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Abstract

The numerical solution of nonlinear water entry problem for two-dimensional (2-D)

wedges is presented in this thesis. . The Boundary Element Method (BEM) was used for

solving the Laplace equation, and the Mixed Eulerian Lagrangian scheme was employed to

track the nonlinear free surface. The free surface profile and the velocity potential are

represented by Cubic-Splines. The forward fourth-order Runge-Kutta method was used

for time marching. A cut-off treatment was applied to the thin jet to avoid computational

instability.

Verification studies were carried out for a wavemaker with impulsive motions. Pressure

distributions, free surface elevations and hydrodynamic forces were calculated and

compared with analytical solutions and other numerical results. The developed numerical

method was then employed to solve the symmetric water entry of 2-D wedges with various

deadrise angles. Pressure distributions and free surface elevations were compared with

experimental results and solutions by other numerical methods, such as the similarity

method, BEM, and the constrained interpolation profile (CIP) method.
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Chapterl Introduction

Slamming is of co ncern in many marine applications. The resu ltant forces are

so metimes sufficie nt to deform the struc ture ofa ship or an offs hore structure. In

addition, s lamming is a so urce of fatigue for offs hore structures, whi ch may resu lt in

struct ura l dama ges ove r time. Exa mples of ship s lamming phenom ena are given in

Fig. I-1.

Figure I-I Slamming Exa mples

Slamming loads, as defin ed by Faltinsen ( 1990), are impu lsive loads with high pressure

peaks occ urring duri ng impact between a body and water. This is characterized by large

hydr odynam ic loads in a short period of tim e, such as wetdeck s lamming, green water

and s loshing in ship tank s. Slammin g is usua lly ca used by large re lati ve ver tica l

motions between wave and body, which wi ll lead to promin ent nonlin ear effec ts. The

typi cal forms of the nonli nearit y are shown as thin je ts and sprays , non-viscous flow

separation, and wave breakin g etc. In addition, co mpress ibility of air and water, air



bubbles and hydroelasticity may be involved. The combination of the above factors

makes the slamming problems very complicated (Faltinsen, 2004).

Given the complex nature of slamming, some simplified slamming models have been

investigated by many researchers before the complete simulations of slamming are

applied to ships. One of the most extensively studied slamming phenomena isth e water

entry of 2-D wedges into an initially calm free surface. In this thesis, a numerical

method has been investigated to solve the water entry of 2-D wedges into calm water.

1.1 Literature Review

The studies of 2-D wedges entering water with an initially calm"free surface are

motivated by the slamming of ship bows or sterns in heavy seas. These difficult

problems areu sually solvedb y simplifyingth em odel as a rigid body enteringin itially

calm water with a free surface. Due to the rapid entry of the wedges into water, viscous

effectsare negligible.T heco mpressibilitya ndai r-cushioneffec tso nly matter in a short

period of time after impact between the body and the free surface.

The pioneering contributions in this field were made by Von Karman (1929). Von

Karman useda flatp lateapproximation in thes imulation,w hich underestimated loads

for small deadrise angles. Armand and Cointe (1986), Cointe (1991)and Howison et al.

(199 1) extended Wagner's theory to analyze the water entry problem using matched

asymptotic expansions. The limitation of above studies was that it required the

impacting body to be nearly parallel to the calm free surface, i.e., with small deadrise

angles.

Another way of solving the water entry problem was first put forward by

Dobrovol'skaya t l vcv), which provided a similarity method for the symmetric water

entryo fa wedge of infinite extent with constant velocity. Fully-nonlinear free surface



conditions and the exact body boundary conditions were satisfied in his method.

However, the solutions were not given in an explicit form and limited by the

assumptions of symmetric body shape, constant water entry speed and gravityw asnot

accounted for.

In addition to the above two approaches, numerical methods have aIso been extensively

developed to solve the nonlinear water entry problem and have become the mainstream

of research in this area. The advantage of numerical methods is that there are

theoretically no restrictions for the body shape and the water entry speed while gravity

can also be included. The Boundary Element Method (BEM) based on potential theory

and the CFO (Computational Fluid Dynamics) methods based on Navier-Stokes

equations are the commonly used to simulate the nonlinear water entry problems.

For the CFO methods, many researchers have contributed to the simulations of

slamming. For example, Kleefsman et al. (2005) used the volume of fluid (VOF)

method to investigate a dambreak problem and water entry problems. Kim et al. (2007)

used the smoothed particle hydrodynamics (SPI-I) method to simulatethe water entry

of asymmetric bodies. Yang and Qiu (2007) applied the constrained interpolation

profile (CIP) method to solve the slamming problem of2- 0 wedges entering water.

CFO methods are more time-consuming and more demanding in computer capacity

compared to I3EM. Many efforts have been made to solve the problem of2- 0 wedges

entering water with an initially calm free surface based on the BEM. The first

successful numerical simulation of2- 0 steep water surface motions and overturning

waves was made by Longuet-Higgins and Cokelet (1976), in which Laplace equation

was solved by BEM based on Green's function and the free surface was updated by the

Mixed Eulerian-Lagrangian method (MEL). Vinje and Brevig (1981) modified their

method based on Cauchy's complex integral theorem. Greenhow and Lin (1987) later

used this method to solve the water entry problem. However, their results were only

satisfactoryfor deadriseangles larger than60 degrees, becauseof the instabilityof

3



computations caused by the thin jet along the wedge side for small deadrise angles. In

addition, this method can only be applied to 2-D problems due to the nature of the

complex integral theorem. However, the exact description of the thin jet is not

necessary because the pressure in the jet is nearly atmospheric and ith asli ttleinflu ence

on other parts of the fluid. Zhao and Faltinsen (1993, 1996) developed a BEM with a

cut-off treatment of the jet flow to avoid the numerical instability. A new segment was

introduced at theje t root and the upper part of jet region wasremoved. They used the

finite difference method to calculate the time derivative of the velocity potential, and

then computed the hydrodynamic pressures. However, this method in general can not

give good accuracy of the pressure distributions. In addition, the method for

representing the free surface at each time step was not convenientt ou se.

Based on Zhao and Faltinsen (1993)'s work, Lin and Ho (1994) introduced linear

elements, instead of the constant element, to evaluate the free surface elevations and

potential derivatives. The benefit of using linear elements was that the flow field near

the intersection point can be described numerically with physical meaning. However,

the pressures were still computed using the finite difference method. Later, the free

surface was better represented using cubic splines or non-uniform rational B-splines

(NURBS) to increase the accuracy. Battistin and lafrati (2003) introduced cubic

splines to describe and rediscretize the free surface when evaluating hydrodynamic

loads during water entry of 2-D axisymmetric bodies. Chuang and Zhu (2006) used

NURBS to represent the body surface and the free surface profile when solving the

2-D water entry problem.

