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Abstract 

The transition zone between the boreal forest and Arctic tundra, also known as the 

tundra taiga interface (TTl), is a unique and sensitive ecosystem. A convenient way to 

monitor and understand TTl changes is through the interpretation and analysis of earth 

observation satellite images, or remote sensing. Ecosystem monitoring provides useful 

infonnation about vegetation distribution and global climate. Currently, vegetation is 

monitored at both global and regional scales through the use of multispectral, light 

detection and ranging and synthetic aperture radar imagery. Each remote sensing 

technology offers unique spatial, spectral and radiometric resolution sets. 

This thesis investigates the use of synthetic aperture radar images from the Canadian 

Space Agency's RADARSAT-2 satellite to derive an image product discriminating 

different types of vegetation cover within the TTl region of Labrador. 

A selection of texture measures was applied to a dataset consisting of six 

RADARSAT-1 and fourteen RADARSAT-2 images. Statistical parameters were utilized 

to measure how strongly the radar derived vegetation product correlated with the well­

established normalized difference vegetation index (NDVI). The analysis was guided and 

validated by field data describing forest and non-forest land cover types. 

The results indicate that a mean texture measure with a window size relating to a 

ground area of330x330 m (fine mode} and 450x450 m (standard mode) applied to an R-2 

HV-polarized image is able to inform on the location of the TTl and also complements 

the vegetation cover found in NDVl images. 
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Chapter I: Introduction 

1.0 Introduction 

Recent climate projections of habitat distribution suggest that vegetation within an 

alpine ecosystem will begin to migrate up slope, thus expanding in range (Payette eta/., 

2001 and Guisan and Zimmermann, 2000). The factors that may contribute to this 

change are complex in nature and have encouraged researchers to look more closely at 

regions where these transformations are occurring. One such region is the tundra taiga 

interface (TTl), or the Arctic tree line, where the boreal forest meets with the Arctic 

tundra ecosystem in the northern hemisphere. The Til is of importance because boreal 

forest and tundra ecosystems are vital components of Earth's climate system (Bonan et 

a/., 1995) and support a diverse scope of flora and fauna (Loehle and Leblanc, 1996). The 

item of interest in monitoring this transition zone is the distribution of forest extent, or 

movement of the tree line. This can indicate, over time, if there is a general net gain or 

net loss of forest vegetation. 

Images gathered from the red and near infrared bands of multispectral satellite data to 

form a normalized difference vegetation index (NDVI) are an important source of 

information about the spatial and temporal dynamics of land cover at the TTl (Masek, 

200 I and Liu et a/., 2005). There are particular downfalls, however, of multispectral 

image data, especially when acquiring a multi-year data set for the purposes of change 

detection. These downfalls include loss of data due to interference of the electromagnetic 

energy with atmospheric particles and the difficulty of producing radiometrically 

consistent representations of green biomass (Ranson et a/., 2004). Image data from 



RADARSAT-1 (R-1), a satellite-based synthetic aperture radar (SAR), has been proven 

effective for the application of vegetation detection at transition ecosystems (Ranson et 

a/., 2004). RADARSAT-2 (R-2), launched in 2007, is the successor of R-1, and offers 

several technological enhancements, including the ability to image in all polarization 

modes and higher spatial resolution. These improvements are expected to allow for better 

discrimination of land cover types (Van der Sanden, 2004). Since R-2 is a relatively new 

satellite, little work has been completed on how it can be used to inform and predict the 

position of the Arctic tree line. There is little known about the land imaging 

characteristics of R-2, however, it is capable of relaying information on biomass, 

vegetation height and the identification of tree islands. lt is beneficial to exploit new SAR 

technology and explore the specifications and limitations of R-2 data to the vegetation 

transition zone at the Arctic tree line. 

1.1 Objectives 

This project proposes the use of SAR images from the Canadian Space Agency's R-2 

satellite, launched in 2007, to derive an image product representing vegetation cover 

within the TTl region of Labrador. The methodological objective of this project is to 

extract texture and backscatter information from radar imagery that represents the 

vegetation cover. The operational objective is to create a radar image-derived vegetation 

variable that correlates highly with the 'normalized difference vegetation index ' (NDVI) 

image. This project also aims to identify the most useful R-2 image mode for 

characterizing information about the TTL 



1.2 Context 

The research project is being conducted as part of the inter-disciplinary project 

'Present processes, past changes, spatiotemporal dynamics Arctic' (PPSA) which is an 

International Polar Year initiative. The project contributes to an ongoing Canada-wide 

research effort in studying the effects of climate change on the position and structure of 

the tree line at Arctic sites around the globe. Specifically, the research conducted for this 

project will produce a new remote sensing method using R-2 SAR imagery for 

characterizing the spatia-temporal variations of land cover within the TTl ecosystem, to 

allow for integration with, and improvement upon, existing remote sensing methods. 

The results of this thesis are useful to characterize the TTl at both a local and a 

global scale in order to better understand the social, cultural and environmental impacts 

that may result from changing ecosystems. The creation of a radar-derived vegetation 

variable will allow for more extensive and reliable spatia-temporal analysis of the tree 

line in Labrador, and the Arctic region as a whole. The derived product will be useful for 

quantitative and qualitative studies relating to the taiga-tundra ecosystem, including land 

cover change, tree stand type and structure identification, and forecast modelling. For 

Labrador, this will mean a greater understanding of the TTl ecosystem and the impacts of 

ecological changes on local hydrology, soil characteristics, climate, wildlife and people 

living in northern communities. The study site is located within the confines of the 

proposed Mealy Mountains National Park Reserve, and the results produced through this 

thesis will be used to gain a deeper understanding of the vegetation dynamics within the 

park and assist with future monitoring programmes to track Ecological Integrity of the 

park. ln addition, this project will evaluate the discriminating capabilities of image 



backscattering for R-2 and will contribute to the development of methods of analysis that 

utilize image texture. 

Images were acquired for this project through the Canadian Space Agency's 

'Science and Operational Applications Research- Education' (SOAR-E) initiative (project 

#5009). The objective of the SOAR-E program is 'to build on the successes of 

RADARSAT-1 by developing methods and information products to address the needs of 

the application sectors using the new capabilities of RADARSAT-2' (CSA, 2008). 

1.3 Study Area 

Labrador offers a unique landscape for tree line studies because it contains one of 

the last Boreal forest regions in Canada that has not been significantly affected by 

development projects such as forestry, agriculture and mining (Roberts eta/., 2006). This 

ncar pristine environment is ideal to monitor and predict natural changes within the TTl. 

The study area for this project is located in the Mealy Mountains region of 

Labrador, Canada, about 20 km southeast of Etagaulet Bay situated along the central 

southeast shore of Lake Melville (Figure 1.1 ). The centre coordinates are 53°35"48' N, 

58°55"05' W. The length and width measure approximately 8 km x 8 km. The region of 

interest is contained in a glacial valley in the eastern part of the study area, where the 

terrain elevation varies between 500 and 600 m (Figure 1.2). The study area is the main 

study site for the PPSA research project of Memorial University of Newfoundland. The 

northwest portion of the study area contains mountainous terrain with southeast 

orientated slopes. The terrain elevation ranges from about 430 to I, I 00 m. 
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Figure 1.1: Location of the study area. 
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Figure 1.2: Digital elevation model of the study area. The represented area is 8 x 8 km. 



1.4 Thesis organization 

This thesis is organized into seven chapters. Subsequent to this introduction, the 

second chapter presents an overview of background literature related to location and 

structure of the tundra taiga transition zone. A particular emphasis is given to remote 

sensing approaches. The third chapter outlines the data needed to support the analyses 

and evaluation of the radar product. The fourth chapter highlights the methods that are 

utilized to establish the radar-derived vegetation product. The methods are presented as 

two separate sections, including image pre-processing, and backscatter and texture 

analysis. In the fifth chapter, the results are presented, divided into two main sub­

sections. The first section focuses on the results obtained from the R-1 image analysis 

only, while the second presents the results obtained from the R-2 image data set. The two 

remaining sections contain a discussion of the results and a presentation of conclusions 

that can be drawn from this research. 



Chapter 2: Literature Review 

2.0 Introduction 

The main purpose of Earth observation remote sensing is to better understand the 

natural and built environments from measurements of reflected, backscattcred or emitted 

electromagnetic (EM) energy. Remote sensing infers statistical or physical relationships 

between EM characteristics and a particular parameter or parameters of interest. For this 

research project, the parameter of interest is land cover type, or more specifically, forest 

and non-forest vegetation. This literature review provides a comprehensive overview of 

studies that encompass the integration of ecology, Arctic plant biology and different 

types of remote sensing methods. A special focus is given to current literature as it 

pertains to radar remote sensing of land cover. 

This literature review comprises six major sections. The first section defines the 

'tundra taiga interface' (TTl) as the term applies throughout this project. The second 

section investigates current remote sensing methods that arc used to describe the land 

cover. This section includes an overview of multispectral , LiDAR and radar remote 

sensing methods. The third section highlights the study area' s vegetation composition and 

structure in order to illustrate how these can be exploited during radar remote sensing 

analysis to better represent the land cover. The fourth section presents image analysis 

procedures that are used to extract land cover information, including backscatter analysis, 

texture analysis and geostatistical methods investigating the spatial nature of data. The 

concluding section illustrates the potential that radar data offers as an important tool for 

characterizing the TTl. 
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2.1 Definition of the tundra taiga interface 

The tundra taiga interface (TTl), as described by Callaghan eta/. (2002), is one of 

Earth's greatest transition zones, stretching more than 13,400 km around the Northern 

Hemisphere. The TTl is regarded as the boundary between the dense boreal forest (taiga) 

composed of birch (Betula spp.), larch (Larix spp.) and evergreen conifers, and the Arctic 

tundra composed of permafrost regions containing low growing vascular plants as well as 

lichen and moss vegetation cover (Roberts eta!. , 2006). The latitude at which the TTl 

occurs ranges between 70 and 55°N (Harsch eta/., 2009). 

The study area for this project is situated within the High Subarctic Tundra ceo­

region of Labrador, Canada. The study area is representative of the most southerly region 

that is characteristic of this ceo-region (Roberts et a/., 2006). Although the area is 

situated 3° latitude south of the optimal latitude for the boreal forest to Arctic tundra 

transition zone put forth by Callaghan et a/. (2002), altitudinal conditions produce a 

transitional vegetation distribution example of the TTl ceo-region. 

Vegetation within the High Subarctic Tundra consists of three categories: forest, 

heath and barrens. Forest land cover occurs mostly in valleys and is composed of both 

deciduous and coniferous trees. In the valley the forest stands are in long axis dimensions 

ranging from 200 to about 1000 m. At higher altitudes, tree islands are present with a 

transect length of between I 0 to 30 m (LHRG, 2008). A tree island is defined as an 

individual tree growing at the range edge for that species (Hermanutz, L., Professor, 

Memorial University, Personal conununication, 20 II). Tree islands exist in tree fonn or 

krumholtz form, the latter growing horizontally. 



Heath is composed of low growth vegetation such as lichens, mosses, sedges and 

vascular plants. Barrens include rock-covered areas with little plant cover and high-

altitude areas where conditions arc too harsh for much vegetation to grow. Photographs 

taken at the study site show examples of forest and barrens (Figure 2.1) and heath (Figure 

2.2) land cover categories. Note the change in land cover type as elevation increases. 

Fo rest Barren 

Figure 2.1: Photograph of study area representing Forest and Barren land cover. 
Photograph courtesy of Seth Loader, M.Se. Memorial University, 2007. 

Heath 

Figure 2.2: Photograph of study area representing Heath land cover. Photograph courtesy 
of Andrew Trant, M.Sc. Acadia University, 2009. 
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The TTl is a complex and dynamic ecostone that varies in both time and space 

(Grace eta/. , 2002 and Skre eta/. , 2002). Generally, the TTl is defined as the northern­

most distributional limit of a group of species that have a common tree growth form 

(Payette eta/. , 2001). However, there is some discrepancy in this definition at latitudinal 

and altitudinal limits of tree species distribution, because the form of the species is 

altered by environmental responses to changing climatic and topographic conditions, 

which cause species to grow as dwarfed shrubs, or horizontally (Payette eta/., 2001). In 

Labrador, this form of vegetation is more commonly referred to as krumholtz. The TTl 

being investigated for this project is a localized subarctic tree line, defined as the 

uppermost position of single-stemmed tree growth forms at least 2.5 m high (Lescop­

Sinclair and Payette, 1995). This characteristic of trees in the transition zone is accounted 

for in the interpretation of the results obtained from the SAR images. 

2.2 Remote sensing of the tundra taiga interface 

Current remote sensing methods utilized to characterize land cover include 

multispectral vegetation indices, LiDAR and Radar. Each type of remote sensing system 

exploits a relationship between the at-sensor recorded EM energy and a particular 

characteristic of the land cover, such as height of vegetation, leaf chlorophyll content or 

dimensions of the vegetation components. The advantages and disadvantages of each of 

these methods are discussed in this section using examples from current literature. 

11 



2.2.1 Vegetation indices for characterization of the tundra taiga interface 

Multispectral remote sensing methods for land cover characterization of a tree line 

environment utilize a vegetation index, the most standardized and widely accepted of 

which is the normalized difference vegetation index (NDVI). The NDVJ most accurately 

represents vegetation when compared to six other indices (Lyon eta/., 1998). The NDVI 

equation uses the red and near-infrared bands of multispectral satellites to measure the 

leaf reflectance of green biomass in a landscape (Rouse eta/., 1973). The dominant factor 

controlling leaf reflectance is the concentration of pigments in the cells that make up the 

leaf structure, the most common of which are chlorophyll-a and chlorophyll-b (Gausman, 

1974). The absorption spectrum of chlorophyll in healthy green vegetation is shown in 

Figure 2.3 and indicates that this pigment absorbs a high amount of red light, but reflects 

near infrared (NIR) light. When this observation is applied to multispectral satellite 

imagery in a normalized ratio equation, a NDVI image is produced (Equation 2.1 ). 

Equation 2. I 

(Rouse eta/., 1973) 

where the variable R refers to the reflected EM energy of the respective wavelength of 

light as recorded by the satellite sensor. 

The NDVI image ranges in values from negative to positive l , where values from - I 

to 0 represent non-vegetated land cover and values from 0 to I represent the amount of 

green biomass along an increasing scale. 
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Figure 2.3: Typical spectral signature of healthy green vegetation. 

Masek (2001) studied the expansion of forest land cover over time using co-located 

Landsat-! (L-1) Multispectral Scanner (MSS) and L-7 Enhanced Thematic Mapper 

(ETM+) images. The analyzed images had a spatial resolution of 80 m. The study was 

conducted in two regions, near Richmond Gulf, Quebec, and Great Salt Lake, Northwest 

Territories. Images from 1974 and 1990 were acquired for the Richmond Gulf area, and 

for the Great Salt Lake area, images from 1972 and 2000 were acquired. The image pairs 

represented a 26 to 28 year time period over which forest changes could be investigated. 

NDVI images were created and the change in NDVI values over time were examined 

between the earlier and later date images. Results showed that the forest-tundra boundary 

could be accurately mapped using NOV! imagery. It was also found that there was no 

significant change in the distribution of forest, for either study area, over the specified 

time periods. One-pixel gaps in forest cover remained the same over time, which suggests 
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that if forest expansion occurred, that it could not be captured at an 80 m resolution. 

Masek (200 I) recommended the use of more sensitive remote sensing approaches for the 

detection of forest expansion at a more detailed spatial scale, such as those with a higher 

spatial resolution. 

In a similar study, Liu el a/. (2005) investigated the use of Landsat images for 

their ability to detect tree line changes in the Changbai Mountains of China at a latitude 

of approximately 41 ° N. An L-1 MSS image from 1977 and an L-5 TM image from 1999 

were acquired for this project. A NDVI image was created for each year and classified as 

forested or non-forested. The analysis was completed using 80 m and 30 m resolution. 

The results showed that there was no change in the tree line environment over the study 

period; however, there was an increase in the raw NOV I values between 1977 and 1999. 

This was attributed not to change in forest structure, but to anomalies caused by 

atmospheric interference, even after the necessary image corrections had been made. The 

atmospheric interference in the images was caused by the interaction of different 

wavelengths of light with particles in the atmosphere, such as dust, water vapour or 

clouds. 

Through these studies, it has been demonstrated that the limited spatial resolution 

of Landsat multispectral imagery, combined with its sensitivity to cloud cover, cause 

difficulties in collecting data capable of producing a spatially continuous and temporally 

significant characterization of forest change over time. However, the data produced 

through these methods are proven to be useful when trying to characterize forested and 

non-forested land covers (as shown in Masek, 200 I), because they are able to quantify 

the amount of green biomass. The inforrnation produced from the NOV I can be used as a 
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reference image, or a standard vegetation product, when investigating the use of other 

remote sensing data for forest characterization. 

