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Abstract

Ships or offshore structures may experience severe water impact problems in the harsh
environments, such as cargo sloshing, slamming and green water on deck. These
impact loads can cause serious structural damage and are of considerable concern to
the stability and survivability of ships or offshore structures. All of these forces are

associated with highly nonlinear free surface flows

The thesis presents the numerical solution of slamming problems for 3D bodies
entering calm water symmetrically and asymmetrically, with prescribed entry
velocities and free-fall motions. The highly nonlincar slamming problems are governed
by the Navier-Stokes equations and are solved by a Constrained Interpolation Profile
(CIP)-based finite difference method on a fixed Cartesian grid. The CIP method is
employed for the advection calculations and a pressure-based algorithm is applied
for the non-advection calculations. For the pressure computation, a Poisson-type
equation is solved at each time step by the Conjugate Gradient iterative method.
The solid body and free surface interfaces are captured by density functions. A

panel-based method is developed to capture the interfaces of 3D bodies. The motion

of a body is described in terms of six degrees of freedom.

Validation studies of the present method were carried out for several 3D bodies
entering calm water symmetrically and asymmetrically with prescribed velocities and
free-fall motions. Water entries of 3D bodies with prescribed velocities were first
studied. For the water entry of a 3D wedge, 3D flow effects were investigated. 3D
flow effects tend to cause a reduction in slamming force. The computed slamming
forces are in good agreement with experimental results. For the sphere entering calm

water obliquely, the computed vertical and horizontal slamming forces in general agree




well with experimental results. The simulations were further carried out for a couple
of bodies with complex geometry. For the water entry of a 3D ship section, pressures
near the knuckles were under-predicted by the numerical method. The slamming
force on a 3D flared body was also computed by the present numerical method, and
the predicted slamming forces are in good agreement with the experimental results.
The maximum slamming force coefficients of a planing hull with different pitch and
roll angles were computed by the present numerical method and compared with these

by the 2D strip theory. The 2D results are slightly greater than the 3D solutions.

The studies were then extended to 3D bodies entering calm water with free-fall
motions. The predicted motion of the half-buoyant cylinder with free-fall motion

agrees well with the experimental data. For the neutrally buoyant cylinder, reasonable

agreement is obtained, except af one experimental value which obviously deviates
from the other data. The complicated free surface elevations during water entry of

cylinder were simulated by the present numerical method. They are visually in good

reement with the taken from the ex s. The present numerical
method over-predicts the velocity ratios for water entry of a catamaran, especially
for large drop heights. Velocity, acceleration, as well as vertical and horizontal

hydrodynamic forces as a function of time were predicted by the present numerical

method for the asymmetric water entry of a ship section. A satisfactory agreement

with experimental drop test results is demonstrated
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Chapter 1

Introduction

1.1 Background

Ships or offshore structures may experience severe water impact problems in the harsh
environment, such as slamming, green water on deck and sloshing in tank etc (See
Fig. 1-1). These impact loads are associated with highly nonlinear free surface flows.
They can cause serious structural damages, and are of considerable concern to the

stability and survivability of ships or offshore structures.

Slamming is a highly nonlinear free surface flow phenomenon caused by motions of
a floating structure in a rough sea. When the hull emerges from the water due to
its motion and re-enters the water, the combination of ship motion and free surface
motion can result in large dynamic impact loads, and subsequent damage to the hull

For large ships,

Slamming load is one of typical issues in the dynamic load analysi
slamming force analysis is of great concern in structural design. For high speed marine

craft:

slamming impact is a primary factor in motion prediction. In addition, many
offshore marine operations involve the lowering of objects through the free surface.

Slamming force can impact on the operations and cause local damage of the objects.




(w) Slamming (b) Green water on deck (c) Sloshing

Figure 1-1: Violent fluid motion

To improve the safe and effective operation of surface ships and offshore structures
in heavy seas, it is necessary to increase the knowledge of flow behavior and wave
induced motion of ships during water impacts. The forces and pressure that are

exerted by the fluid impact on the structures are especially important.

Many experimental studies have been carried out on water impact. Greenhow and

Lin (1983) conducted some 2D slamming tests, during which the surface of the water

was displaced a great deal from its undistributed position. Particular attention was
paid to the point of intersection of the free surface and a moving body. Zhao et al.
(1996) carried out drop tests for a 2D wedge and a real ship section. Hydrodynamic
forces and pressure distributions were obtained. 3D flow effects were discussed in
their work. Troesch and Kang (1986) conducted a model test of a sphere entering
calm water with both vertical and horizontal velocities. Experiments have been the

primary source of practical information, but they are expensive to conduct.

Numerical simulations have also been used to study the water impact. The
main difficulty in the numerical method arises from the treatment of complicated
hydrodynamic phenomena such as high speed impacts on structures, breaking waves,
jets, and air bubble entrainment. A review of carlier research on water entry
problems was given by Korobkin and Pukhnachov (1988). Zhao and Faltinsen (1993)
studied the water entry of a symmetrical wedge using the boundary clement method

with constant elements. Yang and Qiu (2007) solved the 2D water entry problem



of symmetric and asymmetric wedges with various deadrise angles using the CIP

method. A summary of the numerical methods on slamming is given in the next

section.

1.2 Literature Review

Water entry is a complex hydrodynamic problem. Many different methods have
been proposed. Before the development of computer, these were predominantly
analytical methods based on different assumptions intended to make the problem

hematicall; The ical analysis of the impact problem was first

conducted by von Karman (1929) and modified by Wagner (1932) to include the
local uprise of the water. Armand and Cointe (1986), Cointe (1991) and Howison
et al. (1991) extended Wagner's theory to analyze the wedge entry problem using
matched asymptotic expansions for wedges with small deadrise angles. Furthermore,
Dobrovol'skaya (1969) developed an analytical solution in terms of a nonlinear
singular integral equation for the problem of symmetrical entry of a wedge into calm
water. Shiffman and Spencer (1951) developed gencral expressions for the pressure
distribution and slamming force on a conc. Miloh (1981) derived the added mass
coefficients for a double spherical bowl with an analytical solution. For wedge-type
bodies, these approximate solutions can be easily used to calculate the slamming
forces. However, there are limitations when they are applied to more complex

geometries.

With the general availability of computers, the emphasis in the treatment of free
surface problems is shifting towards numerical methods. Many numerical methods
have been developed to solve the water entry problem on the basis of potential

flow theory. Based on the work of Vinje and Brevig (1981), Greenhow (1987) used

Cauchy’s formula to solve the wedge entry problem. In his work, both gravity and



nonlinear free surface conditions were taken into account. Zhao and Faltinsen (1993)

studied the water entry of a symmetrical wedge using the boundary element method
with constant elements. The jet tip at the intersection point of the body surface and
the free surface was cut and two small constant elements were distributed. The gravity
was neglected. Zhao et al. (1996) extended this method to general asymmetric bodies

with flow ion. When ion occurs from a i ly curved surface, the

separation points are determined empirically. There are numerical difficulties to trace
the water particles at the intersection point. Lin et al. (1984) presented an approach
to treat the difficulties. In their work, the boundary integral equation derived from
Cauchy’s formula was discretized using linear elements so that the intersection points
can be used as the collocation points. Chuang et al. (2006) developed a boundary
element method based on a desingularized Cauchy’s formula. A numerical approach
was also developed to remove the corner singularity at the intersection point of the

body surface and the free surface.

Although great progress has been made in solving the highly nonlinear free surface
problem with methods based on the potential flow assumption, there are difficulties
for these methods to treat highly distorted or breaking free surfaces. These difficulties
can be overcome by a computational fluid dynamics (CFD) method based on solving
the Navier-Stokes equations. Free surface modeling methods are essential in applying
CFD methods to solve the water entry problems. It is necessary to resort to numerical
solutions to find the interface between air and water. Calculating the advection of
free surface is a tough task since the free surface may undergo large deformation and
even topological changes. For modeling the free surfaces, several technologies exist,

and they can generally be classified into Lagrangian and Eulerian methods.

The Lagrangian method, also called the moving grid method, is used to construct a
computational grid that is fitted and moves with the fluid by means of a boundary

conforming curvilinear grid, a block-structured domain decomposition, or overset



meshes (Fekken, 2004). It is a relatively simple method of defining and tracking a
free surface. Because the grid and fiuid move together, the grid automatically tracks
free surfaces without smearing the information at the interface. Hirt et al. (1970) used
the Lagrangian method to simulate a transient flow of viscous incompressible fluids
with free surfaces. Tn their work, the Lagrangian method gave accurate treatment
of free surfaces. The principal limitation of Lagrangian methods is that they cannot

track breaking free surfaces.

A special case of the Lagrangian method is the Smoothed Particle Hydrodynamics
(SPH) method, originally developed by Gingold and Monaghan (1977). It has become
increasingly popular, since it can treat large deforming interfaces and topological
changes. SPH is a meshless technique. It divides the fluid domain into a finite number
of mass carrying particles. The movement of the particles and pressure distribution
in the fluid are obtained through solving the momentum equations and continuity
equation within the Lagrangian description of the motion (Zheng, 2007). The method
was used by Monaghan (1994) to simulate the broken dam problem. Kim et al.
(2007) used the SPH method to simulate the water entry of 2D asymmetric bodies.
A drawback of SPH is its inherent difficulty when modeling boundaries (Rogers et
al., 2003). Another drawback is that predicted pressure may not be very accurate

due to the use of an artificial pressure density relationship.

In the Eulerian method, also called fixed grid method, the computational mesh is
treated as a fixed reference frame through which the fluid moves. The interface is
not explicitly tracked but is reconstructed from the field variables of the fixed grid.
The interface is of a finite thickness but can be sharpened by various strategies. The
Eulerian method is suitable for modeling large deformation of free surfaces. However,
the Eulerian method has some shortcomings associated with the determination of
the free surface location. It is difficult to apply the boundary conditions at the

exact location of the boundary. Another drawback is that some interface accuracy

e



| st A .

may be lost when details of the interface can not be covered by the grid. The free
surface modeling method discussed below uses a fixed Eulerian grid as the basis for

computation.

The Volume of Fluid (VOF) method, developed by Nichols et al (1980) and Hirt and
Nichols (1981), is a free surface capturing method. In the VOF method, a volume
fraction function is introduced with values between zero and one, representing the
fractional volume of a cell that is occupied by a certain fluid. The time evolution
of the volume fraction function is obtained by solving an advection equation, and
the volume fraction function is reconstructed in every cell. The most commonly
used reconstruction methods are piecewise constant reconstruction (Hirt and Nichols,
1981) and piecewise linear reconstruction (Youngs, 1982, 1987). In the piecewise
constant reconstruction, the interface is parallel to one of the coordinate axes, while
the piccewise linear reconstruction uses a linear approximation with the orientation
of the interface within each cell. The linear approximation is more accurate, but
a significant increase in the algorithmic complexity is unavoidable. Based on the
reconstructed interface, the velocity fluxes are computed at cell faces and the fluid
is moved in the fixed grid. The VOF method has been made to work well by
many successful applications. Hirt and Nichols (1981) applied the VOF method to
simulate several complicated free surface flow problems, i.e., broken dam, undular
bore and breaking bore. Kleefsman et al. (2005) solved the 2D slamming problems
of symmetric bodies by the VOF method, and a finite volume discretization with
a cut-cell method was applied on a fixed Cartesian grid. The VOF methods using

piecewise linear approximation were highly accurate and had no mass conservation

errors; however, its implementation in 3D was difficult (Yokoi, 2007).

The Level Set (LS) method, originally devised by Osher and Sethian (1988), has been
proven to be successful as a free surface capturing method. In the LS method, the

deformation and movement of the free surface can be captured by a continuous smooth




| i

level set function, which has the features of a signed distance function. At one phase of
flow the level set function has positive distance from the free surface, negative distance
at another phase, and zero level corresponds to the free surface. The LS method
can treat highly distorted interfaces. Also, the topology changes are incorporated
automatically (Fekken, 2004). Sussman et al. (1994) solved incompressible two

phase fluid problems based on the LS approach. Walhorn et al. (2005) simulated

the 2D fluid-structure interaction problems using the LS method. However, mass
conservation errors occurred in the numerical presentation of the advection equation

for the determination of the level set function (Sussman and Fatemi, 1999).

