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ABSTRACT 

 Rhodobacter capsulatus is a purple non-sulfur bacterium that produces the gene 

transfer agent RcGTA. This phage-like particle is capable of transferring ~4-kb of host 

DNA to other R. capsulatus cells in a process analogous to transduction. The genes 

known to encode this particle are located in a ~15-kb region called the RcGTA structural 

gene cluster. As this cluster is larger than the packaging capacity of the particles, RcGTA 

is non-replicative. In addition to lacking key functions required by a phage, the RcGTA 

structural gene cluster lacks genes likely to encode functions necessary for its gene 

transfer activity, such as a cellular release mechanism. The costs and benefits of RcGTA 

production for R. capsulatus are unclear, making it difficult to explain its persistence in 

the genome. I investigated R. capsulatus SB1003 prophages to search for other genes 

involved in RcGTA production and gene transfer activity. I identified two functional 

prophages, RcapNL and RcapMu, which I characterized and found to be linked to 

RcGTA production. I also compared the genome-wide transcriptional profiles in a variety 

of R. capsulatus strains and growth conditions affecting RcGTA production to identify 

genes consistently co-regulated with the RcGTA structural gene cluster. I found nine such 

genes at six separate loci. In characterizing several of these genes, I identified a gene 

required for release of RcGTA by cell lysis, a pair of putative tail fibre-encoding genes, 

and an additional gene whose product is required for binding to the recipient cell. Finally, 

I characterized features of RcGTA production by quantitatively determining the 

packaging frequency of all loci on the R. capsulatus chromosome. Remarkably, while any 

gene can be transferred, the RcGTA structural gene cluster region was under-represented 
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in the particles relative to the genome average. The search for a mechanistic explanation 

of this anomaly led to the discovery that RcGTA gene expression is elevated in ~3% of 

the cells in a population, and that these cells undergo lysis to release RcGTA particles. 

This provided us with the first quantification of the cost of RcGTA production.
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1 Introduction and Overview 

1.1 Bacteriophages 

 Bacteriophages are viruses that infect bacteria. They consist of a genome, coding 

for and packaged within a “capsid” structure, and capable of infiltrating a bacterial cell.  

Once inside, the genome will eventually replicate and generate progeny capable of 

escaping the cell to begin the infection cycle anew. Phage genomes can be RNA or DNA, 

single-stranded or double-stranded, linear or circular, segmented or contiguous. The 

physical capsids can vary from polygons to rods, have elaborate protrusions or none, and 

possess tail structures ranging from the long and flexible to the short and rigid (phage 

morphotypes are reviewed in Ackermann, 2007). Their release from the host cell can be a 

rapid lysis event, a budding of mature particles (reviewed in Casjens & King, 1975) or 

even an extrusion process (reviewed in Marvin & Hohn, 1969), occurring minutes or 

generations after infection. In short, bacteriophages are incredibly diverse and, as they 

lack any universal common genetic elements, their classification has proven particularly 

difficult (Ackermann, 2011). Due to this variety and their small size, they were 

discovered, studied, and continue to be characterized primarily by their interaction with 

their hosts, which I will discuss in more detail.  

 

1.2 Bacteriophages: discovery & impact 

 The term bacteriophage was coined by Félix d'Hérelle in 1917, upon discovering 

distinct zones of clearing in dysentery bacilli growth caused by an agent that could pass 
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through a fine porcelain filter. Even heavily diluted agent yielded equivalent zones of 

clearing. He deduced from this that the agent responsible for the lysis was replicative 

(d'Hérelle, 1917) and was, in his words, "an invisible microbe, a filterable virus, but a 

virus parasitic on bacteria" (Duckworth, 1976 cites d'Hérelle, 1949). Frederick Twort is 

co-credited with the discovery of bacteriophages in 1915. He believed that this infectious 

agent was probably an “enzyme with the power of growth” (Duckworth, 1976 cites 

Twort, 1915). Both the nature of bacteriophages and the credit for their discovery caused 

considerable controversy over the next 20 years (Van Helvoort, 1992; Duckworth, 1976). 

 d’Herelle went on to champion bacteriophage research, conducting many 

experiments investigating their therapeutic potential as antimicrobial agents (reviewed in 

Summers, 2001). This “phage therapy” met with some success and popularity, but was 

severely impeded by poor understanding of bacteriophages. As an example, phenol, 

which denatures protein, was added to phage preparations as a preservative (Housby & 

Mann, 2009). It was not until 1940, with the advent of the electron microscope, that 

phage particles were observed (Ruska, 1940). Shortly after this breakthrough penicillin 

entered mass production (Moyer, 1948) and research into bacteriophages for phage 

therapy fell by the wayside in the west. The emergence of bacteria resistant to even the 

most potent antibiotics and a shortage of new antimicrobials have resulted in a revival of 

this field in the 1990s. 

 In the intervening years, bacteriophage research rose to the forefront of genetics. 

These early years of fundamental phage research were centered around the “American 

Phage Group”, a loose association of scientists shaped largely by a summer course started 

by Max Delbrück at Cold Spring Harbor in 1945 (Stent, 1992). Many of the iconic 
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discoveries in molecular biology arose from the efforts of this group. The idea that 

mutations arise in the absence of selection was established by monitoring bacterial 

resistance to phage infection (Luria & Delbrück, 1943). The existence of recombination 

was established using mutants of Escherichia coli phage T2 (Hershey, 1946), which led 

to Meselson and Weigle’s famous experiments demonstrating the involvement of double-

strand DNA breaks in recombination (Meselson & Weigle, 1961). Work on phage T2 was 

also key to demonstrating that DNA was the genetic material (Hershey & Chase, 1952), 

and provided the first clues to the existence of mRNA from the increase in cellular RNA 

following phage infection (Hershey et al., 1953; Volkin & Astrachan, 1956). The name 

“messenger” RNA arose from a characterization of gene regulation in phage " (Jacob & 

Monod, 1961). The triplet nature of the DNA code was established (Crick et al., 1961) by 

experiments taking advantage of the original techniques for mapping genetic mutations 

using E. coli phage T4 (Benzer, 1955).  

 The phage course was last offered in 1961 (Stent, 1992), marking the end of an 

era for the American phage group. Despite this, phage research remained a crucial 

component of fundamental molecular biology. As examples, phage experiments showed 

the possibility of integration (and excision) of genes to/from genomes (Campbell, 1961), 

proved that DNA and protein are collinear (Sarabhai et al., 1964), demonstrated DNA 

recognition and binding by repressors (Ptashne, 1967), established the discontinuous 

nature of lagging-strand DNA synthesis (Okazaki et al., 1968) and revealed the existence 

of chaperones involved in protein folding (Georgopoulos et al., 1973). Phage genomes 

were the very first genomes sequenced: first that of E. coli RNA phage MS2 (Fiers et al., 
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1976) and then that of E. coli DNA phage #X174 (Sanger et al., 1978). The first synthetic 

genome was that of E. coli phage #X174 (Smith et al., 2003).  

 In addition to an undeniable relevance as models and tools for genetic research, 

the biological impact of bacteriophages is tremendous. With estimates of global phage 

counts of ~1030 (Chibani-Chennoufi et al., 2004), they are the most abundant biological 

entities on the planet. Bacteriophages therefore represent a colossal nutrient and genetic 

reservoir (Wilhelm & Suttle, 1999). The genetic diversity of phages is so high we have 

sampled only an estimated 0.0002% (Rohwer, 2003). 

 

1.3 Bacteriophage interactions  

 Bacteriophages and their hosts share a long evolutionary history and are 

competing in what is probably the longest running and fastest moving evolutionary “arms 

race” on earth. Globally, bacteria become infected by phages at a rate of 1025 per second 

(Lima-Mendez et al., 2007) and it is estimated that 15% of the marine bacterial 

population is lysed daily (Suttle, 1994; Chibani-Chennoufi et al., 2004). It should come as 

no surprise, then, that the interactions between phage and host have resulted in many 

remarkable adaptations for the survival of both. 

1.3.1 Phage-host interactions 

 For replication, a phage must adsorb to the host cell, inject its nucleic acids, 

replicate its genome, package its genome and exit the cell. Host cells have found ways to 

prevent all of the above (Labrie et al., 2010) by creating physical barriers to adsorption, 
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by modifying or losing receptors, by destroying invading DNA, by modifying or losing 

intra-cellular proteins required by the phage for replication or assembly, and even by 

committing “altruistic suicide” to reduce phage spread through a population (Forde & 

Fitzgerald, 1999; Fineran et al., 2009).  

 Perhaps the best-known means through which bacteria protect themselves from 

phages are the restriction/modification systems (RMS). Their initial discovery arose from 

the observation that phages replicating in some hosts could gain the ability to successfully 

infect otherwise “restrictive” hosts, while those grown in certain permissive hosts lose the 

ability to infect these same “restrictive” strains (Bertani & Weigle, 1953; Luria & Human, 

1952). Werner Arber determined this had to be a means to restrict the integration or 

replication of foreign genetic material without interfering with “the potentially beneficial 

genetic exchange between cells of the same strain” (Arber, 1965). He established that the 

system had to have two parts: “r” or restriction (resistance to foreign DNA) and “m” or 

modification (the ability to confer resistance to r). We now know that the former are 

restriction enzymes, nucleases capable of sequence-specific cleavage of DNA, and the 

latter are modification systems capable of modifying bases to mask the sites recognized 

by the restriction enzymes. Phages can evade these systems by modifying their own DNA 

to avoid recognition by restriction enzymes, and in some cases encode nucleases to 

degrade host DNA (e.g. phage T4, Kutter & Wiberg, 1968) without endangering their 

own (modified) genome. 

 In 2007 an even more specific “restriction” system was characterized. Several 

bacterial genomes possess large arrays of “clustered, regularly-interspaced, short 

palindromic repeats” (CRISPRs) separated by spacers of ~20 to 30 nucleotides of DNA 
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(Jansen et al., 2002). These spacers were observed to be homologous to sequences from 

bacteriophages or plasmids (Bolotin et al., 2005; Mojica et al., 2005; Pourcel et al., 

2005). These CRISPR arrays were shown to have a function in bacterial immunity 

(Barrangou et al., 2007). The acquisition of new spacer sequences in the array, 

homologous to phage sequences, confers resistance to a phage bearing that same 

sequence. If the phage carries a single point mutation in the targeted sequence, the 

conferred immunity is bypassed (Barrangou et al., 2007). This phage resistance system 

also proved effective against plasmids, impeding conjugation and transformation of 

plasmids bearing the targeted sequences (Marraffini & Sontheimer, 2008). The field of 

CRISPR study has since exploded, with researchers around the world investigating 

acquisition (Swarts et al., 2012; Datsenko et al., 2012; Fineran & Charpentier, 2012), 

chromosomal-targeting (Vercoe et al., 2013), CRISPR classification (Makarova et al., 

2011), alongside many other aspects of CRISPR biology. Perhaps unsurprisingly, this 

system has been co-opted by phages; a recent study (Seed et al., 2013) identified a phage 

infecting Vibrio cholerae that carries a functional CRISPR array targeting host genes 

involved in defense against phages.  

 An important example of the interactions between phage and host is the existence 

of lysogeny. Many phages are capable of lying effectively dormant in the host, replicating 

only as part of the genome of the host. While the concept of lysogeny dates back to 1921 

(reviewed in Lwoff, 1953), it was not until 1950 that the term probacteriophage (or 

prophage) came to be, defined as “the form in which lysogenic bacteria perpetuate the 

power to produce bacteriophage” (Lwoff, 1953). The system by which E. coli phage " 
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regulates its integration, dormancy and subsequent activation and excision is among the 

best-studied models of gene regulation (Ptashne, 2004).  

 The importance of the existence of prophages rose to greater prominence with the 

advent of genome sequencing. A large proportion of bacteria have recognizable 

prophages (>60% of full genome sequences, Casjens, 2003), which can compose as much 

as of 20% of a bacterium’s genome. This can have important consequences for the host 

through phage-phage interactions (see 1.3.2), by offering a competitive advantage to the 

host (see 1.3.3) or by leading to acquisition and modification of genes (see 1.4.1).  

1.3.2 Phage-phage interactions  

 Phages outnumber their hosts 10:1 (Brüssow & Hendrix, 2002) and are regularly 

competing for hosts and interacting with each other. The earliest characterized interaction 

between phages is the observation that lysogenic bacteria do not experience lysis when 

infected with homologous bacteriophages (Lwoff, 1953 cites Wollman, 1938). This 

immunity, now known as superinfection immunity, is a consequence of the lysogenic 

phage producing a repressor protein which serves both to maintain its dormancy and 

prevent an incoming phage from turning on the genes required for replication. The best-

studied model for this mechanism is bacteriophage ", which, when integrated, produces 

only the repressor protein CI. CI acts on the PL and PR promoters of phage ", preventing 

entry into the lytic cycle as well as preventing of any other " phage DNA that enters the 

host from integrating or entering a lytic cycle of its own (Ptashne, 2004). While this 

mechanism of exclusion is thought to provide a benefit to the host (Brüssow & Kutter, 
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2005), it is unclear how effective a means of protection this is, given its specificity and 

the diversity of bacteriophages infecting each host (Moineau & Lévesque, 2005). 

 Another similar system of immunity is that of superinfection exclusion, whereby 

an infecting phage causes some change in the host cell that actually prevents phage 

adsorption or the translocation of the phage genome into the cell. One example of a phage 

capable of this exclusion is Salmonella phage P22, which encodes two separate exclusion 

systems (Walsh & Meynell, 1967; Susskind et al., 1971) that prevent co-infection but 

have no effect on phage DNA introduced by conjugation (Nagaraja Rao, 1968). The P22 

exclusion system is not specific to DNA sequences at all; it will prevent transduction of 

any DNA carried by P22 particles (Ebel-Tsipis & Botstein, 1971). These systems appear 

to have a broader “immunity” than superinfection immunity, as P22 can exclude several 

Salmonella phages including L, MG40, and MG178 (Susskind et al., 1974). " lysogens, 

which only confer superinfection immunity to other " phages, can exclude phages P22 

and L (Susskind & Botstein, 1980).  

 The interaction between phages can be far more intricate than simply competition 

for hosts. The E. coli phage P4 was discovered in 1963 (Six & Klug, 1973 cites Six, 

1963), and found to be a “satellite phage” that requires a P2-related helper-phage to 

produce phage progeny. The two phages share almost no genomic similarities (Lindqvist 

et al., 1993). While P4 can maintain itself in the host as an integrated lysogen (Calendar 

et al., 1981) or autonomous replicon (phagemid) (Goldstein et al., 1982), it requires the 

structural genes encoded by P2 to form a virion and escape the cell. It encodes a protein 

that is able to modify the P2 capsid to create smaller head structures suited to packaging 
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its smaller genome (Shore et al., 1978). As the P4 genome does not encode the majority 

of its structural components, its existence blurs the line between phage and plasmid. 

 Further complicating the definition of “bacteriophage” are the Staphylococcus 

aureus pathogenicity islands (SaPIs), regions of the S. aureus genome that are able to take 

advantage of phage infection to be packaged by the phage-encoded particle. This mobility 

was first observed in 1998 (Lindsay et al., 1998), where infection by the generalized 

transducing phage 80$ resulted in a high efficiency transfer of SaPIs into recA- recipients. 

In addition to encoding toxins, from which they derive their name, SaPIs encode the 

proteins to excise from the host’s genome, replicate, hijack the helper phage’s capsid 

structures and preferentially package themselves into the heads (Christie & Dokland, 

2012). The excision and replication processes can only occur in the presence of the 

helper-phage (Úbeda et al., 2008). This hijacking process significantly reduces burst sizes 

and so may serve as a host defense mechanism (Ram et al., 2012). 

1.3.3 Benefits to the host 

 The interactions between host and phage are not always purely antagonistic. 

Bacteriophages can provide several benefits to the host, in addition to the aforementioned 

immunity to other phage infections and being co-opted to move genes. Bacteriophages act 

not only as a tremendous selective pressure on bacteria, driving evolution, but also as a 

means of introducing new genetic diversity. Integration into bacterial genomes can 

disrupt genes and provide a framework for changes to genome architectures (Brüssow et 

al., 2004). Infection by phages can also offer opportunities to introduce new genes 

through transduction (see 1.4.1). 
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  The benefits can be more direct. A remarkable finding in 1975 was that " 

lysogens, under certain growth conditions in which the phage was not induced, could 

greatly out-compete non-lysogens (Edlin et al., 1975). The mechanism for this is unclear, 

but similar findings have suggested a role for prophages in regulating metabolic functions 

(Chen et al., 2005). This has led to the hypothesis that prophages can directly benefit host 

survival by suppression of unneeded metabolic activities (Paul, 2008). 

 There are several instances of bacteria making use of functions encoded by 

prophage elements to improve their fitness. This can include the phage encoding a variety 

of genes beneficial to the host (e.g. Wang et al., 2010), the longest-studied of which is the 

production of phage-like bacteriocins to kill competing microorganisms. Bacteriocins are 

polypeptides with antimicrobial action, typically restricted to affecting only organisms 

closely related to the producing species (reviewed in Daw & Falkiner, 1996). Some 

bacteriocins appear to be derived from phages and can range from tail-like structures 

(Strauch et al., 2001; Thaler et al., 1995; Jabrane et al., 2002) to complete phage-like 

virions (Seaman et al., 1964; Schwinghamer et al., 1973). The best-studied of these is 

Bacillus subtilis PBSX, a phage-like particle whose production can be induced and which 

acts as a bacteriocin, killing sensitive B. subtilis cells (Okamoto et al., 1968). The PBSX 

particles appear to package host DNA with no preference for phage sequences and are 

incapable of injecting the packaged DNA into other cells (Okamoto et al., 1968). In 

addition to these deficiencies relative to a phage, they are encoded by an 18-kb region 

(Wood et al., 1990) but are capable of packaging only 13 kb of DNA (Anderson & Bott, 

1985). They are clearly non-replicative, and thought of as derived from (or being) a 

“defective phage” (Okamoto et al., 1968). Production of PBSX appears to be a closely 
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regulated event that is lethal to the producing cell (McDonnell et al., 1994), involving 

phage lysins encoded by PBSX (Longchamp et al., 1994). 

 Another class of phage-like particles are gene transfer agents (GTAs) (Lang et al., 

2012) (see 1.5.3). In contrast with PBSX, these particles are capable of transferring host 

DNA to related cells in a process analogous to transduction (see 1.4.1) and do not appear 

to act as bacteriocins. The benefits to the host of carrying GTAs are not as clear, but 

appear to be linked to horizontal gene transfer. 

 

1.4 Genetic exchange in bacteria 

 There is no doubt that bacterial genomes have been shaped by lateral or horizontal 

gene transfer (HGT). The techniques for detecting HGT events in genomes vary widely, 

resulting in reported estimates that 0 to 16% of the genomes of bacteria (Ochman et al., 

2000) or 0.5% to 25% of their open reading frames (ORFs) (Nakamura et al., 2004) were 

“recently” acquired through HGT, that 50% of extended gene families in cyanobacteria 

have a history of HGT (Zhaxybayeva et al., 2006) or that, cumulatively, ~81% of genes 

were involved in lateral gene transfer at some point (Dagan et al., 2008). As the 

evolutionary histories of any given gene do not necessarily match those of the organism 

possessing them, there is an increasing movement away from representing organism 

phylogenies as a “Tree of Life”, which is inherently constrained by assumptions of 

vertical transmission, to representing them as webs or networks (Doolittle & Bapteste, 

2007; Olendzenski & Gogarten, 2009). This has met with considerable resistance 
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(Kurland et al., 2003; Ge et al., 2005; Riley & Lizotte-Waniewski, 2009) and engendered 

debates about the actual impact of HGT (Puigbò et al., 2010). 

1.4.1 Transduction 

 One of the means by which DNA can be transferred between bacteria is 

transduction. This is the transfer by phage particles of DNA other than that of the phage. 

Zinder and Lederberg detected transfer of genetic markers between cultures which shared 

a broth but in which the cells could not come into direct contact with one another (Zinder 

& Lederberg, 1952). This transfer could occur even after nuclease digestion of the shared 

medium. They dubbed this exchange of genetic material through a filterable agent 

“transduction”. The mixture, it turns out, was serendipitous: the “donor” strain was 

lysogenic and produced a phage capable of generalized transduction.  

 Generalized transduction is the term for phage-mediated transfer of any genetic 

marker in the host chromosome, constrained only by the size of the marker relative to the 

packaging capacity of the phage. It is the result of headful packaging mechanisms where 

the phage mistakenly packages host DNA instead of its own (Ebel-Tsipis et al., 1972; 

Ikeda & Tomizawa, 1965). This is in contrast with specialized transduction, where only 

specific genes, determined by properties of the phage, are packaged. For example, in E. 

coli phage ", imprecise excision can result in the packaging of the gal (Morse et al., 

1956) or bio (Del Campillo-Campbell et al., 1967) genes adjacent to the " integration site. 

Deletion of the natural integration site can force " integration into other sites, resulting in 

phages able to transduce other genes (Shimada et al., 1972). Transducing " particles carry 
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phage DNA as well as the adjacent host DNA. As the host DNA replaces phage DNA, 

these particles are typically defective and will not yield viable progeny. 

 In both specialized and generalized transduction, I have described a gene transfer 

event that happens when a phage particle “mistakenly” packages host DNA, resulting in 

phage particles capable of transduction but (usually) incapable of infection. Transduction 

is not always a mistake; some phages, such as E. coli phage Mu, always include host 

DNA in functional virions (reviewed in Mizuuchi & Craigie, 1986). When Mu packages 

the regions flanking its integrated genome, it can package and transduce almost any 

marker because it can transpose into any site in the host genome as part of its replication 

(Howe, 1973). 

1.4.2 Other means of horizontal gene transfer 

 Transduction is not the only mechanism by which bacteria can acquire new 

genetic material. Classical examples include conjugation: the transfer of plasmid DNA 

mediated by cell-to-cell contact (Tatum & Lederberg, 1947) and transformation: the 

uptake of naked DNA from the environment through a specialized competence apparatus 

(Chen & Dubnau, 2004; Claverys et al., 2009; Johnsborg et al., 2007). In addition to 

these, more recent discoveries include transfer of genetic material through nanotubes 

(Dubey & Ben-Yehuda, 2011), genetic exchange mediated through vesicles (Mashburn-

Warren & Whiteley, 2006; Chiura et al., 2011), and temporary cell fusion (Rosenshine et 

al., 1989). 
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1.4.3 The benefits of horizontal gene transfer 

 Despite the evidence of a significant effect of horizontal gene transfer on bacterial 

genomes (see 1.4.0), it is still unclear what the benefits, if any, of HGT are. Evidence of 

past transfer events is insufficient to argue that HGT is beneficial and would be selected 

for. In other words, “even if harmful exchange events were 100-fold more common than 

beneficial ones, we would only see the latter in genomes today” (Redfield, 2001). Many 

of the models used to explain the benefits of sex in eukaryotes require considerable 

adjustment to explain genetic exchange in bacteria (Vos, 2009). The best evidence for the 

benefits of HGT is the maintenance of the mechanisms for genetic exchange. Conjugation 

and transduction, however, are carried out by selfish and self-transmissible clusters of 

genes, and benefit the transferred genes over the host (Redfield, 2001). Competence, 

which is host-encoded, shares many regulatory cues with nutrient starvation and could 

potentially be a system to pick up environmental DNA as a nutrient or DNA repair 

mechanism rather than a means of genetic exchange (Finkel & Kolter, 2001). While they 

are poorly characterized, the existence and persistence of host-encoded gene transfer 

agents (GTAs) as apparent facilitators of HGT may prove to be a strong argument in 

favor of the benefits of HGT; they are neither selfish nor plausibly involved in nutrition. 

 

1.5 Rhodobacter capsulatus and GTAs 

 Rhodobacter capsulatus was the first organism in which a GTA was identified 

(Marrs, 1974), and is the source of the archetypal GTA, “RcGTA”. 
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1.5.1 Rhodobacter capsulatus 

 R. capsulatus, formerly Rhodopseudomonas capsulata (Imhoff et al., 1984), is a 

gram-negative, rod-shaped bacterium of the class $-proteobacteria and the order 

Rhodobacterales. The R. capsulatus strains initially studied were isolated in pasture and 

agricultural soil, sewage settling ponds, stagnant cisterns, lakes, and brackish waters of 

the Baltic Sea (Weaver et al., 1975). It is termed a purple nonsulfur bacterium as it is 

capable of anoxygenic photosynthesis where the electron donor is not sulfur. It was 

deemed useful for laboratory study as it was hardy, capable of fast growth, amenable to 

long-term storage and its genome is easily manipulated (Weaver et al., 1975). It has 

served as a model for study of anoxygenic photosynthesis (Pemberton et al., 1998), of 

nitrogen fixation (Madigan, 1995) and because of its distinctive lipids (Imhoff & Bias-

lmhoff, 2004).  

 A project to obtain the complete genome sequence for R. capsulatus SB1003 was 

commenced in 1992 (Fonstein et al., 1992; Haselkorn et al., 2001) and finally completed 

in 2010 (Strnad et al., 2010). The genome consists of a 3.7-Mb circular chromosome and 

a 134-kb circular plasmid. Of particular interest are the presence of six CRISPR loci, one 

of which possesses 40 spacers (Grissa et al., 2007), and the presence of 237 phage-related 

genes (Strnad et al., 2010). I have identified clusters of phage genes large enough to be 

intact prophages (Figure 1-1), including the cluster now known to be responsible for the 

production of RcGTA (Lang & Beatty, 2000). 
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1.5.2 Phages, prophages and bacteriocins in R. capsulatus 

 R. capsulatus is a species originally classified, in part, by susceptibility to a group 

of purified phages (Weaver et al., 1975). These 16 phages, one of which had been 

identified previously (Schmidt et al., 1974), are the only literature references to phages 

infecting R. capsulatus. The majority of strains tested showed no evidence of lysogeny, 

although strain B10 was lysogenic for two phages with detectable lytic activity (Weaver 

et al., 1975). The genome-sequenced strain SB1003 was derived from B100, a B10 

derivative “cured” of these two phages (Solioz, 1975) by unreported means.  

 An early study of R. capsulatus identified bacteriocin production in all 33 strains 

tested (Wall et al., 1975a), suggesting that antimicrobial activity is common in this 

species. These bacteriocins were distinguishable from phages and not associated with 

RcGTA production. 
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Figure 1-1: Prophage elements of R. capsulatus SB1003. The circle is a representation of 
the SB1003 chromosome, with base numbers from base 1 (white line) labeled. Each green 
region represents a cluster of phage-derived genes likely to be a prophage or prophage 
remnant, with the size of the cluster identified. The large (80 kb) cluster contains a region 
resembling a transposable prophage. The structural cluster encoding the phage-like gene 
transfer agent (GTA) is coloured in purple. 
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1.5.3 RcGTA: The early years  

 The initial discovery of a means of transferring various genetic markers between 

R. capsulatus strains established that the transfer shared many properties with 

transduction (Marrs, 1974). The gene transfer activity did not require cell-to-cell contact, 

it was retained in cell-free filtrates, and it was impervious to treatment with DNase. It was 

distinguished from transduction partly because of the lack of detectable lysis and the 

inability to induce particle production with mitomycin C, but also because the agent’s 

sedimentation constant revealed that it was considerably smaller than any known phage 

(Marrs, 1974). The ability to produce and receive genes from RcGTA varied across 

R. capsulatus strains (Wall et al., 1975a), but the ability to produce RcGTA could not be 

transferred by RcGTA, at least not in a single transfer event (Yen et al., 1979 cites Jasper 

& Marrs, unpublished). Markers could be transferred at rates as high as 4 x 10-4 per 

recipient cell (Solioz et al., 1975). The DNA content was double-stranded, but clearly 

much smaller than that of known phages (approx. 3.6 x l06 Da) (Solioz & Marrs, 1977), 

and the kinetics of release of RcGTA particles from cells did not resemble those of 

induction of lysogenic phages (Solioz et al., 1975). The high transduction rates and ability 

to co-transduce markers ~5 genes apart made this GTA a useful tool for genetic mapping 

and manipulation (Yen & Marrs, 1976).  