2.2.2 LiDAR remote sensing of/Ire tundra taiga interface 

Light Detection And Ranging (LiDAR) is an active airborne remote sensor that 

uses laser pulses (usually between I and 25 nm) to measure the elevation of objects on 

the Earth's surface (Shan and Toth, 2009). It is most often used to create digital elevation 

models, but can also be used to calculate the height of vegetation, allowing for 

description of particular land cover classes based on this characteristic. This section 

highlights studies that have been completed using LiDAR for forest classification. 

Rees (2007) attempted to map a portion of the Arctic tree line in Finnmark, 

Norway using LiDAR data. The data were collected from the Optech ALTM3033 LiDAR 

sensor on board an aircraft and had a spatial resolution of 2 m. The LiDAR image 

covered an area of 126 km'. Through this study, it was found that LiDAR data were 

appropriate for structural characterization of the forest edge if 'forest' was defined as 

"trees not more than I 0 m from one another, with a tree being defined as at least 2 m 

tall." However, the author states that it would be impractical to use LiDAR data to 

characterize the entire circumpolar TTl due to the large amount of time and money 

required to collect and process it. 

In a similar study, Korpela et a/. (20 I 0) investigated the ability of LiDAR 

intensity values to classify different tree species in a region of southern Finland. Images 

were acquired from two different airborne LiDAR sensors including the Optech 

ALTM3100 and the Leica ALS50-Il with scanning footprints of25 to 28 em and 17 to 18 
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em, respectively. Using these data, the authors obtained classification accuracies between 

88 and 90% for both data sets. However, analysis of the potential fusion of both datasets 

revealed that intensity data for tree species classification varied between sensors for 

reasons that were unknown. This problem produces issues when trying to merge datasets 

and decreases the footprint area that can be covered by LiDAR data. 

Due to its high spatial resolution and lack of atmospheric interference, LiDAR 

data show more promise than multispectral images when investigating tree line 

environments. There have, however, been concerns related to the feasibility of acquiring 

LiDAR data for the entire 13,400 km length of the TTl, as noted in the two studies 

presented above. As well, there are concerns related to the vertical accuracy of LiDAR 

data. Naesset ( 1997) found that the mean tree height calculated through LiDAR analysis 

underestimated the actual mean tree height recorded from ground truth data by 4.1 to 5.5 

m with the standard deviation of this difference ranging from ±1.3 to ±1.6 m. The 

differences in mean tree height seen in LiDAR data can have a major impact if the 

objective is to characterize the spatial infonnation about the canopy structure, as it may 

lead to misclassi fication of the TTl. 

Recently, there have been significant advancements in LiDAR technology with 

the launch of lCESat's (Ice, Cloud, and land Elevation Satellite) LiDAR system: 

Geoscience Laser Altimeter System (GLAS). However, the data acquired from this 

satellite currently only provide sparse coverage of the Earth ' s surface (Van Leeuwen and 

Nieuwenhuis, 2010). With more research and development of this technology, perhaps it 

will be better suited in the future for the discrimination of land cover types on a larger, 

circumpolar scale. 
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2.2.3 Radar remote se11si11g 

Radar is an active remote sensing system that emits millimetre- to metre- length 

waves and records the intensity of backscatter that is returned to the sensor. The amount 

of EM energy that is recorded at the sensor is related to the shape and structure of the 

phenomena being imaged (Herold eta/., 2004), and varies for different land cover types 

based on these characteristics. Variation in tone across a radar image may also be due to 

differing dielectric properties, often dependant on the water content of the materials being 

investigated (Freeman, 1998). Radar images can provide information that may help better 

characterize the tundra taiga interface when compared to multispectral and LiDAR data. 

Ranson et a/. (2004) tested the ability of five datasets from different sensors to 

characterize the surface and vegetation structure changes aross the tundra taiga interface 

in a region of Siberia, Russia. The datasets included four multispectral image sets (L-7 

ETM+, IKON OS, MISR, and MODIS) and one R-1 image set consisting of five standard 

mode images with varying incidence angles. L-7 ETM+, MISR red band multi-angle 

data, MODIS time series data, and R-1 large-incidence angle images all showed 

significant differences between the spectral signatures or backscattering seen in tundra 

and taiga environments. The implication of this research, as stated by the authors, is that 

"global coverage available from RADARSA T may be used for analysis where high 

resolution is required and cloud cover or low illumination precludes the use of Landsat­

like data" (Ranson eta/., 2004 from p. 294). 

R-2 data, available since 2007, are the successor to R-1, and while they still offer 

data that are analogous to R-1 products, they also offer higher-resolution, multi-polarized 

data. The ability of these data to characterize the TTl has not so far been investigated, yet 
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provides a means to supersede or complement existing remote sensing products for 

characterizing forest-tundra environments, such as multispectral and LiDAR products, as 

discussed above. 

2.2.3.1 Study area vegetation composition and radar backscatler 

This research focuses on the Mealy Mountains study area. Within the study area, 

three types of land cover are of interest: boreal forest, Arctic tundra, and water. The 

boreal forest region, or taiga, is composed of larger deciduous (birch, willow and larch) 

and coniferous (larch, black spruce, white spruce and balsam fir) trees and shrubs whose 

branches and leaves produce a thick canopy cover. In general, there is variation of tree 

heights in taiga land cover due to availability of nutrients, soil composition, drainage 

patterns as well as inter- and intra-species competition (Loehle and LeBlanc, 1996). 

Arctic tundra land cover comprises vascular plant species that lightly blanket the 

ground and do not vary considerably in height, as well as exposed bedrock, which may 

vary in surface height due to fractures and glacial scarring (Clarke eta/., 2000). 

Water bodies are otherwise planar surfaces that only have slight changes in 

roughness when affected by wind. Water will not be considered when defining the TTl, 

but is taken into account as a means of delineating water from land. 

Sieber ( 1985) and Richards ( 1985) have shown that the backscatter intensity of 

different land cover types is fundamentally related to vegetation characteristics such as 

surface roughness, canopy cover, tree density and height. Thus, the differences in these 

characteristics as noted above should allow for delineation between the land cover types 

within the study area. These are the characteristics that will be exploited during analysis 

18 



of R-2 radar imagery in order to delineate Arctic tundra (non-forest) from forested land 

cover. 

Strong differences in backscatter values of land cover features are also dependant 

on specifications of the radar sensor, including incidence angle, polarization, wavelength 

and spatial resolution. Ranson et a/. (2004) found that horizontal like-polarized (HH), 

C-band radar with high incidence angles are suitable for exploiting differences in the size 

and structure of tundra vs. taiga land cover. These results are also emphasized in Verbyla 

(2001), in which the potential of European Remote Sensing (ERS-2) and R-1 radar 

imagery to detect spring leaf flush in the Alaskan boreal forest region was examined. The 

images were taken before and after the spring flush during the 1997-1998 and 1998-1999 

spring seasons, respectively and re-sampled to a spatial resolution of 25 m. The vertical 

like-polarized (VV) ERS-2 images, with incidence angles between 20 and 26 degrees, 

showed no consistent difference between before- and after-spring flush images. However, 

the R-1 images with HH polarization and incidence angles between 24 and 31 degrees, 

demonstrated an increase in the mean backscattering value of the before- and after-spring 

flush images. The effect of incidence angle is seen only in the HH images. The outcomes 

of this study are attributed to horizontally polarized energy interacting with tree branches 

and leaves rather than with tree trunks. 

The studies noted above are useful to establish guidelines of specifications within 

which to conduct the development of a R-2 -derived vegetation product, so that the best 

possible results can be produced. The four radar system specifications of most concern 

are wavelength, incidence angle, spatial resolution and polarization. C-band radar will be 
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used, as this is the only wavelength available from R-2 and has been proven effective in 

forest density mapping. 

Where possible, image modes with an incidence angle of at least 25° are used because 

they have been shown to represent the best separation between forested and non-forested 

areas. The combination of the RADARS AT C-band wavelength (5.56 em) into equations 

2.2 and 2.3 suggests that surface roughness on the order of 0 to 0.24 em and 1.39 em and 

greater can be discriminated from each other with an incidence angle of 25°. However, 

the smooth and rough criteria with an incidence angle of 45° (R-1 's S7 mode) are 0 to 

0.34 and 1.93 em and greater, respectively. In the context of the TTl, barren tundra 

components are expected to be identified with the smooth surface (h,mooth) causing 

specular backscattering, while the taiga land cover is characterized as having a rough 

(hrough) surface texture which would cause diffuse backscattering. 

hsmooth < A/25 COS fi 

hrough > A/4.4 COS fi 

Equation 2.2 

Equation 2.3 

(Jensen, 2007) 

where A and f) represent the wavelength and incidence angle, respectively. The heights of 

a surface roughness that will tend to produce a specular backscattering (low brightness 

values) are represented by h,, while surface roughness values that result in a diffuse 

backscattering (high brightness values) are represented by h, The taiga (forest) 

landscapes found in the study area all have a ground relief that is greater than 1.39 em, so 

it is expected that these features will cause high returns relative to landscape surfaces that 
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have a lower relief, such as lichens, mosses and shrub leaves found in tundra (non-forest) 

landscapes. The surface roughness-related variations form the basis to investigate radar 

image brightness as a means to discriminate between forested, at least 2.5 m high 

(Lescop-Sinclair and Payette, 1995), and non-forested land cover at the TTl. 

The two remaining specifications, spatial resolution and polarization, are not as easily 

conceptualized due to lack of literature in these areas, however, both polarization and 

spatial resolution have been identified as parameters that can enhance detection of forest 

and non-forest areas for other radar wavelengths and are worth investigating in relation to 

C-band R-2 products. 

A higher spatial resolution generally leads to a better differentiation of forest canopy 

characteristics. For example, Santoro et a/. (2009) analyzed the backscatter 

characteristics of a series of images captured by the Phased Array type L-band Synthetic 

Aperture (PALSAR) Radar sensor aboard the Advanced Land Observing Satellite 

(ALOS) for their ability to delineate forest growth stages in a boreal forest region of 

southern Sweden. The authors investigated the backscatter associated with forest growth 

stages for a series of images with spatial resolutions that ranged between 20 and 50 m. 

The study indicated that higher spatial resolution images produced better class separation 

results between forest growth stages. Polarization was also investigated in this study, 

concluding that cross-polarized backscatter is more sensitive than like-polarized 

backscatter to different forest growth stages. Furthermore, Rees (2007) found that tree 

line classification results were highly dependent on the spatial resolution and the canopy 

density of the forest landscape. Fine resolutions (about 10 m) captured forest and non-
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forest areas as heterogeneous features while at coarse resolutions (about 30 m) the two 

classes were represented as homogenous features. 

For the purposes of this thesis, all spatial resolution and polarization modes available 

through R-2 have been investigated in order to establish the most useful R-2 image mode 

for characterizing tree line information. In terms of spatial resolution, the available modes 

are ultra fine, fine and standard, which represent nominal spatial resolutions of 3, 9 and 

30 m, respectively. For polarization options, R-2 images are available in both single like­

(HH or VV) and cross-polarization (HV or VH) as well as dual and quad polarization, in 

which a combination of two or more like- and cross-polarizations are imaged at the same 

time. 

2.3 Extracting land cover information 

Raw backscatter intensity values and texture transforms are two methods 

commonly used to extract numerical information that is characteristic of a particular land 

cover. The first of these tasks is utilized for radiometric calibration, while the second 

requires an in-depth investigation of analyses parameters such as filter types and sizes. 

2.3.1 Backscatter analysis 

Backscatter refers to the interaction of the radar signal with phenomena on the 

Earth's surface. Different types of backscatter interaction affect the intensity of radar 

energy that is returned to the sensor, thus influencing the representation of a particular 

phenomenon on the resulting radar image. There are three main types of backscattering 

mechanisms that are known to occur: specular, comer and volume backscatter. Specular 
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backscatter occurs when the emitted electromagnetic energy interacts with a smooth 

surface (i.e. asphalted road and calm water surfaces) and is reflected away from the 

sensor. Very little to no energy is received at the sensor, thus producing a dark image 

backscatter value. Comer backscattering happens when the energy bounces off the 

Earth's surface where, after it has encountered a vertical structure (i.e. urban building or 

tree trunk), it is redirected towards the sensor (this phenomena is also referred to as 

double bounce). The image backscatter values are high for regions where comer 

backscattering occurs. Finally, volume backscatter refers to the interaction of the emitted 

energy with a rough surface (i.e. vegetation canopies that have varying density, height, 

tree and branch spacing, etc.). ln this case, the energy is scattered in multiple directions, 

away and towards the sensor, resulting in varying backscatter values in the medium 

greyscale range. 

Backscatter analysis is an investigation of the statistical differences between 

backscatter (i.e. intensity) values of two or more different land cover types. Backscatter 

differences are most often expressed as a backscatter signature, whereby the mean and 

standard deviation of the backscatter response for differing land cover classes are 

expressed on a plot (as in Ranson eta/., 2004). Analysis such as this can also provide 

information on optimal radar specifications when an image set is available that has 

variations of a particular specification, such as polarization, incidence angle and spatial 

resolution, as seen in Santoro eta/. (2009) 

23 



2.3.2 Texture analysis 

Radar images are normally wrought with high frequency speckle noise that may 

interfere with backscatter-based class differentiation. Typically, texture images are 

created from the SAR backscatter image to minimize such interferences. Texture images 

take into account the spatial variability of brightness values across the images, thus 

decreasing noise and increasing the amount of useful information that can be extracted 

from the image (Tsymbal eta/., 2005). Two categories of texture filters can be effective. 

First order texture is calculated directly from the backscatter intensity image using a filter 

of size n x n that moves in a box-car like manner throughout the image, where 'n' is the 

number of filter elements matching the image pixels. First order texture variables include 

statistics such as coefficient of variation, energy, entropy, kurtosis, mean, skewness and 

variance (Dekker, 2003; Haack, 2007; Luckman et a/., 1997). Second order texture 

images are calculated based on a grey-level co-occurrence matrix (GLCM), which is a 

derivative of the backscatter intensity image. The GLCM represents the relationship of a 

reference pixel to its 'n'h' neighbouring pixel. GLCM-derived textures may include 

contrast, correlation, dissimilarity, entropy, homogeneity, inverse difference and GLCM 

mean (Kurvonen and Halikainen, I 999; Luckman et a/. , 1997; Ulaby et a/., 1986). First 

and second order texture filters can be directional or isotropic, in order to enhance some 

or all landscape feature orientations, respectively. 

Ulaby et a/. (I 986) classified land cover and forest type using images from the 

Seasat-SAR and shuttle image radar-A (SIR-A) for parts of the northern United States, 

Mexico and South America. The land-use categories included in this study were water, 

forest, pasture, urban, and cultivated, SIR-A data were recorded in L-band (23.5 em 

24 



wavelength), HH polarization, and the image analysis was based on a 40 m spatial 

resolution image. A maximum likelihood classification algorithm was applied to the 

backscatter intensity image as well as first and second order texture images. The raw 

backscatter image yielded an accuracy of about 58% for forest, while the contrast and 

inverse moment texture images provided an accuracy of 88%. An accuracy of 93% for 

the forest class was obtained when the backscatter intensity and contrast image were 

combined. Furthermore, Haack (2007), found that texture calculated using a first order 

variance texture improved the classification accuracy of land cover for R-1 images of 

Katmandu, Nepal by about 20% compared to the original radar backscatter image. 

Luckman et a/. (I 997) classified forest growth stages using C-band SAR images 

acquired from the Convair 580 airborne system for the Tapojos region of the central 

Amazon forest in Brazil. The spatial resolution of the images was 6 m and the dataset 

contained two images, one with HH and one with VV polarization. Each image was 

classified into one of five categories ranging from clear-cut to virgin forest. The raw 

backscattering values for each image were investigated as well as two texture measures, a 

first order coefficient of variation (CV) and a second order GLCM-derived contrast. The 

analysis showed that there was no significant difference between the mean backscatter 

amplitude of the growth classes. Although it was hypothesized, based on another study of 

the same region (Grover and Quegan, I 995), that the C-band radar signal does not 

penetrate far into a vegetation canopy and as a result, the backscattering for mature forest 

is similar to that of regenerating forest, agricultural crops, or even moist bare soil. The 

CV texture measure performed the best for both polarization images compared to the raw 

backscattering and the contrast texture measure. The two texture measures were better at 
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distinguishing between regeneration classes than backscanering alone, but the only 

statistically separable classes were virgin forest classes and all other regeneration classes 

combined. 

Dekker (2003) applied multiple texture measures to ERS-1 SAR images for the 

mapping purpose of updating an urban area in the Netherlands. The results found that the 

classification of land cover clusters (which included forest) could be improved using 

texture measures. Twenty-six texture measures were tested for this purpose. Of those 

twenty six texture measures, first order mean and variance performed the best. 

Kurvonen and Hallikanen ( 1999) also explored the use of the European Remote 

sensing satellite (ERS-1) and the Japanese Earth Resource satellite (JERS-1) SAR data to 

classify land cover and forest types in a boreal forest region of Finland. Using the 

backscattering image and second order texture images, five land cover types were 

classified, including water, gravel, forest, mire and open bog. The highest overall 

classification accuracy (65%) was obtained using the inverse moment second order 

texture image. The highest class accuracy was 70% for water and the lowest was 62% for 

mire. An anomaly noted by the authors during classification was that young new growth 

forest and shrubs within agricultural land were often misclassified as forest. 