The Constrained Interpolation Profile (CIP) method, developed by Yabe et al. (2001)
based on the work of Takewaki et al. (1985), Yabe et al. (1991) and Yabe (1991), is a
high order upwind scheme for capturing free surfaces. The CIP method uses a fixed,

Eulerian grid as the basis for computations. It also employs a Lagrangian solution

to determine the function value at the upstream departure point at the new time
step, depending on an interpolation function of the initial profile. The CIP method
uses both the advection function and its spatial derivatives to construct the high

order interpolation function within one grid cell so that the interface profile inside

the grid is retrieved. The CIP method, as an interface capturing method, does not
need an adaptive grid system and therefore removes the problems of grid distortion
caused by interface breakup and topology change. Furthermore, the scheme can treat
multi-phase problems and it can handle large discontinuities or large gradients at
the interface of different phases because of its compact scheme characteristics (Yabe
et al., 2001). A pressure-based algorithm coupled with CIP has been proven to be
stable and robust in solving the 2D slamming problem (Hu and Kashiwagi, 2004).
The validation and verification of 2D CIP method were presented by Vestbostad et
al. (2007), and the numerical result showed that the CIP method was both robust
Zhu et al. (2005) studied the

and accurate for capturing violent free surface flow:

water entry and the exit of a horizontal circular cylinder with the CIP algorithm



in the 2D computational domain. Yang and Qiu (2007) solved the 2D water entry
problems of symmetric and asymmetric wedges with various deadrise angles using the
CIP method. The effect of compressible air for 2D wedges with small deadrise angles
were studied (Yang and Qiu, 2008).

From the literature review, it can be seen that many experimental, analytical, and
numerical studies of slamming have been carried out. The vast majority of the work
is, however, restricted to two-dimensional bodies and simple axisymmetric bodies.
Relatively few attempts have been made to rigorously solve impact problems of 3D
bodies. Some rescarches on 3D impact problems were conducted by Troesch and
Kang (1986). They numerically studied impact loads on three-dimensional bodies
using the boundary element method. In the three-dimensional computations, normal
dipole distributions and an equi-potential free surface were used, and the results
were compared with experimental results. Faltinsen and Chezhian (2005) presented a
numerical method for three-dimensional slamming problems based on the generalized
Wagner method. Thoroddsen et al. (2004) studied the initial stage of the impact
of a solid sphere into a water surface using a novel ultra-high-speed video camera.
There is a need to further develop three-dimensional methods to solve the slamming

problems since most of water entry phenomena are three-dimensional.

1.3 Present Work

Present research work focuses on the development of a numerical simulation tool for
highly nonlinear water impact problems. In particular, the phenomenon of slamming
on 3D ship hulls, which has caught the interests of many marine engineers and naval
architects for a long time, is an important motivation. More precisely, the main
objective of this thesis is to develop a method to solve 3D slamming problems by

addressing the following aspects:



Three-dimensional flow effects. The physics of slamming problems is extremely

complex since it involves breaking waves and jets, etc. Due to the challenges of

the realistic physical problem and the numerical technology, the vast majority of this
work has been restricted to 2D or simple wedge-type bodies. Relatively few attempts
have been made to rigorously solve impact problems of 3D bodies. This work aims at
developing a numerical technique to investigate 3D nonlinear free surface flow effects
in the slamming problem. In the research, the 2D Constrained Interpolation Profile
(CIP) method (Yang, 2007) is further developed to simulate the 3D nonlinear free

surface problems.

Coupled motion simulation. In order to simulate the slamming problem more
realistically, the coupled motion of a 3D body and fluid has to be solved as well.
Therefore, a method has to be developed that is capable of handling freely moving
bodies. The coupling motion simulation poses more challenging work. The body
velocity is unknown before the solution for the fluid is found. The accuracy of the
pressure will be fed back through the fluid flow via the calculation of the body motion.
Inaccurate pressure can cause false body response. One of the aims of this work is
to overcome these difficulties and accurately predict the body motion and the violent
flow phenomena during water entry. In this research, slamming forces and moments
are obtained from the Navier-Stokes equations which are solved by a CIP-based finite

difference method. The motion of a solid body is predicted by mumerical integration

of differential equations of motions considering the computed slamming forces as
external forces. The fluid velocities due to the body motion are calculated, and they
are then used for the free surface simulation using the CIP method. By solving the
body and fluid motions simultaneously, the coupled motions are computed in the time

domain.

Th i i moving body interface treatment. To distinguish the flow and

solid geometry on a fixed Cartesian grid, the volume fraction of solid body in




each Cartesian grid cell must be calculated accurately, which is important for

the computation of fluid-structure interaction problems using the Eulerian grid
method. However, allowing arbitrary 3D geometry (ie., a realistic ship), the
computation of volume fraction can become very complex. Especially, considering
not only translating, but also rotating bodies, the situation becomes somewhat more
complicated. Therefore, it will be important to develop a geometry reconstruction
method that will compute the volume fraction accurately. In this research, a
panel-based numerical method is developed to capture the arbitrary solid geometries.
The body surface is represented by a set of panels. Since the body is assumed to be
rigid, the panels can be used to update the body position with a Lagrangian method
in each time step. The contribution of each panel is estimated by the contribution
factor in each computational grid cell. Then the density function for a solid body is

obtained, and the solid phase is modeled in a fixed computational grid.

1.4 Outline of the Thesis

The thesis presents the numerical solution of slamming for 3D bodies entering calm
water. The highly nonlinear water entry problems are governed by the Navier-Stokes
equations and are solved by a Constrained Interpolation Profile (CIP)-based finite
difference method on a fixed Cartesian grid. The CIP method is employed for the
advection calculations and a pressure-based algorithm is applied for the non-advection
calculations. The solid body and free surface interfaces are captured by density
functions. The motion of a body is described in terms of six degrees of freedom. For
the pressure computation, a Poisson-type equation is solved at each time step by the

Conjugate Gradient iterative method.

Chapter 2 introduces the computational method. The Navier Stokes equations are

described as the governing equations. The fractional step method is introduced,
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rming equations are split into three-different phases. The CIP method is

and the gove

discussed in details and the upwind cubic interpolation functions are given. A Poisson
equation of pressure is derived based on a pressure-based method, and a Conjugate
Gradient iterative method and Jacobi preconditioning are introduced. Free surface
and moving body interface modeling methods are explained. The mumerical method
for coupled motion of a solid body and fluid is described. The computational methods

for hydrodynamic forces and moments are provided

In Chapter 3, a verification of the numerical method is presented. The added mass of
a sphere was computed and compared with the analytical solution based on potential

flow theory. Convergence studies of grid spacing and time step were conducted.

Validation studies are described for several 3D solid bodies entering calm water with
prescribed drop velocities. The computations were carried out for a 3D wedge entering
calm water with a vertical velocity. The slamming force was calculated and compared

with exper results. Th i flow effects were discussed. The present

method was also applied to a 3D ship section entering calm water vertically. The

predicted slamming loads were compared with experimental results. The oblique

water entry of a sphere was studied. The vertical and horizontal slamming forces

were calculated for different drop velocities and were compared with experimental
results and other numerical solutions. Studies were also extended to the water entry
of a 3D planing hull at various pitch and roll angles. The 3D results were compared

with the solutions based on the strip theory and 2D CIP method.

Three-dimensional bodies entering calm water with free-fall motions are studied in
Chapter 4. The water entry of a 3D half-buoyant cylinder and a 3D neutrally buoyant
eylinder were carried out. The predicted motions of the cylinders were compared with
experimental data. The water entry of a 3D catamaran model with free-fall motion
was also simulated. The variations of the ratio of hull velocities were computed

and compared with experimental results. The asymmetric water entry of a 3D ship




section was simulated, and the computed accelerations and velocities were compar

with experimental results.

In Chapter 5, this thesis ends with a summary and conclusions. Some future

perspectives are also given.




Chapter 2

Mathematical Formulation

2.1 Governing Equations

An Earth-fixed Cartesian coordinate system is applied, z-axis pointing upward, sce
Fig. 2-1. The differential equations governing the unsteady motion of a viscous fluid

are given as follows:

(22)

where ¢ is the time; , (i = 1,2.3) are the coordinates in a Cartesian coordinate

system; p s the mass density; ; are the velocity components; f* is the gravity force

For a Newtonian fluid, the total stress can be written as



i+ 208y — 2083 Su/3
1, 0w

oy
+ aT,)

er delta function.

where 1 i the dynamic viscosity coefficient and 6,5 is Kroned]

The equation of state (EOS) is written as p = f(s). Applying the EOS to Eq. (2.1),

the pressure equation can be obtained as

W 0w
o Uiy =~ (2.3)

where, ¢, = /@p/@p is the sound speed, and p is the pressure.

If turbulent flows are considered, the equations can be averaged over the time scale
of turbulence and additional equations describing the Reynolds stresses need to be
introduced. Since slamming is a transient problem, the significant turbulent effects
do not have time to develop during the rapid impacts (Faltinsen et al., 2004). The
laminar flow is assumed in the studies for the slamming problem based on the work

of Zhu et al. (2005).

A fixed rectangular computational domain is used in the present computation, see
Fig. 2-1. An exterior fictitious one cell layer to each side of the physical domain is
added to allow imposition of discrete boundary conditions. The pressure along the
top of the computational domain is set to zero. No-slip wall boundary conditions are
applied to the domain sides. For a water entry problem, if the domain boundaries
are far enough from the body, the existence of the boundary will not give significant
influence during the rapid water entry process. Computational domain including
the geometry of a moving body, air and water, is divided into regular cubic grids.
The solid body boundary is immersed in the fixed Cartesian grid with a fractional

volume or area representation technique (See Section 2.5). The solid body is set up
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No-slip wall

LV
Fictitious cell NE No-slip wall

No-slip wall
Figure 2-1: A fixed Cartesian grid for a multiple phase domain

as a moving object with a drop velocity and its contour is defined as a no-slip wall
condition (See Eq. 2.100). This approach allows for a complex geometry without a
time consuming grid generation as for a boundary-fitted coordinate (BFC) method.
It is well known that BFC grids can be difficult to construct and it takes a significant
amount of time to establish a workable and well-behaved grid even with good grid

generators. The present numerical method is described in details in the following

ctions.
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2.2 Discretization Method

Applying the fractional step approach to Eqs. 2.1 to 2.3 leads to the numerical

solutions of governing equations in three st

ps as follows (Hu and Kashiwagi, 2004).

1. Advection phase

L= 9
2.4
X (24)
Lt =0 (23)
-t = 5
bl Y _—
T =0 (2.6)
2. Non-advection phase T
upt—uf 2 d 1 " -
T - 2 (Sy - =0Sh ok
At ” DI}(SU %Sk +1i (27)
3. Non-advection phase I1
ot
Lo il 2.8
) 28)
1 apntt
= 2.9
7 05 (29)
it
—,rof% (2.10)
where the superseripts * and +# indicate the intes iate values after the calculations

of advection phase and non-advection I phase. The superscript n-+1 indicates the final
values at the new time step. The fractional steps in the present numerical method are

arranged in the order of advection phase, Ivection phase I, and Ivecti




phase 11

The equations in the advection phase are computed by the CIP method which will

be introduced in Section 2.4.

For an incompressible fluid, the non-advection phase I, Eq. 2.7, can be expanded as

follows:

At ot
(6’1: a'u
At poF
wewt_p P P
At p o

where g is the gravity acceleration.

—+-—+—

(211)

(212)

(213)

An Euler explicit scheme is used for the time integration for the left-hand-side terms
of Egs. 2.11 to 2.13 and a central finite difference scheme is used to discretize the
terms on the right-hand-side of these equations. The velocities in non-advection I can

be obtained as follows:

ut FPu
5 aE

Wt =4 —
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These second-order derivatives in Eqs. 2.14 to 2.16 can be approximated by:

_ (g0 = )/ = (i — iy, A
Az

Pt _ (s = i)/ = (0 = g1/ Ay
£ Ay
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x? Az

Pt (10— 0 Ay = (0~ wiy 10)/Ay
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For the non-advection phase II, in a general way, the density p is solved first, and
then the pressure can be calculated based on the density. Since the speed of sound,
. = /Bp]Dp, is very large for solid or liquid phases, a small density error can lead to
a large pressure pulse, and it tends to cause a dispersion error in numerical simulation.
A pressure-based algorithm (Yabe, 1991) is employed to overcome this problem. In
the p based method, a Pok pe pressure equation can be obtained by
taking the divergence of Eq. 2.9 and substituting du, /dr; into Eq. 2.10,

9 10 pHi—p 1 oupr

- T v v Lo

Eq. 2.17 shows that Vp/p is continuous at sharp discontinuities. In this case, if the
density changes by several orders of magnitude at the boundary, for example, between
liquid and gas, the pressure gradient can be calculated accurately enough to ensure
the continuous change. The equation is very robust even with a density ratio larger

than 1000 and the multi-phase computations can be carried out.

