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ABSTRACT 

Drillstring vibration is a very crucial phenomenon which has a great effect on the drilling 

process. The drillstring is responsible to transfer rotary motion and energy to the drill bit. 

Unwanted vibration causes reduction in the rate of penetration (ROP), bit wear and 

connection failure between drillstring parts. In this thesis, a model of a realistic drill collar 

is generated which can predict any possible motion of the drill collar. 

          This study contains several analyses about drillstring vibration in three main 

modes. The focus is on the drill collar section of the drillstring because of the importance 

of this section in vibration generation of the whole drillstring. This study attempts to 

determine the vibration behavior of the drill collar in axial, lateral and torsional directions 

in the presence of vibration-assisted rotary drilling (VARD) and unbalanced rotation.  

          The model includes self weight, hydraulic forces due to drilling mud circulation 

and most realistic boundary condition for each particular scenario. This model also can be 

used for coupled vibration states and determination of vibration behavior of the drillstring 

in three coupled modes, simultaneously. Simulation results show the vibration behavior 

of the drillstring due to several cases and boundary conditions. The time response to each 

single mode is expressed and will be validated by finite element method (FEM). The 

vibration behavior of the rotating drillstring in three coupled modes will be studied using 

unbalanced rotation of the drillstring. The rock-bit interaction will also be applied to the 

model. Finally, the effect of the VARD tool will be examined. 
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1. Introduction 

1.1. Drilling Technology 

Drilling is a most common method to explore and exploit oil and gas reservoirs. The 

purpose of advanced drilling techniques is to increase the rate of production as well as 

decrease the cost. New areas are studied to enhance drilling proficiency. Drillstring is one 

of the most important parts of drill rigs, for which some studies have been conducted to 

control the vibration of this huge structure. Drillstring is responsible to transfer the energy 

from the surface to the drill bit. It is obvious that controlling the unwanted vibration will 

result in better performance of drilling process and reduction in the exploitation cost.  

          The drillstring is a slender structure which transfers energy from the rotary table at 

the surface to the drill bit at the bottom hole. The drillstring includes two major parts: 

drill pipe section and drill collar section. The drill pipe is a cylindrical pipe which is 

relatively light and has the length up to kilometers. The drill collar section is heavier and 

responsible to provide weight on bit (WOB). The collar section is cylindrical and could 

be up to hundreds of meters. The drill pipe is under tension while the collar should be 

under compression due to the hoisting load and hydrostatic mud effect. The neutral point 

is the place in the drillstring where compression changes to tension. The drill bit is 

connected to the bottom of the collar. Rate of penetration (ROP) is the index to evaluate 

the drilling efficiency which is dependent on WOB.  The drillstring undergoes three 

major modes of vibration: axial, torsional and lateral. These three states can be coupled 

via variables such as torque. 
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          The mud which is circulated along the drillstring to the bottom hole cools the bit 

and flushes the cuttings. The stabilizers are connected to the collar section to prevent 

buckling and deviation of drilling trajectory. Bottom hole assembly (BHA) includes drill 

collar, drill bit and stabilizers. The vibration behavior of the drillstring strongly depends 

on the vibration behavior of the BHA due to higher mass and higher stiffness of the BHA 

with regard to the pipe section. A schematic view of a drill rig is shown in Figure 1-1. 

 

 

 

Figure 1-1   Schematic view of a drill rig (Chien-Min Liao, 2011) 
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         Vibration assisted rotary drilling (VARD) project is a 6 year research project which 

studies the effect of adding vibration to conventional rotary drilling. This project includes 

a series of experimental and numerical investigation to improve the drilling efficiency.  

         There are currently a group of graduate students and faculty investigators involved 

in the project, to investigate different areas of the project to build a prototype. This 

research investigates the coupled axial-lateral and torsional vibration behavior of the 

drillstring.  The project is led by Memorial University with Dr. S. Butt as the principal 

investigator and industry partnerships including RDC, Husky Energy and Suncor Energy. 

 

 

 

1.2. Thesis statement 

The drillstring is one of the crucial components in drilling rigs. The drillstring is 

responsible for transferring energy and rotation from rotary table at the surface to the bit 

at the bottom hole. So, the efficiency of drilling is very dependent on the drillstring 

dynamic behavior. It is a long and slender structure which is subjected to spatially axial 

loads and torque. Axial loads include distributed self weight of the drillstring, buoyant 

effect due to the mud circulation and hoisting load at the surface.  

          The drillstring is under three major states of vibration. Axial, torsional and lateral 

are the three main modes which can occur in the drillstring. Moreover, these three modes 

can be coupled together because of interaction terms such as torque. Axial-transverse, 
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axial-torsional, and torsional-transverse are examples of coupled mode vibration in the 

drillstring. These unwanted vibrations have severe effect on the drilling process. 

Reduction in the rate of penetration, bit wear, and failure in the joints are some examples 

of drillstring vibration drawbacks.  

          Weight on bit (WOB) is the result of the interaction of axial loads which provides 

the cutting force at the lower end of the drillstring. Vibration assisted rotary drilling 

(VARD) tool implements the vibration to the WOB to increase the drilling efficiency. 

Bit-rock interaction, and contact with the wellbore are main sources of excitation of the 

vibration modes. Lateral vibration has the most destructive effect on the drillstring 

between the three main modes. It is because of the lower traveling speed of the lateral 

waves along the drillstring. The lateral vibration of the drill pipe can be neglected since it 

is not excited in the lower modes. The drill collar can be excited in lower modes because 

it is always under compression and it has lower natural frequencies (Gabriel et al., 1997; 

Berlioz et al., 1996; Kriesels et al., 1999). To prevent lateral vibration of the collar, 

stabilizers are used in this section. 

          To mitigate the unwanted vibration of the drillstring, the dynamic behavior of the 

drillstring should be studied and revealed. Isolation methods can be implemented when a 

comprehensive study of the drillstring vibration is done and potential vibration behaviors 

are anticipated.  

          Currently, to the best of author’s knowledge, there is no study to investigate the 

axial-lateral-torsional vibration behavior of the drillstring, simultaneously. In this 

research, a dynamic model capturing coupled axial-torsional and lateral vibration of the 
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drillstring will be developed. A series of nonlinear multi-dynamic equations for a rigid 

body in 3-D will be developed and then a bond graph model of this rigid body will be 

constructed. Using the bond graph lumped segment method and a series of compliances 

and dampers, a model with as many elements as desired will be introduced. 

          Using multibody dynamic approach, a 3-D body in the bond graph will be 

developed. For simulating the drillstring, 30 segments will be aligned and a series of 

springs and dampers will be introduced to connect segments, to make a continuous rod.  

Validation will be done using Finite Element Method (FEM). The same model will be 

constructed in Abaqus (ABAQUS Theory Manual (version 6.10), 2012, Dassault 

Systèmes Simulia Corp., RI, USA).  

          The coupled axial-lateral and torsional vibration behavior of the drillstring will be 

investigated under several conditions such as VARD tool and unbalanced rotation. The 

goal of this research is to develop a fast-running, physically intuitive model which is easy 

to expand to include features such as VARD tool, shuck sub and wellbore contact.  
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2. Literature review on drillstring vibrations 

2.1. Three main modes of vibration in the drillstring 

Drillstring vibration has been a big issue for drillers in oil fields for a long time. 

Drillstring undergoes major damage, such as, fatigue, joint failure, and instability due to 

the unwanted vibration and these drawbacks have made drilling companies look for ways  

to control the drillstring vibration and mitigate these effects to obtain higher performance 

with less cost (Wiercigroch et al., 2008; Han et al., 2006). To do this, the behavior of the 

drillstring vibration should be studied and modeled analytically (Bailey et al., 2008; 

Spanos et al., 1992; Ghasemloonia et al., 2012), experimentally (Khulief et al., 2009) and 

through field verification (Jogi et al., 2002).  

          The drillstring undergoes different kinds of vibration during the drilling operation. 

Axial, torsional and lateral vibrations are the main modes which occur in drillstring 

(Zifeng et al., 2007). These three modes are shown in Figure 2-1.   
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Figure 2-1   Three different modes of vibration in drillstring (Jardine et al., 1994) 

 

          These modes are coupled together. The combination of vibration modes causes 

complicated shape modes. 

