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2.1 Introduction  

  The functionalized γ-butenolide (2(5H)-furanone) motif is found in several 

natural products and the synthesis of butenolides has therefore attracted considerable 

interest in recent years.
1
 A popular approach to 5-substituted furanones involves the 

vinylogous Mukaiyama aldol reaction of silyloxyfurans
2
 (Figure 2.1), and a number 

of asymmetric modifications of this reaction are known.
2f-n

 In contrast, the alternative 

approach involving a direct vinylogous aldol reaction of furanones is less explored,
3
 

and asymmetric variants of this reaction employing chiral guanidine, aminothiourea 

and chiral ammonium amide as catalysts are reported.
4
 A detailed account of these 

studies is provided in Chapter 1. 

 

 

Figure 2.1. Direct aldol approach to butenolides. 
 
 
 
  The chiral guanidine-based system

4a
 requires halolactones, and fails when 

crotonolactone is used as the substrate. The aminothiourea mediated reaction requires 

a fourfold excess of the nucleophile
4b

 and there is scope for improvement of the 

stereoselectivity.
4b,c

 Evidently, a catalytic system that addresses these issues would be 

desirable. The following sections describe our findings on the asymmetric, direct 
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vinylogous aldol reaction of crotonolactone with aromatic aldehydes mediated by 

aminothiourea and aminosquaramide catalysts. 

 

2.2 Results and Discussions 

  We initially examined several classes of bifunctional, amine catalysts for the 

direct aldol reaction of crotonolactone: (a) cyclohexanediamine,
5a

 

diphenylethylenediamine,
5b

 cinchonidine
5c,d

 and cinchonine
5e,f

 derived thioureas (1, 2, 

3 and 4), (b) cyclohexanediamine and diphenylethylenediamine derived squaramides 

(5, 6)
5g-i

 and (c) a proline-derived thiourea catalyst (7, Figure 2.2). 

 

Figure 2.2. Bifunctional catalysts examined for the direct vinylogous aldol reaction   

                   of  crotonolactone.  

 

  Orienting experiments were conducted with crotonolactone and benzaldehyde. 

Initially, the aldol reaction was examined with catalysts 1 and 5 in a variety of 
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solvents (Table 2.1).  

 

Entrya Catb 
 

Solvent t/h Yield (%) drc (anti/syn) eed (%) (anti) 

1 1 CH2Cl2 84 65 3.0/1 79 

2 1 THF 84 78 5.8/1 76 

3 1 toluene 84 89 1.0/1 78 

4 1 EtOAc 84 72 3.2/1 72 

5 1 CHCl3 84 78 3.0/1 70 

6 1 MeOH 84 81 2.6/1 40 

7 1 DMF 84 63 3.6/1 45 

8 5 CH2Cl2 12 88 2.0/1 49 

9 5 THF 12 89 2.6/1 67 

10 5 CH2Cl2
e
 168 76 5.3/1 94 

11 5 THF
 e
 168 92 5.0/1 90 

12 5 CHCl3
 e
 168 98 5.9/1 91 

13 5 toluene
 e
 168 46 6.7/1 93 

14 5 EtOAc
 e
 168 32 5.6/1 96 

15 5 DMF
 e
 168 65 3.3/1 89 

16 5 CH3CN
 e
 168 35 4.5/1 93 

a 
2 equiv. of crotonolactone. 

b 
20 mol%. 

c  
Determined by 

1
H NMR analysis of crude 

products. 
d 

Chiral HPLC analysis. 
e  

Reaction at 0 
o
C. 

 
Table 2.1. Solvent survey for the vinylogous aldol reaction of crotonolactone. 
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  The reaction proceeded smoothly in most of the solvents examined (Table 

2.1), and the expected aldol product 8a was obtained as a mixture of anti and syn 

diastereomers, with the anti product predominating. Stereochemical assignments are 

based on the reported 
1
H NMR data and the trend in chemical shifts for the syn and 

anti diastereomers of 8.
2c

 Overall, catalyst 1 provided moderate to good 

enantioselectivities for the anti product, except in methanol and DMF (entries 6 and 

7, Table 2.1). Dichloromethane, THF and toluene emerged as promising solvents, 

when catalyst 1 was used, in terms of enantioselectivity, but the complete lack of 

diastereoselectivity in toluene precluded further studies in this solvent (entry 3, Table 

2.1). At room temperature, 5 provided the aldol product 8a with poor enantio- and 

diastereoselectivities in dichloromethane and THF as solvents (entries 8 and 9, Table 

2.1). Much better results were obtained with 5 at 0 
o
C (entries 10-16, Table 2.1). 

Overall, good diastereoselectivities (3.3-6.7:1) and excellent enantioselectivities (89-

96% ee) were obtained in most of the solvents for catalyst 5 at 0 
o
C. Low yields were 

obtained in ethyl acetate (32%) and acetonitrile (35%) (entries 14 and 16, Table 2.1), 

as solvents. From these studies, dichloromethane and THF emerged as promising 

solvents for further investigations. 

  The enantiomeric excess of 8a-l was determined by chiral HPLC comparison 

with racemic samples. The racemic products in this study were prepared by adapting 

the triethylamine catalyzed reaction of dihalofuranones with aldehydes (Scheme 

2.1).
3a

 



 

30 

 

 

 

 

Scheme 2.1. The triethylamine catalyzed reaction of γ-crotonolactone with aldehydes. 
 
