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ABSTRACT 

 

The organocatalytic, asymmetric conjugate addition of carbon nucleophiles and 

heteroatom nucleophiles to electron-deficient alkenes (Michael acceptors) such as 

nitroalkenes, enones, and vinyl sulfones, is of interest because the products are useful 

synthetic intermediates. The present study examines the enantioselective, iminium ion 

catalyzed vinylogous Mukaiyama-Michael reaction of 5-triisopropylsilyloxy furan-2-

carboxylates with acrolein. The stereoselectivity of this reaction is dependent on the 

nature of the furan nucleophile and the secondary amine catalyst. The Michael adduct 

obtained in this methodology was employed in the synthesis of (S)-homocitric acid 

lactone. The details of this study are described in Chapter 2.  

In a separate study, the γ-nitroketone obtained from an organocatalytic Michael 

addition of β-nitrostyrene and 1,4-cyclohexanedione mono ethylene ketal has been 

utilized in alkaloid synthesis. Thus, a total synthesis of indolizidine alkaloid (+)-antofine 

and quinolizidine alkaloid (+)-cryptopleurine was achieved from the γ-nitroketone. 

Details of these investigations are described in Chapter 3 and Chapter 4. 
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                                                     Chapter 1 

Introduction 

1.1 Organocatalytic conjugate addition reactions 

The conjugate addition of nucleophiles to the β-position of α,β-unsaturated 

carbonyl compounds (Michael reaction) is an important method to make a carbon–carbon 

bond.1  Due to the high demand for optically active compounds, much effort has been 

devoted to the development of asymmetric Michael reactions, since stereogenic centers  

can be constructed in the course of the Michael reaction.2 Although asymmetric 

conjugate additions have over the years been dominated by using chiral catalysts 

containing metals, small organic molecules (organocatalysts) have been developed 

recently as efficient catalysts for these reactions.1,2 

Carbon nucleophiles with active methylene groups are extensively used in direct 

Michael additions, whereas simple carbonyl compounds need to be activated as enol 

ethers or enamines prior to addition to a Michael acceptor (Figure 1.1). In this case, direct 

addition of unmodified carbonyl compounds to Michael acceptors would avoid unwanted 

chemical transformations and also reduce the overall synthetic effort.  

 

Figure 1.1 Direct and indirect Michael addition  



2 
 

In this context, the concept of aminocatalysis has received considerable attention 

in recent years. Catalytic activation of the Michael donor may take place through 

enamine or enolate formation for the addition to a Michael acceptor (Figure 1.2 paths a 

and b). Alternatively, carbonyl containing Michael acceptors can be activated by  the 

formation of an iminium species. 

 

 

Figure 1.2 Activation of a Michael donor and Michael acceptor 

 

1.1.1 Organocatalytic conjugate addition reactions via iminium catalysis 

In 2000, MacMillan reported the activation of unsaturated aldehydes and ketones 

by reversible iminium ion formation with chiral amines as a highly generalized strategy 

for conjugate addition reactions.3,4 The formation of the iminium ion lowers the LUMO 

energy of the carbonyl substrate with respect to the HOMO of the nucleophile. This 

activation effect is similar to that associated with reactions involving metal-based Lewis 

acids (Scheme 1.1).1 



3 
 

 

Scheme 1.1 

Iminium catalysis forms the basis for several conjugate addition reactions of 

various Michael donors such as malonates,6,7 nitroalkanes8,9 and thiols10 to enones as well 

as for Mukaiyama-Michael reactions of silyloxyfurans with enals.4,5 The first iminium-

catalyzed conjugate addition (malonate 2 to enone 1) was reported by Yamaguchi and co-

workers11 in 1991 using the lithium salt of S-proline 3 to obtain moderate-to-good 

enantioselectivities (Scheme 1.2). 

 

Scheme 1.2 

In 2003, Jørgensen developed the highly enantioselective organocatalytic Michael 

addition12 of malonates such as 6 to α,β-unsaturated enones such as 5 using an 

imidazolidine catalyst 7, which was readily prepared from phenylalanine (Scheme 1.3). 
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Scheme 1.3 

The following is a brief summary of the iminium ion catalyzed Mukaiyama-

Michael reactions of silyloxyaromatic compounds with enals catalyzed by organic 

molecules (organocatalytic reactions).  

 

1.1.2 Organocatalytic Mukaiyama-Michael Reaction 

The Mukaiyama-Michael reaction has become a powerful method for 

stereoselective carbon-carbon bond formation, since it was discovered by Mukaiyama in 

1974.13 The classical version of this reaction involves the addition of silyl enol ethers 

such as 9 to α,β-unsaturated carbonyl compounds 10 for the stereoselective construction 

of acyclic frameworks such as 11 (Scheme 1.4). The use of silyl enol ethers for additions 

to α,β-unsaturated carbonyls provides mild reaction conditions increasing the functional 

group tolerance for these Michael additions. 

 

Scheme 1.4 
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In 2003, MacMillan and co-workers reported the first organocatalytic 

Mukaiyama-Michael-type reactions, using 5-silyloxyfurans 12 as nucleophiles to obtain 

products with the butenolide framework 15.14 The 2,4-dinitrobenzoic acid (DNBA) salt 

of imidazolidinone 14 catalyzed the reactions of different enals with silyloxyfurans with 

excellent selectivites and yields (Scheme 1.5). 

 

Scheme 1.5 

The same group also utilized silyloxyoxazoles 16 as nucleophiles. These reactions 

are promoted by the tryptophan derived catalyst 18 in good yields and high 

enantioselectivities15 (Scheme 1.6). 

 

Scheme 1.6  
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   Wang and co-workers demonstrated that aryl-substituted TMS enol ethers 20 

could also be used as nucleophiles in Mukaiyama-Michael type reactions.16 Several alkyl 

and aryl TMS enol ethers 20 were added to crotanaldehyde as well as to cinnamaldehyde 

and its derivatives to provide the adducts 22 in moderate yields and moderate to high 

enantioselectivities (Scheme 1.7). 

 

Scheme 1.7 

Our strategy was to develop an enantioselective organocatalytic Mukaiyama-

Michael addition of TIPS furan 23 to acrolein 24, to establish the γ-butenolide framework 

29 (Scheme 8). The γ-butenolide skeleton is represented in numerous natural products.17 

 The objective of these investigations was to utilize the γ-butenolide framework, 

obtained from the organocatalytic Mukaiyama-Michael reaction, in the synthesis of (S)-

homocitric acid lactone (enantiomer of the natural product) and its homolog (R)-

perhomocitric acid lactone.18 It is noteworthy that only a few examples of 

enantioselective organocatalytic Mukaiyama-Michael conjugate additions of furans 

related to 23 and β-substituted α,β-unsaturated aldehydes are known, and the use of 

acrolein 24 as a Michael acceptor in these reactions has not been reported. Conversion of 
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29 to (S)-homocitric acid lactone 30 provided a new synthesis of this natural product 

enantiomer, and also established the stereochemistry of the Michael addition of 23 to 29.  

 

Scheme 1.8 Enantioselective synthesis of (S)-homocitric acid lactone and (R)- 

perhomocitric acid lactone. 

1.1.3 Organocatalytic conjugate addition reactions via enamine catalysis 

 Chiral amines can catalyze the asymmetric conjugate addition of aldehydes and 

ketones to electron-deficient alkenes (Michael acceptors) such as nitroalkenes, enones, 

and vinyl sulfones, by the in situ formation of enamines from the starting aldehydes and 

ketones.2 The enamine catalysis relies on reversible formation of enamines from a 

catalytic amount of the amine. The formation of an iminium ion is the first step of the 

catalytic cycle (Figure 1.3). This results in a significant increase in α-C-H acidity which 

facilitates enamine formation. 1e 
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Figure 1.3 Enamine-Catalyzed Michael Reaction.1e 

Although asymmetric conjugate additions have, over the years, been dominated 

by the application of chiral Lewis acids as catalysts, 19,20 more recently organocatalysts 

have been added as efficient tools.2  

The following is a brief summary of organocatalytic conjugate addition of ketones 

to nitroalkenes using enamine catalysis. 

In 2001, List et al. developed the first enamine-catalyzed asymmetric Michael 

reaction of ketone 32 to nitroalkenes 33.21 The reaction was catalyzed by (S)-proline (34) 

in DMSO to afford the desired γ-nitroketones 35 in high yields and good 

diastereoselectivities, but only low enantioselectivities (Scheme 1.9). In a related study, 

Enders used methanol as the solvent to obtain better enantio- and diastereoselectivities.22 
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O

+ Ar
NO2

O

NO2

Ar
N
H

CO2H

(15 mol%)

rt, 2 h

dr : syn/anti up to 9:1
ee = up to 47%

32 33

34

35

dr : syn/anti up to 9:1
ee = up to 76%

List (DMSO) :

Enders (MeOH) :
 

Scheme 1.9 

Since these reports, several methods have been developed for the organocatalytic 

Michael addition of ketones to nitroalkenes.1,2 For the vast majority of these reactions, 

chiral amines are used as catalysts.  

 

1.2 Functionalized pyrrolidines as organocatalysts for the ketone-

nitroalkene conjugate addition reaction 

Several catalysts having an N-containing side chain or heterocycle were 

developed (Figure 1.4), and either the free amine or the corresponding salts were shown 

to promote the highly syn-selective addition of cyclic and acyclic ketones 36 to 

nitroalkenes 332e,g  (Scheme 1.10). Quite often the role of the acid co-catalyst (HX, 

Scheme 1.10) is to promote iminium ion formation, and consequently enamine formation, 

which results in an overall rate acceleration and increased conversion. Numerous 

secondary amine based catalysts23-29 have been reported for these reactions. A selection 

of catalysts reported in the early days of the reaction (organocatalytic ketone-nitroalkene 

conjugate addition) are shown in Figure 1.4.  
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Scheme 1.10 

 

 

Figure 1.4 Selected organocatalysts for ketone-nitroalkene conjugate addition 
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1.3 Chiral primary amines as organocatalysts for the ketone-nitroalkene 

conjugate addition reaction 

Alanine 44 and alanine-containing small oligopeptides have also shown good 

stereoselectivities in the addition of ketones 36 to nitroalkenes 3330 (Scheme 1.11). The L-

ala-L-ala dipeptide 45 was more selective than the monomer 44, while the alanine 

derivative 46 is a much better catalyst than 44 and 45.31 

 

R1

O

+
Ar

NO2
R1

R2

O

NO2

Ar
cat. (30 mol%)

DMSO, rt
H2O, (10 eq)36 33 37

H2N
OH

O

CH3

H2N

H
N

O

CH3

H2N

H
N

O

CH3

Ph

Ph

OH

O

(21%)
syn/anti = 6/1
ee = 81%

(55%)
syn/anti = 12/1
ee = 84%

(92%)
syn/anti = 27/1
ee = 93%

pTsOH
NMP44 45 46

R2

CH3

 

Scheme 1.11 

 

1.4 Chiral amino-thioureas and amino-squaramides as organocatalysts 

for the ketone-nitroalkene conjugate addition reaction 

Tsogoeva, Schmatz, and co-workers utilized primary amine derived chiral 

thiourea catalysts in the Michael reaction of ketones 36 nitroalkenes 33.32,33 Thiourea 47 

bearing a primary amine promoted the addition of ketones to nitroalkenes (Scheme 1.12) 



12 
 

with moderate diastereoselectivities (up to 6:1 dr) but excellent enantioselectivities (up to 

99% ee). Water plays an important role in the regeneration of the catalyst and enamine 

formation is accelerated by acidic additives.  

 

Scheme 1.12 

Huang and Jacobsen used a similar primary amine thiourea catalyst 49 for the 

conjugate addition of ketones 36 to nitroalkenes 33.34 While reactions performed in polar 

and/or protic solvents proceeded slowly, nonpolar solvents and high concentrations 

turned out to be beneficial. Thiourea containing catalyst 49 furnished the Michael adducts 

with excellent anti-selectivity (up to 20:1 dr) and enantioselectivities (up to 99%).  A (Z)-

enamine intermediate was proposed for the observed anti-diastereoselectivity (Scheme 

1.13). 
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R1

O

+
R1
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O
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N
H

N
H
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R2

N

O

Bn

tBu

NH2

7 examples
dr = up to 20:1,
ee = up to 99%

36 33

49

50

Ar
NO2

 

Scheme 1.13 

A chiral squaramide derivative catalyst 51 was reported by Rawal and co-workers 

for the Michael addition of ketones 36 to nitroalkenes 33 (Scheme 1.14). The squaramide 

derivative afforded the desired Michael adducts with high diastereo- and 

enantioselectivities.35  

 

Scheme 1.14 

The objective of our study was to utilize the enantiomerically-enriched γ-

nitroketone 55, for the stereoselective synthesis of selected alkaloids. The γ-nitroketone 

can be obtained from the organocatalytic Michael addition of an appropriate cyclic 
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ketone 52 and nitroalkene 53 via an enamine based Michael addition reaction (Scheme 

1.15). 

 

Scheme 1.15 

 The full potential of the organocatalytic ketone-nitroalkene conjugate addition 

reactions described above will be realized when the enantiomerically-enriched γ-

nitroketone products find applications in other synthetic endeavours.36-39 We therefore 

chose to examine the application of γ-nitroketone 55 (1.2.4) in the synthesis of the 

indolizidine alkaloid (+)-antofine and the quinilozidine alkaloids (+)-julandine and (+)-

cryptopleurine.40 

 

 

 

 Figure 1.5 Indolizidine and quinolizidine alkaloids synthesized in this study. 
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2.1 Introduction 

(R)-Homocitric acid (1, Figure 2.1) is a key intermediate in the biosynthesis of L-

lysine, an essential amino acid in some yeast and fungi,1 and it is also a component of the 

Fe-Mo cofactor in nitrogenase.2 The unique biological profile of homocitric acid is of 

interest in the development of antifungal therapies3 and in the elucidation of the details of 

nitrogen fixation.4 Studies toward these objectives require access to enantiomerically 

enriched (R)-homocitric acid and its analogues,5 neither of which are commercially 

available in significant amounts. Consequently, the enantioselective synthesis of 

homocitric acid, invariably isolated as its -lactone, has been actively investigated in 

recent years.6 Syntheses of racemic homocitrate7 and per-homocitrate7a have also been 

reported. Close congeners of homocitrate such as the alkyl citrate, isocitrate, or -alkyl 

malate motifs are key pharmacophoric units in several bioactive alkaloids, glycosides and 

antifungal agents.8 This has added to the interest in substituted -hydroxy di- and 

tricarboxylic acid derivatives in recent years.  

 

Figure 2.1 (R)-Homocitric acid (1), (S)-homocitric acid lactone (2) and (R)-per-
homocitric acid lactone (3). 
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The following summary provides an overview of the stereoselective methods for 

the  syntheses of (S)-homocitric acid. 

2.2 Known synthetic routes to (S)-homocitric acid 

The first enantioselective synthesis of (S)-homocitric acid lactone was reported by 

Thomas and co-workers in 1966 (Scheme 2.1).6g The synthesis was carried out primarily 

to establish the absolute configuration of (R)-homocitric acid by the synthesis of its 

optical isomer, which could be obtained by degradation of (‐)-quinic acid. In the first step 

of this endeavour, quinic acid was oxidized to the ketone 5 using a catalytic oxidation 

protocol reported by Haslam,9 followed by complete reduction of the ketone moiety in 5 

to generate the diol 6.10 Periodate cleavage of the diol followed by in situ oxidation of the 

dialdehyde provided (S)-homocitric acid lactone. 

 

 

Scheme 2.1 

In 1996, Biellmann and co-workers reported the enantioselective synthesis of (S)-

homocitric acid lactone 2 starting from (S)-serine (Scheme 2.2).6f In a sequence centered 

around a stereoselective Diels-Alder reaction, the authors used reported methods11 to 

make the key starting material 7 from (‐)-L-serine. 
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Scheme 2.2 

Dioxolanone 7 was subjected to a Diels-Alder reaction with 1,3-butadiene to 

obtain the cyclohexene derivative 8. Ozonolysis of 8 followed by oxidative workup 

provided the diacid 9. Hydrolysis of the dioxolanone 9 provided (S)-homocitric acid 

lactone 2 in a low yield (16%, 96% ee). In the same report, the authors also describe the 

synthesis of (R)-homocitric acid lactone ent-2, which was prepared from (-)-L-lactic acid. 

Huang and Li reported the synthesis of (S)-homocitric acid lactone, using 

Seebach’s SRS (self-regeneration of stereocenters) methodology,11a  from  (S)-

phenylalanine (Scheme 2.3).6a This strategy depends on using the phenyl group as a latent 

carboxyl group.12 



23 
 

Scheme 2.3 

 Thus, compound 11 was prepared from (S)-phenylalanine using a known 

procedure6h,11a and then stereoselectively alkylated with allyl iodide to give dioxolanone 

12. Oxidative hydroboration of compound 12 afforded corresponding alcohol 13. 

Compound 15 was obtained from the sequential oxidation of alcohol 13 using 

RuCl3/NaIO4. Compound 15 was then converted to (S)-homocitric acid lactone by using a 

known procedure.6b 
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Tatsumi and co-workers reported a convenient route for the synthesis of (S)-

homocitric acid (Scheme 2.4).6b The synthesis starts with readily available L-malic acid 

which was first reacted with pivalaldehyde to provide compound 18. Alkylation of the 

dianion of compound 18 with the iodide 19 afforded compound 20. The synthesis 

concluded with the hydrolysis of 20 to give the (S)-homocitric acid lactone 2. 