For a perfect incompressible fluid, we can assume ¢, = 0o, a simpler Poisson equation

can be obtained as below:

a

r;

o, _ 1 o
- oz, | At o @)

In the computation, the velocity inside the body is forced to be equal to the rigid
body velocity before solving Eq. 2.18. The solution of Eq. 2.18 provides the pressure
in the whole i domain. Note that the pressure distribution

obtained inside the solid body is a fictitious one, which satisfies the divergence free
condition of the velocity field (Hu and Kashiwagi, 2007), and is consistent with the
pressure on the body surface. These points inside the body are denoted as ghost
points. The reason for doing this is from a practical computational point of view.

With this treatment, the boundary condition for pressure at the interface between

19




different phases is not required.

The central finite difference method is used for the velocity derivatives on the

right-hand-side of Eq. 2.18.

1~ Wijk-1

dupt _dutt vt Owt W=

Ox;  0xr  dy 02 2Az

(2.19)

The pressure terms on the left-hand-side can be re-written as:

9, 10p

1 opnt!

0 105
Friver ra s

9 1o ,
P TR R e~ I )

o,

i p

‘We start to apply the central finite difference method to the first term on the
right-hand-side of Eq. 2.20. This can be done by first approximating %52 at
points halfway between the grid points, using a centered approximation,

41 nil

1o S
PO Plape O

(2.21)

and then applying another central finite difference method to approximate the

derivatives of this quantity,

9 1ot 11 pe-r 1 LT

Az by Az Piapge AT

1 1 sl
ik

Pl (222)

+=
j2ak Picyjagk ~1/24k
Applying the same method to the second and third terms on the right-hand-side of
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Eq. 2.20 leads to the following equations.

1o, 1, 1 pifhuc- il
POy AY P ok Ay
1
B3 Pl

i
AETY

Ay

1 . .
Al 03)
—1/2,k

e
Pijrk —

Piisijak

and

Pk~ Pk
jk=1/2 A
- 1 i+ 9 9
Wik + ———Pih] (2:24)
12 Pijk-1/2
Substituting Eqs. 2.22 to 2.24 into Eq. 2.18, yields,
- i
% s s Poan

Prfie— ( Wi+

e P — 2 :
AW 12 iz Pl
1 1

1

e = (——
ki Piiarija

+
7

By rearranging Eq. 2.25, the final differential equation for pressure equation can be

obtained as follows:



1 1

i
P, (o o e (= +A5; (o 5
N G gk Pkt AW Pk Py D2 kg Piikan
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1 1 1 1
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where pf, 5 51 = 500054+ Piergads Aoy = 3(PEix Pk Pljsryoe = 3(Plsa+

Priern)s Prioron = 3P+ Pigoai)s Plywersa = 5008 + Pljken)s and pfjuyy =
3Pon+ PLin-1)

A linear system of equations, Ax = b, can be obtained from Eq. 2.26 and Eq.
2.18, in which x is an unknown column vector of pressure, b is a known vector of
velocity gradient components, and A is a known, square, symmetric, positive-definite
matrix. A Conjugate Gradient (CG) iterative method is employed to solve the
linear equations, and a Jacobi preconditioner is applied to improve the computation
efficiency. A brief discussion on the CG algorithm and preconditioning is given in

Appendix A

After the pressure field is obtained by solving Eq. 2.18, the velocities in the new time

step can be calculated by solving Eq. 2.9 in the whole computational domain.

P T o
At o 2Ax -~
éL_ e T—
Dt R 0 . ¢ Vg v Ty ©.28)
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The velocities in new time step can be obtained, as follows, based on an Euler explicit

scheme,

A~ P

W= - e (2.30)

OO V3 W it T -

SRS S e (2.31)
e

W — e — BtPika ~ Pijkey (232)

ra 2Az

Note that under the incompressible fluid assumption, the density can be determined
by density functions instead of solving Eq. 2.1, which will be introduced in next

Section.

In the whole solution procedure for the governing equations, the computation
of advection phase with the CIP method has no restriction on the CFL
(Courant-Friedrich-Lewy) (See Section 2.4.1). The application of the explicit time
integration scheme, i.e. Euler scheme, results in a CFL restriction for the time step

order accuracy in time

size, uAt/Az < 1. The Euler explicit integration yields fi

cond-order

integration of the governing equations. Central finite difference gives se

accuracy in space integration. However, the fractional step method can cause splitting

error, therefore the resulting method will be of first-order accuracy (Leveque, 2007).
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2.3 Free Surface Modeling Method

eed}un ?ce)

Figure 2-2: Multi-phase computational domain

In a multi-phase computation, in order to identify which part is occupied by water,
solid body or air in the computational domain, a density function ¢y, is introduced,

which satisfies

0< dmla,y,2,8) <1 (xy,2)€ U

where @, m = 1, 2, and 3, denotes the domain occupied by liquid, solid and air,
respectively. The density functions have the value range of ¢,, = 0.0, 1.0]. If ¢, = 1.0,
the cell is completely submerged in water; if ¢ = 0, no water is in the cell; if
0 < ¢y < 1, the cell is partially submerged in water, For each cell, the density

functions must fulfil the following requirement:

3
> om=10 (2.33)

m=1

There are two types of interfaces that need to be modeled in the computation, see

Fig. 2-2. One is interface between air and water (the free surface), and the other is
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the interface between solid body and water (or air). The behaviors of these two types
of interface are different, and different numerical methods are used for each of them.
The density function for water is advected with flow and the CIP method is thus used
to propagate ¢, with time (See Section 2.4). The body density function ¢, is updated
with a direct method under the assumption of a rigid body (See Section 2.5). The
density function for air can thus be found by utilizing Eq. 2.33. Because the air and
the water phases are modeled as a single fluid with varying properties (i.e. density,
viscosity, etc.), there is no need to specify dynamic conditions in terms of stresses
at the interface between air and water. The dynamic conditions are automatically
satisfied.

After the density function for each phase is determined, the physical properties, such
as viscosity and density, can be calculated as follows for each computational cell based

on the incompressible flow assumption.

P = OrPater + O2Pghost + O3Pair (2.34)
B = Otphater + O2bighost + O3bhair (2.35)
where puarer and pyi, are the densities of water and air; fiurer and pigir are the dynamic
viscosities of water and air; and pyho and pighos are the artificial density and viscosity
for these ghost points inside the solid body. In the computation, pynos = Puater and
Hghost = Hwater-
The motion of free surface can be described by the following advection equation,
5@1 961

Bt g, = 0 (2.36)

The left-hand-side of Eq. 2.36 is the material derivative. Eq. 2.36 indicates that if we



follow a fluid particle, the property of the fluid particle does not change with time.

The finite difference schemes based on the Eulerian representation tend to produce
numerical diffusion, which will smear the initial sharpness of the interface. In this
work, a tangent function (Xiao, 1999) is used to transform the density function into

a new function,

0(¢) = tan[(1 - e)x(é1 — 1/2)] (2.37)
where ¢ is a small positive constant. The factor, 1-¢, enables us to get around —oo
for ¢y = 0 and o for ¢y = 1, and to tune for desired steepness of the transition layer.
The parameter ¢ needs to be chosen artificially before caleulation. In the present
computation, € = 0.02. According to the tangent function, a smaller € results in a

numerically sharper slope across the transition layer.

The new function @(¢;) is also governed by the advection equation

Mon) M) _
S tupe =0 (2.38)

Eq. 2.38 can be solved by the CIP method. The present work focuses on 3D bodies
entering calm water. Therefore, the water is at rest initially before the body interacts
with the water. Since the compact scheme of CIP method and its subeell resolution
feature, the initial sharpness of the interface can be maintained very well in the whole

computation process.

G = tan™' 0(01)/[(1 - )] +1/2 (2:39)

The density function of water then can be obtained by Eq. 2.39. The value of ¢;

changes continuously between the values of air and water at the free surface during
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the simulation.

2.4 CIP Method

2.4.1 Principle of the CIP Method

Using an upwind difference technique for the advection term of the Navier-Stokes
equations can lead to a stable computation in CFD methods. However, the

use of upwind schemes will introduce excessive numerical diffusion and associated

In the present ion, the advection equations of Eqs. 2.5 and 2.6
for velocities and pressure, and the advection equation of Eq. 2.38 for free surface,
are solved by the CIP method to reduce the numerical diffusion and improve the

accuracy of solution.

The Constrained Interpolation Profile (CIP) method developed by Yabe et al. (2001)
based on the work of Takewaki et al. (1985), Yabe et al. (1991) and Yabe (1991), is

a high order upwind scheme for solving the advection cquation.

The CIP method can also be treated as a kind of semi-Lagrangian method. It traces

back along the characteristics in a fixed Cartesian grid, and an interpolation of the
profile is required to determine the value at the upstream departure point. The key
aspect in the CIP method is that the interpolation function is constructed by both
the function itself and its spatial derivatives. The strategy of the CIP method can be

explained by using a 1D advection equation as follows:

?i +u of 0 (2.40)

When the velocity is constant, the solution of the equation gives a simple translation
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Figure 2-3; Principle of the CIP method (Yabe et al., 2001)

motion of profiles with a velocity u. As shown in Fig. 2-3, the initial profile moves like
a dashed line in a continuous representation, and the solution at grid points denoted
by the filled circles is the same as the exact solution. However, if the dashed line is
eliminated as shown in Fig. 2-3 (b), the information of the profile inside the grid cell
is lost. When the profile is constructed by a linear interpolation, it is natural to get a
profile like that shown by the solid line in Fig. 2-3 (c), and numerical diffusion arises.
The reason why this solution becomes worse is that the behavior of the solution inside
arid cell is neglected. If the profile is approximated with a new numerical scheme to
make the lost information inside a grid cell retrieved, the numerical solution will

become better.

Differentiating Eq. 2.40 with respect to the spatial variable x, we can obtain,

oL, 0. & (2.41)

o “or  or”
where, f, = 8f/0x stands for the spatial derivative of f. For simplicity, a constant

advection velocity u is assumed. Eq. 2.41 represents the propagation of spatial
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derivative with a constant velocity u. Using Eqs. 2.40 and 2.41, the time evolution
of f and f, can be traced. Since the spatial derivative is used to approximate the
propagation, the profile after one step is limited to a specific profile, even inside the
grid cell. The solution becomes much closer to the real solution, as shown in Fig. 2-3
d.

v
-—
Bl fe
] i it

Figure 2-4: One dimensional grid

A high-order interpolation function can be constructed in an upwind grid using the
values of f and fy, see Fig. 2-4.

F(2) = a;z® + ba® + ez +d;

2 - fi) l.uJ

J([’L. I"l 2/.",. + e
Ar

a=g
&=f
For u > 0, the subscript i + 1 needs to be changed into i — 1, and Az = —

The profile at the n+ 1 step can then be obtained by shifting the profile by a distance
of uAt.



M = F(z —uAt)

FI = dF (¢ — udMt) Jda

S = il + 0El + gl + £ (2.42)

bivg

;] + 256+ 97 (2.43)
where & = —uAt, and At is the time step. Note that the right-hand-side of Eq. 2.41
must be calculated for a variable velocity, which will be discussed in Section 2.4.3.

