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Abstract

In this thesis, we propose an approach to correct the estimation of the
bias of the model parameters when using a generalized quasi-likelihood
method to analyze longitudinal binary data with measurement errors. The
measurement errors are assumed to follow a normal distribution with an
unknown variance, which can be estimated by repeated observations or
taken from previous similar studies. An approximation method proposed
by Monahan and Stefanski (1992)is used to obtain the expectation of an
unknown function involved in the calculation of the means and covariance,
which will be used later to construct the estimating functions of the GQL,
A simulation study is carried out in the aim of investigating the small
sample performance of the proposed approach. The results of an intensive
simulation study show that the proposed approach works very well in all
configurations. The efficiency gain of the proposed method, as compared
to the naive use of GQL is remarkable. The proposed method has great
potential to be widely used to analyze data from social, economical and

biomedical studies.

Keywords: G ized quasi-likelihood, Longitudinal binary data, Mea-

surement error.
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Chapter 1

Introduction

Binary responses along with a set of multi-dimensional covariates are
often collected repeatedly over a short period of time from a large num-
ber of independent individuals, which is called longitudinal binary data.
Longitudinal binary data often appear in a wide range of areas such as
public health, medicine, economics, sociology, and so on. The covariates

or time-ind d Often

in longitudinal data may be ti
times the main focus of the study is to evaluate the effects of covariates
The dynamics among the response variables over time is also of significant

entific interest. Actually, the repeated observations in a longitudinal

study allow us to estimate both the effects of covariate variables and the

. There is

pattern in the response variables over time, say the cohort eff
a considerable demand for adequate methods for the evaluation of data of
this type in applications. Great attentions were drawn recently among the
statisticians. Literatures include but not limited to Diggle et al. (2002),
Dunlop (1994), Qu and Song (2002) and Ware (1985) among others.

Although most studies are well designed to obtain accurate informa-




tion, measurement errors in discrete data still occur due to many known

and unknown reasons such as imperfect instruments and procedures, lim-

ited and ience of and
high cost of getting exact measurement, and so on.

Measurement errors also occur in continuous data. Covariates in gen-
eralized linear models are frequently subject to measurement error, for
instance in epidemiology studies where the effects of lifetime exposure to
pollutants, alcohol, exercise and so on are often of scientific interest.

Explicit measurement error modeling is crucial for at least two reasons:
First, neglecting measurement error will often lead to biased estimates for
the regression parameters. For instance, it is well known that ordinary
logistic regression can lead to biased estimates of odds ratios when the
covariates are subject to measurement error (Rosner et al. (1990)), a
phenomenon known as regression dilution in the simple case of a single
covariate. Joint modeling of the response and measurement process allows
estimation of a dis-attenuated odds ratio for the true covariate (see, for
example, Carroll et al. (1995)). Secondly, measurement error modeling
facilitates prediction of the true covariate or exposure for an individual
unit, utilizing not only the exposure measurements for the unit but also
information from the outcome as well as borrowing strength from the other
units.

Much has been carried out on measurement error models for continuous

data, for example, the classical additive measurement error models, the
Berkson error model (Fuller (1987); Carroll et al. (2006); Buzas, Tosteson,
and Stefanski (2003)), equation error model (Kipnis et al. (1999); Kipnis
et al. (2003)), and regression calibration model (Mallick and Gelfand




(1996)) among others.

Rosychuk (1999) studied the estimation bias of the covariate effects
when ignoring errors in response. Magder and Hughes (1997) proposed an
EM approach to the inference of model effects. The model of Caroll, Maca
and Ruppert (1999) handles complex models with a simple measurement
error structure. Neuhaus (1999) proposed a computationally more efficient

to error when estimating the

model effects. Roy et al. (2009) proposed a model-based approach to the
case of misclassification. Gustafson (2003), McGlothin et al. (2008), and
Rosychuk et al. (2009) also proposed different approaches to correcting
the bias of the estimation.

For correlated case such as longitudinal binary response data, the mea-
surement error in covariates is even more difficult to handle, mainly due to
the complex nature of the likelihood when complex correlation structure
is involved. Ji (2011) and Tao (2010) investigated the GQL and MLE
approaches for a kind of dynamical binary response model, taking mea-
surement error and misclassification into account. The simulation results
show remarkable efficiency gain by appropriately modeling the misclassi-
fication.

As ioned i errors ly occur in co-

variates from studies in epidemiology, medicine, economics, and sociology.
Simply ignoring measurement errors in covariates leads to biased estima-
tion of model parameters and loss of power in detecting interesting associ-
ation among variables. In order to improve the estimation of parameters,
in this thesis we propose a new approach that combines the approxima-

tion method of Monahan and Stefanski (1992) (also see Roy, Banerice




and Maiti (2005)) and the generalized quasi-likelihood approach by Su-

tradhar (2003). An i quasi-likelihood method for

binary data is ped to correct the estimation bias of the

regression parameters in the presence of measurement error in covariate.
The logistic mixed effects models (Sutradhar and Farrell (2007)) can
be applied to analyze longitudinal binary data. When measurement errors
are not ignorable, however, the likelihood function is usually very difficult
to compute (Sutradhar and Mukerjee (2005)). The conditional inference
approaches can also be applied to longitudinal binary data (Breslow and
Clayton (1993), Sutradhar (2004)). The integration over the distinction

of the measurement error is difficult for logistic ca specially for multi-

variate measurement errors (Monahan and Stefanski (1992), Tao (2010)).

To avoid the complexity of the likelihood function and the short com-
ing of conditional inferences, we exploit the generalized quasi-likelihood
method (GQL), which has been proven to be almost as efficient as MLE
for binary data modeling (Sutradhar and Farrell (2007)).

We focus on the iti generalized quasi-likelihood inference

that involves unconditional moments of up to second order. The integra-
tions are approximated by using the method of Monahan and Stefanski
(1992).

By doing this we could avoid any extra distributional assumption on
the correlated binary response. The method is hence widely applicable.

The th

is organized as follows. We develop a regression model for

longitudinal panel data with measurement error in Chapter 2. In Chapter

on of the logistic regression with logit link

3, we provide the summari

and probit link and we also introduce the covariance matrix and corrected




generalized quasi-likelihood (CGQL) method, which extends and unifies

the previous work, uasi-likelihood by (2003), and
logit link approaches by Roy, Baneriee and Maiti (2005). The emphasis of

this study is the bias correction of model effects when estimating equations

are constructed on quasi-likelihood. The and
are also detailed in Chapter 3. A simulation study is conducted in Chap-
ter 4 to investigate the performance of the proposed method when the
sample size is properly chosen. Conclusions and discussions are provided

in Chapter 5.



