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Abstract

To debunk the myth of how cooperation can emerge through the competition induced

by Evolutionary Computation, this disscrtation, inspired by nature, presents a new

route to reach the evolution of cooperation in computational settings. The inspiration
is drawn from multilevel selection theory in biology. This theory is an extension of
the well-known group selection theory, which explains the evolution of cooperation

by considering sclection taking place both within and between groups. Although

within-group selection encourages i to compete, b p sclection
posits competition between groups, which leads to cooperation within groups. The
concept of individuals and group are relative: groups can be regarded as individuals
on a higher level; therefore, multilevel selection claims that selection should take place
on cvery level of this hierarchical structure.

Indeed, our biological world is hierarchically organized. However, most multilevel
selection models in the literature take this hicrarchical structure as given. The bi-
ological hicrarchy, however, has developed gradually: simpler, smaller components
appear before more complex, composite systems. Therefore, the new computational
multilevel selection model we propose defines a bottom-up process, where entities on

new levels are created with the help of a cooperation operator under the guidance of



predefined reaction rules. Hence, new entities are able to possess different genotypic
or phenotypic traits than their constituents. Evolution is performed on ecach level to

optimize the traits of the entitics on that level. Selection pressure from higher levels

forces entities on lower levels to cooperate. Between-level selection determines which
level to select and controls the growth of the hierarchy. As a result of these features,
the model shows an emergent property: the appropriate structure required reach-

ing a predefined cooperative goal, i.e., the number of individuals and the role each

individual playing in the cooperation, arc automatically developed during evolution.

After introducing the model, we first experimentally evaluate the feasibility of
our proposed multilevel selection model in achieving the evolution of cooperation on
the N-player Prisoner’s Dilemma (NPD) game. We further explore the transition

ability of our model by using division of labor as an example. Our findings reveal

that cooperation emerges and pe more casily in this model than in other models
from the literature. In fact, the between-group selection is strong enough to ensure

groups with all required skills emerging from a population of independent individu-

als, no matter whether the skills are equally rewarded or not. Next, we validate the

and problem capability of this model in solving decom-

posable problems. Two case studics are performed on string covering problems and

multi-class classification problems, respectively. The experiment results show that

our model evolves faster and finds more accurate solutions than other cooperative

evolutionary algorithms. More importantly, problem decomposition emerges through
evolution without human intervention.

The thesis concludes with a discussion of achievements and further work building

on our results
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Chapter 1

Introduction

This dissertation is about the evolution of cooperation. Within this context, cooper-

ation means that individuals have to give up some of their survival or reproducti
potential to help others. How could cooperation evolve, if the evolutionary principle

s to predispose individuals to be selfish? Apparently,

of “survival of the fittest” seem
nature manages the conflict very well, as we observe cooperation everywhere, in cells,
in insccts, in animals, in human beings, or even in our political and cconomic world
For example, animals might evolve to reduce their fertility to avoid over-exploiting

animals and insects defend their territory or community fiercely

their resources [113]
which often causes their own death; individual animals give alarm calls to protect
their group at the risk of being the most obvious target of a predator. Cooperation
exists because it confers evolutionary advantages; it can dramatically increase the sur-
vival rate of a group or a species-—hence members inside, can accomplish complicated

tasks which are not or nearly not possible to be achieved by individuals, and can help

a group of individuals to function more efficiently and effectivel

Evolutionary Computation (EC) is a burgeoning research field of computational




intelligence. EC makes use of the Darwinian evolutionary principle, applying mech-
anisms of variation and sclection to perform practical tasks in a varicty of domains.
Compared to other problem-solving strategies, EC has a number of advantages, such

and in changing envi less

as efficiency,
susceptibility to trapping in local optima, and less requirement of knowledge about
the problem being solved. Because of its evolutionary origin, EC employs the “differ-

feature of natural evolution. Therefore, EC is normally

ential reproduction succe:
regarded as a competitive optimization process. This implies that EC may fail to
deal with situations where cooperation is required; for example, when solving prob-
lems which need a set of individuals jointly to perform a computational task, those
individuals arc highly dependent on one another. From this perspective, EC should

Itimodal scarch; the ions between individ-

conduct not merely a
uals should be taken into account. To complicate matters further, individuals may
function differently in cooperation, and hence might carry unequal fitness. Weak
individuals, however, are more likely to be climinated from the population, despite
their possible unique contributions in a collaboration. In order to provide reason-
able opportunitics for cooperation to cmerge through evolution, it is necessary to

consider ions to basic evolutionary ion models. However, designing a

cooperative approach s very challenging. Many critical issues have to be addressed,

such as problem d iti daptation between individuals, of

cooperation, conflict mediation between individuals and their collaboration interests,




1.1 Motivation

The existence of cooperation poses a perplexing problem for the theory of evolution.
Individuals who behave cooperatively or altruistically put themselves at an evolution-
ary disadvantage, because reaching out to help others diminishes their own chance
for survival. How, then, does cooperation emerge through competition? The answer,
according to Darwin, is sclection on group levels. As he wrote in 1871: “There can
be no doubt that a tribe including many members who ... were always ready to give
aid to each other and sacrifice themselves for the common good, would be victorious
over most other tribes; and this would be natural selection” [15]. This perspective
to explain the evolution of cooperation has gradually developed into group selection
theory [5].

Group sclection theory suggests that natural selection mechanisms should operate
at two levels: within groups and between groups. Within-group selection works on
individuals within the same group. It encourages individuals to compete against each

In

other in pursuit of their own interests (i.e. it selects for high individual fitness).

this respect, it equals natural selection in the common sense. Between-group selection,
in contrast, considers the total productivity of groups, and favors groups with good
performance or groups whose members cooperate well. To better understand this
concept, imagine two groups of meerkats digging in the sand when searching for food
In one group, meerkats take turns to guard the surrounding and give warning signals
to group members at the first sign of an approaching danger, while in the other
group, all meerkats are busy scarching for food for themselves without watching out
for others. Within-group selection in this example will prefer meerkats busily feeding

themselves. Between-group selection, on the other hand, will prefer meerkats looking




out for others, because such a cooperative behavior benefits the whole group and
increases the overall survival rate.

e forces individuals to coadapt and

In short, the between-group sclection pre
cooperate so that a cohesive group can be formed. It also resolves and reduces conflicts
within groups, because conflicts would reduce group performance. Those are exactly
the lingering issues that the evolution of cooperation in computational scttings must

address.

1.2 Objectives

Just like group sclection that successfully promotes cooperation in nature, the evo-

lution of cooperation in computational settings should consider selection on different
levels in order to encourage cooperation. Therefore, the primary goal of this disser-

tation is to extend the classic artificial evolutionary computation model to multiple

levels

. allowing selection and variation to work on cach level, so that cooperation

becomes an cmergent property. This new maltilevel sclection model is useful in two

respects:

o It can be casily mapped to a new evolutionary algorithm uscful for computer

fentists and engineers to solve complex problems whose solution is in the form

of multiple coadapted subcomponents. We expect that this new algorithm will
improve aceuracy and cfficiency over other available cooperative evolutionary

algorithms in the literature.

o It provides a computational model useful for those rescarchers who are interested

in computational aspects of biology, and hope to better understand the nature of



multilevel sclection and study biological changes caused by multilevel selection,

ons and other related

such as the evolution of cooperation, evolutionary tran:

issucs.
The scope of this rescarch project includes the following:

o At the abstract level, we will design a new computational multilevel selection

model to achieve ion. In addition, a hicrarchical evolutionary algorithm

which implements this model s presented, with the purpose of enhancing the

limitations of existing cooperative evolutionary algorithms

o At the analytical level, we will verify the ability of this new model to achicve

cooperation. Experiments will be designed to understand how cooperation can

evolve and persist stably, and why the model behaves differently when compared
to other well-known group sclection models. At the same time, investigation of

a hierarchical evolutionary algorithm should also be conducted, focusing on its

ability to address issues, such as ion and problem

o At the practical level, we will use the new model to study the main factors
leading a group of individuals to a new type of individual at a higher level
with different heritable traits; this represents an evolutionary transition as a
direct consequence of the evolution of cooperation.  We will also assess the
applicability of the new algorithm to solving real-world problems. We will show
how to customize the algorithm to fit particular application domains. The
performance of the new algorithm will be evaluated and compared to other

similar evolutionary algorithms.




1.3 Contribution

The primary contribution of this disscrtation is to introduce ideas from group selec-
tion theory into artificial evolutionary computation models; as a result, traditional
natural selection is extended to selection acting on multiple levels. Specifically, the

contributions of this work can be summarized along the following two axes:
Main contributions to evolutionary computation

o Problem decomposition, evolution on higher levels (implying multilevel se-
lection), and diversity preservation are identified as three essential factors

for i i ion in evolution. They are believed

to bridge the discrepancy between current models of cooperative evolu-
tionary algorithms and what could be inferred from the mechanisms of
cooperation in nature.

o A new multilevel selection model is proposed which incorporated the three
factors mentioned above. A hicrarchical evolutionary algorithm implement-
ing this new multilevel selection model is introduced. This is a general
problem solving algorithm acting as a guideline for the practice of evolv-
ing cooperation in a bottom-up fashion. Therefore, it can be applied to
a varicty of domains and is not limited to any particular evolutionary al-

ical problems demonstrate it evolves

gorithms. Experiments on two pract
solution faster and more accurate than other evolutionary algorithms that
achieve the similar goal

o Evolutionary pressure on multiple levels has been shown by experiments

to be a powerful force in terms of i) modeling the coadaptation of and the



The

between i ;i) ping different roles for individuals
who participate in cooperation as an emergent property; iii) mediating the
conflict of interest between individuals and their collective they are part

duals in the

of; iv) discovering an appropriate number of i

without a priori information.

above contributions have been published in the Proceedings of GECCO

2010 [117] and the Proccedings of GECCO 2011 [122]

Main contributions to artificial life

An empirical arison is conducted on two well-k group selection
models that could be used to evolve cooperative systems, focusing mainly

on thir sensitivity to key parameter changes. To the best of our knowl-

edge, no similar study has been conducted before. The findings can help

dy d how conditions or i produce differ-

ences among various group sclection models. This contribution has been
published in the Proceedings of the ECAL 2009 [120]

The new multilevel selection model is customized as an alternative to ex-
plain the evolution of cooperation. Cooperation is very important in many
different aspects, as it is a necessary step towards other biological changes.
As confirmed by experiments, cooperation is easier to emerge from this
new model than other well-known group selection models.

The new model can be used to study cvolutionary transitions by multilevel
selection theory. It attempts to simulate nature’s way of building the hier-

archy of life more closely, in which evolutionary transitions are important



processes for new levels to came into being. We show, through carcfully
designed reactions rules in the cooperation operator and group fitness def-
inition, that independent individuals can transition to groups with cach
member playing different roles. This contribution has been published in

the Proceedings of the ECAL 2011 [119].

1.4 Dissertation Structure

The dissertation is organized as follows:

o Chapter 2 discusses the evolution of cooperation in nature. Group selection the-
ory is highlighted as a potent explanation to resolve the contradictions between

cooperation and evolution. Various group selection mode

are reviewed, among
which two well-known models arc empirically compared. The relationship be-

tween the evolution of cooperation and evolutionary transitions is outlined.

o Chapter 3 discusses the evolution of cooperation in computation. This chap-
ter starts with a brief introduction of evolutionary computation, including its

working mechanisms and framework. After disc

ing the limitations of EC,
we point out three desired features that any cooperative evolutionary algorithm

should be expected to possess. Using these features as a guideline, a compre-

hensive survey of existing cooperative evolutionary algorithms is conducted to

unveil their strengths and limitations at promoting cooperation

e Clpter 1 proposes the new computational multilevel selection model and hier-

archical evolutionary algorithm (HEA), inspired by group selection theory. We




show how the model addresses the limitations of other

algorithms, and what potential problem domains the model can be applied to.

Chapter 5 investigates the feasibility of our multilevel selection model in pro-

ducing the evolution of fon. A sensitivity analysis and a
comparison with other group sclection models are performed. This chapter also
explores how multilevel selection can be used to explain evolutionary transi-

tions in evolution. The concept of division of labor, a group trait resulting from

cvolutionary transitions, is studied as an cxample, where low-level independent
entitics with specialized skills cooperate to increase the reproductive success of

high level complexcs.

Chapter 6 studies the cooperation and problem decomposition property of the
hicrarchical evolutionary algorithm on simple string covering problems. In par-
ticular, we designed experiments to investigate if the algorithm is able to pre-
serve and optimize coadapted subcomponents with unequal fitness in solutions

to the targeted problems.

Chapter 7 the hicrarchical ionary algorithm with real-world
classification problems. Seven multi-class classification problems with differ-
ent features, such as non-linearity, skewed data distribution and large feature
space, are benchmarked. These benchmarks better showcase the ability of the

algorithm to model the i ion between and to

decompose problems without human interference.

Chapter 8 summarizes the main message of this disscrtation, recapitulates its

main contributions and limitations, and suggests some directions for futurc re-



search.



Chapter 2

Cooperation in Evolutionary

Biology

In nature, the success of cooperation is witnessed at all levels of biological organi-

zation, ranging from gencs and cells to multicellular organisms, social inscets, and
human society. This chapter, thercfore, is devoted to discussing the evolution of co-
operation in nature with the intention of inspiring the evolution of cooperation in
computational models. In Scet. 2.1, we will present an overview of the evolution of

cooperation. Particularly, we will discuss briefly four possible mechanisms to explain

the evolution of cooperation in nature. Scct. 2.2 focuses mainly on one of the mech-
anisms: the group sclection theory, which is the inspiration of this rescarch work.
Group sclection has been unpopular in biology for most of the past 40 years, but
has re-emerged in recent years as an important ingredicnt of thought in evolutionary

biology [5]. It explains the evolution of cooperation by introducing sclection between

groups, not just between individuals. The competition between groups results in

cooperation within groups. Scct. 2.3 o cally i two well-k group
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selection models that represent rescarch strands in group selection theory. The obser-
vations from these experiments reveal what aspects of design benefit group selection
models, which in turn will provide us with insights of the do’s and don’ts of an im-
plementation that follows when new group sclection models are to be proposed and

developed.

2.1 The Evolution of Cooperation

In biology, evolution is the change in the inherited traits of a population of organisms
through successive gencrations [30]. Darwin, in his principal works (14, 15, prescnted

a wealth of evidence for evolution, and proposed natural selection as the driving

force behind it. According to Darwin, individuals with traits that best adapted to

ing the

their environment will survive and produce more offspring, thereby increa
proportion of individuals with such traits in cach successive generation.

To survive and reproduce, individuals need resources, such as energy, space, food,
and appropriate environmental conditions. Resources, however, are normally limited,
If more than one individual wants to use the same resource, there will be a situation
of competition [41]. From this perspective, natural selection seems to predispose

.., evolution implics competition.

individuals to selfishness,

Nevertheless, we observe cooperative behavior everywhere, in cells, in insects, in
animals, in human beings, or even in our political and economic world. For example,
animals can evolve lower fertility to avoid over-exploiting resources [113]; inscets such
as bees risk death to defend their hives; birds give alarm calls to warn others of

sful,

danger.  On evolutionary grounds, such behavior does not seem to be succes
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because individuals with helping traits would be expected to go extinct through the
process of natural selection; for instance, by giving warning calls, a bird delays its
opportunity to flee to safety and attracts the attention of predators, thus increasing
the odds of being killed by predators. The question of how natural selection could

selfish traits has

favor individuals that carry helping traits over those that carry

'y and biologists for several decades.

The Evolution of Cooperation [2] is the study attempting to address this ques-
tion. Cooperation is a rather general term; it can describe behaviors which benefit
both the actor (focal individual who performs a behavior) and the recipients (individ-
uals who are affected by the behavior of the actor), and it can also describe behaviors
which are beneficial to the recipients but costly to the actor [105]. The latter is usu-
ally called altruism, and is also the cooperation that “the evolution of cooperation”
often refers to.

Cooperation in altruism is quite sensitive to circumstances and hence is unstable.
Actors, also known as cooperators, are very vulnerable to being exploited by recipicnts
who refuse to fulfill their role as actors themselves; such recipients are often called
defectors, because they gain benefits without giving anything back. Let us consider the
following example (shown in Fig. 2.1) where a population starts with all cooperators.
Suppose that during evolution a defector shows up due to mutation or migration.
Compared to cooperators, a defector benefits from the cooperative behavior of the
cooperators, without paying any cost itself. If the costs and benefits are measured
in terms of fitness, the defector will have relatively higher fitness than cooperators.

Therefore, it has more chances to becoming selected for reproduction and will spread

quickly. In the end, cooperators will vanish from the population [70]. Obviously,
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Declining average fitness

Figure 2.1: Without any special mechanism, the cooperation cannot be cstablished
during evolution. In a mixed population, cooperators (denoted as C) have relatively
lower fitness than defectors (denoted as D), thercfore natural selection continues to
sclect against them until they arc extinet. Adapted from “Five Rules for the Evolution

of Cooperation™ by Martin A. Nowak, 2006.

natural evolution nceds additional concepts to allow the evolution of cooperation.

A i ing under what will emerge and persis

during evolution include [68, 70]:

selection: Kin sclection claims that natural selection favors cooperation
when actors and recipients are genetically related. This theory expresses a
gene-centered view of evolution [16, 40]: genes arc the unit of evolution, while
individuals are vehicles of selection. This differs from classic Darwinian theory
where individuals are objects of evolution. Genes are “selfish” at promoting
their own survival in order to spread in offspring. Cooperation indeed serves

this need as kin share similar genes.

« Recip Kin sclection sometimes fails to explain cooperation where

relatedness is low or absent, for example the cooperation observed in symbio-
sis. Reciprocation has been proposed [55, 71, 9] to explain such cooperation

in terms of deferring immediate personal gain toward potential benefits from



future mutual interactions. Mutual interactions can happen with repeatedly

, or randomly encountered s, or

confined by a spatial structure. Evolutionary game theory is normally used to
model and analyze reciprocation; that is to model the fitness consequences of

social interactions between individuals (73]

o Group selection: Group sclection is defined as the process of genetic change
caused by the differential proliferation or extinction of groups of organisms [102].
Groups can be any unit of population structures, for example genes, cells, or-
ganisms, colonies, demes and possibly entire species. Selection conducted on

groups would allow any traits that are costly to individuals but beneficial to

groups, such as altruistic behaviors, to arise from evolution.

® Social learning: This mechanism refers to the preferential selection of the
behaviors and skills individuals frequently encountered. In other words, indi-
viduals learn the most dominant behaviors and skills in their embedded social
network. Simon [88] introduced the term “docile” to describe individuals who

are adept to social learning, and who accept the instructions society provides to

them. Cooperative individuals are docile, and accept the socicty’s instruction to
be altruistic as part of proper behavior. Therefore, they will gain extra benefits,

despite the cost paid for being altruistic.

2.2 Group Selection and Multilevel Selection

Groups are common biological or social structures in naturc. Colony, herd, pride,

flock, and school all refer to groups of insects or animals. The cooperation within
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a group, such as when hunting as a team or watching predators for others, offers
its members a greater chance to survive severe competition. The emergence of co-
operation, according to group selection theory, is due to the competition happening
between groups. Although individual competition selects against altruistic behavior,
group competition will favor altruistic behavior. This section first reviews the history
of group selection theory and its relationship to other alternatives, like kin selection,
the selfish gene theory and evolutionary game theory. Next, in order to show how
the idea of group selection can be practically applied, three major group selection
models based on biological observations are examined. Lately the discussion of group
selection has been extended to a broader theme where selection can act simultane-

ously at multiple levels. This new perspective is called multilevel selection. The last

part of this section, therefore, will explain multilevel selection and its implications for

evolutionary transitions.

2.2.1 An Overview of Group Selection Theory

Group sclection is a longstanding controversial arca in the evolution of cooperation.

The idea can be traced back to Charles Darwin already. In his book The Descent of
Man and Selection in Relation to Sex [15], he observed that what was good for the
group might not be good for the individual. The solution, according to him, is that
groups containing mostly altruists have a decisive advantage over groups containing
mostly selfish individuals, even if selfish individuals have the advantage over altruists
within cach group [113]. This statement accurately presents Darwin’s position of
considering selection acting at a level above individuals.

Darwi

idea was further developed by other evolutionists during the first half
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of the 20th century. Well-known population genctics, Ronald Fisher, J. B. S. Hal-
danc, and Sewall Wright, gave the idea a mathematical foundation [114]. However,

it was W; BEd ds who in 1962 i ced the idea of group selection in Ani-

mal Dispersion in Relation to Social Behavior [123]. He defined group selection as a
process in which an individual acted for the good of the group, regardless of whether
it should be beneficial or detrimental to itself. Unfortunately, he invoked group se-
lection to explain phenomena which usually have obvious explanations by individual,
kin, or sexual selection. No wonder that his theory led to strong responses and criti-
cism from, among others, George Williams, William Hamilton, John Maynard Smith,
and Richard Dawkins; for example, Williams' book Adaption and Natural Selection
strongly asscrts that group-related adaptations do not exist, because group sclection
cannot overcome individual selection. As a result, the concept of group sclection was
rejected by many biologists, and a gene-centered point of view was embraced within
evolutionary biology instead.

Despite the apparent retreat of group sclection ideas during the following 20 years,

, such as D. S. Wilson, E. O. Wilson, M. J. Wade, and E. Sober, con-

some biologis
tinued to explore the possibility of group selection against vigorous criticism. They
demonstrated the validity of group selection from a theoretical perspective. Mean-
while, numerous picces of empirical evidence, such as the experiments conducted on
hens [69], on beetles [12], on crops [38], and cven on multi-species communities [37),
suggested that group selection might provail over individual selection under certain

circumstances. In fact, in recent work of D. S. Wilson an E. O. Wilson [114], they

neluded that imes between-group selection is a weak evolutionary force and

sometimes it is very strong; the balance between within-group and between-group



selection should be evaluated on a case by case basis.

The rejection of group selection was caused partly by the neglect of carly mod-

els for genetically based inte among indivi [38]. Indecd, many of the

strongest critics of group selection theory, such as Hamilton and Williams, have ac-
knowledged the existence of group selection and its role in the evolutionary process
[5. 113]. According to Wilson, group selection is not another alternative to explain
the evolution of cooperation. Instead, it unifies two alternatives: kin selection and
evolutionary game theory (i.c. reciprocation); the two alternatives are actually “ver-
sions of group selection theory, but presented in a formal framework which tends to
obscure the face” [73, 112].

Selfish gene theory is “the final nail in the coffin that had been built for group
selection” [5]. It stemmed from the work of Hamilton and Williams, but was popu-
larized by Dawkins. Dawkins argued that individuals only exist temporarily during
evolution; genes, on the other hand, are the true unit of selection: genes struggle per-
petually to bequeath as many copies of themselves as possible to future generations.
They “program” individuals to express phenotypic traits which increase the likelihood
of individuals to survive and reproduce. Through individuals genes would be able to
increase in numbers in subsequent generations. Therefore, individuals are merely the
vehicles of selection, even though they interact directly with their environment and
are direct targets of selection.

However, Dawkins failed to realize that he in fact invoked the idea of group se-
lection to explain cooperation. According to him, independent genes are “ganging
up together” [17] into chromosomes because they might have gained benefits: their

biochemical cffects might have complemented cach other [77]. This is analogous to
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individuals forming groups. Dawkins also failed to distinguish between the unit of
sclection and of inheritance [78]. Selection is about which variants survive best and
reproduce most, while inheritance concerns the transmission of genotypic and phe-
notypic characters across gencrations. From this perspective, genes arc the unit of

inheritance, and individuals are the unit of sclection. That is the reason why Hull [47]

introduced the i and to refer to genes and individu-

als, respectively. From our perspective, group selection theory does not argue against

the viewpoint that genes arc replicators. It simply argues that both individuals and
groups can be viewed as the vehicles of selection or interactors, because an individual
or a group is a conglomerate phenotype that results from a complex set of interac-
tions of genes and the environment surrounding them. Well designed vehicles should
out-compete less well designed ones, and hence will pass on the genes that reside in
them to the next generation. In other words, the adaptations observed cither on the

individual or group level will benefit the underlying genes that produced them.

2.2.2  Group Selection Models

The idea of group selection is straightforward: “selfishness beats altruism within
groups. Altruistic groups beat selfish groups. Everything else is commentary” [113]
However, how to apply this idca to explain the evolution of cooperation is still hotly
debated.

The carliest group selection model, sce Fig. 2.2, was proposed by Wynne-Edwards
[123]. The population in this model is divided into several reproductively isolated
groups containing different amounts of cooperators and defectors. When a group

goes extinct (for example, group 3 in Fig. 2.2), group sclection will choose the group




with most cooperators, hence the highest average fitness (group 2 in Fig. 2.2), to
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Figurc 2.2: Naive group selection model. When a group goes extinct, group sclection
will sclect a group with many cooperators to recolonize this patch. The odds of a
group going extinct s proportional to the frequency of its defectors. Adapted from

Fig. 2.1 on page 20 in “Cooperation Among Animals” by L. A. Dugatkin, 1997.

recolonize this patch. The odds of a group going extinct are proportional to the
frequency of defectors in the group. However, cooperators are unlikely to survive in
this model [21, 111] because of two reasons. First, between-group selection depends
on the extinction of other groups. Since the extinction of moderately sized groups is
assumed to be rare, the possibility of propagating groups with many cooperators in a
population is small [21]. Second, reproduction is restrained to the inside of a group;
hence, within-group sclection is against cooperators. As a result, a cooperative group
will be quickly dominated by defectors before it gets the chance to propagate itself

by recolonization. Although this model failed, it was the first attempt to understand
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the evolution of cooperation by within- and between-group selection. This model is

also known as “naive group selectio

Wilson and Sober [90, 111] developed a new trait group selection theory to replace
the naive group selection model, see Fig. 2.3. This model is known as “modern group
selection” theory, a generalized version of Maynard Smith’s haystack model [59]. This
model begins with a large global population of cooperators and defectors. When it
comes to reproduction, they are randomly distributed into local groups. Natural
selection first works on the group level.  Groups with many cooperators will have
the priority to be selected. Inside of a group, natural selection will select individuals
with higher fitness, which are defectors, to produce offspring. However, the more
cooperators there are in a group, the more chances exist to reproduce a cooperative
offspring.  After reproduction, groups dissolve, and individuals are mixed together,
ready for another round of group formation and selection. Although within-group
selection puts altruists in a disadvantaged position, cooperative groups will contribute
more cooperators to the next generation. Furthermore, the mixing phase provides
opportunitics for cooperators to spread in the population, whereby the average fitness
of the population is increased

Recently Traulsen and Nowak proposed a minimalist stochastic group selection
model (97, 98], sce Fig. 2.4. The population in this model contains up to n groups,
and there are no more than m individuals in a group. At cach time step, an individual
from the entire population is selected proportional to fitness for reproduction. An
offspring is added to the same group. If the size of this group exceeds m at some
point, the group has to split into two with a probability ¢. The individuals of the

original group arc randomly assigned to cither of the two new groups. In order to
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Figurc 2.3: Trait group selection model. This model describes a group level pro-
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that is strikingly analogous to individual sclection: Firstly, groups vary in ge-

netic prod

¢ and/or persi secondly, the selection frequency
is proportional to genetic variations among groups: finally, the selection on groups
increases productivity and persistence of groups. Adapted from Fig. 2.1 on page 20

in “Cooperation Among Animals” by L. A. Dugatkin, 1997.
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Figure 2.4: Traulsen’s group selection model. The entire evolutionary dynamics
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are driven by individual reproduction. The evolution of individuals changes group

siz

. When the groups reach a certain size, they will stay together or split. Groups
with more cooperators reach the critical size faster and, therefore, split more often.
Adapted from “Evolution of cooperation by multilevel selection” by A. Traulsen and

M. A. Nowak, 2006.
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maintain no more than n groups in the population, another randomly sclected group
has to be eliminated from the population. However, with probability 1 — ¢, the group
does not divide. In such a case, an individual from this group is randomly selected and
deleted to keep group size at m. The specialty of this model lies in the reproduction
on the individual level, which triggers the splitting of a group, and further leads to
selection on the group level. Cooperative groups reach critical size faster and split,
therefore, more often. In a sense, the evolutionary dynamics is entirely driven by
individual evolution, and group selection emerges from individual sclection

In summary, the three models demonstrated here have their own perspectives on
how to apply within- and between-group sclection to encourage cooperation. One
key message obtained from these three group selection models is that it is possible

to create various assortments of cooperators and defectors in groups, which directly

will result different group fitness. Only when sufficient fitness variations between
groups are maintained will the between-group selection be able to gain force. Wilson’s
and Traulsen’s models regularly change the genetic composition of groups, i.c. the
proportions of defectors and cooperation in groups, while the naive group selection

model evens out the variations between groups by recolonization, which is another

way to explain the failure of that model. The other key message is to distinguish

group sclection from between-group selection. Betwe p sclection simply applies
selection pressure between groups, whereas group selection employs between-group
selection at various stages, such as individual reproduction, group replacement, or
individual replacement. In addition, it has to associate the reproduction probability
of individuals to their group's through between-group sclection. Therefore, individuals

with cooperative traits but with low fitness values are able to survive the selection
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That is to say, a model which only adapts between-group selection cannot be called

a group sclection model.

