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Abstract
This study explores how simulation based training for offshore emergency situations

can embrace software agents who exhibit human-like behaviour when exposed to haz-

ardous situations such as fire aboard, smoke or explosions. Simulation based training

uses a virtual environment to expose a participant to scenarios related to mustering

events on offshore oil and gas platforms. These scenarios are also relevant to a number

of other industrial applications, as they help rehearse for emergency situations such

as installation fires.

The agent model proposed here exploits the concepts of similarity-matching and fre-

quency gambling as the primary knowledge retrieval methods and uses the agent’s

reliability based selection of appropriate knowledge-units to make a decision in the

event of a hazard. The agent’s reliability is a probability that it acts rationally, and is

estimated as a function of the agent’s mental modalities: stress, panic, fear, overconfi-

dence and distraction. The effects of these modalities during simulated harsh weather

conditions and hazardous events are presented in the form of computer simulations.

These simulations show that the use of the agent-model in a training software would

enhance the scope of learning by exposing the human participant to more natural

human-like behavior during a simulated hazardous event.

ii



Acknowledgements
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Chapter 1

Introduction, Overview and

Co-Authorship Statement

1.1 Introduction

In contemporary times, software development has entered a new arena where the ap-

plication is centered around the concept of autonomous characters, called intelligent

agents or simply agents. This particular strand of artificial intelligence has gained

tremendous scope and significance both in academic research as well as in indus-

trial applications. The application of agents in real life problems abounds: computer

games, intelligent assistants, virtual reality and many more. One such application of

intelligent agents is in virtual environments (VEs) that are designed to capture char-

acteristics of harsh environments particularly related to emergency training scenarios

pertaining to offshore oil and gas platforms. The present work mainly focuses on a

system, called AVERT, that is a VE targeting the training tools for offshore oil &

gas operations. The VE is designed in a way that a participant is exposed to various

training scenarios and drill exercises. The participant becomes the person who takes

control of one of the agents in the VE while the other ‘agents’ are computer controlled.
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The actions that the participant performs are reflected by the agent he/she has em-

bodied, whereas the computer controlled characters are bound with whatever actions

their respective computer program allows in a given situation. The computer con-

trolled agents have deterministic behaviour and, though they do possess good steering

capabilities, they lack intelligence and autonomous behaviour. The requirement was

to model the human behaviour that is natural in any emergency situation so that

participants can learn the after-effects of good and bad decisions.

Although there are many platforms and programming languages that, at present,

support agent development, modeling human behaviour under extreme conditions has

not been given much attention. Extreme conditions means high mental stress, panic,

fear, overconfidence and distraction that are caused by fire hazards and harsh weather

conditions such as heavy rains and winds. Such extreme conditions often reduce one’s

reliability to act as required. This work provides a means to have an agent model

that not only supports intelligent decision making, but also models human fallibility

so that a participant may learn the dangers involved in making a particular choice

in a given learning scenario. The model defines a feedback mechanism and considers

frequency of the past decisions in making a new choice against a given situation. This

certainly is a step forward in computer implementation of systems like Case-based

reasoning (CBR) in a variety of application areas.

1.2 Research objectives

The research has two main objectives:

1. To construct an intelligent agent model that can be used in VE emergency

scenarios for harsh environments such as offshore oil & gas installations.
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2. The agent model should consider such cognitive factors that are important in

human error development in a typical decision making process.

1.3 Overview

Much of the understanding related to the requirements was developed by formal and

informal communications with the author’s supervisors and other graduate students

in the group. The author’s course work also laid a firm foundation in his under-

standing of the field of human error. The literature review explores a precise scope

of the required concepts in cognitive modelling, agent oriented modelling and agent-

oriented programming and covers the depth of the related topics in (i) basics of agent

oriented programming, (ii) knowledge representations, (iii) knowledge base (KB) de-

sign, (iv) cognitive psychology, (v) human factors study, and (vi) related information-

theoretical aspects. Also, the bibliographic information regarding literature that is

used as in-depth knowledge for modeling and implementation is given at the ends of

Chapters 3 & 4.

Knowledge is represented in the KB in the form of knowledge units (KB-Units) re-

trievable via one or more calling conditions (CNDs) where each KB-Unit embodies a

solution to a certain instance of a problem. The problem is to make a decision about

whether to leave the environment in case of a fire hazard or to try to extinguish it.

In the latter case, the problem becomes deciding what type of fire extinguisher best

suits the fire class type involved. Thus, a KB-Unit typically contains the name of a

fire extinguisher and the CND contains the contextual information in which that fire

extinguisher should be employed. The agent model comprises four main algorithms.

Algorithm 1 retrieves a set of KB-Units from the agent’s KB according to the criteria
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of similarity-matching and frequency gambling. This knowledge retrieval is followed

by a selection of one most appropriate KB-Unit in Algorithm 2. The selection of a

particular KB-Unit is based on the agent’s current knowledge and reliability. Agent

reliability is estimated on the basis of human factors considered here. These include:

stress, panic, fear, overconfidence-bias, and distraction caused by bad weather condi-

tions. Algorithm 3 is actually a template of how to use a fire extinguisher. Algorithm 4

gives the agent feedback from the fire hazard after an extinguisher is applied. This

information is used for updating the KB, and thus Algorithm 4 is responsible for

making the agent learn from its own actions.

The algorithms described above are implemented as a standalone C++ program. The

program is designed by exploiting game AI logic, and important methods and C++

classes are presented in Appendices. Thirteen different test scenarios are created

that involve fires as the hazards, alarms as triggers, heavy rains and strong winds

as weather conditions that induce distraction, and stress, panic, fear and overconfi-

dence as mental attitudes. Impact of the said factors on agent decisions is estimated.

Chapter 3 presents the basic algorithms in knowledge representation, KB design, hu-

man factor estimation, agent’s reliability estimation, knowledge retrieval and learning

through feedback. In Chapter 4, a methodology is proposed to deal with alarms.

Two types of alarms are considered here: the process alarm and the muster alarm.

The question of how much information the agent has is answered by estimating sur-

prise and ignorance measures. The latter measure estimates a coarse grained effect of

the distribution of probability over a number of KB-Units returned by the retrieval

process. Similarly, what does the agent learn from past experience? How and when

does it use past knowledge? What is the impact of past knowledge on current de-

cisions? Such questions are treated by experimenting with various scenarios in both

Chapters 3 & 4. Chapter 5 is the conclusive chapter that opens with a discussion on

4



various results and recommends possible future extensions to this work.

1.4 Co-Authorship statement

The research topic was proposed to the author by Dr. Faisal Khan, Dr. Brian Veitch

from the Faculty of Engineering and Applied Science and Dr. Scott MacKinnon from

the School of Human Kinetics & Recreation. Dr. Khan has contributed to this work

by directing the author to the required areas of knowledge pertinent to intelligent

agent modeling and reliability assessment. Dr. MacKinnon has provided detailed

knowledge in the area of cognitive science and human factors study. Dr. Brian

Veitch has contributed by his thorough review of the research papers and in thesis

development. In addition, the continuous feedback of the supervisory committee and

comments in the development of the agent model and its software implementation

was a real contribution towards successful completion of this work.

The author was responsible for composing this thesis. He conducted the literature

review, developed the theoretical agent model and its software implementation. He

made scenarios to be performed through the software and collected the software re-

sults, interpreted them and developed conclusions on the basis of which the recom-

mendations were presented.
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Chapter 2

Literature review

2.1 Human error & some disastrous events

Errors happen. Unfortunately, serious errors that occur at very sensitive installations

can result in the loss of human lives and wealth. These serious errors point to the

importance of previously ignored subjects. Such are the studies of human error,

safety sciences, virtual training environments, and in particular, the present study

that involves development of an intelligent agent which can be used in offshore virtual

training scenarios for emergency evacuation and related matters.

The explosion on Deepwater Horizon (2010), a semi-submersible offshore oil drilling

rig, located 60km off the US coast, resulted in the deaths of 11 workers, severe in-

juries to several others and a massive environmental catastrophe due to the release of

5 million barrels of crude oil (BP.com, 2010). The ensuing accident review identified

weaknesses in process-safety measures and deficient risk reduction techniques. The

Piper Alpha disaster in 1988 caused 167 fatalities. The GSF Adriatic IV, which was

an oil rig located over the Temsah gas production platform in the Egyptian Mediter-

ranean Sea, blew out in 2004. Fortunately, there were no casualties but the platform

was damaged beyond repair. The Montara blowout (2009) in Australia resulted in an
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oil slick of approximately 180km measured east to west (WAtoday.com.au, 2009). In

all these incidents, fire and explosion are considered the main reasons for the losses.

However, there are a host of organizational factors that are root causes, such as incon-

sistent safety measures, failure to identify risks, failure to identify and react to early

warnings, failure to protect vulnerable areas, failure to make timely decisions under

stressed conditions, lack of communication and lack of appropriate training (Khakzad,

Khan, & Amyotte, 2013; Skogdalen, Khorsandi, & Vinnem, 2012; Christou & Myrto,

2012).

2.2 Working definitions of human errors

Reason (1990) gives some working definitions that are serviceable rather than pre-

senting hypothetical ideals.

Error will be taken as a generic term to encompass all those occasions in

which a planned sequence of mental or physical activities fails to achieve

its intended outcome, and when these failures cannot be attributed to the

intervention of some chance agency.

This involves events when a series of actions do not follow the plan, or when the plan

itself is inadequate to achieve the desired outcome. It is also possible that storage and

execution both incorporate error. The distinction as to whether the error occurred in

the storage phase or in the execution model gives rise to two further definitions:
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2.2.1 Slips and lapses

Amaya (2011) says, “Slips are informed mistakes”. This does not mean that people

willingly commit slips, but that though they know what they want to achieve and how

to achieve it, somehow they miss something they know during the course of actions.

In this sense, slips are not due to lack of knowledge. Reason (1990) says that slips and

lapses are “the errors which result from some failure in the execution and/or storage

stage of an action sequence, regardless of whether or not the plan which guided them

was adequate to achieve its objective.”

2.2.2 Mistakes

Reason (1990) defines mistakes as “deficiencies or failures in the judgmental and/or

inferential processes involved in the selection of an objective or in the specification of

the means to achieve it, irrespective of whether or not the actions directed by this

decision-scheme run according to plan”. Mistakes are considered to have their origin

in thoughtlessness (Amaya, 2011).

It is clear now that mistakes, lapses and slips, which are the primary error types

(Reason, 1990) occur at the cognitive stages or mechanisms of planning, storage and

execution respectively. On the other hand, there exists another kind of error called

“error forms” which are recurrent varieties of fallibility that appear in all kinds of cog-

nitive activity, irrespective of error types. They are observed in mistakes, lapses and

slips. Their omnipresence in every cognitive activity suggests that they are actually

rooted in universal cognitive processes, in particular, the mechanisms that involve

knowledge retrieval. Two such errors forms that are particularly important in the
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context of the present study are similarity and frequency biases1.

2.3 A few cognitive studies in human error

2.3.1 Bartlett’s notion of schema

The term schema2 was coined by Barlett to explain systematic errors present in re-

calling textual data such as a prose passage and pictorial information. Barlett defines

a schema as:

[a]n active organization of past reactions, or of past experiences, which

must always be supposed to be operating in any well-adapted organic re-

sponse. That is, whenever there is any order or regularity of behaviour,

a particular response is possible only because it is related to other simi-

lar responses which have been serially organized, yet which operate, not

simply as individual members coming one after another, but as a unitary

mass.

According to Barlett, schemata are mental structures that: (i) are active without

any effort, attention or awareness, (ii) contain past knowledge or experience which is

the reason he used unitary mass in his definition, and (iii) include past knowledge

comprising active knowledge structures rather than passive ones. Schemata are high-

level structures that contain informational slots or variables for holding information.

Each variable is considered to contain only a specific kind of information. If the

current input from the world fails to provide the required type of data for given slots,

they take on default assignments based on past experience.
1See Sections 3.3.3 & 3.3.4 for detail accounts on similarity and frequency biases.
2Barlett, 1932, p. 201.
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Prominent works that are considered a revival of Barlett’s schema theory are Min-

sky (1974), Rumelhart (1975) and Schmidt (1975). Minsky’s main contribution in

connection with schema theory was in pattern recognition. He proposed that three

dimensional scenes can only effectively be perceived by computers if they are able to

anticipate much of what will appear. Rumelhart and Ortony (1977, p. 101) defined

schemata as “data structures for representing generic concepts stored in memory”.

McVee, Dunsmore, and Gavelek (2005) present a brief review of schema theory in

regards to literacy studies by reviewing various concepts and examining how recent

social and cultural realities may prompt their reconsideration.

2.3.2 Memory: primary & working memories

A few of the empirical studies supervised by Wilhelm Maximilian Wundt (1832-1920)

dealt with the psychology of memory. He is known to posterity as the “father of

experimental psychology” and the founder of the first psychology laboratory (Kim,

2008). However, Wundt rarely used the term “memory” in his work, and to him

memory was a general ability to renew ideas (Scheerer, 1980), possibly due to thinking

and recollecting. It is, therefore, hard to establish a real connection of psychology of

memory with Wundt. Memory is one of the oldest psychological concepts, described

in use since the time of Plato and Aristotle (Danziger, 2001). Although Wundt’s

contribution of memory as a core psychological concept was not something remarkable

(Danziger, 2001), since his era, circa 1905, it has been known that some people possess

an immediate memory span3. This is exactly what Wundt called span of consciousness

and the focus of attention. Now this span of consciousness or focus of attention is

recognized as primary memory.
3Reason, 1990, p.31.
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of the pathologies of the human problem solving mechanism. GPS was the first

computer program in which the concept of knowledge separately dealt with the concept

of solution or a strategy to find a solution. A problem space is defined as consisting of

a set of possible states where each mid-level state (including the initial state) serves

as a transition state from initial state to the final state. The final knowledge state

is supposed to contain the solution of the problem. A problem is posed by giving an

initial state of knowledge and then finding a path, by using the heuristic method of

means-end-analysis, to a final state of knowledge that contains the solution. GPS was

implemented in the IPL4 programming language.

2.3.4 Rasmussen’s skill-rule-knowledge framework

This model originated from a verbal protocol study of technicians involved in elec-

tronic troubleshooting (Rasmussen & Jensen, 1974). Essentially Rasmussen and

Jensen’s model deals with the cognitive stage of performance level and, more lately,

it has become a market standard for systems reliability. Three levels of performance

are given below:

2.3.4.1 Skill-base level

At this level, the stored structures of preprogrammed instructions — in a time-space

domain — are used to govern human performance. Errors at this level are related to

the intrinsic variability of force, space or time coordination (Reason, 1990).
4Information Processing Language (IPL) developed by Newell, A., Shaw, C., and Simon, H. A.

at RAND Corporation and Carnegie Institute of Technology in 1956.
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2.3.4.2 Rule-base level

At this level familiar problems are dealt with by using stored rules in the form of

productions of the type if (condition) then (solution). Errors at this level are

mainly due to misclassification of conditions or situations that lead to the application

of wrong rules.

2.3.4.3 Knowledge-base level

This is the most advanced level in Rasmussen’s framework. This level is involved in

novel or unexpected situations for which actions must be planned on the fly, using

conscious analytical processes and stored knowledge. Errors at this level arise from

resource limitations or bounded rationality and incomplete or incorrect knowledge.

Rasmussen says that with increasing expertise, the primary focus of control shifts

from knowledge-base to skill-base level; however, all three levels can be involved si-

multaneously in order to solve a given problem.

Lin, Yenn, and Yangb (2010) propose a skill-rule-knowledge base framework that as-

sists in decision making related to the ‘types of automation’ and ‘levels of automation’

for the human-automation interaction domain.

2.4 Agent

The notion of agent is now common in AI and also in many disciplines from computer

science to economics (Ross, 1973). However, because of the increase in common us-

age of the notion in diverse ways and in different fields, the meaning of the notion in

a particular problem instance remains obscure until a specific account of agenthood
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is manifested. In a wider AI-sense, the notion is used for some entity which works

continuously and autonomously. Perhaps these two are the most common and unani-

mously accepted attributes or characteristics of agents for AI researchers who use the

notion. Nevertheless, there still remain claims such as, “These are software programs

that are, in many respects, alive; and as part of living in this extraordinary network

environment, they have begun to manifest many features and actions that were until

recently the domain of human beings” (Murch & T. Johnson, 1999). The computing

literature suggests that there are some mental qualities which present no sense when

ascribed to machines, albeit such an ascription is valid. Consider, for example, the

case of a thermostat as explained in McCarthy (1979) that could have the attribu-

tion of possessing a mental quality of belief. However, McCarthy maintains that such

an ascription, though legitimate, would not aid our understanding of the working of

heating systems and thermostats. Moreover, saying that the thermostat “believes”

the room is too cold seems to attach much more intricacy to thermostat than what is

just because the idiomatic nature of such a sentence is part of our language, not the

language we use for such instruments. On the other hand, assigning mental qualities

to machines is also advantageous in many domains. To understand this idea, first,

consider the case of a flight simulator. The job of a flight simulator is to perform

tasks exactly in the same way an aircraft performs, except that the simulator just

displays or shows and has no way to move or fly. In this way, a specific combination

of commands can be tested to see if this produces a correct sequence of actions or

if it dooms the operator to a certain erroneous or undesired output. Yes, it is quite

evident that a flight simulator ‘simulates’ an aircraft, which is a machine, and thus

it is manufactured for a high degree of certainty. The situation that an ‘agent’ often

faces is extraordinary because it is frequently targeted to capture some or more of the

attributes of the human mind. Second, consider the case of a VE, in which the agents
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are designed to behave in as human does. What is this requirement? Is it legitimate?

Whether it is legitimate or not it is desirable if people are to be trained for emergency

situations that arise in extreme or harsh environments, such as an offshore oil and

gas platform. The Emergency situations also arise due to human error. Thus, at

least, one mental quality that is responsible for making a human error is fitting to be

possessed by the agents in the VE on the grounds of both the legitimacy and desire

or need so that a participant can see the agent’s actions or decisions that led to a

catastrophic situation. Such is the holy grail of the agent, in the context of this study,

as this makes the participant learn what was intended.

2.5 Different views about the notion of agent

1. Russel and Subramanian (1995) say, “An agent is anything that can be viewed

as perceiving its environment through sensors and acting upon that environment

through effectors”.