These studies demonstrate that texture variables applied to radar images produce 

superior results for land cover delineation compared to those that investigate raw 

backscatter values only. The studies also highlight the texture measures that may be 

appropriate for enhancing statistical differences between forest and non-forest land cover, 

which are of interest in this project. 
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2.4 Geostatistical methods in remote sensing 

When backscatter and texture information are considered, it is also important to 

understand the spatial relationships that are taking place between data points both on the 

ground, and in the imagery being analyzed. For example, Haack (2007) stated that the 

effectiveness of a window size was most likely related to the variability and spacing of 

ground features, including field size and building density. Furthermore, Wu and North 

(200 I) state that the half width of a texture filter is related to the minimal visible feature 

size at the corresponding scale. Given a 7x7 cell filter on an image with an image spatial 

resolution of 30m, a minimum feature size of 105xl05 m (i.e. 7/2*30~105) would be 

detectable. 

A practical method to investigate the spatial relationships within a dataset is 

through geostatistics. Geostatistics applies theories of random processes and statistical 

inference to geographical phenomena. One of the main theories of this particular school 

of thought is that there are different scales of spatial variation within a dataset and that all 

data are spatially dependant (i.e. data values that are closer together are less variable than 

those which are further apart). Most geostatistical approaches interpolate areas of datasets 

that cannot be sampled using statistical inferences related to how data values are spatially 

correlated with neighbouring data values (Babish, 2006). Remote sensing datasets already 

contain a large amount of closely spaced and regularly gridded information. Therefore, 

geostatistical methods offer an ideal format for assessing the spatial variability of the 

grey level values found within an image (Assia and Aichouche, 2004). 

A remotely-sensed image is considered a spatial dataset, and as such, the spatial 

characteristics associated with these types of datasets should be considered. The two most 
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common spatial characteristics are spatial heterogeneity and spatial dependence. Spatial 

heterogeneity, also referred to as spatial non-stationarity, occurs when the parameters 

describing the data vary from place to place. Spatial dependence means that data values 

which are spatially closer together are less variable than those which are further apart. A 

description of these characteristics provides important information about which texture 

measures and windows sizes may be appropriate for a given remotely sensed image and 

is most often described using variogram parameters (Getis and Ord, 1992). Examples of 

the use of each of these parameters with respect to remote sensing data are given below. 

Variogram analysis involves the construction of a semi-variogram, which is a plot 

that expresses the empirical data's semivariance along the y-axis and the distance 

between data values along the x-axis. Semi variance is expressed as a measure of the 

average squared dissimilarity between data pairs in a defined region. A theoretical 

variogram model is then fit to the empirical semi-variogram in order to represent its 

structure and characteristics. The point at which the variogram model reaches a 

maximum semivariance, also known as the sill, is indicative of the distance at which 

there is minimal spatial autocorrelation between the image pixels (Smith et a/., 2007). 

When considering the characteristics of a particular land class, the sill can inform a 

decision on the maximum filter size that should be used during texture analysis (Franklin 

eta/. 1996; Hyyppa and Hyyppa, 200 I; Karl and Maurer, 20 I 0). 
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2.5 Conclusion 

Radar images show great promise to be used as a consistent and reliable data type 

in order to characterize the nature and dynamics of the TTL Through the investigation of 

the ecological and spatial aspects of the land cover classes that are found within the study 

area, it is hypothesized that forest, non-forest and water will possess different radar 

backscattering properties, which will allow for the delineation and analysis of the TTl 

using R-2 products. A major component that will be considered in order to create the 

best possible separation between land cover classes is texture information. The main 

focus of this research is to find an appropriate texture measure and window size that most 

accurately represents the TTl for the particular dataset at hand. The underlying spatial 

relationships and characteristics that exist between pixel values that represent different 

land cover types can be understood using geostatistical approaches adapted to the radar 

dataset. Building on the successes of R-1 in forestry applications (Ranson el a/., 2004), 

this research is intended to create the means to move to R-2 as a main source of data for 

monitoring of the tree line in northern regions. 
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Chapter 3: Data 

3.0 Introduction 

The success of this study in part depends on the availability of near anniversary 

date (i.e. recorded on the same date but not necessarily on the same year) NDVI and radar 

images. In order to meet these requirements, an acquisition plan for R-1 and R-2 data was 

compiled, and the imagery subsequently acquired. Ancillary data for this project include 

in situ field data, short-term weather data and a digital elevation model (OEM). 

3.1 Multispectral images 

The NDYI is calculated using the red (0.6-0.7 J.Ull) and near infrared (NIR) (0.7-

0.8 J.lm) bands from multiple spectral images. Three NOV! images, from September 

2008, August 2005 and July 200 I are used for this project. Prior to the NDVI equation 

being applied, the red and NlR band image is atmospherically corrected. The images that 

are utilized to create the NDY!s all come from different sensors, which may have 

different radiometric properties, rendering them unreliable for multi-date analysis. In 

order to correct for this, a multi-date image calibration was applied using the pseudo 

invariant feature (PIF) method (Schott eta/., 1988). PIF's are features that are assumed to 

have a constant spectral reflectance over time, which in the NDVI images include 

glaciers, deep water bodies and bare rock land cover. The 200 I NDYI was used as the 

baseline to calibrate the 2005 and 2008 NDYT images. Forty-six PTF's were selected, 

from which a linear regression function, and corresponding offset and gain values were 
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derived between the baseline and each of the other images. These calibration equations 

were subsequently applied to the 2005 and 2008 NOV I. 

A georectification is also applied to the images using the North American datum 

1983 for UTM zone 22 row U. The Landsat 7 products from September 20, 200 I are 

gcoreferenced and thus used as the reference for georecti fication of the remaining 

multispectral images. The NOV! product was resampled to 30 m to match the spatial 

resolution of standard mode R-1 and R-2 products. The images also exist in their original 

spatial resolution and will be useful for comparison to R-1 and R-2 fine mode images as 

well as R-2 ultra-fine mode images. Notable specifications of NOV! images are presented 

in Table 3.1. 

Table 3.1: Specifications ofNDVI images. 

Platform and Initial spatial Resampled spatial 
Date sensor RMS (pixel) resolution (m) resolution (m) 

Landsat-7 
Sept. 20, 200 I ETM+ N/A 30 N/A 

QuickBird 
Sept. 06, 2005 multispectral 0.761 2.4 30 

SPOT 
Aug. 30, 2008 HRVIR 0.647 10 30 

3.1.1 Water mask developme11t 

The near infrared band from each multispectral image is used to create a water 

mask. Shallow water absorbs near infrared light and thus, when imaged, lakes and rivers 

appear as the darkest pixel values. This characteristic is contrasted on land, from which 

near-infrared light is strongly retlected. Land and water can be distinguished numerically 
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by examining the near infrared image's histogram. The water-land threshold value is 

determined where, on the histogram, the brightness values of lowest occurrence between 

water and land distribution functions are present (Mather, 2004). It is then used to 

reclassify the image into a binary product in which water and land are represented as 0 

and I respectively. The 2005 Quickbird water mask image is presented in Figure 3.1. The 

water mask will be applied to any output radar product that is created through this project 

in order to focus the analysis on land features. 

c::::lwater 
- Land 

Figure 3.1: Water land mask calculated from the SPOT 2008 image of the study area. 
Note that the mapped area is 8 x 8 km. 
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3.2 SAR Imagery 

Fourteen R-2 SAR images were acquired between August 21 and September 24, 

2009. The image set consists of five ' fine' mode images, five 'standard' mode images 

and four ' ultrafine' mode images, which differ in their spatial resolution (Table 2). 

Concurrently, the dataset includes like-, cross- and quad-polarized images, and a range of 

incidence angles. 

A set of six RAOARSAT-1 (R-1) images was also acquired. The main R-1 image 

acquisition criteria were that they match the NO VI image dates. Table 3.3 shows the R-1 

and NDVI image dates, as well as the R-1 image specifications. 

All multispectral and radar images were recorded within a two month time period 

(August 3 to September 26). A time line is presented in Figure 3.2 to illustrate data 

continuity between the NOV I and radar imagery. The acquisition of all data within this 

time frame minimizes the effects of seasonal variations on the vegetation cover, which 

could potentially affect the analysis results. Same year NOV! and R-1 images, as well as 

R-1 and R-2 images have comparable spatial resolutions. 
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Table 3.2: Specifications of the R-2 SAR images. 

Mode 
Spatial resolution (m) 

Polarization 
Incidence angle Date 

Range Azimuth (degree) (2009) 

F2 vv 39.55 Sept. 27 

F4 
10 9 

HH 43.61 Sept. 13 

F21F HV 35.71 Sept. 3 

F5 VH 45.44 Sept. 7 

FQI9 10 6 HH/HVNHNV 38.51 Sept. 17 

S3 vv 30.96 Sept. 10 

S6 
25 28 

HH 41.7 Sept. 24 

S7 HV 44.86 Sept. 6 

S4 VH 34 Sept. 10 

SQ21 25 28 HH!HVNHNV 40.34 Sept. 20 

U2 vv 30.8 Sept. 23 

U27 
3 3 

HH 48.71 Sept. 14 

Ul7 HV 42.4 Aug. 27 

U27 VH 48.71 Aug. 21 
Abbrev1at10ns. Mode- F- fine, FxxF- fine far, S-standard, U9Jitrafine, SQ-standard 
quad-polarized, FQ= fine quad-polarized; Polarization- HH= like horizontal polarized, 
VV= like vertical polarized, HV= cross horizontal vertical polarized, VH= cross vertical 
horizontal polarized. 

Table 3.3: Specifications of the R-1 SAR images. 

Mode SR(m) lA (degrees) Date Matching image and date 

Fl 8 38.4 Sept. 26, 2005 NDVI on Sept. 06, 2005 

F3N 8 41.52 Sept. 12, 2009 R-2 on Sept. 13, 2009 

Sl 30 30.93 Aug. 08, 200 I NDVI on Sept. 20, 200 I 

S4 30 34.26 Sept. 15, 2009 R-2 on Sept. I 0, 2009 

S5 30 39.24 Aug. 03, 2008 NDVI on Aug. 30, 2008 

S7 30 46.96 Sept. 07, 2008 NDVI on Aug. 30, 2008 
Abbrev1at10ns: mode- FxN- fine near, S= standard, F= fine; spec1ficat10ns- SR= spatial 
resolution, !A= incidence angle. 
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Figure 3.2: Timeline of image acquisition dates. 
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3.3 Field data 

The field data for this study were collected by members of the Labrador 

Highlands Research Group (LHRG), in conjunction with the PPSA IPY project number 

2006-SR-1-CC-027 !Tom 2006 to 20 II. Field data were collected in July 2007 and 

August 2008 (LHRG, 2010). The records consist ofGPS coordinate-tied information for 

land cover types including forest, heath and barren, as well as land cover for 500 and 

1000 m transect lengths distributed throughout the study area. The field data also contain 

measurements on estimated tree height in metres, patch size and location of tree islands, 

and canopy density in percent cover. 

The two sets of field data are used to create two distinct point data sets. Each data 

set contains at least 30 non-forest and 30 forest samples. The data set was split into two 

groups at random, one to guide the analysis and the other to validate the results. The 

geographical location of all field points and the corresponding land cover classes are 

displayed below in figure 3.3, with the 2008 NO VI as the background image. 
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Figure 3.3: Location of field points and 2008 NDVI image. 

3.4 Short-term weather data 

Short-term precipitation information was collected for a ten day period prior to 

the date of image acquisition of each SAR image from the National Climate Data and 

Information Archive (Table 3.4). The archival precipitation data were compiled for the 

Happy Valley-Goose Bay (Environment Canada, 2010a) and Cartwright (Environment 

Canada, 2010b) weather station. The precipitation data are used in order to complete a 

qualitative assessment of the effects of surface moisture on the analysis results. Past 

studies have suggested that the backscatter signature of land cover is affected by moisture 
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content (Monsivais-Huertero eta/. , 2010). The moisture of a radar target increases its 

dielectric constant, which causes the backscattering to increase. The study area is situated 

about 120 km north east of the Happy Valley-Goose Bay weather station and about 120 

km west of the Cartwright weather station. 

Table 3.4: Cumulative and average precipitations recorded I 0 days prior to each image. 

Image number Satellite Date CPHVGB CPcWT 
Average 

(mm) 

I R-2 8/21 /2009 20.8 19.9 

2 R-2 8/27/2009 83.2 49.6 

3 R-2 8/31 /2009 73.0 58.4 

4 R-2 9/3/2009 79.8 63.8 

5 R-2 9/3/2009 79.8 63.8 

6 R-2 9/6/2009 37.6 40.1 
7 R-2 9/7/2009 21.0 32.6 
8 R-2 9/ 10/2009 15.8 22.9 

9 R-2 9/10/2009 15.8 22.9 
10 R-1 9/ 12/2009 16.4 20.5 

II R-2 9113/2009 24.2 28.5 

12 R-2 9/ 14/2009 81.8 83.6 
13 R-1 9/15/2009 82.2 106.4 
14 R-2 9/17/2009 82.2 105.4 
15 R-2 9/20/2009 88.6 101.8 
16 R-2 9/24/2009 84.2 105.9 

17 R-1 9/7/2008 15.4 21.0 

18 R-1 8/3/2008 21.8 19.2 
19 R-1 9/26/2005 45.2 47.3 
20 R-1 8/2/2001 29.2 27.1 

Abbrevtatwns: CP=cumulatJvc prec1p1tatwn, HVGB= Happy Valley- Goose Bay, 
CWT= Cartwright. 

3.5 Digital Elevation Model 

20.4 
66.4 
65.7 
71.8 
71.8 
38.9 
26.8 
19.4 
19.4 
18.5 
26.4 
82.7 
94.3 

93.8 
95.2 
95.1 
18.2 
20.5 
46.3 
28.2 

The digital elevation model (OEM) available for the study area is a Canada 

digital elevation data level I product from the Centre for Topographic Information 
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(Natural Resources Canada). The product has a spatial resolution of 18 m and a vertical 

accuracy of I 0 m. The OEM is used during orthorectification of the SAR data and for 

validation of the final product. The OEM is also used in the creation of radar layover and 

shadow masks, and to extract landscape parameters. These are used to assess the effects 

of topographical variables on the radar-derived product. 

3.5.1 Layover and shadow mask development 

A layover mask and a shadow mask are created for each radar image using the 

digital elevation model along with the image range and azimuth information contained 

within the metadata. The layover and shadow masks are used when assessing the 

accuracy of the final radar-derived vegetation product because the areas that produce 

radar backscatter anomalies are isolated. The only area of concern where these anomalies 

may occur for this study area are in the top northwest comer where there are abrupt 

slopes and changing terrain elevations. Areas such as this, which are known to be 

susceptible to layover and shadow during image acquisition, may lead to inaccurate 

backscatter values that do not represent the true land cover type (Small eta/., 1997). The 

application of a layover and shadow mask will reduce these effects. 

3.5.2 Landscape parameters 

The OEM is also used to derive landscape parameters and assess sources of error 

in the final product. A separate raster image for slope and aspect is developed. Terrain 

slope is calculated from the OEM using an average maximum technique (Burrough and 

McDonnell, 1998), whereby the maximum terrain elevation change from one cell to its 
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neighbouring cells is calculated using Equation 3.1 and a 3 x 3 cell neighbourhood. Slope 

is calculated in degrees and classified into three classes of low (0 to 15") medium ( 15 to 

30") and high (.::30"). The final slope product is shown in Figure 3.4. 

slope= arctan [Llz/llx]' + [llz/llx]' x 180/rr 

where z =rise in height x =run. 

Equation 3.1 

Legend 

Slo1>e {degrees) -0 -0-15 

,Q15-30 

;_ __ _J study area boundary 

A 
1,600 

~kilometers 

Figure 3.4: Classified slope product derived from digital elevation model. 

The aspect denotes the downslope direction of the maximum terrain elevation 

change of each cell to its neighbours. Aspect was first calculated using cardinal directions 

and then reclassified as per the incidence angle of the radar image used to create the final 

vegetation product. The aspect is classified as foreslope, eastward, backslope and 

westward in relation to the incident radar beam. For an image acquired with a descending 

orbit and an incidence angle of 45" the aspect would be classified according to Figure 3.5. 
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~ w 
Figure 3.5: Aspect classification for image with descending orbit and incidence angle of 

45". I: foreslope, 2: eastward, 3: backs lope, 4: westward. 
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Chapter 4: Methodology 

4.0 Methods 

The objective of the remote sensing analyses is to convert data to information. 

Some processing, such as geometric, atmospheric and radiometric correction are tailored 

for the given satellite sensor. The information extraction phase must consider the data-

type and the desired project outcome. The methods outlined in this section will be 

utilized to answer three main research questions: 

Which texture measures, when applied to radar imagery, provide the best 
delineation between Arctic tundra and taiga environments? 

Which R-2 mode provides the most enhanced characterization of the tundra taiga 
interface (TTl)? 

