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Abstract 

 Lingonberry (Vaccinium vitis-idaea L.) is an economically important fruit  crop 

conventionally propagated by vegetative stem cutting. The present study  is an 

investigation of the effects of different propagation methods as well as different 

geographical locations on the antioxidant properties of lingonberry plants. The study 

also aims to determine neuroprotective effects of the lingonberry  fruits and leaves 

against glutamate-mediated excitotoxicity. In this study, it  was observed that the leaves 

of in vitro- derived plants exhibited significantly higher antioxidant enzyme activities as 

compared to those obtained from ex vitro propagation. The total soluble phenolics, 

tannins, and flavonoids were enhanced in fruits of the in vitro-propagated plants, 

whereas in leaves, the levels of these metabolites (except flavonoids) were decreased in 

the in vitro-derived plants. 

 The study  determined that the lingonberry clones collected from different 

geographical locations showed variability in terms of their antioxidant compounds. A 

positive correlation was observed between the levels of antioxidant compounds and 

latitude, altitude, reduced temperature and increased precipitation. Although the clones 

have been maintained in the same greenhouse environment under similar conditions for 

about 10 years since their collection date, the climatic conditions had an effect on their 

adaptation at the developmental stage influencing plant genotypes.

 The effect of lingonberry extracts were determined on cells subjected to 

excitotoxicity by treating brain cell cultures of 1 to 2 day old rat pups with glutamate 
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(100 µM) for 24 hours in order to damage the cells by  excitotoxicity. Glutamate 

treatment caused a ~20% cell loss when measured after 24 hours of exposure. While 

lingonberry fruit  extract did not provide protection from glutamate toxicity, leaf extracts 

showed a significant neuroprotective effect. The greater protective effect of leaf extracts 

was in correlation with the levels of phenolics and antioxidant capacity.

 In conclusion, the findings in this dissertation suggest that  the tissue culture 

propagation technique has great advantages especially in enhancing antioxidant 

compounds as well as for increasing vegetative growth in lingonberry  plants. Our 

findings also suggest that antioxidant levels increase with reduced temperature, 

increased precipitation, latitude and altitude. Overall, the antioxidant capacity of 

lingonberry leaves would be potentially  beneficial for neuro-protection and slowdown 

of brain aging, and consumption of lingonberry  products could have positive effect on 

human health.
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Chapter 1

Literature Review 

The goal of this chapter is to provide a basic introduction to lingonberry plants and their 
propagation methods. The fundamental ideas and basic terms implemented throughout this 

dissertation i.e., oxidants, reactive oxygen species, antioxidants, etc are also described in this 
chapter. To further illustrate plant antioxidant systems, their components are presented briefly.

1.1. Introduction 

  Berries of Vaccinium species are known for their antioxidant activities and have been 

extensively  studied in the past decade. Blueberry (Vaccinium angustifolium Aiton), 

cranberry (Vaccinium oxycoccos L.) and lingonberry  (Vaccinium vitis-idaea L.) are the 

three commercially important berry crops of Vaccinium species. Other berries of Vaccinium 

species include bilberry (Vaccinium myritillus L.), red huckleberry  (Vaccinium paryifolium 

Sm.), sparkleberry (Vaccinium arboreum M.) and creeping blueberry (Vaccinium 

crassifolium Andr.). Vaccinium berries are characterized by  fleshy fruits with high 

ascorbate and anthocyanins levels (Yao & Vieira, 2007). Berries contain micronutrients that 

are essential for human health and are rich source of phenolic compounds, such as phenolic 

acids, flavonoids and anthocyanins (Zheng & Wang, 2003). Health benefits of berries have 

been reported by several research groups. It  was reported that these fruits possess 

antioxidant, anti-tumor, anti-ulcer and anti-inflammatory activity (Zafra-Stone et al., 2007). 

Berries have been shown to exhibit a wide range of biological effects such as  

1



anticarcinogenic (Ames, 1983; Knekt et al., 1997; Juranic et al., 2005; Mertens-Talcott et 

al., 2003) and protection against cardiovascular diseases (Hertog 1993; Keli et al., 1996) 

and some other degenerative diseases caused by oxidative stress (Ames et al., 1993). Many 

species from this family are utilized as commercially important fruit  crops, medicinal 

plants and ornamental landscape ground cover (Jaakola et al., 2001). Cranberry 

proanthocyanidins have shown to maintain urinary tract  health (Foo et al., 2000a,b; Howell 

et al., 2005) and inhibit acid-induced proliferation of human esophageal adenocarcinoma 

cells (Kresty et al., 2008). A plethora of literature is available on wild blueberries in animal 

model systems emphasizing their protective effects (Norton et al., 2005; Kela et al., 2009; 

Kristo, et al., 2010; Del Bo’ et al., 2013).  It has been reported recently that the 

consumption of wild blueberries for six weeks significantly decreases oxidized DNA and 

increases resistance to damage caused by oxidative stress (Riso et al., 2012). 

  The protective effects of these berries against the diseases and disorders mentioned 

above are attributed to antioxidant compounds especially polyphenolic compounds and 

some other low molecular weight phytochemicals. A correlation between antioxidant 

activities and the total phenolic content has been reported in raspberries (Anttonen & 

Karjalainen, 2005). Our studies on lingonberry support this correlation. 

2



1.2. Lingonberry: Biology and Systematics

  Lingonberry (Vaccinium vitis-idaea L.), also called partridgeberry in Newfoundland and 

redberry  in Labrador, is a rhizomatous low creeping evergreen shrub which grows in Eurasia 

and North America (Luby et al., 1991). There are as many as 25 regional names of 

lingonberry such as northern mountain cranberry, mountain bilberry, lingberry, foxberry and 

cowberry (Burt & Penhallegon, 2003). The morphological characteristics of lingonberry 

include fused petals, leathery leaves and terminal flower buds (Rabaey  et al., 2006). 

Lingonberry fruits are bright red to dark red in color and weigh 0.17 to 0.45 g and flowers are 

bell-shaped and white or pink in color (Penhallegon, 2006). 

  Newfoundland and Labrador is the largest lingonberry producing region in North 

America (Penny  et al., 1997), with about 140,000 kg harvested annually from native stands 

for processing, mostly for export (Jamieson, 2001). Lingonberry can withstand harsh 

environmental conditions and hence it  is a widely distributed plant species. It  has a 

circumpolar and circumboreal distribution (Trajkovski, 1987; Small et al., 2003). 

Furthermore, acidic soils with pH range from 4.3 to 5.5 are favorable for lingonberry growth 

(Ailor & Penhallegon, 1999). 

1.2.1. Lingonberry Taxonomy

  Lingonberry (Vaccinium vitis-idaea L.) belongs to the family  Ericaceae and genus 

Vaccinium. The Ericaceae is also known as the heather family and is geographically 

widespread. In Canada, 18 genera represent some of the most important native medicinal and 
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edible plants within this family include blueberry, bilberry, cranberry, Labrador tea and 

bearberry (Scoggan, 1979). This family is highly ornamental and includes mostly  shrubs and 

small trees. 

  The Ericaceae family belongs to the order Ericales which consists of about 4500 species 

of plants which are divided into 8 families with 160 genera (Lens et al., 2003). The eight 

families are: Cyrillaceae, Clethraceae, Grubbiaceae, Empetraceae, Epacridaceae, Pyrolaceae, 

Monotropaceae, and Ericaceae. The family  Ericaceae consists of about 90% species of the 

order Ericales. It  was reported that the Ericaceae family is amongst the top 10 families among 

plants used as traditional medicine (Saleem et al., 2010). 

  Harborne and Williams (1998) have reported the distribution of flavonoids and simple 

phenolics in the leaves of 334 species of Ericaceae and found that  these species are rich source 

of flavonoids and simple phenolics (Saleem et al., 2010).  

 1.2.2. Lingonberry Types 

  There are two subspecies of lingonberry: (1) Vaccinium vitis-idaea ssp. L. vitis-idaea 

Britton, which is widespread in Europe and northern Asia (2) Vaccinium vitis-idaea L. ssp. 

minus Hult, which is abundant in Iceland, Greenland, North America, Northern Asia and 

Scandinavia (Luby et al., 1991; Penney et al., 1997). The subspecies vitis-idaea blooms twice 

each year, March to April and July to August while the subspecies minus blooms only  once a 

year, in June or July (Penhallegon, 2006). 
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  These two subspecies of lingonberry are distinguished mainly by their height and leaf 

size. The average plant height of ssp. minus is less than 20 cm and on the other hand the 

height of ssp. vitis-idaea is usually more than 30 cm (Fig. 1.1). The average leaf size of ssp. 

minus is 1 cm ×  0.5 cm which is much smaller than that of ssp. vitis-idaea whose average leaf 

size is 2.5 cm ×  1 cm (Fernald, 1970; Welsh, 1974). The lingonberry ssp. vitis-idaea comprise 

of the following 16 cultivars: Ammerland, Erntedank, Erntekrone, Erntesegen, European Red, 

Ida, Koralle, Koralle/German, Linnae, Masovia, Regal, Sanna, Scarlet, Splendor, Red Pearl 

and Sussi.
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Figure 1.1. Pictures representing the two types of lingonberries (A) ssp. vitis-idaea (B) ssp.  
minus, showing differences in their morphology. 

A
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1.3. Propagation Methods 

  The conventional methods of lingonberry propagation, either from seeds or from stem 

cutting and rhizome division are very  common (Penhallegon, 2006). Different propagation 

methods will be discussed briefly in the following sections. 

1.3.1. Sexual Propagation 

  The propagation from seed is a sexual method wherein the genetic materials of the two 

plants are combined to produce a new plant. Vaccinium species are genetically heterozygous 

and therefore, do not produce progeny identical to the mother plant. 

1.3.2. Vegetative Propagation

  A vegetative method of propagation is a form of asexual reproduction in plants. In this 

method, a vegetative part or tissue from one plant is used to reproduce its clone (replica). The 

clone is a genetically  identical plant  propagated asexually from a single reproduction. The 

vegetative propagation methods include stem cutting, grafting, budding, and 

micropropagation, and are described as follows. 

1.3.2.1. Vegetative Propagation by Stem Cutting 

  Traditionally, Vaccinium species are produced by vegetative means to retain the desired 

genetic characteristics and to allow the rapid production of plants. The most common 
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conventional method of vegetative propagation is by softwood cutting. The young, soft, first 

year branches with meristem are taken from the mother plant to produce its clones. Meristems 

are the tissues consisting of undifferentiated cells that produce new cells. These new cells then 

differentiates into several tissues and eventually form different organs of the plant (Castellano 

& Sablowski, 2005). The young stem cuttings of about four to five centimetres are then 

provided with potting soil pots which could be supplemented with growth hormones. These 

stem cuttings are allowed to grow for several weeks with proper soil maintenance, 

fertilization, weed removal and regular irrigation. The meristem tissues of growing stem 

differentiate into distinct parts to transform into a complete plant. Figure 1.2 represents the 

morphology of a fully-grown lingonberry cultivar “Splendor” propagated by softwood cutting.  

Figure 1.2. Lingonberry cultivar “Splendor” propagated by conventional softwood cutting. 
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1.3.3. In vitro Propagation

  “In vitro” is a Latin term which means “in glass” or in an artificial environment created 

outside the living organism. Different tissue culture techniques are carried out in vitro for 

rapid production of new plants using tissues or tiny pieces from the mother plant. This is also 

called micropropagation since a small piece of plant is used to derive a new plant. A tissue 

from the mother plant is provided with growth medium mainly containing micro and macro 

nutrients, carbon source, growth hormones and vitamins. The entire procedure is carried out in 

a sterile environment and growth media are changed regularly. The tissue culture technique is 

a very efficient micropropagation method for economically important plants (Hosier, 1989). 

  Plant tissue culture and regeneration relies on two basic concepts: totipotency and 

plasticity. Plasticity is the ability  of the plant tissues to alter their metabolism according to the 

environment which suits best for their growth and development. Haberlandt (1902) first 

explored plant cell culture to study morphogenesis and the concept of totipotency. Totipotency 

is the ability of a cell to develop into any cell type. As a result, when a plant is provided with a 

correct stimulus, it develops into a plant identical to the plant from which it originated. It is a 

characteristic of the cells in young tissues and meristems, and can be exhibited by some 

differentiated cells. However, it cannot  be exhibited by  those tissues that have developed into 

terminally differentiated structures like sieve tubes or tracheids. An in vitro environment 

causes plant cells to exhibit a high degree of plasticity, which results in development of 

different types of tissues from a single tissue by totipotency.  
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  Tissue culture could be carried out in three different ways: i) from pre-existing buds 

through shoot proliferation (axillary shoot proliferation), ii) following shoot morphogenesis 

through adventitious shoot regeneration (adventitious shoot regeneration), and iii) through the 

formation of somatic embryos (Murashige, 1962). 

1.3.3.1. Axillary Shoot Proliferation

  In the axillary  shoot proliferation method, the existing meristems grow and proliferate 

from the explants once removed from the parent plant. The apical and axillary buds or 

meristematic region of a stem tip are isolated from the mother plant and provided with the 

culture media in a controlled environment. Axillary  shoot proliferation from the apical or 

axillary  buds is initiated by  providing them with a high cytokinin concentration (Fig. 1.3). For 

the commercial mass production of plants, propagation by  axillary shoots proliferation is the 

most commonly used and reliable method to produce clones (Chawla, 2002).  
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Figure 1.3. Lingonberry plants propagated by axillary shoot proliferation (node tissue culture) 
(A) 6 weeks old and (B) 10 weeks old. 

A

B
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1.3.3.2. Adventitious Shoot Regeneration

  Adventitious shoot formation is one of the pathways of in vitro plant regeneration, 

wherein the adventitious meristems may arise on stems, roots or leaf explants directly  under 

the influence of growth hormones like cytokinins and auxins (Vookova & Gajdosova, 1992). 

Figure 1.4 represents a developing lingonberry plant propagated by adventitious shoot 

regeneration from excised leaves.  The requirement of exogenous auxin and cytokinins for this 

process depends on the endogenous levels of hormones present in the tissue and hence varies 

with the tissue culture system (Davey & Anthony, 2010). Adventitious organs like buds and 

shoots may originate from calluses or near existing vascular tissues. This observation led to an 

idea of totipotency (Chawla, 2002). The generation of shoots from vegetative tissue of plants 

in reliable fashion allows the manipulation of genetic makeup in lingonberry to develop new 

cultivars with desired characteristics (Debnath & McRae, 2002). 

        In lingonberry, the regeneration of adventitious shoots from excised leaves was first 

reported by Debnath and McRae (2002). This technique has been very efficiently applied 

subsequently  for many commercially  important crops (Debnath, 2005) and is very frequently 

used in micropropagation.  
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Figure 1.4. Eight weeks old lingonberry plant propagated by adventitious shoot regeneration 
(leaf tissue culture)

1.3.3.3. Somatic Embryogenesis

  Somatic embryogenesis (SE) was defined by Thorpe (1988) as the development of 

diploid cells into differentiated plants through embryo stage without fusion of gametes.   

Somatic embryogenesis is the opposite of sexual or zygotic embryogenesis. Sharp et al. 

(1980) described two routes of somatic embryogenesis: direct embryogenesis and the indirect 

embryogenesis. In direct embryogenesis, embryos arise from a explant tissue without callus 

proliferation, whereas in indirect embryogenesis, proliferation occurs from the cell from 

which embryos are developed (Konar et al., 1972).
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1.4. Advantages of Micropropagation   

  The micropropagation method is becoming increasingly popular not only  for commercial 

production of economically important plants, but also for crop improvement. A rapid 

production can be achieved from single mother plant with the desired traits. Conventional 

vegetative propagation methods are generally successful, however they  are slow, labour 

intensive and only  few propagules can be produced from a single plant (Debnath, 2005).   

Micropropagation of selected germplasm (genetic resources) can potentially multiply  plants 

more rapidly  than the traditional propagation methods. Commercial application of this 

technology is primarily for its enormous multiplicative capacity and the year round production 

of plants (Debnath, 2007). 

1.5. Phytochemicals of Lingonberry Plants and Health Benefits 

  Lingonberries are rich in organic acids, phytochemicals, vitamin C, provitamin A (β-

carotene), B vitamins (B1, B2, and B3), and levels of potassium, calcium, magnesium, and 

phosphorus. The seeds contain significant quantities of omega-3 fatty acids (Oldemeyer & 

Seemel, 1976). A mature lingonberry fruit  has approximately  5.5% protein and energy content 

of 509 Kcal per 100 g of fruit (Miller, 1976). A wide range of bioactive compounds are found 

in lingonberry plants which include mainly  phenolic compounds such as phenolic acids, 

flavonoids and tannins. These compounds have antioxidant potential that  attributes to the 

health promoting properties of lingonberry.
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  Lingonberries have been found to be one of the top  competitors with regards to the 

highest antioxidant  activity, compared to other berry  fruits such as blackberries, blueberries, 

raspberries, strawberries, and cranberries (Wang & Jiao, 2000; Wang & Lin, 2000; Wang & 

Stretch, 2001), and have been used as a medicinal plant. Some reports have shown that 

lingonberry exhibits anticancer activity  and that its extract can potentially induce apoptosis of 

human leukemia HL-60 cells (Bomser et al., 1996; Wang et al., 2005). Lingonberry has 

demonstrated antimicrobial effect and has also been shown to inhibit urinary tract  infection 

pertaining to its high arbutin levels (Larsson et al., 1993; Ho et al., 2001; Kontiokari et al., 

2002). Leaves of lingonberry can be used as an astringent and have diuretic properties (Lust, 

1983; Chiej, 1984). Lingonberry has been used in treating gonorrhoea, a sexually transmitted 

disease (Duke & Ayensu, 1985). Lingonberry helps in curing gastric diseases and lowering 

cholesterol levels (Dierking & Dierking, 1993). 

 The biochemical properties of antioxidants and reactive oxygen species will be discussed in 

the following sections to provide a better understanding of their influence on living organisms 

and in particular, on human health.

1.6. Oxidants, Free Radicals and Reactive Oxygen Species (ROS)

   Oxidants, such as free radicals and reactive oxygen species, are the oxidizing agents 

that  can accept electrons from other chemical species. A free radical is an oxidant molecule 

that contain one or more unpaired electrons in its outermost shell and can exist independently 

(Halliwell, 2006). Reactive oxygen species (ROS) are those oxidants that are intermediates of 
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dioxygen formed when dioxygen (O2) undergoes either physical or chemical activation (Perl-

Treves & Perl, 2001). A reactive oxygen species may or may not be a free radical. Figure 1.5 

illustrates the formation of ROS from triplet oxygen. When the ground state triplet oxygen is 

physically activated by transfer of energy, the oxygen molecule gains enough energy  to 

change its spin and becomes the reactive oxygen species, singlet oxygen 1O2. Chemical 

activation occurs when the oxygen molecule is reduced step by step. The activated 

intermediate products of oxygen are superoxide radical, hydrogen peroxide and hydroxyl 

radical (Yu, 1994) (Fig 1.5).
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Singlet oxygen

   3O2 Triplet Oxygen (↑↑) Ground State  

      ↓Energy

      1O2 Singlet oxygen (↑↓) Highly Reactive

Superoxide radical

    3O2 Triplet oxygen

      ↓ Monovalent 

O2• -Superoxide

Perhydroxyl radical

     O2•- Superoxide à H2O2  Hydrogen peroxide

       ↓ Dismutation

   HO2•  Perhydroxy radical

Hydroxyl radical 

    H2O2   Hydrogen peroxide 

       ↓Metal ion ( Fenton Reaction)                   

     HO• (Hydroxyl radical) + HO: (Hydroxide ion)

Figure 1.5. A figure illustrating the formation of reactive oxygen species in biological 
systems.

 

  Reactive oxygen species and free radicals are formed in living cells as a part of normal 

metabolic processes contributing to regulatory  roles in normal functioning of metabolic 
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pathways. These are also formed as a result  of endogenous factors such as high temperature 

(Bruskov et al., 2002), chilling (Einset  et al., 2007), pollution, exposure to industrial 

chemicals, ozone, ultraviolet radiation, X-ray, pesticides and certain drugs (Heck, 1968; Pell 

& Schlagnhaufer, 1997). Figure 1.6 shows different sources of ROS formation. Oxidative 

stress refers to the metabolic state of imbalance between ROS generation and detoxification 

(Heck, 1968). When ROS are accumulated in higher than normal concentration, oxidative 

stress and often apoptosis occurs. Apoptosis or programmed cell death is a mechanism which 

plants and other organisms use to eliminate damaged cells (Kroemer & Dallaporta 1998; 

Hoeberichts & Woltering, 2003).

Figure 1.6. Sources of Reactive Oxygen Species (ROS) formation in biological systems. 
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ROS-mediated oxidative stress in biological systems is responsible for damaging cellular 

proteins, DNA and lipids. In human beings, ROS are  partly  responsible for aging (Sastre et 

al., 2000) and several disorders and diseases like mutagenesis, cardiovascular diseases (Khan 

& Baseer, 2000), cancer (Kawanishi et al., 2001), macular degradation and several other 

disorders. Overall, there are at least  70 disorders caused as a result of ROS (Ferrari & Torres, 

2003). 

1.7. Antioxidants 

  Antioxidants can be simply described as the substances which inhibit oxidation and 

prevent a cell from the damage caused by the oxidative stress. Antioxidants can be classified 

as primary or secondary, depending on their mechanism of action. 

  Primary  antioxidants are the substances which can react  with lipid radicals and convert 

them into a more stable form. Primary  antioxidants donate a hydrogen atom to a lipid radical  

thus neutralising it. The product of a lipid radical after accepting a hydrogen atom does not 

initiate a new chain reaction by oxidising a free radical. This chain is also subject to 

termination when two free radicals come into contact (Fig. 1.7).  
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ROO.   +       AH                                 ROOH    +           A. 

RO.       +       AH                                  ROH      +           A. 

 ROO.    +        A.                                    ROOA 

 RO.      +        A.                                              ROA

 R.          +         A.                                            R

Figure 1.7.  Action of primary antioxidants on lipid  radical                                                    
(ROO.  _ Peroxyl radical, RO.  _Alkoxy radical, AH- Primary antioxidant, A - Stable phenoxyl 

radical)

Secondary  antioxidants are compounds which deactivate precursors of reactive oxygen species 

by acting as metal chelators, singlet oxygen quenchers, peroxide decomposers or inhibitors of 

lipoxygenase and other related enzymes (Shahidi, 1997).      

1.7.1. Plant Antioxidant Systems

  Plant systems have developed extensive protective mechanisms to combat harmful 

effects of free radicals. Plant cells are rich in antioxidants including a wide variety  of 

metabolites and enzymes. Distributions and protective roles of different antioxidant 

components are discussed further in this chapter. Figure 1.8 summarizes the plant antioxidant 

systems. 
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Figure 1.8. A flow chart representing plant antioxidant systems.