2. Wooldridge and Jennings (1995) define the notion by using two separate titles,

viz., the weak notion of agency and the strong notion of agency. These forms

are defined as:

(a) “The Weak Notion of Agency is a general way to use the term ‘agent’ to

mean hardware or software that should possess the following properties:

i. Autonomy: Agents operate without the direct intervention of humans

or others, and have some kind of control over their actions and internal

state;

ii. Social ability: Agents interact with other agents (and possibly humans)
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via some kind of agent-communication language;

iii. Reactivity: Agents perceive their environment and respond in a timely

fashion to changes that occur in it;

iv. Pro-activeness: Agents do not simply act in response to their environ-

ment; they are able to exhibit goal-directed behaviour by taking the

initiative.”

(b) “The Stronger Notion of Agency: According to this the notion of ‘agent’,

in addition to having the properties associated with the weak notion of

agency, is either conceptualised or implemented using concepts that are

more usually applied to humans. For example, it is quite common in AI to

characterise an agent using mentalistic notions, such as knowledge, belief,

intention, and obligation (Shoham, 1993). Some AI researchers have gone

further, and considered emotional agents . . . ”.

Such distinction of the notion of agent into weak and strong forms is akin to

the goals of the entire field of AI.

3. “An agent is an entity whose state is viewed as consisting of mental components

such as beliefs, capabilities, choices, and commitments. These components are

defined in a precise fashion, and stand in rough correspondence to their common

sense counterparts. In this view, therefore, agenthood is in the mind of the

programmer: What makes any hardware or software component an agent is

precisely the fact that one has chosen to analyze and control it in these mental

terms. (Shoham, 1993)”.

In other words, Shoham says that the question of “what an agent is” is mean-

ingless because anything, any software or hardware, to which mental qualities
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are ascribed, could be termed so. However, whether such an ascription of men-

tal qualities is really legitimate or useful is a matter of thought for discus-

sion.(McCarthy, 1979).

4. “Autonomous agents are computational systems that inhabit some complex dy-

namic environment, sense and act autonomously in this environment, and by

doing so realize a set of goals or tasks for which they are designed.” (Maes,

1995).

5. “Intelligent agents continuously perform three functions: perception of dynamic

conditions in the environment; action to affect conditions in the environment;

and reasoning to interpret perceptions, solve problems, draw inferences, and

determine actions.” (Hayes-Roth, 1995).

The attributes of agency are what makes an entity, software or hardware, an agent.

Thus the weak notion of agency limits the attributes to four: autonomy, social ability,

reactivity and pro-activeness. In the stronger notion of agency, a number of mental

qualities such as beliefs, desires or intentions, are required to be ascribed to the agent,

and this ascription is considered legitimate when it expresses the same information

about the machine that it expresses about a person (McCarthy, 1979).

2.6 Mental qualities and their properties

Shoham (1993) pointed out three modalities: belief, desire, and intention, which

were discovered earlier, and counts them as components of an agent’s mental state.

However, what clear difference the author considers there to be between, for exam-

ple, desires and choices, is hard to pin point. The author proposes a programming

framework for agents, called Agent Oriented Programming (AOP), and expects differ-
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ent properties of belief, commitment and capability in different applications of AOP.

These mental states are described as temporal and the associated language involves

a time component, such as the case where the predicate holding(robot, cup)t repre-

sents the agent’s state of holding a cup at time t. Similarly, the author also says

that actions, belief, obligation, decision or choice and capability are time dependent

qualities. Internal consistency, good faith, introspection and persistence of mental

states are some of the most important properties defined by Shoham. The restric-

tion of time on mental qualities looks natural but it also allows the agent to believe in

nothing at one time, and shortly afterwards to have belief in every sentence. Thus the

AOP framework proposes certain conditions on beliefs, such as having memory and

good faith, and only discards a belief if the agent learns a contradictory fact. Similar

arguments regarding persistence hold for other mental qualities (Shoham, 1993).

As hinted in the work of Shoham (1993), an important development in modeling

agents is the belief, desire and intention (BDI) model later proposed in Rao and

M. P. Georgeff (1992, 1995). The BDI logic has its roots in Michael Bratman’s theory

of human practical reasoning (Bratman, 1987). The theory significantly advances the

understanding of agency. According to Velleman (1991) Bratman’s theory says that

intention should be characterized in terms of its function in rational action — the main

role of intention is to make an agent carry out an action. This means that having an

intention makes one subject to various ways of acting or reasoning to the limit that

one is rational. These ways or norms are reflected as regularities in one’s deliberations

and actions. Bratman also claims that the functional role of intention is easily seen in

plans for the future compared to the immediate intentions. For Bratman, the agent

can solve a problem in advance and in parts or stages rather than acting at the time

when the action is required. Thus he says,
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I have emphasized the fact that our intentions concerning our future ac-

tions are typically elements in larger plans, plans which facilitate coor-

dination both socially and within our own lives, plans which help enable

prior deliberation to shape later conduct5.

and

Plans, so understood, are intentions writ large. They share the properties

of intentions recently noted: they resist reconsideration, and in that sense

have inertia; they are conduct controllers, not merely potential conduct

influencers; and they provide crucial inputs for further practical reasoning

and planning6.

The example of going to a concert clarifies Bratman’s idea of having partial plans.

This is an important feature of a plan. Thus a person deciding to go to a concert one

night would not immediately settle on a complete plan for the evening. The person

might leave till later deliberation about which concert to attend, how to reach the

location, with whom to go. As the time of the concert comes closer, the person starts

filling out the missing or incomplete knowledge in the plan. In this way, an initially

partial plan becomes a complete plan and the deliberation is observed in stages. A

second important feature of a plan is its hierarchical nature. Plans concerning ends

embed plans concerning means and preliminary steps. Thus if a person decides to

go to a concert, he could imagine listening to his favourite singer. Bratman says

that agent’s rationality can be determined by its intentions. For example, if an agent

has an intention, I, at time t1, and that the agent retains I until some later time

t2 without reconsidering, then the agent seems rational during the time t1 to t2 in

intending I. McCann (1991) says that according to Bratman’s theory intentions serve
5Bratman, 1987, chapter 3, p. 28.
6Bratman, 1987, chapter 3, p. 29.
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as the foundation for plans, and plans are to be filled out by proper substance in a

timely manner.

2.7 Agent-oriented modelling approaches

An overwhelming number of programming languages, frameworks and platforms exist

that support agent-oriented modelling of a system or process. A few of the most

important in the context of the present study are discussed here. The interested

reader can refer to Sterling and Taveter (2009)and Murch and T. Johnson (1999) for

an overview of the field and the current trends in regards to applications. A good

treatise on chunking — a procedure to generate chunks of information from experience

and store them in memory in a way that they could be retrieved in similar future

situations — as a learning mechanism in Soar, discussed in Section 2.7.2, is reported

in Schalkoff (2011). For computational aspects and mathematical rigour see Agre and

Rosenschein (2006), especially the treatment of the agent by Beer (1995)7 in terms

of dynamical systems theory, where the agent states are shown to be represented

as a continuous-time dynamical system. Furthermore, Beer also gives some simple

examples revealing a beautiful commonality in how an iterative map, a finite state

machine and a differential equation, seemingly different structures, could be used to

model a state-space of a system and thereby an agent. Now, before proceeding further

it should be kept in mind that any rule based system that can perceive and act in

an environment can be considered as an agent though in terms of the weak notion of

agency (Russell & Norvig, 1995). Adding sophisticated algorithms to learn and make

intelligent rational decisions strengthens an agent. Adding mental attitudes should

be considered one step further towards the notion of the strong form of agency.
7This paper also appeared in Agre and Rosenschein (2006).
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2.7.1 The BDI agent model

A BDI agent, as a software model (Rao & M. P. Georgeff, 1992, 1995), is an abstract

architecture that stands out as having a large influence on agent based modelling and

development in the past two decades. The popularity of this model may be attributed

to the presence of mental attitudes that make a machine, either software or hardware,

resemble some modalities of a human mind. As originally presented, it is primarily an

abstract architecture and not precisely defined (Sterling & Taveter, 2009). Section 2.8

describes some popular systems that are based on the BDI agent model. In general, a

BDI agent has a library of plans and uses different data structures to keep the agent’s

beliefs, desires and intentions. The agent, upon interaction with an event, picks up

and executes a plan for which the invocation conditions and preconditions are satisfied

in the event. Here, beliefs refer to the informational state of the agent about itself and

its environment. The beliefs, stored in a rule-base, thus may lead to the construction

of other beliefs. The veracity of a belief is, nevertheless, not necessarily established at

the time of its creation. The agent’s desires are motivational factors. Goals are special

types of desires which bring the agent into active pursuit to fulfill them. Intentions

are the deliberative states of the agent and to some extent are the committed desires.

As Bratman proposes that intentions should be understood by means of plans, the

software model implements intentions in the form of plans which are sets of concrete or

atomic actions — actions that can be performed without using the definitions of other

actions — the agent can perform in order to achieve or fulfill what the plans intend.

Nonetheless, as discussed in Phung, Winikoff, and Padgham (2005), a BDI agent does

not learn from its past experience, though it can adapt to changing environment but

the model lacks a clear learning mechanism. Similarly, the BDI model does not define

an explicit formalism to work in a multi-agent framework (M. Georgeff, Pell, Pollack,
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Tambe, & Wooldridge, 1999). Though, not including the BDI logic, the present agent

model defines a clear learning mechanism by exploiting the agent’s past experience

that is maintained with the help of frequency bias.

2.7.2 The Soar framework

The Soar framework (Laird, Rosenbloom, & Newell, 1986, 1987) is an agent develop-

ment platform. It aims at modelling general intelligence — a characteristic feature

of human beings — by exploiting a unified theory of cognition8(Newell, 1990) so that

the agent is able to enjoy the full range of capabilities possible to an intelligent agent.

Historically, the name Soar was an acronym for State Operator And Result. Due

to its vast scope, the project is a long-term, multidisciplinary effort. The interested

reader is referred to the works of Newell (1990, 1992a, 1992b) and Rosenbloom, Laird,

and Newell (1992) for an account of early developments.

2.7.3 The Case-base Reasoning agent model

The Case-base Reasoning (CBR) systems (Aamodt & Plaza, 1994) rely on past similar

experiences retrieved from memory, preferably by means of a reconstructive memory

search (Kolodner, 1983), to make current decisions. Yang (2013) develops a cloud

energy-saving and CBR information agent for the internet that can explore related

technologies in order to establish a web service platform. CBR is successful in areas

that require experience based problem solving (Bergmann et al., 2003). Aamodt and

Plaza (1994) report a four step decision making process, in which, at first, the agent

retrieves from memory cases that are like the one under consideration. Then it re-uses
8Another equally important development in terms of general intelligence is the ACT-R cognitive

architecture. See (J. R. Anderson et al., 2004; Taatgen, Lebiere, & Anderson, 2006).
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by first mapping the old solution into the current scenario, that may involve adapting

into the new scenario. The third step, the revise step, is to test the old solution in

the new scenario, say, by means of simulating and testing the results for desirability.

The last step involves retaining the adapted solution in memory as a new case.

2.8 Applications

2.8.1 The Procedural Reasoning System model

The Procedural Reasoning System (PRS) (M. P. Georgeff & Lansky, 1986; Ingrand,

Georgeff, & Rao, 1992) has five major components as depicted in Figure 2.2 and is

considered to follow much of the theoretical foundation of the BDI agent model. The

first component of the PRS is a rule base about the knowledge of the world the agent

is inhabiting. The second component is the set of goals, which plays the role of desires

the agent aims to achieve. The goals that the agent is currently trying to achieve form

the set of its intentions. This set of intentions is, therefore, the third component of the

PRS system. The fourth component is the library of plans. The fifth is the interpreter

which coordinates the entire agent behaviour including sensing, acting, updating the

beliefs, and choosing a plan to invoke (Sterling & Taveter, 2009).

The BDI-interpreter as described by Rao and M. P. Georgeff is abstract, as it leaves

many things to the system implementer. Most BDI systems take an event processing

approach and the updates to the agent’s beliefs are indicated by events. Similarly, the

BDI architecture given in Figure 2.2 is based on a single agent view. A multi-agent

system would, therefore, require coordination among individual agent’s interpreters.

The PRS agent was developed in Lisp and was used on the NASA space shuttle (M. P.
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2.8.3 3APL

The 3APL9(Dastani, van Riemsdijk, & Meyer, 2005) is an agent programming lan-

guage based on modal agent logics. A 3APL agent has beliefs, plans, goals and rea-

soning rules and is composed of a belief base, a goal base, an action base, and two

rule bases, one for goal planning rules and the other for revision planning rules. The

beliefs of a 3APL agent are stored in terms of Prolog facts and rules. Conceptually,

beliefs make a set of concrete objects and relationships within them. Similarly a goal

is a behavioural construct, and the goal base is a set of goals, each implemented as

a conjunction of ground Prolog atoms. 3APL also supports program operators which

are behavioural constructs and are used for composing plans from basic actions.

The basic actions are the concrete actions of the conceptual space and they can take

the form of any of five types: (i) mental actions, which result as a change in the

agent’s belief base, if successfully executed, (ii) communicative actions, which are used

to pass messages to other agents, (iii) external actions, which are used to change the

external environment in which the agent is operated, (iv) test actions, which check if

a logical derivation is possible from the agent’s belief base, and, (v) abstract plans,

which are abstract representations of a plan that can be instantiated with a more

concrete plan during execution.

2.8.4 The JACK R© intelligent agent

P. Busetta, Howden, Rönnquist, and Hodgson (2000) report that developing a module

for BDI requires four important aspects to be well defined. The first step is to define

beliefs and their visibility outside the module. The second step involves identification
9See Sterling and Taveter (2009) for a detailed account and sample programs of 3APL.
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of relevant events and their visibility, because agent development frameworks, such

as the JACK Intelligent Agent, typically offer an event-driven programming environ-

ment. At the third step the designer has to identify algorithms that best suit event

processing. The fourth and the last step is to develop plans that work within the

module. The authors introduce a concept of capability which acts as a cluster of

beliefs, plans, events and scoping rules over the agents and present an effective way

to group and combine the mental attitudes and control the propagation of beliefs and

events.

JACK R© Intelligent Agent (Paolo Busetta, Ronnquist, Hodgson, & Lucas, 1999) was

originally built by Agent Oriented Software Pty. Ltd. (AOS10), of Melbourne, Aus-

tralia, in 1997. It is a framework for multi-agent system development, designed on top

of JAVATMprogramming language and is one of the commercially stable frameworks

available today. JACK R© agent is defined in terms of the BDI model. Some of its

features are given here:

syntactical additions: this includes keywords to identify the main components of an

agent, a set of statements to declare agent attributes such as the information for

beliefs or for an event, static relationships such as which plans can be adopted to

react to a certain event, a set of statements for the manipulation of the agent’s

state.

using JAVATMstatements: the developer can use JAVATMstatements within the

agent components.

logical variables: the developer can declare and use logical variables, in particular,

to query the agent’s state.

JACK R© is a commercially available product from AOS and its variant CoJACKTMmodels
10http://aosgrp.com/
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human cognition, including the effects of moderators, such as fatigue and fear, on hu-

man performance.
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Chapter 3

Dynamic learning and adapting
An AI based approach to enhance virtual training

Authors: Syed Nasir Danial, Faisal Khan, Brian Veitch, and Scott MacKinnon.

Submitted to: Cognitive Systems Research

Date of Submission: September 18, 2013.

Simulation based training for offshore emergency situations would benefit from scenar-

ios that include interactions with software agents who exhibit human like behaviour

when exposed to hazardous situations such as fire on-board, smoke or explosions.

Goal based agents reacting to a dynamic environment enhance training scenarios pro-

vided they have a speedy system to think and decide a course of action under a given

situation. We present a model that can integrate in hierarchical goal-based agent

architectures and bring a more natural thinking process in which human factors are

considered as key elements in the decision making process.

Keywords: cognitive modelling, human error estimation, similarity-matching, fre-

quency bias, agent for virtual environment, goal driven agent.
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3.1 Introduction

Agent oriented modeling of real life problems is now becoming a standard practice in

the software industry, notwithstanding the notion that an ‘agent’ often lacks a clear

and unanimous understanding with respect to attributes of agency (Wooldridge &

Jennings, 1995). Nevertheless, agent oriented modeling has gained tremendous scope

and interest in academic research as well as in industry. An important development

is the BDI model (Rao & Georgeff, 1995), according to which an agent has beliefs

about the information (about the world including itself), desires as the motivation,

and intentions as deliberative states; it decides moment by moment about what to do

in order to achieve a goal or fulfill a desire. Lincoln and Veres (2013) developed a nat-

ural language design environment, called sEnglish, for programming complex robotic

agent systems based on BDI architecture. The system provides easy access to agent’s

shared knowledge regarding operational logic and skill execution related matters to

human operators so as to facilitate prototyping of physical agent systems in various

simulations or hardware. In (Russel & Subramanian, 1995) the authors propose a

bounded-optimal agent model, where bounded-optimality can be seen as a realisti-

cally rational behaviour of the agent subject to available computational resources. A

method that uses a semantic similarity approach within the framework of CBR to fa-

cilitate the use of contradiction matrix is proposed in (Yan, Zanni-Merk, Rousselot, &

Cavallucci, 2013). Alterman (1988) uses CBR to reuse old or pre-stored plans in novel

situations. The knowledgebase is stored in the form of a network and a plan’s posi-

tion in the network determines the background knowledge of a prestored plan. The

network contains category, partonomic, causal and role knowledge and the category

knowledge is used for retrieving the prestored plans by means of similarity-matching.
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The mental attitudes: beliefs, desires and intentions, though good enough to model

a variety of real life problems in various domains, seem unrealistic when it comes to

modeling an agent bounded by human error and situated in a harsh environment.

The modeling of such an agent requires recalling the laws of association of memory.

“Whatever appears in the mind must be introduced; and, when introduced, it is as the

associate of something already there. This is as true of what you are recollecting as

it is of everything else you think of” (James, 1908). In other words, the human mind

searches through memory for desired knowledge by matching stored CNDs with that

of the one present in a question in the form of cues. In case of insufficient specification

of a retrieval cue, a number of partially matched knowledge units can be activated

at various stages of the search. This concept, called similarity-matching, has a wide

acceptance in cognitive science (Reason, 1990). An often used knowledge unit has a

higher activation level than the one less frequently employed. Thus, on the one hand,

the search process generates a number of knowledge units by employing similarity-

matching, on the other hand, the knowledge unit which has frequently been used in

the past is favoured this time too. In short, the knowledge retrieval at any moment is

biased towards the high frequency candidate — frequency gambling (Reason, 1990).

