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We probe the local and global structure of spin-coated colloidal crystals via laser diffraction measurements
and scanning electron and atomic force microscopies, and find that they are unique three-dimensional orien-
tationally correlated polycrystals, exhibiting short-range positional order but long-range radial orientational
correlations, reminiscent of—but distinct from—two-dimensional colloidal hexatic phases. Thickness and sym-
metries are controllable by solvent choice and spin speed. While the polycrystallinity of these colloidal films
limits their applicability to photonics, we demonstrate their feasibility as templates to make crack-free mag-
netic patterns.
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The self-assembly of colloidal microspheres has been
used to address the fundamental questions of how materials
crystallize �1–6� or fail to crystallize �7–9�. Micrometer-scale
colloidal crystals can be used as a template that, using further
processing methods, can be used to create photonic materials
�10–12�, optical sensors �13�, and antireflection coatings
�14�. However, the high density of missing-sphere defects
and cracks in photonic crystals produced via self-assembly
�15� remains a serious limitation, and thus the study of col-
loidal defects �16� is an active area of research. Spin-coating
of colloidal suspensions is the quickest and most reproduc-
ible method to make large-area colloidal crystals. While
spin-coating has been proposed to fabricate single crystals
for photonic applications �17,18�, the symmetric radial opti-
cal interference patterns observed are unexpected for single
crystals. We find here that spin-coated colloidal films are
indeed neither single crystals nor powder polycrystals, but
are in fact a unique polycrystal phase. While true single-
domain sizes are �10 �m, there is orientational correlation
on the centimeter scale. Our results demonstrate a novel
crystal packing strategy by which long-range orientational
order develops in the absence of long-range positional order,
reminiscent of two-dimensional colloidal hexatic phases
�19,20�, and leading to crack-free crystals. Distinct from col-
loidal hexatic phases, our polycrystals exhibit centimeter-
scale orientational order, which arises due to the spinning
axis and can be produced with fourfold, sixfold, or mixed
symmetries for a range of thicknesses as a function of spin
speed. The electrodeposition of magnetic material through
colloidal polycrystals demonstrates their feasibility for mate-
rial templating applications.

The standard technique to make large-area close-packed
crystals is controlled �vertical� drying, utilizing capillary
forces �21–23� to direct self-assembly. Other external shear
�24�, electric �25�, electrohydrodynamic �26,27�, and gravi-
tational forces �28� have also been used. Making dried col-
loidal crystals with these methods is slow, taking from hours
to days. Spin-coating has been shown to be a robust tech-
nique �17,18,29,30� to make large-area colloidal crystals in
minutes. In this work, we correlate measurements of large-
scale �mm and cm scale� order with local ��m scale� order to
elucidate the structure of spin-coated colloidal crystals.

Evaporative colloid spin-coating consists of discharging
colloidal fluid on a substrate, followed by simultaneously
spinning-induced fluid spreading and drying. Suspensions of
silica spheres �5 mL, 20% by volume, 458�2 nm diameter�
were prepared with volatile solvents �ethanol or acetone� by
ultrasonicating until opalescent reflections were seen
near the edges of the container at 27 °C. The substrates
�22 mm�30 mm microscope cover slides� were cleaned
with H2SO4 and rinsed thoroughly with ultrapure water prior
to use and glued to a microscope slide for structural strength.
Seconds after commencing spin-coating, intense colors ema-
nating radially from the center of symmetry were observed
when the sample was illuminated with diffuse white light.
The symmetry of the optical reflections was fourfold for ac-
etone or sixfold for ethanol samples �Figs. 1�a� and 1�b��.
Single-particle resolution images of the colloidal crystal sur-
faces, obtained via scanning electron microscopy �SEM�
�Figs. 1�c� and 1�d��, and spatially resolved laser diffraction
studies using a 1.2-mm-width spatially filtered �405 nm,
25 mW� laser beam operated without any focusing optics
�Figs. 1�a� and 1�b��, show particle packings that are consis-
tent with the symmetry of the optical reflections. The
nearest-neighbor spacing obtained from laser diffraction was
464�4 nm �diffraction grating used for calibration� and
458�2 nm by SEM calculated from distances between sev-
eral touching neighbors in a close-packed crystalline region
�since no calibration standard was used, possible systematic
errors are �5%�. The symmetry of spin-coating results in
crack-free crystals, in contrast with spin-coating under iden-
tical conditions on a substrate corrugated with parallel lines
that breaks center-of-spinning symmetry �Figs. 1�e� and
1�f��. Other crystal-growth methods also typically produce
crystals with cracks between grains �e.g., in dipcoating,
cracks appear at �50 sphere diameters �15��.