 

2.2. Axial vibration of the drillstring 

Axial or longitudinal vibrations are mostly due to the interaction between the drill bit and 

the rocks. Bit bouncing is a common outcome of axial vibration, as shown in Figure 2-2. 

It mostly happens in hard formation in vertical wells. Moreover, axial vibration is 

responsible for failure in measurement while drilling (MWD) tools, reduction in 

penetration rate (ROP), seal failure and broken tooth cutters (Ashley et al., 2001).  

          It has been realized that axial vibration and bit bounce can be reduced by changing 

rotational speed or weight on bit, in some cases (Shuttleworth et al., 1998). Because of 

the crucial role of axial vibration in well trajectory and ROP, researchers have been 

involved to mitigate the axial vibration as much as possible. Another suggested way is to 
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install a shock sub above the drill bit which changes the resonance frequency of the 

drillstring. The importance of shock sub to reduce the axial vibration of the drillstring was 

revealed by Kreisle et al. (1970). 

 

Figure 2-2   Axial vibration of the drillstring and bit bounce (Ashley et al., 2001) 

 

          Researchers have used different models to study the axial vibration of the 

drillstring. Continuous modeling was the first approach to study the axial vibration 

(Dareing 1968). Recently, finite element modeling has been used to investigate axial 

vibration of the drillstring (Spanos et al., 1995). The axial vibration investigation has 

been completed over the years and recent studies consider the most realistic case which 

includes most parts of the drillstring.  

 

2.3. Torsional vibration of the drillstring 

Torsional vibration occurs due to nonlinear interaction between the rock and the bit or 

drillstring with the borehole (Sananlkone et al., 1992). It causes serious failure in 

drillstring connections, and bit, and slows down the drilling process (Elsayed et al., 
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1997). Stick-slip interactions are the main cause of torsional vibration. Stick-slip is a 

severe form of torsional vibration of the drillstring. It is the result of torsional and 

whirling mode of the drillstring (Challamel et al., 2000; Leine et al., 2002). During the 

stick-slip oscillation, the rotational speed of the bit is varied in a wide range, from zero to 

twice as high as surface speed (Chen et al., 1999). Figure 2-3 shows the stick-slip 

phenomenon of the drillstring.  

 

 

Figure 2-3   Torsional vibration of the drillstring (Ashley et al., 2001) 

 

 

          Torsional vibration can be detected using MWD or at the surface. When the needed 

power to maintain the constant speed is changed, torsional vibration is happening. The 

most common model to study the torsional vibration is a torsional pendulum. In this 

model, the drill pipe is considered as a spring and bottom hole assembly (BHA) is 

modeled as a mass. This model has been modified over the years and more realistic cases 

have been considered. For example, the rotary table has been implemented to the model 

as another lumped mass (Lin et al., 1991; Zamanian et al., 2007; Abbasian et al., 1998). 
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2.4. Transverse vibration of the drillstring 

The most destructive type of drillstring vibration is lateral or transverse (Kriesels et al., 

1999). Bending or lateral vibrations are often caused by drill pipe eccentricity, leading to 

rotational motion named as drillstring whirl. Bending waves are not propagated in a 

drillstring as axial and torsional waves move up to the surface. This is due to high 

damping value of transverse mode because of mud damping effect and wellbore contact 

(Chin, 1994). As a result, transverse modes of the drillstring may not be detected at the 

surface. Figure 2-4 shows the lateral mode of the drillstring vibration.  

 

Figure 2-4   Transverse vibration of the drillstring (Khulief et al., 2008) 

 

 

          Due to the axial load distribution, the collar section should be in compression and 

pipe section remains in tension. Therefore, the collar section can be excited in lower 

modes and natural frequency of the collar section is reduced while the natural frequency 
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of pipe section is increased and it does not vibrate in lower modes (Thomsen, 2003). Bit 

failure, borehole washout and BHA failure are the possible effects of transverse vibration 

(Leine et al., 2002).  

          To study the severity of lateral vibration of the drillstring, many studies have been 

done. Lumped segment method, Lagrangian method, transfer matrix technique and 

laboratory tests are examples of the previous studies (Jansen, 1991; Christoforou et al., 

1997; Chen et al., 1995; Berlioz et al., 1996). 

 

2.5. Coupled modes vibration of the drillstring 

The primary modes of vibration in the drillstring are axial, torsional and lateral. These 

modes can be coupled by quantities, such as WOB or TOB (Christoforou et al., 2001). 

The three common coupled modes are coupled axial-bending; coupled torsional-bending 

and coupled axial-torsional (Yigit et al., 1996; Yigit et al., 1998; Elsayed et al., 2002). 

Drillstring vibrations are complicated and coupled. Over the last two decades, an 

extensive number of modeling, simulation, and experimental studies have been conducted 

to understand these vibrations (Cook, Nicholson, and Westlake, 1986; Dufour, and 

Draoui, 1996; Yigit and Christoforou, 1998; Melakhessou, Berlioz, and Ferraris, 2003; 

Spanos et al., 2003; van de Wouw, Rosielle, and Nijmeijer, 2007; Ritto, Soize, and 

Sampaio, 2009). 

          Kyllingstad and Halsey (1988) studied the stick-slip phenomenon associated with 

torsion vibration, using single degree-of-freedom (DOF) system. Berlioz et al. (1996) 
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conducted experiments to examine the coupling between bending and axial vibrations. 

Yigit and Christoforou (1997) focused on the coupling between lateral and axial 

vibrations. Using the kinetic and strain energy of the beam and Lagrange equation, the 

equations of motion of a non rotating drillstring were generated.  

          The bottom hole assembly (BHA) has been modeled as an unbalanced rotor 

supported by two bearings (Jansen, 1991). A four degree-of-freedom model was 

presented by Berlioz and Ferraris (2003) in which the bending and torsion motions of the 

drillstring were studied.  

Complexities of torsion drillstring dynamics is presented by Leine et al., (2002) when 

stick-slip and whirl motions are considered. Moreover, finite element analyses have been 

carried using linear models (Khulief, 2005; Spanos et al., 2003). They did not include 

rotation of the drillstring in their models.  

          Navarro-Lopez and Cortes (2007) focused on failure in the drillstring due to axial 

vibrations. The effect of changing weight on bit (WOB) and rotary speed on the 

drillstring vibration have been studied by Richards et al. (2004). They concluded that 

undesirable oscillatory phenomena can be avoided by changing WOB and rotary speed. 

          Although several studies have been developed to understand axial vibrations, stick-

slip phenomenon, and lateral vibrations, a comprehensive model which can treat this 

problem remains to be conducted. In addition, there are many nonlinear phenomena that 

have not been fully modeled or examined, given the complexity of the dynamics. In this 

study, the coupled axial-lateral-torsional vibration of a rotating drillstring will be 

examined. 
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2.6. Modeling methods 

Newtonian approach 

There is a relationship between the equation of motion of any mechanical dynamic 

system and expression of Newton’s second law of motion. It can be expressed as the 

differential equation (Meirovitch, 1967): 

 
)()(

dt

tdr
m

dt

d
tf    

where )(tf  is the applied force vector and )(tr  is the position vector of the mass m. If the 

mass does not vary with time (which is true in most structural dynamics), then: 

0)(
2

2


dt

rd
mtf    

The term 
2

2

dt

rd
m  is called inertia force that resists the acceleration of the mass.  

This approach is a vectorial approach and uses physical coordinates to describe the 

motion. In Newtonian mechanics, motions are usually measured relative to an inertia 

reference frame. In this research, the equation of motion will be derived for translational 

and torsional motions.   

 

Energy method 

For analyzing the complicated systems, energy methods are preferred to the Newtonian 

approach because of the scalar measuring of energy variables. For the rotary coordinate 

system or for nonlinear systems the energy methods are preferred (Thomsen, 2003). The 
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energy method is not a fast running method and a small change in the system will result 

in changing the governing equations of the whole system. As a result, it is not an ideal 

method for this research which will examine many case scenarios. 