This article presents an agent model suitable for use in a VE to expose a participant to

scenarios related to mustering events on offshore oil and gas platforms. The scenarios

used in this article are mental simulations in the sense of Klein (1998) and these

simulations are designed to test the model for interesting situations involving fire

hazards. The purpose of these simulations is to show what decision the agent takes

given a situation involving a limited number of parameters that form an emerging

hazard. At present, the agent considers only fire hazards of low and high intensities.

In the former case, it decides what type of fire extinguisher is best to extinguish the

fire and in the latter case it should decide to escape to the muster station. The agent

31



Knowledge base (KB)

Information gathering

Environment

Hazard

Recognition

Surrounding

Recognition

Similarity & freq.

based selection of

KB units

Human Factor

Model

KB unit

KB unit

KB unit

KB unit

KB unit

KB unit

Select goal

against the AP

in the kb- unit

Apply actions

Assess actions by

means of reactions

Check if the fire

grows up or dies

Generate New

KB unit OR

Set f = f+1.

Yes

Set f = -1

Agent’s

Mental

state

Make calling

condition

The

selected KB

unit

Working Memory (WM)

No

Figure 3.1: The agent model.

uses similarity-matching as a search process guided by frequency of bias to retrieve a

set of possible solutions. This retrieval is followed by a selection of a single solution

on the basis of the agent’s current mental state, which is a reflection of its level

of stress. A solution is termed here as an action-phrase (AP), which is a binary-

word stored in the agent’s KB. The proposed agent model is relevant to a number of

industrial applications where the corresponding VEs model emergency situations such

as installation fires. The need for high fidelity VEs for training purposes becomes

obvious due to a number of industrial accidents. The April 20, 2010 explosion on

Deepwater Horizon, located 60km offshore the US coast, resulted in the deaths of 11
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Table 3.1: Fire classes with reactions due to different extinguishers. A ‘+’ symbol
means the extinguisher’s suitability and a ‘−’ symbol means the opposite.

Fire extinguisher Fire classes
A B C D K

Water base + − − − −
Foam base + + − − −
CO2 base − + + − −
Dry chemical (sodium bicarbonate) base − + + − −
Purple K dry chemical (potassium bicarbonate) base − + + − −
Multipurpose dry chemical (ammonium phosphate) base + + + − −
Dry powder base − − − + −
Wet chemical (potassium acetate) base − − − − +

workers, severe injuries to several others and a massive environmental catastrophe due

to the release of 5 million barrels of crude oil (BP.com, 2010). The ensuing accident

review identified weaknesses in process-safety measures and deficient risk reduction

techniques. Other disasters include: Piper Alpha explosion (1988) which caused 167

fatalities due to explosions and fire on board; Adriatic IV blowout (2004), while there

were no casualties, the platform was damaged beyond repair; and the Montara blowout

(2009) in Australia which resulted an oil slick of approximately 180km measured

East to West (WAtoday.com.au, 2009). Fire and explosion are considered the main

reasons for the losses. However, there are a host of organizational factors which are

root causes, such as inconsistent safety measures, failure to identify risks, failure to

identify and react to early warnings, failure to protect vulnerable areas, failure to

make timely decisions under stressed conditions, lack of communication and lack of

appropriate training (Khakzad, Khan, & Amyotte, 2013; Skogdalen, Khorsandi, &

Vinnem, 2012; Christou & Myrto, 2012). In the event of a hazard, safe evacuation

of people is one of the primary concerns. However, people need to be trained for

dealing with small, controllable fires because such fires have potential to serve as the

source of ignition for larger events and could result in compromising hundreds of lives.
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Table 3.2: A portion of KB showing KB-Units associated with CNDs.

CND KB-Unit
AP f

100100010000000 UW 0
100100010000000 UC −1
100100000100010 UC 0
100100001000110 UW −1
100110000000001 GM 0
. . . . . . . . .

Sometimes accident scenarios are focused on technical and engineering design related

aspects of a plant, such as, leakage from a pipeline or failure of a sprinkler system, so

as to assess the involved risk (Khan, Sadiq, & Hussain, 2002). It is equally important

to model accident scenarios where human reactions could influence the outcome of

an event. Clearly, this involves a dynamic VE and the agent should make decisions

in such a way not to violate human reliability criteria. That is, the decision making

ability should consider human fallibility under extremely stressed conditions, rather

than just random selection of solutions from memory.

3.2 Fire hazards types and the AI based scenario

analysis

A hazard is classified as either controllable or uncontrollable (or equivalently low or

high hazards) in the context of the present study. In case of a low hazard, the selection

of an appropriate fire extinguishing agent is essential in fire fighting (see Table 3.1)

as described by the US-National Fire Protection Association (NFPA)-10 standards

(NFPA.org, 2013). NFPA classifies fires as: A, B, C, D, and K. The class A fire

is due to burning of ordinary combustibles such as wood, paper, cloth, rubber or
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plastic. The class B fire is caused by igniting flammable liquids. The class C fire

is due to energized electrical equipments. The class D fire is caused by burning of

certain metals and the class K fire is due to burning of cooking medium.

When the agent observes and recognizes a fire and its surrounding objects, then

immediately it generates a CND. The CND is used to search the KB in order to find

associated knowledge or KB-Units that contain information about what to do in the

current situation. If there is perfect match or matches in the KB and the agent is

not under stressors (see Section 3.3) then a KB-Unit is selected based on reliability

against which a goal is identified. Once a goal is selected, the agent executes its

specific actions, likely following standard operating procedures.

3.3 Methodology

3.3.1 Knowledge representation

We refer the interested reader to Sloman (1995) and Anderson and McCartney (2003)

for a discussion on different forms of knowledge representation and making inferences

over such forms, such as diagrams or maps. Though much of AI research deals in logic

or logic based representation of knowledge, here knowledge is represented in the form

of an associative database (Kruetzer & McKenzie, 1991) that also allows duplicate

elements. Primarily, the KB comprises a number of KB-Units associated with and

retrievable via CNDs. Table 3.2 shows some of the KB-Units and associated CNDs

that are used in this work.
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Table 3.3: List of APs with associated goal classes.
No. AP Goals / goal classes
1. UW GOAL_UW
2. UF GOAL_UF
3. UC GOAL_UC
4. UD GOAL_UD
5. UP GOAL_UP
6. UM GOAL_UM
7. UDP GOAL_UDP
8. UWC GOAL_UWC
9. GM GOAL_GM

3.3.2 The knowledgebase

The agent’s KB is a repository of a potentially large number of KB-Units. The KB-

Units have information about what to do in a given emergency situation arising from

a fire hazard. This includes whether to use a specific fire extinguisher in a particular

scenario or to remove oneself from dangers posed by the hazard. The information

contained in a KB-Unit needs to be transformed into a set of actions (or a plan) so

as to act in response to a situation.

3.3.2.1 The calling condition

A CND represents the context information regarding a decision. The context includes

surrounding conditions when a hazard happens and possibly the type of fuel involved.

It is, therefore, treated as a key in the KB. Each of its constituents stores a binary

value, where a ‘1’ represents the presence and a ‘0’ absence of a certain object or event

in the environment. We represent it as a bit string:αβγh1h2h3s1s2s3s4s5s6s7s8s9.

The Greek letters are used to denote the hazards; h1, h2 and h3 collectively are for

hazard level and s1, s2, . . . s6 represent objects in the surroundings where the hazard
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Algorithm 1: Similarity based Knowledge Retrieval.
Input: Retrieving CND φ, and the percent level of required similarity τs. φ is

a bit string of length m.
Output: The array kbuφ containing all KB-Units corresponding to φ.
q = 0;
for I=1 to size of KB do

// I is the index that runs in KB
h=hamming distance of φ and φI ; // φI is the CND of I th KB-Unit
sim=m-h ; // sim is the number of similar bits
if sim× 100/m >= τs then

q = q + 1;
kbuφ[q] = retrieve from KB the KB-Unit associated with φI such that
whenever φ = φI it is the case that fφI

≥ 0, where fφI
is the frequency

value in the KB-Unit corresponding to φI ;
simkeys[q]=sim;

end
end
sort kbuφ // primary sort keys: simkeys, and secondary

// sort keys are f values stored within each KB-Unit
move all elements of kbuφ having negative f in the last;
find and remove duplicates starting from last element to the first;

is detected. The bits s7, s8 and s9 are reserved to store the fire class information, so

these bits are used in those cases when the agent has information about the type of

fuel involved. This work focuses on fire hazards, the presence of which sets α (leaving

β and γ unused now). The surrounding objects are ordinary combustible elements

(s2), electrical boards/lines (s3), fuel carrying lines (s4), metallic dust (s5) and smoke

(s6). The bit s1 is set when an unidentified object is found.

3.3.2.2 The knowledge unit

A KB-Unit is a data structure to hold an AP and its frequency (f). An AP has

one of the following values: ‘use water base extinguisher’ (UW), ‘use foam base extin-

guisher’ (UF), ‘use CO2 base extinguisher’ (UC), ‘use dry chemical base extinguisher’
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Algorithm 2: Agent Reliability based Selection of AP.
Input: Output of Algorithm 1: kbuφ of size q, and agent reliability p.
Output: The action-phrase: aφp.
pr[1] = p;
for I=1 to q − 1 do

pr[I + 1]=p× (1− p)I ;
end
pr[q]=(1− p)q−1;
construct a biased random number generator brand by using pr as weights
as explained in Section 3.3.5;
ϑ= call brand;
aφp= AP in kbuφ [n];

(UD), ‘use purple K dry chemical base extinguisher’ (UP), ‘use multipurpose dry chem-

ical extinguisher’ (UM), ‘use dry powder base extinguisher’ (UDP), ‘use wet chemical

base extinguisher’ (UWC) and ‘go to muster station’ (GM). Each of these APs has an

associated goal which contains specific logic or a plan to achieve what is intended in

that AP. Table 3.3 shows a list of goals against the related AP used in this work.

At the start of the scenario, all fs associated with KB-Units are set to either ‘0’ or

‘−1’, with 0 meaning that the AP is good to be used with the associated CND and

also that in the past the agent has never used this KB-Unit. The value of f = −1

means that the use of AP (of the same KB-Unit) is a wrong choice in the case referred

to by its associated CND. The KB associates a KB-Unit with one or more CNDs or

vice-versa. In this way, the CND serves as the contextual information, as said earlier,

about when or in what circumstances the (associated) KB-Unit should be used.

3.3.3 Similarity-matching

Similarity matching has a fundamental role in the theories of knowledge and behavior.

It is considered a primary basis of memory search (Tversky, 1977). In fact, the concept
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is ubiquitous in psychology as it appears across a wide variety of memory theories.

As explained in (Reason, 1990), a typical general knowledge question delivers a set

of retrieval cues to long-term memory, i.e., KB. The cues delivered this way, activate,

in an automatic fashion, the stored items that possess attributes that match either

wholly or partially with the CNDs in the question.

The concept has a wide application in computer science in fields like computer vision

and multimedia. Majumdar and Samanta (2013) introduced a novel similarity mea-

sure based on Hausdorff and set theoretical metrics for vague soft sets. The authors

presented how these similarity measures could be used in a decision-making problem.

Smeulders, Worring, Santini, Gupta, and Jain (2000) reviewed a number of papers

in content-based retrieval from images. Such similarity functions are defined to rank

different types of similarity, such as similarity between features (e.g. color), similarity

of salient features, similarity of object silhouettes, similarity of structural features

and the similarity at a semantic level. Defining similarity measures to perform image

alignment is discussed in Brooks, Arbel, and Precup (2008). Stentiford (2007) defines

a measure of similarity that does not require prior specification of features and based

on only very weak assumptions on the nature of the features in a recognition process.

We refer to Santini and Jain (1996) for a discussion on various similarity measures

defined for metric and non-metric spaces. Some important models which assume that

similarity between two objects can be measured by using a distance function in metric

space are Euclidean distance model, City block model and Thurstone-Shepard model.

The Feature Contrast Model (Tversky, 1977) is a non-metric set theoretic model for

the assessment of similarity between two objects.

Here we adopt a view that similarity-matching should play an important role in search-

ing the knowledge base for decisions which previously were taken in similar situations.
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Algorithm 3: Plan or Goal Execution.
Input: Type of fire extinguisher to be used
Output: Arrays of size N to hold: temperature (temp), flame width (fw) and

flame height (fh).
Find the location of extinguisher that matches the type.;
Move to the extinguisher’s location.;
Carry the extinguisher to a safe distance from fire location.;
Point the extinguisher towards the fire location.;
for I=1 to N do

release the extinguishing agent on the fire // this brings the fire on
reaction;
temp[I]= get current fire temperature;
fw[I]= get current flame width;
fh[I]= get current flame height;

end

The word ‘situation’ here means the state of the surroundings of the place where a

hazard is detected. For example, the agent faces a fire at a place where electricity

wirings and panels are very near.

Now this context information is used to make a CND by turning on/off respective

bits as explained in Section 3.3.2.1. Since such a CND is generated every time the

agent observes a hazard, it is better to call it a retrieving CND. The retrieving CND is

matched with each of the stored CNDs of KB one by one. The matching is performed

here by calculating the hamming distance function — which is the minimum for an

exact match. Algorithm 1 computes all those KB-Units where the ratio of the number

of equal bits to the total number of bits is either greater or equal to some arbitrary

constant τs ∈ [0, 1]. This way the agent retrieves a set of KB-Units corresponding to

a retrieving CND. The agent is set to wander around in the environment in case there

are no hazards.

One particular limitation of Algorithm 1 is its exhaustive nature. The only for loop

runs through the entire KB and computes the hamming distance — that makes the
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complexity of the algorithm O(N ) — where N is the size of the KB. Algorithm 1 works

on an unordered collection of KB-Units. Considering an ordered collection does not

make sense because the key attribute, the retrieving CND, should be similar to the

stored CND and that can be true anywhere in the KB unless the KB-Units are stored

in classes. The solution to this problem is to make use of rank aggregation (Fagin,

Kumar, & Sivakumar, 2003), i.e., to classify the KB by aggregating the similar KB-

Units into classes of similar KB-Units and then perform exhaustive search within a

class whose rank suggests the presence of the required KB-Unit. This is the problem

of similarity-based searching that is solved, in general, by classification (within the

KB) and then computing the nearest neighbor or minimal distance (Duch, 2000).

3.3.4 Frequency gambling

The under-specification of a CND due to any reason is the main objective of similarity-

matching. Otherwise, in the presence of an exact match the agent uses the correspond-

ing KB-Unit. However, even with exact matches there can be more than one KB-Units

found in a typical search. Whether the search ends in KB-Unit having CNDs exactly

matched with the retrieving CND, or the KB-Units are found as a result of partial

matching, the KB-Unit which has been used most frequently is more likely to be used

now. This concept is called frequency-gambling or frequency bias according to which

the most frequent KB-Unit has more tendency to come to the output (Reason, 1990).

The frequency information is stored within the KB-Unit as a member variable f and

it is this information that is used here to maintain agent experience. The set of KB-

Units found against a retrieving CND, as explained in the Section 3.3.3, is sorted in

descending order (see Algorithm 1), first by the number of similar bits and then by

their relevant value of f so that the data structure holding this set should have the
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Algorithm 4: Assess actions and Update KB.
Input: Output from algorithm 3: temp, fw, fh; reference of currently selected

kbuφ and CND φ.
Output: The KB will be updated.
Fit a linear regression line on temp, fw and fh.
Let mt, mw and mh be the slope of temp, fw and fh respectively.
if mt < 0 and mw < 0 and mh < 0 then

if CND corresponding to kbuφ == φ then
increment f in kbuφ;

end
else

add a new KB-Unit in KB with φ as the CND and 1 as the value of f;
end

end
else

if CND corresponding to kbuφ == φ then
set f in kbuφ with −1;

end
else

add a new KB-Unit in KB with φ as the CND and −1 as the value of f;
end

end

most similar and most frequent KB-Units from the onset. Algorithm 1 also pushes

KB-Units to the bottom where f = −1 and removes redundancy by keeping only

those that have minimum hamming distance and maximum frequency value.

3.3.5 Human factor estimation

Human factors, as defined by Sullivan (2009), is the study of:

the dynamics affecting human performance, often in service of the reduc-

tion of human error and better systems design. Researchers in this field

study the physical, cognitive, psychological, and social contributors to ef-

fective task performance, efficient systems use, and user satisfaction.
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Table 3.4: Estimates of p for various values of AF.
AF Estimates of probability, p
[0.00, 0.10] 0.98
(0.10, 0.25] 0.9
(0.25, 0.50] 0.8
(0.50, 0.75] 0.7
(0.75, 1.00] 0.6
(1.00, 1.25] 0.5
(1.25, 1.50] 0.4
(1.50, 1.75] 0.3
(1.75, 2.00] 0.2
(2.00, 2.25] 0.1
(2.25, 2.50] 0.05
(2.50, 2.75] 0.03
(2.75, 3.00] 0.01

The estimation of such factors for harsh environments is normally done in the form

of calculating the human reliability, p, which is the probability that a person cor-

rectly performs the system-required activities in a required time period (Swain &

Guttmann, 1983). Musharraf, Hussain, et al. (2013) reported an analysis of the hu-

man performance shaping factors (PSF) during several tasks related to the muster

phase on an offshore installation. They showed that the major factors ‘to act ac-

cordingly’ are distraction, stress, action procedure, available time, complexity, fear

and training experience. Musharraf, Khan, Veitch, MacKinnon, and Imtiaz (2013)

estimated human error probabilities for the offshore emergency environment using

Bayesian, Fuzzy and Evidence theory. They used four major factors that influence

stress and fatigue, which in turn deteriorates human performance in cold environ-

ments. Tompkins (2010) reported that workplace stress may instigate or aggravate a

panicked operator response that eventually causes poor performance. The importance

of overconfidence in decision-making is well-known. An overconfident person is more

likely to focus on those factors that favour his/her decisions and avoid or neglect those

that are in contradiction (Reason, 1990).
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Here, the purpose of the above discussion is to bring about a way that the agent can

mediate these response moderators on a participant’s decision-making capabilities.