The CIP method has been proved to have third-order accuracy in time and space by

and 2.43 over

Taylor expansion (Utsumi et al., 1996). The construction of Eq

a neighboring cell of the interested grid i implies CFL < 1. In order to allow the

use of a larger time step like other semi-Lagrangian methods, Eqs. 2.42 and 2.43 are
modified by applying these to the far upwind grid cell (See the cell m in Fig. 2-5)
from which the Lagrangian particle starts to the present position of concern (Yabe,

2000).

i m o p ml

Figure 2-5: A far upwind cell in one dimensional grid

Eqs. 2.42 and 2.43 are modified to be
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FH = an€® + b + g€+ Iy (2.44)

S2 = 30m€® + W€ + g7, (2.45)

where m is the grid point determined by &, < @, < Ty for u < 0 and

, < @y for u > 0, and a is the particle position of upwind departure point which is

caleulated by

:
.

where € is the distance between these two points:

§=itiy—

@y and by, are:

fom + Bmer | 200 = fiia)
A

ay = 2R
b W = f) e+ Tt
" Ar Ax

We then get a semi-Lagrangian scheme that permits a large time step free from the

restriction CFL < 1.

With the special treatment of the spatial derivative, only two points are needed for
constructing the high-order interpolation approximation in one grid cell. The CIP

method achieves a compact form and provides subcell resolution. The key points of
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the CIP method can be summarized as follows:

. Itis a compact upwind scheme with subeell resolution for advection caleulations;

©

A cubic interpolation function is constructed, and a high-order scheme is
achicved;

Since no re-meshing calculation is required, the computational time can usually

w

be shortened for time dependent problems;

The CIP method does not involve any interface construction procedure and is

=

quite ical in i ity, especially for 3D applications.

2.4.2 CIP F lation in Multiple Di I Cases

A. 2D CIP Method

The governing equations for first-order spatial derivatives of the interpolation function
in multi-di sions are derived by dif i the advection equation with respect
to the spatial coordinates. The general forms of 2D advection equations can be written

as follows:
";_/ ,‘g_ﬁ " l.;y_f 0 (2.46)
/A u%l?: 4 l,i;_{; -0 (247)
% 5 u% ¥ n%' ~0 (2.48)



The terms on the right-hand-sides of Eqs. 2.47 and 248 arc included in the
non-advection phase calculation of a fractional step approach as shown in Section

243.

.

Figure 2-6: Two dimensional grid

Several forms of 2D cubic polynomial have been proposed. The simplest one proposed
by Yabe et al. (2001) is given as follows, see Fig. 2-6. In this upwind cell, we assume

u<0,v<0.

F(X,Y) = caoX® +en X2 + caXY? + caY?

+00X? + euXY +c¥? + X +carY + oo (2.49)

F e =3c0X?+ 2en XY +caV? + 200X + enY +cpp (2.50)




(2.51)

Fy=cnX?+262XY +3coY? + en X + 2e0Y + cor

where X = —uAt, Y = —vAt. There are ten unknown coefficients, Cyuy, which will
be determined as follows by the values of £, f,, and f, at grid points (i, ), (i +1,J),

(i,j +1), and the value of f at the grid point (i + 1,5 +1). These coefficients are

given as follows:

oo = f(irJ)
o= fylis )
o= fe(i, )
es0 = [Az(fali+1,3) + fo(i4) = 20+ 1,) = f(i,4))/ A
e = [~A(foli + 1) +2£eli,5)) +B(F (i + 1.4) = £(,5))/Ax®
cos = [Ay(fy (i3 +1) + f(0,3)) = 20f (3 + 1) = £,0)/ Dy
o = [~ Ay(fylind + 1) + 20, (i) +3(F(5 +1) = F(0.))/Av*
e = [fali 4+ 1,5 + 1) = fali + 1,3) = falind +1) + f2(0,5)]/ (2824y)
ez =i+ 1,0 +1) = fyli+1,5) = fy(i,d + 1) + £,(6,5)]/ (2Ardy)
e = [fi+ 15 +1) = fi+1,5) = fi,j + 1) + £, 5)]/(Dxdy) — endz — epldy

The following changes are needed for u > 0 and v > 0: i+1 = i—1land Ar = —Az,

J41=—land Ay = —Ay.
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B. 3D CIP Method

The general form of three-dimensional advection equations can be written as follows:

of  of  of o

Lot (@52)
e yuley ‘:ij vullino (253)
%+u%+r%+w%€=0 (2.54)
%”%H%H%:u (255)

The terms on the right-hand-sides of Egs. 2.52 to 2.54 are included in the
non-advection phase calculation of a fractional step approach as shown in the next

Section.

Figure 2-7: Upwind cubic grid cell

A cubic polynomial i ion function is in an upwind cell (Fig. 2-7)

based on the work of Yabe (1991). In this upwind cell, it is assumed that u < 0,
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v<0and w<0.

F(2,9,2) = [(@X + Y + e Z +e)X + Y + foli, . k)X
+[(caY +1Z + esX + )Y + coZ + f, (i, 3. k)Y
+(enZ + X + ey +ew)Z +easX + £:(,5.k)|Z

+ XY Z + fiju (2.56)

where X = —uAt, Y = —vAt and Z = —wAt.

The 16 unknown coefficients are determined from the values of f, f;, f, and f. at grid
points (i+1,j, k), (i,j+1,k) and (i, j, k+ 1) and that of f at points (i +1,j+1,k),
(ij+ 1,k +1), (i+1,j,k+1) and (i +1,j + 1,k + 1). These coefficients are given

as follows:

1 = [<2D; + 0u(firrn + fign)A]/ Az
2 = —[ca + 8, D;A)/(Ax*Ay)
¢s = —[cg + 0:Dyda] /(Ac?Az)

€4 = [=3D; = Ou(furrgu + 2fiz) Da) /Ao

(ca + 0, DAz +8,D:0y)/ (Axdy)

= [<2Di = 0, (fusrrk + fiin) Ayl/ Dy
7 = —[e, + 8, DAyl/(Ay*A2)
s = —[ca + 3, DiNy) /(Dz DY)

ey = [3Di = 3, (fujrn +2f0jn) Au)/Dy?
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ci0 = [ey + 8, Duly + 8. D;A|(AyAz)
o1 = [<2Dy + 0:(fijunr + figu)A2]/AF
cn=—les+ 8.DAz)/(AzAZ?)
e =—le, +8.D,A7]/(AyA7?)
1y = 3Dk — B.(figana + 2fi50)A2]/07
€15 = [cs + 0. DiAz + 8, DyAz]/(AzAz)
16 = [ea+ figrsr = figsrmer + finrjan) + fisrgnranl/(AzAyAz)

where D; = fisrx = fugu Dy = figore — fiums Di = figanr = figae o = —figx +

Jisrgx+ figsrn— firgrin € = —fisr+ finrgr+ fisan = fisrgaers & = —figx +
Jigarxt figrnr = figrinn-
Depending on the signs of u, v and w, the following changed can be made: i+1 = i—1
and Az = —Arforu>0,j+1=j—land Ay = —Ayforv>0and j+1=>j—1
and Az = —Az for w > 0.

The interpolation functions for these spatial derivatives are then obtained.
Fo=BaX +20Y +aZ+a)X
+(eY +ewZ + )Y

+(enZ +os)Z
+ /e (2.57)



Fy=BesY +2(crX + sZ + ¢0)]Y

+(c13Z + c16X +c0)Z
+ (X + )X

1y (2.58)

F:=[BenZ +2(coX +cigY +cu)|Z
+ (esX + 1Y +c1s) X
+ (Y + c0)Y
+£ (2.59)

2.4.3 Calculation of Spatial Derivatives
In the CIP method, not only the function of £, but also its spatial derivatives, have
to be updated at every time step.

Egs. 2.5, 2.6 and Eq. 2.38 can be written in a general 3D form as follows. Note that

1D and 2D cases can follow the same procedure.

(2.60)

where H denotes the total terms on the right-hand-sides of Egs. 2.5 and 2.6.

Differentiating it with respect to « gives

&Pf  of Of  owdf *f _oH
ot * o0y oty T s T Vae ~ o 20D

Denoting 3 as fe, 4 as f, and 4 as ., the above equation can be rewritten as
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The left-hand-side of this equation is a 3D advection equation for f,. The

right-hand-side of this equation is a source term.

Applying the fractional step method to the above equations leads to

VA ) L )}
At

S e =0 (263)

el oz (264)

(265)

! i L et .
5 (I. ‘k ’vf L350 (2.66)

Eqs. 2.63 and 2.64 are solved by the CIP method described in Section 2.4.2, and f*
and f; are obtained by Eqs. 2.56 and 2,57

Differentiating Eq. 2.65 with respect to z yields

oH _fY-f Mz_)m,
or At 2Ar
k= S = S+ !.. x

2AAT (267




Substituting Eq. 2.67 into Eq. 2.66, the final equation for f2+' can be obtained,

o ik~ evngn + frge
A 2A1AT

and

uf - u oY -t wl, —wiL
N ”mm ‘>|,A +f HIJ‘;A,‘riI;.A L ”IJ‘kZAl" Lik)
(2.69)

Similarly, f7+! and f2+! can be obtained as follows:

=g+

= Viimtk | peWigenk ~ Wiyovk
+ gyt
(2.70)

ket + Sk
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2.5 Moving Body Interface Modeling Method

To distinguish the fluid and solid bodies in the Cartesian grid, the volume fraction
of solid bodies in each Cartesian grid cell must be calculated accurately, which
is important for the computation of fluid-structure interaction problem using the

Eulerian grid methods.

Some numerical methods have been proposed for the treatment of arbitrary geometries
in a fixed Cartesian grid. In the work of Fekken (2004), a moving body was presented
by a number of marker points in space that were connected with straight lines forming
a closed polygon, and a cut-cell method was used to caleulate the volume fraction of

a solid body at each cell.

T T T

Al

ax

(a) 2D wedge in a fixed grid (b) Boundary cell

Figure 2-8: Calculation of density function for a 2D wedge

A similar method was used in the work of Yang (2007). In his work, a density function
was induced to represent the solid body, and a cut-cell method was used to compute
the density function. Taking a 2D wedge as an example, the coordinates of the three
corner points of the wedge (P;, P2, Py) are updated by a Lagrangian method at each
time step, as shown in Fig. 2-8 (a). For each computational cell, if there are more
than two nodes intersected by the body surface, the cell is considered one including
the solid body boundary, and the area of the solid body in this cell is computed to

determine ¢y, as shown in Fig. 2-8 (b).
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G245 = Aiy/Azi/ Ayy

It is convenient and accurate to compute the density function in 2D, but the
computation in 3D will become very complex. Tn this work, a panel-based numerical
method for modeling arbitrary 3D moving bodies in a fixed Cartesian grid is

developed, and described in the following sections.

2.5.1 Generation of Panels

The body surface is represented by a set of panels instead of marker points. The
panel can be triangular, quadrilateral or hybrid of them. The distribution of panels
is important for the accurate representation of the geometry. Panels should be
concentrated at the corners and locations with large curvatures. Based on the work
of Qiu et al. (2003), the panel distribution can be controlled by two controlling
functions. The controlling function for points concentrated at two ends is defined by

Eq. 272,

(2a+ B)[(8+1)/(8 — 1) V0-2) 4 20— 3

=y (2.72)
(2a+1){1+[(B+1)/(8 - 1)[&-=)/0-al}

w(§) =

where a and J are the gird distribution factor and stretching factor, respectively.
When a = 0.5, the panel will cluster evenly at both ends. The stretching factor, 3,
should be greater than one. The larger the value is, the less concentration of points

at end edge will be achieved. Note that £ is some values between 0 and 1.

The control function is illustrated by the following example. Ten points are to be

distributed on a straight line with a length, L, and &; is specified as
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(a) Two-end distribution
L. L |
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(b) One-end distribution

Figure 2-9: Point distributions on a line
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where, j =1,

(i) = Lod§

. 10. Then the coordinates of points can be obtained.

Fig. 2-9 (a) shows the distribution of points concentrated at two ends on a straight

line with various values of 3.

The controlling function for grid point

concentrated at one end is defined by Eq.

2.73. Fig. 29 (b) shows the point distributions on a straight line with various values

of . The larger the value of 3, the less concentration of points at the end edge will

be achieved.

_(B+1) = (B-D[B+ /(B -]
i) = B+ D/(B-D[-€+1
”
A
~, "
(a) Quadrilateral panel (b) Triangular panel

Figure 2-10: Quadrilateral and triangular panels

(2.73)

These points are then connected to generate pancls. The order of the points (nodes)

for a panel must be arranged in the counterclockwise direction as observed from the

Eel




flow field. This is important as it affects the directions of computed surface normal
vectors, see Fig. 2-10. For a quadrilateral panel, two diagonal vectors are constructed
from its four corner points.