Chapter 2

The Linear Dynamic Model for

longitudinal Data

In this chapter, we briefly review the longitudinal models for binary

data and then extend the models to include measurement errors.

Let y; = (Yo~ s+, Yir) s be the vector of T' repeated binary
responses for i = 1,--- , N and x = (X}, Xy)’, where x; (p x 1) and xa(p2 x
1), are the covariates of interest. Further we assume that x; is observed
without measurement error and xs is not observable, however its surrogate

2, is available. The effects of the error prone covariate xz are of major

scientific interest:

2.1 Regression model without measurement error

For a fixed Xy = (21, ¥2t)', it is assumed that

Plya = Uarie, w2) = 921y + v2ie2) (2.1)



fort=1,---,Tandi=1,--,N, where g(v) = (1 + ezp(—v))~".

We use yf; to denote the mean of Y, with predictors without measure-

ment error

iy = E(Yalwr, w2) = Plyie = i v2ie) (22)

Next suppose that y;; has a Bernoulli distribution with mean parameter
4ty denoted by g ~ bin(ufy). In a dynamic linear model set up, we use

the model (Tong (1990), Table 3.1, p113) given by

Yie = Quyie—r + (1= qu)qa (2.3)

where gy, ~ bin(p*), p* is the mixture probability parameter of the distri-
bution of variable gy, gz ~ bin(i}), qur, g are independent.

The conditional probabilities are given by

Plyie = Uyie-1, @rie Taie) = P*yie—1 + (1= p )y (24)

fort =2,-:«,T,i= N and 0 < p* < 1. It then follows that

Yio ~ bin(1, ), where

pie = Py + (1= ")
.

= p" a4+ (=) P i (2.5)
=]

For t = 1, the binary response y;; has been assumed to have mean g1, =

My



2.2 Regression model with measurement errors in
covariates

Now we consider the dynamic model with measurement errors in co-
variates. Suppose that X, is not observable, however its surrogate z, say

the observation of Xa, is available, and they have the following relationship

= zte (26)

where €, i =1,--- , N, follow a normal distribution, i.e.

€~ N(0,02). (@7

It is also assumed that the errors in the variables model are non-

differential, that is,
F(itlwries @aies zi) = f(ielwries 2ie) (28)

In other words, z; adds no additional information to the prediction of y

@y is known.

Regarding measurement error proc

we assume

o4 (29)

2ol ~ N(zy0?) for

Where 2, o2 are known.

We use yf to denote the mean of Y, where the covariates are contam-




inated with measurement errors.

i = E(Yilwi, z)
= Py = Ui, zt)
= By (BYalwrit, 22it, 21))
= Buyyle(BE(Yieltrie, w2a))

= 7 g+ zuba + B Grrailz)dr (210)

fort=1,--- ,Tandi= +,N. The integral in (2.10) does not have

a closed form solution. The approximation of this integral was considered
by Monahan and Stefanski (1992). With some algebra they derived an

approximation to the integral in (2.10) as

wi = E(Vidoue )
b
= [ gra + 2ua + o) (Bl
o

2) (2.11)

fort =1,--,T and i -\ N, where g(v) = (1 + ezp(=v))~" and

k? = 1.70. In most cases this gives a good approximation except when

222 i large. The details will be discussed in the next subse

We still use the linear binary dynamic model given by

it = Qe + (1= Q) (2.12)

where gy, ~ bin(p*), p* is the mixture probability parameter of the distri-




bution of variable g, gz ~ bin(sif), and qu, ga are independent.

The conditional probabilities are given by

Py = yie—1, Tries 2i) = P Yae—r + (1= p7)psiy (2.13)

. It then follows that yi; ~ bin(1,

fort=2,--,Tandi=1,:--

where

My = P+ (=P

‘
= P+ (=) p" (2.14)
i=

For t = 1, the binary response y,; has been assumed to have mean jify =
it
2.3 Computation of the probit-normal integral and
logit-normal integral
With the normality assumption for the measurement error process we

have

Plyie =Uzries z1) = Eryyje (BVielwrie, 22it, 7))
= Euyls(E(Yalwri, 220))
= Euppsa9(@ibs + 22ieb2)

= [ gt b o) (e (215)

where f(e;f) is the probability density function of &6,



We use jiif to denote the mean of Y, where the covariates have mea-

surement errors, say,

wi = BE(Yalri,z)

= [T gt b+ ) et (@210)

P(yie = 1|z1i, z)

In this formula above, the link function g(.) is nonlinear. The calcula-
tion of the involved integral is very hard. However the close relationship
between logit link function and probit link function was already discov-
ered in the early work (Eugene (2004), p334). There are several ways to
approximate the logit link by probit link when the aforementioned integral
is concerned, for instance, Roy, Banerjee, and Maiti (2005) used a method
of approximation for probit link function and logit link function to deal
with the measurement error model. Now we introduce this approach.

Let g(.) be the logit link function, ® be the distribution function of

standard normal random variable. Suppose G is a function of g, as sug-
gested by Eugene (2004, p335), then we have:
eap(@rinPr + ziuba + Paci)
b + ziuba — Paci e
9+ 2082 = ) = T crplBr + B+ Bacd)
= G(P(xrubr + zubo + Baci)
= G(®) (2.17)

where u=1,---,T. Now we can rewrite the function as below:



o + ) = T ERI LI o G(0(a + 81

(2.18)

2.3.1 Probit link

Let @ be the cumulative distribution function of a standard normal

distribution. We calculate the integral as follows

L7 B+ 2+ e (Bac)e

too pruvbitznbartbie ] 2 i
:/ / eap(— ’m. P(— o )dey

Vor Baoi \/ﬂ 25303

= P(~00 < Br€; < +00, w1 < TiiwB + 2P — Paci)

= P(wy = fa6; < Tiiwfh + 2ivB2) (2.19)

In the equation above, the two-dimensional integral may be viewed
as the probability that the sum two independent normally distributed
random variables wy and fae;, where wy ~ N(0,1) and fae; ~ N(0, f30%),
hence w; — Bae; ~ N(0, (1 + 5202)) is less than z1iuf; + ziuf2-

Therefore, we have

P(wn — Baei < BriuBy + 7iuB2)

_ ®(>rlxvﬂl + zmﬁz) (2.20)