1.7.1.1. Antioxidant Enzymes 

  Antioxidant enzymes include superoxide dismutase, catalase, and the enzymes of the 

ascorbate-glutathione cycle, which include ascorbate peroxidase, monodehydroascorbate 

reductase, dehydroascorbate reductase and glutathione reductase.    
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1.7.1.1.1. Superoxide Dismutase (SOD)

  Superoxide dismutase (EC 1.15.1.1) is a single representative of the subclass of 

metalloenzymes which catalyzes the dismutation of superoxide anion to hydrogen peroxide in 

aerobic and anaerobic organisms (Hassan, 1989). This enzyme was discovered by Irwin 

Fridovich and Joe McCord in 1965. SODs are distributed in almost all the cellular 

compartments in plant tissues including cytosol, mitochondria, chloroplasts, peroxisomes as 

well as in extracellular space (Blokhina et al., 2003).  

  Superoxide dismutase (SOD) is considered to be the first line of defense against reactive 

oxygen species since the superoxide radical is the first  reduction product of oxygen (Bannister 

et al., 1987). A catalytic dismutation of superoxide by SOD has 10,000 times faster rate than a 

spontaneous dismutation (Bowler et al., 1992). Superoxide dismutases are classified into 3 

types – Mn-SOD, Fe-SOD and Cu/Zn-SOD. Equations 1, 2 and 3 illustrates the reactions of 

superoxide radical with SOD. 

SOD reaction: (where “M” stand for metal, based on the type of metal in the active site) 

O2•- + M2+             O2 + M+                                    [1]

O2•- + M+ + 2H+  H2O2 + M2+                                 [2]

Sum of 1 and 2:

2O2•- + 2H+                  H2O2 + O2                                 [3]
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1.7.1.1.2. Catalase  

  Catalase (CAT) (EC 1.11.1.6) is one of the most important enzymes involved in 

regulation of H2O2 levels in the cell (Larson, 1988) and catalyze the reaction in equation 4.  

2H2O2                                                    2H2O + O2             [4]              

In plants, catalase is localized in peroxisomes and scavenges H2O2 within the cells (Frederic & 

Newcomb, 1969). Catalase is not present in chloroplasts or other organelles except 

peroxisomes (Tolbert et al., 1968). Barley mutants with low catalase exhibited injury under 

photorespiratory conditions (Kendall et al., 1983).  

1.7.1.1.3. Ascorbate-Glutathione Cycle 

  The ascorbate glutathione cycle, also known as Halliwell – Asada pathway (Fig. 1.9)  

operates in peroxisomes and mitochondria (Mittova et al., 2000). This cycle is comprised of 

following enzymes: ascorbate peroxidase (APX; EC 1.11.1.11), dehydroascorbate reductase 

(DHAR; EC 1.8.5.1), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and 

glutathione reductase (GR; EC 1.8.1.7). The metabolites taking part in the cycle are ascorbate, 

dehydroascorbate, monodehydroascorbate (ascorbate free radical) and glutathione (Noctor & 

Foyer, 1998). This cycle scavenges H2O2 which is produced as a result of dismutation of 

superoxide (Jimenez, 1997). The cycle efficiently recycles the enzymes involved in it and 

maintains the homeostatic environment in the cell.  

23

CAT



H2O2$

2H2O$

APX$ DHAR$ GR$

AsA$

MDHA$ GSH$

NADPH$GSSG$

DHA$

NADP+$
NADPH$

NADP+$

MDHAR$

Figure 1.9: Ascorbate-Glutathione Cycle (Halliwell-Asada pathway) (modified form Noctor 
& Foyer, 1998). AsA - ascorbate; MDHA - monodehydroascorbate; DHA - dehydroascorbate; 

GSSG - oxidized glutathione; GSH - reduced glutathione; APX - ascorbate peroxidase, 
DHAR- dehydroascorbate reductase; MDHAR - monodehydroascorbate reductase; and GR - 

glutathione reductase.

         Ascorbate (ASC) is the most important reducing substrate for H2O2 detoxification 

(Smirnoff & Wheeler, 2000). Ascorbate peroxidase (APX) is an important enzyme in 

ascorbate-glutathione pathway which uses two molecules of ascorbate to reduce H2O2 to water 

and generates two molecules of monodehydroascorbate (MDHA).                 

              2 Ascorbate + H2O2                          2 MDHA + 2H2O                  [5]

Monodehydroascorbate (MDHA) disproportionates to ascorbate (ASC) and dehydroascorbate 

(DHA), if not  reduced rapidly in the reaction as illustrated in equations 6 and 7. Thus, the 

regeneration of ascorbate is achieved enzymatically by  monodehydroascorbate reductase 

(MDHAR) or spontaneously  by the following reactions (equations 6 & 7). In a spontaneous 
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(non- enzymatic) reaction (equation 6), the electron donor for MDHA may be cytochrome b 

(Foyer & Halliwell, 1976) or reduced ferredoxin (Fd) (Foyer et al., 1997). 

Non enzymatic reduction:

MDHA + Fd red Ascorbate + FdOX                                              [6]

Reduction by monodehydroascorbate reductase:

2MDHA  + NADPH  + H+ 2Ascorbate + NADP+            [7]

Dehydroascorbate (DHA) formed by the disproportionation of MDHA is reduced by 

dehydroascorbate reductase (DHAR) to regenerate ascorbate. This reaction uses glutathione as 

a reducing substrate (Foyer et al., 1983) and generates glutathione disulphide (GSSG)

       DHA   +  2GSH Ascorbate + GSSG             [8]

Thus, the ascorbate pool is maintained by the above mentioned reactions. Glutathione 

reductase (GR) reduces GSSG to GSH, reduced glutathione, using NADPH as an electron 

donor (Equation 9). 

      GSSG  +  NADPH + H+           GSH + NADP+       [9]
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  Ascorbate peroxidases are localized in chloroplasts, mitochondria, cytosol and 

peroxisomes (Foyer & Noctor, 2009). In chloroplast, ascorbate peroxidase is found both as 

soluble in stroma and bound to thylakoid (Miyake & Asada, 1992). Chloroplasts contain two 

isoforms of APX, stromal and thylakoid-bound APX. Chloroplastic APXs have several-folds 

higher catalytic turnover as compared to the cytosolic APX (Chew et al., 2003) but can be 

easily inhibited by H2O2 (Hossain & Asada, 1984).  

  Glutathione reductase (GR) catalyses the reduction of glutathione disulphide (GSSG) to 

reduced glutathione using NADPH as an electron donor and thus completes the ascorbate 

glutathione cycle (Noctor & Foyer, 1998). The plants overexpressing GR showed high 

ascorbate levels whereas the mutants with no GR were found to be extremely sensitive to 

stress due to low ascorbate levels (Aono et al., 1993).

  Dehydroascorbate reductase (DHAR) is one of the important enzymes which contributes 

in maintaining ascorbate pool in leaves and catalyzes the reduction of DHA to ASC, in 

absence of which DHA would form oxalate and tartrate (Washko et al., 1992). 

  The regeneration of monodehydroascorbate (MDHA) radicals to ascorbate in the 

ascorbate glutathione cycle is achieved enzymatically  by  MDHAR using NADPH as 

mentioned above.  Monodehydroascorbate as a long lasting anion radical is an indicator of 

oxidative stress in plant tissues and can be detected by the electron spin spectroscopy (EPR) 

technique (Buettner & Jurkiewicz, 1993). Thus, the ascorbate-glutathione cycle involving the 

above mentioned enzymes and metabolites contributes to cellular homeostasis and scavenges 

ROS.   
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1.7.1.2. Antioxidant Metabolites 

  The plant antioxidant metabolites include ascorbate, glutathione, tocopherol, carotenoids, 

and phenolic compounds such as flavonoids, anthocyanins, proanthocyanidins (also known as 

tannins) and phenolic acids. 

1.7.1.2.1. Ascorbate

  Ascorbate or ascorbic acid (ASC), also known as vitamin C, is the most important 

antioxidant in biological systems (Smirnoff, 2000).  Figure 1.10 shows the structure of 

ascorbate.  Ascorbate can be synthesized by all plants and animals, except primates and guinea 

pigs (Burns, 1957). Plants contain ascorbic acid in all cell types, organelles and apoplast 

wherein it can accumulate in millimolar quantities (Blokhina et al., 2003). Ascorbate 

detoxifies ROS by directly reacting with hydroxyl radicals, superoxide, and singlet  oxygen 

(Frei et al., 1989). Ascorbate is very efficient in inhibiting peroxidation of human plasma 

lipids, and other plasma components, such as alpha-tocopherol and protein thiols (Padh, 

1990), and hence protect membranes against damage caused by ROS. Ascorbate protects 

membranes by regenerating oxidized carotenes and tocopherols which are important 

antioxidants in the non-aqueous phase, thus also acting as a secondary antioxidant (Noctor & 

Foyer, 1998). Ascorbate plays a crucial role in the regulation of photosynthesis, in particular 

by providing protection against harmful effects of excess excitation energy and acting as a 

cofactor in the xanthophyll cycle (Noctor et al., 1991). The mutants of Arabidopsis with low 
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ascorbate levels display  slow growth rate and late flowering, and the mutant plants with no 

ascorbate die (Foyer & Halliwell, 1976).Glutathione plays important role in detoxification of xenobiotics, regulation of cell cycle (Marrs, 

1996), and maintaining heavy metal concentrations in the cell (Rouhier et. al., 2008).
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Figure 2.11 Structures of glutathione and ascorbic acid 
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 Figure 1.10. The structures of glutathione and ascorbic acid
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1.7.1.2.2. Glutathione

  Glutathione is a tripeptide (γ-Glu-Cys-Gly) (Fig 1.10) and is an abundant compound in 

plants found in almost all cell compartments (Foyer & Halliwell, 1976). Its role as a reducing 

substrate in the ascorbate-glutathione pathway was discussed in section                      

1.7.1.1.1.3. Glutathione is a very important antioxidant and maintains redox levels in both 

plants and animals (Law et al., 1983). In addition, it is of great importance for the 

environment of a cell under normal and stress conditions (Rennerberg, 1982). Other than 

being a powerful antioxidant, glutathione in its reduced form is of significant importance in 

sulphur metabolism and regulates sulphur uptake (Kerk & Feldman, 1995). Glutathione is 

responsible for the regeneration of other crucial antioxidants of the ascorbate-glutathione 

cycle and is also important in recycling of tocopherol and carotenoid (Lamoureux & Rusness, 

1993). Glutathione plays an important  role in the detoxification of xenobiotics, regulation of 

the cell cycle (Marrs, 1996) and maintaining heavy metal concentrations in the cell (Rouhier 

et al., 2008).

1.7.1.2.3.  Carotenoids

  Carotenoids were first isolated from carrots by Wackenroder in 1831. They are a class of 

natural pigments which are widespread in many fruits and vegetables. These lipid-soluble 

molecules are important antioxidants in both plants and animals (Perl-Treves & Perl, 2001). 

Carotenoids are accessory pigments in photosynthesis and protect photosynthetic cells against 

photosensitization in several ways. The best known property of carotenoids is their ability  to 
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absorb light (Bartley & Scolnik, 1995). Carotenoids are present in reaction center; β-carotene 

and light harvesting complexes lutein and neoxanthin quench excited triplet state chlorophyll 

and protect chloroplast against photooxidative stress (Parker & Joyce, 1967; Strzalka et al., 

2003). Carotenoids are involved in the xanthophyll cycle to protect photosynthetic cells by 

non-photochemical quenching through dissipation of excess energy within light harvesting 

antenna proteins (Edge & Truscott, 1999). Carotenoids can also quench singlet oxygen as 

shown below (equation 10) and protect photosynthetic cells from ROS damage (Foote & 

Dcuny, 1968) and lipid peroxidation.

          1O2 + carotenoid  3carotenoid + 3O2                         [10]                                                   

  Some of the carotenoid compounds are the precursors of abscisic acid in plants which 

functions to modulate developmental and stress processes (Koornneef, 1986). Carotenoids are 

also of significant importance to animals and are an important constituent of human diet. It 

has been shown that  carotenoids have anticancer activity and are effective in reducing the risk 

of several chronic diseases such as age-related macular degradation, and coronary heart 

disease (Hennekens, 1997).  

1.7.1.2.4. Tocopherol

  Tocopherol is a lipid soluble compound which is mainly localized in plastids and 

synthesized in envelopes of plastids. Tocopherol is a very important dietary nutrient in animals 

and humans since it is synthesized only in plants (Munne-Bosch & Alegre, 2002). α-
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tocopherols are found in chloroplasts, while β, γ and δ tocopherols are found outside the 

organelle (Kamaleldin & Appelqvist, 1996).

1.7.1.2.5. Plant Phenolics 

  Phenolic compounds are a large class of secondary  metabolites which are composed of 

an aromatic ring with a substitution of one or more hydroxyl groups and a number of other 

side groups (Shahidi & Naczk, 2004).  This class of compounds is widely distributed in plants 

and includes simple phenolics, phenolic acids, coumarins, flavonoids, stilbenes, 

proanthocyanidins, lignans, and lignins (Naczk & Shahidi, 2006; Shahidi & Naczk, 2004). 

Phenolic compounds are responsible for fruit colour, odour, flavour, bitterness, astringency 

and stability against lipid oxidation. Table 1.1 shows different classes of phenolic compounds. 
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Table 1.1. Dietary sources of plant phenolics (Naczk & Shahidi, 2006)!
Table 2.1 Dietary source of Plant phenolics (Naczk & Shahidi, 2006)  

 

 Phenolic compounds Dietary source

Phenolic acids 

        Hydroxycinnamic acids                     

        

        Hydroxybenzoic acids  

Blueberries, carrots, cereals, pears, cherries, tomatoes, citrus fruits,     oilseeds, 
peaches, plums, eggplants, apricots

Blueberries, Cereals, Cranberries, Oilseeds

Flavonoids

       Anthocyanins

      Chalcones 

       Flavanols 

       Flavanonols

       Flavanones 

       Flavonols

       Flavones 

       Isoflavones

      Xanthones

Bilberries, black and red currants, blueberries, cherries, grapes, strawberries

Apples

Apples, blueberries, grapes, onions, lettuce

Grapes

Citrus fruits

Apples, beans, blueberries, buckwheat, cranberries, lettuce, onions, olive, pepper

Citrus fruits, celery, parsley, spinach, rutin

Soybeans

Mango, mangosteen

Tannins
      
    Condensed

    Hydrolyzable

Apples, grapes, peaches, plums, mangosteens, pears

Pomegranate, raspberries

Other phenolics

Arbutin 

Coumarins

Lignans 

Stilbenes

Pears

Carrots, celery, citrus fruits, parsley, parsnips

Buckwheat, flaxseed, sesame seed, rye, wheat

Grapes
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1.7.1.2.5.1. Flavonoids

  Flavonoid is a term described for pigments in plants which are mostly derived from a 

benzo-gamma-pyran ring (Winkel-Shirley, 2001). Flavonoids are the large class of low 

molecular weight secondary metabolites found ubiquitously in higher plants. They are present 

in almost all parts of plants, from roots to flowers and fruits (Williams & Grayer, 2004). Red 

fruits, citrus fruits, apple, onion, coca, grapes, and tea are rich dietary sources of flavonoids 

(Mennen et al., 2004).   Flavonoids are divided into 14 different groups (Havsteen, 2002) 

including flavones, isoflavones, flavanones, flavonols, flavanols (catechins), and 

anthocyanidines which are well-characterized among the 14 groups (Table 1.1). Flavonoids 

have been reported to have widespread biological functions including plant pathogen 

interaction, pollination and seed development (Winkel-Shirley, 2001) but the most important 

property  of flavonoids in biological systems is their antioxidant abilities. Figure 1.11 shows 

structures of some flavonoids. 

  Flavonoids have the property of inhibiting auto-oxidation and scavenging free radicals 

(Bors et al., 1990). Flavonoids have an ability  to suppress the Fenton reaction (Fig. 1.5) by 

their metal binding property. The functional group and region involved in metal chelation are 

β-ring and 4-keto and 5-hydroxy region of flavonoid (Cheng & Breen, 2000). During biotic 

and abiotic stress conditions such as drought, wounding and metal toxicity, many  flavonoid 

biosynthetic genes are induced and flavonoid levels increase (Dixon & Paiva, 1995; Winkel-

Shirley, 2002).
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Figure 1.11. Structures of some flavonoid compounds.
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1.7.1.2.5.2. Anthocyanins

  Anthocyanins belong to a flavonoid class with strongly  hydrophilic properties. They are 

responsible for the red and blue colour in fruits, vegetables and flowers and are widespread in 

nature. Anthocyanins are mostly localized in the epidermal layer of fruits but in some cases 

also found in the pulp  of fruits (Shrikhande & Francis, 1976). In addition to being natural 

pigments, they are potent antioxidants (Kahkonen & Heinonen, 2003) and have the ability to 

prevent lipid oxidation (Satuegracia et al., 1997) and scavenge free radicals (Wang et al., 

1997). Dietary intake of fruits and vegetables has been reported to have beneficial effects on 

human health (Hollman et al., 1996; Knekt et al., 2002; Rissanen et al., 2003).  Anthocyanins 

have been shown to have anticancer and anti-aging properties (Kong et al., 2003; Rossi et al., 

2003). They are also important in improving the nutritional values of processed foods 

(Kahkonen et al., 2003; Viljanen et al., 2004). Anthocyanins are distributed in lingonberries in 

a distinct pattern where cyanidin-3-galactoside accounts for 80%, cyanidin-3-glucoside is 5% 

and cyanidin-3-arabinoside is 11% of the total anthocyanins (Wang et al., 2005).  

1.7.1.2.5.3. Proanthocyanidins

  Proanthocyanidins are polyphenolic secondary metabolites present in higher plants. 

Proanthocyanidins are classified into two groups, namely, hydrolysable proanthocyanidins and 

complex proanthocyanidins (Khanbabae & Van Ree, 2001). Studies have shown that 

proanthocyanidins have high antioxidant potential as compared to ascorbate and tocopherol 

(Shi et al., 2003). They are present in the bark, fruits, leaves and seeds of many plants and 

provide protection for the plants. Grape seed proanthocyanidins were reported to have  
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chemoprevention of cellular damage (Joshi et al., 2001). Proanthocyanidins are one of the 

major compounds present in grapes and wine that is responsible for cardioprotection (Bertelli 

& Das, 2009). 

1.8. Conclusion

   In summary, lingonberry (Vaccinium vitis-idaea L.) is an economically important plant 

with medicinal values and health benefits and is mainly propagated by vegetative means.   

Tissue culture techniques offer several benefits over traditional means of vegetative 

propagation method for the rapid and less laborious production of berries. 

  The available literature on lingonberry’s antioxidant potential shows a wide gap  in 

information available about leave’s antioxidants. Therefore, this study  aimed to determine the 

antioxidant enzyme activity  of lingonberry leaves and determine the antioxidant metabolites 

of lingonberry  fruits and leaves. Important  antioxidant enzymes and metabolites were studied 

as well as ratio of reduced and oxidized ascorbate and glutathione were determined to 

correlate with the morphological features of differentially propagated lingonberry cultivars. In 

vitro experiments were done and biological models were used to determine the effect of 

propagation method on antioxidant activities of lingonberries.

   Thus, the objective of this dissertation is: 1) to determine the effect of propagation 

methods on the levels of antioxidant enzymes like catalase and the ascorbate-glutathione 

cycle enzymes as well as phenolic compounds and their antioxidant activities of 

lingonberry fruits and leaves; 2) to determine the correlation between morphological 

36



properties and ascorbate and glutathione metabolism in lingonberry  leaves influenced by 

propagation methods; 3) to identify and quantify  major phenolic compounds in lingonberry 

fruits and leaves; 4) to determine the effect  of geographical locations on phenolic 

compounds and antioxidant activities of wild lingonberry clones; 5) to correlate the 

antioxidant efficiency of phenolics from lingonberry in inhibiting lipid peroxidation in food 

model systems and 6) to determine the efficiency  of lingonberry  fruit and leaf extracts in 

suppressing oxidative stress in brain.
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Chapter 2                                             

Effects of in vitro and ex vitro Propagation Methods on 

Antioxidant Properties of Lingonberry (Vaccinium vitis-

idaea L.) Cultivars

This chapter is an investigation of the effects of propagation methods on the antioxidant 
compounds of three lingonberry cultivars, Regal, Splendor, and Erntedank obtained from three 

different propagation methods: by ex vitro conventional softwood cuttings, by in vitro shoot 
proliferation of node explants and by in vitro adventitious shoot regeneration from excised leaves 

of micropropagated shoots.

2.1. Introduction

   Lingonberry (Vaccinium vitis-idaea L.) is a commercially  important fruit crop 

with a great medicinal value due to its high antioxidant properties (Jaakola et al. 2001; Wang 

et al. 2005; Lätti et al. 2011). Lingonberry  plants are genetically heterozygous, so they are 

normally propagated by vegetative methods to achieve genetically  identical offspring and to 

preserve advantageous characteristics. The conventional vegetative propagation method 

employed for lingonberry plants is by softwood cutting. The tissue culture technique is a more 

advanced method of micropropagation that offers a rapid production of numerous clones from 

the single mother plant. The tissue culture of lingonberry plants can be obtained either from 

node sections or from leaves (Debnath 2011). 

51



  A link between ascorbate metabolism and accumulation of phenolic compounds has been 

shown (Thomas et al. 1992) and may be connected, in particular with the role of ascorbate in 

metabolism of phenols in the apoplast and in scavenging phenoxyradicals (Horemans et al. 

2000).   

 Studies have shown that the methods of propagation influence growth habits of plants 

(Debnath, 2011; Saez et al., 2012). Significant morphological differences have been observed 

in plants obtained from softwood cuttings and tissue culture. It has been shown that the tissue 

culture-derived lingonberry  plants are superior to the stem cutting method in terms of number 

of stems, branches, leaves, and rhizomes but produce less vigorous shoots and smaller berries 

(Debnath 2006).  Similarly, some differences in morphology  have been observed in plants 

derived from the in vitro micropropagation by node tissues and leaf tissue culture (Debnath 

2005). 

 The controlled morphogenesis with initiation of new meristems in plants can be triggered 

by tissue culture techniques. By adding a cocktail of plant hormones, differentiated cells can 

be reset to start formation of new shoots or roots. Hormones act as triggers via signalling 

events, followed by a long chain of metabolic steps occurring after binding to receptors and 

leading to modulation of the redox state. The morphogenetic phenomena are directly 

controlled by metabolism and, in particular, by   pairs of reduced and oxidized compounds, the 

most important of which are ascorbate and glutathione. This study explore the possibility  that 

the differences in the morphogenetic process in tissue culture plants may be directly related to 

the redox state of glutathione and ascorbate. The modulation of redox state is linked to the 
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concentration of reactive species such as hydroxyl radicals, superoxide anion, hydrogen 

peroxide and monodehydroascorbate (ascorbate free radical, AFR).