D;=R;-R,

D;=Ri-R;

The vector product of these diagonals produces a vector normal to the mean plane of
the quadrilateral panel.

n=D; x Dy/|D; x Dy|

The modulus of the dingonal vector product also provides the arca of the quadrilateral

panel (projected onto the mean plane).

AREA = |D, x Df/2

The centroid of each panel is obtained by

Re =S, R/

A similar method can also be applied to triangular panels.



Figure 2-11: Panel distributions on a sphere

Fig. 211 shows a sphere surface represented by panels. Quadrilateral panels are
distributed on the sphere surface, and trilateral panels are distributed on its two

polar points.

For a complex geometry, such as a lifeboat in Fig, 2-12 (1), the generation of panels is

challenging with the panel generation method introduced above. In order to generate
the panels accurately for a complex geometry, the meshing tools in ANSYS and
Gridgen were cmployed. ANSYS can import geometry files from some computer
aided design packages directly and generate the surface panels automatically. An

example of generated surface panels on a lifeboat is presented in Fig. 2-12 (b).

(a) Lifeboat model (b) Panel distribution

Figure 2-12: Panel distributions on a 3D lifeboat
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1,2,...,N

of the nodes

At
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At
At
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N; is the total number of nodes, and nd wy, ar
The normal vectors need to be caleulated in each time

step




F

Figure 2-13: Calculation of the contribution factor

To calculate the volume fraction of a solid body in each Cartesian grid cell, the
contribution of each panel to the computational grid needs to be estimated. The
contribution of each panel is denoted by a contribution factor, £, and it can be
calculated by,

1
A—"Lm Fds (2.74)

where AV, is the volume of the computational cell, and the function F is the distance
from one point on the panel to the corresponding computational cell surface (reference
surface). The reference surface can be determined by the slope of the panel. If the
panel is more horizontal than vertical, the horizontal cell surface will be used as
the reference surface (Fig. 2-13), otherwise the vertical cell surface is chosen as
the reference surface. The computational cell is very small compared to the solid
body (See Fig. 2-14). Therefore, the normals of panels in each computational cell
can generally be seen in the same direction. However, the present algorithm will
suffer some difficulties in capturing sharp corners, which will cause some numerical
irregularities (See Section 3.2). Fig. 2-14 shows a wedge (transverse section) captured

in two different grids. It can be seen that the grid resolution has great influences on
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the geometry capturing.

(a) Coarse grid

(b) Fine grid
Figure 2-14: Effect of grid refinement on the geometry capture: Top 80 x 120 x 120,

bottom 140 x 200 x 150 grid cells

The density function for solid, is then calculated by

where N is the total panel number included in the computational cell.

The density function is used to denote the different phases in the computational

domain occupied by liquid, solid and air, respectively. Fig. 2-15 shows that a sphere

and a planing hull are embedded in a fixed computational domain. As shown, the
upper part is air, the lower part is water, and the interface between air and water is

the free surface.
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(a) Sphere

(b) Planing hull

Figure 2-15: 3D bodies embedded in fixed Cartesian grids




2.6 Coupled Motion of Rigid Body and Fluid

In order to solve the slamming problem with free motion, the coupled motion of a 3D

body has to be simulated.

2.6.1 Motion of Rigid Body

The motion of an object can be described in terms of translations and rotations:

e = (ue, v, we)

© = (et ws)

where u, are the translational velocities of the center of mass, and w are the angular
velocities. These velocities can be obtained by solving the following equations based

on Newton’s law of motion,

du. .
My =F (2.76)
d(Mw) -
5T (2.1)

where F are the total forces and T are the moments. These forces and moments can

be calculated by the method introduced in Section 2.
T is the matrix of moment of inertia.

Mo Ty e
My Ty Ty
Mep My M.
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The elements of moment of inertia are calculated as follows:

e = Y [(mign — 9% + (350 — 21 Amy g (2.78)
b7

m,, .J;I(;J; — 2 + (Tige — 7)) Amy gk (2.79)

= MZ*I(r.J,x — ) + (Ui — v A g (2.80)

My =10, = E[(qu —20) (k= )| A (281)
Op=0,= g;uxw = 20) (20 = 2)|Am (2:82)
m, = ..,Z‘[(y‘“ — 1) 3k — )| Am (2:83)

where Ay = paotiada, s AVi, is the mass of solid in a computational cell (i, j, k),
and pyuiq is the mass density of the solid body. Since the position of the body is
known, the integration over the complete computational domain is not necessary, as

only the cells with ¢, > 0.0 contribute to the computation.

Eq. 2.76 can be solved by the Euler method. Eq. 2.77, the equation of rotation, can

be solved based on the work of Xiao (1999). Eq. 2.77 can be rewritten as follows:

dw dn ;
ng=r-wy (2.84)



Applying Cramer’s rule to Eq. 2.84, we can obtain,

du, _ detA,

= 2.85
dt  dettl ()
du, _ detA, T
& " danl @56)
do, _ detA,
== 2 2.87)
@ detll (a7
where
L3
A= g s |lls
7 T,
N 5 M
A=| T g 0, |,
. 7 I
e
= %
7
with

dil, | dll, | dl,
48y,

e = T (S S, + ) (2.88)




i, | dl,,

= iy 4 g A S22 2.89;
n=Ty= (5 ) (2.89)
(2.90)

and

dll;

=™ l{czw.,k — U (Vega — Vo) + 2ziga — ze) (Wiga — w)|Amyyu  (291)

s

Lo =) (Wi — ) + 2zign — ) (gx — u)Ames  (292)

4

dll,. : ’

= D (2wign — T wex — ) + 2pigx — v (tigx — u)|Amyge  (293)

ik

dl, dil,
dt dt

= = 3 Mg = ) (e = )+ (s = ) (1 1 — ) A (294)
prrd




I, _dll, _zuy.“ e 110 = )+ (g — 2 (v = )} A (2.96)

The rotational velocities can then be obtained by the Euler explicit method as follows:

we =u;+A:?:A’

= (297)

det A,
Pl )
=)+ A (2.98)

det A,

=wl +Ardﬁn

(2.99)
Once the translational and rotational velocities are determined, the total velocities of
any points on the moving rigid body, u?, can be obtained. The body motion provides
boundary conditions for the Navier-Stokes equations. The resulting body motion
are fed into the pressure equation of Eq. 2.18 by a no-slip fluid velocity boundary

condition:

= by +uy (1= 6) (2100)

where u;* is the velocity after the non-advection phase I This is for velocity
interpolation in the boundary cells based on the volume fraction. However, the
location of the interface is determined based on the volume fraction information
(Density function). So, it is difficult to apply the no-slip boundary condition at

the exact location of the boundary, unavoidably resulting in a loss of accuracy.



2.6.2 Calculation of Hydrodynamic Forces

The hydrodynamic force acting on the solid body, F, can be calculated by integrating
the pressure and skin friction over the body surface. Note that for the slamming
problem, the skin friction is relatively small and is neglected in the computation,
therefore,

—pdi)ndA (2.101)

wi F, represents the force due to the pressure, A denotes the surface of the solid

body, and ny is the kth component of the outward unit normal vector.

The forces can also b deulated by i ing over the whole i domain

(Hu and Kashiwagi, 2004). Applying Gauss’s theorem to Eq. 2.101, leads to,

B ,}(ﬂo,.m (2102)
A

where €2 denotes the whole computational domain and 6, is the density function of

solid.

‘The moments of force are computed as follows:
o
L= 7]{ 22 % 1iadQ (2.103)
o Oz,

where r; is the distance vector from the computational cell to the center of mass. The
advantage of Eqs. 2.102 and 2.103 is that the exact position and orientation of the

boundary surface is not required.

Expanding Eqs. 2.102 and 2.103 with respect to the spatial coordinates leads to,
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ap
Fr= Z(a),,m,.w.“

Pi- = Pi-
D " e L\ (Y (2.104)
b7

9
Fy= Z(ai').“o.__ 5 AVik

Pij+
*Z(M)a Vi (2.105)
&

Fo= Y Disatn i MVisa
15k >

. = Pigk- >
=Y (BT, AV (2.106)
P

= Dlonsa~ 1 Bhss = euin = 2 Dl AV

- _ Pk —
§l(y,d_. D v

Pigrk = Pig-1J .
ik — :fl(d—’;m:#“]]m, wAVigx

(2.107)
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Ty = Sl = 20— e — 2 gl s Vs

= Y l(ouga = 2 (BEZPA _ (g Bk T Py, AV

b
(2.108)
P = Yt~ 7 s = ohsn = 1) Nl Vs
i
= D llriga — 2 (IR — (g, g PP g, AV
prr
(2.109)

where z,, . and . are the coordinates of the center of mass, and AV, is volume

of the computational cell.

2.7 Summary of the Computational Method
The computational procedure can be summarized as follows:

1. Solve the advection equations.

o The advection equations of Eqs. 2.5 and 2.6 for velocities and pressure,
and advection equation of Eq. 2.38 for free surface, are solved by the CIP
method.

o The free surface is updated by solving Eq. 2.38 and the density function

¢ is obtained by Eq. 2.39.
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o In the free-fall case, the motion equations of Eqgs. 2.76 to 2.77 are solved.
Otherwise, a prescribed velocity is used as input to update the solid
body. The density function of ¢, is obtained by the panel-based numerical
method. The density function of air, ¢s, is obtained by Eq. 2.33. During
the simulation, the values of ¢, and ¢; change continuously between the
values for air and water at the free surface. The same happens with the
density functions between the body, the air and the water.

o The physical properties, such as viscosity and density, are calculated for
each computational cell by Eqs. 2.34 and 2.35 based on the incompressible

flow assumption.
2. Solve the non-advection equations I (Eq. 2.7).

o An Euler explicit scheme is used for the time integration for the

left-hand-side terms of Eqs. 2.11 to 2.13 and a central finite difference

scheme is used to discretise the terms on the right-hand-side of these
equations. Note that for the intermediate velocity field u;*, continuity

is not required.
3. Solve the non-advection equations I1.

o Based on a pressure-based algorithm, a poisson equation of pressure (Eq.
2.18) is obtained. The calculation of Eq. 2.18 is generally the most
computationally time-consuming part in the numerical simulation. A CG
iterative method is employed to solve the linear equations. Note that the
no-slip boundary condition (Eq. 2.100) is used before solving Eq. 2.18 to
enforce the velocity inside the body equal to the rigid body velocity.

o The velocities in the new time step are obtained by solving Eqgs. 2.30 to

2,32, The spatial derivatives of advection equations are calculated by Eqs.




2.69, 2.70 and 2.71. The slamming loads are calculated by Eqgs. 2.104 to
2.109.

4. Repeat steps (1)-(3) until the prescribed final time is reached.

A flow chart of the computational procedure is given in Fig. 2-16
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Solve the advection equations for
pressure, velocity and free surface

I

Solve the motion equation of a
rigid body: calculate the density
function of a solid body

[ Solve the non-advection 1

]

L Solve the non-advection IT I

I

[ caloube the samming loads |

Figure 2-16: Procedure of the numerical method



Chapter 3

Water Entry of 3D Bodies with

Prescribed Velocities

This chapter presents some numerical solutions of 3D bodies entering calm water with
preseribed vertical and oblique velocities. The hydrodynamic forces and pressure
distributions were computed and compared with experimental results. The highly
nonlinear free surface elevations were captured. Three-dimensional flow effects were
investigated

In the computations, the liquid phase was treated as water and the gas phase was

treated as air. Their density and viscosity at 25 °C' were chosen as pyater=997 kgm ™=,

Huater = 855 % 1074 kgs~'m~1, and puir = 1.16 kg™, jiqiy = 185 x 1075 kgs~'m~",

respectively.
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3.1 Verification

The present numerical method has been verified for a sphere added mass. When a
submerged body is accelerating in infinite fluid, it experiences a reaction force from

the fluid.

P m,,%f 1)

The value of m, is called the added mass and is dependent on the shape of the
submerged body. The computed added mass was compared with the analytical

of a sphere submerged in infinite flow is 2pmR®

solution. Note that the added mas:
based on the potential flow theory. In the applications in this study, viscous effects
play a minor role at the start of the simulation, and there is not yet a viscous wake

behind the sphere, thus the flow behavior is very much comparable with a potential

flow. Therefore the added mass as they are computed by the reaction force and
acceleration of the body according to Eq. 3.1 can be compared with the analytical

solution.