Thus we obtain the equation



[ 0 + 2+ Bacd (e = (-

2.3.2 Logit link
Define ® = (131 + ziufe + Baci), Po = P(z10uf1 + ziuf2). Therefore,
by using Taylor series expansion, we have
G(®) ~ G(®g) + G(®) (@ — Bo) (2.22)

‘When logit link is used in the generalized linear model, we have the

following term

[ c@@ae
~ [ i@+ G(eo) (@ - 20l (e
= @)+ 6@ lomty | :“ @ f (Baei)de; — G(@0) |amay®o
= G(®) + G(®o) [a=2,® —~ G(®o) |ty o
= G(0) + G(@0) oo (® ~ B)
~ G(®)

ZriuPh + ziuba

/1+ p3o? )

eap(Zusfita

= ®(

1+
ORI, fo o s 2.23
1+ exp(Ruf (2:23)

1+

The last approximation is due to Monahan and Stefanski(1992), where




k2= 1.7 and [T Of (Bo€;)de; = ¢('\/A""%ﬁ§ﬂ)

In principle, the expectation of Y can be well approximated by

i = E(Valw z)

T1ib + ziuBo

n

e
= 7 gt + 2+ ) Butaalza)za
9

(2.24)

1+ 48

fort =1,---,Tandi =1

LN, where g(v) = (1 + exp(v))~! and

:2 = 1.70. In most cases this gives a good approximation except when
B3o? is large.
These approximations will be used in the next chapter, when we use
the generalized quasi-likelihood (GQL) method to estimate the regression
coefficients. The method needs pjf and the second order moments to

formulate the estimation equations.



Chapter 3

Estimation of the Parameters for

the Regression Model

In order to correct the bias of regression parameters 4 caused by ig-

apply a corrected generalized

noring the covariate measurement errors

quasi-likelihood method (CGQL) to estimate the unknown parameters.

The most important and challenging part of this chapter is the uncondi-
tional generalized quasi-likelihood inference which involves unconditional
moments of up to the second order

s previously mentioned, the goal of this thesis is to eliminate the esti-

mation bias by using the CGQL. A comparison of the proposed estimates
with the estimates from the naive generalized quasi-likelihood method

(NGQL), which ignores the covariate measurement error will play an im-

portant role.

15




3.1 Naive generalized quasi-likelihood method

Let 4 = (Y, ,yr) denote the longitudinal observation of binary
response, f; = (i, -+ »pur) be the vector of the means of ¥; and %;
be the T x T covariance matrix of ;. Sutrabar B. C. (2003) proposed
a generalized quasi-likelihood (GQL) method to estimate the regression
parameters 3 by solving the following estimating equations:

I

Z

Sy — ) =0 (3.1)

where 0 = (8,p°), B = (B},8) and % = (%a,... 22)is the

(p+1) x T first derivative matrix of means js;, which is given by:

Fort=1,
Opa _ Ony
By By
Dpix q
=0 3.
g 2
where p =1,2.
Fort=2,:--
Qi _ Ouu 1 9#,.
B - a5 (-5
Dt - Q1
W)" = i1~ My (3.3)

where i =1,--- N and p=1,2.

33 be the 7' x T covariance matrix of ¥;, and have the form



var(Yy) cov(Ya,Yia) -+ cov(Ya,Yir)
var(Yg) - cov(Yaa,Yir)

var(Yir)
The formulas for the components of this covariance matrix % is given
as follows.

The diagonal elements of covariance matrix £; are

var(Ye) = E(Y;) = (E(Ya))’
= B(Ya) - (E(Ya))
= =i

= pa(l — pie) (3.5)

where E(YZ = E(Yi) as Y follows Bernoulli distribution, for ¢ =

Lywee o 5= Lywes o Vs

cov(Yiu, Yao) = E(YiYio) — E(Yiu) E(Yi)

= E(YuYi) — Hiuttiv (3.6)

++,N. where the

foru=1,--,(T=1),v=(u+1), T, i=

second order moments have the formula, for u < v,



B(YiYa) = B(E(- (B(YiuYio|Yiur++ s Yiu-1)))

= (1= Y P ) (3.7)

=t

where u=1,---,T,v=2,--- ,T,and i = 1,--- ,N.
Then the off-diagonal elements of the covariance matrix ¥; are calcu-

lated as follows:

cov(Yau, Yio) = E(YiuYiu) = B(Yi) E(Yi)
= B(YaYi) = Hiultiv

= P il = i) (38)

T,andi=1,---,N.

whereu <v,u=1,--- T, v
The Newton-Raphson method was applied to solve the estimating

equation in the following iteration formula:

00 = § + COV='FUNI gy (39)

where COV~! denotes the variance-covariance matrix and FUN de

notes the estimating function . In practice COV~! can be estimated by

t?u,z 10.“‘ (310)

=
lo=i,

cov-i= Z

FUN can be expressed as follows,



(3.11)

o)
vGQL

S -
FUN = ; 205 (i = 1)l -

3.2.1 Regression model with measurement error

In order to correct the bias of the estimates of regression parameters,
the measurement errors of the covariates should be taken into account.

Let y; = (¥i1,- - , %) denote the longitudinal observation of a binary
response, where 1§ = (¢, -+, up)  is the vector of the means of ¥; and
¥ is the T x T covariance matrix of Y. We use corrected generalized
quasi-likelihood method (GQL) to estimate the regression parameters, by
solving the following estimating equations:
) ‘e

T =) =0 (3.12)

where 0 = (8,p") and %"

(% ... %y s the (p+1) x T first

derivative matrix of the means 4, which is given by:

o owit

9B, 9B,
oy

L =0 1
= (3.13)

for ¢ = 1, where p = 1,2

3.2 Corrected generalized quasi-likelihood method



and
oy Ity iy
Oy _ e OMims (g _ ey O
%, ~ "o TP
oy e ”
3p.‘ = i — (3.14)
for t =2, ,Twherei=1,--- ,Nand p=1,2.

The covariance matrix £f of ¥; has involved the covariates, which have

measurement errors. It can be expressed as follows:

var(Ya) coo(Ya,Ya) - cou(Ya, Yir)
o var(Va) e cou(Ye, Yir) i
var(Yir)

The formulas for the components of this covariance matrix S are given
as follows:

The diagonal elements of covariance matrix ¢ are

var(Ye) = B(Yj) - (B(Ya)®

B (E(Yadlenl%)®) = (Eaya(EYielwail 2)))?