 

Finite Element Method (FEM)  

Due to the nonlinearity of a model such as coupled vibration modes, solving the model 

requires an approximate or numerical solution because analytical methods result in a set 

of coupled algebraic equations. 

          The first application of the FEM to the problem of drillstring vibration was by 

Millheim et al. (1978). Flexural and torsional modes were studied as two uncoupled 

modes without considering and gravitational effect (Axisa and Antunes, 1990). 

Melakhessou et al. (2003) used the FEM to study the contact behavior of the drillstring 

and the wellbore at a single contact point. Khulief et al. (2005) studied the rotating 

drillstring using the FEM. They considered both drill collars and drill pipes sections in the 

torsional-transverse mode. Ghasemloonia et al. (2012) used the FEM to study the coupled 

axial-transverse vibration behavior of the entire drillstring under the effect of vibration 

assisted rotary drilling (VARD) tool.  

The objective of this study is to achieve an accurate model of the drillstring to investigate 

the vibration behavior of the drillstring under different conditions. The model should 

include mud buoyancy and damping, rotation, gravitational forces, torque, axial forces, 

etc. The focus will be on the collars and stabilizers section. As aforementioned in the 

literature review, due to the complexity of the coupled modes, currently there is no study 
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that investigates all three vibration modes of the drillstring simultaneously. Several 

modeling methods have been used, such as, FEM, energy method and Newtonian 

approach. To study the vibration behavior of the drillstring in coupled axial-lateral-

torsional, the governing equations should be generated and solved in three dimensions. A 

small change in the boundary conditions or initial conditions will result in change of the 

governing equation of the whole model. Moreover, FEM and energy methods are not fast-

running methods. Lumped method is a fast-running method and very easily expandable. 

First of all, a mathematical model is needed. For the governing equations, the beam 

element under all prescribed load can be assumed. The method of direct Newtonian 

approach for lumped mass are used to generate the equations of a single element. The 

governing equations will then be casted into commercial simulation software which 

makes the model easily expandable. In chapter 4, an analysis of vibration behavior is 

presented and the effect of VARD tool and bit-rock interaction is investigated.  

 

 

 

 

3. Multi-body Dynamics 

Multi-body dynamics is used to describe a rigid body in 3-D space. The governing 

equations will be derived using the basic Newton’s law. Translational motions and 

angular motions will be defined separately and will be merged at the end. The resultant 
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equations are called Euler’s equations. At the end of the day, a rigid body which has 6 

degrees of freedom (DOF) is reached.  

            The rigid body will be casted into bond graph modeling. In the bond graph each 

motion can be interpreted separately and it is a fast-running model compared to the 

energy method and FEM. It is also easy to expand for including desired boundary 

condition or modeling more realistic situations.  

          After modeling a single 3-D body, one needs to add those bodies to build the 

drillstring. The whole model is made of as many single segments as desired. This method 

is called lumped segment method. These segments are aligned and connected via various 

stiffness components and dampers. The stiffness components are 3×3 matrices that 

depend on the size, the shape and the material type. The damping factors are 3×3 matrices 

that are adjusted using a Finite Element Method (FEM). Damping factors remain the 

same for the whole drillstring. 

           Finally, the desired drillstring is simulated in the bond graph. Because each motion 

is separated by others, boundary conditions can be implemented in any direction. For 

instance, the rotary table is modeled as a constant torque at the top segment and the 

translational motion of that point is blocked which simulates the cable and the derrick. 

The scope of this project is to simulate the 3-D drillstring in the bond graph which is 

expandable. Moreover, it will be able to catch all three vibration modes, simultaneously. 

The model includes self weight of the drill pipe and the drill collar, VARD tool, and bit-

rock interaction. Unbalanced rotation is obtained by moving the center of gravity (COG). 
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Wellbore contact, mud circulation, and axial rock-bit interaction are outside the scope of 

this work and will be left as future work. 

 

 

 

3.1. Euler’s Equations 

This chapter deals with multi-body dynamics modeling. After introducing general 

governing equations, we will be able to construct a system model which includes three-

dimensional (3-D) rigid-body motion.  

          Figure 3-1 shows a general rigid body which can move either in translational or 

rotational directions. Axes x, y, z are attached to the center mass of the body (local 

coordinate) and axes X, Y, Z are inertial (global coordinate). The local frame usually is 

not a proper coordinate to view the body motion and it must be transformed to the inertial 

frame.  
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Figure 3-1   Body in general 3-D motion (Karnopp et al., 2006) 

          The absolute velocity (v) and absolute angular velocity (ω) have been cast into 

three perpendicular components: zyx vvv ,,   and zyx  ,, . These are velocities and 

angular velocities with respect to the rotating frame. According to Newton’s law, the net 

force acting on the body is obtained as:  

P
dt

d
F


  (1) 

Where 

mvP   (2) 

In other words,  
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p
t

p
F rel 




   (3) 

 

rel
t

p




 indicates the rate of change of momentum relative to an observer moving with the  

body-fixed frame.  

An angular momentum law is analogous to equation (1). Equation (4) relates the net 

torque on the body to the angular momentum (h). 

h
dt

d
  (4) 

If the x-y-z frame is aligned with the principal axes of the body, J relates the angular 

momentum to the angular velocity:  

Jh   (5) 

J is a diagonal matrix of the principal moments of inertia. h is defined with respect to the 

rotating frame, so: 

h
t

h
rel 




   (6) 

Using the right hand rule, the components of forces and torques acting on the body can be 

extracted: 

yzzyxx vmvmvmF     (7) 

 

zxxzyy vmvmvmF     (8) 
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xyyxzz vmvmvmF     (9) 

 

and 

yyzzzyxxx JJJ     (10) 

 

zzxxxzyyy JJJ     (11) 

 

xxyyyxzzz JJJ     (12) 

 

Equations (7) - (12) are called Euler’s equations. They are nonlinear differential equations 

and have no general analytical solution. If they were solved numerically or analytically 

for a special case, zyxzyx vvv  ,,,,,  would be known with respect to the local frame. 

Therefore, these components should be aligned with the inertial frame for better 

interpreting of body motion. 

          If the external forces and torques are considered to be inputs to the body and 

velocities and angular velocities are considered as outputs, the state equations can be 

written and the submodel is ready to be connected to any external system. Then, the 

overall system is modeled. With this assumption, the state equations are: 
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m

p
m

m

p
mFp z

y

y

zxx    (13) 

 

m

p
m

m

p
mFp x

z
z

xyy    (14) 

 

m

p
m

m

p
mFp

y

x
x

yzz    (15) 

 

y

j

zz

z

j

yyxj
J

p
J

J

p
Jp

yz

x
   (16) 

 

z

j

xx

x

j

zzyj
J

p
J

J

p
Jp zx

y
   (17) 

 

x

j

yy

y

j

xxzj
J

p
J

J

p
Jp xy

z
   (18) 

where 

x

j

x
J

p
x  (19) 

 

y

j

y
J

p
y

  (20) 
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z

j

z
J

p
z  (21) 
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3.2. Bond Graph Method 

To simulate the drillstring, bond graphs have been employed. A brief overview of bond 

graph modeling is presented in this section: 

 

          Bond graphs are used to describe different kinds of dynamic systems in different 

types of energy domains. Basically, bond graphs can model and connect different 

dynamic models using a single, small set of graphical elements. Elements are connected 

with power bonds which contain a pair of signals known as “effort” and “flow” whose 

product gives instantaneous power of the bond. For a mechanical system, effort and flow 

are force and velocity respectively, and for an electrical system they are voltage and 

current. Half arrows on the bonds define the direction of positive power flow. Casual 

strokes, placed to one end of each bond, define whether or not an element has a causal 

flow or effort output. Elements bounded to a 0-junction have common effort, and the 

algebraic sum of their flows is zero. Elements bonded to a 1-junction have common flow 

but their efforts algebraically sum to zero. The generation of governing equations is 

facilitated using bond graphs which allow prediction of numerical issues such as 

differential-algebraic equations and implicit.  