 The present study is performed on three contrasting lingonberry cultivars, Regal, 

Splendor, and Erntedank, each propagated by three methods: 1) stem cutting (SC) (which is 

taken as a  control), 2) in vitro shoot proliferation from node tissue (node culture, NC), and 3) 

in vitro adventitious shoot regeneration from excised leaves of micropropagated shoots (leaf 

culture, LC). Leaves of each of the cultivars were analysed for levels of the antioxidant 

enzymes and of reduced and oxidized ascorbate and glutathione. Fruits and leaves of each of 

the three cultivars propagated by stem cutting and tissue culture were analysed for total 

soluble phenolic content, flavonoids, anthocyanin, tannin, and total radical scavenging 

capacity. The study shows important  differences in the antioxidant metabolism of plants 

obtained by different methods of propagation which were also specific to each cultivar. The 

effects of propagation methods on the antioxidant metabolism are discussed in relation to the 

possible involvement of reduction levels of ascorbate and glutathione and of reactive oxygen 

species in morphogenetic processes in plants.      
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2.2. Material and Methods 

2.2.1. Plant Material

   The plants used in this study were greenhouse grown lingonberry  cultivars Regal, 

Splendor, and Erntedank at Atlantic Cool Climate Crop Research Centre (ACCCRC), 

Agriculture and Agri-Food Canada, in St. John’s, Newfoundland and Labrador. Figure 2.1 

represents lingonberry  cultivar Regal propagated by stem cutting, nodal culture and leaf 

culture.
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Lingonberry cultivar Regal propagated by different methods. SC – stem cutting-derived plant; NC – nodal 
culture-derived plant; LC – leaf culture-derived plant  
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Figure 2.1. Lingonberry cultivar Regal propagated by different methods. SC - stem cutting-
derived plant; NC - nodal culture-derived plant; LC - leaf culture-derived plant 
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2.2.2. Plant Propagation

2.2.2.1. Plant Growth and Development

 Lingonberry cultivars Regal, Splendor, and Erntedank were obtained from Debnath 

(2005). The shoot proliferation medium D (Debnath & McRae's 2002) containing three-

quarters of macro-salts and micro-salts (hereafter called basal medium, BM) was used for in 

vitro propagation.  It was also supplemented with 25 mg/ml sucrose, 3.5 mg/ml Sigma A 1296 

agar, and 1.25 mg/ml gelrite (Sigma Chemical Co., St. Louis). The medium was adjusted to 

pH 5.0 and then was autoclaved for 20 min at 121°C. Cultures were first maintained at 20° ± 

2°C for 16 hours under the light of photosynthetic photon flux (PPF) density of 30 µmol m -2 

s-1 provided by cool white fluorescent lamps and then were subcultured every 8 weeks (Foley 

and Debnath 2007). Shoot regeneration was observed from the leaf and nodal explants 

(Debnath & McRae 2002; Debnath 2005). After eight weeks of culture initiation, buds and 

shoot clumps were transferred to 175 ml Sigma baby  food glass vessels containing 35 ml BM 

with zeatin (1 µM). BM containing zeatin is needed for proper shoot proliferation of 

lingonberry culture in vitro (Reed & Abdelnour-Esquivel, 1991). Buds and shoot clumps were 

then cultured for further 8 weeks for shoot elongation at the photoperiod of PPF density of 30 

µmol m -2 s-1 at 20° ± 2°C for 16 h similarly as provided during shoot proliferation by Foley & 

Debnath (2007a). 

! Shoots from leaf and nodal tissue cultures of Regal, Splendor, and Erntedank were 

obtained and grown in a greenhouse according to Debnath (2006). Eight-week old in vitro 

derived elongated shoots (4 to 5 cm long) were rooted in 45-cell plug trays (cell diameter 5.9 
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cm, cell depth 15.1 cm; Beaver Plastics, Edmonton, AB, Canada) containing peat: perlite [2:1 

(v/v)] in a humidity  chamber with a vaporizer (Conviron E15; Controlled Environments Ltd., 

Winnipeg, MB, Canada) at 22° ± 2°C and 95% relative humidity (RH), with a 16 hour 

photoperiod (PPF 55 µmol m–2 s–1 at culture level). No rooting compound was applied 

(Debnath 2006; Foley & Debnath 2007). !

2.2.2.2. Establishment of Softwood Cutting Lingonberry Cultivars 

 Terminal softwood cuttings, 4 - 5 cm long, were taken from the greenhouse grown Regal, 

Splendor, and Erntedank cultivars that were used for tissue culture. These stem cuttings were 

rooted in 45-cell plug trays as described above (vide supra) for tissue-culture obtained shoots 

(Foley & Debnath 2007). 

 After 8-10 weeks, rooted plantlets of stem cuttings, nodal cultures and leaf cultures were 

transferred to plastic pots (10.5 × 10.5 ×12.5 cm) containing the same medium used for 

rooting and were maintained in humidity chamber and acclimatized by  gradually lowering the 

humidity by 3 - 4% per week over a 3 week period. The plants that were well-developed and 

hardened were then grown in the greenhouse under natural light condition at  20°C, 85% RH 

and 16 hour photoperiod at maximum PPF of 90 µmol m-2 s-1 (Debnath 2006; Foley & 

Debnath 2007). Fertilization (20-8-20 N-P-K, Plant Products Co. Ltd., Brampton, ON) and 

irrigation was supplied to plants when required (Debnath 2006). All plants were treated and 

maintained in similar manner. The age of plants during the morphological data collection and 

chemical analysis was about 10 years. 
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2.2.2.3. Morphological Characteristics 


 The morphological data including plant height, number of rhizomes per plant, number of 

branches per rhizome, number of branches per plant, leaves per branch, leaves per plant, berry 

weight, and berry diameter were collected from 15 plants per treatment.

 Fresh young leaves and mature ripe fruits from 5 plants per treatment were harvested for 

biochemical assays and immediately frozen into liquid nitrogen and transferred to -80 °C until 

extraction. For biological assays 5 plants per treatment were used and all the experiments 

were done in triplicate (total 15 samples).

2.2.2.4. Determination of Leaf Chlorophyll Content 

 The total chlorophyll (a+b) and chlorophyll a and b were determined by the procedures 

of Arnon (1949). Leaf tissue (0.5 g) was ground in a chilled mortar and pestle in 5 ml 100% 

acetone and centrifuged for 5 minutes at 3500 g. The supernatant was used to measure 

chlorophyll content. 50 µl of extract was added to 950 ml of 80% acetone and absorption was 

measured at 663 nm, 645 nm and 750 nm using a UV/Visible spectrophotometer (Ultrospec 

4300 pro) and contents of chlorophyll a, b and total chlorophyll were determined by the  

following formulae. 

      Chlorophyll a (mg/g fresh weight) = [(12.7 A663) - (2.69 A645)] × V

    Chlorophyll b (mg/g fresh weight) = [(22.9 A645) - ( 4.68 A663)] × V

57



    Chlorophyll a+b (mg/g fresh weight) = [(20.08 A645) - (8.02 A663)] × V

     where V is the volume of the chlorophyll extract. 

2.2.2.5. Determination of Reduced and Oxidized Ascorbate and 

Glutathione 

  The leaves of lingonberry  cultivars were ground to powder in pre-chilled mortar 

and pestle with liquid nitrogen and homogenized with 2% metaphosphoric acid. The 

homogenate was centrifuged at 2,100 g for 20 min at 4ºC. The supernatant was used for 

measurement of reduced and oxidized ascorbate and glutathione. Ascorbate (AsA) and 

dehydroascorbate (DHA) were determined according to the method developed by 

Kampfenkel et al. (1995). This assay is based on the reduction of Fe3+ to Fe2+ by AsA and the 

spectrophotometric detection of Fe2+ complexed with 2,2-dipyridyl. Determination of total 

ascorbate was performed after reduction of dehydroascorbate (DHA) to ascorbate (Asc) with 

dithiothretol (DTT). For total ascorbate determination, the reaction mixture contained 100 µl 

of aliquot of extract, 250 µl of 50 mM phosphate buffer solution (pH 7.5) containing 2.5 mM 

EDTA and 50 µl of 10 mM  dithiothretol. It  was incubated for 10 minutes at room temperature. 

Excess DTT was removed by adding 50 µl of 5% N-ethylmaleimide. Total ascorbate (ASA

+DHA) was determined as shown below. Ascorbate was determined using similar reaction 

mixture in which 100 µl of H2O was added instead of DTT and N-ethylmalemide.

 In both the reaction mixtures, the following reagents were added: 0.2 ml of 10% 

trichloroacetic acid (TCA), 0.2 ml of 44% ortho-phosphoric acid, 0.2 ml of 4% α, α'-dipyridyl 
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in 70% ethanol, and 0.3% (w/v) FeCl3. Colouring was observed after shaking and the mixture 

was incubated at 40 °C for 40 minutes. Absorbances were recorded at 525 nm using a UV/

Visible spectrophotometer (Ultrospec 4300 pro).  

 The reduced (GSH) and oxidized (GSSG) glutathione were determined according to 

Zaharieva and Abadía (2003). The method is based on the reaction of 5-5'-dithiobis (2-

nitrobenzoic acid) (DTNB) with GSH forming 5-thionitrobenzoic acid (TNB) that absorbs at 

412 nm. Total glutathione (GSH+GSSH) was determined in 125 mM potassium phosphate 

buffer (pH 7.5) containing 0.3 mM Nicotinamide adenine dinucleotide phosphate reduced 

(NADPH), 6.3 mM EDTA, 100 µM  5,5-dithio-bis (2-nitrobenzoic acid) and 200 µl of aliquots 

of leaf extract in total volume of 1 ml. Before the start of reaction, the pH of acid extract was 

brought to 7.7 by  diluting it fivefold in 0.28 M K2HPO4. The reaction was started with 5 µl 

(0.5 U) glutathione reductase. The change in absorbance was monitored at 412 nm for 200 

seconds using a UV/Visible spectrophotometer (Ultrospec 4300 pro).  

  To measure GSSG, the aliquots of leaf extract were mixed with 2- vinylpyridine at  a 

ratio of 25:1, vortexed for 1 minute and incubated for 1 hour at 25 °C. GSSG was then 

determined in same way as described above for total glutatione. The values were corrected by 

measuring control rates in the absence of extract, and total GSH was calculated from a 

standard curve. The GSH concentration was calculated as the difference between total GSH 

and GSSG (calculated as GSH equivalents).
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2.2.2.6. Measurement of Ascorbate-Glutathione Cycle Enzymes and Catalase

 The lingonberry leaves were ground to powder using mortar and pestle in liquid nitrogen. 

One hundred mg of material was homogenized on ice in 1 ml of 50 mM  MES/KOH buffer 

(pH 6.6) containing 40 mM KCl, 2 mM  CaCl2 and 1 mM  sodium ascorbate. The homogenate 

was centrifuged for 10 minute at 12,000 g at 4°C. 

 The activities of enzymes of the ascorbate-glutathione cycle were measured according to 

Murshed et al. (2008) with modifications. 

a) Ascorbate Peroxidase (APX)

 The assay medium for ascorbate peroxidase (EC 1.11.1.11) was 50 mM potassium 

phosphate buffer (pH 7.0) containing 0.25 mM  sodium ascorbate, and sample extract The 

reaction was started by  adding H2O2 (final concentration 2.5 mM) and the decrease in reaction 

rate was determined spectrophotometrically  by absorbance change at 290 nm (ε=2.8 mM/cm) 

using a UV/Visible spectrophotometer (Ultrospec 4300 pro).  

b) Dehydroascorbate Reductase (DHAR)

 Dehydroascorbate reductase (EC 1.8.5.1) activity was measured at 265 nm (ε = 14 mM/

cm) using a UV/Visible spectrophotometer (Ultrospec 4300 pro). The assay buffer contained 

50 mM  2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) buffer (pH 7.0), 
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0.1 mM EDTA, and 2.5 mM GSH and leaf extract.  The reaction was initiated by adding 

freshly prepared DHA (final concentration 0.8 mM). 

c) Monodehydroascorbate Reductase (MDHAR)

 Monodehydroascorbate reductase (EC 1.6.5.4) activity was measured in 50 mM  HEPES 

buffer (pH 7.6) containing 2.5 mM  sodium ascorbate, 0.25 mM NADH and the extract. The 

assay was initiated by adding 0.4 Unit/ml of ascorbate oxidase (Sigma) and the reaction rate 

was monitored at 340 nm (ε = 6.22 mM/cm) using a UV/Visible spectrophotometer (Ultrospec 

4300 pro).

d) Glutathione Reductase (GR)

 Glutathione reductase (EC 1.8.1.7) activity  was measured at 340 nm (ε = 6.22 mM/cm) in 

50 mM HEPES buffer (pH 8.0) containing 0.5 mM  EDTA, 0.25 mM  NADPH and leaf extract. 

The reaction was started by adding GSSG to final concentration 1 mM. 

e) Catalase 

 Catalase (EC 1.11.1.6) activity was measured at 240 nm (ε = 43.1 M/cm) (Aebi, 1974) 

using a UV/Visible spectrophotometer (Ultrospec 4300 pro). Degradation of hydrogen 

peroxide by catalase can be measured by the decrease in absorbance at 240 nm. 
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2.2.2.7. Extraction and Estimation of Soluble Phenolics 


 For this study, the fruits of NC plants were not available and hence only the fruits of SC 

and LC plants were used to study  the effects of propagation methods on phenolic compounds. 

Soluble phenolics and other compounds were extracted from fruits and leaves in 80% acetone 

with 0.2% formic acid in the ratio of 1:10 (w/v) with 8 hours of shaking at 4 ºC which was 

found to be the best extraction solvent (gave highest  phenolic levels) among ethanol, 

methanol, acetonitrile at various aqueous mixtures with different shaking periods. 

Homogenous mixture of samples and solvent was then centrifuged at 20,000 g for 20 minutes. 

The residue was extracted twice under same conditions and the supernatants were mixed 

together and further diluted to make the working concentration of 25 mg/ml for fruits and 1 

mg/ml for leaves. 

a) Determination of the Total Soluble Phenolic Content (TPC)

  The total soluble phenolic content in both leaves and fruits was determined using Folin-

Ciocalteu reagent as described by Chandrasekara and Shahidi (2011a) with modifications. The 

Folin-Ciocalteu reagent (0.5 ml) was added to centrifuge tubes containing 0.5 ml of extracts 

and mixed well. One ml of saturated sodium carbonate solution was added to each tube to 

neutralize the reaction. The final volume was adjusted to 10 ml with water and vortexed for 1 

minute.  The tubes were kept in dark for 35 minutes at room temperature and then centrifuged 

at 4,000 g for 10 minutes. The absorbance was measured at 725 nm using a UV/Visible 

spectrophotometer (Ultrospec 4300 pro). The total soluble phenolic content of each sample 
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was determined using a gallic acid standard curve and expressed as milligrams of gallic acid 

equivalents (GAE) per g of berry or leaf fresh weight. 

b) Determination of the Total Anthocyanin Content (TAC)

 The total anthocyanin content was measured by pH differential method according to 

Foley and Debnath (2007). The TAC was measured based on reversible conversion of 

anthocyanins from their oxonium form to the hemiketal form. Absorption at 510 nm and 700 

nm was measured using UV/Visible spectrophotometer (Ultrospec 4300 pro) in buffers at pH 

1.0 and pH 4.5 and the difference between the two values was used to determine total 

anthocyanin content. Results are expressed as catechin equivalents (CE). 

c) Determination of the Total Flavonoid Content (TFC)

 Total flavonoid content was measured by an aluminum chloride colorimetric assay 

(Zhishen et al. 1999).  One ml of extract or standard solution of catechin (0.5 mg/ml) was 

mixed with 4 ml of water, followed by addition of 0.3 ml 5% NaNO2, 0.3 ml of 10% AlCl3 

(after 5 minutes) and 2 ml of 1 M NaOH (one minute later), the volume was adjusted (with 

water) to 10 ml. The absorbance was measured at 510 nm using a UV/Visible 

spectrophotometer (Ultrospec 4300 pro). The total flavonoid content was expressed as µmol 

of catechin equivalent (CE) per g of leaf or fruit fresh weight.
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d) Determination of the Total Tannin (Proanthocyanidin) Content (TTC)

 The total tannin (proanthocyanidin) content of the leaves and fruits samples was 

determined by the method developed by Chandrasekara and Shahidi (2011a). Five ml of 0.5% 

vanillin-HCl reagent were added to 1 ml of extract, mixed thoroughly and incubated at room 

temperature for 20 minutes. A separate blank for each sample was read with 4% HCl in 

methanol. The absorbance was read at 500 nm UV/Visible spectrophotometer (Ultrospec 4300 

pro), and the content of proanthocyanidins was expressed as µmol of CE per g of leaf or fruit 

fresh weight.   

e) Determination of the Total Radical Scavenging Activity 

 A DPPH assay was conducted according to the method of Brand-Williams et al. (1995) 

with modifications. The stock solution of 1 mM  DPPH (2,2-diphenyl-1-picrylhydrazyl) in 

methanol was diluted to 60 µM, 1.9 ml of the latter was mixed with 0.1 ml of fruit or leaf 

extract, shaken vigorously and left in dark for 20 minutes. The absorbance was read at 515 nm 

using a UV/Visible spectrophotometer (Ultrospec 4300 pro). The scavenging capacity was 

expressed as percentage of inhibition of DPPH consumption. The gallic acid standard curve 

was used to express the results as GAE equivalent. 
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2.2.2.8. Analysis of Phenolic Compounds by High - Performance Liquid 

Chromatography (HPLC)  

 For the analysis of phenolic compounds by high- performance liquid chromatography 

(HPLC), diluted supernatants of berries were evaporated at room temperature for 2 to 4 days 

in dark and lyophilized at -50 °C for 72 hours at -50 °C. The freeze-dried samples were 

extracted in aqueous methanol solution (10 g/l) and filtered through a 0.45 µm 

polytertafluoroethylene membrane syringe filter.  The reversed phase HPLC analysis was 

carried out using an Agilent 1100 LC/MSD trap system (Agilent Technologies, Palo Alto, CA, 

USA). A C18 Column (4.6 mm × 150 mm) with 5 µm particle size (Chromatographic 

Specialities, Brockville, ON, Canada). The eluents were 0.5 % aqueous formic acid (A) and 

acetonitrile-methanol (95:5) (B) with an initial gradient of 85% solvent A at 0 minute to 0% 

solvent A and 100% solvent B at 30 minutes. The flow rate and the injection volume were 1.0 

ml/min and 90 µl respectively. Compounds of interest were detected using a UV/Visible  

spectrum (spectral range from 250 to 550 nm) and retention times. Mass spectras were taken 

for confirmation of identity of compounds using LC/MSD (liquid chromatography / mass 

selective detector) ion trap  system in electron spray ionization (ESI) negative ion mode. 

Authentic standards were used for identification and making calibration curves for 

quantification. HPLC was run in MS/MS mode for identification of sugar units attached to 

phenolics. 
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2.2.2.9. Inhibition of Lipid Oxidation by Lingonberry Extracts in Pork Model 

System

 The thiobarbituric acid reactive substances (TBARS) were determined in cooked pork by 

the method described by Chandrasekara and Shahidi (2011b) with some modifications. The 

ground pork was bought from a local supermarket. The berries used in this study were from 

the three lingonberry cultivars Regal, Splendor and Erntedank obtained by stem cutting (SC) 

and leaf tissue culture (LC). Ground pork was mixed with 20% (w/w) deionized water in 

Mason jars. The extracts of berries (2 g in 72 ml of 80% aqueous acetone containing 0.2% 

formic acid) and extracts and butylated hydroxytoluene (BHT) were added to meat (100 g) 

separately  and thoroughly  homogenized. The control samples were prepared with no addition 

of the extract. All samples were cooked together in a water bath at 90 °C for 40 minutes with 

continuous stirring after which the cooked pork was cooled at room temperature. The samples 

from each jar, after they have been cooled at the room temperature, were divided into four 

separate 20 ml plastic tubes and stored in refrigerator at 4 °C for 14 d except for one set which 

was accounted for 0 d. Day  0 sample was analyzed the same day for TBARS. The other 

samples were drawn on days 3, 7 and 14 for analysis of TBARS.  Five ml of a 10% (w/v) 

trichloroacetic acid (TCA) solution was added to 2.5 g of cooked meat in 50 ml centrifuge 

tubes and vortexed with high speed for one minute. Five ml of aqueous thiobarbituric acid 

(TBA) solution (20 mM) were added to each tube followed by  vortexing and centrifugation at 

3500 g for 8 minutes. Supernatants were collected after filtration using Whatman No. 3 filter 

paper and then heated for 40 minutes using water bath followed by cooling at room 

temperature. The color of supernatants changed to pink after boiling and the absorbance was 
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measured at 532 nm using a UV/Visible spectrophotometer (Ultrospec 4300 pro). 1,1,3,3-

tetramethoxypropane (precursor of malondialdehyde, MDA) was used to prepare a standard 

curve. Results were expressed as mg of MDA equivalents per kg of sample.

2.2.2.10. Statistical Analysis

 All the experiments for biochemical analysis were repeated in triplicate with 5 plants per 

treatment. The data in the text, tables, and figures are expressed as means ±SD of three 

biological replicates (5 plants per each treatment). Data for all the characteristics were 

subjected to analysis of variance (ANOVA) using the SAS statistical software package 

(Release 8.2; SAS Institute, Inc., Cary, NC, USA). Significance of F-tests were evaluated at  P 

≤ 0.05. Differences among treatments were further analysed using Duncan’s multiple range 

test.