 
 
  Subsequent studies, aimed at identifying the optimal catalyst, were therefore 

conducted in dichloromethane and THF. The results obtained from the catalyst survey 

are summarized in Table 2.2. The diphenylethylenediamine-thiourea catalyst (2) 

provided 8a in relatively low yield and moderate enantioselectivity. In comparison, 

the cinchonidine and cinchonine based catalysts (3 and 4, respectively) generated 8a 

in excellent yields, but the stereoselectivity was low (de: 1.8-4.8/1, ee: 50-71%). 

Much better results were obtained with the squaramide catalyst 5 in dichloromethane 

and THF at 0 
o
C (Table 2.2, entries 9 and 10, 94 and 91% ee). In comparison, the 

diphenylethylenediamine squaramide catalyst 6 was superior to 5 (Table 2.2, entries 

11 and 12, 97 and 96% ee). At ambient temperature, 6 provided 8a in excellent 

enantiomeric excess (97% ee) and good diastereoselectivity (7/1) in dichloromethane. 

Thus, two optimal catalytic systems, providing the anti diastereomer in greater than 

90% ee, were identified from the catalyst and solvent survey, namely (a) the 

cyclohexanediamine squaramide catalyst 5 in dichloromethane at 0 
o
C (entry 9) and 

(b) the diphenylethylenediamine squaramide catalyst 6 in dichloromethane at ambient 

temperature (entry 11, Table 2.2).  
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Entrya Catb 
 

Solvent T/h Yield (%) drc (anti/syn) ee
d (%) (anti) 

1 1 CH2Cl2 84 65 3/1 79 

2 1 THF 84 78 5.8/1 76 

3 2 CH2Cl2 96 32 6.7/1 77 

4 2 THF 84 33 10/1 75 

5 3 CH2Cl2 24 95 3.7/1 64 

6 3 THF 48 95 2/1 50 

7 4 CH2Cl2 24 98 1.8/1 65
e
 

8 4 THF 48 95 4.8/1 71
e
 

9 5 CH2Cl2
f
 168 76 5.3/1 94 

10 5 THF
f
 84 46 4.3/1 91 

11 6 CH2Cl2 120 35 7/1 97 

12 6 THF 120 31 7/1 96 

13 7 CH2Cl2 144 24 3.6/1 14 

14 7 THF 144 25 4.5/1 14 

a 
2 equiv. of crotonolactone. 

b 
20 mol%. 

c  
Determined by 

1
H NMR analysis of crude 

products. 
d 

Chiral HPLC analysis. 
e
 enantiomeric product.  

f  
Reaction at 0 

o
C 

 
Table 2.2. Catalyst survey for the vinylogous aldol reaction of crotonolactone. 

 

  The optimized conditions were employed in a study of the scope of the 

reaction with a variety of aldehydes. These investigations indicated that the choice of 
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catalyst 5 or 6 is determined by the nature of the aldehyde, and high 

enantioselectivities are obtained by proper pairing of the catalyst and aldehyde. 

Nonetheless, for most of the reactions, the diphenylethylenediamine derived catalyst 6 

provided higher enantioselectivities than 5. All isomers of methoxybenzaldehyde 

(entries 3-5, Table 2.3) provide high enantioselectivity. The diastereoselectivity for 

all of the reactions is moderate.
7
 Overall, the level of stereoselection (average dr = 

6/1, average ee = 94%) is higher than that obtained with cinchona alkaloid-thiourea 

catalysts.
4b

 The aldol products 8a-l exhibited spectral data in agreement with 

literature reports.
2,4

 The results of these studies are summarized in Table 2.3. 
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Entrya 8 R Catb Yield (%)c drd (anti/syn) eee% anti (syn) 

1 b 4-MeC6H4 6 51 8/1 95 (32) 

2 c 4-BrC6H4 6 62 8/1 95 (55) 

3 d 4-MeOC6H4 6 35 8/1 97 (48) 

4 e 2-MeOC6H4 6 58 8/1 96 (84) 

5 f 3-MeOC6H4 6 54 6/1 96 (72) 

6 g 4-ClC6H4 5 50 6/1 94 (83) 

7 h 4-NO2C6H4 6 50 5/1 >99 (50) 

8 i 4-CF3C6H4 6 60 6/1 95 (nd) 

9 j 2-Naphthyl 6 73 6/1 95 (>99) 

10 k Cyclohexyl 5 50 3/1 >99 (>99) 

11 l 1-Naphthyl 6 68 2/1 77 (80) 

a 
2 equiv of crotonolactone;  

b 
20 mol%. 

c 
144 h at 0 

o
C for 5 and 240 h at rt for 6; 

d  1
H 

NMR of crude products. 
e 
Chiral HPLC analysis. 

 
Table 2.3. Vinylogous aldol reaction of crotonolactone with various aldehydes. 

 
 
 
 

  The stereochemical outcome of the reaction is presumably governed by hydrogen 

bonding
8
 of the aldehyde with the squaramide

5g-j
 functionality and an ionic interaction 

of the deprotonated nucleophile and the resultant ammonium group in the catalyst 

(Figure 2.3). We have observed that the triethylamine catalyzed reaction of 
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crotonolactone with aldehydes (used for the preparation of racemic products in this 

study) has an intrinsic preference for the anti diastereomer (dr = ~2/1). The present 

results suggest that the hydrogen bonding functionality in the catalyst enhances this 

diastereoselectivity. 

 

 

Figure 2.3. A proposed transition state assembly for the ODVA reaction leading to the       

        anti aldol product. 

