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Abstract

The numerical solution of nonlinear water entry problem for two-dimensional (2-D)
wedges is presented in this thesis. - The Boundary Element Method (BEM) was used for
solving the Laplace equation, and the Mixed Eulerian Lagrangian scheme was employed to

track the nonlinear free surface. The free surface profile and the velocity potential are

by Cubic-Splines. The forward fourth-order Runge-Kutta method was used
for time marching. A cut-off treatment was applied to the thin jet to avoid computational

instability.

Verification studies were carried out for a wavemaker with impulsive motions. Pressure
distributions, free surface elevations and hydrodynamic forces were calculated and
compared with analytical solutions and other numerical results. The developed numerical
method was then employed to solve the symmetric water entry of 2-D wedges with various
deadrise angles. Pressure distributions and free surface clevations were compared with
experimental results and solutions by other numerical methods, such as the similarity

method, BEM, and the constrained interpolation profile (CIP) method.
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F hydrodynamic force

G, . H,  influence coefficient matrices
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Chapterl Introduction

Slamming is of concern in many marine applications. The resultant forces are
sometimes sufficient to deform the structure of a ship or an offshore structure. In
addition, slamming is a source of fatigue for offshore structures, which may result in

structural damages over time. Examples of ship slamming phenomena are given in

FigI-1.

Figure 1-1 Slamming Examples

Slamming loads, as defined by Faltinsen (1990), are impulsive loads with high pressure
peaks occurring during impact between a body and water. This is characterized by large
hydrodynamic loads in a short period of time, such as wetdeck slamming, green water
and sloshing in ship tanks. Slamming is usually caused by large relative vertical
motions between wave and body, which will lead to prominent nonlinear effects. The
typical forms of the nonlinearity are shown as thin jets and sprays, non-viscous flow
separation, and wave breaking etc. In addition, compressibility of air and water, air




bubbles and hydroelasticity may be involved. The combination of the above factors

makes the slamming problems very complicated (Faltinsen, 2004).

Given the complex nature of slamming, some simplified slamming models have been
investigated by many rescarchers before the complete simulations of slamming are
applied to ships. One of the most extensively studied slamming phenomena is the water
entry of 2-D wedges into an initially calm free surface. In this thesis, a numerical

method has been investigated to solve the water entry of 2-D wedges into calm water.

1.1 Literature Review

The studies of 2-D wedges entering water with an initially calm free surface are
motivated by the slamming of ship bows or stems in heavy scas. These difficult
problems are usually solved by simplifying the model as a rigid body entering initially
calm water with a free surface. Du to the rapid entry of the wedges into water, viscous
effects are negligible. The compressibility and air-cushion effects only matter in a short

period of time after impact between the body and the free surface.

The pioneering contributions in this field were made by Von Karman (1929). Von
Karman used a flat plate approximation in the simulation, which underestimated loads
for small deadrise angles. Armand and Cointe (1986), Cointe (1991) and Howison et al.
(1991) extended Wagner's theory to analyze the water eniry problem using matched
asymptotic expansions. The limitation of above studies was that it required the
impacting body to be nearly parallel to the calm free surface, i.e., with small deadrise

angles.

Another way of solving the water entry problem was first put forward by
Dobrovol’skaya (1969), which provided a similarity method for the symmetric water

entry of a wedge of infinite extent with constant velocity. Fully-nonlinear free surface



conditions and the exact body boundary conditions were satisfied in his method.

However, the solutions were not given in an explicit form and limited by the
assumptions of symmetric body shape, constant water entry speed and gravity was not

accounted for.

In addition to the above two approaches, numerical methods have also been extensively
developed to solve the nonlinear water entry problem and have become the mainstream
of rescarch in this arca. The advantage of numerical methods is that there are
theoretically no restrictions for the body shape and the water entry speed while gravity
can also be included. The Boundary Element Method (BEM) based on potential theory
and the CFD (Computational Fluid Dynamics) methods based on Navier-Stokes

equations are the commonly used to simulate the nonlinear water entry problems.

For the CFD methods, many have contributed to the simulations of
slamming. For example, Kleefsman et al. (2005) used the volume of fluid (VOF)
method to investigate a dambreak problem and water entry problems. Kim et al. (2007)
used the smoothed particle hydrodynamics (SPH) method to simulate the water entry
of asymmetric bodies. Yang and Qiu (2007) applied the constrained interpolation

profile (CIP) method to solve the slamming problem of 2-D wedges entering water.

CFD methods are more time-consuming and more demanding in computer capacity
compared to BEM. Many efforts have been made to solve the problem of 2-D wedges
entering water with an initially calm free surface based on the BEM. The first
successful numerical simulation of 2-D steep water surface motions and overturning
waves was made by Longuet-Higgins and Cokelet (1976), in which Laplace equation
was solved by BEM based on Green’s function and the free surface was updated by the
Mixed Eulerian-Lagrangian method (MEL). Vinje and Brevig (1981) modified their
method based on Cauchy’s complex integral theorem. Greenhow and Lin (1987) later
used this method to solve the water entry problem. However, their results were only

satisfactory for deadrise angles larger than 60 degrees, because of the instability of
3




computations caused by the thin jet along the wedge side for small deadrise angles. In
addition, this method can only be applied to 2-D problems due to the nature of the
complex integral theorem. However, the exact description of the thin jet is not
necessary because the pressure in the jet is nearly atmospheric and it has little influence
on other parts of the fluid. Zhao and Faltinsen (1993, 1996) developed a BEM with a
cut-off treatment of the jet flow to avoid the numerical instability. A new segment was
introduced at the jet root and the upper part of jet region was removed. They used the
finite difference method to calculate the time derivative of the velocity potential, and
then computed the hydrodynamic pressures. However, this method in general can not
give good accuracy of the pressure distributions. In addition, the method for

representing the free surface at each time step was not convenient to use.

Based on Zhao and Faltinsen (1993)’s work, Lin and Ho (1994) introduced linear
elements, instead of the constant element, to evaluate the free surface elevations and
potential derivatives. The benefit of using linear elements was that the flow field near
the intersection point can be described numerically with physical meaning. However,
the pressures were still computed using the finite difference method. Later, the free
surface was better represented using cubic splines or non-uniform rational B-splines
(NURBS) to increase the accuracy. Battistin and lafrati (2003) introduced cubic
splines to describe and rediscretize the free surface when evaluating hydrodynamic
loads during water entry of 2-D axisymmetric bodies. Chuang and Zhu (2006) used
NURBS to represent the body surface and the free surface profile when solving the

2-D water entry problem.