To improve the accuracy of the pressure, two methods are widely used to give a better

prediction of pressure distributions in the recent studies. One is theco mplexve locity

potential method. Greenhowa nd Lin (1987) used this method to evaluate slamming

pressure for 2-D wedges entering water. Sun (2007) further developed Zhao (1993,

I996)'s method to compute pressure distributions. Wu et al. (2010) also used the

complex velocity potential to solve the water entry problem in the stretched



coordinate system for a symmetrical wedge, an asymmetrical wedge and twin wedges.

The other method to compute pressure distributions was developed by Tanizawa

(1995), in which the time derivative of velocity potential was directly obtained from

solving a boundary integral equation, then the pressure can be computed using

Bernoulli's equation. Qian and Wang (2005) used this method to calculate pressures

on ships and floating structures. Kihara (2004,2008) applied the same method to

compute pressure distributions for slamming problems. The latter method was

adopted in this thesis, due to its less requirement for computing resources than the

complex velocity potential method.

1.2 Summary of the Present Work

In this work, the numerical solution for 2-D nonlinear water entry problem was

developed based on Zhao's method (1993). Other computational techniques were

adopted in this work to improve both the accuracy and stability of computations in

this thesis. The initial disturbance is simulated by Wagner's approximation (Sun,

2007). The forth-order Runge-Kutta scheme was used for the time integration and a

five-point smoothing scheme was applied to eliminate numerical instability. The

parametric cubic-splines were used to represent and rediscretize the free surface and

velocity potential for each time instant. A scheme based on the work of Kihara (2004,

2008) has been developed for computing pressure distributions. The constant

elements were used in the computation. The cut-off method was employed to deal

with the intersectionbetweenth efree surface andth ebody surface.lnthis work, the

velocity was assumed constant and gravity was neglected.

The numerical method was first verified by applying it to the problem of impulsive

wavemaker. Validation studies were then carried out to the symmetric water entry of

2-D wedges with various deadrise angles. Pressures, free surface elevations and

hydrodynamic forces were computed and compared with experimental results,



analytical solutions, and solutions by other numerical methods.

1.3 Thesis Contents

This thesis is arranged as follows. Chapter 2 describes the mathematical formulation

with regards to the numerical method. Firstly, the governing equation, boundary

conditions and the related initial conditions are presented. Secondly, the Boundary

Element Method (BEM) obtained from the Laplace equation and equations for

hydrodynamic pressures are briefly described. Thirdly, the numerical implementation

of the BEM in the time domain is revealed and the procedure for time marching is

explained. Finally, the cut-off treatment of the thin jet flow and the Cubic Splines

used for regriddingoffree surface profiles and velocity potentials are introduced. In

Chapter 3, an impulsive wavemaker case is first computed to verify the developed

method. The method is then employed to symmetric water entry of2 -0 wedges with

various deadrise angles. The free surface elevations, pressure distributions and

hydrodynamic forces are subsequently obtained. Numerical results are compared with

experimental results, analytical solutions and solutions by other numerical methods.

Conclusions and recommendations are presented in Chapter 4.



Chapter2 Mathematical Formulation

2.1 Gove rning Equation

A Cartesian coordinate system o-xy, fixed in space is chosen with the origin at the

undisturbed water level, with ox representing the horizontal direction and oy the

vertical direction, positive upward, as shown in Fig. 2-1. It is assumed that the fluid is

inviscid and incompressible and flow is irrotational. It is also assumed that there are no

air cushions and no non-viscous flow separation. In addition, the fluid acceleration

associated with initial impact is generally much larger than the gravitational

acceleration,a nd the time duration that is investigated int his problem is muchsma ller

compared to typical wave periods. Therefore, the effect of gravity is neglected. A

velocity potential¢ (x,y,t) satisfies the Laplace equation in the fluid domainn .

(2.1)

The water entry problem can be formulated as an initial boundary-value problem (BV?)

for the velocity potential ¢ and solved with either Neumann or Dirichlet type of

boundary conditions.

2.2 Boundary Co nditions

For the problem of 2-D wedges entering water with an initially calm surface, only half

of the fluid domain (x>O) is studied due to the symmetrical property of the problem

about the y-axis, as shown in Fig. 2-1.



S,. W edge Apex

Figure 2- 1 Coo rd inate sys tem and defini tions (S un, 2007)

Fully nonlin ear bound ary co nd itions are imposed on the free surface S, The dynamic

bound ary conditi on on the free sur face in the Lagran gian form is

(2.2)

satisfied on the exac t free-sur face, where I] =TJ(X ,t ) is the instantaneous free-s urface

e leva tion and Po is the pressure on the free-surf ace ass umed to be zero . If the effec t of

gravity is neg lected compared to the large fluidacce leration, itcan be rewritte nas

(2.3)

The kinem atic bound ary conditions on the free surface in the Lagrangian form are

ex presse d as

(2.4)



(2 .5)

Along the wedge, a kinematic boundary co nd ition is imposed as

i}1= Von
an (2 .6)

where V is the velocity vec to r of wedge and II is the unit norm al vector on the wedge

po int ing out of the fluid .

The no-fl ux boundary condit ion imposed on the bottornSj , on the far fie ld S" andon

the symmetric bound ary S; is

i!1 =0an

2.3 Initia l Conditions

Initi ally, the ve locity potential is zero on the undi sturb ed free surface .

¢(X,O) = 0

(2.7)

(2 .8)

For the water entry probl em , the initial disturb ance on free surface profil e caused by

the impact between wedge and water has to be taken into acco unt. Based on the work

of Sun (2007) , the fo llowin g Wagner ' s approximatio n meth od to simu late the initial

free surface e levation is employed.



1](x,o) =~arcsin (~) -Yo

c =~
2 tanu

(2.9)

(2.10)

where Yo is the submerge nce of wedge apex relat ive to the undisturb ed free surface ,

anda is the deadrise ang le (see Fig. 2- 1).

2.4 Hydrodynamic pressure

The hyd rodynami c pressur e p can be computed accordin g to the Bernoull i' s eq uation.

(2 .11)

wherePa is theatmospheric press ureand p isthewaterdensity. Sincetheinflllence of

grav ity can be neglect ed, the equatio n can be rewritt en as

P_ P" =- p (~+~IV¢12) (2.12)

It ca n be eas ily see n that the time derivative of the ve loc ity potential 8¢/8t must be

co mputed in orde r to obta in pressure. Although it ca n be comp uted by applying the

finite diff erence method to the ve locity potentia l as in the wo rk of Zhao ( 1993) and Lin

( 1984), the co mputationa l acc uracy of the pressur e is genera lly not sufficie nt. For more

accurate predi ction, the tim e derivat ive of the ve locity potentia l 8¢/ 8t can be

obtai ned by so lv ing the Laplace equat ion for 8¢/ 8t with the fo llow ing boun dary

conditio ns acco rd ing to the work of Kihara (2004) .



¢, =_~I'V¢1 2 _gy

~ = oan

onS w

(2.13)

(2.14)

(2.15)

(2.16)

where a/as is the tangential derivative along the body surface, and x denotes the

local curvature of the body contour. The general form of the normal derivative of ¢,

on the body in motion in Eq. 2.14 was simplified for the translational motion with

constant velocity by Tanizawa (1995).