]

B (EYalenl 7)) = (Baye(E(Yalzail2)))*
= = (uf)?

= pg(l - p) (3.16)

fort=1,---,T,i

1,:00

\N.
The off-diagonal elements of the covariance matrix £ are expressed as

follows:




cov(Yiu, Yiv)
= E(YuYi) = B(Yi) E(Yi)
= Eoypai(E(YiaYiol22il20)) = Bagijei(E(Yiulwai|20)) By, (E(Yio|%2i]))

= Btz (B(YiYiolw2i]20)) — piusti, (3.17)

foru=1,---,T—1lv=u+1,---,T,i=1,---,N.

The second order moments are calculated as, for u < v,

Bz (B(YiuYiolw2il 1))
= Eay s, (B(E( - (B(YaYio|Yius -+, Yio-1))))

= B ™ (=) 3 5]

= JUab =+ (=) 3 2 ke 019

where u=1,---,T, v =2, andi=1, N.

The integrals in the above formula have no closed form for the logit

: link. We discuss this further in details in the following subsection.

3.2.2 Approximation of second order moments

The approximation of the second order moment E(Y;,Y;,) is considered
by Monahan and Steanski (1992) when the logit link function is involved

in the integral with normal random effects. We use their approach to

approximate a similar integral where the extra randomness is caused by

normal measurement errors. The formula is given below.




Bz (B(YiuYio|22i] )

= [T () S p g ealdes (319)
e J=utl

whereu=1,--- ,T,v=2,--- ,T,u#v,andi=1,--- ,N.

The integral involves the following terms:

= [ @b + )@ + o) (el )dow

= [ b+ + Baeda(aab + b+ Bre) [P
(3.20)

«wT,v=1,---,T and

where g(v) = (1 + ezp(~v))~" and u =
u#v,i=1,---,N. This integral includes one logit link function and
one normal distribution function. There is no closed form solution for it.
We use an approximation approach to handle this problem. This logistic-
normal integral plays an important role in the analysis of binary data. In
particular, this integral is essential to logistic regression with a normally
distributed covariate measurement error.

Let g(.) be the logit link function, ® be the distribution function of
standard normal random variable. Suppose G is a function of g, as sug-

gested by Eugene (2004, p335). Then we have




9(@1iubr + 2o + Brei)

foru=1,--,Tandi=1,--,

9(@10By + 2o + Prei) =

exp(ziiufh + 2iuf + Brei)
1+ exp(zriuPr + ziubPa + Baci)
G(@ (21 + 22 + Paei))

G(®y) (3.21)

N, and

1+ exp(z1ioPr + 2002 + Pa€i)
G(®(z100B1 + 22 + Baci)

G(®s) (3.22)

-, Tandi=

for v =

‘We can rewrite the function as below:

9(@1iBr + 2Bz = Paci)

_ (@b + zuba + Baei)
1+ exp(@iiubr + 2iufa + Baei)

% G(®(z10P1 + 2o + Baci))

=G(®) (3.23)



foru=1,---,Tandi=1,---,N, and

(@b + iz + Poei)
1+ exp(1iwfh + 202 + Ba€i)
~ G(®(x1ivfy + 2102 + Pai))

= G(®y) (3.24)

forv=1,---,Tandi=1,---,N.

Therefore

oo
M = [ g+ waaB)g@i b + zaf) )
s2
= [ glonabi+ suba + Bae)g@riaB+ il + ) f Pac )

~ [ 6@ (e (325)

Define 1 = Dby + zuba + o), Pro = Drrifh + zuabi), B2 =
D@1y + 2y + faci), B0 = BB + 20B2).

By Taylor series expansion, we have following term

ma = [ G@)G@) )
~ [ 16 + )@ - )

[G(®@20) + G (@0) (@3 = B0)] (Baci)des (3.26)

With some algebra, the terms are obtained as follow:



16 u) + G0 (01 = 0u)6(m) + G (2~ )} (Brc)e
GOwG(@) [ [(Pac)de

+G(0)Gm) [ S (Bre)de

~G(@0)(G@) [ f(Bre)es

O G0) [ 0 G

HG@)) (G [ s (Bre)e

3

(6@ (@)t [ 01 )
~(Gw)) Gl [ f(Brede
~(G@0)) (G (@) o [ @ ace

HG@0)) (G0 s [ S (327)

By the property of probability density functions and equation (2.20)

we know that

[ e =1

ftee Tiwbh + 2y
[ wistreie = ay R
Zuinfh + zufy

Y1+ B3a?
Then we add and subtract a same amount

(G(00)) (G(0m) Bo(Efitzntsp (usfitsuta)
Thus

[ s = s (3.28)



= [ G@IG@ Bl

& G(®10)G(Pa0) + G(P10) (G(P20)) B

—G(®19)(G(@20)) P + (G(@10)) G(20) Py

G0 (G0 [ s ()

, . Zriufh + 2iu
(G0 (@0 oL
~(G(®10)) G()10

(G(®10) (G0 Doy e Zul

+(G(@10)) (G(20)) ProP20

Simplifying the above function, we obtain

= [ G@IG@I (e
Ty + ziuf
1+ Bia?

~ [G(®1) + (G(P1)) Dr(

[G(®20) + (G(20) o Ny
0t

+(G(®10)) (G(Px))

7 s (e
b+ 2

1+ B3o?

Ty + zw/iz)]

1+ Ba?

=@ ( )@a(

Tiwbh + 2
1+

1+ B3a? )

=

Zuifi + Zzuﬁz) _

)

Db + 22

e

)

(3.29)

(G(®10)) P10)

(G(0)) ®]

(3.30)



Then by Taylor’s theorem, we have

G@)+ c@.o)'(m%%j’) — ) =
) + Glbn) (D205 )

From the two equations above, we obtain

m = [ G@IG@I (e

Ty + 2 ﬂz))(}‘(%(

~ G (
+H(G (1)) (G(%20))
oo
U7 @i f (e - an(

G(&i(

Triufh + 2
/1+ p3a?

27

ZriuPh + ziuBa

/1+ B3a?

(3.31)

T + zoa
/1+ B3a?
(3.32)

(@2

T1iBr + zivBa2

/1+ B3o? /1+ B3a?