Can radar remote sensing be utilized as an appropriate measure to delineate the 
TTl in a manner that can supersede or match current multispectral-based methods 
using the normalized difference vegetation index? 

The analysis process, as illustrated in Figure 4.1 , consists of three major sections, 

including image processing and radar vegetation product development. The first part of 

the methods, image processing, was focused on preparing the radar data. Processing was 

applied to R-1 and R-2 imagery, as the NOV! images were already corrected. The 

second part of the methods, the R-2 product development stage, was more focused on 

producing information from the data. This includes two phases: the R-1 and R-2 image 

investigation phases. The methods carried out within each stage are explained in the 

following section. 
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Image processing 
• RadiometriccalitJration 
• Geometric rectifkation 
• Rescalire 
• Sub·settifl: 
Image investigation 
• AccuracyofNDVI 
• Backscatter analysis 
• Variogram anatvsis 

Texture anatysis 
Product development: 
Selection phase (R·ll 
• Descriptive stati!l:ics 
• K·Stest 
• l inear regression and 
correlation 
• Selectionofoptimaltexture 
measure 
Application phase (R·l) 
• K·Stest 
• linear reeression and 
correlation 
Radar derived vegetation 
variable 

Evaluation of derived 
vegetation product 
· Independent eva luation set 

Figure 4.1: Analysis process and corresponding methods. 

4.1 Data processing 

The R-1 and R-2 satellite data were processed to eliminate effects imposed on the 

product from satellite scaling values as well as radiometric noise and geometric 

distortions. Four tasks were performed during pre-processing, included radiometric 

calibration, orthorectification, image rescaling and image sub-setting (Refer to Figure 

4.1). These corrections were necessary to R-1 and R-2 image data analysis for the pixel 

values to be compared across multiple dates and image modes. In addition, geographical 

coverage of the R-1 and R-2 products had to match NDVI images 

4.1.1 Radiometric calibration 

A scaling offset and gain was applied to radar images in order to enhance their 

dynamic range. However, the scaling offset and gain differs for each image, or scene, that 

is acquired. In order to compare brightness values across datasets, the brightness values 
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had to be calibrated such that each image displayed with the same dynamic range. The 

images acquired for this project were ' single look complex' product type, which 

contained both real (I) and imaginary (Q) parts that must be combined in order to create a 

calibrated backscatter image. Three types of information were required to complete a 

radiometric calibration: an array layer of local incidence angles, a sigma backscatter 

look-up table (LUT), and the I and Q values. The array layer of incidence angles was 

created using the satellite orbital and offset information contained in the metadata of each 

radar image. The LUT was available in an ancillary file within the product file. When the 

above variables were combined using Equation 4.1, a calibrated backscatter image was 

produced. 

<J;j = 10 X log10 (DNt X DNt + DNQ X DNQ) + 10 X log10(sin(OJ) 
A1 x A1 

Equation 4.1 

(PC! Geomatics, 20 II) 

where aij is the output backscatter coefficient for scan line i and column}, ON represent 

digital number, such that DN1 is the input image I value at (i, j) and DNQ is the input 

image Q value at (i, j), A1 is the LUT value for pixel j , and e1 is the incidence angle 

table value for column}. 

4.1.2 Georectijication 

Georectification applies spatial references to a dataset, relating it to a particular 

location on the Earth' s surface. This process rectifies the data in the x and y planes. An 
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orthorectification incorporates topographical information from a digital elevation model 

to rectify the data in the z plane. Each image was georectified and orthorectified using the 

radar specific mathematical model included in each image's metadata. All images were 

referenced to the Earth's surface using the North American Datum 1983 (NAD 83) and 

the Universal Transverse Mercator (UTM) coordinate system for zone 22, row U, so as to 

correspond with the reference system of the NDVl images. Also during rectification, 

radar images were transformed from slant range to ground range and radiometric terrain 

corrections were applied in order to locate the areas affected by radar shadow, layover 

and foreshortening. 

The effectiveness of orthorectification is evaluated by the average root mean 

square (RMS) error. This parameter indicates how much the corrected image deviates 

from selected ground control points. For example, an RMS of 0.3 pixels for an image 

with a spatial resolution of 30 m indicates that the image, on average, deviates by 9 m 

from the reference system. As a guideline, the RMS value should not exceed half the 

length of a pixel. The radar specific math model incorporates tie points contained in an 

image's metadata in order to rectify the imagery, however, where necessary, ground 

control points (GCPs) are added manually in order to enhance the accuracy of the 

rectified product. GCPs are points for which the geographic coordinate is known from 

reference maps or field data. 

4.1.3 Image rescaling 

Pixels on the radar images are represented in units of amplitude for the intensity 

of backscatter recorded at the sensor. ln order to apply the image processing with 8-bit 
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digitizing level data that is utilized as input to the texture analysis (PC I Geomatics, 2009), 

it was necessary to convert images from amplitude to a digital number. All radar images 

were rescaled from their original 32-bit to an 8-bit quantization level. During this 

process, the image values were converted using the minimum and maximum backscatter 

values calculated from the image histograms. A linear function was applied to evenly 

scale the data values from the input range (minimum and maximum values) to an output 

range of 0 to 255. The histogram of each radar image was considered individually, as the 

images were taken using different radar specifications and would not be expected to 

possess the same range of backscatter values. In Figure 4.2 the R-1 standard mode 7 (S7), 

2008 image was rescaled from its 32-bit amplitude values to an 8-bit digital number 

image. This transformation reclassified the range and unit that were represented by each 

pixel, and maintains a comparable coefficient of variation (CV). 

Work by Amaral et a/. ( 1997) demonstrates that forest clearing and forested area 

can be discriminated based on the spatial contiguity within R-1 F2 and F5 images 32-bit 

and 8-bit magnitude image. In this study, lower radiometric resolution and geometrically 

degraded images (resampling resolution of 12.5 m) did not affect the discrimination of 

classes based on the range value of the semivariogram. The results show that the 8-bit 

rescaled images did maintain texture content for the discrimination of forest and non­

forest land cover types. 
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l ~- l 
Statistics Input amplitude values Rescaled brightness values 

Mean 0.198 44.8 1 
Standard deviation 0.151 29.64 

CV 0.611 0.661 

Figure 4.2: Histogram and statistics of the R-1 , S-7 2008 original image (left) and 
rescaled (right) images. 

4.2 Image investigation 

The outcomes of this study rely on two main assumptions. The first is that the 

NDVI imagery is a reliable representation of the land cover types that represent the TTl 

within the study area, and the second is that land cover information cannot be extracted 

directly from the original radar backscatter image. 

An initial backscatter signature set for tundra and taiga land cover types is utilized 

in order to investigate the hypothesis that raw backscatter is too wrought with high 

frequency noise to be useful for characterizing differences between the two 

environments. This analysis is completed by considering descriptive statistics including 

mean, standard deviation, range, and kurtosis as well as identifying the class overlap 

between tundra and taiga land cover. If the descriptive statistics are similar, then the 

initial assertion is correct, and further investigations of ways to increase the land cover 

class separation are required. 
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The accuracy of the NDVI images is examined to ensure that they are suitable as 

a baseline representation of the vegetation. For each NDVT image, the accuracy is 

calculated by recording the ratio between correct and incorrect image pixels as identified 

from the field data. 

Variograms are used to gain a sense of the spatial distribution of tundra and taiga 

land covers. To facilitate an investigation of the variograrn parameters, two 600x600 m 

areas, one representing forest and one representing non-forest land cover were extracted 

from each R-1 image. The data were exported as an x, y and z table where x and y 

represent the geographic coordinates and z is the backscatter value at that location. The x, 

y and z data are analyzed to create a semi-variogram and to apply a variogram model to 

the data. Two components of the variogram are considered, those being the range and the 

nugget. Figure 4.3 provides an example of how these parameters are obtained from the 

variogram. 
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Adapted from Babish, 2006. 

Figure 4.3: Components of a variogram. 
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The range is the distance at which the semi variance begins to plateau and will be 

used to indicate the distance at which there is minimal spatial autocorrelation between the 

image pixels (Babish, 2006). Conceptually, this range is also the optimal size window 

needed to capture the spatial relationships of pixel values that exist within each land 

cover class. The nugget value is the amount of semi-variance that exists between two 

neighbouring pixels (i.e. at lag I). This value can provide information on the amount of 

noise that exists locally in a radar image. 

The results of the variogram analysis were used in two ways. Firstly, the nugget 

values provided an indication of the magnitude of high-frequency noise that is present in 

the radar imagery. Secondly, the range values complemented the search for an optimal 

texture measures filter size, which will help identify the separation between forest and 

non-forest land cover types and also at what filter size(s) there is the highest correlation 

with the NDVI. 

4.3 Texture analysis 

First order texture measures emphasize the spatial relationships regarding 

brightness values in an image. The types of filters that are useful in order to enhance the 

separability of forested and non-forested land cover within the TTl environment were 

selected because of the successes from previous studies (See Section 2.4.2) and on the 

mathematical framework that is expected to be produced by a particular texture measure. 

The first order texture measures that were selected included: coefficient of variation, 

energy, entropy, kurtosis, mean, skewness and variance. A brief explanation of each of 
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these texture measures along with their respective equations is presented in Appendix 

8.1. 

Second order texture measures emphasize the spatial arrangement of pixels within 

an image including the size, shape and pattern. These texture measures arc based on a 

grey level co-occurrence matrix (GLCM) which is a tabulation of how often different 

combinations of grey levels occur in an image, and its calculation is based on the 

relationship of one pixel to a nearby pixel, referred to as the reference pixel and the 

neighbour pixel, respectively. Relationships expressed in the GLCM are calculated in one 

of eight possible directions: north, south, east, west, northeast, northwest, southeast and 

southwest. For this study, the Arctic tree line is assumed to have the same probability of 

occurring in all directions (i.e. is isotrophic), and so all directions are considered equally 

during analysis. The immediate neighbour pixel (lag=l) was used in all calculations of 

second order texture measures. Second order texture measures selected on the criteria 

outlined in the above section include: contrast, correlation, dissimilarity, entropy, 

homogeneity, inverse difference and mean. An explanation of each of these texture 

measures along with their respective equations can be found in Appendix 8.2. 

The radar images are clipped to correspond with an area that is I km greater than 

the 8x8 km study area extent. This decreases image processing time and facilitates data 

continuity. The sub-region area is larger than the actual extent of the study area to 

eliminate data loss at the border during texture analysis. Since texture is calculated using 

n x n cell filters, values that areS: n-1 pixel from the image border will return an invalid 

filter output calculation due to missing data. Creating a I km ' buffer zone' eliminates this 
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problem by allowing the filter function to use data just outside the study area, up to n-1 

pixel away. 

4.4 Product development 

The development of an R-2 vegetation product is the main objective of this study. 

This objective is accomplished through two phases. Phase one completes an investigation 

of R-1 images only, identifying through different methods which texture measure and 

window size best help to delineate between tundra and taiga and produce a high 

correlation with the matching NDVI image. Phase two is an examination of R-2 images 

only. The R-2 images are analyzed following the most effective procedure as identified 

through phase one. 

4.4.1 Texture measure selection plrase 

Applying every texture measure to all radar imagery on a ' trial and error' basis 

would have been very inefficient. Instead, a more practical approach was taken. Through 

an investigation of past research (Dekker, 2003; Haack, 2007; Kurvonen and Hallikainen, 

1999; Luckman et a!., 1997; Ulaby el a!., 1986) and the mathematical processes taking 

place in order to calculate a given texture measure, a preliminary list was created of 

suitable texture measures. This list contains texture measures that were successfully 

applied in previous SAR studies or were mathematically justifiable to be used given the 

radar data that were available. Both first and second order texture measures were 

included in this list. 

51 



A range of window sizes was tested for each texture measure. The sizes differ 

between first and second order texture analysis because a larger window size is required 

for second order analysis to allow for calculation of the GLCM. For first order texture 

analysis of the standard mode images, filter sizes ranging from 5x5 to 25x25 cells were 

assessed, corresponding to ground measurements of 150xl50 m to 750x750 m, 

respectively. The second order texture measures applied to the standard mode images 

used filter sizes from 15x 15 to 53x53 cells, or 450x450 m to 1590x 1590 m, respectively. 

Ln terms of first order texture analysis for fine mode imagery, filter sizes ranging 

from 3x3 to 45x45 cells were investigated for areas ranging from 27x27 m to 405x405 m. 

Smaller filter sizes were considered for the texture analysis of the fine mode image in 

order to see if filters that represent a smaller spatial area could capture information about 

tree islands, which are usually smaller than 30x30 m and cannot be characterized using 

the standard mode images. For second order texture analysis of the fine mode images, 

filter sizes of 45x45 to 9lx91 cells, or 405x405 m to 819x8 19 m were used. The mean 

and standard deviation statistics across each texture image for tundra and taiga land cover 

were compared to the results of the variograrn analysis to determine if they produced 

similar results. Selected optimal texture filter sizes are based on these criteria. 

Once the appropriate texture measures and window sizes were identified and the 

optimal window size selected, the analysis was applied to all remaining Radarsat-1 (R-1) 

SAR images. The texture images were then considered potential radar-derived vegetation 

variables and were subject to another separability analysis to determine whether texture 

analysis improved class separability when compared to the backscatter analysis results 

alone. The filtering function used to produce the optimal R-1 vegetation product was 
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applied to all R-2 images in order to implement the R-2 product development phase of 

this project. 

A dataset of 77 field observation points (36 forest and 41 non-forest) was 

extracted from the second set of field points in order to establish which of the first and 

second order texture measures increased the amount of information contained within and 

about forested and non-forested land cover. The pixel information contained at the 

location of the field point was extracted from each texture measure output image and the 

statistical difference between forested and non-forested land cover is explored using the 

Kolmogorov-Smimov (KS) test (Burt and Barber, 1996). The KS test determines if two 

data sets differ significantly by comparing the cumulative distribution of two different 

samples. The null-hypothesis (Ho) for this test with respect to the thesis research, was 

that the sample distributions for forest and non-forest land cover were equal (i.e. possess 

the same descriptive statistics). Using a confidence interval of 95%, Ho was rejected if the 

probability was greater than 0.05, indicating that the two land cover types were most 

likely to come from different distributions. If the forest and non-forest distributions are 

from different populations, this means that each class has a particular set of radar 

backscatter values that statistically defines them. 

A variogram analysis was utilized with the R-2 images to define the distance at 

which spatial autocorrelation becomes random, or negative, indicating an optimal 

window size. The results of the variogram analysis were supported through further 

analysis, which have seen a reoccurrence of the filter sizes indicated by the variogram, 

thus verifying the optimum window size. 
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The size and type of filters that were carried forward and applied to R-2 images 

were isolated based on two criteria, which had to occur together: there was a significant 

difference between forest and non-forest land cover demonstrated through the K-S test 

and there was a significant correlation of the R-2 filtered image with the nearest 

anniversary date NDV! image. 

4.4.2 Application phase 

The 2008 NDVI image is used as a reference image in order to assess the optimal 

R-2 image mode for delineation between the tundra and taiga land cover types. The 

examination of R-2 data introduces a new ultra-fine data mode, having a nominal spatial 

resolution of 3 m. When applying texture measures, filter sizes corresponding to the 

spatial area appropriate to fine and standard mode data are applied. However, smaller 

filter sizes are examined to see if higher resolution data can be used to capture 

information about tree islands, while still creating enough class separation to statistically 

distinguish between tundra and taiga land cover. An investigation of the results of the 

K-S test and the correlation coefficients are carried out with respect to the R-2 images to 

deterrnine which R-2 mode is most appropriate for delineating forest and non-forest land 

cover. 

4.5 Results evaluation 

Due to different look angles and the relationship to the topography of the signal 

recorded at the sensor, it is hypothesized that the R-2 derived product will moderately 

correlate with the NDV! image. An independent set of field data points is applied using 
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the same set of procedures to assess the accuracy of the final vegetation product. During 

this evaluation, the final radar-derived vegetation variable is investigated in terms of its 

ability to identify the TTl compared to a raw backscatter image. This is accomplished by 

creating a profile that represents a transect across the TTl. The texture-transformed radar 

image is anticipated to differentiate forest from the non-forest land cover types, however, 

the analysis outputs are further analyzed to identify possible sources of errors as they 

relate to landscape parameters of slope, elevation and aspect. 
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Chapter 5: Results 

5.0 Introduction 

The results are organized such that data processing is presented first, followed by 

texture analysis. Texture analysis is the main focus of this research and contains results 

for the R-1 based texture measure selection stage, as well as the R-2 texture measure 

application phase. 

5.1 Data processing 

Data processing was completed in order to prepare the images for analysis. Data 

processing comprises image pre-processing and image investigation. Image pre­

processing employed a georectification of all images. For image investigation, an 

exploration of the accuracy and class separability of the NDVl was performed as well as 

an investigation of the effects of moisture on the radar backscattering. Furthermore, a 

variogram analysis was performed on the R-1 dataset to identify the spatial dependence 

ofbackscattering values. 