The initial condition is necessary to complete the problems, which is given as

¢,= 0 at 1=0 (2.17)

The procedure of solving for ¢, is similar to that of solving for velocity potential¢ .

Since the influence matrices for ¢, are same as those for¢ , no additional matrix setup

or inversion is necessary when solving the boundary integral equation for¢, . Therefore,

this method for solvingfor ¢,wi ll not intensify the computations.

Integrating the pressure along the body surface S'; will result in the forceF

F = Lpnds (2.18)

where p is the pressure distribution, and 1/ is the unit normal vector on the wedge

surface.



2.5 Boundary Element Method (BEM)

The Boundary Element Method has been very successfully used in the solving 2-D

and 3-D wave-body interactions. In such problems, the method offers the great

advantage of describing the flow by its boundary values only. Therefore, the

dimensions of problems are reduces by one. Moreover, in the analysis of wave-body

interaction, the only information needed in the computation is the boundary geometry,

velocity potential and its flux on the boundary. Applications of BEM to nonlinear

wave-body interaction problems essentially consist of two coupled parts. The first isa

solution of the Laplace equation at a given time. The second part is a forward stepping

to the next time instant at which the Laplace equation is solved repeatedly.

In BEM, the Laplace equation is converted to a Boundary Integral Equation (BIE) by

introducing Green's function G(p,q) =- f:;- In r
N

, where rpq =jp- ql, p is the field

point and q is the source point. The BlEo btainedbyapplyingG reen's second identity

to ¢(x,y ,t ) andG(p,q) is given as

whereS representst he boundaries of the fluid domain. When the field point p is on the

boundaryS , Eq. 2.19ca n be rewritten as

In the numerical evaluation of Eq. 2.20, free surfaceS; body surface S', , bottom

surface S'; and far field boundary SR are divided into a number of constant elements,



on which ¢ and o¢/on are constant. Eq. 2.20 can be rewritten in the discretized

form as

where Ni sth enumb er of elementsdi stributed onth eb oundaries.

Generally speaking, high resolution is needed to describe the free surface close to the

intersections with high curvature. In the region close to the intersections,fin er elements

are used while elements with larger size are distributed on the boundaries far away from

the intersections. However, it is not preferable that the ratio of the largest and the

smallest elements is overly high, since the drop in computational accuracy may lead to

numerical instability, especially in the region where the velocity gradient is high.

According to Kihara (2004),th erati o ofl engths oftw o adjacent elementss hould be no

more than 3 in order to keep the computation stable. The effect of different ratios of

lengths of adjacent elementswillbepr esentedin Chapter 3.ln addition,in ordert ou se

the smoothing scheme, equal-size elementsareused onp art ofth e free surface near the

intersections, while larger elements are distributed on the rest of the free surface. It

should be noted thatth e control of spatialdi scretizationdurin g computationi s vitalt o

both the stability of the computation and accuracy of the results.

Introducing

Eq. 2.2 1 becomes

Hi./=- -:}; t -/;;ln(rl"l)dS/

Gi./=--:}; I jln(r'''l) dsJ

1 n - n (o¢)
-2 ¢,+ 'L Hi.l¢/ ='LGi.J -;-

; =1 j =1 un }

(2 .22)

(2.23)



Eq. 2.23 can be rewritt en as

" " (8¢)L H;,A = L G',J ;;-
; ::::1 I ,d un J

where H ;,1 and G',J are the intlu ence coefficient matrices.

H ;,J = Ii ., for i oF- j

= ii ,.J+ ~ for i = j

The logar ithmi c s ingularity ca n arise when i =j, i.e., p coi nc ides with q. For i =j ,

due to the ort hogo na lity ofrpqa nd n( Kythe, 1995).

(2.24)

(2.25)

(2.26)

where I; is the length of the e leme nt i. For r"" =¢I; / 2 , r =0 at ¢ =0 and

r =± I, / 2 at ¢ =± I ,

For i e ] , the integral for eac h e lemen t is eva luate d by the 4- point Ga uss ian



where xp.YPare the coordinat es of midp oint on element p; X"I.Y"I are the coo rdinates

of the first node of e lement q; X,,2.Y,,2 are the coo rdinates of the seco nd node of

eleme nt q, as shown in Fig. 2-2; c, are Gauss ian quad ratur e coe fficients and W i are

weight s; Jis the Jacobi an of integration from global coo rd inate to local coo rd inate;

and /" is the length of the e lement q.

quadratur e.

H ,.} =-:}; I -/;; In(rl"l )ds}

= - :}; Jt w, [n.(~ -xp)+n/v:-- YI')] l rI"l 2

~q =:t .!.. [(I - C,)Xq, + (1+C,)Xq 2 ]
,0, 2

Yq = t H(I - C,)Yq , +(I+C,)Yq 2 ]

J =.!..'
2 q

1 r
(x", Y, ,) (x"•.Y,,)

Figure 2-2 Elements, mid-p oint s on the bound ary

(2.28)

(2.29)

(2.30)



c,=-0.8611363dO

c2 =-0.3399810dO

cJ= 0.3399810dO

c,= 0.861l363dO

1V, = 0.3478549dO

1V2 = 0.652 1452dO

IVJ = 0.652 1452dO

1V,= 0.3478549dO

One can so lve this matrix eq uation numericallyusin g a scheme fori inear sys tem, such

as the Gauss ian elimination method . As for the pressure computation, the integral

equation for tim e deriv ativ e of velocity potent ial ca n be so lvedinthe sameway.

At each time instant , by numerically so lv ing the Eq. 2.20, the unknown s, both the

ve locity potenti a l on eac h e leme nt, and the norm al velocit y on each element along the

free surface can be obtain ed . Th e new free surface profil e and ve locity potenti al on the

free surface for the next tim e instant can then be co mputed.

2.6 Time-Marching Scheme

When so lving non linear free-surf ace probl ems, the exac t free-surf ace bound ary

co nd ition has to be satisfied on the exact free-surface position . The nonlin ear wave

probl em was studied by Schwartz ( 1982) using the series expans ion techniqu e under

the Eulerian descripti on to app roxim ate velocity potential and free surface e levation.

How ever , the disadv ant age of usin g the Eulerian descript ion was that both the

bound ary co nd it ions and the boundary position have to be appr ox imated.To avoidthis

probl em , an opti onisto emp loyLagran giandescripti on . lntheLagrangiandescrip tion ,

the free-surf ace positi on is known , but the disad vant age of it is that the gove rn ing

equation has to be approximated. A new numeric a l sc heme ca lled Mixed

Eulerian-Lagra ng ian (M EL) meth od was deve loped by Lon guet and Co ke let ( 1976) ,

which can ove rcome the disadv antages of both the Eulerian and Lagrangian

descripti ons.



The MEL method was first used to simulate the time-history of steep surface waves.