2.2.3 Multilevel Selection and Transition

In group sclection models, individuals and groups arc relative: an entity can be re-
garded as a group for entitics in the level below it and as an individual of a entity in
the level above it. In fact, the biological world is hicrarchically organized. The hicrar-
chy of life, starting from the bottom level to the top level, includes atoms, molecules,
organclles, cells, tissues, organs, organ systems, organisms, populations, communitics,
ccosystems and biospheres [107]. Entitics at many levels of the biological hicrarchy
undergo reproduction or multiplication. Therefore, they exhibit “heritable variation

in fitness”. According to Lewontin [52], natural sclection should operate on those

entitics, i.c., on different levels. This new perspective is now called multilevel selec-
tion (MLS) theory, an extension of group selection. D. S. Wilson and E. O. Wilson
[114] interestingly suggested to apply the “Russian matryoshka dolls” metaphor to
MLS theory: Levels arc nested one within another. At each level evolution favors a
specific set of traits to increase the relative fitness of entities on that level. However,

the selection on two adjacent levels does not necessarily need to act in the same di-

rection; a trait, such as selfishness, which is selectively at a level can

be disadvantageous at a level above. The adaptation at the higher level determines
whether or not such traits should be suppressed.
With respect to the hicrarchy in MLS, where a number of individual entities are

nested within cach group entity, we need to clarify which entitics should become

the objects of evolution [76]. If we are interested in the changing frequencics of
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different traits of individual entities, the individual entities will be the objects of
evolution. Group entities arc treated as a structure or an environment where the
fitness-affecting interactions take place. Take Wilson's model as an example. This
model concerns how to spread the altruistic trait among individuals in a population.
To this end, groups are regularly formed. Groups with more altruists will have a

babilities to produce

higher fitness; hence cooperative individuals will have higher
offspring. Obviously, groups are temporary fitness-bearing entities. Even though they
are selected, it is not them, but individuals that are reproduced, and also it is the
frequency of individual traits that is changed. This type of MLS is called MLS type
1 (MLS1) [13, 76]. Alternatively, if we arc interested in the changing frequencies of
different group entities, group entities will be the objects of evolution. That is to
say, group entitics are not only an environment to individual entities or an object of
sclection; they actually have their own heritable traits. Group cntitics with higher
fitness will reproduce more offspring group entities with similar traits. Individual
cntities may still undergo selection within cach group entity, which leads to changes
in the distribution of individual traits and potentially affects group entity traits. This
type of MLS is called MLS type 2 (MLS2) [13, 76].

The key difference between MLS1 and MLS2 is the focal level [78], the level that
goes through evolution. Because of the different focal units, evolution on each level

is different and thus causes different evolutionary changes. The best group entities in

MLS1 will also be the best ones in MLS2; however, the ones in MLS1 will contribute

the most individual entities to the next generation, while the ones in MLS2 will

contribute the most groups. Both MLS1 and MLS2 are distinct processes that can

oceur in nature [76]. A failure to distinguish clearly between MLS1 and MLS2 plagued




many traditional discussions of the levels of selection 13, 73]

Accepting multilevel selection, according to Wilson [113], has profound implica-
tions. It plays a very important role when thinking about the “major transitions”
in evolution. The major cvolutionary transitions [9, 63, 60] refer to the creation of
new, higher-level complexcs of simpler entities. Summarized by Michod [63] for ex-

ample, they include the transitions “from individual genes to networks of genes, from

gene networks to bacteria-like cells, from bacteria-like cells to eukaryotic cells with

lles, from cells to i i and from solitary organisms to so-

Of course, the existence of a biological hicrarchy should not be taken for

cict]
granted; multicellular organisms do not exist at the beginning of life. According to

s when higher level selection (i.c.

MLS theory, a major evolutionary transition occu:
between group selection) dominates lower level selection (i.c. within-group selection)
[113).

Okasha [75] claims both MLS1 and MLS2 may be relevant to evolutionary transi-
tions. An evolutionary transition is more complicated than the evolution of cooper-
ation. However, before transitions take place and complexes emerge, simpler entities

which constitute the complexes have to be able to work together. They need to sacri-

fice their individuality and exhibit cooperative traits. Therefore, in the early stage of
evolutionary transitions, the evolution of cooperation has to emerge, so that coopera-

tive traits can spread among simpler entitics in the population. That is exactly what

MLS1 docs: using groups as an cnvi to help individual traits to
Once individuals are willing to form cohesive complexes, evolution should work on
complexes to gradually develop their own traits. In other words, complexes become

the objects of evolution. Through selection and reproduction, complexes are better



27

adapted to their environment and eventually become discrete units, normally with
traits different from their constituents’ traits. It follows that MLS2 is applied at a
later stage of evolutionary transitions.

The shift from MLS1 to MLS2 also indicates a change in group fitness definitions.
In MLS1, group fitness is defined as the average fitness of the individuals within a

defined independent of the average individual

group, while in MLS2, group fitness
fitness. As the transition proceeds, group fitness gradually becomes “decoupled” from

individual fitness [65], until it is no longer closely related to the average individual

fitness. Once group fitness is decoupled, the transition has been achieved, and new

complexes have been created that assume an existence of their own.

2.3 An Empirical Study of Wilson’s and Traulsen’s
Group Selection Models

Wilson’s [90, 111] and Traulsen’s [97, 98] group sclection models represent two re-
scarch strands in organizing group structures: mixing/dispersing groups (i.c. Wilson’s
model) or not (i.c. Traulsen’s model) during evolution. The within- and between-
group selection, correspondingly, will work differently. Wilson’s model has been well
studied [48, 50, 82, 83] on the conditions that allow group selection to be effective.
but not Trauslen’s, as it is relatively new. Therefore, the purpose of this section is
twofold; first, we investigate the two models for cooperation in the context of the
n-player prisoner’s dilemma game, in order to derive their differences in performance;
second, we provide with this dissertation certain preparations for the application of

group selection models in evolutionary computation. The cmpirical study conducted



28

here will reveal what aspects of design benefit group selection models most, which help
us gain valuable insights into how cncourage cooperation in evolutionary computation

using the idea of group selection

2.3.1 The N-player Prisoner’s Dilemma Game

The n — player prisoner’s dilemma (NPD) game [2], an extension of the classic |

s, has been used extensively

oner's dilemma game but involving any numbers of playe

h player or individual in this game faces

to study the evolution of cooperation.
two possible strategies, cooperate or defect, where the payoff to cach player depends
on his/her own strategy and the number of other players who play the cooperate
strategy. Individuals get a higher payoff from playing defect than from playing co-
operate. However, all n players are better off if all play cooperate than if all play
defect. This game offers a straightforward way of thinking about the tension between
the individual and group level selection [24], because the two selection forces produce

starkly different outcomes. If individuals are selected to act in their own interest, all

will defect. If they are selected to act in the group interest, all will cooperate.

In this study, we also use the NPD game as a rescarch vehicle to explore the dy-

n’s models.

namics between the individual and group selection in Wilson’s and Trauls

In both models, N individuals are randomly divided into m groups. Individuals in

a group ' ly choose to be a coo or a defector without knowing the

choice of others. The fitness function of cooperators (fc, (z)) and defectors (fp,(z))



in group i are specified by the following equations [90

base + w(% 0, (0<i<m) (23.1a)
Jo.(@) = base + wn"":"‘l‘ (0<i<m) (2.3.1b)

where base is the base fitness of cooperators and defectors, b and ¢ are the benefit and
cost caused by the altruistic act, respectively, g; the fraction of cooperators in group
i, n; the size of group i, w a cocfficient. Evidently, cooperators have a lower fitness
than defectors, as they not only pay a direct cost, but also receive benefits from fewer
cooperators than defectors do. The fitness of group i is then defined as the average

fitness of its individuals, shown in Eq. 2.3.2.

ngife,@ +n(l
L (2.3.2)
= base + wq,(b — ¢)

;@

From Eq. 2.3.1 we can sce that the relative fitness value of cooperators and de-

fectors are directly affected by three parameters: g;, n;, and w. To understand the

effects of those parameters, we plot. as an example, in Fig. 2.5 the fitness values of

groups at size 5 and 10 with different percentages of cooperators (i.e., the changes of
), and, accordingly, the fitness values of cooperators and defectors. Parameters base,
b, ¢ and w are set to 10, 5, 1, and 1, respectively. The increase of g; improves group
fitness, but at a slower pace than the increase of individual fitness, especially when
ny is smaller. The increase of n, has no effects on group fitness, but makes the rela-
tive fitness between cooperators and defectors more distinct. Obviously, the changes
of different parameters affect individual and group fitness in various ways. It is not
straightforward to conclude which conditions (i.c., the settings of parameters) allow

between-group selection to dominate within-group selection. Therefore, experiments
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Figure 2.5: The fitness values of cooperators, defectors, and their groups with respect

to the change of g, when group size n are sct to 5 and 10, respectively. base is s

10, b to 5, ¢ to 1 and w to 1.

have to be designed to serve this purpose.

2.3.2 Algorithm Design

A simple algorithm implementing Wilson’s model (denoted as W) is described in Al-
sorithu 1. This algorithm starts with a randomly initialized population P containing
N individuals, r percent of which are cooperators. P is then divided into m groups.
The individual and group fitness of the dispersed population P’ are evaluated. After-
wards, reproduction begins; group gn is first selected, from which an individual idv
is selected to produce offspring idv’. idv’ is put back into the same group as its par-
ent. Because the selection of groups is proportional to fitness, cooperative groups will

s. In total, N offspring

contribute more offspring, thus resulting in various group siz



will be produced, which is caleulated by Eq. 2.3.3 [90].
N'= 3" x (4 x o (@) + (1 - ) x f,(2)) (233)
=

Normally N’ is larger than N. This gives cooperators an opportunity to increase
their frequency in the next generation. To maintain the original population size N,
groups in P’ arc mixed and cach contributes individuals proportional to its size to the
new population P. The algorithm will repeat the above steps until the population

converges or the maximum number of generations is reached.

Algorithm 1: An algorithm i of Wilson's model

1 P ¢ Initialize Population(N,r);

2 while population does not converge or maz generation is not reached do
3 P' « Disperse Population(P,m);

4 | Evaluate Fitness(P');

5 | fori« 0to N do

0 gn ¢ Select _Group(P');

7 idv « Select_Individual(P',gn);
s idv' « Reproduce 0ffspring (idv);
9 Add_Individual (idv', gn)

10 | end

1 | P« MixingProportionally(P));

12 end

Similarly, the algorithm implementing Traulsen’s model is shown in Algorith 2.

This algorithm initializes, disperses and evaluates the population the same way algo-
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Algorithm 2: An algorithm i fon of Traulser’s model

1 P ¢« Initialize Population(N,r);
2 P' < Disperse Population(P,m);

3 while population does not converge or maz generation is not reached do

4 | Evaluate Fitness(P');
5 for i « 0 to N" do
o idv « Select_Individual from Population(P');
7 idv' « Reproduce Offspring(idv);
| 8 Put_Back_to_Group(idv’, gn);
0 if Group Size(gn) > n then
10 rnum « Generate_ Random_Number (0, 1);
1 if rnum < g then
12 Split_Group(gn);
13 Remove_a_Group();
14 else
15 Remove_an_Individual_in Group(gn);
16 end
1 end
18 end
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rithm W does. However, there are two major differences. First, the population only

divides once at the beginning of the process; the groups are kept isolated afterwards.
Second, the reproduction step is different. An individual idv is selected from the
entire population for reproduction, rather than from a particular group. Offspring
idv' is put back into its parcnt’s group, group gn. If the size of group gn exceeds

the pre-defined group size n, a random number rnum is generated. If rnum is less

than a group splitting probability ¢, group gn splits and its individuals arc randomly
distributed into offspring groups. An cxisting group has to be removed to maintain
a constant number of groups; otherwise, an individual from group gn is removed. In
Traulsen’s model, a group or an individual to be eliminated is randomly sclected. As
an cxtension, we also investigate selocting such a group or individual inversely pro-

Therefore, two variations of Algorithm 2 are implemented and

portional to its fitnes

we refer to the former as T'1 and to the latter as 7'2.

2.3.3 Experimental Setup

The investigations focus on the effects caused by different group size n, initial fraction
of cooperators r, and cocfficient w. Parameters n and r affect the assortment between
cooperators and defectors in groups, and coefficient w affects the individual and group
fitness; both cause changes in selection dynamics.

To focus on the selection dynamics, we assume asexual reproduction without the
interference of mutation. A roulette wheel selection is adopted in the reproduction
step for all 3 algorithms. Parameters that are common to all experiments are set as
follows: runs R = 20, generation gen = 5,000, population size N = 200, base fitness

base = 10, benefit b = 5, cost ¢ = 1, group splitting probability q = 0.05, N"=10, and




N'is decided by Eq. 2.3.3 [90]

For cach algorithm, we measure the success ratio by the number of runs whose
population converges to cooperators to the total number of runs 20. The larger the
ratio, the more likely an algorithm favors cooperation. We also collect the average

variance ratio [25), as defined in Eq. 2.3.1.

varp(g:)

)3 u,(gv. -Q?
var(Q) ~ AU

(2.3.4)

where A is the population size, A the total number of cooperators in the population,
S the total number of defectors in the population, @ = A/N, g, the fraction of cooper-

ators in group , and n, the of group i. v indicates composition difference between

groups. The higher this ratio, the more prominent the effect of group selection.

2.3.4 Parameter Sensitivity Analysis
Sensitivity to group size and initial fraction of cooperators

First we investigate how the three algorithms behave under different group sizes. We
sot = 0.5 and w = 1. Group size n is varied in steps from {5, 10, 20, 50, 100}
The success ratio and average variance ratio (in brackets) for cach sctting arc listed

in Table 2.1. The average variance ratio is not shown for T'1, because 7'1 is used as a

reference of T2.
As can be scen, the performance of T1 degrades as n grows. The population in
W converges to cooperators when small groups are employed (n = 5 or 10). As

n increase

s, evolving cooperation becomes difficult. In contrast, T2 converges to
cooperators except for n = 100.

These observations can be explained by the following figures collected from a par-



Table 2.1: The effects of group size n on W, T'1 and T2 when r=0.5

n w T2 T1

5 || 1(0.196) | 1(0.820) | 1

10 || 1(0.092) | 1(0.655) | 0.85

20 | 0.8(0.045) | 1(0.201) | 0.65

50 | 0(0.015) | 1(0.112) | 0.15

100 || 0(0.004) |0(0.011) | 0O

ticular run. Figure 2.6 shows that the variance ratio v of W decreases as n increases,
which reduces the effect of group selection. As a result, sclection on the individual

level is becoming the dominant force, so the population converges quicker to defectors,

see I'ig, The same trend between v and n is also observed in 72. However, given
that 7 ranges from 5 to 100, its v valuc is much higher than or at least equal to the
highest v value of W (sce Fig. 2.8). This implics that T2 preserves variance between
groups better than W, and explains why 72 is more effective than W in evolving co-
operation. Unlike W, the speed of T2 converging to cooperators does not accelerate
as 1 gets smaller; for example, runs with n = 10 and 20 converge faster than runs
with n = 5 (sec Fig. 2.9). When groups are too small or too large, much averaging
(i.c.. repeated group splitting and replacing) is required to remove defectors from the
population,

We further adjusted the value of r from 0.5 to 0.3 and 0.1. We were curious
about the response of the three algorithms to this change, because when 7 drops, the

number of cooperators assigned to groups is smaller, which increases the influence
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of individual sclection in a group. As shown in Table 2.2, the performance of T1

Table 2.2: The effects of group size n when r=0.3 and r=0.1

=03 r=0.1

n w T2 T1 w T2 T1

5 || 10.201) | 1(0.833) [0.95 | 1(0.196) | 1(0.893) | 0.7

10 || 1(0.098) | 1(0.665) [055 | 10.095) | 1(0.767) | 0.2

20 | 0.55(0.045) | 1(0.398) | 0.25 || 0.25(0.042) | 0.65(0.465) | 0.1

50 | 0(0.016) | 0.8(0.105) | 0.1 | 0(0.015) | 0.55(0.049) | 0.05

100 | 0(0.005) | 0(0.014) | 0 0(0.005) 0(0.015) 0

decreases as r drops. For W and T2, when n is small (5 or 10), due to the strong
group selection effects, the decrease of r does not affect the success ratio, but only
slows convergence speed towards cooperation; for larger groups, as n increases (group
selection is weaker) and r decreases (individual selection is stronger), group selection
can hardly dominate individual selection, so it becomes difficult for both algorithms
to preserve cooperation. However, T2 is less affected, because for a given group size,
similar v values in W are observed despite the changes of r, while relatively high v

values are produced by T2 even if r drops.

Sensitivity to selection pressure

The composition of groups is not the only factor that drives sclection dynamics; a
difference in fitness values of cooperators and defectors is another one, as it affects

the pressure put on groups and individuals. We change coefficient w to adjust the
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sclection pressure, namely to weak and strong selection. Strong selection means that

the payoff is large compared to baseline fitness, i.e. w is large; weak sclection means

the payoff is small compared to bascline fitness, i.c. w is small [72].

We tested the three algorithms with 7=0.5 and set w to {0.1, 0.5, 1, 2, 5, 10},
respectively, on all group sizes. Results arc shown in Table 2.3. One first notices
that the performance of the three algorithms increases and then decreases as selection
pressure goes from weak to strong. If selection is too weak, the fitnesses between the
two roles and between groups are very close. Hence, group and individual selection
become neutral, especially if large groups are adopted, so defectors can more casily
take over the population. If the selection is too strong, cooperators are more difficult
to be selected because of the larger relative fitness between the two roles, even though
group selection still favors cooperative groups. To be more specific, for small groups
(n = 5 or 10) only T2 can successfully preserve cooperation under both weak and
strong selection. The increase of selection pressure raises the influence of individual
selection. In response to this increase, the variance ratio in W for a given group size
does not change at all, while 72 still keeps noticcably high variance ratios. This also

explains why T2 outperforms W with larger groups.

2.3.5 Discussion

The above experiments demonstrate that maintaining variance between groups has
great impact on group selection models. For W, if groups are randomly formed, small
group sizes are desired because small groups increase group variance. This confirms
previous investigations (see [25, 50, 102] for examples). We further show that such a

requircment only works if selection is weak. 72, becausc it is able to introduce high
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group variance, is more robust towards parameter changes. One reason lies in how

the two models manage groups. Mixing and re-forming groups like in Wilson’s model

constantly averages the variance between groups, so in Fig. 2.6 we observe the variance

between groups fluctuating. In contrast, because groups in Traulsen’s model are kept

isolated, and the selection step in fon is proportional to individual fitness, the
fraction of cooperators in a cooperative group grows faster than in a less cooperative

group, hence gradually increasing the variance between groups. The other reason is

because of group splitting. Group splitting changes group size and group composition,
which in a way incrcases the dynamic between groups. In contrast, W which always
maintains fixed group sizes needs external help to increase between-group variance,
such as migration [48, 82, 83 or special group structures [82). 72 performs better
than T'1 under all settings, because removing an individual or a group according to

the value of its fitness inverse at survival selection is very likely wiping out defectors,

thus it certainly helps cooperators.

2.4 Chapter Summary

The evolution of on is a fund I problem in fonary biology. The

mechanisms by which cooperative or even altruistic behaviors could evolve have been
vigorously debated over the last several decades. The most prominent theories include
kin sclection, reciprocation, group sclection and social learning. Group selection the-
ory, which used to be considered as a typical example of flawed evolutionary thinking,

It ex-

has now 1 as an important of evolutionary biology [5).

plains the emergence of cooperation by sclection acted on group levels: between-group
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selection favors traits that are detrimental to individuals but are beneficial to groups,
such as cooperation. The concept of individuals and groups are relative; a group can
be regarded as an individual of entitics at one level higher. That is to say, levels are
nested within each other, and natural selection may operate simultancously at more
than one level. This new perspective is known as multilevel selection theory, which
can be used to explain the “major transitions in evolution”. Three well-known group

sclection models proposed respectively by Wynne-Edwards, Wilson and Traulsen were

described to give readers a flavor of how the idea of group selection can be practically
applicd. Among the three models, Wilson’s and Traulsen’s represent two archetypal
ways to change the sclection dynamics between individuals and groups. In order to

derive their differences in performance, and most importantly in order to identify the

aspects that benefit group selection models most, these two models were investigated

on the n-player prisoner’s dilemma game under different parameter setting;

We conclude that maintaining variance between groups has great impact on group
selection models. Specifically, avoiding a regularly mixing of groups or promoting
changes in group size and composition helps to increase variance. These obscrvations
give us valuable insights into encouraging cooperation, and we shall use the same idca

of group sclection as in nature in evolutionary computation.



Chapter 3

Cooperation in Evolutionary

Computation

Having discussed cooperation in evolutionary biology, this chapter focuses on the co-

and the necessity of introducing

operation in evolutionary computation. To underst
cooperation in evolutionary computation, in Scct. 3.1 we first briefly sketch two fun-
damental concepts: natural evolution and evolutionary computation (EC). Then we

explain the evolutionary process in both nature and computational settings, through

which the evolutionary difficulties of EC can easily be identified. To address these
difficulties, Scet. 3.2 introduces Cooperative Evolutionary Algorithms (CEAs), a rel-

conducted

atively young and growing branch in EC. An up-to-date review of CEA

with the purpose of providing an accurate picture of research trends in CEAs and

pointing out limitations of existing CEAs,
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3.1 Evolutionary Computation

Evolutionary computation (EC) [23] is a subfield of computational intelligence that
abstracts key principles of natural evolution into algorithms for scarching solutions
normally requiring the traversal of a huge space of possibilitics. The advantage of
EC, when compared to traditional computational systems, is that it works well for
problems which are usually highly nonlincar and contain inaccurate and noisy data
[124]. EC has been successfully applicd to numerous problems across a wide range of
domains, such as bioinformatics, acrospace engineering, financial industry, robotics,
machine learning and so on.

The field of EC encompasses a number of different classes of algorithms: Genetic
Algorithms (GAs) [33, 43), Genetic Programming (GP) [, 49], Evolution Strategics
[84, 86] and Evolutionary Programming [26]. Although these different types of evo-
lutionary methods were developed independently, their underlying ideas are similar
and all inspired by cvolution in nature.

Therefore, in this section we first introduce the working principle of natural evo-

lution and its metaphor as an optimization process in Scct. 3.1.1. Next, we briefly

coluti

describe a general framework of fonary c ation, and a classical
ary algorithm in Scct. 3.1.2 and Scct. 3.1.3, respectively. Finally, in Scct. 3.1.4 we

discuss evolutionary difficulties of classical evolutionary algorithms.

3.1.1 Natural Evolution As a Metaphor for Optimization

Darwin’s finches are probably the best known, or most often cited proof of “evolution

in action”. Finches, depending on the different ecological niches they nest in, show
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a great variety of beak sizes and shapes, each adapted to a specific food sourc
example, some finches have developed large, sturdy beaks for cracking big seeds; some
have tiny, pointy beaks for cracking small seeds or probing flowers and cacti; and some
have thin, long beaks for poking into holes to extract grubs.

The different beaks observed in finches, or any physical characteristics, such as

height, cye color, and hair texture, in all living organisms, are determined partly

by the environment and partly by genes. Genes are made up of short segments of
DNA, which are sequences of nucleotides lined up in a long linear string. The order
of nucleotides in a gene carries genetic information, similar to how the order of let-
ters carries information for words. This information is the instruction for building
and maintaining a living organism. Genes arc strung together and tightly packed into
structures called chromosomes. At reproduction, offspring inherits chromosomes from
their parents; to be more specific, for sexual reproduction, offspring receive half the
chromosomes of the mother and half of the father (i.c., the recombination of parent
chromosomes); for asexual reproduction, offspring receive the identical chromosomes
as the parent. In this way physical characteristics will pass on from parent to offspring,
The chromosomes of offspring also face the risk of being altered by the external en-
vironment or by errors during meiosis or DNA replication. Such changes are termed
mutations. Taken together, heredity, reproduction and mutation explain why off-
spring often look like one or both parents, but still vary to some degree. These are

mechanisms essential to ensure the variation of inherited traits within a population,

and that, therefore, evolution will occur [66]
However, the adaptation of beaks according to available food sources needs an

explanation from another powerful mechanism, called natural selection.  Offspring
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possesses similar, but not identical, genetic information or genotypes to that of their
parents, and hence may express different physical characteristics, known as pheno-
types. Although genotypes are a major influencing factor in the development of
phenotypes, environmental conditions should not be ignored. The reproductive suc-

cess (the fitness) of an organism is determined by interactions between its heritable

phenotypic traits and the environment. For example, the finches with short, heav
beaks are unlikely to survive in an cnvironment where grubs hiding in holes are the
only food source. That is to say, traits, through interactions with the environment,
will affect the chances of their bearers to survive and reproduce. Because traits are
inheritable, beneficial traits also increases their own replication opportunities through
the reproduction of their bearers, hence will become common within a population. On
the other hand, detrimental traits will tend to decrease in frequency. Gradually or-
ganisms adapt to their environment; or we say natural selection produces adaptation
in evolution.

Evolution by natural selection demonstrates an optimization characteristic. Evo-
lution is responsible for the changes in the heritable traits of a population. How-
ever, which chromosomes parents will contribute at reproduction or which genes will
undergo mutation is totally random. This randomness is good for exploring “gene
space” and enables the identification of novel genes with new functions. It might
lead to harmful new traits, but at the same time it also increases the possibility of
discovering new traits which might help organisms to cope with new environments or
conditions. Natural sclection then judges whether the changes should be maintained
or wiped out from a population. Consequently, it turns the random novelty into gen-

uine, adaptive creativity. Once the improvements of heritable traits are integrated
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into a population, they become the new starting point of a next generation: many
random variations occur, most arc discarded, and occasionally one is retained and
propagated [66]. Ultimately, traits arc optimized via evolution by natural selection
to best suit the environment. The reproductive success (the fitness) of organisms in

a population, therefore, is observed to increase over generations,

3.1.2 A General Framework of Evolutionary Computation

As can be scen from the discussion of Scct, 3.1.1, evolution by natural sclection can
be simply summarized as an iterated optimization process through heredity, repro-
duction, mutation and natural selection. This key principle can be casily extended to
fields beyond biology. To computer scientists, it can be used as an “algorithm” for
solving optimization problems, where a population of individuals, which arc analo-
gous to candidate solutions to a particular problem, undergo reproduction and random
variation (recombination/mutation) under the selection pressure proportional to their
appropriateness for the task at hand. The study of computational techniques based
on, or inspired by, natural evolution is then called Evolutionary Computation (EC)
(23], Evolutionary Algorithms (EAs) covered by EC generally share the framework

shown in Fig. 3.1.