In present simulation, the sphere was accelerated at 1m/s? The radius of the sphere

was 0.1 m, and the computational domain was 0.6 m x 0.5 m x 0.5 m. Theoretically,

as computed by the present method is

the added m .09 kg. The added mas:

M=
shown in Fig. 3-1. As shown, the computed added mass agree well with the analytical

solution.

Simulations have been carried out with three different grids and time steps. It can be

observed that the numerical solution convel as the grid refinement increases and

the time step d

cases.

The relative error (RE) was calculated to estimate the differences between numerical
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Figure 3-1: Computed added mass for a sphere
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solution predicted by the CIP method and analytical results. The relative error is

defined as follows:

< | x100% (3:2)

where § is the numerical solution and the s, is the analytical solution. The average
value of the added mass between 0.1 5 to 0.35 s is § = 2.03 corresponding to the
solution with the finest grid. The RE for the numerical solution by the CIP wethod
based on Eq. 3.2 is 2.87%. In this case, verification is successful from a programmatic

standpoint.

3.2 Water Entry of a 3D Wedge

Figure 3-2: A wedge used in drop test
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‘Table 3.1: Data related to the experimental d.rug tcsl of a wedge

Breadth of section
Vertical distance from keel to knuckles D 29 m
Length of measuring sections 020m
Length of each dummy sections 040 m
Total length of the wedge 1m
Weight drop rig (without ballast) 141 kg
Ballast weight 100 kg
Total weight of drop rig 241 kg
‘Weight of the measure section 14.5 kg

I

aeiagnn.
T e Mt
o T |
=

Figure 3-3: Geometry of a 3D wedge

The geometry of the wedge used in the drop test is given in Fig. 3-2. Zhao et
al. (1996) conducted the drop test for such a wedge at MARINTEK. The test rig
consisted of four different parts: the vertical guide rails, the trolley, a horizontal beam
and the test section. The beam was connected to the trolley using one bolt at each
end of the beam. The ballast weights were located within the beam. The trolley
was engaged with the vertical guide rail. The test sections were mounted directly
to the horizontal beam. The test sections were connected to the trolley during the
entire drop. The free-falling rig was mounted in a small towing tank. The trolley
was raised using a winch fitted with a quick-release hook. The hook was connected

to an automatic release mechanism. After the test section had hit the water surface,
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the trolley was stopped using two elastic ropes. The total drop section was divided
into three parts (See Fig. 3-3), one measuring section, and two dummy sections. The
breadth, B, of the test section is 0.5 m, the total length, L, is 1 m, and the measure
part length is 0.2 m. The maximum drop height was about 2 m. Pressures in 5

locations were measured using pressure cells. The positions of the pressure cells are
shown in Fig. 3-2.

Figure 3-4: Computational model

e

Figure 3-5: Experimental drop velacity

The computational model of 3D wedge is shown in Fig. 3-4. In the computation, the
solid surface was represented by 198 triangular panels and 19,157 rectangular panels.

The computational domain size was 1.15 m x 1.73 m x 115 m.

To investigate the convergence of the numerical solution to the time step and the

grid resolution, the hydrodynamic forces on the wedge were computed using various
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Figure 3-6: Sensitivity studies



time steps and numbers of grid. The sensitivity of the computed forces to the grid
refinement at time step At=1.05x10"* s is given in Fig. 3-6(a). The convergence of
the numerical solution on a grid of 150 x 200 x 150 to the time step is presented
in Fig. 3-6(b). It can be observed that the numerical solution converges as the grid

refinement increases aud the time step decreases.

R

888888

0,008 oo 0015 002 0028
Time (s)

Figure 3-7: Vertical slamming force

The time series of the computed hydrodynamic forces were compared with the
experimental results and boundary element method (Zhao et al., 1996) in Fig. 3-7.
The computational grid was 150 x 120 x 150 and the time step was chosen as 1.05
x 10~ 5. The experimental vertical velocity (See
the numerical simulation. As shown in this figure, the numerical solution by the CIP

g 3-5) was used as input to

method is in good agreement with experimental result. The numerical solution by
2D BEM over-predicts the slamming force. Note that fluctuations are observed in the
predicted slamming forces. They are mainly due to numerical irregularities. Similar
fluctuations in the simulations are also shown in the work of Fekken (2004). When

bodies, especially for those with sharp corners, are moving through the computational
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grid, the geometry, especially the corner geometry, can not be accurately captured
by the density function in present method. The application of the no-slip condition
on the body boundary is based on the density function (The boundary condition can
not be applied at the exact location of the boundary). This leads to the fluctuations

in the pressure computation and therefore in the slamming forces.

The root mean square error (RMSE) was calculated to estimate the differences
between numerical solution predicted by the CIP method and experimental results.

The root mean square error is defined as follows

— 235 x100% (33)
s i=1
and

(34)

where 57 and s are the numerical result and experimental result on time point 7,

respectively.

The root mean square error of the computed slamming force by the CIP method
relative to experimental results is 12.56% (See Table 3.2). The present numerical

method give a good prediction on the slamming force.

To investigate the effect of 3D flow, the hydrodynamic forces were computed using
various lengths of dummy sections. In the computation, the lengths of dummy
sections were changed and the measuring section was kept constant. The slamming
force was obtained by integrating the pressure along the measuring section. As shown

in Fig. 3-8, the computed maximum slamming forces become smaller as the lengths of




§ 88 88 8
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Figure 3-8: 3D flow effects

dummy sections decrease, and the 3D flow effects become significant. The 3D effects
cause a reduction in the vertical slamming force. The maximum slamming force has

1o changes when the dummy section length is increased.

Fig. 3-9(a) presents the [ynamic pr istribution on the mid wedg

at the time instant (t=0.013 s) in the computation. It can be shown from the figures
that the maximum pressure occurs near the spray roots of the jets. Fig. 3-9(b)
shows the pressure distribution on the central plane of the 3D wedge. As shown in
Fig. 3-9(b). the pressure at measuring section keeps uniform whereas the pressure
at dummy section is significantly smaller than that at measuring section. (It can be

seen that the dummy sections reduce the 3D flow effects on the measuring section)

Fig. 3-10 represents the numerical and experimental pressures on these five test
points for three time instants. The non-dimensional pressure coefficient is defined as
€, = gk Where p is the hydrodynamic pressure, p is the density of water, V(1)

is the drap velocity, The numerical results by the present method are generally in
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(a) Mid transverse section

(b) Central plane

Figure 3-9: Hydrodynamic pressure (Pa) distribution on sections of a 3D wedge




agreement with the experimental results. The reasons for the discrepancy at Ps are
believed to be the loss of interface sharpness and inaccurate boundary conditions on
the body. In the present computation, the interface was not explicitly tracked but was
reconstructed from the field variables on the fixed computational grid, unavoidably
resulting in losing some accuracies when details of the interface can not be covered

by grid.

P method

Fig. 37: 1256%
Pressure in Fig. 3-10 (a) (z 0.00435): 17.85%
Pressure in Fig. 3-10 (b) (t=0.0158):  23.88%
Pressure in Fig. 3-10 (c) (t=0.0202):  22.03%

Fig. 3-11 presents the free surface deformation during the water entry of the wedge
at several time instants. After the wedge enters the free surface, jets are generated

and run up. Waves propagate away from the impact center.
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Figure 3-10: Pressure coefficients of test points
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(1) 1=0.005 (b) t=0.015

(€) t=0.025 (d) =004

Figure 3-11: Free surface elevation during the water entry of a 3D wedge
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3.3 Water Entry of a 3D Ship Section

Aarsnes (1996) conducted a drop test for a ship section, see Fig. 3-12(a). The breadth
and draft of the section are 0.32 m and 0.24 m, respectively. It was attached via force
transducers to a free-fall rig. Pressures were measured at positions Py, P, Py and
P, shown in Fig. 3-12(b). The ship section was represented by 18436 panels in the
computation, see Fig. 3-13. The computational grid was 100 x 200 x 150 and the
time step was chosen as 1.05 x10~* s. The computational domain size was 1.15 m
% 1.73 m x 1.15 m. In present computation, the section was forced into the water
with the velocity profile taken from the experiments (See Fig. 3-14).

r

40,1350 190)
o1s.
z P3(00720 149)

i /mownnn

o0 o5 o 0
¥ (m)

(b)

Figure 3-12: Geometry of a 3D ship section in the drop test
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Figure 3-13: Computational model of a 3D ship section

Table 3.3: Data related to the experimental drop test of ) section

Breadth of section 032 m
Vertical distance from keel to knuckles 0.203 m
Length of measuring sections 0.10m
Length of each dummy sections 045 m
Total length 1m

Weight drop rig (without ballast) 161 kg
Ballast weight 100 kg
Total weight of drop rig 261 kg
Weight of the measure section 6.9 kg

The time series of the computed hydrodynamic forces were compared with the

al results in Fig. 3-15 and numerical results by Sun (2007). In the work

experime:

of Sun (2007), the water entry problem was simulated by a 2D boundary element

method (BEM). As shown in this figure, the numerical solution by the CIP method is

erimental results. However, it under-predicts the peak

in general agreement with ex)

values of slamming force. The numerical solutions by the BEM is slightly higher than

the experimental results,
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Figure 3-16: Numerical and experimental hydrodynamic pressures (KPa) for the ship

section entering calm water
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The computed hydrodynamic pressures were presented in Fig. 3-16 and compared
with experimental results (Aarsnes, 1996) and numerical solution by 2D BEM (Sun,
2007). The CIP method slightly under-predicts the pressure at points P;, and it
agrees well with the experimental data at point Py. However, the pressures at Py
and P; are under-predicted by as much as twenty percent of the peak values. Similar
to the case of a 3D wedge, these discrepancies are presumedly due to the loss of
interface sharpness and therefore inaccurate body boundary conditions caused by the
immersed boundary method. In addition, as shown in Fig. 3-17, the spray jets near
the knuckles were not captured very well. The loss of spray jets may also contribute
to the discrepancies. The numerical results by the 2D BEM slightly over-predict the
pressures at points Py, P, and Py, and it under-predicts the pressure at P;. As shown
in these figures, the peak pressures at four positions almost occur at the same time

(£=0.058 s)

The root mean square errors of the numerical solutions predicted by the CIP method

relative to experimental results were given in Table 3.4.

Table 3.4: RMSE of the numerical solutions by the CIP method

Hydrodynamic force in Fig.
Pressure on P, in Fig. 3-16 (a):  19.82%
Pressure on P, in Fig. 3-16 (b):  27.8%

Pressure on P in Fig. 3-16 (
Pressure on P in Fig. 3-16 (d): _ 26.5%

Fig. 3-17 shows the free surface elevation at the time instant of t=0.038 s. As we
can see, the simulated jets are very “blunt’. This can be attributed to grid resolution
effects. A further comparison and discussion about the jet simulation will be given

in section 4.1.
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,

Figure 3-17: Free surface simulation at t=0.058s

3.4 Water Entry of a Flared Body

The computation was conducted to a 3D flared body, as shown in Fig. 3-18. The
vertical water entry of the flared body was studied in the experiment by Troesch

and Kang (1986). The flared body had a total weight of 74.7 N and floated at



approximately 90 percent of the total height of the body. Table 3.5 gives the offsets

of the flared body.

Table 3.5: Offset table of the flared body
Radius (in) | Height (in) | Radius (in) | Height (in)
0.0000 0.0000 2.9023 5.9070
0.3819 0.0285 31071 6.3008
0.7550 0.1186 3.3434 6.6946
1.0961 0.2950 3.5836 7.0884
1.3951 0.5141 3.8632 7.4822
1.6404 0.7969 4.1546 7.8760
1.8228 11505 4.4854 8.2698
1.9350 14614 48733 8.6636
1.9729 1.5752 5.2691 9.0574
2.0084 1.9690 5.7219 9.4512
2.0360 2.3628 6.1866 9.8450
2.0576 2.7566 6.6119 10.2389
2.0970 3.1504 6.9309 10.6327
2.1659 3.5442 7.2223 11.0265
2.2447 3.9380 7.4784 11.4202
2.3392 4.3318 7.6752 11.8141
2.4534 4.7256 7.7854 12.4692
2.5973 5.1194 7.7933 12.7251

2.7290 5.5132




0.195m

WOOE'D

Figure 3-18: Geometry of a flared body

Figure 3-19: Velocity of flared body in the computation

The uon-dimensional slamming coefficient is defined as C, = gty where Fy is the
impact force, p is the density of water, Vj is the initial vertical impact velocity (5.99
m/s), and A, is the projected area of the flared body.