In the time marching, the surface was represented by marked Lagrangian fluid particles,

This method requires that the integral equations are solved at each time step in the

Eulerian frame, with fully nonlinear boundary conditions satisfied on the instant free

surface and the body surface. The new position of the free surface for the next time

instant can be found by integrating Eq. 2.3, Eq. 2.4 and Eq. 2.5. The x component of

velocity 8¢/8x and the y component of velocity a¢/fJycan not be obtained directly from

the HEM. However, from the velocity potential¢ on the free surface, one can compute

the tangential component ofve locity a¢ / as, combined with the normal component of

velocity a¢/ allso lved from the HEM, the x component of velocity a¢/ax and the y

component of velocitya¢/ fJy can be expressed as

~= ~n +~n
ax as y . an .r

(2.31)

where n,a nd lI y are the horizontal and vertical components of the unit normal vector

1I(1I" II,.)on the free surface, respectively. The tangential derivative of the velocity

potential 8¢/as can be computed by using the finite difference method.

The time integration of Eq. 2.3, Eq. 2.4 and Eq. 2.5 is then performed by a forth-order

Runge-Kutta (RK4) scheme, as shown below. The formulae for Runge-Kutta method

are given by Burden and Faires (2005).



devld t =!(t ,(O)

(2.32)

where to can be eitherx ,y or ¢ . ev, and (0 ;+1 arecor respondingva luesat times tep

n+l andn , and M is the time interval

During the time marching process, the sawtooth-type instability of the free surface

occurs naturally when the integral equation is solved numerically. Longuet-Higgins

and Cokelet (1976) adopted a five-point smoothing scheme to avoid the sawtooth

phenomenon. However, the scheme is inapplicable to the first two and last two points

on the surface. A smoothing scheme derived from the third- order least squares

approximation over five points was introduced in this work (Sun, 2007).

It should be noted that the smoothing scheme is only applied to the near intersection

region on the free surface where the free surface profile changes dramatically. This

smoothing scheme can also be used to smooth out the x, y coordinates andth ev elocity

potential¢ . Thefir sttw o equations of Eq. 2.33 are used for the first two pointsa nd the

last two equations of Eq. 2.33 are employed to the last two points. The third one is used

for the rest of the points.



J;= -k (69Y1+ 4Y2-6Y3+ 4Y4- Ys)

J;=is(2YI + 27Y2+ 12Y3- 8Y4+ 2yJ

J;= is( -3Yi_2+ l 2Y,_1 + l 7Yi + 12Yi+1-3Y'+2) (2.33)

I N-I=is(2YN_4-8YN_3+ 12YN_2+ 27YN_I+ 2YN)

I N = -k( -YN-4+ 4YN_3- 6YN_2+ 4YN_I+ 69YN)

where Yi are theo riginal values befores moothinga nd f, are values after smoothing,

and N is the total number of points on the free surface needed to be smoothed out.

The time step size /11 in the time marching procedure should be chosen with care,

because a large M may lead to numerical instability while a small /11 will take

unnecessary computational efforts. Based on the Courant-F riedrichs- Lewy condition

(Roache, 1972 and Kihara, 2004), M was decided in consideration of the following

condition:

where \7¢, is the velocity of the midpoint on the element i , and S l, is the length of

the element i .

2.7 Regridding by Parametric Cubic Splines

After updating the free surface by moving midpoints on each element at each time step,

the new midpoints may become overly concentrated or scarce, especially in the region

near the intersections, which is likely to cause computational instability. To avoid this

phenomenon, regridding ofthe free surface at each instant is necessary. Parametric



cubic splines are chosen to interpolate the new node points and midpoints of each

element, as well as the velocity potential on new midpoints. However, given the special

property of the free surface that it can turn over on itself,p arametric cubic splines using

polygonal arc length is devised to approximate the free surface.

For parametric cubic splines, each spline segment is expressed in terms of an

independent variables as (Burden and Faires, 2005):

x,(s )=a,(s-so)' +b,(s - so/ +c,(s-so)+d, (2.35)

where s is the polygonal arc length from the first point of the cubic spline to the point

of desire; So is the polygonal arc length from the first point of the cubic spline to the

starting point of any segment i ; x, can be x coordinates , y coordinates or velocity

potential to be computed. The coefficients a.ib ., », and d, are calculated using known

positions of the updated midpoints and continuity of the first and the second derivatives

of x" In this work, the free surface was regridded by equal arc lengtha nd the distances

were calculated from the first point on the splines to the evenly-spaced points. Based on

the arc length, a corresponding cubic spline is chosen to compute thex,ycoordinates

and velocity potential of a desired point.

The whole process can be summarized into three steps, as shown in Fig. 2-3. Firstly,th e

midpoints A, B, C, 0 , E, F are updated to the new position AJ, B" CJ, OJ, E" F1 from

originalfrees urface S. Secondly, parametric cubics plinesa re formulated to represent

the new free surface Sl using known positions of these updated midpoints and

continuity of the first and the second derivatives. Thirdly, based on the given length of

new elements, new nodes A2, B2, C2, O2, E2on the free surface SI can be calculated, as

well as the midpoints of these elements and velocity potential on them. The new nodes

form the new free surface S2, which provides updated boundary conditions for next



tim e step .

AI~A2~62
6 1 C2

A~CI DIEI~ 52
fl 5 1

6

C 5

Figure 2-3 Procedur e of regridd ing free surface with param etri c Cubic Splines

2.8 Cut- off treatment of the jet flow

In the studies of nonlin ear wave-body interact ions, spec ially non linear free surface

flow induced by impul siv e mot ion , the loss of acc uracy at the inte rsec tio n point s will

occ ure. The so -ca lled intersection point is where a thi n jet and body surface meets on

the free surface, such as po int A shown in Fig. 2- 1

Acco rding to the wo rk of Sun (20 07), a very thin jet will run up a long the body surface

when the body with impulsive motion impacts the water surface, es pec ially when the

co ntact ang le between the body surface and the water surface issmall. For the cases of

sma ll contactangles,computationa lerrorscaneas ilyarise in the area of intersection

po int, in the form of some point s goi ng through body, which is physically impossible.

This kind of errors ca uses the num er ical code to co llapse. The theoretical ex planation

of the pro blem is that the velocity becomes s ingular at the intersection point s, that is,

the velocity is infinit e. Therefore , the thinjet flow must be properly treated.

Two as pects are needed to be co nsidere d in the treatm ent of the je t flow: one is the



computationala ccuracY,and theo ther isco mputationals tability. The two are usually in

conflict with one another. When finer elements are distributed near the intersections,

more accurate resultscanbe obtained,h owever, the computation easily gets unstable.

On the other hand, when fewer elements are used close to the intersection points, the

code becomes stable while the jet flow is hard to be simulated accordingt oth ew ork of

Lin (1984). One of the commonly used methods to solve this problem is a cut-off

treatment of the thinj et flow.