 The creation of an RcGTA overproducer strain made the further characterization 

of RcGTA possible (Yen et al., 1979). The particles were visualized by electron 

microscopy (Figure 1-2) and resembled small tailed phages. The DNA within the 

particles possessed a complexity comparable to that of the entire R. capsulatus genome 
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(as determined by hybridization kinetics and restriction digests), suggesting the particles 

could package and transfer host genes at random. The transfer of DNA was found to be 

mediated by recombination of the packaged DNA using mechanisms present in the 

recipient cell (Genthner & Wall, 1984). Although these GTAs were used to generate 

linkage maps (Wall & Braddock, 1984) and mutagenize R. capsulatus (e.g. Wong et al., 

1996), their properties were not investigated again in detail for some time. 

 

 

Figure 1-2: Electron micrographs of RcGTA particles. The left panel, from (Yen et al., 
1979), and the right panel, from (Chen et al., 2008), both represent particles negatively 
stained with phosphotungstic acid. The heads are approximately 30 nm in diameter, and 
the tails 50 nm in length. Permission to reprint these micrographs was obtained from the 
copyright holders. 
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1.5.4 RcGTA: In recent years 

 In 2000, Lang & Beatty published the first characterization of the genes required 

to produce RcGTA. By transposon mutagenesis of an RcGTA overproducer strain, Y262, 

they were able to find a cluster of genes ~15-kb in size which appeared to encode the 

RcGTA particle (Figure 1-3). Organized in a head-to-tail fashion similar to that of the 

genomes of most tailed phages (Casjens et al., 1992), it lacked genes coding for 

identifiable replication and integration functions. The absence of these genes is consistent 

with RcGTA’s ability to package host DNA that recombines into genomes using host 

mechanisms (Wall & Braddock, 1984). The cluster also lacks readily identifiable tail fibre 

genes, lysis genes, and overall is less than half the size of related phages (e.g. ~40 kb for 

E. coli phage HK97, Juhala et al., 2000). As RcGTA is encoded by a ~15-kb cluster and 

packages only ~ 4 kb, it is non-replicative and, by definition, not a phage. A recent study 

purified RcGTA particles and identified the associated proteins (Chen et al., 2008). In 

addition to nine proteins encoded by the structural cluster, four other proteins encoded 

elsewhere in the genome co-purified with the particles. 
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Figure 1-3: The RcGTA structural gene cluster. All genes/ORFs are transcribed from left 
to right. Vertical offset in neighbouring genes indicates different reading frames. The 
cluster spans from gene rcc01682 to rcc01699, a total of 14 507-bp. Genes with 
homology to a phage gene are annotated by predicted function. Proteins detected in 
RcGTA particles are as reported by (Chen et al., 2008), while those shown to be required 
for RcGTA activity are as reported by (Lang & Beatty, 2000; Fogg et al., 2012). 

 

 In the same Lang & Beatty study, a transposon mutant with drastically reduced 

gene transfer activity was found to be a disruption of the R. capsulatus homologue of the 

Caulobacter crescentus cell-cycle regulator ctrA (Lang & Beatty, 2000). By analyses of 

northern blots and reporter gene constructs, it was determined that CtrA was responsible, 

in part, for the regulation of RcGTA production through the regulation of expression of 

the RcGTA structural gene cluster (Lang & Beatty, 2000). The creation of site-directed 

ctrA mutants revealed that both the phosphorylated and un-phosphorylated forms of CtrA 

are involved in RcGTA regulation (Mercer et al., 2012). A genome wide transcriptomic 

and proteomic analysis of a ctrA null mutant revealed 227 dysregulated genes (Mercer et 

al., 2010), several of which were investigated in detail and also found to be involved in 

RcGTA production (Mercer et al., 2012). 
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 A second regulatory pathway, involving quorum sensing, was found to be 

involved in regulating RcGTA production (Schaefer et al., 2002). Quorum sensing is a 

mechanism thought to serve as a means to sense bacterial density (Fuqua et al., 1994), or, 

perhaps, measure local diffusion rates (Redfield, 2002). It is frequently involved in 

coordinating behaviours in large populations of cells, as exemplified by the fluorescence 

of Vibrio (now Aliivibrio) fischeri (Nealson & Hastings, 1979) or competence of 

Streptococcus pneumoniae (Morrison & Lee, 2000) upon reaching a requisite cell density. 

A knockout of the acyl-homoserine-lactone (HSL) synthesis gene gtaI drastically reduced 

RcGTA production, which could be restored by addition of HSL to the cultures. The gtaI 

gene was found to be paired with a quorum sensing receptor, gtaR, which negatively 

regulates gtaI (Leung et al., 2012). This same quorum-sensing pair appears to regulate 

extra-cellular polysaccharide synthesis and capsule production, the latter of which was 

found to be required for efficient adsorption of RcGTA particles to recipient cells 

(Brimacombe et al., 2013). 

 Overall, these aspects of regulation show a remarkable integration of RcGTA 

production (and recipient ability) with host regulatory mechanisms. This regulation is 

complex and involves multiple pathways. To date, no protein interacting directly with the 

RcGTA promoter has been identified. 

1.5.5 RcGTA phylogenetics  

 An investigation into the conservation of RcGTA genes in other organisms (Lang 

et al., 2002) followed shortly after the discovery of the structural cluster in R. capsulatus. 

The authors identified conserved GTA structural gene clusters in several 
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Rhodobacterales, Rhodospirillales, Caulobacterales as well as Rhizobiales, and posited a 

“predominantly vertical descent from a GTA-like entity in an $-proteobacterial 

progenitor”. This hypothesis was supported by a further analysis that suggested that 

RcGTA is likely the remnant of an ancestral prophage that existed prior to the divergence 

of the major phylogenetic divisions of $-proteobacteria (Lang & Beatty, 2007). GTA 

phylogenies revealed that the gene encoding the major capsid protein could yield 

phylogenies comparable to those produced by 16S rDNA. The authors suggested that 

since RcGTA seems to have existed since the origin of the $-proteobacteria and is still 

functional in R. capsulatus, it probably confers a selective advantage. Lending further 

support to this hypothesis, another member of the Rhodobacterales (Silicibacter (now 

Ruegeria) pomeroyi DSS-3) has since been shown to posses GTA-mediated gene transfer 

activity (Biers et al., 2008). 

1.5.6 Other GTAs 

 Gene transfer activity by particles too small to be functional phages is not unique 

to the Rhodobacterales. To date, four other gene transfer agents have been identified: 

VSH-1 of the spirochaete Brachyspira hyodysenteriae (Humphrey et al., 1997), Dd1 of 

the %-proteobacterium Desulfovibrio desulfuricans (Rapp & Wall, 1987), VTA of the 

archaeon Methanococcus voltae (Bertani, 1999) and BaGTA of Bartonella grahamii 

(Berglund et al., 2009). None of these bear any known genetic relationship to one another 

or to RcGTA, but all are small tailed-phage-like particles capable of transferring small (4 

to 14 kb) fragments of host DNA (reviewed in Lang et al., 2012). In every case, they 

appear to be encoded primarily by clusters larger than the DNA molecule they can 
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package in a single particle; VSH-1 is actually encoded over multiple loci (Stanton et al., 

2009). 

 Given that GTAs are present in multiple phyla of prokaryotes, it is possible that a 

large proportion of the phage particles observed in environmental samples may in fact be 

GTAs. This proposal may explain the high proportion of cellular genes found in viral 

metagenomes (Kristensen et al., 2010). 

 

1.6 Research goals 

 GTAs are poorly understood. Even for RcGTA, one of the best-studied GTAs, the 

“life cycle” is still an enigma (Figure 1-4), its regulation is incompletely characterized 

(1.5.4), its release occurs through unknown mechanisms (1.5.3), and its adsorption and 

translocation occur at unknown receptors. The structural cluster appears to be missing key 

elements for its function (1.5.4), including a lysin, holin, and tail fibres. With so little 

information about its cost and benefit to the host, it is difficult to establish the 

evolutionary purpose served by the RcGTA particles. 

 In this thesis, I searched for additional genes encoded outside the RcGTA 

structural gene cluster required for RcGTA gene transfer activity. Because of the 

propensity for “satellite” or otherwise defective phages (1.3.3) to take advantage of a 

“helper” phage, I began my search in the other prophage clusters of R. capsulatus SB1003 

(Chapter 2). R. capsulatus SB1003 has a history of association with bacteriophages 

(1.5.2), including at least four potentially intact prophage clusters. These clusters could be 

contributing genes necessary for RcGTA production. 
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Figure 1-4: The “life cycle” of RcGTA. 1. The production of RcGTA particles inside the 
R. capsulatus cells is primarily encoded by the RcGTA structural cluster, although some 
necessary genes appear to be absent from the cluster (e.g. tail fibres). The DNA packaged 
within the particles is host-derived. 2. The release of particles from the cells is by an 
unknown mechanism. 3. The attachment to the recipient cells. The adsorption is to an 
unknown site; the penetration of the capsule and the specific attachment to a receptor on 
the outer-membrane are suspected, but not known. The subsequent recombination event 
depends upon host factors. 4. The resulting gene transfer recipient is a recombinant 
carrying DNA from the RcGTA producing cell. 
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 As an alternate approach to discovering the “missing  RcGTA functions”, I 

investigated genes consistently co-regulated with the RcGTA structural gene cluster 

(Chapter 3). If any genes elsewhere in the genome are required for functional RcGTA 

production they are likely to be regulated in a manner similar to that of the structural 

cluster.  

 Using the information gleaned from the two approaches, I hoped to piece together 

an expanded “genome” of genes required for RcGTA production. The additional 

functions encoded by these genes would provide valuable insight into the evolutionary 

history (Chapter 3), as well as to the costs and benefits (Chapter 4) of RcGTA production.  
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Co-Authorship and Contributions 

 Chapter 2 consists of unpublished work, which will be modified into a manuscript 

for submission after this thesis is submitted for examination. I was responsible for the 

experimental design, in consultation with A.S. Lang. Contributions to the research in this 

chapter include: A.S. Lang’s original findings of a link between phage and RcGTA 

production, those of students who made mutant strains I later tested for phage activity, 

and that of the Broad Institute where sequencing and preliminary annotation of our phage 

DNA sample took place. I carried out the isolation, characterization, annotation and 

subsequent deletion of the phages, as well as all the bioinformatic analyses included in 

this chapter. The work was carried out with support from the Broad Institute’s Marine 

Virome Sequencing project, RDC Newfoundland, NSERC and the Memorial University 

of Newfoundland’s School of Graduate Studies. This chapter makes multiple references 

to a published manuscript based on another portion of this work, published in 

collaboration with P. Fogg, E. Digby, and J.T. Beatty from the University of British 

Columbia (Fogg, P. C. M., A. P. Hynes, E. Digby, A. S. Lang & J. T. Beatty (2011) 

Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter 

capsulatus strain SB1003. Virology 421: 211-221.), included as Appendix 2. 

 

 Chapter 3 represents a manuscript in preparation for submission. I was responsible 

for the experimental design, in consultation with A.S. Lang and R.G. Mercer. 

Contributions to the research in this chapter include: the creation of a mutant of rcc00171 

with help from Katherine Grebe, the creation of mutants of rcc01079 and rcc01080 with 
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help from Heidi Matchem and Marc Gruell, the creation of a mutant of rcc01699 by 

Amanda Peach, and microarray data analysis and assistance with protein purification by 

Ryan G. Mercer. I performed the data analysis of the microarrays; performed all westerns, 

bio-assays, and inhibition assays used in this chapter; created the protein expression 

construct, purified the protein and performed all subsequent assays using it; and I 

performed all bioinformatic analyses included in the chapter. I authored the manuscript 

with considerable editorial input by A.S. Lang. The work was carried out with support 

from NSERC and the Memorial University of Newfoundland’s School of Graduate 

Studies. 

 

 Chapter 4 represents a manuscript published in 2012 (Hynes, A. P., R. G. Mercer, 

D. E. Watton, C. B. Buckley & A. S. Lang, (2012) DNA packaging bias and differential 

expression of gene transfer agent genes within a population during production and release 

of the Rhodobacter capsulatus gene transfer agent, RcGTA. Molecular Microbiology 85: 

314-325). I was responsible for the experimental design, in consultation with A.S. Lang. 

Contributions to the research in this chapter include: the generation of the original gene 

expression microarray data, mutation of and preliminary findings related to rcc00555 by 

Ryan G. Mercer; the DNA-packaging microarray experiment by David E. Watton; the 

generation of the rcc02539 mutant by Colleen B. Buckley; and the ligation assays by A.S. 

Lang. I performed the array analyses, discovered the underpackaging phenotype, 

performed all the bio-assays, constructed the lacZ fusions and assayed them by flow 

cytometry, and performed all the assays characterizing SB555. I wrote the manuscript, 

with considerable editorial input by A.S. Lang. The final submission benefited greatly 
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from the comments and suggestions of the (anonymous) reviewers. The work was carried 

out with support from NSERC and the Memorial University of Newfoundland’s School 

of Graduate Studies. 
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2 The Phages of Rhodobacter capsulatus 

2.1 Introduction:  

 Rhodobacter capsulatus is an $-proteobacterium of particular interest as the 

source of the archetypal gene transfer agent, RcGTA. This small, host-encoded phage-like 

particle is coded for primarily by a ~14-kb structural gene cluster (Lang & Beatty, 2000), 

and is capable of transferring 4-kb stretches of host DNA to other R. capsulatus cells in a 

process analogous to transduction. It is non-replicative, and has been termed by several a 

“defective phage” (Solioz et al., 1975; Yen et al., 1979; Lang & Beatty, 2000; Redfield, 

2001). The structural gene cluster is organized in a head-to-tail fashion (Lang & Beatty, 

2000), akin to the organization of most tailed phages (Casjens et al., 1992). Notably 

absent from this cluster are genes identifiable as being involved in replication, integration 

or excision. These are functions that would not be required by a non-replicative entity, so 

their omission is consistent with the observed transduction activity of RcGTA. 

Conspicuous in their absence are any genes predicted to encode a cellular release 

mechanism (e.g. a lysin) or tail fibres. An early electron micrograph of RcGTA particles 

showed the presence of tail fibres (Yen et al., 1979), and it would be unprecedented for a 

tailed phage particle to be released from cells without lysis. 

 There are several known phages and phage-like elements that do not encode all 

their own functions but that can still produce functional phage particles. Among these are 

the “satellite phages”, exemplified by phage P4 (Six & Klug, 1973). Phage P4 is capable 

of lysogenizing its host but is only capable of producing virions in the presence of a 
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phage of the P2 family. P4 hijacks several of the functions encoded by P2, including the 

capsid itself, to produce phage particles capable of infecting other cells (Shore et al., 

1978). Another similar example is that of Staphylococcus aureus pathogenicity islands 

(SAPIs) (Christie & Dokland, 2012), which, upon infection of the SaPI-containing cell 

with certain transducing phages, can replicate (Úbeda et al., 2008) and be preferentially 

packaged by the phage (Christie & Dokland, 2012).  

 Two previous studies have investigated R. capsulatus phages: one investigated the 

host ranges of 16 phages in 33 R. capsulatus strains (Wall et al., 1975a), and the other 

explored the energetics of infection by one of those phages (Schmidt et al., 1974). The 

genome-sequenced strain of R. capsulatus, SB1003, is derived from strain B100, a strain 

supposedly “cured” of two prophages by unreported means (Solioz, 1975). However, the 

SB1003 genome sequence includes 237 phage-related genes (Strnad et al., 2010) in at 

least four clusters large or complete enough to potentially be intact prophages (Figure1-

1). The presumed “missing” RcGTA functions, the existence of satellite phages in other 

orders of Bacteria, and the presence of several identifiable prophage regions in the 

R. capsulatus genome prompted me to further investigate the phages of R. capsulatus and 

to explore potential RcGTA-phage interactions. I have attempted to isolate any functional 

prophages and cure them from R. capsulatus in order to identify phages or phage genes 

involved in RcGTA production. Any characterization of these phages would also help 

remedy a dearth of knowledge about $-proteobacterial phages. While many phages have 

been well characterized, the $-proteobacterial phages remain highly underrepresented. 

When I embarked upon this study in 2010, 880 phage genomes were available through 

PhAnToMe (http://www.phantome.org/PhageSeed/Phage.cgi) and 660 through EBI 
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(http://www.ebi.ac.uk/genomes/phage.html). Combined, the two databases contained only 

9 unique $ -proteobacterial phages. The same databases at time of writing (July 2013) 

contain 1184 and 1329 phage sequences, respectively, of which only 36 are from $-

proteobacterial phages. 

 

2.2 Experimental procedures 

2.2.1 Bacteriophage production 

 I attempted phage induction in R. capsulatus strain SB1003 by damaging its DNA 

with  DNA-damaging agents such as ultraviolet light and carbadox (0.1 to 5 mg ml-1), by 

high (37°C) and low (20°C) temperatures, by growth under photosynthetic conditions, as 

well as growth in a minimal medium, RCV (Beatty & Gest, 1981). In the end, optimal 

yields were achieved using growth conditions found to favor aerobic RcGTA production. 

R. capsulatus cells were grown in 50 ml of complex YPS medium (Wall et al., 1975a) at 

30°C, placed in a 250 ml flask shaking at 225 RPM. The cultures were grown for 48 h, 

and phage particles were harvested (see 2.2.2). Strains used for this procedure are listed in 

Table 2-2. 

2.2.2 PEG precipitation of phage particles 

 Cells were pelleted by centrifugation at 6800 g and the supernatant decanted. This 

process was repeated until the supernatant was clear. The final supernatant was treated 

with 1 mg ml-1 DNase I (Sigma-Aldrich, Oakville, Canada) for 1 h at 37°C according to 

the manufacturer’s recommendations. NaCl was added to a concentration of 1 M, and 
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then centrifuged again. The supernatant was brought to 10% (w v-1) PEG8000, incubated 

at 28°C for 2 h and the precipitate was collected by centrifugation at 6800 g for 20 min. 

The pellets were resuspended in G buffer (Solioz & Marrs, 1977) by gentle shaking (60 

RPM) overnight at 4°C.  

 The above protocol was refined for later purifications by increasing the first spin 

to 8000 g and by the adding a filtration step in which the supernatant was passed through 

a 0.45-µm filter. This removed the need for additional spins and increased yields. 

2.2.3 DNA extraction from phage particles  

 PEG precipitate suspensions were treated with 2 U DNase I and 1.2 U RNase A at 

37°C for 30 min, followed by addition of 0.5 M EDTA (pH 8.0) to a final concentration 

of 0.005 M and heat inactivation at 75°C for 20 minutes. DNA was extracted using 

phenol:chloroform:isoamyl alcohol (25:24:1), precipitated with ethanol, and re-hydrated 

in pH 8.0 TE buffer or water. This protocol was refined as follows to increase the yields. 

After heat inactivation of the nucleases, SDS, EDTA and proteinase K (New England 

Biolabs, Pickering, Canada) were added to a final concentration of 0.5% w v-1, 0.02 M 

and 0.05 mg ml-1 respectively, and incubated at 55°C for 1 h. This was followed by DNA 

purification as described above.  

2.2.4 Separation of phage and RcGTA particles 

 PEG precipitate suspensions were loaded on top of a sucrose gradient created by 

the successive addition of equal portions 30%, 25%, 20%, 15% and 10% w v-1 sucrose in 

G buffer that had been left to stand overnight to linearize. The gradients were then 
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centrifuged at 50 000 g in a swinging-bucket rotor, and fractions were collected by 

drainage from a hole pierced in the bottom of the tube. The collected fractions were then 

centrifuged at 300 000 g for 1 h, and the resulting pellets resuspended in G buffer. Each 

resuspension was then subjected to DNA extractions (as described above) and western 

blotting with probing for the major capsid protein of RcGTA, as previously described 

(Mercer et al., 2012). 

2.2.5 Pulsed field gel electrophoresis (PFGE) 

 Visualization and sizing of DNA bands was performed by pulsed field gel 

electrophoresis (PFGE) on a Bio-Rad CHEF Mapper (Bio-Rad, Mississauga, ON) using 

their proprietary auto-algorithm for appropriate separation of bands. Gels were run using 

1% pulsed field-certified agarose in 0.5x Tris-Borate-EDTA (TBE) buffer at 14°C. 

2.2.6 DNA sequencing 

 Initially, purified phage DNA was digested with BamHI and the resulting 

restriction fragments were cloned and sequenced by traditional Sanger sequencing to 

confirm the presence of phage-like sequences. Undigested phage DNA purifications were 

then run on an agarose gel and phage DNA was extracted by electro-elution and 

concentrated with a centrifugal filter unit with a nominal molecular weight limit of 30,000 

(Millipore, MA). The DNA concentration was determined by spectrophotometry and 280 

ng was submitted to the Broad Institute (Cambridge, MA) for high-throughput (Roche 

454) pyrosequencing (Margulies et al., 2005). Gaps in the sequence were closed by PCR 

amplification across the gaps (“Gap” primers, Table 2-1), and Sanger sequencing 
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performed on the products by The Centre for Applied Genomics (TCAG) (Toronto, 

Canada). Sequenced data was obtained for two phages, which we named RcapMu and 

RcapNL. 

Table 2-1: Primers and gene disruption sites used in this study 

Primer 
name Use Primer sequence Disruption 

site 
2TNF K.O. of RcapMu ATCGTCGATCTCGGCGCGCA StuI/BmgBI 

2TNR   
AGGGCTATGCGATTTCGCAGGG

G    

TerF RcapNL Screening GGACACCTCGCGGTTGGTGG NruI 
TerR & K.O. of RcapNL GCAGCATGATCGGCGACGGA 

 CapsidR RcapNL Screening ACCGGCTTCTTGCGCAGCAT   
CapsidF   ATGGCGACAGCGGCCTGTTC !!

GapRR Closing RcapNL 
sequence 

ATGCCGTGTCGAAGACCCCG 
 GapRF 

 
TCGTCAAGGGGAAACTTCCCGC 

 GapLR Closing RcapNL 
sequence 

GGGAACGACAGCCGCTCGAT !!

GapLF   GCATCACCAAAACGCACCCGC !!
InvLR Finding RcapNL ends CGGTCTGTGGCGGCGAAGAT 

 InvLF 
 

CGCCTCAAATTCCCGCCCGT 
 InvRR Finding RcapNL ends CGATACAGGACGGCGGCAGG !!

InvRF   ATGACGACGAAGCGGGGTGC !!
 

2.2.7 Bioinformatics  

 Sequence assembly was performed independently using Geneious Pro 5.3.4 

(Drummond et al., 2011) with settings for a high sensitivity (gap free) assembly. 

Annotations from the Broad institute and from RAST (Aziz et al., 2008) were compared 

to automated Glimmer 3.02 (Delcher et al., 2007) and Genemark (Besemer & 

Borodovsky, 2005) annotations, and to a manual annotation based primarily on assumed 

start codon preference, putative R. capsulatus ribosome binding site locations and ORF 
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length. Any predicted ORF was then compared to existing CDS databases by blastp and 

PSI-BLAST (Altschul et al., 1990; Altschul et al., 1997; Wheeler et al., 2007), and the 

predicted start positions optimized by alignment with close homologues, where relevant. 

The RcapNL sequence is available in GenBank (GI: 461474957), as is the sequence for 

RcapMu (GI: 356870838). Annotations for hypothetical proteins were revised to 

“proteins of unknown function” if proteomic evidence of their expression was obtained 

(see below). 

2.2.8 Proteomics 

 An existing R. capsulatus whole-cell proteomic dataset (Mercer et al., 2010) was 

searched for peptides matching predicted RcapNL proteins. The peptide information can 

be accessed through http://omics.pnl.gov/. 

2.2.9 Plaque assays 

 R. capsulatus cells of various strains (Table 2-4) were grown overnight in RCV 

minimal medium, pelleted and re-suspended in either G buffer or fresh medium. 100 µl of 

PEG precipitate resuspensions from 48 h aerobic cultures or filtrates from 48 h 

phototrophic cultures were incubated with 300 µl recipient cell suspension and incubated 

for 1 h at 35°C. The mixture was then combined with molten 0.5% YPS agar, and poured 

as an overlay above 1.5% YPS agar plates. Plates were grown for 48 h at 30°C and 

examined for plaques. 
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2.2.10 Phage & prophage DNA end characterization 

 I attempted PCR on restriction digests of chromosomal R. capsulatus SB1003 

DNA with a variety of restriction enzymes, using primers reading in opposite directions 

from several sites in the RcapNL genome (“inv” primers, Table 2-1). 

 To characterize the DNA ends, RcapNL DNA purified from SBKMu cultures was 

treated with either T4 DNA polymerase (New England Biolabs) followed by T4 DNA 

ligase (New England Biolabs), or by a treatment with T4 DNA ligase only – each 

according to the manufacturer’s recommendations. The ligations were then used as 

template for PCR using primers reading outwards from either end (“Inv” primers, Table 

2-1) of the linear genome. The PCR products were sent to The Centre for Applied 

Genomics (TCAG), and sequenced by Sanger sequencing.  

2.2.11 Phage “knockouts” 

 Phage knockouts were generated by disrupting genes thought to be essential for 

phage replication. The knockout strains, then, would be deficient for production of phage 

particles but not cured of the phages. The plasmid for making knockouts of RcapMu was 

constructed by amplifying the region of RcapMu containing the two transposase genes 

with the 2TN primers (Table 2-1). The PCR product was cloned into pUC19 (New 

England Biolabs) with the SphI site deleted by cleavage with SphI and subsequent 

blunting and re-ligation. This plasmid was digested with SphI and BmgBI, which released 

a 1.4-kb fragment of the RcapMu sequence which was then replaced with the 1.4-kb SmaI 

fragment of the kanamycin resistance-encoding KIXX cartridge (Barany, 1985). The 

resulting strain was called SBKMu. The plasmid for making knockouts of RcapNL was 
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constructed by amplifying the terminase region of RcapNL with the Ter primers (Table 2-

1). The PCR product was cloned into pGem-T-Easy (Promega, Madisson, WI), and the 

381-bp NruI fragment was replaced with either the KIXX cartridge SmaI fragment or the 

SmaI fragment of the spectinomycin resistance-encoding & cartridge (Prentki & Krisch, 

1984). The resulting strains were called SBKNL (KIXX) or SB &NL 

 The plasmids carrying the disrupted genes were conjugated into an RcGTA 

overproducer, R. capsulatus DE442, using Escherichia coli C600 (pDT51) (Taylor et al., 

1983), and the disrupted genes were transferred by RcGTA into SB1003 with 

recombinants selected on the basis of acquired antibiotic resistance. I also created a strain, 

SBKMu&NL incapable of producing both RcapMu and RcapNL. To confirm the 

phenotypes of all the knockouts, I analyzed purified phage DNA by PFGE (Figure 2-5), 

and visualized them using a gel documentation system. The images were adjusted for 

brightness and contrast, with all regions of each image manipulated equivalently, using 

Adobe Photoshop C.S. 6.0 (Adobe Systems Inc, San Jose, CA). 

2.2.12 GTA activity assays 

 Gene transfer bio-assays were performed as described in “Rhodobacter capsulatus 

Gene Transfer Agent (RcGTA) Activity Bioassays” (Bio-protocols.org, available in 

Appendix II) (Hynes et al., 2012). Normalized culture aliquots were used to inoculate 

anaerobic photoheterotrophic cultures in YPS medium that were grown for 48 h. The 

gene transfer activity was measured using the recipient strain DW5 (puhA-) (Wong et al., 

1996), monitoring the gene transfer activity of cell-free filtrates by counting the number 

of DW5 colonies able to grow photoheterotrophically.   
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2.3 Results 

2.3.1 Phage detection 

 PEG precipitations and DNA purifications using the initial technique (i.e. without 

Proteinase K addition) yielded an additional >10-kb band co-purifying with RcGTA-

packaged DNA (4 kb) (Figure 2-1, Lane 2). Unlike RcGTA DNA, this larger fragment 

could be digested into fixed banding patterns (data not shown), leading me to hypothesize 

that it was phage DNA. Attempts at induction with ultraviolet light, carbadox treatment, 

or by modifying growth conditions yielded no appreciable increase in the intensity of the 

band. Furthermore, I observed that mutants deficient in RcGTA production failed to 

produce this additional DNA band (Figure 2-1, lane 4) in detectable amounts. Testing of 

numerous RcGTA production mutants (Table 2-2), including knockouts of genes 

regulating RcGTA production and knockouts of genes encoding the structure itself, 

consistently failed to yield any of this larger DNA band using the standard extraction 

protocol (Extraction 1, Table 2-2). Strains with gene knockouts that have no effect on 

RcGTA activity did produce the additional band (Table 2-2).  