2.3. Results

2.3.1. Morphological Characteristics and Chlorophyll Content of 

Differentially Propagated Lingonberry Cultivars

 All the cultivars obtained by in vitro culture (NC and LC) were superior to ex vitro SC 

plants in terms of the number of shoots, branching, and rhizomes whereas LC plants were 

characterized by a higher number of leaves per branch but less secondary branching as 

compared to NC plants (Figs 2.1 & 2.2). Figure 2.2 is a graphical representation of 

morphological differences in the differentially  propagated lingonberry  cultivars. The data 
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show variability in relation to cultivar, as well as to the method of propagation. The analysis 

of variance (Table 2.1) indicates significant inter-cultivar differences and effects of 

propagation methods on morphology. The cultivar Splendor was found to be superior among 

the three cultivars in terms of plant height, number of leaves per branch, berry  mass and berry 

diameter. Regal had the highest of number of rhizomes, whereas Erntedank exhibited the 

highest branching. Notably, many vegetative characteristics (such as height, number of 

rhizomes, leaves per branch) increase in tissue-propagated plants (more in LC than in NC) as 

compared to SC plants. On the contrary, the average mass of berr and berry  diameter were 

lower in tissue culture plants compared to SC plants, and lowest in NC plants. The same 

tendency was observed in the concentrations of chlorophylls a and b, which are lower in 

tissue culture plants than SC plants but there were no inter-cultivar differences in chlorophyll 

concentrations (Fig. 2.3). 
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Figure 2.2. Morphological characteristics of lingonberry cultivars Regal, Splendor and 
Erntedank obtained by the three different propagation methods: stem cutting (wine bars), node 

cultures (green bars), leaf cultures (pink bars). SC - Stem cutting; NC - Nodal culture; LC - 
Leaf culture. Means ± SE, n = 5, * – values significantly different at P < 0.05 from the 

standard. Letters a, b and c indicate differences between the cultivars at P < 0.05 estimated by 
Duncan’s multiple range test. The values with same letters are not significantly different
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Table 2.1. Effects of genotype (cultivars) and the propagation methods on morphological 
characters in three lingonberry cultivars

Parameter Plant 
height 
(cm)

# of 

rhizome 

# of 

branches

Leaves per 

branch

Berry 

mass (g)

Berry diameter 

(cm) 

CultivarCultivarCultivarCultivarCultivarCultivarCultivar
Regal   7.12 cz 5.11 a 6.61 a 17.67 b 0.54 b 0.52 b

Splendor  18.86 a 4.11 b 4.72 b 23.39 a 0.59 a 0.60 a
Erntedank  17.89 b 4.44 b 4.16 b 18.28 b 0.46 c 0.45 c

Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)
SC 11.48 c 1.72 c 2.40 c 14.44 c 0.70 a 0.71 a
NC 14.78 b 4.28 b 5.00 b 18.00 b 0.35 c 0.35 c
LC 17.61 a 7.67 a 8.11 a 26.89 a 0.54 b 0.51 b

Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) 
Cv <0.0001 0.0140 <0.0001 <0.0001 <0.0001 <0.0001
PM <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Cv × PM 0.0562 0.2466 <0.0001 0.0029 0.0016 0.0075

z - Means within columns, and factors, followed by different lower-case letters indicate differences 
at P < 0.05 by Duncan’s multiple range test. Propagation method: SC-stem cutting; NC, Nodal 
culture; LC - leaf culture; Cv - Cultivars; PM - Propagation methods; Cv × PM - Interaction 
between cultivars and propagation methods.
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Figure 2.3. The content of chlorophyll a and chlorophyll b of lingonberry cultivars Regal, 
Splendor and Erntedank obtained by three different propagation methods: from stem cutting 

(wine bars), from node cultures (green bars), from leaf cultures (pink bars). SC - Stem cutting; 
NC - Nodal culture; LC - Leaf culture. Means ± SE, n = 5, * – values significantly different at 

P < 0.05 from the standard. Letters a, b and c indicate differences at P < 0.05 by Duncan’s 
multiple range test. Values with same letters are not significantly different. 
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Table 2.2. The content of chlorophyll a and b (mg/g FW) in three lingonberry cultivar as affected 
by propagation method and genotype (cultivars)

Parameter Chlorophyll a Chlorophyll b
Regal   0.23z a 0.11 a

Splendor  0.25 a 0.11 a
Erntedank  0.22 a 0.10 a 

Propagation method (PM)Propagation method (PM)Propagation method (PM)
SC 0.47 a 0.20 a
NC 0.30 b 0.15 b
LC 0.235 b 0.15 b

Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) 
Cv 0.3106 0.1061
PM <0.0023 0.0011

Cv × PM 0.9271 0.7132
z - Means within columns, and factors, followed by  different lower-case letters indicate 
differences at P < 0.05 by Duncan’s multiple range test. Propagation method: SC-stem 
cutting; NC, Nodal culture; LC - leaf culture; Cv - Cultivars; PM - Propagation methods; 
Cv × PM - Interaction between cultivars and propagation methods.

2.3.2. The Levels of Reduced and Oxidized Ascorbate and Glutathione

 The content of total ascorbate (AsA + DHA) and total glutathione (GSH + GSSG) 

differed as a result of different methods of propagation (Fig. 2.4, Table 2.3).  Although, the 

total ascorbate content was not significantly different among the three cultivars, there were 

some inter -propagation differences observed. Significantly high total ascorbate content was 

detected in Splendor and Erntedank propagated by Leaf tissue culture (LC). DHA levels 

increased significantly in all cultivars obtained from LC (but not from NC) as compared to SC 

(Fig. 2.4 & Table 2.3). The DHA levels were highest in Splendor compared to Regal and  

Erntedank. 
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Figure 2.4. Levels of ascorbate and glutathione and the relative content of the oxidized 
species (DHA, GSSG) in leaves of three lingonberry cultivars (Regal, Splendor, Erntedank) 
propagated by three different methods: stem cutting (wine bars), from node cultures (green 

bars), from leaf cultures (pink bars). SC - Stem cutting; NC - Nodal culture; LC - Leaf 
culture. Means ± SE, n = 5, * – values significantly different at P < 0.05 from the standard.

The total glutathione content was significantly higher in the in vitro derived plants (NC and 

LC), which corresponded also to its less oxidized level (less GSSH) (Fig. 2.4 & Table 2.3). 

The reduction potentials (Ehc) of glutathione (GSSG/2GSH half-cell) were calculated 

according to the formula of Schafer and Buettner (2001). 

Ehc = –240 – (59.1/2) log ([GSH]2/[GSSG]) mV

73



 Table 2.3.  Effects of genotype and propagation methods on total and reduced ascorbate and 
glutathione content in three lingonberry cultivars

Parameter ASA+DHA DHA/(ASA+DHA) GSH+GSSG GSSG/(GSH+GSSG)
Regal   0.56 a z 0.11 b 2.82 b 0.29 b

Splendor  0.52 b 0.14 a 2.35 b 0.36 a
Erntedank  0.56 a 0.10 b 3.04 a 0.35 a

Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)
SC 0.51 b 0.09 b 1.89 c 0.49 a
NC 0.50 b 0.09 b 3.48 a 0.23 c
LC 0.63 a 0.16 a 2.83 b 0.29 b

Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) 
Cv 0.3106 0.1061 0.0016 0.0075
PM <0.0001 <0.0001 <0.0001 <0.0001

Cv × PM 0.9271 0.7132 0.0562 0.2466

z - Means within columns, and factors, followed by different lower-case letters indicate differences 
at P < 0.05 by Duncan’s multiple range test. Propagation method: SC-stem cutting; NC, Nodal 
culture; LC - leaf culture; Cv - Cultivars; PM - Propagation methods; Cv × PM - Interaction 
between cultivars and propagation methods.

 The SC plants possessed the least negative reduction potential of glutathione (from -235 

mV in Erntedank to -242-245 mV in Regal and Splendor, respectively), while NC had the 

most negative values (from -262 mV in Splendor -270 in Regal and -272 mV Erntedank), and 

slightly less negative values were in LC (from -254 mV to -265 mV)

2.3.3. Activities of the Ascorbate-Glutathione Cycle Enzymes and Catalase 

in Differentially Propagated Lingonberry Cultivars

  Activities of the ascorbate-glutathione cycle enzymes and catalase in the leaves of 

studied cultivars were affected by the propagation method as well as the genotypes (inter 

cultivar differences) (Fig. 2.5, Table 2.4). Although, the APX activity in Erntedank remained 

similar for all three propagation methods, it was significantly higher in in vitro (NC & LC) 
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derived Regal and Splendor as compared to those derived from SC. Among the in vitro 

derived Regal and Splendor, APX levels were higher in LC derived plants then those derived 

from NC. In general, the increase in APX corresponds to a higher content of the oxidized 

ascorbate species (DHA) (Fig. 2.5 & Table 2.3).  Glutathione reductase (GR) activity in leaves 

was affected by the propagation methods in a similar way as APX. The NC plants did not 

show a significant increase in GR activity except for Splendor, while the GR activity in LC 

plants was the highest, 5-10 times higher than in control plants. The increase in GR 

corresponds to a decrease of the portion of the oxidized glutathione (GSSG) in relation to the 

total glutathione content (Fig. 2.5). Monodehydroascorbate reductase (MDHAR) activity 

showed a similar pattern in Splendor and Erntedank as GR but the difference between LC and 

SC was most striking in Regal and small in Erntedank. GR activity in Splendor was not 

affected by  propagation method. Dehydroascorbate reductase (DHAR) activity  exhibited a 

completely different pattern as compared to MDHAR, APX and GR. In Erntedank, we 

observed very low DHAR activity. The low DHAR together with high APX, in fact shows a 

consistency with the DHA content in investigated plants (Fig. 2.5). According to Duncan’s 

multiple range test, DHAR was significantly  low in NC plants and highest in SC plants (Table 

2.4). CAT activity exhibited a similar pattern as APX for all the cultivars. Both APX and CAT 

were highest  in Regal and lowest in Erntedank. All the studied enzymes except DHAR 

showed the highest levels in LC and the lowest in SC (Fig. 2.5).  
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Figure 2.5. Activities of enzymes of the ascorbate-glutathione cycle (ascorbate peroxidase – 
APX, glutathione reductase – GR, monodehydroascorbate reductase – MDHAR, 

dehydroascorbate reductase -DHAR and of catalase (CAT) in leaves of three lingonberry 
cultivars (Regal, Splendor, Erntedank) propagated by stem cutting (wine bars), from node 

cultures (green bars) and from leaf cultures (pink bars). Means ± SE, n = 5, * – values 
significantly different at P < 0.05 from the standard.
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Table 2.4. Effects of genotype and propagation method on antioxidant enzyme activities (in 
µmol min-1 g-1 FW) in three lingonberry cultivars (for catalase in mmol min-1 g-1 FW)

Parameter APX GR DHAR MDHR CAT 
Cultivar

Regal   1.87 a z 0.49 a 7.18 a 0.90 a 1780.38 a
Splendor  1.17 b 0.21 c 7.23 a 0.79 b 1348.33 b
Erntedank  0.55 c 0.26 b 5.90 b 0.93 a 980.53 c

Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)
SC 0.58 c 0.10 c 7.85 a 0.59 c 707.98 c
NC 1.08 b 0.17 b 6.00 c 0.76 b 1622.06 b
LC 1.91 a 0.69 a 6.46 b 1.27 a 1764.06 a

Analysis of variance ( P values) Analysis of variance ( P values) Analysis of variance ( P values) Analysis of variance ( P values) Analysis of variance ( P values) Analysis of variance ( P values) 
Cv <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
PM <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Cv × PM <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

z - Means within columns, and factors, followed by different lower-case letters indicate 
differences at P ≤ 0.05 by Duncan’s multiple range test. Propagation method: SC-stem 
cutting; NC, Nodal culture; LC- leaf culture; Cv- Cultivars; PM- Propagation methods; Cv 
× PM- Interaction between cultivars and propagation methods
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2.3.4. Phenolic Compounds and Radical Scavenging Capacity

 The content of total soluble phenolics and other antioxidant  compounds in lingonberry 

cultivars showed different (often opposite) patterns for fruits and leaves and was influenced 

by propagation methods. As evident from Figure 2.6, TPC was 5-10 times lower in fruits than 

in leaves (as calculated per g fresh weight). The leaves of NC and LC plants exhibited a 

significant decrease in phenolic content compared to SC plants. In fruits, the observed 

variations were smaller and the total phenolic content, in contrast  with leaves, was shown to 

be enhanced by in vitro propagation method in agreement with previous data of Foley and 

Debnath (2007). 

Figure 2.6. The total phenolic content in leaves and fruits of three lingonberry cultivars 
propagated by different methods: propagated by stem cutting (wine bars), from node cultures 

(green bars), from leaf cultures (pink bars). Means ± SE, n = 5, * – values significantly 
different at P < 0.05 from the standard.GAE – gallic acid equivalents. 
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 Table 2.5. Effect of genotype and propagation method on levels of metabolites in leaves 

of three lingonberry cultivars

Parameter Phenolics Flavonoids Anthocyanin Tannin DPPH
CultivarCultivarCultivarCultivarCultivarCultivar

Regal   44.476 az 11.05 a 8.05 a 23.913 a 33.144 c
Splendor  36.794 b 10.95 b 7.46 c 21.404 b 33.344 a
Erntedank  33.777 c 8.813 c 8.05 a 16.560 c 33.221 b

Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)
SC 46.934 a 10.791 c 9.043 a 22.749 a 33.560 a
NC 35.584 b 11.716 a 8.69 a 20.584 b 33.092 b
LC 32.528 c 10.216 b 8.65 a 18.545 c 33.058 c

Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) 
Cv <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
PM <0.0001 <0.0001 0.0098 <0.0001 <0.0001

Cv × PM <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
z - Means within columns, and factors, followed by  different lower-case letters indicate 
differences at P ≤ 0.05 by Duncan’s multiple range test. Propagation method: SC-stem 
cutting; NC, Nodal culture; LC- leaf culture; Cv- Cultivars; PM- Propagation methods; Cv 
× PM- Interaction between cultivars and propagation methods

Table 2.6. Effect of genotype and propagation method on levels of metabolites in fruits of three 
lingonberry cultivars

Parameter Phenolics Flavonoids Anthocyanin Tannin DPPH
CultivarCultivarCultivarCultivarCultivarCultivar

Regal   6.273 bz 8.870 b 4.645 b 10.244 c 13.930 a
Splendor  4.894 c 6.920 c 7.088 a 12.947 a 10.124 c
Erntedank  7.051 a 10.477 a 4.440 b 11.211 b 11.213 b

Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)
SC 5.127 b 6.575 b 5.656 a 10.628 b 10.793 b
LC 7.018 a 10.937 a 5.126 b 12.306 a 12.717 a

Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) 
Cv <0.0001 <0.0001 0.0011 <0.0001 <0.0001
PM <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Cv × PM 0.0014 <0.0001 <0.0001 <0.0001 <0.0001
z - Means within columns, and factors, followed by different lower-case letters indicate 
differences at P ≤ 0.05 by Duncan’s multiple range test. Propagation method: SC-stem 
cutting; NC, Nodal culture; LC- leaf culture; Cv- Cultivars; PM- Propagation methods; Cv × 
PM- Interaction between cultivars and propagation methods
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The total anthocyanin content (expressed as catechin equivalents), was not influenced by the 

propagation method except the significant decrease in leaves of Erntedank plants obtained 

from NC and LC plants.  The anthocyanin content was lower in fruits than in leaves (Fig. 2.7, 

Tables 2.5 & 2.6).
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Figure 2.7. The total anthocyanin content in leaves and fruits of three lingonberry cultivars 

propagated by different methods: propagated by stem cutting (wine bars), from node cultures 
(green bars), from leaf cultures (pink bars). Means ± SE, n = 5, * – values significantly 

different at P < 0.05 from the control.CE – catechin equivalents.
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 The total flavonoid content (expressed as catechin equivalents) was significantly higher 

in the fruits and leaves of in vitro-derived plants then SC plants except for Regal LC plants 

where the level was significantly lower than in SC plants (Fig. 2.8, Tables 2.5 & 2.6). 
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Figure 2.8. The total flavonoid content in leaves and fruits of three lingonberry cultivars 
propagated by different methods: propagated by stem cutting (wine bars), from node cultures 

(green bars), from leaf cultures (pink bars). Means ± SE, n = 5, * – values significantly 
different at P < 0.05 from the standard. CE – catechin equivalents
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 The total tannin content in leaves was not significantly different among the fruits of the 

three cultivar but were highest in leaves of Regal followed by Spelndor and was least in 

Erntedank. There was a tendency of a decrease of tannin content in the leaves of in vitro-

derived plants except  for Erntedank where the differences were insignificant. The total tannin 

content was significantly higher in fruits of in vitro derived plants compared to SC plants (Fig. 

2.9, Tables 2.5 & 2.6).   

*

aaa
!

!
!

 REGAL  SPLENDOR ERNTEDANK REGAL SPLENDOR ERNTEDANK

**  

 

B

0

10

20

30 a

b

c
!

!

!
 SC
 NC
 LC

*
**

*

 

 

TA
N

N
IN

S
C

E 
[m

g 
g-1

 (f
.m

.)]

LEAVES FRUITS

!
Figure 2.9. The total tannin content in leaves and fruits of three lingonberry cultivars 

propagated by different methods: propagated by stem cutting (wine bars), from node cultures 
(green bars), from leaf cultures (pink bars). Means ± SE, n = 5, * – values significantly 

different at P < 0.05 from the standard. CE – catechin equivalents.

82



 The total DPPH radical scavenging capacity measured as gallic acid equivalents was 

twice as high in leaves than in fruits. In leaves it was not affected by the method of 

propagation while in fruits of plants obtained from tissue culture the radical scavenging 

capacity was ~10% higher as compared to fruits of control SC plants (Fig. 2.10, Tables 2.5 & 

2.6). 
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Figure 2.10. The total radical scavenging capacity in leaves and fruits of three lingonberry 
cultivars propagated by different methods: propagated by stem cutting (wine bars), from node 

cultures (green bars), from leaf cultures (pink bars). Means ± SE, n = 5, * – values 
significantly different at P < 0.05 from the standard. GAE – gallic acid equivalents. 
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2.3.5. Phenolic Compounds Identified in Leaves and Berry Extracts of 

Differentially Propagated Plants

 The content of phenolic compounds identified in leaves and in berry extracts of 

differentially propagated lingonberry cultivars is shown in Table 2.7. A total of five phenolic 

compounds were identified in the extracts of both leaves and berries.  Catechin, epicatechin, 

gallic acid, p-coumaric acid and quercetin were identified in the extracts according to their 

MS/MS spectra following the breakdown of sugar-phenolic esters. The weights of sugar 

moieties attached to quercetin were tentatively identified and confirmed with the literature 

(Anttonen et al. 2006; Ek et al., 2006). At least four quercetin derivatives were tentatively 

identified in the extracts. Quercetin-3-O-galactoside, quercetin-3-O-glucoside and 

quercetin-3-O-arabinoside were unambiguously  detected in fruit extracts while in leaves 

quercetin-3-O-rutinoside was also identified in addition to the other three derivatives. 

Quantification of the total quercetin and other identified compounds was done using standard 

calibration curve and peak areas. In fruits, the levels of identified phenolics showed 

significant increase in the in vitro-derived plants except  for p-coumaric acid which was almost 

same in fruits of the in vitro- and ex vitro-derived plants. The trend was opposite in leaves and 

correlated with total phenolic assay. Significantly  higher levels of identified compounds were 

observed in leaves of the ex vitro-derived plants except for p-coumaric acid.
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Table 2.7. Effect of genotype and propagation method on phenolic compounds in lingonberry 
cultivars

Parameter Gallic Acid Gallic Acid CatechinCatechin EpicatechinEpicatechin p-Coumaric acidp-Coumaric acid QuercetinQuercetin

leaf berry leaf berry leaf berry leaf berry leaf berry

CultivarCultivarCultivarCultivarCultivarCultivarCultivarCultivarCultivarCultivarCultivar

Regal   0.201 cZ 0.177 a 2.328 c 0.968 a 0.632 b 0.111 b 0.089 b 0.051 b 3.689 a 0.124 a

Splendor  0.331 b 0.163 a 2.153 b 0.857 b 0.576 c 0.134 a 0.124 a 0.047 b 2.613 c 0.107 b

Erntedank  0.225 a 0.168 a 3.316 a 0.961 a 0.729 a 0.082 c 0.083 b 0.102 a 3.508 b 0.120 a

Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)Propagation method (PM)

SC 0.282  a 0.154 b 3.149 a 0.782 b 0.706 a 0.072 b 0.099 a 0.063 b 3.505 a 0.095 b

LC 0.223 b 0.185 a 2.716 b 1.075 a 0.585 b 0.146 a 0.098 a 0.070 a 3.035 b 0.139 a

Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) Analysis of variance (P values) 

Cv <0.0001 0.3106 <0.0001 0.0011 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0004

PM <0.0002 0.0005 <0.0001 <0.0001 <0.0001 <0.0001 0.8347 0.0031 <0.0001 <0.0001

Cv × PM 0.0077 0.9271 0.0108 <0.0001 <0.0001 <0.0001 0.4257 0.0104 0.0716 0.1140

Z – Means within columns, and factors, followed by different lower-case letters indicate 
differences at P ≤ 0.05 by Duncan’s multiple range test Data expressed in µg g-1 (FW) of leaf 
and berry  sample.  PM, Propagation method: SC, stem cutting (standard plants); LC, leaf 
culture; Cv – variance between cultivars (for all propagation methods); Cv × PM  – variance 
between propagation methods (for all cultivars). 
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2.3.6. Inhibition by Lingonberry Extracts of Oxidation in Pork Model 

System

 The extracts of berries did not decrease in the content of thiobarbituric acid reactive 

substances (TBARS) from the storage day 0 to the 14th day, but were clearly  effective in 

inhibiting the level of oxidation for the entire storage period. This is shown in Table 2.8 where 

it is seen that the controls have high values of TBARS as malonic dialdehyde (MDA) 

equivalents in comparison to those of the samples with berry extracts. There were only small 

differences between the three cultivars, however more notable differences were observed 

between plants obtained by different methods of propagation. The berries of tissue culture-

obtained plants were more efficient in terms of inhibiting the oxidation process: the TBARS 

values for meat with these extracts were much lower as compared to the extracts of stem 

cutting-obtained berries. After the 14th day of storage, berry  extracts from leaf culture and 

stem cutting inhibited the formation of TBARS by 75-76% and 65-70% respectively (Fig. 

2.11).  
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Table 2.8. Thiobarbituric acid reactive substances (TBARS) of lingonberry extracts expressed 
as µmol malondialdehyde equivalents (MDA) per kg of meat  

Processing conditions

TBARS	
  in MDA equivalents (µmol kg-1 meat) TBARS	
  in MDA equivalents (µmol kg-1 meat) TBARS	
  in MDA equivalents (µmol kg-1 meat) TBARS	
  in MDA equivalents (µmol kg-1 meat) 

Processing conditions Storage timeStorage timeStorage timeStorage timeProcessing conditions

0 d 3 d 7 d 14 d
BHT 0.44 ± 0.10 1.29 ± 0.16 1.53 ± 0.28  1.77 ± 0.23

Control	
  (no extract) 1.77 ± 0.23 16.17 ± 0.16 20.49 ± 0.55 19.31 ± 0.48

Regal, SC 4.73 ± 0.13 5.03 ± 0.24 5.35 ± 0.59 5.68 ± 0.60

Regal, LC 2.08 ± 0.03 2.88 ± 0.09 4.20 ± 0.11 4.12 ± 0.38

Splendor, SC 5.25 ± 0.29 6.32 ± 0.32 6.74 ± 1.03 6.72 ± 0.27

Splendor, LC 2.21 ± 0.03 3.75 ± 0.21 4.07 ± 0.09 4.58 ± .010

Erntedank, SC 4.98 ± 0.19 5.58 ± 0.45 6.02 ± 0.40 5.99 ± 0.44

Erntedank, LC 2.11 ± 0.10 3.75 ± 0.04 4.81 ± 0.29 4.46 ±0.21

Abbreviations: SC, Plants obtained from stem cutting; LC, plants obtained from leaf tissue 
culture; BHT, butylated hydroxytoluene (standard).