Just as natural evolution uses to carry genetic i . EAs use
a special data structure also referred metaphorically as chromosomes to represent the
proposed solution for a target problem. An EA starts with randomly instantiating

the chromosome to obtain a sct of candidate solutions. In the terminology of EC, we

call this set ion” and lidate solutions “indivi ". The perfor ce of

s metric, called

every individual is evaluated according to an explicitly defined fitnes
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Figure 3.1: A general framework of evolutionary computation.

a fitness function. The fitness function assigns a numeric value to each individual

measuring how good an individual is at the task. Given this fitness metric to be max-

imized, individuals are selected proportional to their fitness to enter the mating pool
for reproduction (parent sclection). Crossover (that is recombination) and mutation
operators are applied on these parent individuals to generate offspring individuals.
Based on their fitness, offspring compete with their parents for a spot in the next
generation (survivor selection). This process is iterated until a solution is found or a
limit on the number of iterations is reached.

Evidently, sclection and variation are two fundamental forces that push evolution
forward. Fitter individuals have greater chances to survive due to the selective pres-
sure, and will reproduce more varied offspring. Offspring generated by crossover and
mutation are biased towards regions of the scarch space where good solutions have

already been discovered. As a result, the fitness of a population has a great chance

to be improved over gencrations,

A primary advantage of EC is that it is simple in concept. It captures the gist
of natural cvolution but leaves many details out; after all, the primary goal is not
to build a biologically plausible evolutionary model. In certain situations, EC is

more efficient, compared with traditional search techniques, in that it involves search
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with a “population” of possible solutions, not a single solution which might have to

backtrack. It is also more robust and adaptive to dynamically changing environment.

ion

Other advantages of EC, such as casy p

and smooth integration with other traditional optimization exist and are

discussed in [26]

3.1.3 A Classical Evolutionary Algorithm

Having said that, evolutionary algorithms come in many flavors, including Genetic

Algorithms (GA) 33, 43], Genetic P (GP) [4, 49], ionary Strat

84, 86], and Evolutionary Programming [26]. For most of the work that follows in this
dissertation, GAs and GP are of particular interest. Both algorithms implement the
general framework of EC, and at least follow the steps outlined in Algorithin 3. The
algorithm completes in many iterations (also known as gencrations) during which
sclection and variation are applied repeatedly. The collection of all generations is
termed a run. At the end of the run the algorithm will return the most highly fit
individuals in the population as solutions. Since the general notion of an EA is clear
from the discussion of the framework, we will restrict ourselves to exact definitions of
representations, sclection methods and variation operators used in a simple GA/GP

system.

Representation The chromosomes of GAs are normally in the format of a finite
length string over the binary alphabet {0,1}, as shown in Fig. 3.2. The chromosomes
contains n genes, where n is the number of parameters to be optimized. Each gene

contains several nucleotides which carry the binary encoding of the specific value of




Algorithm 3: A classical cvolutionary algorithm

1t 0
2 P « Initialize Population(N);
3 Evaluate Fitness(P);

4 while population does not converge or maz generation is not reached do

5 for i « 0 to m do

6 idv, « Select Parent (P);

7 if p < p. then

8 idv; « Select.Parent (P);
o (idv}, idvh) « CrossOver (idvy, idvs);
10 if p < pm then

n Mutation (idv}, idv)

12 end

13 end

1 Add.Individual (idv}, idvy, P');
15 end

16 | Evaluate Fitness(P');

17 P" ¢ Survival Selection(P, P');
18 P P

19 tet+1;

20 end
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Figure 3.2: A chromosome in a GA contains n genes, where n is the number of
parameters to be optimized. Each gene contains several nucleotides, which encode

specific value of a parameter.

a parameter. Over the years, other types of encodings have been suggested, such as
real values, categorical values, or the combinations of them [118]

Genetic programming automatically evolves computer programs, which originally

were confined to expression tree structures, as illustrated in Fig. 3.3a. Functions, ci-
ther arithmetic or logic, are located at the inner nodes, while variables and constants

are at leaf nodes. The main limitations of tree-based GP are bloat and translation.

The former refers to exc

ive tree growth [4], and the later refers to the translation at

the fitnes mbolic expressions (S-expressions)

evaluation step from tree structures to
in LISP ', and then to instructions understood by computers. In order to boost per-
formance, Lincar Genetic Programming (LGP), another major branch of GP, cvolves
sequences of instructions written by an imperative programming language or a ma-

chine language [8]. As shown in Fig. 3.3b, instructions operate on one or two indexed

variables (registers), or on constants from predefined sets. Therefore, individuals are
manipulated and executed directly without requiring processing by an interpreter

caleulation.

during fitnes

LISP is a programming language designed primarily for symbolic data processing used for sym-

bolic calculations in differential and integral calculus, electrical circuit theory, mathematical logic,

game playing, and other fields of artificial intelligence [62).
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Figure 3.3: Chromosome structures of Tree GP and Lincar GP.

Parent Selection Sclection is an important part of a GA/GP; it determines which
individuals are eligible to produce offspring. Without selection directing the algorithm
towards fitter solutions there would be no progress. Mimicking natural selection, the
selection strategies are also based on the principle of survival of the fittest: fitter
solutions are more likely to reproduce and pass on their genetic material to the next
generation via their offspring. A number of popular selection techniques exist, includ-

ing roulette wheel, tournament and ranking [4, 33]. Roulette wheel selection depends

on a roulette wheel analogous to those found in casinos. Each individual is mapped

to a slice on a wheel such that the size of the slice is proportional to its fitness value
A random number is gencrated and the individual whose slice corresponds to the
random number is selected. Tournament sclection chooses a number of individuals

randomly from the population and selects the best individual from this group as par-

values. A rank

ent. Ranking selection sorts the population according to the fitne

value is then assigned to cach individual depending on its position in the sorted sc-
quence. The sclection probability is proportional to rank values. Ranking introduces

a uniform scaling of fitness across the population.
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Reproduction Both GA and GP systems apply crossover and mutation operators

to introduce new individuals into the population. The use of crossover distinguishes
GA/GP from Evolutionary Programming and carly versions of Evolution Strategies,
in which random mutation is the only source of variation. Crossover is performed
with some probability defined by a crossover rate p.. To be specific, if a randomly
generated number p is smaller than p,, two selected parent individuals will exchange
parts of their chromosomes to create two new offspring individuals. The simplest and
also the most commonly used form of crossover is one-point crossover. It randomly
selects a crossover point and exchanges the substrings (GA), subtrees (Tree GP), or
instructions (LGP) after the crossover point (as illustrated in Fig. 3.4). The examples
shown here for Tree GP and LGP are also called homologous crossover, because the
two parents share a common crossover point. Nevertheless, cach parent individual
has the freedom to select its own crossover point.

Mutation, when used in conjunction with crossover, ensures the population against
permanent fixation at any particular locus and thus plays more of a background role
(67]. It takes place after crossover, and randomly changes the new offspring with
probability p,,, where p,, << p,. Like crossover, mutation depends on chromosomal
structure. Mutation in GA cither changes every gene with a mutation probability p,,
(as shown in Fig. 3.52) or swaps the genes at two sclected positions. In Tree GP,
mutation replaces multiple sclected nodes with new ones (see Fig. 3.5b for an exam-
ple), or substitutes the subtree rooted at a sclected node with a randomly generated
subtree. Mutation in LGP has many variants [8], such as inserting a randomly cre-
ated sequence of instructions to a selected position, deleting a selected subsequence of

instructions, copying an effective instruction to a selected position, modifying the op-
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The sclection of mutation points in all three chromosomal structures are random,
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Survival Selection After reproduction, the algorithm holds two populations: the
current population from which parents were sclected (P) and the population of off-
spring (). Survival sclection is required to determine which individuals of these
populations can cnter the next generation. The simplest method is to completely re-

Since reproduction

place P with P, provided the two populations have the same s
is random, the GA/GP algorithm is at risk of losing the best individual in this step;

that is, the fitness of the best individual in 2’ might be worse than the fitness of the

best individual in 2. To overcome this limitation, one option is to select the best

1 (population size) individuals from P and P'. Another option replaces parent indi-
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viduals by their offspring only when offspring have better fitness than their parents.

Either way guarantees the improvement in fitnes
For more complicated parent sclection methods, crossover and mutation operators,

and survival selection mechanisms, pleasc refer to [4, 8, 67).

3.1.4 Evolutionary Difficulty for Classical EAs

Evolutionary computation is an exciting development in the field of computer science,
Since its invention, EC has carned wide popularity for solving real-world problems
across a spectrum of disciplines.

However, classical EAs are not a panacea; they are reported to be not entircly
adequate for solving complex problems whose solution contains multiple subcompo-

nents. One such problem, for instance, may require multiple individuals possessing

| different resources or functionalities to work collectively. For example, three robots,
two equipped with infra-red sensors and one with light sensors, arc required to ap-
proach a light source while avoiding collisions. Infra-red sensors would take care of
obstacle avoidance, and light sensors would take care of phototaxis. The solution,
of course, is to find at least two different movement strategies that take advantage
of the specific equipment and at the same time to cooperate with others to move
forward [100]. Another exemplary problem is one which is too complex and too large
to expect a single solution to solve it effectively. For instance, in the concept learning
task illustrated in Fig. 3.6, given a set of data examples (denoted by “+” signs), it is
impossible for a single concept rule (represented as a circle) to cover all examples of

the unknown concept (represcnted by shaded regions) at the desired generality and

accuracy; normally a collection of rules is required.
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Figure 3.6: Concept learning as a set covering problem. The task is to find a small set
of accurate rules represented as circles to cover the examples of the unknown concept

represented as shaded regions [44].

One important reason that contributes to this failure is an implication of natural

tion. In the same way that cvolution in nature results from survival of the
fittest, EC favors the fittest solution among a set of randomly varied ones. As a
result, sclection drives the evolving population toward a uniform or nearly uniform
distribution of the fittest individual. That is to say, classical EAs have a strong
tendency to converge to a single solution, which in respect to above examples could
be only one movement strategy or one concept rule.

In addition, individuals, such as movement strategies or rules, are not indepen-

dent. They cooperate with each other to provide the final solution. Each individual

participating in the cooperation adapts and optimizes in the context of others. How-
ever, classical EAs evaluate individuals in isolation. Since the interactions between
coadapted members of a population are not modeled, there is no evolutionary pressure
for coadaptation to occur [81].

Therefore, it is necessary to consider extensions of classical EAs in order to solve



problems which require a sct of cooperative individuals jointly to perform a compu-

tational task.

3.2 Cooperative Evolutionary Algorithm

Introducing the idea of cooperation into EC extends its ability to solve increasingly
complex problems. It simplifies problems by dividing them into a set of solvable

subproblems, and then concentrates on designing solutions for cach subproblem. In

a sense, it reduces the size of the search space and the search effort. This type of
new evolutionary algorithm is called Cooperative Evolutionary Algorithm (CEA). In
this section, we first discuss three critical issues that should be addressed by CEAs.
which would also be uscful features to be incorporated in CEAs. Kecping the three
key issues in mind, we then review previous work relevant to the contributions of this

dissertation. Based on the literature review, we will summarize the limitations of

existing CEASs.

3.2.1 Cooperation in Evolutionary Computation

Prior to a discussion of cooperation in evolutionary computation, we would like to
clarify that the complex problems discussed in this thesis are restricted to decompos-
able problems. A decomposable problem [103] is a problem that can be divided into
subproblems, but the effect of changing a subproblem is a deformation of the fitness
Jandscapes of other subproblems; as a result, the optimal solution to one subprob-
lem may be different depending on the solution of other subproblems. Decomposable

problems are different from separable problems, which can be divided into indepen-



dent subproblems; in other words, there is no interaction between subsolutions in the
latter case.

Since the subproblems in a decomposable problem are highly interdependent, sub-
solutions need to work cooperatively. However, to allow coadapted subsolutions to
emerge, CEAs need to address the issue of problem decomposition, evolution of col-

laboration, and diversity preservation.

Problem D ition  Problem ion determines how to divide a

complex problem into a set of simpler subproblems. As demonstrated in the em-

by 10

pirical analysis in [22], decomposition can speed up an cvolutionary proc
times.

The first thing to decide, of course, is the number of subproblems the problem

should be into. After d sition, Is for solving cach sub-
problem are assigned to the different search spaces. Since they are confined in their
surrounding environment, they may exhibit different behavior and functionalities.
Hence, problem decomposition should also decide the roles individuals play in a co-
operation. For some problems, this information can be easily identified a priori.
Consider the task of requiring three robots moving together: two subsolutions are
cnough, one for sensing light and one for sensing obstacles. For some other problems,
we may have little or no information available for deciding cither the number or the
roles of subsolutions in the decomposition. Take concept learning as an example,
it is impossible to tell beforehand how many rules are needed to cover an unknown
concept, or which region each rule will cover. Therefore, it is the responsibility of the

CEA to address problem decomposition as an emergent property [81].
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Problem decomposition also affects population structure. Because subsolutions
may possess unique roles or experience different external environments, they may
demand different chromosomal structures in terms of size, data types or input con-
straints. Therefore, they can no longer be evolved in one population, multiple sub-
populations should be considered. This also affects how crossover and mutation are

conducted.

Evolution of Collaborations Cooperative EAs are similar to classical EAs in

the sense that they evolve i in one ls which represent
partial solutions compete with others for their own survival chances. Cooperative EAs
are also different from classical EAs, as they return a set of individuals as solution,
not a single individual. This sct is known as a collaboration.

The returned collaboration is selected from the population, and hence is a subset
of the population. Obviously, the decision of which individuals should be sclected
into the collaboration directly affects the quality of a solution. The simplest method
is to consider individuals who perform their roles best. This strategy, however, can
sometimes be too greedy and potentially results in poor performance. A good analogy
to explain the problem is the all-star tcam phenomena. A sports team composed of
the best individual players from a whole league may not necessarily beat the best
team in the league. This is because the best team is good by virtue of its member’s
abilities to cooperate.

Once collaborations are formed, their evolution should be considered. Just like
individuals are optimized through evolution, the performance of collaborations should

be optimized through cvolution, too; after all, the aim of CEAs is to scarch for
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the best performing collaboration, not the best performing individual. Because of
this change of the evolutionary objects from individuals to collaborations, genetic
operators, mainly crossover and mutation, have to be re-defined, accordingly. In

addition, we need a metric to measure the performance of whole collaborations, or how

well a set of coadapted individuals can cooperate as a single solution. One advantage

dering such a metric is that it indicates ionary progress

of con
and guides the search towards optimal collaboration performance. Another advantage

is that it puts extra constraints on members in a collaboration. In order to achicve

high collaborative performance, members have to give up some of their own interesf
especially when individual interests are in conflict with the collaboration interest, as
such conflict will compromise collaboration performance. This extra pressure will also

force individuals to search different arcas and to develop different and unique roles.

Diversity Preservation Diversity is critical to the success of the evolution of co-
operation. On the one hand, diversity needs to be preserved in the population long
cnough so that algorithms are able to explore the scarch space exhaustively. On

the other hand, diversity promotes the formation and maintenance of stable niches

The existence of different niches provides

occupied by different subsolutions [57].
the overall evolutionary process with basic building material, from which the most
suitable pieces are selected to compose the final solution.

Individuals, depending on their roles, will usually contribute differently in a col-

laboration. Unfortunately, such contributions are not reflected in their fitness values,

as individual fitness only indicates how well individuals perform their own tasks. This

and individual contribution to the overall

is an evident gap between individual fitnes



62

goal. It is highly probable that a subsolution with a comparatively low fitness, but
unique contribution to the collaboration, is at risk of being climinated by selection.
A feasible way to protect such individuals is to offer rewards or penalties on fitness
according to the contribution of each individual in cooperation. This is called credit
assignment. Credit assignment is another way to protect diversity, as it encourages
individuals to develop various roles with unique contributions.

Please note niching and credit assignment are two different ways to preserve di-
versity. Credit assignment requires external feedback from the environment, while

niching depends on internal competition.

3.2.2 Related Work

Keeping these three key issucs in mind, we will now review related EC approaches and
algorithms that have been proposed to evolve coadapted subsolutions. Through this
discussion, we hope to answer the following questions: what are the main features of
approaches that lead to the emergence of cooperation in EC? Are there any limitations
in these approaches? If so, what are they?

Based on how final solutions are presented, CEAs can be categorized into population-

based and team-based apy

I§ ion-based Ap) hes In ion-based the entire pop-
ulation becomes the solution of targeted problems. Examples of this type of approach
include Learning Classifier Systems (LCS) [42) and niching-based methods [28, 46, 89]

LCS is a rule-based system for concept learning, which employs reinforcement
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learning and a classic GA to evolve a set of binary encoded rules?. Reinforcement
learning is similar to credit assignment, which adjusts individuals’ fitness according
to the feedback from input data. This feedback is in the form of numerical values
that reflect the errors between the output predicted by rules and the expected output
The greater the error, the less the reward. Rewards are distributed among rules which
are involved in prediction and are accumulated into a fitness score which later affects
a GA at discovering new rules. In the end, individuals in the population will be
specialized in response to different aspects of the input data.

Niching methods are normally embedded in classical EAs as an operator, whose
original purpose is to control and prevent unbalanced proliferation of genotypes. Their
inspiration stems from niches found in naturc. Individuals competing for the same

set of limited resources reside together as a niche. The localization of competition

in niches actually implics a simple and indirect form of cooperation that allows com-
plementary specics to cocxist and diverse ccosystems to thrive. Similarly, niching

methods in EC penalize the fitness of individuals based on their genotypic or phe-

notypic similarities, thus forcing individuals to explore and reside in different parts
of the scarch space. As a result, multiple distinct individuals that act of indircct
cooperation can be produced in a single run. Formally proposed niching methods in-
clude crowding [19], deterministic crowding [36), fitness sharing [35], implicit sharing
28, 89] and resource-based fitness sharing [45, 32].

These two methods are perfoct examples of how to apply credit assignment or

niching to preserve population diversity. However, one of the drawbacks of population-

based approaches is that they are not measuring the pes ce of
2LC!

in this dissertation refers to Michigan-style LCS
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as a whole. Without such a measurement, evolved individuals are not sufficient to
consistently provide cooperative behavior, and the completeness of final solutions

cannot be guaranteed [93, 117).

Team-based Approaches Team-bascd approaches overcome the disadvantage of
population-bascd approaches by introducing the idea of teams'. Well-known team-
based methods include GP Teaming (7], Cooperative Cocvolutionary Evolutionary

Algorithms (CCEA) [81], Individual Evolution (IE) [11, 79), Orthogonal Evolution of

Teams (OET) [93], and Symbiotic Bid-Based Genetic Programming (SBB) [53, 54].

GP Teaming [7] has an explicit team a jon is
into demes, which in turn are subdivided into fixed equal-sized teams of individuals.
Both team and individual fitness are defined, but only teams are regarded as the
objccts of evolution: the members of a team are always sclected, evaluated and varied

simultancously. The strong coupling between teams and their members eliminates the

credit assignment problem, but it also misjudges the contribution of team members;
as a result, good team members are at the risk of loosing reproductive opportunities
because they might be teamed with free-riders or less fit individuals. Free-riders in
the context of cooperation represents individuals who contribute little or nothing to
the public good.

c ive CoEvoluti Algorithms (CCEAs) [81] cvolve cach subsolution

in a separate subpopulation without genetic exchange, except for fitness evaluation.

of an | from other sul are

To obtain the fitne

selected to form a complete solution (analogous to a team). The fitness of the com-

are terms in this di They all refer

Teams, groups and

t0 a collection of subsolutions.
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plete solution (collaborative fitness) is evaluated, and returned as the fitness of the

can be

individual being evaluated. Using collaborative fitness as individual fitnes:
problematic. The fitness of cach individual might be incorrectly estimated due to
the impact of other individuals in the collaboration. In addition, only based on the
changes of fitness values, it can be really hard to reveal what the system is really doing;

this is the so called Red Queen effect [106]. The other disadvantage of CCEAs is that

fitness evaluation is completed on the team level, but selection is done on the indi-
vidual level. Such a mismatch drives team members towards cooperation rather than

optimization. To overcome the limitations, 't Hoen and de Jong enhanced CCEAs by

a COllective INtelligences (COIN) framework [95]. COIN introduces a private utility

function (i.c., an individual fitness function) and defines conditions that a private

utility function has to meet, so that the optimization of the private utility functions
leads to an increase of team performance.
Individual Evolution [11, 79], also known as the Parisian approach, evolves in-

dividuals in a single population. In cach gencration, only one team is formed by

t N individuals) or

individuals, which are selected deterministically (i.c. the be

ly from the population. Fitness functions are defined for both individuals

stochastic:
and the team. Individual fitness guides the evolution to optimize individuals. How-
ever, team fitness is used to adjust individuals’ fitness depending on their respective

contribution to the team. Individuals who improve team fitness will be rewarded;

otherwise, they will be penalized. Fitness sharing is used to promote diversit
populations.

Orthogonal Evolution of Teams (OET) [93] trcats a population in two ways: as

a single population of M teams cach with N members, and also as N independent
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islands, each island for one particular type of member. Selection pressure is applied
to both individuals and teams. To be specific. two individuals are selected from
cach of N islands. The 2N individuals will form two teams, which after crossover
and mutation will produce two offspring teams to replace another two existing teams
with worse performance. Individuals have to perform well in order to be selected as
parents, and they also need to cooperate well with others to obtain high team fitness
to prevent replacement. As confirmed by experiments, selection pressure on both
levels optimizes the performance of individuals and teams.

Symbiotic Bid-Based (SBB) Genetic Programming [53, 54] exploits two popula-
tions: a symbiont population which contains individuals evolved by LGP and a host
population which contains teams composed of individuals selected from the symbiont
population. On the host level, three combinatorial scarch operators, which delete,

add or change individuals from a selected team, are applied to search for effective

individual combinations. Because the size and composition of hosts is always chang-
ing, SBB in fact tests the number of symbionts required for a host to accomplish the

task at hand, which indircctly addresses the automatic problem decomposition. In

addition, SBB is more efficient than most other CEAs in a sense that the search for

the best host is conducted simultancously on a st of hosts. Evolution of symbionts is
driven by changes that occur on hosts: cvery time an individual in a host is sclected

for change, mutation happens, which will delete, add, change or swap instructions

with a predefined probability in a symbiont’s program.

Given the discussion above, it is clear that the use of teams explicitly expres

All based hes evaluate team performance according to a

fitness function. This fitness function, similar to an individual fitness functions, will
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indicate in which generation which team performs best, thus successfully guiding
the search to approach the best team. It also puts pressurc on individuals inside a

collaboration, forcing them to develop different functionalities in a collaboration.

Hierarchical Approaches A desired property of CEAs is to allow collaborations to

emerge through evolution. SBB reaches this goal by mutating the composition and size

of teams. Another feasible way is to build collaborations using a bottom-up process:
starting from simple basic clements, large complex components are constructed in
a recursive fashion until the desired collaboration emerges; this in fact describes a
hicrarchical process for the construction of collaborations.

The first known hierarchical evolutionary algorithm was the Messy Genetic Algo-
rithm (mGA) proposed by Goldberg et al. [34]. mGA is “messy” because it uses a
messy coding: variable-length strings containing variable numbers of genes from the
chromosome with respect to the problem being solved. Because of possible changes in
the representation, the usual crossover operator can no longer be used. Instead, two

me

v operators, cut and splice, are implemented for this purpose. Cut divides an
individual into two, while splice concatenates two individuals to one. The workflow
of the mGA can be summarized as the partially cnumerative initialization combined
with two phases of selection: a primordial phase and a juxtapositional phasc. Par-
tially enumerative initialization provides all possible building blocks of a solution. The
primordial phase is then exceuted to reduce building blocks to useful ones, whose com-
bination will create optimal or near optimal individuals. The juxtapositional phase
resembles the usual process of classical GAs by repeatedly invoking cut, splice and

other genetic operators with certain probabilitics to gradually build solutions from
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uscful building blocks. Another algorithm, called Hicrarchical Genetic Algorithm,
proposed a similar hicrarchical framework but only used “splice” operators. For more
details, please refer to [18].

The idea of composing complex structures out of simpler ones is analogous to
the natural process of symbiogenesis, which creates new species from the genetic
integration of symbionts. Watson and Pollack proposed the Symbiogenic Evolutionary
Adaptation Model (SEAM) [104]. The heart of this model is to introduce a symbiotic
combination operator to combine two individuals of arbitrary length to create a new
offspring. Offspring will replace both parents if it dominates them, which indicates
that the newly combined individual is a confirmed, better building block and can
serve as a new start for future composition.

The Evolutionary Transition Algorithm (ETA) proposed by Lenacrts et al. [51] is
another algorithm using the concept of symbiosis, but also embodics the concept of
transition. Unlike SEAM in which an offspring replaces its parents immediately, ETA

introduces an intermediate step, called induced phenotype. The induced phenotype is

onstructed by combining the ypes of two i in a symbiotic
Individuals are reproduced in three different ways. First, individuals will be selected
and reproduced as in classical GAs. Second, in order to maintain useful links between
individuals (i.c. individuals with good induced phenotype), both individuals and their
symbiotic partners are replicated. This is a step toward transition. Finally, the real
transition happens; if the fitness of the induced phenotype of an individual exceeds
a predefined threshold (i.e. the induced phenotype is good enough), the induced

phenotype will be upgraded to the genotype of a new individual at a higher level

complexity.
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In summary, hierarchical approaches exhibit the basic cooperative trait: putting

independently evolved chromosome segments together to form a single solution. “Ba-

sic” here means that coadaptation between entities may not required. In addition,
because they evolve segments of the chromosome, they have a special way to define
and evaluate fitness. Nevertheless, the hierarchical method to construct complex solu-

tions out of simpler ones may shed light on how to improve the problem decomposition

ability of CEAs.

3.2.3 Limitations of Current CEAs

Table 3.1 summarizes features of the CEAs discussed in Sect. 3.2.2. The necessity to
incorporate diversity preservation into CEAs is obvious, as all listed algorithms employ
cither niching or credit assignment (or both) to promote coexistence of individuals
playing different roles in the population

Team-based approaches gencrally outperform population-based approaches [34,
53, 93, 117]. The main reason is that team-bascd approaches agree on introducing
teams as a new type of entity to represent a solution. As can be scen from Table 3.1,
team fitness is defined in all team-based approaches. Team fitness models the in-
teraction between coadapted subsolutions, and encourages individuals to cooperate

[

in the context of EC this optimization means team cvolution. Please recall that in

Optimizing this measurement will produce highly fit teams. To be more specific,

Seet. 3.2.1, we analyzed the importance of the evolution of collaborations, and sug-
gested it as one of the desired features of CEAs. However, only a few of the algorithms
take advantage of this measurement to optimize team performance. GP Teaming is

the only one that considers team fitness and team evolution. Although OET and
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Table 3.1: Comparison of CEAs in the literature

Fitness | Evolution | Diversity | Problem
Idv | Col | Idv | Col | Neh | CA | Decomposition
Niching | v/ v v Semi-auto
Population
LCS . V. V| Semi-auto
GP Teaming V. v | Manually
OET VA Y V| Manually
Team CCEA v | V| Manually
IE viviv V| v | Manualy
SBB V|V v Auto
Notes: i Col=Cq it iching, CA=Credit Assi it

SBB? test team fitness at survival selection, in our opinion these two algorithms are
not performing team evolution. The reason is that selection of teams, including sur-
vival sclection, does not equal to the evolution of teams. It does not result in good
teams being prioritized for propagation, and does not exploit uscful building blocks
(good combinations of subsolutions) in existing tcams.