          Table 1 shows the analogies between mechanical and electrical systems in terms of 

effort and flow.  
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Table 1  Energy domains in bond graph 

 

Variables General Mechanical Electrical 

Effort )(te  Force (Torque) Voltage 

Flow )(tf  Velocity (Angular Velocity) Current 

Momentum  edtp  Momentum (Angular Momentum) Flux linkage 

displacement fdtq   Distance (Angle) Charge 

power )()()( tftetP   F(t)V(t)     (τ(t)ω(t)) )()( tite  

Energy (kinetic)  fdppE )(  Vdp          dH   id ; Magnetic 

Energy(potential)  edqqE )(  FdX        d   edq ; Electric 

 

 

          Mechanical, electrical and thermo-fluid systems can be modeled in bond graphs 

using a series of generalized energy storage, dissipation and transfer elements. Bond 

graph standard elements will be now explained.  

 

R-Element: 

R-element is a 1-port element in which the effort and flow variables are related by a static 

function. It is usually used to show energy dissipation in any kinds of system. Mechanical 



 

25 

 

dashpots or dampers, electrical resistors and orifices in fluid systems are examples of the 

R-Element. The bond graph symbol for the R-element is shown below. 

 

Figure 3-2   Bond graph R-element (Karnopp et al., 2006) 

The half arrow is always pointing towards R and it means that positive power flows into 

the R element. The constitutive relationship between e, f and R is given by: 

 

 

C-Element: 

C-element is a 1-port element in which the effort and displacement (time integral of flow) 

are related by a static constitutive relation. It stores and gives up energy without loss. For 

instance, springs, electrical capacitors, and accumulators are examples of C-elements in 

different systems. The bond graph symbol for the C-element is shown below. 

 

Figure 3-3   Bond graph C-element (Karnopp et al., 2006) 

In a spring, the deformation (x) and the effort (e) are given by: 

x =  fdt  ,              e = K  fdt  

In the second case, flow is the causal input and effort is the causal output.  

 fe R
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I-Element 

I-element is also a 1-port energy storing element which is also called an inertial element. 

It is used to simulate mass or inertia effects in mechanical systems and inductance in 

electrical systems. The bond graph symbol for the I-element is shown below. 

 

Figure 3-4   Bond graph I-element (Karnopp et al., 2006) 

Constitutive relationship between e, f and R is given by: 

 pf

ep

I

1







 

 

Effort and Flow Sources: 

Sources prescribe effort and flow from the environment, and thus enforce boundary 

conditions. Force is considered as effort source and velocity source gives flow source, 

such as, moving the surface of a rigid body. Figure 3-5 shows the effort and flow sources 

in bond graph. 

   

Figure 3-5   Bond graph sources 
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The Transformer: 

The transformer does not create, store or dissipate energy. It conserves power and 

transmits the factor of power with proper scaling which is defined by the transformer 

modulus (r). A massless lever in mechanical domain and an electrical transformer are 

ideal examples of transformers. The bond graph symbol of the transformer is shown 

below. 

 

Figure 3-6   Bond graph transformer (Karnopp et al., 2006) 

The constitutive relationship between efforts, flows, and transformer modulus (r) is given 

by: 

12 . frf            ,               12

1
e

r
e   

So, the conservation of power is obtained: 

2211 fefe   
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The Gyrator 

The Gyrator is also power conserving element which relates flow to efforts and effort to 

flow. The gyrator symbol in bond graph is shown in figure 3-7. 

 

Figure 3-7   Bond graph gyrator (Karnopp et al., 2006) 

The constitutive relationship between efforts, flows, and gyrator modulus (m) is given by: 

12 . fme            ,             21 . fme   

Similar to the transformer, the power conservation is reached: 

2211 fefe   

 

The 0- and 1-junction 

There are two types of junctions which connect elements in bond graphs. They conserve 

power and are reversible.  

 

 Zero junction (0): elements with equal efforts (e) connect to this junction and the 

algebraic summation of flows (f) is zero. This junction represents a mechanical 

series and electrical node point. 

 



 

29 

 

 

Figure 3-8   Bond graph 0-junction (Karnopp et al., 2006) 

 

The constitutive relation for Figure 3-8 can be written as follows: 

0332211  fefefe
 

As 0-junction is an effort equalizing junction, 

321 eee   

This leads to: 

0321  fff  

The signs in the algebraic sum are determined by half-arrow directions in a bond 

graph. 

                         

                          

 One junction (1): elements with equal flows (f) connect to this junction and the 

algebraic summation of efforts is zero. Such a junction represents a common mass 

point in a mechanical system and a series connection (same current flowing) in an 

electrical system. 

 



 

30 

 

 

Figure 3-9   Bond graph 1-junction (Karnopp et al., 2006) 

In this case, the constitutive relation becomes, 

0332211  fefefe  

As 1-junction is a flow equalizing junction,  

321 fff   

Therefore,  

0321  eee  

The signs in the algebraic sum are determined by half-arrow directions in a bond 

graph. 

 

Causality  

A bond links two elements, one of which sets the effort and the other one the flow. The 

causality assignment procedure chooses who sets what for each bond. It is necessary to 

transform the bond graph into state space equations which is a computable code. In bond 

graphs, the inputs and the outputs are characterized by the causal stroke. It establishes the 
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cause and effect relationship between the factors of power. Figures 3-10 and 3-11 show 

two causal strokes in bond graphs: 

 

Figure 3-10   Causal stroke: A sets e and B sets f 

 

 

Figure 3-11   Causal stroke: B sets e and A sets f 

 

For 0-junction, one of the bonds sets the effort for the rest, so only one causal stroke is on 

the junction, while the others are away from it. For 1-junction, one of the bonds sets the 

flow for rest and its effort is computed from them, so all but one of the causal strokes are 

on the junction, while the remaining one is away from it. Sources set either the flow or 

the effort, so only one causality is possible. Energy storage elements, I or C, have a 

preferred causality in which the computation involving integrals instead of derivatives. 

This is called integral causality. C-elements are given the flow and return the effort, while 

I-elements are given the effort and return the flow. For these elements, differential 

causality is possible but not desirable because the response to a step input will be 

unbounded. However, it is sometimes unavoidable. For R-elements, causality can be set 
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by the rest of the system, so it is an element with indifferent causality. In Figure 3-12, the 

causality of bond graph elements are depicted.  

  

   

                                     

         

     

 

3-12   Causality of the bond graph elements 
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The following is an example of analogies between two basic mechanical and electrical 

systems: 

 

 

Figure 3-13   Two analogous systems (mass-spring-damper and resistance-inductance-capacitor) 

 

 

 

Figure 3-14   Word bond graph and full bond graph of two analogous systems 
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Multi and vector bond graphs 

In the case of similarities in sub-system components in a model, they can be represented 

in a concise form called vector or multi bond graphs. They are drawn as two parallel lines 

with power directions. In another word, they are compact form of huge systems with 

identical sub-systems. All the sub-systems must have same power and causal stroke 

structure.  

  

 

 

 

 

3.3. Bond graph modeling of the Euler’s equations 

A series of nonlinear dynamic equations in 3-D were developed for translational and 

angular motion. In this section, we construct the bond graph model for these two sets of 

equations. Equations (13)-(15), the translational motion of a rigid body in bond graph is 

represented by the following: 
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Figure 3-15   Bond graph model for a rigid body in 3-D (translational) 

 

Similar to the translational motion, Figure 3-16 is illustrating the angular motion in 3-D 

for a rigid body. 
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Figure 3-16   Bond graph for a rigid body in 3-D (angular motion) 

 

3.4. Coordinate Transformation 

Since it is difficult to interpret body motion in body-fixed frame as continuous change of 

principal directions, it is necessary to transfer from local coordinate to the global 

coordinate through a series of coordinate transformations. Coordinate transformation is 

needed to apply vectors like gravity which have inertial directions. Also, defining a joint 

constraint between two elements is facilitated by coordinate transformation. To plot 

positioning, we need to integrate velocity components in an inertial frame. Cardan angles 

will be used to make this transformation. Figure 3-17 shows the yaw, pitch and roll 
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angles. The inertial frame (X, Y, Z) rotates about Z through angle   (yaw). The 

developed orientation is named ( zyx  ,, ) axes. This coordinates then is rotated about y -

axis through the angle   (pitch), yielding the ( zyx  ,, ) axes. Finally, ( zyx  ,, ) frame 

is rotated about x  -axis through the angle   (roll). The achieved coordinate is the 

instantaneous body-fixed frame (x, y, z).  