In Fig. 3-20, the computed vertical slamming force coefficients were compared with
experimental results and numerical solutions with the potential flow theory by Troesch
and Kang (1986). The vertical velocity used in the present computation is shown in
Fig. 3-19. In Fig. 3-20, B(t) is the instantancous submerged depth and D is the top

transverse dimension (2 x 0.195 ). In the computation, the computational grid was
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180 x 180 x 140 and the time step was chosen as 4.11 x 10~* 5. The computational
domain size was 1.2 m x 1.2 m x 1.0 m. As shown, the computed results by the
CIP method agree well with the experimental results. The root mean square error of
the numerical solution predicted by the CIP method relative to experimental result is
17.03%. However, the reason for the over-prediction of the maximum vertical impact
force by the potential flow is unclear. Troesch and Kang (1986) stated that it could
be caused by the spray jet jumping on the flared upper sections which leads to a lower
experimental velocity than the one predicted by the potential flow theory. Also, as
indicated by Maskew et al. (1994), possible inaccurate force prediction in the work
of Troesch and Kang (1986) could be due to the simplified free surface conditions or

model discretization which can not be identified with certainty.

'
Experineta (1dosch i K, 1988
Ramercl (Trosen and Kang, 1988 "
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Figure 3-20: Time history of the slamming forces on a flared body




3.5 Water Entry of a Sphere

The model tests of water entry of a sphere subjected to oblique impact angles were

carried out by Troesch and Kang (1986) for a sphere entering calm water with both

vertical and horizontal velocities. The diameter of the sphere is 0.502 m. The sphere
was ballasted to float as a hemisphere. The sphere was dropped from a moving
carriage with a speed corresponding to the vertical impact velocity, which resulted
in an oblique entry angle of 45 degrees. Computations are carried out for two drop
heights, 0.61 m and 1.22 m, which corresponds to impact velocities of 3.46 m/s
(Fn=2.2030) and 4.89 m/s (Fn=3.1156). The surface of the sphere was represented
by 200 triangular panels and 19,800 rectangular panels in the computation. The
computational grid was 210 x 180 x 180 and the time step was chosen as 1.027 x

10~* 5. The computational domain size was 1.75 m x 1.5 m x 1.5 m.

The non-dimensional slamming coefficient is defined as C, = gzt where F s the
impact force, p is the density of water, Vy is the initial vertical impact velocity, and

A, is the projected area of the sphere.

The computed horizontal and vertical slamming force coefficients are compared with
experimental results and numerical solutions based on potential flow theory (Troesch
and Kang, 1986) in Figs. 3-21 and 3-22. The velocity used in the present computation
is shown in Fig. 3-24. In these figures, B() is the instantancous submerged depth
and R is the radius of sphere. As shown in these figures, the numerical solution by
the CIP method in general agrees well with experimental results. The root mean
square errors of the numerical solutions predicted by the CIP method relative to

experimental results were given in Table 3.6.

Figs. 3-23 presents the free surface deformation during the water entry of the sphere
at several time instants. After the sphere enters the free surface, jets are generated

around the spheres and run up.
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Figure 3-21: Time history of the slamming forces on a sphere (Fn=2.2030)
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(a) B(t)/R =003 (b) B@)/R =02

(0) B()/R=04 (d) BW)/R =06

Figure 3-23: Free surface elevation during the water entry of a sphere entering calm
water obliquely (Fn=2.2030)

o

Figure 3-24: Velocities in the computation
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Table 3.6: RMSE of the numerical solutions by the CIP method
Vertical slamming force in Fig. 3-21 (a) (Fn—2.2030):  14.25%
Horizontal slamming force in Fig. 3-21 (b) (Fn=2.2030): 28.4%
Vertical slamming force in Fig. 3-22 (a) (Fn=3.1156):  11.9%

i slamming force in Fig. 3-22 (b) (Fn=3.1156): 21.94%

3.6 Water Entry of a 3D Planing Hull

The prediction of slamming forces is important in the simulation of planing hull
motions. The computation of slamming forces is usually based on 2D potential
flow theory and CFD solutions. The computations of slamming forces based on 3D
methods are relatively rare. The objective of this work is to investigate the slamming

phenomena on a planing hull using a 3D numerical method.

The computations were carried out to a prismatic planing hull (Fridsma, 1969)
‘ entering calm water with different pitch and roll angles. The prismatic hull geometry
‘ is shown in Fig. 3-25. The hull features constant deadrise through its length, and
vertical sides above its single chine. The chine and keel line are horizontal from the
stern to a point one-fifth of the length aft of the bow, where the keel and chine are

elliptical in elevation and the chine and deck line are elliptical in planform. The

computational model is shown in Fig. 3-26. The surface of the planing hull was
represented by 10,975 rectangular panels in the computation. The computational
The

grid was 180 x 80 x 160 and the time step was chosen as 4.28 x 107
computational domain size was 2.5 m x 1 m x 2 m. In the computation, the pitch

and roll angles were 0, 5, and 10 degrees, respectively.

The 3D results are compared with strip theory solution. The actual fluid mechanical
problem is simplified through a strip approach. The force on the hull is approximated
by determining the section load at a number of sections, or strips (sce Fig. 3-27 (a) )

The 2D section caleulations are expressed in terms of 2D CIP method (Yang, 2007).

In the 2D computation, in order to consider the effects of pitch, the drop velocity in
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Figure 3-25: Geometry of a 3D planing hull



Figure 3-26: Computational model of a 3D planing hull

the 2D section plane is
V' = Veos() (3.5)

where @ is the pitch angle and V is the drop velocity in the vertical direction (Fig.
327 (b)).

Then the vertical slanming force on each section is obtained by
F = F'Jcos(0) (3.6)

F' is the force calculated by the velocity in the 2D section plane. The total vertical
slamming force is

Frotat = EFds (3.7

Fig. 3-28 shows the maximum slamming force coefficients with different pitch and roll
angles. The slamming coefficient is given by C, = gzfarz where L is the length of
hull aud V is the vertical velocity (V=0.925 m/s). From these figures, it can be scen
that the 2D results are a little higher than the 3D solution. The main reason is due

to 3D flow effects. As discussed previously, the 3D effects tend to cause a reduction
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Figure 3-27

2D strip and force/velocity components
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(a) Pitch 0
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(b) Pitch 5

(¢) Piteh 10

Figure 3-28: Maximum slamming force coefficient for different roll and pitch angles
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(c) t=0.08 (d) t=0.12

Figure 3-29: Pressure distribution (Pa) on a planing hull entering calm water (pitch=5
degrees and roll=0)



(a) piteh 5 & roll 0 (b) pitch 5 & roll 5

(€) pitch 5 & roll 10

Figure 3-30: Pressure distribution (Pa) on a planing hull at 5 pitch angles and different
roll angles
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of vertical slamming force on a wedge. This observation seems to be consistent. The
difference between the 2D and 3D results become smaller with increasing pitch angle.
The maximum slamming force coefficients predicted by the two methods increase

slightly as the roll angle is increased.

Fig. 3-29 presents the pressure distribution of the planing hull entering water at 5
degrees pitch angle and zero roll angle at various time instants. Jets are generated
around the hull, and peak pressure occurs near the jet roots. The peak pressure keeps
changing positions with the moving of water jets during water entry. Fig. 3-30 shows
pressure distributions on the planing hull at different roll angles. As we can see, at
zero roll angle, the pressure distribution is almost uniform over the hull bottom. For
asymmetrical water entries, the peak pressures occur at the water jet roots on the

side of hulls with smaller deadrise angles.




Chapter 4

Water Entry of 3D Bodies with
Free-Fall Motion

The problem of a 3D body entering calm water with free-fall motion has been studied.
The computations have been carried out for cylinders, catamaran models and a ship

section. The predicted motion has been compared with experimental results.

4.1 Water Entry of 3D Cylinders

Computations have been carried out for the free-fall of 3D cylinders entering calm
water.  Numerical results were compared with experimental data presented by
Greenhow and Lin (1983). Greenhow and Lin (1983) did free drop tests of horizontal
circular cylinders into initially calm water. A half-buoyant and a neutrally buoyant
cylinder with a radius of 0.055 m and 1 m in length are used in the validation studies.
The depth of water is 0.3 m. Half buoyant means that the cylinder’s weight equals half
of the buoyancy force on a totally submerged cylinder, while the neutrally buoyant

means the weight equals the buoyancy force. Both cylinders were dropped from
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Figure 4-1: Computational model of a 3D cylinder

a height of 0.5 m between the lowest point of the cylinder and the undisturbed
free surface. The computational model in the present computation is shown in Fig,

The

"y

4-1. The surface of the cylinder was represented by 9,194 rectangular panel
computational grid was 178 x 78 x 158 and the time step was chosen as 1.02 x 10

s. The computational domain size was 1.12 m x 0.56 m x 0.56 m.

Fig. 4-2 presents the time history of the depth of penetration for the half-buoy

and nentrally buoyant cylinders. The calculated results for the penctration depth into
the water were compared with the experimental results by Greenhow and Lin (1983)

For the half-buoyant cylinder, there is good agreement between the numerical results

and experimental data. For the neutrally buoyant cylinder, reasonable agreement is

obtained, except at one experimental value which obviously deviates from the oth

data.

s indicated by Greenhow and Lin (1983), there were some measuring errors

in the model test. The root mean square errors of the numerical solutions predicted

by the CIP method relative to experimental results were given in Table 4.1. Fig. 4-3

shows the numerical results by 2D BEM (Sun, 2007), and the numerical solution is

'y close to the present simulation.

4-4 and 4-5 show the free surface deformations during water entry of the
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Figure 4-2: Depth of penetration during water entry of cylinders
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Figure 4-3: Numerical results by Sun (2007)
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Figure 4-4: Free surface deformation during water entry of a half-buoyant circular
cylinder



() cIP

() P (d) Model test
Figure 4-5: Free surface deformation during water entry of a neutrally buoyant
cylinder

Table 4.1: RMSE of the numerical wlntiou.! the CIP method

Depth of half-buoyant ler in ( 7.38
Depth of neutrally buoyant cylmdar in Fig. 4-2 (b): 24.71%

half-buoyant and neutrally buoyant cylinders, respectively. These figures show
in general satisfactory agreement between the numerical results and experimental
results. Actually, the resolution of the grid has a great influence on the formation of
the jets aside the cylinder. As shown in Fig. 46, the jet formation becomes "blunt”
with coarser grid. A very fine grid is needed to capture the jets. However, it is
difficult for a 3D simulation using a very fine grid due to the limitation of computer

resource and computational time.

Fig. 4-7 shows a comparison of computed jets with a 2D simulation (fine grid) and
the V3~ ellipse theory (Greenhow and Lin, 1983). Greenhow and Lin found that the
shape of V3~ ellipse fitted the jet geometry from their model tests. The computed
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() Grid number: 800 x 700 (b) Grid number: 500 x 400

(¢) Grid

mber: 400 x 300 (d) Grid number: 300 x 200

Figure 4-6: Effect of grid refinement on the jets (2D)

(a) Numerical (2D)

e\ ey

(b) V3 ellipse

Figure 4-7: Comparison of computed jets
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results generally agree with that by the v3— ellipse theory.

4.2 Water Entry of a 3D Catamaran Model

() Computational model (b) Section geometry

Figure 4-8: Geometry of a 3D catamaran model

The water entry of a catamarau with free-fall motion has been studied. The
catamaran hull experiences cross-deck slamming during water entry. A model drop
test was carried out by Davis and Whelan (2007). The geometry of cross section
is shown in Fig. 4-8 (b). The computational model is shown in Fig. 48 (a). The
surface of the cylinder was represented by 8,508 panels in the computation. The
computational grid was 100 x 100 x 110 and the time step was chosen as 1.84 x

10* 5. The computational domain size was 1.3m x 1.3m x L5 m.