5.1.1 Geometric correction 

The RMS error indicates how much the corrected image deviates from selected 

ground control points, which relate to a map projection for UTM zone 21 row U. The 

RMS error is represented in both pixels and metres where the RMS in metres is 

calculated by multiplying the RMS per pixel by the spatial resolution corresponding to 

the standard (25 m), fine (9 m) and ultrafine (3 m) image mode (Table 5.1 ). RMS errors 
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for standard mode images range from ±0.42 to ±0.97 pixels, or ±10.5 m to ± 29.1 m, 

respectively. For fine mode images, the lowest RMS is ±0.22 pixels (±2.0 m) and the 

highest is ±1.26 pixels (±11.5 m), while for ultrafine mode images the RMS is between 

±0.34 (±1.02 m) and ±3.07 pixels (±9.21 m). During the texture measure selection phase 

of the thesis, the size of the smallest texture window for standard and fine mode images is 

150x 150 m (5x5 cells) and 27x27 m (3x3 cells), respectively. The geographical extent of 

these window sizes is greater than the RMS error and therefore does not significantly 

affect the spatial congruence of the radar image set. 

Table 5.1: Root mean square (RMS) error of geometrically rectified images. 

RMS RMS 

Imaee Mode (± pixel) (± metre) Date 

Fl 0.22 2.00 9/26/2005 

F2 0.88 8.80 8/27/2009 

F4 0.51 4.60 9/13/2009 

F5 0.41 3.69 9/7/2009 

F2 1F 1.26 11.30 9/3/2009 

FQ19 0.68 6. 10 9117/2009 

Sl 0.93 23 .25 8/7/2001 

S3 0.79 18.17 9/ 10/2009 

S4 0.89 22.25 9/10/2009 

S5 0.63 15.75 8/3/2008 

S6 0.58 14.50 9/24/2009 

S7 0.42 10.50 9/7/2008 

S7 0.49 12.25 9/6/2009 

SQ2 1 0.97 29.10 9/20/2009 

U2 3.07 9.2 1 9/3/2009 

Ul7 1.06 3.18 8/3112009 

U27 0.34 1.02 8/21/2009 

U27 0.34 1.02 9/14/2009 
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5.1.2 Exploratory data analysis 

An exploration of the data will provide insight to the image characteristics in 

relation to the spatial variability of forest and non-forest land cover. This exploration is 

undertaken for the R-1 and NDVI datasets. 

5.1.2.1 Radar Backscaller 

Initial investigations of the R-1 images show that forest and non-forest land cover 

is not statistically separable when using the raw backscatter image values. This trend can 

be seen in Table 5.2, which shows the mean and ± 1.5 standard deviations (SD) for each 

of the R-1 images for forest and non-forest land cover. The statistics help to gain a 

perspective on the spread, as well as the overlap of radar brightness values for forest and 

non-forest land cover, where the mean ± 1.5 SO is inclusive of82% of the data contained 

in each class. The mean brightness values for forested land cover are between 56.15 and 

42.97, and those for non-forest land cover, range from 51.41 to 37.84. The overlap that 

exists for forest and non-forest land cover means that their distributions are similar, and 

would not be able to be delineated based on only the raw backscatter information. Class 

over-lap between forest and non-forest land cover is shown for each image in Figure 5.1. 

This figure indicates that the backscatter values that represent forest and non-forest are 

highly variable, rendering the raw backscatter image not suitable for land cover 

classification. 
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Table 5.2: Forest and non-forest mean and standard deviation brightness value for R- 1 
images. 

Forest Non-forest 
Mean +/-1.5 SD mean +/-1.5 SD 

2001 (S 1) 43.75 29.58 38. 17 3 1.97 
2005 (F 1) 53.5 1 32.95 56.03 42.88 
2008 (S5) 42.97 24.93 44.43 29.23 
2008 (S7) 56. 15 32.48 51.41 34.64 
2009 (S4) 47.76 28.89 37.84 24.60 

2009 (F3N) 48.52 3 1.56 47.47 35.28 
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Figure 5.1 : Forest and non- forest mean and standard deviat ion brightness value plot for 
R-1 images. 
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5.1.2.2 NDVI 

An error matrix (or contingency table) provides an evaluation of how well the 

NOV! imagery is representative of the field data. In order to create an error matrix, the 

NOV! images are classified by creating a threshold NOV! value using the tree height 

information contained in the field data, as well as the minimum, maximum and mean 

NOV! values which are representative of forest and non-forest land cover (See Table 

5.3). Mean and standard deviation for forest land cover in the 2001,2005 and 2008 NOV! 

images is 0.55 ± 0.11, 0.64 ± 0.12 and 0.67 ± 0.09, respectively. Correspondingly, for 

non-forest land cover in the 200 I, 2005 and 2008 NOV! images the mean and standard 

deviation is 0.44 ± 0.1 0, 0.49 ± 0.10 and 0.55 ± 0.1 0. These statistics indicate that the 

distribution of NOV! values that represent forest and non-forest are separable. This class 

separation can be seen for the 2005 NOV! image in Figure 5.3. The statistics extracted 

for forest and non-forest from the NOV! were utilized to set a threshold value for forest 

of 0.6, which will be used for differentiating between the forest and non-forest land 

cover. Although there is a slight overlap in the spread of NOV! values for forest and non­

forest (Figure 5.3), it was found through the field data that these are areas of vegetation 

cover that have a high NOV! value (i.e. strong chlorophyll content), but do not meet the 

height requirements in order to be classified as strictly forest. A similar method was 

shown to be useful in Evrendilek and Gulbeyaz (2008) for NOV! classification of 

Mediterranean type forests. Images are classified such that NOV! ~ -I to 0.6 represents 

non-forest and NOV! ~ 0.6 to I represents forest. The classified NOV! image from 2008 

is presented in Figure 5.2. This figure also highlights the location of the 36 forest and 41 

non-forest field points in the reference dataset. 
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Figure 5.2: Forest and non-forest classification of2008 NDVI with locations of reference 
field points. 

Table 5.3: Descriptive statistics for 2001, 2005 and 2008 NDVT images for forest and 
non-forest classes. 

Image NDVT2001 NDVI2005 NDVI2008 
Land cover Forest Non-forest Forest Non-forest Forest Non-forest 
Range 0.46 0.49 0.43 0.39 0.36 0.36 
Maximum 0.73 0.64 0.81 0.58 0.81 0.59 
Minimum 0.28 0. 15 0.38 0.28 0.45 0.41 
Mean 0.55 0.44 0.64 0.49 0.67 0.55 
± 1.5SD 0.11 0.10 0.12 0.10 0.09 0.10 
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Figure 5.3: Descriptive statistics plot showing forest and non-forest land cover classes for 
2005 NDVI image 

The error matrix created using the land cover data from the reference field points 

and the classified 2008 NDVl, reports that the user's accuracy for forest and non-forest 

land cover is 86.8% and 92.3% respectively, with an overall accuracy of 89.6%. The 

producer's accuracy for forest and non-forest land cover is 91.6% and 87.8% respectively 

(Table 5.4). Correspondingly, Tables 5.5 and 5.6 contain the error matrix for the 2005 

and 2001 NOV! images. All NDVI representations of forest and non-forest classes have 

accuracies of above 83%. 
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Table 5.4: Error matrix for 2008 NOV!. 

2008NDVI 

Reference data Forest Non-forest Total PA(%) EO(%) 

Forest 33 3 36 91.7 8.3 

Non-forest 5 36 41 87.8 12.2 

Total 38 39 77 
UA(%) 86.8 92.3 

EC(%) 13.2 7.6 

OA 89.6% 
AbbrevtatJOns: PA~ producer' s accuracy, EO~ error of omtssJOn, UA~ user' s accuracy, 

EC~error of commission, OA~ overall accuracy. 

Table 5.5: Error matrix for 2005 NOV!. 

2005 NDVI 

Reference data Forest Non-forest Total PA(%) EO(%) 

Forest 34 2 36 94.4 5.6 

Non-forest 4 37 41 90.2 9.8 

Total 38 39 77 

UA(%) 89.5 94.8 

EC(%) 10.5 5.2 

OA 92.2% 
Abbrevtattons: PA= producer s accuracy, EO= error of omtsswn, UA- user' s accuracy, 

EC=error of commission, OA= overall accuracy. 

Table 5.6: Error matrix for 200 I NOV!. 

2001 NOV! 
Reference data Forest Non-forest Total PA (%) I EO(%) 

Forest 30 6 36 83.3 I 16.7 
Non-forest 7 34 41 85.4 I 14.6 

Total 37 40 77 

UA(%) 81.1 85.0 

EC(%) 18.9 15.0 

OA 83.1% 
AbbreviatiOns: PA= producer's accuracy, EO= error of omtsston, UA= user's accuracy, 
EC~error of commission, OA~ overall accuracy. 
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A change in biomass over time may have caused the classification accuracy to be 

a little lower with the 200 I NDVJ classification. This trend can be seen in the NDVI 

statistics, where the mean NOV! values for forest (200 I ~0.55 ; 2005~0.64; 2008~0.67) 

and non-forest (2001~0.44; 2005~ 0.49; 2008~0.55) increase over the seven year time 

period. The trend, however, is not shown in the accuracy assessment matrices, as for all 

three classifications, although they are not statistically significant, the error of 

commission of forest is the highest. This type of error reports on the proportion of the 

forest NOV! class that ' includes' field observed non-forest points. Had the increase of 

NDVI over time caused an error on the 2001 or 2005 image classifications (non-forest 

NOV! vs. 2008 forest field data), it would have been read through the commission error 

of the non-forest class and would have emphasized this error over the omission error, 

which is not the case. The proportions of omission and commission error are relatively 

balanced (i.e. about the same) and they are non-significant for all three classifications. 

This means that the errors can be attributed to overlap of outlying values (high-end-of­

range low-NOV! in forest class and low-end-of-range high-NOV! in non-forest class). 

Also, some of the error can be attributed to the discrepancy of size of the field data 

sampled area (I xi m quadrants) and the image pixel resolution (30x30 m). 

A two-sample Kolmogorov-Smimov (KS) test (Burt and Barber, 1996) between 

the NDVJ values represented by forest and non-forest reference points revealed a 

significant separability between forest and non-forest land cover types in the NOV!. The 

two-sample KS test identifies whether the cumulative distributions of two samples are 

similar. The null hypothesis (Ho) is that two samples come from the same distribution. 

Using a confidence interval of95%, Ho is rejected if a$ 0.05, thus indicating that the two 
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data samples come !Tom different distributions. For the 200 I NOV!, the KS value 

calculated between forest and non-forest land cover is 1.708 with a=0.006. For the 2005 

and 2008 NOV!, the KS statistics is 2.340 and 2.077, respectively, both with a=O.OOO 

(Table 5. 7). These results demonstrate that forest and non-forest land cover come from 

distributions that are statistically different, and therefore can be distinguished from one 

another when classified based on the 0.6-NDVI threshold value. 

Table 5. 7: Results of two sample Kolmogorov-Smimov (KS) test for NOV! classified 
images (a=0.05). 

a =0.05 

Results from the contingency table and the two-sample KS test establish the 

NOV! images as a suitable reference image by which to measure and test the accuracy of 

radar-derived vegetation products~ 

5.1.3 Moisture effects 

The radar backscatter is positively related to the amount of moisture in a target 

object, thus, as moisture content increases, so does the brightness value on a radar image 

(Ulaby and El-Rayes, 1987). The R-1 and R-2 images were acquired on days that had 

followed varying amounts of precipitation, and contain differing amounts of moisture 

content in objects portrayed on the image. Although this trend cannot be corrected for, it 

is still a necessary consideration. Due to the image acquisition plan, the effects of 

moisture on the portrayed radar brightness values cannot be assessed across the entire 

image set. However, the dataset contains two images with similar specifications; those 
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being the R-2 S6 mode and the R-1 S5 mode images. The two images are utilized for the 

investigation of moisture because they have a similar incidence angle (41.70° and 39.24°, 

respectively) and polarization (both HH) modes (See Tables 3.2 and 3.3 in data section). 

Where the images do differ is in the amount of precipitation that occurred ten days before 

and up to the date of acquisition. During this period of time prior to the acquisition of the 

R-2 S6 and R-1 S5 , 95.1 and 20.5 mm of precipitation had been recorded (See Table 3.4 

in data section), respectively. All other variables being similar, changes in the brightness 

values of spatially related pixels may be attributed to a change in moisture content. The 

backscatter value of forest and non-forest land cover across each image shows that the 

R-2 S6 image produces higher radar backscatter values for both land cover types when 

compared to the R-1 S5 image (See Figure 5.4). 

These results are expected and demonstrate that for the current datasets, as the 

moisture content increases, so do the radar brightness values for both the forest and non­

forest environments. Statistics of the forest and non-forest field point sample are 

presented in Table 5.8. Note that the backscatter values for the image with more moisture 

content (R-2 S6) are more variable. This suggests that in such conditions, the 

differentiation of forest and non-forest classes, based on the raw backscattering, is more 

difficult. 
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Figure 5.4: Backscatter response (in ~o) of forest and non-forest land cover for low (R-1 
S5) and high (R-2 S6) moisture conditions. 

Table 5.8: Brightness value (in ~o) statistics for forest and non-forest field points with 
low and high moisture. 

Moisture conditions Low High 
Image R-1 S5 R-2 S6 
Land cover Forest Non-forest Forest Non-forest 

Mean 37.40 36.80 1643.88 989.83 
Standard deviation 24.30 18.26 2300.95 2110.98 
Coefficient of variation 0.65 0.50 1.40 2.13 

5.1.4 Variogram 

For all images, except the R-1 2008 S5 mode, the variogram derived range value 

is higher for non-forest than it is for forest land cover (Table 5.9). Variogram analysis 
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does not include the 2009 S4 and 2009 F3N R-1 images, as these images have a matching 

date R-2 image and are utilized later in the methodology for comparison of R-1 to R-2 

radar derived vegetation products. The range is indicative of the window size outside 

which there is the least amount of spatial autocorrelation between pixel backscatter 

values. Pixels that are nearer to one another than the range value have a lower degree of 

variability, while those that are further apart than the range have a high degree of 

variability. A larger window is needed for non-forest than for forest land cover in order to 

capture the relationship between neighbouring pixels backscatter values. Non-forest is 

comprised of a greater variation of components (krumholtz, vascular plants, rock, gravel 

etc.) that are nearer to each other than forest, and so the spatial extent needed to capture 

the backscatter variation of pixels that represent the land cover is larger. 

A high nugget value indicates that there is a large variation among backscatter 

values. For radar imagery, this is most likely attributed to speckle noise. For forest land 

cover, the highest nugget value is 737, while the lowest is 324. For non-forest land cover, 

the highest nugget value is 963 and the lowest is 528. The lowest sill value of the image 

variograms was 330.17 for non-forest land cover in the 2009 F5 mode image, while the 

highest sill, 1247.60, was calculated for forest land cover, again for the 2009 F5 mode 

image. Sill values were measured over the same distance 

The correlation coefficient (R') is a measure of how well the theoretical 

variogram fits the empirical data. For a variogram fit to be viable, it generally has to have 

an R' SO 0.6 (Babish, 2006). The R' value for forest land cover (0.448 to 0.946) is always 

lower than that for non-forest land cover (0.802 to 0.98) (Table 5.9). For forest land cover 

represented in the 2008 S5 image, the variogram model is only able to account for 44.8% 
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of the distance based relationship that is occurring in the data. The high nugget value 

(737) associated with this low correlation value is indicative of high local noise that is 

found in that data, which cannot be accounted for by the empirical variogram. Thus, the 

low correlation value and high nugget value for the 2008 S5 image is due to the high 

amounts of variation in backscatter values of the forest class which causes inconsistencies 

in the empirical variogram that are not able to be represented by the theoretical model. 

Table 5.9: Variogram parameters for forest and non-forest land cover extracted from R-1 
images (excluding 2009 R-1 imagery). 