 In an effort to increase phage and RcGTA DNA yields, purification protocols 

were modified to include a proteinase K digestion prior to phenol:chloroform:isoamyl 

alcohol extraction. This resulted in an increased intensity of the phage band (Figure 2-1, 

Lane 2 vs 1), and the detection of the phage band in RcGTA-deficient mutants (Figure 2-

1, Lane 3; Table 2-2). 

 Sucrose gradient separation was used to discriminate between RcGTA and 

particles containing this additional DNA. Fractions containing RcGTA or phage DNA 



 

 40 

were probed for the presence of RcGTA major capsid protein by western blot. None of 

the larger DNA band-containing fractions contained detectable RcGTA capsid whereas 

the fractions with RcGTA DNA did (data not shown). 

 

 

Figure 2-1: Detection of phage DNA co-purifying with RcGTA-packaged DNA. 
Visualization of DNA Extractions from PEG precipitates, with proteinase K treatments 
denoted by (*). DNA extractions from particles produced by DE442 (Lanes 1 & 2) result 
in a visible ~4-kb RcGTA DNA band accompanied by a larger, >10-kb band whose 
intensity increases with a proteinase K treatment (Lane 1). DNA extractions from 
particles produced by DE1682 (Lanes 3 & 4), a mutant deficient in RcGTA production, 
result in no RcGTA DNA and a large >10-kb band that is only detectable with a 
proteinase K treatment (Lane 3). 
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Table 2-2: Strains tested for presence of a detectable phage band. 

Strains Description Source 
GTA 

Activity 

Phage Band 
Detected 

(Extraction 1) 

Phage Band 
Detected 

(Extraction 2) 
SB1003 rif resistant pseudo-wt (Yen & Marrs, 1976; 

Strnad et al., 2010) ++ + + 
DE442 GTA overproducer ? ++++ + + 
B10 Wild type cured of phage (Weaver et al., 1975) ++ + + 
A1 GTA capsid mutant Gift from J.T. Beatty 0 - + 
DE1682 GTA orfg1 mutant Lang lab, unpublished 0 - + 
SBMF1 Polar GTA orfg2 mutant Lang lab, unpublished 0 - + 
YK8 orfg2 mutant (Lang & Beatty, 2000) 0 - NT 
ALS1 Disruption of gtaI (Schaefer et al., 2002) + - + 
!cckA Deletion of cckA (Mercer et al., 2012) + - + 
SBRM1 Disruption of ctrA (Mercer et al., 2010) 0 - + 
SB555 Disruption of rcc00555 (Hynes et al., 2012) + + + 
SB171 Disruption of rcc00171 Chapter 3 0 - + 
SB1685 Disruption of rcc01685 (Hynes et al., 2012) ++ + NT 
SB1699 Disruption of rcc01699 Chapter 3 ++ + NT 
SBchpT Disruption of chpT (Mercer et al., 2012) + - + 

NT = Not tested 
? = Strain of uncertain provenance. (Fogg et al., 2011) cites (Yen et al., 1979) 
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2.3.2 Phage discovery  

 Preliminary sequencing indicated that the larger DNA band contained sequences 

that mapped to an ~80-kb transposable phage cluster in the published genome (Strnad et 

al., 2010) (see Figure 1-1). However, many of the detected sequences did not appear in 

the published R. capsulatus genome sequence. Complete sequencing by 454 

pyrosequencing revealed that the phage band was in fact composed of two separate 

phages: one, a transposable prophage present in the R. capsulatus chromosome sequence, 

and the second, a new phage absent from the existing R. capsulatus genome sequence. 

The first we named RcapMu, and investigated in detail in collaboration with J.T. Beatty 

(Fogg et al., 2011; See Appendix 2). The second phage, with three times the number 

(7,126) of mapping reads, RcapNL, is discussed here. 

2.3.3 Genomics & Proteomics of RcapNL 

 The complete genome of RcapNL includes 64 ORFs, the majority of which 

(41/64) share no recognizable homology or domains with proteins of annotated function 

and were therefore annotated as “hypothetical proteins”. By using my genome annotation 

to probe existing R. capsulatus SB1003 proteomic databases (Mercer et al., 2010), I was 

able to detect peptides for 35 of the 64 ORFs, including 21 of the “hypothetical proteins”. 

This allowed me to revise the annotation for these to “proteins of unknown function”. 

 Most of the 64 ORFs shared no recognizable homology to known phage proteins; 

those few that did were similar to sequences from widely differing phages (e.g. 

transposable and lambda-like) from several bacterial host classes (e.g. !- and "-
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proteobacteria), and often with weak homology (E-value >e-15) (Table 2-3). There is no 

evidence of any previously described closely related phage. There is, however, evidence 

of related prophages in the genomes of Rhodobacter sphaeroides ATCC 17025 

(Accession NC_009428), Paracoccus denitrificans PD1222 (Accession NC_008688) and 

even elsewhere in R. capsulatus SB1003 (Accession NC_014034) (Figure 2-2). RcapNL 

(see later, section 2.3.6) and these three prophages are integrated at the site of a tRNA, 

and organized similarly relative to that tRNA.  

 Within R. capsulatus, RcapNL has regions of homology to the aforementioned 

prophage cluster (Figure2-2), as well as possessing two genes that are similar to a pair of 

genes in the 14-kb phage cluster (rcc02331, rcc02327), another pair of genes homologous 

to two genes in the RcGTA structural cluster (rcc01684, rcc01691), and one gene 

homologous to a gene of RcapMu (rcc00995). The tail-fibre gene RcapNL_29 was 

homologous to rcc01079. 
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Table 2-3: RcapNL predicted ORFs and their best phage BLAST hits, where available 

Name 
AA 
length Predicted product Best phage hit (E-value) Ida, Simb, Covc 

RcapNL1 252 Protein of unknown function     
RcapNL2 121 HNH endonuclease  Xanthomonas phage Xop411 (2e-11) 48% 61% 61% 
RcapNL3 162 Protein of unknown function     
RcapNL4 565 large terminase  Xanthomonas phage phiL7 (2e-92) 37% 53% 96% 
RcapNL5 426 HK97 family portal protein  Enterobacteria phage SfI (2e-54) 35% 53% 84% 
RcapNL6 315 peptidase S49  Vibrio parahaemolyticus phage VP16T (3e-14) 33% 51% 54% 
RcapNL7 434 HK97 family major capsid protein  Burkholderia phage phi644-2 (1e-76) 42% 59% 99% 
RcapNL8 153 hypothetical protein  

  RcapNL9 73 hypothetical protein  
  RcapNL10 192 Protein of unknown function     

RcapNL11 109 phage head-tail adapter protein  Rhizobium phage 16-3 (7e-06) 34% 47% 98% 
RcapNL12 103 Protein of unknown function     
RcapNL13 119 phage HK97 gp10-like protein  

  RcapNL14 136  GTA orfg8-like protein      
RcapNL15 143 GTA orfg9-like major tail protein      
RcapNL16 190 Protein of unknown function     
RcapNL17 86 Protein of unknown function     
RcapNL18 519 phage tail-related protein      
RcapNL19 228 phage tape measure protein  Xanthomonas oryzae phage OP1(8e-08) 46% 59% 42% 
RcapNL20 216 hypothetical protein  

  RcapNL21 195 hypothetical protein  
  RcapNL22 138 hypothetical protein  
  RcapNL23 142 hypothetical protein  
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RcapNL24 587 phage tail component protein  Rhizobium phage 16-3 (1e-17) 25% 39% 96% 
RcapNL25 651 hypothetical protein  

  RcapNL26 106 hypothetical protein  
  RcapNL27 207 peptidoglycan-binding protein  Serratia phage phiMAM1 (1e-22) 41% 56% 66% 

RcapNL28 67 hypothetical protein  
  RcapNL29 85 tail fibre protein      

RcapNL30 144 hypothetical protein  
  RcapNL31 102 Protein of unknown function     

RcapNL32 73 
XRE family transcriptional 
regulator      

RcapNL33 75 Protein of unknown function     
RcapNL34 366 phage integrase/recombinase      
RcapNL35 80 hypothetical protein  

  RcapNL36 360 phage Gp37Gp68 family protein  Mycobacterium phage Che9c (2e-64) 44% 52% 98% 
RcapNL37 169 Protein of unknown function     
RcapNL38 77 PRK12775-containing protein  

  
RcapNL39 627 

C-5 cytosine-specific DNA 
methylase  Pectobacterium phage ZF40 (4e-109) 38% 50% 93% 

RcapNL40 54 hypothetical protein  
  RcapNL41 68 hypothetical protein  
  RcapNL42 322 DUF2303-containing protein  Burkholderia phage BcepMigl (4e-11) 27% 39% 86% 

RcapNL43 118 Protein of unknown function     
RcapNL44 78 Protein of unknown function     
RcapNL45 86 hypothetical protein  

  RcapNL46 75 hypothetical protein  
  RcapNL47 89 Protein of unknown function     

RcapNL48 102 Protein of unknown function     
RcapNL49 76 Protein of unknown function     
RcapNL50 212 phage repressor  Pseudomonas phage D3112(1e-15) 36% 58% 63% 
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RcapNL51 95 hypothetical protein  
  RcapNL52 95 Protein of unknown function     

RcapNL53 143 Protein of unknown function     
RcapNL54 90 Protein of unknown function     
RcapNL55 438 Protein of unknown function R. capsulatus phage RcapMu (4e-13) 46% 61% 21% 
RcapNL56 114 hypothetical protein  Pseudomonas phage JBD67 (4e-10) 45% 56% 75% 
RcapNL57 116 Protein of unknown function     
RcapNL58 63 Protein of unknown function     
RcapNL59 97 hypothetical protein  

  RcapNL60 160 Protein of unknown function      
RcapNL61 388 phage P4 alpha zn-binding domain  

 RcapNL62 77 hypothetical protein  
  RcapNL63 101 hypothetical protein  
  RcapNL64 622 P4 family phage/plasmid primase  Lactobacillus phage A2 (3e-57) 33% 47% 75% 

 

Genes highlighted in grey produce proteins detected by proteomic analysis. 
a = percentage identity  
b = percentage similarity  
c = percent coverage  
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Figure 2-2: Comparison of the genome of RcapNL to three related prophage clusters. Vertical offset in neighbouring genes 
indicates different reading frames, and the arrows indicate the direction of transcription. The cluster in R. sphaeroides is from 
position 1 806 135 to 1 769 964 (Accession NC_009428). The cluster in P. denitrificans is from position 984 618 to 948 578 on 
chromosome 1 (Accession NC_008688). The cluster in R. capsulatus is from position 2 165 178 to 2 132 438 (Accession 
NC_014034). Black lines indicate recognizable homology at the amino acid level (e < 10-15). Colouring indicates function of the 
encoded protein, according to existing annotation: green indicates proteins involved in virion assembly, blue indicates 
replication-related functions, red indicates regulatory functions, and yellow indicates host interaction. Brown highlights the 
tRNA sequences adjacent to the prophages. 
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2.3.4 RcapNL cos sites 

 To investigate the DNA ends of the RcapNL genome, I attempted to amplify 

outwards from the ends of purified RcapNL DNA using PCR. After self-ligation I 

obtained PCR products, confirming that the self-ligated DNA was circular. Sanger 

sequencing of the products revealed 26 bp of sequence not present in the 454 reads. As 

the preparatory protocol for 454 sequencing would remove any 3’ overhangs, I attributed 

this new sequence to 3’ cohesive overhangs at the ends of the RcapNL genome (Figure2-

4). 

 The predicted terminase sequence shows the highest similarity to terminases 

known to produce 3’ overhangs. The highest similarity to a characterized phage terminase 

was to that of Xanthomonas oryzae Phage 10, which produces 9-bp 3’ cohesive ends 

(Boyd & Brüssow, 2002).   

2.3.5 RcapNL prophage 

 The RcapNL genome sequence is not present in the existing R. capsulatus 

SB1003 genome sequence. However, the properties of its genome, and the fact that it has 

never been detected as a plasmid or extra-chromosomal replicon, suggested it must be 

integrated into the R. capsulatus genome. To determine if this was a recent event 

(acquired, perhaps, in this lab) I probed the genomes of a variety of R. capsulatus strains 

for the presence of the capsid and terminase genes by PCR (“Cap” and “Ter” primers, 

Table 2-1). Several other strains clearly possess a similar phage (Table 2-4). 
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 I also investigated all of the R. capsulatus CRISPR arrays for evidence of spacers 

targeting RcapNL. In the largest, 40-spacer CRISPR, 7 spacers scattered throughout the 

array were >90% identical to sequences of RcapNL (Figure 2-3). None of the other 

spacers had significant homology (e<10-5) to any known sequences. The targeted regions 

in the phage sequence, known as proto-spacers, were preceded by a DNA motif (Figure 2-

3) consistent with the protospacer-associated-motifs (PAMs) found in active CRISPR 

systems (Mojica et al., 2009; Makarova et al., 2011). The predicted crisper-associated 

(CAS) proteins at this locus are consistent with a type I-C system (Makarova et al., 2011), 

also known as “dvulg”. 

 

Figure 2-3: The large R. capsulatus SB1003 CRISPR array and its properties with 
respect to RcapNL. (Top) A depiction of the 40-spacer CRISPR type I-C array in 
SB1003. Grey regions represent the repeats. Yellow regions indicate spacers with 
homology to any known sequence. Spacers with no homology to any known sequence are 
present in between all other repeats, but not depicted. All the yellow regions appear to 
target sequences in RcapNL, with mismatches ranging from none to as many as 3-bp out 
of the 34-37-bp region of homology. (Bottom) A weblogo depiction of the conserved 
motifs on RcapNL adjacent to phage regions targeted by spacers (proto-spacers). The 
conserved “GTTC” motif appears to be a proto-spacer associated motif (PAM), consistent 
with active CRISPR systems. 

2.3.6 RcapNL integration 

 To find the integration site of RcapNL, I attempted inverse PCR using a variety of 

primer pairs and restriction enzymes. None yielded any sequence information outside that 

of the phage itself. In an unrelated attempt to sequence phage-packaged DNA, I obtained 
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RcGTA-packaged chromosomal DNA that included seemingly chimeric fragments 

mapping to both RcapNL and SB1003. The host-component of these phage-host 

sequences mapped to an Arginine tRNA at position 712 145 in the chromosome (Figure 

2-4), which suggested this was the phage integration site. This was confirmed by PCR 

amplification of the phage-host junction in genomic DNA isolates. There is a region of 15 

bases in the phage with homology to the integration site in the host. I have named the 

phage region, located between a hypothetical protein RcapNL33 and the integrase 

RcapNL34, attP, and the host region forming part of a tRNA, attB (Figure 2-4).  

 
Figure 2-4: Proposed model for integration of RcapNL into the R. capsulatus genome. 
The long 26-bp cos sites (top) pair, circularizing the phage. The phage attP region, 
homologous to a 15 bp region at the end of a host tRNA-Arg gene (rct00010), recombines 
with this attachment (attB) site, presumably via the phage-encoded integrase. The 
resulting prophage begins and ends with intact attB sites, therefore leaving the tRNA 
intact. 
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2.3.7 Host range 

 The absence of amplified RcapNL terminase or capsid sequences in many of the 

tested stains (Table 2-4) suggested they might be good candidate hosts for RcapNL 

replication, as they would lack any superinfection immunity conferred by the prophage. I 

used SBKMu culture filtrates and PEG precipitates as a source of RcapNL, and incubated 

these with all strains listed in Table 2-4. I observed no detectable lysis or plaques (Table 

2-4). 

Table 2-4: Screening R. capsulatus natural isolates and phage-knockouts for the presence 
of RcapNL by PCR and the ability to serve as a host for RcapNL, purified from SBKMu. 

Strain Source Capsid Terminase Plaque 

SB1003 (Yen & Marrs, 1976) + + - 
DE442 (Yen et al., 1979) + + - 
YW1 (Weaver et al., 1975) - - - 
YW2 (Weaver et al., 1975) + + - 
B6 (Weaver et al., 1975) - - - 
B10 (Weaver et al., 1975) + + - 
SP18 (Weaver et al., 1975) - - - 
SP36 (Weaver et al., 1975) - +* - 
H9 (Weaver et al., 1975) - - - 
P12F1 (Weaver et al., 1975) - +* - 
SBKNL This Study + - - 
SB!NL This Study + - - 
SBKMu!NL This Study + - - 

*Detectable band of unexpected size 

 

2.3.8 Confirming phage-knockout strains 

 In order to further investigate the link between RcGTA production and the phage, 

I assayed phage knockout strains SBKMu, SBKNL, SB!NL and SBKMu!NL (See 
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2.2.11) for gene transfer activity. To confirm the knockouts, DNA extracted from 

particles harvested from each strain was subjected to PFGE (Figure 2-5). The strain 

lacking RcapMu (SBKMu) and producing only RcapNL was indistinguishable from 

strains lacking RcapNL (SBKNL, SB!NL) and producing only RcapMu. Restriction 

digests were used to confirm the appropriate phage was absent (data not shown). In all 

tested strains, including the strain lacking both RcapMu and RcapNL, a larger >48 kb 

DNA smear was detectable, but only when the DNA extraction included treatment by 

proteinase K. 

 

Figure 2-5: Characterization of phage DNA band sizes by pulsed-field gel 
electrophoresis. The sizes of the two distinct bands of the ladder are labeled (right). The 
addition of proteinase K (lanes marked *) resulted in the appearance of a larger >48-kb 
band in all tested strains, including a mutant producing neither RcapMu nor RcapNL 
(Lane 5). The ~40-kb bands correspond to RcapMu and RcapNL (lanes 1 and 2), RcapMu 
alone (Lanes 3 and 4), or RcapNL alone (Lanes 7 and 8). 

2.3.9 RcapH  

 This DNA band that is only detectable after treatment with proteinase K, which I 

hypothesize to be a third phage, RcapH, was sized at 80.85 kb (Figure 2-6). Its production 

appears to be entirely RcGTA independent, as it can be purified in comparable amounts 

from RcGTA-deficient strains (e.g. Figure 2-1). Digestion of this 80.85-kb DNA with a 
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variety of restriction enzymes (BamHI, SalI, SacI, EcoRI, MseI, PacI) consistently failed. 

An attempt to sequence DNA extracted from the phage fraction of the SB!NL/KMu 

strain on the high-throughput Ion Torrent instrument yielded very little data, and all 

sequences obtained mapped to the entirety of the R. capsulatus genome. This was 

interpreted to result from contamination by RcGTA-packaged genomic DNA. 

 

Figure 2-6: Sizing of the RcapH phage DNA band by pulsed-field gel electrophoresis. 
Distinct ladder bands of known size are labeled to the left and right of the image. All 
experimental samples were treated with proteinase K. The run conditions were optimized 
to examine the larger band (>48-kb) seen in Figure 2-2, which appears to be a distinct 
band at 80.85 kb that is only distinguishable in high-yield preparations (SBKMu & 
SB555). 
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2.3.10 Linking phage production and RcGTA activity 

 In order to further investigate the link between RcGTA production and the phage, 

I assayed phage-deficient knockout strains SBKMu, SBKNL, SB!NL and SBKMu!NL 

for gene transfer activity. All strains were indistinguishable from the parental strain for 

gene transfer activity. 

2.4 Discussion  

 My efforts to purify phage from R. capsulatus SB1003 identified at least two 

(RcapNL, RcapMu), and possibly a third (RcapH), phages co-purifying with RcGTA 

particles. 

 The 40.5-kb genome of RcapNL (GI: 461474957) was absent from the host strain 

SB1003’s published genome sequence. As the phage had not been detected as an 

independent replicon, I suspected it was present as an integrated prophage. I probed other 

R. capsulatus strains for evidence of this phage, and was able to amplify similar capsid 

and terminase genes in several other R. capsulatus strains (Table 2-4). In addition, I 

examined the CRISPR arrays of R. capsulatus SB1003 for evidence of previous 

association with RcapNL. CRISPR spacers are acquired by exposure to foreign DNA and 

enable species carrying functional CRISPR arrays to acquire sequence-specific immunity 

(Barrangou et al., 2007). As the spacers are acquired by addition at the 5’ end, the arrays 

serve as a “fossil-record” for exposure to foreign DNA; each spacer represents an older 

acquisition event than that upstream of it (Vale & Little, 2010). Unfortunately, as 

acquisition (at the 5’ end of the array) and loss (from the 3’ end) are poorly understood 
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events with irregular timing, the spacers do not serve as a good “clock” to estimate the 

timing of phage-host interactions.  

 The largest CRISPR array in the R. capsulatus SB1003 genome, possessing 40 

spacers, is accompanied by CRISPR-associated (Cas) genes identifying the array as a 

type I-C or Devulg system (Makarova et al., 2011). Of its 40 spacers, only 7 have 

significant (e < e-5) similarity to any known sequence; all 7 of these are similar to 

RcapNL (Figure2-3). These spacers are distributed throughout the array, suggesting 

multiple interactions separated by other phage-host interactions and, presumably, long 

stretches of time. This leads us to believe that the association between RcapNL and 

R. capsulatus SB1003 is a long one and that the presence of RcapNL in the lab strains is 

unlikely to be due to a recent event. The 33 remaining spacers bear no similarity to any 

known sequence. 

 RcapNL showed little genetic similarity to known phages. While the phage 

genome included identifiable structural components (Table 2-3), the majority of the ORFs 

(41/64) shared no homology to known proteins and I was unable to assign any function to 

them. RcapNL’s genome is recognizably homologous to prophages in other 

Rhodobacterales (Figure2-2). The observed homologies and similarities in genome 

organization amongst these elements suggest that RcapNL is related to phages that have 

integrated in the genomes of several Rhodobacterales. 

 Although I was unable to find a host that RcapNL could infect, I was able to 

determine some important features of RcapNL replication. Re-sequencing of the SB1003 

genome revealed chimeric phage-host reads, which were confirmed by PCR to be the 

integration site of the phage. I found that RcapNL had long, 26 bp 3’ cohesive ends. The 
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long, 26 bp overhangs of RcapNL are, to my knowledge, unprecedented. I propose a 

model for integration whereby the 3’ cos sites pair, circularizing the phage genome, and 

the attP and attB sites allow for phage-mediated recombination resulting in an integrated 

prophage (Figure 2-4). Interestingly, because the attB site is the last 15 bp of the tRNA, 

integration maintains an intact copy of the arginine tRNA. 

 RcapMu, a transposable phage present as part of the R. capsulatus SB1003 

published genome, has a 39.3-kb genome (Genbank Identifier (GI): 356870838) and runs 

as a distinct band at ~40.5 kb that is indistinguishable from RcapNL (Figure 2-5). It is 

from this observation, along with restriction digests, that I was able to determine that it 

packages >1.2 kb of host DNA at the 3’ end of it’s genome, as Mu-like phages are known 

to do (Mizuuchi & Craigie, 1986). Its life cycle, integration sites, transposition activity 

and structural proteins were characterized in partnership with Paul Fogg (see Appendix 

2), and despite being one of very few sequenced !-proteobacterial phages, its homology 

to known transposable phages allowed a relatively robust annotation and attribution of 

function for the predicted ORFs. 

 RcapMu and RcapNL appear to be directly linked to RcGTA production. In 

structural or regulatory mutants deficient for RcGTA activity, the co-purifying phage 

band was absent (Table 2-2, Figure 2-1). Given that strains carrying gene knockouts 

which do not affect RcGTA production (e.g. SB1685) did not affect presence of a 

detectable phage band (Table 2-2), this link does not appear to be an artifact of the mutant 

generation process. While modifications to the purification and extraction techniques 

resulted in increased phage yields and detectable DNA, even in RcGTA-deficient 
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mutants, the majority of this increased yield was attributed to the detection of a third 

phage, RcapH (Figure 2-5). 

 RcapH’s genome, which appears as a smear of DNA centered around a band of 

80.85 kb (Figure 2-6), is released in detectable amounts only after proteinase K 

treatments of PEG precipitates from R. capsulatus cultures (Figure 2-5). This could be 

explained by the presence of proteins covalently bound to the DNA, trapping the DNA in 

the phenol-chloroform interface in the absence of a proteinase K treatment. The DNA 

band is present even in mutants in which RcapMu or RcapNL have been knocked-out 

(Figure 2-5). The phage DNA appears intractable to Ion Torrent sequencing and to 

digestion by a variety of restriction enzymes, which suggests modified or otherwise 

protected DNA. As there is no prophage cluster of that size in the sequenced R. 

capsulatus SB1003 genome, this phage’s genome remains an enigma. 

 The fact that knockouts of RcapNL, RcapMu or both failed to affect gene transfer 

activity establishes that any transduction activity by RcapMu or RcapNL is negligible 

relative to the overall levels observed in RcGTA producing cultures. It also establishes 

that the production and release of functional RcGTA particles is not dependent on the 

production and release of functional RcapNL or RcapMu. There is no evidence from my 

work, or any previous studies, that RcGTA is dependent on individual genes encoded by 

either of these two phages, but we cannot rule out this possibility..  

 As the association between RcGTA activity and phage production is apparent in 

both regulatory mutants and structural mutants (e.g. capsid), it is likely that this is a 

dependence on more than a shared regulatory cue initiating production and depends, in 

some way, on a the production of RcGTA particles. I investigated the possibility that the 
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phages were dependent on the cell lysis mechanism used by RcGTA for their release from 

the cell. Rcc0555 is involved in RcGTA release through cell lysis (Hynes et al., 2012) but 

its disruption still resulted in a detectable 40.5 kb band (Figure 2-6), so RcapMu and 

RcapNL are not dependent on RcGTA release for their own escape from the cell. 

Attempts to induce these phages with carbadox or UV irradiation failed, but if RcGTA 

production results in damage to the genome by the action of the packaging mechanisms, 

this RcGTA-production-dependent damage could induce the prophages to begin 

replicating to “escape” a dying host cell. This would explain the apparent dependence of 

phage production on structural components of RcGTA production. 

 There does not appear to be any evidence of a link between RcGTA’s structural 

gene cluster and the genomes of RcapMu and RcapNL that would explain the dependence 

of the phages upon RcGTA. Several other phages seem to share more in common with 

RcGTA’s structural cluster; a transposable phage with an associated RcGTA-like 

structural cluster was reported (Paul, 2008), while another of the few characterized !-

proteobacterial phages contains several GTA-like genes as well as homologues to ctrA 

and rcc00171 (Huang et al., 2011), both proteins known to be involved in RcGTA 

production (Chapter 3; Mercer et al., 2010; Lang & Beatty, 2000).  
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3 The Non-Contiguous Genome of RcGTA, the Rhodobacter capsulatus 

Gene Transfer Agent 

3.1 Introduction 

 Rhodobacter capsulatus is a purple non-sulfur bacterium that produces the gene 

transfer agent RcGTA. Gene transfer agents (GTAs) are host-encoded phage-like 

particles capable of transferring host DNA from the producing cell to recipient cells 

(Lang et al., 2012). RcGTA packages essentially random (Hynes et al., 2012) ~4-kb 

pieces of DNA (Solioz & Marrs, 1977; Yen et al., 1979). Genes responsible for 

production of RcGTA were first identified by transposon mutagenesis and screening for 

mutants deficient in gene transfer activity (Lang & Beatty, 2000). This identified an ~15-

kb region originally annotated as having 19 open reading frames (ORFs) (Lang & Beatty, 

2001) called the RcGTA structural gene cluster. It is organized in a manner similar to the 

structural gene clusters in genomes of tailed phages (Casjens et al., 1992). This cluster of 

genes is proposed to have a long evolutionary history within the class !-proteobacteria 

(Lang & Beatty, 2007), and is especially well conserved in the order Rhodobacterales 

(Lang et al., 2002; Biers et al., 2008; Lang et al., 2012; Paul, 2008). This suggests that 

GTA production might be widespread in these bacteria and provide benefits to GTA-

producing populations.  