To evolve cooperation, individuals not only need to exhibit the ability to cooper-
ate, but must also be relatively successful at accomplishing their own distinct subtasks
[93]. This implics that the evolution of individuals should be considered as well. In-

deed, most CEAs include the evolution of individuals. However, they seem to not all
2Another reason that SBB is not considered to conduct team evolution is the uniform probability
distribution used to select hosts for reproduction. Such a selection scheme does not correlate the

chances of reproduction with fitness.
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valuated

agree upon whether the perfc ¢ of indi should be

For example, CCEAs use team fitness as individual fitness. As confirmed by previous
studics (95, 93, 92, 106], with only a team fitness being defined, evolution will result
in good teams but relatively poor tcam members, which prevents further improve-

ment of team performance. Furthermore, treating individuals independently, such

as evaluating or evolving them separately, will increase the flexibility and efficiency

of algorithms. As shown in OET, optimized individuals can be reused to construct
toams, which saves both computational resources and time.
From Table 3.1 we also notice that most CEAs deal with problem decomposi-

tion manually; the numbers or roles of subsolutions are determined a priori. LCS

and Niching are marked as “semi-auto”, because the number of subsolutions is not

specifically defined, but is always confined by population size. Redundant or dupli-
cate individuals are very likely to be found in solutions; normally a post-processing
step is required. SBB is the only CEA which can automatically decompose problems
without a priori knowledge. However, the way SBB changes team composition is
rather stochastic: teams to be changed are randomly sclected, and individuals to be
deleted or added are also randomly sclected. In addition, individuals arc the only
objects that can be added or deleted in teams. Apparently, SBB does not make good
use of existing teams as potential building blocks. Such teams may not serve well as
final solutions, but they might have high potential for containing valuable combina-
tions of individuals; otherwise, they will be climinated from the population. Again

we argue that both, individuals and existing teams, should be regarded as reusable

modules. Simpler and smaller modules could be reused to form larger modules with

increased y. Through such a method of constructing solutions,
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described in hicrarchical approaches, the appropriate number of subcomponents in

a solution might be automatically decided. That is to say, problem decomposition

could be achieved through a bottom-up proces

In conclusion, all CEAs discussed in this scction adapt various forms of diversity
preservation mechanisms, but none of them satisfactorily addresses evolution on both
individual and team levels and the automatic problem decomposition, especially in a

hicrarchical way.

3.3 Chapter Summary

Nature is a rich source for inspiration; one of the most fascinating one is how evolu-
tion shapes today’s world. Briefly, natural evolution can be described as the changes,
influenced by natural selection, in the heritable features within a population of re-
producing individuals over generations; the consequence of natural evolution is that
individuals become adaptive to their environment. This optimization character is
appealing to computer scientists as it provides a feasible metaphor for solving opti-
mization problems in computational settings

The study of abstracting key principles of natural cvolution into algorithms is
called Evolutionary Computation (EC). Algorithms investigated in EC are normally
employed to solve problems “involving chaotic disturbances, randomness, and complex
nonlincar dynamics — that our traditional algorithms have been unable to conquer”
[27). Nevertheless, they are not entirely adequate for solving problems whose solution

pe of

is in the form of interacting coadapted subcomponents [81]. Thercfore, a ty

new evolutionary algorithms called Cooperative Evolutionary Algorithms (CEAs) was



proposcd.

CEAs evolve i potential i in one

At the end of evolution, a sct of individuals is returned as solution. Based on how

final solutions are presented, CEAs are classified as population-based approaches or

team-based approaches. Either way, they have to address the issues of (i) problem
decomposition, (ii) evolution of collaborations, and (iii) diversity preservation. Thosc
issues are consistent with the ones suggested by Potter and de Jong in [81], but with
some extensions. Team-based approaches generally perform better than population-

, 54, 93, 117, because collaborations are explicitly defined and

based approaches
evaluated. As a consequence, interactions between subsolutions are modeled, which
promotes the emergence of cooperation. Unfortunately, none of the existing CEAs
considers evolution on both individual and team levels to optimize their performance,
which leads to cither highly fit, but non-cooperative individuals or good collaborations
with poorly performing individuals. We also found another limitation of current
CEASs, their lack of ability to automatically decompose problems. The “composition”
operator introduced in hicrarchical approaches may shed light on how to build complex
solutions out of simpler ones in a hicrarchical way, with problem decomposition solved

automatically.



Chapter 4

A Hierarchical Cooperative

Evolutionary Algorithm

In Chapter 2, we introduced mechanisms suggested by biologists, especially the the-

ory of group sclection, to explain the evolutionary emergence of cooperation among
unrelated individuals. In Chapter 3, we discussed evolutionary difficulties of classic
Evolutionary Algorithms (EAs) and the limitations of Cooperative Evolutionary Al-
gorithms (CEAs) when applied to scarch for multiple coadapted subcomponents in

the solution of a targeted problem. In this chapter, we will propose a new evolutionary

computation model to overcome the limitations of CEAs by going back to inspira-
tions from nature. The motivation will be presented in Scct. 4.1. In Sect. 4.2 we
will propose a new multilevel selection model to support the evolution of cooperation
from the bottom up. Scct. 4.3 will focus on a hicrarchical cooperative evolutionary
algorithm which implements the model we propose. In Sect. .1, we will justify how
our new model overcomes the limitations found in CEAs, and provide a few potential

problem domains to demonstrate in examples how our model works.
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4.1 Motivation

As we have said in Chapter 3, cooperation is often required in evolutionary computa-
tion to solve real-world problems. These problems often are too complex or too large
to expect a single solution to solve them effectively, or sometimes they are structured
in a way that a single solution cannot reasonably possess all necessary ingredients to
solve every single subproblem. We want that a cooperative evolutionary algorithm
should be able to solve such complex problems by evolving solutions in the form of
interacting coadapted subcomponents, which are emerged from evolution rather than
being designed manually.

In nature, cooperation has been observed cverywhere. Through cooperation, indi-
viduals are able to increase their survival rate, or accomplish things they cannot reach
individually. Mechanisms adopted by nature allow individuals who are engaged in co-
operation to coadapt in spite of competition imposed by evolution, and to mediate
conflicts of interest between individuals and their collaboration. Therefore, we have
an existence proof of the evolution of cooperation. Among the mechanisms suggested

by biologists (scc Chapter 2 for details), group selection’ is chosen to bring cooper-

ation into evolution in computational settings because for two reasons. First, group
selection theory unifies other alternative theories to explain the evolution of coopera-

Second, only group sclection theory

tion, such as kin selection and reciprocation [
explicitly organizes individuals into a structure (i.c., groups), which is analogous to
the collaboration structure required in CEAs.

Wilson’s and Trauslen’s group selection models demonstrated specifically how to
TPlease note that it is not necessary for readers to agree with this theory as an explanation of

biological phenomena in order o take advantage of their implications in artificial settings.
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apply group sclection theory in practice. However, when adapting their models to an
EA context, one can notice right away that both models lack flexibility in terms of

problem decomposition; i

are always dispatched into groups of p
size. Multilevel selection extends group selection from two levels to multiple levels,
where levels are like “Russian matryoshka dolls™ [114] nested one within another. If

the bottom-up construction process is revealed, from previous discussion we know

the issue of automatic problem decomposition would be resolved. However, it is not
completely obvious how the two group selection models can be extended from the
two-level structures to multiple levels, and how the two models explain the creation
of hicrarchical structure.

To address and problem i ly, a

possible alternative is to introduce into group selection models a new function simi-

lar to the symbiotic combination operator discussed in the hicrarchical approaches of
CEAs. This new function would be responsible for constructing hierarchical structures
out of the most basic clements in a bottom-up fashion. However, the resulting hicrar-

chical structures raise new questions, such as how many levels should be constructed

and on which level should group selection apply.

Banzhaf [3] discussed the i between ion and ef ina
simple artificial chemistry system. In that system, lower level entities are bonded
together as a group by cooperative interactions. When such a group, which we can
term a new entity, competes with less cooperative entities from lower-levels, it will take
over the population in the end. The larger the difference among competing entities,

the quicker the competition is settled; for example, a population with a group of 3

aut lysts and 4 i lysts converges faster than a population with
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2 groups of 3 cach and 1 individual autocatalyst. The reason is that entities on
different levels are allowed to compete against each other. This design leads to a
very interesting extension. Suppose the fitness of entities now no longer depends on

fore,

their size, but rather on how they maximize a specific goal of a problem; the
& group at a higher level would not necessarily have a higher fitness. When groups
on different levels compete with each other, groups with higher fitness—regardless of

lected. In a

their level—will be favored by selection, and hence are more frequently s
sense, the level at which the selection should act is totally determined by the fitness

of entities. We know evolution is parsimonious; higher level groups with lower fitness

will be unstable, and will be elimi from the ion by c ition. This

is the reason to assume that hicrarchies will not grow exponentially, but will stop
growing at the most appropriate level required by the nature of the problem. Once
the most stable level is decided, the best group structure will be found. That is to
say, the problem decomposition is addressed at the same time.

In summary, the idea of group sclection can be applied to encourage coopera-
tion and adaptation; a function similar to the symbiotic combination operator along
with the idea of sclecting between levels described in [3] hierarchically creates a so-
phisticated solution out of simpler ones without predefined problem decompositions,
Incorporating these three clements in Evolutionary Computation leads us to the possi-

bility of inventing a new computational model for evolving solutions for decomposable

problems, in which ion and problem ition will emerge as a result of

evolution.
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4.2 A Computational Multilevel Selection Model

With this motivation, we propose a new computational multilevel selection model,

shown in Fig. 1.1

Level 3

Level 2

Level 1

Level 0

Figure 4.1: A new hicrarchical model, which considers selection not only between

individuals, but also between groups and between levels

This model contains two types of entitics. One is individuals, denoted by dots
on level 0. Individuals are the most basic clements to compose the final solution of
targeted problems. Individuals, for instance, can be cireles in the concept learning
problems or movement strategies in the robots coordination problem. They are in-
dependent, without being aware of the collaborative goal. Apparently, there is no
cooperation at this level. The other type of entities are groups, represented by dots
on level 1 and higher, They are compositions of existing individuals or groups.

Initially, only individuals exist in the framework. Groups and new levels are
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created dynamically by a new operator called “cooperation”. This operator utilizes
the ideas of the symbiotic operator and the selection between levels (3] but with
some extensions. When it is applied, individuals and groups on all levels, if any, arc
mixed together, from which two entitics, either groups or individuals, are sclected
proportional to fitness to form a new group. For example, as highlighted in Fig. 1.1
by white circles, an individual on level 0 and a group on level 2 can cooperate to form
a new group on level 3.

Hierarchy in the living world can be classified into two major types of biological

cally joined to

hicrarchies [61, 101]. One type is constitutive, in which entities are physi
cach other within cach level, as cells within a tissue; the other is aggregative, in which

such as

are simply 1in a series of increasingly inclusive entities,
organisms in a population. To accommodate aggregative hicrarchies, reaction rules
are introduced in cooperation operator. These rules, akin to chemical reaction rules,
describe specifically under what conditions and what types of lower-level entities can
be transformed to what types of entities on higher levels. As a result, groups normally
have genotype definitions totally different from individuals. Unless specified, the

default hicrarchy in the model is constitutive,

Groups, once formed, will exhibit phenotypic traits. Group traits can be the same

as individual traits, such as the cooperative trait shown in groups and individuals of

Wilson'’s and Trauslen’s models discussed in Chapter 2. At other times, group traits

can be distinetive to individuals’. The transition from individual traits to group
traits is possible, if group fitness is no longer defined proportional to or related to the
average individual fitness [76]; that is to say, groups exhibit different behaviors when

compared to individuals.
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Groups in this framework are independent entities with their own fitness defini-
tion and heritable traits. Therefore, evolution should happen on group levels as much
as on the level of individuals. Crossover and mutation arc another two evolutionary
operators defined on groups, besides the cooperation operator. Together the three
operators, under the guidance of group fitness, explore and exploit promising regions
in the group searching space, aiming to find new and better combinations of individu-
als, through combining, exchanging, adding or deleting individuals in groups. During
evolution, the three operators take advantage of groups that already exist in the pop-
ulation. Those groups have passed the test of selection, so they arc possibly good
building blocks containing valuable combinations of individuals. By sampling, recom-

structing better

bining or changing those good partial solutions, the possibility of co
groups with higher fitness is raised. Compared to always manipulating individuals,
reusing existing groups in population accelerates evolution, as stated in [3].
Evolution on groups introduces selection pressures on group levels, which promotes
fierce competition between groups. Only groups with good performance are able to

seize the opportunity for future fon and cooperation. It also introduces

selection between levels, as the three operators make their selection on group from
all levels. Like mentioned before on page 77, the selection between levels makes sure
that a new level emerges through evolution only when groups on this new level have
an advantage in fitness.

The benefits of considering evolution on group levels are plain to see; it constantly

optimizes group performance; therefore, it accelerates the overall search process and

3]. At the same time, it controls the growth of hicrar-

improves solution accurac

chical structures, and addresses the issue of problem decomposition.
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Individuals arc the most basic building blocks in our model. In order to build

better groups, they have to be optimized in the first place. This optimization is ac-

complished by evolution on the level of individuals, which is similar to the evolutionary

process described in classical evolutionary algorithms, with one exception. Instead of

., level 0), our model

selecting parent individuals directly from the individual level (i
first selects a group proportional to fitness from groups on all levels, from which an
individual is sclected as parent. Parents are crossed over or mutated to produce new

individuals. Obviously, the idea of group selection applid here; the survival of an

is now associated with the pe of its group. This implics that
individuals have to give up their own interests and start to cooperate with others for
the sake of striving for better group performance. Sometimes, individuals engaged in
cooperation need to specialize on different roles. Group sclection ensures that even

though such roles are not assigned or unknown a priori, they will emerge through

evolution because of the selection pressure on groups.

Our model requires that the fitness of individuals should be explicitly expressed.

According to [92, 116], only considering collaboration fitness will lead to relatively

good team performance, but the members themselves are relatively poor, which con-
strains a team’s performance. One may argue that this is a limitation, as not every
problem can be decomposed into subcomponents whose fitness can be easily evalu-

ated. A possible workaround for such situations is to estimate individual fitness by

using individual contributions. As suggested by Wolpert et al. [116], individual con-
tribution can be calculated by first evaluating how a group would have performed
if that individual was removed from the group and then assigning the resulting dif-

ference as the contribution of that individual. Since the contribution of individuals
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greatly depends on whom they cooperate with, we may obtain different contributions

s of

for an individual by choosing different groups. Therefore, to estimate the fitne
an individual as accurately and fairly as possible, we can use the average individual
contributions in all participated groups or use the individual contribution in the best

performing group as individual fitness.

4.3 A Hierarchical Cooperative EA

The cvolutionary algorithm implementing the above framework is shown in Fig. 1.2
In the initialization step (step 1 in Fig. 1.2), N individuals are randomly gencrated
and have their fitness evaluated. Reproduction on group levels (step 2 in Fig. 1.2)
creates Ny new groups every generation by applying the three evolutionary operators,
i.e. cooperation, crossover and mutation, with a user-defined probability. Cooperation
selects participants from both individuals and groups (i.c., from level 0 and above),

while the other two operators only select from groups (i.c., from level 1 and above)

Any selection schemes that are relevant to group fitness can be applied here, such as
roulette wheel selection, tournament selection or ranking sclection. Cooperation com-
poses a new group from the selected entitics according to appropriate reaction rules.

Crossover exchanges individuals in two groups; onc-point, two-point, homologous or

even user defined crossover can be applied on groups. Mutation adds, removes (only
when group size is greater than 2), or replaces individuals in selected groups. Once a
new group is created, its group fitness and its validation are evaluated.

Although the sclection between levels controls the growth of groups, an extra step

of validation is necessary because of the existence of free riders. Free riders increase



Figure 4.2:
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Outline of the hicrarchical evolutionary algorithm with a population of

 individuals and Ny groups.
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group size without changing group fitness. Validation makes sure that every member
in a group has a unique contribution towards the cooperative goal, which can cither
be checked explicitly or be considered as a part of group fitness. Groups should be
penalized in fitness if they have the same performance as other groups but with a
larger group size.

To produce offspring on the individual level (step 3 in Fig. 4.2), parent individuals
are sclected for crossover and mutation by the two-step procedure described in group
selection theory. If no groups are currently available in the population, parents are

selected directly from the individual level based on fitness. Any types of crossover and

mutation pertaining to indi pres ions can be on these selected
parents. The fitness of Ny newly produced individuals is evaluated. Pleasc note that
this algorithm evolves Ny individuals and N, groups scparately. The rcason to keep a
constant number of individuals in the population is because they are the most basic
building blocks. Only when individuals have fully exploited their local environment,
or have maximized their fitness, will it be possible to find optimal groups.
Preserving diversity (step 4 in Fig. 4.2) is mandatory on all levels, because the
algorithm needs to maintain a set of different partial solutions so that all required

subcomponents can be present in the final solution. Various niching mechanisms can

be used, such as crowding, fitness sharing, implicit sharing, resource sharing or even
user-defined niching schemes.

After the iteration on individual and group levels, the number of individuals and
groups in the population was doubled. Therefore, new groups have to compete with

» positions in the next generation (step 5 in

groups in the current generation for

Fig. 1.2). Many survival selection strategics can be applied here, such as always



selecting the best N, groups among new and existing groups, or replacing parents
with their offspring if offspring have better fitness. The same applies to new and
existing individuals, but they compete for the N positions in the next generation.
Because individuals on level 0 are the most basic building blocks, they can participate
in composing more than one group at different levels. When an individual is replaced
by another, the changes can cither be updated in all groups that contain this individual
or not, depending on design.

The above steps (step 2 ~ step 5) will be repeated until a predefined termination

criterion is reached, e.g., the maximum number of generations, or a desired fitness, or

accuracy. The algorithm finally will return the best performing group as the solution
(step 6 in Fig. 4.2)

In summary, this new Hicrarchical Evolutionary Algorithm (HEA) can be used
to search multiple coadaptive subcomponents in a solution; it extends classic EAs by
introducing group selection and evolution on group levels. Group sclection favors
individuals who cooperate and contribute in a group. Evolution on group levels
optimizes groups, which in turn should help cvolution on the individual level. In
addition, because of the cooperation operator and the selection between levels, this
algorithm is able to build solutions hicrarchically, and decides the most appropriate

depth of hierarchies and the of a collaboration without human interference.

This algorithm only sketches a general workflow. Therefore, it fits well with many
variations of evolutionary algorithms, such as Genetic Algorithm and Genetic Pro-
gramming. For someone who wishes to apply this algorithm, they have the freedom
to decide how to represent individuals and groups, how to measure individual and

group fitness, and how to conduct cooperation, crossover and mutation on groups or
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individuals.

4.4 Discussion

4.4.1 TIssues Revisited

sues that must be addressed if we wish

In Chapter 3 we pointed out three important

to apply evolutionary computation to scarch for multiple coadapted subcomponents

in a solution. These issues include problem i evolution of

id diversity preservation. Here we need to return to these issues to find out how

they are addressed by our multilevel selection model.

s problem decomposition as an emer-

Problem Decomposition Our model addres:

bil-

gent property. Individuals involved in cooperation often assume different respons
ities or roles. Like other team-based CEAs, our model does not require to specify the
roles individuals played a priori. The between-group selection pressure forces indi-
viduals to develop different roles (i.c., explore different arcas in the scarch space) in

ill result

order to optimize group fitness, because individuals with duplicated roles

strongly associated

in a less cooperative group. Since the survival of individuals
with the performance of their groups, individuals within less cooperative groups are
unlikely to be awarded the opportunities of reproduction.

In addition, our model decides the number of subcomponents in a solution through

cvolution rather than prediction beforchand. Once the most basic clements® that con-

2Elements as such are application-specific; for example, they can be a classifier in classification

systems, or a movement descriptor for a robot in a robot team
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stitute solutions are determined, our model repeatedly applies the three evolutionary
operators (that is cooperation, crossover, and mutation) to create groups of various
sizes. At the same time, the between-level selection pressure controls the size of groups
from bloating, and forces groups to reach an optimal size at appropriate granularitics.
Furthermore, the mapping rules introduced by the cooperation operator allow very
sophisticated composition relationships between entitics; as a result, entities can be
genotypically or phenotypically different from the entities who compose them.

Those features are obvious improvements of CEAs. Pleasc recall that CCEAs and

SBB are the only CEAs in the literature that consider problem decomposition. How-

ever, CCEAs depend on an accurate definition of evolutionary stagnation in order to

dynamically adjust the number of specics (corresponding to sub-problems). Normally,

evolution stagnates when the fitness of the best collaboration does not make a spec-
ified improvement over a certain number of generations. How to measure the degree
of improvements and to define the length of stagnation is not trivial. In addition.
adding a new species into the population will discard previous computational efforts.

because evolution has to start over again. SBB defines no selection pressure to ensure

optimal group size, and no mapping rules for composing groups.

Evolution of Collaborations Our model falls into the category of team-based
CEAs, as it explicitly defines “groups” (i.e. teams) to represent the collaborations
of individuals. To avoid greed (i.c. always select the best individuals, such as in IE)
or mediocrity (i.c. always select individuals randomly such as in SBB) when forming
groups, our model selects entities proportional to their fitness. Without exception,

the performance of every group is measured according to a group fitness function.
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According to [92, 81], the absence of this function fails to model interactions between
coadapted group members, and hence will fail to build groups composed of loosely
coupled individuals working towards a common goal.

The novelty of our model is to treat both individuals and groups as evolvable
objects. We noticed from the discussion in Scct. 3.2.3 that it is common for EAs
to optimize individual performance through cvolution. As an extension, our model
defines a similar evolutionary process on groups; through repeated application of
sclection and the three evolutionary operators on groups, better groups are sclected
preferentially to produce offspring, which gives potentially useful building blocks (i.e.
combinations of individuals) an opportunity to be exploited and reused; as a result,
the performance of groups will be gradually optimized. In the end, the scarch for
the best performing group should be accelerated, and the accuracy provided by the

se refer to Scct. 4.2 for more

best performing group should be improved as well (pleas

details)

Thercfore, when compared to other CEAs, our approach is the only model that

evolves both individuals and their collaborations.

Diversity Preservation We have said in Scet. 3.2.1 that niching and credit as-
signment are different techniques used to maintain population diversity. However,
according to Potter and de Jong [81], both issucs should be addressed by CEAs.
In our model, niching is required on both individual and group levels, ensuring less
overlap in functionality between entitics in the population.

Credit assignment normally adjusts individual fitness based on their contribution

in the cooperation. The reason is that individuals are very likely to have unequal
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fitness due to different roles they play, and the likelihood that individuals will re-
produce is solely determined by individual fitness. Through credit assignment, the
contribution of each individual is reflected on individual fitness. Please note that in
our model credit assignment is conducted implicitly; that is to say, there is no extra
step to change individuals’ fitness based on their contribution. The contributions of
individuals are now reflected on their group fitness, as individuals who are dedicated
in their roles and have unique contributions will boost group fitness, which in turn

will give group members better opportunities to reproduce, despite their fitness value.

4.4.2 Potential Application Domains

Enough has been said for the moment about the model itself, now we will focus
on some examples to illustrate the applicability of this model by customizing it on
different problem domains. The first two examples will demonstrate how our model
can facilitate the study of artificial life. The other two examples show how to apply

ch as classification and multi-agent s

the model to solve real-world problems,

The Evolution of Cooperation Cooperation has always been a thorny issuc for

. Our multilevel selection model, like Wilson’s and Traulsen’s

evolutionary theorists
models (please refer to Chapter 2 for details), is another alternative to explain how

cooperation can cmerge and persist through cvolution. Individuals will be players in

the Prisoner’s Dilemma game. Groups are structured by the cooperation operator
in a way that cooperative individuals are able to interact more frequently with cach

other. At the same time, between-group selection helps cooperative individuals to

individuals. In the

propagate, even though within-group selection still favors sel
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casc of the evolution of cooperation, groups are simply a collection of individuals, and
have the same cooperative traits as individuals. In fact, our model is able to support
the study of evolutionary transitions. With the help of carcfully crafted reaction rules
and/or group fitness definitions which are not proportional to individual fitness, our
model can simulate user-specified evolutionary transition; that is to say, groups will
exhibit different traits from individuals. This will be a useful means to gain insight

into the process of evolutionary transitions.

Artificial Chemistry Artificial chemistry is a subfield of artificial life with the
quest for understanding the origin and evolution of life starting from non-living
molecules [20]. This extreme bottom-up approach requires the presence of a set of

interaction rules and a set of molecules, so that complex systems can be built through

the process of rep y applying interaction rules on cor molecules until
the requirements are met. This abstract model is analogous to our hicrarchical model;

individuals and reaction rules in our model are equivalent to molecules and interaction

rules in Artificial Chemistry, respectively. In addition, under the provision of reaction

rules, interactions ing among i will cause the ergence of a com-

Thi

ystems, whose output is more than the sum of its constituents. s exactly

plox s

the desired property required by Artificial Chemistry. Therefore, our algorithm can

be easily converted to an algorithm used in Artificial Chemistry.

Classification For most classification problems, due to a large volume of data sets

and complex relationships between data attributes and output class labels, it is im-
possible to use only one classification rule or equation to classify all data instances

wrately. Normally a set of classifiers is required. Individuals in our model will
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represent classifiers, while groups are collections of individuals working cooperatively
to classify the whole data sct. The interaction between individuals should balance

encraliz and i of indi . s0 that their groups have maximum

coverage and accuracy but minimum misclassification errors and coverage overlaps

between individuals. The between-level selection helps to keep groups compact by

climinating redundant individuals.

Multiagent Systems Multiagent systems are a subfield of distributed artificial in-
telligence. It aims at providing principles for construction of complex systems that
involve multiple agents and mechanisms for coordination of independent agents’ be-
havior [94]. Our model can be applied to evolve cooperative behavior of multiple
agents which accomplish common goals together, such as exccuting search and res-
cue tasks together. For this application, individuals represent a set of movement
instructions of a particular agent. Groups are formed on a higher level to control and
coordinate the behaviors of multiple agents. The role each agent plays is not specified
beforchand, rather it should emerge as a result of evolutionary pressure putting on

group levels.

4.5 Chapter Summary

Group sclection theory, or what is now being termed multilevel sclection theory, has

been widely accepted as an cxplanation for the cvolution of cooperation observed in
nature. Motivated thus, this chapter was dedicated to the incorporation of multi-

level sclection into evolutionary computation in order to transcend the limitations of

existing CEAs. A new computational multilevel selection model was proposed, and
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ctched. A foew

a hicrarchical evolutionary algorithm implementing this model was s

strated just to give readers some flavor of how this model

simple examples were illu
can be adapted to fit various problem domains.

The advantages gained by this model include:

o Problem ition is achieved by the bottom-up process de-
scribed in this model. With the help of the cooperation operator and reaction

rules, complex systems can emerge or transit from simply constituents.

o C ions among indcp individuals are enhanced by group selc

o The evolution of groups optimizes group performance, which in turn should also

optimize individual performance

o The between-level selection helps to decide the most appropriate level of hier-

z¢ of a collal without human interference

archies and the s

« There s no need to explicitly define credit assignment, as group selection strongly

associates the survival of individuals to their groups

we expect the algorithm to evolve faster and find more

Because of those advantag
accurate solutions. We also expect the structure of a solution and the roles played
by subcomponents to emerge as a result of evolution, rather than being designed

manually.



Chapter 5

Experiments on The N-player

Prisoner’s Dilemma Game

The N-player Prisoner’s Dilemma (NPD) game [2] has been widely used to study the

and biological systems. It, as discussed

evolution of cooperation in social, cconomic
in Chapter 2, has helped us to understand how cooperation arises and cvolves in
Wilson’s and Traulsen’s group selection models. One purpose of this chapter is to use
the NPD game again to experimentally verify the feasibility of our proposed multilevel
sclection model in achieving the evolution of cooperation, before applying the model
to complex computational tasks. Consequently, we will show in Sect. 5.1 how to
adapt our model to fit the investigation of NPD games. Scction 5.2 will first study
the performance of our model in promoting cooperation under different parameter
settings. We shall continue by investigating the contributions of the group sclection
and the cooperation operator to the evolution of cooperation. Finally our model and

the improved Traulsen model (i.c. T2 discussed in Scct. 2.3) are compared in terms

of robustness and sensitivity to parameter chang

93
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Most multilevel sclection modcls in the literature focus on addressing the cvolution
of cooperation. There is, however, another aspeet of multilevel selection theory
namely, it might be able to provide explanations for evolutionary transitions, which
involve the creation of higher level complexcs out of simpler clements. In order to

be identifiable, these new complexes should exhibit heritable traits different from

those of simpler clements. The other purpose of this chapter, thercforc, is to explore

whether our multilevel selection model can support evolutionary transitions. To this

end, we investigate its ability to exploit the division of labor, as a crucial step in
many of the major transitions [60] is the division of labor between components of
an cmerging higher level unit of evolution [31]. Examples include the separation of
germ and soma cells in simple multicellular organisms, the appearance of multiple cell

types and organs in more complex organisms, and the emergence of castes in eusocial

insects [31]. In Scct. 5.3 we will first show how to adapt our model for the study
of the division of labor. Then we shall investigate how our model helps independent

with totally different functionalities; in terms of

individuals to transition to groups
division of labor, those are groups with members executing various skills with possibly

different rewards.