In the work of Zhao (1993), a new element normal to the wedge surface was employed

to cut off the jet when the contact angle between the wedge surface and the free surface

is smaller than a given value. Kihara (2004) also used the contact angleb y introducing

a new element to cut off the jet, however, the new element was not required to be

normal to the wedge surface. Sun (2007) cut off the jet flow by introducing athr eshold

value of distance from the point next to the intersection point on the free surface to the

wedge surface. A slightly different method from the one that Kihara (2004) used was

derived in this work. Based on the fact that constant elements were employed in this

work, it gave the flexibility to locate the position of intersection points. The cut-off

treatment is illustrated in Fig. 2-4 fora wedge.

Wedge Surface

Figure 2-4 Cut-off treatmentof theje t flow (Sun, 2007)

As shown in Fig. 2-4, A, B, C and D are updated midpoints on the free surface. Usually,



the inte rsec tion point is the intersection point PI of the wed ge surface and the line AB.

How ever, when the ang le r between the wedge surface and the line AB is sma ller than

a threshold va lue Zij the line BC is then used to ca lculate the intersec tion point Pj. If the

co ntact ang le between the wedge surface and the line BC is still sma ller than /3 , the line

CD is usedi nstead unti l thecontac tang le iss ma ller than/3 .

The cut-o ff treatm ent a llows for the simulation of the jet flow without compromis ing

the stability of the numerical code. An important fact sho uld ben ote d that the upper je t

flow has little influence on the pressur e d istr ibution on the wedge sur face orthe rest of

the free surface . Thepressureisnearly equalto atmospher ic pressure in theupperpart

of the je t. That is why the thinjet ca n be cut off in d ifferent ways without af fecting

result s such as the profil e of the rest of the free surface and pressu red istributi on on the

wedge surface .

2.9 Summary of the Computational Procedure

The co mputational procedu re can be summa rized as the following flow chart. Starting

with the initial boundary co nd itions, then use the BEMto obt ain potentialvelocity¢on

the wedge surface and its flux 8¢j8n on the free surface. The tangenti al der ivative of

ve loc ity potenti al 8¢ j 8s on the free surface can be so lved us ing the fini te di fference

meth od based . on the known potenti al ve locity d istribution on the free surface .

Tra ns forming 8¢ j 8n and 8¢j8s to 8¢j8x ando¢ j 8y , the free surface profil e and

ve loc ity potenti al on the free sur face can be updated for the next time instan t. A fter

updat ing the free surface by movin g the midp o int on eac h e leme nt, the gr ids maybe

ove rly dense or sca rce near the intersection point on the new free surface , therefo re,

para metr ic Cubic Splines are used to regr id the free surface and obtain ve loc ity



potential on the new midpoints after the regridding. In order to make the computation

stable, RK4 integral method and five-point smoothing scheme are employed in the

time-stepping procedure. The new free surface profile and velocity potential on the free

surface will then be used as the updated boundary conditions fort hen exttim ein stanl.

Figllre 2-5Fl ow chart ofc omputationalpro cedllre



Chapter3 Numerical Results and

Discussions

To verify the numerical method developed in this work, computations were first

conducted for an impulsive wavemaker with prescribed motion. It is similar to, but less

complicated than, the cases of symmetric 2-D wedges entering water. The present

method was then applied to symmetric 2-D wedges with various deadrise angles. The

time histories of pressure distributions, free surface elevations for both cases are

presented and compared with experimental results, analytical solutions and numerical

results obtained by the similarity method, BEM (Zhao,1993), and the CIP method

(Yang, 2007).

3.1 Impul sive Wa vcmakcr Motion

An impulsive wavemaker starts to move with a constant horizontal velocity U from a

state of rest. At r-O+, the velocity is a step function and the acceleration is infinite.

Analytically, a logarithmic singularity is expected at the intersection point of the free

surface and the wavemaker. This phenomenon is confirmed by the experiment

performed by Lin (1983), shown in Fig. 3-1. It was noticed that the water rose up to a

level that the wavemaker was almost parallel to it before a jet ejected from the

intersection point. According to Lin (1983), the ejected jet quickly broke up under the

effect of surface tension and possibly air currents generated by the wavemaker.

Therefore, only the very short period of time after the impulsive wavemaker moved

was investigated in this thesis.



Figure 3-1 Snapshoto fimpul sivew avemaker (Lin, 1983)

3.1.1 Grid generat ion in the chosen doma in

To simulate the motion of the impulsive wavemaker numerically, a fluid domain is

chosentobea longrec tangular tank,asshown in Fig. 3-2. On the left-end boundary, a

piston wavemaker pcrforrns prescribed impulsive motion and the right-end boundary is

a rigid vertical wall. The length of the tank is 10m, which is long enough that influence

of the reflection from the vertical wall can be avoided during the short periodof

computation. Water depth is 1111, and the horizontal velocity oft he wavemaker is lm/s,

In the computation, the boundaries of the domain are discretized into a number of

constant elements, on which¢a nd 8¢ j 8nare set constant. The size of the elements

varies along the boundaries, as shown in Fig. 3-2.



Figure 3-2 Grids on the wave tank bound aries

The numb er of elements is NF= 74 on the free surface with the minimum size equal to

0.04m close to the intersec tion point of the free surface and wave maker, NW= 25 on

the wave maker, NB= 50 on the bottom and NL= 5 on the right-end wall at t=O+. The

size of time step needs to be sufficie ntly small. It was chose n as dt = 0.0 Is acco rding to

Eq.2.37 .

The veloci ty potent ial distribu ted on the wave maker at t= 0+ is plotted in Fig. 3-3, and

compared with the app roxim ate analytical so lution and numerica l results by Lin

(1984). The approximate analytical solutio n is given by Eq. 3.1 (Lin, 1984).

k = (2n+ I):r
n 2d

'7 = - 3!!....log (tanh !!.!...)
:r 4d

(3.1)

The results by the present meth od agree well with other solutions. From Fig. 3-3, it

can be seen that the slope of the velocity potent ial curve at y=O is fairly steep. Th is

sugges ts that the vertica l velocity at the intersection is almos t infinite at t= 0+, as

pred icted by the related theory.



Figure 3-3 Velocity potential on the wavemaker at t=O+

To investigate the influence of different ratios of lengths of adjacent elements on the

velocity potential, a range of ratios ofle ngths are used to solve for the velocity potential

on the wavemakerat t=0+. Rt represents \he ratio of lengths of adjacent elements.

When the ratio Rt is equal to 5, the length of elements on the wavemaker is 0.04m

while the length of elements on the bottom is 0.2m. When Rt is equal to 2.5, the length

of elements on the wavemaker is 0.04m while the length of elements on the bottom is

0.1m. When Rt is equal to1.25, the length of elements on the wavemaker is 0.04m

while the length of elements on the bottom is 0.05m. The results for these ratios are

plotted and shown in Fig. 3-4. It can be seen from this figure that the results near the

intersection point of wavemaker and the bottom get closer to the analytical solution as

the ratio approaches I, which suggests that comparable sizes of adjacent elements can

lead to more accurate results.