Four factors are selected: stress, panic, fear and overconfidence. A weighted average

combines their effect into a single entity termed as ‘agent-factor’, AF :

AF = ws × stress+ wp × panic+ wf × fear + wo × overconfidence
ws + wp + wf + wo

. (3.1)

The values of stress, panic, fear and overconfidence are selected from the set: {0, 1, 2, 3}

with 0 meaning ‘no’, ‘1’ means ‘low’, ‘2’ for ‘medium’ and ‘3’ to represent a ‘high’

value. The human reliability probability (p) is estimated for the case when all the

weights in Equation 3.1 equal unity (see Table 3.4). Algorithm 2 accepts output of

Algorithm 1 as its input and receives the reliability p as a second input (see Fig-

ure 3.1) to generate as many probability values as the size of the array kbuφ. The first

amongst these probability values is the one estimated through Equation 3.1. These

probabilities are used to construct a biased random number generator by assigning the

probabilities as weights in a discrete distribution and then employing the Mercenne

Twister (Matsumoto & Nishimura, 1998), which has a period of 219937−1, to generate

a random number. The numbers of the form 2m − 1 are called Mersenne numbers

(Knuth, 1969) where m is a prime number. Note that every prime number does not

give rise to a Mersenne prime. The random number generated this way is used as an

index (into the array containing the KB-Units obtained from Algorithm 1) to choose

one KB-Unit which appears on the output and which has the AP needed to be used

in the current situation.
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3.3.6 Learning through experience: the feedback mechanism

The agent learns through experience by observing and assessing the reaction (against

its action) from the entity it acted on. The process involves assessment of the reaction

in terms of whether the action was right or wrong. As an example, when Algorithm 1

(followed by Algorithm 2) is executed, the agent arrives at a decision. But to this

end, it is just a decision in the agent’s mind and this has to be translated into a plan

or a set of actions that the agent can perform in the VE. As the agent is goal ori-

ented, each AP has an associated goal class, the object of which can be selected in an

if-then-else statement. The agent also selects an extinguishing tool (see Table 3.1)

according to the selected AP and passes this information to the respective goal object.

Thus, executing the plan specific to a goal means that the agent starts performing

actions according to the goal-specific logic. A typical plan involves steps as shown

in Algorithm 3, where the agent acts and receives reaction from the entity it acted

on. This reaction is recorded or saved in separate data structures for assessment as

depicted in Algorithm 4. Algorithm 4 uses a simple assessment policy to determine

whether the fire is extinguished or escalating following the use of the selected extin-

guishing tool. If the fire is extinguished it means that the actions and thereby the

decision which leads to such actions were likely correct and hence the corresponding

frequency of bias should be incremented. On the other hand, if the fire is growing

the corresponding frequency of bias is set to −1; it would diminish the chances of the

selection of the associated KB-Unit the next time the same CND is generated. The

case when a KB-Unit is selected due to partial matching of CNDs leads to an addition

of a new KB-Unit (see Algorithm 4).
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Figure 3.2: Class diagram showing some of the main goal classes.

3.4 Software implementation

The methodology as described in previous sections has been applied to develop a

goal-oriented agent in C++ language. The purpose here is to test the agent against

various emergency scenarios. The VE is a 2D graphic environment similar to a com-

puter game. It has walls, a muster station, combustible metals, obstacles like chairs,

electrical lines, fuel lines, and fire extinguishers installed at different fixed locations.

Fire objects update their temperature, flame length and flame width on each update-
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cycle of the environment. A navigation graph is used to construct paths from one

position to another.

By default, the agent moves all around the VE. As the agent is goal-oriented, each of

its steering behaviours (Reynolds, 1999; Buckland, 2005; Millington & Funge, 2009),

such as, arrive, seek, wander and follow-path, is activated from a respective goal

class object. For example, the agent uses follow-path behaviour when the object of

GOAL_FOLLOW_PATH comes in execution. A goal which is not defined in terms of other

goals is called ‘atomic goal’ and a goal that depends on other goals is a ‘composite goal’.

Thus the goal GOAL_UW is a composite goal because its plan needs to execute other

goals, such as, GOAL_MOVE_TO_POSITION or GOAL_FOLLOW_PATH to reach to certain

required location on the 2D map. The composite design pattern (Gamma, Helm,

Johnson, & Vlissides, 1994) is used to maintain the class hierarchy of the goals. At

any moment of time, one of the goals is always active and its plan is in execution. In

order to switch between goals, especially when a hazard is seen, the agent compares

the selected AP with each goal type and executes the goal accordingly. This process

of goal routing is done in route method of the class GOAL_ROUTER. The route method

is updated in every update cycle of the agent. Figure 3.2 shows the hierarchy of the

goal classes with a few classes for illustration purposes.

The agent detects the fire (i.e. object of Fire class). It classifies it in terms of either

no-hazard, low-hazard or high-hazard by reading the global flame probability value,

pflame = (BBD+POD+FCR)/3, (Verstockt et al., 2011), where, BBD is the bounding box

disorder statistic, POD is the principle orientation disorder (Verstockt, Vanoosthuyse,

Hoecke, Lambert, & Walle, 2010) and FCR is the flame color rate statistic (Chen, Wu,

& Chiou, 2004; Verstockt et al., 2011). This pflame based recognition of fire surely

enhances the scope of this work as later on the recognition method could be upgraded
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to support image-processing. The obstacles in the vicinity of the fire hazard are noted

and a CND is generated. Algorithm 1 is used to find a set of KB-Units relative to

the CND and then application of Algorithm 2 selects one KB-Unit from the set. The

AP in the selected KB-Unit has an associated goal class (see Table 3.3) and the goal

class embodies a plan. Generally, goal classes should have different plans but here

GOAL_UW, GOAL_UF, GOAL_UC, GOAL_UD, GOAL_UP, GOAL_UM, GOAL_UDP, and GOAL_UWC

follow the plan as in Algorithm 3 because the way each fire extinguisher should be

used is the same in all cases irrespective of the type of the extinguisher. The GOAL_GM

finds a path to the muster station and allows the agent to follow that path, which

eventually brings the agent into the muster station. The plan of GOAL_GM and several

other atomic goals are not mentioned here for brevity.

As in Figure 3.2, GOAL_ROUTER is designed for the purpose of selecting (or making a

goal active) a goal against the AP. Once a goal is set to active, its plan is put into

action. The assessment and thereby KB update process is done in accordance with

Algorithm 4 such that if the goal produces desirable results, such as extinguishing

a fire or escape towards muster station, the frequency of the concerned KB-Unit is

incremented. Otherwise, in case of undesirable results, the frequency is set to negative

unity.

The software is tested by making nine different scenarios. The main parameters

which differentiate one scenario from the other are: (i) the fire class type, (ii) the

fire surroundings, (iii) the agent’s mental state, (iv) the agent’s learning, and (v) the

agent’s prior experience.The agent’s mental state is determined by its stress, panic,

fear and over confidence values in Equation 3.1. The reliability values corresponding

to different ranges of AF can be seen from Table 3.4.
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Table 3.5: The KB rules before simulation, involving class D type fire (not passed
to the agent) are: R1 to R8. After simulation: R9 is added into KB. R10 is the rule
obtained when the fire class information was sent to the agent. F stands for fire, LH
for low hazard, FU, M and E represent fuel lines, electric lines and combustible metals
respectively and B and D are fire classes.

Rule CND Description KB-Unit
AP f

R1 100100000100000 F, LH, FU UM 0
R2 100100000100000 F, LH, FU UF 0
R3 100100000100000 F, LH, FU UC 0
R4 100100000100000 F, LH, FU UD 0
R5 100100000100000 F, LH, FU UP 0
R6 100100000010000 F, LH, M UDP 0
R7 100100000100000 F, LH, FU UW -1
R8 100100000100000 F, LH, FU UWC -1
R9 c1 = 100100000110 F, LH, FU, M UM -1
R10 c2 = 100100000110110 F, LH, FU, M, D UDP 1

3.5 Scenarios and Results

3.5.1 Agent under normal mental state faces class D type fire

The agent is not given the fire class information. Thus the only way to make a decision

is by means of surroundings. By observing the fire and its surroundings, the agent

generates CND c1 = 100100000110. Since it does not exactly match any of the rules in

the KB — meaning that the agent does not know what exactly to do in this situation

— it tries to use its previous knowledge. Algorithm 1 returns rules R1 to R8 as shown

in Table 3.5. The agent chooses R1, applies a multi-purpose extinguisher to the fire

and that escalates the fire level from low to high. The change in the hazard level —

showing a failure of the fire extinguisher — is observed by the agent and it searches

the KB again. This time it decides to use GM by employing GOAL_GM, because against

high level hazards the only strategy is to move to the muster station. The agent also
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marks the failure of multi-purpose extinguisher by putting this information in terms

of a new rule, R9, into the KB, so as to avoid it in the future. Similarly, keeping

all factors constant, we repeat this scenario six times more and discover that in the

second, third, fourth and fifth attempts, the agent comes up with UF, UC, UD and UP

and uses corresponding goals GOAL_UF, GOAL_UC, GOAL_UD, GOAL_UP respectively. All

of these escalate fire and the agent has to abandon the facility by employing GOAL_GM.

However, as expected, the agent notes all these wrong attempts in the KB by setting

their respective frequencies to −1. In the sixth attempt, the agent comes up with

UDP, that is a correct KB-Unit (see Table 3.1) in this scenario, and uses GOAL_UDP to

extinguish the fire. This attempt is successful and the agent updates the KB correctly.

We repeat this simulation again but by making slight changes in parameters, such

that this time: (i) the agent is given the fire class information, and (ii) the KB is

reset to its original state, i.e., all the updates that had been performed are removed.

When the simulation is run, the retreiving CND is c2 = 100100000110110, where the

last three bits from the right side, i.e., 110 are now set to represent a D-class fire.

The agent searches the KB and does not find any exact matching KB-Unit. The most

similar KB-Unit returned by the Algorithm 1 has UDP as the AP with f = 0 and is

associated with the CND 100100000000110. The agent selects its associated goal, i.e.,

GOAL_UDP, successfully extinguishes the fire and records a new rule, R10, in the KB.

Successive simulations (not reported here) by keeping the surrounding conditions and

other factors constant, use R10 as a result of an exact match where each time only

frequency is incremented.

The similarity based results as reported above were obtained by a using a similar-

ity criterion of ≥ 80.0%. By reducing it to 75% and providing the agent with the

fire class information, the agent was able to extract more KB-Units but it used the
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same KB-Unit as it used with 80.0% criterion because the Algorithm 2 always as-

signs probabilities in descending order of the similarity and frequency — with highest

probability to the one that has highest similarity rank and highest frequency of past

use.

3.5.2 Agent under normal mental state faces fire that is likely

to be caused by burning of ordinary combustibles: De-

fault KB is used in each simulation

The agent faces a low hazard fire where the surroundings include only ordinary com-

bustibles. Therefore, the CND does not include information about fire type. The

agent has no prior experience about fire fighting, though its KB has relevant knowl-

edge. The simulation is performed 50 times with each time loading the default KB,

which equivalently means that the updated KB is not used in successive simulations.

This is to test how the agent behaves if it encounters the same scenarios repeatedly.

Based on the surrounding information, the agent comes up with three exact matches.

These are UW, UF and UM. In 49 out of 50 simulations, the agent selects UW that leads

to GOAL_UW where a water base fire extinguisher is used successfully to extinguish

the fire. In 1 simulation, the agent selects UF that has the probability of selection as

around 0.0196. It employs GOAL_UF successfully and updates the KB.
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Table 3.6: Results of scenario in the Section 3.5.6.
AP Occurrences Outcome
UM 119 success
UF 271 success
UD 8 success
UC 11 success
GM 42 success
UP 4 success
UW then GM 45 failure then success

3.5.3 Agent under normal mental state faces fire that is likely

to be caused by burning of ordinary combustibles: Up-

dated KB is used in each simulation

The agent starts with the default KB but in each simulation it updates the KB. The

simulation is performed 50 times. Based on the available information, the agent comes

up with three exact matches from the KB. These are UW, UF, and UM. In 43 out of

50 simulations, the agent selects UW which leads to GOAL_UW where water base fire

extinguisher is deployed successfully. Once it selects UF (having 0.0196 probability)

and uses the foam base extinguisher successfully. In the remaining simulations, the

agent could not observe the fire in time, because it was wandering in other regions

of the VE. Thus when the agent observes the fire, the fire had already turned into a

high-hazard which eventually changed the opportunities and the agent decided to go

to the muster station instead of trying to extinguish the fire.
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3.5.4 Agent under normal mental state faces fire where the

surroundings only have fuel lines and electrical lines:

Updated KB is used in each simulation

The environment includes a class B fire but this information is not passed to the

agent. Thus the decision is based only on the surrounding objects. The simulation

is performed 50 times. The agent uses the default KB only in the first simulation.

Four exact matches are found which are: UC, UD, UP and UM. The agent selected UC in

41 simulations, UD in 3 simulations and GM in 6 cases (due to observing the fire late).

The value of f is updated each time in respective KB-Units.

3.5.5 Agent under normal mental state faces fire where the

surroundings have ordinary combustibles, fuel lines and

electrical lines: Updated KB is used in each simulation

The fire class is unknown to the agent so it proceeds by selecting the extinguisher

which is as safe as possible. This is done by keeping the information about the

surrounding object’s type and populating the CND with this information. The ABC-

class multi-purpose-dry-chemical extinguishing-agent is chosen, which seems to be the

best choice in such a case. The agent selects UM 49 times. It is late in observing the

fire in one case, so chooses GM.
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Table 3.7: Results of scenario in the Section 3.5.7.
AP Occurrences Outcome
UM 222 success
UC 95 success
UF 542 success
UD 12 success
GM 88 success
UP 30 success
UW then GM 4 failure then success
UDP then GM 4 failure then success
UWC then GM 3 failure then success

3.5.6 Agent under high stress faces fire where the surround-

ings only have ordinary combustibles and fuel lines

The stress and panic attributes of the agent are set to high and low respectively.

The fire class type is B but this information is not passed to the agent. Agent dis-

covers ordinary combustibles and fuel lines near the hazard and generates the CND

accordingly. The first simulation uses the default KB and in each of the successive

simulations the updated KB from the previous simulation is used. After 500 simula-

tions (see Table 3.6), 45 cases are found to be those where the agent initially makes

a wrong decision (by selecting UW) which intensifies the fire and creates a high hazard

situation. This new observation makes the agent search the KB again to determine

what decision should be made. The KB has only one rule against a high hazard situ-

ation and that is to move to the muster station. Thus this time the agent selects GM

and goes to the muster station successfully.
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Table 3.8: Results of scenario in Section 3.5.8.
AP Occurrences Outcome
UM 209 success
UF 523 success
UD 33 success
UC 94 success
GM 116 success
UP 18 success
UW then GM 6 failure then success
UWC then GM 1 failure then success

3.5.7 Agent under high stress faces fire where the surround-

ings only have ordinary combustibles and fuel lines:

Initially trained agent

An agent under a normal mental state is first trained by exposure to several scenarios

in which different types of fires with different surroundings were used. The agent made

decisions and updated its KB accordingly. Then this agent is put in the environment

where a class B type fire hazard is in proximity to ordinary combustible materials

and fuel lines. The agent is not given the fire class type. Further the agent is made

stressed by setting stress to high and panic to low in the Equation 3.1. The results

are shown in Table 3.7.

After 1000 simulations, a total of 11 cases occurred where the agent initially makes a

wrong decision (by selecting UW, UDP or UWC) which intensifies the fire and creates a

high hazard situation. This new observation, as in the scenario of Section 3.5.6, leads

the agent to select GM and hence the agent moves to the muster station successfully.

In 88 cases the agent identified the fire too late and created a high hazard situation,

so the agent decision of moving to the muster station was correct.

55



Table 3.9: Results of scenario in Section 3.5.9.
AP Occurrences Outcome
UM 193 success
UF 535 success
UD 12 success
UC 22 success
GM 146 success
UP 85 success
UW then GM 5 failure then success
UWC then GM 2 failure then success

3.5.8 Agent under high stress faces fire where the surround-

ings only have ordinary combustibles and fuel lines:

Fire class is known to agent

This scenario is similar to the one presented in Section 3.5.6. The difference is the

agent knows that this is a class B fire and each simulation uses the default KB. The

KB-Units against exactly matching CNDs are put on high priority as their probability

of selection is high compared to less matched and less frequent KB-Units. After 1000

simulations (see Table 3.8) are performed, only 7 cases reported failures and the

remaining 993 cases reported successes.

3.5.9 Agent under high stress faces fire where the surround-

ings only have ordinary combustibles and fuel lines:

Fire class is known to agent

This scenario is the same as presented in Section 3.5.8 except that the agent used here

is not novice. Before performing these simulations, the agent was trained over several

scenarios. Further, each successive simulation uses the KB updated from the last
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Table 3.10: Results obtained by CBR toolkit.
Scenario of Section 3.5.2 Scenario of Section 3.5.4
AP f % similarity AP f % similarity
UWC -1 100 UWC -1 100
UW 0 100 UW -1 100
UP -1 100 UP 0 100
UM 0 100 UM 0 100
UF 0 100 UF -1 100
UDP -1 100 UDP -1 100
UD -1 100 UD 2 100
UC -1 100 UD 0 100
UWC -1 100 UC 1 100
UW -1 83 UC 0 100
UM 0 83 UWC -1 83
UF -1 83 UW -1 83
UDP -1 83 UP -1 83
UM 0 83 UM 0 83
UF 1 83 UF -1 83

simulation. The agent also knows that this is a class B Fire. After 1000 simulations

(see Table 3.9) only 7 cases reported failures and 993 cases reported successes.

3.5.10 Results from case-based reasoning

This section describes the results obtained by employing the scenarios of Section 3.5.2

and 3.5.4 into the CBR architecture. We only wanted to show that our results of

similarity-matching, as computed through Algorithm 1, are similar to what could be

obtained by other techniques. For this purpose, CBR toolkit in WinProlog from Logic

Programming Associates was used. The results are shown in Table 3.10 where the

highlighted values represent those KB-Units that were used in respective scenarios.
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3.6 Conclusion

This paper discusses a new approach of modeling an intelligent agent that considers

the concepts of similarity-matching and frequency bias for knowledge retrieval from

a KB where each KB-Unit forms associations with binary CNDs. The final selection

of a KB-Unit is made as per agent reliability, that is the probability the agent can

perform rationally by retrieving correct or relevant information from the KB. The

agent reliability is calculated as per its stress, panic, fear and overconfidence level.