 Encoded by a 15-kb cluster of genes but capable of packaging only 4 kb, RcGTA 

is completely dependent on chromosomal replication for its maintenance. While this is 

the case for most “defective” phages, RcGTA distinguishes itself from most defective 
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phages in several important aspects. First, it still encodes particles capable of packaging 

DNA that can be transferred to other cells. Secondly, the production of RcGTA is 

regulated by the host (Lang & Beatty, 2000; Mercer et al., 2012; Leung et al., 2012; 

Schaefer et al., 2002) with production upregulated in the stationary phase of culture 

growth (Solioz et al., 1975). The release of RcGTA particles has recently been shown to 

depend on lysis genes encoded elsewhere on the chromosome (Hynes et al., 2012). This 

dependence on the host for replication, regulation and release demonstrates a remarkable 

integration of this virus-like particle with R. capsulatus biology. 

 A proteomic characterization of the RcGTA particles confirmed the presence of 

nine of the RcGTA structural cluster-encoded proteins, but also identified four additional 

proteins associated with the particles (Chen et al., 2008). This suggests that additional 

loci might contribute components of the RcGTA particle. An unrelated GTA, VSH-1 

produced by Brachyspira hyodysenteriae, is encoded by at least two separate loci in the 

host chromosome (Stanton et al., 2009).  

 In this study, I have attempted to better define the genetic contributions to 

production of the RcGTA particle. I compared the transcriptional profiles of a variety of 

mutant strains and growth conditions known to affect RcGTA production to create a list 

of genes consistently co-regulated with the RcGTA structural gene cluster. I then tested 

the function of these genes with respect to RcGTA production, through a combination of 

genetic and biochemical approaches. 
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3.2 Experimental procedures 

3.2.1 Strains and plasmids 

 The strains and plasmids used in this study are listed in Table 3-1. Insertional 

disruptions of R. capsulatus genes were performed by amplification of the gene of interest 

by PCR using the primers indicated in Table 3-2, ligation of the resulting product into the 

pGEM-T easy vector system (Promega, Madison WI), and subsequent insertion of the 

1368 bp SmaI fragment of the KIXX cartridge (Barany, 1985) encoding kanamycin 

resistance at the restriction site listed in Table 3-2. The pGEM construct with the 

disrupted gene was then transferred by conjugation from Escherichia coli C600 (pDT51) 

(Taylor et al., 1983) into R. capsulatus DE442 and the marked gene disruption transferred 

into R. capsulatus SB1003 by RcGTA transfer (Scolnik & Haselkorn, 1984). The 

disrupted gene replacements were confirmed by PCR with the original amplification 

primers and visualization of the size differences resulting from KIXX insertion. 
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Table 3-1: Strains and experimental plasmids used in this study 

  Description Source 
Strains    
        R. capsulatus  
SB1003 Genome-sequenced strain (Yen & Marrs, 1976); 

(Strnad et al., 2010) 

DE442 GTA overproducer, crtD- (provenance 
uncertain) 

(Fogg et al., 2011) 
cites (Yen et al., 
1979) 

ALS1 gtaI knockout in SB1003 (Schaefer et al., 2002) 
SBRM1 SB1003 with disruption in ctrA (Mercer et al., 2010) 
SB0171 SB1003 with disruption in rcc00171 This study 
SB1079 SB1003 with disruption in rcc01079 This study 
SB1080 SB1003 with disruption in rcc01080 This study 
SB1699 SB1003 with disruption in rcc01699 This study 
SB2623 SB1003 with disruption in rcc02623 This study 
DW5 SB1003 !puhA (Wong et al., 1996) 

   
        Escherichia coli  C600 
(pDT51) Plasmid mobilizing strain (Taylor et al., 1983) 
S17-1 Plasmid mobilizing strain (Simon et al., 1983) 

BL21(DE3) competent cells for protein expression 
with T7 promoter 

New England Biolabs 
(Pickering, Canada) 

      
Plasmids   
pRK767 complementation vector (Gill & Warren, 1988) 

pRK2TF pRK767 with rcc01079 & rcc01080 
and 141 bp of 5' sequence This study 

pRK0171 pRK767 with rcc00171 and 118 bp of 5' 
sequence This study 

pET28a(+) protein expression vector Merck Millipore 
(Billerica, MA) 

pET28-171 rcc00171 in pET28, C-terminal His-tag This study 
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Table 3-2: Primers and associated restriction sites used in mutant construction, 
complementation and protein expression 

ORF disrupted Primer sequences Disruption site 
171 GCCCTTCGACACCTATCTGA NruI 

 
GTATCGTCAGCACGAGAGCA 

 
1079 & 1080 TTCATCTTGCAGCCCTTCTT BlpI (1079) 

 
CATAGGTCAGAACCGCCTGT BsmI (1080) 

1699 AGTTCGGAAAATTGGGAGGT RsrII 

 
AATGCAGCATCGAGACATTG 

 
2623 TGCCGGATTTCTTCTTTGTC StuI 

 
TTCACGGCTAGGTCTGGTCT 

 
Complementation Primer Sequences Insertion into pRK767 

171 TAGGTACCCGCCCGGCGGCGTCT KpnI 

 
ATGGTACCACGCGCCCGCAGCCT 

 
1079/1080 TAGGTACCCGCGCCGCCTCTGC KpnI 

 
ATGGTACCCCGCGGCCAGCCG 

 
Fusion construct Primer Sequences Insertion into pET28 

171 CGCGGAGATCACCCATGGCCGACCA NcoI/BamHI 

 
TGGATCCACCCAGGGGCCGATGGC 

 
 Underlined sequences indicate the restriction site used 

 Constructs to complement mutants in trans were created by amplification of the 

wild type gene along with sufficient upstream region to include the probable promoter. 

The primers included 5’ KpnI sites to facilitate cloning into the plasmid pRK767, with 

resulting plasmids transferred to R. capsulatus by conjugation from E. coli S17-1 (Simon 

et al., 1983) 

 The pET28-171 expression plasmid was constructed by amplification of rcc00171 

using the primers indicated in Table 3-2, which included 5’ restriction enzyme sites to 

directionally clone the insert into pET28a(+). The resulting construct was sequenced by 

The Centre for Applied Genomics (TCAG) (Toronto, Canada) using their own T7 and 

T7term primers to confirm the in-frame fusion to the C-terminal His-tag and conservation 

of the original rcc00171 sequence. 
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 R. capsulatus cells were grown under aerobic conditions at 30°C in RCV medium 

(Beatty & Gest, 1981) for general culturing or 35°C under anaerobic photoheterotrophic 

conditions in YPS medium (Wall et al., 1975b) for high RcGTA production 

(transductions, bioassays, microarrays). 

3.2.2 Microarray analyses 

 The data from the R. capsulatus SB1003 and SBRM1 (ctrA) (Mercer et al., 2010), 

DE442 (Hynes et al., 2012), and ALS1 (Brimacombe et al., 2013) microarrays have been 

previously published and are available from the NCBI Gene Expression Omnibus (GEO) 

database under accession numbers GSE18149, GSE33176 and GSE41014. 

 In all cases, cells were grown photoheterotrophically and were harvested 4 h after 

reaching stationary phase, as determined by monitoring culture turbidity. For SB1003, an 

additional sample was taken in mid-logarithmic growth. RNA was extracted using the 

RNeasy Kit (Qiagen, Mississauga, Canada). 

 The R. capsulatus microarrays are Affymetrix custom whole-genome expression 

arrays (Affymetrix, Santa Clara, CA) described in Mercer et al. (Mercer et al., 2010). 

cDNA synthesis, labeling and array hybridization were performed at the Michael Smith 

Genome Science Centre (Vancouver, Canada) as described in the Affymetrix Expression 

Analysis Technical Manual for Prokaryotic Samples. Raw data from the arrays were 

robust multi-array (RMA) normalized (Irizarry et al., 2003), then normalized to the 50th 

percentile using GeneSpring 7.2 (Agilent Technologies, Santa Clara, CA). The signal 

intensities were used to identify genes with >2 fold change in intensity between the 

experimental and the reference dataset; the SB1003 early stationary (ES) sample. 
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3.2.3 RcGTA activity bioassays 

 Bioassays were performed as previously described (Hynes et al., 2012). 

Normalized culture amounts were used to inoculate YPS anaerobic photoheterotrophic 

cultures that were grown for 48 h, with the RcGTA activity assayed by puhA transfer to 

DW5 cells. For protein complementation/inhibition assays, 3 to 30 µg of protein was 

added prior to the addition of RcGTA-containing filtrate. Controls received an equal 

volume of dialysate (see 3.2.7 “Protein purification”) with 10% v v-1 glycerol, or a BSA 

solution in dialysate. All data were analyzed as the gene transfer activity relative to 

SB1003. The transfer rates were compared by one-way ANOVA and Tukey HSD tests. 

3.2.4 Detection of RcGTA major capsid protein by western blotting 

 Cells and culture filtrates (0.45 µm) from the cultures used in RcGTA activity 

bioassays were assayed for the presence of RcGTA capsid protein by western blotting. 

Cultures were centrifuged at 17000 g, the supernatant was removed and the cells 

resuspended in an equal volume of pH 8.0 TE buffer. 5 µl of cell re-suspension or 10 µl 

of culture filtrates were subjected to SDS-PAGE, with blotting and detection of the capsid 

protein performed as previously described (Mercer et al., 2012). Images were captured on 

an ImageQuant LAS 4000 (GE Life Sciences, Baie D’Urfe, Canada) and band intensities 

quantified, where relevant, with ImageQuantTL version 8.1. The blot images were 

manipulated for brightness and contrast, with all regions of each image manipulated 

equivalently, using Adobe Photoshop C.S. 6.0 (Adobe Systems Inc, San Jose, CA). 
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3.2.5 Assays of RcGTA binding to cells 

 To monitor the binding efficiency of RcGTA particles to R. capsulatus cells, 

RcGTA particles were added to G buffer (Solioz & Marrs, 1977) or G buffer containing 

recipient cells as done for gene transfer bioassays. After a 1 h incubation the cells were 

pelleted by centrifugation at 17000 g for 1 min and the supernatants were collected and 

analyzed for the remaining amount of capsid protein by western blotting as described 

above. 

3.2.6 DNA extraction from RcGTA particles 

 Cultures were grown for 48 h at 35°C under anaerobic photoheterotrophic 

conditions in YPS medium. The DNA extractions were performed as previously 

described (Hynes et al., 2012). Briefly, the cultures were filtered and the filtrates were 

treated with nucleases and proteinase K, and the DNA purified by 

phenol:chloroform:isoamyl alcohol (25:24:1) extraction and ethanol precipitation. The 

samples were then subjected to agarose gel electrophoresis. 

3.2.7 Protein purification 

 Overnight cultures of E. coli BL1(DE3) containing pET28-171 were used to 

inoculate 200 ml of LB broth containing 25 µg ml-1 kanamycin. The cultures were grown 

at 37°C for 1 h, then induced by addition of isopropyl-!-D-thiogalactopyranoside (IPTG) 

to a final concentration of 1 mM, and allowed to grow for another 4 h. Cell pellets of 

induced cultures were resuspended in 4 ml lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 

10 mM imidazole, 0.1% (v v-1) Benzonase® nuclease (Qiagen), 1 mg ml-1 lysozyme 



 

 67 

(w/v); pH 8) and incubated on ice for 30 min. The lysates were centrifuged at 14000 g for 

30 min at 4°C and supernatants were mixed 4:1 (v v-1) with Ni-NTA agarose (Qiagen) 

and incubated at 4°C with slow shaking for 1 h. The samples were loaded into 

polypropylene columns, washed twice with wash buffer (50 mM NaH2PO4, 300 mM 

NaCl, 20 mM imidazole; pH 8) and the fusion proteins eluted in elution buffer (50 mM 

NaH2PO4, 300 mM NaCl, 250 mM imidazole; pH 8). The purified proteins were dialyzed 

into a coupling buffer (20 mM sodium phosphate, 500 mM NaCl; pH 7.5) and quantified 

relative to known BSA standards using an ND-1000 Nanodrop spectrophotometer. The 

success of the purification was evaluated by SDS-PAGE and Coomassie Blue staining 

with samples from the pre-induced culture, induced culture, lysate, wash and eluate. The 

dialyzed purified protein was split into aliquots and stored at 4°C or at -80°C with the 

addition of glycerol to 10% (v v-1). 

3.2.8 Electrophoretic mobility shift assay 

 Purified Rcc00171 or BSA in dialysate were added to a final concentration of 0, 

20, 80 or 160 µg ml-1 to 125 ng of a 500 bp PCR product or DNA from within RcGTA 

particles in a Tris Buffer (6 mM Tris HCl, 6 mM MgCl2, 50 mM NaCl, 1 mM DTT; pH 

7.5) and incubated for 20 min at room temperature. The samples were then run on a 1% 

agarose gel then stained with GelRed (Invitrogen, Ontario, Canada)  

3.2.9 Polysaccharide lyase activity assays 

 To test for potential polysaccharide lyase activity of the purified protein, I 

exposed SB1003 resuspended in G buffer, as normally used in gene transfer bioassays, to 
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either 25 or 55 µg of BSA or purified Rcc00171. After 1 h, the samples were treated for a 

phenol-sulfuric acid carbohydrate quantification and a variation of Anthony’s capsule 

stain (Brimacombe et al., 2013). In also purified R. capsulatus SB1003 polysaccharide 

using cetyltrimethylammonium bromide (CTAB) as described for E. coli K5 (Clarke et 

al., 2000). Capsular polysaccharides (12.5 µg) were then treated with 0.018-0.9 µg of 

Rcc00171 protein for 30 min in G buffer, and the resulting polysaccharides were run on a 

15% polyacrylamide gel and visualized by a combined Alcian blue-silver staining method 

(Fau & Cowman, 1986). 

 

3.3 Results 

3.3.1 Identification of genes with transcript level changes according to changes in 

RcGTA production 

 All microarray data (ALS1 early stationary phase (ES), DE442 ES, SBRM1 ES, 

SB1003 logarithmic phase) were compared to SB1003 ES. These were chosen for 

comparison because they each differ significantly in RcGTA production with respect to 

SB1003 ES (Schaefer et al., 2002; Mercer et al., 2010; Solioz et al., 1975; Yen et al., 

1979), and would allow me to identify genes that have modified transcript levels under 

conditions where RcGTA production is known to be affected. Genes with a signal 

intensity differential of >2-fold relative to SB1003 ES were assembled into gene lists and 

were compared to identify shared gene sets (Figure 3-1). This identified the genes whose 

regulation matched that expected for RcGTA genes. The four separate transcriptome 

comparisons to SB1003 ES are clearly distinct, each with their own sets of genes co-
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regulated with RcGTA. A total of 26 genes were differentially regulated across all four 

transcriptome comparisons (Figure 3-1, Table 3-3). For actual fold-change values for 

each of these genes, see Table A-1. These 26 co-regulated genes were examined in detail 

and found to include all 17 annotated RcGTA structural gene cluster open reading frames 

(ORFs), in addition to 9 genes in six separate loci outside this cluster (Table 3-3). The 

only putative RcGTA structural gene cluster ORF absent was rcc01699, a small ORF at 

the end of the cluster annotated as orfg16. Two of the three-way comparisons contained 0 

genes while 6 genes were shared in all but the DE442 comparison; and 13 genes were 

shared in all but the ALS1 comparison (Table A-2).  

 
Figure 3-1: Identification of genes whose transcription varies with RcGTA production. 
Only genes with a >2 fold change in transcript level relative to the wild type in early 
stationary phase, as determined by comparison of microarray data, are counted for each 
comparison. The ovals contain genes downregulated in ALS1, SBRM1 or SB1003 
(logarithmic phase), where production of RcGTA is known to be lower (down arrows), or 
up-regulated in the overproducer DE442, where production is higher (up arrow). The 
central (darkest) overlap of 26 genes consists of all the genes whose transcript level 
fluctuates with RcGTA production in all four tested comparisons. 
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Table 3-3: R. capsulatus genes co-regulated in transcriptome comparisons 

Gene 
Name Description (genome annotation) BLAST Notes Involvement in 

RcGTA Activity 

rcc00171* CHP ribonuclease III Attachment Yes (This Study) 

rcc0555 HP Lysozyme family protein Lysin Yes (Hynes et al. 
2012) 

rcc0556 HP DUF3154 Holin?  
rcc01079* CHP tail fibre protein, putative Tail Fibre Yes (This Study) 
rcc01080* CHP tail fibre protein, putative Tail Fibre Yes (This Study) 
rcc01682 CHP  orfg1 Yes (This study) 

rcc01683 terminase-like  orfg2 Yes (Lang & 
Beatty, 2000) 

rcc01684* portal, HK97 family  orfg3  
rcc01685 CHP  orfg3.5 No (Hynes et al. 

2012) 

rcc01686 prohead protease, HK97 family  orfg4 Yes (Lang & 
Beatty, 2000) 

rcc01687* major capsid protein, HK97 family  orfg5 Yes (Florizone, 
2006) 

rcc01688* phage CHP phiE125 gp8 family orfg6  
rcc01689* phage CHP phage head-tail adaptor, putative orfg7  
rcc01690* CHP  orfg8  
rcc01691* major tail protein, TP901-1 family  orfg9  
rcc01692 CHP DUF3356 orfg 10  
rcc01693 phage CHP DUF2376 orfg 10.1  
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rcc01694* phage CHP phage tail minor protein orfg 11  
rcc01695 phage CHP DUF2460 orfg 12 Yes (Lang & 

Beatty, 2000) 
rcc01696* phage CHP DUF2163, Phage_BR0599 orfg 13  
rcc01697 cell wall peptidase, NlpC/P60 

family Cell wall-associated hydrolases orfg 14 Yes (Fogg et al. 
2012) 

rcc01698* phage CHP TIM-barrel-like domain, tail 
protein orfg 15 Yes (Lang & 

Beatty, 2000) 
rcc01865 HP DNA replication initiation ATPase   
rcc01866 HP    
rcc02623 HP   No (This Study) 
rcc02730 HP    

 

Rows highlighted in grey indicate genes located in the RcGTA structural gene cluster. 

CHP = Conserved hypothetical protein.  

HP = Hypothetical protein.  

Genes marked with (*) indicate proteins found by (Chen et al., 2008) in conjunction with purified RcGTA particles.  
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3.3.2 Identification of genes with roles in RcGTA activity 

 In a previous study, I investigated the lysis-related locus (rcc00555-556) and 

showed that rcc00555 was required for RcGTA release from cells (Hynes et al., 2012). I 

created mutant strains with disruptions of four of the remaining of the genes identified as 

possibly being co-regulated with the structural cluster, as well as of rcc01699; the only 

gene thought to be an RcGTA gene and absent from my lists. Of these, only the strains 

with disruptions of rcc00171, rcc01079, and rcc01080 were affected for RcGTA gene 

transfer activity (Figure 3-2A). The amount of capsid protein found in cells and culture 

filtrates of these affected strains were then compared by western blotting (Figure 3-2B). 

The disruption of rcc00171 completely abolished RcGTA activity without affecting 

capsid protein levels (Figure 3-2). The disruptions of rcc01079 and rcc01080 

significantly reduced RcGTA activity without affecting the capsid protein accumulation 

inside or outside the cells (Figure 3-2). All mutations found to affect RcGTA activity 

were complemented in trans, although in the case of rcc01079 and rcc01080 it was 

necessary to introduce both genes to rescue RcGTA activity of either mutant. The 

rcc01079 gene contains, in the latter portion of the gene, a predicted -1 frameshift signal 

identified by FSfinder (Moon et al., 2004), which would result in a single rcc01079/1080 

gene product. 

3.3.3 Roles of identified proteins in RcGTA function 

 The observation that gene transfer activity was affected in SB0171, SB1079 and 

SB1080 without an associated change in production and release of capsid protein led me 
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to suspect the genes were involved in binding of the RcGTA particles to cells. 

Additionally, the Rcc01080 protein sequence shows sequence similarity to known phage 

tail fibre proteins in the GenBank database. I performed binding assays and found that 

binding of particles from the rcc00171 mutant strain was comparable to that of particles 

from the wild type (Figure 3-3). However, binding of particles from the rcc01079 and 

rcc01080 mutants to cells was significantly less than that of RcGTA from SB1003 

(Figure 3-3). For these mutants, the decrease in free capsid protein was statistically 

undetectable.  
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Figure 3-2: Effects of gene disruptions on RcGTA gene transfer activity and protein 
levels. A. Gene transfer activity of mutant strains and their associated complements. 
Complementation of SB1079 and SB1080 required re-introduction of both genes on 
pRK2TF The activity was determined as an average relative to SB1003 in three replicate 
bioassays, and the bars represent the standard deviation. An asterisk (*) denotes RcGTA 
gene transfer levels that differed significantly from the wild type (P < 0.001) determined 
by analysis of variance (ANOVA) and Tukey HSD. B. The relative abundance, as 
visualized by a representative western blot, of RcGTA capsid protein in the cells (top) 
and supernatants (bottom). 
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Figure 3-3: Binding efficiency of RcGTA particles produced by SB1003, SB0171, 
SB1079 and SB1080. The binding is visualized by (Top) a representative western blot 
comparing free capsid before (B) and after (A) exposure to recipient cells for 1 h 
followed by pelleting the cells, and measured by (bottom) quantified band intensity ratios 
of before/after over three replicate blots. (*) and (**) represent statistically distinct groups 
in which every member is significantly different from those of the other group (p < 0.05), 
but not from those within its group (ANOVA and Tukey HSD). 
 

 The finding that neither production nor binding of the particles was impaired in 

the rcc00171 mutant prompted me to investigate the DNA within the particles produced 

by this mutant. DNA extractions confirmed that RcGTA particles produced by the 

rcc00171 mutant contained DNA of the expected size (Figure 3-4). We could not find any 

justification for the annotation of homologous proteins as “ribonuclease III”, so we began 

investigating other potential roles of the protein. I purified the Rcc00171 protein and 

performed an electrophoretic mobility shift assay (EMSA) to test for possible Rcc00171-

DNA interactions. Incubation of Rcc00171 with either a 500-bp PCR product or purified 

RcGTA DNA showed no evidence of DNA binding by Rcc00171 (data not shown). As 
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the location of the rcc00171 gene is adjacent to genes involved in polysaccharide export, 

I also used the Rcc00171 protein to test its potential as a capsular or extracellular 

polysaccharide (EPS) lyase. Incubation of cells with the purified protein produced no 

measurable decrease in cell-associated sugars as measured by phenol-sulfuric acid 

carbohydrate quantification and no visible effects upon the capsular structure as observed 

by microscopy of capsule-stained cells. Incubation of the purified protein with purified 

R. capsulatus EPS preparations yielded no evidence of breakdown of sugars into smaller 

units when visualized on an acrylamide gel (data not shown). 

 

 

Figure 3-4: DNA extracted from RcGTA particles from DE442 (overproducer), SB1003 
(wild type) and SB0171 strains, visualized by agarose gel electrophoresis. DNA yields 
obtains from preps is highly variable, so this non-quantitative analysis serves only to 
confirm the presence of DNA within the particles. 

 

 I used the purified protein to attempt rescue of the gene transfer activity for 

Rcc00171-deficient RcGTA particles. The purified protein was added to gene transfer 

bioassays with culture filtrates from the donor strains SB1003 and SB0171. Addition of 

the protein did not restore gene transfer activity to particles from strain SB0171. 

However, addition of the protein inhibited the gene transfer activity of SB1003 particles 

in a concentration dependent manner, with addition of 7.5, 15 and 30 µg of protein, 
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resulting in ~27%, ~17% and ~5% activity relative to the untreated control, respectively 

(Figure 3-5). 

 

Figure 3-5: Inhibition of gene transfer activity in the presence of purified Rcc00171. 
Gene transfer activity was determined as an average relative to a no-treatment control in 
three replicate bioassays, and the bars represent the standard deviation. An asterisk (*) 
denotes RcGTA gene transfer levels that differed significantly from the wild type (P < 
0.05) determined by analysis of variance (ANOVA) and Tukey HSD. 

 

3.4 Discussion 

 Analysis of transcriptome data from four different pair-wise comparisons 

identified 26 genes as possibly co-regulated, their transcript levels varying with changes 

in RcGTA production (Figure 3-1). Of these, 17 are the ORFs within the RcGTA 

structural gene cluster. The other 9 genes are located in six separate loci. One of these 

loci, rcc00555-rcc00556, has already been characterized in some detail with rcc00555 

predicted to encode an endolysin and shown to be required for cell lysis for RcGTA 

release, and rcc00556 suspected to encode an associated holin (Hynes et al., 2012) (see 
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Chapter 4). I have generated strains with gene disruptions in five of the remaining genes 

to identify those involved in RcGTA production. 

 Among the 26 genes identified were 3 encoding proteins found to be associated 

with RcGTA particles by proteomics (Chen et al., 2008), rcc00171, rcc01079 and 

rcc01080. I have shown that these three genes are required for proper RcGTA function. 

My experiments implicate two of the proteins as tail fibres based on the properties of the 

RcGTA particles produced by strains lacking the genes (Figures 3-2 and 3-3). One of 

these proteins possesses sequence homology to known phage tail fibre proteins and both 

have homology to predicted tail fibres in the R. capsulatus RcapMu (Fogg et al., 2011; 

accession number NC_016165) and RcapNL (NC_020489) phages. Insertional disruption 

of either rcc01079 or of rcc01080 resulted in a decrease of ~70% in gene transfer activity 

(Figure 3-2), which was accompanied by a decrease in binding ability (Figure 3-3) 

consistent with defective adsorption. This phenotype could only be rescued by in trans 

complementation of the individual mutants with both genes. With the presence of a 

conserved -1 frameshift signal (Moon et al., 2004), it is possible the two ORFs are co-

translated into a single Rcc01079/1080 protein. Interestingly, these two ORFs are located 

immediately upstream of genes required for production of the capsular polysaccharide 

RcGTA receptor (Brimacombe et al., 2013). 

 The protein encoded by rcc00171, Rcc00171, is required for gene transfer activity 

(Figure 3-2). The Rcc00171 protein sequence contains a domain of unknown function 

(DUF 2739) at the N terminus (Marchler-Bauer & Bryant, 2004), and this gene was 

previously annotated as “ribonuclease III”. This annotation suggested its function might 

be associated with nucleic acid binding, but particles from the rcc00171 mutant strain 
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contain DNA (Figure 3-4) and I found no evidence for DNA binding by the purified 

protein. Furthermore, I was unable to identify any justification for the ribonuclease III 

annotation. The impairment of gene transfer activity in the absence of Rcc00171 is not 

because of defects in capsid production, release, (Figures 3-2 and 3-4) or binding to cells 

(Figure 3-3). The ability of particles lacking this protein to bind to cells as efficiently as 

the wild type particles indicates it is required for a post-adsorption function. Like the tail 

fibres adjacent to capsule synthesis genes (discussed above), the two genes upstream of 

rcc00171 are predicted to be involved in capsular polysaccharide export. This might 

imply rcc00171 possesses a function related to the capsular polysaccharide. However, my 

attempts to demonstrate polysaccharide lyase activity with purified Rcc00171 were 

unsuccessful in three separate assays. In addition, the inability of the purified protein to 

rescue the gene transfer activity of Rcc00171-deficient particles does not support a role 

for the protein as a lyase. The inhibition of gene transfer of wild type RcGTA particles by 

the addition of Rcc00171 to RcGTA-cell mixtures (Figure 3-5) suggests another role 

entirely. I hypothesize that this protein is involved in attachment to a specific receptor 

following tail fibre mediated adsorption. The addition of extraneous Rcc00171 is 

presumably competing for and blocking attachment sites and therefore reducing the gene 

transfer rates in proportion to the concentration added. 
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Figure 3-6: Comparative genomics of loci identified to be co-regulated with the RcGTA 
structural gene cluster. Each locus is identified by a coloured shape, and its relative 
position in the genome indicated. Any plasmids or chromosomes containing none of the 
loci of interest have been omitted. The genomes chosen for comparison, with accession 
numbers of the relevant replicons in brackets, are those of Ruegeria pomeroyi DSS-3 
(NC_003911), Paracoccus denitrificans PD1222 (NC_008686 and NC_008687), 
Rhodobacter sphaeroides 2.4.1 (NC_007493 and NC_009007) and Octadecabacter 
antarcticus 307 (NC_020911). 
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 One notable ORF not on my list of 26 genes is rcc01699, which is immediately 

downstream of orfg15. In several annotations of the RcGTA structural gene cluster, it is 

included as part of the cluster (Lang & Beatty, 2000; Lang & Beatty, 2001; Lang et al., 

2002). The RcGTA structural gene cluster is organized in a head-to-tail manner, similar 

to the organization of other phages (Casjens et al., 1992). The genes that typically follow 

directly after the large “host specificity protein” gene (e.g. lambda J) are tail fibres. 