 

2.2.1 Determination of the absolute configuration of 8a 

Hydrogenation (Pd/C) of aldol product 8a in ethyl acetate provided 9 (Scheme 

2.2) which was dextrorotatory ([α]
23

D = +50.7 (c = 1.0, CHCl3), 88% ee). The positive 

rotation indicates that lactone 9 is enantiomeric to the previously reported
2g

 (5S,1’R) 

isomer ([α]
25

D = -53.3 (c = 0.22, CHCl3) for 9 with 92% ee). Hydrogenation of 8a in the 

presence of HCl, by adaptation of the literature procedure,
4a

 provided 10 (Scheme 2.2) 

which was assigned the R configuration on the basis of chiral HPLC retention times
7
 

(Chiralcel OD-H, hexanes/2-propanol 80/20, 1 mL/min, 214 nm, tS = 5.95 min, tR = 6.74 
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min). Lactone 9 is therefore assigned the (5R,1’S) configuration, and compounds 8a-l are 

also assigned the (5R,1’S) configuration by analogy. 

 

Scheme 2.2. Hydrogenation and hydrogenolysis of aldol product. 
. 

It was also shown that the aldol products 11a and 11b are diastereomeric at C-1’, 

and not at C-5, by converting the aldol products 11a and 11b into lactam 15a and 15b via 

a series of simple transformations (Scheme 2.3). Hydrogenation of 11 (8/1 mixture of 

11a/11b) to the butyrolactone 12, subsequent mesylation of the secondary alcohol to give 

13 and displacement of the mesylate, with inversion of configuration, by azide anion 

gave the azido butyrolactone 14. Reduction of the azide (H2, Pd/C), in the presence of a 

base (K2CO3), generated the required piperidones 15a and 15b. At this stage, 15a (cis 

isomer) was easily separated from the minor 15b (trans isomer) by flash column 

chromatography. The optical rotation of 15a (cis isomer) was consistent with that 

reported for the (5S,6S) isomer in the literature ([α]D
23

 = +55.3 (c = 1.1, CH2Cl2), 97% ee; 

lit. [α]D
25

 = +52.0 (c = 1.1, CH2Cl2),
8
  for a 99% ee sample). The optical rotation of the 

15b (trans isomer) was opposite to that reported for the (5R,6S) isomer in the literature 

([α]D
23

 = +26.0 (c 1.0 , MeOH), 96% ee; lit. [α]D
20 

= –25.9 (c = 0.27, MeOH),
9
 for a 92% 

ee sample). Therefore, 15b is assigned the (5S,6R) absolute configuration. These 
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observations indicate that 15b is obtained from the (5S,1’S) isomer of 11b which is 

diastereomeric to 11a at C-1’. The aldol reaction therefore generates aldol products 

which are diastereomeric at the secondary alcohol stereocenter. 

 

 

Scheme 2.3. Conversion of aldol product into lactam. 

 

2.3 Conclusions  

  In conclusion, a highly enantioselective, catalytic aldol reaction of 

crotonolactone with aldehydes was developed. A notable outcome of this study is the 

superior performance of the squaramide catalysts over the conventional 

aminothiourea catalysts.  
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2.4 Experimental section 

General: All commercially available reagents were used without purification. All 

reactions requiring anhydrous conditions were performed under an atmosphere of dry 

nitrogen using oven dried glassware. Dichloromethane and tetrahydrofuran were distilled 

from CaH2 and sodium/benzophenone respectively. Commercial precoated silica gel 

plates were used for TLC. Silica gel for column chromatography was 230-400 mesh. All 

melting points are uncorrected. Optical rotations were measured at the sodium D line on a 

digital polarimeter at ambient temperature. 

 

General Procedure for the organocatalytic direct vinylogous aldol 

reaction: 

 To the catalyst (0.10 mmol, in a 2.0 mL Reacti-Vial
TM

 or a standard 3.0 mL vial) 

was added the aldehyde (0.50 mmol) followed by γ-crotonolactone (2-(5H)-furanone) 

(1.0 mmol) and dichloromethane (0.50 mL). The suspension was stirred for 10 d at room 

temperature (for catalyst 6) or kept for 7 d at 0 
o
C with occassional shaking (for catalyst 

5). The mixture was then diluted with ethyl acetate (1.0 mL) and aqueous HCl (2 N) was 

added. The organic layer was separated and the aqueous layer was extracted with ethyl 

acetate. The combined extracts were dried (Na2SO4) and concentrated. The residue was 

purified by flash chromatography (CH2Cl2/EtOAc, 10/1). The diastereomeric 

composition (anti/syn) was determined by 
1
H NMR analysis of the crude product. The 

enantiomeric excess was determined by HPLC (Chiralpak AD-H or AS-H column, flow 
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rate 1.0 mL/min, UV detection at 210 or 254 nm) by comparison with reported retention 

times
4b

 for compounds 8a-l, and also by comparison with racemic standards (prepared by 

using triethylamine as the catalyst) for compounds 8h, 8i and 8l. The absolute 

configuration of 8a was assigned by correlation. Absolute configurations of 8b-l are 

assigned by analogy within the series. 

 

5-[Hydroxy(phenyl)methyl]furan-2(5H)-one (8a): 

O
O

OH  

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with benzaldehyde (53 µL, 0.50 mmol) 

catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure provided 34 mg 

(35%) of 8a as a white solid.  

IR: 3432, 1728, 1167, 1039, 820 cm
-1

; 
1
H NMR (500MHz, CDCl3): Anti diastereomer: 

δ 7.43-7.34 (m, 6H, ArH and COCH=CH), 6.19 (dd, 1H, J = 5.8, 1.9 Hz, COCH=CH), 

5.19-5.18 (br m, 1H, CH=CHCH), 5.09 (br t, 1H, J = 4.1 Hz, ArCHOH), 2.25 (d, 1H, J = 

3.8 Hz, OH); Syn diastereomer: δ 7.42-7.36 (m, 5H, ArH), 7.17 (dd, 1H, J = 5.8, 1.5 Hz, 

COCH=CH), 6.13 (dd, 1H, J = 5.8, 2.0 Hz, COCH=CH), 5.17 (apparent dt, 1H, J = 7.0, 

1.5 Hz, CH=CHCH), 4.71 (d, 1H, J = 7.0 Hz, ArCHOH), 2.78 (s, 1H, OH); MS (APCI 

pos.): m/z 191.0 (M+1). 