The agent model is presented in Figure 3.1 and implemented in a program in which

a VE can incorporate fire hazards. A total of 9 scenarios are built and the results are

presented.

In conclusion:

1. When the retrieving CND has no perfect match with the stored CNDs in the

KB then partially matched KB-Units are identified. The agent in the scenario

of Section 3.5.1 has found a single partially matched KB-Unit containing UDP

when the fire class information is given to the agent. Decreasing the percent

similarity level would surely include more APs. The mental state above ‘normal’

amplifies the chances of committing a wrong decision. Whatever the case, the

agent learns and adds a new KB-Unit whose CND would be the same as the

retrieving CND. There are two possibilities for the newly added KB-Unit: either

it has an AP with f = −1 or f = 1. The latter case is only possible when the

agent ‘luckily’ finds an extinguishing agent that did the job of extinguishing the

fire successfully. If no such extinguishing agent is available or is ‘known’ to the

agent, it will mark every other wrong choice with f = −1 and in the subsequent

confrontation with the same scenario the search process will put all these KB-
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Units having f = −1 to the lowest possible priority or completely ignore all or

some of them.

2. Under a normal mental state (scenarios in the Sections 3.5.2 through 3.5.5) the

success of the agent is definitive, as long as it has relevant information in the

KB, even for cases where the agent does not have prior experience (KB-Units

with f = 0). Note that, f = −1 indicates that the AP is a wrong choice under

the associated CND.

3. Under stress, a novice agent is found to have 9% failure (see Section 3.5.6). The

failure rate reduced to 1.1% when an experienced agent is used under the same

conditions (see Section 3.5.7). The failure rate is further reduced in scenarios of

the Sections 3.5.8 and 3.5.9 to 0.7% in both scenarios because the information

regarding the fuel involved in the fire was also given to the agent and this

information narrows the search band.

The evidence from the simulations supports that the agent response based on the

current model has a more realistic knowledge retrieval process, and that the decision

reasoning is supported by the premises identified in the CND. Comparing these results

with those obtained through CBR reveal that the CBR does not take into account

the values of frequency biases for the involved KB-Units (see Table 3.10). The CBR

results are based on similarity-matching and thus contain those KB-Units too where

the frequencies are negative. The model developed here allows future enhancements

and has applications in a number of fields from AI games to simulation based trainings

for offshore emergency situations. Future work should consider other measures of

similarity as mentioned in Section 3.3. Finally, integration of the BDI agent model

may be an interesting area of investigation.
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Chapter 4

On slips, surprise and ignorance
At the onset of a decision making state
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The effects of mental stress and distraction, in terms of making slips, caused by sim-

ulated harsh weather conditions are presented for an intelligent agent model suitable

for a virtual environment to train people for emerging hazards. Alarms are intro-

duced due to the importance of their timely detection and identification in emergency

events like fire hazards. Here, a system is proposed by virtue of which the agent

can make slips. To further our insight into the agent’s pre- and post-decision mental

state, surprise and ignorance are estimated. The agent is surprised if it makes a less

likely decision out of a number of more likely ones. The state of being surprised is

the post-decision state. The ignorance estimates how informed the agent is towards

making a particular decision, and that is the pre-decision state.

Keywords: agents making slips, cognitive error-types, slips, surprise, ignorance
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4.1 Introduction

A number of agent models and frameworks have been in use for different domains,

but one that could work in a VE that models harsh environmental and emergency

situations, such as those on offshore oil & gas platforms, is discussed here.

Reason (1990) reports that slips, which occur at the cognitive stage of execution, are

responsible for a number of incidents on various sensitive installations. For instance,

at the Three Mile Island Nuclear disaster (Kemeny, 1979; Reason, 1990) the block

valves were erroneously left in a wrong position and the valve status indicator was

covered by a nearby maintenance tag. Design of control rooms and instruments therein

have significant importance (Norman, 2002) as far as human perception through any

instrument is concerned because increasing stress, distraction, and time constraint in

emergencies practically leaves no room for rational thinking. Similarly, at the King’s

Cross Underground fire case, London (1987), the Relief Station Inspector fetched the

fire extinguisher but could not use it as he was thinking to activate the water fog

system — his mind was pre-occupied by other thoughts (Reason, 1990). An operator

in a control room may imagine that the control valve is closed but in reality it may

not be the case, he can forget due to high stress or distraction. Detection of alarms or

their identification may also be misunderstood. Musharraf et al. (2013) report that

detection and identification of alarms in a mustering event on an offshore facility are

dependent on stress and distraction. They also identify other PSFs which are not

considered here.

This article proposes an algorithm for the intelligent agent model reported elsewhere

(Danial, Khan, Veitch, & MacKinnon, 2013). The algorithm is used to construct

the knowledge-retrieving CND for the agent to the extent that the agent can model
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Figure 4.2: The calling condition model. The bit labeled ‘F’ is set if fire hazard is
detected. HL1, HL2 & HL3 are for hazard level. Bits ‘O’, ‘El’, ‘Fu’, ‘M’ & ‘S’ represents
ordinary combustibles, power lines, fuel lines, metal dust and smoke respectively. Bits
FC1, FC2, FC3 keeps fire class information and bits A1 & A2 are used for process and
muster alarms respectively.

bit-field (see Figure 4.2) with certain fixed bits representing the presence or absence

of an entity or event. It is used as a key to retrieve required KB-Units, those that

contain information about what to do in the current situation. The KB-Unit is a data

structure having two member variables — an AP and f. The f keeps the count of the

use of a particular AP in the past under the associated CND. However, the f = −1

means that the AP is not suitable under the associated CND. The AP is a phrase that

refers to an action to be performed by the agent. The APs used here are shown in

Table 4.1. The Human Factor model (see Figure 4.1) estimates the agent’s reliability,

p, on the basis of its stress and distraction. The distraction is controlled by varying

the input parameters rain and wind which are scripted as the weather factors whereas

the parameter stress is provided directly without involving other factors.

By default the agent wanders around the VE, which is a 2D graphical environment,

containing walls, a muster station, combustible metals, obstacles like chairs, electrical

lines, fuel lines, and fire extinguishers installed at different fixed locations. Fire objects

update their temperature, flame length and flame width on each update-cycle of the

environment. A navigation graph is used to construct paths from one position to

another. A fire hazard is classified as either low or high. For a low hazard, the

selection of an appropriate fire extinguisher is essential in fire fighting as described by

the NFPA-10 standards (NFPA.org, 2013). NFPA classifies fire as: A, B, C, D, and
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K. The class A fire is due to burning of ordinary combustibles such as wood, paper,

cloth, rubber or plastic. The class B fire is caused by igniting flammable liquids. The

class C fire is due to energized electrical equipments. The class D fire is due to certain

metals and the class K fire is by burning cooking medium.

After observing a fire hazard, the agent recognizes the surrounding objects and gen-

erates a retrieving CND. The retrieval process takes this CND as input and produces

a set of distinct KB-Units at the output (shown as ‘Similar KB-Units’ in Figure 4.1)

by exploiting the concepts of similarity-matching and frequency bias (Reason, 1990).

This set of ‘Similar KB-Units’ is sorted according to the Hamming distance between

the retrieved and stored CNDs, and values of f. Also, the redundant KB-Units are

removed and only the most similar and frequent KB-Units are kept. Now if there

are k KB-Units in the set of ‘Similar KB-Units’, the Human Factor model returns k

probability (reliability) values, p1 = p, p2, . . . , pk (see Section 4.3). These reliability

values are assigned to each of the KB-Units in the set. Besides that, p1, p2, . . . , pk

are also used to draw a random number, ϑ, from a biased random number generator

(Matsumoto & Nishimura, 1998) such that 1 ≤ ϑ ≤ k. The agent selects the KB-Unit

that has the index ϑ in the KB, fetches the value of AP and then selects the goal

that is associated with this AP (see Table 4.1). When the goal is selected the agent

performs the actions programmed in each goal class.

As an example, consider the case when the agent, at an initial position P1(a1, b1),

observes a high level fire hazard and immediately decides to go to the muster sta-

tion by selecting the KB-Unit wherein AP contains GM. The agent selects the goal

GOAL_GM which is associated with GM. Now the goal object will determine the loca-

tion of the muster station by allocating a seat. The position, say P2(a2, b2), of the

seat is used as the target in the A* search (Buckland, 2005) that returns a least cost

69



Table 4.1: List of APs with associated goal classes
AP Description Goal classes
UW Use water-base extinguisher GOAL_UW
UF Use foam-base extinguisher GOAL_UF
UC Use CO2-base extinguisher GOAL_UC
UD Use dry chemical base extinguisher GOAL_UD
UP Use purple-K dry chemical extinguisher GOAL_UP
UM Use multipurpose dry chemical extinguisher GOAL_UM
UDP Use dry powder extinguisher GOAL_UDP
UWC Use wet chemical extinguisher GOAL_UWC
GM Go to the muster station GOAL_GM
CP Continue previous goal GOAL_CP
PA Pay attention GOAL_PA

Algorithm 5: Generate k reliability values.
pr[1] = p;
for I=1 to k − 1 do

pr[I + 1]=p× (1− p)I ;
end
pr[k]=(1− p)k−1;

path, V , from P1 to P2. The path V is passed to the GOAL_FOLLOW_PATH class where

each subsequent update cycle will bring the agent closer and closer to its allocated

seat in the muster station. In this way, the goal object GOAL_GM uses another goal ob-

ject, GOAL_FOLLOW_PATH that implements the steering behavior path follow (Reynolds,

1999; Buckland, 2005), and achieved what was intended in the AP by its value GM or

“Go to the muster station”.

4.3 Estimating the Agent’s Reliability

The present work uses two stressors, (i) mental stress, and (ii) distraction, rather than

panic, fear and over confidence bias as reported in Danial et al. (2013) because offshore

oil and gas installations are largely affected by harsh weather conditions, heavy rains
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Table 4.2: Estimates of the agent’s reliability p for various ranges of the values of r
r p r p
≥ 8 1.00 [4, 5) 0.60
[7, 8) 0.90 [3, 4) 0.55
[6, 7) 0.80 ≥ 2 0.50
[5, 6) 0.70 < 2 0.40

and strong winds, that induce stress and distraction among people (Musharraf et al.,

2013). How reliable is the agent’s decision in a given situation is estimated through

the agent’s reliability index, r, such that

r = −(log stress+ log distraction), 0 < stress ≤ 1, 0 < distraction ≤ 1. (4.1)

The estimate of agent’s reliability, p, which is the probability that the agent acts

accordingly, is given in Table 4.2. Following Algorithm 5, k reliability values are gen-

erated and assigned to the retrieved KB-Units and a random index is generated which

is used to select a KB-Unit from the retrieved set of KB-Units for later deliberation

as explained in the previous section.

4.4 Slip enabled retrieving CND algorithm

The algorithm for constructing a CND that advances the agent model so much so

the agent can now make slips in stressed behavior is described here in the form of

flowcharts in Figure 4.3 and 4.4. It is implemented as a method MakeCallingCondition

mentioned in Figure 4.1. When the agent observes a fire hazard, it initializes a new

CND object, which is an object of a C++ class in current implementation, with zero

and determines the neighbourhood size, ε, of the fire object. Now if the agent is

reliable, which means if the stress and distraction are either zero or negligible, then
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N

Figure 4.3: Part-I of the flowchart to construct the retrieving calling condition.
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Figure 4.4: Part-II of the flowchart to construct the retrieving calling condition.
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the algorithm does not perform anything that could introduce slips. So, the CND

would have information about hazard, and its surrounding objects such that the

distance, di, of the ith surrounding object from the hazard object is less than ε.

Similarly, depending upon whether the agent received an alarm signal before or after

the detection of the hazard, the algorithm enters its information in the CND and

returns the CND to the following module for retrieval of KB-Units as depicted in

Figure 4.1.

When the agent is stressed its reliability would be low. If it detects a fire hazard

without any alarms, and if there are M surrounding objects then it calculates the

distances di,∀i ≤ M and adds a random noise ξi in each of the respective distances

di. In this way the new distances, d′i, may not be in the same relation as di ≤ ε,∀i ≤M

if the old distances are replaced by the new ones. Thus, some of the objects — lying

within ε distance from the fire — would not be considered, and the others which

lie slightly outside the ε may be considered inside. Now, the algorithm sets the

corresponding bits in the CND (see Figure 4.2) for the objects for which d′i ≤ ε holds

and returns the CND to the later phases of the agent model.

Similarly, when the agent detects an alarm, the algorithm first gets a biased random

Boolean value, ϑb, by employing the Mercenne Twister algorithm (Matsumoto &

Nishimura, 1998) using p and 1 − p as the biasness criteria, and then determines

if there is already a hazard detected or only the alarm is detected. In the former

case, the algorithm fetches the CND which is being used for the current hazard and

updates its value by either including the alarm information in the CND or leaving

the CND unchanged. The decision whether to include the alarm information or not

depends on the value of ϑb . If ϑb = true the CND would render unchanged, and

if ϑb = false then the alarm related bits in the CND will be set. In the later case,
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i.e., when the alarm was received but the agent was not involved in any hazardous

situation, then depending on the value of ϑb the alarm bits will be set or cleared in the

zero initialized CND object. In both of these cases, the CND object will either have

the alarm information or not depending on the value of ϑb and the updated CND is

sent to the knowledge retrieval phase for retrieving the KB-Unit. Since ϑb is obtained

from the biased random number generator, the agent’s reliability has a vital role in

the final decision about whether the agent will neglect the alarm or not.

4.5 Agent’s surprise and ignorance

The term ‘surprise’ was first coined by Myron Tribus in his 1961 book Thermostatics

and Thermodynamics in the context of information theory. Tribus (1961) says that

the amount of self-information, i.e. ω(pi) in Equation 4.7, can also be used to estimate

surprise. This value causes surprise to an observer. In the present study, the agent

also acts as an observer of the reactions of the environment against its own actions. A

surprising action is definitely the one that is less probable due to its inappropriateness

for some given conditions. This inappropriateness is highly likely to cause unexpected

results which in turn brings surprise to the agent in response to observing the reactions

after its own actions. However, there is no need to delay the estimation of the surprise

(till the time when the agent observes the reaction) because it can be calculated right

at the time when the action is choosen.

In order to formalize the notion of surprise let us consider an AP as a proposition

because either it is selected (true) or not selected (false). Also, when one is selected,

it becomes true as the agent performs it thereby rendering every other false. Thus,

if a proposition symbol θ represents an AP the output of the KB-Units retrieval
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algorithm, i.e., the Algorithm 1, is given by:

Ψ = {θ1, θ2, . . . , θn}, (4.2)

such that:

— No two θ’s can be true (or selected) simultaneously, that implies:

θi ∧ θj = false, i 6= j. (4.3)

— At least one of the propositions must be true (or selected), implying:

θ1 ∨ θ2 ∨ . . . ∨ θn = true. (4.4)

Therefore, Ψ is a disjoint and exhaustive set, sometimes called a logical spectrum

(Park & Band, 1976; Watanabe, 1969). Now the probability Pr{θi} of the proposition

θi can be considered as the degree of expectation, before selection, that θi will be the

case taken up by the agent. The function p(θ) is called probability mass function if a

real number p(θi) can be attached to each of the n constituent members of Ψ in such

a way that

p(θi) ≥ 0, (4.5)

and
n∑
i=1

p(θi) = 1. (4.6)

Algorithm 2 fulfills the conditions in Equation 4.5 and 4.6 in assigning probabilities

to the propositions (or APs) θ in the set Ψ obtained by the retrieval process.

The θis are experimentally testable propositions, retrieved and sorted according to
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similarity matching and frequency bias against a retrieving CND. This means, in

a given situation, θi is a more legitimate solution than θi+t for some t > 0 and pi

determines its chances of becoming true.

The selection is made by generating a random number, ϑ, such that 1 ≤ ϑ ≤ n,

through a biased random number generator that uses pis to incorporate the biasness

(Danial et al., 2013). The agent’s surprise is an estimate of unlikely selection of those

θi that had very weak chances of becoming true. We represent surprise as a function

ω (Watanabe, 1969) such that,

ω(pi) = − log pi, 0 < pi ≤ 1. (4.7)

where a logarithm to any base can be used. Thus if a certain proposition (or AP)

such as, UW, had the probability 0.05 and the agent selected it (that makes it true)

then the associated surprise would be ω(0.05) = − loge(0.05) ≈ 3.0, which is a big

surprise. The lesser the value of the probability pi of an AP before selection (that

turned out to be true) the higher the associated surprise. For the purpose of ease in

interpreting the values of ω, the following transformation is used to scale the results

down to the interval [0, 1]:

Γ(pi) = (ω(pi)− ωmin)
(ωmax − ωmin) = (ω(pi)− ω(pmax))

(ω(pmin)− ω(pmax))
, ωmax 6= ωmin (4.8)

where, pmin = mini pi and pmax = maxi pi, are the minimum and the maximum

probabilities assigned to any two propositions in a single experiment. In this way,

Γ(pi) = 0 means ‘no surprise’ and a Γ(pi) = 1 means maximum surprise. The values

of Γ(pi) in the open interval (0, 1) will, therefore, have intermediate levels of surprise.

Also, ω(pi) is a random variable with probability pi. Thus its expected or average
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value before selecting θi is given by:

E(ω(pi)) = E(ω) = −
n∑
i=1

p(θi) log pi. (4.9)

The Equation 4.9 measures the agent’s ignorance (Watanabe, 1969) in certain state

of knowledge before making any decision. Thus,

ign(Ψ) = E(ω) = −
n∑
i=1

p(θi) log pi. (4.10)

The minimum of ign(Ψ) occurs when one of the pis becomes unity and the rest are

zero. Theoretically, min ign(Ψ) = 0 and that corresponds to the case when the agent

is sure about one of the θi before actually selecting it. Similarly the maximum of

ign(Ψ) happens when all the pis are equal to 1/n. In this case, as all θi have equal

chance of being selected, the agent would be completely ignorant about what would

happen. Thus, the function ign(Ψ) is bounded as:

0 ≤ ign(Ψ) ≤ − log 1
n
. (4.11)

Note that the bounds do not involve pis. Equation 4.8 can also be used to scale the

values of ign in Equation 4.10 to the closed interval [0, 1]. Clearly, the function ign(Ψ)

tells us about the extent to which our expectation of the occurrence of propositions is

widely scattered over various propositions. In other words, ignorance is the expected

surprise and that does mean how ignorant the agent would be from the likelihood of

choosing the best available option. This, however, does not suggest the inadequacy

of the KB even for the cases when the agent’s mental state is not normal because in

such cases even if the retrieval algorithm brings the best KB-Unit at the top of the

list, the low reliability value of the agent would lower the chances of selecting the top
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level KB-Units.