5.1 Multilevel Selection Model on the NPD Game

5.1.1 Related Work

The NPD game is a simple, yet extensively used model to study the evolution of
cooperation. In this game, players independently choose cooperative or defective

actions, without knowing the other players’ choices. Cooperators pay a cost, ¢, for



other players to receive a benefit, b. Defectors pay no cost and distribute no benefits
Costs and benefits are measured in terms of fitness. Obviously, in any NPD games with
a well-mixed population, defectors obtain a higher fitness than cooperators. Without
external help, natural selection will eventually drive cooperators to extinction. For a
detailed description of the NPD game, sce Scct. 23,1,

Group sclection, which spatially structurcs the population into groups with vari-

ous assortments of cooperators and defectors, can lead to the evolution and stability

of cooperative traits in the NPD game [48, 82, 83, 120]. The experiments in Scct. 2.3
concluded that the success of group selection depends on effectively maintaining the
variance in group composition. The higher the variance, the bigger the fitness differ-

ence between groups, therefore, the easier selection among groups can be conducted,

such as group

and the less a group selection model is bound by parameters

sclection strengths, or the of coop sina [120].
Currently, investigations of most group selection models, even those conducted

under the heading of multilevel selection, focus on sclection acting on two levels,

namcly the group level and the individual level, assuming that two levels can be

casily extended to multiple levels. However, multilevel selection is more complicated

than sclection on two levels; it has to consider not only how to produce group variance,
but also how to define groups on each level, how to decide which level to select on, how
to perform evolution on cach level, and how to bring these levels together. This may
explain why there are few computational multilevel selection models in the literature,

One example of a computational multilevel selection model was proposed by Chu

and Barnes [10]. Their study concentrated on a model with three nested levels, as

shown in Fig. 5.1. This model demonstrates the simplest case of multilevel selection.
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Level 0

Figure 5.1: Schematic outline proposed by Chu and Barners [10] showing how to

organize agents into levels. Not all agents arc drawn at the lowest level

Agents, denoted by black dots, are cvolvable entities with both a genotype and a
phenotype. The genome of an agent consists of n genes (n is limited to odd numbers),

and cach gene has a value of 1 or —1. The phenotype of an agent is cither —1 when

being a defector or 1 when being a cooperator, which is determined by the majority

ample, if an agent has more genes with a value of —1, its

value of its genes; for c

phenotype will be —1. The genes of an agent on level m + 1 are determined by the
phenotype of n agents on level m (m > 0)

Except for the lowest level, at cvery level agents are subject to evolution. The
lovel at which selection takes place is determined by the level selection parameter
(Isp). 1f Lsp is 0, sclection always takes place at level 2; if it is 1, selection always
happens at level 1; for any value between 0 and 1, level 2 is selected with a probability
proportional to the value of lsp.

On cach selected level, 10 x n tournaments are held to evaluate the fitness of
cntitics on that level. For any level between the highest and the lowest, tournaments

arc staged among n agents which compose the genome of a randomly sclected agent
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from the level immediately above. In each tournament, two agents out of n are picked
to play against each other, and receive a reward (also known as the fitness value)

according to the prisoner’s dilemma pay-off matrix PD,

cc ¢p 20
PD = = (5.1.1)
DC DD 31

If the highest level (which is level 2 in this casc) is selected, all agents on the top
level are involved in tournaments. To examine how fitness definitions on higher levels
affect the model, three fitness functions were tested for agents on level 2. The first

s function always assign a one-point reward to cooperators, no matter whom

fitne

they confront in the tournament, the second fitness function considers the number of
cooperators in the genome of an agent, and the last fitness function uses the expected
pay-off of an agent as its fitness. Agents accrue fitness values from cach tournament.

At the end of a tournament round, 90% of the agents who have the highest accrued
fitness will reproduce. To guarantee a correct genotype and phenotype mapping

between levels, the offspring will copy the entire hierarchy of the parent, and randomly

replace an existing agent and its hierarchy. Mutations are inflicted randomly to agents
on level 1 at a user-defined rate.

The authors made two valuable observations from their experiments: 1) the be-

at higher levels is defined; 2) the

havior of the model strongly depends on how fitn
selection on higher levels should occur at a higher frequency relative to lower level
selection events in order to encourage cooperation. Surprisingly, they rejected the
idea of multilevel selection, for the following two reasons. Firstly, in all experimen-
tal simulations. in which different mutation rate, level selection frequency and fitness

definitions on level 2 were tested, their model can barely make cooperators gain dom-



98

inance in a population. Secondly, according to the authors, high selection frequency
on higher levels means even higher replacement frequency for agents at lower levels,
because any replacement of a single agent on level 2 immediately removes n agents
at level 1, and n? agents on level 0, and such a replacement frequency is unrealistic

in real biological systems.

We, however, argue that the above conclusion is drawn from a misunderstanding
of multilevel selection and incorrect assumptions. First of all, group fitness is not
correctly defined for agents on level 1. As stated by the authors, group selection

dominates on level 1 when [sp is set to 1 (see page 4 in [10]). This implics that

agents on this level are regarded as groups for agents on level 0. Unfortunately,

fitness calculated by the pay-off matrix (see Fq. 5.1.1) does not measure their group

performance, but only individual performance. Agents with phenotype of —1 (i.c.,

defectors) have higher fitness than agents with phenotype of 1 ( i.e., cooperators).
This is the reason why the population converges to defectors when selection happens
frequently on level 1.

Sccond, multilevel selection is not about simply switching selection from one level
to another. The idea of group selection has to be applicd on cach level, as group
selection promotes fierce competition between groups, and hence cooperation within
groups. The better a group performs, the greater the chances of this group and its
members surviving and prospering in evolution. In other words, the reproduction

of its group, whereas such a selection

probability of an agent depends on the fitn

force is missing in the Chu and Barnes’ model.  Although agents on level 1 and 2

do reproduce at a rate associated with their fitness, the process of accruing fitness

is totally random, or is related to the frequency of an individual being randomly
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selected. Thus, a less cooperative agent may end up with a higher fitness value, and
hence produce more offspring. This contradicts the notion of group selection, and also
explains why cooperators cannot dominate the population no matter on which level
selection takes place.

Last but not least, their second reason to reject multilevel selection is based on
a rigid and biologically unrealistic model. According to the design of this model, n
agents exclusively compose an agent at the level immediately above, so the entire

tent

hicrarchy of a selected agent has to be replaced in order to guarantee a con:
genotype and phenotype mapping between levels. It is this constraint that causes
the high replacement frequency to occur at lower levels. In fact, such a composition
requirement is not biologically sound; for example, different cells may share the same

h of a cell does not remove those genes from other cells. Such

genes, but the dea
a replacement mechanism also evens out the variance between groups, which makes
sclection between groups harder.

In conclusion, Chu and Barnes' work can be considered a good initiative aimed

at investigating the practicality of multilevel selection, but serious flaws exist in their
model. Their work reveals that the notion of multilevel selection does not scem to be
inherently difficult, but the actual implementation can lead to a number of complica-

.c. the connection

tions; for example, the organization of the hicrarchical structure (
between any two adjacent levels), and the definition of evolution. In the end, we are
still facing the question of whether to embrace or reject the idea of multilevel selee-
tion, when it is applied correctly as a mechanism to promote cooperation through

evolution.
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5.1.2  Algorithm Customization

In this section, we attempt to approach the above question by examining our multilevel
sclection model when applied to the NPD game. Recall that our model involves
many clements, including a cooperation operator, group sclection, evolution on the
individual level, evolution on group levels, and diversity maintenance. To focus on the
effect of multilevel selection, we customize the model to only highlight the cooperation
operator and group selection. Those two elements are responsible for organizing the
population into a hierarchical structure required by multilevel selection and defining
the selection on a structured population, respectively. They may create opportunities
for cooperators to interact more frequently with each other, in order to obtain high

iduals to asexual

fitness to survive the selection. We also simplify the evolution of indi

reproduction without mutation. Crossover and mutation on group levels, as wll as

diversity mai are ter ly not considered

The exceution of the cooperation operator and group selection requires both group

fitness and individual fitness. However, individuals which participate in the NPD

game cannot obtain their fitness unless they interact with others. To this end, we
changed our model (sce Fig. 4.1) somewhat to satisfy this requirement. As shown
in Fig. 5.2, randomly initialized individuals (represented by the white dots inside
the individual pool) are exclusively paired into groups on level 0. Those groups arc

the smallest unit in which the individual fitness can be evaluated. From level 0, the

cooperation operator starts to build a hicrarchical structure level by lov
The cvolutionary algorithm shown in Algorithni 4 implements this customized
model. It begins with initialization. N individuals, r percent of which arc cooperators,

are randomly created and exclusively paired into groups at level 0. The genome of
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Level 3

Level 2

Level 1

Level 0

Individual Pool

gure 5.2: Our customized multilevel selection model for the NPD game.

individuals only contains one gene. This gene has two variants (alleles); one allele

codes for cooperators, the other allele for defectors. When the former is expressed,

the individual is said to be a cooperator; otherwise, it is a defector.
Groups at level 0 need to have their fitness evaluated right away. This group fitness

can be easily calculated by averaging the individual fitness of its members. Group

a fitness determined by the following equations,

members, or individuals, po

depending on whether it is a cooperator (C) or a defector (D):

(@) = base + w(b(’:"%_‘” —0), (0<i<m) (5.1.2a)
fo(2) = base+ uv:’%"‘ 0<i<m) (5.1.2b)

where m is the number of groups in the population, base the base fitness of cooperators
and defectors, g; the fraction of cooperators in group i, n; the size of group 7, b and ¢ are

the benefit and cost caused by the altruistic act, respectively, w is a coefficient. These
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Algorithm 4: An EA based on our multilevel selection model.

1 P« Initialize Population(N,r);
2 Evaluate_Tndividual Fitness (P);

3 Evaluate Group Fitness(P);

4 while population does not converge or maz generation is not reached do
5 gp « Conduct_Cooperation(P);

6 Evaluate_Individual Fitness (gp);

7 Evaluate Group Fitness(gp);

s | Add.aGroup_to_Population(gp, P)

9 if Population Size(P) > N’ then

10 Remove_a Group();

1 end

12 | fori« 0tondo

18 idv ¢ Reproduce_an_Individual (P);
14 Replace_an_Individual (idv, P);

15 Update_Changes (idv, P)

16 | end

17 end
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are the same fitness functions used in the investigation of Wilson'’s and Trauslen’s
models. This fitness definition also implies that cooperation is not supported at the
individual level, as cooperators always have lower fitness than defectors. However,
groups with more cooperators will achieve higher group fitness.

In cach generation, only one group is created by the cooperation operator. The
cooperation operator, as we explained in Scct. 4.3, selects two groups proportional to
their fitness, which automatically decides the levels to select on. This increases the
complexity of groups as well as might cause new levels to appear in the hierarchical
structure. To prevent hierarchical depth from ceaselessly growing, we assign every in-
dividual a unique number as its /D; no individuals with the same /D can exist within
the same group. After fitness evaluation, a new group is added to the population P.

If at this point the maximal number of groups, say N, is reached, another group has

to be removed from the population inversely proportional to fitness.

We also reproduce n individuals asexually every generation. A group is first se-
lected from groups on all levels, from which an individual is selected as parent. Both
selections are proportional to fitness. Individuals in cooperative groups will have
a higher probability to be selected and reproduced. Since cooperators within such
groups are in the majority, they have a better chance to be selected by within-group

ion, even though they have lower fitness than defectors in the same group. Each

parent’s genome further replaces the genome of a less fit individual in the individual
pool (that is, the less fit individual still stays in the population, but with its genome
changed.). Individuals in this pool arc allowed to participate in composing more than
one group. That is to say, cach of those individuals may have multiple copics, but in

different groups. Depending on group composition, it will have different fitness, and
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the simplest way to determine its fitness is to average the fitness of all its copies (i.e.,
individuals with same /D).

After the replacement of an individual in the individual pool, this change needs to
be communicated. We can update the genome of either all the copies of the replaced
individual, or the only copy on level 0. We choose the former in order to ensure
the same genotype appears in individuals with the same ID. The group fitness and
individual fitness of affected groups need to be updated, accordingly. We repeat the

process until a termination condition has been reached or the individual pool converges

to cither cooperators or defectors

5.1.3 Discussion

When compared to Chu and Barnes’ multilevel selection model, our model works dif-
ferently in regard to the construction of the hicrarchical structure. Chu and Barnes’
model clearly defines the genotype and phenotype for agents, and also defines the
mapping from genotype to phenotype for agents at any level, as well as the map-
ping from phenotype to genotype for agents between two adjacent levels. The latter
specifies the bond between two levels, through which a hierarchical structure is built.
This mapping, in fact, changes the nature of agents during the transition; an agent
becomes a specific gene in the genome of an agent at the next higher level. This
causes the unrealistic replacement frequency, and partly leads the authors to reject
multilevel selection.

In contrast, our model only defines the genotype of individuals. The genotype
of groups, though not explicitly defined, can be regarded as a collection of its mem-

bers’ genomes: the genome of a group is composed by the genomes of two entities
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(individuals or groups) from lower levels. In this way, the between-level connection is
established. Any entity in our model can be regarded as a potential building block, as

. Once it

long as it shows benefits to fitnes s selected by the cooperation operation,
it will contribute a copy of its genome to the new group. Since there is no phenotype-
genotype mapping restrictions between groups and their constituents, when an entity

is replaced, there is no need to replace its constituents. The replacement of a group

in our model means the current combination of its members loses its competition ad-
vantage in evolution, which does not necessarily indicate that the genomes it got from

lower level entities are useless. Indeed, some of them may still be good building blocks

if in another composition or envi . Yet our shows the simplest way
to bring levels together, which also scems more biologically reasonable to us. More
complicated between-level mappings ar left for future studics.

In respect to the question of when to start or stop building new levels, no specific
mechanism was mentioned in Chu and Barnes’ model, whereas the cooperation oper-
ator was introduced into our model for this purpose. Combining two cxisting groups
will result in a new group with increased complexity, even creating a new level if such
complexity has not been reached before. This new level can actually be a part of the
system only when the fitness of its groups is improved. In other words, this operator
is driven by fitness, which determines when to start or stop building a new level.

This operator also distinguishes our model from Wilson’s and Traulsen’s group
selection models in terms of changing population dynamics. It is worth mentioning
that our “cooperation” operator is the inverse of the “split” operator in Traulsen’s

n's model

model (see Algorithm 2 on page 32). As we concluded in Scct. 2.3, Trauls

is a better group sclection model than Wilson's, because it is able to create high
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variance between groups. This raises the following two questions: Docs the “split”
operator contribute to such a good result? Might the “cooperation” operator in our
model serve the same purpose?

To answer these questions, we can analyze the two operators in the NPD game.
Suppose we have three groups: g, with z; cooperators and y; defectors, g with 3
cooperators and y, defectors, and gy with , + 2 cooperators and y; + y defectors.
Group gy can be regarded as the group cither after the cooperation of g, and gy or
before the split into g, and gz.

We know for any given group g with z cooperators and y defectors, the fitness for

a cooperator is defined as

b
fell) =B+ %_(’ (5.1.3)
Ty —
and the fitness of a defector is
o) =8+ —22— 0<j<y) (5.1.4)
o) =B+ = 0<i<w), :

So the fitness of group g can be calculated as,

Ig) = Heth) = ufo(l)
Tty
2B+ dell — o) +y(B+ =)
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Therefore, the fitness of the group gy, g, and gy are

o m
flg) =B+ IIHI(b o (5.1.6)
a £2) .
flg2) =B+ 1Hyz(ll—r) (5.1.7)
S =B+ —atT__y) (5.18)

T+ Tty +y

The fitness difference between group g; and gy is

Ty oty
(o) = f(gs) = B+ (b—&)— f+ —— 2t (-]
Jon) = flen) P pr L
) (e LS iy (5.1.9)
Ay Dty atp
(b
(@1 +y) (@ +uy + a2+ 1)
Similarly, the fitness difference between group gy and gy is
Ho) = o) = Bt o (h—0) = 4 (=)
g5, 9 = it m E
T+ T2 E2Y
—(b—o)(— T (5.1.10)
¢ )(l'|+y1+1r +y2 l'z+l/;)
1Y, T2U)
=(b-c)—— 2 _Tdh ___
O T+ m

Since xy, 2, y1, and y, are greater than 0, the order of sequence f(g1), f(g2), and
f(gs) then depends on the relations between b and ¢ and between z1y; and zoy,.
Therefore, All possibilitics except b—¢ = 0 or 21y, — 23y, = 0 are shown in Table 5.1

When b —

0 or 242 — 221 = 0, the fitness differences between f(g1). f(g2), and

f(gs) are zero.

Clearly under all circumstances, the fitness of group gy is in between the fitness
of g1 and go. That is to say, if the “split” operator is applied, one of the split group
will have higher fitness than the original group: and if the “cooperation” operator is

applied, the composed group will have higher fitness than one of the original groups




108

Table 5.1: The ordered value-sequence of f(g1), f(g2), and f(gs)

i > 2y | f(91) > f(9s) > f(g2)

b-c>0
x1y2 < 22y | f(92) > f(gs) > f(91)

a2 > 2 | f(92) > flgs) > f(gn)

b—c<0

21y < 2oy | fl91) > fl9s) > f(g2)

In cither case, the overall group fitness is improved, as is the average percentage of co-

operators in groups. On the other hand, the unequal fitness of involved groups implies

that both operators introduce new groups with different compositions into the pop-

ulation, so that a good level of between-group variance can be sustained. Therefore,
we can conclude that both operators are useful in promoting cooperation. However,
the “split” operator should be more effective than the “cooperation” operator, as it

yields a greater difference of fitness and of between-group variance among the groups

involved.

5.2 Experiment 1: The Evolution of Cooperation

The first set of experi sl igates the performance of our model on the evolution

ed in whether the model can successfully

of cooperation. To be specific, we are inte
remove all defectors from a population and how it performs under different parameter

settings.
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5.2.1 Experimental Setup

The investigations to be conducted here are similar to the ones conducted on Wilson's
and Trauslen’s models (refer to Scct. 2.4 for details), but here only focus on two
parameters: the coefficient w and the initial fraction of cooperators r. Group size is

no longer considered, as it becomes a self-adaptive parameter. We ran the algorithm

20 times, cach with a generation size of 5000, a population of 200 individuals and
maximum number of 20 groups at level 1 and above . Eq. 5.1.2a and Eq. 5.1.2 are
used to calculate the fitness of cooperators and defectors within a group, respectively.
Base fitness base is set to 10, benefit b to 5, and cost ¢ to 1 in these two equations.
The fitness of a group is defined as the average individual fitness of its members.
We measure the performance of the algorithm by the probability of fixation to
cooperators Prization and the average fixation speed Syizarion. In population genetics,
fixation refers to the change in a gene pool from a situation where there exist at
least two variants of a particular gene (allele) to a situation where only one of the
alleles remains [109]. Pyization is computed as the number of runs whose populations
converge to cooperators over 20 runs. Syization i the average number of generations
in 20 runs required to obtain a population with only one gene variant present in the
population; or, to put it another way, when group fitness stops to change. As in the
previous study, we also collect average variance ratio Avguariance (refer to Eq. 2.3.1)
in cach run. Please recall that the higher this ratio, the more prominent the effect of

group sclection.
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5.2.2 Experimental Results
5.2.2.1 Investigation of different parameters settings

We first test the performance of the model when different numbers of cooperators are
used to initialize the population. So we vary the value of r from {0.1, 0.3, 0.5}, and

set w = 1. The results obtained over 20 runs are listed in Table 5.2.

Table 5.2: The effects of initial fraction of cooperators r

Settings Prization Stization Avguariance
w=1r=01 1 390.9 0419
w=1r=03 1 341.6 0.430
w=1,7r=05 1 312.6 0.440

We then test how selection pressure affects the model by changing the value of

coefficient w from {0.1, 0.5, 1, 2, 5, 10}. The initial fraction of cooperators r is set to

0.5 at this time. The results are shown in le 5.3,

From Table 5.2 and Table 5.3, we can sce that the population converges to coop-
crators under all settings. The changes of 7 and w do not affect the performance very
much. However, when less cooperators are present in the initial population, or when
the selection pressure is either too weak or too strong, the population takes longer to
converge. Please recall that strong selection means that the payoff is large compared
with the baseline fitness; weak selection means the payoff is small compared with
the bascline fitness [72]. When selection is too weak. the relative fitness difference

between cooperators and defectors (i.e. the difference between their payoff) is very
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small. For example, given a group with 9 cooperators and 1 defectors, when w = 0.1,

the relative fitness difference between defectors and cooperators is only 0.156. As a

result, the relative fitness between different groups should be small, too. Therefore,

the effect of group selection is less obvious. When selection is too strong, though co-

operative groups are favored by between-group selection, defectors have much higher

fitness than cooperators. Consider the previous example: when w = 10, the relative

fitness between defectors and cooperators is 15.6. Between-group selection cannot

casily prevail over within-group sclection. Thercfore, it takes also longer under these

circumstances to remove defectors from the population.

Table 5.3: The effects of selection pressure w

Settings Prization Sfization Avguariance
w=01,7r=05 1 441.05 0.418
w=057=05 1 292.45 0.431

w=1,r=05 1 312.6 0.440
w=2,7=05 1 370.75 0.455
w=>571=05 644.55 0.456
w=10,r = 0.5 1 1174.05 0.454

5.2.2.2 ionalities of group and the operator

Group sclection and the cooperation operator are two new concepts introduced in

our algorithm. In order to get a clear picture of their contributions to the evolution

of we another two

. In the first

\ we
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replaced group selection (line 11 to 12 in Algorithm 1) with individual selection.
Individual selection selects individuals for reproduction based on their fitness values;
that is the higher the fitness value, the higher is its probability of reproduction.
Individual selection in this experiment is conducted dircetly on the individual pool.
We applied the model without group sclection on all scttings again, and the results

are shown in Table 5.4. This time a Pjizaion value of 0 resulted on almost all settings.

Table 5.4: The performance of the model without group selection

Settings Pyization Sization Avguariance
w=1r=01 0 211.10 0.361
w=1r7r=03 0 430.65 0.372
w=17r=05 0 747.95 0.387
w=01,r=05 0.3 2137.67 0.401
w=0.5,7=05 0.05 1255.00 0.390
w=1r=05 0 747.95 0.387
w=2,7=05 0 561.05 0.391
w="57=05 0 369.40 0.392
w=10,r =05 0 317.95 0.399

When Pizaion Was 0, Sization referred to the fixation speed to defectors. Therefore, we
can safely say that without group sclection, our model can barely maintain cooperators
in the population. Defectors now reproduce more often and gradually take over a

population, because they have higher fitness than cooperators. We also noticed that
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the population did converge to cooperators occasionally when selection pressure was
very weak (w = 0.1 or w = 0.5). As we explained before, under weak selection the
fitness difference between cooperators and defectors is very small. This, of course,
gives cooperators an opportunity to be selected and reproduced.

In the second experiment, we removed the cooperation operator (line 3 in Algo-

rith 1) from the model, and ran the algorithm once again. As shown in Table

our model without cooperation was able to achieve the evolution of cooperation except

Table 5.5: The performance of the model without cooperation

Settings Plization Sization Avgyariance
w=17r=01 1 566.35 0.464
w=1,r=03 1 450.05 0.467
w=17=05 1 357.85 0.476

w=017r=05 1 516.7 0.492
w=0.57=05 1 311.8 0.484
w=1,r=05 1 357.85 0.476
w=27=05 1 538.05 0.474

=5,r=05 0.95 2458.47 0.480

w=10,7r=0.5 0 N/A 0.500

when selection pressure was too strong. If w = 10, the population converged neither
to cooperators nor to defectors within 5000 generations. 1f we compare the fixation

speed obtained in this experiment with the ones shown in Table 5.2 and Table 5.3, we
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will notice immediately that, given the same parameter settings, the population in a
model without cooperation took longer to converge. For the reason we refer to the
discussion on Page 107: The cooperation operator produces a composed group with a
higher fitness value than one of the original groups. Hence, it changes group compo-
sition and increases the chances for putting more cooperators together, which in turn
makes the role of group selection more prominent. Without such a push, evolution
definitely is slowed down, especially when selection pressure is stronger. That is the
reason why a population cannot converge if w is set to 10. Therefore, the cooperation

operator in our model helps to encourage cooperation and accelerates evolution

5.2.2.3 Performance comparison to the improved Traulsen model

So far, we have investigated our model on different parameter settings and further
analyzed the functionality of group selection and the cooperation operator. However,
we are not yet clear about the performance difference between our model (denoted
as W&B) and the improved Traulsen model (72)'. A comparison between them is
highly useful.

In T2, groups have a pre-defined size, which determines the maximum number of

individuals a group can have. When this constraint is violated, the “split” operator

is triggered with a certain probability. As we summarized in Scct. 2.3.5, the smaller
the group size, the greater the group variance, and hence the casier it is to cvolve
cooperative groups. Hence, to challenge our model, we compare it to T2 with group

size setting of 5.
'Experiments in Scet. 2.3 confirmed that the improved Traulsen model is the best model among

the three investigated models
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First we ran two models 1000 times on a population with r = 0.005 (i.c. 199
defectors and 1 cooperator), and r = 0.995 (i.e. 1 defector and 199 cooperators),

respectively. The results are shown in Table 5.6. The probability of fixation to

Table 5.6: Comparison of W&B and T2 when r = 0.005 and r = 0.995

1=0.005 1=0.995
cooperators defectors cooperators | defectors
W&B 0.544 0.456 1 (26.05) 0(0.0)
(398.34) (11.18)
T2 0.031 0.969 (7.54) 0.996 0.004
(233.16) (22.03) (253.5)

cooperators and to defectors are listed outside of the parenthesis, while the average
fixation speed is inside of the parenthesis. Even though only 1 cooperator exists in the
population at the outset, cooperators in our model have more than 50 percent chance
of taking over the population, a probability that is 17 times greater than for 2.
When 7 is set to 0.995, our model never converges to defectors, whereas Traulsen'’s
model occasionally did so even under these conditions. This result indicates that it
our model is resistant to loosing cooperators from the population.

We also compared the two models under different selection pressures with w vary-
ing from {0.01, 0.1, 0.5, 1, 2, 5, 10, 100}. Table 5.7 displays Prization and Sfization
(listed in parenthesis) obtained over 20 runs. Both models achieve the highest prob-
ability of fixation to cooperators under most settings, except for w = 0.01. When

w = 001, which implics an extremely weak sclection pressure, our model converges
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Table 5.7: Comparison of W&B and T2 under various selection pressures

W&B T2 w&B T2

w=0.01 || 1 (1379.79) | 0.6 (1031.75) || w=2 | 1 (370.75) |1 (155.35)

w=0.1 [ 1(441.05) |1(45835) | w=5 | 1(644.55) |1 (137.10)

3

w=0. 1(1174.05) | 1 (126.80)

&

1(29245) |1(224.05) | w=

w=1 [ 1(312.60) |1(20755) [ w=100 || 1 (1578.75) | 1 (109.75)

to cooperators on all runs, but at the expense of a very slow fixation speed, while
T?2’s between-group selection strength can no longer easily outweigh the within-group
selection strength, so that in some runs defectors dominate the population.

From the above two experiments, we can conclude that our model is able to pro-
mote the evolution of cooperation over a wider range of parameter values, i.c. our
model is less sensitive to parameter changes. The reason is related to the different
ways of changing group structures. Our model starts with small groups of only 2
individuals, from which larger groups are gradually built up. In contrast, the initial
group size in Traulsen’s model is 5. Although the “split” operator helps to reduce
group size, it occurs at a relatively low rate. In addition, inserting offspring into split
groups increases group size again. As we discussed before, between-group selection
has a more pronounced effect on smaller groups than on bigger groups. Small groups
can thus avoid eliminating cooperators too quickly from the population, which allows
group selection to have enough time to play its role. This is the case especially when
the selection pressure is too weak or the initial fraction of cooperators is too low. How-

ever, we also noticed that, given the same setting, the fixation speed of our model is
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slower than that of improved Traulsen model. This confirms our theoretical analysis
in Scct. 5.1.3. The cooperation operator is not as effective as the split operator when

it comes to increasing the fitness difference among groups.