HPLC: Chiralpak AS-H, hexanes/2-propanol 90/10, 254 nm, t1 = 27.8 min (major anti), t2 

= 36.2 min, (syn), t3 = 49.6 min (syn), t4 = 66.8 min (minor anti). Ee: 97% (anti). 
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5-[Hydroxy(p-tolyl)methyl]furan-2(5H)-one (8b): 

O
O

OH

CH3

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 4-methylbenzaldehyde (59 µL, 0.50 

mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure provided 

52 mg (51%) of 8b as a white solid.  

IR: 3401, 1736, 1325, 1170, 1102, 1079, 1039, 917, 877 cm
-1

; 
1
H NMR (500MHz, 

CDCl3): Anti diastereomer: δ 7.36 (dd, 1H, J = 5.8, 1.4 Hz, COCH=CH), 7.28 (d, 2H, J 

= 8.0 Hz, ArH), 7.22 (d, 2H, J = 8.0 Hz, ArH, ortho to CH3), 6.18 (dd, 1 H, J = 5.8, 2.0 

Hz, COCH=CH), 5.17-5.15 (m, 1H, CH=CHCH), 5.04 (br t, 1H, J = 4.0 Hz, ArCHOH), 

2.37 (3H, CH3), 2.22 (d, 1H, J = 4.0 Hz, OH), 2.37 (3H, CH3); Syn diastereomer: δ 7.28 

(d, 2H, J= 8.0 Hz, ArH), 7.22 (d, 2H, J = 8.0 Hz, ortho to CH3), 7.16 (dd, 1H, J = 5.8, 1.6 

Hz, COCH=CH), 6.13 (dd, 1H, J = 5.8, 2.0 Hz, COCH=CH), 5.15-5.17 (m, 1H, 

CH=CHCH), 4.66 (dd, 1H, J = 6.9, 3.0 Hz, ArCHOH), 2.58 (d, 1H, J = 3.0 Hz, OH), 

2.37 (3H, CH3); MS (APCI pos.): m/z 205.0 (M+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 95/5, 254 nm, t1 = 20.0 min (major anti), t2 

= 22.2 min, (minor anti), t3 = 26.8 min (minor syn), t4 = 29.0 min (major syn). Ee: 95% 

(anti). 
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5-[Hydroxy(4-bromophenyl)methyl]furan-2(5H)-one (8c): 

O
O

OH

Br

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 4-bromobenzaldehyde (93 mg, 0.50 

mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure provided 

83 mg (62%) of 8c as a white solid.  

IR: 3343, 1742, 1486, 1399, 1191, 1176, 1095, 1074, 1041, 1008, 917, 880, 831, 808   

cm
-1

; 
1
H NMR (500MHz, CDCl3): Anti diastereomer: δ 7.55 (d, 2H, J = 8.4 Hz, ArH, 

ortho to Br), 7.32 (dd, 1H, J = 5.8, 1.4 Hz, COCH=CH), 7.29 (d, 2H, J = 8.5 Hz, ArH), 

6.19 (dd, 1 H, J = 5.8, 2.0 Hz, COCH=CH), 5.15-5.13 (m, 1H, CH=CHCH), 5.04 (t, 1H, 

J = 4.0 Hz, ArCHOH), 2.48 (d, 1H, J = 4.0 Hz, OH); Syn diastereomer: δ 7.55 (d, 2H, J 

= 8.4 Hz, ArH, ortho to Br), 7.29 (d, 2H, J = 8.4 Hz), 7.20 (dd, 1H, J = 5.8, 1.5 Hz, 

COCH=CH), 6.14 (dd, 1H, J = 5.8, 2.0 Hz, COCH=CH), 5.15-5.13 (m, 1H, CH=CHCH), 

4.73 (dd, 1H, J = 6.7, 3.3 Hz, ArCHOH), 2.73 (d, 1H, J = 3.3 Hz, OH); MS (APCI pos.): 

m/z 269.1 (M
+
). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 88/12, 254 nm, t1 = 9.6 min (major anti), t2 

= 10.4 min (minor syn), t3 = 10.8 min (minor anti), t4 = 11.6 min (major syn). Ee: 95% 

(anti). 
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5-[Hydroxy(4-methoxyphenyl)methyl]furan-2(5H)-one (8d): 

O
O

OH

OCH3

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 4-methoxybenzaldehyde (63 µL, 

0.50 mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure 

provided 39 mg (35%) of 8d as a white solid.  