4.6 Scenarios and results

The agent model is implemented as a C++ program. Here before initiating the KB

retrieval process the agent uses flowcharts of Figure 4.3 and 4.4 to construct the

retrieving CND. The surprise and ignorance metrics are computed for each of the

scenarios being presented here.

4.6.1 Scenario 1: Stressed agent facing fire, rain and wind

The agent was under high stress and was situated in the VE. The agent faced rain

and wind both and then a sudden fire hazard due to burning ordinary combustibles.

The following two simulations were performed:

4.6.1.1 First simulation

The agent was situated in the VE and observed a low level fire hazard but miscal-

culated the nearby ordinary combustibles. The fire class information was sent to

the agent explicitly, thus the agent, under high stress (or low reliability, p = 0.4),

quickly found out a list of KB-Units: UW, UF, UM, GM, UDP, UC, UD, UP, UWC. The value

of f for the first five of these KB-Units was 0 and for the last four KB-Units was

−1. The respective probabilities assigned to each of the KB-Units above were 0.40,

0.24, 0.14, 0.09, 0.05, 0.03, 0.02, 0.01, and 0.02. The ignorance ign(Ψ) = 1.65 (or

Γ(ign(Ψ)) = 0.75 means the agent was 75% ignorant. In other words, the agent was

not sure about (i) a unique best solution, (ii) a unique worst solution, before making
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a choice. However, the agent was more inclined in making a choice from the first

two or three KB-Units. It selected the second KB-Unit UF and had Γ(ω(p2)) = 0.143

that means the agent was 14.3% surprised or somewhat surprised! The fire was ex-

tinguished due to the application of foam based extinguisher and a new KB-Unit was

added successfully in the KB.

4.6.1.2 Second simulation

Here also, the agent could not identify the presence of nearby ordinary combustibles.

Thus the retrieving CND was the same as in the case reported in the previous sim-

ulation. This time an exact match from the KB was found because the agent had

updated the KB previously. However, due to low reliability, the search space included

similar KB-Units too. Overall, the KB search resulted in: UF, UM, UW, GM, UDP, UWC, UP,

UD, and UC, where only UF had f = 1. The probability assignment was in similar fash-

ion as before, but the agent selected UM and was then 14.3% surprised that it selected

the one with lesser chances of being correct. The KB was updated appropriately.

4.6.2 Scenario 2: Stressed agent facing fire, rain and wind in

the presense of alarms

The agent was under high stress facing rain and wind and then a sudden fire hazard

was observed. The fire was due to burning of ordinary combustibles. Then the agent

recieved alarms. The following different simulatioin were performed:
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4.6.2.1 First simulation

The PAL was sent three times before the agent could observe any hazards but the

agent was stressed so it ignored the alarms and continued wandering in the VE until

it encountered the fire hazard. The KB search retrieved the KB-Units: UM, UF, UW, GM,

UDP, UC, UD, UP, and UWC with respective probabilities 0.4, 0.24, 0.144, 0.086, 0.052,

0.031, 0.019, 0.011, and 0.017. The agent selected the UF and extinguished the fire

with a surprise of 14.3%.

4.6.2.2 Second simulation

First, the agent received the PAL, remembered it, and found two relevant KB-Units:

PA with p = 0.4 and GM with p = 0.6. The ignorance was around 97% suggesting

almost no difference in making a specific choice. The agent selected GM, which was the

wrong choice. The agent chose this wrong choice based on its probability, so it could

not be surprised —Γ(ω(0.6)) = 0 — as it has chosen the most expected KB-Unit.

4.6.2.3 Third simulation

The PAL was sent to the agent and that led it chose PA. The plan of PA held the

agent waiting for a muster alarm. When the muster alarm came, the agent searched

the KB and found PA and GM. It selected GM with no surprise — Γ(ω(0.6)) = 0 — and

reached the muster station.
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4.6.2.4 Fourth simulation

The PAL was sent to the agent before observing any hazards and it chose GM. The agent

was not surprised because Γ(ω(0.6)) = 0 as the corresponding p = 0.6, which means

that at that particular moment, GM was comparatively a better solution according to

the agent.

4.6.2.5 Fifth simulation

The agent detected a fire hazard, also marked ordinary combustibles, searched the

KB and found: UW, UF, UM, CP, GM, UC, UD, UP, UDP, UWC. The first three KB-Units were

obtained through exact match. UW was selected and surprise was zero. Before making

the decision, the agent was a bit more inclined towards the first solution compared

to the other KB-Units, but the ignorance metric, Γ(ign(Ψ)) = 72.3%, says that the

difference among most of the KB-Units, as far as their selection chance is concerned,

was not marginal. Here, the probabilities assigned to each of the KB-Units given

above are: 0.4, 0.24, 0.14, 0.09, 0.05, 0.03, 0.02, 0.01, 0.01, and 0.01 respectively.

Now at this time, when the agent started executing the plan of UW, it received a

process alarm, recognized it and then combined this information in order to make a

new retrieving CND and then used the new CND to find out what to do. CP is an

AP in the KB that means to continue what was in progress. In situations in which

a process alarm is identified after low-level hazard detection the agent simply sticks

to its previous decision and simply does nothing special in light of the process alarm.

But this logic is set in the case when the agent’s mental state is normal. In the current

case, the agent’s high stress changed the plot. The KB produced a list of KB-Units:

CP, UW, UF, UM, GM, PA, UC, UD, UP, UDP, UWC, where CP is the only KB-Unit with exact

match. The last five had f = −1. The agent selected UF with a bit surprise (24.4%).
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Table 4.3: Results for Section 4.6.2.6 on different runs of the simulation. The alarm
value ‘Yes’ means the alarm was identified and the value ‘No’ means that the alarm
was ignored.

Before PAL Alarm After PAL After MAL AlarmAP Γ(ω) Γ(ign) AP Γ(ω) Γ(ign) AP Γ(ω) Γ(ign)
UF 12% 49% Yes CP 0% 49% CP 0 49% No
UW 0% 49% Yes GM 69% 86% - 0 - -
UW 0% 49% No UW 0% 49% UW 0 49% No
UF 35% 49% Yes CP 0% 86% GM 0 86% Yes
CPÝUW 23% 49% No UW 0% 49% UW 0 49% No

The experiment was repeated five times. The second time, the agent miscalculated

the nearness of ordinary combustibles, selected UW but could not focus on the process

alarm so did nothing against the alarm. However, it extinguished the fire safely.

The third time, the agent again made a wrong judgment about the fire surroundings,

selected UM with a surprise of 12.2%, then it received the process alarm, searched

the KB again and found CP, UW, UM, UF, GM, UWC, UDP, UP, UD, and UC in order. The

agent selected CP with no surprise, Γ(ω(0.4)) = 0. The selection of CP allowed the

agent to continue the previous goal so it remained with UW and used the water based

extinguisher to extinguish the fire successfully. The fourth time the agent selected GM

from UW, UF, UM, CP, GM, UDP, UC, UD, UP, UWC with p5 = 0.05 and thus a big surprise

of 55.5%. Certainly this was a wrong choice and the agent made it because of its low

reliability. The last time, the agent selected UF (which was the third best choice),

ignored the alarm and regenerated the calling condition that resulted in the selection

of UM.

4.6.2.6 Sixth simulation

Here the stress is reduced and thus the agent reliability, p, is changed to 0.6. The

process alarm is sent after observing the low level fire hazard and the muster alarm
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Table 4.4: Results of Section 4.6.3 on different runs of the simulation.
Alarm remembered? Cases KB-Units found KB-Unit selected Γ(ω) Γ(ign)
Yes 64 PA,GM PA 0 72.5%
No 12 - - - -
Yes 11 PA,GM GM 1 72.5%

is sent when the agent picked up a fire extinguisher and is on its way to the hazard

location. We performed this experiment five times and the results are shown in

Table 4.3.

4.6.3 Scenario 3: A bit stressed agent, recieved alarms

The agent was under low stress and recieved alarms before detecting any hazards. The

agent’s reliability was 0.8, when it received the PAL. The experiment was repeated 87

times and in 73% cases the agent performed as required, i.e., it selected the KB-Unit

PA. Table 4.4 shows the results for each experiment.

In some cases, where the agent had selected PA, we tested the agent by sending the

MAL, and in most of the attempts the agent selected GM and went to the muster

station. A single instance was that in which more than one muster alarms were sent

and then the agent came out of the PA’s plan and selected GM.

4.6.4 Scenario 4: Agent with no stress & distraction facing

fire, recieved the alarms

The agent was under normal mental state and was situated in the VE when a sudden

fire hazard due to burning ordinary combustibles occurred. The agent also responded

over alarms. The following simulations were carried out.
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4.6.4.1 First simulation

The agent detects the PAL before observing the fire hazard. The KB search delivered

PA as an exact match. The agent reliability was 1.0 and therefore when the MAL

is sent the agent also detected it, abandoned the PA’s plan, and went to the muster

station. The agent’s ignorance value was 0 and the maximum ignorance was also zero.

The surprise in both decisions was also zero.

4.6.4.2 Second simulation

In this simulation the PAL was sent after making a decision UW against a low level

fire hazard detection. The agent combined this alarm information with the currently

used retrieving CND (that is, the CND against the KB-Unit UW before detecting the

alarm) and found an exactly matched KB-Unit: CP (whose plan instructs the agent

to continue what it is doing). The values of surprise and ignorance were zero for both

UW and CP. When the goal against CP was launched, it resumed the plan of UW. In

simple words, the PAL was detected but did not change the agent’s previous decision,

though there was a little pause during detection of the alarm and resumption of UW’s

plan.

4.7 Conclusion

The results show that the agent with high reliability makes decisions in accordance

with similarity-matching and frequency bias. The reliability value affects the chances

the agent forgets an alarm or estimates the wrong distance between an obstacle and the

hazard’s location. Forgetting the alarm renders the agent unable to extract the KB-
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Units that specifically deal with the alarms and thus the resulting decision, though

taken without considering the alarms but actually in the presence of alarms, are

likely wrong, could lead to a disastrous situation. For example, one common unsafe

behavior of the stressed agent in most of the MAL events is that the selected decision

is other than GM. This is not what the expected response should be. Further, timely

identification of an alarm saves time to deal with a controllable hazard which otherwise

could turn into an emergency scenario. Consider the cases reported in Table 4.3.

Because of similarity matching and the frequency of past use, most of the cases report

correct decisions. However, some solutions show relatively large values of surprise. For

instance, the fourth case, where the selection of UF was legitimate but since the agent

also found more better solutions, it was surprised of its decision. In the fifth case,

CPÝUW is really surprising because the agent was free before observing the fire. After

observing the fire there was no way to implement CP, which means to continue the

previous goal. The goal CP attempts to add a previous goal to the goal queue, if one is

found. But if it does not find any previous goal with the agent, it simply pops up the

second KB-Unit in the list. Thus, in this way, CPÝUW means that the agent selected

CP and the CP launched UW and that was also a correct solution in that case. It is also

clearly seen from Table 4.3 that due to high stress and distraction (p = 0.60), the

agent identified PAL only in 3 out of 5 cases, and identified the muster alarm in only

one case in which it made correct decision by choosing GM. Although, in all five cases,

the agent was able to extinguish the fire but its decisions, particularly after muster

alarms were not, in general, found to be what were required.

Nonetheless, an agent with normal or a bit stressed mental states shows stability in its

decisions. Table 4.4 lists the scenarios in which the agent was tested against alarms.

In 73% cases the agent responded correctly when it received the PAL. In some of these

73% cases the agent was also sent the MAL and it responded correctly by selecting
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GM.

The approach developed here also provides the agent, correctly in most cases, an

ability to identify its own mistakes (after making them) by computing the surprise. It

also gives the agent a sense of how ‘informed’ it is in making a choice by calculating

the ignorance. However, we have not fully exploited these conclusive points in the

model of the agent, except to calculate their estimates. This work could be treated as

an extension of the authors’ previous work reported in (Danial et al., 2013) and most

of the results are in line with previous results, with the exception that the alarms

were not dealt with and the slips due to agent’s reliability was not incorporated in

the information gathering phase (i.e., the process of generation of retrieving CND).
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Chapter 5

Conclusion and recommendations

5.1 Conclusion

It is evident from the literature review that there are many approaches to model

an intelligent agent. The model presented here resembles the CBR model where a

decision relies on similarity between the stored and retrieving CNDs. The present

model adds extra dimensions by including frequency of bias and considering cognitive

attitudes in the decision-making process. The use of frequency information provides

two unique perspectives. First, when the KB-Units that are associated with the same

CNDs are retrieved they are sorted according to their respective frequency values.

Thus, under the normal mental state, the most frequent KB-Unit is retrieved and

its associated goal is brought into execution. Second, the frequency information acts

as the agent’s experience with a particular KB-Unit; the feedback mechanism as

described in Algorithm 4 either increments it or sets it to negative unity for undesired

choices. Thus the sorting method puts the more frequent KB-Units on top of the data

structure holding the retrieved KB-Units.

Moreover, under a stressed mental state, even if the reliability is too low to be natural,

there is still enough room for the agent to retrieve those KB-Units that have zero
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or greater frequency of bias because Algorithm 1 places all the negative frequency

KB-Units near the bottom of the data structure holding the retrieved KB-Units.

This claim is supported by the simulation results where even high mental stress does

not show absurd behaviour. The simulation results show that under stress a novice

agent failed about 9% of the time, whereas a trained agent has been found to exhibit

only around 1% failure. Further, mistakes are not only committed when a person

is stressed, panicked or has fear, although these factors do enhance the chance of a

mistake. In any working environment, such as offshore facilities, people do have a bit

of stress, or at least their mental state is not the same as when they are at home. It is

shown here that the agent that is in normal mental state may also go for selecting the

second or third best choice instead of always making the best solution by employing

the retrieved KB-Unit.

The proposed agent-model is extended to incorporate ‘slips’ in dealing with two spe-

cific matters. The first is in computing the distance between an obstacle and a haz-

ard. This enables the agent, in cases when slips occur, to construct an inappropriate

retrieving CND by either ignoring some obstacles that are near the hazard or by con-

sidering some obstacles near although they are far from the hazard. In this way, the

agent under high stress may estimate wrong retrieving CND that would definitely

lead to wrong choices from the KB and the reason is an illusion that the agent had

due to considering something to be near or far from the hazard while the reality was

completely opposite. The second is the matter of responding to alarms. The agent

can simply forget an alarm as a result of making a slip. Also, as the alarms are sent as

discrete messages it is possible that the agent recognizes the alarms too late. Clearly,

in real emergency situations such acts may be disastrous for one’s own life and the

environment.
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5.2 Recommendations

The agent-model presented here has been implemented in C++ programming lan-

guage as standalone software requiring no back-end support from any database or

logic-programming frameworks, such as Prolog. The simulations have shown diverse

and useful behaviours, in the presence of biases or moderators, pertaining to training

scenarios. Still, the author believes that:

1. The model should be used in a real training program, such as AVERT, and the

response from human participants should be recorded. Such an exercise would

produce insight into how to make new scenarios or what other types of mental

simulations are required for effective learning.

2. The concept of recency (Reason, 1990) should play an important role in future

advancement of the model.

3. Integration of the BDI-agent model is an interesting open area that would en-

hance the scope of the proposed model.

4. Considering each of the mental attitudes considered here separately rather than

combining them to make an average factor is an important area of investigation.

However, that may involve sorting out the issue of representation of the agent’s

reliability in terms of these attitudes, and that may require factoring out what

sort of human errors could be induced in the presence of a particular mental

attitude alone. For example, are the human errors due to stress and fear the

same, or does stress give rise to other behaviour compared to fear.

5. Employing advanced similarity function would surely improve the performance

and effectiveness of the retrieval mechanism.
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Appendix A
The C++ class definition of the agent-model

The following code describes only the main points in the implementation of the model

depicted in Figure 3.1. The complete implementation is available with the source code

provided in the enclosed CD.