5.3 Experiment 2: Evolutionary Transitions

In Seet. 2.2, we introduced two types of multilevel selection: MLS1 and MLS2, and
their relationship with evolutionary transitions. MLS1 takes place at a carly stage of
evolutionary transitions to promote the emergence of cooperation, and MLS2 happens
at a later stage of evolutionary transitions to develop group traits, which are normally
different from individual traits. In MLS1, group fitness is defined as the average fitness
of individuals within a group, while in MLS2, group fitness is defined independent of
the average fitness of its individuals. As transitions proceed, group fitness gradually
becomes “decoupled” from individual fitness [65]. Once group fitness is decoupled,
the transition has been achieved, and new complexes have been created that assume
an existence of their own.

Obviously, the multilevel selection we demonstrated in the previous experiment
belongs to MLS1: Group fitness is defined as the average individual fitness (i.e. in-
dividuals and groups share the same heritable trait), and individuals are the object
of evolution. In the next experiment, we will show how our model can incorporate

both MLS1 and MLS2 to support fonary transitions. The investigation uses

the division of labor as an example. Division of labor is a group trait resulting from

evolutionary transitions, where low level independent entities with specialized skills

perate to increase the success of high level complexes. First, we ex-
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amine the ability of our model to evolve groups fulfilling various numbers of skills
from a population of independent individuals, when all skills reccive the same reward.
Sccond, we examine the dynamics within the model and the responses of individuals

when different skills are given different rewards.

5.3.1 Experimental Setup

We adopt the extended N-player Prisoncrs Dilemma (NPD) game to study the divi-
sion of labor. The NPD game is the classical setting for addressing the evolution of
cooperation. Once cooperation is reached, all players possess the same cooperative
trait, which is also the only trait required for cooperation. Even if such cooperation
breaks down by loosing some individuals, the rest should still be capable of coop-
crating with others. Evidently, the game is not useful for investigating division of
labor unless some extensions are made. Therefore, we first change the NPD game by
attaching a new trait called “skill” to each player; then we redefine the goal of the
NPD game: find N players who not only are willing to cooperate but also possess all
required skills.

We also make the following three changes to our model. We first added a new

skill_id", for individuals to indicate the skill they possess. Next, a new

attribute,
genotype is defined for groups, which is represented by a Boolean list. Each position
in the list is connected to a unique skill, so that the genotype of a group can keep
track of all different skills of its members. A reaction rule is defined to specify the

ed

mapping between individual genotype and group genotype. When a skill is pos:
by at least one cooperator in a group, the reaction rule will set the corresponding

position in the genotype to true (we say it is activated); when the skill is no longer
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possessed by any cooperator in that group, the rule will inactivate the position by
setting it to false. Again, compared to groups in the evolution of cooperation, groups
here require their members to develop different skills, not just to cooperate. As a
result, groups exhibit more traits than simply the cooperative trait of individuals.
Genetically, groups in our model are ready for evolutionary transitions.

Finally, we change the fitness definition on the group levels, as shown in Eq. 5.3.1.

Gnewly) = L\v'{ﬂﬂ « Activepens() (53.1)

lengthypheno(y)

This revised fitness measures the performance of a group in two respects: (i) the
average individual fitness of its n members and (ii) the percentage of activated skills
in the genotype. The intention behind this fitness definition is straightforward; the

first part the of as improve the overall

individual fitness, and the second part rewards groups in which cooperators possess
as many different skills as possible. Obviously, this group fitness is not defined as
the average individual fitness, but it can be either proportional to average individual

ding on the influence

fitness, or 1y " from individual fitness,
of the second term of the fitness function. According to Okasha [75], the former
indicates the transition from MLS1 to MLS2, and the latter indicates that groups
have fully emerged as discrete units. Both encourage evolution to reach transitions.

Since the purposc of this experiment is to study the division of labor, we no longer

change the values of coefficient w and the initial fraction of cooperators r, but set them

to 1 and 0.5, respectively. Other such as size, ion size,

the maximum number of groups in the population, and so on, use the same settings

described for Experiment 1 in Sect. 5.2.1.
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5.3.2 Varying Skills

The first part of this experiment tests whether our model is able to evolve a cooperative
group that has all required skills, if all skills have the same fitness benefit.

We start the experiment with 5 different skills. At initialization, individuals in-
dependently choose to be a cooperator or a defector. In addition, they randomly set
their skill_id with one of 5 skills, {1, 2, 3, 4, 5}. An individual with an attached
skill will perform a specific task. The best performing group should contain only co-
operators and should have all 5 skills presented in its phenotype. We then gradually
increase the number of desired skills to 10, 15 and 20. For cach setting, we ran the

algorithm 20 times. The results are collected in Table 5.8.

Table 5.8: The performance of our model when individuals play various skills

Settings || Ppieasion | Activated Skills | Convergence Speed
skills =5 1 5 96.3
skills = 10 1 10 181.55
skills = 15 1 15 247.60
skills = 20 1 20 301.25

The probability of fixation Pyizaien With a valuc of 1is obtained under all settings,

which indicates that defectors, despite a relatively high individual fitness, are elimi-

whereas dominate the

nated from the
MLS is the explanation for this result. More importantly, the best performing group

for cach setting develops all required skills through evolution. This demonstrates that
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MLS2 is at work. It is not surprising to sce that the larger the number of desired
skills, the slower the population was to reach the maximum on group fitness. This is
simply a reflection of the problem becoming harder when the number of desired skills
is raised.

To get a better idea of how the division of labor develops through evolution, we
select a typical run for each of {5, 10, 15, 20} skills for further analysis. Figurc 5.3
depicts the maximum and average number of unique skills of all groups over 500
generations.  Starting from at most 2 skills, the best performing group gradually
evolves to perform more and more different skills until the number of desired skills
was reached (sce Fig. 5.3a). Such growth is due to the guidance provided by group
fitness. Take the run for 20 desired skills for example. We collect the following
information from this run: group fitness, number of activated skills, and percentage
of cooperators in the best performing group, as well as percentage of cooperators in
the population; see plot in Fig. 5.1

Group fitness (refer to Eq. 5.3.1) is determined by average individual fitness and
percentage of activated skills. We plot percentage of cooperators instead of average
individual fitness in the best group, because (i) we can easily extrapolate average
individual fitness from this percentage, and (ii) it also shows the fixation process
in the best group. Figure 5.1 clearly shows how the percentage of cooperators and
the number of activated skills affect the group fitness. Interestingly, we notice that
the population converges to cooperators first, and then the best group develops all
required skills. The same trend is also observed in other runs with 5, 10, 15 skills.
This observation indicates that cooperators spread in the population before the evolu-

tionary transition happens, a result confirming the discussion about the relationship
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Figure 5.3: The changes of the maximum and average number of unique skills in a

typical run.
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A typical run when skills=20
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Figure 5.4: The changes of group fitness, percentage of cooperators and activated

skills when 20 skills are st

in turn, influences the execution of individ-

between MLS1 and MLS2. Group fitn
ual evolution and group evolution (i.c. cooperation operator). Since defectors yield
1o fitness benefit on group levels, they are climinated from the population by group

duction; hence the of in the best group and

sclection at
in the population increascs steadily towards 1. As shown in Fig. 5.3b, the average
number of activated skills never approaches to the mumber of desired skills, This

lls. They are potential

implies that the population maintains groups with various s
building blocks, out of which the cooperation operator is able to test different combi-
nations of existing groups, and gradually hone in on optimal groups with all required
skills.

In summary, our model is able to successfully evolve groups with all desired skills
for the extended NPD game; or we can say that our model is able to evolve groups to

engage in the division of labor between cqually rewarding skills.
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5.3.3 Varying Rewards
The second part of this experiment continues the exploration of whether or not our
model can evolve the division of labor, but this time with unequally rewarded skills.

The different rewards put extra pressure on ishing this task, as they

individuals to specialize on the most rewarded skills while avoiding the less rewarded
skills.

To distinguish skills with different reward, we refer to the “leader/follower” sit-
uation described by Goldsby et al. [36]. Individuals whose skill.id is set to 1 are
appointed to the leader of that group, while individuals performing other skills are
simply followers. Leaders receive different rewards than followers, but followers, no
matter what specific skills they have, receive no other rewards. A coefficient, a, is
used to control how much reward a leader can receive. Cocfficient o basically is a
multiplicative of the individual fitness; that is, the individual fitness of a leader is
calculated as the product of a and the individual fitness obtained by Eq. 5.1.2a or
Eq. 5.1.2b.

We vary the value of a in the range of {0.5, 2, 4, 8, 64} on each of {5, 10, 15, 20}
skills, and run the model on each sctting 20 times. The performance is summarized in

Table 5.9. Clearly for each setting the population converges to cooperators as a result

of MLS, and the best ing group is composed of ive individuals with
all required skills as a result of MLS2.

Because group fitness can hardly converge in this experiment, the convergence

specd Seonuerge is judged by the stabilization of Pization and Sctivatea. Fig. 5.5 displays
a typical run when the number of desired skills is set to 5 and coefficient a is set to 8.

Although the of in the ion and the number of activated
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Table 5.9: The performance of our model when leaders are assigned with various

rewards

Settings Plisation| Activated Skills | Convergence Speed

a=05( 1 5 90.45

1 5 145.35

skills=5 | a=4 1 5 193.00
a=8 1 5 238.10

a=64 | 1 5 330.00

a=05( 1 10 152.2

a=2 1 10 232.40

skills=10 | a =4 1 10 379.05
a=8 1 10 488.00

a=64 1 10 607.75

a=05] 1 15 196.60

a=2 3 15 313.80

skills=15 | a =4 1 15 53150
a=8 1 15 696.55

a=64 1 15 950.55

a=05| 1 20 314.80

1 20 407.35

skills=20 1 20 586.85
a 1 20 90235

a=64 1 20 1394.75
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A typical run when skills=S and a=8

Percentage
Number of acivated skills

2000 4000 6000 8000 10000 12000 14000 16000
Generations

Pet. of cooperators n population - - - - Group fitness of the best group ——
Pet.of leaders i the best group Activated skills in the best group -+

Figure 5.5: A typical run when the number of skills=5 and a=8.

skills in the best group converge quickly (around generation 350), group fitness and
the percentage of leaders in the best group never stop increasing. After generation
350, the percentage of leaders is the only factor that changes group fitness. Leaders in
this case receive much higher rewards than followers, and maximizing this percentage
at the same time maximizes the group fitness. Therefore, both values are constantly
improving. Because there is no upper bound on group size, the cooperation operator
keeps creating larger groups with more leaders; therefore an equilibrium distribution
of different skills can hardly be reached.

To facilitate the investigation on how different rewards affect the division of labor,
we restrict the maximum group size to 20. We plot in Fig. 5.6 the percentage of
leaders in the best performing group collected from a typical run when a is set to
cach of {0.5, 2, 4, 8, 64}. When a is set to 0.5, 5% of 20 individuals, which is only 1
individual, play the role as a leader, while when a is set to 2, 55% of the group, that

is 11 individuals, choose to be a leader; similarly, 15 out 20 individuals (75%) become
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Figure 5.6: The percentage of leaders in the best group when a is set to 0.5, 2, 4 8,

64, respectively.

the leader when a is 4 or 8, and 16 leaders (80%) when « is 64.

When @ is less than 1, leaders are in fact receiving a penalty, not a reward. Very
naturally, individuals avoid becoming a leader, but because of selection pressure at
the group level, a leader must be present in a group. Therefore, the best group ends
up with only 1 leader, which maximizes the group fitness. In contrast, when a is
greater than 1, individuals strive to be leaders because of the positive reward. An
a value of 64 shows another extreme distribution of different skills. Driven by such
a significant reward, the best group only has 4 individuals as followers, playing the
other 4 skills, respectively, while all other individuals are leaders. The higher the
reward, the greater the number of leaders in a group, and the slower the population
converges (se¢ Seonuerge column in Table 5.9)

This experiment perfectly shows the adaptability of our model in response to

changes in group selection pressure, and the importance of sclection pressure on group
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levels in developing division of labor. Selection pressure climinates defectors from
a population, adjusts the distribution of skills according to the received reward or
penalty, and forces all skills to be present cven though some of them have lower

fitness than others.

5.4 Chapter Summary

In this chapter, we first investigated the capability of our computational multilevel
selection model to evolve cooperation on the NPD game. The experiments confirmed
that the evolution of cooperation can be promoted in our model under a wide range
of selection pressures and initial fractions of cooperators. When compared with the
improved Traulsen model, cooperation in our model more casily emerges and can be
sustained, and is less affected by parameter changes. The experiments also highlight
the essential roles of group sclection and cooperation operator in encouraging and
accelerating the process to reach cooperation.

The second experiment investigated the transition ability of our model on the
extended NPD game for achieving division of labor. Compared to the first experiment,
this experiment defines a reaction rule to map individual genotype to group genotype,
and redefines group fitness to specify the new trait groups have to adapt to. The

results demonstrate that groups with all required skills can emerge from a population

of independent individuals, no matter whether the skills are equally rewarded or not.
The two sets of experiments highlight the importance of multilevel selection
Guided by fitness definitions, selection puts sufficient pressure onto the population

to ensure that appropriate adaptations, such as cooperation or division of labor, ap-
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pear on different levels. Also the experiments showed the flexibility of our model in

switching between two types of multilevel selection. To achieve the evolution of coop-

cration, only MLS1 is required, since MLS1 ina
However, to achieve evolutionary transitions, both MLS1 and MLS2 are necessary,
cach at a different stage. MLS1 happen first; only when participating individuals are

willing to cooperate, will evolutionary transitions occur. MLS2 forces complexes to

evolve adaptations, which gradually develop into new group traits. Our experiments

thus confirm the findings of Okasha [74, 75, 7

In conclusion, the experiments conducted in this chapter validate the feasibility of
multilevel selection in promoting cooperation in spite of the competition introduced
by cvolution, and the possibility to achicve at least a very simple type of evolutionary

transitions.



Chapter 6

Experiments on String Covering

Problems

The discussion in Chapter 5 helped us to understand how cooperation emerges from
evolution in our multilevel selection model. In fact, the mechanisms employed by our
model are strong enough that it reaches the evolution of cooperation easier than other
group selection models, and it even obtains a simple type of evolutionary transitions,
a more advanced topic that builds on the evolution of cooperation. In this chapter,
we will concentrate on the other aspect of our model, namely, problem decomposition;
that is, how to determine an appropriate number of subcomponents and the precise
role cach will play. We are curious whether our model is able to produce good de-
compositions without a priori knowledge, during which cooperation is also required
to assist the algorithm determine the role of cach subcomponent. To this end, the Hi-
erarchical Evolutionary Algorithm (HEA) introduced in Chapter 4 will be applicd to
string covering problems. String covering problems are a typical decomposable prob-

lem, providing a relatively simple environment in which the emergent decomposition

130
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properties of our model can be studied.

This chapter is organized as follows. Scct. 6.1 describes string covering problems,
and the data sets used in this study. Scct. 6.2 discusses the customization of HEA
when applied to string covering problems, such as defining individual fitness, group
fitness and evolutionary operators. Scct. 6.3 investigates the performance of HEA, and
compares the results with those obtained from a classic Evolutionary Algorithm (EA),
a Cooperative Co-evolutionary Algorithm (CCEA), and an Individual Evolutionary

Algorithm (IEA). We choose these three control algorithms, because we would like to

show how well HEA extends cl. EAs to achieve cooperation, and how good the
solutions of HEA are when compared to the results of the CCEA and IEA, in which

problem decomposition is completed manually.

6.1 The String Covering Problem

The string covering problem [81] aims to discover a set of N binary strings that
matches as strongly as possible another set of K binary strings, where K is typically
much larger than N. The N and K binary strings arc called match set (M) and
target set (T), respectively. Strings in M and 7' have the same length. The matching
strength S between binary string « and y of length [ is determined by the number of

bits in the same position with the same value, as follows:

Sy =3 (6.1.1)

=110 otherwise.

Examples in [80] have shown that the matching strength associated with one string

in a match set will be warped by a change in another string. That is to say, strings
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in a match set are interdependent. The goal of any algorithm for string covering
is to find a composite solution, which is M, consisting of multiple interdependent
subcomponents, which are matching strings. Obviously, the string covering problem
is a typical decomposable problem.

In addition, this composite solution has to satisfy two contradictory criteria: gen-
cralization and specialization. If every string in T has to be matched by at least onc
string in M, the strings in M must contain patterns shared by multiple target strings
Hence, M must have the capacity to generalize. However, on the other hand, matches
should be as strong as possible (i.c. to maximize Eq. 6.1.1); so the match set also
needs to be specific. The size of M affects the balance between generalization and
specialization. Given M has to cover all strings in 7', the larger the size of M, the
more specific M can be; the smaller the size of M, the more general M must be. An
optimal M should minimize the size, but maximize the matching strength.

The string covering problem is an excellent test application for investigating Coop-
crative Evolutionary Algorithms (CEAs), because of the following reasons: 1) it is a
typical decomposable problem; 2) it provides a relatively simple cnvironment in which
the emergent decomposition properties of CEAs can be studied [80]; 3) rescarchers are
able to construct artificial string covering problems with known optima in different
fitness landscapes; 4) it is practical, as the implemented algorithms and the exper-
imental findings can be easily applied to similar application domains, such as other

instances of sct covering problems, or to model a number of complex processes from

clf-nonself discrimination in the immunc system [89].

nature, such as
In fact, string covering problems have been used by several CEAs in the literature.

Forrest et al. [28, 89| designed an artificial immune system for pattern recognition
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in which the patterns were hidden in target strings of string covering problems. A
genetic algorithm with implicit fitness sharing was a central component of this system,
where implicit fitness sharing was responsible for maintaining diversity in a matching
string population in order to cover different patterns in target sets. Potter et al.
[81] used the string covering problem to investigate CCEAs on locating and covering
multiple environmental niches, finding an appropriate level of generality, and evolving
an appropriate number of species.

Our rescarch also uses string covering problems as a test bed for the same purpose.
Four target sets are generated by the four schemata shown in Fig. 6.1, respectively.

Each schema contains at least two 64-bit string templates with a fixed region (marked

hema 1 (half-length schema)

o Schoma 2 (quarter-length schema):

o Schema 3 (cighth-length schema).

® Schema 4 (skewed schema):

Figurc 6.1: The four target sets uscd in this study arc gencrated from above schemata.

by 1's) and a variable region (marked by #'s). Target strings created by a string

template will share the same fixed region, but have randomly decided 0's and 1's in
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the variable region. The first 3 schemata were borrowed from research work by Potter
et al. [81]. We generate 200 target strings from cach single string template; hence
in total there are 400 target strings in target set 1, 800 in set 2 and 1600 in set 3.
The fourth schema is a new schema we introduced for the purpose of this study. We
created a skewed data distribution for target set 4 by generating 200 strings from the
first template and 20 from the second. Based on the design of these four schemata, we
can casily cstimate that the optimal solution for a target set should contain the same

number of matching strings and the same patterns as the corresponding schema.

6.2 Algorithm Customization

6.2.1 Representation

Individuals are represented as 64-bit strings on the alphabet {1, 0, *}. Thus, the
evolutionary algorithm employed by HEA is a genetic algorithm. Compared to {1,
0} used in previous work [28, 81, 89], “*" is a new symbol called “don’t carc”. It
represents either “17 or “0” in a position, whose value is not shared by most strings
in a target set. This change allows us to casily assess the accuracy of solutions and
their level of generality. Each individual is also assigned a unique ID. Since the
hicrarchy created in this study is constitutive, groups are simply represented as a list

of individuals. No mapping rules are defined
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6.2.2 The Fitness Functions
We define the individual fitness function in the following way:
f(z) = a x Ratio(z) x Cvrgiay(x), (6.2.1)

where Ratio shows the percentage of non-“*" symbols in the representation of indi-
vidual z, Cvrga, the string coverage of individual z, calculated by the number of
target strings covered by individual 2 over the cardinality of the target set, and a is
a weighting coefficient. If we say that an individual covers a target string, we mean
o

that every non- symbol in an individual has the same value on the same position

in a target string. Basically, the individual fitness function is looking for a specific
individual (individuals with more non-“*" symbols), but at the same time with a high
string coverage.

Once we know how the performance of individuals is measured, our intention of

conceiving the four different target sets is obvious. For the first three target sets,

solutions are becoming harder to find as the number of subcomponents increases and
fixed regions become progressively shorter with respect to the variable regions of the
string templates. Target set 4 is the only set whose solution contains subcomponents
with unequal fitness, because of the unequal length in the fixed regions and its skewed
data distribution. Therefore, target set 4 presents a more difficult problem than the
others.

Group fitness is defined as

o) = Z0IE) s Gurg, ), (©22)

which considers the average individual fitness in group y and the string coverage,

C0r g, of group y, where n is the group size. In this experiment, and also the ex-
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periment shown in the next chapter, we include average individual fitness as a part of
group fitness for purely engincering reasons (the discussion of transition from MLS1
to MLS2 for this experiment is loft for future work). A group with high coverage may
have resulted from very general individuals (individuals with less non-“*" symbols)
with high string coverage, i.c., individuals with low fitness. By adding average indi-
vidual fitness, group fitness now favors groups whose individuals cooperate to provide
maximum coverage, while cach individual is optimized to specialize its role in the

cooperation.

6.2.3 Algorithmic Description

The Hierarchical Evolutionary Algorithm (HEA) applied to the string covering prob-
loms, as shown in Algorithm 5, is completed in 5 steps.

Initialization Lincs 1 and 2 initialize the population with N randomly created
individuals, cach with a unique ID. They become the lowest level in the hierarchical

structure. ivi are independent and itive with each other, without

being aware of collaborative goals.

Evolution on group levels Lines 4 to 8 determine the evolution on group levels.
In every generation, up to m new groups are created by three evolutionary operators,
cooperation, crossover and mutation, each applied with a user-defined probability.
Cooperation mixes together individuals and groups on all levels, from which two are
sclected to form a new group. If individuals with the same ID exist in a group, only

one individual is kept. Crossover and mutation, in contrast, select parents from groups

only. One-point crossover is used; two groups exchange individuals starting from a

randomly sclected crossover point in cach group. Mutation randomly adds, removes,
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Algorithm 5: The hicrarchical evolutionary algorithm

1 P ¢ Initialize Population(N);
2 Evaluate_Individual Fitness (P);
s while population dos not converge or maz generation is not reached do

for i + 0 to m do

5 gp + Reproduce_a Group(P);

) Evaluate_Group_Fitness(gp);

T Add_a_Group_to_Population(gp, P);
8 end

9 for i « 0 to n do

10 idv « Reproduce_an_Individual (P);

n Evaluate_Individual Fitness (idv);

12 Add_an_Individual.to_Population(idv, P);
13 end

14 | Niching on.Individuals ();
15 | Niching.on Groups ();

16 | P« Survival Selection (P,N,M);

1w | PP

18 end




138

or replaces an individual in a group. For simplicity, we only consider removing in-
dividuals in this study. The probability of selection, unless specified, in all cases is
proportional to fitness. Once a new group is created, its fitness is evaluated. The
validation of a group should also be checked before it is added into the population. A
group is valid if there are no members having exactly the same contribution, which in

this study is the same coverage. This eliminates free riders from a group and prevents

group size from increasing unnecessarily.

Evolution on the individual level Lines 9 to 13 ensure that no more than
n offspring with new IDs are produced on the individual level. To select a parent
individual for reproduction, a group has to be selected first based on its fitness, from
which an individual is subsequently selected. Roulette wheel selection is employed
in the between-group and within-group selection. Crossover on individuals randomly
selects a position on each individual and exchanges the following I bits, where [ is
less than the length of the chromosome. Bit-flip mutation is then conducted. Finally,
fitness of new individuals is evaluated.

Niching Lines 14 and 15 conduct niching on individual and group levels. Pre-
serving diversity is mandatory on individual and group levels with the purpose of
maintaining all subcomponents in final solutions. A revised fitness sharing method
is used here. We first establish a niche for each individual, which includes individu-
als whose genotypic Euclidean distance from the focal individual is within a sharing
radius. That is to say, individuals in the same niche are similar in genotype. If this
individual does not have the best fitness in the niche, its fitness has to be reduced by

the following cquation

(@) = fla) —A"i;‘::;::;(’) (6:2.3)



139

where Avggistance is the average distance between individual 2 and others in its niche,
and Radius is the sharing radius. The advantage of considering this fitness sharing is
that it preserves diversity but not at the expense of the best individuals in each niche.
Niching on groups is conducted in a similar way, except that the similarity between
groups is judged by the overlap in string coverage. Groups are penalized if they share
string coverage with others. However, if a group covers new strings that never appear
in the coverage of the best group from the previous gencration, it will be rewarded on
fitness. Therefore, group fitness is adjusted by Eq. 6.2.1.
Curggy (¥) _ AGovertap(y

9y) = 9(v) + ($ e W"'m)) (6.2.4)
where Curgly is the new string coverage of group y, K the size of the target set,
AUgovertap the average overlapped string coverage of group y, and Corgyr, the string
coverage of group y.

Survival selection The population size is expanded after the evolution on in-
dividual and group levels. The survival selection on Lines 16 and 17 reduces the
population to its original size by saving the best N individuals and M groups to the
next generation. The individuals and groups are sorted with respect to their fitness
values, adjusted by niching. After survival selection, fitness of individuals and groups
will be restored to their original value, so they can compete fairly with new individuals
or groups created in the next generation. Please note, unlike the design in chaptor 5,
the copies of the replaced individuals will not be updated, i.c., when an individual is
replaced by another individual on individual level, its copy on group levels will not
be replaced. This is another way to maintain the diversity in the population.

The above steps are repeated until a predefined termination criterion is reached,

e.g. the maximum number of generations, or a desired fitness or accuracy.
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6.3 Experiments

In order to test whether cooperation can indeed emerge through the evolutionary
process defined by HEA, and solutions can indeed be built hierarchically from smaller

we ran i on the four target sets discussed in

Sect. 6.1. For each set, we expect the algorithm to return a match st whose matching
strings have the exact patterns shown in the string templates of the corresponding
schema. We compare the results with those produced by the three control algorithms:

a classic EA, a CCEA, and an IEA.

6.3.1 Experimental Setup

The three control algorithms use the same chromosome structure as HEA, and also
apply the same crossover and mutation operators to change individuals. The difference
lies in the evolutionary process, hence the way to define fitness. Both the classic EA
and IEA use Eq. 6.2.1 as individual fitness. Because of a change in the alphabet used

to encode genes, we redefine the matching strength function as follows:

2 ifm=y

'
y)fz 1 ifz=

=1

(6.3.1)

—1 ifa, 4" and 2, # yie
where @ and y are strings of a match sct and target set, respectively. This equation
replaces the match function used in the fitness function of the CCEA defined in [81],

which is shown in Eq. 6.3.2.

K
1
MS(M) = R-,z[tluz (S(@1,y), > Slany ) (63.2)
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where K is the target set length, and NV is the match set length. This fitness function
averages the largest match strength between match set M and target set T.

IE is the only algorithm with an explicit team fitness, or global fitness in terms of
IEAs. We define the global fitness, f,(1), of the collaboration M at generation ¢ as
follows:

fq(t) = # of target strings covered by M. (6.3.3)

In order to reflect the quality of individual z in a collaboration, we measure the

changes in global fitness in two successive generations. shown in Eq. 6.3.4 where fi(x)

indicates the fitness of individual z.

d [0 ] e N
= filz) x [ﬁ] Ve M. (6.3.4)

gl

I in a collaboration in generation ¢ cannot provide full

It is very likely that i
coverage. Therefore, if an individual outside of a collaboration covers 3 new data

samples, we reward it based on Eq. 6.3.5.

ga(x) = (fla"*) = file)) X 575,V O I # 0. (6.3.5)

B
()

where fy(z%*) is the fitness of the best individual in the population. Once g)(2) and
ga(x) are caleulated, feedback will be given to individuals as follows:
Ji@)+Mgi(z) ifzeM,
S@) = 4 fi@) + haga(e) if 2D £0, (6.3.6)
i) otherwise.

where fi(x') is the fitness of individual z after adjustment, Ay and \, are user defined

parameters
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We ran HEA and the three control algorithms on a PC with an AMD Turion™

64x2 CPU at 1.6GHz and with 2 GB of RAM. The parameter settings arc shown in

Table 6.1. The four target sets arc denoted as tsl, ts2, ts3, and ts4, respectively.