To improve the accuracy of the pressure, two methods are widely used to give a better
prediction of pressure distributions in the recent studies. One is the complex velocity
potential method. Greenhow and Lin (1987) used this method to evaluate slamming
pressure for 2-D wedges entering water. Sun (2007) further developed Zhao (1993,
1996)’s method to compute pressure distributions. Wu et al. (2010) also used the

complex velocity potential to solve the water entry problem in the stretched

4



coordinate system for a symmetrical wedge, an asymmetrical wedge and twin wedges.
The other method to compute pressure distributions was developed by Tanizawa
(1995), in which the time derivative of velocity potential was directly obtained from
solving a boundary integral equation, then the pressure can be computed using
Bernoulli’s equation. Qian and Wang (2005) used this method to calculate pressures
on ships and floating structures. Kihara (2004, 2008) applied the same method to
compute pressure distributions for slamming problems. The latter method was
adopted in this thesis, due to its less requirement for computing resources than the

complex velocity potential method.

1.2 Summary of the Present Work

In this work, the numerical solution for 2-D nonlinear water entry problem was
developed based on Zhao's method (1993). Other computational techniques were
adopted in this work to improve both the accuracy and stability of computations in
this thesis. The initial disturbance is simulated by Wagner’s approximation (Sun,
2007). The forth-order Runge-Kutta scheme was used for the time integration and a
five-point smoothing scheme was applied to eliminate numerical instability. The
parametric cubic-splines were used to represent and rediscretize the free surface and
velocity potential for each time instant. A scheme based on the work of Kihara (2004,
2008) has been developed for computing pressure distributions. The constant
clements were used in the computation. The cut-off method was employed to deal
with the intersection between the free surface and the body surface. In this work, the

velocity was assumed constant and gravity was neglected.

The numerical method was first verified by applying it to the problem of impulsive
wavemaker. Validation studies were then carried out to the symmetric water entry of
2-D wedges with various deadrise angles. Pressures, free surface elevations and

hydrodynamic forces were computed and compared with experimental results,



analytical solutions, and solutions by other numerical methods.

1.3 Thesis Contents

This thesis is arranged as follows. Chapter 2 describes the mathematical formulation
with regards to the numerical method. Firstly, the governing equation, boundary
conditions and the related initial conditions are presented. Secondly, the Boundary
Element Method (BEM) obtained from the Laplace equation and equations for
hydrodynamic pressures are briefly described. Thirdly, the numerical implementation
of the BEM in the time domain is revealed and the procedure for time marching is
explained. Finally, the cut-off treatment of the thin jet flow and the Cubic Splines
used for regridding of free surface profiles and velocity potentials are introduced. In
Chapter 3, an impulsive wavemaker case is first computed to verify the developed
method. The method is then employed to symmetric water entry of 2-D wedges with
various deadrise angles. The free surface elevations, pressure distributions and
hydrodynamic forces are subsequently obtained. Numerical results are compared with
experimental results, analytical solutions and solutions by other numerical methods.

Conclusions and recommendations are presented in Chapter 4.



Chapter2 Mathematical Formulation

2.1 Governing Equation

A Cartesian coordinate system o-xy, fixed in space is chosen with the origin at the
undisturbed water level, with ox representing the horizontal direction and oy the
vertical direction, positive upward, as shown in Fig. 2-1. It is assumed that the fluid is
inviscid and incompressible and flow is irrotational. It is also assumed that there are no
air cushions and no non-viscous flow separation. In addition, the fluid acceleration
associated with initial impact is generally much larger than the gravitational
acceleration, and the time duration that is investigated in this problem is much smaller
compared to typical wave periods. Therefore, the effect of gravity is neglected. A

velocity potential ¢ (x, .) satisfies the Laplace equation in the fluid domain

5
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The water entry problem can be formulated as an initial boundary-value problem (BVP)
for the velocity potential ¢ and solved with either Neumann or Dirichlet type of

boundary conditions.

2.2 Boundary Conditions

For the problem of 2-D wedges entering water with an initially calm surface, only half
of the fluid domain (x>0) is studied due to the symmetrical property of the problem

about the y-axis, as shown in Fig. 2-1.
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Figure 2-1 Coordinate system and definitions (Sun, 2007)

Fully nonlinear boundary conditions are imposed on the free surface S, . The dynamic
boundary condition on the free surface in the Lagrangian form is
22)

Dp_1 0
=Livgf -gn-
oV e

satisfied on the exact free-surface, where 77=7(X,7) is the instantancous free-surface
clevationand p, is the pressure on the free-surface assumed to be zero. If the effect of

gravity is neglected compared to the large fluid acceleration, it can be rewritten as

s_1(28) (2
E‘z{(ax] {w” (&)

The kinematic boundary conditions on the free surface in the Lagrangian form are

expressed as
Dx 2 2.4)
Dt ox



i 2.5)

Along the wedge, a kinematic boundary condition is imposed as

% _ .
=V (26)

where I is the velocity vector of wedge and  is the unit normal vector on the wedge

pointing out of the fluid.

The no-flux boundary condition imposed on the bottom S,,, on the far field S, and on

the symmetric boundary S, is

%
Z-o 2.7,
7 @7
2.3 Initial Conditions
Initially, the velocity potential is zero on the undisturbed free surface.

#(X,00=0 2.8)

For the water entry problem, the initial disturbance on free surface profile caused by
the impact between wedge and water has to be taken into account. Based on the work
of Sun (2007), the following Wagner’s approximation method to simulate the initial

free surface elevation is employed.




r](x,O):%xmsin(E)fy“ 2.9

c=T (2.10)
2tana

where , is the submergence of wedge apex relative to the undisturbed free surface,

anda is the deadrise angle (see Fig. 2-1).

2.4 Hydrodynamic pressure

‘The hydrodynamic pressure p can be computed according to the Bernoulli’s equation.