 

Figure 3-17   Cardan angle coordinate transformation (Karnopp et al., 2006) 

          To clearly show how to transform from the local frame to the inertial frame, here is 

an example for the angular velocity. 
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xx    (22) 

 

 sincos zyy   (23) 

 

 cossin zyz   (24) 

 

 sincos zxx    (25) 

 

 sincos zxx    (25) 

 

yy    (26) 

 

 cossin zxz    (27) 

 

 sincos yxX    (28) 

 

 cossin yxY    (29) 
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zZ   (30) 

In matrix form: 

























































z

y

x

z

y

x

















cossin0

sincos0

001

 (31) 

 

































































z

y

x

z

y

x

















cos0sin

010

sin0cos

 (32) 

 































 

























z

y

x

Z

Y

X

















100

0cossin

0sincos

 (33) 

 

As a result, if the angular velocities are known in the body-fixed frame, then the angular 

velocity component can be derived in inertial frame as well as intermediate frames.  

          Let us introduce the transformation matrices as: 

























cossin0

sincos0

001

 (34) 
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

















 



cos0sin

010

sin0cos

 (35) 

 

















 

100

0cossin

0sincos





 (36) 

Then we can easily write: 



































z

y

x

Z

Y

X













 (37) 

 

Translational velocities have the same relationship as angular velocities. Therefore, we 

have the same matrix form for translational velocities: 



































z

y

x

Z

Y

X

v

v

v

v

v

v

 (38) 

 

          Moreover, the transformation is power-conserving, since no energy is stored or 

dissipated by the transformation components. Therefore, one can use the same 

transformation matrices to convert forces and torques, as well. 
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
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






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)(  (40) 

 

          The advantage of this model is to take forces and torques in inertial coordinate and 

align these efforts to instantaneous principal directions. Then, by integrating the first 

order equations, it can give the velocities and angular velocities in the local frame or 

instantaneous principal directions. The last step is transforming these local velocities 

through Cardan angles to the velocities in inertial directions. 

          To do these, we have to derive the Cardan angles by relating  ,  and   to angular 

velocities in body-fixed coordinate ( zyx  ,, ). 

We have 

 sinx  (41) 

 

 sincoscos  y  (42) 

 

 coscossin  z  (43) 
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If equations (41)-(43) are solved for   and , then: 

zyx 










cos

sin
cos

cos

sin
sin   (44) 

    zy 










cos

cos

cos

sin
  

    zy  .sin.cos   
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3.5. Submodel of one element in bond graph  

The governing equations for one body, which are known as Euler’s equations, were 

derived and the coordinates and corresponding transformation were introduced. The goal 

is to put these equations together and construct the corresponding bond graph which can 

predict the motion in 3-D directions. It should be mentioned that the total degrees of 

freedom of such a model is 6: 

 Axial motion along the Z axis  

 Lateral motion in X and Y directions 

 Angular motion about the Z axis 

 Angular motion about X and Y axes  

 



 

44 

 

                                                   

Figure 3-18   Degrees of freedom of the submodel (Hakimi, H. et al., 2010) 

 

    

          We are now ready to build a single 3-D body in bond graph. Each body has two 

hinges at the top and bottom. The bottom hinge of one body will be connected to the top 

hinge of the next body.  

          The two bond graph models for translational and angular motions were already 

shown. Now, this model includes all motions in a single bond graph. Equations (10) - (12) 

can be rewritten in the following matrix form: 
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 (45) 

The second term is simplified as: 
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          Next, the rotational motion will be related to the translational motion using relative 

motion principle. A beam with two hinges at the top and the bottom (A, B) and center of 

gravity (G) is shown in Figure 3-19.  

 

Figure 3-19   Front view of a beam with two hinges 

 

Regarding the relative motion principle, 

GAGA vvv /


  (47) 

 




GAGAGA rrvv //
~  (48) 

Where  



 

46 

 



















z

y

x

r GA /


 (49) 
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Now, according to the mentioned theories, we can build the two hinges body submodel in 

20-Sim (v.4.1, (2010) Controllab Products B.V., Enschede, Netherlands) as shown in 

Figure 3-20. 
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Figure 3-20   Bond graph model for a single body with two hinges 

‘1’ indicates inertial coordinate and ‘0’ indicates body-fixed frame 

 

 

 

          As can be seen in the Figure 3-20, the axial, lateral and torsional motion are 

coupled together in the single body. The 1-junction ( 
1 ) is responsible for the angular 

motion and the 1-junction ( v
1 ) is responsible for the axial and lateral motion in the body-
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fixed frame. In the meanwhile, the 1-junction ( v
0 ) gives the axial and lateral velocities in 

the inertial coordinate. An integrator has been used to attain the displacement of the 

center of gravity (CG) in three directions (one axial and two lateral) from corresponding 

velocities.  

          The I-element which is connected to the velocity of the CG ( v
0 ) is the mass of the 

element. This is one of the advantages of the transformation from local coordinate to the 

global frame. If the mass was connected to the 1-junction of the body-fixed frame ( v
1 ), 

we would need to transform the gravity direction of the element, but in the inertial 

coordinate the gravity is always in the Z direction. The effort source (Se) which is 

connected to the 1-junction of the CG ( v
0 ) defines the gravity force.  

          Velocity of each hinge is obtained using relative motion principle, as mentioned 

before. Algebraic summation of the flows which are connected to the 0-junction should 

be zero, so GAGA vvv /


 . Finally the Cardan angles are calculated in Cardan01 block 

using equations (41)-(43). The equations of each block are shown in the appendix.  
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3.6. Continuous rod 

Next, the single bodies should be connected together to make a rod with desired 

properties. To do so, we will use proper springs and dampers in the connection points of 

the bodies. In Figure 3-21, when the bottom hinge A of the body 1 is connected to the top 

hinge B of the body 2, the velocity of these two hinges should be equal, in presence of no 

axial deflection. We will use this assumption to have a continuous rod. 

 

Figure 3-21   Connecting two bodies using BA vv 21   
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          In the bond graph model, those two hinges should be connected via parasitic 

elements that will be described afterward. Otherwise, we encounter derivative causality 

which is not desired. The parasitic element is a spring and a damper. As shown in Figure 

3-22, first, the velocity of hinge (A) in the above figure is transformed to inertial 

coordinate. Then, this velocity is aligned to the velocity of the hinge (B). Finally, these 

two velocities is connected together using a parasitic element (R, C). This process will be 

repeated to add as many as elements we want. 

 

Figure 3-22   Connecting two elements in the translational motion (one axial and two laterals) 

The equations of each block are shown in the appendix. 

 

          For the rotational motion, the same mentioned procedure for translational motion is 

repeated.  
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Figure 3-23   Connecting two elements in the angular motion (torsional) 

 

          Now, we are able to connect two elements in both translational and angular 

motions.  
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Figure 3-24   Two connected elements using parasitic elements 
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3.7. Parasitic Elements 

As can be seen in Figure 3-25, there is a parasitic element in each motion direction 

between each two elements. The left hand side spring acts as a torsional spring and resists 

against torsional motion (ω). The middle spring is a linear spring and acts in axial modes 

(Z). The right hand side joint acts as a spherical joint and resists against lateral motions 

(X, Y). 

To determine the stiffness of each spring we need 3×3 matrices for either translational or 

torsional motions. According to Ibrahim’s (Ibrahim et al., 1987) work on dynamics of a 

continuous beam, we can define the compliances in each direction: 

 

 

Figure 3-25   Parasitic elements between two bodies 
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These are the compliances of the system. Compliance is the inverse of the stiffness in an 

elastic system, as stated below. 

xAG
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 (53) 
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 (54) 
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1

 (55) 

 

GJ

l

K
C

torsional

torsional 
1

 (56) 

(Ibrahim et al., 1987) 

where l  is the length of the element, A is the cross section area of the element, E is the 

modulus of elasticity, G is the shear modulus, I is the moment of inertia, J is the polar 
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moment of inertia, and x is the shear coefficient which for a cylindrical tube cross section 

is obtained from equation (57): 

)4164()124812(7347

)1()(6
4224242244224

2222

bbaabbaabbaa

ba
x









 (57) 

(Hutchinson, J. R., 2000) 

where   is the Poisson’s ratio, a is outer radius and b is inner radius.   