Figure3 -4 Velocity potentia lo n thewavemakerford ifferent Rts

3.1.2 Free surface elevations, pre ssure distributions and hydrodynamic forces

For the subsequent time steps, compariso ns of free surface elevat ionsobtained by the

prese nt method, the ana lytical so lution and Lin (1984) are presented at /=0 .025s,

r-0 .05s,/=0.105s,r-0.145s and r- 0.195s in Fig. 3-5 to Fig. 3-9, respectively.

Figure 3-5 Free surface elevation att =0.025s
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Figure 3-6 Free surface elevation at t=O.050s
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Figure S-? Free surface elevatio n at t=O. I05s
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Figure 3-8 Free surface e levatio n att=O.145s
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Figure 3-9 Freesurfaceeleva tionatt=O.195s

It ca n be observe d from these figures that the resu lts of free surface e leva tions bythe

present meth od agree well with resul ts from the ana lytica l so lutio n and Lin ' s meth od .

The only rem arkabl e difference is the positi on of the highest po intsintheplots, which

isalso the pos itionof the inte rsec tion po intof thefreesurfaceand thewavemaker.The



positions of intersection points given by present method are lower than Lin's results.

This phenomenon becomes more obvious when the jet along the wavemaker gets

higher. The reason is that a cut-off treatment of the jet flow is employed in present

method based on the fact that the pressure in the thinj etal ongth e wavemakeri salm ost

equal toatlllospheric pressure and does not contributesignificantly to the total force

actingo n the wavemaker. lna ddition, the positiono f the highest point is closely related

to the density of the grids in the intersection region. According to Lin (1984), the

denser grids near the intersection will result in a very high intersection position but the

rest of the free surface shape is not affected. On theo ther hand, the long and thin jet can

easily cause computational instability. The advantages of current method over Lin's

are fewer grids needed in the computation due to the cut-off technique used, hence

less computational time, and better stability of the numerical codes.

Fig. 3-10-Fig. 3-13 show comparisons of pressure distributions given by the present

method and Lin (1984)'s method at t=0.05s, t=0.10, t=0.25, /=0.40, respectively.

! 0.5

Figure 3-10 Pressure distribution on the wavemaker at t=0.05s



Figure3 -!! Pressure distribution on the wavemaker at t=O.JOs

Figure 3-12 Pressure distribution on the wavemaker at t=O.25s
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Figure 3- 13 Pressur e distribu tion on the wave make rat t=OAOs

It can be see n that the result s obtai ned by present meth od and Lin 's methodagree well

in genera l. The sma ll discrepancies co uld be ca used by the d iffere nt meth ods used for

co mputing the time der ivative of ve locity potential , wh ich is a sig nifica nt co mponent

of pressure. Lin used fin ite di fference method to get the time de rivative of ve locity

potential whi le the tim e derivative of ve locity potential was d irec tly so lved from the

BEM in this work .

The force acting on the wavem aker we re co mputed by integrat ing pressure along the

surface of wave maker, and are shown in Fig. 3- 14. Despi te the varyin g free surface

e levatio nsateach time instant,i tca n be see n that the force isi nsens itive in time in both

Lin's result s and present result s. Due to the fact that the press ure distribut ions

pred icted by present meth od are s lightly less than those by Lin's method , hence the

resultant forces are a lso less than Lin's result s.



Figure 3- 14 Horizontal force acting on the wavem aker

3.2 Symmetric water entry of 2-D Wedges

For the cases of symmetric 2-D wedges entering water, the comput ations were first

ca rried out for wed ges with deadri se an gles of3 0, 45 and 60 degrees. The free surface

elevations and pressure distrib utions on wedge surface were computed and co mpared

w ith result s by the s imilarity meth od, BEM (Zhao, 1993) and the C IP method (Ya ng,

2007) .

3.2.1 Gridgcnc rat ion in thcchosc n do mai n

A flu id domain with a lengthof l Omanda depth of 1m was chose n for the numerica l

simulation. No se paration was co ns ide red in this prob lem . Due to the symmetric

property of this prob lem about the y-ax is, only hal f of the dom ain (x>O) was stud ied.

The do mai n boundariesare div ided bystraight linesegme nts,asshown inFig.3 - 15



r
Figure 3- 15 G irds on the fluid dom ain bound aries

An enlarged view of the local region near the intersect ion point of the free surface and

wedge is g iven in Fig. 3- 16. It ca n be see n that the denser grids we re used in the regio n

near the intersecti on point. Not e that the s izes of e lements between two adjace nt

sur faces are comparable so that the computational stability can be achieved. On the

wedge surface, the size of the elements was equal. On the bottom and the right- end

wall surface , larger but equa l-s ized e lements were d istribut ed . On the free surface,the

first 20 e lements were of equa l s ize for the smoo thing sc heme to be used, and the s ize

of e leme nts gradually increases as far from the wedge on the rest of the free surface .

Figure 3- 16 Grids near the intersection point

To facilitate the simulation of wedges entering water, computation was sta rted initially

with wedges slightly subme rged into water. The apex of wedge was located at y=



-O.Olm at t=O+. Since there is a rapid change in the free surface profile at the initial

water entry stage, especially for a wedge with a small deadrise angle, Wagner' s

approximation method (Sun, 2007) was employed to represent the initial free surface

elevation when gravity is negligible. The constant velocity of wedge entering water

was set to Zrn/s,

3.2.2 Free surface elevations and pressure distributions

To investigate the convergence of pressure distribution for different sizes of grids on

wedge surface, three different grid sizes are used in computation and results are

compared for wedge with the deadrise angle of3 0 degrees. The grid size on the free

surface near the intersection area is set as 0.005m. The chosen grid sizes on wedge are

0.00866m, 0.00692m and 0.0052m. The results are given in Fig. 3-17.

Figure 3-17 Pressure distributions for different grid sizes on wedge

It can be seen that the results agree with the similarity results best when the grid size

on wedge surface equals 0.0052, which is closest to the size of grids on the free

surface near the intersection point. This also proves that comparable size of grids on

two adjace nt surfaces is desirable in the computation as indicated in the wavemaker



As menti oned above, equal-s ized grids we re employed in the region near the

intersect ion point of free surface and wedge surface, and lager size of grids used on

the rest of free surface . To invest igate the influence of the len gth of the equal-s ized

gr ids on the free surfa ce profil e, the equal-s ized grids were distri butedintherange of

O.04m , O.05m and O.06m from the intersection point at the start of co mputation,

res pectively. The size of equal-s ized grids was set as O.002m for a ll tests. The results

are shown in Fig. 3- 18.

Figure 3- 18 Freesurfacee levations for di ffere nt lengthsofe qual-sized grids

It can be see n that the lengths of equa l-s ized grids are used in the co mputatio n do not

have a grea t impact on the free surface profil e. The reason for employing equal-s ized

grids is that the smoo thing scheme can only be applied to evenly-s pace d point s. It

should be noted that this area gets greate r as the deadrise angles decrease.