Table 6.1: Parameter settings

Parameter Classic EA | CCEA | IEA HEA
Run 50 50 50 50
Generation 1000 1000 | 2000 2000
Number of groups || N/A N/A |1 10
Cooperation rate || N/A N/A | N/A 05
Crossover rate 0.95 095 | 095 0.95
Mutation rate 0.05 005 | 005 N/A
Group size ts1/4:2 | ts1/4:2

N/A ts2:d | ts2id N/A

538 | ts3:8

Fitness ts1/4:4 tsl/4:d | ts1/4:d
coefficient ts2:16 N/A | ts216 | ts2:16

ts3:64 ts3:64 | ts3:64
Niching ts1/2:0.7 | ts1/2:0.7
radius N/A N/A | 1305 | 1s3:0.5

ts4:09 | ts4:0.9

We measured the performance of all algorithms by convergence time and average

number of mismatched bits. Convergence time is the number of seconds an algorithm



143

needs to find the best solution. In our evaluations this is a better indicator for
evolutionary speed than the number of fitness evaluations, given the fact that the
algorithms conduct fitness evaluation differently (e.g. CCEAs only consider fitness
on the collaboration level), which cause differing amounts of time to complete. To
calculate the average number of mismatched bits, we first count the number of different
bits between cach string template used by a target set and the closest matching string

returned by an algorithm, and then average over all string templates.

6.3.2 Evaluating HEA and Control Algorithms

We ran HEA and the three control algorithms on all four target sets. Table 6.2
shows average performance of the algorithms over 50 runs. Standard deviation of
convergence time and of average number of mismatched bits are enclosed in brackets.

In order to allow a fair comparison, given the same target sets, all algorithms
have the same amount of individuals in their population, as this number has direct
implications for the cvolutionary speed and solution quality. Species size in CCEA
is calculated by dividing the total population size by the number of species. We also
ran another set of experiments on CCEA using this number as the size of specics, and
kept the results for reference.

For target sets 1 and 4, HEA always found a match st with 2 match strings,
which perfectly matched all target strings; in other words, there was no mismatch in

cither case. However, it took a longer time for runs to converge on target set 4 than

for runs on target set 1, because exploring and maintaining multiple match strings

with unequal fitness is more difficult. For target sets 2 and 3, all match sets returned

by HEA contained 4 and 8 match strings, respectively. Because both sets obtained



Table 6.2: Performance of four algorithms on target scts 1, 2, 3, and 4

() Performance of four algorithms on target set 1

Target set 1
Algorithms
# of Idv. | Convergence Time (Sec.) | Mismatch Bits
HEA 20 1.539 (0.509) 0.000 (0.000)
Classic EA | 20 0.595 (0.169) 32.00 (0.000)
CCEA! 20 (10x2) | 1658 (0.289) 0.617 (0.462)
CCEA? 40 (20x2) | 2.236 (0.397) 0.600 (0.536)
IEA 20 3,171 (1.091) 0.717 (0.429)

(b) Performan

cc of four algorithms on target set 2

Target set 2
Algorithms
# of Idv. | Convergence Time (Sec.) | Mismatch Bits
HEA 20 10.828 (3.239) 0.095 (0.256)
Classic EA || 20 2.140 (1.113) 24.017 (0.207)
CCEA! 20 (5x4) | 19.664 (9.246) 0.758 (0.350)
CCEA? 80 (20x4) | 23.132 (7.429) 0.592 (0.282)
IEA 20 7.560 (1.529) 0.708 (0.378)
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Table 6.2: Continucd.

(¢) Performance of four algorithms on target set 3

Target set 3
Algorithms
# of Idv. | Convergence Time | Mismatch Bits
HEA 40 20.665 (6.801) | 0.088 (0.145)
Classic EA || 40 12.743 (3.717) 12.225 (5.298)
CCEA! 40 (5x8) | 289.060 (57.951) | 0.950 (0.270)
CCEA? 320 (40x8) | 367.540 (144.319) | 0.467 (0.183)
IEA 40 59.323 (18.991) | 0.504 (0.268)
(d) Performance of four algorithms on target set 4
Target set 4
Algorithms
# of Idv. | Convergence Time | Mismatch Bits
HEA 20 3.020 (1.664) 0.000 (0.000)
Classic EA | 20 0.350 (0.372) 32.000 (0.000)
CCEA! 20 (10x2) | 5.258 (2.170) 1.983 (0.517)
CCEA? 40 (20x2) | 5.970 (2.839) 1.867 (0.472)
IEA 20 1.981 (0.987) 0.983 (0.160)
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low average number of mismatched bits and relatively high standard deviation, we
further collected the median as extra evidence, which was 0 on both sets. The three
numbers together indicate that most runs returned correct match sets. Convergence
time on the two target sets was longer because the difficulty of the problem increased.

‘We now compare the four algorithms on the first three target sets. The classic EA
can only find one matching string out of many, as all matching strings for a target set
are cqually good in terms of specialization and coverage. That the algorithm fails this
task is no surprise, because we know that it has a strong tendency to converge. Given
the same population size, CCEA outperforms IEA only on simple target sets, but not
on hard ones. It cannot beat HEA on any of the three sets because of two limitations.
First, CCEA does not maintain diversity within species; the way fitness is defined
only helps to preserve diversity between species. In our experiments, the algorithm
converged at gencration average 8.8 for target set 1, given 40 individuals, at genera-
tion average 125.467 for set 2 on 80 individuals, and at gencration average 263.226 for
set 3 on 320 individuals. Once species have lost their diversity, the algorithm stops
exploring the search space. Second, individual fitness depends on exactly who is in

a collaboration, so it does not accurately measure the performance of individuals.

As a result, the search will drift to suboptimal solutions. Increasing population
though improving accuracy somewhat, provides little help to overcome these limita-
tions. HEA also performs better than IEA on all test runs. The difference between
the two algorithms is the choice of group selection. IEA only composes a single group
by sclecting the best n individuals from the population (where n is the group size),
while HEA forms more than one group with various sizes and compositions, and con-

siders the evolution on group levels. From this perspective, it increases the possibility
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of finding a solution faster.
Target set 4 is a new set we introduced in this study, which requires algorithms to

imultancously. It

optimize and maintain multiple subsolutions with unequal fitne
has proven to be the hardest case among the four sets; the classic EA converged to a
string with 48 1's despite the low fitness, as searching for such a string is much easier
than searching for a string with 16 1's; CCEA and IEA both obtained the highest
average number of mismatched bits on this set. In contrast, HEA found a perfect
match set very quickly.

Table 6.3 shows the statistical comparison of HEA over the two control algorithms
w.rt. convergence time and average mismatch bits, using the two-tailed t-test with

98 degrees of freedom at a 0.05 level of significance. Since the p-value is less than

Table 6.3: The T-test results between HEA and the two control algorithms.

Target set | CCEA! | CCEA? | IEA

Time 0.227 4.807E-07 | 6.287E-08

tsl
Mismatch | 8.053E-08 | 7.061E-07 | 4.802E-10

Time 2.346E-05 | 2.499E-09 | 1.787E-05

52
Mismatch | 2.758E-10 | 2.155E-07 | 3.568E-08

Time 1.00E-21 | 8.007E-14 | 3.286E-12

53
Mismatch | 3.156E-16 | 1.815E-10 | 2.741E-08

Time 5.108E-05 | 6.856E-05 | 0.015

tsd
Mismatch | 4.218E-19 | 1.891E-19 | 8.405E-25

0.05 (except the convergence time of CCEA! on ts1), we can conclude that on string
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covering problems, HEA with the cmergent problem decomposition property achicved
a significant improvement on accuracy and evolutionary speed when compared to

CCEA and IEA, which required predefined problem decomposition

6.3.3 Looking Inside of HEA

In order to get a better idea why HEA achicves automatic problem decomposition
while at the same time evolves faster and finds more accurate solutions than the
other cooperative EAs, we investigate the algorithm by examining its performance in
a typical run on target sets 2 and 4. We choose these two sets because they represent
two different situations, namely equal and unequal fitness of subcomponents in a
solution. Target sets 1 and 3 are not discussed here because they share the same
features with target st 2.

Fitness is always a good place to start investigations as it reflects how evolution
proceeds. Fig. 6.2(a) and (b) depict fitness related information in a typical run on
target sets 2 and 4, respectively. We show the fitness of the best group, average fitness
of individuals and average fitness of groups. Individual fitness and group fitness by

definition are affected by coverage and specialization (the number of non-*" symbols

in the representation). Therefore, we also show average specialization of individuals
and of the best group in Fig. 6.2(c) and coverage of the best group in Fig. 6.2(d)

As we can sce clearly in Fig. 6.2(a) and (b), average individual fitness and group
fitness improve steadily due to the evolution happening on individual and group levels.
| As a result, the fitness of the best group increases constantly on both sets. To be
more specific, HEA optimizes the coverage first (see Fig. 6.2(d)), because increasing

the coverage will improve both individual and group fitness. However, the different
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Figure 6.2: Typical runs on target scts 2 and 4.
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properties of the two sets cause HEA to behave differently at this stage. Individuals

are randomly gencrated at the zation, so their average specialization on both

sots is around 32 at the outset (sce Fig. 6.2(c)). For target set 2 which requires 16 1's
in all match strings, the specialization has to drop in order to maximize the coverage.
For target set 4, the specialization is increased first to optimize the coverage of the

match string with 48 1's, and then decreased to optimize the coverage of the one with

16 s, After coverage hits 1 (i.c. coverage has been optimized), HEA then optimi

the second part of the individual fitness, so we see that the specialization on both sets
increases.

The run on target set 4 demonstrates very well the contribution of group selection
to encourage cooperation, regardless of an individual’s fitness. As shown in Fig. 6.2(c),
during the first 200 generations, no matter whether the average specialization of the
best group is moving towards 48 or 16, the average specialization of individuals always
keeps a distance. This implies that even though HEA optimizes the matching string
with 48 1's in the first place, a few individuals covering target strings with 16 1's have
managed to stay in the population. The reason is because such individuals provide
new coverage to their group (i.e. they increase group fitness), hence the group and
the individuals inside are more frequently sclected and optimized. Therefore, they
gradually dominate the population (the average specialization of the best groups and
individuals begin to drop). Similarly, after the coverage hits 1, the specialization
of individuals with 48 1's continues to increase, despite their low fitness and the
domination of high fitness individuals with 16 1's. This experiment also showed
how HEA avoids, with the help of group sclection, manually distributing credits to

individuals based on their contributions to the team.




The process of scarching for the structure of a solution on the four target sets is

shown in Fig. 6.3. We can casily sce that the HEA is able to return a solution with

the correct number of subcomponents, even though that number was not known a
priori. Driven by the between-level selection introduced in [3), groups are maintained
in the population if they show advantages in fitness; otherwise, they are eliminated.

Therefore, we observe the size of the best group changing till the best size is found

We also notice that the group size fluctuates at the beginning of the evolution. This
because individuals during that time have similar coverage and fitness; small changes

in group composition and size easily affect the group fitness.

6.4 Chapter Summary

This chapter investigated the emergent decomposition property of our model on string
covering problems whose fitness landscapes have multiple equal or unequal fitness
peaks. As indicated by the experiments, without a priori knowledge, HEA in a
bottom-up process always found the solutions with correct number of subcomponents,
each covering different patterns hidden in the data sets. That is to say, the structure
of a solution and the roles played by their subcomponents emerge as a result of
evolution, rather than being designed by hand. When compared with the three control
algorithms, especially the CCEA and IEA who decompose problems manually, the

search time. The next

solutions produced by HEA are more accurate and require |
chapter will further study the evolutionary dynamics of HEA, and the ability of HEA

to tackle real-world problems that require a substantial degree of cooperation.
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Chapter 7

Experiments on Classification

Problems

Chapter 5 and Chapter 6 have investigated the cooperation and the emergent prob-
lem decomposition properties of our computational multilevel selection model, respec-
tively. Because these investigations were conducted on two toy problems, which are
the N-player prisoner’s dilemma game and the string covering problem, we were be
able to obtain a good understanding of how mechanisms, such as group selection,
cooperation operator, and between-level selection, benefit or enhance evolution to en-
courage cooperation and to achicve automatic problem decomposition. This chapter
will continue the effort, but on a more complex problem domain: real-world classifi-
cation problems. We arc interested in the applicability of our model to such practical
problems, in which the relationship between subcomponents of a solution is complex
and difficult to understand.

In Secet. 7.1, we briefly introduce clas

ification problems and explain the reasons for

choosing them as a case study. Scct. 7.2 focuses on the customization of HEA, such as




ions, fitness function definitions and on details. Scct. 7.3 de-
scribes 7 classification problems with different features, such as non-linearity, skewed

data distribution and large feature space. The cxperimental setup including param-

cter settings is also listed here. In Scet. 7.4, experiments are undertaken to further
understand the role of group sclection, and the adaptability of the model in terms of
solution accuracy and complexity on datasets with various level of difficulty. The re-
sults arc compared with outcomes from traditional LGP, one population-based CEA
(XCSR), and two team-based CEAs (OET and SBB). The training time of those
algorithms is not compared, because the results are cither unavailable or incompara-

ble (for example, SBB reduces the size of the training data by sampling.) Scct

summarizes the observations derived from these investigations.

7.1 Classification Problems

Classification is probably the most studied data mining task, and possibly the one

-ation,

with the greatest practical relevance [58]. For example, with the help of class
we may be able to predict who will or will not rencw a service contract, or who is or
is not a loyal customer when given a related data set. Essentially, classification refers
to an algorithmic procedure for assigning a given picce of input data into one of a
given number of categorics [108]. Each input data sample contains a set of predictor

attributes, and a category attribute, which is also known as goal attribute or class

cation is an extension of

label. From the perspective of matching learning, classi
concept learning; it produces a particular enumeration of patterns (or models), which

are a combination of conditions on predictor attributes to describe and distinguish
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different values in goal attributes.

We choose classification problems as another application of HEA for the follow-
ing reasons. First of all, classification has been successfully applied to a wide range
of real-world problems; to cite some of them: computer vision, pattern recognition,

bioinformatics, natural language processing [108]. The potential benefits of progress

in classification are immense since the technique has great impact on other areas,
both within data mining and in its applications. Secondly, classification is also a very
active research arca in Evolutionary Computation (EC) [121]. A classification prob-
lem can be formulated as a scarch problem by considering it as a scarch for a good
pattern in the space of patterns. Evolutionary Algorithms (EAs) can be more pow-
erful when compared with traditional scarch techniques, because they involve scarch
with a “population” of solutions, not a single solution which might have to backtrack.
Last but not least, for most real-world classification problems, especially multiple
class classification problems, due to the high volume of data sets and the complicated
relationships between predictor attributes and goal attributes, it is impossible to usc
only one pattern to classify all data instances accurately. A feasible approach is to
use multiple but simpler classifiers which co-adapt to balance the detection rate and
the false alarm rate of final solutions. Because of this, problem decomposition is im-

ifiers have much stronger

possible to assess prior to runs. In addition, individual clas
correlations than individual matching strings in string covering problems. Thercfore,

classification problems should better showcase the ability of HEA in modeling the

interactions between d patterns and ic problem dq



7.2 Algorithm Customization

Both classification problems and the string covering problem (Chapter 6) can be triv-
jally cxpressed as instances of the set covering problem [110], as the ideal solution in
both case should be a minimum sized pattern set that covers all input data samples.
Therefore, the same workflow described in Algoritlim 5 in Chapter G can be applied to
classification problems. However, classification problems have to satisfy an extra con-
straint: During the training phase the class label of input data and classifiers should

match as well. In order to this difference, i ion details, such

as fitness definition, individual evolution, group evolution, and niching, need to be

changed. This section describes these necessary changes.

7.2.1 Representation

In this experiment we use Lincar Genetic Programming (LGP) [8] to evolve classifica-

tion patterns hidden in data sets, such that the patterns are represented by individuals
in the format of a lincar sequences of C instructions. All instructions apply an opera-
tor on one or two registers Ry, or on a constant I, which refers to the value of attribute
[ in a data sample; the result is assigned to a destination register R;; for example,
Ry = Ry + 1 or Ry = R; x R. Ry is defined as the output register, holding the

stance

final program output. When R is greater than 0, we say that an input data i

should belong to the class specified by an classifier. In other words, individuals in
LGP transform data in a high dimensional space into a specific value or a range of

values in a low dimensional space according to different class labels, as demonstrated

in Fig. T.1.
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RIT=R{1}+1(4]
RI4]=RI4]*R[1]
RIOJ=RIOVR(4]
RI21=Log(10))
RIOI=RIQI*RI2]

QN R -

Transfer

High Dimensional Space Low Dimensional Space

Figure 7.1: Transformation functions as classi A transformation function is an

equation or a program which transforms data in a high dimensional space into a
specific value or a range of values in a low dimensional space according to different

class labels.

Even though this type of representation is not as casy to comprehend as traditional
IF-THEN classification rules evolved by GAs or Tree-based GP, it involves more

operators and has more flexible structures, both of which will greatly enhance its

[121]. In addition, as

discriminative power resulting in higher classification accurac
suggested by Brameier and Banzhaf (7], introns, which are non-effective instructions
with no influence on the calculation of the output for all possible inputs, are detected
and eliminated prior to fitness evaluation. Skipping the execution of non-effective
codes, without any doubt, speeds up the evolutionary process.

Following the implementation of SBB 53, 54], the operation set used in this exper-
iment includes 7 arithmetic operators: addition (+), subtraction (), multiplication

cosine (cos), logarithm (In), ezponential (cxp), and 1 conditional

(), division (
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operator if, which inverts the value of the first operand if it is smaller than the second
operand; for example if (R[z] < Rly]) then (R[z] = —R[z])
7.2.2 Fitness Function

HEA evolves two types of entities: individuals and groups. Individuals in the context

of classification are binary classifiers whose chromosome contains a program evolved

by Lincar GP and a class label. During the training phase, if an individual’s program
returns a value greater than 0 on a given input data example and the class labels of
the individual and an input data instance match, this individual is said to accurately

classify the input data; otherwise, this individual misclassifies the input data. The

individual fitness is defined as the following:
fi=TPR x (1 - FPR)? (7.21)

where TPR; and F PR are the true positive rate (TPR) and false positive rate (FPR)
of individual i, respectively. The FPR is given more weight here to encourage low
misclassification errors.

Groups arc compositions of existing individuals and groups. Again the cooperation

operator is constitutive, so no mapping rules are defined. Group fitness is defined as:

2+ GS,
x4/ e (7.2.2)

where the first term is the average individual fitness of group j, the sccond term is

sses covered by group j over the total

the class coverage, which is the number of cl
number of classes in the training dataset, the third term is the data coverage, defined

as the number of correctly classified data samples by group j over the total number
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of training data samples, and the last term is a normalized term to control the size of
group j (GS;). Here, the first term requires individuals to perform at their best, the
second and third terms together rate classification accuracy, and the last term shows
another way to control free riders in groups: using the group fitness definition. For
example, if group i and group j obtain the same classification accuracy, but group i
has a larger group size then group j, we can conclude that group i contains individuals
that made no contributions on group levels; those individuals are free-riders. Group
i, hence, is penalized with lower fitness by using the last term. Please recall that in

the string covering experiments group size was controlled by an extra validation step.

Obviously, this fitness function is a measure of how group members collaboratively
increase overall data coverage on all classes and individually maximize their own

classification accuracy with as fow members as possible.

7.2.3 Algorithm Description

HEA applied on classification problems follows the same steps shown in Algorithm 5
in Chapter 6. The implementation details are highlighted below.

Initialization The population s initialized with N individuals, each with a unique
ID. Class labels from training datasets arc randomly assigned to individuals as their
class labels.

Evolution on group levels In every gencration, up to m new groups are created

by cooperation, crossover and mutation with a user-defined probability. Crossover

with the same class labels arc ex-

in two groups; i

changed with priority; otherwise, arbitrarily selected individuals are exchanged. Mu-

tation adds or removes an individual from a group. The individual being added is
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selected from the individual pool (i.c. individuals on the lowest level). The proba-
bility of selection is, unless specified otherwise, proportional to fitness. Once a new
group is created, its fitness is evaluated. If individuals with the same ID appear in a
new group, only one individual is kept.

Evolution on individual levels No morc than n offspring with new IDs are re-
produced on the individual level every generation. The two-step selection is followed
to choose parent individuals. Between-group selection is proportional to fitness. How-
cver uniform selection, as opposed to roulette wheel selection suggested by the model,
is employed in within-group selection, becausc individuals all contribute to achieve
cooperation despite their fitness. Crossover exchanges randomly selected program seg-
ments between two parents, while mutation copies, deletes, adds, swaps, and changes
instructions in an individual’s program with predefined independent probabilities

Niching The revised fitness sharing discussed in Scct. 6.2.3 is used here. Due to
the special characteristic of classification problems, the similarity of two individuals
is measured on their phenotypes; that is, we consider the number of data examples
shared between two individuals, as similar individuals will have similar data coverage.
If an individual does not have the best fitness in a niche, its fitness has to be reduced

by the following cquation

1) = fta)« (1 - Aedomnle]) (123)

where Avgoveriap is the average data overlap between individual @ and others in its
niche, and TP is the true positive of individual z, i.c., the number of data samples
correctly classified by individual z. Individuals with different class labels have no
need to share because there is no overlap. Niching on groups is conducted in a similar

way, except that groups only share fitness with ones having the same set of class
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labels. This method attempts to save the best groups of various granularity in the
population.

Survival selection Survival selection reduces the population to its original size
by saving the best n individuals and m groups to the next generation. Subsequently,
surviving individuals and groups reset their fitness values to their original values

before niching.

7.3 Experimental Setup

The complexity of classification tasks depends on various data characteristics, such as
the scparability of classes, dimensionality of the feature space, sparseness of avail-
able samples, and the number of classes. To examine how HEA performs when
encountering complexity, we, following the cxperimental approach of SBB [53, 54,
selected seven datasets from the UCI data repository [29]: The ANN Thyroid Discase
(Thyroid), Cleveland Heart Discase (Heart), Statlog Shuttle (Shuttle), Bupa Liver
Disorder (Bupa), Pima Indians Diabetes (Pima), Original Breast Cancer Wisconsin
(Cancer), and KDD Census Income (Census) datasets. Detailed information about

summarized in Table 7.1. The first three datasets have at least

these dataso
three classes, while the rest only have two. Shuttle, Thyroid and Census also have

s is as low

unbalanced class distributions, where the data distribution for minor clas

as less than 0.01%. This property is ideal to demonstrate how group selection can

help maintain individuals for both, minor and major classes. Bupa and Pima are
two datasets known for poor class separability; a rate of crror in the region of 30%

has been observed across a wide range of machine learning algorithms [54]. Other



Table 7.1: Summary of the datasets used in the evaluation.

divided the dataset into partitions of 90% for trai

the dataset indicates the number of features.

indicates a dataset has no separate test set; therefore we

ing and 10% for test. The value in parentheses following the name of

Data Distribution
Type Dataset
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 | Class 7 || Total
Training || 93 191|388 |- - S s 3172
Thyroid (21)
st 73 1w (ams |- 5 = - 3428
Training || 148 | 50 33 32 12 = S 275
Heart (13)*
Test 16 5 3 3 1 = s 2
Multi-class
Training || 34108 | 37 132|678 [2458 |6 11 43500
Shuttle (9)
lest 11478 13 39 2155 809 4 2 14500
Training || 181 131 - - ~ - - 312
Bupa (6)*
est 19 14 - - = S = 33
Training || 451 [ 242 |- E = - = 693
Pima (8)*
Test 49 2 = 8 = o . 7
Two-class
Training || 413 217 - - - - - 630
Cancer (10)*
Test I 2 - = - = = 69
Training || 187141 | 12382 |- = = - 199523
Census (41)
est 93576 | 6186 |- s s = z 99762

o1
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reasons to select those datasets are that they have established performance levels
[53, 54, 96, 115] in other CEAs, and they all represent real world data rather than
artificial data. Therefore, the results obtained on those datasets should make us suffi-
ciently confident to judge whether or not the new computational multilevel selection
framework is applicable to solving real-world problems.

Before starting, some additional data pre-processing is performed. We first map
categorical values into numeric values by using the order in which they appear. Miss-
ing values are replaced by the value of the ncarest data sample (measured by cuclidean
distance) for the relevant attribute.

50 runs were performed on cach dataset. 10-fold cross-validation was used to
assess datasets denoted by "’ in Table 7.1; that is, five runs per partition. This

helps to minimize validation errors when no separatc test dataset is provided, and

makes sure that the performance comparison is fair between our algorithm and control
algorithms. Introns in individual programs were removed by the method described
in [6]. 8 registers were used and initialized by the mean value of a randomly selected

lispatched individual fitness

input attribute. JAVA parallel
and niching to 15 threads running on 15 CPUs.

Parameters shared by all experiments are shown in Table 7.2. Parameters specific
to cach dataset were as follows: the maximum number of generations in runs for
Thyroid and Cancer is 2,000, and 10,000 for the rest. The population contains 30
individuals and 20 groups for Cancer, 60 individuals and 20 groups for Thyroid, Bupa,
Pima and Census, and 140 individuals and 30 groups for Heart and Shuttle.

Two indicators were employed to measure the performance of HEA on classification

tasks: overall detection rate (ODR) and average detection rate (ADR) [53]. ODR is
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Table 7.2: Parameterization of multi-class classification problems. ProgramSizepmas

refers to the maximum program length, Proopgps Provergy Prutgy for group coop-

cration, crossover, and mutation probability, Proveris for individual crossover,

Pucts Pt Pvats Pruaps Peapy Tor deleting, adding, changing, swapping, and copying in-

structions at individual mutation, and Ry, R, for group and individual niching

radius.
Parameters || Value | Parameters || Value
ProgramSizeas || 48 Peoopp || 0.5
Pasversp 08 Pougp [ 03
Pisieiite 08 | Pu,Paa || 06
Pruts Pruap || 0.6 Py |1
Ryp 0.5 Riaw 04
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defined as the number of data samples the final solution correctly classified over the
total number of test data; ADR is defined as the average detection rate on all classes.
ADR is independent of class distribution; hence it is a good supplement to ODR,
especially for datasets with unbalanced data distribution. Take the Thyroid dataset
as an example: Only 2% of the test data are from class 1. Even if a final solution

missed all data samples in class 1, its ODR could still reach as high as 98%.

7.4 Evaluation

This section presents the experiments for highlighting the effects of group selection
on HEA and comparing the performance of HEA with the traditional LGP, XCSR,
OET, and SBB algorithms. The results of the control algorithms, presented in the
format of box plots/violin plots, were gathered from [53, 54, 96, 115]. A violin plot is a
combination of a box plot and a kernel density plot which shows the probability density
of the data at different values. Box plots allow us to compare two result sets without
knowing their underlying statistical distributions. They even can verify the statistical
significance of differences between the result sets; if the notches of two boxes do not
overlap, the median of the two datasets differ at the 0.95 confidence interval. The
detection accuracy mentioned in [53, 96, 115), and the multi-class detection rate or the

scorc in [53, 54] are equivalent to ODRs and ADRs in our experiments, respectively.

4.1 Understanding Group Selection

One of the key concepts of HEA is to associate the survival of individuals to the

performance of their group. This the of cooperative groups,
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because only through cooperation will individuals scize the opportunity to reproduce
offspring. To examine if this key point plays the same role in computational settings,
we compared HEA with a control algorithm, called CtrIHEA, which functions the same
way as HEA, except that parent individuals arc selected directly from the individual
pool, rather than from groups. That is to say the CtrIHEA docs not consider group
sclection at the reproduction stage.

We run the two algorithms 50 times on the Thyroid dataset, which has 3 classes
with an imbalanced data distribution. The mean classification accuracies and average

class coverage (CLS) are shown in Table 7.3. The ADR values clearly show the per-

Table 7.3: The average classification accuracies and class coverage of HEA and Ctrl-
HEA on the Thyroid datasct over 50 runs. Standard deviations are listed inside of

parcntheses.