 

Along with the compliances between each two elements, there is a damper in each 

direction motion. Damping factors are defined using 3×3 matrices, similar to the 

compliances. For damping factors, there is no formula or equation, so they should be 

determined by experimental methods or adjusted by other numerical methods. In this 

research finite element method (FEM) is used to adjust the damping factors. Two exact 

same models are developed in 20-Sim and Abaqus (FEM software package) and several 

inputs are applied to the models. The inputs are in all three direction motions, separately, 

and they are modeled as impulses. Abaqus does not give the damping factors in matrix 

form, therefore the damping matrices in 20-Sim should be tweaked to reach the same 

response as Abaqus. At the end of the day, the constant damping matrices are obtained in 

such a way that the responses to the impulse inputs in both models are similar. The results 

are available in the next chapter. 
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In this project, only the collar section has been modeled because of the emphasis on the 

lateral vibration which mostly occurs in the drill collar because of its low natural 

frequency. As mentioned before, the lumped segment method has been used to simulate 

the drill collar. A 60 meters collar is modeled in 30 segments. Boundary conditions can 

be applied to any segment in any motion direction.  

          This model is easily expandable to more segments. One can add the other 

properties of the drillstring and real drilling conditions such as wellbore contact. In the 

next chapter, some case scenarios are considered and the results are interpreted.  

          The numerical values for one segment are shown in Table 2.  

Table 2   Numerical values of the model 

Length 60m Density  7860kg/ 3m  

Number of segments 30 Mass 414.84kg 

Outer diameter 0.2m Axial compliance 2770891200m/N 

Inner diameter 0.08m Transverse compliance 758925743.5m/N 

Modulus of elasticity 910210 Pa Torsional compliance 6198879.5m/N 

Poisson’s ratio 0.3 Bending compliance 8035584.3m/N 
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4. Simulation Results 

4.1. Validating results using Finite Element Method 

The compliances between each two elements are defined and we need to adjust the 

damping factors, as well. For the damping factors there is no particular formula or 

relation. The only way to define the damping factors is adjusting with other methods, 

such as experimental or finite element method (FEM). Abaqus has been used to adjust the 

damping factors by comparing the results in FEM and 20-Sim. A model has been 

constructed in 20-Sim and the same model has been produced in Abaqus with the same 

properties and boundary conditions. The 60 meters fixed-free vertical collar section is 

constructed and impulse force is applied in all three dimensions, separately. In Abaqus we 

can apply damping ratio to the model. An arbitrary damping ratio of 10% has been 

applied to the beam in all directions because the drillstring structure should be under-

damped. The same outcomes are reached after varying the damping matrices in 20-Sim.  

          For the axial motion, a fixed-free beam is considered. An impulse axial force at the 

free end (bottom) has been conducted. Figures (4-1)-(4-5) show the input, Abaqus output 

and resultant 20-Sim output after trial and error procedure. 
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Figure 4-1   Axial Impulse force at the bottom of the collar section as an input 

 

 

Figure 4-2   Linear axial velocity of the bottom point of the collar (20-Sim output) 
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Figure 4-3   Linear axial velocity of the bottom point of the collar (Abaqus output) 
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Figure 4-4   Linear axial displacement of the bottom point of the collar (20-Sim output) 
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Figure 4-5   Linear axial displacement of the bottom point of the collar (Abaqus output) 

 

          For the torsional motion, the same fixed-free beam is used. Figures (4-6)-(4-10) 

show the input, Abaqus outputs and resultant 20-Sim outputs after trial and error 

procedure. 
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Figure 4-6   Torsional Impulse force at the bottom of the collar section as an input 
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Figure 4-7   Angular velocity of the bottom point of the collar (20-Sim output) 
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Figure 4-8   Angular velocity of the bottom point of the collar (Abaqus output) 
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Figure 4-9   Angular displacement of the bottom point of the collar (20-Sim output) 
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Figure 4-10   Angular velocity of the bottom point of the collar (Abaqus output) 

 

 

4.2. Results 

Up to now, we have focused on 60 meters collar section with adjusted damping factors, 

using FEM model. The 20-Sim model has 30 lumped elements and each element has two 

hinges. In the next step, we are trying to improve the model to include more realistic 

boundary conditions. To do so, 3-span collar will be constructed and hydraulic forces at 

the top and bottom of the collar due to mud effect will be added.  
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4.2.1. Angular velocity 

First of all, we should examine the angular velocity and acceleration in the presence of 

constant torque at the top of the collar section. With no damping effect at the bottom (no 

bit-rock interaction) and constant torque at the top, the angular velocity of any point along 

the collar should remain the same when the torsional springs between elements are stiff. 

So, the model will act like a rigid body. Using Newton’s law in the angular motion gives: 

 

T = .I  

Where, 

 

T = net external torque 

I = moment of inertia 

 = angular acceleration  

 

The moment of inertia for 60 meters collar with cylindrical cross section ( oD = 0.2m; 

iD = 0.08m) is 72.18 2.mkg . Applied constant torque at the top is 5000 N.m. So, the 

angular acceleration ( ) equals 69.27 rad/ 2s . Figures 4-11 and 4-12 show the resultant 

angular velocity at the top and the bottom of the collar. The slope of these two should 

remain the same as discussed.  

 

 



 

65 

 

 

Figure 4-11   Angular velocity of the top point of the collar under the constant torque 

 

 

 

Figure 4-12   Angular velocity of the bottom point of the collar under the constant torque 
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          As can be seen in above plots, the angular velocity along the collar remains the 

same. The slope of each figure shows the angular acceleration of the same point. The 

slope of these figures is exactly 69.27 rad/ 2s . As a result, the model is in complete 

agreement with the theory. 

4.2.2. Compression of the Collar Section 

As mentioned before in literature, the pipe section should be in tension while the collar 

section should remain in compression in the drillstring due to the hydraulic forces. In 

Figure 4-13, the axial compliances in the collar in four different spots are illustrated. 

Positive value means compression and negative refers to tension. The compression load is 

increased with depth. 
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Figure 4-13   Axial compliances in four different spots of the drill collar in the presence of hydraulic 

forces (Positive values imply compression state) 

 

4.2.3. Unbalanced Rotation  

The center of gravity (CG) of each element is in the middle of the element in x, y and z 

axes. So, when the collar is rotating about the longitudinal axis, lateral deflection is not 

created. Moving the CG of the bit creates some lateral movement in two perpendicular 

directions with no lateral force. The displacement and velocity of such a lateral movement 

depend on how far CG is moved from the center and the stiffness of the stabilizers. Figure 

4-14 shows the transverse displacement of the bottom of the collar, with no lateral force, 

by moving the CG of the bit from the center to 0.5cm far from the center.  
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Figure 4-14   Displacement of the bottom point of the collar in two perpendicular lateral directions in 

unbalanced situation 

 

          As illustrated in above figures, the displacement of the bottom point of the collar 

has same behavior in two perpendicular directions (X, Y), but with different signs which 

was anticipated. 

4.2.4. Vibration-Assisted Rotary Drilling (VARD) Tool 

Any kind of vibration in the drillstring can affect the penetration rate as well as bit wear. 

In new drilling technology such as vibration-assisted rotary drilling (VARD), it is 

essential to study the effects of vibration on the drillstring. VARD tool applies the axial 

vibration to the drillstring which results in better ROP.  Amplitude of the VARD tool can 
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reach as high as 20 percent of the applied WOB and frequency of 100 Hz is considered. 