Forest Non-forest 

Image ID Nugget Sill Range R' Nugget Sill Range R' 

2005 Fl 728 77 1 286 0.686 963 1145 294 0.802 

2001 Sl 324 330 372 0.946 596 1248 472 0.976 

2008 S5 737 520 494 0.448 720 674 468 0.89 

2008 S7 506 791 348 0.725 528 984 472 0.98 

The range value calculated from the variogram analysis suggests the need for a 

window size which captures ground areas of between 350x350 m and 500x500 m (Table 

5.1 0). For images with a spatial resolution of 30 m these values correspond to a filter 

window size of between 12x 12 and 16x 16 cells. The 200 I S I image has range values for 

forest and non-forest land cover of 372m (12xl2 cells) and 472 m (16xl6 cells). The 

2005 F I image, having the finest spatial resolution, has a variogram range value for forest 

land cover of 286 m and for non-forest land cover 294 m, both indicating a window size 

with respect to the image of 29x29 cells. For the 2008 S5 image, the variogram range 

value for forest is 494 (16xl6 cells), and for non-forest 468 (16x l6 cells). The 2008 S7 

image has a variogram range value for forest and non-forest land cover of 
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348 (l2xl2 cells) and 462 (16xl6 cells}, respectively. The range value is indicative of the 

distance at which spatial autocorrelation becomes zero or negative. From a variogram 

point of view, the range is the distance at which the semi-variance plateaus. If the 

window size of a texture measure exceeds this distance, the brightness values inside the 

defined window, representing either forest or non-forest, become more heterogeneous, 

and information about spatial autocorrelation is lost. If the window size of a texture 

measure is less than the distance of the variogram range value, there is a high amount of 

noise within the pixels values that represent either forest or non-forest land cover, thus 

making it difficult to delineate between pixels that belong to the forest class and those 

that belong to the non-forest class. When these characteristic of the variogram are 

considered, the variogram range indicates an optimal spatial distance at which to make 

the window size for texture filters. Only one fine mode image was tested, however, the 

cell size calculated from the variogram range value is 29x29 cells. For the three standard 

mode images, the highest calculated variogram range value is 16x 16 cells, and the lowest 

is 12xl2cells. The number of texture filter cells (Ne), as shown in Table 5.10, is 

calculated as variogram's range value divided by the image spatial resolution. 
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Table 5.10: Variogram range value in metre units and corresponding number of pixels 
(Nr) for standard (Sl , S5 and S6) and the fine (Fl) mode images. 

[mage lD Range (m) No 

2001 Sl 
372 12 

472 16 

2005 Fl 
186 22 

194 22 

2008 S5 
494 16 

468 16 

2008 S7 
348 12 

472 16 

5.2 Texture analysis 

A total of 14 texture measures were applied to the R-1 image set. Two selection 

criteria were adopted to identify appropriate texture measures to be used with the R-2 

dataset. The first criterion was that a texture measure that had been applied to the R-1 had 

to correlate well with its corresponding date NDVI. The second criterion was that the 

texture measure had to significantly separate forest and non-forest land cover classes as 

identified through the field data. 

The first criterion was measured using Spearman's correlation rho (p) , a non-

parametric bivariate statistic which measures the linear correlation of ranks between two 

data samples. The statistic p ranges from -1.0 to 1.0 where -1.0 denotes a perfect negative 

relationship and 1.0 indicates a perfect positive linear relationship. Prior to Spearman's 

correlation being calculated, the sample population was examined for uni-variate and 

multi-variate outliers for the variables being tested, as these factors are known to affect 

the results ofSpearrnans's rank correlation. 
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The second criterion was measured using a two-sample KS test. The conditions of 

this test were explained in section 5.1.2.1 and it was applied using the same guidelines to 

the radar image set. The texture measures were carried through into the R-2 image 

analysis if they met both criteria in at least one of the R-1 images. 

5.2.1 Texture measure selection phase (R-1 images only) 

In Tables 5.11 and 5.12 Spearman's correlation statistic (p) and the Kolmogorov­

Smimov K statistic (KS) for first and second-order texture measures, respectively, are 

displayed. If the result is significant at a~O.O I (99% confidence interval) the cell is 

highlighted in dark grey, while if it is significant at a~0.05 (95% confidence interval), the 

cell is highlighted in light grey. The 2005 Fl and 2009 S4 mode images had significant 

results for the coefficient of variation texture measure with p~-0.55; KS~ 1.09 and p~ 

-0.46; KS~l.44, respectively. The 2008 S7 image showed significant results for the 

energy texture measure with p~0.28, KS~ 2.66. No images showed significant results in 

both statistical tests for the entropy texture measure. The 2005 F I, 2009 F3N and 2009 

S4 mode images had significant results for the kurtosis texture measure, having p~ -0.31; 

KS~2.20, p~ -0.50; KS~ l.91 and p~ -0.43; KS~ l.78, respectively. Only the 2008 S7 

mode image indicated significant results for the mean texture measure, with p~ 0.39; 

KS~2.54 while only the 2009 S4 mode image showed significant result for the variance 

texture measure, with p~ 0.51; KS~ 1.44. 
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Table 5. 11: Correlation and KS test results for first order texture measures applied to R-1 
dataset. 

T"""'~""" En<.-gv Ent ·opy Kw- "'"' Sltewnm "" II=" ><M (m""") ••• KS KS . KS 
15 ·0.19 1.04 ·0.09 1.16 -0.05 
33 ·0.55 lcJ8_ !.20 0.05 !.60 -0.44 
15 1·0.41 . -·0.14 0.95 -0.16 

0.39 .54 

33 1 :"c'' o.SJ 1.91 0. !.61 
.78 0.22 0.67 

Dark Grey: s1gmficant at a=O.OI (99% confidence Interval); L1ght grey: s1gntficant at a=O.OS (95% 
confidence interval); White: Non·significant (a is ?: 0.05). 

Table 5.12: Correlation and KS test results for second order texture measures applied to 
R-1 dataset. 

ln,·~se 

Tcxtmemusure Contnst Corrduioo DissimilaritY Entrop,· Homo cncitv disunce :\ican 
ImJ.!!c •·car (modc) ' ~s KS ' KS KS ' KS ' KS KS 
.!001 51) 006 132 -0.33 125 018 1 01 - 0 1-' 005 Ill ..{! o~ 0 94 -Q-6 
.!OOS (FlJ Ott 103 ..() 20 0 ""9 011 0 67 0 06 199 .010 109 -011 1.1 .! -0 10 ~ .!OOS(S5 .018 "" -0 03 1 00 -Ol.l 059 .018 1.!9 .. - 0 69 QQ":' 091 -016 
.!008 S' -0 . .!1 111 0 05 0'6 -0 16 OS.! .0 06 16.! 009 094 o a~ 083 .0 04 1:!4 

.!009(f3!'\) 0.18 13.! -0.4:! 106 -107 005 1.93 -034 085 -038 0 ~g 0 07 U9 

.!009 54 013 0 90 -0 .!0 069 01' 1 0.! -03.! 435 -0.03 !IS -010 - 0 15 081 

In Table 5.11 , there are 6 of the 7 first order texture measures that show 

significant results for both criteria in at least one image mode. No second order texture 

measures met both selection criteria and, as a consequence, they were not applied to the 

R-2 texture analysis phase. In summary, of the fourteen texture measures, only six met 

the criteria set for selecting a suitable texture measure, as outlined in Section 5.2, which 

include first order coefficient of variation, energy, kurtosis, mean, skewness and variance. 

The results presented in Tables 5.1 I and 5.12 are shown for window sizes of 

15 pixels for standard mode imagery and 33 pixels for fine mode imagery. This filter size 

was determined from the Spearman's correlation and KS criterion results, as well as the 

parameters from the variogram analysis. Figure 5.5 shows the correlation results for the 

energy, mean and entropy texture measure for the 2008 S7 mode image at window sizes 

ranging from 5x5 to 25x25 cells. The highest correlation value with the NDVI is always 
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for window sizes of 15x 15 cells. The same trend is seen in all R-1 texture images which 

meet both selection criteria. For the fine mode image, the highest correlation is for a 

window size of 33x33 cells. These results correspond with the maximum window size as 

identified through the variogram analysis (Section 5.1.4), which indicate a window size 

for fine mode imagery of 29x29 cell. The window size calculated from the variogram 

analysis for standard mode imagery suggests an optimal window size between 12xl2 

cells and 16x 16 cells. This implies that an optimal texture measure window size can be 

reached, which takes into consideration the spatial extent of the tree line and its 

components. 
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Figure 5.5: Relationship between correlation coefficient and window size of the 30 m 
spatial resolution standard mode image. 

In Wu and North's (200 I) study of methods to extract forest cover boundaries 

from L-band SAR imagery, it was found that the half width of a texture window 

represents the smallest discernible feature within the filter window. Taking this into 

consideration, a window size of 15x 15 pixels for a standard mode image covers an area 
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of 450x450 m, meaning that the size of the smallest feature to be detected has a 

dimension of at least 225x225 m. Field observations indicated that the distance from 

closed canopy forest to open land cover, transcending the TTl, is between 200 and 600 m. 

A window size of 15xl5 cells is able to capture information within the TTl, yet is large 

enough to rid of inherent high frequency noise found on the raw radar imagery. 

5.2.2 Texture application phase (R-2 images only) 

An investigation of the R-1 imagery narrowed the pool of texture measures from 

14 to 6. The 6 remaining texture measures, which are applied to all R-2 images in this 

phase include first order coefficient of variation, energy, kurtosis, mean, skewness and 

variance. 

The window size of the texture measures as they were applied to the R-2 imagery 

was not immediately specified, but rather a range of window sizes were tested. The R-2 

dataset has different specifications than the R-1 dataset, and therefore will not have 

exactly the same spatial extent for spatial autocorrelation among radar backscatter values. 

The range of window sizes was established !Tom the R-1 analysis (Section 5.2 .1). For 

standard mode imagery (30 m spatial resolution), the window sizes range from II x II to 

23x23 cells. For fine mode imagery (10 m spatial resolution), the window size ranges 

from 29x29 to 39x39 cells and for ultra-fine mode imagery (3 m spatial resolution) the 

window size ranges from 79x79 to 91x91 cells. 

The confidence intervals (CI) of the median were calculated as per Equations 5.1 

and 5.2 respectively in order identify which of the six texture measures would be most 

beneficial for characterization of the TTL 

75 



Upper Cl =Median+ 1.58 x (Q3- Ql)j{N 

Lower Cl = Median- 1.58 x (Q3- Ql)/ffi 

Equation 5.1 

Equation 5.2 

(Tukcy, 1977) 

where Ql and Q3 are the values of the 25'h and 75'h percentile, respectively, as calculated 

from the quartiles of the dataset. The variable N represents the number of sample values. 

If the upper and lower confidence intervals of two sample populations do not overlap, 

then it can be said with 95% confidence that the two samples are from different 

populations. In the context of this research, the two classes are forest and non-forest land 

cover. The upper and lower median confidence intervals are shown in Figure 5.6 for each 

of the six texture measures. 

An initial analysis of the texture revealed that the texture measures of coefficient 

of variation, kurtosis and skewness did not meet both selection criteria when applied to 

the standard mode and fine mode R-2 imagery. On the right side of Figure 5.6 where the 

texture measures of coefficient of variation, kurtosis and skewness arc displayed, it can 

be seen that there is no separation between forest and non-forest land cover. This 

indicates that there is no significant separation between forest and non-forest land cover, 

and therefore these texture measures would not be useful in rendering a radar-derived 

product of the TTL 
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Figure 5.6: Confidence intervals of median for each of the six texture measures identified 
in the selection phase. 

Subsequent to observations made from the median confidence intervals, 

spearman's correlation results for energy, mean and variance texture measures were 

calculated (Table 5.13). Spearman's correlation provides a statistical measure of how well 

the radar-derived product of each texture measures is able to represent the NDVI image, 

and thus the TTL 

The two highest correlation values were obtained for the VH polarization portion 

of the fine mode quad-polarized image (p~0.75) and the fine mode HV polarization 

image (p~0.66). Cross-polarized (HV and VH) images show a stronger correlation than 

77 



like-polarized (HH and VV) images. In many cases, the results for HV compared to VH 

polarization are similar. For cases where there is a considerable deviation between the 

correlation values for HV and VH, such as for the ultra-fine mode mean texture measure 

(VH~0.35, HV~0.44) and the standard mode variance texture (VH~0.60, HV~0.53) , the 

difference is attributed to the variation in incidence angle (refer to Table 3.2). Only in a 

few instances were the correlations for like-polarized imagery significant enough to 

represent a relationship between the texture values and the land cover class. The highest 

correlations are generally found for the mean texture measure, closely followed by 

energy then the variance texture measure. 

Table 5.13: Spearman's correlation (p) for all R-2 images. 

EnerRY /'>lean Vadanc& 

Image 

F2VV 

Fine mode 
F4-H H 

FSVH "' 1)62 ~" 
F21HV 

S3W 
Denotes significant 

Standard S6 HH 
mode S-1- VH 0.60 0.62 0.60 correlation values 

S7HV at a~ 0.001 
U2W 

U!tra·flne U17 HH 
mode Ul7VH 

U27HV 0.44 '" 
w 

Standard HH 
modeQ VH 

HV 0.45 '" 
HV 0.51 '" 

FlnemodeQ HH 

VH 

HV 0.58 "' 
• Statistics shown in Table 5.13 arc for the window size that rendered the most significant 

correlation. To sec the results for all window sizes, please see Appendix C. If there is no data for a given 
image, this means that it did not meet both criteria (i.e. did not have a sign ificant result for the Spearman's 
correlation or KS test). 

78 



The fine mode quad-polarized image dataset, for which the highest correlation 

value between the R-1 and the NDVI images was found, integrates four images, each 

with different polarization, but the same incidence angle. This allows for an assessment 

of the separation between forest and non-forest land cover with respect to polarization. 

This relationship is represented using the median confidence interval for the energy 

(Figure 5.7), mean (Figure 5.8) and variance (Figure 5.9) texture measures at window 

sizes. The highest class separability is obtained using cross-polarized imagery, with VH 

polarization indicating slightly more class separation than HV polarization. In all cases, 

VV polarization displays the least degree of class separation throughout all filter 

dimensions. 

HH HV 

~ 
······························· 

w VH 

-------... ...... .................................. 

--;;:ore!.it 

··· ···· ·· 'Jon-for~ st 

Figure 5.7: Median confidence intervals for forest and non-forest classes when an energy 
texture measure is applied. 
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Figure 5.8: Median confidence intervals for forest and non-forest classes when a mean 
texture measure is applied. 
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Figure 5.9: Median confidence intervals for forest and non-forest classes when a variance 
texture measure is applied 
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Chapter 6: Discussion 

6.0 Discussion 

The objective of this research was to extract texture infonnation from R-2 SAR 

images in order to create a radar-derived vegetation product for the TTl. Two criteria of 

this product are that it correlates well with NOV! and that it is able to distinguish between 

forest and non-forest land cover types. The results presented demonstrate that the 

objectives are met. The R-2 product that best represents the TTl environment was derived 

from a fine mode, VH polarized image transfonned using a first order mean texture 

measure with a window size of 35x35 cells. An evaluation of the derived product and an 

interpretation of the results with respect to particular radar specifications are presented in 

this section. These specifications include polarization, orbit, incidence angle and spatial 

resolution. The effects of window size on the final radar product are also discussed. 

6.1 Information about the tundra taiga interface 

The procedure described above is applied once more using an independent set of 

field points. After elimination of outliers, the validation set contained 36 forest points and 

41 non-forest points. Only the best vegetation product, which is based on the fine mode 

VH polarized R-2 image was validated, rendering a correlation with the NDVI of 

p = 0. 731. The correlation rrom the first analysis using the reference field points was 

p = 0.750. 

A line transect, when graphed, represents a profile of the behaviour of image 

pixels over a region of the tundra taiga interface. A profile of the raw SAR imagery 
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(Figure 6.1) and the radar-derived product (Figure 6.2), respectively, show that a 

vegetation product using the mean texture measure greatly increases the ability to discern 

forest and non-forest land cover types. The raw radar brightness values do not indicate 

that any type of ecosystem transition is present, and the backscatter values for forest and 

non-forest are undifferentiated. After the image is transformed, a gradual transition zone 

is revealed between the high second order mean texture values for forest and low values 

for non-forest. This image also shows that a transition zone between the forest and non­

forest land cover can reach a width of I 020 m (34 pixels x 30 m per pixel), by contrast 

with TTl widths of 200 to 600 m that have been observed in the field. The texture image 

derived from R-2 imagery help to obtain information about this large-scale characteristic 

of the TTl that is difficult to measure in the field. 
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Figure 6.1: Profile across a section of the transition zone for the raw R-2 fine mode VH 
polarized image. Transition is fronn forest (left) to non-forest (right). 
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Figure 6.2: Profile across the same section of the transition zone for the transformed fine 
mode VH polarized image. Transition is from forest (left) to non-forest (right). 
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A classification of the radar-derived product was created and mapped 

(Figure 6.3). The thresholds value for classification was selected as the median value of a 

series of profiles across the transition zone. 

- Non-forest 
DForest 
- Water 

f 
Figure 6.3: Classified radar derived product for the HY portion of the R-2 FQ mode 
image showing forest and non-forest land cover. 

The R-2 derived vegetation product makes it easier to delineate a tree line. For 

example, consider krumt10ltz. This land cover includes tree species that are dwarfed or 

grow horizontally due to environmental limitations. The definition of a tree line for this 
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research, as adopted from Lescop-Sinclair and Payette (1995), states that a tree line is the 

northern most position of single-stemmed tree growth forms at least 2.5 m high. On an 

NDVI, healthy krumholtz having a maximum height of approximately 2 m 

(LHRG, 2008), are identified as healthy tree species that grow vertically to a height of 

2.5 m, because they contain the same amount of chlorophyll. However, the radar product 

is more representative of the structure and height of vegetation and may exclude 

krumholtz from being factored as part of the tree line. 

A concern of this study, raised by the use of a low-pass texture measure, such as 

the mean, was that the SAR image transformation may eliminate isolated patches of 

forest, known as tree islands. However, by looking at the classified radar-derived 

vegetation product, which is based on a fine mode R-2 image, tree islands are highlighted 

such that they can be identified. The decision of whether or not to include the tree islands 

as being part of the tree line is left to the expert users who are still in the process of 

evaluating the dynamic and ecological significance of these components. 