) @.11)

a1
S
P g5V

wWhere p, is the atmospheric pressure and p is the water density. Since the influence of

gravity can be neglected, the equation can be rewritten as
% 10

—p,==p(==+=|V 2.12;

p=p==p(5 5V (2.12)

It can be easily seen that the time derivative of the velocity potential d¢/dr must be
computed in order to obtain pressure. Although it can be computed by applying the
finite difference method to the velocity potential as in the work of Zhao (1993) and Lin
(1984), the computational accuracy of the pressure is generally not sufficient. For more
accurate prediction, the time derivative of the velocity potential d¢/dr can be
obtained by solving the Laplace equation for d¢/dr with the following boundary

conditions according to the work of Kihara (2004).
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Vig =0 inQ (2.13)

(2.14)

(2.15)

% o on S,,50,5 @.16)

where 9/ds is the tangential derivative along the body surface, and « denotes the
local curvature of the body contour. The general form of the normal derivative of ¢,

on the body in motion in Eq. 2.14 was simplified for the translational motion with

constant velocity by Tanizawa (1995).

The initial condition is necessary to complete the problems, which is given as

$=0at 1=0 (2.17)
The pmccdure‘ of solving for ¢, is similar to that of solving for velocity potential g .
Since the influence matrices forg, are same as those forg , no additional matrix setup
orinversion is necessary when solving the boundary integral equation for ¢, . Therefore,

this method for solving for g, will not intensify the computations.
Integrating the pressure along the body surface S, will result in the force F-
F= [ pnds (2.18)

wWhere pis the pressure distribution, and n is the unit normal vector on the wedge

surface.




2.5 Boundary Element Method (BEM)

The Boundary Element Method has been very successfully used in the solving 2-D
and 3-D wave-body interactions. In such problems, the method offers the great
advantage of describing the flow by its boundary values only. Therefore, the
dimensions of problems are reduces by one. Moreover, in the analysis of wave-body
interaction, the only information needed in the computation is the boundary geometry,
velocity potential and s flux on the boundary. Applications of BEM to nonlinear
wave-body interaction problems essentially consist of two coupled parts. The first is a
solution of the Laplace equation at a given time. The second part is a forward stepping

to the next time instant at which the Laplace equation is solved repeatedly.

In BEM, the Laplace equation is converted to a Boundary Integral Equation (BIE) by
introducing Green’s function G(p,q):-szr wherer, =|p—-g|, pis the field
™

e ™

pointand ¢ is the source point. The BIE obtained by applying Green’s second identity

t04(x,,1) and G(p,q) is given as

G (PD) o _ [ 99 (q)
$(p+ [wq)—a”(q) msq—[o(p,wmdx 2.19)

where S represents the boundaries of the fluid domain. When the field point p is on the

boundary S, Eq. 2.19 can be rewritten as
! WGP 4o _ (6.0 0@,
- —L£2L45 = | G(p,q)—"=dS, 2.20;
2w>+£m> oy G D™ (2220)
In the numerical evaluation of Eq. 2.20, free surface S, , body surface S, , bottom

surface S, and far field boundary S, are divided into a number of constant elements,

12



on which ¢ and d¢/dn are constant. Eq. 2.20 can be rewritten in the discretized

form as

1 S G (P.9) o _<00(a)
2¢(p)+§¢<q>[‘—da"(q) 5= 2 ey

[ Glpaxs, 221)

where N is the number of elements distributed on the boundaries.

Generally speaking, high resolution is needed to describe the free surface close to the
intersections with high curvature. In the region close to the intersections, finer elements
are used while elements with larger size are distributed on the boundaries far away from
the intersections. However, it is not preferable that the ratio of the largest and the
smallest elements is overly high, since the drop in computational accuracy may lead to
numerical instability, especially in the region where the velocity gradient is high.
According to Kihara (2004), the ratio of lengths of two adjacent elements should be no
more than 3 in order to keep the computation stable. The effect of different ratios of
lengths of adjacent elements will be presented in Chapter 3. In addition, in order to use
the smoothing scheme, equal-size elements are used on part of the free surface near the
intersections, while larger elements are distributed on the rest of the free surface. It
should be noted that the control of spatial discretization during computation is vital to

both the stability of the computation and accuracy of the results.

Introducing

2 1nge, s

S
on,

[ In(r,, ) ds,

Eq. 2.21 becomes




Eq. 2.23 can be rewritten as

(224)
H,,=H, Joriz j
_ (2.25)
=Hy+z fori=j
|
‘The logarithmic singularity can arise when i=j, i.e., p coincides with q. For i=j,
- 1 rd
Hy=-sn J‘aln(rw)d,v =0 (2.26)
due to the orthogonality of r,,, and n (Kythe, 1995).
| | 1 2R
G, = — [In(—)s =—2 [ In(==) 2d.
4 z”J‘n(rW)d\ o £"(.§l‘)2 5
"
<Al eny-gng+e @a1)
27|° Y, A
/ 2
= 1emd
2”{ +big )]

where [ is the length of the clement i. For r, =¢l/2, r=0at =0 and

r=tl/2 at £=zxl.

For i#/, the integral for cach clement is evaluated by the 4-point Gaussian

"

,



quadrature.

)
—1 s
o In(r,, )ds,

1

5 J;w, [n‘(x_v 7xl,)+n‘()7v—y”)]/rw’

1
o= I In(r,,)ds,

L& [l r— =
/T {Eln[(n -x,) 40, —y,ﬂ}

[a=epx,+0+ex,.]

[a=c)y, +(1+c,)yﬂ]

R

Figure 2-2 Elements, mid-points on the boundary

(2.28)

(2.29)

(2.30)

wWhere x;, 3, are the coordinates of midpoint on element p; x,/,y;/ are the coordinates

of the first node of element g; x,2, ;2 are the coordinates of the second node of

clement g, as shown in Fig. 2-2; ¢, are Gaussian quadrature coefficients and w, are

weights; J is the Jacobian of integration from global coordinate to local coordinate;

and [, is the length of the element g.



=-0.8611363d0 w,=0.3478549d0

0.3399810d0 w,=0.6521452d0

¢,=0.3399810d0 w,=0.6521452d0

.8611363d0 w, = 0.3478549d0

One can solve this matrix equation numerically using a scheme for linear system, such
as the Gaussian climination method. As for the pressure computation, the integral

equation for time derivative of velocity potential can be solved in the same way.

At cach time instant, by numerically solving the Eq. 2.20, the unknowns, both the
velocity potential on each element, and the normal velocity on each element along the
fiee surface can be obtained. The new free surface profile and velocity potential on the

free surface for the next time instant can then be computed.