Tuiwfh + 2B
/1+ Bio?
(3.33)

)®a(

From the equation (2.17) and (2.19) in Chapter 2 for &, and by, we

have

Il

—

L
=

(@b + zba + Baei) f(Baci)de
7/+m wywbiaubatfra ]

- m(»:::p

:
_u
(2

(—

(w1 = Baei < 1 + 2 o),

3

g
2Bi0°

Yoy ———emp(— =S ) dey

Ba0iV/2m

< faei < +00, w1 < TriuPh + 2iuba = Baci)

(3.34)
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21w + zmﬂz)
/1 + B3o?
= [ @t + 2t + ﬁz&)l(/hex)dﬂ

too (riBitrnbi-faa 1
_/ ——eap(— )dwz

P

a
v e

= P(—oo < ,i,e, < 400, Wy < T1iwbh + 2ivP2 + Paki)

= P(un — Bai < Trauh + 200)- (3.35)

Moreover,

e
[ itaf (B

-
’/ [fa A zﬁ’ ‘)dé’

400 priwbitzubrthe 1 w?
- / / ﬁezp(—?)thu,
wuebitznbatbaea 1 w3 il

ewp(— =2 ) dup——=ca

/,m T e Mg (- Zﬂ‘
= P(=00 < Byei < +00,wy < 1w + 2z + Paki, wa < Triofh + Ziuba + aci)

=S e

= P(w; = fai < Traubh + 2iufa, w2 = Pati < DB + Zuwf2)- (3.36)

Now G(®19) and G(Pa9)’ need to be computed, with some algebra the

results are given as below

exp(@1iufh + ziufa)
(1 + ezp(@riubr + 2iub2))?
2
(7(11.“/31 + 2iuf2) Y (3.37)

G(@w) =

L
(g



o _cap@ubitauby)
G(®n) = (L+ exp(z1i0f1 + 2i02))?
8

(IZ,PIF‘-M))"‘ (339)

By the approximation exploited by Monahan and Stefanski (1992),

combining the results above, we have

oo
= [ GG (e
TP + ziufe Tyivfi + 2ioa
Dinbi + Zubayy g, Db+ 2oy
VT R =
eaplifh +aufy) L @b + zuBo)’

U F eop(@riabs + zBa)? Var T

eap(@1inBy + ziwfa) 1 =1
T+ explonnd + b Var ™ L
[P(wn = Bai < @riubh + 2iuBa, w2 — Paei < TriuPh + 2iu2)

~ G@(

Nt

(@i + z0B2)?

—=P(wy = Baei < Triubh + ziuf2)

P(wy = faei < x1ivfh + 2ivB)] (3.39)

Based on the above results, we can calculate the variance matrix of

CGQL. The details will be given in the next subsection.

3.2.3 Computation of the covariance matrix of CGQL

Now we use the formulas of the second order moment to calculate the
covariance matrix of CGQL, and provide the formulas for the components

of this covariance matrix as follows:




var(Ya) = E(Y{) - (B(Ya)

= Bpye(B(Yalwail5)?) = (Bagyes (B(Yakeail)))
= Brya(B(Yicleail2)) = (Beyge(B(Yulzal))?
= up - (i)’

= (1 - p), (3.40)

fort=1,e++,T,i=1++,N.

The off-diagonal elements of covariance matrix as follows:

cov(Yiu, Yio)
= E(YiYi) = E(Yiu) E(Ya)
= Epyypo(B(YiuYiolw2il %) = Buyjs (B(Yiul22il ) By (B (Yio|22il 7))

= Buya(EYiuYiolonl ) — miubis (341)

foru=1,--,T-1lv=u+1,,T,i=1,.--,N.

The second moment have the formula, for u < v,

Baye(E(YiaYiolw2il2:)
= Bape(BE( -+ (B(YiYiu Yo+, Yiu-1)))))

= Bays (™™ + (1= %) Z "))

= Jul e (=) S ) e, (342)
e

whereu=1,---,T-1,v=2,--- ,T,andi=1,--+,N.



Foru<wvu=1,---,T=lv=2- T, andi=1,-- N,

E(YuYi) = Euype(B(YiYiolzailzi))
= By (BB (B(YaYolYiuy - Yiuma[22i]20)))))

P + (1= p) Y p e my,. (3.43)
=t

Now the diagonal elements and off-diagonal elements of covariance ma-
trix have been calculated from equations (3.40)-(3.43). This completes the
construction of the covariance matrix.

We can then use the Newton-Raphson method to solve the estimating
equations, as addressed in the iterative formula below:

4+ = ) 1 (COVe) T FUN® (3.44)

b=< o’

where (COV*)~! denotes the variance-covariance matrix and FUN®
denotes the estimating function. In practice (COV¢)~! can be estimated

by
X ope

(coveyt= (; 55 =7

s _
w0

and FUN*® can be expressed as follows,

N o
FUN® = 3 2 (507 = )l (3.46)

ccaL



3.2.4 Asymptotic distribution of the GQL estimator

For 6 = (8,p")', let us define fcgor to be the CGQL estimators of 6,

whicl

is obtained by solving the CGQL estimating equation (3.12). Under

some mild regularity conditions, for example, those from the Theorem 3.4

of Newey and McFadden (1993), it follows from estimating equation (3.12)

that as N — oo, by Central Limit Theorem,

N gyt
N¥(Beaqr - 0) ~ N(O,N(X ‘%

=) 5

)™ (347)

Consequently, one may estimate the asymptotic standard errors of the

CGQL of # by using the above equation

In the next chapter, we compare the relative performance of the pro-

posed CGQL estimators obtained from estimating equation (3.12) and

the NGQL estimators obtained from estimating equation (3.1). This will

be done through a simulation study to be reported in the next chapter,

The asymptotic variance of NGQL estimators and CGQL

computed by (3.49) and (3.50).

imators are



Chapter 4

Simulation Study

4.1

In this chapter, we investigate the small sample performance of the
CGQL method through simulation studies. The comparison between the
CGQL and the NGQL is made at a variety of model settings, which reflect

in the

many practical situations. The

n for conclusion of

form of tables, which are followed by a brief discu:

this chapter.

Designs

, the dynamic dependence parameter

In repeated binary data analy:
is also of primary interest along with the regression effects. The main
objective of the simulation study is to examine the performance of the
NGQL and the CGQL in estimating these parameters. For this purpose,
we choose a set of values for the components of 6. A set of repeated bi-
nary observations will be generated following the linear dynamic model.
The covariate will be selected as in the following simulation design. The

parameter values will then be estimated by solving the NGQL estimation

33



equation (3.1) and the CGQL estimating equation (3.12). The data gen-
eration and estimation of parameters will be repeated 500 times. Finally,

these 500 NGQL and CGQL estimates will be summarized into tables.