 

 

Scheme 2.4 

 

2.3 Objective 

The objective of this study was to utilize the γ-butenolide framework, obtained 

from organocatalytic Mukaiyama-Michael reaction, in the synthesis (S)-homocitric acid 

lactone (enantiomer of natural product) and its homolog (R)-per-homocitric acid lactone. 
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2.4 Results and discussion 

Our approach to homocitric acid lactone is based on the Mukaiyama-Michael 

reaction13 of silyloxy furans and ,-unsaturated aldehydes and ketones, which is a 

useful method for the construction of butenolides. The iminium ion catalyzed version of 

this reaction was pioneered by MacMillan14a,b and other organocatalytic variants have 

since been developed.14e-g We reasoned that the use of acrolein as the Michael acceptor in 

a conjugate addition reaction with an appropriately substituted furan would lead directly 

to the homocitrate lactone motif (Figure 2.2). It may be noted that only β-substituted 

enals had previously been examined as substrates in this reaction.14 We anticipated that 

acrolein would be a more challenging Michael acceptor since the stereoselectivity of the 

reaction appeared to depend on a β-substituent in the enal.14 

 

Figure 2.2 Retrosynthesis of (S)-homocitric acid lactone 

 

With this objective in mind, the furans 2115a and 22 were readily prepared from 

commercially available γ-crotonolactone by adapting a literature procedure.15b Secondary 

amines 23-26 were chosen as potential catalysts for the organocatalytic conjugate 

addition reaction of 21 and 22 with acrolein (Scheme 2.5). Orienting experiments were 

conducted with furan 21 and acrolein in the presence of the MacMillan first generation 



26 
 

catalyst 23 (Table 2.1). Although the required product was not obtained in ethereal 

solvents, the use of halogenated solvents was beneficial and 27 was obtained in modest 

yield and in 73% ee in chloroform, with water as an additive (Table 1, Entry 5). The 

enantioselectivity with the MacMillan catalyst 24 was low. Interestingly, a change in the 

ester alkyl group had a beneficial effect on enantioselection. Thus, the use of furan 2216 

(benzyl ester) as the nucleophile in CHCl3/H2O provided the Michael adduct 2816 in 80% 

ee and 40% yield. Increasing the amount of acrolein (20 eq., Entry 9) was not beneficial 

and provided only 19% of 28 with significantly lowered enantiomeric excess (69% ee). 

As with 21, changing the solvent to THF was detrimental (1% ee). This observation 

suggests that the reaction is notably sensitive to changes in the solvent and ethereal 

solvents, in particular, are detrimental to enantioselection. Reactions of 22 in the presence 

of amines 24, 25 and 26 also provided the butenolide 28 (Table 1, entries 10-18). When 

24 was used under the conditions optimized for 23 (CHCl3/H2O as the solvent) 28 was 

not obtained. The use of TFA as an additive (instead of water) had a pronounced effect 

and 28 was obtained, but with low ee (39%, entry 12).  In summary, the best conditions 

for the synthesis of 28 employ the ester 22 with an excess (3 equivalents) of acrolein and 

catalyst 23 in CHCl3/H2O as the solvent. 
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Scheme 2.5 

 

Among the remaining catalysts, the imidazolidinone 24 was superior. Reactions 

with the prolinol derivative 25 were found to be very capricious in terms of 

enantioselectivity and the C2-symmetric pyrrolidine 26 was not especially effective as a 

catalyst (Table 2.1). Overall, the higher efficiency of 23 over 24 is notable in this study. It 

may be noted that the facial selectivity for the reaction of 21 with -substituted acroleins 

is known to depend on the nature of the -substitutent and this substitutent is often 

necessary for good stereoselectivity.14a,d Since these studies14a were conducted with 

catalyst 24, an unambiguous stereochemical assignment for adducts 27 and 28 was not 

possible by analogy to the reported results. However, subsequent reactions of 28 were 

useful in determining the sense of asymmetric induction in the Mukaiyama-Michael 

reaction.   
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Yield (%) Entry Cat. Solvent Add. Time 
(h) 27 28 

ee 
(%)a 

1 23 THF H2O
b 16 -  - 

2 23 dioxane H2O 16 -  - 

3 23 CH2Cl2 H2O 156 18  52 

4 23 CHCl3 H2O 156 12  45 

5 23 CHCl3 H2O 72 24  73 

6 24 THF TFAc 72 21  13 

7 24 CH2Cl2 TFA 3d  9  20 

8 23 CHCl3 H2O 72  40 80 

9 23 CHCl3 H2O 20   19e,f 69 

10 23 THF H2O 20  16 1 

11 24 CHCl3 H2O 144  - - 

12 24 CHCl3 TFA 48  33e 39 

13 24 CHCl3 TFA 72f   47 72 

14 24 THF TFA 50  50 59 

15 24 CH2Cl2 TFA 48f   41 41 

16 25 CHCl3 H2O 120  36 50 

17 25 THF - 91  74 35 

18 25 CH2Cl2 - 120  33 44 

19 26 CHCl3 H2O 168  27 1 

20 26 CHCl3 MeOH 192  35 3 
                 aChiral HPLC analysis of 28 and of the acetal with (2R,3R)-2,3-butanediol  
           for 27. b2 equiv water. c0.2 equiv TFA. dreaction at -40 oC. e20 equiv acrolein.  
           freaction at 0 oC. 

 
Table 2.1 Catalyst survey for the Mukaiyama-Michael reaction of acrolein with furan     
                  nucleophiles 

 

With the ester 28 (80% ee) in hand, we proceeded to convert it into the target 

homocitric acid lactone via a dehomologation/oxidation protocol (Scheme 2.6). 
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Acetalization of 28 with trimethylorthoformate followed by treatment of the crude acetal 

with Hunig’s base provided the enol ether 29 as a mixture of stereoisomers (trans/cis = 

2/1).16 Oxidative cleavage of the enol ether (OsO4/NaIO4) provided the acid 30. 

 

Scheme 2.6 

 Hydrogenation of 30 was anticipated to proceed with concommitant 

debenzylation. However, the benzyl ester in 30 was resistant to hydrogenolysis (Pd/C, 2 

atm. H2) which invariably led to mixtures containing a trace of 2 and the dihydro analog 

of 30. Nonetheless, selective reduction of the double bond in 30 was possible (1 atm. H2), 

which was followed by base hydrolysis of the ester and subsequent acidification to 

provide (S)-homocitric acid lactone 2 (90% from 30, Scheme 2.6). 

The lactone 2 obtained in this study is dextrorotatory and is therefore assigned the 

(S) configuration ([]D
23 = +39.0 (c 1, H2O); lit.6c []D

23 = -48.9, c 0.38, H2O) for the (R) 

enantiomer). This assignment also establishes the sense of asymmetric induction in the 

organocatalytic Michael addition reaction leading to 28.  
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The proposed mechanism for the organocatalytic Mukaiyama-Michael addition to 

acrolein is shown in Figure 2. According to MacMillan, the imidazoline salt 23 forms an 

iminium ion such as 31. Two factors for stereocontrol can be identified in the reaction.14 

a,b 

1) Selective formation of E iminium ion 31 (Figure 2.3) 

2) The benzyl group on the catalyst shields the si-face of the iminium ion. 

Taking into consideration these aspects, the furan nucleophile should approach 

from the less hindered re-face of the iminium ion as shown in 31, which will lead to the 

enamine 32. Hydrolysis of enamine 32 will give aldehyde 28 and regenerate the catalyst 

for further catalytic cycles. 

 

Figure 2.3 The proposed mechanism for the organocatalytic Mukaiyama-Michael 
addition to acrolein 
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Given the recent interest in the higher homologue of (S)-homocitric acid (per-

homocitric acid),5d,6a we converted lactone 28 to a homologue of 2. Oxidation of 

aldehyde 28 provided the corresponding acid which was hydrogenated to provide the 

target (R)-per-homocitric acid lactone (3)16 in good yield (85%, Scheme 2.7). It may be 

noted that 3 is a desymmetrized derivative of the parent, achiral triacid. 

 

 

Scheme 2.7 

2.5 Conclusion 

       Expedient, organocatalysis-based, enantioselective syntheses of (S)-

homocitric acid lactone and its homologue have been developed. Notably, the 

methodology also provides several butenolide intermediates that offer opportunities for 

chemoselective functionalization. Such reactions may find applications in the synthesis of 

functionalized, oxygen and nitrogen heterocycles with applications in biology and 

medicine.17 
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2.6 Experimental section 

Benzyl-5-triisopropylsiloxy-2-furoate (22): 

 

 A solution of s-BuLi (11.6 mL, 10.5 mmol, 0.900 M solution in 

cyclohexanes) was added dropwise to a stirred solution of (furan-2-yloxy) 

triisopropylsilane (2.42 g, 10.1 mmol) in THF (12.0 mL) at -78 oC under nitrogen and the 

mixture was stirred at -78 oC for an hour. A solution of benzyl chloroformate (1.48 mL, 

10.5 mmol) in THF (13.0 mL, cooled at -78 oC) was added, the mixture was stirred for 90 

min and then warmed to room temperature. The mixture was concentrated and the residue 

was dissolved in ethyl acetate (20.0 mL). The solution was washed with saturated 

aqueous NaHCO3 (2 x 10.0 mL) followed by brine (20.0 mL). The organic layer was 

separated, dried over Na2SO4 and concentrated. The residue was purified by flash column 

chromatography on silica gel (97/3 hexanes/ether). The product obtained contained a 

volatile impurity which was removed at 120 oC (0.2 mmHg) to provide 1.50 g (40%) of 

pure 22 as an orange oil. 

IR (neat): 2947, 2869, 1720, 1604, 1531, 1303, 1123 cm-1; 1H NMR (500 MHz, 

CDCl3): δ 7.42-7.31 (m, 5H, ArH), 7.13 (d, 1H, J = 3.5, CH=CC=O), 5.30 (d, 1H, J = 

3.5, CH=CO), 5.28 (s, 2H, PhCH2), 1.34-1.29 (sept, 3H, SiCH), 1.10 (d, 18H, J = 7.5, 

CH3CH ); 13C NMR (125 MHz, CDCl3): δ 159.9 (COSi), 158.4 (C=O), 136.43 (CC=O), 

133.9 (ArCipso), 128.7 (ArC), 128.3 (2 x ArC), 122.2 (C=CC=O), 87.7 (C=CO), 66.0 
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(PhC), 17.7 (CH3CH), 12.4 (CH3CH); HRMS (CI+): m/z 375.1999 (375.1992 Calc. for 

C21H31O4Si, [M+H]+). 

 

(R)-Methyl 2-(formylethyl)-2,5-dihydro-5-oxofuran-2-carboxylate (27): 

 

 To a solution of the imidazolidinone 23 (9.00 mg, 0.030 mmol, 20 mol% 

with respect to ester 21) in chloroform (0.500 mL) was added water (6.00 L, 0.330 

mmol, 2 equiv. with respect to ester 21), acrolein (0.030 mL, 0.500 mmol) and the ester 

21 (50.0 mg, 0.170 mmol) at room temperature. The mixture was stirred at room 

temperature for 72 h. Water (5.0 mL) was added and the mixture was extracted with 

dichloromethane (2 x 5.0 mL). The combined extracts were dried (Na2SO4) and 

concentrated. The residue was purified by flash chromatography on silica gel 

(hexanes/ethyl acetate, 6/4) to provide 8 mg (24%) of aldehyde 27 as a yellow gum. 

IR (neat): 3096, 2923, 2853, 1772, 1740, 1722, 1437, 1255, 1178, 1104 cm-1; 1H 

NMR (500 MHz, CDCl3): δ 9.75 (s, 1H, CHO), 7.43 (d, 1H, CH=CHC=O, J = 5.6), 6.19 

(d, 1H, J = 5.6), 3.81 (s, 3H, CH3), 2.61 (m, 2H, CH2CHO), 2.55-2.50 (m, 1H, 

CH2CH2CHO), 2.31-2.25 (m, 1H, CH2CH2CHO); 13C NMR (125 MHz, CDCl3): δ 199.4 

(CHO), 171.0 (OC=O), 167.6 (CO2CH3), 154.3 (C=CC=O), 122.4 (C=CC=O), 88.6 

(OCCO2CH3), 53.5 (OCH3), 37.7 (CH2CHO), 27.5 (CH2CH2); HRMS (CI+): m/z 

199.0605 (199.0606 Calc. for C9H11O5, [M+H]+); ee (acetal with(2R,3R)-2,3-butanediol): 
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73% (tmajor: 16.7 min; tminor: 18.1 min; Chiralpak AS-H, 210 nm, hexanes/iPrOH, 92/8, 1 

mL/min). 

 

(R)-Benzyl-2-(formylethyl)-2,5-dihydro-5-oxofuran-2-carboxylate (28):  

 

 To a solution of the  imidazolidinone salt 23 (122 mg, 0.47 mmol, 20 

mol% with respect to ester 22) in chloroform (9.0 mL) and water (86.0 L, 3.80 mmol, 2 

equiv. with respect to ester 22) was added acrolein (0.460 mL, 7.20 mmol) and ester 5 

(0.90 g, 2.40 mmol) at room temperature. The mixture was stirred at room temperature 

for 72 h. Dichloromethane (10.0 mL) was added the mixture was washed with water (1 x 

10.0 mL). The organic layer was dried (Na2SO4) and concentrated. The residue was 

purified by flash chromatography on silica gel (hexanes/ethyl acetate, 1/1) to provide 260 

mg (40%) of the aldehyde 28 as a viscous brown liquid. 

IR (neat): 3092, 2929, 2735, 1768, 1102 cm-1; 1H NMR (500 MHz, CDCl3): δ 

9.70 (s, 1H, CHO), 7.41 (d, 1H, CH=CHC=O, J = 5.0), 7.39-7.32 (m, 6H, ArH), 6.17 (d, 

1H, J = 5.0), 5.21 (s, 2H, CH2Ph), 2.59-2.47 (m, 3H, CH2CHO, CH2CH2CHO), 2.30-2.22 

(m, 1H, CH2CH2CHO); 13C NMR (125 MHz, CDCl3): δ 199.6 (CHO), 171.1 (OC=O), 

167.1 (CO2Bn), 154.4 (C=CC=O), 134.7(ArCipso), 129.0 (ArC), 129.0 (ArC), 128.6 

(ArC), 122.7 (C=CC=O), 88.9 (OCC=O), 68.5 (CH2Ar), 37.8 (CH2CHO), 27.7 

(CH2CH2); HRMS (CI+): m/z 275.0917 (275.0919 Calc. for C15H15O5, [M+H]+); ee: 80% 
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(tminor: 50 min; tmajor: 67.6 min (Chiralpak AS-H, 210 nm, hexanes/iPrOH, 85/15, 1 

mL/min). 

Other reactions of 22 with acrolein, employing different solvents and/or catalysts 

at selected temperatures, were carried out according to the procedure described above. 

 

(R)-Benzyl 2,5-dihydro-2-(3-methoxyallyl)-5-oxofuran-2-carboxylate (29): 

 

 Indium triflate (1.7 mg, 0.0030 mmol) was added to a solution of the 

aldehyde 28 (165 mg, 0.60 mmol) and trimethyl orthoformate (0.130 mL, 1.20 mmol) in 

dichloromethane (8.0 mL) at room temperature. The mixture was stirred for 4 min, a 

second portion of indium triflate (1.70 mg, 0.003 mmol) was added and the stirring was 

continued further for 6 min. The reaction mixture was then filtered through a plug of 

neutral alumina and the plug was washed with dichloromethane. The filtrate was 

concentrated under vacuum to provide 159 mg (83%) the dimethyl acetal of 28 as 

colourless oil. This was used further without purification. 

IR (neat): 2932, 1773, 1456, 1128, 1057 cm-1; 1H NMR (500 MHz, CDCl3): δ 

7.40 (d, 3H, J = 3.1, CH=CHC=O), 7.40-7.30 (m, 6H, ArH), 6.16 (d, 1H, J = 3.1, 

CH=CHC=O), 5.21 (s, 2H, CH2Ar), 4.32 (t, 1H, J = 5.0, CH(OCH3) 2), 3.28 (s, 3H, 

OCH3), 3.27 (s, 3H, OCH3),  2.30-2.24 (m, 1H, CH2C(OCH3)2), 2.0-1.90 (m, 

1H,CH2C(OCH3)2), 1.70-1.50 (m, 2H, CH2CH2); 
13C NMR (125 MHz, CDCl3): δ 171.2 

(C=CCO), 167.3 (CO2CH2Ph), 154.4 (CH=CHCO), 134.6 (PhCipso), 128.7 (PhC), 128.7 



36 
 

(PhC), 128.3 (PhC), 122.4 (CH=CHCO), 103.6 (CH(OCH3)2), 89.5 (OCCO2CH2Ph), 68.1 

(CH2Ph), 53.3 (OCH3), 52.9 (OCH3), 30.5 (CH2CH(OCH3)2), 26.6 (CH2CH(OCH3)2); 

HRMS (CI+): m/z 320.1255 (320.1260 Calc. for C17H20O6, M
+). 

The above acetal (150 mg, 0.470 mmol) was dissolved in dichloromethane (0.8 

mL) and N,N-diisopropylethylamine (97.0 L, 0.560 mmol) was added at room 

temperature. The mixture was cooled to -20 oC and TMSOTf (93.0 L, 0.52 mmol) was 

added dropwise. The mixture was warmed to room temperature and stirred for 2.5 h after 

which it was concentrated and filtered through a short silica gel column (hexanes/ethyl 

acetate, 7/3) to provide 84 mg (62%) of 29 as a 2:1 mixture of E:Z isomers. 