2.6 Time-Marching Scheme

When solving nonlinear free-surface problems, the exact free-surface boundary
condition has to be satisfied on the exact free-surface position. The nonlinear wave
problem was studied by Schwartz (1982) using the series expansion technique under
the Eulerian description to approximate velocity potential and free surface elevation.
However, the disadvantage of using the Eulerian description was that both the
boundary conditions and the boundary position have to be approximated. To avoid this
problem, an option is to employ Lagrangian description. In the Lagrangian description,
the free-surface position is known, but the disadvantage of it is that the governing
cquation has to be approximated. A new numerical scheme called Mixed
Eulerian-Lagrangian (MEL) method was developed by Longuet and Cokelet (1976),
which can overcome the disadvantages of both the Eulerian and Lagrangian

descriptions.




The MEL method was first used to simulate the time-history of steep surface waves.

In the time marching, the surface was represented by marked Lagrangian fluid particles,
This method requires that the integral equations are solved at cach time step in the
Eulerian frame, with fully nonlinear boundary conditions satisfied on the instant free
surface and the body surface. The new position of the free surface for the next time

instant can be found by integrating Eq. 2.3, Eq. 2.4 and Eq. 2.5. The x component of
velocity 8¢/@xand the y component of velocity d¢/dy can not be obtained directly from
the BEM. However, from the velocity potential ¢ on the free surface, one can compute
the tangential component of velocity 3¢/ds , combined with the normal component of
velocity 9¢/n solved from the BEM, the x component of velocity d¢/éx and the y

component of velocity d¢/dy can be expressed as
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where n,and n, are the horizontal and vertical components of the nit normal vector
n(n,,n,)on the free surface, respectively. The tangential derivative of the velocity

potential 3¢/ds can be computed by using the finite difference method.

The time integration of Eq. 2.3, Eq. 2.4 and Eq. 2.5 is then performed by a forth-order
Runge-Kutta (RK4) scheme, as shown below. The formulae for Runge-Kutta method

are given by Burden and Faires (2005).
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where @ can be either x, yor ¢. @, and @, are corresponding values at time step

n+landn,and Af is the time interval

During the time marching process, the sawtooth-type instability of the free surface
occurs naturally when the integral equation is solved numerically. Longuet-Higgins
and Cokelet (1976) adopted a five-point smoothing scheme to avoid the sawtooth
phenomenon. However, the scheme is inapplicable to the first two and last two points
on the surface. A smoothing scheme derived from the third- order least squares

approximation over five points was introduced in this work (Sun, 2007).

It should be noted that the smoothing scheme is only applied to the near intersection
region on the free surface where the free surface profile changes dramatically. This
smoothing scheme can also be used to smooth out the x, y coordinates and the velocity
potential ¢ . The first two equations of Eq. 2.33 are used for the first two points and the
last two equations of Eq. 2.33 are employed to the last two points. The third one s used

for the rest of the points.
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where y, are the original values before smoothing and J, are values after smoothing,

and N is the total number of points on the free surface needed to be smoothed out.

The time step size Af in the time marching procedure should be chosen with care,
because a large Ar may lead to numerical instability while a small Ar will take
unnecessary computational efforts. Based on the Courant-Friedrichs- Lewy condition
(Roache, 1972 and Kihara, 2004), At was decided in consideration of the following
condition:

max{[VAL Ve |V flx ar < %min(All.Al:.---.AlN} (2:34)

where V¢, is the velocity of the midpoint on the element i, and Al is the length of

the element i.

2.7 Regridding by Parametric Cubic Splines

After updating the free surface by moving midpoints on each element at each time step,
the new midpoints may become overly concentrated or scarce, especially in the region
near the intersections, which is likely to cause computational instability. To avoid this
phenomenon, regridding of the free surface at cach instant is necessary. Parametric
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cubic splines are chosen to interpolate the new node points and midpoints of each
clement, as well as the velocity potential on new midpoints. However, given the special
property of the free surface that it can turn over on itself, parametric cubic splines using

polygonal are length is devised to approximate the free surface.

For parametric cubic splines, cach spline segment is expressed in terms of an

independent variable s as (Burden and Faires, 2005):

x(8)=a(s=s,)" +b,(s=5,) +c,(s

)+d, (235)

where s s the polygonal arc length from the first point of the cubic spline to the point

of desire; s, is the polygonal arc length from the first point of the cubic spline to the

starting point of any segment i; x, can be x coordinates , y coordinates or velocity
potential to be computed. The coefficients a4, and d, are calculated using known
positions of the updated midpoints and continuity of the first and the second derivatives
ofx, . In this work, the free surface was regridded by equal arc length and the distances
were calculated from the first point on the splines to the evenly-spaced points. Based on

the arc length, a corresponding cubic spline is chosen to compute the x, y coordinates

and velocity potential of a desired point.

“The whole process can be summarized into three steps, as shown in Fig. 23, Firstly, the
midpoints A, B, C, D, E, F are updated to the new position Ay, By, Ci, Dy, Ey, Fi from
original free surface . Secondly, parametric cubic splines are formulated to represent
the new free surface S using known positions of these updated midpoints and

continuity of the first and the second derivatives. Thirdly, based on the given length of

new elements, new nodes Ag, By, Cs, Da, E; on the free surface $) can be caleulated, as
well as the midpoints of these elements and velocity potential on them. The new nodes
form the new free surface Sa, which provides updated boundary conditions for next
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time step.
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Figure 2-3 Procedure of regridding free surface with parametric Cubic Splines

2.8 Cut- off treatment of the jet flow

In the studies of nonlincar wave-body interactions, specially nonlinear free surface
flow induced by impulsive motion, the loss of accuracy at the intersection points will
oceure. The so-called intersection point is where a thin jet and body surface meets on

the frec surface, such as point A shown in Fig, 2-1

According to the work of Sun (2007), a very thin jet will run up along the body surface
when the body with impulsive motion impacts the water surface, especially when the
contact angle between the body surface and the water surface is small. For the cases of
small contact angles, computational errors can easily arise in the area of intersection
point, in the form of some points going through body, which is physically impossible.
This kind of errors causes the numerical code to collapse. The theoretical explanation
of the problem is that the velocity becomes singular at the intersection points, that is,

the velocity is infinite. Therefore, the thin jet flow must be properly treated.

Two aspects are needed to be considered in the treatment of the jet flow: one is the




computational accuracy, and the other is computational stability. The two are usually in
conflict with one another. When finer elements are distributed near the intersections,
more accurate results can be obtained, however, the computation easily gets unstable.
On the other hand, when fewer elements are used close to the intersection points, the
code becomes stable while the jet flow is hard to be simulated according to the work of
Lin (1984). One of the commonly used methods to solve this problem is a cut-off

treatment of the thin jet flow.