The presence of four-arm or six-arm crosses across the
entire sample suggests a high degree of order. This has been
interpreted as a globally even distribution of hexagonally
packed spheres �17�. We show this to be incorrect by com-
paring laser diffraction patterns �4 mm from the sample on a
paper-backed screen that autofluoresced in violet light, ob-
tained with a monochrome CCD camera equipped with a
0.3–1� macro lens� upon continuous translation of a 1.2-
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mm-diam laser beam along radial lines �Fig. 2�a�, R arrow�
and off-center chords �Fig. 2�a�, O arrow� across the sample.
If the sample were single-crystalline, then translation in any
direction would leave the peak orientations unchanged, while
for a polycrystalline powder the peak orientations would
change abruptly at grain boundaries. Instead, we found that
the orientations of first-order diffraction peaks were unaf-
fected during radial translation from the center, but rotated
continuously when translated off-center in a straight line
�Fig. 2�b��. Angular correlations can be visualized by rotat-
ing the observed diffraction patterns in order to bring them
into registry with the x=0 pattern �Figs. 2�b� and 2�c��. With
the spinning center at �0,0�, the diffraction pattern for any
laser spot position �x ,y� on the sample �with polar coordi-
nates �r ,��� was rotated with respect to that at a reference
point �r� ,��� by an angle ��−���. A structure consistent with
these observations �Fig. 2�a�� is one of small single-
crystalline domains arranged in radial orientational registry:

we call this an orientationally correlated polycrystal �OCP�.
Correlation analyses of laser diffraction images quantify

these observations. We first computed the mean value of dif-
fraction intensity fr,���� in the radial direction � in the vi-
cinity of the first-order laser diffraction peaks as a function
of the angle � �� and � are reciprocal space coordinates for
the laser diffraction intensity�. For crystals with square sym-
metry, fr,���� has four maxima separated by ���90°.
The cross correlation of two diffraction patterns
G�	 ;r ,� ,r� ,���= �fr,����fr�,����+	�	� �where 	 is the angle
by which one of the diffraction patterns is rotated� gives
relative orientation between them via the angle 	max that
maximizes G. The correlations are calculated relative to
x=0 for off-center displacements, and relative to the
farthest distance for radial �y=0� displacements. Figure 2�d�
shows that for both radial and off-center translation, the ro-
tation angle was consistent with 	max= ��−���, consistent
with the structure proposed in Fig. 2�a�. The autocorrelation
function measured the correlation of a laser diffraction

FIG. 1. �Color online� White-light reflections of colloids spin-
coated at 3000 rpm from �a� acetone and �b� ethanol solvents onto
22�30 mm2 coverslides display fourfold and sixfold symmetry.
Laser diffraction patterns �insets� show that the fourfold and sixfold
symmetries correspond to fcc �100� and �111� planes with a nearest-
neighbor spacing 464�4 nm. �c�,�d� SEM images near the center
of samples with four-arm and six-arm crosses show planes with
square and hexagonal symmetry. �e� Spin-coating produces large-
area, crack-free colloidal films. �f� Breaking this symmetry by spin-
coating onto a substrate corrugated by lines spaced 0.5 mm apart
�there is no line in the field of view� reintroduces cracks. All scale
bars are 10 �m.

FIG. 2. �a� Proposed structure of the orientationally correlated
polycrystal �OCP�: gray squares represent small domains in radial
orientational registry. Also shown is the axis system and notation
used, with the center of spinning at �0,0�. �b� Laser diffraction
patterns were obtained at 1 mm x intervals upon radial �y=0� and
off-center �y=4, 5, and 7 mm� translations. Images are shown for
y=4 mm �acetone, 3000 rpm�. All images obtained along off-center
chords—along O in �a�—show rotation of the laser diffraction pat-
tern while radial translation shows no rotation. �c� Rotation of the
diffraction pattern by an angle 	max returns the diffraction pattern to
the x=0 orientation. �d�,�e� Correlation analyses for all laser diffrac-
tion measurements �at y=0, 4, 5, and 7 mm�. �d� A plot of 	max

against ��−��� �sample orientation relative to the x=0 orientation�
shows a linear increase with unit slope, consistent with the pro-
posed OCP structure. �e� The domain orientation dispersion �	
saturates at 12° –14° as a function of radial distance. �f� A tangen-
tial section of a typical SEM image �the scale bar is 10 �m�
at �x=0, y=4 mm� shows that true single domains are small but that
different domains exhibit small dispersion from the average radial
orientation.

ARCOS et al. PHYSICAL REVIEW E 77, 050402�R� �2008�

RAPID COMMUNICATIONS

050402-2



image with itself �but rotated by angle 	�: G�	 ;r ,��
= �fr,����fr,���+	�	�. The domain orientational dispersion
�	 �the half-width of the 	=90° correlation peak at
half-height� decreased to a value of �13° for radial distances
r
2 mm �Fig. 2�e��.