IR (neat): 2936, 1768, 1655, 1456, 1213, 1107, 1027, 922 cm-1; 1H NMR (500 

MHz, CDCl3):  Major isomer: δ 7.40 (d, 1H, J = 5.0, CH=CHC=O), 7.36-7.32 (m, 5H, 

ArH), 6.33 (d, 1H, J = 12.7, CH=CHOMe), 6.16 (d, 1H, J = 5.6, CH=CHC=O), 5.2 (m, 

2H, OCH2Ph), 4.54-4.49 (m, 1H, CH=CHOMe), 3.43 (s, 3H, OCH3), 2.75 (dd, 1H, J = 

14, 8, CH2C=CHOMe), 2.56 (dd, 1H, J = 14.0, 7.0, CH2C=CHOMe). Visible peaks of 

minor isomer: δ 6.12 (d, 1H, J = 5.6, CH=CHC=O), 5.99 (d, 1H, J = 7.3, CH=CHOMe), 

4.24-4.20 (q, 1H, J = 7.3, CH=CHOMe), 3.55 (s, 3H, OCH3),  2.85 (dd, 1H, J = 14.50, 

7.30 CH2), 2.82 (dd, 1H, J = 14.5, 7.30,  CH2C=CHOMe); 13C NMR (125 MHz, CDCl3): 

Major isomer: δ 171.4 (C=CCO), 167.3 (CO2CH2Ph), 154.4 (C=CCO), 151.7 

(C=COMe), 150.2 (PhCipso), 134.9 (PhC), 128.9 (PhC), 128.6 (PhC), 122.8 (C=CCO), 

93.1 (C=COMe), 90.2 (OCCO2Bn), 68.1 (CH2Ph), 56.1 (C=COCH3), 35.0 

(CH2C=CHOMe). Visible peaks of the minor isomer: δ 171.7 (C=CCO), 167.5 

(CO2CH2Ph), 154.6 (C=CCO), 121.9 (PhC), 128.8 (PhC), 128.8 (PhC), 128.4 (CPh), 
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122.2 (C=CCO), 96.5 (C=COMe), 89.9 (OCCO2Bn), 68.1 (CH2Ph), 59.9 (C=COCH3), 

30.5 (CH2C=CHOMe); HRMS (CI+): m/z 288.1000 (288.0998 Calc. for C16H16O5, M
+). 

 

2-((R)-2-((Benzyloxy) carbonyl)-2,5-dihydro-5-oxofuran-2-yl)acetic acid (30): 

 

 A solution of osmium tetroxide (4% in water, 86.0 L, 0.014 mmol) was 

added to a stirred solution of the enol ethers 29 (0.080 g, 0.28 mmol) in acetone (4.3 mL) 

and water (0.50 mL). The mixture was stirred for 10 min and sodium periodate (0.118 g, 

0.55 mmol) was added. The mixture was stirred for 20 min and filtered through a pad of 

Celite. The Celite was washed with acetone and the filtrate was concentrated to provide 

an aqueous solution which was extracted with ethyl acetate (3 x 5.0 mL). The combined 

organic layers were dried (Na2SO4) and concentrated to provide 64 mg (95%) of (R)-

benzyl-2-(formylmethyl)-2,5-dihydro-5-oxofuran-2-carboxylate as a gum. This was used 

further without purification. 

1H NMR (500 MHz, CDCl3): δ 9.71 (s, 1H, CHO), 7.56 (d, 1H, J = 5.6, 

CH=CHCO), 7.38-7.30 (m, 5H, ArH), 6.24 (d, 1H, J = 5.6, CH=CHCO), 5.24-5.18 (AB, 

2H, J = 15.0, OCH2Ph), 3.23-3.13 (AB, 2H, J = 20.0, CH2CHO). 

The above aldehyde (0.064 g, 0.26 mmol) was dissolved in t-butyl alcohol (5.20 

mL) and 2-methyl-2-butene (0.55 mL of a 2 M solution in THF, 1.10 mmol). To this was 

added a solution of NaClO2 (0.071 g, 0.79 mmol) and NaH2PO4 (0.033 g, 0.28 mmol) in 

water (1.30 mL). The mixture was stirred at room temperature for 3 h and concentrated. 
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The aqueous solution obtained was extracted with ether (3 x 5.0 mL). The ether layer was 

separated and the aqueous layer was cooled (<5 oC) and acidified (0.5 M HCl, 3.0 mL) 

and the acidic solution was extracted with ether (3 x 5.0 mL). The combined extracts 

were dried (Na2SO4) and concentrated to provide 64 mg (95%) of the acid 30. This was 

used further without purification. 

1H NMR (500 MHz, CDCl3): δ 9.0-8.0 (br. 1H, CO2H), 7.56 (d, 1H, J = 5.6, 

COCH=CH), 7.37-7.29 (m, 5H, PhH), 6.24 (d, 1H, J = 5.6, COCH=CH), 5.22 (s, 2H, 

PhCH2O), 3.20-3.05 (AB, 2H, J = 16.9, CH2COOH). 

 

(S)-2-(Carboxymethyl)-tetrahydro-5-oxofuran-2-carboxylic acid ((S)-Homocitric 

acid) (2): 

 

 The acid 30 (47 mg, 0.17 mmol) was dissolved in ethyl acetate (3.0 mL), 

Pd/C (10%, 10 mg) was added and the mixture was stirred under hydrogen at 

atmospheric pressure for 48 h. The reaction mixture was filtered through Celite, the 

Celite was washed with ethyl acetate (10 mL) and the combined filtrates were 

concentrated to provide 40 mg (85%) of 2-((S)-2-((benzyloxy)carbonyl)-tetrahydro-5-

oxofuran-2-yl)acetic acid. 

1H NMR (500 MHz, CDCl3): δ 7.39-7.33 (m, 5H, ArH), 5.24 (AB, 2H, J = 12.0, 

OCH2Ph), 3.19 (d, 1H, J = 17.1, CH2COOH), 3.04 (d, 1H, J = 17.1, CH2COOH), 2.65-

2.50, (m, 3H, CH2CH2), 2.36-2.29 (m, 1H, COCH2CH2). 
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The above ester (38 mg, 0.14 mmol) was dissolved in THF (0.50 mL), aqueous 

NaOH (2 M, 0.50 mL) was added and the mixture was stirred at ambient temperature for 

15 h. The THF was removed under reduced pressure and the resulting aqueous solution 

was extracted once with dichloromethane. The aqueous solution was cooled, acidified 

with HCl (0.50 M) to pH 1 and extracted with dichloromethane (3 x 5.0 mL). The 

combined extracts were dried (Na2SO4) and concentrated to provide 25 mg (97%) of (S)-

homocitric acid (2) that was pure by 1H NMR. 

IR (solid): 3500-2800 (br), 1717, 1416, 1170, 1064, 942, 870 cm-1; 1H NMR (500 

MHz, CDCl3):  δ 3.39 (d, 1H, J = 17.5, CH2COOH), 3.05 (d, 1H, J = 17.5, CH2COOH), 

2.75-2.69 (m, 2H, CH2C=O), 2.60-2.54 (m, 1H, CH2CH2), 2.47-2.40 (m, 1H, CH2CH2); 

MS (APCI negative): m/z 187 [M-H]-); (APCI positive): m/z 189 [M+H]+); []D
23: + 39.0 

(c 1, H2O). 

(R)-2-(2-Carboxyethyl)-tetrahydro-5-oxofuran-2-carboxylic acid ((R)-Per-

homocitric acid) (3): 

 

 To a solution of the aldehyde 28 (500 mg, 1.82 mmol) in t-butyl alcohol 

(8.0 mL) was added 2-methyl-2-butene (3.82 mL of 2 M soln. in THF, 7.65 mmol) 

followed by dropwise addition of a solution of NaClO2 (494 mg, 5.46 mmol) and 

NaH2PO4 (219 mg, 1.82 mmol) in water (32.0 mL). The mixture was stirred at ambient 

temperature for 3 h and the t-butyl alcohol was removed under reduced pressure. The 

resulting mixture was extracted with ether (2 x 10.0 mL). The aqueous layer was cooled 
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to 0 ˚C and acidified with HCl (0.50 M). The acidic solution was extracted with ethyl 

acetate (2 x 10.0 mL) and the combined extracts were dried (Na2SO4) and concentrated to 

provide 500 mg (94%) of the acid as a white solid. This was pure by 1H NMR (500 MHz) 

and was used further without purification. 

IR (neat): 3091, 1734, 1706, 1499, 1456, 1236, 1172, 1088, 1053, 905, 819, 750 

cm-1. 1H NMR (500 MHz, CDCl3): δ  7.41-7.40 (d, 1H, J = 5.60, COCH=CH), 7.37-7.26 

(m, 5H, PhH), 6.19-6.18 (d, 1H, J = 5.6, COCH=CH), 5.21 (s, 2H, PhCH2O), 2.59-2.53 

(m, 1H, CHCH2COOH), 2.44-2.40 (m, CH2COOH), 2.31-2.25 (m, CHCH2COOH). 

HRMS (CI+): m/z 291.0871 (291.0869 Calc. for C15H14O6, [M+H]+); []D
20: + 86.0 (c 1, 

CH2Cl2). 

To a solution of the above acid (100 mg, 0.34 mmol) in THF (15.0 mL) was 

added Pd/C (10%, 30 mg) and the mixture was shaken under hydrogen at 50 psi for 7 h. 

The mixture was filtered through a pad of Celite and the Celite was washed with THF 

(2x10.0 mL). The combined filtrates were concentrated under reduced pressure to 

provide 62 mg (90%) of per-homocitric acid lactone (14) that was pure by 1H NMR. If 

necessary, further purification can be achieved by sonication of a mixture of the diacid 

and chloroform (10 mg/mL) for 10-15 min. followed by decantation of the chloroform 

layer to remove the dissolved impurities. 

IR (neat): 2938, 1733, 1709, 1243, 1169, 1074, 1044 cm-1; 1H NMR (500 MHz, 

CDCl3+DMSO-d6): δ 9.25-8.25 (br, CO2H), 2.70-2.60 (m, 1H, CH2CO), 2.60-2.50 (m, 

3H, CH2CO), 2.48-2.38 (m, 2H, CH2CH2CO), 2.22-2.14 (m, 2H, CH2CH2CO); 13C NMR 

(125 MHz, CDCl3+ DMSO-d6): δ 175.9 (C=O), 174.8 (C=O), 173.1 (C=O), 85.6 (C-O), 
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32.4 (CH2CO), 31.8 (CH2CO), 29.0 (CH2), 28.1 (CH2); MS (APCI negative): m/z 200.6 

(M-2); HRMS (CI+): m/z 203.0554 (203.0556 Calc. for C8H11O6, [M+H]+).; []D
23:  -3.8 

(c 1, THF). 
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2.8 Selected  1H NMR and 13C NMR spectral data  
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Chapter 3 
 

A Simple Enantioselective Route to Functionalized Indolizidines. 

Synthesis of (+)-Antofine 

 

This chapter is based on the following publication: 

Pansare, S.V.; Lingampally, R.; Dyapa, R. Eur. J. Org. Chem. 2011, 2235–2238 

 

Contribution of authors 

S. V. Pansare: Research supervisor, manuscript preparation 

R. Lingampally: Synthetic experimental work on ipalbidine, which is the second target 

molecule prepared in the above publication, and manuscript preparation 

R. Dyapa: Synthetic experimental work and manuscript preparation 
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3.1 Introduction 

The indolizidine motif is a prominent structural unit in numerous alkaloids1 and 

also constitutes a major class of glycosidase inhibitors.2 In addition, several indolizidines 

have an interesting biological profile which includes antibacterial, antiviral, antitumor 

and antidiabetic properties.3 Aryl-substituted indolizidines are also of interest; either as 

bioactive natural products4 or as peptidomimetics.5 Accordingly, the synthesis of 

arylindolizidines continues to be intensely investigated and general synthetic strategies 

toward aryl-fused6a-c or aryl-substituted indolizidines6d-h as well as other functionalized 

indolizidines have been reported.7 The phenanthroindolizidine alkaloid (‐)-antofine, an 

enantiomer of (+)-antofine, has potent anticancer activity.8 The anticancer activity may 

occur through the inhibition of protein and nucleic acid synthesis.9 Antofine has also 

shown other medicinal properties, including antibiotic, antifungal and antiviral activity.10  

 

 

Figure 3.1 Structures of selected phenanthroindolizidine alkaloids 
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3.2 Recent syntheses of (+)-antofine 

The following summary provides an overview of the recent reports since 2010 on 

the synthesis of enantiomerically pure antofine. 

In 2010, Georg and co-workers reported an enantioselective total synthesis of (+)-

antofine (Scheme 3.1).11a Their synthesis starts with Boc-S-proline (1), which was 

homologated using standard Arndt-Eistert reaction conditions. The acid was first 

converted into diazoketone 2 which was then subjected to a Wolff rearrangement with 

catalytic CF3CO2Ag in the presence of freshly distilled N,O-dimethylhydroxylamine to 

provide the Weinreb amide 3. Ynone 4 was prepared by treatment of 3 with 

ethynylmagnesium bromide.  
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Scheme 3.1 

Initially, enaminone 5 was prepared from the ynone 4 by stepwise treatment with 

aqueous HCl in dioxane followed by addition of methanolic K2CO3. However, this 

protocol led to racemization of 4. Alternatively, a milder deprotection protocol (formic 

acid and NaI) was used to minimize racemization of 4. Treatment of the obtained vinyl 

iodide with K2CO3 gave enaminone 5. A Pd(II)-catalyzed C-H arylation of 5 with an 

appropriate organotrifluoroborate produced the arylindolizidinone 6. 1,4-Reduction of 

enaminone 6 using L-selectride and trapping of the resulting enolate with 2-(N,N-

bis(trifluoromethanesulfonyl)amino)-5-chloropyridine (Comins reagent) provided the 
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triflate 7. (+)-Secoantofine (8) was prepared from 3,4-dimethoxyphenylzinc bromide and 

triflate 7, using the Negishi cross-coupling protocol. In the final step, the phenanthrene 

framework was constructed with a PhI(O2CCF3)2 mediated oxidative cyclization 

involving the aryl groups to provide the title compound (+)-antofine. 

Wang and coworkers reported a short and efficient route to enantiomerically pure 

antofine, involving Parham-type cycloacylation as the key step.11b The synthesis began 

with ester 10 which was prepared by a procedure described by Wang and co-workers.12,13 

Reduction of ester 10 using LAH provided alcohol 11. Alcohol 11 was brominated to 

afford the dibromo compound 12. Amide 14 was prepared from the alkylation of (S)-N,N-

diethylpyrrolidine-2-carboxamide (13) with dibromide 12, using K2CO3 as a base 

(Scheme 3.2). 

Scheme 3.2 

Amide 14 was treated with nBuLi to effect ring closure. Subsequent reduction of 

the ketone (NaBH4) obtained in the cyclization step provided the aminol 15 

stereoselectively. Dehydroxylation of 15 using triethylsilane and trifluoroacetic acid 

provided the title compound (+)-antofine (Scheme 3.3). 
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Scheme 3.3 

 Herndon and co-workers reported an enantioselective synthesis of (+)-antofine. 

The key steps in their synthesis are alkyne hydration, a chromium-carbene complex 

mediated net [5 + 5] cycloaddition process and a Bischler-Napieralski cyclization 

reaction.14 The synthesis began with enantiomerically pure 2-ethynylpyrrolidine 

derivative 17 which was prepared in seven steps from Boc protected proline by using 

previously reported methods.15 Sonogashira coupling of dihaloveratrole derivative 16 

with 17 provided the bromoalkyne 18 (Scheme 3.4).  

Scheme 3.4 
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     Hydration of bromoalkyne 18 using mercuric trifluoroacetate, mercuric oxide 

and sodium hydrogen carbonate afforded the ketone 19 regioselectively. Sonagashira 

coupling of TMS-acetylene with bromoketone 19 afforded the ketone 20. Phenanthrene 

derivative 23 was obtained from a net [5 + 5] cycloaddition of ketone 20 and the carbene 

complex 21 involving a tandem process (isobenzofuran 20a formation followed by exo-

selective intramolecular Diels-Alder reaction to form benzo-oxanorbornene 20b, opening 

of the benzo-oxanorbornene ring system followed by dehydration step). 

 Scheme 3.5 
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Dehydrogenation of compound 22 using palladium on carbon provided 23. 

Bischler-Napieralski-type cyclization of phenantherene derivative 23, using triflic 

anhydride, provided the corresponding cyclic amide which was reduced to the title 

compound (+)-antofine (Scheme 3.5). 

3.3 Objective 

Our interest in indolizidines stems from our studies on the organocatalytic 

synthesis of -nitroketones from cyclic ketones and 2-nitrovinylarenes via an 

enamine-based Michael addition reaction.16 This reaction has been extensively 

studied and the development of new catalysts for the process continues at a 

remarkable pace.17 Undoubtedly, the full potential of the organocatalytic ketone-

nitroalkene Michael reaction will be realized only when the -nitroketone products are 

utilized in target oriented synthesis, but this has been relatively unexplored.18 We 

therefore chose to examine the application of -nitroketone 24 (Scheme 3.6) in the 

synthesis of (+)-antofine (9). 

 

Scheme 3.6 
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3.4 Results and discussion 

Our studies began with the synthesis of the appropriate γ-nitroketone starting 

material for (+)-antofine (9).11 The organocatalytic Michael addition of cyclohexane-1,4-

dione monoethylene ketal and 4-methoxy-β-nitrostyrene, employing the triamine salt 

catalyzed protocol16a developed in the Pansare group, provided the nitroketone 24 in good 

yield and stereoselectivity (er = 96/4, dr >19/1). Baeyer-Villiger oxidation of 24 provided 

the lactone 28 in excellent yield (98%). Methanolysis of 28 and subsequent hydrolysis of 

the ketal generated the highly functionalized octanoate 29 (Scheme 3.7, 88% over two 

steps) that has all the required carbon atoms for the indolizidine framework. 