In the work of Zhao (1993), a new element normal to the wedge surface was employed
to cut off the jet when the contact angle between the wedge surface and the free surface
is smaller than a given value. Kihara (2004) also used the contact angle by introducing
anew element to cut off the jet, however, the new element was not required to be
normal to the wedge surface. Sun (2007) cut off the jet flow by introducing a threshold
value of distance from the point next to the intersection point on the free surface to the
wedge surface. A slightly different method from the one that Kihara (2004) used was
derived in this work. Based on the fact that constant elements were employed in this
work, it gave the flexibility to locate the position of intersection points. The cut-off

treatment i illustrated in Fig. 2-4 for a wedge,

Wedge Surface

Free Surface

Figure 2-4 Cut-off treatment of the jet flow (Sun, 2007)

As shown in Fig. 2-4, A, B, C and D are updated midpoints on the free surface. Usually,
2



the intersection point is the intersection point Py of the wedge surface and the line AB.

However, when the angle y between the wedge surface and the line AB is smaller than
athreshold value /3, the line BC is then used to calculate the intersection point Py. If the
contact angle between the wedge surface and the line BC is still smaller than 43, the line

CD is used instead until the contact angle is smaller than /3.

The cut-off treatment allows for the simulation of the jet flow without compromising
the stability of the numerical code. An important fact should be noted that the upper jet
flow has little influence on the pressure distribution on the wedge surface or the rest of
the free surface. The pressure is nearly equal to atmospheric pressure in the upper part
of the jet. That is why the thin jet can be cut off in different ways without affecting
results such as the profile of the rest of the free surface and pressure distribution on the

wedge surface.

29 S y of the C ional Procedure

‘The computational procedure can be summarized as the following flow chart. Starting
with the initial boundary conditions, then use the BEM to obtain potential velocity ¢ on
the wedge surface and its flux d¢/dnon the free surface. The tangential derivative of
velocity potential 3¢/ds on the free surface can be solved using the finite difference
method based on the known potential velocity distribution on the free surface.
Transformingd¢/on and 0¢/ds to d¢/ax anddg/dy, the free surface profile and
velocity potential on the free surface can be updated for the next time instant. After
updating the free surface by moving the midpoint on each element, the grids may be

overly dense or scarce near the intersection point on the new free surface, therefore,

parametric Cubic Splines are used to regrid the free surface and obtain velocity



potential on the new midpoints after the regridding. In order to make the computation
stable, RK4 integral method and five-point smoothing scheme are employed in the
time-stepping procedure. The new free surface profile and velocity potential on the free

surface will then be used as the updated boundary conditions for the next time instant.

Initial boundary conditions

—

Solve the BIE for ¢ andg,
Calculate the pressure on wedge
Update the boundary conditions

Figure 2-5 Flow chart of computational procedure



Chapter3  Numerical Results and

Discussions

To verify the numerical method developed in this work, computations were first
conducted for an impulsive wavemaker with prescribed motion. It s similar to, but less
complicated than, the cases of symmetric 2-D wedges entering water. The present
method was then applied to symmetric 2-D wedges with various deadrise angles. The
time histories of pressure distributions, free surface clevations for both cases are
presented and compared with experimental results, analytical solutions and numerical
results obtained by the similarity method, BEM (Zhao,1993), and the CIP method
(Yang, 2007),

3.1 Impulsive Wavemaker Motion

An impulsive wavemaker starts to move with a constant horizontal velocity U from a
state of rest. At r=0", the velocity is a step function and the acceleration is infinite.
Analytically, a logarithmic singularity is expected at the intersection point of the free
surface and the wavemaker. This phenomenon is confirmed by the experiment
performed by Lin (1983), shown in Fig. 3-1. It was noticed that the water rose up to a
level that the wavemaker was almost parallel to it before a jet ejected from the
intersection point. According to Lin (1983), the cjected jet quickly broke up under the
effect of surface tension and possibly air currents generated by the wavemaker.
Therefore, only the very short period of time after the impulsive wavemaker moved

was investigated in this thesis.




Figure 3-1 Snapshot of impulsive wavemaker (Lin, 1983)
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d generation in the chos

n domain

To simulate the motion of the impulsiv

wavemaker numerically, a fluid domain is

chosen to be a long rectangular tank, as shown in Fig.

2. On the left

nd boundary, a

piston wavemaker performs prescribed impulsive motion and the right-end boundary is
arigid vertical wall. The length of the tank is 10m, which is long enough that influence
of the reflection from the vertical wall can be avoided during the short period of
computation. Water depth is 1m, and the horizontal velocity of the wavemaker is 1m/s.
In the computation, the boundaries of the domain are discretized into a number of
constant elements, on which g and d¢/anare set constant. The size of the elements

varies along the boundaries

as shown in Fig. 3-2
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Figure 3-2 Grids on the wave tank boundaries

The number of elements is NF= 74 on the free surface with the minimum size equal to
0.04m close to the intersection point of the free surface and wavemaker, NW= 25 on
the wavemaker, NB= 50 on the bottom and NL= 5 on the right-end wall at t=0". The
size of time step needs to be sufficiently small. It was chosen as df = 0.01s according to

Eq.2.37.

The velocity potential distributed on the wavemaker at r=0" is plotted in Fig. 3-3, and
compared with the approximate analytical solution and numerical results by Lin

(1984). The approximate analytical solution is given by Eq. 3.1 (Lin, 1984).

;)%sin k,y exp(=k,x)

h=
@n+hz
k= 3.1
4 2 3.1
U 7x
w2 1o (tanh =%
7=~ log (anh )

The results by the present method agree well with other solutions. From Fig. 3-3, it
can be seen that the slope of the velocity potential curve at y=0 is fairly steep. This
suggests that the vertical velocity at the intersection is almost infinite at +=0", as

predicted by the related theory.
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Figure 3-3 Velocity potential on the wavemaker at t=0"

To investigate the influence of different ratios of lengths of adjacent elements on the
velocity potential, a range of ratios of lengths are used to solve for the velocity potential
on the wavemaker at /=0". Rt represents the ratio of lengths of adjacent elements.
When the ratio Rt is equal to 5, the length of elements on the wavemaker is 0.04m
while the length of elements on the bottom is 0.2m. When Rf is equal to 2.5, the length
of elements on the wavemaker is 0.04m while the length of elements on the bottom is
0.1m. When Rt is equal tol.25, the length of elements on the wavemaker is 0.04m
while the length of elements on the bottom is 0.05m. The results for these ratios are
plotted and shown in Fig. 3-4. It can be seen from this figure that the results near the
intersection point of wavemaker and the bottom get closer to the analytical solution as
the ratio approaches 1, which suggests that comparable sizes of adjacent elements can

lead to more accurate results.