# ifndef AGENT_H
# define AGENT_H
// header declarations omitted to save space , please see the

accompanying CD.
class Agent : public MovingEntity
{
private :

enum Status {alive , dead , spawning };
enum GoalOutcome {increment , decrement , negate , noeffect };

public :
struct CurrentDecisionRecord {

int m_nTypeofToolUsed ;
bool WasInterrupted ;
int m_nHazardLevel ;
// the entry which was there in the HashTable
KBunit m_KBu;
// the calling condition of KBunit in the KB
CCond m_ccond ;
Vector2D m_vPos ;// position of hazard
void Clear (){

m_vPos = Vector2D ( -100 , -100);
m_nHazardLevel =-1; m_KBu .fp =0;
m_KBu .sol= KnowledgeBaseUnit :: no_record ;
m_ccond .Clear (); WasInterrupted =false;

}
};

private :
typedef struct CurrentFireReactionRecord {

std :: vector <Vector2D > m_vecTemp ;
std :: vector <Vector2D > m_vecFlameLength ;
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std :: vector <Vector2D > m_vecFlameWidth ;
int index ;
CurrentFireReactionRecord (){index =0;}
void ClearIndex (){index =0;}
void Clear (){

m_vecTemp . clear ();
m_vecFlameLength . clear ();
m_vecFlameWidth .clear ();
index = 0;

}
void save( double t, double fl , double fh){

m_vecTemp . push_back ( Vector2D (( double )index , t));
m_vecFlameLength . push_back ( Vector2D (( double )index ,

fl));
m_vecFlameWidth . push_back ( Vector2D (( double )index ,

fh));
index +=1;

}
}CFRR;

public :
CurrentDecisionRecord * m_pCDR ;
CFRR* m_pCfrr ;
GoalOutcome goalloutcome ;
int m_nIgnoreFireClassInfo ;

private :
Vector2D m_vFacing ;
// an agent only perceives other agents or obstacles within this

field of view
double m_dFieldOfView ;
bool m_bLockRecognizing ;
bool m_bLockEvaluateScenarioMethod ;
bool m_bLockPercieve ;
bool m_bLockMakeCallingConditionMethod ;
//a measure of surprise will be stored here
double m_dSurprise ;
double m_dIgnorance ;
double m_Min_Ign ;
double m_Max_ign ;
// minimum if value is 0; maximum if value is 1
unsigned int m_nIgnoranceFlag ;
bool m_bAlarm ;
//1 is Process and 2 is Muster
unsigned int m_nAlarmType ;
bool m_bAlarmRemembered ;
bool m_bIsCarryingExtinguisher ;
// default value is false , true means to send alarm message
bool m_bSendAlarmMessageToOtherAgents ;
// to be used in deciding if to use exact matching or similarity -

based
double m_dMinProbToShowStress ;
unsigned int m_nKBFileNamePrefix ;
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// although its value is equal to m_vHazRecord .size () but I’m
storing it sepearately also

int m_nNumHazardSeenCurrently ;
int m_nTotalHazLevel ;
// Level of Currently observed hazard
int m_nCurrHazLevel ;
// the probability value above which a hazard is considered
double m_dThresholdProb ;
//a knowledgebase object
KB* m_pKB ;
// human factor object
HumanFactor m_HFactor ;
// container for all probability of selection of each Sols.
std :: vector <double > m_vProbabilities ;
ExtinguishingToolsRecord m_ExtToolRec ;
// it is the database of info comming from Fire. Its the inital

unprocessed info about hazard
MapExt <Vector2D ,ImgData > m_MapExtImgDataLocalCopy ;
// it contains complete rec of fire info after processing in

Recognition Phase
MapExt <Vector2D , PartialHazardRecord > m_MapExtHazRecord ;
//a list of hazard objects of which the surroundings have been

calculated already , thus surroundings need to update only
vector <Vector2D > m_vPercieved ;
// its the bit field for Surrounding ID. The first argument is

the position of hazard object
MapExt <Vector2D , CCond > m_MapSurIds ;
std :: vector <KBunit > m_vtheCorrectSol ;
//I’ll put those events ( hazards ) which are logically evaluated ,

so that they don ’t get evaluated again .
std ::set <Vector2D > SetOfCheckedEvents ;
WorkingMemory * m_pWM;
Agent_Steering * m_pSteering ;
// the currently observed hazard
Vector2D m_pCurrHazardPos ;
//a vertex buffer containing the agent ’s geometry
std :: vector <Vector2D > m_vecAgentVB ;
// the buffer for the transformed vertices
std :: vector <Vector2D > m_vecAgentVBTrans ;
// alive , dead or spawning ?
Status m_Status ;
//a pointer to the world data
Environment * m_pWorld ;
// this object handles the arbitration and processing of high

level goals
Goal_Router * m_pRouter ;
// this is a class that acts as the agent sensory memory .
Agent_SensoryMemory * m_pSensoryMem ;
// the agent uses this to plan paths
Agent_PathPlanner * m_pPathPlanner ;
// this is responsible for choosing the agent ’s current target
Agent_TargetingSystem * m_pTargSys ;
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//A regulator object limits the update frequency of a specific
AI component

Regulator * m_pGoalArbitrationRegulator ;
public :

Agent ( Environment * world , Vector2D pos , unsigned int kbfilename );
virtual ~ Agent ();
void UnlockEvaluateScenarioNaturallyMethod (){

m_bLockEvaluateScenarioMethod =false;
}
void UnlockPercieve (){ m_bLockPercieve =false ;}
MapExt <Vector2D ,ImgData >& GetMapExtImgDataLocalCopy (){

return m_MapExtImgDataLocalCopy ;
}
MapExt <Vector2D , PartialHazardRecord >& GetMapExtHazRecord (){

return m_MapExtHazRecord ;
}
std :: vector <double >& GetProbabilities (){

return m_vProbabilities ;
}
void ClearCheckedEvent ( const Vector2D &);
// clears calling condition flag from m_MapExtHazRecord so that

another calling condition could be generated on next visit
of the same hazard

void ClearCallingConditionFlag (const Vector2D &);
void ClearAllRecords ();
void SetGoalOutcome ( unsigned int outcome ){

goalloutcome =( GoalOutcome )( outcome %4);
}
void SetExtToolRec ( FireExtinguishers * pExt , Vector2D Pos){

m_bIsCarryingExtinguisher =true;
m_ExtToolRec . iniPos =Pos;
m_ExtToolRec . pExtTool =pExt;

}
FireExtinguishers * GetGrabbedExtRef () const {

return m_ExtToolRec . pExtTool ;
}
Vector2D GetGrabbedExtPos () const{ return m_ExtToolRec . iniPos ;}
bool isCarryingExtTool () const{ return m_bIsCarryingExtinguisher ;}
// called only from EvaluateScenarioNaturally ()
void AddSol4Going2MusterInCaseOfManyHazards ();
bool ScanForHazards ();
void MakeCallingCondition ();
void RecognizeHazard ();
void PercieveSurroundings ();
// Find similar and frequent KB -Units
void EvaulateScenarioLogically ();
// Pick one KB -Unit on the basic of reliability or human factors
void EvaluateScenarioNaturally ( double CurrentTime );
// to save the final decision
void SaveDecision (const Vector2D Position_of_hazard );
// if heard alarm or not
bool IsAlarm () const{ return m_bAlarm ;}
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bool IsAlarmRemembered () const{ return m_bAlarmRemembered ;}
void AlarmRemembered (){ m_bAlarmRemembered =true ;}
void AlarmForgot (){ m_bAlarmRemembered =false ;}
// this records fire reaction when agent attempt to kill it
void RecordFireReaction (const Fire* pFire ,

int TypeOfExtinguisher );
unsigned int GetAlarmType () const{ return m_nAlarmType ;}
void SetAlarmType ( unsigned int alarm_type ){

m_bAlarm =true;
m_nAlarmType = alarm_type ;

}
void ClearAlarm (){ m_bAlarm =false; m_nAlarmType =0;}
// Measure Surprise
double MeasureSurprise (int);
// Measure Ignorance or expected surprise
void MeasureIgnorance ();
double MaxIgnorance ();
double MinIgnorance ();
double ScaleIgnorance ( double val);
double ScaleSurprise ( double val);
double GetIgnorance () const { return m_dIgnorance ;}
double GetSurprise () const { return m_dSurprise ;}
// this assess the recorded reaction as to +ve or -ve decision
void AssessFireReaction (const Fire* pFire ,

int TypeOfExtinguisher );
// pS = value of p in HumanFactor object
void GenProbabilities (int n, double pS);
HumanFactor & GetHumanFactor (){ return m_HFactor ;}
bool IgnoreFireClass ();
MapExt <Vector2D ,ImgData >& GetMapExt (){

return m_MapExtImgDataLocalCopy ;
}
int getTotalHazLevel () const { return m_nTotalHazLevel ;}
void ClearReflexAction (){ m_HFactor . ClearReflexAction ();}
WorkingMemory * getWM () const { return m_pWM ;}
MapExt <Vector2D , CCond >& GetSurID (){ return m_MapSurIds ;}
KB* GetKB () const{ return m_pKB ;}
Environment * const GetWorld (){ return m_pWorld ;}
Agent_Steering * const GetSteering (){ return m_pSteering ;}
Agent_PathPlanner * const GetPathPlanner (){

return m_pPathPlanner ;
}
Goal_Router * const GetRouter (){ return m_pRouter ;}
bool isAtPosition ( Vector2D pos)const;
// file objects for storing results
ofstream fresults , fresults2 ;
void UpdateKB ();
void Render ();
void Update ();
bool HandleMessage (const Telegram & msg);

};
# endif
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Appendix B
The knowledgebase and related data structures

# ifndef KNOWLEDGEBASE_H
# define KNOWLEDGEBASE_H

typedef struct KnowledgeBaseUnit
{
private :

// serialization support
friend class boost :: serialization :: access ;
template <class Archive >
void serialize ( Archive & arc , const unsigned int version )
{ arc & sol & fp; }

public :
enum solution_space
{

no_record =99, water_based , foam_based , co2_based ,
dry_chemical_based , purple_K_dry_chemical , dry_powder ,
multipurpose_dry_chemical , wet_chemical , sand_buckets ,
go_muster_station , leave_everything_and_be_atentive ,
proceedcurrentgoal

};
solution_space sol;
// frequency of bias
int fp;
// some operator overloads
friend bool operator == (const KnowledgeBaseUnit & c1 ,

const KnowledgeBaseUnit & c2);
friend bool operator != (const KnowledgeBaseUnit & c1 ,

const KnowledgeBaseUnit & c2);
friend std :: ostream & operator <<( std :: ostream &os ,

const KnowledgeBaseUnit & kbunit );
bool operator < (const KnowledgeBaseUnit kbu) const{

return sol <kbu.sol;
}
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// nested class to facilitate customized sorting
class greater
{

public :
bool operator ()( const KnowledgeBaseUnit & val1 ,

const KnowledgeBaseUnit & val2){
return val1.fp >val2.fp;

}
};
// ctor
KnowledgeBaseUnit (){

fp =0;
sol= no_record ;

}
std :: string ToString () const;

}KBunit , SOLUTION_SPACE ;

// data structure to save the count of similar bits
typedef struct SimilarBitsCount
{

std :: multimap <CCond , KBunit ,CCond :: LessThan >:: iterator m_It;
int m_nCount ;
SimilarBitsCount (std :: multimap <CCond , KBunit ,CCond :: LessThan >::

iterator it , int cnt)
:m_It(it),m_nCount (cnt){}

class greater
{
public :

bool operator ()(const SimilarBitsCount & val1 , const
SimilarBitsCount & val2)

{
if(val1. m_nCount == val2. m_nCount )
{

if(val1.m_It -> second .fp >val2.m_It -> second .fp)
return true;

else
return false;

}
else if(val1.m_nCount >val2. m_nCount )

return true;
else

return false;
}

};
} SimilarityCount , SimilarityMatchingDataStructure ;
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// The Knowledge base class
typedef class Knowledgebase
{
public :

enum UpdateParams {increment ,decrement ,negate , noeffect };
private :

// serialization support
friend class boost :: serialization :: access ;
template <class Archive >
void serialize ( Archive & arc , const unsigned int version ){

arc & m_MMap ;
}

friend std :: ostream & operator <<( std :: ostream &os , const
Knowledgebase &kb);

// reads from an .ini file
bool Read ();

public :
Knowledgebase ( Agent * pOwner =NULL);
size_t Size () const{ return m_MMap .size () ;}
// loads the previously saved boost text archive object of m_MMap

for this agent or call Read () to read from the .ini file
bool Load ();
bool Save ();
void SetPath (std :: string path){ m_strPath =path ;}
bool Find(const CCond &, std :: vector <KBunit >& vtheCorrectSol );
// the method that implements similarity - matching and frequency

gambling techniques
void
FindBasedOnSimilarityMatchingAndFrequencyBias (const CCond & rcnd ,

std :: vector <KBunit >& refVecOfSols );
// the method to update the KB
void Update (const CCond &, const KBunit &, unsigned int bParam );
void Write ( string filename );

private :
// the data structure to store KB units with CCond mapped
std :: multimap <CCond , KBunit ,CCond :: LessThan > m_MMap ;
typedef std :: multimap <CCond , KBunit ,CCond :: LessThan >::

iterator m_MMapIter ;
double m_dLastUpdateTime ;
m_MMapIter m_itKB ;
// the owner of this KB
Agent * m_pOwner ;

}KB;
//A data structure to save the final retreived KB -Units
typedef class ConsiousMemory
{
public :

unordered_map <Vector2D , vector <KBunit >> m_HashTable ;
friend ostream & operator <<( ostream & out , const ConsiousMemory &);

} WorkingMemory , WM;
# endif
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Appendix C
The Goal_Router class

# ifndef GOAL_ROUTER_H
# define GOAL_ROUTER_H
// headers omitted to save space
class Goal_Router : public Goal_Composite <Agent >
{
public :

Goal_Router (Agent* pBot);
~ Goal_Router ();
// this method selects the one best goal
void Router ();
// returns true if the given goal is not at the front of the

subgoal list
bool notPresent ( unsigned int GoalType ) const;
// the usual methods for goal oriented models
int Process ();
void Activate ();
void Terminate () {}
// top level goal types
void AddGoal_MoveToPosition ( Vector2D pos);
void AddGoal_GetItem ( unsigned int ItemType );
void AddGoal_Explore ();
void AddGoal_AttackTarget ();
void AddGoal_GoMusterStation ();
void AddGoal_UseWaterBasedExtinguisher ();
void AddGoal_UseDryChemBasedExtinguisher ();
void AddGoal_UseCFCBasedExtinguisher ();
void AddGoal_UseCO2BasedExtinguisher ();
void AddGoal_UseFoamBasedExtinguisher ();
void AddGoal_UseDryPowderBasedExtinguisher ();
void AddGoal_UsePurpleKDryChemicalExtinguisher ();
void AddGoal_UseWetChemicalExtinguisher ();
void AddGoal_UseMultiPurpDryChemicalExtinguisher ();
void AddGoal_LeaveEverythingAndBeAttentive ();
void AddGoal_ProceedCurrentGoal ();
void QueueGoal_MoveToPosition ( Vector2D pos);

};
# endif
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Appendix D
Some important methods

void Goal_Router :: Router ()
{

m_pOwner -> RecognizeHazard ();
if(m_pOwner -> GetNumHazardsSeenCurrently () >0

|| m_pOwner -> IsAlarm ())
{

GetNumHazCurrently ++;
m_pOwner -> GetHumanFactor (). Update ( m_pOwner );
m_pOwner -> PercieveSurroundings ();
m_pOwner -> MakeCallingCondition ();
m_pOwner -> EvaulateScenarioLogically ();
m_pOwner ->

EvaluateScenarioNaturally (Clock -> GetCurrentTime ());
}
std :: unordered_map <Vector2D , vector <KBunit >>::

const_iterator iH = m_pOwner -> getWM () ->m_HashTable . cbegin ()
;

if(iH != m_pOwner -> getWM () ->m_HashTable .cend ()
&& iH -> second .size () >0)

{
switch (iH -> second [0]. sol)
{

case KBunit :: leave_everything_and_be_atentive :
m_pOwner -> GetRouter ()

-> AddGoal_LeaveEverythingAndBeAttentive ();
break;

case KBunit :: go_muster_station :
m_pOwner -> GetRouter () -> AddGoal_GoMusterStation ();
break;

case KBunit :: water_based :
m_pOwner -> GetRouter () ->

AddGoal_UseWaterBasedExtinguisher ();
break;

case KBunit :: co2_based :
m_pOwner -> GetRouter () ->

AddGoal_UseCO2BasedExtinguisher ();
break;
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case KBunit :: dry_chemical_based :
m_pOwner -> GetRouter () ->

AddGoal_UseDryChemBasedExtinguisher ();
break;

case KBunit :: foam_based :
m_pOwner -> GetRouter () ->

AddGoal_UseFoamBasedExtinguisher ();
break;

case KBunit :: dry_powder :
m_pOwner -> GetRouter () ->

AddGoal_UseDryPowderBasedExtinguisher ();
break;

case KBunit :: purple_K_dry_chemical :
m_pOwner -> GetRouter () ->

AddGoal_UsePurpleKDryChemicalExtinguisher ();
break;

case KBunit :: multipurpose_dry_chemical :
m_pOwner -> GetRouter () ->

AddGoal_UseMultiPurpDryChemicalExtinguisher
();

break;
case KBunit :: wet_chemical :

m_pOwner -> GetRouter () ->
AddGoal_UseWetChemicalExtinguisher ();

break;
case KBunit :: proceedcurrentgoal :

m_pOwner -> GetRouter () ->
AddGoal_ProceedCurrentGoal ();

break;
default :

m_pOwner -> GetRouter () -> AddGoal_Explore ();
break;

};
}
else

m_pOwner -> GetRouter () -> AddGoal_Explore ();
}

A12



// Implementation of Algorithm 1
void Agent :: RetrieveKBUnits ()
{ // temporary vector for KB -Units

std :: vector <KBunit > VecOfSols ;
std ::set <Vector2D >:: iterator itSet;
for(std ::map <Vector2D , CCond >::

iterator it= m_MapSurIds .m. begin ();
it != m_MapSurIds .m.end (); ++it)

{
itSet = SetOfCheckedEvents .find(it ->first );
if( itSet == SetOfCheckedEvents .end ())
{

// m_vVecOfSols is an ordered vector , first by
Similarity then by frequency of bias. The code in
the following if block attempts at exact matching
in case if agent is not showing stressed and also
if there are exact matches in KB otherwise go for
bringing similar KB -units

if(! (m_pKB ->Find(it ->second , VecOfSols )
&&( m_HFactor . getProbability ()>

m_dMinProbToShowStress )))
{

m_pKB ->
FindBasedOnSimilarityMatchingAndFrequencyBias
(it ->second , VecOfSols );

}
for(std :: vector <KBunit >::

iterator itVec= VecOfSols .begin ();
itVec != VecOfSols .end () ;++ itVec)

m_pWM -> m_HashTable [it ->first ]. push_back (* itVec);
VecOfSols . clear ();
// in order to use it again in the loop.
m_vtheCorrectSol . clear ();
// tag this event that it is now checked
SetOfCheckedEvents . insert (it ->first);

}
}

}

// Exact matching based on multimap ’s find method
bool KB :: Find(const CCond & rcnd , std :: vector <KBunit >& vtheCorrectSol )
{

std :: pair <std :: multimap <CCond ,KBunit ,CCond :: LessThan >:: iterator ,
std :: multimap <CCond ,KBunit ,CCond :: LessThan >:: iterator >

RangeOfEqualSols ;
RangeOfEqualSols = m_MMap . equal_range (rcnd);
for (std :: multimap <CCond ,KBunit ,CCond :: LessThan >:: iterator it=

RangeOfEqualSols . first;
it != RangeOfEqualSols . second ; ++it)

vtheCorrectSol . push_back (it -> second );
if( vtheCorrectSol .size () >0)
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std :: sort( vtheCorrectSol .begin () ,vtheCorrectSol .end (),
KBunit :: greater ());