 

Scheme 3.7 
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Reduction of the nitroketone 29 with zinc in aq. ammonium chloride provided the 

nitrone 30 which was anticipated to undergo a stereoselective reduction due to the 1,3 

disposition with the secondary alcohol stereocenter. Treatment of 30 with L- 

Selectride® or LAH at -78 oC resulted in reduction of the ester. Reduction with 

NaBH4 was stereorandom and also led to reduction of the ester, indicating the need 

for a milder reducing agent. Accordingly, Me4NBH(OAc)3 was examined which 

gratifyingly provided the hydroxylamine 31 (83%) as a single diastereomer, 

presumably via a hydroxyl-directed reduction (Scheme 3.8). At this stage, 31 was 

assigned the shown stereochemistry which was assumed to derive from an 

intramolecular, hydroxyl directed reduction of 30.19 Reduction of the N-O bond in 31 

was achieved with indium metal to provide a mixture of the amino ester 32 and the 

corresponding indolizidinone 33 resulting from cyclization of the amino ester. This 

product mixture was treated with DIPEA in refluxing isopropyl alcohol to complete 

the lactamization (Scheme 3.8). 
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Scheme 3.8 

The synthesis of (+)-antofine (9) was achieved from the lactam 33. Oxidation of 

33 (pyridine.SO3) provided the ketolactam 34. Conversion of 34 to the enol triflate 35 

followed by a Suzuki-Miyaura coupling20 of 35 with 3,4-dimethoxyphenylboronic acid 

furnished the lactam 36. Reduction of the amide in 36 provided secoantofine 8. Finally, 

oxidative biaryl coupling in 8 employing VOF3 provided (+)-antofine (Scheme 3.9) 

 (9, 77%)  
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Scheme 3.9 

3.5 Conclusion 

In conclusion, an organocatalytic Michael addition based enantioselective 

synthesis of the indolizidine framework was developed. This approach has potential 

applications in the synthesis of congeners and analogs of the target alkaloids1a by a) 

variation in the ketone, nitrostyrene and the aryl cross-coupling partner, and b) 

embellishment of the propanoate side chain in 31. The utility of our strategy is 

augmented by the large number of methods available for the stereoselective synthesis 

of a variety of -nitroketones.21  
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3.6 Experimental section 

(7S)-7-[(1R)-1-(4-Methoxyphenyl)-2-nitroethyl]-1,4-dioxaspiro[4.5]decan-8-one (24): 

 

 To a solution of 1,4-cyclohexanedione monoethylene ketal (13.0 g, 83.7 mmol), 

N1,N1-dimethyl-N2-(((S)-pyrrolidin-2-yl)methyl)ethane-1,2-diamine16 (572 mg, 3.34 

mmol) and p-toluenesulfonic acid monohydrate (634 mg, 3.34 mol) was added a solution 

of 4-methoxy-β-nitrostyrene (3.00 g, 16.7 mmol) in DMF (30 mL) and the resulting 

solution was stirred at ambient temperature for 48 h. Ethyl acetate (100 mL) was added 

and the solution washed with water, aq. HCl (3 N), dried (Na2SO4) and concentrated. The 

residue obtained was purified by flash chromatography on silica gel to provide 4.60 g of a 

solid. This was dissolved in ethyl acetate (23 mL) and precipitated by addition of hexanes 

(70 mL). The procedure was repeated once to provide 3.50 g (62%) of 24 with 96% ee. In 

repeated runs, 24 was obtained in 90-96% ee. 

IR (neat): 2897, 2360, 1712, 1548, 1512, 1247, 1132, 1026, 950, 832 cm-1; 1H NMR (500 

MHz, CDCl3): δ 7.09 (d, 2H, J = 8.7, ArH), 6.85 (d, 2H, J = 8.7, ArH ), 4.91 (dd, 1H, J = 

12.3, 4.8, CH2NO2), 4.56 (dd, 1H, J = 12.3, 9.9, CH2NO2), 4.00-3.83 (m, 4H, 

OCH2CH2O ), 3.78 (s, 3H, OCH3), 3.04-2.98 (m, 1H, ArCH), 2.72-2.66 (dt, 1H, J = 13.8, 

6.4, COCH), 2.48-2.43 (m, 1H, COCH2), 2.07-2.01 (m, 1H, COCH2), 1.98-1.92 (dt, 1H, J 

= 13.3, 5.2, CHCH2), 1.72-1.68 (m, 1H, CHCH2), 1.57-1.51 (apparent t, 2H, J = 13.4, 
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CH2CH2), 
13C NMR (125 MHz, CDCl3): δ 210.4 (CO), 159 (ArC), 129.2 (2xArC), 129.0 

(ArC), 114.4 (2xArC), 107.1 (OCO), 79.1 (CH2NO2), 64.8 (OCH2CH2O), 64.6 

(OCH2CH2O), 55.2 (OCH3), 48.3 (COCH), 42.7 (CHCH2NO2), 39.3 (COCH2), 38.6 

(CH2), 35.1 (CH2); MS (APCI, pos.): m/z 336 (M+1); HRMS (EI): m/z 335.1367 

(335.1369 calc. for C17H21NO6 (M+)); HPLC (Chiralpak AS-H, hexane/2- propanol: 

60/40, flow rate 1.0 mL/min, 254 nm): tminor = 9.45 min, tmajor = 12.97 min, ee = 93%, dr 

= 20:1 (average values from multiple reactions). 

 

(S)-7-((R)-1-(4-Methoxyphenyl)-2-nitroethyl)-1,4,8-trioxaspiro[4.6]undecan-9-one 

(28): 

 

 To a solution of the nitroketone 24 (3.10 g, 9.24 mol) in anhydrous 

dichloromethane (60 mL) at ambient temperature, was added solid sodium phosphate 

(3.21 g, 12.0 mol) followed by m-chloroperbenzoic acid (~77%, 4.94 g, 28.7 mmol). The 

resulting white slurry was stirred vigorously for 16 h. Dichloromethane (100 mL) was 

added and the solution was washed with 5% aq. NaOH (2 x 60 mL). The organic layer 

was dried (Na2SO4) and concentrated to provide 3.20 g (98%) of 28 as a white, solid 

foam. This material was pure by 1H NMR (500 MHz) and was directly used further. 
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IR (neat): 2962, 1736, 1550, 1514, 1249, 1154, 1117, 1099, 1029, 834 cm-1; 1H NMR 

(500 MHz, CDCl3): δ 7.15 (d, 2H, J = 11.6, ArH), 6.89 (d, 2H, J = 11.6, ArH ), 4.94 (dd, 

1H, J = 12.6, 4.7, CH2NO2), 4.76-4.69 (m, 2H, CH2NO2, (CO)OCH)), 3.89-3.85 (m, 2H, 

OCH2CH2O), 3.80 (4H, OCH3, OCH2CH2O), 3.62-3.58 (dt, 1H, J = 9.3, 4.7, Ar-CH),  

3.54-3.51 (m, 1H, OCH2CH2O), 2.88-2.81 (m, 1H, CH2CO), 2.65-2.60 (m, 1H, CH2CO), 

1.93-1.89 (m, 2H, CH2(C)CH2), 1.86-1.79 (m, 2H, CH2(C)CH2); 
13C NMR (125 MHz, 

CDCl3): δ 173.5 (CO), 159.5 (ArC), 129.3 (2xArC), 127.8 (ArC), 114.6 (2xArC), 107.2 

(OCO), 77.7 (CH2NO2), 75.8 (COC(O)), 65.0 (OCH2CH2O), 64.3 (OCH2CH2O), 55.3 

(OCH3), 48.1 (OCHCH2), 41.5 (CHCH2NO2), 33.1 (CH2(C)CH2), 29.3 (CH2(C)CH2); 

HRMS (CI): m/z 351.1308 (351.1318 calc. for C17H21NO7 [M+H]+).    

 

Methyl 3-(2-((2S, 3R)-2-hydroxy-3-(4-methoxyphenyl)-4-nitrobutyl)-1, 3-dioxolan-2-

yl) propanoate (28a): 

 

A solution of the lactone 28 (3.4 g, 9.7 mmol) in methanol (70 mL) was cooled to 

0 C and potassium carbonate (2.67 g, 19.4 mmol) was added. The mixture was stirred at 

room temperature for 30 min. The mixture was cooled to 0 C, neutralized with aq. HCl 

(0.5 M) and the solution was extracted with dichloromethane (2 x 50 mL). The combined 

organic layers were dried (Na2SO4) and concentrated to provide 3.5 g (95%) of the 
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nitroketal 28a as a light brown gum. This material was pure by 1H NMR (500 MHz) and 

was directly used further.  

IR (neat): 3501, 2956, 1732, 1548, 1514, 1249, 1179, 1134, 1030, 831 cm-1; 1H NMR 

(500 MHz, CDCl3): δ 7.10 (d, 2H, J = 8.6, ArH), 6.85 (d, 2H, J = 8.6, ArH), 5.04 (dd, 

1H, J = 12.7, 5.2, CH2NO2), 4.58 (dd, 1H, J = 9.7, 12.7, CH2NO2), 4.05-4.02 (m, 1H, Ar-

CH) 4.01-3.91 (m, 4H, OCH2CH2O), 3.86 (s, 1H, CHOH), 3.78 (s,3H, ArOCH3) 3.64 

(s,3H, OCH3), 3.42-3.37 (dt, 1H, J = 5.3, 9.5, CHOH), 2.25-2.16 (m, 2H, CO2CH2), 2.02-

1.97 (m, 1H, CH2(C)CH2), 1.79-1.85 (m, 1H, CH2(C)CH2),1.64-1.62 (m, 2H, 

CH2(C)CH2); 
13C NMR (75 MHz, CDCl3): δ 173.5 (CO2CH3), 159.2 (ArC), 129.2 (ArC), 

129.1 (ArC), 114.5 (ArC), 110.9 (OCO), 78.5 (CH2NO2), 70.0 (CHOH), 65.1 

(OCH2CH2O), 64.7 (OCH2CH2O), 55.2 (ArOCH3), 51.7 (CO2CH3), 50.3 (HO-CCH2), 

40.5 (Ar-CH), 31.7 (CH2CH2CO2CH3), 28.5 (CH2CO2CH3); MS (APCI, pos.): m/z 366 

(M-OH); HRMS (CI): m/z 384.1647 (384.1658 calc. for C18H26NO8 [M+H]+). 

 

(6S,7R)-Methyl 6-hydroxy-7-(4-methoxyphenyl)-8-nitro-4-oxooctanoate (29): 

 

To a solution of the nitroketal 28a (3.50 g, 10.3 mmol) in methanol (70 mL) at 0 

C, was added aq. HCl (6 N, 40 mL), and the mixture was stirred at room temperature 

overnight. The methanol was removed under reduced pressure and the aqueous layer was 

extracted with dichloromethane (2 x 50 mL). The combined organic layers were dried 
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(Na2SO4) and concentrated to provide 2.90 g (95%) of the nitroketone 29 as a light brown 

solid. This material was pure by 1H NMR (500 MHz) and was directly used further.  

IR (neat): 3436, 2953, 1723, 1710, 1553, 1514, 1380, 1251, 1204, 1179, 1157, 1102, 

1032, 819 cm-1; 1H NMR (500 MHz, CDCl3): δ 7.10 (d, 2H, J = 6.6, ArH), 6.87 (d, 2H, J 

= 6.6, ArH ), 5.07 (dd, 1H, J = 5.1, 12.8, CH2NO2), 4.60 (dd, 1H, J = 9.9, 12.8, CH2NO2), 

4.24-4.19 (m, 1H, Ar-CH), 3.79 (s, 3H, ArOCH3) 3.65 (s, 3H, OCH3), 3.55 (d, 1H, J = 4, 

CHOH) 3.51-3.46 (dt, 1H, J = 5.2, 9.8, CHOH), 2.57-2.64 (m, 4H, CH2COCH2), 2.41-

2.52 (m, 2H, CH2CO2CH3 ); 13C NMR (125 MHz, CDCl3): δ 209.7 (CO), 173.1 

(CO2CH3), 159.3 (ArC) 129.0 (2xArC), 128.6 (ArC), 114.6 (OCO), 78.4 (CH2NO2), 69.8 

(CHOH), 55.2 (ArCOCH3), 51.9 (CO2CH3), 49.2 (HO-CCH2CO), 47 (Ar-CH), 37.7 

(COCH2), 27.4 (CH2CO2CH3); MS (APCI, pos.): m/z 322 (M-OH); HRMS (CI): m/z 

322.1284 (322.1291 calc. for C16H20NO6 (M-OH)). 

 

(3R,4S)4-Hydroxy-6-(3-methoxy-3-oxopropyl)-3-(4-methoxyphenyl)-2,3,4,5-

tetrahydropyridine-1-oxide (30): 

 

A solution of NH4Cl (0.37g, 6.0 mmol) in water (5 mL) was added to a solution 

of the nitroketone 29 (2.3 g, 6.0 mmol) in THF (20 mL). Activated Zn powder (4.4 g, 

0.060 mmol) was added and the mixture was stirred vigorously at room temperature 

under nitrogen for 3 h. The mixture was filtered (Celite), the residue was washed with 
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THF, and the combined filtrates were concentrated under reduced pressure. The residue 

was diluted with dichloromethane (50 mL) and the mixture was washed with water (10 

mL), dried (Na2SO4) and concentrated under reduced pressure to provide 2.0 g, (95%) of 

30 as brown foam. This material was pure by 1H NMR (500 MHz) and was directly used 

further. An analytical sample was obtained by flash chromatography on silica gel 

(CH2Cl2/MeOH, 95/5). 

IR (neat): 2953, 1738, 1612, 1512, 1434, 1249, 1175, 1134, 1070, 1033 cm-1; 1H NMR 

(500 MHz, CDCl3): δ 7.22 (d, 2H, J = 8.6, ArH), 6.88 (d, 2H, J = 8.6, ArH ), 4.34-4.29 

(br t, 1H, J = 13.3, ArCH), 4.18 (br s, 1H, CHOH), 3.89 (dd, 1H, J = 14.9, 5.5, CH2N), 

3.79 (s, 3H, ArOCH3 ),  3.68 (s, 3H, CO2CH3), 3.20 (dd, 1H, J = 11.9, 4.8, CH2N), 2.94-

2.68 (m, 6H, CH2C=N, COCH2CH2, COCH2), 
13C NMR (125 MHz, CDCl3): δ  173.7 

(CO), 159.1 (ArC), 144.7 (C=NO), 129.7 (ArC), 128.8 (2xArC), 114.3 (2 x ArC), 65.2 

(CH2NO), 57.8 (Ar-CH), 55.3 (OCH3), 51.8 (CO2CH3), 43.7 (CHOH), 38.7 

(CH2CO2CH3), 28.3 (N=CCH2), 27.5 (N=CCH2); MS (APCI, pos.): m/z 308 (M+1); 

HRMS (CI): m/z 308.1499 (308.1498 calc. for C16H22NO5 [M+H]+). 
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Methyl 3-(2R,4S,5S)-4-hydroxy-5-(4-methoxyphenyl)-N-hydroxypiperidin-2-

yl)propanoate (31): 

 

To a solution of tetramethylammonium triacetoxyborohydride (3.2 g, 0.012 mol) 

in acetonitrile (10 mL) was added acetic acid (10 mL). The mixture was stirred at 0 °C 

for 5 min and a solution of the nitrone 30 (1.9 g, 0.006 mol) in acetonitrile (5 mL) was 

added. The mixture was stirred at 0 °C for 1 h and the pH of the solution was adjusted 

(pH 7 to 8) with aqueous NaOH (5% solution). The mixture was extracted with 

dichloromethane (2 x 50 mL) and the combined extracts were dried (Na2SO4) and 

concentrated to give 1.59 g (83%) of 31 as a white solid. This material was pure by 1H 

NMR (500 MHz) and was directly used further.  

IR (neat): 3518, 3203, 2920, 1715, 1511, 1437, 1245, 1205, 1175, 1105, 1025, 981, 819 

cm-1; 1H NMR (500 MHz, CDCl3): δ 7.15 (d, 2H, J = 8.7, ArH), 6.88 (d, 2H, J = 8.7, 

ArH ), 3.93 (d, 1H, J = 12.3 ArCH), 3.79 (s, 3H, OCH3), 3.69 (s, 3H, COCH3 ), 3.52-3.44 

(t, 1H, J = 10.1, CHOH), 3.31-3.13 (m, 1H, ArCHCH2), 3.07-2.9 (m, 1H, ArCHCH2), 

2.53-2.32 (m, 2H, COCH2), 2.22-2.14 (m, 1H, NCH), 2.04-1.98 (dt, 1H, J = 13.3, 5.2, 

OHCHCH2), 1.92-1.84 (m, 1H, OHCHCH2), 1.74-1.66 (m, 1H, NCHCH2), 1.54-1.50 (m, 

1H, NCHCH2); MS (APCI, pos.): m/z 272 (M-OCH3+1), 310 (M+1); HRMS (CI): m/z 

310.1636 (310.1654 calc. for C16H24NO5 [M+H]). 
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(6R,7S,8aS)-Hexahydro-7-hydroxy-6-(4-methoxyphenyl)indolizin-3(5H)-one (33): 

 

 

 The hydroxylamine 31 (1.65 g, 5.34 mmol) was dissolved in a mixture of EtOH 

(20 mL) and saturated aqueous NH4Cl (10 mL). Indium powder (1.2 g, 0.01 mol) was 

added and the mixture was heated to reflux for 4 h. The mixture was cooled, filtered 

through a pad of Celite, and the filtrate was concentrated. The residue was diluted with 

dichloromethane (40 mL) and the aqueous layer was separated. The organic layer was 

washed with saturated aqueous NaHCO3 solution (3 x 10 mL) dried (Na2SO4) and 

concentrated to give 1.04 g of a yellow gum. This material is a mixture of the amino ester 

and the cyclization product (lactam 33, ~30%). The mixture was therefore directly converted 

to the lactam as follows: 

To a solution of the crude amino ester 32 and lactam 33 mixture (1.00 g) in THF (15 mL) 

was added diisopropylethyl amine (1.5 mL, 0.0080 mol) and the solution was heated to 

reflux for 5 h. The THF was removed under reduced pressure, the residue was dissolved 

in dichloromethane (30 mL) and the resulting solution was washed with aqueous HCl 

(0.5 M, 2 x 10 mL). The organic layer was dried (Na2SO4) and concentrated to provide 

0.82 g (60% from 31) of the lactam (33) as a pale yellow foam. This material was pure by 

1H NMR (500 MHz) and was directly used further. 
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IR (neat): 3356, 2923, 1652, 1510, 1453, 1242, 1175, 1027, 828 cm-1; 1H NMR (500 

MHz, CDCl3): δ 7.17 (d, 2H, J = 8.7, ArH), 6.89 (d, 2H, J = 8.7, ArH ), 4.13 (br s, 1H, 

CHOH), 4.12 (dd, 1H, J = 4.7, 12.6, NCH2), 3.97-3.91 ( m, 1H, ArCH), 3.8 (s, 3H, 

OCH3), 3.37-3.32 (t, 1H, J = 12.6, NCH2), 2.81-2.77 (dt, 1H, J = 4.6, 1.8, NCH), 2.44-

2.41 (br t, 2H, J = 7.1, COCH2), 2.29-2.22 (m, 1H, CH2CHOH), 2.21-2.16 (m, 1H, 

NCHCH2), 1.65-1.61 (m, 2H, CHCH2CH), 1.6-1.52 (dt, 1H, J = 2.4, 9.6, NCHCH2), 
13C 

NMR (125 MHz, CDCl3): δ 173.6 (CO), 158.8 (ArCipso), 131.5 (ArCipso), 128.6 (ArC), 

114.2 (ArC), 69.1 (CHOH), 55.3 (OCH3), 50.8 (NCH), 44.8 (NCH2), 39.6 (ArCH), 38.1 

(HOCHCH2), 30.6 (NCOCH2), 24.7 (NCHCH2); MS (APCI, pos.): m/z 262 (M+1);  

HRMS (EI): m/z 261.1364 (261.1365 calc. for C15H19NO3 (M
+). 