The WOB is considered as 50kN, so the VARD force magnitude is 10kN. 
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Figure 4-15   Axial displacement of the bit in presence of VARD tool 

Figure 4-16   Zoomed in 
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          The frequency of the VARD tool appears in the axial vibration in any point of the 

collar, as illustrated in above figures. The amplitude of the VARD tool is varying along 

the collar due to axial spring and dampers between each two elements. The VARD tool 

increases the bit-rock force that improves the ROP, but it causes unwanted axial vibration 

along the drillstring.  
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Figure 4-17   Axial displacement of the midpoint of the collar in presence of VARD tool 

Figure 4-18   Zoomed in 
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4.2.5. Natural frequency  

If a system, after an initial disturbance, vibrates on its own, the frequency with which it 

oscillates without external forces is known as its natural frequency of vibration (Rao, J. 

S., 1992). Considering a spring, fixed at one end and having a mass attached to the other, 

the natural frequency of this single degree of freedom system depends on two system 

properties: mass and stiffness. The natural frequency (in radians per second) can be found 

from the following equation: 

m

k
n   

where 

k = stiffness of the spring 

m = mass  

n = natural frequency (rad/sec) 

Natural frequency of a beam is a function of the applied axial force. It has been shown 

that lateral natural frequency of a beam is higher when the beam is subjected to a tension 

force. Compression force reduces the natural frequency of the beam in lateral. In the 20-

Sim model the collar section has been subjected to a compression force and a tension 

force, separately. A lateral impulse force has been applied at the middle of the collar to 

examine the relationship between natural frequency and applied axial force. 
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Figure 4-19   Comparison between natural frequencies  

 

          In the above figure, T(c) stands for peak to peak interval for the collar under 

compression and T(t) is the peak to peak interval of the collar while it is under tension. It 

is clear that the time interval between two peaks is higher when the collar is under 

compression. Therefore, the natural frequency of the beam is higher when it is under 

tension. 

          The natural frequency of a uniform simply supported beam subjected to an axial 

force P is calculated from (Rao, J. S., 1992): 
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Where l  is the length of the element, A is the cross section area of the element, E is the 
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axial force is compressive, P<0). Table 3 compares the natural frequency of a simply 

supported beam from the theory and the 20-Sim simulation. 

Table 3   Natural frequency of a simply supported beam from theory and simulation  

 Theoretical result Simulation result 

compression tension compression tension 

n=0 0 0 0 0 

n=1 0.6710 0.8453 0.6911 0.8624 

n=2 2.9646 3.1379 2.9823 3.1544 

n=3 6.7809 6.9542 6.8019 6.9874 

n=4 12.1230 12.2963 12.1612 12.3419 

n=5 18.9913 19.1645 19.1325 19.2043 

n=6 27.3857 27.5589 27.4139 27.6026 

n=7 37.3063 37.4795 37.3581 37.5106 

      

As a result, the model is in agreement with theory in frequency domain point of view.           

 

4.2.6. Lateral vibration 

As previewed in the literature review, the most destructive vibration in the drillstring is 

lateral vibration. Moreover, lateral vibration mostly occurs in the BHA section of the 

drillstring due to the low natural frequency of the collar with respect to the drill pipe.  
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          Stabilizers are used in the BHA to prevent lateral vibrations. In the 20-Sim model, 

the 3-span collar has been simulated. To model the stabilizers, a stiff spring and damper 

has been considered which prevents any displacement in lateral directions, but has no 

effect on axial and torsional motions.  

          Lateral vibration can happen due to two main reasons. First, any lateral force will 

result in transverse displacement and resultant vibration. Secondly, as shown before, 

unbalanced rotation causes lateral motion. Figure 4-18 shows the 3-span BHA that has 

been simulated in 20-Sim. 

 

Figure 4-20   Multi span BHA 

 

For the first scenario, an impulse force with amplitude of 2000N at the middle of the 

collar has been applied. Lateral vibration of three points of the collar is shown in Figure 

4-19; at the middle of the collar, at the middle of the third span, and at the bit. 
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Figure 4-21   Lateral vibration due to the lateral force in three different locations 

           

          In the second simulation, COG is moved from the center to create lateral vibration. 

In this case there is no lateral force. 
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Figure 4-22   Lateral vibration due to unbalanced rotation in three different locations 

 

          In both cases, lateral vibration is relatively controlled at the bit and middle of the 

collar because of the presence of stabilizers, but above the bit more severe vibration 

occurs. 
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4.2.7. Coupled mode vibration 

As mentioned before, the great advantage of this work is to simulate three coupled 

vibration modes. In previous sections, each single vibration mode was simulated and 

interpreted. The scope of this section is to show all three modes simultaneously.  

          The same 3-span collar section has been considered. Also, hydraulic forces at the 

top and the bottom of the collar have been applied due to the mud circulation effect. 

Previously, the lateral vibration of the collar due to the unbalanced rotation was shown. 

Here, the displacement of the axial and torsional springs between two random elements 

(elements 20 and 21) is illustrated in presence of hydraulic forces. 

          The hydraulic forces are calculated from: 

 pipecollarpipemudtop AAglF    

  collarcollarpipemudbottom AllgF    

where mud =1500kg/ 3m , pipel =700m 

for aforementioned collar properties: 

topF = 223284N 

bottomF = 295224N 
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Figure 4-23   Coupled axial-torsional-lateral vibration due to unbalanced rotation 

 

 

Figure 4-21 shows the axial, torsional and lateral vibration at the middle of the third span, 

respectively. The collar is in compression and all three modes have been shown.  

          In addition, the lateral displacement at the bit has been plotted. Figure 4-22 clarifies 

the importance of the stabilizer which causes less lateral vibration at the bit. 
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Figure 4-24   Reduction in lateral vibration in presence of the stabilizer 
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4.2.8. Rock-bit interaction 

In the previous simulations, the bit was freely rotating without any resistance. 

Researchers have tried to simulate the rock-bit interaction in different ways. Applying 

sinusoidal force or displacement at the bit, considering a torsional damper at the bit, and 

implementing a reverse torque which resists the rotary table rotation are three examples 

of modeling the bit-rock interaction.  

          In this work, a resistant torque at the bit has been considered. Assuming a tri-cone 

bit, a torque with the frequency of three times of the rotation angle of the bit has been 

applied. In this case, self weight of the drillstring and hydraulic forces cause axial 

vibration and unbalances rotation results in lateral motion. Moreover, the resistant torque 

at the bit builds torsional vibration in the collar. Figure 4-23 illustrates the axial, lateral 

and torsional vibrations of the middle of the last span which is above the bit.  
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Figure 4-25   Coupled axial-torsional-lateral vibration due to the rock-bit interaction 
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          It was shown before that without any damping at the bit and a constant rotary speed 

at the bottom, angular velocity of each point along the collar remains nearly the same. 

Implementing rock-bit interaction causes difference between rotary speeds of any two 

points. Torsional vibration which is shown in Figure 4-23 is the main reason of rotary 

speed difference. Figure 4-24 shows the drag torque at the bit and in Figure 4-25 the 

angular velocity of three points in the collar is shown. 

 

Figure 4-26   drag toque at the bit due to bit-rock interaction 

 

This reaction torque is applied two seconds after rotating the drillstring. This is the reason 

that the angular velocity in the next figure is slowing down after two seconds. 
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          According to above figures, the angular velocity is increased at the beginning and 

when the rotary torque at the top senses the drag torque at the bottom, the angular 

velocity is decreased and becomes steady. Moreover, the difference between the angular 

velocities is illustrated which occurs because of the torsional vibration due to the drag 

torque.  
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Figure 4-27   Angular velocity in three different locations 

Figure 4-28   Zoomed in 
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5. Concluding remarks and future work 

This study presented an overview on vibration behavior of a drillstring with an emphasis 

on the coupled axial-lateral-torsional vibration and also including the effect of axial 

vibration on the drillstring. ADG has been seeking new technologies to improve the ROP 

and enhance drilling operation and also reduce drilling failure.  

          The main focus in this study is on the investigation of the coupled axial-lateral-

torsional vibration behavior of the drillstring. Several methods were detailed and lumped 

segment method was selected for further analysis. Euler’s equations were written in three 

dimensions which are derived from basic second Newton’s law. Bond graph modeling 

was used for the computer simulation analysis and the basic of bond graph was detailed in 

chapter 3. The generated equations were then used in a 20-Sim model to predict the 

vibration behavior of the drillstring in 3-D direction. 