Figure 3-4 Velocity potential on the wavemaker for different Rts

312 Free surface elevations, pressure distributions and hydrodynamic forces

For the subsequent time steps, comparisons of free surface elevations obtained by the
present method, the analytical solution and Lin (1984) are presented at 1=0.023s,

1=0.05s, (=0.1055, =0.145s and (=0.195s in Fig. 3-5 to Fig. 3-9, respectively.
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Figure 3-5 Free surface elevation at t=0.025s
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Figure 3-6 Free surface elevation at t=0.050s
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Figure 3-7 Free surface elevation at t=0.105s
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Figure 3-8 Free surface elevation at t=0.145s
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Figure 3-9 Free surface elevation at t=0.195s

It can be observed from these figures that the results of free surface elevations by the
present method agree well with results from the analytical solution and Lin’s method.
The only remarkable difference is the position of the highest points in the plots, which

is also the position of the intersection point of the free surface and the wavemaker. The
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positions of intersection points given by present method are lower than Lin’s results.

This phenomenon becomes more obvious when the jet along the wavemaker gets
higher. The reason is that a cut-off treatment of the jet flow is employed in present
method based on the fact that the pressure in the thin jet along the wavemaker is almost
equal to atmospheric pressure and does not contribute significantly to the total force
acting on the wavemaker. In addition, the position of the highest point is closely related
to the density of the grids in the intersection region. According to Lin (1984), the
denser grids near the intersection will result in a very high intersection position but the
rest of the free surface shape is not affected. On the other hand, the long and thin jet can

easily cause i instability. The of current method over Lin’s

are fewer grids needed in the computation due to the cut-off technique used, hence

less computational time, and better stability of the numerical codes.

Fig. 3-10 - Fig. 3-13 show comparisons of pressure distributions given by the present

method and Lin (1984)’s method at =0.05s, 1=0.10, (=0.25, 1=0.40, respectively.
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Figure 3-10 Pressure distribution on the wavemaker at t=0.05s
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Figure 3-11 Pressure distribution on the wavemaker at t=0.10s
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Figure 3-12 Pressure distribution on the wavemaker at t=0.25s
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Figure 3-13 Pressure distribution on the wavemaker at t=0.40s

It can be seen that the results obtained by present method and Lin’s method agree well
in general. The small discrepancies could be caused by the different methods used for
computing the time derivative of velocity potential, which is a significant component
of pressure. Lin used finite difference method to get the time derivative of velocity
potential while the time derivative of velocity potential was directly solved from the

BEM in this work.

The force acting on the wavemaker were computed by integrating pressure along the
surface of wavemaker, and are shown in Fig. 3-14. Despite the varying free surface

elevations at each time instant, it can be seen that the force is insensitive in time in both

Lin’s results and present results. Due to the fact that the pressure distributions
predicted by present method are slightly less than those by Lin’s method, hence the

resultant forces are also less than Lin’s results.
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Figure 3-14 Horizontal force acting on the wavemaker

3.2 Symmetric water entry of 2-D Wedges

For the cases of symmetric 2-D wedges entering water, the computations were first
carried out for wedges with deadrise angles of 30, 45 and 60 degrees. The free surface
clevations and pressure distributions on wedge surface were computed and compared
with results by the similarity method, BEM (Zhao, 1993) and the CIP method (Yang,

2007).

3.2.1  Grid generation in the chosen domain

A fluid domain with a length of 10m and a depth of 1m was chosen for the numerical
simulation. No scparation was considered in this problem. Due to the symmetric
property of this problem about the y-axis, only half of the domain (x>0) was studied.

‘The domain boundaries are divided by straight line segments, as shown in Fig. 3-15



Figure 3-15 Girds on the fluid domain boundaries

An enlarged view of the local region near the interscction point of the free surface and
wedge is given in Fig. 3-16. It can be seen that the denser grids were used in the region
near the intersection point. Note that the sizes of clements between two adjacent
surfaces are comparable so that the computational stability can be achieved. On the
wedge surface, the size of the elements was equal. On the bottom and the right-end
wall surface, larger but equal-sized elements were distributed. On the free surface, the
first 20 elements were of equal size for the smoothing scheme to be used, and the size

of elements gradually increases as far from the wedge on the rest of the free surface.

Figure 3-16 Grids near the intersection point

To facilitate the simulation of wedges entering water, computation was started initially

with wedges slightly submerged into water. The apex of wedge was located at y=
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-0.01m at =0". Since there is a rapid change in the free surface profile at the initial
water entry stage, especially for a wedge with a small deadrise angle, Wagner’s
approximation method (Sun, 2007) was employed to represent the initial free surface
clevation when gravity is negligible. The constant velocity of wedge entering water

was set to 2m/s,

3.2.2 Free surface elevations and pressure distributions

To investigate the convergence of pressure distribution for different sizes of grids on
wedge surface, three different grid sizes are used in computation and results are
compared for wedge with the deadrise angle of 30 degrees. The grid size on the free
surface near the intersection area is set as 0.005m. The chosen grid sizes on wedge are

0.00866m, 0.00692m and 0.0052m. The results are given in Fig, 3-17.
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Figure 3-17 Pressure distributions for different grid sizes on wedge

It can be seen that the results agree with the similarity results best when the grid size
on wedge surface equals 0.0052, which is closest to the size of grids on the free
surface near the intersection point. This also proves that comparable size of grids on

two adjacent surfaces is desirable in the computation as indicated in the wavemaker
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case.
As mentioned above, equal-sized grids were employed in the region near the
intersection point of free surface and wedge surface, and lager size of grids used on
the rest of free surface. To investigate the influence of the length of the equal-sized
grids on the free surface profile, the equal-sized grids were distributed in the range of
0.04m, 0.05m and 0.06m from the intersection point at the start of computation,
respectively. The size of equal-sized grids was set as 0.002m for all tests. The results

are shown in Fig. 3-18.

Simlarity Mthod
"w=00im

Gz00sm
4=000m

Figure 3-18 Free surface elevations for different lengths of equal-sized grids

It can be scen that the lengths of equal-sized grids are used in the computation do not
have a great impact on the free surface profile. The reason for employing equal-sized
grids is that the smoothing scheme can only be applied to evenly-spaced points. It

should be noted that this area gets greater as the deadrise angles decrease.