 

 (6R,8aS)-Hexahydro-6-(4-methoxyphenyl)indolizine-3,7-dione (34): 

N

H3CO

O
H

O

 

To a stirred solution of the alcohol 31 (0.20 g, 0.77 mmol) in dichloromethane (7 

mL) was added DMSO (3.5 mL) followed by DIPEA (1 mL) at 0 °C. Solid SO3 pyridine 

(365 mg, 2.30 mmol) was added portion wise and the mixture was stirred at 0 oC for 1 h. 

Water (3 mL) was added and the mixture was diluted with dichloromethane (10 mL). The 

mixture was washed with water (2 x 15 mL) and the organic layer was dried (Na2SO4) 

and concentrated to provide a brown solid which was purified by flash chromatography 

on silica gel (EtOAc) to provide 0.14 g (70%) of 34 as a white solid. 
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IR (neat): 2955, 1714, 1673, 1515, 1455, 1239, 1186, 1036, 833 cm-1; 1H NMR (300 

MHz, CDCl3): δ 7.06 (d, 2H, J = 8.7, ArH), 6.90 (d, 2H, J = 8.7, ArH ), 4.59 (dd, 1H, J = 

13.1, 6.9, ArCCH), 4.01-3.96 (m, 1H, NCH)  3.80 (s, 3H, OCH3), 3.63 (dd, 1H, J = 12.0, 

6.9, NCH2), 3.11-3.06 (t, 1H, J = 12.5, NCH2), 2.74 (dd, 1H, J = 3.8, 13.6, COCH2), 

2.56-2.46 (m, 2H, COCH2, NCOCH2) 2.44-2.40 (m, 2H, NCOCH2CH2, COCH2CH2), 

1.83-1.79 (m, 1H, COCH2CH2); 
13C NMR (75 MHz, CDCl3): δ 205.5 (CO), 173.5 

(NCO), 159.1 (ArCOCH3), 130.0 (ArCH), 126.4 (ArC), 114.1 (ArCH), 57.2 (NCH), 55.3 

(OCH3), 54.9 (ArCCH), 48.6 (NCH2), 45.1 (COCH2), 29.7 (NCOCH2), 24.7 

(COCH2CH2); MS (APCI pos.): m/z 260.1 (M+1); HRMS (CI+): m/z 259.1214 (259.1208 

calc. for C15H17NO3 M
+). 

 

(S)-1,2,3,5,8,8a-Hexahydro-6-(4-methoxyphenyl)-3-oxoindolizin-7-yl 

trifluoromethanesulfonate (35): 

 

To a suspension of KH (54 mg, 0.39 mmol) in THF (2 mL) was added ketone 34 

(0.10 g, 0.39 mmol) at 0 ºC. The mixture was stirred at room temperature for 2 h and N-

phenyl bis-trifluoromethanesulfonimide (152 mg, 0.42 mmol) was added in one portion 

and the mixture was stirred for 1h at room temperature. Water (5 mL) was added and the 

mixture was extracted with EtOAc (2 x 10 mL). The combined organic layers were dried 

(Na2SO4) and concentrated to give  a brown gum, which was purified by flash 
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chromatography on silica gel (EtOAc) to provide 105 mg (70%) of 35 as a pale brown 

liquid. 

IR (neat): 2962, 2840, 1693, 1609, 1243, 1201, 1000, 832 cm-1; 1H NMR (500 MHz, 

CDCl3): δ 7.24 (d, 2H, J = 8.8, ArH), 6.92 (d, 2H, J = 8.8, ArH ), 4.75 (dd, 1H, J = 2.3, 

18.0, NCH2) 3.95-3.92 (m, 1H, NCH), 3.82 (s, 3H, OCH3), 3.73-3.69 (br d, 1H, J = 18.0, 

NCH2), 2.70 (dd, 1H, J = 4.3, 16.3, COCH2), 2.61-2.55 (m, 1H, COCH2), 2.53-2.49 (m, 

2H, C=CCH2) 2.45-2.38 (m, 1H, COCH2CH2),  1.88-1.81(m, 1H, COCH2CH2); 
13C NMR 

(75 MHz, CDCl3): δ 173.7 (C=O), 160.0 (TfOC=C), 139.5 (ArCOCH3), 129.6 (ArC), 

127.9 (ArCH), 124.8 (TfOC=C), 115.2 (q, J = 109.4, CF3), 114.1 (ArCH), 55.3 (OCH3), 

53.3 (NCH), 43.0 (NCH2), 35.5 (C=CCH2CH), 29.6 (COCH2CH2), 24.3 (COCH2); MS 

(APCI pos.): m/z 392.1 (M+1); HRMS (CI+): m/z 391.0704 (391.0701 calc. for 

C16H16NO5SF3, M
+). 

 

(S)-1,2,8,8a-Tetrahydro-7-(3,4-dimethoxyphenyl)-6-(4-methoxyphenyl)indolizin-

3(5H)-one (36): 

 

To a stirred solution of the enol triflate 35 (85 mg, 0.22 mmol) and 3,4-

dimethoxyphenyl boronic acid (44  mg, 0.24 mmol) in dioxane (4 mL) was added aq. 

Na2CO3 (69 mg, 0.65 mmol; degassed with N2 for 20 min) and the mixture was degassed 
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with nitrogen for 15 min. Pd(PPh3)4 (13 mg, 0.011 mmol) was added and the mixture was 

heated with stirring at 85 ºC for 90 min. The mixture was cooled to ambient temperature, 

diluted with EtOAc (15mL) and the mixture was washed with water (2 x 5ml).  The 

organic layer was dried (Na2SO4) and concentrated to give a brown gum, which was 

purified by flash chromatography on silica gel (EtOAc) to provide 67 mg (80%) of 36 as 

a pale yellow gum. 

IR (neat): 2965, 2834, 1729, 1674, 1510, 1454, 1243, 1027, 834 cm-1; 1H NMR (500 

MHz, CDCl3): δ 6.97 (d, 2H, J = 8.7, ArH), 6.70 (d, 3H, J = 8.7, ArH ), 6.62 (dd, 1H, J = 

1.9, 8.3,  ArH),  6.42 (d, 1H, 1.9, ArH), 4.71 (dd, 1H, J = 2.2, 18.4, NCH2), 3.93-3.88 (m, 

1H, NCH), 3.82 (s, 3H, OCH3), 3.78 (br s, 1H, NCH2), 3.74 (s, 3H, OCH3), 3.56 (s, 3H, 

OCH3), 2.74 (dd, 1H, J = 3.1, 16.7, COCH2), 2.52-2.49 (t, 2H, J = 7.9, COCH2, 

C=CCH2), 2.45-2.37 (m, 2H, C=CCH2,COCH2CH2), 1.88-1.77 (m, 1H, COCH2CH2); 

13C NMR (75 MHz, CDCl3): δ 173.9 (C=O), 158.4 (ArCOCH3), 148.1 (ArCOCH3), 

147.5 (ArCOCH3), 134.3 (ArCC=C), 131.8 (C=CCH2CH), 131.5 (C=CCH2N), 130.6 

(ArC), 130.2 (ArCH), 120.8 (ArCH), 113.6 (ArCH), 112.9 (ArCH), 110.6 (ArCH), 55.7 

(NCH), 55.6 (OCH3), 55.2 (OCH3), 53.4 (OCH3), 44.4 (NCH2), 38.7 (C=CCH2CH), 30.1 

(COCH2CH2), 24.9 (COCH2); MS (APCI positive): m/z 380.2 (M+1); HRMS (CI+): m/z 

379.1791 (379.1784 calc. for C23H25NO4, M
+).  
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(S)-1,2,3,5,8,8a-Hexahydro-7-(3,4-dimethoxyphenyl)-6-(4-methoxyphenyl)indolizine 

(secoantofine, 8): 

N

H3CO

H

OCH3
H3CO

 

To a suspension of LiAlH4 (16 mg, 0.42 mmol) in dry THF (1.5 mL) at 0 °C was 

slowly added a solution of the lactam 36 (0.04 g, 0.1 mmol) in THF (1 mL). After stirring 

for an hour at 0 oC, the mixture was stirred at ambient temperature for 24 h. It was then 

cooled to 0 °C and water (8 µL, 0.42 mmol), 1 N NaOH (8 µL) and water (24 µL), were 

added sequentially with vigorous stirring. The precipitated inorganic salts were filtered 

and washed with dichloromethane. The combined filtrates were dried (Na2SO4) and 

concentrated to provide 31 mg (80%) of 8 as a pale yellow gum. This material was pure 

by 1H NMR (500 MHz) and was directly used further.   

IR (neat): 2962, 1606, 1509, 1458, 1243, 1168, 1139, 1022, 832, 810 cm-1; 1H NMR (500 

MHz, CDCl3): δ 6.97 (d, 2H, J = 8.7), 6.69-6.66 (m, 4H), 6.47 (br d, 1H, J = 1.1), 3.86 

(d, 1H, J = 15.8), 3.81 (s, 3H), 3.73 (s, 3H), 3.54 (s, 3H), 3.30 (dt, 1H, J = 7.0, 1.6), 3.07 

(dt, 1H, J = 16.0, 3.2), 2.77-2.68 (m, 1H), 2.45-2.35 (m, 2H), 2.24 (apparent q, 1H, J = 

9.0), 2.14-2.06 (m, 1H), 1.97-1.90 (m, 1H), 1.87-1.80 (m, 1H), 1.60-1.51 (m, 1H); 13C 

NMR (75 MHz, CDCl3): δ 158.0, 147.9, 147.1, 135.1, 133.6, 132.7, 132.6, 130.2, 120.7, 

113.4, 113.1, 110.4, 60.4, 57.9, 55.7, 55.5, 55.1, 54.3, 38.6, 30.9, 21.5; MS (APCI 
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positive): m/z 366.4 (M+1); HRMS (CI+): m/z 365.1986 (365.1999 calcd. For C23H27NO3 

(M+)); [α]23
D = +148 (c = 0.4, CHCl3; Lit.22 [α]25

D = +169 (c 1, CHCl3, for the S 

enantiomer)). 

 

(S)-2,3,6-Trimethoxy-9,11,12,13,13a,14-hexahydrodibenzo[f,h]pyrrolo[1,2-

b]isoquinoline ((+)-antofine) (9):  

N

H3CO

H

OCH3
H3CO

 

 To a solution of 8 (25 mg, 0.068 mmol) in dichloromethane (1.5 mL) at 0 oC was 

added VOF3 (40 mg, 0.32 mmol) and the mixture was stirred for 15 min. Trifluoroacetic 

acid (70 L, 0.90 mmol) was added and stirring was continued for 75 min at 0 oC.  

Aqueous NaOH (10%, 2 mL) was added and the mixture was warmed to room 

temperature. The biphase was separated and the aqueous layer was extracted with 

dichloromethane (3 x 5 mL). The combined organic layers were dried (Na2SO4) and 

concentrated to give the crude product. Purification by flash chromatography on silica gel 

(CH2Cl2/methanol, 97.5/2.5) provided 19 mg (77%) of 9 as a pale cream colored solid.   

IR (neat):  2961, 1616, 1510, 1469, 1418, 1257, 1233, 1203, 1169, 1127, 1032, 913, 843, 

813 cm-1; 1H NMR (500 MHz, CDCl3): δ 7.92 (s, 1H, ArH), 7.91 (d, 1H, J = 2.4, ArH), 

7.82 (d, 1H, J = 9.0,  ArH), 7.32 (s, 1H, ArH), 7.20 (dd, 1H, J = 9.0, 2.4, ArH), 4.7 (d, 

1H, J = 14.6), 4.11 (s, 3H, OCH3), 4.06 (s, 3H, OCH3), 4.00 (s, 3H, OCH3), 3.70 (brd, 
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1H, J = 14.6), 3.47 (dt, 1H, J = 8.5, 1.6), 3.35 (brd, 1H), 2.90 (m, 1H), 2.51-2.44 (m, 2H),  

2.26-2.24 (m, 1H), 2.04-2.02 (m, 1H), 1.95-1.85 (m, 1H), 1.82-1.72 (m, 1H); 13C NMR 

(75 MHz, CDCl3): δ  157.5, 149.4, 148.4, 130.2, 127.1, 126.6, 125.5, 124.3, 124.1, 123.5, 

114.9, 104.7, 104.0, 103.9, 60.3, 56.0, 55.9, 55.5, 55.1, 53.8, 33.7, 31.3, 21.6; MS (APCI, 

pos.): m/z 364.4 (M+1);  HRMS (CI+): m/z 364.1922 (364.1913 calc. for C23H26NO3 

[M+H]+); [α]23
D = +118 (c = 0.4, CHCl3; Lit.22 [α]25

D = +111 (c 1, CHCl3, for the S 

enantiomer)).  
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3.8 Selected  1H NMR and 13C NMR spectral data  
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3.9 HPLC chromatogram for nitroketone 24 
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Chapter 4 
 
 

 
Enantioselective approach to functionalized quinolizidines: synthesis of 

(+)-julandine and (+)-cryptopleurine 

 

This chapter is based on the following publication: 

Pansare, S.V.; Dyapa, R. Org. Biomol. Chem. 2012, 10, 6776–6784 
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4.1 Introduction 

 The quinolizidine motif is a prominent structural unit in numerous 

alkaloids.1 The structurally related phenanthroquinolizidine alkaloids2 are also well 

known and these have attracted considerable interest due to their anticancer,3 antiviral,4 

amoebicidal5 and anti-inflammatory6 activities. For example, the 

secophenanthroquinolizidine alkaloid (+)-julandine (1)7 has antimicrobial activity8 and 

the corresponding phenanthroquinolizidine (‐)-cryptopleurine (2),9 an enantiomer of (+)-

cryptopleurine, has also shown excellent biological activities such as antiviral,10 

amoebicidal11  and anticancer  activity.3 The synthesis of quinolizidines,13 aryl-fused 

quinolizidines14 and phenanthroquinolizidines12 has therefore continued to engage 

synthetic chemists over the years.  

 

 

Figure 4.1 (+)-Julandine (1) and (+)-Cryptopleurine (2) 
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4.2 Reported syntheses of (+)-cryptopleurine 

The following summary provides an overview of the syntheses of cryptopleurine 

in enantiomerically enriched form. 

          Rapoport and co-workers reported an enantioselective synthesis of (+)-

cryptopleurine (Scheme 1).12d The key step in their synthesis is an intramolecular Friedel-

Crafts acylation reaction. The synthesis began with phenanthrene carboxylic acid 5, 

which was prepared from 3 and 4 according to the reported procedure.15 Reduction of 5 

to the alcohol and subsequent bromination provided the bromide 6. Optically pure 

diisopropyl α-aminoadipate was coupled with the bromide 6 to provide the alkylated 

diester 7 which was treated with 6 N KOH to provide the amido acid 8 (Scheme 4.1).  
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Scheme 4.1 

Amido ketone 9 was obtained by the cyclization of the amido acid 8 using oxalyl 

chloride in DMF followed by SnCl4 treatment. Hydrogenation of 9 (Pd(OH)2/C) provided 

a mixture of amido alcohols 10a,b which was converted to the phenanthraquinolizidinone 

11 by a two step dehydroxylation involving conversion to the corresponding iodide and 

subsequent dehalogenation. Finally the amide in 11 was reduced with LAH to provide the 

title compound (+)-cryptopleurine. 
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Wang and co-workers reported a short and efficient route (Scheme 4.2) to 

enantiomerically pure (+)-cryptopleurine, involving Parham-type cycloacylation as the 

key step.9a The synthesis begins with reduction of ester 12 with LAH to provide the 

alcohol 13. Alcohol 13 was brominated to afford the dibromo compound 14. Amide 16 

was prepared from the alkylation of (S)-N,N-diethylpiperidinedine-2-carboxamide (15) 

with dibromide 14, using K2CO3 as base.  Amide 16 was treated with nBuLi to effect 

cyclization to provide the intermediate ketone which was subsequently reduced to 17. 

Dehydroxylation of aminol 17 using triethylsilane and trifluoroacetic acid provided the 

title compound (+)-cryptopleurine. 

 

Scheme 4.2 
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4.3 Objective 

The interest in quinolizidines is an outcome of our ongoing studies on the development 

and application of the organocatalytic ketone-nitroalkene Michael addition reaction.16  

This reaction has been extensively studied and although the development of new catalysts 

for the process continues at a significant pace, further application of the nitroketone 

Michael adducts has progressed relatively slowly.16  It was therefore decided to examine 

the utility of a suitable γ-nitroketone in a general approach to the quinolizidine motif. The 

initial target of the investigation was the naturally occurring (+)-julandine, since only one 

enantioselective synthesis of the unnatural (-)-julandine has been reported.10a In addition, 

cryptopleurine can be obtained in one step by the oxidative cyclization of julandine10e and 

hence a route to julandine would also establish an access to cryptopleurine (2). 