87



BHT REGAL SPLENDOR ERNTEDANK
60

70

80

90

100

***

 

 

IN
H

IB
IT

IO
N

 O
F 

TB
A 

O
XI

D
AT

IO
N

 [%
]

 Stem cutting
 Leaf culture

!
Figure 2.11. Inhibition of lipid oxidation by lingonberry extract and by butylated 

hydroxytholuene (BHT) after 14 d of storage in pork model system. Propagation by stem 
cutting (black bars) and from leaf cultures (brown bars). Means ± SE, n = 5, * – values 

significantly different at P < 0.05 from the standard. 
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2.4. Discussion

 This study explores the patterns of antioxidant metabolism among 1) the contrasting 

lingonberry cultivars and 2) the methods of their propagation. To reveal definitive correlations 

between morphological properties and antioxidant capacity of lingonberry plants, three 

cultivars were chosen that strongly differed in their basic features including height, number of 

rhizomes, branching, number of leaves per branch, berry  mass and berry diameter.  All the 

three cultivars adapted are to the cold and harsh climate of Newfoundland and exhibit  a high 

degree of plasticity towards environmental conditions. Splendor is a moderately  yielding 

cultivar and was found to be superior in height, berry mass and berry diameter and produced 

the highest number of leaves per branch compared to the other studied cultivars. In previous 

studies done on Vaccinium species, it was also reported that Splendor produces larger berries 

compared to other lingonberry cultivars (Morrison et al., 2000; Debnath, 2006). Regal, a low-

yielding cultivar, produced the highest number of rhizomes but was the shortest plant, and 

Erntedank, a high-yielding cultivar, produced the highest number of secondary  branches but 

less rhizomes, less leaves per branch and the lowest berry mass and diameter. There is a 

strong difference in morphological properties of the cultivar Enterdank from other two studied 

cultivars. First, the difference in the height of Erntedank plants obtained from stem cutting 

and tissue culture is the highest among all cultivars. The percentage of change in the number 

of branches per rhizome (data not shown) is significantly higher in Erntedank. The 

propagation method had a profound effect on the morphological characteristics of lingonberry 

cultivars. Lingonberry  cultivars propagated in vitro (LC and NC) were superior over the ex 

vitro (SC) propagated cultivars in all the studied morphological characters except for berry 
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size and mass. LC plants exhibited the highest plant height, number of rhizomes, and number 

of leaves per branch. NC plants exhibited highest number of secondary branches, lowest berry 

yield and berry  size whereas SC plants showed highest berry  yield, berry mass and berry 

diameter. Plants require considerable amount of nutrients and energy to produce fruits. The 

obtained results suggest that SC plants showed energy conservation by producing fewer 

rhizomes, leaves and branches. Similar results were observed in the study done by Debnath 

(2006). In case of in vitro propagation, substantial amounts of energy  was directed into the 

production on new axillary  shoots and rhizomes. With the commitment to vegetative 

production, the in vitro derived plants restrict berry yield, mass and diameter (Debnath 2006). 

The in vitro derived plants spread rhizomatously and produce larger number of rhizomes as 

compared to SC plants. Similar results were reported in previous studies done by Holloway 

(1985) and Debnath (2006). The increased rhizome production in SC and LC plants could be 

the result of hormones initially  supplied in the culture medium. In the present study, zeatin 

hormone was used which is a cytokinin and mainly  responsible for root initiation and stem 

development. Environmental variations initiates a plastic response that could lead to increased 

branching, increased leaf production or rhizome formation (Donohue et al., 2001). 

 The levels of chlorophyll a and b were significantly affected by the propagation method 

but these levels were not affected by  the cultivars. The content of chlorophyll a and b contents 

were higher in SC plants as compared to in vitro plants, indicating that SC plants absorb light 

in violet-blue and orange-red wavelengths better than the in vitro plants. It has been 

previously  reported that plants grown in shade had higher chlorophyll content then those 

grown in the sun (Lance & Guy, 1992; Reyes et al., 1996). A reduction in chlorophyll level 
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was observed in Schefflera arboricola when provided with high light intensity  (Kubatsch et 

al., 2007). In the present study, plants in the greenhouse were maintained in trays containing 

15 4 inches pots side by side. Plants were so crowded that they provided shade to one another 

and from other nearby plants throughout the day. In the present study, unlike LC and NC, SC 

plants were placed in the greenhouse since the beginning and hence they were in the 

greenhouse for much longer period as compared to the NC and LC plants which could have 

lead to increased chlorophyll content in the SC plants as compared to LC and NC.  

 There are several stress factors involved with tissue culture plants such as mechanical 

injuries, wounding, osmotic shock due to sucrose content  in the medium, nitrogen toxicity, 

hormonal imbalances, gas toxicity, and more. (Desjardins et al., 2007). In addition to the 

stresses caused in the in vitro environment, the tissue stress could be caused when in vitro 

plants are transferred to the greenhouse. There are some major differences between the 

environments of the plants growing in vitro and in the greenhouse environment, such as 

difference in lightening quality and quantity, nutrients, relative humidity, gaseous 

composition, relative humidity and growth substrate. Therefore, when plants are transferred 

from tissue culture environment to the greenhouse environment, it  causes plant  tissues to 

stress (Seelye et al., 2003).  In response to abiotic or biotic stress, plants generate ROS. 

Mitochondria are a major source of ROS where molecular oxygen may undergo a univalent 

reduction in complexes I and III of the respiratory chain and lead to formation of superoxide 

which subsequently dismutates to hydrogen peroxide (Braidot et al., 1999). 
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 The direct involvement of radical species in morphogenetic process has been shown (Jana 

& Shekhawat, 2012), e.g. in relation to loosening of cell walls (Cárdenas, 2009; Mülle et al.,

2009). Morphogenesis is a dynamic biological process that helps an organism develop its 

shape. Reactive oxygen species participate in cell expansion during morphogenesis in 

particular by  affecting the activity  of calcium channels required for polar growth (Carol & 

Dolan 2006). Earnshaw & Johnson (1985) reported the correlation between glutathione levels 

with morphogenetic competence in carrot suspension cultures and concluded that 

development of plant tissues occurs in a more oxidising environment. As an example, pro- 

and antioxidant enzymes can control development by establishing necessary concentrations of 

superoxide and H2O2 for regulation of plant cell expansion through the activation of Ca2+ 

channels (Foreman et al., 2003). A concrete mechanism of directing morphogenesis may 

involve the control of polarized cell growth in plants by  Rho-like small GTPases (ROPs) 

through plant-specific pathways involving the regulated release and scavenging of reactive 

oxygen species (Uhrig & Hülskamp 2006). The enzymes modulating concentration of reactive 

oxygen species such as the alternative oxidase of mitochondria are directly involved in 

determination of the rate of growth, branching and other morphogenetic events (McNulty et 

al., 1988; Hilal et al., 1997; Fiorani et al., 2005; Frederico et al., 2009). However, the most 

important in regulating morphogenesis are the enzymes of the ascorbate glutathione cycle 

(plus catalase) (Gupta & Datta, 2003; Vatankhah et al., 2010) that directly  determine the 

redox states of ascorbate and glutathione and the concentrations of AFR and H2O2.  

 Despite certain differences between the cultivars, general tendencies  reflecting changes 

in the antioxidant metabolism were revealed. Generally, the leaves of plants obtained from the 
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in vitro condition showed significantly higher antioxidant enzyme activities (except for 

DHAR). This is in line with the observation that the total radical scavenging capacity  was 

enhanced in both berries and leaves of the in vitro-propagated plants. The total soluble 

phenolics, tannins and flavonoids were found to be enhanced in fruits of plants obtained by 

the in vitro-propagation method whereas in leaves these metabolites were higher in SC plants 

except for flavonoids which was in higher concentrations in leaves of the in vitro-derived 

plants. The total anthocyanin content was not observed to be significantly different in fruits of 

differentially propagated plants. 

 Lower levels of total phenolics, anthocyanins and tannins  were observed in leaves and 

higher levels in fruits. Reverse changes in antioxidant metabolites in fruits as compared to 

vegetative parts in relation to the method of propagation also correspond to lower number of 

berries, their lower weight, and size (Fig. 2.2). In general, this could be inferred to mean that 

tissue culture propagation enhances growth and metabolism in vegetative parts of plants, 

while the increased antioxidant properties of smaller berries can be explained by a higher 

proportion of berry coat which is enriched in antioxidant compounds.                       

 The total ascorbate pool remained at similar levels in the three cultivars but was affected 

by the propagation method. The total ascorbate pool increased in the LC plants as compared 

to NC and SC. The total glutathione was significantly higher in NC and LC plants compared 

to SC plants. It has been reported that high light and low temperature caused increase in 

ascorbate and glutathione pool in Dunaliella salina (Haghjou et al., 2009). 
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 The cellular redox state is considered as an important determinant for plant growth and 

development. Schafer and Buettner (2001) suggested that the resulting action of several redox 

couples which are able to interconvert between oxidized and reduced forms can trigger major 

metabolic events and determine morphogenetic processes in plants. The displacement of 

equilibrium between the reduced and oxidized forms of such compounds as ascorbate and 

glutathione can essentially affect  tissue patterning and morphogenesis (Mitrovic et al., 2012; 

Talukdar, 2012). The synergistically interacting redox couples of glutathione (GSH/GSSG) 

and of ascorbate (AsA/DHA + AFR) are defined as best  indicators of the overall cellular 

environment (Schafer & Buettner, 2001). The involvement of GSH in cell division processes 

is proven by  its stimulation of Arabidopsis root growth (Sanchez-Fernandez et al., 1997). 

While GSH favours cell division and proliferation through a direct involvement with the cell 

cycle machinery, GSSG levels are related to differentiation processes (Schafer & Buettner,

2001; Stasolla et al., 2004). It  can be seen from the obtained data that more reduced 

glutathione pool in the in vitro-propagated plants results in their increased height and 

increased number of rhizomes and leaves per branch but decreased number of branches per 

rhizome. 

  Ascorbate and glutathione reduction pairs may have different roles in regulation 

of metabolism as they have different  redox potentials. This was shown, for example, in that 

they  both are needed to keep iron in the reduced form in plant hemeproteins (Igamberdiev et 

al., 2006, 2011). While glutathione has a direct influence on morphogenetic phenomena, 

ascorbate also has effects on elongation via influence on cell walls. It is shown that more 

reduced ascorbate environment (high AsA/DHA ratio observed in stem cutting plants) ensures 
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the reactivation of meristematic cells (Stasolla & Yeung, 2006). Glutathione has high 

symplastic and low apoplastic pool while ascorbate pools are high both in symplast and in 

apoplast. Apoplastic ascorbate (being reduced from the cytosolic side) participates in 

reactions of phenolic compounds, e.g. in scavenging phenoxy radicals that participate in 

lignin formation (Horemans et al., 2000).  The higher level of total ascorbate and its lower 

reduction level correlate with increased height, higher number of branches and rhizomes per 

plant and higher leaf number per branch (Fig. 2.2). Also, more reduced ascorbate pool in stem 

cutting-derived plants corresponds to higher phenol, anthocyanin, and tannin contents which 

may be related to the reactions in apoplast in which ascorbate participates (Horemans et al., 

2000). 

 Glutathione can be considered as a major factor in keeping the redox state steady and 

determining morphogenetic processes. The actual glutathione redox potential is related to 

[GSH]2/GSSG. Thus, unlike many  other redox couples (e.g. NADP+/NADPH), the 

glutathione redox potential depends on and can be influenced by  absolute concentration as 

well as by changes in GSSG relative to GSH (Mullinieaux & Rausch 2005; Meyer, 2008). 

Even if the GSH/GSSG ratio remains unchanged, decrease in glutathione concentration alone 

will lead to an increase in redox potential, that is, the potential will become more positive and 

thus less reducing. More negative glutathione potentials in leaves of tissue culture plants 

correspond to their increased height, highly increased number of branches and rhizomes per 

plant, and smaller mass and diameter of berry. Less evident  is the correlation with number of 

leaves per branch (not statistically different in Splendor) and with the number of secondary 

branches, which in all cultivars is higher in NC and lower in LC as compared to SC plants. It 
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may be related to more negative glutathione potentials in NC plants as compared to LC plants. 

Generally, more negative glutathione potentials stimulate cell proliferation (which 

corresponds in this case to increased height, number of primary branches and rhizomes, and, 

because of increased growth of vegetative parts, to smaller berries). Less negative potentials 

lead to differentiation processes (Schafer & Buettner, 2001), which corresponds to deposition 

of more biomass in berries in stem cutting-derived plants, their lower height and a higher 

number of secondary branches as compared to leaf culture-derived plants (Fig. 2.2). 

 The importance of glutathione pool size and its redox potential for determination of cell 

division, growth and even apoptosis has been mentioned in many studies (reviewed in Noctor 

et al., 2012). The quiescent parts of plants, such as root  quiescent centre and cells in organs 

such as seeds, maintain a highly oxidized intracellular state, in particular reflected in low level 

of reduction of the glutathione pool (Kranner et al., 2006). Auxin accumulation in the root 

stem cells is dependent on the oxidized status of the cells (Jiang & Feldman, 2010). The 

reduction of glutathione content results in a non-functional root meristem while the shoot 

meristem is largely unaffected (Vernoux et al. 2000). A subsequent increase in the total 

cellular GSH pool is essential for the cells to progress to cell division (Diaz-Vivancos et al., 

2010). Glutathione synthesis is also required for pollen germination and pollen tube growth 

(Zechmann et al.,2011). Certainly, the reduction potential of glutathione is determined both by 

its reduction level and concentration (Schafer & Buettner, 2001) can give only an indirect 

indication of its influence because its direct effect should be observed in relation to its 

potential in meristematic cells.  
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2.5. Conclusion

 In conclusion, the in vitro propagation method is a great tool for obtaining superior 

vegetative growth and enhanced levels of antioxidant compounds in lingonberry plants. 

Although, in vitro derived lingonberry plants produced less berries with reduced berry  mass 

and diameter, the levels of phenolic compounds and total antioxidants were enhanced. From 

this study, it can be suggested that the active morphogenetic process is characterized by 

intensive formation and scavenging of reactive oxygen species which is reflected in the 

activities of antioxidant enzymes and metabolites as well as in the total radical scavenging 

capacity. Possible correlations between the growth and morphological characteristics of the 

studied cultivars may involve direct regulation of cell division and differentiation by the redox 

state of the ascorbate and glutathione. The data presented in this study show an important 

connection between the pool size and reduction levels of ascorbate and glutathione, activities 

of enzymes of the ascorbate-glutathione cycle, and the parameters of growth and 

differentiation of lingonberry plants.  
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Chapter 3

Antioxidant Properties of Lingonberry (Vaccinium vitis-

idaea L.) Plants as Affected by Different Geographical 

Locations

This chapter aims to determine the effects of different geographical locations on the antioxidant 
compounds in lingonberry cultivars and wild clones from four Canadian provinces. Differences in the 

genotypes and environmental factors such as latitude, altitude, precipitation and temperature at different 
geographical regions affecting antioxidant metabolism are discussed. 

3.1. Introduction 

 Lingonberry plants can survive freezing temperatures and the cultivated subspecies 

(ssp. vitis-idaea) has been found to survive temperature as low as -17 ºC. In this instance, if 

extremely low temperatures or frost  coverage occurs, up  to half of the berry yield may be 

lost (Penhallegon, 2006).

 The development of the two lingonberry  subspecies, ssp. vitis-idaea (Eurasian) and 

ssp. minus (North American) is variable. The levels of antioxidants and their corresponding 

activity is expected to be different at different geographical locations with different 

climatic conditions. The changes in the levels of antioxidants in the plants are caused by 
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stressors, such as drought, temperature, ultraviolet radiation, pollutants, pathogens, and 

seasonal changes (Paliyath et al., 1997; Sývacý and Sökmen, 2004). 

  The climate of Western Europe is generally  milder with cool summers and cold 

winters and is depicted as being a more favourable for plant growth compared to both 

North America or Asia (Seager, 2006). Mild climate is the result of northward oriented 

winds, directing subtropical air with slight warming from the Gulf stream, across Western 

Europe. Eastern North America encounters much cooler winters due to the deflection of 

westward winds by the Rocky Mountains which are replaced by prevailing Arctic winds. 

This gives Western European climate an additional 15-20 degree in temperature, in 

comparison to North American locations at similar latitudes (Seager, 2006).

 Lingonberry plants that occur in North America are subject to wide variations in the 

climate.  Lingonberry of Eastern North America, in this case encompassing plants from the 

regions of Québec, New Brunswick, Nova Scotia, and the island of Newfoundland, are 

influenced by climates from the Arctic, subarctic, humid continental, and Atlantic Canada 

Maritime regions. The Arctic region of Canada is located in the most  northerly  section of 

the country  and classified as tundra with very cold winters and low precipitation. The 

subarctic climate occurs below the Arctic, between the 50th and 58th parallels, with low 

precipitation, cold long winters and fairly short cool summers. Both the Arctic and 

subarctic regions are found in the upper portion of Québec. The humid continental climate, 

present in both the largest portion of Québec and Newfoundland, is found below the 

subarctic and has hot and humid summers with fairly cold winters. Newfoundland differs 

slightly, as it is a subtype of the humid continental climate with cooler summers. The 
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regional climate of the Canadian Maritimes, encompassing New Brunswick, Nova Scotia 

and part of Québec is dependent on the elevation, proximity to the ocean, and direction of 

wind. The waters of the Atlantic carry warm moist air, which is indicate long cool winters 

and short warm summers, both with increased levels of precipitation (Saucier et al., 2003).

 According to McManus and Wood (1991) Newfoundland is divided into four climatic 

regions, apart from its governing humid continental climate. These regions consist of the 1) 

West Coast, 2)Western Mountains and Central Uplands 3) Northeast Coast and Central 

Lowlands, and 4) the South Coast and Avalon. The West Coast is influenced by winds from 

the Gulf of St. Lawrence, resulting in reduced temperatures and increased precipitation. 

The Western Mountains and Central Uplands are influenced by the increase in elevation 

resulting in very harsh conditions, including increased precipitation, reduced temperatures, 

increased duration of cloud coverage, and heavy snow fall due to increased precipitation. 

The Northeast Coast and Central Lowlands have decreased levels of precipitation resulting 

in warm summers and cold winters due to the persisting ice patches. The South Coast and 

Avalon have highly variable winters and cool summers due to low cloud coverage and fog. 

Late fall and early winter are commonly  subjected to increased precipitation leading to 

heavy rainfall. 

 This study focuses on how geography and climatic conditions influence the levels of 

antioxidants in lingonberries. 
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3.2. Materials and Methods 

3.2.1. Plant Materials

 The plant materials used in this study  were the lingonberry  cultivars Regal, Splendor and 

Erntedank of subspecies vitis-idaea, as well as the wild lingonberry clones of subspecies 

minus collected from 4 Canadian provinces: Quebec, Nova Scotia, and New Brunswick and 

from 10 locations in Newfoundland: St. Anthony, Cow Head, Brookfield, Hant's Harbour, Bell 

Island West, Pleasantville, Quidi Vidi, Cape Spear, Soldiers Pond, and Witless Bay. These 

plant were collected and propagated by Debnath (2005). Figure 3.1 represents the 

geographical distribution of lingonberry subspecies minus in the map of Eastern Canada and 

Figure 3.2 represents regions of Newfoundland from where the plants were collected. Table 

3.1 records the locations with their longitudes, latitudes and altitudes. The wild lingonberry 

plants were collected individually  from different locations in the fall season of 2001. The 

collection of plants was based on their superior berry production and apparently free from 

disease and insect pests. After the collection of wild plants from different locations, they were 

propagated by  a vegetative stem cutting method and their clones were maintained in a 

greenhouse of at  Atlantic Cool Climate Crop Research Centre (ACCCRC) in St. John’s, 

Newfoundland from the date of collection.  
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Figure 3.1. Map of eastern Canada showing the distribution of lingonberry subspecies minus 
(Sourced from Google Maps). 
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Figure 3.2. Map of Newfoundland showing the distribution of lingonberry subspecies minus 
in various regions: Western region (1.St. Anthony; 2. Cow Head); Central region (3. 

Brookfield); 4. Eastern and Avalon region (A. Hant’s Harbour; B. Bell Island; C. Pleasantville; 
D. Quidi Vidi; E. Cape Spear; F. Soldiers Pond; G. Witless Bay)(Sourced from Google Maps).
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Table 3.1. Geographical locations of collected lingonberry plants with their latitudes and 
longitudes and altitudes 

Geographical 
Locations Latitude (°) Longitude (°) Altitude (m)

Sorbet, Quebec 46.0 -68.4 15

Moncton, New Brunswick 46.1 -64.8 12.2

North Sydney, Nova 
Scotia 46.3 -60.3 11.7

St. Anthony, NL 51.4 -56.1 32.9

Cow Head, NL 49.9 -57.8 15. 2  

Brookfield/N.W.V., NL 48.6 -54.0 106.7

Hant's Harbour, NL 48.0 53.16 10

Bell Island West, NL 47.36 52.58 140

Pleasantville, NL 47.35 52.41 114

Quidi Vidi, NL 47.34 52.40 114

Cape Spear, NL 47.31 52.37 114

Soldiers Pond, NL 47.20 53.04 114

Witless Bay, NL 47.20 53.04 114
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3.2.2. Preparation of the Clones from Wild by Vegetative Stem Cutting

 Terminal softwood stem cuttings, 4 to 5 cm long, were taken from the wild lingonberry 

plants and were rooted in 45-cell plug trays (cell diameter 5.9 cm, cell depth 15.1 cm; Beaver 

Plastics, Edmonton, AB, Canada) containing peat: perlite [2:1 (v/v)] in a humidity chamber 

with a vaporizer (Conviron E15; Controlled Environments Ltd., Winnipeg, MB, Canada) at 

22° ± 2°C and 95% relative humidity (RH), with a 16 hour photoperiod (PPFD 55 µmoles m–2 

s–1 at  culture level). No rooting compound was applied (Debnath 2006, Foley and Debnath 

2007). After 6-8 weeks, rooted plantlets were transferred to plastic pots (10.5 × 10.5 ×12.5 

cm) containing the same medium used for rooting and were maintained in humidity chamber 

and acclimatized by gradually lowering the humidity by 3 to 4% per week over 3 weeks 

period. When the plants were developed well and hardened, they were grown in the 

greenhouse under natural light condition at about 20°C, 85% RH and 16 hour photoperiod at 

maximum PPF of 90 umol.m-2 S-1 (Debnath, 2006; Foley & Debnath 2007). Fertilization 

(20-8-20 N-P-K, Plant Products Co. Ltd., Brampton, ON) and irrigation was supplied to the 

plants periodically in approximately 2 weeks (Debnath 2006). All the plants were treated in 

similar manner and were maintained in the greenhouse. 
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3.2.3. Extraction of Soluble Phenolics 

 Young leaves from lingonberry  clones were harvested and frozen in liquid nitrogen 

immediately. Several extraction solvents were tested, among which 80% acetone with 0.2% 

formic acid gave the highest extraction of antioxidants and phenolic content. Leaves were 

ground  to fine powder using liquid nitrogen and mortar/pestle.. Powdered leaves were mixed 

with solvent and shaken for 4 hours at  4ºC and then centrifuged at  19000 ×g at 4ºC. The ratio 

of solvent and leaves was 1:80 w/vol. The supernatant  was transferred and further diluted to 

form a final concentration of 1 mg/ml.

3.2.4. Determination of the Total Soluble Phenolic Content 

 This colorimetric method is adapted from Chandrasekara and Shahidi (2011) with some 

modifications. It is based on the principle of reduction of a reagent which is a mixture of 

tungsten and molybdenum oxides (Singleton, 1974). 0.5 ml of each of the leaf extracts were 

transferred in separate centrifuge tubes. To each tube, 0.5 ml of Folin Ciocalteu reagent was 

added. The reaction was neutralized by adding 1 ml of saturated solution of sodium carbonate, 

the volume was adjusted to 10 ml by adding distilled water and vortexed for 60 seconds . 

 All reaction tubes were placed in the dark for 35 min at room temperature. After 35 

minutes, the tubes were taken out of the dark to centrifuge at 4000 g for 10 minutes. 