The time histories of free surface elevations for the wedge with deadrise angle of 60
degrees from 0.006s to 0.03s at an increment of 0.006s are shown in Fig. 3-19 to Fig.
3-23. The results are nondimensionalized by dividing V7, and ¥ is the velocity of
wedge entering water and ¢ is the time instant. The results are compared with solutions
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by the similarity method and experimental results (Greenhow and Lin, 1983), as

shown in Fig. 3-24. It can be scen that the agreement between the present results and

other solutions is in general good. In the beginning stage of the simulation, small

discrepancies around the jet spray root area are shown in Fig. 3-19 and Fig. 3-20.

However, the discrepancies disappear as the computation becomes steady as shown in

Fig. 3-21, Fig. 3-22 and Fig. 3-23
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Figure 3-19 Free surface elevation of the wedge with deadrise angle of 60° at t=0.006s
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Figure 3-20 Free surface elevation of the wedge with deadrise angle of 60° at t=0.012s




Srity Meod
Preent Metod

we

Figure 3-21 Free surface clevation of the wedge with deadrise angle of 60° at t=0.0185
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Figure 3-22 Free surface elevation of the wedge with deadrise angle of 60° at t=0.02ds
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Figure 3-23 Free surface elevation of the wedge with deadrise angle of 60° at t=0.03s

Figure 3-24 Snapshot of water entry of wedge with deadrise angle of 60° (Lin, 1983)

In the present method, only part of the thin jet flow was simulated in the computation

and compared with the similarity solution.



Fig. 3-25 to Fig. 3-29 show the time histories of pressure distributions on the wedge
surface with deadrise angle of 60 degrees from 0.006s to 0.03s at an increment of
0.006s. The results are nondimensionalized by dividing 0.5 p %, where pis the

water density and ¥ is the velocity of wedge entering water. The results are compared
with the solutions by the similarity method in the first four figures, and compared with
other results by the CIP method (Yang, 2007) and BEM (Zhao, 1993) in Fig. 3-29.
Good agreement with other solutions can be observed in those figures. The results by
the present method are slightly smaller than the similarity solutions in Fig. 3-25 and
Fig. 3-28 while the present results are slightly bigger than the similarity solutions in
Fig. 3-27 and Fig. 3-29. However, in the duration of the simulation, it was shown that
the results were steady without violent fluctuations. The results agree well with
similarity solutions even in the very beginning of the simulation, which may suggest
that the small discrepancies in free surface profile have limited impact on the pressure
distribution. The slight variation of the pressure distribution over the process of

simulation could be caused by rigridding of the free surface at each time instance.
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Figure 3-25 Pressure distribution on wedge with deadrise angel of 60°at t=0.006s
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Figure 3-26 Pressure distribution on wedge with deadrise angle of 60° at t=0.012s
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Figure 3-27 Pressure distribution on wedge with deadrise angle of 60° at t=0.018s
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Figure 3-28 Pressure distribution on wedge with deadrise angle of 60° at t=0.024s

Ntho
BEMHAO93)

PRIV

Figure 3-29 Pressure distribution on wedge with deadrise angle of 60° at t=0.03s

‘The same computational procedure was applied to a wedge with deadrise angle of 45
degrees from 0.006s to 0.03s at an increment of 0.006s. The time histories of free

surface elevations are shown in Fig. 3-30 to Fig. 3-34. The results are compared with
a4



solutions by the similarity method and experimental results (Greenhow and Lin, 1983),
as shown in Fig. 3-35. In general, the present results are in good agreement with the
similarity solutions. The discrepancies around the jet spray root area shown in Fig.
3-30 almost disappear as the computation becomes steady. Same as in the last case,

the upper part of the thin jet is cut off, which does not affect the rest of the free surface

profile.
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Figure 3-30 Free surface elevation of the wedge with deadrise angle of 45° at t=0.006s
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Figure 3-32 Free surface elevation of the wedge with deadrise angle of 45° at t=0.018s
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Figure 3-33 Free surface elevation of the wedge with deadrise angle of 45° at t=0.024s
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Figure 3-34 Free surface clevation of the wedge with deadrise angle of 45° at t=0.03s



Figure 3-35 Snapshot of water entry of wedge with deadrise angle of 45°(Lin, 1983)

Fig. 3-36 to Fig. 3-40 show the time histories of pressure distributions on the wedge
surface with deadrise angle of 45 degrees from 0.006s to 0.03s at an increment of
0.006s. The results are compared with the solutions by the similarity

method.
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Figure 3-36 Pressure distribution on wedge with deadrise angle of 45° at t=0.006s
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Figure 3-37 Pressure distribution on wedge with deadrise angle of 45°at t=0.012s
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Figure 3-38 Pressure distribution on wedge with deadrise angle of 45°at t=0.018s
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Figure 3-39 Pressure distribution on wedge with deadrise angle of 45°at t=0.024s
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Figure 3-40 Pressure distribution on wedge with deadrise angle of 45° at t=0.03s

It can be seen that the results of pressure distributions by the present method are in
good agreement with the similarity solution. The simulation was then carried out for a

wedge with deadrise angle of 30 degrees. The time histories of free surface elevations at



1=0.024s, 0.03s, 0.039s, 0.048,0.057s are shown in Fig. 3-41 to Fig. 3-45. The results

are compared with solutions by the similarity method. It can be seen that the
agreement between the present results and similarity solutions is, in general, good. It
should be noted that it took more time steps in this case to achieve the similarity

results than the previous cases.
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Figure 3-41 Free surface elevation of the wedge with deadrise angle of 30° at t=0.024s
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Figure 3-42 Free surface elevation of the wedge with deadrise angle of 30° at t=0.03s
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Figure 3-43 Free surface elevation of the wedge with deadrise angle of 30° at t=0.039s
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Figure 3-44 Free surface elevation of the wedge with deadrise angle of 30° at t=0.048s
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Figure 3-45 Free surface elevation of the wedge with deadrise angle of 30° at t=0.057s

Fig. 3-46 to Fig. 3-50 show the time histories of pressure distributions on the wedge
surface with deadrise angle of 30 degrees at 1=0.024s, 0.03s, 0.039s, 0.048, 0.057s.

The results are compared with the solutions by the similarity method in the first four
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figures, and compared with other results by the CIP method (Yang, 2007) and BEM
(Zhao, 1993) in Fig. 3-50.

the other solutions.