IR: 3357, 1742, 1585, 1510, 1242, 1171, 1101, 1085, 1029, 1008, 877, 827, 814 cm
-1

; 
1
H 

NMR (500MHz, CDCl3): Anti diastereomer: δ 7.39 (dd, 1H, J = 5.8, 1.5 Hz, 

COCH=CH), 7.32 (d, 2H, J = 8.7 Hz, ArH), 6.93 (d, 2H, J = 8.7 Hz, ortho to OCH3),  

6.18 (dd, 1 H, J = 5.8, 2.0 Hz, COCH=CH), 5.15-5.14 (m, 1H, CH=CHCH), 5.0 (t, 1H, J 

= 4.0 Hz, ArCHOH), 3.82 (s, 3H, OCH3), 2.26 (d, 1H, J = 4.0 Hz, OH); Syn 

diastereomer: δ 7.32 (d, 2H, J = 8.7 Hz, ArH), 7.16 (dd, 1H, J = 5.8, 1.6 Hz, 

COCH=CH), 6.93 (d, 2H, J = 8.7 Hz, ortho to OCH3),  6.13 (dd, 1H, J = 5.8, 2.1 Hz, 

COCH=CH), 5.15-5.14 ( m, 1H, CH=CHCH), 4.65 (dd, 1H, J = 7.1, 3.0 Hz, ArCHOH), 

3.82 (s, 3H, OCH3), 2.61 (d, 1H, J = 3.0 Hz, OH); MS (APCI pos.): m/z 221.0 (M+1), 

203.0 ((M-H2O)+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 90/10, 254 nm, t1 = 15.1 min (major anti), 

t2 = 17.7 min, (minor anti), t3 = 19.0 min (minor syn), t4 = 20.7 min (major syn). Ee: 97% 

(anti). 
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5-[Hydroxy(2-methoxyphenyl)methyl]furan-2(5H)-one (8e): 

O
O

OH OCH3  

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 2-methoxybenzaldehyde (63 µL, 

0.50 mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure 

provided 64 mg (58%) of 8e as a colorless liquid.  

IR: 3418, 1733, 1601, 1491, 1462, 1238, 1160, 1095, 1036, 1022, 816 cm
-1

; 
1
H NMR 

(500MHz, CDCl3): Anti diastereomer: δ 7.40 (dd, 1H, J = 5.8, 1.0, COCH=CH), 7.34-

7.31 (m, 2H, ArH ortho and para to OCH3), 7.03 (t, 1 H, J = 7.5 Hz, ArH, meta to OCH3), 

6.92 (d, 1H, J = 8.3, ArH), 6.15 (dd, 1 H, J = 5.8, 2.0 Hz, COCH=CH), 5.38-5.37 (m, 1H, 

CH=CHCH), 5.31 (t, 1H, J = 5.7 Hz, ArCHOH), 3.89 (s, 3H, OCH3), 2.82 (d, 1H, J = 5.7 

Hz, OH); Syn diastereomer: δ  7.34-7.31 (m, 2H,  ArH ortho and para to OCH3), 7.18 

(dd, 1H, J = 5.8, 1.1, COCH=CH),  7.03 (t, 1 H, J = 7.5 Hz, ArH, meta to OCH3), 6.92 (d, 

1H, J = 8.3, ArH ), 6.12 (dd, 1H, J = 5.8, 2.0 Hz, COCH=CH), 5.24-5.23 (br dt, 1H, J = 

6.6, 1.5, CH=CHCH)  5.02 (t, 1H, J = 5.7 Hz, ArCHOH), 3.85 (s, 3H, OCH3), 3.06 (d, 

1H, J = 5.7 Hz, OH); MS (APCI neg.): m/z 219 (M
+
); APCI pos. m/z 203.0 ((M-H2O)+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 85/15, 254, t1 = 8.4 min (major anti), t2 = 

11.0 min, (minor anti), t3 = 12.9 min (major syn), t4 = 16.3 min (minor syn). Ee: 96% 

(anti). 
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5-[Hydroxy(3-methoxyphenyl)methyl]furan-2(5H)-one (8f): 

O
O

OH

OCH3

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 3-methoxybenzaldehyde (63 µL, 

0.50 mmol) catalyzed by 6 (55 mg, 0. 10 mmol) according to the general procedure 

provided 60 mg (54%) of 8f as a colorless liquid.  

IR: 3420, 1735,1600, 1585, 1489, 1456, 1435, 1256, 1157, 1034, 825 cm
-1

; 
1
H NMR 

(500MHz, CDCl3): Anti diastereomer: δ 7.35-7.29 (m, 2H, ArH, COCH=CH), 6.97-6.87 

(m, 3H,  ArH),  6.17 (dd, 1 H, J = 5.8, 2.0 Hz, COCH=CH), 5.18-5.15 (m, 1H, 

CH=CHCH), 5.08 (t, 1H, J = 4.0 Hz, ArCHOH), 3.82 (s, 3H, OCH3), 2.73(d, 1H, J = 4.0 

Hz, OH); Syn diastereomer: δ 7.35-7.29 (m, 1H, ArH), 7.18 (dd, 1H, J = 5.8, 1.4 Hz, 

COCH=CH), 6.97-6.87 (m, 3H, ArH), 6.12 (dd, 1H, J = 5.8,1.9 Hz, COCH=CH), 5.18-

5.15 (m, 1H, CH=CHCH), 4.68 (dd, 1H, J = 7.0, 3.1 Hz, ArCHOH), 3.82 (s, 3H, OCH3), 

2.94 (d, 1H, J = 3.1 Hz, OH); MS (APCI pos.): m/z 221.0 (M+1), 203.0 ((M-H2O)+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 90/10, 210 nm, t1 = 14.2 min (major anti), 

t2 = 18.3 min, (minor anti),  t3 = 20.0 min (minor syn), t4 = 21.4 min (major syn). Ee: 96% 

(anti). 
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5-[Hydroxy(4-chlorophenyl)methyl]furan-2(5H)-one (8g): 

O
O

OH

Cl

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 4-chlorobenzaldehyde (70 mg, 0.50 

mmol) catalyzed by 5 (45 mg, 0.10 mmol) according to the general procedure provided 

56 mg (50%) of 8g as a white solid.  