Supernatants were transferred in glass tubes and their absorbance was recorded at  725 nm 

against the blank for each sample using a UV/Vis spectrophotometer (Ultrospec 4300 pro). 
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A gallic acid standard curve was prepared and the total phenolic content was measured as 

gallic acid equivalents (GAE) per g of leaf fresh weight.

3.2.5. Determination of the Total Anthocyanin Content 

 The total anthocyanin content was measured by the pH differential method according to 

Foley and Debnath (2007). The method is based on reversible conversion  of anthocyanins 

from their oxonium form to their hemiketal form. Absorption at 510 nm and 700 nm was 

measured using UV/Vis spectrophotometer (Ultrospec 4300 pro) in buffers at pH 1.0 and pH 

4.5 and the difference between the two values was used to determine total anthocyanin 

content. Results are expressed as catechin equivalent (CE) per g of leaf fresh weight.

3.2.6. Determination of the Total Flavonoid Content

 The total flavonoid content was measured by an aluminum chloride colorimetric assay 

(Zhishen et al. 1999). One ml of extract  or standard solution of catechin (0.5 mg/ml) was 

mixed with 4 ml of water, followed by addition of 0.3 ml 5% NaNO2, of 0.3 ml of 10% AlCl3 

(after 5 min) and 2 ml of 1 M  NaOH (one minute later), volume was adjusted (with water) to 

10 ml. The absorbance was measured at 510 nm using UV/Vis spectrophotometer (Ultrospec 

4300 pro). Total flavonoid content was expressed as µmol of catechin equivalent (CE) per g of 

leaf.
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3.2.7. Determination of the Total Tannin (proanthocyanidin) Content

 The total tannin (proanthocyanidin) contents of leaves of lingonberry cultivars and clones 

were determined by the method developed by Chandrasekara and Shahidi (2011). Five ml of 

0.5% vanillin-HCl reagent were added to 1 ml of extract, mixed thoroughly and incubated at 

room temperature for 20 minutes. A separate blank for each sample was read with 4% HCl in 

methanol. The absorbance was read at 500 nm using UV/Vis spectrophotometer (Ultrospec 

4300 pro), and the content of proanthocyanidins was expressed as µmol of CE per g of leaf 

tissue.

3.2.8. Measurement of the Antioxidant Activity

 Antioxidant capacity of lingonberry leaves was determined by two methods as detailed 

below. 

3.2.8.1. The Total Antioxidant Capacity by DPPH Assay


 The DPPH (2,2-diphenyl-1-picrylhydrazyl) assay was conducted according to the method 

of Brand-Williams et al. (1995) with some modifications. The stock solution of 1 mM DPPH 

in methanol was diluted to 60 µmol, 1.9 ml of the latter was mixed with 0.1 ml leaf extract, 

shaken vigorously and left in dark for 20 minutes. The absorbance was read at 515 nm using a 

UV/Vis spectrophotometer (Ultrospec 4300 pro). The scavenging capacity was expressed as 

% of inhibition of DPPH consumption. The gallic acid standard curve was used to express the 

results as GAE per gram fresh weight of leaf. 
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3.2.8.2. The Total Reducing Power

 The reducing power of lingonberry  leaf extracts was determined by the method described 

by Chandrasekara and Shahidi (2011). The medium of assay was 200 mM phosphate buffer 

(pH 6.6) with 1% potassium ferricyanide. A 2.5 ml aliquot of diluted extract was added to the 

assay buffer and incubated for 20 minutes at 50ºC and then 2.5 ml of 10% trichloroacetic acid 

(TCA) was added to the assay, mixed and then centrifuged for 10 minutes at 1750 g. 

Supernatant (2.5 ml) was transferred to empty  tubes and combined with 2.5 ml of deionized 

water and 0.5 ml of 0.1% FeCl3. The absorbance was measured at 700 nm using a UV/Vis 

spectrophotometer (Ultrospec 4300 pro), and the results were expressed as ascorbic acid 

equivalents using appropriate standard curves.

3.2.9. Statistical Analysis

 All the experiments were repeated at six times. Data in the text, the table and figures are 

expressed as means ±SD of three biological replicates. Data for all characteristics were 

subjected to t-test at P ≤ 0.05 to differentiate between the two groups. Duncan’s multiple range 

test was conducted to observe the significant difference within the groups within the 

genotypes.
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3.3. Results 

3.3.1. Comparing the Two Subspecies of Lingonberry 

 Significant differences were observed between the two lingonberry subspecies in terms of 

the total phenolic content wherein ssp. vitis-idaea showed significantly  low total phenolic 

levels (~40 to 60 mg/g GAE) as compared to clones from ssp. minus (~65 to 128 mg/g GAE) 

(Fig. 3.3).  
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Figure 3.3. The total phenolic content of leaves for two lingonberry subspecies, ssp.   vitis-
idaea and ssp. minus from different geographical locations. Means ± SE, n = 6, * – values 

significantly different at P < 0.05 from the standard. Letters (a to f) represents the differences 
between the cultivars at P ≤ 0.05 by Duncan’s multiple range test. Bars with same letters are 

not significantly different.
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 The total anthocyanin content showed similar pattern as the total phenolics. The level of 

total anthocyanin content was significantly higher in lingonberry ssp. minus (~12 to 20 mg/g 

leaf CE) as compared to ssp. vitis-idaea (~7 to 11 mg/g leaf CE) (Fig. 3.4).
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Figure 3.4. The total anthocyanin content of leaves for two lingonberry subspecies, ssp. vitis-
idaea and ssp. minus from different geographical locations.  Means ± SE, n = 6, * – values 

significantly different at P < 0.05 from the standard. Letters (a to f) represents the differences 
between the cultivars at P ≤ 0.05 by Duncan’s multiple range test. Bars with same letters are 

not significantly different.
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 The total flavonoid content of ssp. vitis-idaea was found to be very low (~ 7 to 11 mg/g 

leaf CE) compared to ssp. minus which was 50 to 115 mg/g leaf CE (Fig. 3.5).
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Figure 3.5. Total flavonoid content of leaves of two lingonberry subspecies, ssp. vitis-idaea 
and ssp. minus from different geographical locations. Means ± SE, n = 6, * – values 

significantly different at P < 0.05 from the standard. Letters (a to f) represents the differences 
between the cultivars at P ≤ 0.05 by Duncan’s multiple range test. Bars with same letters are 
not significantly different and those with more then one letter show overlap in their values.
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 The total proanthocyanidin content was observed to be significantly higher in cultivar 

Regal of ssp. vitis-idaea compared to ssp. minus. Splendor and Erntedank showed similar or 

lower levels of proanthocyanidin respectively compared to lingonberry clones from 

Newfoundland belonging to ssp. minus (Fig. 3.6).  
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Figure 3.6. The total proanthocyanidin content of leaves for two lingonberry subspecies, ssp. 
vitis-idaea and ssp. minus from different geographical locations. Means ± SE, n = 6, * – 
values significantly different at P < 0.05 from the standard. Letters (a to f) represents the 

differences between the cultivars at P ≤ 0.05 by Duncan’s multiple range test. Bars with same 
letters are not significantly different and those with more then one letter show the overlap in 

their values.
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Figure 3.7. The total radical scavenging capacity of leaves for two lingonberry subspecies, 
ssp. vitis-idaea and ssp. minus from different geographical locations. Means ± SE, n = 6, * – 
values significantly different at P < 0.05 from the standard. Letters a,b,c, d and e represents 
the differences between the cultivars at P ≤ 0.05 by Duncan’s multiple range test. Bars with 

same letters are not significantly different. 

 

The total radical scavenging activity  (Fig. 3.7) and the total reducing power (Fig. 3.8) showed 

very similar patterns which were in line with the total phenolic content. Lingonberry ssp. 

minus exhibited significantly high antioxidant activities as compared to lingonberry ssp. vitis-

idaea.
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Figure 3.8. The reducing power of leaves for two lingonberry subspecies, ssp. vitis- idaea and 
ssp. minus from different geographical locations. Means ± SE, n = 6, * – values significantly 

different at P < 0.05 from the standard. Letters a,b,c, d and e represents the differences 
between the cultivars at P ≤ 0.05 by Duncan’s multiple range test. Bars with same letters are 

not significantly different. 
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3.3.2. Comparing North American Lingonberry Subspecies minus from 

Different Provinces of Eastern  Canada and Atlantic Canada

 The total phenolic content and the total antioxidant levels of lingonberry clones from 

different provinces of Eastern and Atlantic Canada: Québec, New Brunswick, Nova Scotia 

and the island of Newfoundland were acquired and compared. The values of all the studied 

antioxidant components for the Newfoundland samples were obtained by  taking the average 

of 10 clones from different regions of this province. 

 The total phenolic and flavonoid content were found to be the lowest in the lingonberry 

clones from Québec followed by those from Newfoundland. Both the total phenolic and 

flavonoid content were significantly  higher in New Brunswick compared to those from 

Newfoundland and highest in clones from Nova Scotia (Fig. 3.3 and Fig. 3.5). 

 The total anthocyanin and proanthocyanidin levels were the lowest in leaves of 

lingonberry clones from Québec followed by those from New Brunswick which was followed 

by the clones from Nova Scotia. Both the total anthocyanin and proanthocyanidin levels were 

highest in Newfoundland clones (Fig. 3.4 and Fig. 3.6).

 The total antioxidant capacity measured by the radical scavenging capacity and the 

reducing power, showed similar results. The total antioxidant capacity was found to be the 

lowest in leaves of Québec clones, followed by New Brunswick clones and then Nova Scotia 

clones. The lingonberry clones from Newfoundland showed the highest antioxidant capacity 

(Fig. 3.7 and Fig. 3.8).                                                                     
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3.3.3. Comparing the Antioxidant Levels of of Lingonberry Clones From 
Different Regions in Newfoundland 

 The levels of total phenolic and anthocyanin content were signifiicantly high in leaves of 

the St. Anthony clones compared to the clones from other regions. As seen in figure (3.9) the 

content of total phenolic content in the leaves of wild lingonberry clones from all the other 

studied regions were not significantly different and the values were overlapping each other.  
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Figure 3.9. The total phenolic content in leaves of lingonberry subspecies ssp. minus from 
different regions of Newfoundland. Means ± SE, n = 6. Letters a, b, c, d, and e indicate 
differences at P ≤ 0.05 by Duncan’s multiple range test. Values with same letters are not 

significantly different and values with 2 or 3 letters indicate the overlap between the 
components. 
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Figure 3.10. The total flavonoid content in leaves of lingonberry subspecies ssp. minus from 
different regions of Newfoundland. Means ± SE, n = 6. Letters a, b, c, d, and e indicate 
differences at P ≤ 0.05 by Duncan’s multiple range test. Values with same letters are not 

significantly different and values with 2 or 3 letters indicate the overlap between the 
components. 

 The total flavonoid content was influenced by the different geographical locations within 

the province in quite a different way. Overall, an increase in the levels of flavonoids was 

observed when going from St. Anthony, to Cow Head and further increases from Brookfield 

to Bell Island through Hant’s Harbour. The content of total flavonoids in leaves of wild 

lingonberry was not significantly different from Hant’s Harbour, Bell Island, and Quidi Vidi. 

Flavonoid levels showed decreasing trends when tracing down from Quidi Vidi to Soldiers 
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Pond and Witless Bay, both of which showed similar levels of total flavonoid content (Fig. 

3.10). 

 The content of total anthocyanins showed similar pattern as the totla phenolic content. 

The TAC were signifiicantly high in leaves of the St. Anthony clones  and Cow Head clones 

compared to the clones from other regions. The TAC levels were not significantly  different in 

the leaves of the clones from the other studied regions (Fig. 3.11).

St. A
nthony

Cow Head

Brookfield 

Hant's Harbour

Bell Is
land 

Pleasantville

Quidi Vidi

Cape Spear

Soldiers pond

Witless Bay
0

5

10

15

20

25

30

cdde
de

cdcd
cd

c
cd

b

a

 

 

 

To
ta

l A
nt

ho
cy

an
in

 C
on

te
nt

 C
E 

m
g/

m
l l

ea
f 

Figure 3.11. The total anthocyanin content in leaves of lingonberry subspecies ssp. minus 
from different regions of Newfoundland. Means ± SE, n = 6. Letters a, b, c, d, and e indicate 

differences at P ≤ 0.05 by Duncan’s multiple range test. Values with same letters are not 
significantly different and values with 2 or 3 letters indicate the overlap between the 

components. 
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Figure 3.12. The total proanthocyanidin content in leaves of lingonberry subspecies ssp. 
minus from different regions of Newfoundland. Means ± SE, n = 6. Letters a, b, c, d, and e 

indicate differences at P ≤ 0.05 by Duncan’s multiple range test. Values with same letters are 
not significantly different and values with 2 or 3 letters indicate the overlap between the 

components. 

 

 The levels of total proanthocyanidin content also exhibited similar trend as the total 

phenolic and anthocyanin content. St. Anthony clones showed highest levels followed by Cow 

Head clones. The differences were not significant in different regions of Newfoundland (Fig. 

3.12). 
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 Total antioxidant activities measured as the total radical scavenging capacity and the 

reducing power, exhibited similar patterns as that of phenolic, anthocyanin and 

ptoanthocyanidin content (Fig. 3.13 and Fig. 3.14). These levels were highest  in St. Anthony 

clones followed by the Cow Head clones. The levels were not significantly different in the 

leaves of clones from other studied regions. 
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Figure 3.13. The total radical scavenging capacity in leaves of lingonberry subspecies ssp. 
minus from different regions of Newfoundland. Means ± SE, n = 6. Letters a, b, c, d, and e 

indicate differences at P ≤ 0.05 by Duncan’s multiple range test. Values with same letters are 
not significantly different and values with 2 or 3 letters indicate the overlap between the 

components. 
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Figure 3.14. The reducing power in leaves of lingonberry subspecies ssp. minus from 
different regions of Newfoundland. Means ± SE, n = 6. Letters a, b, c, d, and e indicate 
differences at P ≤ 0.05 by Duncan’s multiple range test. Values with same letters are not 

significantly different and values with 2 or 3 letters indicate the overlap between the 
components. 
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3.4. Discussion

 The two lingonberry subspecies, V. vitis-idaea L. ssp. vitis-idaea Britton and V. vitis-

idaea L. ssp. minus Hult  differed significantly in all the parameters of antioxidant 

quantification performed in the present study. Lingonberry  cultivars of ssp. vitis-idaea (Regal, 

Splendor and Erntedank) which are originally from Europe, were found to have significantly 

lower total phenolic, anthocyanin and flavonoid contents, and total antioxidant capacity, as 

compared to wild North American lingonberry clones of ssp. minus. Only the level of total 

proanthocyanidin content showed the opposite trend. This observed difference in overall 

antioxidant capacity  may be attributed to differences in their genotypes. Both subspecies 

exhibit several phenotypic differences including plant height, branching and blooming period. 

Figure 1.1 in Chapter 1 clearly represents morphological difference which is attributed due to 

their genotypic difference.

 As mentioned earlier, all the wild clones were collected from different locations of four 

Canadian provinces in 2001 where they adapted to their specific environmental conditions. 

These clones were maintained under greenhouse conditions for about 10 years at the time of 

study. All the plants were treated equally  under the same greenhouse environment. They were 

provided with the same irrigation, fertilisation, and temperature since they  were in the same 

greenhouse. Climatic conditions might have an impact  on of the genotype of the plants during 

their initial developmental stage when they were adapting to that particular climatic condition.  

 The environmental conditions of Western Europe are milder than that of Eastern North 

America (Seager 2006), and this could result in lower levels of the described antioxidants 
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being synthesized without necessarily utilizing them to their fullest extent. The ssp. vitis-

idaea’s energy  expenditure utilized for biosynthesis of antioxidant metabolites is reduced 

allowing alternative spending of substantial amounts of free energy. This energy can be 

utilized in other processes such as fruit  development through subsequent blooming, not 

presented in ssp. minus which only have single bloom occurrences (Penhallegon, 2006). 

 A comparison of lingonberry  ssp. minus among the regions of Eastern and Atlantic 

Canada, including Québec, New Brunswick, Nova Scotia, and the island of Newfoundland 

(Fig. 3.2) showed general trends of an increase in total anthocyanin content, total 

proanthocyanidin content, and total antioxidant capacity, from least  to greatest in the order of 

the provinces listed above. The results indicate a genetic basis for the variations in the levels 

of the antioxidant components. Table 3.2 represents average annual temperature of different 

locations of plant collection.  

 Newfoundland’s vastness and remote position adds to the relative diversity in regional 

climate and therefore the variety of testing results. Overall the levels of antioxidants and 

scavenging capacity are higher in most cases, except total flavonoid content and total phenolic 

content, which are similar to Québec. Although both Newfoundland and Québec are found in 

similar humid continental climate regions, Newfoundland is highly influenced by variation 

caused by its proximity to the ocean thus placing it into a subtype of the Humid Continental 

determination of climate. The colder temperatures and variety  of climatic regions make it 

difficult to accurately  compare Newfoundland to the rest of eastern Canada, without first 

describing the general trend across the entire province. A series of ten locations across the 

province of Newfoundland were examined for relative antioxidant levels and scavenging 
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activity of lingonberry  clones based on the four climatic regions as described above by 

McManus and Wood (1991). These areas are representative of the three of the four regions 

excluding the Western Mountains and Central Uplands. St. Anthony and Cow Head represents 

the Western coast, Brookfield represents the central region of Newfoundland, Hant’s Harbour, 

Bell Island, Pleasantville, Quidi Vidi, Cape Spear, Soldiers Pond and Witless Bay are from the 

Avalon or the East Coast of Newfoundland. In correlation analysis, a representative from each 

region was used i.e., Cow Head (Western, NL), Brookfield (Central, NL) and Quidi Vidi 

(Avalon region).   

 The Québec clone showed the lowest trend of antioxidant quantification and activity  in 

every  assay  but not as low as found in ssp. vitis-idaea, with the exception of the total 

proanthocyanidin content. Although each are occurring in Humid Continental regions, 

influences from proximity to Arctic and Subarctic regions have effect on relative intensity and 

duration of weather extremes. 

 There are several factors that could influence the yield of secondary metabolites in plants 

growing in specific environments such as genotype, culture conditions, latitude, altitude, 

temperature, precipitation and photoperiod. 


 A correlation analysis of all studied components was done with environmental factors 

such as latitude, altitude, average annual temperature and average annual precipitation. The 

critical values of Pearson’s correlation coefficient (R) were strongly significant with (R> 

6215) (R values given in correlation graphs, Fig. 3.15 to 3.18). The data for average annual 

temperature and precipitation was obtained from weather network statistics where the 
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sampling period was 30 years for all the regions under study. (Table 3.2). The annual 

precipitation data for Brookfield was not available and hence central Newfoundland was 

excluded for the correlation analysis between biochemical components and annual 

precipitation.

Table 3.2. The average annual temperature and precipitation of different regions of studied 
plant collection sites

Locations Avg. Annual Precipitation (mm) Avg. Annual Temperature (ºC)
Quebec 976 6.4
New Brunswick 1143 6.2
Nova Scotia 1396 6.6
Western Newfoundland 1210 3.9
Central Newfoundland N/A 6.8
Eastern Newfoundland 1513 4.7

 Some reports have indicated that reduced temperatures increase the yield of anthocyanins 

in V. myrtillus (Martinussen et al., 2009) and in other species (Chalker-Scott, 1999; Winkel-

Shirley, 2002; Choi et al., 2009). Similar results were observed in our study where a negative 

correlation between anthocyanin levels and average annual temperature was detected (Fig. 

3.15, Table 3.3). The total proanthocyanidin content and total antioxidant activity  also 

increased with reduced temperature. Figure 3.15 represents a correlation analysis of 

interaction between average annual temperature and studied biochemical components. The 

total phenolic and flavonoid content did not show any correlation with  temperature. There are 

several other factors that  influence the accumulation phenolic compounds. Light plays an 
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important role in biosynthesis of anthocyanin in cold temperatures (Jaakola & Hohtola, 2001). 

Plants in cold climates are able to maintain high rates of photosynthesis at lower temperatures 

compared to those growing under warmer climate. This feature enables them to increase the 

amount of fixed carbon available for secondary metabolites (Jaakola & Hohtola, 2001)
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Figure 3.15. Graphs representing a correlation between average annual temperature and the 
contents of phenolics and antioxidants in the leaves of lingonberry clones from different 

regions (Quebec, New Brunswick, Nova Scotia, Western Newfoundland, Central 
Newfoundland and Eastern Newfoundland/Avalon region)

 

Latitude is another factor to be considered. At different latitudes there is wide variation in 

plant growth conditions in different seasons due to light, temperature, sunlight and other 
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factors. Several reports have demonstrated that the plants growing in northern latitudes have 

higher contents of phenolic compounds compared with their southern counterparts. (Hårdh & 

Hårdh 1977; Lätti et al. 2008, 2010). It was detected by Lätti et al. (2008) that southern 

populations of billberry  exhibited a significantly lower content of total anthocyanins, although 

there was extensive variation among the populations. Martz et al. (2009) detected a positive 

correlation between increasing latitude and the content of phenolic compounds.  In our study, 

increasing latitude exhibited a positive correlation between anthocyanin, proanthocyanin and 

total antioxidant activities and latitude (Figure 3.16). The content of total phenolics and 

flavonoids did not show any such correlation. The critical values for Pearson’s correlation 

coefficient for total phenolic and flavonoids were 0.13414059 and -0.409874761, respectively 

which were not significant. 

  In a study done by Oleszek et al. (2002), contrasting results were observed. The needles 

of Pinus sylvestris trees from higher latitudes showed the lowest levels of total flavonoids 

indicating their local adaptations based on genetic differences in the regulation of flavonoid 

biosynthesis among populations of P. sylvestris (Jaakola & Hohtola, 2010).  