 

N

H3CO
(+)-julandine

OCH3
H3CO

1

N

H3CO

OCH3
H3CO

O

O

O

O2N

H3CO

18

2

(+)-cryptopleurine

H

HH

Scheme 4.3 

4.4 Retrosynthetic analysis for the diaryl quinolizidine motif 

 Retrosynthetically, the 2,3-diaryl quinolizidine motif of julandine may be 

accessible by aryl cross coupling from a 7-aryl quinolizidinone such as A (Figure 4.2) 

which derives from the functionalized piperidine B. This piperidine intermediate can be 
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made from the reductive cyclization of the nitroketone C which can be obtained by the 

reductive opening of the lactone D. Ultimately, lactone D derives from a Baeyer-Villiger 

oxidation of the corresponding γ-nitroketone which leads us to the organocatalytic, 

ketone-nitroalkene Michael addition of an appropriate cyclic ketone and nitroalkene. 

 

Figure 4.2 

4.5 Results and Discussion 

The organocatalytic Michael addition of cyclohexane-1,4-dione monoethylene 

ketal and 4-methoxy-β-nitrostyrene employing a chiral pyrrolidine-based triamine 

catalyst14a,17j provided the requisite γ-nitroketone 18 in good yield and stereoselectivity 

(er = 96/4, dr >19/1, Scheme 4.4). Baeyer-Villiger oxidation of 18 provided the 

corresponding lactone 22 which was reduced with sodium borohydride to the nitrodiol 23 

(92%, 2 steps). The primary alcohol in 23 was then selectively acetylated to provide the 

acetate 24 (94%) which was converted to the nitroketone 25 (Scheme 4.4) by 

deketalization with iodine in acetone (95%).18 
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

Scheme 4.4 

With the nitroketone 25 in hand, the construction of the quinolizidine framework 

was initiated. This process involved the preparation of a suitably substituted piperidine 

from 25 and then constructing the quinolizidine by cyclization. Reduction of the 

nitroketone 25 with zinc in aq. ammonium chloride provided the nitrone 26, presumably 

from the hydroxylamine derived from 26. Reduction of the nitrone 26 with 

tetramethylammonium triacetoxyborohydride provided the N-hydroxy piperidine 27 as a 

single diastereomer (Scheme 4.5). The stereoselectivity of this reduction is presumably 

due to an intramolecular, hydroxyl-directed reduction of 26. Reduction of the N-O bond 

in 27 (TiCl3 followed by aqueous NaOH19) provided the corresponding amino alcohol 28 

which was protected to provide 29. Conversion of 29 into the quinolizidine motif 
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required a one carbon homologation. This was achieved by conversion of the primary 

alcohol of 29 to the mesylate and subsequent cyanation to provide 30. 

Scheme 4.5 

Conversion of 30 to the corresponding quinolizidinone 33 could be accomplished 

by hydrolysis of the nitrile 30 to the acid 31, followed by esterification with 

concommitant removal of the Boc group and subsequent cyclization of the resulting 

aminoester 32 (63% overall). The overall conversion of 30 to 33 could also be achieved 

in one step (30%) by treatment of 30 with HCl in methanol followed by basification of 

the crude product. However, the multi-step procedure proceeds with higher overall yield 

(63%) and is therefore the method of choice. Oxidation of 33 provided the ketolactam 34 
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which was then converted to the enol triflate 35 (Scheme 4.6). This is the key 

intermediate for the target alkaloids. 

Scheme 4.6 

The conversion of 35 to (+)-julandine (1) was achieved by a Suzuki cross-

coupling reaction with 3,4-dimethoxyphenyl boronic acid to generate the lactam 36 

followed by reduction with LAH to give 1 (73%, 2 steps). As expected, oxidative 

cyclization of 1 with thallium trifluoroacetate10e  provided (+)-cryptopleurine (2, 62%, 

Scheme 4.7). 
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4.6 Conclusion 

 In conclusion, an efficient synthesis of functionalized quinolizidines was 

developed from a simple γ-nitroketone starting material which is readily available from 

the organocatalytic ketone-nitroalkene Michael addition reaction. The methodology was 

applied in the first total synthesis of the natural enantiomer of the diarylquinolizidine 

alkaloid (+)-julandine and the structurally related phenanthroquinolizidine alkaloid (+)-

cryptopleurine. The synthetic strategy should be particularly amenable to the preparation 

of focused libraries of analogs of these alkaloids by judicious selection of the nitroalkene 

and the aryl component in the cross-coupling step. This possibility as well as other 

synthetic applications of nitroketones and nitrones related to 18 and 26 are the focus of 

ongoing investigations in the Pansare group. 
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4.7 Experimental section 

 
(7S)-7-[(1R)-1-(4-Methoxyphenyl)-2-nitroethyl]-1,4-dioxaspiro[4.5]decan-8-one (18): 
 

 
 
  To a solution of 1,4-cyclohexanedione monoethylene ketal (13.0 g, 83.7 mmol), 

N1,N1-dimethyl-N2-(((S)-pyrrolidin-2-yl)methyl)ethane-1,2-diamine16a (572 mg, 3.34 

mmol) and p-toluene sulfonic acid monohydrate (634 mg, 3.34 mol) was added a solution 

of 4-methoxy-β-nitrostyrene (3.00 g, 16.7 mmol) in DMF (30 mL) and the resulting 

solution was stirred at ambient temperature for 48 h. Ethyl acetate (100 mL) was added 

and the solution washed with water, aq. HCl (3 N), dried (Na2SO4) and concentrated. The 

residue obtained was purified by flash chromatography on silica gel to provide 4.60 g of a 

solid. This was dissolved in ethyl acetate (23 mL) and precipitated by addition of hexanes 

(70 mL). The procedure was repeated once to provide 3.50 g (62%) of 18 with 96% ee. In 

repeated runs, 18 was obtained in 90-96% ee. Spectroscopic data for 18 is in agreement 

with that reported in the literature.17j 
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(S)-7-((R)-1-(4-methoxyphenyl)-2-nitroethyl)-1,4,8-trioxaspiro[4.6]undecan-9-one 

(22): 

 

 To a solution of the nitroketone 18 (3.10 g, 9.25 mmol) in anhydrous 

dichloromethane (60 mL) at ambient temperature, was added solid sodium phosphate 

(3.21 g, 12.0 mol) followed by m-chloro perbenzoic acid (~77%, 4.94 g, 28.7 mmol). The 

resulting white slurry was stirred vigorously for 16 h. Dichloromethane (100 mL) was 

added and the solution was washed with 5% aq. NaOH (2 x 60 mL). The organic layer 

was dried (Na2SO4) and concentrated to provide 3.20 g, (98%) of 22 as a white, solid 

foam. This material was pure by 1H NMR (500 MHz) and was used in the next step 

without purification. Spectroscopic data for 22 is in agreement with that reported in the 

literature.17j [α]23
D = + 58.3 (c 1, CHCl3). 
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(2S,3R)-1-(2-(3-Hydroxypropyl)-1,3-dioxolan-2-yl)-3-(4-methoxyphenyl)-4-

nitrobutan-2-ol (23): 

 

 To a solution of the lactone 22 (2.85 g, 8.11 mmol) in ethanol (30 mL), was added 

sodium borohydride (0.46 g, 12.1 mmol). The mixture was stirred at room temperature 

for 3 h, then cooled to 0 C and the solution was acidified (pH~5) with aq. HCl (0.5 M). 

The acidic solution was extracted with EtOAc (2 x 50 mL) and the combined organic 

layers were dried (Na2SO4) and concentrated to provide 2.70 g (94%) of the diol 23 as a 

pale yellow gum. This material was pure by 1H NMR and was used in the next step 

without purification. An analytical sample was obtained by flash chromatography on 

silica gel (EtOAc).  

IR (neat): 3493, 2960, 2837, 1550, 1511, 1378, 1248, 1059 1028, 829 cm-1; 1H NMR 

(500 MHz, CDCl3): δ 7.10 (d, 2H, J = 8.6, ArH), 6.85 (d, 2H, J = 8.6, ArH), 5.04 (dd, 

1H, J = 5.2, 12.7, CH2NO2), 4.59 (dd, 1H, J = 9.7, 12.7, CH2NO2), 4.05-3.99 (m, 1H, Ar-

CH), 3.99-3.93 (m, 5H, CHOH, OCH2CH2O), 3.78 (s, 3H, OCH3), 3.55 (t, 2H, J = 6.2, 

CH2OH), 3.42-3.38 (td,1H, J = 5.2, 9.5, CHOH), 1.70-1.57 (m, 4H, CH2CHOH, 

CH2Cketal), 1.50-1.39 (m, 2H, CH2CH2OH); 13C NMR (75 MHz, CDCl3): δ 159.2 (ArC-

OCH3), 129.3 (ArCipso), 129.1 (2 x ArC), 114.5 (2 x ArC), 111.8 (OCO), 78.5 (CH2NO2), 

70.1 (CHOH), 64.9 (OCH2CH2O), 64.6 (OCH2CH2O), 62.6 (CH2OH), 55.3 (ArOCH3), 
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50.3 (HO-CHCH2), 40.3 (Ar-CHCH2), 33.3 (CH2CCH2), 26.7 (CH2CH2OH); MS (API-

ES): m/z 378 (M+Na); MALDI-TOF MS: 378.1611 (378.1529 calc. for C17H25NO7Na 

(M+Na)); [α]23
D = + 40.5 (c 1, CHCl3). 

 

3-(2-((2S,3R)-2-Hydroxy-3-(4-methoxyphenyl)-4-nitrobutyl)-1,3-dioxolan-2-

yl)propyl acetate (24): 

 

 A solution of the diol 23 (2.10 g, 5.91 mmol) in dry dichloromethane (35 mL) was 

cooled to -78 °C and acetyl chloride (0.50 mL, 7.09 mmol) and collidine (1.43 mL, 11.8 

mmol) were added. The solution was stirred at -78 oC for 4 h and then diluted with 

dichloromethane (50 mL). The resulting solution was warmed to ambient temperature 

and washed with aq. HCl (0.5 M, 2 x 25 mL). The organic layer was dried (Na2SO4) and 

concentrated to provide 2.20 g (94%) of the acetate 24 as a pale yellow gum. This 

material was pure by 1H NMR and was used in the next step without purification. An 

analytical sample was obtained by flash chromatography on silica gel (EtOAc/hexanes, 

6:4). 

IR (neat): 3496, 2961, 1731, 1550, 1513, 1375, 1242, 1141, 1032, 829 cm-1; 1H NMR 

(500 MHz, CDCl3): δ 7.10 (d, 2H, J = 8.7, ArH), 6.85 (d, 2H, J = 8.7, ArH), 5.04 (dd, 

1H, J = 5.3, 12.7, CH2NO2), 4.59 (dd, 1H, J = 9.6, 12.7, CH2NO2), 3.99-3.92 (m, 8H, Ar-
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CH, CHOH, OCH2CH2O, CH2OAc) 3.78 (s, 3H, ArOCH3), 3.42-3.38 (td, 1H, J = 5.3, 

9.5, CHOH), 2.03 (s, 3H, COCH3) 1.67-1.64 (m, 3H, CHCH2Cketal, CketalCH2), 1.50-

1.46(m, 3H, CHCH2Cketal, CH2CH2OAc); 13C NMR (75 MHz, CDCl3): δ 171.6 

(C(O)CH3), 159.7 (ArC-OCH3), 129.8 (ArCipso), 129.6 (2 x ArC), 115.0 (2 x ArC), 112.0 

(OCO), 79.0 (CH2NO2), 70.6 (CH2OAc), 65.5 (CHOH) 65.2 (OCH2CH2O), 64.7 

(OCH2CH2O), 55.8 (OCH3), 50.8 (CHCH2Cketal) 40.9 (Ar-CH), 33.8 (CketalCH2CH2), 23.5 

(OC(O)CH3) 21.5 (CH2CH2O); MS (API-ES, pos.): m/z 420.4 (M+Na); MALDI-TOF 

MS: 420.1704 (420.1634 calc. for C19H27NO8Na (M+Na)); 

 [α]23
D = + 23.6 (c 0.5, CHCl3). 

 

(6S,7R)-6-Hydroxy-7-(4-methoxyphenyl)-8-nitro-4-oxooctyl acetate (25): 

 

 A solution of the ketal 24 (2.20 g, 5.50 mmol ) and iodine (0.070 g, 0.55 mmol)  

in acetone (20 mL) was stirred at ambient temperature for 1 h. The acetone was removed 

under reduced pressure and the residue was diluted with dichloromethane. The resulting 

solution was washed successively with aqueous Na2S2O3 (5% w/v, 2 x 25 mL) and brine 

(1 x 25mL). The organic layer was dried (Na2SO4) and concentrated under reduced 

pressure to provide 1.85 g (95%) of the nitroketone 25 as a yellow solid. This material 

was pure by 1H NMR and was used in the next step without purification. Mp:77-80 ºC; 
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IR (neat): 3402, 2955, 1735, 1708, 1548, 1380, 1253, 1227, 1111, 1036, 820 cm-1; 1H 

NMR (500 MHz, CDCl3): δ 7.09 (d, 2H, J = 8.7, ArH), 6.87 (d, 2H, J = 8.7, ArH), 5.07 

(dd, 1H, J = 5.1, 12.8, CH2NO2), 4.60 (dd, 1H, J = 9.8, 12.8, CH2NO2), 4.21-4.18 (m, 1H, 

ArCH,), 4.03-4.01 (br t, 2H, J = 6.3, CH2OAc), 3.79 (s, 3H, OCH3), 3.49-3.44 (m, 2H, 

CHOH, CHOH), 2.43-2.37 (m, 4H, CH2COCH2) 2.01 (s, 3H, COCH3,), 1.86-1.82 (m, 

2H, CH2CH2O); 13C NMR (75 MHz, CDCl3): δ 210.6 (CO) 171.0 (OC(O)CH3), 159.4 

(ArC-OCH3), 129.0 (2 x ArC), 128.6 (ArCipso), 114.7 (2 x ArC), 78.4 (CH2NO2), 69.6 

(CHOH), 63.3 (CH2OAc),  55.3 (OCH3), 49.1 (CH2C(O)), 46.8 (ArCH), 39.7 (C(O)CH2), 

22.4 (CH2CH2CO), 20.9 (OC(O)CH3); MS (API-ES, pos.): m/z 376 (M+Na); MALDI-

TOF MS: 376.1443 (376.1372 calc. for C17H23NO7Na, (M+Na). 

 

(3R,4S)-4-Hydroxy-6-(3-acetoxypropyl)-3-(4-methoxyphenyl)-2,3,4,5- 

tetrahydropyridine-1-oxide (26): 

N
O

HO

H3CO

OAc

 

 A solution of NH4Cl (0.297 g, 5.55 mmol) in water (5 mL) was added to a 

solution of the nitroketone 25 (1.96 g, 5.55  mmol) in THF (24 mL). Activated Zn 

powder (3.51 g, 55.5 mmol) was added and the mixture was stirred vigorously at room 

temperature under nitrogen for 3 h. The mixture was filtered through Celite, the residue 

was washed with THF, and the combined filtrates were concentrated under reduced 

pressure. The residue was diluted with dichloromethane (50 mL) and the solution was 
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washed with water (10 mL), dried (Na2SO4) and concentrated under reduced pressure to 

provide 1.60 g (90%) of 26 as a pale yellow foam. This material was pure by 1H NMR 

and was used in the next step without purification. 

IR (neat): 2948, 1735, 1611, 1509, 1459, 1230, 1140, 1031, 826 cm-1; 1H NMR (500 

MHz, CDCl3): δ 7.21 (d, 2H, J = 8.7, ArH), 6.90 (d, 2H, J = 8.7, ArH), 4.37-4.32 

(apparent br t, 1H, J = 13.4, ArCH), 4.20-4.19 (br s, 1H, CHOH), 4.14-4.11 (t, 2H, J = 

6.5, CH2OAc), 3.92 (dd, 1H, J = 5.5, 14.9, CH2N), 3.80 (s, 3H, OCH3), 3.25-3.21 (m, 1H, 

CH2N), 2.89-2.53 (m, 4H, CH2C=N, C=NCH2CH2) 2.01 (s, 3H, COCH3,), 1.99-1.92 (m, 

2H, CH2CH2OAc); 13C NMR (75 MHz, CDCl3): δ 171.1 (COCH3), 159.0 (ArC-OCH3), 

145.0 (C=NO) 129.4 (ArCipso), 128.7 (2 x ArC), 114.3 (2 x ArC), 65.1 (CHOH), 63.8 

(OCH2), 57.5 (OCH3), 55.2 (CH2NO), 43.5 (Ar-CH), 37.6 (CH2C=N), 28.1 (CH2CH2O), 

23.5 (COCH3) 20.9 (N=CCH2); MS (APCI, pos.): m/z 322.4 (M+1); MALDI-TOF MS: 

344.1557 (344.1474 calcd for C17H23NO5Na (M+Na)). 

 

3-((2R,4S,5S)-4-Hydroxy-5-(4-methoxyphenyl)-N-hydroxypiperidin-2-

yl)propylacetate (27): 

 

 To a solution of tetramethylammonium borohydride (2.62 g, 9.96 mmol) in 

acetonitrile (14 mL) was added acetic acid (14 mL). The mixture was stirred at 0 °C for 5 

min and a solution of the nitrone 26 (1.6 g, 4.98 mmol) in acetonitrile (6 mL) was added. 
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The mixture was stirred at 0 °C for 1 h and then basified (pH ~ 8) with aqueous NaOH 

(5% solution). The mixture was extracted with dichloromethane (2 x 60 mL) and the 

combined extracts were dried (Na2SO4) and concentrated to give 1.48 g (92%) of 27 as a 

brown viscous material. This material was pure by 1H NMR and was used in the next step 

without purification. An analytical sample was obtained by flash chromatography on 

silica gel (CH2Cl2/MeOH, 98:2). 