(ronspy

Figure 3-46 Pressure distribution on the wedge with deadrise angle of 30° at t=0.024s
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Figure 3-47 Pressure distribution on the wedge with deadrise angle of 30° at t=0.03s

In general, the present results show good agreement with
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Figure 3-48 Pressure distribution on the wedge with deadrise angle of 30° at t=0.039s
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Figure 3-49 Pressure distribution on the wedge with deadrise angle of 30° at t=0.048s
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Figure 3-50 Pressure distribution on the wedge with deadrise angle of 30° at t=0.057s

3.3 Symmetric water entry of 2-D wedges with various

deadrise angles

Free surface clevations and pressure distributions on wedges with various deadrise
angles were also computed by the present method. The deadrise angles varied from 10
to 81 degrees. Due to the limited access to results generated by other methods,
comparisons of the present results were only made with those from the similarity
method, BEM (zhao, 1993) and the CIP method (Yang, 2007) for deadrise angle of 40
degrees. The free surface results are shown in Fig. 3-63 while Fig. 3-64 presents the
results of pressure distributions. In addition, comparisons were also made between the
present results and similarity solutions for deasrise angles of 81, 25, 20, 15, and 10

degrees, as shown in Fig. 3-51, Fig. 3-52 and Fig. 3-67 to Fig. 3-74.
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Figure 3-51 Free surface elevation of the wedge with deadrise angle of 81° at t=0.045s
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Figure 3-52 Pressure distribution on the wedge with deadrise angle of 81°at t=0.045s
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Figure 3-53 Free surface elevation of the wedge with deadrise angle of 75° at t=0.045s
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Figure 3-54 Pressure distribution on the wedge with deadrise angle of 75° at t=0.045s
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Figure 3-55 Free surface elevation of the wedge with deadrise angle of 70° at t=0.057s
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Figure 3-56 Pressure distribution on the wedge with deadrise angle of 70° at t=0.057s
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Figure 3-57 Free surface elevation of the wedge with deadrise angle of 65° at t=0.057s
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Figure 3-58 Pressure distribution on the wedge with deadrise angle of 65° at t=0.057s
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Figure 3-59 Free surface elevation of the wedge with deadrise angle of 55° at t=0.024s
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Figure 3-60 Pressure distribution on the wedge with deadrise angle of 55° at t=0.024s
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Figure 3-61 Free surface elevation of the wedge with deadrise angle of 50° at t=0.024s
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Figure 3-62 Pressure distribution on the wedge with deadrise angle of 50° at t=0.024s
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Figure 3-63 Free surface elevation of the wedge with deadrise angle of 40° at t=
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Figure 3-64 Pressure distribution on the wedge with deadrise angle of 40° at t=0.036s
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Figure 3-65 Free surface elevation of the wedge with deadrise angle of 35" at t=0.036s
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Figure 3-66 Pressure distribution on the wedge with deadrise angle of 35° at t=0.036s
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Figure 3-67 Free surface elevation of the wedge with deadrise angle of 25° at t=0.036s
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Figure 3-68 Pressure distribution on the wedge with deadrise angle of 25° at t=0.036s




Figure 3-69 Free surface elevation of the wedge with deadrise angle of 20° at t=0.036s
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Figure 3-70 Pressure distribution on the wedge with deadrise angle of 20° at t=0.036s
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Figure 3-71 Free surface elevation of the wedge with deadrise angle of 15° at t=0.0495s
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Figure 3-72 Pressure distribution on the wedge with deadrise angle of 15° at t=0.0495s
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Figure 3-73 Free surface elevation of the wedge with deadrise angle of 10° at t=0.0558s
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Figure 3-74 Pressure distribution on the wedge with deadrise angle of 10° at t=0.0558s

From the above figures, it can be observed that the agreement between the present

results (free surface elevations and pressure distributions) and other solutions is

generally good. The largest differences oceur in the prediction of the free surface
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profile close to the jet flow. This could be associated with the jet flow cut-off
technique implemented in the computation. As the deadrise angle increases, the jet
flow becomes less apparent and the maximum pressure sharply decreases. The
position of the maximum pressure occurred close to the jet root region for deadrise
angles less than 45 degrees. When the deadrise angle is equal to or larger than 45
degrees, the maximum pressure is at the apex of the wedge. In Fig. 3-50, the pressure
for deadrise angle of 81 degrees, predicted by the present method, is smaller than that
by the similarity method. This could be explained by the singularity at the apex of
wedges with large deadrise angles, as pointed out by Yim (1987). The singularity was
avoided using constant elements. However, it still has influence on the distribution of
velocity potential on the wedge surface, which leads to inaccurate pressure prediction
In addition, it can be deduced that the effect of the singularity at the apex of wedges

becomes greater with the increase of deadrise angles.



Chapter4  Conclusions

The nonlinear problem of symmetric water entry of 2-D wedges governed by the
Laplace equation was solved by a numerical method that was developed based on the
BEM. In the computation, the Laplace equation was numerically solved at each time
instant using the BEM. The boundary conditions for the next time step were updated by
a time marching procedure. The free surface was captured by the MEL method and
smoothed out by the five-point smoothing scheme to eliminate any sawtooth
phenomenon. The free surface was then regrided by parametric Cubic Splines to avoid

overly dense or scarce segments near the inersection region. A cut-off treatment was

performed for the thin jet flow near the i ion points to maintain
stability. For the pressure calculation, the time derivative of velocity potential with
boundary conditions was solved using the BEM and the pressure can then be obtained

using Bernoulli’s equation.

Validation studies have been carried out for an impulsive wavemaker and symmetric
wedges with various deadrise angles. For the case of impulsive wavemaker, pressure
distributions, free surface elevations and hydrodynamic forces were computed and
compared with the analytical solutions and results by Lin (1983)’s method. For the
2-D wedges problem, pressure distributions and free surface elevations were computed
and compared with the similarity method, the CIP method (Yang, 2007) and results by
BEM (Zhao, 1993). The results by the present method are generally in good agreement
with others. It has been demonstrated that the numerical method developed in this work
is able to solve the nonlinear body-water interaction problems with highly distorted free
surface and provide good predictions of free surface elevations and pressure

distributions on wavemaker or wedges with a range of deadrise angles.



For future work, studies can be extended to the problem of symmetric wedges entering

water with separation points, asymmetric wedges water entry problem, and

three-dimensional water entry problem of bodies of arbitrary geometry.
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