and electrophoresed (10 mg/lane) using 8–10% SDS PAGE,

followed by western blotting. Membranes, treated with blocking

buffer (5% milk powder in TBS-Tween (0.15 M NaCl, 0.05 M

Tris pH 7.4, 0.05% Tween 20) for 1 hour, were incubated

overnight with primary antibodies at 4uC. Antibody binding was

detected with appropriate HRP-conjugated secondary antibodies

and Immobilon Western Chemiluminescent HRP substrate

(Millipore). Immunoreactivity was visualized and quantified by

scanning densitometry using ImageQuant LAS 4000 and Im-

ageQuant TL8.1 software, respectively (GE Healthcare).

Real-time RT-PCR
Total RNA, extracted using TRIzol Reagent (Invitrogen) and

treated with AmbionH TURBOTM DNase to remove contami-

nating DNA, was quantified using NanoDrop (Thermo Scientific).

The High Capacity cDNA Reverse Transcription kit (Applied

Biosystems) was used for cDNA synthesis according to the

manufacturer’s protocol. Real time PCR was performed using

TaqManH Probe-Based Gene Expression Analysis kit for CIITA

(Hs00172106_m1) and GAPDH (Hs99999905_m1) following the

manufacturer’s recommendations. Quantification was performed

by the comparative threshold cycle (DDCT) method and normal-

ized to GAPDH using StepOnePlusTM (Applied Biosystems). A

control sample without RNA and a reference sample (RAJI, B cell

line) were included in each experiment.

siRNA Transfection
Cells, plated in a 6-well plate at 36105 cells/well for 24 hours,

were transfected with either 25 nM ON-TARGET plus SMART

pool siRNA for ESR1 or non-targeting siRNA (Dharmacon, USA)

using 4 ml DharmaFECT4 transfection reagent (Dharmacon,

USA) per well according to the manufacturer’s protocol. Forty-

eight hours later, the cells were treated with E2 1029 M or vehicle

control (ethanol) and stimulated with IFN-c, 100 units/ml, for 4 or

24 hours for mRNA and protein expression, respectively.

Reporter gene assays
The CIITA promoter IV firefly luciferase construct [79] and the

8 X GAS firefly luciferase construct [86] were kind gifts from Dr.

Jenny Ting and Dr. Eleanor N. Fish, respectively. Transfection

conditions were optimized using Fugene HD (Roche) transfection

reagent according to the manufacturer’s protocol: briefly a master

mix was prepared by diluting the appropriate plasmid with Opti-

MEM (Gibco) to a concentration of 0.02 mg/ml; Fugene HD was

added to the same mixture in the ratio of 7:2 (Fugene HD in

ml:Plasmid DNA in mg) and left for 20 minutes at ambient

temperature. Cells, plated in a 96-well plate at 26104 cells/well

for 24 hours, at 37uC were transfected with 5 ml of this mixture

and incubated for an additional 24 hours. The medium was then

replaced with medium containing the appropriate treatments and

incubated for 12 hours for CIITA pIV or 6 hours for 8 X GAS

constructs. Transfection efficiency was estimated by co-transfect-

ing the cells with SV-40 Renilla luciferase or green fluorescent

protein (GFP). Luciferase activity was measured using the dual

luciferase assay system (Promega) and a 96-well luminometer

(Fluoroskan Ascent Fl, Labsystems).

Generation of CIITA pIV deletion constructs
Different sets of deletion mutants of P-346/+50 CIITA pIV

were generated by site-directed mutagenesis using QuikChange

Lightning Site-Directed Mutagenesis Kit (Stratagene) according to

the manufacturer’s instructions. Mutagen primers (Table 1) were
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designed with Agilent’s web-based QuikChange Primer Design

Program Sequences. Sequences, deleted from the original

template, are bolded and underlined. All deletions were confirmed

by sequencing.

Statistics
Statistical analysis was performed using Microsoft excel 2010

software. One-way analysis of variance (ANOVA) and Tukey post

hoc tests were used for comparisons within a group. The student t-

test was used for comparing two different treatments for one cell.

All tests were two-sided and p,0.05 was considered significant.
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Table 1. Mutagen primers used to generate the CIITA PIV deletion constructs

Site 1 Original template ctcaacctctctttgtctctgggtgggtccccacccctg

Primers Del 2328/2324 Fw 59-ttggagagaaacagcacccaggggtggg-39

Del 2328/2324 Rv 59-cccacccctgggtgctgtttctctccaa-39

Site 2 Original template gacgttgagtcctgaacgtctagtgaacgggttcaccgaggga

Primers Del 2280/2276 Fw 59-caactcaggacttgcacttgcccaagtggctc-39

Del 2280/2276 Rv 59-gagccacttgggcaagtgcaagtcctgagttg-39
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