Insertional disruption of rcc01699 had no effect on RcGTA activity (Figure 3-2). As this 

ORF is not co-regulated with the RcGTA gene cluster or required for gene transfer 

activity, I conclude it is not an RcGTA gene. Another notable gene not on my list was 

rcp00136, encoding one of the proteins identified by proteomics as associated with 

RcGTA particles (Chen et al., 2008). This gene was not identified in any of my 

transcriptome pair-wise comparison lists and is also absent from the RcGTA 

overproducer strain DE442, which lacks the plasmid carrying this gene (Hynes et al., 

2012). 

 Within the class Rhodobacterales, the RcGTA structural cluster is widely 

conserved (Lang & Beatty, 2007; Lang et al., 2012; Biers et al., 2008). I examined the 

genome sequences of representatives from four separate genera known to contain 

complete RcGTA structural gene clusters for evidence of these nine ORFs which may be 

additional components of the RcGTA “genome”. These included Ruegeria pomeroyi 

DSS-3, in which GTA-mediated gene transfer has been reported (Biers et al., 2008) as 

well as Paracoccus denitrificans PD1222, Rhodobacter sphaeroides 2.4.1 and 

Octadecabacter antarcticus 307. In each of these, at least half of the additional loci were 

identified and they were always distributed throughout the genome, in some cases located 
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on different replicons (Figure 3-6). The tail fibre locus was not conserved, which is 

unsurprising because tail fibres mediate specific adsorption to the cells and are more 

likely to be conserved in unrelated phages infecting the same host than in related phages 

infecting different hosts (Haggård-Ljungquist et al., 1992). The rcc00555-rcc00556 lysis 

module and the rcc01865-rcc01866 module were the only two to be conserved in every 

genome examined, although rcc00171 was absent only from O. antarcticus 307. The 

homologue of rcc00171 in P. denitrificans is of interest because it is located adjacent to a 

duplicated version of the RcGTA orfg15 and a fragment of a transposase gene. This may 

reflect the ancestral state of the RcGTA cluster with rcc00171 immediately downstream 

of orfg15, a position consistent with a role in interaction with recipient cells. This position 

downstream of orfg15 is conserved in Roseobacter denitrificans phage RDJL!1!(Huang 

et al., 2011), which also contains a gene with homology to the known RcGTA regulator 

ctrA. 

 Gene transfer agents are remarkable because of their inability to package 

sufficient DNA to transfer their “genome” to a recipient cell. For RcGTA, this genome 

was previously thought of as a ~15-kb gene cluster. I have now shown that RcGTA is 

actually encoded by at least two additional loci (rcc00171 and rcc01079-rcc01080) and 

previous work (Hynes et al., 2012) demonstrated dependence on a third (rcc00555-

rcc00556). Homologues of these genes are also present in other organisms carrying 

related GTA gene clusters, and identification of these additional genes in other species 

may help to guide efforts to identify other active GTAs in the Rhodobacterales. In 

R. capsulatus, these additional RcGTA genes show the same transcriptional patterns as 
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the main structural gene cluster, demonstrating a conserved mechanism of regulation that 

has yet to be elucidated. 
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4 DNA Packaging Bias and Differential Expression of Gene Transfer 

Agent Genes Within a Population During Production and Release of 

the Rhodobacter capsulatus Gene Transfer Agent, RcGTA 

4.1 Introduction 

 Gene transfer agents (GTAs) are phage-like particles encoded in prokaryotic 

genomes that transfer fragments of a producing cell’s genome to recipient cells (Stanton, 

2007). The process is analogous to transduction, but GTAs are differentiated from 

transducing phages by two main features: GTAs appear to always contain DNA from the 

cell’s genome, and they always package smaller amounts of DNA than are known or 

predicted to encode the particles (Stanton, 2007; Lang & Beatty, 2007). The first GTA 

identified was RcGTA, discovered as a DNase-resistant and protease-sensitive mediator 

of gene transfer in cell-free filtrates of Rhodobacter capsulatus cultures (Marrs, 1974). 

RcGTA particles look like small tailed phages (Yen et al., 1979), but cultures producing 

RcGTA do not exhibit detectable lysis (Solioz et al., 1975). We know of no reported 

instance where a tailed phage particle has been found to exit a cell without lysis. 

Screening of a transposon library for mutants that had lost the ability to make functional 

RcGTA identified an approximately 15-kb gene cluster on the R. capsulatus chromosome 

encoding the RcGTA particle (Lang & Beatty, 2000), genes rcc01682-1699 (GenBank 

accession numbers AF181080 and NC_014034). This RcGTA structural gene cluster has 

an organization conserved in tailed phages (Casjens et al., 1992; Lang & Beatty, 2000). 
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 Previous work with RcGTA showed that the particles contain ~4-kb of linear 

double-stranded DNA (dsDNA) (Solioz & Marrs, 1977; Yen et al., 1979), which had 

similar GC content, as quantified using CsCl2/CsSO4 gradients (Solioz & Marrs, 1977), 

and complexity, as determined by hybridization kinetics and restriction analyses (Yen et 

al., 1979), to that of the R. capsulatus genome. RcGTA packages DNA from all replicons 

in donor cells including introduced plasmids (Scolnik & Haselkorn, 1984). These findings 

have led to the assumption that RcGTA packages R. capsulatus DNA at random. 

 DNA packaging mechanisms in dsDNA phages are dependent on the action of an 

endonuclease complex known as the terminase. Terminases are responsible for initiation 

of packaging, translocation of the DNA into the particle, and the cutting of the DNA to 

complete packaging (Black, 1989). The activity of terminases can be categorized 

according to the nature of the ends of the packaged DNA, a grouping that corresponds 

closely with terminase phylogeny (Casjens et al., 2005). The RcGTA gene cluster 

contains a recognizable large terminase-encoding gene, orfg2 (Lang & Beatty, 2000). If 

RcGTA does indeed package DNA at random, its packaging must be by a “headful” 

packaging mechanism assisted by a non-sequence-specific terminase. The best-studied 

example of such packaging is that of phage T4, where each head is packed full with 1.02 

genome lengths of T4 DNA (Streisinger et al., 1967) and the large terminase appears to 

have no sequence specificity (Bhattacharyya & Rao, 1994). 

 We have performed quantitative analyses of the DNA packaged within RcGTA 

particles and single-cell RcGTA gene expression levels. The identification and disruption 

of a putative lysis gene involved in release of RcGTA particles from cells lead us to 

propose a mechanism by which the variation in RcGTA gene expression among cells in a 
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population explains an observed packaging bias and the lack of observable lysis within a 

RcGTA-producing culture. 

4.2 Experimental procedures 

Table 4-1: R. capsulatus strains and experimental plasmids used in this study 

Strains and 
plasmids Description References 

R. capsulatus 
strain   

SB1003 Genome-sequenced strain 
(Yen and Marrs, 
1976; Strnad et al., 
2010) 

DE442 
RcGTA overproducer, crtD (provenance 
uncertain; believed to be derived from 
RcGTA overproducer Y262) 

(Yen et al., 1979; 
Fogg et al., 2011) 

SB1685 SB1003 with KIXX insertion in 
rcc01685 This study 

DE1685 DE442 with KIXX insertion in rcc01685 This study 

SB2539 SB1003 with KIXX insertion in 
rcc02539 This study 

DE2539 DE442 with KIXX insertion in rcc02539 This study 

SB555 SB1003 with KIXX insertion in 
rcc00555 This study 

DW5 SB1003 !puhA (Wong et al., 1996) 
Plasmid   
pXPB pucB’::’lacZ fusion This study 
pX2 RcGTA orfg2’::’lacZ fusion This study 

pX2NP Promoterless RcGTA orfg2’::’lacZ 
fusion This study 

pX3 RcGTA orfg3’::’lacZ fusion This study 

pX3NP Promoterless RcGTA orfg3’::’lacZ 
fusion This study 

pR555 rcc00555 and 193 bp of 5’ sequence in 
KpnI site of pRK767 This study 
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4.2.1 Bacterial strains, growth conditions, and plasmids 

 The strains of R. capsulatus used in this study are listed in Table 4-1. Strains 

carrying the kanamycin resistance marker were created as follows. The ORFs of interest 

were amplified by PCR and cloned in pGEM-T Easy (Promega, Madison, WI). The 1368-

bp SmaI fragment of the KIXX cartridge (Barany, 1985), encoding resistance to 

kanamycin, was then ligated into a restriction enzyme cut site within the cloned PCR 

product. The primers used for the rcc02539 construct were 5’-

TTCCATGCCGAAATAGGCCGC-3’ and 5’-GGCGCCGTCGTCGATCTGAAT-3’, and 

the KIXX fragment was ligated into a SmaI site. The primers used for the rcc01685 

construct were 5’-AACGGGATGGGACTGAATTT-3’ and 5’-

ATGTCACCAGCGACACTTCC-3’, and the KIXX fragment was ligated into an 

Eco47III site. The primers used for the rcc00555 construct were 5’-

AACGAGGTTTTCCTGGAGGT-3’ and 5’-AACCTGTTCCGCAAGATCAC-3’, and the 

KIXX fragment was ligated into a SmaI site. These plasmids were independently 

transferred into R. capsulatus by conjugation from E. coli C600 (pDPT51) (Taylor et al., 

1983), and the kanamycin resistance genes transferred to the chromosome of recipient 

R. capsulatus cells by RcGTA transfer (Scolnik & Haselkorn, 1984). Successful transfers 

of the gene were confirmed by PCR using the same primer pairs and template DNA from 

the resultant kanamycin resistant RcGTA recipients, which showed 1.4-kb larger products 

than the non-disrupted versions. 

 R. capsulatus cells were grown under anaerobic photoheterotrophic conditions in 

complex YPS medium (Wall et al., 1975b) at 35°C for RcGTA production bioassays, 
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purification of particles for DNA isolations, and purification of RNA for microarray 

analysis. For all other purposes, they were grown aerobically at 30°C in RCV medium 

(Beatty & Gest, 1981). 

 The experimental plasmids are listed in Table 4-1. They consist of an in-frame 

fusion of the chosen ORF to lacZ in the promoter probe vector pXCA601 (Adams et al., 

1989), created using the BamHI and PstI sites in the vector and adding corresponding 

sites to the amplification primers for cloning. pXB was created using the primers 

5’TGCCTGCAGAAAGATGCGTCTGGAACACC-3’ and 5’-

GGGGATCCCCATCGATCAGGTAGCTGTG-3’; pX3 and pX3NP were created using 

the forward primers 5’-CGGCTGCAGACCGATCCGG-3’ and 5’-

ATACTGCAGCATGGACATGGGGTTCAA-3’, respectively, and the reverse primer, 

5’-AGGATCCCCCGTGCGCATCAGACTGAC-3’; pX2 and pX2NP were created using 

the same forward primers used for pX3 and pX3NP, respectively, and the reverse primer, 

5’-AGGATCCACGTCGCGCACCTGAT-3’; underlined bases represent the restriction 

sites added for cloning. All constructs were created from sequences amplified from the 

genome-sequenced strain SB1003, and the fusions were confirmed as in-frame by 

sequencing. We sequenced the same RcGTA upstream region amplified from the RcGTA 

overproducer DE442, confirming it was identical to the SB1003 sequence. 

 Complementation of the rcc00555 mutant was carried out with rcc00555 and its 

native promoter, as amplified by the primers 5’-

ATGGTACCATGGTCGAGGGCACCTTT-3’ and 5’-

ATGGTACCCCAGGATCGTCCCGATC-3’, ligated into the broad host-range vector 

pRK767 (Gill & Warren, 1988) using KpnI sites (underlined in the primer sequences). 
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4.2.2 RcGTA DNA isolation 

 Cultures of strain DE442 were grown for 48 h. The cells were then centrifuged at 

5855 g, the supernatant filtered through a 0.45-µm polyvinylidene fluoride (PVDF) filter 

(Millipore, Bedford, MA), and the filtrate ultracentrifuged at 184000 g for 5 h. The 

resulting pellet was resuspended by shaking at 100 RPM in G buffer (Solioz & Marrs, 

1977) overnight at 4°C. The resuspensions were treated with 2 units RNase-free DNase I 

(New England Biolabs, Pickering, Canada) and 1.2 units RNase A (Sigma-Aldrich, 

Oakville, Canada) in 1X DNase Buffer (New England Biolabs) at 37°C for 30 min to 

remove any free nucleic acids, and then incubated at 75°C in the presence of 5 mM 

EDTA (pH 8). DNA was purified by phenol:chloroform:isoamyl alcohol (25:24:1) 

extraction and ethanol precipitation. The sample was subjected to agarose gel 

electrophoresis and the ~4-kb RcGTA DNA band extracted using the QIAEX II Gel 

Extraction Kit (Qiagen, Mississauga, Canada). 

4.2.3 Microarray analyses 

 The R. capsulatus microarrays are Affymetrix whole-genome expression arrays 

(Affymetrix, Santa Clara, CA) that contain oligonucleotide probes for 3635 ORFs 

(Mercer et al., 2010). For the RNA analysis, cells were harvested 16 h after reaching 

stationary phase, as determined by monitoring culture turbidity, and RNA was extracted 

using the RNeasy Kit (Qiagen) as described (Mercer et al., 2010). The RNA and DNA 

samples were processed for cDNA synthesis and fragmentation, respectively, and 

subsequent labeling and array hybridization at the Michael Smith Genome Science Center 
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(Vancouver, Canada) as described in the Affymetrix Expression Analysis Technical 

Manual for prokaryotic samples. 

 Raw data from the RcGTA DNA array were extracted using the MAS5 algorithm 

with detection calls (Pepper et al., 2007) to generate signal intensity. Statistical analyses 

of the raw data were carried out using Minitab 15 (Minitab, State College, PA). Raw data 

from the RNA arrays were robust multi-array (RMA) normalized (Irizarry et al., 2003) 

and normalized to the 50th percentile using GeneSpring 7.2 (Agilent Technologies, Santa 

Clara, CA). 

 The microarray data from this study have been deposited in the NCBI Gene 

Expression Omnibus (GEO) database (accession number GSE33176). 

4.2.4 RcGTA activity bioassays 

 Cultures of the test strains were grown aerobically overnight, and then normalized 

for density and used to inoculate RcGTA-production bioassay cultures. These cultures 

were then grown for 48 h and filtrates were collected using 0.45-µm PVDF syringe filters 

(Millipore). Filtrates were assayed for RcGTA activity using strain DW5 as the recipient 

as follows. An overnight aerobic culture of DW5 was centrifuged and the cells 

resuspended in an equal volume of G buffer (Solioz et al., 1975). Equal volumes of donor 

filtrate and recipient cells were mixed with four volumes of G buffer and incubated for 1 

h at 35°C with shaking. Nine volumes of RCV medium were then added and the mixtures 

incubated for a further 3 h before plating. Each bioassay was plated in equal parts on YPS 

and YPS with kanamycin sulfate (10 µg ml-1). The YPS plates were grown under 

anaerobic phototrophic conditions to select for transfer of the puhA gene while the 
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kanamycin-containing plates were incubated aerobically in the dark to select for transfer 

of the resistance marker. Colonies on the plates were counted after 2 days, and the ratios 

of transfer of kanamycin resistance to puhA in four independent assays were calculated. 

The transfer rates were compared by one-way ANOVA and Tukey HSD test. In lysis 

assays, a 1 ml portion of each culture was centrifuged and the cells resuspended in 30 !l 

of 20 mM Tris-HCl, 5 mM EDTA, 250 mM sucrose (pH 7.8) containing 0.5 mg ml-1 

lysozyme (Sigma-Aldrich). After three freeze-thaw cycles in dry ice-ethanol, 1 ml of 20 

mM Tris-HCl, 0.5 mM MgCl2 (pH 7.8) containing 0.1 mg ml-1 DNase (Sigma-Aldrich) 

was added to the cells and the mixtures incubated for 5 min before filtration using a 0.45-

!m PVDF filter (Millipore). The filtrates were then used for gene transfer bioassays as 

described above. 

4.2.5 Western blots targeting the RcGTA major capsid protein 

Cells and culture filtrates from the same cultures used in RcGTA activity bioassays were 

assayed for RcGTA capsid protein by western blotting. Cultures were centrifuged at 

17000 g, the supernatant was removed and the cells re-suspended in an equal volume of 

TE buffer. For the different samples, 5 µl of the cell suspensions, 10 µl of culture filtrates, 

and 10 µl of the cell lysates were run. SDS-PAGE, blotting, and detection of the RcGTA 

major capsid protein were done as described (Mercer et al., 2012) with the primary 

antibody AS08 365 (Agrisera, Vännäs, Sweden). Images were captured on a gel 

documentation system and subsequently inverted and adjusted for brightness and contrast 

using Adobe photoshop CS5.0 (Adobe Systems Inc, San Jose, CA). 
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4.2.6 RcGTA gene expression in single cells 

 R. capsulatus cultures containing the fusion constructs (Table 4-1) were grown 

until 4 h after reaching stationary phase, and analyzed for !-galactosidase activity. Cells 

were permeabilized by exposure to 15% (v v-1 ) isopropyl alcohol for 15 min and then 

washed with Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 

50 mM !-mercaptoethanol; pH 7) (Miller, 1992). Fluorescein di-!-D-galactopyranoside 

(FDG) (Sigma-Aldrich) in H2O:DMSO:ethanol (8:1:1) was added to a final concentration 

of 0.1 mg ml-1. The cells were incubated for 1 h and subsequently diluted 1:200 in Z 

buffer and analyzed by flow cytometry recording 100 000 events. These events were 

gated, according to forward and side scatter, to identify >90% of events as “cells”. These 

assays were repeated three times with independently grown cultures. 

4.2.7 Bioinformatic analyses 

 The RcGTA large terminase protein sequence was used to perform a BLAST 

search against the nr database (Wheeler et al., 2007) by both psi-blast and blastp 

(Altschul et al., 1990; Altschul et al., 1997). The selected terminase protein sequences 

were aligned using Clustal X (Larkin et al., 2007). 

4.2.8 Treatments of RcGTA DNA for ligation experiments 

 RcGTA DNA (1 µg) was treated with 3 units T4 DNA polymerase (New England 

Biolabs) at 12°C for 15 min as per the manufacturer’s recommendations. An equivalent 

sample was incubated with 2 µl M-MuLV RNase H+ RT solution from the Phusion RT-

PCR kit (Finnzymes, Espoo, Finland) supplemented with 0.5 mM dNTPs according to the 
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manufacturer’s recommendation at 40°C for 30 min, and the enzyme then heat-

inactivated by incubation at 85°C for 5 min. Both reactions, alongside a negative control 

that contained the same amount of RcGTA DNA in TE buffer in the same total volume, 

were cleaned using the QIAquick cleanup kit (Qiagen), and the DNA was eluted in 30 µl 

of elution buffer. 26 µl of these eluates were independently treated with 800 cohesive end 

units of T4 DNA Ligase (New England Biolabs) according to the manufacturer’s 

recommendations at 16°C for 18 h. The samples were then subjected to agarose gel 

electrophoresis. 

 

4.3 Results 

4.3.1 Genome-wide quantification of DNA packaged in RcGTA particles 

 To quantify the packaging of each gene from the R. capsulatus genome, DNA 

extracted from RcGTA particles harvested from DE442, an RcGTA overproducer of 

uncertain ancestry (Table 4-1), was hybridized to a whole-genome microarray [NCBI 

Gene Expression Omnibus (GEO) database accession number GSE33176]. All 3645 

chromosomal ORFs present on the microarray were present in the particles. The raw 

signal intensities varied from 265.6 to 838.9, and the average signal intensity was 545.7 ± 

72.2. The microarrays are based on the genome-sequenced strain, SB1003 (Strnad et al., 

2010), which contains a ~130-kb plasmid. The data for the plasmid showed that 156 of 

157 ORFs had very low signals, with an average signal intensity of 6.1 ± 7.8. There was 

one exception, rcp00051, which had an intensity of 671.7. We examined the genome 
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sequence and found that a 99% identical paralog of rcp00051 is located on the 

chromosome, rcc01445. Therefore, other than the single ORF that is duplicated on the 

chromosome, no plasmid genes were detected in the RcGTA DNA and gel 

electrophoresis confirmed strain DE442 lacks the plasmid (data not shown). 

 Signal intensities for the ORFs on the array are shown as a histogram (Figure 4-1, 

bottom). The frequency distribution of the signal intensities was unimodal. A probability 

plot of the data (Figure 4-1, top) showed that variation from normal occurs in the top and 

bottom 1% of signal intensities. Too many genes were packaged infrequently (signal 

intensities <~378) and too few genes were packaged most frequently (signal intensities 

>~714) for a strictly normal distribution. We examined a variety of properties of the 

genes that were most and least often packaged: predicted gene function, orientation, 

location in the genome, GC content, and transcript levels. Such examinations of the 100 

most frequently packaged and 100 least frequently packaged ORFs revealed no obvious 

patterns or trends. Plotting of the RcGTA packaging signal, GC content, and transcript 

levels against genome position (Figure 4-2) identified a region with a pronounced drop in 

packaging frequency that corresponded with a spike in transcript levels (Figure 4-2A and 

C; approximately position 1700). This corresponded to the RcGTA gene cluster, and this 

region had the lowest average packaging in the genome with the moving average window 

of 20 ORFs. The average packaging intensity of these genes was only 433.8 ± 66.8. This 

region also showed an obvious differential expression in the RcGTA overproducer strain 

relative to the wild type (Figure 4-2D). 
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Figure 4-1: Distribution of signal intensities from hybridization of DNA packaged in 
RcGTA particles to an R. capsulatus microarray. A quantile-quantile plot is shown on the 
top and a frequency histogram on the bottom. On the bottom, genes are grouped within 
signal intensity ranges of 10 (e.g. 119 ORFs had a signal intensity between 470.0 and 
479.9). The highest signal intensities represent genes packaged most often, the lowest 
those packaged least often. On the top, the percentages represent the fraction of total 
signal intensities that fall within a range (e.g. 98% of the signals were between 380 and 
720). The top and bottom 1% of signal intensities are demarcated with dashed lines. The 
solid black lines represent normal distributions and points of departure are seen where the 
actual data in gray deviate from these lines. 
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Figure 4-2: Relationships between chromosomal location and RcGTA packaging 
frequency, transcript levels, and GC content. The packaging signal intensity (A), GC 
content (B), normalized transcript signal intensity of the RcGTA overproducer (C), and 
ratio of transcript levels in the RcGTA overproducer relative to wild type (D) are plotted 
versus Rhodobacter capsulatus genome position. In (A), (C), and (D) genome position 
represents the relative position of each ORF (i.e. position 500 is the 500th ORF from base 
1) and each point represents one ORF; all trend lines represent a moving average with a 
window of 20 ORFs. In (B), genome position represents the moving average over 20 of 
the 1026-bp windows used to calculate GC content. 

4.3.2 Transfer rates of genes from different locations in the R. capsulatus genome 

 To confirm the microarray-based observation of under-packaging of the RcGTA 

genes, we compared the transfer frequencies of a kanamycin resistance marker inserted in 
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the chromosome inside and outside the RcGTA gene cluster. The insertion inside the 

RcGTA gene cluster is located in a putative ORF (rcc01685) between the RcGTA genes 

encoding the predicted portal (orfg3, rcc01684) and protease (orfg4, rcc01686) proteins. 

This ORF had a packaging intensity of 409.5 on the RcGTA DNA array. The insertion 

outside of the cluster is located in gene rcc02539, predicted to encode a c-di-GMP 

signaling protein. This ORF had a packaging intensity of 582.8 on the RcGTA DNA 

array. Transfer rates were normalized to the transfer of puhA (rcc00659, packaging 

intensity of 674.6 on the RcGTA DNA array), the photosynthetic reaction centre H 

protein-encoding gene deleted in the transfer assay recipient strain, DW5. This approach 

was taken to normalize the kanamycin resistance transfer frequencies to the transfer of an 

independent marker representing the total RcGTA production by a strain in a given 

experiment. Neither kanamycin resistance marker insertion significantly affected RcGTA 

production, as measured by comparison of the puhA transfer rates. In both wild type 

(SB1003) and RcGTA overproducer (DE442) backgrounds, transfer of the marker outside 

of the RcGTA gene cluster occurred at ~40% of that of puhA, whereas transfer of the 

marker inside the RcGTA gene cluster occurred at ~20% (Figure 4-3). These differences 

were statistically significant (ANOVA, Tukey HSD test, p<0.01), while the differences 

between the rates of transfer from equivalent SB1003- and DE442-derived strains were 

not (p>0.05). 



 

 98 

 

Figure 4-3: Frequency of RcGTA-mediated transfer of the kanamycin resistance marker 
when located inside (rcc01685::KIXX) or outside (rcc02539::KIXX) the RcGTA gene 
cluster. Assays were performed with the marker inserted into the genome of both the wild 
type (SB1003) and RcGTA overproducer (DE442) strains. The transfer of the kanamycin 
resistance marker in these locations was normalized to the transfer of the puhA gene by 
the same strains in the same assays. The data are shown as averages from four replicate 
gene transfer bioassay experiments and the bars represent the standard deviation. Each 
letter (a,b) indicates a group whose members are not statistically different from one 
another, but are different from the other group. 

 

4.3.3 RcGTA gene expression in single cells 

 We hypothesized that the packaging bias against the RcGTA gene cluster might 

be linked to the coincident high level of transcription of these genes (Figure 4-2C). 

However, other regions showing similar localized high transcript levels (e.g. region at 

position ~700 on Figure 4-2A), or high ratios of transcript levels in DE442 versus 

SB1003 (e.g. region at position ~200 on Figure 4-2D) did not have a corresponding 
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decrease in packaging. We therefore hypothesized that the RcGTA genes might be 

differentially expressed within the population, and that perhaps only a subset of the 

population is responsible for all of the RcGTA expression. If so, population-wide 

expression arrays would underestimate transcript levels in the cells actually expressing 

the RcGTA genes. In these cells, high-occupancy of the RcGTA genes by the 

transcriptional machinery might limit access by the RcGTA packaging machinery, 

thereby causing a decrease in the packaging of these genes relative to other regions. 