134



y"="$5.5644x"+"354.63"
R²"="0.12824"

R=""$0.358106388"""

40"
60"
80"
100"
120"
140"

45" 46" 47" 48" 49" 50" 51"

To
ta
l&P
he

no
lic
&C
on

te
nt
&(G

E)
&

m
g/
g&
le
af
&

La7tude&

Phenolics"" Linear"(Phenolics")"

  

y"="$4.2745x"+"283.04"
R²"="0.08989"

R="$0.299819568""

0"

50"

100"

150"

45" 46" 47" 48" 49" 50" 51"

To
ta
l&F
la
vo
no

id
&C
on

te
nt
&(C

E)
&

m
g/
g&
le
af
&

La6tude&

Flavonoids" Linear"(Flavonoids)"

y"="2.2192x")"87.579"
R²"="0.86128"

R="0.928049096""

10"

15"

20"

25"

45" 46" 47" 48" 49" 50" 51"

To
ta
l&A

nt
ho

cy
an

in
&C
on

te
nt
&

(C
E)
&m

g/
g&
le
af
&

La7tude&

Anthocyanin" Linear"(Anthocyanin)"

  

y"="1.5151x"("53.782"
R²"="0.64811"

R="0.805053992""

10"

15"

20"

25"

45" 46" 47" 48" 49" 50" 51"
To

ta
l&&
Pr
oa

nt
ho

cy
an

id
in
&

Co
nt
en

t&(
CE

)&m
g/
g&
le
af
&

La9tude&

Proanthocyanidin" Linear"(Proanthocyanidin)"

 

y"="14.174x")"500.88"
R²"="0.7798""

R="0.883060621""

120"

145"

170"

195"

220"

45" 46" 47" 48" 49" 50" 51"To
ta
l&S
ca
ve
ng
in
g&
Ca

pa
ci
ty
&

(G
E)
m
g/
g&
le
af
&

La9tude&

Scavenging"Capacity" Linear"(Scavenging"Capacity)"

  

y"="16.548x"+"611.57"
R²"="0.7439"

R="0.862493764""

120"

145"

170"

195"

220"

45" 46" 47" 48" 49" 50" 51"

Re
du

ci
ng
)P
ow

er
)(A

AE
))m

g/
g)

le
af
)

La8tude)

Reducing"Power" Linear"(Reducing"Power)"

    
Figure 3.16. Graphs representing a correlation between latitude and the contents of phenolics 

and antioxidants in the leaves of lingonberry clones from different regions (Quebec, New 
Brunswick, Nova Scotia, Western Newfoundland, Central Newfoundland and Eastern 

Newfoundland/Avalon region)

	

 Altitude also affected the contents of secondary metabolites in plants.  At high altitudes, 

higher solar radiations have an impact on biosynthesis of secondary metabolites leading to an 

increase as a response to UV radiation (Jaakola & Hohtla, 2010). Increasing altitude showed 

increased levels of the total anthocyanins, proanthocyanidins and total antioxidant activities 
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(Fig. 3.17, Table 3.3). The total phenolics and flavonoid content had no correlation with 

altitude. 
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Figure 3.17. Graphs representing a correlation between altitude and the contents of phenolics 
and antioxidants in the leaves of lingonberry clones from different regions (Quebec, New 

Brunswick, Nova Scotia, Western Newfoundland, Central Newfoundland and Eastern 
Newfoundland/Avalon region)

Nova Scotia and New Brunswick were relatively relatively similar in all aspects, including the 

difference in total flavonoid content and total phenolic content, both exhibiting high levels. 
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Both provinces are located in the Atlantic Canada Maritime region and are heavily influenced 

by both high precipitation leading to extended winters and cool summers and coastal winds 

which increase the rates of convection, increasing plant heat loss.

 Precipitation is another important environmental component that  could have impact on 

antioxidant compounds. In a study conducted by Neeser (2006), antioxidant activity was 

observed to be higher in orchards that had more precipitation. In the present study, 

positive correlation was observed between the average annual precipitation and all the studied 

parameters except for total phenolic compounds and anthocyanin levels where the correlation 

was not significant (Fig. 3. 18, Table 3.3). 
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Figure 3.18. Graphs representing a correlation between average annual precipitation and the 
contents of phenolics and antioxidants in the leaves of lingonberry clones from different 

regions (Quebec, New Brunswick, Nova Scotia, Western Newfoundland, Central 
Newfoundland and Eastern Newfoundland/Avalon region)

There is scarce information about gene-environment interaction in terms of biosynthesis of 

secondary  metabolites and not much is available information about the variation in phenolic 

content in relation to the genome. It seems that  there is genetic control of biosynthesis of 

secondary  metabolites. There are several reports indicating differences in anthocyanin and 
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proanthocyanidin concentration of plants influenced by  differences in their genotypes 

(Howard et al. 2003; Cho et al., 2005; Ortega-Regules et al., 2006). However, it is not very 

clear if the differences in the phenolic components result from the climate conditions or 

genetic adaptation to the growth environment at their early developmental stage. 

3.5. Conclusion 

 The levels of phenolic compounds and antioxidants in the leaves of lingonberry clones  

are highly variable and are affected by environmental factors such as temperature, 

precipitation, latitude and altitude as well as by genotype. Lingonberry  plants growing at 

different latitudes are primarily  the plants with different  genotypes, although the biosynthesis 

of secondary  metabolites and antioxidant compounds in plants at specific climate have been 

the result of their adaptation. The climatic conditions had an effect in adaptation of 

lingonberry clones with different antioxidant components although all plants were maintained 

in the same greenhouse environment under similar conditions for about 10 years. This indicate 

a complex relationship between antioxidant gene and environment. 

 There is a great variation between lingonberry  genotypes. The significant differences 

between the two subspecies, ssp. vitis-idaea and ssp. minus, make a clear understanding of 

difference in levels of their phenolic compounds. 

 It could be concluded from the results that differences in climatic conditions along with 

different geographical locations have an impact on biochemical properties of lingonberry 

plants and that this difference is responsible, to a significant degree, for phenolic contents and 
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antioxidant activities. Lingonberry  plants occurring at  higher latitudes and being subjected to 

harsh weather conditions were shown to occur with higher antioxidant activities and levels.

 It was observed that with the difference in the subspecies the variation in morphology  and 

possibly the climatic region of the plants origin correlate with the levels of phenolic 

compounds and the antioxidant  activities. This is could be due to the multiple blooming 

periods in ssp. vitis-idaea resulting in a lower production of antioxidants, whereas ssp. minus 

exhibits a single blooming period allowing for substantial antioxidant production.
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Chapter 4

Effects of Lingonberry Extracts on Oxidative Stress in Rat 

Brain Cultures

This chapter aims to determine the neuroprotective effect of extracts from fruits and leaves of wild 
lingonberry clones from Newfoundland against glutamate-mediated excitotoxicity. 

  

4.1. Introduction 

  Overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

such as superoxide anion, hydrogen peroxide, peroxyl radicals, nitric oxide and peroxynitrile 

radicals could lead to oxidative stress. These reactive species can damage proteins, lipids and 

DNA, leading to lipid peroxidation, altered signal transduction pathways and destruction of 

membranes and organelles that could be responsible for the development of neurodegenerative 

diseases (Sastre et al., 2000). The brain is particularly susceptible to oxidative stress due to its 

high oxygen demand, as well as due to the fact that it  is enriched with polyunsaturated fatty 

acids. Moreover, a high iron concentration and low levels of antioxidants are also factors 

responsible for overproduction of ROS and RNS in brain cells (Lau et al., 2005; Slemmer et 

al., 2008). It has been reported by several researchers that excessive production of oxidative 

products of protein, lipid and DNA oxidation are associated with neurodegenerative disorders 

(Halliwell, 2006). The balance between ROS and antioxidants in biological systems is referred 

to as redox homeostasis and is essential for normal cell function (Droge, 2002). In order to 
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combat oxidative stress, there are several types of endogenous enzymatic antioxidants such as 

superoxide dismutase (SOD), catalase (CAT), and glutathione preoxidase (GPx). There are 

also several non-enzymatic antioxidants that are obtained primarily  in the diet, including 

tocopherol, ascorbate, carotenoids and various polyphenolic compounds (Valko et al., 2007; 

Slemmer et al., 2008). Figure 4.1 represents causes and effects of oxidative damage in the 

brain.

Figure 4.1. Representation of oxidative damage in brain illustrating its causes and effects. 
(Modified from Floyd and Hensley, 2002) (H2O2 - hydrogen peroxide, .OH - hydroxyl free 

radical; O•2− − superoxide, LOOH - lipid hydroperoxide, Fe -iron ions, Cu - copper ions, NO -
nitric oxide, ONOO - - peroxynitrite, SOD - superoxide dismutase, GSHPx - glutathione 

peroxidase, GSH - glutathione, HNE - 4-hydroxy-2-nonenal, and 8-OHdG, 8-hydroxy-2′-
deoxyguanosine) 

 

Figure 2.7 Representation of oxidative damage in brain illustrating its causes and effects 

(H2O2-Hydrogen peroxide, *OH-Hydroxyl free radical; O•2−-Superoxide, LOOH-Lipid hydroperoxide,  
Fe-Iron ions, Cu-Copper ions, NO-Nitric oxide, ONO2−-Peroxynitrite, SOD-Superoxide dismutase, 
GSHPx-Glutathione peroxidase, GSH-Glutathione, HNE- 4-hydroxy-2-nonenal, and 8-OHdG, 8-
hydroxy-2!-deoxyguanosine) 
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  Polyphenols are a large class of natural compounds that have high antioxidants and 

potential beneficial effects such as anti-inflammatory, anticancer, anti-fungal, anti-microbial, 

and anti-ulcer properties (Rahman et al., 2007). These classes of compounds also appear to 

have positive effects on the cardiovascular system, which may be due to their ability to act as 

free radical scavengers or by other mechanisms (Slemmer et al., 2008). Polyphenols are 

abundant in plants, especially  vegetables and fruits. Berry crops are very  rich sources of 

polyphenolic antioxidants, particularly flavonoid compounds (Zheng & Wang, 2003). Since 

plant derived supplements are considered as natural and hence potentially safer than synthetic 

drugs, there has been an increasing demand for ‘nutraceuticals’ (Raskin et al.,2002). The term 

nutraceutical was originally defined by Dr. Stephen DeFelice as a daily nutritional 

supplements like food or a part  of food, which have beneficial effects in treating or preventing 

diseases (Kalra, 2003). Berries have been reported to have diverse health promoting 

phytochemicals and are very rich sources of polyphenolics especially flavonoids, 

anthocyanins, and proanthocyanidins. An enormous body of research has been published 

suggesting that the dietary consumption of berries has positive effects on human health and 

diseases (Seeram, 2008; Battino et al., 2009). The health promoting properties of berries are 

gaining continued interest in the berry market not only as antioxidants, but also because of 

their bioactive properties in vivo (Seeram, 2008; Seeram & Heber, 2006).

  In particular, the potential of berries and their constituents to protect the brain from aging 

and neurodegenerative disease has gained increased attention in recent years. For example, 

dietary supplementation with polyphenol containing fruits can decrease age-related 

behavioural deficits in rats (Shukitt-Hale et al., 2005). In a recent study conducted with a 
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mouse model of Alzheimer’s disease, treatment with berries rich in polyphenols decreased the 

extent of behavioural abnormalities associated with the disease (Vepsäläinen et al., 2013). 

Other experimental studies have shown that rats fed with a diet enriched with blueberries can 

protect the brain against oxidative stress and associated learning deficits (Duffy et al., 2008). 

Surprisingly, a diet enriched with blueberries has been demonstrated to later protect animals 

from the damage induced by ischemic stroke (Sweeney et al., 2002; Wang et al., 2005).

  The present work aims to study the polyphenolic content, antioxidant capacity  and 

potential neuroprotective effects of fruit and leaf extracts from lingonberries that grow 

natively  in Newfoundland, Canada. Following initial chemical analysis, the cell cultures 

derived from rodent brains were subjected to high levels of glutamate, the most prominent 

endogenous excitatory  neurotransmitter present in the mammalian central nervous system. 

Glutamate plays an important role in long-term potentiation, a cellular mechanism of learning 

and memory, under physiological conditions and contributes to other cognitive functions 

(Chen et al., 2009; Suzuki et al., 2007). Increased glutamate levels could result in glutamate 

excitotoxicity (Goto et al., 2009). Glutamate-induced ‘excitotoxicity’ is a pathological process 

by which cells are damaged and killed by excessive stimulation from neurotransmitters such 

as glutamate and similar substances (Fig. 4.2). This abnormal process produces oxidative and 

nitrosative stress, and likely contributes to the pathology of traumatic brain injury, stroke, 

neurodegenerative disorders, and normal brain aging (Slemmer et al., 2008; Mehta et al., 

2012; Weber, 2012). 

  The neuroprotective effects of lingonberries have not yet been studied, and hence this 

will be the first report in this field. In the present study, the effects of lingonberry leaf and fruit 
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extracts were determined on cell cultures subjected to glutamate excitotoxicity. Possible 

correlations between bio-activities and phenolics compounds as well as antioxidant capacities 

have been made.  

Figure 4.2. Glutamate excitotoxicity: Glutamate-mediated increases in Ca2+.(Modified from 
Weber 2004). Glutamate activates ionotropic receptors (i.e. AMPA and NMDA receptors) on 

neurons that leads to an increase in Ca2+. Glutamate also activates metabotropic receptors 
(group I mGluRs) which produce IP3.  
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4.2. Methods 

  Plant materials used in the present study were fruits and leaves of clones of wild 

Newfoundland lingonberry plants developed by Debnath (2005). The plants were collected in 

the fall of 2001 and propagated by a vegetative stem cutting method and their clones 

maintained in a greenhouse of at  Atlantic Cool Climate Crop Research Centre (ACCCRC) in 

St. John’s, Newfoundland from the date of collection.    

4.2.1. Preparation of Clones from Wild by Vegetative Stem Cutting

  Terminal softwood stem cuttings 4 to 5 cm long were taken from wild lingonberry plants 

and rooted in 45-cell plug trays (cell diameter 5.9 cm, cell depth 15.1 cm; Beaver Plastics, 

Edmonton, AB, Canada) containing peat: perlite [2:1 (v/v)] in a humidity chamber with a 

vaporizer (Conviron E15; Controlled Environments Ltd., Winnipeg, MB, Canada) at  22° ± 

2°C and 95% RH, with a 16 hour photoperiod (PPF 55 µmoles m–2 s–1 at culture level). No 

rooting compound was applied (Debnath, 2006; Foley & Debnath 2007). After 6-8 weeks, 

rooted plantlets were transferred to plastic pots (10.5 L, 10.5 W and 12.5 D) containing the 

same medium used for rooting and were maintained in humidity  chamber and acclimatized by 

gradually lowering the humidity  by  3 to 4% per week over 3 weeks period. Plant well 

developed and hardened were then grown in the greenhouse under natural light condition at 

about 20°C, 85% RH and 16 hour photoperiod at maximum PPF of 90 umol.m-2S-1 (Debnath 

2006; Foley & Debnath 2006). All the plants were treated equally. Fertilization (20-8-20 N-P-
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K, Plant Products Co. Ltd., Brampton, ON) and irrigation was supplied to plants when 

required (Debnath 2006). 

  Young green leaves and ripe fruits of Vaccinium vitis-idaea L. were harvested and 

immediately stored at -20 ºC. Sample extraction was carried out from the collected leaf and 

fruit samples in 80% (v/v) acetone with 0.2% formic acid in the ratio 1:2 and was subjected to 

30 min shaking on ice.  The sample mixture was then centrifuged at 20,000 g for 20 minutes 

at 4 ºC. Supernatants were collected and the procedure was repeated with the residues. Both 

supernatants were mixed together and the final concentrations for leaf and fruit samples were 

25 mg/ml and 166 mg/ml, respectively. 

4.2.2. Biochemical Assays  

  Lingonberry leaf and fruit extracts were further diluted ten times with the extraction 

solvent for biochemical assays. 

4.2.2.1. Determination of the Total Soluble Phenolics 

  The total soluble phenolic content in both leaves and fruits were determined using the 

Folin-Ciocalteu reagent as described by Chandrasekara and Shahidi (2011) with some 

modifications. 0.5 ml of Folin-Ciocalteu reagent was added to centrifuge tubes containing 0.5 

ml of extracts and vortexed. One ml of saturated sodium carbonate solution was added to each 

tube to neutralize the reaction. The final volume was adjusted to 10 ml with water and 

vortexed for 30 seconds.  The reaction mixtures were kept in the dark for 35 min at room 
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temperature and then centrifuged at 4,000 g for 10 min. The absorbance was measured at 725 

nm using Ultrospec 4300 pro UV/Vis spectrophotometer. The total soluble phenolic content  of 

each sample was determined using gallic acid standard curve and expressed as milligrams of a 

gallic acid equivalents (GAE) per g of berry or leaf fresh weight. 

4.2.2.2. Determination of Total Anthocyanin Content

  The total anthocyanin content was measured by a pH differential method described by 

Foley and Debnath (2007). Absorption at 510 nm and 700 nm was measured using a UV/

Visible spectrophotometer (Ultrospec 4300 pro) in buffers at pH 1.0 and pH 4.5 and the 

difference between the two values was used to determine total anthocyanin content. Results 

are expressed as catechin equivalents (CE). 

4.2.2.3. Determination of the Total Flavonoid Content

  The total flavonoid content was measured by an aluminum chloride colorimetric assay 

(Zhishen et al. 1999).  One ml of extract or standard solution of catechin (0.5 mg/ml) was 

mixed with 4 ml of water, followed by addition of 0.3 ml 5% NaNO2, of 0.3 ml of 10% AlCl3 

(after 5 min) and 2 ml of 1 M NaOH (one minute later), the volume was adjusted (with water) 

to 10 ml. The absorbance was measured at 510 nm using a UV/Visible spectrophotometer 

(Ultrospec 4300 pro). The total flavonoid content was expressed as µmol of catechin 

equivalent (CE) per g of leaf or fruit.
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4.2.2.4. Determination of the Total Proanthocyanidin (Tannin) Content

  The total proanthocyanidin contents of sample extracts were determined by the method 

developed by Chandrasekara and Shahidi (2011). Five ml of 0.5% vanillin-HCl reagent  were 

added to 1 ml of extract, mixed thoroughly and incubated at room temperature for 20 min. A 

separate blank for each sample was read with 4% hydrochloric acid (HCl) in methanol. The 

absorbance was read at 500 nm using a UV/Visible spectrophotometer (Ultrospec 4300 pro), 

and the content of proanthocyanidins was expressed as µmol of chatechin equivalent (CE) per 

g of leaf or fruit. 

4.2.2.5. Determination of the Total Antioxidant Activity



 The total antioxidant capacity of samples was determined by the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) assay, which was conducted according to the method of Brand-

Williams et al. (1995) with some modifications. The stock solution of 1 mM DPPH in 

methanol was diluted to 60 µmol, 1.9 ml of the latter was mixed with 0.1 ml leaf extract, 

shaken vigorously and left in the dark for 20 minutes. The absorbance was read at 515 nm 

using a UV/Visible spectrophotometer (Ultrospec 4300 pro). The scavenging capacity was 

expressed as percentage of inhibition of DPPH consumption. The gallic acid standard curve 

was used to express the results as GAE.
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4.2.2.6. Determination of Reducing Power 

  The reducing power of extracts was determined by the method described by 

Chandrasekara and Shahidi (2011). The medium of assay  was 200 mM  phosphate buffer (pH 

6.6) with 1% potassium ferricyanide. 2.5 ml of the diluted extract was added to the assay 

buffer and incubated for 20 min at 50 ºC and then 2.5 ml of 10% trichloroacetic acid (TCA) 

was added to the assay, mixed and then centrifuged for 10 min at 1750 g. 2.5 ml of 

supernatant was transferred to empty  tubes and combined with 2.5 ml of deionized water and 

0.5 ml of 0.1% FeCl3. The absorbance was measured at 700 nm using a UV/Visible 

spectrophotometer (Ultrospec 4300 pro), and the results were expressed as ascorbic acid 

equivalents using appropriate standard curves.

4.2.3. Cell Culture Experiments 

  The cell culture experiments utilized one-to-three day old Sprague-Dawley  rat pups and 

were conducted in the School of Pharmacy at the Health Science Centre, Memorial University. 

All procedures using rat pups were approved by the Institutional Animal Care Committee of 

Memorial University of Newfoundland (protocol number 12-20-JW).

4.2.3.1. Dissection of Rat Pup Brains

  The brains of 1-3 day old Sprague-Dawley rat pups were dissected and cortical cultures 

were prepared as described previously (Weber et al., 2012). The rat pups were euthanized and 

the brains were removed from the skull and placed in 15 ml of cold Hank’s buffered salt 
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solution (HBSS) supplemented with 10 mg/ml PenStrep in a small petri dish which was 

placed on ice. The cerebellum was cut and discarded. The right and left cortical hemispheres 

were separated by a scalpel. Then, the corpus callosum was removed. The cerebellum and 

callosum were removed because they give a low yield of cell and the cells are generally  very 

small. In addition, there are many neurons and glia in the cortex that use glutamate. Next, the 

blood vessels and membranes surrounding the brain were removed with the help of tweezers 

under microscopic light. 

4.2.3.2. Poly-L-ornithine Plate Coating 

  Poly-L-ornithine (PLO) promotes the adhesion of cells to the culture wells. Culture plates 

were coated with PLO solution one day prior to cell culture preparation and plates were 

incubated in a humidified incubator at 37 ºC with 5% CO2.

4.2.3.3. Preparation of Cell Cultures

  The hemispheres, free of blood vessels, were placed in a centrifuge tube containing 10 ml 

of cold HBSS. Before centrifuging, the cell aggregates were triturated to smaller pieces by 

gently using a serological pipette (by pipetting -10 times in and out). The tissue was then 

washed by centrifuging at 1000 rpm at 4 ºC for 3 min. The supernatant was removed and 10 

ml of fresh HBSS was added. The tissue was again washed at 1000 rpm at 4 ºC for 3 min. and 

the supernatant was discarded. 0.8 ml of 0.25% Trypsin-EDTA in HBSS supplemented with 

9.2 ml of fresh HBSS were then added. The tubes were incubated for 15 min at 37 ºC and  

were then centrifuged at 1000 rpm at 4 ºC for 3 minutes. After discarding the supernatant, 
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fresh growth media (10 ml) was added to the tubes and they  were centrifuged at 1200 rpm at  4 

ºC for 5 min. Four ml of fresh growth media was added to the tubes after discarding the 

supernatants and cells were triturated using a 5 ml serological pipette until all large aggregates 

were dissociated. The suspension was filtered through a 70 µm nylon strainer into a 50 ml 

plastic tube and diluted with growth media up to 12 ml if using two 24 well plates (1 ml for 

one 24 well plate). Table 4.1 and 4.2 represents detailed chemical composition of the culture 

medias and growth medias used in the study respectively.

  The PLO (Poly-L-ornithine) coated plates were taken out of the incubator and the PLO 

was removed and the wells were washed twice with distilled water (300µL per well for 24 

well plate). 250 µl was transferred to each well in a 24 well plate. All the cultures were 

maintained in a humidified incubator (5% CO2, 37ºC). Half of the media in cultures was 

replaced two days after plating, and then twice per week, with serum-free media containing 

2% B27 supplements (GIBCO). In general, glia formed a confluent monolayer that adhered to 

the membrane substrate, whereas neurons adhered to the underlying glia. It  has been 

previously  found that these cultures contain approximately 12% neurons as determined by 

NeuN, which is a neuronal marker expressed strongly in nuclei and perikarya (Weber et al., 

2012), with the remaining cells representing the glial population. Approximately 95% of 

NeuN-negative cells stained positively  for glial fibrillary acidic protein (Invitrogen, 

Camarillo, CA), suggesting that the majority  of glial cells in these cultures are composed of 

astrocytes. These cultures were used for experiments at 9-16 days in vitro (DIV).
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4.2.3.4. Glutamate Exposure and Extract Treatment

  The cell culture experiments were carried out after the extracts were filtered through a 

sterile filter of 40 µm pore size. Before treating cells with the extract, the solvent  used in the 

extraction of lingonberry fruits and leaves was first tested for its effect  on cell cultures. The 

appropriate amount of solvent that did not affect the cultures was determined. Glutamate was 

dissolved in sterile distilled water (dH2O). The cell cultures were exposed to glutamate (100 

µM) in a volume of 3 µl per 0.3 ml of cell culture media, and control cultures received an 

equivalent volume of sterile dH2O. The cell cultures were treated with 1 µl lingonberry fruit 

extract (166 mg/ml) and leaf extract  (25 mg/ml) at the time of glutamate exposure, and were 

treated with the leaf and fruit extracts for 24 hours. It was found that  cultures treated with 1 µl 

of solvent alone had no significant change in cell number after 24 hr. For each treatment plate, 

at least two control treatments were performed using dH2O as well as two glutamate 

treatments. Experiments were performed in at least three separate culture preparations and 

each condition was represented by at least six samples.