There are two main parameters used in the drop tests, the non-dimensional drop
height (H/L) which defines the maximum velocity just prior to the water entry and
the mass ratio m* = my,/pTL?, where H is the drop height from the water surface
to the top of the wet deck when the model is released, L is the overall width (0.544
m) of the model, m,, is the model mass, p is the water density and 7 is the length of

the model (0.5 m). Note that the velocity of a large mass ratio model is not greatly
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reduced when the model enters water. A small mass ratio model leads to a greater

velocity reduction.

The ratios of hull velocity C,, defined as the velocity at the time when the top of the
wet deck arch touches the initial water level to the velocity at initial water contact at
various drop heights are compared with the experimental results. The comparisons

were made for two mass ratios, m*=0.29 and 0.58.

As shown in Fig. 4-9, the trend of the predicted values is in good agreement with
that of the experimental data, while the CIP method over-predicts the velocity ratios,
especially for large drop heights. Note that the compressibility of air was not taken
into account in the computations, which could lead to the over-prediction. Residual
air is entrained at the top of the arch due to bubble formation by turbulent mixing and
this modifies the effect of the slamming force on the hull. A very fine grid is required to
simulate the compressible air. However, it is very time-consuming for 3D simulations
using a very fine grid due to the limitation of computer resource. The compressible
nd Whelan (2007), an

air was therefore neglected for this case. In the work of Dav
added mass theory was used to simulate slamming problem. The entrained air at the
top of the arch was modeled as a spring. They gave a better prediction for the case

0.58. However, their results under-predicted the velocity ratio for the case

of m*
of m* = 0.29 for small drop heights. The root mean square errors of the numerical
solutions predicted by the CIP method relative to experimental results were given in

Table 4.2.

he CIP method
91%

) 3111%

Table

y ratio m’

ocity Fig.
Velocity ratio m* = 0.58 in Fig. 4-9 (b

The computed free surface elevations for the catamaran were compared with the test
results by Davis and Whelan (2007) as shown in Fig. 4-10. The visual comparison

indicates that the predicted free surface elevation on such a catamaran model is rather
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gure 4-9: Velocity ratio of catamaran models
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moderate. The free surface deformation was not captured very well in details. As

mentioned previously, the coarseness of the grid has great influence on the formation
of the jets in the Cartesian grid approach. To improve the computational quality
of the free surface, a very fine grid is needed. It is again limited by the available

ial computations. In addition, complexity of the geometry

computer resource for s

can also contribute to the discrepancies.
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H/L=08 (Left

Figure 4-10: Comparison of free surface elevations at m*=0.

computed, Right: experimental)
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4.3 Asymmetric Water Entry of a 3D Ship Section

The drop tests of a ship-bow section in Aarsnes (1996) with different roll angles have
also been studied. The same model as in the symmetric cases discussed in Section 3.3
was used in the drop tests. The only difference is that the section enters the water
with a roll angle (See Fig. 4-11). The computational conditions are the same as those

in Section 3.3

Figure 4-11: Asymmetric water entry of a 3D ship section

Figs. 4-12 and 4-13 show the comparisons between the present calculations by the

CIP method and the experiments for the tilt angle of 28.3°. The numerical results

presented in Sun (2007) by the 2D BEM method are also presented. From the Fig.
412, it can be seen that the present calculation for vertical hydrodynamic force
agrees well with the experimental result. However, it under-predicts the horizontal
hydrodynamic force. Fig. 4-13 shows the comparisons of the acceleration and velocity.

The ions show ! ent with the results.

Figs. 4-14 and 4-15 show the comparisons for the tilt angle of 20.3°. The calculations

ydrody forces. There

are in agreement with the i results for the
are some discrepancies in the acceleration and velocity results at the later time for

this case. As shown in Fig. 4-15, near the end of the time histories, the measured
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Figure 4-12: Measured and calculated hydrodynamic force (filt : 28.3%)
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Figure 4-13: Measured and calculated acceleration and velocity (tilt : 28.3%)
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Figure 4-14; Measured and calculated hydrodynamic force (tilt : 20.3%)
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Figure 4-15: Measured and calenlated acceleration and velocity (tilt : 20.3%)
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accelerations increase and the resulting water entry speeds suddenly decrease. Elastic
ropes were used to stop the model at the later stage of the water entry in the model
test. Experimental bias errors caused by this fact can account for the apparent

discrepanci

in the acceleration and velocity results at the later time for this case.

Figs. 4-14 and 4-15 show the comparisons for the tilt angle of 14.7°. The calculations

show reement with the i in this case. The oscillation in the

| results for the ions are due to the vibrations of the drop rig

during the test.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis

presents a numerical method for simulating 3D strongly nonlinear
slamming problems. The study has been focused on developing a numerical tool
for predicting slamming loads on ships and offshore structures with an objective to

improve the design and their effective operations. The present computations include

mmetric water entries with prescribed entry velocities and free-fall

symmetric and asy

motions. The main contributions of the research work can be summarized as follows:

Three-dimensional nonlinear free surface. In the work, the 2D Constrained

Interpolation Profile (CIP) method (Yang, 2007) was further developed to simulate
the 3D nonlinear free surface problems. The CIP method is a compact upwind scheme
with subcell resolution for advection calculations. It does not involve any interface

cons

ruction procedure and is economical for 3D applications. In the CIP method, a

cubic interpolation function is constructed, and a high-order scheme is achieved

Coupled motion simulation. In order to simulate the slamming problem for bodies

17



with free motion, the coupled motions of a 3D body and fluid have been solved. In the
present research, slamming forces and moments were obtained from the Navier-Stokes
equations which were solved by a CIP-based finite difference method. The motion
of a solid body was predicted by numerical integration of differential equations of
motions. The fluid velocities due to the body motion were caleulated, and used for

capturing the free surface.

Solid body interface capturing method. A panel-based numerical method was

developed in this work to model the arbitrary 3D moving body interface. The

body surface was represented by a set of panels. The panel can be triangular,

quadrilateral or hybrid of them. Since the body is assumed to be rigid, the panels
can be used to update the body position with a Lagrangian method in each time
step. The contribution of each panel was estimated by the contribution factor in each
computational grid cell. Then the density function for a solid body was obtained,

and the solid phase was modeled in a fixed computational grid.

Validation studies of the present method were carried out for several 3D bodies

entering calm water symmetrically and asymmetrically with prescribed velocities and

free-fall motions.

o Water entries of 3D bodies with prescribed velocities were first studied. For the

water entry of a 3D wedge, 3D flow effects were investigated. 3D flow effects
tend to cause a reduction in slamming force. The computed slamming forces
are in good agreement with experimental results. For the sphere entering calm
water obliquely, the computed vertical and horizontal slamming forces in general

agree well with experimental results.

The simulations were further carried out for a couple of bodies with complex

o

geometry. For the water entry of a 3D ship section, pressures near the

knuckles were under-predicted by the numerical method. Similar to the case
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of a 3D wedge, the discrepancies are presumedly due to the loss of interface

sharpness and therefore inaccurate body boundary conditions caused by the
immersed boundary method. In addition, the spray jets near the knuckles
were not captured very well. The loss of spray jets may also contribute to the
discrepancies. The slamming force on a 3D flared body was also computed by
the present numerical method, and the predicted slamming forces are in good

agreement with the experimental results.

The maximum slamming force coefficients of a planing hull with different pitch
and roll angles were computed by the present numerical method and compared
with these by the 2D strip theory. The 2D results are slightly greater than the
3D solutions. The main reason is due to 3D flow effects. The 3D effects tend

to cause a reduction of vertical slamming force.

The studies were then extended to 3D bodies entering calm water with free-fall
motions. The predicted motion of the half-buoyant cylinder with free-fall motion
agrees well with the experimental data. For the neutrally buoyant cylinder,
reasonable agreement is obtained, except at one experimental value which
obviously deviates from the other data. The complicated free surface elevations
during water entry of cylinder were simulated by the present numerical method.

They are vis

ally in good agreement with the photographs taken from the

experiments.

The present numerical method over-predicts the velocity ratios for water entry
of a catamaran, especially for large drop heights. The compressibility of air was
not taken into account in the present computations, which could lead to the
over-prediction.

Velocity, acceleration, as well as vertical and horizontal hydrodynamic forces

as a function of time were predicted by the present numerical method for
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the asymmetric water entry of a ship section. A satisfactory agreement with

experimental drop test results is demonstrated.

In addition, the present method was compared with the conventional boundary
element method. In most of cases, the CIP method gives better predictions of
slamming forces and pressure than the boundary element method, since the CIP
method overcomes the difficulties in treating highly distorted or breaking free surfaces

and the flow separations.

5.2 Future Work

In order to make the caleulation more accurate and efficient, the following aspects

need to be addressed in future work.

To apply the boundary condition at the exact location of the boundary. The
interface is not explicitly tracked but is reconstructed from the field variables
on a fixed computational grid. The location of the interface can be determined
based on the volume fraction information, unavoidably resulting in losing some
accuracies when details of the interface can not be covered by grids. An accurate

boundary condition application method on the geometry needs to be developed.

Parallel c ational technique. In i with the boundary element

method, the present numerical method is time-consuming. A parallel
computational technique should be developed to improve the computing
efficiency. In addition, the resolution of the grid has great influence on the
formation of the water jets. The current studies were limited by computer
resource and grid resolution. A parallel computational technique can also

improve computing efficiency for fine grid resolution.
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3. To simulate the case when the 3D body has an arch deck, i.e. the catamaran
model, the predicted results have large discrepancies with the experimental
result. The main reason is the effect of the air compressibility. Residual air is

ing and

entrained at the top of the arch due to bubble formation by turbulent mi
this affects the slamming loads on the deck. An algorithm should be developed
to include the effects of compressible air in 3D simulations during the water

impacts.
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Appendix A

Conjugate Gradient Method

and Preconditioning

As mentioned in Chapter two, the linear equations (Eq. 2.26) obtained from pressure
equation are solved by a Conjugate Gradient (CG) method. The method can be used
stems Ax = b when the matrix A is symmetric positive definite
. The

to solve linear s

tem then gives a SPD matrix

(SPD), or negative definite since negating the sys
CG method was first proposed by Hestenes and Stiefel (1952), and further developed
by Leveque (2007). In the work, the CG algorithm is based on the work of Leveque

(2007).
Choose initial guess ug (possibly the zero vector)

ro=f— Aug

P=To

for k=1,2...

wi—y = Apey
gy = (M aee) /(P We1)
U = Uy + Q1 Phr
= Vi — Ot
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than some tolerance then stop

Be-

= () /(plarier)

P =Tk + Br-1Dk

end

In this work, the tolerance is 107°.

The convergence rate of CG generally depends on the condition number of the matrix
A. Preconditioning the system can reduce the condition number of the matrix
involved and speed up the convergence. Ax = b can be solved indirectly by solving
M~'Ax = M™'b. If the cigenvalues of M™'A are better clustered than those of A,

the linear equations can be iteratively solved more quickly than the original problem.

A very simple preconditioning, which is effective for some problems, is simply to use
M= diag(A), namely Jacobi preconditioning. Generally this does not help for the
Poisson problem on a rectangle computational domain, where this is just a multiple of

matrix, and hence does not change the condition number at all. Although

the identity
Eq. 2.26 is a Poisson type equation, it is solved in a multi-phase computational
domain (large gradient of density at the interface). The elements in matrix A are
different at different phases. It was found that the Jacobi preconditioning works well

in this work.
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Appendix B

Water Entry of a Free-Fall Lifeboat

One of the applications of the present numerical method is to simulate the water
entry of a free-fall lifeboat. Free-fall lifeboats are common life-saving appliances
on seagoing vessels and offshore platforms. The numerical simulation can provide
engineers the opportunity to investigate the safety of lifeboats under severe impact

conditions with high accuracy, reducing the investigation time and eliminating the

high costs associated with experiments.

The water entry of a free-fall lifeboat was simulated by the present method. Fig,
B-1 presents the trajectories of a 3D lifeboat entering calm water. Before the boat

feboat is its weight. The rotation

touches the water, the main force acting on the

of the boat during the free-fall determines the angle of attack at water entry. During

water entry, the lifeboat is acted upon by the slamming forces. As shown in Fig.
B-1, when the bow touches the free surface, jets are generated and the boat starts to
rotate due to slamming loads and continues until the boat becomes balanced. This
numerical study has shown some interesting phenomena. However, these results still

need to be validated by experiments.
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Figure B-1: A free-fall lifeboat entering calm water
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