 To test this hypothesis, we analyzed RcGTA gene expression at the single-cell 

level using plasmid-borne translational fusions to a lacZ reporter gene. Fusions were 

constructed to two different RcGTA genes, orfg2 encoding the terminase protein and 

orfg3 encoding the portal protein, because of previously observed differences in the 

transcript patterns of these genes by microarray analyses (Mercer et al., 2010). Both 

fusions contained the same sequences upstream of the RcGTA gene cluster, and negative 

controls lacked the predicted promoter regions. An independent fusion to a 

photosynthesis gene, pucB encoding the light-harvesting complex 2 ! protein, was 

constructed as a control. The !-galactosidase activities of the gene fusions were assayed 

in RcGTA overproducer (DE442) and wild type (SB1003) cells by flow cytometry 

(Figure 4-4). The pucB (Figure 4-4A) and orfg2 (Figure 4-4B) fusions produced similar 

unimodal patterns in both SB1003 and DE442. The orfg3 fusion, however, had 

considerably higher signals in some cells and showed a clearly multimodal distribution, 

with extended tails of cell counts with increased fluorescence (Figure 4-4C) not observed 

for the other fusions. Both SB1003 and DE442 had subsets of higher orfg3 expression, 
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but the expression levels and numbers of highly expressing cells are greater in the 

overproducer. 

4.3.4 Identification of the putative RcGTA lysis gene 

 The sub-population expression phenotype identified above might explain the lack 

of observed lysis in RcGTA-producing cultures. If only a small subset of cells is 

responsible for the majority of RcGTA production, these cells could lyse and release the 

particles. One of the genes up-regulated in the RcGTA overproducer relative to wild-type 

(Figure 4-2D), rcc00555, encodes a putative N-acetylmuramidase lysozyme protein that 

contains a variation (E-X8-D-X4-T) on the conserved catalytic residues present in the N 

terminus of many phage endolysins, E-X8-D/C-X5-T (Sun et al., 2009). The downstream 

and overlapping gene, rcc00556, is similarly up-regulated in DE442 and may encode a 

holin protein, which would be required for such an endolysin to access the peptidoglycan. 

It is predicted to have three trans-membrane domains and a topology consistent with a 

lambda S-type holin (Young, 2002) but lacks the dual-start codons separated by a 

positively charged amino acid common to such proteins and has no homology to proteins 

of known function. There are no apparent phage-related genes in the genome near these 

two genes. 
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Figure 4-4: Population patterns in gene expression measured with reporter gene fusions. 
Gene expression was quantified for the different gene fusions within populations of cells 
using flow cytometry, recording 100 000 events. The assays were repeated independently 
three times and a representative experiment is shown for each set of strains. A. The 
control fusion of the photosynthesis gene pucB (pXPB) in DE442 and SB1003 (black and 
gray lines, respectively). The mean fluorescence values were 7.77 and 7.70 for DE442 
and SB1003, respectively. B. The experimental fusion of the terminase-encoding orfg2 
(pX2) in DE442 and SB1003 (thick black and gray lines, respectively), and the 
promoterless control fusion (pX2NP) in DE442 (thin black line). The mean fluorescence 
values were 3.75, 10.18, and 10.55 for the promoterless, and experimental DE442 and 
SB1003, respectively. C. The experimental fusion of the portal-encoding orfg3 (pX3) in 
DE442 and SB1003 (thick black and gray lines, respectively), and the promoterless 
control fusion (pX3NP) in DE442 (thin black line). The mean fluorescence values were 
3.46, 50.3, and 16.11 for the promoterless, and experimental DE442 and SB1003, 
respectively.
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Figure 4-5: Identification of a putative endolysin required for release of RcGTA from 
cells. A. The frequency of gene transfer by the rcc00555 mutant, SB555, and the plasmid-
complemented strain. The gene transfer activity was determined as an average relative to 
SB1003 in five replicate bioassays and the bars represent the standard deviation. An 
asterisk (*) denotes RcGTA gene transfer levels that differed significantly from the wild 
type (p<0.001) determined by analysis of variance (ANOVA). The complemented strain 
did not differ from the wild type (p=0.67). B. The relative abundance, as measured by 
western blot, of RcGTA capsid protein in the cells (top) and culture supernatants (bottom) 
for SB1003 and SB555. Blots were performed on three replicate cultures and one 
representative set of blots is shown. C. Gene transfer activities in samples from 
artificially lysed SB1003 and SB555. The gene transfer activity was determined as an 
average relative to un-lysed SB1003 in three replicate experiments and the bars represent 
the standard deviation. ANOVA indicated these activities do not differ from one another 
(p=0.78). D. Expression of the orfg3 fusion construct (pX3) in SB1003 and SB555 (black 
and gray lines, respectively). A black line above the peak in the SB555 strain demarcates 
the sub-population discussed in the text. Mean fluorescence values were 138.6 and 145.3 
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for the entire SB1003 and SB555 populations, respectively, and 1847 for the cells in the 
indicated sub-population. The assays were repeated independently three times and a 
representative is shown. 

 

 Insertional disruption of the putative endolysin resulted in a ~95% reduction in 

RcGTA gene transfer activity (Figure 4-5A). This decrease was associated with a 

decrease of RcGTA major capsid protein in the culture supernatants (Figure 4-5B) and an 

increase in intra-cellular capsid protein. To determine whether the intra-cellular capsid 

protein represented functional particles, the cells were artificially lysed and the lysates 

showed RcGTA gene transfer activity equivalent to the lysed wild-type strain (Figure 4-

5C) confirming that the only RcGTA-related phenotype of the mutant is the inability to 

release functional particles trapped within the cells. Assay of the orfg3 reporter construct 

in the rcc00555 mutant revealed an accentuated sub-population of cells, 2.76% (± 0.53) 

of the population, expressing orfg3 at a much higher level (9.02-fold ± 3.31) than the 

remainder of the population (Figure 4-5D). 

4.3.5 Bioinformatic analysis of the RcGTA terminase 

 Using the RcGTA large terminase protein sequence for a BLAST search returned 

many high-scoring (score >500) sequences, all of which were from RcGTA-like elements 

in !-proteobacterial genomes and prophages. The top matches from phages were much 

weaker (e>10-5), and these were all from !-proteobacterial phages classified as “T4-like”. 

Therefore, at the present time, the phage sequences most closely related to the RcGTA 

terminase are in the T4-like group, although the recognizable homology to these T4-like 

phage proteins is over only ~31% of the protein. There is no recognizable homology 
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between any other RcGTA protein and sequences from the T4-like group. An alignment 

of the homologous region for the RcGTA, phage Acj61 (the top phage BLAST match), 

and two other phages from the T4-like group whose packaging has been characterized 

(T4 and IME08), is shown (Figure 4-6). The RcGTA and Acj61 sequences are 28% 

identical (47% similar) over the aligned region, supporting an evolutionary connection 

between these sequences. We presume that the RcGTA orfg1 encodes the small terminase 

subunit because of its location directly upstream of the large terminase, but it lacks 

recognizable sequence homology to any known phage sequence. 

 

 

Figure 4-6: Alignment of a portion of the large terminase proteins from RcGTA to 
phages T4, IME08, and Acj61. The numbers indicate the amino acid residue positions in 
the original proteins. The presence of positively scoring positions is indicated above the 
aligned sequences as defined in CLUSTAL: “*” indicates a fully conserved residue, “:” 
indicates full conservation of a strong group and “.” indicates full conservation of a weak 
group. 

4.3.6 Characterization of the ends of the DNA molecules in RcGTA particles 

 We conducted ligation experiments to determine the structure of the ends of the 

DNA within RcGTA particles. Untreated RcGTA did not ligate with itself efficiently, and 

most of the DNA remained at the ~4-kb size (Figure 4-7). Treatment of the DNA with T4 

DNA polymerase prior to ligation improved the efficiency considerably, while treatment 

with M-MuLV reverse transcriptase did not (Figure 4-7). As T4 DNA polymerase will 
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convert both 5’ and 3’ overhangs into blunt ends (Kucera & Nichols, 2008), the 

improvement in ligation efficiency indicates the ends of the DNA within the particles are 

neither blunt nor complementary overhangs. M-MuLV reverse transcriptase will fill 5’ 

overhangs to make blunt ends but does not possess the 3’-5’ exonuclease activity that 

would be required to make 3’ overhangs blunt (Verma, 1975). Therefore, the ends of the 

DNA in RcGTA particles are 3’ overhangs that are not consistent from particle to 

particle. Some ligation did occur in the absence of any end treatments (Figure 4-7). 

 

Figure 4-7: Ligation of DNA from RcGTA particles. Purified RcGTA DNA was treated 
with DNA ligase only (lane 1), M-MuLV reverse transcriptase followed by DNA ligase 
(lane 2), and T4 DNA Polymerase followed by DNA ligase (lane 3). A DNA ladder is 
shown on the left with the 4-kb and 8-kb bands indicated. 

4.4 Discussion 

 Previous studies of the DNA inside RcGTA particles (Solioz & Marrs, 1977; Yen 

& Marrs, 1976) using low-resolution techniques suggested that RcGTA packages DNA 

from within the producing cell at random. Our data from hybridization of DNA from 

RcGTA particles to an R. capsulatus whole-genome microarray show that DNA 
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packaging by RcGTA is essentially random (Figure 4-1). The RcGTA particles contain 

every gene in the donor cell (Figure 4-2), and the terminase protein shows homology to 

known sequence-independent enzymes from phages in the T4-like group (Figure 4-6). 

Phage T4 is a well-characterized example of a phage that uses a non-sequence-specific 

headful packaging mechanism (Rao & Black, 2005). The limited, but recognizable, 

sequence homology between these terminases indicates a distant evolutionary connection 

between RcGTA and the T4-like phage proteins. 

 Sequence-independent headful packaging is thought to always result in blunt ends, 

as there is no requirement for cohesive end structures (Casjens & Gilcrease, 2009). Blunt 

ends have been demonstrated for phages P22 (Schmieger et al., 1990), Mu (Morgan et al., 

2002), as well as T4 (Louie & Serwer, 1990). We expected to find similarly blunt-ended 

DNA within the RcGTA particles. However, ligation experiments with DNA from within 

RcGTA particles indicate the presence of 3’ non-sequence-specific ends on the packaged 

DNA. The observation of a small amount of ligation in the absence of end-modifying 

treatments (Figure 4-7) most likely indicates that some matching cohesive ends are 

present at a low frequency and the 3’ overhangs may be only several nucleotides in 

length. The discovery of non-matching end sequences and the random packaging data 

together support a model where the RcGTA terminase has no sequence specificity and the 

DNA molecules present inside producing cells act as “concatamer” substrates for headful 

packaging. 

 A putative Bartonella GTA capable of packaging all genes in the genome was 

recently identified and was found to preferentially package a chromosomal “high 

plasticity zone” (Berglund et al., 2009). This region was associated with run-off 
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replication and therefore the packaging bias likely results from the increased relative copy 

number of certain sequences and not a packaging specificity. It might have been expected 

to find an increased packaging by RcGTA of the genes nearer to the origin of 

chromosome replication (ori), due to overall higher copy number in cells undergoing 

replication and division, but this was not observed (Figure 4-2, where ori is at position 0). 

However, RcGTA production is highest in the stationary phase of growth (Solioz et al., 

1975), which is also the phase at which the RcGTA particles were harvested, and so there 

would be little replication and division happening at this time in the culture. Our data 

from R. capsulatus fail to support the hypothesis that GTAs might preferentially package 

“cloud genes” (poorly conserved genes) (Kristensen et al., 2010). 

 An examination of packaging frequency and a variety of other factors did not 

yield any obvious correlations. There was one notable exception, where the RcGTA gene 

cluster was the least frequently packaged region of the chromosome, at ~75% of the 

average. Therefore, RcGTA DNA packaging is not selective for RcGTA genes with 

occasional packaging of “host” DNA, as one might expect of a transducing prophage. The 

relative rate of transfer of markers inserted inside and outside of the RcGTA gene cluster 

confirmed the array-based quantification and extended this observation from the 

overproducer strain to the wild type (Figure 4-3). The higher transfer rates of the control 

marker puhA are most likely due to the smaller size of this marker, which requires 

transfer of 591 bp of non-homologous sequence to the recipient while the kanamycin 

resistance marker requires transfer of 1368 bp of non-homologous sequence to the 

recipient. This size difference would result in an increase in the frequency with which an 

intact copy of the puhA marker is packaged with sufficient flanking sequence to allow for 
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homologous recombination in the recipient cell, and may affect the efficiency of that 

recombination event. 

 The finding that under-packaging of RcGTA genes was correlated with localized 

high transcript levels (Figure 4-2) suggested there could be a link between gene 

expression and RcGTA packaging, and perhaps high occupancy of these genes by the 

cell’s transcription machinery could protect them from packaging. However, there was no 

correlation between transcript levels and packaging intensity over the remainder of the 

chromosomal ORFs (Figure 4-2). The RNA expression microarray measures total 

transcript levels from the entire population and the results represent an average for each 

cell. Therefore, if only a subset of the population were transcribing the RcGTA genes at a 

high level, the arrays would yield an artificially low estimate of the transcript levels in 

those cells. Such sub-population expression patterns have been reported in other species 

(Avery, 2006; Lopez et al., 2009). Analysis of translational reporter fusions to RcGTA 

orfg3 by flow cytometry validated this hypothesis, as there was a multimodal distribution 

of gene expression levels in the population (Figure 4-4). The control fusion to the 

photosynthesis gene pucB, which would be expressed by all cells in these phototrophic 

growth conditions, showed a unimodal distribution. A fusion to RcGTA orfg2 also was 

unimodal. It has previously been observed that orfg2 and orfg3 differ in their transcription 

patterns. Loss of the response regulator CtrA leads to loss of RcGTA production, but 

whereas no transcripts are detected for orfg3, some transcripts of orfg2 are still detected 

in a ctrA mutant (Mercer et al., 2010). This indicates that control of transcription and 

protein expression for different genes in the RcGTA gene cluster is more complex than 

previously realized. 
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 The documentation of unequal RcGTA gene expression within a population may 

help explain the lack of observable cell lysis in cultures producing RcGTA. A tailed 

phage particle escaping from cells without lysis has never been reported, and it is 

presumably only the small subset of the population that is expressing the RcGTA genes at 

a higher level (Figure 4C) that are producing RcGTA and lysing to release the particles. 

In order to validate this hypothesis, we examined a list of genes co-regulated with 

RcGTA in the overproducer strain and identified a putative lysis gene with sequence 

homology to lysozyme proteins. Disruption of this gene resulted in a ~95% reduction in 

gene transfer activity (Figure 4-5A). This reduction is the result of lower levels of 

RcGTA in culture supernatants and an accumulation within the cells (Figure 4-5B). 

Manual lysis of this mutant released equivalent functional RcGTA to that from the lysed 

wild type strain (Figure 4-5C). These findings support the role of rcc00555 as a gene 

involved in release of RcGTA. Furthermore, the presence of the orfg3 reporter construct 

in the rcc00555 mutant resulted in the appearance of a more pronounced sub-population 

of cells highly expressing orfg3 (Figure 4-5D). This sub-population of ~3% of the total 

cells showed ~9-fold higher expression and is presumably responsible for almost all of 

the RcGTA activity in the culture (Figure 4-5A). The accentuation of this population in 

the rcc00555 mutant must reflect lack of lysis in the highly expressing cells that would 

normally have lysed to release RcGTA particles. The lack of observed lysis in RcGTA-

producing cultures is easily explained, given the small size of this sub-population 

responsible for release of the majority of the RcGTA particles. 

 All genes inside the producing cell are packaged inside RcGTA particles, although 

there is a slight but significant reduction in packaging of the RcGTA-encoding structural 
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gene cluster. The higher RcGTA gene expression in the subset of cells responsible for 

producing RcGTA particles could result in decreased access to these genes by the 

packaging machinery. There could be a selective advantage to this protection of the 

RcGTA genes in these cells, favoring their prolonged expression to maximize RcGTA 

production. The confirmation that cells are lysing to release RcGTA, an important cost 

for their production, is mitigated by the discovery that only ~3% of the cells in RcGTA-

producing cultures are responsible for release of the majority of the particles. 
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5 Summary 

 There is very little known about any of the gene transfer agents, even the 

archetypal Rhodobacter capsulatus gene transfer agent (RcGTA). Prior to my research, 

we knew of its ability to package and transduce DNA seemingly at random (Solioz & 

Marrs, 1977; Yen et al., 1979) at a high frequency (Yen & Marrs, 1976), of the existence 

of the “structural cluster” encoding the particles (Lang & Beatty, 2000), and of its 

regulation driven by entry into stationary phase (Solioz et al., 1975) by means of host 

mechanisms including a complex phosphorelay (Lang & Beatty, 2000) and quorum-

sensing (Schaefer et al., 2002). 

 The non-replicative nature of RcGTA DNA transfer explains the absence of 

distinguishable replication, integration or excision genes in the structural gene cluster, but 

not the absences of a means of escaping the producing cell or of tail fibre-encoding genes. 

Given that GTAs have been found in Archaea (Bertani, 1999), spirochaetes (Matson et 

al., 2005), !- (Marrs, 1974) and "- (Rapp & Wall, 1987) proteobacteria, and that the !-

proteobacterial lineage appears quite conserved (Lang & Beatty, 2007), GTAs present a 

very interesting evolutionary puzzle to which we have too few of the pieces. What is the 

cost of production? How many cells produce RcGTA, and when? What is the benefit to 

the individual cell producing RcGTA, or to its conspecifics? 

 To help answer these questions, I searched for the “missing” functions not 

encoded by the RcGTA structural cluster. Given that several satellite or “defective” 

phages are dependent on other phages for their “life” cycle (Christie & Dokland, 2012), 

the search began with the phages of R. capsulatus (Chapter 2). In purifying RcGTA 
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DNA, I observed the presence of a co-purifying DNA band much larger than the 4-kb 

expected for RcGTA-packaged DNA. The detection of this larger band was possible only 

in R. capsulatus strains capable of high levels of gene transfer activity, suggesting it was 

linked to RcGTA in some way. This larger band proved to consist of two ~40.3-kb phage 

genomes, those of RcapNL and RcapMu, which were sequenced and characterized. With 

the modification of my extraction protocols I was able to isolate a third, ~80.85-kb band, 

which I dubbed RcapH. It proved intractable to restriction enzyme digestion and 

sequencing, but appeared independently of RcGTA gene-transfer activity and so was of 

lesser interest. RcapMu mapped to the published R. capsulatus SB1003 genome 

sequence, and accounts for half of the ~80-kb “transposable phage cluster” annotated in 

Figure 1-1. RcapNL did not map to the published sequence, but I identified its integration 

site. Figure 5-1 depicts an updated map of the R. capsulatus genome’s prophages. 

 I assayed a variety of RcGTA-affected mutants to investigate the link between 

RcGTA activity and phage production. I also knocked out both RcapMu and RcapNL, 

individually and in combination, and assayed the effects on RcGTA activity. They proved 

to have no effect on gene transfer activity, which establishes both that the link between 

RcGTA and the phages is not reciprocal and that the transduction activity of the phages is 

negligible in comparison to that of RcGTA. No obvious “missing” GTA functions appear 

to be encoded by these phages. 
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Figure 5-1: Prophage elements of R. capsulatus SB1003. The circle is a representation of 
the SB1003 chromosome, with base numbers from base 1 (white line) labeled. Each green 
region represents a cluster of phage-derived genes likely to be a prophage or prophage 
remnant, with the size of the cluster identified. The functional transposable prophage 
RcapMu forms roughly half of the previously annotated 80-kb “transposable phage 
cluster”, while the prophage RcapNL is a new addition, absent from the published 
genome sequence. The structural cluster encoding the phage-like gene transfer agent 
(GTA) is highlighted in purple. 
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 To search elsewhere for these “missing” functions, I turned to a transcriptomic 

analysis of the genome to find genes co-regulated with RcGTA activity (Chapter 3). In 

doing so, I identified 26 genes, 17 of which were the RcGTA structural cluster (Figure 5-

2). The remaining 9, encoded in six additional loci, were investigated in detail. I found 

that rcc01079/01080 encode tail fibre proteins, rcc00171 is probably involved in non-

reversible attachment, and rcc00555/556 appear to be a lysin/holin pair (Chapter 4). The 

role of these additional elements has fleshed out many previously obscure aspects of the 

RcGTA “life” cycle. 

 The identification and characterization of these functions, essential for efficient 

RcGTA gene transfer activity, led me to search for these additional loci in other !-

proteobacteria known to carry RcGTA structural clusters. They may serve as good 

additional indicators of functional GTAs. This analysis established that many of these 

additional loci are present in these other organisms, and they are consistently spread 

across multiple loci, in some cases across multiple replicons. Given that an unrelated 

GTA, VSH-1, is encoded by at least two separate loci, this may be a conserved feature of 

all GTAs.  
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Figure 5-2: The RcGTA “genome”. Depiction of the structural gene cluster and genes co-
regulated with the structural cluster. The direction of transcription is indicated by the 
arrow depicting each gene. Vertical offset in neighbouring genes indicates different 
reading frames. All genes and gaps are to scale, with the exception of lines interrupted by 
two parallel lines, which indicate discontinuity. The RcGTA structural gene cluster spans 
from gene rcc01682 to rcc01698, a total of 14 087-bp. Genes with known function or 
homology to a phage gene are annotated by function, and the first and last gene of each 
locus is identified by gene ID. Proteins detected in RcGTA particles are as reported by 
(Chen et al., 2008), while those shown to be required for RcGTA activity are as reported 
by (Lang & Beatty, 2000; Fogg et al., 2012; Hynes et al., 2012) and Chapter 3. 

 

 The search for additional genes involved in RcGTA production presented me with 

a very important piece of the evolutionary puzzle: the involvement of rcc00555 in lysing 

the RcGTA-producing cells to release the particles into the media. I was now in a position 

to establish the cost, and potentially the benefit, of RcGTA production. 
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 I began by assaying which genes were being transferred by the particles to search 

for any biases that might indicate a system that evolved to transfer specific genes 

preferentially (Chapter 4), as conjugation systems (plasmids), transduction (phage) and 

transformation (specific uptake sequences) do. By analysis of the data from hybridizing 

DNA extracted from RcGTA particles to a whole-genome micro-array, I established that 

overall packaging trends appear random with one notable exception: the structural cluster 

responsible for RcGTA production is significantly under-packaged. This is precisely the 

opposite one would expect for a selfish or specialized transfer apparatus. 

 I was unable to find evidence for a mechanism actively depressing RcGTA 

structural cluster packaging. I proposed a mechanistic explanation in which only a subset 

of cells are responsible for the RcGTA production and that these cells are transcribing the 

genes involved in production at such a high level that the transcription machinery limits 

access by the packaging machinery to the structural cluster region. To confirm this, I 

constructed lacZ fusions to RcGTA structural cluster genes and monitored single-cell 

expression. I found evidence of a non-uniform distribution of RcGTA gene transcription 

in the population, which was greatly accentuated in a lysis-deficient background. These 

experiments implicated that 3% of the cells were transcribing the genes >10 fold more 

than the population average and are responsible for 95% of RcGTA activity. This sub-

population of cells is difficult to observe in the wild type due to lysis.  

 Although I am still far from answering the evolutionary question: “why is RcGTA 

production conserved?”, I’ve gained considerable insight into the workings of RcGTA. I 

found two phages dependent on RcGTA production but on whose production RcGTA 

does not depend. I found several new loci involved in RcGTA production that leads me to 
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believe in a conserved “non-contiguous” RcGTA genome, consistently encoded across 

multiple loci. I discovered that RcGTA DNA packaging avoids transferring the genes 

responsible for its own production. I found that the cost to an individual RcGTA 

producing cell is lysis, and to a population is the lysis of ~3% of its members, at least in 

the conditions used in my experiments. 

 The only “benefit” of RcGTA production that has been uncovered to date is the 

gene transfer activity facilitating the horizontal exchange of DNA. It is not linked to 

bacteriocin activity (Wall et al., 1975a), unlike PBSX in B. subtilis (Wood et al., 1990). 

Whether facilitated horizontal gene transfer is a benefit at all is a topic of some contention 

(Redfield, 2001; Vos, 2009; Redfield, 1988; Redfield et al., 1997). The cost of RcGTA 

production, however, is more easily quantified. The overproduction phenotype is very 

unstable, and frequently results in dramatic decrease in RcGTA production within a few 

sub-culturing events. While seemingly altruistic behaviours such as this could be 

explained by kin-selection, the existence of non-RcGTA producing cells (and strains) 

which are capable of receiving RcGTA complicate the issue. These “cheaters”, given the 

cost of production, would rapidly take over the population unless a) there is a very strong 

selection for maintenance of RcGTA production or b) there is a means of re-introducing 

RcGTA production to “cheating” cells. The latter is significantly hampered by the fact 

that in addition to being unable to package the entirety of its structural cluster within a 

particle, RcGTA is encoded across multiple loci and cannot possibly, even if it were 

carried by a much larger transducing element, be re-introduced into “cheaters”. 

 It is my belief that I am still missing a crucial part of the equation: some benefit 

conferred by RcGTA that far outweighs that of horizontal gene transfer. Examples might 
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include a function (directly or indirectly) such as an abortive infection (abi) mechanism 

that competes with infecting phages (or triggers the production of RcapNL and RcapMu, 

which compete) to reduce burst sizes, a role as a bacteriocin against a to-date unidentified 

bacterium competing for a similar ecological niche, or an effort by the host cell to 

preserve its DNA in harsh environments, akin to sporulation. 

 While I leave many important questions unanswered, the work elaborated here has 

helped elucidate many features of the RcGTA “life” cycle. The discovery of several 

proteins involved in release and attachment should be a boon for evolutionary and 

functional studies of RcGTA, allowing us to identify the elusive RcGTA receptor and, by 

disrupting it and working with strains that produce non-functional GTA, assess 

evolutionary costs in the absence of benefits as well as test relative fitness of “cheaters”. 

The characterization of two new phages has also increased the available information on !-

proteobacterial phages a full 20%, as well as given us the tools to, hopefully, identify 

interactions and shared histories between phages and RcGTA.  
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Appendix 1 – Supplemental tables for Chapter 3 

Table A-1: Transcript level signal intensity ratios for 26 genes identified as co-regulated 

with RcGTA production in four transcriptome comparisons.  

Gene SB1003/ALS1 SB1003/SBRM1 DE442/SB1003 SB1003/Midlog 
rcc00171 2.77 8.84 53.86 6.37 
rcc00555 2.36 2.98 35.00 2.79 
rcc00556 2.47 4.87 43.19 4.92 
rcc01079 5.72 8.99 18.52 7.68 
rcc01080 3.36 10.89 11.87 5.93 
rcc01682 2.18 3.68 12.83 5.05 
rcc01683 2.67 3.47 13.26 6.80 
rcc01684 6.54 20.91 27.74 8.16 
rcc01685 6.77 38.70 17.88 11.12 
rcc01686 3.76 15.06 16.06 4.28 
rcc01687 6.09 25.03 10.84 6.31 
rcc01688 6.28 13.76 18.11 5.34 
rcc01689 11.09 4.98 16.47 5.45 
rcc01690 8.82 10.92 21.90 5.82 
rcc01691 4.09 29.86 18.33 9.98 
rcc01692 4.58 9.86 15.37 5.33 
rcc01693 2.53 5.51 8.94 4.59 
rcc01694 5.37 15.42 18.91 6.32 
rcc01695 5.82 16.98 15.66 10.47 
rcc01696 4.77 15.70 22.13 7.15 
rcc01697 3.72 3.76 31.64 3.10 
rcc01698 2.10 2.39 78.49 2.25 
rcc01865 2.22 3.09 18.70 3.15 
rcc01866 2.92 3.12 51.34 2.69 
rcc02623 4.66 15.88 30.98 5.64 
rcc02730 2.18 2.79 5.79 3.93 

Genes highlighted in grey are in the RcGTA structural cluster 

  



 

 133 

Table A-2: Genes co-regulated with the RcGTA structural cluster in three of four 

comparisons. 