We will consider the logit link only. With the probit link, the proposed

method performs similarly,

Now we conduct 500 simulations each time with the sample size I =
100,500 under the assumption that the variance of the covariate measure-
ment errors is known. Each independent individual with ¢ = 4 repeated
observation is generated following the linear dynamic model. The true pa-

rameter values are: the regression coefficients 4 = (1, 1), the measurement

errors are 0% = 0.04,0.25,0.64 and p* = 0.2,0.5,0.8 for each set respec-
tively. Finally 500 simulated data sets are yielded under the longitudinal

model. The setting of the parameter values is presented as follows:

% =0.04

B=(1,1){p =05 (4.1)

pr=08

% =064

We use ; to denote the time-dependent covariate for the ith individ-

ual at time ¢, where p = 1,2, and z; the observation of s @1 follows



normal distribution, 2z follows uniform distribution and z; follows nor-
mal distribution. The covariate changes over time and subject. It can be
generated as follows
Design:

The first covariate ,which does not have measurement errors, is con-

sidered to be,

N(O.L#(t—1),15) for =100, 0/2, t=1,- 4

Tyig ~

N(0.1xt,15) for i=1I/241,- 1, t=1,--- 4

The surrogate of second covariate, say z, is considered to be,

Zu~ U(-4,4) for i=

The second covariate, which has measurement error, is generated as

follow:

(44)

@gitlzie ~ N(zie,0?) for

The asymptotic covariance matrice

estimators are calculated by

and
O DU ey -1 O
S (46)



respectively. The diagonal elements of the these covariance matrices,

which are the variance of these estimators, are reported in the simula-
tion results.

Moreover, we use the following formula to approximate the integral

i = B(Yilriie zi)

= / : 9@ + zubs = Br)) f(Boail i) dezie

y(tmﬁn +;:1Hz) @7
G

V1+ 8

forallt = 1,-- T and all i = 1,--- , N, where g(v) = (1 + exp(-v))~!

and % = 1.70. In most cases, the denominator in the above formula is

very close to 1, and the i imation is a good

(Raymond J. Carroll and David Ruppert, 2006, pp9l).

4.2 Results

In this section, we report the simulation results and discuss the perfor-
mance of the CGQL and the NGQL approaches in estimating the param-

eters 3. Simulation studies were conducted for regression coefficient j3.

For each of two estimati hes we compute the simulated mean of
the estimated 3 (SM), simulated standard errors (SSE), estimated stan-
dard error (ESE) and the coverage probability of 90% confidence interval
(CPr). The simulation results are shown in the following tables.

Table 4.1: Sample size is 100, Dependence parameter is p* = 0.2,

Measurement error o = 0.04,0.25,0.84 and Regression coefficient is ) =




1,6

Table 4.2: Sample size is 100, Dependence parameter is p* = 0.5,
Measurement error o2 = 0.04,0.25,0.84 and Regression coefficient is f; =
LB =

Table 4.3: Sample size is 100, Dependence parameter is p* = 0.8,

Measurement error o = 0.04,0.25,0.84 and Regression coefficient is f =
1,6 =

Table 4.4: Sample size is 500, Dependence parameter is p* = 0.2,

Measurement error o2 = 0.04,0.25, 0.84 and Regression coefficient is f; =

1,82

Table 4.5: Sample size is 500, Dependence parameter is p* = 0.5,

Measurement error o2 = 0.04,0.25,0.84 and Reg
Lp=
Table 4.6: Sample size is 500, Dependence parameter is p* = 0.8,

ssion coefficient is 3 =

Measurement error o2 = 0.04,0.25, 0.84 and Regression coefficient is f; =

1,8, =
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Table 4.1: Comparison of simulated mean values (SM), simulated standard errors (SSE),
estimated standard errors (ESE) and 90% coverage probability (CPr) for the estimation

of model parameters

under NGQL and CGQL, with dependence parameter is p*

0.2,

measurement error o = 0.04,0.25,0.84 and §; = 1,82 = 1, n = 100 and 500 simulations

Dependence  Measurement Method Quantity Estimates
parameter(p*) error(o?) B P

0.2 0.04 NGQL SM 0.9425 0.1664

SSE 0.0689 0.1045

ESE 0.1341  0.0650 0.1141

CPr 0.8620  0.5230 0.620

CGQL  SM 1.0020 1.0015 0.1799

SSE 0.1958  0.0804 0.1128

ESE 0.1921  0.0881 0.1085

CPr 0.9080  0.9032 0.650

0.25 NGQL  SM 0.9593  0.9051 0.1579

SSE 0.2361  0.1844 0.1430

ESE 0.2549  0.1862 0.1470

CPr 0.8740  0.6260 0.7310

CGQL  SM 1.0464  1.0296 0.1682

SSE 0.2930  0.2864 0.1668

ESE 0.2847  0.2872 0.1824

CPr 0.8998  0.9026 0.8560

0.64 NGQL SM 0.8664 0.8537 0.1145

SSE 0.3422  0.2491 0.3084

ESE 0.3352  0.2485 0.3025

CPr 0.8740  0.4080 0.5920

CGQL  SM 1.0652 1.0491 0.1364

SSE 0.3649  0.3202 0.3593

ESE 0.3615  0.3260 0.3545

CPr 0.9020  0.9008 0.6840




Table 4.2: Comparison of simulated mean values (SM), simulated standard errors (SSE),
estimated standard errors (ESE) and 90% coverage probability (CPr) for the estimation
of model parameters under NGQL and CGQL, with dependence parameter is p* = 0.5,
measurement error 0% = 0.04,0.25,0.84 and f; = 1,83 = 1, n = 100 and 500 simulations