Texture measure filter sizes with dimensions representing ground dimensions of 

300x300 m to 450x450 m had the most significant correlation with the NDVI image, and 

also offered the best separation between forest and non-forest land cover types. These 

dimensions translate into a filter window size of 15x 15 cells for R-2 standard mode 

images (30 m spatial resolution) and 33x33 cells for R-2 fine mode images (9 m spatial 

resolution). The initial variogram analysis, as well as the incorporation of window sizes 

ranging from 50x50 m to 750x750 m in the texture analysis identified the optimal 

filtering option. A window size of 300x300 m to 450x450 m is also highlighted during 

the creation of median confidence interval graphs as the highest separation between land 
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cover types are visible along the x-axis at the filter sizes that correspond to these 

dimensions. 

A window size of 300x300 m to 450x450 m matches well with the spatial extent 

of the tree line transition environment at the Mealy Mountains site, which, as identified 

through the field data, can range from 200x200 m to 600x600 m. The process of selecting 

a texture measure window size as identi tied in this research provides a more theoretical 

approach to this task and begins to move away from the arbitrary selections of window 

size in studies that use radar textures measures, as seen in Luckman et a/. (I 997). As 

well, instead of having a large range of window sizes to be tested, the amount of analysis 

that would be required in subsequent studies of the Labrador tree line is narrowed. 

6.2 Effects of topography 

There are some aggregations of pixels on the radar vegetation product which are 

aberrations. These regions are identifiable using the field data, as well as information 

from the NDVI. Terrain parameters that may lead to mis-representation of land cover 

include slope and elevation. Using the digital elevation model, these parameters are 

calculated, and statistics of the entire study area (SA) are compared to only those 

identified as misclassified (MC) (Table 6. I). The average slope for the entire study area is 

7.5" while the misclassified regions had a mean slope of 20.8". Looking at elevation, the 

mean for the entire study area is 6 I 6 m, and the mean for misclassified regions is 751 m. 

Generally, areas of misclassified land cover are located on slopes greater than I 9.2" and 

at elevations greater than 643 m 
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Table 6.1: Statistics of slope and elevation for the entire study area (SA) and 
misclassified regions (MC). 

SA MC SA MC 

Slope(") Slope(") Elevation (m) Elevation (m) 
Minimum 2.0 19.2 0 643 
Maximum 43.0 42.2 1049 1002 
Mean 7.5 20.8 616 751 
SD 5.7 2.2 120 83 

The aspect in relation to the incidence angle of the image (38.51 ") was also 

considered and revealed that the misclassified regions are located at orientations which 

face the platform. This effect causes clusters of high backscatter values to be displayed 

on the image product, which are confused with the high backscatter values found 

throughout the forest, and lead to misclassification. If it can be identified which 

landscape parameters lead to error in the radar product, pixels with these terrain 

characteristics can be flagged during analysis and assessed when necessary. If 

considering a time series of radar imagery as a monitoring tool, it would be beneficial 

w ith respect to the Labrador terrain to implement a robust radiometric terrain correction 

as suggested by Small et a/. ( 1997). 

6.3 Radar image specifications 

During analyses of the radar imagery, it became apparent that there is a 

relationship between the strength of correlation with the NDVT and the radar image 

specifications. Particularly, the specifications are polarization, orbit, incidence angle and 

spatial resolution. The following section highlights each of these specifications and 

specifies how they may impact the representation of trees at the TTL 

87 



6.3.1 Polarization 

Cross-polarized radar data are bener at characterizing land cover in the study area, 

with VH polarization having a higher correlation with the NDVI than HV polarized 

imagery. The success of cross-polarized R-2 can be attributed to the inforrnaion it 

provides about volume scattering mechanisms that occur in the tree canopy (Ulaby eta/. , 

I 990). The median spread for the fine mode image with a mean texture measure applied 

(Figure 5.8) indicates that forest and non-forest land cover types are most separable in 

cross-polarized, and overlap in like-polarized. 

R-1 acquires data only in HH polarization, which is not able to support proper 

detection of land cover at the TTl, as evident in the above results. An improvement of 

this specification offered by R-2 is the ability to image in all polarization modes 

(HH, HV, VH and VV). Through this research, cross-polarized SAR information has 

been proven as a reliable source of data to characterize the TTL The improvement from 

R- I to R-2 of multiple polarization modes means that cross-polarized data are readily 

available for future monitoring of the TTL 

6.3.2 Orbit 

More significant correlation results were obtained for imagery recorded from a 

descending orbit than those from an ascending orbit. This is most likely due to the 

interaction of radar waves with the terrain. On descending orbit, there is interaction with 

the trees and vegetation in the valley and along the east side of the mountainous region. 

The valley is where the majority of vegetation is located, so it is important to have good 

coverage of this area. On an ascending orbit, there is a high amount of intense backscatter 
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on the west facing slopes. There is also radar shadow occurring on the side of the 

mountain facing away from the sensor (backs lope). 

6.3.3 Incidence angle 

Figures 6.4 and 6.5 show the level of correlation with the NDVI vs. the incidence 

angle (9) for all cross-polarized data. Images with a steep incidence angles (35 to 39") are 

better at representing the land cover within the study area than images with a shallow 

incidence. Verbyla (200 I) found that incidence angles between 26 and 31 " were most 

beneficial for detecting the difference between trees during leaf on and leaf off seasons. 

The study was completed using only R-1 HH imagery. An added benefit of R-2 is that 

different polarization modes are available. This being the case, the representation of radar 

backscatter values on an image of the same land cover will be different. The following 

results provide a guideline as to which incidence angles may be most useful at providing 

the best radar backscatter separation between tundra and taiga land cover at the tree line. 

With respect to the study area, the incidence angle combines with the effects of terrain on 

the radar backscatter by allowing for more interaction with sloping surfaces, thus creating 

less high frequency noise for images with a steep incidence angle. 
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Figure 6.4: Relationship between incidence angle and correlation for R-2 images with 
HV polarization. 
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Figure 6.5: Relationship between incidence angle and correlation for R-2 images with 
VH polarization. 
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Figure 6.4 indicates that the highest correlation value with NDVI for the HV 

imagery was recorded with an incidence angle of 38.51 ", while for the VH imagery 

(Figure 6.5), the highest correlation was for an incidence angle of 34.00". Except for the 

image in Figure 6.4 with e ~ 35.71 ",the trend line for correlation and incidence angle has 

a similar pattern in Figures 6.4 and 6.5. The discrepancy noted at e ~ 35.71 o may be 

attributed to the orbital path, as it is the only image with an ascending orbit. 

Although the mean texture measure indicates the highest correlation with the 

NDVI at almost all incidence angles, the energy and variance texture measures are also 

very effective at delineating the forest and non-forest classes. When completing analysis 

of this type, all three texture measures should be equally considered as small variations in 

image texture may be present in SAR images of locations with slightly different 

landscape parameters and land cover types. 

6.3.4 Spatial resolution 

The results of this research demonstrate that both standard and fine mode R-2 data 

are able to characterize the TTL Masek (200 I) and Liu el a/., (2005) indicate that higher 

resolution imagery is more appropriate for delineation of different types of land cover. 

However, there appears to be a lower limit of approximately I 0 m spatial resolution. This 

emerges from the results of the ultrafine mode R-2 imagery, where only moderate 

correlations with the NDVI (between 0.20 and 0.44) were obtained (see Table 5.13). An 

optimal spatial resolution of about 10 m was found for this study area. This finding is 

also consistent with the findings of Rees (2007), in which images with a spatial resolution 

of I 0 m were shown to produce better class separation between forest and non-forest land 
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cover. The use of ultra-fine mode R-2 imagery covers a swath width of only about 22 km 

(CSA, 2008) and would be ineffective to collect data on large areas of the TTl, especially 

at a circumpolar scale. 

Both the standard mode and fine mode radar data provide information about tree 

cover at the TTL The use of each of these modes can be tailored to the scale of 

information that is required. If completing an analysis of the TTl at a continental scale, 

the swath width and instantaneous field of view of the standard mode imagery is suitable. 

Fine mode imagery can be used when looking at portions of the transition zone that are 

narrower or structurally more complex. 
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Chapter 7: Conclusion 

7.0 Conclusion 

The use of RADARSAT-2 (R-2) imagery for improved characterization of the 

tundra taiga interface was investigated in this thesis. An initial texture analysis applied to 

RADARSAT-1 imagery revealed six potential texture measures that would subsequently 

be applied to R-2 imagery. Statistical analysis was performed using the Kolmogorov­

Smimov two-sample test, a non-parametric bivariate correlation coefficient and a median 

confidence interval calculation to reveal which texture measure and corresponding 

window size performed the best. The optimal texture measure and window size was 

evaluated based on two criteria. The first criterion was that it significantly separated 

forest from non-forest land cover, while the second criterion was that the texture measure 

correlated well with NDVI imagery. These criteria were set in order to accomplish the 

study's operational and methodological objectives, which are to extract texture 

information from radar imagery in order to represent vegetation cover, and to create a 

radar-derived vegetation variable that correlates highly with NDVI images, respectively. 

The evaluation of differing polarization modes available from R-2 suggests that 

vertical-horizontal (VH) polarized imagery best captured the characteristics of the TTl 

and enhanced the separation between land cover types within the transition zone. The 

optimal texture measure is first order mean, which outperformed thirteen other 

measurements. The first order energy texture measure closely matches the results for the 

mean texture measure and can suitably be used as a proxy texture measure. Future work 
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should focus on assessing which R-2 incidence angle mode improves the VH and HV 

polarization radar image derived product. 

The conclusions obtained through the research framework of this thesis can be 

used in several areas of future work. One such area is the application, to a larger scale, of 

the radar-derived vegetation product. With improved temporal and spatial resolution over 

multispectral-based NDVl, the R-2 product can be used to monitor the position of the 

TTl over time. 

With additional field data surveys, the product could be adapted to incorporate a 

greater number of tundra land cover classes, including krumholtz vegetation, to provide a 

better account of the overall vegetation composition. Dimensions of krumholtz patches 

and tree islands as well as the gap size between them, are relevant structural information 

for the interpretation of radar image analysis results. The mean texture radar vegetation 

product suggests that more land cover types can be imaged, which would lead to a more 

comprehensive understanding of not only the TTl, but the Arctic ecosystem as a whole. 

Particular aspects of this research could be adapted into an automated process for 

selecting optimal filter window sizes where texture measures are applied. The end user 

would be provided with spatial statistical information that allow for the selection of a 

window size that retains spatial dependence and also provides a significant separation 

between land cover classes that are of interest. 
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Appendix A: Glossary 

Backscattering: the mechanisms by which energy interacts with features on the Earth's 
surface. 

Ko/mogorov-Smirnov (K-S) test: a non-parametric statistical test that determines if two 

datasets differ significantly. 

Median: The numeric centre of a sample. The median separates the higher values of the 
sample from the lower values. 

Tree island: individual tree growing at the range edge for that species 

Tundra-taiga interface or tree line: the eco-tone that is characterized as the boundary 
where the taiga ends and tundra land cover begins. 

Taiga: a moist sub-arctic environment dominated by conifer land cover. 

Spearman's correlation: a non-parametric statistical test that measures the statistical 
dependence between two variables 

Backscatter: the grey level value found in a radar image which indicates the strength of 
backscattering that occurs at each pixel. 



Appendix 8: Texture measures 

The equations for texture measures are taken from the following references: 
Dekker (2003), Haack (2007), Luckman eta/. (1997), Kurvonen and Hallikainen (1999), 

and Ulaby el a/. ( 1986). 

8.1: First order texture measures 

Energy 

This measure represents total magnitude of the signal in the window. Due to its large 
value it may be not suitable for SAR images. 

Entropy 

Where (p1 1) = ~ 
' .L.i,j(Xi,j) 

Note: if X;J <= 0, its contribution is set to 0. 

Entropy is a measure of disorder of the values within the window. It is large for windows 
with Gaussian (highly disordered) distribution of values, and small for windows with 
values tightly concentrated around one or several values. 

Kurtosis 

Li,j(x,,j- mean)4 

(M- l)(var)Z 

Kurtosis is the fourth standardized moment. This measure describes the degree of 
peakedness of a distribution. lfthe distribution has a high and narrow peak, its kurtosis is 
greater than 3. Gaussian distribution has kurtosis equal to 3. If the peak is broad and flat, 
the kurtosis is less than 3. Constant-valued windows have kurtosis equal to 0. 



Mean 

An arithmetic mean of all values in the texture window. 

Normalized Coefficient of Variation 

mean 

A measure of variability of window values, normalized by their mean. This measure is 
often used in analyzing Synthetic Aperture Radar (SAR) images, as it models statistical 
properties of SAR speckle. 

Skewness 

L.1,1(x1,1 - mean) 3 

(M- l)(var)3/2 

Skewness is the third standardized moment. This measure describes the degree of 
asymmetry of a distribution. If the distribution has a longer left tail , the skewness is 
negative. Symmetric distributions (including Gaussian and constant) have skewness equal 
to 0. Otherwise the skewness is positive. 

Variance (var) 

L;,j(xu- mean) 2 

M-1 

An unbiased estimate of sample variance of values in the texture window. 
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8.2: Second order texture measures 

Contrast 

N-1 

I P,,j(i- j)2 
i,j=O 

This is the opposite of Homogeneity. It is a measure of the amount of local variation in 
the image. 

Correlation 

N-1 (; 
'\ (i- mean )I)- mean·) 
L. P,,j [ ' 1 ] 

iJ=O (var/)(vm/) 

Measures the correlation level of neighbouring pixels. When the scale of local texture is 
much larger than the distance of lag, the correlation texture measure is typically high. 
When the local texture has a scale similar to or smaller than the lag, there will be low 
correlation between pairs of pixels apart by the lag distance. 

Dissimilarity 

N-1 

I Pi,j li-jl 
i,j=O 

Similar to Contrast. High when the local region has a high contrast. 

Entropy 

N-1 

'\ P· · (-lnP· ·) L t,j 1,1 

i,j=O 

Assuming that 0 * I nO ~ 0. 

Entropy is high when the elements ofGLCM have relatively equal values. The entropy 
measure is low when the elements are close to either 0 or I (i.e. when the image is 
uniform in the window). 
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Homogeneity 

N-1 

'\' P;J 
.L.... 1+ (i- j)Z 
1,)=0 

It is high when GLCM concentrates along the diagonaL This occurs when the image is 
locally homogeneous in the scale of the length of(SpatPixel, SpatLine). 

Inverse Difference 

N-1 

'\' P;J 
.L.... li- jl 2 
1,)=0 

Measures image homogeneity. It is high when most of the occurrences in the GLCM are 
concentrated near the main diagonal. 

Second Order Mean 

N-1 

L i(P;.j) 
i,j=O 

Average grey level in the local window 
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Appendix C: Spearman's correlation (p) and two sample KS test results. 

Cells highlighted in light grey indicate that the value is significant at a 95% confidence 

level and cells highlighted in ffiii"k gt'C!)l indicate that the value is significant at a 99% 

confidence interval. Values in bold are those used in Table 5.11 and 5.12 of the main 

thesis. 

Table C. I: Spearman's correlation (p) and two sample KS test for S3 mode VV image. 

T~xtur~ Co~fticiem of 
Energy Kunosis ).·Jean Skt\\ilCSS \"aria.JICt 

measure \"ariation 

Filter size p K-S p K-S p K-S p K-S p K-S p K-S 
11 035 121-4 -296 933 07. 1-178 -.332 Sl::! 07~ 1 37::! -211 123::! 

13 . 025 1 ::!84 -.321 1039 136 J.Qi::! ·.321 918 .Ili .SZJ -.297 1151 

15 . 068 1033 ~ 1.111 .087 1.157 .. J.IO 1 04::! .071 1.014 ·.333 10-42 
10 -.090 .9J1 -.340 1075 OSJ 860 -.354 LIJS 06- 82-4 -.316 1060 

19 - 145 978 -.334 1166 o•• 1160 -.342 1166 02::! U4S -.337 1235 

21 - 149 996 -.333 1269 053 5Ji -.336 1 287 019 633 -.. 3:!5 1093 

23 - 154 1.335 -.325 1.254 -.051 636 -.335 1235 -.061 933 -.313 1.235 

Table C.2: Spearman's correlation (p) and two sample KS test for S4 mode VH image. 