Gene Name Annotation 

Genes co-regulated with RcGTA cluster in all but ALS1 
rcc00042 PAS/PAC sensor domain protein 
rcc01058 gas vesicle synthesis protein GvpL/GvpF 
rcc01061 conserved hypothetical protein 
rcc02724 RNA polymerase sigma factor, sigma-70 family, ECF subfamily 
rcc02725 conserved hypothetical protein 
rcc02726 conserved hypothetical protein 
rcc02727 conserved hypothetical protein 
rcc02728 ATPase, AAA family 
rcc02729 conserved hypothetical protein 
rcc02731 conserved hypothetical protein 
rcc02733 conserved hypothetical protein 
rcc02734 exodeoxyribonuclease V 
rcc03521 flagellar protein export ATPase FliI 

Genes co-regulated with RcGTA cluster in all but DE442 
rcc01666 membrane protein, putative 
rcc02241 taurine ABC transporter, periplasmic taurine-binding protein TauA 
rcc02274 proline iminopeptidase 
rcc03023 tripartite ATP-independent periplasmic transporter, DctQ component 
rcc03098 DNA protecting protein DprA 
rcp00126* conserved hypothetical protein 

*This gene is not present in DE442 
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The α-proteobacterium Rhodobacter capsulatus is a model organism for the study of bacterial photosynthesis
and the bacteriophage-like gene transfer agent. Characterization of phages that infect Rhodobacter is ex-
tremely rare, and scarce for the α-proteobacteria in general. Here, we describe the discovery of the only func-
tional Mu-like transposing phage to have been identified in the α-proteobacteria, RcapMu, resident in the
genome-sequenced R. capsulatus SB1003 strain. RcapMu packages ~42 kb of total DNA, including b3 kb of
host DNA with no conserved motifs, indicative of replicative transposition with little insertion site prefer-
ence. The phage genome contains 58 ORFs with comparable organization to known transposable phages.
Shotgun proteomics of purified RcapMu particles detected all proteins with predicted structural functions
as well as seven hypothetical proteins. Overall, comparison of RcapMu to enterobacteria phage Mu and
other Mu-like phages revealed only regional homology to these phages, providing further evidence for the
promiscuous, modular nature of bacteriophage evolution.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Viruses, including bacteriophages, are estimated to be the most
abundant biological entities on the planet (Suttle, 2005), and they are
known to have an immense impact on microbial populations ranging
from lytic dampening or augmentation of microalgae population
blooms (Baudoux et al., 2006; Bratbak et al., 1996; Tarutani et al.,
2000), to enhancement of pathogen persistence and virulence (Allison,
2007; Coleman et al., 1989; Karaolis et al., 1999; Saunders et al., 2001).
Numerous phages have been extremely well characterized, mostly in
gram positive bacteria and γ-proteobacteria, e.g. lambda (Ptashne,
2004), T4 (Miller et al., 2003), Mu (Howe and Bade, 1975), phiETA
(Yamaguchi et al., 2000), and Mycobacteria (Hatfull et al., 2010) and
Lactococcus phages (Brøndsted et al., 2001; Chopin et al., 2001). Howev-
er, coverage of members of the α-proteobacteria is far sparser, limited
mainly to Caulobacter phages (Poindexter, 1981), and a few Roseobacter
(Zhao et al., 2009), Azospirillum (Boyer et al., 2008) and Rhodobacter
sphaeroides phages (Abeliovich and Kaplan, 1974; Donohue et al.,
1985; Duchrow and Giffhorn, 1987).

Rhodobacter capsulatus is a photosynthetic α-proteobacterium, well
known for possession of diverse metabolic capabilities (Madigan and
Gest, 1979; van Niel, 1944; Weaver et al., 1975). However, R. capsulatus
is perhaps best known for an unusual horizontal gene transfer (HGT)
mechanism known as the gene transfer agent (GTA) (Lang and Beatty,

2007; Marrs, 1974). Very little is known about bacteriophages of R. cap-
sulatus. A general investigation was made of the infection profiles of a
bank of 16 virulent viruses against 33 R. capsulatus stains (Wall et al.,
1975), and one of these phages, RC1, was subjected to further examina-
tion (Schmidt et al., 1974). Wall et al. (1975) focused mainly on estab-
lishing the host range, investigating transduction ability and potential
interaction with GTA production/release, without a detailed analysis of
any one phage. Schmidt et al. (1974) looked in more depth at the bioen-
ergetics of RC1 infection, concluding that it is energetically taxing to sup-
port infection, and also determined a Myoviridaemorphology.

Transposition by a large group of mobile genetic elements known as
insertion sequences plays an important role in the reorganization and
evolution of bacterial genomes (Craig, 1995; Mahillon and Chandler,
1998; Taylor, 1963). Transposing phages belong to this group but
are under-represented in the literature in comparison to their non-
transposing equivalents. Enterobacteria phageMu, henceforth referred
to simply as Mu, is the archetypal transposing phage, first discovered in
Escherichia coli K-12 (Taylor, 1963). Mu carries out two different types of
transposition, conservative and replicative, at different points during the
phage life cycle (Symonds et al., 1987). Conservative transposition occurs
after initial infection of a cell leading to integration of theMu genome into
a single location in the host chromosome (Au et al., 2006; Liebart et al.,
1982;Miller et al., 1984). Replicative transposition occurs prior to lytic re-
lease with insertion of Mu prophage copies at multiple sites in the ge-
nome (Chaconas et al., 1981), with little target sequence specificity (Ge
et al., 2011; Haapa-Paananen et al., 2002; Mizuuchi andMizuuchi, 1993).

Both forms of transposition result in the formation of a transposo-
some comprised of four transposase A subunits (MuA) bound to two
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attachment sites (attL and attR) and an internal enhancer region in-
ternal to the phage genome (Chaconas and Harshey, 2002; Chaconas
et al., 1996). In addition, replicative transposition also requires the
transposase B subunit (MuB), which binds to the host chromosome
and is directly involved in the selection of insertion sites and immuni-
ty to self-integration (Ge and Harshey, 2008; Ge et al., 2010). Al-
though on a superficial level the location of MuB binding sites and
Mu insertion sites appears to be random, there are distinct peaks
and troughs of the distribution of both types of site (Ge et al.,
2011). The sites do not co-localize, rather integration occurs at sites
adjacent to where MuB binds (Ge and Harshey, 2008; Ge et al.,
2011; Mizuuchi and Mizuuchi, 1993). The phage genome is then
packaged into the capsid by a headful mechanism (Mizuuchi and
Craigie, 1986), which in combination with the lack of transposition
site stringency, results in the almost random packaging of flanking
host DNA (Bukhari and Taylor, 1975; Bukhari and Zisper, 1972).

Here, we describe and characterize a temperature-inducible trans-
posing bacteriophage that infects R. capsulatus, designated RcapMu.
We determined the morphology of RcapMu by electron microscopy,
sequenced the DNA packaged into particles and characterized the
replicative transposition sites, analysed the ORF makeup of the
phage, and characterized the structural proteome. The lytic induction
profile and host range were also evaluated. RcapMu represents the
first well-characterized phage in Rhodobacter and the first active
transposable phage found in the α-proteobacteria. There are no
known close relatives of RcapMu, and where phages containing ho-
mologous regions do exist they are spread throughout diverse species
of bacteria.

Results and discussion

RcapMu genome description

A new bacteriophage, RcapMu was initially discovered indepen-
dently by two different methods. It was discovered empirically by the
sequencing of a BamHI clone library of an N20 kb DNA band present
in an RcGTA DNA purification from R. capsulatus Y262, and in silico as
an apparently intact prophage cluster in the R. capsulatus SB1003 ge-
nome sequence that was subsequently amplified and verified experi-
mentally. Phage DNA was isolated and sequenced (see Materials and
methods), producing 1956 reads that covered 98% of the RcapMu
phage genome. The remaining gaps were closed by targeted PCR and
subsequent sequencing, yielding a contiguous 39,283 base sequence.
Similar to the organization of Mu and its related phages, the majority
of RcapMuORFswere oriented in the same directionwith the exception
of the c repressor and adjacent genes (Fig. 1). Comparison of the
RcapMu sequence with the prophage sequence in the R. capsulatus
SB1003 genome (NC_014034) revealed several minor discrepancies:
the start codons of several ORFs (RcapMu6, 15, 17, 20, 34 and 50)
were adjusted, three point mutations, a two bp mutation, and a single
base insertionwere located in putative coding regions. Three additional
ORFs designated RcapMu1 and RcapMu33 (hypothetical proteins), and
RcapMu40 (aMuZ homologue, internal to RcapMu39)were also identi-
fied. Three potential −1 frameshifts were found (Moon et al., 2004),
one of which occurs at position 28272 in a location where frameshifts
are common in other phage (Levin et al., 1993; Summer et al., 2004).
A shift would lead to a RcapMu ORFs 49/50 hybrid and would obviate
the poor quality ribosome binding site of the downstream gene. How-
ever, the putative fusion protein does not have any close homologues
in the database and thus no function can be assigned. Furthermore, all
coding regions were assigned putative functions based on blastp hits
to proteins of known function in the non-redundant (nr) database
(Altschul et al., 1990, 1997; Wheeler et al., 2007), and homology to
the type strain determined by direct comparison toMu (Table 1). Inter-
estingly, 6 ORFs within RcapMu, including two predicted to encode pu-
tative tail fiber proteins, were found to be homologous to similarly

organized ORFs in a prophage cluster elsewhere in the genome:
RcapMu58 (rcc02903; 2e−124), RcapMu57 (rcc02905; 2e−36),
RcapMu55 (rcc02907; 1e−15), RcapMu52 (rcc02910; 4.1), RcapMu48
(rcc02914; 5e−31) and RcapMu45 (rcc02917; 2e−13).

Twenty-one sequencing reads spanned the phage-to-host DNA junc-
tions (Fig. 2, Table S1), 13 from the left c repressor end of the genome
(attL) and 8 from the right structural end (attR). The location of each
read was mapped to the R. capsulatus genome, which allowed the
phage ends to be definitively identified (Fig. 2A). DNA sequence and an-
notation data produced for RcapMu revealed several novel features of the
phage ends, compared to other transposing phages.MostMu-like phages
have a short non-coding region between the start of phage sequence and
the end of the c gene, e.g. Pseudomonas phages B3 (123 bp) (Braid et al.,
2004) and D3112 (173 bp) (Wang et al., 2004), Mu (338 bp) (Morgan
et al., 2002) and Burkholderia BcepMu (364 bp) (Summer et al., 2004).
Consequently, annotation of Mu-like prophages is typically carried out
under the assumption that c is always the first gene, however, the
RcapMu sequence began 2429 bpdownstreamof the c gene and included
five ORFs of unknown function (Fig. 1). RcapMu also shares TG/CA con-
served end residues in commonwithMu, BcepMu and other transposing
phages. InMu, these residues are known to be essential for the formation
of a stable transpososome complex (Lee and Harshey, 2001, 2003), and
mutations in these nucleotides result in varying degrees of assembly ab-
errations (Coros and Chaconas, 2001; Surette et al., 1991).

When Mu-like phage DNA is packaged, the terminase recognizes a
pac site early in the left end of the prophage sequence and begins pack-
aging from~100 bp into theflanking host DNA (Allet, 1978; Daniell et al.,
1975; Mizuuchi and Craigie, 1986; Summer et al., 2004). Packaging con-
tinues to b2 kb beyond the distal end of the prophage sequence until the
phage head is full (Daniell et al., 1975; Mizuuchi and Craigie, 1986). As a
result, amatureMu particle contains its own genome flanked by host se-
quences derived from the regions on either side of the transposition in-
sertion points. Such asymmetrical packaging of host DNA was also
observed here, the left flanking sequences packaged by RcapMu were
all approximately 33 bp in length whilst the largest right flanking se-
quence readwas 797 bp in length (Table S1). The restriction profiles pro-
duced by 3 different endonucleases (BamHI, EcoRV and SalI) (Fig. 3)
were a close match to those predicted for a linear genome in silico, al-
though there were notable exceptions for fragments that included the
attR region. An EcoRV fragment, expected to band at 3.6 kb plus host se-
quence, produced a smear up to 6.5 kb, indicating that up to 2.9 kb of
host-derived DNA was packaged (Fig. 3). ScaI and SspI produced similar
results (data not shown), whilst the 1.8 kb BamHI attR band is absent
completely with faint smearing barely visible surrounding the 3.6 kb
band. The uncut genomewas estimated to be ~42 kb bypulsedfield elec-
trophoresis (data not shown), which corroborated the restriction frag-
ment sizing data. In addition, all of the sequenced RcapMu::host DNA
junctions contained unique host DNA from dispersed genomic locations
(Fig. 2A and Table S1). The data summarized above, in conjunction with
the absence of any highly conserved sequencemotifs among the host se-
quences and the heterologous DNA at attR, implies that RcapMu trans-
poses to seemingly random locations, consistent with the Mu model
(Bukhari and Taylor, 1975; Bukhari and Zisper, 1972). Whilst Mu does
not have a conserved insertion site, it does display a bias towards certain
pentameric sequences and regional topological features. Originally, a
preference for the degenerate sequence 5′-NYSRN-3′ was discovered
(Mizuuchi and Mizuuchi, 1993), and this was subsequently refined by
a study of all possible pentamer combinations (Haapa-Paananen et al.,
2002). The top 10% most frequent integration events occurred into 5′-
CYSRG-3′, whereas the lowest 10% integrated into the almost converse
5′-NRWYN-3′ sequence (Haapa-Paananen et al., 2002). Wewere unable
to detect any such bias for RcapMu in the sequencing data set, but future
in vitro assays may reveal analogous preferences.

In characterized transposing phages, Mu-like phage att sites are
recognized by the transposase during integration and replication,
and there are two characterized att configurations in transposing
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prophages. The first was initially identified inMu (Kahmann and Kamp,
1979), and consists of three ~17 bp imperfect repeats spread throughout
thefirst and last 100 bp of the phage genome (attL1–3 and attR1–3). The
second, which resembles transposon Tn552 and was identified in
BcepMu (Summer et al., 2004), consists of a pair of imperfect direct
23 bp repeats two bases from the phage ends. The RcapMu DNA se-
quences indicate sites more similar to the BcepMu configuration, with
24 bp motifs that start 2 bp from the phage ends but repeated only in
the attR region (consensus: YRGVSSKBGAHYASCTTYCGGACG). MuA
transposase binding to each of the att subsites is variable in both affinity
and importance: in vitro only the attL1, attR1 and attR2 sites are essential
structural binding sites in the transpososome (Craigie et al., 1984; Lavoie
et al., 1991; Mizuuchi et al., 1991). Single site deletions or substitutions
of the remaining sites (attL2, attL3 and attR3) dramatically reduced inte-
gration efficiency but this was partially mitigated by addition of IHF, in-
dicating that these sites are non-essential but not completely
expendable (Allison and Chaconas, 1992). The three 24 bp motifs
identified in RcapMu correspond to the three essential MuA binding
sites, and whilst we were unable to identify any of the non-essential
MuA binding sites in silico there may not be a strong conservation of
these sequences. Of note is that, unlike inMu andmanyMu-like phages,
the RcapMu transposase A and c proteins share no significant sequence

similarity (Harshey et al., 1985). Typically, the repressor contains a DNA-
bindingmotif homologous to that of the transposase, and thus prevents
replication by blocking access to the att sites (Harshey et al., 1985).

No left-flanking and right-flanking host sequences were contiguous
in our data, but as Mu is known to transpose to 50 to 200 sites per cell
during replication (Symonds et al., 1987), detection of contiguous host
DNA is unlikely without massive sequencing coverage. However, when
the DNA sequences flanking the RcapMu prophage in the published R.
capsulatus SB1003 genome sequence (NC_014034) (Strnad et al., 2010)
were joined together (i.e. with the intervening phage sequence deleted)
the reconstituted gene had almost 100% DNA sequence identity to a sec-
ond ORF (rcc02097) in the chromosome predicted to encode a transpo-
sase (Fig. 2B), which does not appear to be part of any bacteriophage or
IS element (Mahillon and Chandler, 1998). The only discrepancy was a
5 bp duplication of host sequence at the site of phage integration
(Fig. 2B). Mu transposition in E. coli is known to produce duplications
of host DNA during lysogenization, resulting in a prophage flanked by
identical 5 bp direct repeats (Allet, 1979). The presence of these direct
repeats in RcapMu suggests that the phage may have initially integrated
within a transposase gene identical to rcc02097 in SB1003 and created a
5 bp duplication at the site of integration, although additional examples
would be necessary to unequivocally determine this.

Fig. 1. Comparative schematic of the RcapMu,Mu, B3 and D3112 phage genomes. All ORFs are represented by colored arrows, ofwhich thosewith predicted structural function are green,
phage regulation are red, integration and replication are blue, host interaction are yellow, and hypothetical are white. ORFs encoding proteinswith a predicted function are labeled above,
and the direction of transcription is displayed as arrows below each map. RcapMu shares the organizational layout with the model phages E. coli Mu and Pseudomonas phage D3112,
whereas Pseudomonas phage B3 differs slightly. Both B3 and D3112 produce Siphoviridae phage particles similar to RcapMu, whereas the E. coliMu has a Myoviridae structure.
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RcapMu ORF sequence comparisons

There were clear homologues of many RcapMu proteins in charac-
terized phages from diverse genera (Table 1), chiefly Pseudomonas and
Burkholderia. Notably, the transposases (A and B) and several head as-
sembly proteins were most similar to counterparts from Pseudomonas
phages D3112 and B3, respectively, whilst capsid and tail proteins
were related to Burkholderia phages phiE225 and BcepGomr,

respectively. However, comparisons on a full-genome scale at both the
nucleotide (Figs. S1A–D)and translatednucleotide levels (Fig. S2, Tables 1
and S2) revealed that similarities to other known phages were of limited
extent. The nearest approximations to related phages are found integrat-
ed in the genomes of disparate members of the α-proteobacteria, e.g.,
Agrobacterium vitis S4, Polymorphum gilvum SL003B-26A1, and Roseibium
sp. TrichSKD4 (Table S2). However, even these putative prophages lack
homologues of many RcapMu proteins and the similarities between

Table 1
RcapMu ORFs and BLAST hits.

Name Synonym AA length Predicted product Mu homologue
(by function)

Best phage hit (E-value) Ida, Simb, Covc

RcapMu1 N/A 45 Hypothetical protein
RcapMu2 rcc01015 67 Hypothetical protein
RcapMu3 rcc01014 230 Hypothetical protein
RcapMu4 rcc01013 159 Conserved hypothetical protein
RcapMu5 rcc01012 140 Hypothetical protein
RcapMu6 rcc01011d 239 c-repressor (Mup1) c Pseudomonas phage DMS3 (3e−18)e 31%,47%,97%
RcapMu7 rcc01010 98 ner-like transcriptional regulator (Mup2) ner Escherichia phage D108 (0.001)e 32%,60%,63%
RcapMu8 rcc01009 106 Hypothetical protein
RcapMu9 rcc01008 45 Hypothetical protein
RcapMu10 rcc01007 42 Hypothetical protein
RcapMu11 rcc01006 97 Hypothetical protein
RcapMu12 rcc01005 64 Hypothetical protein
RcapMu13 rcc01004 284 ParB-like nuclease
RcapMu14 rcc01003 156 Conserved transposable prophage hyp.
RcapMu15 rcc01002d 763 Transposase A (Mup3) A Pseudomonas phage D3112 (8e−99)e 35%,51%,89%
RcapMu16 rcc01001 258 Transposition protein B (Mup4) B Pseudomonas phage D3112 (1e−04)e 22%,46%,81%
RcapMu17 rcc01000d 186 TroR domain transcriptional regulator
RcapMu18 rcc00999 122 LacI-like regulatory protein Pseudomonas phage MP38, (1e−08)e 33%,54%,87%
RcapMu19 rcc00998 181 Host-nuclease inhibitor Gam (Mup10) gam Enterobacteria phage Mu (2e−34)e 43%,68%,93%
RcapMu20 rcc00997d 78 Hypothetical protein
RcapMu21 rcc00996 92 DNA-binding protein HU (Mup17) mor
RcapMu22 rcc00995 295 Hypothetical protein
RcapMu23 rcc00994 72 Hypothetical protein
RcapMu24 rcc00993 149 GemA-like (modulation of host genes) (Mup16) gemA Burkholderia phage phiE255 (3e−04) 29%,44%,89%
RcapMu25 rcc00992 36 Hypothetical protein
RcapMu26 rcc00991 226 Conserved transposable phage hyp. Pseudomonas phage B3 (2e−05)e 27%,42%,92%
RcapMu27 rcc00990 123 Putatitve transcriptional regulator (Mup21) C EBPR siphovirus 4 (4e−29) 54%,70%,94%
RcapMu28 rcc00989 310 Lysozyme (Mup22) lys Phage Gifsy-2 (6e−10) 39%,50%,46%
RcapMu29 rcc00988 171 Conserved hypothetical protein
RcapMu30 rcc00987 89 Hypothetical protein
RcapMu31 rcc00986 168 Putatitve DNA binding protein Pseudomonas phage MP29 (1e−25)e 40%,58%,94%
RcapMu32 rcc00985 553 Large terminase (Mup28) H Pseudomonas phage MP38 (1e−146)e 52%,69%,91%
RcapMu33 N/A 50 Hypothetical protein
RcapMu34 rcc00984d 113 Conserved hypothetical protein Burkholderia phage Bups phi1 (1e−20) 53%,63%,93%
RcapMu35 rcc00983 75 Hypothetical protein
RcapMu36 rcc00982 459 Putative portal protein (Mup29) Portal Pseudomonas phage B3 (5e−60)e 40%,57%,73%
RcapMu37 rcc00981 491 Head morphogenesis (muf-like) (Mup30) F Pseudomonas phage B3 (7e−39)e 39%,54%,45%
RcapMu38 rcc00980 185 Virion morphogenesis (head–tail joining) (Mup31) G Pseudomonas phage B3 (7e−21)e 35%,51%,91%
RcapMu39 rcc00979 371 Putative protease (Mup32) I Burkholderia phage phiE255 (4e−55) 38%,52%,96%
RcapMu40 N/A 152 Putative scaffolding protein (Mup33) Z Pseudomonas phage B3 (2e−08)e 42%,58%,58%
RcapMu41 rcc00978 115 Hypothetical protein
RcapMu42 rcc00977 318 Major capsid protein (Mup34) T Burkholderia phage phiE255 (2e−40) 36%,54%,94%
RcapMu43 rcc00976 163 Hypothetical protein
RcapMu44 rcc00975 97 Conserved hypothetical Aeromonas phage 25 (0.070) 31%,55%,66%
RcapMu45 rcc00974 142 Conserved transposable prophage hyp. (Mup36) Pseudomonas phage PA1/KOR/2010 (3e−10) 35%,54%,90%
RcapMu46 rcc00973 144 Hypothetical protein
RcapMu47 rcc00972 66 Hypothetical protein
RcapMu48 rcc00971 309 Conserved transposable prophage hyp. uncul. MedDCM-OCT-S09-C399 (2e−41) 34%,54%,95%
RcapMu49 rcc00970 126 Hypothetical protein
RcapMu50 rcc00969d 96 Conserved transposable prophage hyp. Sodalis phage SO-1 (0.021) 38%,55%,75%
RcapMu51 rcc00968 1028 Tape measure protein (Mup42) S. epidermidis RP62A phage SP-beta (8e−15) 44%,59%,11%
RcapMu52 rcc00967 141 Conserved transposable prophage hyp. Burkholderia phage BcepGomr (0.13) 26%,39%,77%
RcapMu53 rcc00966 176 Conserved transposable prophage hyp.
RcapMu54 rcc00965 147 Putative tail assembly protein (Mup51) U′ Cronobacter phage ENT47670 (0.037) 29%,41%,76%
RcapMu55 rcc00964 1143 Tail fiber (Mup52) S′ Burkholderia phage BcepGomr (3e−25) 24%,40%,54%
RcapMu56 rcc00963 444 Maturation/adhesion Salmonella phage Vi06 (1e−09) 28%,41%,53%
RcapMu57 rcc00962 89 Conserved hypothetical protein
RcapMu58 rcc00961 327 Putative tail fiber Synechococcus phage S-SSM5 (5e−13) 30%,43%,53%
a Percentage identity.
b Percentage similarity.
c Percentage coverage.
d Indicates an adjusted start site in RcapMu vs rcc annotations.
e Indicates a phage known to be transposable.
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these phages and RcapMu are limited to distinct regions and large
swathes were not similar at all. This is further evidence for the well-
characterized modular structure of bacteriophage genomes in general
(Arbiol et al., 2010; Botstein, 1980). Interestingly, the A. vitis S4 pro-
phage also appears to have been dissected, with one section containing
the c repressor and the other the structural genes, with homologues of
RcapMu proteins duplicated in both sections, possibly as a result of in-
sertion, duplication or rearrangement events within the phage genome
(Fig. S2).

RcapMu host range

The host range of RcapMu was investigated using a variety of R.
capsulatus strains and several different genera (Table 2). Spot infec-
tion assays were successful in producing visible lysis in only 2 of the as-
says, using R. capsulatus YW1 and YW2 as hosts, suggesting that RcapMu
has a narrow host range. A lack of lytic infection was expected for the
wild-type R. capsulatus strain B10 and the strains derived from it
(SB1003, R121 and Y262), because RcapMu was isolated from SB1003
(i.e. these strains should contain RcapMu and hence be resistant to infec-
tion). Subsequent PCR screening of all strains tested using oligonucleo-
tide primers specific to the capsid and c genes revealed 519 bp and
482 bp bands, respectively, that correlated with the apparent resistance
of several potential hosts to infection. In addition to B10 and its

Fig. 2. Characterization of regions flanking the RcapMu genome. A. Each sequence represents a read from RcapMu packaged DNA that included attL/R sites, where one end mapped
to RcapMu and the other mapped elsewhere in the SB1003 genome. The vertical bar denotes the transposition point. There appear to be no conserved motifs, locations or functions
associated with the host flanking sequences. B. The sequence depicts an alignment of the regions flanking the integrated RcapMu prophage in the R. capsulatus chromosome joined
together (top sequence), to another region within the chromosome predicted to encode a transposase (bottom sequence). Genes are represented by gray boxes and identified by
their locus tag. The two sequences are identical, barring the 5 bp duplication highlighted by a black box.

Fig. 3. Restriction enzyme digest analysis of RcapMu DNA. Purified phage DNA uncut
(Φ), cut with BamHI (B), EcoRV (E) and SalI (S). Estimated sizes based on comparison
to molecular weight markers (λ Hind III, and NEB 1 kb ladder) with comparison to in
silico predictions for fragments N23 kb (~). Bands from the RcapMu prophage termini
(*) and uncut phage DNA (^) are indicated. All bands matched the predicted sizes bar-
ring the bands containing the attR terminus. The packaging of host DNA resulted in
smearing of the 3.6 kb EcoRV band up to 6.5 kb, consistent with packaging of 2.9 kb
of extra DNA, whereas the predicted 1.8 kb BamHI band is absent, likely due to a similar
smearing (barely visible above and below the 3.6 kb band).

Table 2
Bacterial strains used in this study. All strains are designated to indicate the presence or
absence of the RcapMu c repressor and capsid genes (determined by PCR), and wheth-
er plaques form when infected with a concentrated preparation of RcapMu.

Strain Ref or source c Capsid Plaque

Rhodobacter capsulatus
SB1003 Yen and Marrs (1976) + + −
B10 Weaver et al. (1975) + + −
B6 Weaver et al. (1975) − − −
SP18 Weaver et al. (1975) − − −
SP36 Weaver et al. (1975) − − −
H9 Weaver et al. (1975) − + −
P12F1 Weaver et al. (1975) − − −
YW1 Weaver et al. (1975) − − +
YW2 Weaver et al. (1975) − − +
YW1 RcapMu lysogen This study + + −
R121 Scolnik et al. (1980) + + −
DE442 ?a + + −
Y262 Yen et al. (1979) + + −
St. Louis Weaver et al. (1975) + − −
Rhodobacter sphaeroides 2.4.1 Mackenzie et al., (2001) + − −
Paracoccus denitrificans ATCC 17741 − − −
Rhodopseudomonas palustris
CGA001

Harwood and Gibson (1986) − − −

Rhodospirillum centenum Favinger et al. (1989) − − −
Escherichia coli BL21 Invitrogen − − −
a Of uncertain provenance, a crtDmutant probably derived from Y262 (B. Marrs, per-

sonal communication).