The time histories of free surface eleva tions for the wedge with deadri se ang leof60

degrees from O.006s to O.03s at an increment of O.006s are shown in Fig. 3- 19toFig.

3-23 . The result s are nond imensionalized by dividing VI, and V is the ve loc ity of

wedge entering water and I is the tim e instant. The res ults are compared with so lutions



by the s imilarity meth od and experimenta l result s (Greenhow and Lin , 1983), as

shown in Fig. 3-24 . It can be see n that the agreem ent between the present resuits and

other so lutions is in genera l goo d. In the beginnin g stage of the s imulation, sma ll

discrepanci es around the jet spray root area are shown in Fig. 3- 19 and Fig. 3-2 0.

However, the discrepancies disappear as the co mputatio n becom es steady as shown in

Fig. 3-2 1, Fig. 3-22 and Fig. 3-23 .

Figure 3- 19 Free surface eleva tion of the wedge w ith deadri se angleof6 00a t t=0.0 06s

~, u

Figllre3-20Freesurfaceelevationof the wedge with deadriseangIe of 60° at t=0 .012s



Figure 3-2 1 Free5 lIrfacee levalionof lhewedgewilh deadr iseangleof600a l 1=0 .018s

Figllre3-22 Free surface elevat ion of the wedge with deadr ise angle of 60° at 1=0.0245



s. 0

Figure 3-23 'Freesurfaceelevation of the wedge with deadrise angle of 60° at t=0.03s

Figure3-24 Snapshot of water entry of wedge with deadri se ang le of 60° (Lin, 1983)

In the present meth od, on ly part of the thin jet flow was s imulated in the co mputation

and co mpared w ith the s imilarity so lution.



Fig. 3-25 to Fig. 3-29 show the time histories of pressure distributions on the wedge

surface with deadrise angle of 60 degrees from 0.006s to 0.03s at an increment of

0.006s. The results are nondimensionalized by dividing 0.5 p V2
, where p is the

water density and V is the velocity of wedge entering water. The results are compared

with the solutions by the similarity method in the first four figures, and compared with

other results by the CIP method (Yang, 2007) and BEM (Zhao, 1993) in Fig. 3-29.

Good agreement with other solutions can be observed in those figures. The results by

the present method are slightly smaller than the similaritysolutions in Fig. 3-25 and

Fig. 3-28 while the present results are slightly bigger than the similarity solutions in

Fig. 3-27 and Fig. 3-29. However, in the duration of the simulation, it was shown that

the results were steady without violent fluctuations. The results agree well with

similarity solutions even in the very beginning of the simulation, which may suggest

thatth e smalldi screpanciesinfree surfaceprofil eh avelimitedimp act on the pressure

distribution. The slight variation of the pressure distribution over the process of

simulation could be caused byri gridding ofth e free surface at each time instance.

Figure 3-25 Pressure distribution on wedge with deadrise angel of6 00at t=0.006s



Figure 3-26 Pressure distributi on on wedge with deadri se ang le 0 f6 00at t=0.0 12s

Figure 3-27 Pressure distributi on on wedge with dead rise angle of 60° at t=O.0 18s



Figure 3-28 Pressure distribution on wedge with deadrise angle 0 f60 0att=0.024s

Figure 3-29 Pressure distributi on on wedge with deadrise angle 0 f60 0att=0.03s

The same computat ional procedur e was appli ed to a wedge with deadrise angle of45

degrees from 0.006s to 0.03s at an increment of O.006s. The time histories of free

surface elevations are shown in Fig. 3-30 to Fig. 3-34. The result s are compared with



solutions by the similarity method and experimental results (Greenhow and Lin, 1983),

as shown in Fig. 3-35. In general, the present results are in good agreement with the

similarity solutions. The discrepancies around the jet spray root area shown in Fig.

3-30 almost disappear as the computation becomes steady. Same as in the last case,

the upper part of the thinje t is cutoff, which does not affect the rest of the free surface

profile.

{ ()

Figure 3-30 Free surface elevation of the wedge with deadrise angIe of 45° at t=0.006s
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Figure 3-3 1 Free surface elevation of the wedge with deadr ise ang le of 45° at t=0.012s

~. II

Figure 3-32 Free surface elevation of the wedge with deadr ise angle of 45° at t=0.018s



Figllre3-33 Free surface elevation of the wed ge with deadrise ang leof45°at t=0.024s

Figllre 3-34 Free surface e levation of the wedge wit h deadri se angIe of 45° at t=0 .03s



Figure 3-35 Snapshot of water entry of wedge withdeadrise ang le 0 f 45°(Lin , 1983)

Fig. 3-36 to Fig. 3-40 show the tim e histori es of pressur e distributi ons on the wed ge

surface with deadri se angle of4 5 degrees from 0.006 s to 0.03s at an increment of

0.006s. The result s are co mpared with the so lutions by the similarity

meth od .

Figure 3-36 Pressure distribut ion on wedge with deadri se angle 0 f 45°a tt=0.006s



Figure f-S? Pressliredistriblit ion onwedge withdeadr ise an gle of 45° at t=0.012s

Figure J-J'S Pressure distributi on on wedge with deadri se ang le of45°a t t=0 .0 18s



Figure 3-39 Pressure distributi on on wedge with deadri se angle of 45° at t=0 .024s

Figure 3-40 Pressure distributi on on wedge with deadri se ang le of45°att=0.03s

It ca n be see n that the result s of pressure distributi ons by the presentmethod are in

goo d agree ment w ith the similarity so lution. The s imulation was then ca rried out for a

wedge with deadri se ang le oDOdegrees. The time histori es offree surface e levations at



t=0.024s, O.Q3s, 0.039s, 0.048 ,0.05 7s are shown in Fig. 3-4 1 to Fig. 3-45 . The result s

are co mpare d with so lutions by the similarity meth od . It can be see n that the

agreement between the present result s and similarity so lutions is, ingenera l,good. It

sho uld be noted that it took more tim e steps in this case to achieve the s imilarity

result s than the previous cases.

~, 0

Figure 3-4 1 Free surface elevation of the wedge with deadrise ang le of 30° at t=0 .024s
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Figure 3-42 Free surface elevation of the wedge with deadrise allgle of 30° at t=0.03s

s.. (l

Figure 3-43 Free surface elevation of the wedge with deadrise angle of 30° at t=0 .039s



Figure 3-44 Free surface elevation of the wedge withdeadri se ang Ie of 30° at t=0 .048s

Figllre3 -45 Free surface e levation of the wedge with deadri se ang le of 30° at t=0 .057s

Fig. 3-46 to Fig. 3-5 0 show thetil11ehistori es ofpressliredistribliti ons onthe wed ge

surface with deadri se an gle of' J u degrees at 1=0.024s , 0.03s, 0.039s, 0.048 , 0.057s.