          After constructing lumped segments, they need to be connected via parasitic 

elements. Parasitic elements are made of springs and dampers in all three directions. 

Spring stiffness is calculated from some given equations, but for the damping factors an 

FEM model is used, so the damping factors are adjusted in three directions. The model is 

easily expandable to more segments and different drillstring features. Fast running time is 

one of the advantages of the bond graph modeling. Despite the fact that lumped segment 

modeling is not accurate in comparison with FEM model, this research shows the strong 

potential of the bond graph model in 3-D. 
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          Results confirm that in the presence of the constant torque and without any 

resistant, the angular velocity of the whole beam remains the same. Moreover, moving the 

center of gravity of the bit with the constant rotary torque will result in transverse 

vibration along the beam. Resultant lateral vibration strongly depends on the distance of 

the COG from the center of the section. On the other hand, implementing bit-rock 

interaction will result in difference between the angular velocity along the collar. It occurs 

because of the torsional vibration which is the rock-bit interaction consequence.  

           VARD tool implementation on the collar causes the instantaneous frequency along 

the collar. Conducted simulation shows that amplitude of such a vibration depends on the 

damping ratio of the collar. The amplitude has the more value at the VARD tool and less 

value far from the VARD tool. 

          In addition it has been shown that stabilizers have great effect on reducing the 

lateral vibration. Lateral vibration which happens due to either the unbalanced rotation or 

the lateral force is reduced dramatically in the presence of the stabilizers. 

          Finally, the strength of the model has been showed in capturing all vibration 

modes, simultaneously.  

          In this research, only collar section was modeled because of the importance of the 

collar section in the frequency domain of the drillstring, so complete drillstring is one of 

the remaining tasks for the future work. However in the current model, the properties of 

the pipe section and corresponding equations have been generated and one needs to add 

additional elements in the model, simply. 
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          In the future work, wellbore contact can be added to the model. The wellbore can 

be modeled as a very stiff spring, so the lateral movements cannot exceed the wellbore 

radius, and if any point contacts the wellbore, the model can predict the contact point. Bit-

rock interaction in torsional was simulated, but the interaction in axial remains for further 

study. Friction is one of the important effects which has a great effect on frequency 

response and time response. Study of the friction effect on the response was beyond of the 

scope of this work, but resultant friction due to the mud circulation in axial, lateral and 

torsional directions can be extracted and implemented into the model. 

          Determining realistic parameters is needed for more accurate and realistic 

simulation. In this regard, collaboration with industry partners can be helpful. Validation 

with laboratory experiments is also a strong way to prove the simulation results. 

Moreover, it has been revealed that adding a shock sub can reduce the axial vibration of 

the drillstring. Basically, adding a damper and a spring to the one of the spans in the 

collar will simulate the shock sub. 
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Appendix A: Equations of each block in the bond graph modeling  

MGY Block: 

variables 

            real global I_Collar[3,3]; 

 real W[3, 3]; 

equations 

 W[1, 1] = 0; 

 W[1, 2] = -P.f[3]; 

 W[1, 3] = P.f[2]; 

 W[2, 1] = P.f[3]; 

 W[2, 2] = 0; 

 W[2, 3] = -P.f[1]; 

 W[3, 1] = -P.f[2]; 

 W[3, 2] = P.f[1]; 

 W[3, 3] = 0; 

 P.e = W × I_Collar × P.f; 
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Cardan01 Block: 

 

 

CardanDot Block: 

variables 

 real costh; 

 real sinth; 

 real tanth; 

 real cospsi; 

 real sinpsi; 

 real B[3, 3]; 

equations 

 costh = cos(Cardan[2]); 

 sinth = sin(Cardan[2]); 

 tanth = sinth / costh; 

 cospsi = cos(Cardan[3]); 



 

95 

 

 sinpsi = sin(Cardan[3]); 

 B[1, 1] = cospsi / costh; 

 B[1, 2] = -sinpsi / costh; 

 B[1, 3] = 0; 

 B[2, 1] = sinpsi; 

 B[2, 2] = cospsi; 

 B[2, 3] = 0; 

 B[3, 1] = -cospsi × tanth; 

 B[3, 2] = sinpsi × tanth; 

 B[3, 3] = 1; 

 CardanDot = B × Omega;  

 

 

XA11 and XB11 Blocks: 
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CrossPr Block: 

equations 

 Fmt[1, 1] = 0; 

 Fmt[1, 2] = X[3]; 

 Fmt[1, 3] = -X[2]; 

 Fmt[2, 1] = -X[3]; 

 Fmt[2, 2] = 0; 

 Fmt[2, 3] = X[1]; 

 Fmt[3, 1] = X[2]; 

 Fmt[3, 2] = -X[1]; 

 Fmt[3, 3] = 0; 
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Trans01 Block: 

 

 

 

Transf01 Block: 

variables 

 real cphi; 

 real sphi; 

 real cth; 

 real sth; 

 real cpsi; 

 real spsi; 

 real      R[3,3]; 

equations 
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 cphi = cos(CAng[1]); 

 sphi = sin(CAng[1]); 

 cth = cos(CAng[2]); 

 sth = sin(CAng[2]); 

 cpsi = cos(CAng[3]); 

 spsi = sin(CAng[3]); 

 A[1, 1] = cth × cpsi; 

 A[2, 1] = cphi × spsi + sphi × sth × cpsi; 

 A[3, 1] = sphi × spsi - cphi × sth × cpsi; 

 A[1, 2] = -cth × spsi; 

 A[2, 2] = cphi × cpsi - sphi × sth × spsi; 

 A[3, 2] = sphi × cpsi + cphi × sth × spsi; 

 A[1, 3] = sth; 

 A[2, 3] = -sphi × cth; 

 A[3, 3] = cphi × cth; 

            R = A×[1, 0, 0;0, 0, -1;0, 1, 0]; 

 

MTF (fix to inertia) Block: 
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Transf0 Block: 

variables 

 real  A[3,3]; 

 real cphi; 

 real sphi; 

 real cth; 

 real sth; 

 real cpsi; 

 real spsi; 

equations 

 cphi = cos(CAng[1]); 

 sphi = sin(CAng[1]); 

 cth = cos(CAng[2]); 

 sth = sin(CAng[2]); 
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 cpsi = cos(CAng[3]); 

 spsi = sin(CAng[3]); 

 A[1, 1] = cth × cpsi; 

 A[2, 1] = cphi × spsi + sphi × sth × cpsi; 

 A[3, 1] = sphi × spsi - cphi × sth × cpsi; 

 A[1, 2] = -cth × spsi; 

 A[2, 2] = cphi × cpsi - sphi × sth × spsi; 

 A[3, 2] = sphi × cpsi + cphi × sth × spsi; 

 A[1, 3] = sth; 

 A[2, 3] = -sphi × cth; 

 A[3, 3] = cphi × cth; 

    B = A; 

 

 

 

 

MTF (body1_body2) Block: 
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Transf Block: 

variables 

 real  A[3,3]; 

 real cphi; 

 real sphi; 

 real cth; 

 real sth; 

 real cpsi; 

 real spsi; 

equations 

 cphi = cos(CAng[1]); 

 sphi = sin(CAng[1]); 

 cth = cos(CAng[2]); 

 sth = sin(CAng[2]); 



 

102 

 

 cpsi = cos(CAng[3]); 

 spsi = sin(CAng[3]); 

 A[1, 1] = cth × cpsi; 

 A[2, 1] = cphi × spsi + sphi × sth × cpsi; 

 A[3, 1] = sphi × spsi - cphi × sth × cpsi; 

 A[1, 2] = -cth × spsi; 

 A[2, 2] = cphi × cpsi - sphi × sth × spsi; 

 A[3, 2] = sphi × cpsi + cphi × sth × spsi; 

 A[1, 3] = sth; 

 A[2, 3] = -sphi × cth; 

 A[3, 3] = cphi × cth; 

    B = transpose(A); 

 