ODR ADRs CLS

HEA 0.978 (0.008) | 0.954 (0.031) | 3 (0.0)

CtrIHEA | 0.931 (0.025) | 0.595 (0.070) | 2.02 (0.141)

formance difference between the two algorithms. The low ADR obtained by CtrIHEA
implics that it is not able to cover all classcs; on average it covers 2.02 classes out
of 3. In fact, CtrIHEA rarely includes a classifier in groups to cover data examples
from class 1, the minority class. Our further investigation shows that individuals
evolved for class 1 normally start with a low TPR and high FPR, ic. a relatively
low individual fitness, because of very scarce training data. Therefore, if competing

against individuals who classify data for major classes in the same population, they
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are less favored given fitness proportional selection. In other words, the growth of
fitness progresses very slowly on such individuals. As a result, the chances of them
existing in the best group are slim.

However, if we allow group selection at the reproduction stage, the outcome is
different. Individuals are randomly selected from a group; individuals, despite their
fitness, are facing equal reproduction opportunities. Because individuals evolved for
minority classes can provide additional data coverage, their appearance in a group

will improve group fitness, which in turn would increase their probability of being

selected and reproduced. Consequently, the fitness of weak individuals that pe
unique contributions is improved much quicker in a group than in a population. This
experiment also demonstrates the importance of individual optimization. Only when
the space of individuals has been properly explored, will it be possible to build a good

solution from them.

7.4.2 Classification Accuracy

We first evaluate the performance of HEA on the four two-class datasets. Average
classification accuracies and class coverage of the best groups collected from 50 runs
are summarized in Table 7.4. The violin plots of average ODRs and ADRs are shown
in Fig. 7.2

It is evident from the 4th column of Table 7.4 that the best groups evolved by

HEA successfully covered both classes, even the minority class (class 2) in Census

dataset. XCSR, on the contrary, indiscriminately labeled almost all instang
2 to class 1, resulting a low ADR (around 0.504) [53].

We first compare the box plots of ODRs obtained by HEA and traditional LGP
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Figure 7.2: Violin plots of ODRs and ADRs obtained by HEA on the four two-class
datasets over 50 runs. Bach box indicates the lower quartile, median, and upper quar-
tile. The horizontal lines at the end of whiskers represent the maximum/minimum
values, Points outside of the boxes represent outliers to whiskers of 1.5 times in-
terquartile range, and points inside of the boxes show the mean values of ODRs or

ADRs,
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‘Table 7.4: The average classification accuracies and class coverage of HEA on the four

two-class datasets over 50 runs. Standard deviations are listed inside of parentheses

Dataset | ODR ADR CLS

Bupa || 0.675 (0.063) | 0.651 (0.072) | 2 (0.0)

Pima | 0.716 (0.040) | 0.670 (0.049) | 2 (0.0)

Cancer || 0.968 (0.013) | 0.970 (0.015) | 2 (0.0)

Census || 0.854 (0.019) | 0.805 (0.016) | 2 (0.0)

on Cancer datasct (Sce Fig. 7.2 and Fig. 7.3 for details). The minimum ODR in HEA
is larger than the upper quartile (UQ) value in traditional LGP, which implies the
notches of the two boxes are impossible to overlap. We can conclude that the HEA
outperforms traditional LGP on this dataset at the 0.95 confidence interval. In the
case of the other datasets, we compare box plots of ADRs produced by HEA and SBB
(Sce Fig. 7.2 and Fig. 7.1 for details).

On the Census dataset, HEA outperforms SBB at the 0.95 confidence interval,
given the fact that the two boxes do not overlap. On the Bupa dataset, HEA and
SBB have the same maximum and UQ ADRs, but HEA has higher minimum, lower
quartile (LQ), and median values. On the Pima datasct, HEA has higher valucs
on all statistics except the maximum value. That is to say on both datasets SBB's
graph is generally lower than HEAs graph; in addition, the ADRs in SBB have larger
variability than HEA because of a longer interquartile range. Overall, it appears that
HEA performs better and more stable than SBB. However, because that the boxes

ces cannot be

overlap and the notches are not shown, the significance of the differe
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Figure 7.3: The box plot of ODR obtained by the traditional LGP on the Cancer
dataset (denoted as “traditional”). From “Introducing Probabilistic Adaptive Map-

ping D I Genetic F ing with lant Mappings,” by G. Wilson

and M. Heywood, Genetic Programming and Evolvable Machines, §(2):187-220, 2007.

Reprinted With Permission.

We then increase the difficulty of the problem by feeding HEA three more datasets

with multiple classes. The results are detailed in Table 7.5 and plotted in Fig. 7.5. Al

three datasets have skewed data distributions, especially Shuttle in which class 5 only
has 6 out of a total 43,500 data examples. However, such skewness apparently affects
XCSR most; the low ADR value implics that XSCR is not able to detect data samples
of the rare classes. In contrast, HEA and SBB have comparable values on ODRs and
ADRs. In fact, the class coverage of HEA shown in Table 7.5 clearly indicates that

best groups evolved by HEA identified data from all classes
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Figure 7.4: Violin plots of ADR obtained by SBB on the Census (denoted as “cen

SBB"), Bupa (denoted as “bpa SBB”), and Pima (denoted as “pma SBB”) datasets.

From biosis, C ification and Simplicity under GP,” by P. Lichodzijewski

and M. 1. Heywood, In M. Pelikan and et al., editors, GECCO '10: Proceedings of
the 12th Genetic and Evolutionary Computation Conference, pages 853-860, ACM,

2010. Reprinted With Permission.
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As we expected, the performance of HEA on the Heart dataset is better than

75

traditional LGP at the 0.95 confidence interval if we compare their plots in Fig

and Fig. 7.6. HEA also performs better than OET (see Table 7.5) on this dataset.

Table 7.5: The average classification accuracies and class coverage of HEA on the three
multi-class datasets over 50 runs. Standard deviations are listed inside of parentheses.
Results shown for SBB and XCSR are cited from [53], and OET from [96]. The best

values from the three approaches are shown in bold

Datasct ODR ADR CLS

HEA | 0.978 (0.009) | 0.950 (0.041) | 3 (0.0)
Thyroid

SBB | 0.960 0.935

XCSR | 0.976 0.924

HEA | 0.999 (0.001) | 0.983 (0.020) | 7 (0.0)
Shuttle

SBB | 0.967 0.953

XCSR | 0.982 0416

HEA | 0.744 (0.043) | 0688 (0.072) | 5 (0.0)
Heart

OET | 0.568 (0.030)

For the Thyroid and Shuttle datasets, the ODRs and ADRs produced by XCSR

and SBB approaches were collected from [53). We listed them in Table 7.5 as ref-

erence for i Clearly HEA SBB and XCSR on both datascts

with respect to either ODRs or ADRs. To find out if the differences are statistically
significant, we then compare their box plots. The box plots of SBB and XCSR (sce

Fig. 7.7) were drawn using the normalized ODR and ADR values. For fair com-




@ |
=

© |

<

o

Detection rate

08
L

T T T T T

T
ODR ADR ODR ADR ODR ADR
Thyroid Heart Shuttle

Figure 7.5: Violin plots of ODRs and ADRs of the best groups obtained by HEA on
the three multi-class datasets over 50 runs. The box plots depict the distribution of

normalized ODRs and ADRs on the Thyroid and Shuttle datasets.
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Figure 7.6: The box plot of ODR obtained by the traditional LGP on the Heart
datasct (denoted as “traditional”). From “Introducing Probabilistic Adaptive Map-

Mappings,” by G. Wilson

ping D al Genetic F with

and M. Heywood, Genetic Programming and Evolvable Machines, 8(2):187-220, 2007.
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Figure 7.7: Box plots of normalized ODR and ADR obtained by SBB and XCSR on
the Thyroid (denoted as “THY”) and Shuttle (denoted as “SHU”) datascts. From
“Managing tcam-based problem solving with symbiotic bid-based genctic program-
ming,” by P. Lichodzijewski and M. Heywood, In C. Ryan and M. Keijzer, editors,

GECCO '08: Proceedings of the 10th Annual Conference on Genetic and i y

Computation, pages 363-370, ACM, 2008. Reprinted With Permission.
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parison, the same normalization procedure (sce [53] for details) was applied to ODR
and ADR values in HEA. Box plots bascd on the transformed values are depicted in
Fig. 7.5. HEA outperforms SBB and XCSR on Shuttle at the 0.95 confidence interval
on both ODR and ADR values. However, with respeet to the Thyroid dataset, all
three box plots on ADRs have very close maximum values, but again HEA has the
highest median, and the shortest interquartile range; for example the LQ value of
HEA is aligned with the median of SBB and XCSR. Similar patterns arc observed on
the ODR box plots as well, Because the HEA results are highly clustered, it is difficult
to tell whether their box plots overlap or not. However, we can safely conclude that

HEA performs at least as good as SBB and XCSR on Thyroid

In conclusion, HEA, in terms of classification accuracies, outperforms SBB on
Census and Shuttle at the 0.95 confidence interval, and performs slightly better than
or at least as good as SBB on the Bupa, Pima, and Thyroid. It excels SBB in

fication accuracy) on all datasets.

stability (i.e, low variance of the distribution of clas
One of the reasons that SBB has a diverse distribution over accuracies may be that
a uniform probability selection scheme is used for within-group and between-group
selection. Uniform probability sclection docs not distinguish individuals and groups
based on their performance (fitness). Therefore, the optimization opportunities are
spread over all individuals and groups. HEA performs better than XCSR on skewed

datascts, such as Thyroid, Shuttle, and Census, because XCSR, as we stated before,

lacks a measurement of group performance. HEA also exceeds single binary classifiers
evolved by the traditional LGP on performance, because binary classifiers only focus

on one class at a time, and ignore correlations with other classes.
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7.4.3 Solution Complexity

HEA builds solutions hierarchically out of simple subcomponents without the need to
specify in advance their structure. We arc interested to know how complex solutions

are, especially when compared to solutions returned by SBB. In this investigation, we

use group size to represent solution More
such as the number of unique attributes utilized by an individual and the number of

effective instructions per individual [54], will be left for future work.

Figure 7.8 plots the average number of individuals in the best groups from 50

runs on the four two-class datasets. The solution complexity of SBB obtained on
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Figure 7.8: Solution complexity of best groups obtained by HEA on the four two-class

datasets over 50 runs.
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Bupa, Pima, and Census can be found at Fig. 7.9. HEA has the same solution

con ais bpa pma

Figure 7.9: Solution complexity of the best groups obtained by SBB on the Bupa (de-

noted as “bpa”), Pima (denoted as “pma”) and Census (denoted as “cen”) datasets.

From “Symbiosis, Complexification and Simplicity under GP," by P. Lichodzijewski
and M. L Heywood, In M. Pelikan and et al., editors, GECCO '10: Proceedings of
the 12th Genetic and Evolutionary Computation Conference, pages 853-860, ACM,

2010. Reprinted With Permission.

complexity as SBB on Bupa. However, for the other two datasets, SBB tends to find
more complicated solutions with larger numbers of individuals than HEA (at 0.95
confidence interval); for example, the median values obtained by SBB on Pima and
Census are 4, while they are 3 and 2 for HEA, respectively.

On Thyroid and Shuttle, solution complexity of HEA is significantly lower than
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SBB or XCSR (see Table 7.6). It found the most compact groups on all runs, in which

only one individual is used to classify cvery single class.

Table 7.6: The average solution complexity of HEA, SBB and XCSR on the three
multi-class datascts over 50 runs. Standard deviations are listed inside of parentheses.
Results shown for SBB and XCSR are cited from [53]. The best values among the

three approaches are shown in bold

HEA SBB | XCSR
Thyroid | 3(0.0) 9.50.9) | 881.2(14.3)
Shuttle | 7(0.0) 10.0(0) | 644.8(39.4)
Heart | 6.667(1.361)

We thus can conclude HEA beats SBB in terms of solution complexity. The ob-
vious reason is that HEA explicitly expresses how to control group size in a group
fitness function. It is particular noteworthy that HEA automatically keeps the solu-
tion complexity in proportion to the separability of a datasct. For highly separable
datascts, HEA returns the smallest group with cach member being responsible for one
class, without wasting extra computational resources. For poorly separable datascts
such as Heart, Bupa and Pima, however, HEA tends to evolve large groups in which
one data class is covered by more than one individual. These results clearly demon-
strate the good problem decomposition ability of HEA; the appropriate number of
subcomponents and their roles emerge through evolution without human interfer-
ence. The driving evolutionary force behind this effect is the between-level selection,

which controls the hierarchical structure by screening out invalid levels and groups
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7.5 Discussion

So far we have how to i the new i multilevel

selection framework using LGP to solve classification problems. Please also recall the
experiments conducted on string covering problems in Chapter 6. The findings of
these two studies confirm that HEA is able to improve solution accuracy and simplify
solution complexity as compared to other approaches in the literature. However, the
following issues should be given special consideration before HEA is applied to new

problems:

Evolutionary Transition. As shown in Chapter 5, our model has the potential to
be extended to an evolutionary transition model, in which groups, depending on
their levels, become a new complex organism functioning differently from their
components. Even though not demonstrated in these two studies, we believe our
model will be useful to solve real-world problems whose subcomponents have
more complicated interactions, such as agents in multi-agent systems. Detailed
transition rules can be defined to change the genotype or phenotype of a new

organism, thus expressing various functions

9

Niching. With no exception, our model requires the use of niching or similar
techniques to maintain different partial solutions in a population, from which
a full solution can be built. Designing an appropriate niching scheme, never-
theless, can be very tricky as it is strongly correlated with specific problems.
Canonical fitness sharing, resource sharing or crowding are always good starting

points. However, one important thing to remember about fitness sharing is that

it diminishes the fitnesses of all individuals within a niching radius, including
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the best one in the niche. We are then faced with the risk of losing potentially

good individuals; if they are closely surrounded by others, their fitness may

degrade much faster than less optimal individuals with no neighbors.

©

. Group fitness definition. After multiple trials on different group fitness defini-
tions, we advise to consider at least two factors: average individual performance
and overall group performance. Missing cither of them will cause the evolution

to drift to suboptimal solutions.

Cooperation measurement. Evidence in biology and social science suggests that
excluding or punishing frec-riders can maintain cooperation. In the same way
any implementation of our model should measure how much individuals coop-
crate in a group. Removing free-riders yields compact groups and savings on
computing resources. In Chapter 6, an individual’s contribution is judged by the
‘ number of new strings it provided to its group. In this chapter, an individual’s

contribution was indircctly assessed jointly by the group size and overall data
‘ coverage in the group fitness function; free riders increase group size without

improving coverage. The Shapley value [87] of game theory is also an interesting

‘ approach to determine the contributions of individuals in a collaboration

Parameterization. The framework extends evolution to group levels; therefore,

@

we need to specify values for new parameters, namely the cooperation, crossover
and mutation rates for reproducing groups, the niching radius for groups and

individuals, and the number of groups in a population. Like any other EA, there

arc no universally optimal parameter scttings that suit every problem. Based

on our experiments, we suggest high cooperation and crossover rates, but a

I
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relatively low mutation rate, as cooperation constructs new groups and crossover
discovers all possible individual combinations. The number of individuals and
groups in a population will vary depending on specific problems. Complex
problems normally need a large individual pool in order to preserve all potential
subcomponents. A group pool is normally smaller than an individual pool, and

its size increases as the individual pool grows, but at a smaller rate.

7.6 Chapter Summary

In this chapter, we moved the investigation of our computational multilevel selection
model to solve more practical and complex problems: real-world data classification
Such problems are complex because after decomposition the interdependencies be-

tween are difficult to und. 1. The Hi ‘hical Evolutionary Algo-

rithm was applied on 7 classification tasks, whose datasets reflect different features,
such as non-lincarity, skewed data distributions, and a large feature space. The re-
sults, when compared to traditional GP, OET, XCSR and SBB, demonstrate that this
approach improves solution accuracy and consistency, and simplifies solution complex-
ity. In particular, HEA automatically keeps the solution complexity in proportion to
the difficulty of the datasets. For highly separable datasets, HEA returns the smallest
group with each member being responsible for one class; However, for poorly separa-
ble datasets, HEA tends to evolve larger groups in which one class is covered by more
than one individual. This observation clearly demonstrates the good problem decom-
position ability of our model. In addition, this chapter also shows that our model

can be easily adapted to different classes of evolutionary algorithms, and different



application domains




Chapter 8

Conclusion and Future Work

lutionary computation and artificial life communities. We will also give an outline of

In this chapter we will summarize our work and the contributions made to the evo-
future work that could be derived from this dissertation.
\

8.1 Summary

Evolution, driven by the force of natural sclection, demonstrates an optimization
characteristic. Without exception, Evolutionary Computation (EC), which mimics
natural evolution, also inherits this character and hence is applied widely to solve
optimization problems. However, EC may fail to solve decomposable problems, whose
solution arc in the form of multiple coadapted subcomponents; in other words, because
of its strong tendency to converge, EC s not suitable for evolving a set of individuals
that work cooperatively.

Surprisingly enough, despite this seeming conflict between evolution and coop-

cration, cooperation has been observed everywhere in our hicrarchically organized

186



187

biological world. For cxample, genes cooperate in genomes, chromosomes in cells,
and cells in multicellular organisms. The reason is that cooperation is needed for
evolution to construct new levels of organizations [70]. Through cooperating in these

organizations, the constituents can increase their chances of survival

Biologists have proposed several theories to explain the evolution of cooperation,
including kin selection, reciprocation, group sclection and social learning. Among
these, group selection has been embraced by a growing number of biologists, in spite
of longstanding controversy. In fact, group sclection unifies kin sclection and recip-
rocation (73, 112]; it is also compatible with the selfish-gene theory. Group selection
theory suggests that individuals are divided into groups, and the emergence of coop-
cration is due to the selection pressure exerted on groups: between-group competition
facilitates within-group cooperation. Therefore, it sheds light on integrating cooper-
ation into artificial evolution. The primary aim of this dissertation was to extend
classic artificial evolutionary models to multilevel hierarchies, so that the principles of
group selection theory could be applied on cach level to allow cooperation to emerge
and be sustained

Most multilevel selection models in the literature take the hicrarchical structure
as given. The biological hicrarchy, on the contrary, has developed gradually: simpler,
smaller components appeared before more complex, composite systems. Therefore,
the new computational multilevel selection model we propose defines a bottom-up

process, where entitics on new levels arc created with the help of the cooperation op-

erator in the framework of predefined reaction rules. Hence, new entities will posse

new traits due to their genotypic or phenotypic differences. Evolution is performed on

cach level to optimize the traits of the entities on that level. Selection pressure from
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higher levels forces individuals on lower levels to cooperate. The between-level selec-
tion determines which level to select and controls the growth of hierarchical structure.
As a result of these features, the model shows an emergent property: the appropriate

structure required to reach a predefined cooperation goal, i.e., the number of indi-

viduals and the role cach i I plays in the c ion, will be
developed during evolution. We believe this model evolves faster and performs better
than other current proposals in Cooperative Evolutionary Algorithms.

The intention of the model is twofold. First, the model can be used by computer

s and engincers to solve real-world cooperative problems. To this end, we

scient

first presented a hierarchical evolutionary algorithm that implemented the model we

proposed. We then validated the cooperation and problem fon capability of
this algorithm within the context of string covering problems. Finally, we applied the

ification (MCC). When compared to string covering

algorithm for Multi-Class Clas:
problems, MCC is much more complicated, as the number of classifiers in a desired
solution is unknown and it is very difficult to understand the interdependencies among
those individuals. This real-world application is a better showcase of the emergent
problem decomposition and cooperation propertics of our model. The experiments
conducted on both problems demonstrated that our model evolves faster to find more
accurate solutions than other cooperative evolutionary algorithms.

Second, the model can be used by researchers in artificial life to study the evolu-
tion of cooperation and related issues. As a step towards this goal, we confirmed by
experiments the feasibility of this model to evolve cooperation. Our findings revealed
that cooperation cmerges and persists more casily in our model than in Wilson's or

“Trauslen’s models. The reason is that different mechanisms were employed to enhance
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the effect of group selection, mainly the bottom-up process and the cooperation op-

crator. In addition, multilevel sclection also provides explanations for evolutionary

transitions. We hence studied division of labor using our multilevel selection model;
division of labor is a commonly observed group trait resulting from an evolutionary

transition. As demonstrated by the experiments, groups with all required skills transit

uccessfully from a lation of i , no matter whether skills
are equally rewarded or not. Our experiments also confirmed that both type 1 and

type 2 multilevel selection arc relevant to cvolutionary transitions

8.2 Contributions

Through discussions and experiments, our comprehension of multilevel selection the-
ory, especially its working mechanisms and its role in promoting cooperation, devel-
oping transitions and building up hicrarchies has deepened. We claim the following
conceptual and practical contributions, hoping that our findings and understandings
are some help to those also interested in studying, modeling, and designing computa-

tional multilevel selection models.

8.2.1 Conceptual Contributions

o Clarified the concept of group selection. During the literature review, we no-
ticed that some research work mistakenly equates the idea of group selection
with the idea of selection between groups. In fact, group selection incorporates
not only between-group selection, but also a two-step selection procedure at

individual reproduction: a group is selected first, from which an individual is
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then selected for reproduction. Associating the survival of an individual with its
group propagates cooperators within groups, and climinates the need for credit

required by C i ionary Algorithms.

Suggested to consider evolution on every level of the hierarchical structure.
When evolution is conducted on cach level, it means that the fitness of collab-

! between the

orations is defined to look after the i
selection is applied on cach level to encourage entities below to cooperate, and
adaptation is developed on every level in response to dynamic environmental
change.

Confirmed bet: group selection as an force in computational

settings with respect to promoting cooperation. Such selection models the coad-
aptation and interaction between individuals. The resulting selection pressure
also forces individuals in cooperation to develop different roles when necessary,

and mediates the conflict of interest between individuals and their collaboration.

Added to the mechanisms to create hierarchical structures. The cooperation
operator is a means of forming groups, such as cells sticking together to form
multicellular organisms. Mapping rules state under what conditions which ac-
tions must be taken; this includes triggering conditions, entitics before mapping,
and entitics after mapping. The transformed entities are genotypically and phe-
notypically more complex than entities before mapping, and they become the

entities on a new, higher lovel.

Showed the integration of two types of multilevel sclection in one multilevel

selection model. The experimental results confirmed the prediction of Okasha
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[

o Identified critical issues that every cooperative evolutionary algorithm must ad-

75, 78] on the relevance of both types of sclection in evolutionary transitions.

dress: problem decomposition, evolution on multiple levels, and diversity preser-
vation. This is consistent with the issues suggested by Potter and de Jong [81],

but with an extension made to the evolution on multiple levels.

8.2.2 Practical Contributions

o Proposed a computational multilevel selection model. The core clement of this
model is the computational implementation of multilevel sclection theory. This

model also attempts to capture key mechanisms employed by nature to cre-

ate hierarchical structures. The two features together describe a process in the
model which is analogous to the process of constructing sophisticated solutions
out of simpler ones. Therefore, with proper adaptations, this model is useful for
computer scientists and engineers to solve decomposable problems in different
domains. In fact, this model overcome the limitations of existing cooperative

computation models in artificial life could use this

model to better understand the nature of multilevel selection and to investigate
implications of multilevel selection. One of the implication is the evolution of co-
operation. Experiments can be designed on this model to simulate the evolution
of cooperation by multilevel selection under various conditions, such as different
population structures, interaction constraint, or population composition. Coop-
cration is the first step to achieve evolutionary transitions, which further leads

to the diversification of life and the hierarchical organization of the living world

Therefore, this bottom-up hicrarchical model can also be used to study evolu-
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tionary transitions, which is another implication of multilevel selection, and the

creation of hicrarchical structures,

Designed a hicrarchical evolutionary algorithm based on the new model. This
algorithm is targeted to solve problems whose solution is in the form of multiple
coadapted subcomponents. When compared to other cooperative evolutionary

algorithms in the literature, this algorithm adequately addresses the issues of

problem dey ittion, evolution on collaboration levels and diversity prescrva-
tion. Consequently, it evolves faster and returns more compact, accurate results
than others. Since this algorithm describes a general approach for evolving co-
operation by an evolutionary algorithm, it can be applied to a variety of domains
and is not limited to any particular implementation of evolutionary algorithms.
As shown in this dissertation, both genctic algorithms and genetic programming

can be used to instantiate this algorithm.

8.3 Future Work

This thesis leads to a number of opportunities for future rescarch. The following are
possible areas for further investigation that could prove profitable to computer science

and engineering and also researchers in artificial life:

8.3.1 Computer Science and Engineering

« Heterogencous representations. Our model evolves individuals in one popula-
tion, which implies all individuals have the same representation: they use the

same chromosome structure and accept the same input information. This re-
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quirement becomes a restriction on the model when subcomponents of a solution
need to be represented differently. Therefore, we would like to explore a remedy
for this limitation, but at the same time without sacrificing problem decompo-

sition as an emergent property.

o Diversity preservation. As emphasized many times, diversity preservation is
critical to the success of the Hicrarchical Evolutionary Algorithm (HEA). This
dissertation adopted a revised fitness sharing for maintaining different partial
solutions in a population. However, this niching strategy still requires the def-
inition of a niching radius and a fitness adjustment equation, both of which

This is a limitation that prohibits

are decided by a trial and error proces
ones from applying HEA to solve problems in other domains. More investiga-
tions should be conducted on diversity preservation strategics and also on the

dynamics caused by cach strategy.

Applications for multi-agent systems. Another possible application of the hi-
crarchical evolutionary algorithm is to evolve cooperative behavior for multiple
agents so that they could work as a team. Agents arc autonomous and intelli-
gent: they operate without central control, and are able to interact with their
surrounding environment to decide their next move. Therefore, the interde-
pendencies among agents are harder to model. Furthermore, quite commonly
in many multi-agent systems the fitness of agents cannot be implicitly defined.
Hence, the algorithm needs the ability to deal with endogenous fitness, which

emerges from actions and interactions over the course of an agent’s lifetime.

« Applications on problems with sophisticated solution structures. One advantage
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of this model is the flexibility in defining group structure by using reaction

rules, as shown in the division of labor example. However, no reaction rules

were defined in the applications of the algorithm to ng covering problems

and multi-class classification problems; solutions for both problems are a simple

Is. It would be i ing to find an i domain

combination of i

in which mapping rules are required to bridge the structural difference between

subcomponents and the final solution, and to test the strengths and weakn

of the algorithm on that domain,

8.3.2 Artificial Life

o Population structure. Our model treats populations as well mixed and unstruc-
tured. Individuals are dispatched into groups, in which the interactions between
individuals take place randomly. However, real populations are not well mixed.
Spatial topology or social networks imply that some individuals interact more
frequently than others [70]. It would be interesting to find out whether or not
the multilevel selection theory could promote cooperation on structured pop-

ulation. One challenge left to face is how to define the group boundary. The

‘ SkillWorld in P2P networks [39] is a good potential problem to test this issuc.

o Time scale. Our model avoids on purpose the discussion of the time scale

| problem concerning the evolution taking place at cach level of the hierarchy.

[85] pointed out that the higher one goes from level to level, the longer it takes

for the process to continue, or cycle, or go to completion when viewed from a

As a matter of fact, entities on different levels evolve at different rates. Salthe

fixed scale. The difference in the rates of processes are one of the fundamental 1
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sources of hierarchical structure in nature [1]. “Our” or “an” artificial hierarchy

should consider the impact of time scale as part of the model

Evolution of individuality. The evolution of individuality [9] is a different re-
scarch topic from the evolution of cooperation, but also depends on the expla-
nation of multilevel selection theory. The central question it tries to answer is
how groups become individuals. Individuality is a complex trait, yet a series of
stages may cxist allowing cvolution to get from one kind of individual to an-
other; for example, Michod [64] listed the steps involved in the transition from
unicellular to multicellular life. These steps, according to the author, can be
applied more generally to other evolutionary transitions. One possible exten-
sion of our model is to consider the steps suggested by Michod to study the
evolution of individuality, which may lead to better understanding evolutionary

transitions.
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