IR (neat): 3415, 2923, 1731, 1512, 1238, 1032, 819 cm-1; 1H NMR (500 MHz, CDCl3): δ 

7.14 (d, 2H, J = 8.7, ArH), 6.88 (d, 2H, J = 8.5, ArH), 4.10-4.07 (t, 2H, J = 6.7, OCH2), 

3.91 (br s, 1H, CHOH), 3.79 (s, 3H, OCH3), 3.58-3.48 (m, 1H, NCH), 3.31-3.20 (m, 2H, 

NCH2, CHOH), 3.03 (br d, J = 12.4, 1H, CH2N), 2.86-2.82 (m, 1H, ArCH), 2.11-2.00 (m, 

5H, COCH3, CHCH2CH), 1.74-1.55 (m, 2H, CH2CH2OAc), 1.50-1.42 (m, 2H, 

NCHCH2); MS (APCI, pos.): m/z 324.2 (M+1); HRMS (CI): m/z 324.1812 (324.1811 

calc. for C17H26NO5 [M+H]+); [α]23
D = + 39.1 (c 0.7, CHCl3). 

 

(2S,4S,5R)-2-(3-Hydroxypropyl)-5-(4-methoxyphenyl)piperidin-4-ol (28):  

NH

HO

H3CO

H
OH

 

 To a stirred solution of the hydroxylamine 27 (0.90 g, 2.8 mmol) in methanol (20 

mL) was added aq. TiCl3 (3.77 mL, 4.17 mmol) at 0 °C and the mixture was stirred at 0 

oC for 4 h. Aqueous NaOH (20% w/v, 27 mL) was added and the mixture was filtered to 

remove inorganic salts. The residue washed with methanol and the combined filtrates 
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were concentrated under reduced pressure. The resulting aqueous solution was extracted 

with dichloromethane (3 x 40 mL) and the combined organic extracts were dried 

(Na2SO4) and concentrated to provide 0.65 g (88%) of the amino alcohol 28 as a yellow 

solid. This material was pure by 1H NMR and was used in the next step without 

purification. 

Mp:138-140 ºC; IR (neat): 3554, 2910, 2843, 1511, 1461, 1240, 1182, 1056, 1026, 817 

cm-1; 1H NMR (500 MHz, CDCl3): δ 7.13 (d, 2H, J = 8.7, ArH), 6.89 (d, 2H, J = 8.7, 

ArH), 4.10 (d, 1H, J = 2.32, CHOH), 3.79 (s, 3H, OCH3), 3.64-3.54 (m, 2H, CH2OH), 

3.38-3.35 (t, 1H, J  = 12.5, NCH2), 3.08-3.03 (m, 1H, NCH) 3.00 (dd ,1H, J = 4, 12.5, 

NCH2), 2.79-2.74 (m, 1H, ArCH), 1.96-1.92 (dt, 1H, J = 13.8, 3.0, CHCH2CH), 1.79-

1.75 (m, 1H, CHCH2CH), 1.65-1.57 (m, 3H, NCHCH2, CH2CH2OH), 1.42-1.39 (m, 1H, 

NCHCH2); 
13C NMR (75 MHz, CDCl3): δ 158.6 (ArC-OCH3), 132.8 (ArCipso), 128.77 (2 

x ArC), 114.2 (2 x ArC), 69.3 (CHOH), 62.8 (CH2OH), 55.3 (OCH3), 49.8 (CHNH), 46.7 

(CH2NH), 44.1 (Ar-CH), 39.4 (CHCH2CH), 35.6 (NHCHCH2) 30.4 (CH2CH2OH); MS 

(APCI, pos.): m/z 266.2 (M+1); MALDI-TOF MS: 266.1796 (266.1756 calc. for 

C15H24NO3  [M+H]+). 

 

(2S,4S,5R)-tert-Butyl 4-hydroxy-2-(3-hydroxypropyl)-5-(4-methoxyphenyl) 

piperidine-1-carboxylate (29): 
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 To a solution of the aminol 28 (0.850 g, 3.21 mmol) and triethylamine (0.54 mL, 

3.84 mmol) in dry dichloromethane (10 mL) at 0 °C was slowly added a solution of the 

(Boc)2O (0.706 g, 3.24 mmol) in dichloromethane (5 mL). The mixture was stirred at 

ambient temperature for 16 h, saturated NaHCO3 was added and the aqueous phase was 

extracted with CH2Cl2 (2 x 50 mL). The combined organic layers were washed with 

aqueous HCl (0.5 M, 2 x 25 mL). The organic layer was dried (Na2SO4) and concentrated 

to provide 1.1 g (94%) of 29 as a pale yellow gum. This material was pure by 1H NMR 

and was used in the next step without purification. An analytical sample was obtained by 

purification by flash chromatography on silica gel (EtOAc). 

IR (neat): 3403, 2936, 1658, 1511, 1420, 1246, 1164, 1067, 823 cm-1; 1H NMR (500 

MHz, CDCl3): δ 7.25 (d, 2H, J = 8.7, ArH), 6.85 (d, 2H, J = 8.7, ArH), 4.48-4.46 (br m, 

1H, NCH), 4.32 (br dd, 1H, J = 3.4, 14.1 NCH2,), 4.21-4.14 (m, 1H, CHOH), 3.80 (s, 3H, 

OCH3), 3.72-3.70 (m, 2H, CH2OH), 3.35 (dd, 1H, J = 4.2, 14.1, NCH2), 3.06 (br m, 1H, 

ArCH), 1.89-1.53 (m, 6H, CHCH2CH, NCHCH2, CH2CH2OH), 1.46 (s, 9H, C(CH3)3); 

13C NMR (75 MHz, CDCl3): δ 158.8 (ArC-OCH3), 155.3 (CO2
tBu), 130.8 (2 x ArC), 

130.2 (ArCipso), 113.8 (2 x ArC)  80.1 (C(CH3)3), 66.4 (CHOH), 62.6 (CH2OH), 55.3 

(OCH3), 50.8 (NCH), 44.4 (CH2N), 42.8 (ArCH), 33.0 (CHCH2CH), 29.3 (NCHCH2), 

28.5 (C(CH3)3), 27.6 (CH2CH2OH); MS (APCI, pos.): m/z 266.2 (M-Boc+2); HRMS 

(CI): m/z 266.1751 (266.1756 calc. for C15H24NO3 (M-Boc +2H); [α]23
D = + 68.2 (c 1, 

CHCl3).  

 



122 

 

3-((2S,4S,5R)-1-(tert-Butoxycarbonyl)-4-hydroxy-5-(4-methoxyphenyl)piperidin-2-

yl)propyl methanesulfonate (29a): 

 

 To a stirred solution of 29 (1.10 g, 3.01 mmol) in dichloromethane (15 mL) was 

added DIPEA (0.53 mL) followed by methanesulfonyl chloride in dichloromethane (10 

mL) over 15 min. at 0 °C. The mixture was stirred at 0 oC for 3 h. Cold water (10 mL) 

was added and the organic layer was separated, washed with water (3 x 25 mL), brine (1 

x 25 mL) dried (Na2SO4) and concentrated. The residue was purified by flash 

chromatography on silica gel (hexanes/EtOAc, 2:8) to provide 0.85 g (64%) of 29a as a 

white  solid. 

Mp: 140-144 ºC; IR (neat): 3441, 2937, 1676, 1511, 1418, 1353, 1247, 1167, 915, 830 

cm-1; 1H NMR (500 MHz, CDCl3): δ 7.23 (d, 2H, J = 8.7, ArH), 6.85 (d, 2H, J = 8.7, 

ArH), 4.46 (br m, 1H, NCH), 4.29-4.18 (m, 3H, NCH2, OCH2), 4.16-4.14 (m, 1H, 

CHOH), 3.79 (s, 3H, OCH3), 3.33 (dd, 1H, J  = 4.1, 14.2, NCH2), 3.07-3.05 (m, 1H, 

ArCH) 3.02 (s, 3H,  SO2CH3), 1.92-1.61 (m, 6H, CHCH2CH, NCHCH2, CH2CH2O), 1.45 

(s, 9H, C(CH3)3); 
13C NMR (75 MHz, CDCl3): δ 158.8 (ArC-OCH3), 155.0 (CO2

tBu), 

130.8 (2 x ArC), 130.1 (ArCipso), 113.9 (2 x ArC), 80.2 (C(CH3)3), 69.7 (CH2O), 66.4 

(CHOH),  55.3 (OCH3), 50.4 (NCH), 44.4 (CH2N), 42.8 (ArCH), 37.4 (SO2CH3), 33.0 

(CHCH2CH), 28.5 (C(CH3)3), 27.2 (NCHCH2), 26.3 (CH2CH2OMs); MS (APCI, pos.): 
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m/z 344.1 (M-Boc+2); HRMS (CI): m/z 344.1538 (344.1532 calc. for C16H26NO5S (M-

Boc+2H). 

 

(2S,4S,5R)-tert-Butyl-2-(3-cyanopropyl)-4-hydroxy-5-(4-methoxyphenyl)piperidine-

1-carboxylate (30): 

 

 To a solution of the mesylate 29a (0.820 g, 1.85 mmol) in anhydrous DMSO (15 

mL), at ambient temperature, was added NaCN (18.0 g, 3.69 mmol). The mixture was 

stirred at 70 ºC for 2 h and cooled to ambient temperature. Ethyl acetate (40 mL) was 

added and the mixture was washed with water (3 x 30 mL) and brine (30 mL). The 

organic layer was dried (Na2SO4) and concentrated to provide 0.65 g (95%) of 30 as a 

yellow solid. This material was pure by 1H NMR and was used in the next step without 

purification. 

IR (neat): 3447, 2934, 2248, 1678, 1511, 1416, 1246, 1162, 1113, 831 cm-1; 1H NMR 

(500 MHz, CDCl3): δ 7.22 (d, 2H, J = 8.7, ArH), 6.85 (d, 2H, J = 8.7, ArH), 4.46 (br s, 

1H, NCH), 4.32 (br dd, 1H, J = 2.2, 14.2, NCH2), 4.19-4.13 (m, 1H, CHOH), 3.79 (s, 3H, 

OCH3), 3.33 (dd, 1H, J  = 4.0, 14.2, NCH2), 3.07-3.05 (m, 1H, ArCH), 2.44 (t, 2H, J = 

6.8, CH2CN), 2.04-1.96 (m, 1H, CHCH2CH), 1.80-1.77 (m, 1H, CHCH2CH), 1.70-1.62 

(m, 4H, NCHCH2, CH2CH2CN) 1.46 (s, 9H, C(CH3)3); 
13C NMR (75 MHz, CDCl3): δ 

158.8 (ArC-OCH3), 155.0 (CO2
tBu), 130.7 (2 x ArC), 130.0 (ArCipso), 119.5 (CN), 113.8 
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(2 x ArC), 80.2 (C(CH3)3),  66.3 (CHOH), 55.3 (OCH3), 50.0 (NCH), 44.4 (CH2N), 42.8 

(Ar-CH), 33.1 (CHCH2CH), 30.2 (NCHCH2), 28.4 (C(CH3)3), 22.5 (CH2CH2CN), 17.0 

(CH2CN); MS (APCI, pos.): m/z 275.3 (M-Boc+2); HRMS (CI): m/z 375.2292 (375.2284 

calc. for C21H31N2O4  [M+H]+); [α]23
D = + 27.0 (c 0.6, CHCl3). 

 

4-((2S,4S,5R)-1-(tert-butoxycarbonyl)-4-hydroxy-5-(4-methoxyphenyl)piperidin-2-

yl)-butanoic acid (31): 

 

 A solution of the nitrile 30 (0.610 g, 1.63 mmol) in aqueous NaOH (2 M, 6 mL) 

and ethanol (6 mL) was heated at 85 ºC for 16 h. The ethanol was removed under reduced 

pressure and resulting solution was acidified (pH ~ 4) with aqueous HCl (0.5 M). The 

acidic solution was extracted with dichloromethane (2 x 50 mL) and the combined 

extracts were dried (Na2SO4) and concentrated to provide 0.61 g (95%) of 31 as a brown 

solid. This material was pure by 1H NMR and was used in the next step without 

purification.  

Mp: 88-90 oC; IR (neat): 3423, 2933, 1666, 1511, 1418, 1245, 1160, 1033, 829, 730 cm-1; 

1H NMR (500 MHz, CDCl3): δ 7.22 (d, 2H, J = 7.9, ArH), 6.84 (d, 2H, J = 7.9, ArH), 

4.42 (br s, 1H,  NCH), 4.31 (br d, 1H, J = 13.9, NCH2), 4.14-4.12 (br m, 1H, CHOH), 

3.79 (s, 3H, OCH3), 3.32 (br dd, 1H, J  = 2.7, 13.9, NCH2), 3.03 (br s, 1H, ArCH), 3.0-

2.5 (br, CO2H), 2.39 (br s, 2H, CH2COOH), 1.79-1.61 (m, 6H, CHCH2CH, NCHCH2, 
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CH2CH2COOH), 1.45 (s, 9H, C(CH3)3); 
13C NMR (75 MHz, CDCl3): δ 178.4 (CO2H), 

158.7 (ArC-OCH3 or CO2
tBu), 155.1 (ArC-OCH3 or CO2

tBu), 130.8 (2 x ArC), 130.3 

(ArCipso), 113.7 (2 x ArC), 80.1 (C(CH3)3), 66.3 (CHOH), 55.2 (ArOCH3), 50.7 (NCH), 

44.2 (CH2N),  42.8 (Ar-CH), 34.1 (CH2CO2H), 32.3 (CHCH2CH), 30.2 (NCHCH2), 28.4 

(C(CH3)3), 21.8 (CH2CH2CO2H); MS (APCI, pos.): m/z 294.2 (M-Boc+2); HRMS (CI 

pos.): m/z 294.1711 (294.1705 calc. for C16H24NO4 (M-Boc+2H). 

 

Methyl 4-((2S,4S,5R)-4-hydroxy-5-(4-methoxyphenyl)piperidin-2-yl)butanoate (32): 

 

To a solution of the acid 31 (0.600 g, 1.53 mmol) in methanol (12 mL) at 0 ºC was added 

SOCl2 (0.510 mL, 7.02 mmol) and the mixture was stirred at ambient temperature for 16 

h. The methanol was removed under reduced pressure, the residue was diluted with 

dichloromethane (25 mL) and the resulting solution was washed with water (10 mL). The 

organic layer was dried (Na2SO4) and concentrated under reduced pressure to provide 

0.43 g, (91%) of 32 as an off white solid. This material was pure by 1H NMR and was 

used in the next step without purification. 

IR (neat): 3123, 2940, 1727, 1610, 1510, 1433, 1240, 1168, 1030, 828 cm-1;1H NMR 

(500 MHz, CDCl3): δ 7.14 (d, 2H, J = 8.6, ArH), 6.87 (d, 2H, J = 8.6, ArH), 4.08-4.07 (br 

m, 1H, CHOH), 3.79 (s, 3H, ArOCH3), 3.67 (s, 3H, CO2CH3), 3.39-3.31 (t, 1H, J  = 12.0, 

NCH2), 3.00-2.91 (m, 2H, NCH, ArCH), 2.84-2.79 (m, 1H, NCH2), 2.37-2.32 (t, 2H, J = 
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7.4, CH2CO2CH3), 1.99-1.92 (dt, 1H,  J = 2.9, 13.6, CHCH2CH), 1.73-1.63 (m, 4H, 

CHCH2CH, CH2CH2CO, CHNH), 1.49-1.35 (m, 2H, NCHCH2); 
13C NMR (75 MHz, 

CDCl3): δ 174.0 (CO2CH3), 158.5 (ArC-OCH3), 133.3 (ArCipso), 128.8 (2 x ArC), 114.1 

(2 x ArC), 69.3 (CHOH), 55.3 (ArOCH3), 51.6 (CO2CH3), 49.4 (NHCH), 47.0 (CH2N), 

44.8 (ArCH), 39.5 (CHCH2CH), 36.4 (NHCHCH2), 34.1 (CH2CO2CH3), 21.4 

(CH2CH2CO2CH3); MS (APCI, pos.): m/z 308.3 (M+1); HRMS (CI): m/z 308.1861 

(308.1862 calc. for C17H26NO4  [M+H]+) 

 

(7R,8S,9aS)-hexahydro-8-hydroxy-7-(4-methoxyphenyl)-1H-quinolizin-4(6H)-one 

(33): 

 

To a solution of the amino ester 32 (0.380 g, 1.23 mmol) in THF (6 mL) was added 

diisopropylethyl amine (752 L, 4.31 mmol) and the solution was heated to reflux for 16 

h. Additional diisopropylethylamine (0.250 mL, 1.43 mmol) was added and the mixture 

was refluxed for 2 h.  The THF was removed under reduced pressure, the residue was 

dissolved in dichloromethane (30 mL) and the resulting solution was washed with 

aqueous HCl (0.5 M, 2 x 10 mL). The organic layer was dried (Na2SO4) and concentrated 

to provide 246 mg (73%) of the lactam 33 as a pale yellow foam. This material was pure 

by 1H NMR and was used in the next step without purification. 
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IR (neat): 3349, 2945, 1606, 1514, 1478, 1442, 1245, 1171, 1035, 831 cm-1; 1H NMR 

(500 MHz, CDCl3): δ 7.14 (d, 2H, J = 8.7, ArH), 6.89 (d, 2H, J = 8.7, ArH), 4.76 (dd, 

1H, J = 4.2, 12.8, NCH2), 4.1 (br m, 1H, CHOH), 3.8 (s, 3H, OCH3), 3.78-3.74 (m, 1H, 

NCH), 3.20-3.15 (t, 1H, J = 12.8, NCH2), 2.85-2.81 (br m, 1H, ArCH), 2.48-2.40 (m, 1H, 

NCOCH2), 2.38-2.31 (m, 1H, NCOCH2), 2.02-1.97 (m, 2H, CHCH2CH, CHOH), 1.86-

1.82 (m, 1H, NCHCH2CH2), 1.74-1.68 (m, 3H, CHCH2CH, COCH2CH2) 1.55-1.48 ( m, 

1H, CHCH2CH2); 
13C NMR (75 MHz, CDCl3): δ 169.6 (NCO), 158.7 (ArC-OCH3), 

131.9 (ArCipso), 128.6 (2 x ArC), 114.2 (2 x ArC), 68.7 (CHOH), 55.3 (OCH3), 50.0  

(NCH), 45.3 (CH2N), 40.3 (Ar-CH), 39.6 (CHCH2CH), 33.0 (COCH2), 29.7 (NCHCH2), 

19.1 (CH2CH2CO); MS (APCI, pos.): m/z 276.5 (M+1); HRMS (CI): m/z 275.1526 

(275.1521 calc. for C16H21NO3 (M+)). 