The most remarkable property of spin-coated polycrystals
is that the long-range �cm-length� orientation correlations
shown above coexist with short-range positional correlations.
Our observations on disparate length scales are unambigu-
ous. First, SEM images near the sample center �Figs. 1�c�
and 1�d�� and elsewhere �Fig. 2�f�� show typical single-
crystalline regions of �10 �m: true positional order is short-
ranged. Second, the region probed by the 1.2-mm laser beam
contains thousands of micrometer-scale single domains with
surprisingly small dispersion in angle from their average
value. The domain dispersion �	=13�1° =0.22�0.03 rad
except for regions closest to the center of spinning �Figs. 2�e�
and 2�f��. Indeed, clear diffraction spots are only first ob-
served when the lateral extent of the OCP �d=r�	� is com-
parable to the laser beam spot size; in our experiments this
corresponded to r=2 mm, at which distance the lateral extent
of the OCP �d=r�	�0.5 mm� is a large fraction ��0.4� of
the laser beam diameter �1.2 mm�. Finally, for distances
r
2 mm the OCP has long-range �cm scale� radial, but geo-
metrically limited tangential, orientation correlations.

The coexistence of long-range orientational order with
short-range positional order is reminiscent of two-
dimensional phase transitions �31�, in particular the colloidal
hexatic phase �19,20�. However, the OCP structure is distinct
from the hexatic phases because long-range �cm-scale� ori-
entational correlation exists for a wide range of thicknesses.
Moreover, we also observe transitions between fourfold and

sixfold symmetry as a function of angular velocity, with
mixed symmetries at the transition, where single samples
with multiple symmetries as a function of the distance from
the spinning center can be created. Figure 3�a� shows the two
channels of a color RGB image: the red channel �left� shows
sixfold symmetry in most of the sample, while the green
channel �right� shows the reappearance of fourfold symmetry
in the center. Samples shown in this work are two to four
layers thick �Fig. 3�b��. Mean colloidal crystal thickness �ob-
tained by contact-mode AFM line scans� decreases as the
speed of rotation increases �Fig. 3�b��. Similar OCPs were
also obtained with ten-layer-thick samples �data not shown�.

Domain size is crucial to many materials science applica-
tions. For photonics, the defect density in colloidal crystals is
usually unacceptably large and we see here that spin-coated
templates are no improvement. A more forgiving application
is to use colloidal templates to make magnetic patterns �32�,
with potential applications as economical lithography for
magnetic data storage materials �33�. Colloidal templates
were spin-coated on �111�-textured Au /Cr /glass. Cobalt
metal was then electrodeposited from an aqueous 0.1M
CoSO4 electrolyte using a constant applied potential
�–1.10 V vs Ag /AgCl reference electrode� in a standard
three-electrode cell. Optically thick films �
20 nm� of cobalt
metal formed within 10 s and �m-thick films formed in min-
utes. Transmission optical microscopy �Fig. 4�a�� confirmed

FIG. 3. �a� Red �left� and green �right� channels of a color RGB
image of a sample with mixed symmetries: the red channel shows
the sixfold symmetry in the bulk of the sample, while the green
channel shows the reappearance of fourfold symmetry from the
center �colloids in acetone solvent, 7000 rpm�. �b� Sample thickness
H �average height of uneven colloid surface, obtained via contact-
mode AFM� vs � displays control of film thicknesses to between
two and four layers. Solid and dashed lines are expected thicknesses
for integer number �1 to 4� of “square” �fcc �100� face parallel to
substrate� and “hexagonal” �fcc �111� face parallel to substrate�
structures.

FIG. 4. �a� Transmission optical micrograph, showing cobalt
�dark regions� filling interstices in the colloid template without de-
stroying fourfold symmetry �FFT of image in the inset�. �b� Reflec-
tance confocal micrograph �488 nm laser� allows z-sectioned visu-
alization of patterned electrodeposit beneath the colloidal crystal
surface. In reflectance, the metallic regions are bright while the
lower-reflectivity silica is dark: Fourfold symmetry is clearly pre-
served. The smallest feature size, a single sphere, is 0.5 �m. �c�
X-ray diffraction plot shows that the cobalt deposited is predomi-
nantly hcp Co �JCPDS 5-727� with smaller amounts of fcc Co
�JCPDS 15-806� �34�.
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that the electrodeposit is dense, uniform, and did not substan-
tially disrupt colloidal order, while a z-sectioned reflectance
confocal micrograph �Fig. 4�b�� revealed a patterned elec-
trodeposit just beneath the colloidal crystal surface. X-ray
diffraction using Cu K� radiation �Fig. 4�c�� showed pre-
dominant hcp Co with smaller amounts of fcc Co. Finally,
electrodeposits peeled from the substrate were attracted to a
permanent magnet indicating ferromagnetic behavior. Thus,
electrodeposition of magnetic material through a spin-coated

colloidal template does not distort OCP structure and pre-
serves its crack-free nature.
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