Dependence  Measurement  Method Quantity Estimates
parameter(p®) error(o?) A B P

05 0.04 NGQL  SM 0.9317 09145 0.4167

SSE 0.0994  0.0587 0.0909

ESE 0.1025  0.0583 0.1052

CPr 08240 0.6160 0.3800

CGQL M 10151 1.0019 04318

SSE 01178 0.0805 0.1466

ESE 01211 0.0835 0.1318

CPr 09120 0.9058 0.6400

0.25 NGQL  SM 0.8854  0.8804 04253

SSE 01240 0.1750 01754

ESE 01303 0.1785 0.1765

CPr 0.7380  0.4920 05240

CGQL  SM 09743 1.0233 0.4428

SSE 01419 0.1951 02124

ESE 0.1397 01834 0.2138

CPr 0.8992  0.9018 0.6840

0.64 NGQL  SM 08125 0.7948 04164

SSE 02152 0.2565 02216

BSE 02200 0.2654 0.2389

CPr 0.7660  0.4980 0.6840

CGQL  SM 10442 1.0524 0.4395

SSE 0.3981 03174 0.2932

ESE 03929 0.3014 0.2848

CPr 09180 0.8998 0.7540




Table 4.3: Comparison of simulated mean values (SM), simulated standard errors (SSE),

estimated standard errors (ESE) and 90% coverage probability (CPr) for the estimation
of model parameters under NGQL and CGQL, with dependence parameter is p* = 0.8,
‘measurement error 0% = 0.04,0.25,0.84 and f; = 1, 8, = 1 and n=100 under 500 simulations

Dependence  Measurement Method Quantity Estimates
parameter(p*) _error(o?) A B P
0.8 0.04 NGQL  SM 0.9820 0.9410 0.7474
SSE 0.1034  0.0562 0.0991
ESE 0.0935  0.0549 0.1048
CPr 0.7920  0.7600 0.7140
CGQL  SM 10178 1.0083 0.7514
SSE 0.1371  0.1073 0.1418
ESE 0.1451  0.1072 0.1431
1 CPr 0.9180  0.9160 0.7500
‘ 0.25 NGQL  SM 0.8813  0.8746 0.7034
SSE 0.1640  0.1259 0.1806
ESE 0.1615  0.1127 0.1759
CPr 0.8660 0.4960 0.670
CGQL  SM 09519 1.0149 0.7428
SSE 0.2285  0.1957 0.2127
ESE 0.2303  0.1990 0.2146
CPr 0.8940  0.9060 0.7800
0.64 NGQL SM 0.7744  0.7547 0.6970
SSE 0.2360  0.2298 0.2999
ESE 0.2328 0.2191 0.2087
CPr 0.8940  0.5120 0.7640
CGQL  SM 1.0344  1.0290 0.7569
SSE 0.3594  0.3144 0.3438
ESE 0.3500  0.3215 0.3415

CPr 0.9102  0.9108 0.6380




Table 4.4: Comparison of simulated mean values (SM), simulated standard errors (SSE),

estimated standard errors (ESE) and 90% coverage probability (CPr) for the estimation

of model paramete
measurement error

under NGQL and CGQL, with dependence parameter is p* = 0.2,

02 =0.04,0.25,0.84 and B = 1,32 = 1, n = 500 and 500 simulations

Dependence  Measurement  Method Quantity Estimates
parameter(p*) error(a?) b Be I

02 0.04 NGQL  SM 0.9647 09721 0.1584

SSE 01046 0.0247 0.0952

ESE 0.1024  0.0263 0.1038

CPr 07200 0.6200 0.7800

CGQL M 10080 1.0017 01629

SSE 0.1303  0.0329 0.1228

ESE 0.1330 0.0310 0.1346

CPr 09040 0.9140 0.8500

0.25 NGQL  SM 0.8934 08343 0.1476

SSE 01368 0.0353 0.1231

ESE 0.1347 00375 0.1246

CPr 0.8960 0.5630 0.6700

CGQL  SM 10017 1.0078 0.1609

SSE 01614 0.0404 0.1436

ESE 0.1654  0.0406 0.1412

CPr 09160 0.9200 0.7800

0.64 NGQL  SM 07764 0.7466 0.1382

SSE 0.1624  0.0416 0.1506

ESE 01665 0.0327 0.1576

CPr 0.6500 0.7500 0.7400

CGQL  SM 10199 1.0173 0.1516

SSE 0.2059 0.0742 0.2027

ESE 01974 0.0304 0.2048

CPr 08990 0.9100 0.7200




Table 4.5: Comparison of simulated mean values (SM), simulated standard errors (SSE),
estimated standard errors (ESE) and 90% coverage Probability (CPr) for the estimation
of model parameters under NGQL and CGQL, with dependence parameter is p* = 0.5,

measurement error o = 0.04,0.25,0.84 and 81 = 1,4, = 1, n = 500 and 500 simulations

Dependence  Measurement  Method Quantity Estimates
parameter(p*) error(o?) A B2 P

0.5 0.04 NGQL  SM 09563 0.9343 0.4381

SSE 0.1032  0.0275 0.0910

ESE 0.1092  0.0291 0.0891

CPr 0.8860  0.6960 0.3020

CGQL  SM 1.0028 1.0026 0.4516

SSE 0.1219  0.0332 0.1208

ESE 0.1277  0.0329 0.1274

CPr 0.9200 0.9106 0.640

0.25 NGQL SM 0.8777 0.8464 0.4246

SSE 0.1251  0.0383 0.1315

ESE 0.1274  0.0374 0.1248

CPr 0.6560 0.5140 0.5920

CGQL  SM 1.0187 1.0112 0.4634

SSE 0.1436  0.0570 0.1592

ESE 0.1478  0.0573 0.1508

CPr 0.9180 0.8996 0.6080

0.64 NGQL SM 0.7946  0.7843 0.4257

SSE 0.1688  0.0476 0.1480

ESE 0.1644  0.0448 0.1390

CPr 0.5820  0.6220 0.300

CGQL  SM 1.0226 1.0168 0.4536

SSE 0.1930  0.0697 0.1884

ESE 0.1989  0.0668 0.1872

CPr 0.9160  0.9076 0.580




Table 4.6: Comparison of simulated mean values (SM), simulated standard errors (SSE),
estimated standard errors (ESE) and 90% coverage Probability (CPr) for the estimation
of model parameters under NGQL and CGQL, with dependence parameter is p* = 0.8,
measurement error 0% = 0.04,0.25,0.84 and f; = 1,83 = 1, n = 500 and 500 simulations

Dependence  Measurement  Method Quantity Estimates
parameter(p*) _error(o?) b B P