215P.C.M. Fogg et al. / Virology 421 (2011) 211–221



derivatives, there were 3 strains that yielded an appropriately sized PCR
product using c primers, and 2 strains using capsid primers (Table 2).
Therefore, the absence of infection of R. capsulatus strains B10, SB1003,
R121, DE442, Y262, H9, St. Louis, and R. sphaeroides 2.4.1 may be
explained by homo-immunity due to an incumbent related prophage
(Schumann, 1979). To confirm that an RcapMu lysogen confers resis-
tance to superinfection to a homo-immune phage, an RcapMu lysogen
of YW1 was infected with a high concentration RcapMu suspension
(1010pfu ml−1). As anticipated, no lysis was evident, confirming the ex-
istence of a RcapMu lysogen-dependent immunity (data not shown).

Temperature-induction

In contrast to lambdoid bacteriophages, characterized transposing
phages are relatively rare in the literature. Often, the primary method
for induction of unknown prophages from a sample is stimulation of
the lytic cycle with DNA damaging agents such as mitomycin C or UV
light (Heinemann and Howard, 1964), yet only phages with a repressor
protein analogous to that of bacteriophage lambda are known to be in-
duced by this kind of treatment. There is no comparable method avail-
able for induction of high titres of the wild type Mu phage (Howe and
Bade, 1975), which may partially account for the vast disparity between
the relatively great number of characterized lambdoid phages compared
to transposing phages. Instead, a variety of Mu temperature-sensitive
mutants have been discovered that contain amino acid substitutions in
the c repressor protein, which predispose it to loss of activity under ele-
vated temperatures (Vogel et al., 1991). The RcapMu putative c gene is
located in a position comparable to the Mu c but an alignment indicated
only 15% amino acid identity and 25% similarity between these repressor
proteins (Fig. 6A).Whilst this is clearly insufficient for definitive analysis,
we observed that one amino acid occurs in the temperature-sensitiveMu
cts62 form (a change of R47 to Q) in RcapMu (Vogel et al., 1991). To test
whether RcapMu is induced by elevated temperatures, R. capsulatus
SB1003 was grown at moderately elevated temperatures (37 °C and
40 °C). Elevated growth temperatures considerably increased phage pro-
duction, with the specific plaque production (Pfu ml−1.OD660

−1) rising
from 3×102 at 30 °C to 4×103 at 37 °C and to almost 2×104 at 40 °C,
representing aN60-fold increase (Fig. 6B). Although the total phage titres
were not as high as for the Mu c mutants in E. coli, the inductive effect
was significant and enabled further characterization of the phage when
combined with a multi-step enrichment process often used to concen-
trate phages from the environment. A similar temperature regimen
methodology could easily be adapted to the identification of phages
from stable lysogens insensitive to standard induction procedures, en-
abling the discovery of a greater range of bacteriophages.

Analysis of RcapMu proteins

The yields of RcapMu from culture supernatants were insufficient for
most downstream applications, and thus it was necessary to carry out
several rounds of concentration (see Materials and methods). Titres of
1011 to 1012 ml−1were purified by CsCl gradient equilibriumultracentri-
fugation, to reduce the presence of contaminants that may interfere with
analysis. Twodistinctwhite bandswereproducedwhen theCsCl gradient
ultracentrifuge tube was illuminated from an acute angle with white
light, and this double banding was observed inmost but not all indepen-
dent experiments. After collection, the buoyant densities of these bands
were determined to be 1.48 and 1.38 g/ml by refractometry, with the
1.38 g/ml (upper) band appearing far brighter and retaining a higher in-
fective titre than the lower, although both bands contained infective par-
ticles. There were no discernible differences in DNA restriction profiles
between the bands (Fig. S3A), ruling out the possibility that the disparity
in density was due to two different phages or empty phage particles.

Both bands were separately subjected to a second round of equilibri-
um centrifugation. The gradient tube inwhich the upper bandwas repur-
ified produced a tight visible phage band containing 1.1×1010pfu ml−1

with an absorbance at 280 nm of 0.151, however, infective particles
were present throughout the gradient but at lower concentrations (typi-
cally 105–107pfu ml−1). The gradient tube in which the lower band was
repurified contained a total of only 2.9×107pfu ml−1 (sum of the visible
band fraction and one immediately above), despite a comparable absor-
bance at 280 nmof 0.157. This indicates that the source of plaque forming
units in the lower CsCl bandwas cross-contamination from the top band.

Concentrated CsCl phage samples were run in SDS-PAGE to evaluate
the number and apparent sizes of the structural proteins. The samples
contained six to eight visible bands of 30 to N80 kDa (Figs. 4 and S3B).
Tomore fully determine theRcapMu structural proteome, a shotgunpep-
tide identification approach was employed (Lavigne et al., 2006). There
were no peptides that hit against any putative prophage regions within
the SB1003 genome, indicating a pure RcapMu preparation. This shotgun
method detected all proteins predicted to be present in mature phage
particles, as well as a number of hypothetical proteins from the structural
region of the genome (Table 3). In total an additional seven proteinswere
identified by mass spectrometry, compared to SDS-PAGE, which high-
lights the potency of this approach for the detection of low size/

Fig. 4. SDS-PAGE gel of RcapMu particles. A sample of a concentrated, CsCl gradient-
purified RcapMu suspension, run on a denaturing SDS-PAGE gel (Φ), with eight vis-
ible bands (identified by arrows). A broad range, pre-stained protein molecular
weight marker is included for reference (M) with the molecular weights given on
the right of the figure.

Fig. 5. Electron Micrographs of RcapMu. A. Intact RcapMu particle with a typical Sipho-
viridae morphology. B. An intact RcapMu particle beside several damaged phages. C.
Dissociated head and tail sections of RcapMu particles. D. Numerous dissociated
heads and tails, suggesting a labile nature of the phage. Scale bar in lower corner of
each panel represents 100 nm.
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abundance proteins in a complex sample. Both SDS-PAGE and the pro-
teomic approach detected differences between two RcapMu bands of
different densities produced by equilibrium centrifugation in CsCl gra-
dients, primarily those proteins predicted to make up the phage tail.

Electron microscopy

Purified RcapMu from the upper (lower density) CsCl gradient band
was also analysed by transmission electron microscopy. The structural
genes present in the phage genome code for a putative tail assembly pro-
tein (RcapMu54), tail fibers (RcapMu55 and 61) and a relatively large
putative tape measure protein (RcapMu51, 107 kDa), each of which
were detected in the shotgun proteomics experiments (Table 3). The
presence, type and size of these proteins indicated that RcapMu should
have a Siphoviridaemorphologywith a long, flexible tail, and this proved
to be the case (Figs. 5A–D). It has previously been demonstrated that the
length of tape measure proteins is directly proportional to the length of
the tail (Hendrix, 1988; Journet et al., 2003), and the RcapMu particles
detected here possessed an average tail length somewhat larger than
expected, N200 nm. Estimates using a ‘protein ruler’ in lambda found
that each amino acid residue of the tapemeasure protein is approximate-
ly equivalent to 0.16 nm (Katsura, 1987), which in the case of RcapMu
would predict a tail length of 164 nm (Figs. 5A–D). The RcapMu tail is
longer than many other well-characterized Siphoviridae such as bacteri-
ophage lambda, 150 nm (Hendrix, 1983), and Pseudomonas phage B3,
163 nm (Slayter et al., 1964), but comparable to several Mycobacterial
Siphoviridae phages, b275 nm (Pedulla et al., 2003), and the myovirus
BcepMu, 220 nm (Summer et al., 2004).

Unfortunately, imaging of intact RcapMu phage particles was diffi-
cult because they appeared to be extremely sensitive to the staining
procedure, and so there was extensive capsid damage evident in sam-
ples using any of three negative stains (uranyl acetate, phosphotungstic
acid and ammonium molybdate). Phages stained with uranyl acetate
were relatively well preserved whilst phosphotungstic acid staining
resulted in universally collapsed or exploded phage heads (Fig. 5B). It
was also clear that the phage tails were readily dissociated from the
capsid because the majority of phages observed were separated from
their tails, with only a small proportion fully intact (Figs. 5C and D).
The tails and capsids co-purified in the CsCl gradient and both were

Fig. 6. The c repressor and temperature induction of the RcapMu lysogen. Top: Alignment of the wild-type E. coliMu c repressor protein (Mu c) with the RcapMu c protein (Rc c). Four of
the most potent temperature-sensitive mutations that have been described for Mu c are indicated above the sequence with arrows, with the amino acid substitutions indicated in single
letter code. Identical sequencematches betweenMu c and Rc c are boxed in black and similarities in gray. Bottom: Bar chart of the specific RcapMu pfu.ml−1 (normalized to OD660) pro-
duced by R. capsulatus SB1003 cultures grown at 30 °C, 37 °C and 40 °C. In YPS rich, complex medium under aerobic (chemotrophic) conditions. Error bars represent standard deviation
(n=4).

Table 3
Structural proteome of RcapMu. Listed are all proteins that were identified by the proteo-
mics of purifiedphage particles. Predictedmolecularweightswere calculated based on the
amino acid sequence, whilst SDS-PAGE weights were assigned based on comparison to
molecular weight standards. Initial confirmation of the identity of the major proteins
was carried out by gel excision and analysis of the brightest bands (BandMS/MS)whereas
a more all-encompassing analysis was used to identify all structural proteins present
(Shotgun MS/MS). For each of these proteomic approaches the results are presented as
the total score/number of peptide hits, where total score is a non-probabilistic value de-
rived from the sum of the probabilities that each individual ion match is a random event
(−10∗Log(P)).

Gene ID Calculated
MW (kDa)

SDS-PAGE
MW (kDa)

Putative protein
function

Band
MS/MS

Shotgun
MS/MS

RcapMu36 50.46 Portal 312/09
RcapMu37 55.53 Head Morphogenesis 85/03
RcapMu38 19.81 Virion

Morphogenesis
34/01

RcapMu39 39.63 ~20b Protease 34/1 196/08
RcapMu41 11.20 Hypothetical 237/05
RcapMu42 34.69 45a Major Head Subunit 5284/144 504/15
RcapMu45 14.72 Hypothetical 111/03
RcapMu46 15.21 Hypothetical 69/01
RcapMu48 32.54 Hypothetical 198/08
RcapMu51 107.07 Tail Tape Measure 285/07
RcapMu52 15.79 Hypothetical 74/02
RcapMu53 19.29 Hypothetical 63/01
RcapMu55 122.11 Tail Fiber 256/10
RcapMu56 46.85 Maturation/Adhesion 300/08
RcapMu58 32.76 Tail Fiber 45/01
a Size appeared larger than predicted for an unknown reason.
b All MS:MS hits mapped to the N-terminal half of the protein suggesting there may

have been proteolytic modification.
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present in approximately equal quantities in the EM images, indicating
that separation most likely occurred after banding. Furthermore, all
phages observed in the lower (greater density) band had no or short
truncated tails (Figs. 5 and S3). The labile nature of the head–tail junction
noted for the upper band (Figs. 5C and D) suggests that loss of the tail
during purification may have been responsible for the altered buoyant
densities within the RcapMu samples. It appears that the lack of a tail
and host recognition proteins in the phages of the lower band is respon-
sible for the differential banding and supports the aforementioned hy-
pothesis that the plaques produced were due to cross-contamination
between the two CsCl bands.

Transposing phages

Although, other than Mu, transposing phages are poorly character-
ized, Mu-like prophage regions have been found inmany species includ-
ing a number of pathogenic species such as Haemophilus influenza
(FluMu),Neisseriameningitides (Pnm1) (Morgan et al., 2002), and several
remnant elements in Vibrio cholerae (Heidelberg et al., 2000) and Yersinia
pestis (Parkhill et al., 2001). Representatives of Mu-like transposing
phages in multiple distantly related species indicate that they are wide-
spread mobile genetic elements, although as yet relatively understudied.
It is important to increase the breadth of knowledge of transposing
phages, to increase the detection of novel phages and accumulate trans-
ferable data potentially applicable to diverse phage systems. In contrast
tomost species, amultitude ofMu-like bacteriophages able to infect Pseu-
domonas aeruginosa have been described (Akhverdian et al., 1984), and
twoof these Pseudomonasphages, D3112 andB3 (Figs. 1 and S1), are sim-
ilar to RcapMu in at least two key areas. Both phages possessMu-like rep-
lication modules and overall genome organization, but they also both
contain structural genes that are more akin to Siphoviridae bacterio-
phages (Wang et al., 2004). Often bacteriophages are classified according
to their morphological features, but with the advent of genome sequenc-
ing this has been shown to be superficial (Hendrix et al., 1999; Rohwer
and Edwards, 2002). For example, Stx-encoding phages possess lamb-
doid genomes but are often structurally Podoviridae (Allison et al., 2003;
Smith et al., 2007), whilst several publications, including this one, have
described Mu-like phages with Siphoviridae morphology (Slayter et al.,
1964; Wang et al., 2004). This evidence supports the modular theory of
bacteriophage evolution and further highlights the mosaicism found
amongst bacteriophages in general (Botstein, 1980; Hendrix et al., 1999).

Conclusion

RcapMu is the first bacteriophage infecting R. capsulatus to be charac-
terized in depth, and the first transposing bacteriophage described that
infects an α-proteobacterium, although even a cursory examination of
the genomes of this class of bacteria reveals a plethora of potentially in-
tact and remnant transposing prophages across a myriad of species. Our
discovery of putative prophages in other α-proteobacteria that share
some homologywith RcapMu suggests that RcapMumay serve as an ex-
cellent starting point for the exploration of phage diversity in this class.
Discovery and characterization of new lysogenic bacteriophages is cur-
rently hampered by the dearth of information available about atypical
lytic induction and lifestyles of transposing phages, which can be reme-
died only by the intensive study of phylogentically diverse host species.

Materials and methods

Bacterial strains and growth conditions

The R. capsulatus strain Y262 (Yen et al., 1979) and the genome-
sequenced strain SB1003 (Strnad et al., 2010) were initially analysed
for bacteriophage production, and the latter was used for all subse-
quent phage production experiments. Strain YW1 (Weaver et al.,
1975) containing the cosmid pLAFR1 (Friedman et al., 1982) was

the strain used in plaque assays and propagation techniques. These
and additional strains used for screening purposes are listed in
Table 2, with growth conditions for R. capsulatus strains as indicated,
and for other species as recommended by the supplier.

DNA purification for sequencing

Cells were removed from a 500 ml R. capsulatus SB1003 aerobic sta-
tionary phase culture grown at 37 °C in YPS medium (Wall et al., 1975)
by centrifugation. The supernatant was treated with 1 mg.ml−1 DNAse
I for 1 h at 37 °C. NaCl was added to a concentration of 1 M, and the
solution was centrifuged again. The supernatant was brought to 10%
(w/v) PEG8000, incubated at 28 °C for 2 h and the phage harvested by
centrifugation at 6800×g for 20 min. The pellets were resuspended in
G buffer (Solioz and Marrs, 1977) overnight at 4 °C. Concentrated
phage suspensions were treated with 2 U DNase I and 1.2 U RNase A
at 37 °C for 30 min. Proteins were removed using phenol:chloroform:
isoamyl alcohol (25:24:1) and DNA was ethanol-precipitated. In
addition to the expected 4 kb RcGTA DNA band, a N20 kb DNA band
was observed. A clone-library of the sample was created by BamHI
digestion and subsequent ligation into pUC19, and uniquely sized
inserts were sequenced using M13 primers. Preliminary sequencing
included reads that mapped to the transposable prophage cluster
(Fig. S1). The sample was then run on an agarose gel and phage
DNA extracted by electro-elution and concentrated with a centrifugal
filter unit (Millipore, MA). The concentration was determined by
spectrophotometry and 280 ng was submitted to the Broad Institute
(Cambridge, MA) for high-throughput (Roche 454) pyrosequencing
(Margulies et al., 2005). Gaps in the sequence were closed by PCR
amplification and sequencing across the gaps.

Bacteriophage induction

For induction experiments, R. capsulatus SB1003 was grown to sta-
tionary growth phase at 30 °C, 37 °C or 40 °C in YPS (Wall et al., 1975)
or RCVmedium(Beatty andGest, 1981), as indicated. Cellswere removed
by centrifugation and the supernatant filtered through a 0.2 μm filter. For
heat shock experiments, the cultures were grown to mid-exponential
phase, shockedby transfer to 42 °C for 30 min and returned to 30 °C to re-
cover for 2 h. Cells were then removed by centrifugation and the super-
natant filtered through a 0.2 μm filter.

Phage infection assays

Phage titres were calculated by plaque assay using 300 μl of a mid-
exponential YW1(pLAFR1) culture mixed with 500 μl serial dilutions of
phage lysate, and incubated for 30 min at 37 °C. The mixture was then
added to 8 ml of molten top agar (0.4% w/v agarose in YPS broth),
poured onto YPS agar plates and incubated overnight at 37 °C. Host
range spot assays were carried out by adding 300 μl of each host strain
to 8 ml of molten top agar (0.4% w/v agarose in strain-specific growth
medium) and pouring this mixture onto host-specific agar plates. Once
set, 50 μl drops of a 1×1010pfu ml−1RcapMu suspension were added
to the surface and allowed to dry. Plates were incubated overnight at
37 °C.

PCR amplification

100 ng of purified chromosomal DNA (Rapley et al., 2000) from each
of the host range strains tested (Table 2)was amplifiedwith TaqDNApo-
lymerase (New England Biolabs) using primers specific for the RcapMu c
(MuC F: ACATGCAGTTCCTTGCTCGC and MuC R: ATAGCCCTCGTCGG-
CATTGT) and the capsid (MuCap F: TCGATGCGCGTCCTGAAGTT and
MuCap R: ATAGGCCGCCAGCATGTCAA).
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Phage titre amplification

RcapMu titres were insufficient for most downstream applications
and required amplification using a 3-step concentration method. In
brief, stationary growth phase SB1003 cultures grown in YPS medium
at 37 °C were centrifuged and the supernatant passed through a 0.2 μm
filter. Phages were then precipitated using polyethylene glycol (PEG)
according to a protocol from Rooks et al. (2010). For the second step,
these precipitates were used to produce semi-confluent lysis in plates,
as for the plaque assay, which were overlaid with 5 ml TBT buffer
(100 mM MgCl2, 100 mM NaCl, 100 mM Tris–HCl, pH 7.0) and rocked
gently at 4 °C for 1 h. Both the overlay buffer and the top agarwere recov-
ered, cells and debris were removed by centrifugation, and the superna-
tant passed through a 0.2 μm filter. The final concentration step consisted
of ultracentrifugation of the filtrate at 300,000×g for 4 h. Phage pellets
were resuspended in 1 ml TBT, titred by plaque assay and corroborated
by epifluorescence microscopy, according to the methods from Patel et
al. (2007). Phage particleswere ultimately purified by equilibrium centri-
fugation in CsCl at a starting density of 1.5 g.ml−1 in a swinging bucket
rotor, as previously described (Clokie and Kropinski, 2009).

Restriction analysis

A 100 μl phage suspension was mixed vigorously with an equal
volume of phenol:chloroform:isoamyl alcohol (25:24:1), and centri-
fuged at 13,000×g for 5 min. The aqueous phase was removed to a
fresh tube, the DNA ethanol-precipitated, washed in 70% ethanol,
and the pellet dissolved in 10 mM Tris–HCl (pH 8.0). Restriction di-
gests of RcapMu DNA were carried out according to manufacturer's
instructions for each enzyme (New England Biolabs), and analysed
using standard pulsed field gel electrophoresis conditions.

Protein analysis and identification

CsCl-purified phage suspensions were denatured by heat treatment
at 95 °C for 5 min in Laemmli buffer and run on a denaturing 10% SDS-
PAGE gel (Laemmli, 1970; Nandi and Lewis, 1970). The proteinswere vi-
sualized by Coomassie staining (Fazekas de St Groth et al., 1963). Phage
protein bandswere excised from a Coomassie-stained SDS-PAGE gel and
digested in-gel with trypsin (Kinter and Sherman, 2000), whilst whole
particle shotgun samples (Lavigne et al., 2006) were first digested with
trypsin and then treated with DNase I. All samples were then analysed
on an API QSTAR PULSARi Hybrid LC/MS/MS (Applied Biosystems). The
resulting datawere used to search a custom R. capsulatus SB1003Mascot
database at the University of Victoria (Canada). Ion scores were calculat-
ed as−10∗Log(P), where P is the probability that the observedmatch is
a random event. Individual ion scores N26 indicate identity or a high de-
gree of similarity (pb0.05). Protein scores are derived from ion scores as
a non-probabilistic basis for ranking protein hits. All protein identifica-
tion was carried out at the University of British Columbia (UBC) Centre
for High-Throughput Biology (CHiBi).

Electron microscopy

CsCl-concentrated phage samples (1011pfu ml−1) were negatively
stained with uranyl acetate, ammoniummolybdate or phosphotungstic
acid, and imaged in a Hitachi H7600 transmission electron microscope
at the UBC Bioimaging Facility.

Sequence assembly and bioinformatics

Sequence assembly was performed using Geneious Pro 5.3.4
(Drummond et al., 2010) high sensitivity (gap free) assembly. Anno-
tations from the SB1003 genome sequence were compared to auto-
mated glimmer 3.02 (Delcher et al., 2007) and genemark (Besemer
and Borodovsky, 2005) annotations, and a and manual annotation

based primarily on start codon preference, putative ribosome binding
sites and ORF length. Any predicted ORF was then compared to exist-
ing CDS databases by blastp and PSI-BLAST (Altschul et al., 1990,
1997; Wheeler et al., 2007), and the start positions optimized by
alignment with close homologues, where relevant. A search for con-
vincing frameshift-encoded protein products was carried out using
Frameshift Finder (Moon et al., 2004). The RcapMu sequence was
submitted to GenBank (gb id: JN190960).

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.virol.2011.09.028.
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[Abstract] RcGTA, a small phage-like particle produced by Rhodobacter capsulatus, was initially identified in culture
filtrates as a DNase-resistant form of DNA transfer between R. capsulatus cells. This gene transfer assay has been used
to identify RcGTA-producing strains and to help determine the roles of genes thought to be responsible for RcGTA
production.

Materials and Reagents

1. GTA donor strain (See Notes 1)
2. Recipient strain (See Notes 1)
3. RCV broth (Beatty and Gest, 1981)
4. YPS broth (Wall et al., 1975)
5. YPS agar (2 plates per recipient-donor combination, one plate per donor, and one plate per recipient) 
6. 0.22 !m filtered GTA Buffer (Solioz and Marrs, 1977)
7. 0.45 !m low protein binding (PVDF) syringe filters (e.g. Millipore catalogue # SLHV033RB)
8. 1 ml pipettes
9. 1.5 ml Microcentrifuge tubes 

10. Plate spreader (Including 95% Ethanol + Flame)
11. 1 ml syringes
12. Test tubes for aerobic culturing (e.g. Fisherbrand catalogue # 14-961-30) w/caps
13. Culture tubes for anaerobic/photosynthetic culturing (e.g. Fisherbrand catalogue # 14-959-37A

w/screw caps).
14. Polypropylene sterile culture tubes (e.g. Simport catalogue # T405-2A)
15. Optional (If transferring photosynthesis marker): Chambers/packs for anaerobic plate growth

Equipment
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1. Shaking incubator
2. Microcentrifuge
3. Incandescent light-box or light incubator

Procedure

1. Preparation:
1. 3 days prior to the assay, inoculate GTA donor strains in RCV broth and grow aerobically

overnight at 35°C (200-250 RPM).
2. 2 days prior, measure optical densities (OD) of overnight cultures of GTA donor strains and

normalize them by dilution with RCV broth. It is simplest to dilute all ODs to match the lowest,
as the actual OD is irrelevant so long as all cultures are at the same final density. Use a 1% v/v
inoculum of normalized donor to inoculate YPS broth without antibiotics to grow anaerobically
and photosynthetically over two days at 35°C without shaking, mixing occasionally by inverting
the culture tubes. These culture tubes should be filled to the brim with YPS broth and sealed
tightly, to create anaerobic conditions, and placed equidistant from the light source. Incandescent
bulbs are better than fluorescent bulbs, but the heat generated from the bulbs must be dissipated
(e.g. By having the culture tubes in a water tank) in order to maintain culturing temperature.

3. 1 day prior, inoculate recipient strain in RCV broth and grow aerobically overnight at 35°C (200-
250 RPM).

2. Assay:
1. Pass donor strain cultures through a 0.45 !m filter, collecting the filtrates in polypropylene tubes.
2. Centrifuge 1 ml of recipient cultures, decant the supernatant and re-suspend in an equal volume

of GTA buffer.
3. Mix the following in a polypropylene tube:

-Filtrate Controls (for each Donor filtrate): 0.5 ml GTA buffer, 0.1 ml filtrate
-Recipient Controls (for each Recipient Strain): 0.5 ml GTA buffer, 0.1 ml recipient cells
-Experimental samples: 0.4 ml GTA buffer, 0.1 ml filtrate, 0.1 ml recipient cells

4. Incubate tubes at 35°C for 1 hr with no shaking.
5. Add 0.9 ml RCV broth to each tube.
6. Incubate tubes at 35°C for 3 hrs with shaking at ~200 rpm.
7. Transfer the 1.5 ml mixtures from the polypropylene tubes to individual 1.5 ml microcentrifuge

tubes.
8. Plate 150 !l of each filtrate + recipient mix on plates to represent 10% of the total. This is not

necessary for the recipient and filtrate controls.
9. Centrifuge all tubes, decant supernatant, and resuspend pellets in the small (~100 !l) volume that

remains. Spread these resuspensions on plates to represent 90% and 100% for experimental and
control assays, respectively. These plates should be selective for the transfer of the marker, or
grown in conditions that select for a transferred marker.

10. Grow for 2-3 days at 30-35°C.
11. Count colonies. Determine ratios of colonies on experimental plates over the number of colonies

found on a positive control (e.g. a wild type strain).

Notes:

1. One common bioassay employs monitoring the transfer of the puhA gene to puhA deletion mutant
DW5 (Wong et al., 1996), with selection for transfer of the puhA gene being the ability to grow
photosynthetically. This bioassay shows no spontaneous mutation background. Another bioassay is the
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transfer of rifampicin resistance, which is a property of some strains of R. capsulatus, to rifampicin-
sensitive strains such as the natural isolate strain B10 (Weaver et al., 1975). This bioassay has a low
but detectable rate of spontaneous mutation background that must be accounted for in the data analysis.

2. It is essential to compare transfer of the same marker, as marker sizes can affect bioassay results
(Hynes et al., 2012), presumably affecting both packaging and recombination rates.

3. Bioassay absolute numbers can vary greatly depending on growth state of donor and recipient cells,
batch of media (e.g. the batch of Yeast Extract was used for YPS), so it is essential to compare ratios
within one bioassay, and perform multiple independent replicates. When performing bioassays for or
into strains/mutants with impaired growth or viability, it can help to normalize transfer rate to the
number of viable cells (either donors or recipients, whichever is impaired) by performing viable cell
counts alongside the bioassay.

Recipe

1. RCV Medium
7.5 mM (NH4)2SO4
30 mM DL-malate, pH 6.8 with NaOH
54 !M EDTA
0.8 mM MgSO4
0.51 mM CaCl2
43 !M FeSO4
3 !M Thiamine-HCl
9.5 !M MnSO4
45 !M H3BO3
0.2 !M Cu(NO3)2
0.83 !M ZnSO4
3 !M NaMoO4 
4.5 mM KH2PO4
5.1 mM K2HPO4
-pH to 6.8

2. YPS Medium
3.0 g/L Yeast Extract
3.0 g/L Peptone
2 mM MgSO4
2 mM CaCl2
-pH to 7.0 with NaOH or HCl, as needed
-Add 1.5% Agar for solid media

3. GTA Buffer 
10mM Tris-HCl (pH 7.8) with NaOH
1.0 mM MgCl2
1.0 mM CaCl2
1.0 mM NaCl
500 !g/mL BSA (Fraction V)
-Filter sterilize with 0.22 !m filter.
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