IR: 3420, 1732, 1491, 1175, 1093, 1078, 1042, 917, 852, 812 cm
-1

; 
1
H NMR (500MHz, 

CDCl3): Anti diastereomer: δ 7.40-7.31 (m, 5H, ArH, COCH=CH),  6.20 (dd, 1 H, J = 

5.8, 2.0 Hz, COCH=CH), 5.15-5.13 (m, 1H, CH=CHCH), 5.05 (t, 1H, J = 4.0 Hz, 

ArCHOH), 2.38 (d, 1H, J = 4.0 Hz, OH); Syn diastereomer: δ 7.40-7.31 (m, 4H, ArH),  

7.20 (dd, 1H, J = 5.8, 1.5 Hz, COCH=CH), 6.14 (dd, 1H, J = 5.8,2.0 Hz, COCH=CH), 

5.15-5.13 (m, 1H, CH=CHCH), 4.74 (dd, 1H, J = 6.8, 3.2 Hz, ArCHOH), 2.67 (d, 1H, J = 

3.2 Hz, OH); MS (APCI pos.): m/z 225.0 (M+1), 207.0 ((M-H2O)+1). 

HPLC: Chiralpak AD-H hexanes/2-propanol 95/5, 210 nm, t1 = 21.1 min (major anti), t2 

= 24.2 min, (minor anti), t3 = 25.9 min (major syn), t4 = 29.4 min (minor syn). Ee: 94% 

(anti). 
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5-[Hydroxy(4-nitrophenyl)methyl]furan-2(5H)-one (8h): 

O
O

OH

NO2

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 4-nitrobenzaldehyde (76 mg, 0.50 

mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure provided 

59 mg (50%) of 8h as a yellow solid.  

IR: 3438, 1746, 1515, 1348, 1169, 1103, 1039, 916, 833 cm
-1

; 
1
H NMR (500MHz, 

CDCl3): Anti diastereomer: δ 8.26 (d, 2H, J = 8.7 Hz, ArH, ortho to NO2 ), 7.63 (d, J = 

8.7, 2H, ArH), 7.30 (dd, 1H, J = 5.9,1.6 Hz, COCH=CH),  6.17 (dd, 1 H, J = 5.9, 1.8 Hz, 

COCH=CH), 5.21-5.19 ( m, 2H, CH=CHCH, ArCHOH),  2.77 (d, 1H, J = 3.7 Hz, OH); 

Syn diastereomer: δ 8.29 (d, 2H, J = 8.7 Hz, ArH, ortho to NO2 ), 7.66-7.59 (m, 2H, 

ArH), 7.21 (m, 1H, COCH=CH),  6.24 (dd, 1 H, J = 5.8, 1.4 Hz, COCH=CH), 5.0-4.98 

(m, 2H, CH=CHCH, ArCHOH), 2.59 (d, 1H, J = 3.5 Hz, OH); MS (APCI pos.): m/z 

236.1 (M+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 95/5, 254 nm, t1 = 52.4 min (major anti), t2 

= 59.1 min, (major syn), 70.5 (minor syn). Ee: >99% (anti). 
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5-[Hydroxy(4-trifluoromethylphenyl)methyl]furan-2(5H)-one (8i): 

O
O

OH

CF3

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 4-trifluoromethylbenzaldehyde (67 

µL, 0.50 mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure 

provided 78 mg (60%) of 8i as a colorless solid.  

IR: 3413, 1739, 1322, 1161, 1100, 1065, 1040, 1016, 816 cm
-1

; 
1
H NMR (500MHz, 

CDCl3): Anti diastereomer: δ 7.68 (d, 2H, J = 8.1  ArH), 7.55 (d, 2H, J = 8.1, ArH), 

7.31 (dd, 1H, J = 5.8, 1.4 Hz, COCH=CH),  6.21 (dd, 1 H, J = 5.8, 2.0 Hz, COCH=CH), 

5.19-5.14 (m, 2H, CH=CHCHO, ArCHOH), 2.38 (d, 1H, J = 3.9 Hz, OH); Syn 

diastereomer: δ 7.68 (d, 2H, J = 5.7, ArH), 7.55 (d, 2H, J = 5.7, ArH), 7.24 (dd, 1H, J = 

5.8, 1.5 Hz, COCH=CH),  6.15 (dd, 1 H, J = 5.8, 2.0 Hz, COCH=CH), 5.19-5.14 (m, 1H, 

CH=CHCH), 4.91  (m, 1H, ArCHOH), 2.38 (d, 1H, J = 3.4 Hz, OH); MS (APCI pos.): 

m/z 259.2 (M+1), 241.1 ((M-H2O)+1).  

HPLC: Chiralpak AD-H, hexanes/2-propanol 97/3, 254 nm, t1 = 28.9 min (major anti), t2 

= 32.4 min, (minor anti). Ee: 95% (anti). 
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5-[Hydroxy (naphthalen-2-yl)methyl]furan-2(5H)-one (8j): 

O
O

OH  

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 2-naphthaldehyde (78 mg, 0.50 

mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure provided 

88 mg (73%) of 8j as a pale yellow solid.  