The result s are co mpared with the so lutions by the s imilarity meth od in the first four



figures, and compared with other results by the CIP method (Yang, 2007) and BEM

(Zhao, 1993) in Fig. 3-50. In general, the present results show good agreement with

the other solutions.

Figure 3-46 Pressure distribution on the wedge with deadrise angleof300at t=0.024s

Figure 3-47 Pressure distribution on the wedge with deadrise angle of 30° at t=0.03s



Figure 3-48 Pressure distribut ion on the wedge with deadrise ang Ie of3 00 at t=0 .039s

Figure 3-49 Pressure distributi on on the wedge with deadri se ang le ofJO° at t=0.048 s



Figure 3-50 Press ure dist ributi on on the wedge wit h deadrise ang le of30o at t=0 .057s

3.3 Symmetric water entry of 2-D wedge s with various

deadrise angles

Free surface e levatio ns and pressure distribut ions on wedges wit h va rious deadrise

angles were a lso computed by the present method. The deadr ise ang les var ied from 10

to 8 1 degrees. Due to the limited access to results generated by othe r methods,

co mpar isons of the prese nt results we re only made with those from the s imi larity

method, BEM (zhao , 1993) and the C IP meth od (Ya ng, 2007) for deadr ise ang le of 40

deg rees . The free surface res ults are shown in Fig. 3-63 while Fig. 3-64 prese nts the

result s of press ure d istributio ns. In addition, co mparisons we re also made betwee n the

prese nt res ults and similarity so lutio ns for deas rise ang les 0 f 81, 25, 20, 15, and 10

deg rees , as show n in Fig. 3-5 1, Fig. 3-52 and Fig. 3-67 to Fig. 3-7 4.



Figure 3-5 1 Free surface elevation of the wedge with deadrise ang le of8 1°att=0.045s

Figure 3-52 Pressure distributi on on the wedge with deadrise angleof8 1°a t t=0 .045 s



Figure 3-53 Free surface e levation of the wedge with deadri se ang le of 75° at t=O.045s

Figure 3-54 Pressure distributi on on the wedge with deadri se ang le of75° at t=O.045 s
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Figure 3-55 Free surface e levation of the wedge with deadrise ang leof700a t t=0.057s

Figllre3-56 Pressure distributi on on the wedge with deadri se angIe of 70° at t=0 .057s



Figure J -S? Free surface e levation of the wedge with deadrise angle of 65° at t=0 .057s

Figllre3 -58 Pressure distribut ion on the wedge with deadri se angle of 65° at t=0.057s



Figure 3-59 Free surface e leva tion of the wedge with deadrise angleof55 °at t=0.024s

Figure 3-6 0 Pressure distr ibuti on 0 11 the wedge with deadr ise ang leof55°att=0 .024s



Figure 3-6 1 Free surface elevation of the wedge with deadrise angle of Str at t=0.024s

Figllre3-62 Pressure distributi on on the wedge with deadrise angle of 50° at t=0.024s
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Figure 3-63 Free surface elevation of the wedge w ithdeadr ise angle of 40° at t=0 .036s

Figure 3-64 Pressure distribut ion on the wedge with deadrise angle of 400 att=0 .036s



Figure 3-65 Free surface elevation of the wedge with deadri se angle of 35° at t=0 .036s

Figure 3-66 Pressure distributi on on the wedge with deadrise angIe of 35° at t=0.036s
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Figure 3-67 Free surface elevation of the wedge with deadrise angleo f25 °a t t=O.036s

Figure 3-68 Pressure distribution on the wedge with deadrise angIe of 25° at t=O.036s



Figure 3-69 Free surface elevation of the wedge with deadri se angle of 20° at t=0.0 36s

Figllre 3-70 Pressure distribut ion on the wedge with deadrise angle of 20° at t=0.036s
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Figure 3-7 1 Free surface elevat ion of the wedge with deadr ise angle of 15° at t=0.0 495s
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Figure 3-72 Pressur e distributi on on the wedge with deadr ise ang leof I5°at t=0.0495s
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Figure 3-73 Free surface e levation of the wedge with dead rise ang le of 10° at t=0 .0558s

Figure 3-74 Pressure distrib ution on the wedge with deadri se ang Ie of 10° att=0.055 8s

From the above figures, it ca n be observed that the agree ment between the present

result s (free surface e levations and pressure distribut ions) and other so lutions is

genera lly goo d. The largest differences occ ur in the predi ction of the free surface



profile close to the jet flow. This could be associated with the jet flow cut-off

technique implemented in the computation. As the deadrise angle increases, the jet

flow becomes less apparent and the maximum pressure sharply decreases. The

position of the maximum pressure occurred close to the je t root region fordeadrise

angles less than 45 degrees. When the deadrise angle is equal to or larger than 45

degrees, the maximum pressure is at the apex of the wedge. In Fig. 3-50, the pressure

for deadrisea ngleo f 8! degrees, predicted by the present method, is smaller than that

by the similarity method. This could be explained by the singularity at the apex of

wedges with large deadrise angles, as pointed out by Vim (1987). The singularity was

avoided using constant elements. However, it still has influence on the distribution of

velocity potential on the wedge surface, which leads to inaccurate pressure prediction.

In addition, it can be deduced that the effect of the singularity at the apex of wedges

becol11esgreater with the increaseof deadrisea ngles.



Chapter4 Conclusions

The nonlinear problem of symmetric water entry of 2-D wedges governed by the

Laplace equation was solved by a numerical method that was developed based on the

BEM. In the computation, the Laplace equation was numerically solved at each time

instant using the BEM. The boundary conditions for the next time step were updated by

a time marching procedure. The free surface was captured by the MEL method and

smoothed out by the five-point smoothing scheme to eliminate any sawtooth

phenomenon. The free surface was then regrided by parametric Cubic Splines toa void

overly dense or scarce segments near the intersection region. A cut-off treatment was

performed for the thin jet flow near the intersection pointstom aintaincomputational

stability. For the pressure calculation, the time derivative of velocity potential with

boundary conditions was solved using the BEM and the pressure can then be obtained

using Bernoulli' s equation.

Validation studies have been carried out for an impulsive wavemaker and symmetric

wedges with various deadrise angles. For the case of impulsive wavemaker, pressure

distributions, free surface elevations and hydrodynamic forces were computed and

compared with the analytical solutions and results by Lin (1983)' s method. For the

2-D wedges problem, pressure distributions and free surface elevations were computed

and compared with the similarity method, the CIP method (Yang, 2007) and results by

BEM (Zhao, 1993). The results by the present method are generally in good agreement

with others. It has been demonstrated that the numerical method developed in this work

is able to solve the nonlinear body-water interaction problems with highly distortedfree

surface and provide good predictions of free surface elevations and pressure

distributions on wavemaker orw edges with a range of deadrise angles.



For future work , stud ies can be extended to the probl em of symmetric wedges entering

water with se paratio n point s, asymmetric wedges water entry probl em , and

three-dimen sional water entry probl em of bodies of arbit rary geo merry.
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