038 0.01 NGQL  SM 09331 0.9223 0.7481

SSE 00789 0.0231 0.0923

ESE 0.0781 0.0235 0.0946

CPr 0.7720  0.6250 0.350

CGQL  SM 10012 1.0016 0.7546

SSE 0.0014  0.0326 0.0986

ESE 00920 0.0352 0.0991

CPr 08004 0.9044 0.5600

0.25 NGQL  SM 08083 0.8783 0.7525

SSE 00075 0.0317 0.1226

ESE 00056 0.0324 0.1218

CPr 06100 0.6150 0.780

CGQL  SM 10188 1.0104 0.7615

SSE 01141 0.0450 0.1436

ESE 01165 0.0448 0.1445

CPr 0.9040  0.8098 0.860

0.64 NGQL  SM 07871 0.7946 0.7560

SSE 01522 0.0448 01341

ESE 01530 0.0445 0.1336

CPr 0.6040  0.6740 0.670

CGQL  SM 10388 1.0261 0.762

SSE 01921 0.0646 0.1815

ESE 01971 0.0660 0.1846

CPr 0.9080 0.9032 0.58




4.3 Comparison

From the simulation results, we can observe that the means of the
estimates of parameters f; from the CGQL method are much closer to
the true parameters value than that of the NGQL, which are known to be
biased. In the Tables 4.1-4.6, the performance of the CGQL method and
the NGQL method is compared in terms of the simulated mean value (SM),
simulated standard error (SSE), estimated standard errors (ESE) and the
coverage probability (CPr) of the confidence interval. These indicators are
reported in Tables 4.1-4.3 for the case when 8y = 1,4, = 1 and n = 100
with measurement error 0.04, 0.25, and 0.64 respectively and Tables 4.4-
4.6 for the case when §; = 1,8, = 1 and n = 500 with measurement
error 0.04, 0.25, and 0.64 respectively. In this subsection we discuss the
simulation results by analyzing the bias, standard deviation and coverage
probability.

From the Tables 4.1-4.6 we can see that the NGQL estimates are bi-

ased for most cases. The effect of error on the

of regression parameters is ignorable, when the variance of the measure-
ment error is very small. The simulated mean of 3, attenuates towards
zero as the measurement error variance o2 increases. For instance, from
Tables 4.1-4.6, for 0% = 0.04, 3, = 0.9425,0.9145,0.9410 while 0® = 0.64,
B = 0.8537,0.7948,0.7547. We also sce that the estimates of regression
parameters (3, are affected. For example, from Tables 4.1-4.6, 0% = 0.04,

B = 0.9823,0.9317,0.9820 while 02 = 0.64, B, = 0.8664,0.8125,0.7744.

Generally speaking, the estimation for the dynamic dependence parameter
p" is not very much affected by the measurement errors.

The CGQL method performs well in correcting the attenuation ef-



fect caused by measurement errors. The simulated means of the CGQL

are closer to the true parameter values compared to those of the NGQL
method. When the sample size increases, the efficiency gets better. The
simulation results in Tables 4.1-4.6 indicate that all of the biases of the
CGQL estimates are small. Hence the estimates from the CGQL method
can be treated as unbiased. For example, in Table 4.4 when p* = 0.2
and 0® = 0.25, the biases for f are —0.1657 and 0.0078 for the NGQL
and the CGQL method and in Table 4.6 when p* = 0.8 and o = 0.25,
the biases for B, are —0.1217 and 0.0104 for the NGQL and the CGQL
method, respectively. So we can conclude that the improvement of the
CGQL method is remarkable.

Once an estimate, either by the NGQL or the CGQL approach, is ob-
tained for the true parameter value, in practice, one has to compute the

standard error of the estimate for the construction of a confidence inter-

val at a desired level of confidence and test of null hypothesis versus its

complete alternative, as well. For this purpose, we have computed the
asymptotic standard errors of the estimates for the parameters by using
variance equation (3.15). The average of those standard errors for each of
the three estimates were computed. From Table 4.1-4.6, we can sce that
the estimated standard errors are almost unbiased in the sense that the es-
timated standard errors are very close to the simulated standard error. As
an example, when p* = 0.5 and 2 = 0.25 in Table 4.5, SSE = 0.0570 and
ESE = 0.0573 for B, of CGQL method. The variance estimation is mean-
ingless for the NGQL approach except the case when the measurement
error variance is very small.

that the standard error of es-

From the simulation results, we also s




timated regression parameter increases with the variance of the measure-
ment errors. For instance, when the measurement error variance changes
from 02 = 0.04 to 0? = 0.64 in Table 4.7, The ESE = 0.0352 for
change to ESE = 0.0660. This result is just as what we expected.

For the concern of possible testing of hypotheses, we have computed the
coverage probability of the 90% confidence intervals for each of the three

parameters. To be specific, by using a simulation based on the CGQL

estimate of a parameter , say 3, = 1, we have calculated the test statistics

= (Bacae—1)/ESE(Bacaqr). The coverage probability is calculated

as the proportion of situations that the 90% confidence interval include

the true f,. It is clear from Tables 4.1-4.6 that the coverage probabi
for the CGQL method are much closer to the nominal level of 90 percent
than that of the NGQL method. Since the NGQL method provides biased

estimates of the model the i interval

is already meaningless. The proposed CGQL method successfully corrects
the estimation bias caused by the measurement errors. It is more efficient

as compared with the naive use of GQL.




Chapter 5

Conculsion

Due to the widely existing measurement errors in practical data, it is

e effects of measurement errors on

of great interest to examine the ad

istical inference. In this thesis, we have considered a

the underlying sta
linear dynamic conditional probability based model to analyze the longi-
tudinal binary data, where the covariates are measurement error prone.

This dynamic model allows the expected response to be related with the

al

history of the covariates, which is more appropriate in many biomed;
studies dealing with non-curable type diseases. For this model, the like-
lihood function is very hard to deal with. Thus the maximum likelihood
method is difficult to apply. So we utilize a generalized quasi-likelihood
method to conduct statistical inference of the model parameters. When
the measurement errors of the covariates are not appropriately handled,
the estimates of the regression parameters of the model are attenuated.
In order to rectify the attenuation caused by measurement errors in co-
variates, we have developed an approach that efficiently corrects the esti-

mation bias. Our focus is on the ditional ized quasi-likelihood
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inference that involves unconditional moments of up to the second order.

We assumed a generalized dynamic linear model with logit link and probit
link. We also use the method proposed by Monahan and Stefanski (1992)
to approximate the expectation of a function involved in the calculation
of the expectations and covariance.

studies were cond: d in the aim of i igating the small

sample properties of the proposed method. The simulation results show
that the naive generalized quasi-likelihood method create remarkable es-
timation bias while the CGQL approach provides much better estimates.

The GQL method has very good potential in econometrics and biomed-
ical science. Tn particular, this approach also has been broadly used for
analyzing continuous binary data. We believe that this study should be
useful for analyzing similar binary data in biological or medical sciences.

This is to be taken up in a future study.
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