IR: 3359, 1752, 1731, 1172, 1077, 1041, 824 cm
-1

; 
1
H NMR (500MHz, CDCl3): Anti 

diastereomer: δ 7.90-7.85 (m, 4H, ArH), 7.53-7.50 (m, 3H, ArH), 7.36 (dd, 1H, J = 5.8, 

1.4 Hz COCH=CH), 6.19 (dd, 1 H, J = 5.8, 1.9 Hz, COCH=CH), 5.29-5.26 ( m, 2H, 

CH=CHCH, ArCHOH), 2.51 (d, 1H, J = 3.7 Hz, OH); Syn diastereomer: δ 7.90-7.85 

(m, 4H, ArH), 7.53-7.50 (m, 3H, ArH), 7.18 (dd, 1H, J = 5.8, 1.6 Hz, COCH=CH), 6.13 

(dd, 1H, J = 5.8, 2.0 Hz, COCH=CH), 5.29-5.26 (m, 2H, CH=CHCH), 4.88 (dd, 1H, J = 

7.1, 3.1 Hz, ArCHOH), 2.81 (d, 1H, J = 3.1 Hz, OH); MS (APCI pos.): m/z 241.0 (M+1), 

223.0 ((M-H2O)+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 85/15, 254 nm, t1 = 9.5 min (major anti), t2 

= 11.8 min, (minor anti), t3 = 12.6 min (major syn), t4= 13.6 min (minor syn). Ee: 95% 

(anti). 
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 5-[Hydroxy(cyclohexyl)methyl]furan-2(5H)-one (8k): 

O
O

OH  

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with cyclohexanecarboxaldehyde (60 

µL, 0.50 mmol) catalyzed by 5 (45 mg, 0.10 mmol) according to the general procedure 

provided 49 mg (50%) of 8k as a white solid.  

IR: 3420, 1747,  1715, 1154, 1112, 1096, 1029, 1004, 870, 845 829 cm
-1

; 
1
H NMR 

(500MHz, CDCl3): Anti diastereomer: δ 7.59 (dd, 1H, J = 5.8, 1.4 Hz, COCH=CH), 

6.19 (dd, 1 H, J = 5.8, 1.9 Hz, COCH=CH), 5.10 (dt, 1H, J = 5.7, 1.6 Hz, CH=CHCH), 

3.61 (apparent q, 1H, J = 5.6 Hz, ArCHOH), 1.98-1.96 (m, 1H, CHCH2), 1.82-1.54 (m, 

4H, CH2), 1.33-1.10 (m, 6H, CH2); Syn diastereomer: δ 7.45 (dd, 1H, J = 5.8, 1.5 Hz, 

COCH=CH),  6.19 (dd, 1H, J = 5.8, 1.9 Hz, COCH=CH), 5.18 (m, 1H, CH=CHCH), 

3.49-3.45 (m, 1H, ArCHOH), 1.98-1.96 (m, 1H, CHCH2), 1.82-1.54 (m, 4H, CH2), 1.33-

1.10 (m, 6H, CH2); MS (APCI pos.): m/z 197.0 (M+1), 179.1 ((M-H2O)+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 95/5, 210 nm, t1= 15.4 min (major anti), t2 

= 17.5 min (major syn). Ee: >99% (anti). 
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5-[Hydroxy(naphthalen-1-yl)methyl]furan-2(5H)-one (8l): 

 

Reaction of γ-crotonolactone (70 µL, 1.0 mmol) with 1-naphthaldehyde (68 µL, 0.50 

mmol) catalyzed by 6 (55 mg, 0.10 mmol) according to the general procedure provided 

82 mg (68%) of 8k as a yellow solid.  

IR: 3414, 1730,  1165, 1102, 1081, 1042, 882, 823, 797, 775  cm
-1

; 
1
H NMR (500MHz, 

CDCl3): Anti diastereomer: δ 8.02 (d, 1H, J = 8.5 Hz, ArH), 7.93 (d, 1H, J = 7.6 Hz, 

ArH), 7.88 (d, 1H, J = 8.0 Hz, ArH), 7.74 (d, 1H, J = 7.2 Hz, ArH), 7.59-7.53 (m, 3H, 

ArH & COCH=CH), 7.27-7.25 (m, 1H, ArH), 6.20 (dd, 1 H, J = 5.8, 2.0 Hz, 

COCH=CH), 5.98 ( t, 1H, J = 3.5 Hz, CH=CHCH), 5.44-5.43 (m, 1H, ArCHOH), 2.57 

(d, 1H, J = 3.8 Hz, OH); Syn diastereomer: δ 7.98 (m, 1H, ArH), 7.88-7.87 (m, 2H, 

ArH), 7.74 (d, 1H, J = 7.0 Hz, ArH), 7.59-7.53 (m, 3H, ArH & COCH=CH), 7.27-7.25 

(m, 1H, ArH), 6.95 (dd, 1H, J = 5.8, 1.5 Hz, COCH=CH), 6.14 (dd, 1H, J = 5.8, 2.0 Hz, 

COCH=CH), 5.46-5.45 (m, 1H, CH=CHCH), 5.39 (dt, 1H, J = 3.4, 1.6 Hz, ArCHOH), 

2.92 (d, 1H, J = 3.2 Hz, OH); MS (APCI pos.): m/z 241.0 (M+1), 223.0 ((M-H2O)+1). 

HPLC: Chiralpak AD-H, hexanes/2-propanol 85/15, 254 nm, t1= 8.7 min (major anti), t2 

= 9.5 min (minor anti), t3 = 13.8 min (major syn), t4= 17.3 min (minor syn). Ee: 77% 

(anti). 
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2.6 Selected 1H NMR spectra 
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2.7 Selected HPLC chromatograms 
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AS-H 90hex 10ipa 254nm 90 min

 
 
 
AD-H 95hex5ipa 254nm 60 min
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AD-H 88hex12ipa 254nm 60 min

 
 
 
 
AD-H 90hex10ipa 254nm 60 min
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AD-H 85hex15ipa 254nm 60 min

 
 
 
AD-H 90hex10ipa 210nm 60 min
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8e 



 

 
 

65 

 

AD-H 95hex 5ipa 210nm 60 min

 
 
 
AD-H 95hex5ipa 254nm 120 min
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AD-H 97hex3ipa 254nm 60 min

 
 
 
AD-H 85hex15ipa 254nm 60 min
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AD-H 95hex 5ipa 210nm 60 min

 
 
 
AD-H 85hex15ipa 254nm 60 min
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                 Scheme 3.2. Synthesis of (+)-L-733,060 by Haddad. 