4.2.3.5. Fixing and Staining of Cell Cultures

  After 24 hours of treatment, cell cultures were fixed for 20 minutes with 4% 

paraformaldehyde, according to Engel et al. (2005). Then 250 µl of culture media from each 

of the treated well was replaced with 250 µl of propidium iodide (PrI) solution in the dark. 

After 5 minutes, the PrI solution was removed and wells were washed with phosphate-

buffered saline (PBS; pH 7.4). Next, 4% Paraformaldehyde fixative solution (250 µl) was 
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added to each well and was allowed to stand for 20 minutes. Wells were washed twice with 

PBS solution and dehydrated with 100% ethanol. 10 µl of DAPI (4',6-diamidino-2-

phenylindole) was added and then the cells were covered with cover slip. DAPI is a 

fluorescent stain that binds strongly to A-T rich regions in DNA. It is used extensively  in 

fluorescence microscopy. DAPI can pass through an intact cell membrane, therefore it can be 

used to stain both live and fixed cells, though it  passes through the membrane less efficiently 

in live cells and therefore the effectiveness of the stain is lower.

 

4.2.3.6. Capturing Images

  Images were captured using a Zeiss Observer A1 microscope and a Pixelfly qe CCD 

camera (PCO., Kelheim, Germany). Five sets of images (5 DAPI and 5 PrI images) with 

magnification of 200x were captured from different regions of each well. Images of DAPI-

positive cells were captured with a DAPI optical filter set, while PrI images were captured 

using a Texas red filter set using the software IPlab.

4.2.3.7. Cell Counts 

  At least two investigators who were blind to the treatment conditions were used to count 

the amount of cells in each image. The mean of two readings for each well was generated and 

calculated accordingly. Data on the number of DAPI-positive cells is expressed as a 

percentage of control values for each given experimental day. Condensed nuclei data is 

expressed as the percentage of the total amount of DAPI-positive cells that contained 
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condensed nuclei within each condition. The percentage of condensed nuclei was calculated 

using the program Image J (Rasband, & Image). Representative images of cellular 

morphology  in control and glutamate-treated cultures were captured using differential 

interference contrast microscopy.

Table 4.1. Preparation of chemicals for cell culture experiments 

Chemicals Preparation

Poly-L-ornithine To prepare the PLO solution, 100 mg of PLO was mixed with 10 
ml of distilled water to achieve 10mg/ml solution. 300 µl of this 
solution was then transferred to each centrifuge tube (2 ml) and 
then these tubes are stored in -80ºC.

Hank’s buffered salt 
solution (HBSS) 

Hank’s buffered salt solution is without Calcium chloride, 
magnesium chloride and Magnesium sulphate. First  different 
solutions were made and stored at 4 ºC and then the final solution 
was made. Stock #1 was made. 8.0g of NaCl and 0.4g of KCl was 
dissolved in 90 ml of distilled water and the volume was made up 
to 100 ml. Stock #2 was made. Anhydrous Na2HPO4 (0.358 g) and 
KH2PO4    (0.60 g) was dissolved in 90 ml distilled H2O and then 
the solution was made up to 100 ml with distilled water. Stock #5 
was made. 0.35g of NaHCO3 was added to 10 ml of distilled water. 

Trypsin-EDTA 0.1% Trypsin-EDTA was dissolved in HBSS containing Penstrep to 
obtain 10µg/ml. 100 ml of Trypsin-EDTA was taken and added to 
100 ml of HBSS, which has 1ml of Penstrep to make a solution of 
10µg/ml and stored in -18 ºC.

Propidium iodide 
solution

Propidium iodide solution was made by diluting 3µl of propidium 
iodide in 10 ml of PBS (pH 7.4) ...solution in dark.

Paraformaldehyde 
Fixative

The 400 ml of distilled water was taken in a 1000 ml beaker under 
a fume hood and was heated to 70 ºC and then 40 g 
paraformaldehyde was added to it and stirred well. This solution 
appeared cloudy. Cold 10N NaOH was added slowly drop wise to 
the solution until it cleared. 500 ml of 0.2M  cold Phosphate buffer 
was added to it. Then distilled water was added to the solution to 
make up  the volume to 1000 ml. This solution was filtered using a 
bottle filter and stored in the fridge.
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Table 4.2. Preparation of Growth and Culture Media

Media Preparation

Growth Media Preparation First, growth media free of Horse serum (HS) was prepared 
by adding sterile 5 ml PenStrep, 8 ml glucose solution, 
sodium pyruvate solution, 5 ml N2 supplements into a 500 
ml bottle of sterile BME and was stored at 4ºC. 
   Then, to make growth media containing 10% HS, 4.5 ml 
HS (portions in the freezer) was added to 45 ml growth 
media. A 50 ml labeled plastic tube was used and the media 
was stored at 4ºC. The solution was filtered when needed. 

Culture media Preparation Serum free culture media was prepared using Basel medium 
algae (BME) (500ml) with 5 ml PenStrep, 8 ml glucose 
solution, 5 ml Sodium pyruvate Sln, 5 ml N2 supplements 
and 10 ml B27 supplements. Media was then sterilized 
through a bottle filter and stored at 4ºC. 

4.2.4. Statistical Analyses

  All of the biochemical experiments were repeated at least three times. Data in the text  and 

the figures are expressed as means ±SE of three replicates. Statistically significant differences 

were determined by the non-parametric unpaired t-test using the statistical program SPSS 

(IBM Inc.). In all cases the confidence coefficient was set at 0.05. The data for the bioactivity 

(cell culture) experiments were analyzed with one-way ANOVA (p < 0.05) followed by 

Tukey’s multiple comparisons test using the statistical program GraphPad Prism (La Jolla, 

CA, USA). Data represented in figures are expressed as means ± SE of at least 6 wells per 

condition. Significance was also set at p < 0.05 for these experiments.
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4.3. Results 

4.3.1. Biochemical assays

  The content of total soluble phenolics, flavonoids, anthocyanins and tannins was 

significantly higher in the lingonberry leaves versus the fruits (p<0.05) (Fig. 4.3 - Fig 4.6). 

These finding correlated well with total radical scavenging capacity and reducing power, in 

which the leaves had much higher activity compared to fruits (Fig. 4.7 & Fig. 4.8). 
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Figure 4.3. The total soluble phenolic content in lingonberry fruits and leaves. Means ± SE, n 
= 3, * – values significantly different at P < 0.05 from the control. GAE – gallic acid 

equivalents.
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Figure 4.4. The total anthocyanin content in lingonberry fruits and leaves. Means ± SE, n = 3, 
* – values significantly different at P < 0.05 from the control. CE – catechin equivalents.
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Figure 4.5. The total flavonoid content in lingonberry fruits and leaves. Means ± SE, n = 3, * 
– values significantly different at P < 0.05 from the control. CE – Catechin equivalents.
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Figure 4.6. The total tannin content in lingonberry fruits and leaves. Means ± SE, n = 3, * – 
values significantly different at P < 0.05 from the control. CE – Catechin equivalents.

Fruit Leaf
0

100

200

300 *
 

 

R
ad

ic
al

 S
ca

ve
ng

in
g 

A
ct

iv
ity

 G
A

E 
m

g/
m

l S
am

pl
e

A

 Lingonberry 

Figure 4.7. The total radical scavenging capacity in lingonberry fruits and leaves. Means ± SE, 
n = 3, * – values significantly different at P < 0.05 from the control. GAE – gallic acid 

equivalents.
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Figure 4.8. The total reducing power in lingonberry fruits and leaves. Means ± SE, n = 3, * – 
values significantly different at P < 0.05 from the control. AsAE – ascorbic acid equivalents.

4.3.2. Cell culture experiments

  In preliminary studies it was found that  treatment of cultures with 10 µM  glutamate 

produced a cell loss of 17.0 ± 5.7 %, which was not statistically  significant. However, 100 µM 

glutamate treatment for 24 hours caused a significant loss of cells of 20.1 ± 6.0 %, therefore a 

concentration of 100 µM  glutamate was used for the remaining experiments. Analysis of 

cultures using light microscopy indicated that the cells in control (untreated) cultures had 

intact cell bodies and that cells consistent with neuronal morphology  also displayed intact, 

smooth neurites (Fig. 4.9). After treatment with glutamate for 24 hours, many cells had 

disrupted cell bodies, and there was an increase in dark punctae, which may  be indicative of 
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condensed nuclei in dead or dying cells (Chen et al., 2000). We quantified the potential 

neuroprotective effects of the plant extracts by counting the amount of DAPI-stained cells that 

were present in cultures under various conditions (Figs. 4.10 and 4.11). Treatment with 

glutamate appeared to increase the amount of brighter, condensed nuclei in cultures, which is 

often indicative of delayed cell death (Weber et al., 2012) (Fig 4.10). Glutamate exposed cell 

cultures treated with lingonberry fruit extracts showed 79.1 ± 12.4 % of control values and 

those treated with leaf extracts lingonberry showed 106.9 % ± 8.6 % of control values, which 

was significantly  different versus glutamate treatment alone, indicating a highly protective 

effect of the leaf extracts (Fig. 4.11). The percentage of cells displaying condensed nuclei 

were also quantified in the same cultures in which the extent of cell loss was determined. 

Glutamate caused an increase in the amount of condensed nuclei after 24 hours of exposure, 

but this increase was not statistically significant.  Interestingly, there also appeared to be an 

increase in condensed nuclei in cultures treated with lingonberry leaf extract, but again these 

findings were not statistically significant.
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Figure 4.9. Light microscopic images of untreated cells (control; top) and cells treated with 
100 µM glutamate for 24 hours (bottom). Note that cells in control cultures had intact cell 
bodies and that cells consistent with neuronal morphology also displayed intact, smooth 

neurites. After treatment with glutamate for 24 hours, many cells had disrupted cell bodies, 
and there was an increase in dark punctae. Scale bar = 50µm and applies to both images. Cell 

cultures are 12 DIV.
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Figure 4.10. Representative images of cortical cells stained with DAPI (blue) in control 
conditions, after 24 hour treatment with 100µM glutamate, and after 24 hour treatment with 
100µM glutamate in the presence of lingonberry fruit and leaf extracts. Note the presence of 
several condensed nuclei after treatment with glutamate, which may be indicative of delayed 
cell death. Images on the right are at a magnification of 200x, while images on the left have 
been enlarged in order to better represent nuclear morphology. Both scale bars = 50µm. The 

scale bar in the glutamate + blueberry fruit images applies to all three images on the left, while 
the scale bar in the glutamate + lingonberry leaf image applies to the three images on the right. 

Cell cultures in images on the left are 16 DIV, while those on the right are 15DIV.
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Figure 4.11. Summary of the effects of and lingonberry fruit and leaf extracts on glutamate-mediated 
cell death. Cells were treated with 100µM glutamate alone or in the presence of extracts. Top graph: 

the amount of DAPI-positive nuclei were quantified and data is expressed as % of control values. 
n=6-16. *p<0.05 vs. control; **p<.05 vs. glutamate only (one-way ANOVA with Tukey’s post-hoc 

analysis). Bottom graph: the percentage of nuclei that exhibited a condensed morphology in the 
same culture wells used to generate the data in the top graphs. 
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4.4. Discussion 

  In the current study, high levels of phenolic compounds were detected such as 

anthocyanins, flavonoids and tannins, in lingonberries growing natively  in Newfoundland. It 

was also observed that the level of phenolic compounds were higher in the lingonberry  leaves 

compared to their fruits as indicated by radical scavenging activity and reducing power, which 

is consistent with the findings in previous lingonberry cultivars (chapter 3). These biochemical 

data are in line with the biological activities of the extracts on glutamate exposed rat brain 

cultures. This could be because of the direct correlation of involvement of reactive oxygen 

species during glutamate excitotoxicity and role of polyphenols in scavenging ROS.

  Glutamate plays an important role in normal neurophysiology, such as a variety of 

cognitive functions (Rahn et al., 2012), as well as being involved with synaptic plasticity, 

which is believed to be the cellular mechanism of learning and memory (Kim & Linden, 2000; 

Lamont & Weber, 2012). However, increased glutamate levels results in glutamate-mediated 

excitotoxicity, which can lead to cell damage and death (Goto et al., 2009). This phenomenon 

could be due to excessive glutamate release, or inadequate uptake of glutamate by glial cells 

through transporters. This pathological process is believed to contribute to brain aging and 

neurodegenerative over many years, but  can occur very rapidly during severe insults such as 

stroke and traumatic brain injury (Nakamura & Lipton, 2010; Weber, 2004). Excitotoxicity 

generally  causes an excessive elevation of intracellular Ca2+ levels (Mehta et al., 2013; Chen 

et al., 2000), which causes changes in the normal functioning of neurons and can over-activate 

several Ca2+-dependent enzymes leading to changes in normal cellular processes (Weber, 
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2004; Nicholls, 2004; Wojda et al., 2008). As a consequence of activation of calcium-

dependent enzymes such as xanthine oxidase (Atlante et al., 2000), phospholipase A2 (Weber, 

2004; Wood, 2003) and nitric oxide synthase, free radicals including ROS and RNS are 

produced in cells (Mehta et al., 2013). Excitotoxicity  is also responsible for oxidative 

dysfunction in mitochondria (Rego & Oliveira, 2003), which could lead to further ROS 

generation. Therefore, when cell cultures were exposed to glutamate, receptors were over-

activated, which likely led to oxidative and nitrosative stress, and ultimately damaged and 

killed cells. However, elevated levels of Ca2+ can also activate other enzymes, such as 

endonucleases and proteases, which can degrade DNA and proteins respectively (Weber, 

2004). Figure 4.12 represents mechanisms of neuronal damage and death caused by elevated 

calcium mediated cell death. Therefore, cell death may have occurred through mechanisms 

other than oxidative and nitrosative stress, and the protective effect of our berry  extracts may 

not have been due to antioxidant and and/or anti-nitrosative properties, but rather to other 

mechanisms. However, Ahn et al. (2011) found that 100 µM  glutamate causes hippocampal 

cell death by  altered calcium signaling and nitrosative stress. Also, in our culture system, 

neurons generally only constitute ~12% of the cells, with the remaining cells mostly made up 

by astrocytes. Approximately ~20% total cell death was observed after glutamate exposure, 

which suggests that much of the cell death is represented by glial cell death. It is possible that 

glial cells died due to excessive glutamate uptake and cell swelling, however Chen et al. 

(2000) found that astrocytes exposed to glutamate primarily died due to oxidative stress. This 

finding suggests that berry  extracts would likely protect glia through antioxidant properties. 

These qualitative finding of increased dark punctae and altered morphology in glutamate-
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treated cells is also consistent with astrocytes exposed to glutamate toxicity (Chen at al., 

2000). 

↑[Ca2+] i!

Mechanisms*of*calcium/mediated*cell*death*

Damage to mitochondria!
              (↓O2)!

Phospholipase A2! Calmodulin! Proteases!
(Calpain)! Endonucleases!

Arachidonic acid!
NO synthase!
!
      NO!
!
    ONOO-!
!Free radical species!

Damage to proteins, lipids,!
cell membrane, nucleic acids!

( O·
2- )!

Breakdown of!
cytoskeleton!

         Cell death!
         (apoptosis or necrosis)!

Figure 4.12. A flowchart summarising mechanisms of neuronal damage and death caused by 
elevated calcium mediated cell death (modified from Weber 2004). NO, nitric oxide; ONOO-, 

peroxynitrite; O2-•, superoxide.

  Many polyphenolic compounds are potent free radical scavengers, and a plethora of 

literature is available on the antioxidant capacities of phenolic compounds (Naczk & Shaihidi,  
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2006; Shaidi & Naczk, 2004; Hirano et al., 2001; Kahkonen & Heinonen, 2003) and their 

protective effects (Sun et al., 2008; Kong et al., 2003; Rossi et al., 2003). Other groups have 

found similar findings compared to ours using nervous system cell culture models in order to 

assess potential neuroprotective effects of various polyphenolic compounds. For example, 

Ahn et al. found that a proanthocyanidin extract from grapes could inhibit hippocampal cell 

death by decreasing nitrosative stress (Ahn et al., 2011). Similar results have been found with 

other antioxidant compounds, as carotenoids from Pittosporum tobira have been shown to 

protect rat  cortical cells from exposure to 100 µM glutamate for 24 hours (Moon & Park, 

2010) the same treatment protocol used in the current study. An extract from the fruit of 

Alpinia oxyphylla was shown to protect cortical neurons from exposure to 30 µM glutamate, 

and had an effect on condensed nuclei, similar to our findings (Yu et al., 2003). However, in a 

model of glutamate toxicity in hippocampal cultures, a seed extract of Cassia obtusifolia 

provided no protection to both neurons and glia (Drever et al., 2008). It is interesting that only 

the extract from lingonberry fruit did not show any protection from toxicity in our model. This 

may be due to the exact chemical profile of the fruit versus the other extracts. Although the 

overall content of polyphenolics in lingonberry fruit appeared higher than that  of blueberry 

fruit, it is possible that specific compounds in the extracts are responsible for the 

neuroprotection. For example, Bhuiyan et al., (2011) found that exposure to 50 µM  glutamate 

killed 40% of cortical neurons, but addition of the specific polyphenol, cyanidin-3-glucoside 

offered no protection.

  Previous studies have shown that dietary polyphenols can cross the blood-brain-barrier 

(Vauzour, 2012), and anthocyanins specifically  have been detected in brain tissue after oral 
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administration to rodents (Andres-Lacueva et al., 2005; Talavéra, 2005; El Mohsen et al., 

2006). Estimates of specific anthocyanins in brain tissue are generally in the sub-nanomolar 

range (~0.2-0.25 nmol/g tissue) (Talavéra, 2005; El Mohsen et al., 2006). It is difficult to 

make direct comparisons to such studies with the current  work, the whole extract was added 

and not specific polyphenols. The final concentration of the extracts we added was 0.833 µg/

ml of fruit  extract  and 0.083 µg/ml of leaf extract. In the previously  conducted chemical 

analysis of commercially available lingonberry  extracts (unpublished data), it has been found 

that these lingonberry extracts contain an estimated 63.7 mg of cyanidin-3-galactoside per 100 

mg of fresh extract weight. Assuming that the fresh lingonberry extracts used in the present 

study contain a similar amount of this compound, this would translate to the cultured cells 

being exposed to approximately  a 10 nM concentration of fruit extract and 1 nM in leaf 

extract. Talavera et al., detected a level of another cyanidin compound (cyanidin-3-glucoside) 

of 0.25 nmol equivalent per gram of tissue. Therefore, the amount of extract that was added to 

the cultures is likely slightly  higher than what might be achieved in the brain after oral 

administration. In addition, the polyphenolic compounds contained in the extracts may not be 

the predominate forms that would actually enter the brain, as a recent study found that 

although anthocyanins have a fairly high bioavailability, they also undergo significant 

metabolism, producing diverse metabolites (Czank et al., 2013). Nonetheless, this system 

could be used to screen specific polyphenols at various concentrations for potential 

neuroprotective potential, and also to study the mechanisms of action of protection.
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4.5. Conclusion

  Overall, the findings suggest that consumption of lingonberries could have a positive 

effect on human health. For example, the high polyphenolic content and antioxidant capacity 

of lingonberry leaves would be potentially  beneficial for the neuro-protection and brain 

ageing. It is possible that  the consumption of lingonberries, or a tea made from the leaves of 

this plant, as well as supplements produced from the extracts of leaves, could slow brain 

ageing or inhibit the development of neurodegenerative disorders. Therefore, ingestion of 

lingonberry leaves or supplements produced from them could possibly  increase the 

antioxidant and anti-nitrosative capacity of the brain. Therefore, future studies are aimed at 

analyzing the threshold of dietary consumption of lingonberry products and potential 

neuroprotection.
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Chapter 5

Conclusion 

 The results from the present study indicate that lingonberry (Vaccinium vitis-idaea L.) 

plants contain compounds like metabolites and enzymes of the ascorbate-glutathione cycle 

in leaves and phenolics in fruits and leaves that contribute to the wide array  of antioxidant 

activities. The levels of these enzymes and metabolites are markedly affected by the 

propagation method. In vitro propagated plants, especially  those obtained from leaf 

cultures are a good choice to enhance antioxidant enzyme levels in leaves and phenolic 

compounds in fruits along with more advanced plant morphology which includes higher 

plant height, increased number of rhizomes, branches and leaves. On the other hand, the ex 

vitro obtained plants are better option in obtaining bigger in size and higher number of 

berries per plant. In general, in vitro propagation methods are of great benefit in enhancing 

the levels of antioxidant compounds that could be used by nutraceutical companies. 

 Extracts of lingonberries were effective in inhibiting the levels of lipid oxidation in 

pork model systems. The protective effect of berry extracts from in vitro derived plants was 

more profound as compared to those obtained by ex vitro propagation.

 The levels of antioxidant compounds differed in plants from different origin (with 

different genotypes). The two subspecies of lingonberry V. vitis-idaea L. ssp. vitis-idaea 

(European origin) and V. vitis-idaea L. ssp. minus (North American origin) differed greatly 
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in levels of antioxidants and phenolic content. These levels were observed to be much 

higher in the North American lingonberry V. vitis-idaea L. ssp. minus as compared to the 

European lingonberryV. vitis-idaea L. ssp. vitis-idaea. Harsher climatic conditions at high 

latitudes corresponded to higher antioxidant levels. Newfoundland is a subject to high 

climatic fluctuations caused as a result of its proximity to the ocean. This can explain 

higher levels of antioxidants in lingonberry  plants grown there. The levels of antioxidant 

compounds correlated positively  with latitude, altitude, reduced temperature and increased 

precipitation. Although all the studied clones were maintained in the greenhouse 

environment under similar conditions for about 10 years, some variations in their phenolic 

compounds were observed. The variations in the levels of the phenolic compounds and 

antioxidant activities of plants from different regions could be the result of the adaptation 

to the climatic conditions where they initially  grew and developed and hence influenced 

their genotypes.  

   Leaf extracts of wild lingonberry clones from Newfoundland showed a significant 

neuroprotective effect against oxidative stress in brain cell cultures of one day old rat pups 

while fruit extracts showed no protective effect. The levels of antioxidant activity and 

phenolic content in leaves were much higher than in fruits and this correlates with 

neuroprotective activity. 

  

  In summary, this study  has three major aspects: the effect of propagation of 

lingonberry plants on the level of antioxidants; the effect of geographical location on 

antioxidant accumulation; neuroprotective effects of lingonberry leaf and fruit  extracts. 
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The study reveals major differences in antioxidant metabolism of lingonberry plants 

obtained by different methods of propagation and having different geographical locations 

and suggests that lingonberry leaf extracts possess significant neuroprotective activity. 
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