Coefficent of 
Emf!:>· Kunosi5 ~[un Ske,,nus \"anaru:e 

Yan;~rion 

Flhe,rnze p K.S K.S K-S K-S K-S p K-S 
11 -322 S30 S66 1.992 -1:6 .6159 .S91 1.941 -.1.15 ·:r ,. 2.098 

13 ..... .881 SiS 1.6-:'S -.15" .8150 :597 1.113 -.ISS '" .S46 t~u 

" -.193 Sl2 .... 1.12f -.OSS .651 .60S 1.605 -. 115 -ll .SI& 1.~99 ,- -2 ... 1.093 S9J 1 .~6.S -.139 .s.:.- I 1.:'11 __ ,-- 1.039 -~" ) ,,.5 

19 •.liJ 1.0-l: _jll 1'"'6j -l.lO 1.:69 .609 1.641 -:56 I-ll! S69 16j9 

:I -JJj l.C•:3 j .. j u.r --~ -6 1.711 611 1.5-r -.296 I ~11 , ... 1.550 

" -.313 1.0~ I , .. 1.6'71 --.Z9.l ... 1.5.l7 ..... 1.693 61 1.53~ 

Table C.3: Spearman's correlation (p) and two sample KS test for S6 mode HH image. 

T~xtur~ Codticim.t of 
Energy Kunosis ~1~an Sk~WII~SS \'arianc~ 

m~asur~ \'ariation 

~lli p K-S p K-S K-S p K-S p K-S p K-S 
11 -15:! 1:!1-t .226 1.781 ·lOS 1 J7S .279 l.M :!79 1.251 .192 1.569 

13 -.231 1.635 w 1.693 -.215 :l.fll .:!49 2.310 .249 1.781 161 1.375 

15 -1:!6 1 030 162 1.708 . o-o lA26 206 2.168 206 1 1 ~s 155 I.H4 
1- - 13-t 993 125 IA96 000 1320 201 2.011 201 1.496 100 1.4:!6 

19 -IS:! 1 160 091 1354 -091 1-+63 ISO 1.905 ISO 1354 o-• 131-

21 - 159 918 068 1166 -051 1196 148 1.569 t•8 1266 os• 1 248 

n - 14:! .,39 os- 11-t:! -029 1.05" 11:! 1.799 112 11-l:! 029 1 Os.t 
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Table C.4: Speannan's correlation (p) and two sample KS test for S7 mode HV image. 

Texture Coeftici~n of 
Energy Kunosis ).{ean Skewness \"ariance 

measure \"ariation 

Filter size p K-S p K-S p K-S p K-S p K-S p K-S 
II !IS ""87 .S30 1.989 .275 1.123 .524 1.777 .238 1.123 .530 1.865 

13 -.079 500 .S06 1.883 194 1 178 .SIS 1.902 098 1.017 .490 1.777 

15 -_12:! A75 .496 1.566 201 1:!11 .S29 1.708 125 1.1-l:! .472 1.58-1-

J7 -148 57 8 .507 1.51-1 0:!7 1.05"" .544 1.729 - 172 1.128 .488 1.-PS 

19 -.10:' 539 .SI4 1.623 -063 1.301 .547 1.729 -060 1335 .486 1 447 

ct -107 893 .S29 1729 -153 1269 .S61 1.623 -151 1169 .494 1613 

23 -.221 .718 .S511 1.517 -26:! -36 .S74 1.631 -.147 .930 .506 1.517 

Table C.5: Spearman's correlation (p) and two sample KS test for F2 mode VV image. 

Te:nure Coefticiem of 
Energy Kurtosis ).{can Skewness \"ariance 

measure \"ariation 

Filter size p K-S p K-S p K-S p K-S p K-S p K-S 
c9 -143 61' -.2SS .sn :!-tO 8-1-~ ·.260 1.222 15-t 910 -.296 920 

31 -::!-13 513 -216 9-9 269 982 -.2.53 979 189 S-12 -.299 964 

33 -.2SS .893 .]76 sr 251 ""39 -2-tS 1023 146 694 -.301 .842 

35 -.2-18 -s6 -.268 8'5 .2M 1.026 -.2-1-1 1 023 186 93-1 -.210 902 

37 ·.2-13 982 -.259 872 .281 1071 -.231 1.038 181 641 -.273 828 

39 -.2-U 908 -.261 994 205 53-I -.23:! 1 038 095 58~ -.:!78 s-:! 

41 -.2-W 831 -.:!67 I 009 :!00 53"' -.:!35 I 009 099 6:!6 -'275 8:!5 

Table C.6: Speannan's correlation (p) and two sample KS test for F21 mode HV image. 

T~'tture Coefrici<"nt of 
Enagy Kurtosis ~-f<"an Ske\Yll<"55 \"arianc<" 

mea.sure \"aria.tion 

Filursiu p K-S • K-S K-S p K-S 0 K-S " K-S 

19 -2-B 6-o .622 Z.916 -171 694 .642 2.5SI -166 845 .591 3.008 
31 -233 53:! 619 2.824 -.177 629 .640 2.610 -153 8-+5 .591 2.946 
33 ·.260 .940 .615 2.824 -217 '98 .643 2.610 - 199 ... 09 .597 2.946 

35 -2~8 -s6 611 2.732 -.271 934 6S3 2.5().1 -:!57 7:!1 .68Z z.au 
3' -.2--13 918 .613 2.610 -.269 920 .664 Z.5114 - 2]7 813 .599 2.717 
39 -.254 90S 612 2.610 -.270 1023 .662 2.610 -2~7 99• .593 2.625 
•t __ ,51 856 .608 2.717 ·.321 1.115 652 2.610 -.288 1.145 .582 2.946 

VII 



Table C.7: Spearman 's correlation (p) and two sample KS test for F4 mode HH image. 

Texture Coefticient of 
Energy Kmtosis ~feJJ1 SkewnC'ss Yariance 

measure \"ariation 
Filter 
size p K-S p K-S p K-S p K-S p K-S p K-S 
29 -.233 136-.4 0.0-1 L453 -013 99' 063 1.697 -031 1 0~3 . 009 L~2.:! 

31 ·.285 1.516 003 l 30::! -0.:!9 1373 .Oil 1.726 . 0'0 13.:!9 -039 1059 

33 ·.299 1608 00::! 131-t -0.:!7 1373 061 11564 . 095 1359 -035 1195 

35 -.331 1685 -001 I 31' -062 1619 060 1587 - U4 1.6-19 . 066 1195 

F ·.343 1.700 -001 1210 . 060 1A65 052 1.679 -134 1.557 -065 1166 

39 -.351 1.258 -002 l 302 -.OiS 1.634 053 1679 -152 1.726 . 08' 1166 
41 ·.337 12-B -005 l 26" -oss 1.528 046 !A 51 -.156 1.5-'l -. 10-S l.I-15 

Table C.8: Spearman's correlation (p) and two sample KS test for F5 mode VH image. 

co~ffic~ntof 
Energy Kunosu :>.lean Ske,\nen \"anance 

Yanation 

Filt er size p K-S p K-S ' K.S p K-S K-S ' K-S 

" -. .196 1.33: -105 USI -.316 n -0~3 l.l06 -JSS .902 -.309 1.:!35 

ll _... l..t9S -IS- IJJI ...... ~53 - 15" U.ll -.364 .9"9 -.~83 1.199 
]] -.-19S Ui":'9 -15S 1.199 ..... .95: -133 1.111 -.lit .90S -.2"1 1.05" 

" --~' 1111 -160 1.28" -.408 1 0-U -136 1.1-U -JU ., .:.u 1.199 
;- ._491 1.63~ ,., 1.111 .J7 L::s 1641 .. ) .0 1.15~ -.30~ 1.005 

JO --Mi~ 1.697 , .. 1.005 -.410 1.09: 611 u~- .4<)6 1.121 -.313 1.005 

" ._.tn '-"~ .... 1.!17 -.415 .., All l .S47 ..... , 1.000 -.313 1.005 

Table C.9: Spearman 's correlation (p) and two sample KS test for U2 mode VV image. 

Texture 
Coefticient of 

\"ariation 
Energy K-urt osis :'viean Skewn ess \"ariance 

measure 

Filter size p K-S p K-S p K-S p K-S p K- S p K-S 
79 -0.29 2.31 000 2.05 0.00 2.60 -005 2.49 -0_03 2.58 -0 09 1.85 

81 .0.30 2.17 0 00 1.94 0 00 2.60 -0 04 2.38 -0 .0~ 2.58 .o 10 1.85 

83 .U.29 2.17 0 00 1.94 0.01 2.49 -0.05 2.38 -0.0"l 2.58 -0.10 1.115 

85 -0.29 2.14 0 00 1.97 0.00 2.49 -00, 2.38 -0 03 2.47 ·0.10 1.83 

8' -0.28 2.25 0 01 1.88 0 00 2.49 -00, 2.38 -0.02 uo -0.11 1.85 
89 -0.27 2.35 0 02 1.95 0 01 2.49 -0.05 2.31 -0.01 2.60 -0 II 1.85 

91 .U.25 2.25 0.03 1.90 0 02 249 -0 05 2.37 -0 01 2.60 -0 1:! 1.85 
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Table C. IO: Spearman's correlation (p) and two sample KS test for U27 mode HV image. 

Ttxturo: Coefticient of 
Energy Kwtosis ).iean Skewness \'ariance 

measure \'ariation 

Filter size p ~;.s p ~;.s p ~;.s p ~;.s p ~;.s p ~;.s 

'9 -.437 1.548 .373 1.673 -.335 1.7uu .437 2.720 -.347 1.548 .341 2.673 

81 -.437 1.442 .364 2.566 -.349 1.634 .435 2.643 -.366 1A42 .340 2.625 

83 -.449 l.UO .365 2.610 -.364 1.821 .434 2.643 -.386 l . .wt ~ 2.625 

85 -.444 1.519 .362 2.610 -.356 1.634 .435 2.643 -.379 1.519 .339 2.504 

8' -.442 1.670 .363 2.598 -.360 1.649 .435 2.643 -.378 1.670 .333 2.474 

89 -.435 1.563 .362 2.533 -.364 1.756 .433 2.595 -.376 1.563 .338 2.426 

91 •.416 1 655 .359 2.477 -.367 1.777 .426 2.595 -.377 1.655 .338 2.566 

Table C. II: Spearman's correlation (p) and two sample KS test for U27 mode HH image. 

Texture Coefticient of 
Energy Kunosis ).fean Skewness \'ariance mea;;ure \ 'ariation 

Filter 
size" p K-S p K-S p K-S p ~;.s p K-S p K-S 
79 .0.495 2.367 8.241 2..511 -t.336 2.640 0.302 2.563 -t.J77 2.5<16 0.201 2.610 

81 .0.498 2337 0.243 2.610 .0.333 2.640 0.292: 2.563 .0.374 2.504 0.199 2.610 

83 .e.502 2.U8 0.239 2.518 .0.329 2.640 02:97 2.563 .0.367 2.563 0.195 2.489 

85 .0.492 2.260 0.237 2.504 .0.326 2.563 0197 2.625 .0.367 2.563 0199 2.489 
57 .0.495 2.260 0.236 2.456 .0.326 2.563 0.~98 2.625 .().368 2.563 0198 2.536 

89 .0.493 2.260 0.241 2.489 .0.320 2.563 0~96 2.625 .0.371 2.563 0 2:03 2.459 

91 .0.492 2.260 0.236 2.489 .0.317 2.640 02:99 2.625 .0.374 2.563 0199 2.459 

Table C.l2: Spearman's correlation (p) and two sample KS test for Ul7 mode VH image. 

Texture Codticientof 
Energy Kurtosis ).{ean Skewness \'ariance 

measure \'ariatiou 

Filter size p K-S p ~;.s p ~;.s p K-S p K-S p K-S 
'9 ..0.42 2.19 0.33 2.61 .0.46 2.28 0.35 2.55 .0.43 2.00 0.31 L61 

81 ..0..12 2.17 0.32 2.61 .0.45 2.11 0.35 2.55 -0.42 2.09 0.30 2.61 

83 ... 44 2.10 0.32 2.61 .0.46 2.21 0.34 2.50 .0.45 2.00 029 2.61 

85 .0.43 2.05 0.32 2.61 .... , 2.17 0.35 2.55 .0.45 2.00 0.29 2.61 

8' .0.43 1.99 0.32 2.50 .0.49 2.17 0.35 2.55 .0.46 1.94 029 2.61 

89 .0.43 1.99 0.31 2.50 .0.48 2.17 0.34 2.55 ... 46 2.09 0.29 2.50 
91 -0.42 1.99 0.31 2.50 .0.47 2.30 0.35 2.55 .0.44 2.05 0.30 2.50 
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Table C.l 3: Spearman's correlation (p) and two sample KS test for SQ mode HH image. 

Eneq~y Mean Variance 
Filter 
size p K-S p K-S p K-S 
~9 .260 2.152 .180 2.260 .135 1.833 
31 .267 2-261 .173 2.1S6 .125 1.833 
33 .258 2 .164 .171 2.1S6 .123 1.851 
35 .250 2. 152 .167 2 .1S4 .445 2.097 
37 .2-lS 2.152 .168 2.1S4 .440 2.097 
39 .2-l3 2. 140 .156 2. 168 .433 2 .032 
~1 .~16 2.092 .1~9 2 .290 .431 1.990 

Table C.l 4: Spearman's correlation (p) and two sample KS test for SQ mode HV image. 

Ener.'tv :Mean \·ariance 
Filter 
size p K-S p K -S p K-S 
19 .456 2.326 .443 2.326 .444 2.219 
31 .457 2.204 .447 2.219 .450 2.112 
33 .451 2.112 .440 2. 112 .442 2.097 

35 .452 2.204 .439 2.082 .440 2.082 
37 .445 2.204 .434 2.082 .432 2.082 
39 .442 1.990 .438 2.082 .436 2.082 
~I .430 1.990 .431 2.082 .433 2.082 

Table C. l5: Spearman's correlation (p) and two sample KS test for SQ mode VH image. 

Ener~y Mean Yariance 
Filter 
size p K-S p K -S p K -S 
29 0.489 2.326 0.487 2.326 0.493 2 .112 
31 0.498 2.204 0.494 2.204 0.495 2.156 
33 0.495 2.097 0.491 2.112 0.491 2.097 
35 0.492 2.097 0.493 2.082 0.489 2.017 
37 0.488 2 .097 0.487 2.082 0.484 2.032 
39 0.489 2.097 0.491 2.082 0.485 2.01 7 
~1 0.492 1.990 0.484 2.082 0.499 1.976 
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Table C. l 6: Spearman's correlation (p) and two sample KS test for SQ mode VV image. 

Ener~y 1\.1ean Variance 
Filter 
size p K-S p K -S p K-S 
29 .156 2.094 .199 2.139 .11 i 1.940 
31 .162 1.984 .196 L24S .127 1.863 
33 .165 2-032 .183 2.245 .128 1.848 
35 .150 1.970 .179 2.062 .127 1.863 
37 .156 2.032 .185 2. 168 .116 1.878 
39 .1.1 2.047 .175 2.168 .116 1.925 
.1 .12-l 2.183 .15-J 2.168 .098 2.047 

Table C.l7: Spearman's correlation (p) and two sample KS test for FQ mode HH image. 

Energy Mean Variance 
Filter 
size p &-S p K-S p &-S 
19 -. 2!3 1.126 -.152 !.429 -.143 1.001 

31 -.185 1.093 -. 122 1.093 -.111 .969 

33 -.201 1.057 -.121 1.093 -.135 .721 

35 -.190 1.057 -.119 1.163 -.133 .881 

37 -.187 1.057 -.127 1.163 -.241 .812 

39 -.198 .987 -.116 1.075 -.1 98 .987 

41 -.208 .811 -.1 45 .848 -.H3 .812 

Table C.18: Spearman's correlation (p) and two sample KS test for FQ mode HV image. 

Energy Mean Yariance 
Filter 
size p K-S p K-S p K-S 
19 .544 1.974 .566 1.941 .504 2.029 
31 .556 1.747 .581 1.883 .520 1.675 
33 .581 1.835 .599 1.711 .558 1.817 
35 -.129 1.163 .606 1.871 .559 1.871 
37 - .l::!i 1.163 .602 1.759 .534 1.765 
39 -.116 1.075 .599 1.529 .537 1.553 

41 -.145 .848 .599 !.159 .543 1.341 
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Table C. l9: Speannan 's correlation (p) and two sample KS test for FQ mode VH image. 

Ener~v 1vlean Variance 
Filter 
size p K·S p K-S p K-S 
29 .667 2.701 .720 2.719 .588 2.522 
31 .689 2.737 .741 2 .701 .61!1 2.701 
33 .689 2.665 .738 2.665 .600 2.365 
35 .690 2.541 .748 2.559 .599 2.453 
37 .662 2.332 .734 2.559 .593 2.171 
39 .633 2.489 .730 2.683 .551 2.489 
~ 1 .639 2.489 .710 2.701 .561 2.383 

Table C.20: Speannan's correlation (p) and two sample KS test for FQ mode HV image. 

Ener~v Mean Variance 
Fi lter 
size p K-S p K -S p K -S 
29 .448 1.851 .483 1.913 0.419 1.729 
31 .444 1.729 .492 1. 85 1 .419 1.729 
33 .441 1.637 .500 1. 715 .420 1.613 

35 .460 1.620 .492 1.82 1 .420 1.741 
37 .460 1. 528 .503 1.715 .424 1.5 28 
39 .451 1A 95 .510 1.593 .413 1.332 

~ I .466 1.495 .510 1. 560 .441 1.495 
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