 

3.2.2 Synthesis of (+)-CP-99,994 

Garrido and coworkers reported6a an enantioselective synthesis of (+)-CP-99,994 

(Scheme 3.3). The ketone 12 undergoes reductive amination followed by deprotection 

provided (+)-CP-99,994. The synthesis of ketone 12 is described in Scheme 3.1. 
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preparation of libraries of antagonists, related to the those described here, by variation of 

the aldehyde in the direct vinylogous aldol step.  
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4.7 Selected 
1
H and 

13
C NMR spectra 
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4.8 Selected HPLC chromatograms 
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CHAPTER 5 

Conclusions 

 

5.1 Summary of the thesis 

The organocatalytic direct vinylogous aldol (ODVA) reactions of γ-

crotonolactone with various aromatic aldehydes (Scheme 5.1) were developed. It was 

observed that these reactions were catalyzed by several bifunctional chiral 

aminothioureas and aminosquaramides. A catalyst survey was carried out to find the 

optimal catalyst. Among various thiourea and squaramide catalysts, the squaramide 

catalysts gave the best result, providing the anti diastereomer as the major product. The 

optimized conditions were employed in a study of the scope of the reaction with a variety 

of aldehydes. These investigations indicated that the choice of catalyst 4 or 5 was 

determined by the nature of the aldehyde and high enantioselectivities were obtained by 

proper pairing of the catalyst and aldehyde. Overall, good diastereoselectivities (5-8:1) 

and excellent enantioselectivities (94- >99% ee) were obtained. Chapter 2 of this thesis 

describes details of the development of this method. E. K. Paul contributed to all of the 

synthetic work and was involved in the preparation of the manuscript for publication. 
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Scheme 5.1. The ODVA reaction catalyzed by squaramides 4 and 5. 

 

To demonstrate the synthetic importance of the organocatalytic direct vinylogous 

aldol (ODVA) reactions of γ-crotonolactone with aldehydes, application of the 

methodology in the synthesis of 2,3-disubstituted piperidines such as (+)-L-733,060, (+)-

CP-99,994 and (2S,3R)-3-hydroxypipecolic acid was examined. The substance P receptor 

antagonists (+)-L-733,060 and  (+)-CP-99,994, are associated with a variety of biological 

effects including smooth muscle contraction, neurogenic inflammation and pain 

transmission and (2S,3R)-3-hydroxypipecolic acid, is a component of tetrazomine, an 

antitumor agent and an antibiotic. In this project, ODVA reaction of γ-crotonolactone 

with benzaldehyde as the key step provided an efficient entry into piperidine derivatives 

(Scheme 5.2). The synthesis of (+)-L-733,060 was accomplished in 9 steps from the γ-

crotonolactone (1) in 24.8% overall yield. The synthesis of (+)-CP-99,994 was 

accomplished in 11 steps from the γ-crotonolactone (1) in 16.9% overall yield. The 

synthesis of (2S,3R)-3-hydroxypipecolic acid was accomplished in 10 steps from the γ-

crotonolactone (1) in 28.1% overall yield. The results of this work are presented in 
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Chapter 3 of this thesis. E. K. Paul contributed to all of the synthetic work and was 

involved in the preparation of the manuscript for publication. 

 

 

Scheme 5.2. Synthesis of (+)-L-733,060, (+)-CP-99,994 and (2S,3R)-3-hydroxypipecolic   

                     acid.    

 

In the last project, the ODVA reaction was employed in the total synthesis of the 

antimalarial alkaloid (+)-febrifugine and a formal synthesis of (+)-halofuginone, an 

antimalarial agent (Scheme 5.3). The key steps in the synthesis involve the ODVA 

reaction of γ-crotonolactone with the aldehyde 6 and the isomerization of a 2-aminoalkyl 

furanone to the 2,3-disubstituted piperidinone core 9 of the target. The synthesis of the 

(+)-febrifugine was accomplished in 14 steps from the commercially available γ-

crotonolactone (1) in 6.8% overall yield. The results of this work are presented in Chapter 

4 of this thesis. E. K. Paul contributed to all of the synthetic work and was involved in the 

preparation of the manuscript for publication. 
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Scheme 5.3. Synthesis of (+)-febrifugine and a formal synthesis of (+)-halofuginone  

                     employing the ODVA reaction. 

 

In summary, the thesis work has developed a highly enantioselective, 

organocatalytic direct vinylogous aldol reaction of crotonolactone with aldehydes. This 

methodology was used in the synthesis of various biologically active compounds and 

natural products containing the 2,3-disubstituted piperidine motif. 

 

5.2 Future work 

Although the products of the 2-furanone in ODVA reaction can be converted into 

piperidines, a limitation of the methodology is the need for converting the aldol products 

into the corresponding amino lactone. An attractive alternative to this approach would be 

the direct synthesis of the amino lactones 11 via an organocatalytic vinylogous Mannich 

reaction (Scheme 5.4) of imines 10 with 2-furanone.  
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Scheme 5.4. Organocatalytic direct vinylogous Mannich-type reaction of crotonolactone. 

 

It is anticipated that, the Mannich reaction will be catalyzed by hydrogen bonding 

donor catalysts or by chiral protic acids depending on the nature of the amine used to 

make the imines. 

Alternatively, instead of using a chiral catalyst, chiral imines can be used as 

substrates. In addition, the organocatalytic vinylogous aldol as well as Mannich reactions 

can be examined with a variety of substituted crotonolactones. 
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