// remove all those with -ve frequencies , because they are wrong
vector <KBunit >:: iterator it;
for(int i=0;i< vtheCorrectSol .size () ;++i){

if( vtheCorrectSol [i].fp <0){
vtheCorrectSol . erase(i+ vtheCorrectSol . begin ());
i--;

}
}
return ( vtheCorrectSol .size () >0)?true:false;

}
// Supporting method
bool KB :: FindNegative (const CCond & rcnd , std :: vector <KBunit >&

vtheCorrectSol )
{

std :: pair <std :: multimap <CCond ,KBunit ,CCond :: LessThan >:: iterator ,
std :: multimap <CCond ,KBunit ,CCond :: LessThan >:: iterator >

RangeOfEqualSols ;
RangeOfEqualSols = m_MMap . equal_range (rcnd);
for (std :: multimap <CCond ,KBunit ,CCond :: LessThan >:: iterator it=

RangeOfEqualSols . first;
it != RangeOfEqualSols . second ; ++it)

vtheCorrectSol . push_back (it -> second );
if( vtheCorrectSol .size () >0) std :: sort( vtheCorrectSol .begin (),

vtheCorrectSol .end (),KBunit :: greater ());
// remove all those with +ve frequencies , because they are right
vector <KBunit >:: iterator it;
for(int i=0;i< vtheCorrectSol .size () ;++i){

if( vtheCorrectSol [i].fp >=0){
vtheCorrectSol . erase(i+ vtheCorrectSol . begin ());
i--;

}
}
return ( vtheCorrectSol .size () >0)?true:false;

}
// Main method in Algorithm 1, Hamming distance based similarity -

matching and frequency bias based retrieval
void KB :: FindBasedOnSimilarityMatchingAndFrequencyBias (const CCond &

rcnd , std :: vector <KBunit >& refVecOfSols )
{

double percentsimilarity =0.0;
m_itKB = m_MMap .begin ();
std :: vector <KBunit > vtheSols , negvtheSols ;
KBunit theSol ;
std :: vector < unsigned int > CountBits ;
unsigned int CountBitsCurr =0; // each
std :: vector < SimilarityCount > SimilarityVec ;
std :: vector < SimilarityCount >:: iterator itSim ;
bool nofire = !rcnd. isFire ();
bool dontuse =false;
FindNegative (rcnd , negvtheSols );
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double simparam =script -> GetDouble (" PercentSimilarityParam ");
if(rcnd. isFire ())
{

for( m_itKB = m_MMap . begin (); m_itKB != m_MMap .end () ;++ m_itKB )
{

if(m_itKB -> first. isFire ())
{

CountBitsCurr ++; // due to matching hazards
if(rcnd. isElectricalLines () == m_itKB ->first.

isElectricalLines ())
CountBitsCurr ++;

if(rcnd. isSmoke ()== m_itKB ->first . isSmoke ())
CountBitsCurr ++;

if(rcnd. isFuelCarryingLines ()== m_itKB ->first .
isFuelCarryingLines ())

CountBitsCurr ++;
if(rcnd. isMetalDust ()== m_itKB ->first . isMetalDust

())
CountBitsCurr ++;

if(rcnd. isOrdinaryCombustible () == m_itKB ->first.
isOrdinaryCombustible ())

CountBitsCurr ++;
if(rcnd. isUnkownSurrounding ()== m_itKB ->first .

isUnkownSurrounding ())
CountBitsCurr ++;

if(rcnd. GetHazardLevel ()== m_itKB ->first .
GetHazardLevel ())

CountBitsCurr +=3;
if(! m_pOwner -> IgnoreFireClass ())

if(rcnd. GetFireClass ()== m_itKB ->first .
GetFireClass ())

CountBitsCurr +=3;
for(int i=0;i< negvtheSols .size () ;++i){

if( negvtheSols [i]. sol == m_itKB -> second .sol){
dontuse =true;
break;

}
dontuse =false;

}
if(! dontuse ){

percentsimilarity =( double ) CountBitsCurr /(
double )rcnd. GetSIDlen () *100.0;

if( percentsimilarity >= simparam )
SimilarityVec . push_back (

SimilarBitsCount (m_itKB ,
CountBitsCurr ));

}
CountBitsCurr =0;

}
}

}
else
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{
theSol .fp =0;
theSol .sol= KBunit :: no_record ;
refVecOfSols . push_back ( theSol );

}
// now SimilarityVec contains the iterator values which point to

KB -Units which are similar based on PERCENTSIMILARITY , just
sort it and draw out the KB - Units and return them

std :: sort( SimilarityVec .begin () , SimilarityVec .end (),
SimilarityCount :: greater ());

for( itSim= SimilarityVec .begin ();itSim != SimilarityVec .end () ;++
itSim ){

theSol .fp=itSim ->m_It -> second .fp;
theSol .sol=itSim ->m_It -> second .sol;
refVecOfSols . push_back ( theSol );

}
// Now moving the kbunits with -ve frequencies in the last
vector <KBunit > temp;
vector <KBunit >:: iterator it;
for(int i=0;i< refVecOfSols .size () ;++i){

if( refVecOfSols [i].fp <0){
temp. push_back ( refVecOfSols [i]);
it= refVecOfSols . begin ();
it=it+i;
refVecOfSols . erase (it);
i--;

}
}
// now push the -ve frequency kbunits back in refVecOfSols
for(int i=0;i<temp.size ();i++)

refVecOfSols . push_back (temp[i]);
// Now remove all duplicates from the bottom of refVec
// keep all highly matched and highly frequent , remove all others
std ::set <KBunit > s;
std :: vector <KBunit > vunique ;
std :: pair <std ::set <KBunit >:: iterator ,bool > ret;
unsigned size = refVecOfSols .size ();
for( unsigned i = 0; i < size; ++i ){

ret=s. insert ( refVecOfSols [i]);
if(ret. second )

vunique . push_back ( refVecOfSols [i]);
}
refVecOfSols . assign ( vunique .begin (), vunique .end ());

}
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// Implementation of Algorithm 2
void Agent :: SelectKBUnitOnHumanFactorBasis ( double CurrentTime )
{

if( m_bLockEvaluateScenarioMethod )
return ;

int randomIndex =-1;
int leave =0;
int numSols ;
if( m_HFactor . ReflexAction ())
{

std :: list < Agent * >:: const_iterator itOtherAgents =m_pWorld ->
Agents ().begin ();

if( m_bSendAlarmMessageToOtherAgents )
{

int recieverid ;
for( ; itOtherAgents != m_pWorld -> Agents ().end ();

++ itOtherAgents )
{

// if receiver and sender both are not same
if ((* itOtherAgents )->ID ()!= ID())
{

recieverid =(* itOtherAgents )->ID ();
Dispatcher ->

DispatchMsg ( SEND_MSG_IMMEDIATELY ,ID(),
recieverid , Msg_ThereIsAHighHazard ,

NULL);
}

}
}
m_bSendAlarmMessageToOtherAgents =false;
return ;

}
KBunit Solfound ;
Vector2D posfound ;
for( unordered_map <Vector2D , vector <KBunit >>::

iterator itHash =m_pWM -> m_HashTable .begin ();
itHash != m_pWM -> m_HashTable .end () ;++ itHash )

{
numSols =( int)m_pWM -> m_HashTable [itHash ->first ]. size ();
GenProbabilities (numSols , m_HFactor . getProbability ());
fresults <<std :: endl;
for( unsigned int kk =0;kk < m_vProbabilities .size () ;++ kk)

fresults << m_vProbabilities [kk]<<std :: endl;
boost :: random :: discrete_distribution <>

binomialdist ( m_vProbabilities );
randomIndex = binomialdist ( BiasedRandomNumGenerator );
double s= MeasureSurprise ( randomIndex );
m_dSurprise = ScaleSurprise (s);
MeasureIgnorance ();
m_dIgnorance = ScaleIgnorance ( m_dIgnorance );
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for( leave =0; leave < numSols ;++ leave)
{

if( leave == randomIndex )
{

posfound =itHash -> first;
Solfound =itHash -> second [leave ];
m_pWM -> m_HashTable [itHash -> first ]. erase (

(itHash -> second . begin ())+leave);
m_pWM -> m_HashTable [itHash -> first ]. insert (

(itHash -> second . begin ()), Solfound );
m_bLockEvaluateScenarioMethod =true;
fresults <<endl;
for( unsigned int i=0;i<m_pWM ->

m_HashTable [itHash -> first ]. size () ;++i)
{

fresults <<m_pWM ->
m_HashTable [itHash ->
first ][i]. ToString () <<std :: endl;

}
break;

}
}

}
}

A18



Appendix E
The knowledgebase entries with associated CNDs

Table E.1: Initial or default entries of knowledge-

base2with associated CNDs

Rule CND Description
KB-Unit

AP f

R1 00000000010001001 F, LH, O, N UW 0

R2 00000000010001001 F, LH, O, N UF 0

R3 00000000010001001 F, LH, O, N UD -1

R4 00000000010001001 F, LH, O, N UP -1

R5 00000000010001001 F, LH, O, N UDP -1

R6 00000000010001001 F, LH, O, N UWC -1

R7 00000000010001001 F, LH, O, N UM -1

R8 00000000010001001 F, LH, O, N UC -1

R9 00000000110011001 F, HH, O, E, N GM 0

R10 00000001110011001 F, HH, O, E, Fu, N GM 0

Continued on next page

2‘F’ stands for fire, ‘LH’ for low hazard, ‘HH’ for high hazard, ‘O’ means ordinary combustibles,
‘Fu’ represents fuel lines, ‘E’ stands for power lines, ‘M’ is to mean combustable metals, ‘A’, ‘B’,
‘C’, & ‘D’ are fire classes, ‘PAl’ is the process alarm, ‘MAl’ is the muster alarm and ‘N’ means ‘no
information about fire class’.
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Table E.1 – continued from previous page

Rule CND Description
KB-Unit

AP f

R11 00000010010011001 F, HH, O, M, N GM 0

R12 00000011000011001 F, HH, Fu, M, N GM 0

R13 00000011010011001 F, HH, O, Fu, M, N GM 0

R14 00000011110011001 F, HH, O, E, Fu, M, N GM 0

R15 00001000000011001 F, HH, A GM 0

R16 00001000010001001 F, LH, O, A UW 0

R17 00001000010001001 F, LH, O, A UF 0

R18 00001000010001001 F, LH, O, A UC -1

R19 00001000010001001 F, LH, O, A UD -1

R20 00001000010001001 F, LH, O, A UP -1

R21 00001000010001001 F, LH, O, A UM 0

R22 00001000010001001 F, LH, O, A UDP -1

R23 00001000010001001 F, LH, O, A UWC -1

R24 00001000110001001 F, LH, O, E, A UM 0

R25 00001000110011001 F, HH, O, E, A GM 0

R26 00001001010001001 F, LH, O, Fu, A UF 0

R27 00001001010001001 F, LH, O, Fu, A UM 0

R28 00001001110001001 F, LH, O, E, Fu, A UM 0

R29 00001001110011001 F, HH, O, E, Fu, A GM 0

R30 00001010010011001 F, HH, O, M, A GM 0

R31 00001011000011001 F, HH, Fu, M, A GM 0

Continued on next page
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Table E.1 – continued from previous page

Rule CND Description
KB-Unit

AP f

R32 00001011010011001 F, HH, O, Fu, M, A GM 0

R33 00001011110011001 F, HH, O, E, Fu, M, A GM 0

R34 00010000000011001 F, HH, B GM 0

R35 00010000110011001 F, HH, O, E, B GM 0

R36 00010001000001001 F, LH, Fu, B UW -1

R37 00010001000001001 F, LH, Fu, B UF 0

R38 00010001000001001 F, LH, Fu, B UC 0

R39 00010001000001001 F, LH, Fu, B UD 0

R40 00010001000001001 F, LH, Fu, B UP 0

R41 00010001000001001 F, LH, Fu, B UM 0

R42 00010001000001001 F, LH, Fu, B UDP -1

R43 00010001000001001 F, LH, Fu, B UWC -1

R44 00010001010001001 F, LH, O, Fu, B UF 0

R45 00010001010001001 F, LH, O, Fu, B UM 0

R46 00010001100001001 F, LH, E, Fu, B UC 0

R47 00010001100001001 F, LH, E, Fu, B UD 0

R48 00010001100001001 F, LH, E, Fu, B UP 0

R49 00010001100001001 F, LH, E, Fu, B UM 0

R50 00010001110001001 F, LH, O, E, Fu, B UM 0

R51 00010001110001001 F, LH, O, E, Fu, B UM 0

R52 00010001110011001 F, HH, O, E, Fu, B GM 0

Continued on next page
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Table E.1 – continued from previous page

Rule CND Description
KB-Unit

AP f

R53 00010010010011001 F, HH, O, M, B GM 0

R54 00010011000011001 F, HH, Fu, M, B GM 0

R55 00010011010011001 F, HH, O, Fu, M, B GM 0

R56 00010011110011001 F, HH, O, E, Fu, M, B GM 0

R57 00011000000011001 F, HH, C GM 0

R58 00011000100001001 F, LH, E, C UW -1

R59 00011000100001001 F, LH, E, C UF -1

R60 00011000100001001 F, LH, E, C UC 0

R61 00011000100001001 F, LH, E, C UD 0

R62 00011000100001001 F, LH, E, C UP 0

R63 00011000100001001 F, LH, E, C UM 0

R64 00011000100001001 F, LH, E, C UDP -1

R65 00011000100001001 F, LH, E, C UWC -1

R66 00011000110001001 F, LH, O, E, C UM 0

R67 00011000110011001 F, HH, O, E, C GM 0

R68 00011001100001001 F, LH, E, Fu, C UC 0

R69 00011001100001001 F, LH, E, Fu, C UD 0

R70 00011001100001001 F, LH, E, Fu, C UP 0

R71 00011001100001001 F, LH, E, Fu, C UM 0

R72 00011001110011001 F, HH, O, E, Fu, C GM 0

R73 00011010010011001 F, HH, O, M, C GM 0

Continued on next page
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Table E.1 – continued from previous page

Rule CND Description
KB-Unit

AP f

R74 00011011000011001 F, HH, Fu, M, C GM 0

R75 00011011010011001 F, HH, O, Fu, M, C GM 0

R76 00011011110011001 F, HH, O, E, Fu, M, C GM 0

R77 00100000000001001 F, LH, D UDP 0

R78 00100000000011001 F, HH, D GM 0

R79 00100000110011001 F, HH, O, E, D GM 0

R80 00100001010001001 F, LH, O, Fu, D UDP 0

R81 00100001110001001 F, LH, O, E, Fu, D UDP 0

R82 00100001110011001 F, HH, O, E, Fu, D GM 0

R83 00100010010001001 F, LH, O, M, D UDP 0

R84 00100010010011001 F, HH, O, M, D GM 0

R85 00100011000011001 F, HH, Fu, M, D GM 0

R86 00100011010011001 F, HH, O, Fu, M, D GM 0

R87 00100011110011001 F, HH, O, E, Fu, M, D GM 0

R88 00000000000000010 PAl, N PA 0

R89 01000000010001001 F, LH, O, PAl, N UW 0

R90 01000000010001001 F, LH, O, PAl, N UC -1

R91 01000000010001001 F, LH, O, PAl, N UF 0

R92 01000000010001001 F, LH, O, PAl, N UD -1

R93 01000000010001001 F, LH, O, PAl, N UP -1

R94 01000000010001001 F, LH, O, PAl, N UDP -1

Continued on next page
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Table E.1 – continued from previous page

Rule CND Description
KB-Unit

AP f

R95 01000000010001001 F, LH, O, PAl, N UWC -1

R96 01000000010001001 F, LH, O, PAl, N UM -1

R97 01000000010011001 F, HH, O, PAl, N PA 0

R98 01000000100011001 F, HH, E, PAl, N PA 0

R99 01000001000011001 F, HH, Fu, PAl, N PA 0

R100 01000010000011001 F, HH, M, PAl, N PA 0

R101 01001000000001001 F, LH, PAl, A CP 0

R102 01001000010001001 F, LH, O, PAl, A CP 0

R103 01001000010011001 F, HH, O, PAl, A PA 0

R104 01001000100001001 F, LH, E, PAl, A CP 0

R105 01001000100011001 F, HH, E, PAl, A PA 0

R106 01001000110001001 F, LH, O, E, PAl, A CP 0

R107 01001001000001001 F, LH, Fu, PAl, A CP 0

R108 01001001000011001 F, HH, Fu, PAl, A PA 0

R109 01001001010001001 F, LH, O, Fu, PAl, A CP 0

R110 01001001010001001 F, LH, O, Fu, PAl, A CP 0

R111 01001001110001001 F, LH, O, E, Fu, PAl, A CP 0

R112 01001010000001001 F, LH, M, PAl, A CP 0

R113 01001010000011001 F, HH, M, PAl, A PA 0

R114 01010000010011001 F, HH, O, PAl, B PA 0

R115 01010000100011001 F, HH, E, PAl, B PA 0

Continued on next page
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Table E.1 – continued from previous page

Rule CND Description
KB-Unit

AP f

R116 01010001000011001 F, HH, Fu, PAl, B PA 0

R117 01010010000011001 F, HH, M, PAl, B PA 0

R118 10001000000001001 F, LH, MAl, A GM 0

R119 10001000010001001 F, LH, O, MAl, A GM 0

R120 10001000100001001 F, LH, E, MAl, A GM 0

R121 10001001000001001 F, LH, Fu, MAl, A GM 0

R122 10001010000001001 F, LH, M, MAl, A GM 0

R123 11000000010011001 F, HH, O, N GM 0

R124 11000000100011001 F, HH, E, N GM 0

R125 11000001000011001 F, HH, Fu, N GM 0

R126 11001000010001001 F, LH, O, A GM 0

R127 11001000010011001 F, HH, O, A GM 0

R128 11001000100001001 F, LH, E, A GM 0

R129 11001000100011001 F, HH, E, A GM 0

R130 11001001000001001 F, LH, Fu, A GM 0

R131 11001001000011001 F, HH, Fu, A GM 0

R132 11001010000001001 F, LH, M, A GM 0

R133 11001010000011001 F, HH, M, A GM 0

R134 11010000010011001 F, HH, O, B GM 0

R135 11010000100011001 F, HH, E, B GM 0

R136 11010001000011001 F, HH, Fu, B GM 0
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