 

(3R,9aS)-Hexahydro-3-(4-methoxyphenyl)-1H-quinolizine-2,6-dione (34): 

 

 To a stirred solution of the alcohol 33 (0.45 g, 1.63 mmol) in dichloromethane (15 

mL) was added DMSO (8 mL) followed by DIPEA (2.4 mL) at 0 °C. Solid SO3.pyridine 

(781 mg, 4.90 mmol) was added in small portions and the mixture was stirred at 0 ºC for 

1 h. Water (10 mL) was added and the mixture was diluted with dichloromethane (20 

mL). The mixture was washed with water (2 x 30 mL) and the organic layer was dried 

(Na2SO4) and concentrated to provide 420 mg (94%) of 34 as a brown solid. 
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Mp: 88-90 oC; IR (neat): 2921, 1719, 1624, 1514, 1447, 1338, 1242, 1171, 1022, 826  

cm-1; 1H NMR (500 MHz,CDCl3): δ 7.06 (d, 2H, J = 8.7, ArH), 6.89 (d, 2H, J = 8.7, 

ArH), 5.12 (dd, 1H, J = 12.7, 6.2, NCH2), 3.85-3.82 (m, 1H, NCH) 3.79 (s, 3H, OCH3), 

3.64 (dd, 1H, J = 12.7, 6.2, NCH2), 3.00-2.91 (t, 1H, J = 12.4, ArCH),  2.58-2.55 (m, 2H, 

COCH2), 2.50-2.46 (m, 2H, NCOCH2), 2.18-2.09 (m, 1H, NCHCH2), 1.97-1.78 (m, 

2H,COCH2CH2), 1.72-1.63 (m, 1H, NCHCH2) ; 13C NMR (75 MHz, CDCl3): δ 206.2 

(CO), 169.4 (NCO), 159.0 (ArCOCH3),129.9 (2 x ArC), 126.8 (ArC), 114.1 (2 x ArC), 

56.0 (NCH), 55.4 (OCH3), 55.3 (ArCCH), 48.3 (NCH2), 47.7 (COCH2), 32.8 (NCOCH2), 

29.6 (COCH2CH2), 18.9 (NCHCH2); MS (APCI pos.): m/z 274.1 (M+1); HRMS (CI+): 

m/z 273.1371 (273.1365 calc. for C16H19NO3, M
+). 

 

(S)-4,6,7,8,9,9a-Hexahydro-3-(4-methoxyphenyl)-6-oxo-1H-quinolizin-2-yl 

trifluoromethanesulfonate (35): 

 

 To a suspension of KH (66 mg, 0.50 mmol) in THF (2 mL) was added the ketone 

34 (136 mg, 0.50 mmol) at 0 ºC. The mixture was stirred at room temperature for 2 h and 

a solution of N-phenylbistrifluoromethanesulfonimide (195 mg, 0.55 mmol) in THF (2 

mL) was added dropwise at 0 ºC. The mixture was then stirred for 0.5 h at room 

temperature. Water (7 mL) was added and the mixture was extracted with EtOAc (2 x 20 

mL). The combined organic layers were dried (Na2SO4) and concentrated to give a brown 
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viscous material which was purified by flash chromatography on silica gel (EtOAc) to 

provide 150 mg (74%) of 35 as a yellow gum. 

IR (neat): 2942, 1642, 1512, 1412, 1206, 1138, 1036, 833 cm-1; 1HNMR (500 MHz, 

CDCl3): δ 7.26 (d, 2H, J = 8.8, ArH), 6.91 (d, 2H, J = 8.8, ArH), 5.28 (d, 1H, J = 18.4, 

NCH2), 3.82 (s, 3H, OCH3), 3.82-3.77 (m, 1H, NCH), 3.64 (d, 1H, J = 18.4, NCH2), 

2.79-2.72 (m, 1H, COCH2), 2.52-2.49 (m, 1H, COCH2), 2.49-2.43 (m, 2H, C=CCH2) 

2.20-2.11 (m, 1H, COCH2CH2), 1.99-1.89 (m, 1H, COCH2CH2), 1.81-1.61 (m, 2H, 

NCHCH2); 
13C NMR (75 MHz, CDCl3): δ 169.6 (C=O), 160.0 (TfOC=C), 139.3 

(ArCOCH3), 129.7 (2 x ArC), 128.0 (ArC), 124.8 (TfOC=C), 122.5 (q, J = 346.4, CF3), 

114.0 (2 x ArC), 55.3 (OCH3), 52.7 (NCH), 45.5 (NCH2), 35.6 (C=CCH2CH), 32.8 

(COCH2), 28.3 (NCHCH2), 18.2 (COCH2CH2); MS (APCI pos.): m/z 406.1 (M+1); 

HRMS (CI+): m/z 405.0865 (405.0858 calc. for C17H18NO5SF3, M
+). 

 

(S)-2,3,9,9a-Tetrahydro-8-(3,4-dimethoxyphenyl)-7-(4-methoxyphenyl)-1H-

quinolizin-4(6H)-one (36): 

 

 To a stirred solution of the enol triflate 35 (150 mg, 0.370 mmol) and 3,4-

dimethoxyphenyl boronic acid (74 mg, 0.41 mmol) in dioxane (6 mL) was added a 

degassed, aqueous solution of Na2CO3  (118 mg, 1.11 mmol, in 0.50 mL water) and the 
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mixture was degassed with a stream of nitrogen for 15 min. Pd(PPh3)4 (21 mg, 0.019 

mmol) was added and the mixture was heated with stirring at 85 ºC for 90 min. The 

mixture was then cooled to ambient temperature, diluted with EtOAc (15mL) and the 

resulting mixture was washed with water (2 x 10 mL). The organic layer was dried 

(Na2SO4) and concentrated to give a brown gum. This was purified by flash 

chromatography on silica gel (CH2Cl2/methanol, 98.5:1.5) to provide 120 mg (82%) of 

36 as a white solid. 

Mp: 94-101 ºC; IR (neat): 2944, 1635, 1510, 1454, 1245, 1173, 1028, 824 cm-1; 1HNMR 

(500 MHz, CDCl3): δ 7.0 (d, 2H, J = 8.7, ArH), 6.71-6.68 (m, 3H, ArH), 6.62 (dd, 1H, J 

= 8.3, 2, ArH), 6.43 (s, 1H, ArH), 5.20 (d, 1H, J = 18.7 NCH2), 3.81 (s, 3H, OCH3), 3.81-

3.79 (m, 1H, NCH), 3.73 (s, 3H, OCH3), 3.72-3.68 (d, 1H, J = 18.7, NCH2), 3.55 (s, 3H, 

OCH3),  2.60-2.57 (m, 2H, C=CCH2), 2.48-2.46 (t, 2H, J = 12.7, COCH2), 2.16-2.11 (m, 

1H, NCHCH2) 1.91-1.88 (m, 1H, COCH2CH2), 1.81-1.72 (m, 2H, COCH2CH2, 

NCHCH2) ; 13C NMR (75 MHz, CDCl3): δ 169.4 (C=O), 158.4 (ArC-OCH3), 148.1 

(ArC-OCH3), 147.5 (ArC-OCH3), 133.9 (ArCC=C), 131.9 (C=CCH2CH), 131.2 

(C=CCH2N), 131.1 (ArC), 130.4 (2 x ArC) 120.6 (ArCH), 113.5 (2 x ArC), 113.0 (ArC), 

110.6 (ArC), 55.7 (NCH), 55.6 (OCH3), 55.2 (OCH3), 52.8 (OCH3),  46.8 (NCH2), 38.9 

(C=CCH2CH), 33.0 (COCH2), 28.7 (NCHCH2), 18.5  (COCH2CH2); MS (APCI pos.): 

m/z 394.2 (M+1); HRMS (CI+): m/z 394.2016 (394.2018 calc. for C24H28NO4, [M+H]+). 
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(S)-4,6,7,8,9,9a-Hexahydro-2-(3,4-dimethoxyphenyl)-3-(4-methoxyphenyl)-1H-

quinolizine ((+)-Julandine, 1): 

N

H3CO

H

OCH3
H3CO

 

 To a suspension of LiAlH4 (38 mg, 0.096 mmol) in dry THF (1.5 mL) at 0 °C was 

slowly added a solution of the lactam 36 (0.10 g, 0.25 mmol) in THF (2 mL). The 

mixture was stirred for an hour at 0 ˚C and then at ambient temperature for 24 h. It was 

then cooled to 0 °C and water (18 μL, 1 mmol), 1 N NaOH (1 mL) and water (48 μL), 

were added sequentially with vigorous stirring. The precipitated inorganic salts were 

filtered and washed with dichloromethane. The combined filtrates were dried (Na2SO4) 

and concentrated to give a yellow gum. This was purified by flash chromatography on 

silica gel (CHCl3/MeOH, 99:1) to provide 63 mg (89%) of 1 as a pale yellow gum. 

IR (neat): 2928, 1604, 1509, 1458 1242, 1172, 1029, 830 cm-1; 1H NMR (500 MHz, 

CDCl3): δ  6.98 (d, 2H, J = 8.6, ArH), 6.69-6.67 (m, 4H, ArH), 6.46 (br s, 1H, ArH), 3.81 

(s, 3H, OCH3), 3.73 (s, 3H, OCH3), 3.62-3.59 (br d, 1H, J = 16.5), 3.53 (s, 3H, OCH3) 

3.10-3.03 (m, 2H), 2.55-2.51 (br d, 1H, J = 18.1), 2.41-2.30 (m, 2H),  2.11-2.10 (m, 1H), 

1.86-1.80 (m, 2H), 1.75-1.70 (br m, 2H), 1.36-1.35 (br m, 2H); 13C NMR (75 MHz, 

CDCl3): δ 158.0, 147.9, 147.2, 134.5, 133.2, 131.5, 131.3, 130.2, 120.5, 113.4, 113.0, 

110.5, 62.8, 60.4, 57.9, 55.7, 55.6, 55.5, 55.2, 39.6, 33.3, 30.0, 25.9, 24.4;  MS (APCI 

pos.): m/z 380.5 (M+1); HRMS (CI+): m/z 379.2151 (379.2147 calc. for C24H29NO3, M
+). 



132 

 

[α]23
D = +88.8° (c 0.5, CHCl3, Lit.7a [α]26

D = -71.6 ° (c 0.33, CHCl3 for the R-

enantiomer). 

 

(S)-2,3,6-Trimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-

b]isoquinoline ((+)-Cryptopleurine) (2): 

 

 A modification of the literature procedure was employed.7e To a stirred solution 

of 1 (65 mg, 0.17 mmol) in dichloromethane (10 mL) at ambient temperature was added 

thallium (III) trifluoroacetate (94 mg, 0.17 mmol) and the mixture was stirred for 30 min. 

The volatiles were removed under reduced pressure, water (5 mL) was added to the 

residue and the mixture was basified with saturated aqueous sodium carbonate. The 

mixture was then extracted with chloroform (2 x 15 mL). The combined extracts were 

dried and concentrated. The residue obtained was purified by flash chromatography on 

silica gel (CH2Cl2/MeOH, 98:2) to give a yellow solid which was recrystallized from 

chloroform/acetone to give 40 mg (62%) of 2 as a white crystalline solid. 

Mp: 190-194 oC (Lit.20 mp. 197-198 oC (benzene); IR (neat): 2926, 1610, 1509, 1467, 

1253, 1141, 1040, 846, 748, 632 cm-1; 1H NMR (500 MHz, CDCl3): δ 7.91 (s, 1H), 7.9 

(d, 1H J = 2.6), 7.26 (s, 1H), 7.20 (dd, 1H, J = 2.6, 9),  4.44 (d, 1H, J =15.5), 4.10 (s, 3H), 

4.06 (s, 3H), 4.01(s, 3H), 3.64 (d, 1H, J = 15.3),  3.28 (d, ,1H, J = 10.8), 3.11 (dd, 1H, J = 
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4, 16.3), 2.92-2.86 (m, 1H), 2.43-2.39 (t, 1H, J = 10.3), 2.34-2.28 (td, 1H, J = 3.8, 11.5), 

2.04 (d, 1H, J = 13.9), 1.89 (d, 1H, J = 12.3), 1.81-1.77 (m, 2H), 1.56-1.44 (m, 2H); 13C 

NMR (75 MHz, CDCl3): δ 157.4, 149.4, 148.3, 130.1, 126.5, 125.7, 124.5, 124.1, 123.7, 

123.4, 114.8, 104.7, 103.9, 103.9, 57.6, 56.3, 56.2, 56.0, 55.9, 55.5, 34.8, 33.9, 26, 24.4; 

MS (APCI pos.): m/z 378.1 (M+1); HRMS (CI+): m/z 377.1990 (377.1991 calc. for 

C24H29NO3, M
+); [α]23

D = +104.6 º (c 0.55, CHCl3); Lit.9d [α]23
D = +106 º (c 1, CHCl3)). 
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4.9 Selected  1H NMR and 13C NMR spectral data 
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Chapter 5 

Conclusions 

 

  5.1 Summary of the thesis      

 The organocatalytic, enantioselective Mukaiyama-Michael reaction of silyloxy 

furans (1 & 2) and acrolein was developed. The methodology was used in an 

enantioselective syntheses of (S)-homocitric acid lactone and its homologue. Secondary 

amines 3-6 were chosen as potential catalysts for the organocatalytic conjugate addition 

reaction of 1 and 2 with acrolein (Scheme 5.1). After an extensive optimization study 

using various solvents and additives, the use of furan 2 (benzyl ester) as the nucleophile 

in CHCl3/H2O provided the Michael adduct 8 in 80% ee and 40% yield using 3 as the 

catalyst. 

 

Scheme 5.1 
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Using the Michael adduct 8 (80% ee) as the starting material, the synthesis of the 

target homocitric acid lactone was completed via a dehomologation/oxidation protocol 

(Scheme 5.2).   

 

Scheme 5.2 
 

Michael adduct 8 was also used in the synthesis of (R)-per-homocitric acid 

lactone (Scheme 5.3), which is a desymmetrized version of parental achiral triacid.  

 

Scheme 5.3 
 

In summary, an expedient, organocatalysis-based, enantioselective syntheses of 

(S)-homocitric acid lactone and its homologue have been developed. Notably, the 

methodology also provides several butenolide intermediates that offer opportunities for 

chemoselective functionalization. Such reactions may find applications in the synthesis of 

functionalized, oxygen and nitrogen heterocycles with applications in biology and 

medicine.  

In the second project, an enantioselective synthesis of the indolizidine alkaloid 

(+)-antofine was developed from an enantiomerically enriched γ-nitroketone. 
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Enantiomerically pure γ–nitroketones and their derivatives are an important class of 

organic compounds due to their utility as building blocks for the asymmetric synthesis of 

natural products and biologically active molecules. The organocatalytic Michael addition 

of a monoprotected cyclohexane 1,3-dione and selected 4-methoxy-β-nitro styrenes in the 

presence of a proline-derived triamine catalyst provided the enantioenriched γ-

nitroketone 13 (ee = 90%, dr ≥19/1). Oxidative ring expansion of the nitroketone and 

subsequent methanolysis provided a 8-nitro-4-oxooctanoate 15. This is stereoselectively 

transformed to the key, functionalized piperidine intermediate 16 which is readily 

converted to (+)-antofine (Scheme 5.4). 
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In the third project, we have used the enantioenriched γ-nitroketone 13 in the 

syntheses of quinolizidine alkaloids (+)-julandine and (+)-cryptopleurine. Oxidative ring 

expansion of the nitroketone 13, followed by reductive ring-opening, leads to a suitably 

functionalized nitrodiol 18 which was stereoselectively converted to the functionalized 

piperidine 19. (+)-Julandine was obtained by employing a homologation/cross coupling 

reaction sequence on piperidine derivative 19. Oxidative cyclization of (+)-julandine 

using thallium trifluoroacetate provided the title compound (+)-cryptopleurine (Scheme 

5.5). 



 

Scheme 5.5 
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In summary, an efficient synthesis of functionalized indolizidines and 

quinolizidines was developed from a simple γ-nitroketone starting material which is 

readily available from the organocatalytic ketone–nitroalkene Michael addition reaction. 

The methodology was applied in the total synthesis of indolizidine alkaloid (+)-antofine 

and the first total synthesis of the natural enantiomer of the diaryl quinolizidine alkaloid 

(+)-julandine. The structurally related phenanthroquinolizidine alkaloid (+)-

cryptopleurine was prepared from (+)-julandine. The synthetic strategy should be 

particularly amenable to the preparation of focused libraries of analogs of these alkaloids 

by judicious selection of the nitroalkene and the aryl component in the cross-coupling 

step. 

5.2 Future work 

  Organocatalytic Michael addition of cyclic ketones 21 and α-nitrostyrenes 22 

(prepared by in situ elimination of the corresponding nitroacetates1) would be an 

interesting methodology to synthesize enantiomerically pure γ–nitroketones 23 (Scheme 

5.6). These γ–nitroketones and their derivatives may be useful as building blocks for the 

asymmetric synthesis of natural products and biologically active compounds as detailed 

below. 

 

Scheme 5.6 
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    The Michael adducts 23 can be potentially converted to the corresponding 

nitrones 24. These nitrones would be useful in the stereoselective synthesis of 2-aryl 

octahydroindoles 25 (Scheme 5.7). These octahydroindoles may have applications in 

diversity oriented synthesis2 and medicinal chemistry3-5. 

 

Scheme 5.7 

In addition, the octahydroindoles 25 may also have applications in target oriented 

synthesis. Oxidative ring expansion of the γ-nitroketone 23 followed by reductive ring 

opening would lead to the 8-nitro-4oxooctonate 27. This is a potential precursor of 

functionalized quinolizidines such as 28. These quinolizidines could be transformed into 

natural products such as subcosine I (29), lasubine I (30) and lasubine II (31) (Scheme 

5.8). 
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Scheme 5.8 
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