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Abstract

Biological invasions represent under-utilized research opportunities to gain insight

into fundamental evolutionary and ecological questions. I focused on the invasion of brown

trout to Newfoundland, Canada, as a case study and conducted meta-analyses of published

literature, field sampling, laboratory, common-garden, and reciprocal transplant experiments

to understand what can be learned by embracing the fortuitous research opportunities afford

by this invasion.

In the first chapter I conducted a meta-analysis of published rates of phenotypic

change to assess the contribution of invasive versus native species in revealing the rate and

form of phenotypic change in wild populations. I found that invasive species have

disproportionately contributed to published rates of phenotypic change, but most of these

estimated rates are based on extensive studies in a few species. Results in Chapter One

suggest that invasive and native species both exhibit evidence of abrupt phenotypic change

and suggest an important role of the environment in driving trait change in wild populations.

In Chapter Two I examined the dynamics of the brown trout invasion in

Newfoundland by assembling a presence-absence database to investigate the physical

environmental correlates associated with population establishment at the watershed-scale. I

found that relatively large and productive watersheds are more likely to be successfully

established, but that all watersheds in Newfoundland are susceptible to invasion and

population establishment.

In Chapter Three, I quantified among-population differences in a suite of phenotypic

traits (e.g. growth rates, body shape and size, colour patterns) and correlated this diversity
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with environmental features. On the whole, phenotypic variation was predictable given

habitat use, suggesting either phenotypic plasticity or adaptive evolution in maintaining this

association.

In the final chapter, I assessed the contribution of genetics and environmental effects

on the population differentiation detected in Chapter Three, along with the associated fitness

consequences of these phenotypic differences. With a combination of common-garden and

reciprocal transplant experiments, I quantified the role of plasticity in facilitating survival in

novel environments and revealed patterns not predicted by theory. Specifically, results

suggested that plasticity in functional morphology - while common - did not occur in the

direction favoured by natural selection.
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Introduction and Overview

Present day distributions of organisms on earth represent a temporal snapshot of the

dynamic interplay between local extirpation and colonization. Species are regulated in time

and space through a host of biotic and abiotic factors including the intrinsic capacity to

disperse. Patterns of species dispersal have wide-reaching impacts and, among other things,

influences metapopulation and metacommunity dynamics, species interactions, population

viability, and biogeography (reviewed by Bullock et aI., 2001). Humans, intentionally and

unintentionally, have bridged the barriers to dispersal and greatly facilitated the spread of

organisms around the globe. For example, in Hawaii the estimated rate of species

introductions has increased from -1 species every 100,000 years prior to Polynesian

settlement, to -1 evety 20 years following post-European settlement (Lock.-wood et al.,

2007).

The majority of introduction events fail to establish self-sustaining populations,

though the rates of failure and successful invasions are difficult to quantify and subject to

error. Williamson (1996) estimated that only 10% of all introduced species succeed in

establishing viable populations, and that only 10% of those survivors will become invasive

(i.e., spread and compete with native species). Caution is warranted; however, as this so

called 'tens-rule' does not apply consistently among taxa. The 'tens-rule' may generally

categorize rates of invasion success and failure in plants, and indeed it was formulated with

data on plants, but it seems to miss tlle mark in vertebrate species. Jeschke & Strayer (2005)

provided a compelling argument that vertebrates, and especially birds and fishes, have a high

probability of successfully establishing populations upon introduction (often> 70%).



Regardless of the precise rates, vast amounts of time and money are spent responding to the

effects of species invasions, and the economic losses to commerce are correspondingly high.

In the United States, for example, cumulative costs of 'harmful non-native invaders' were

estimated to exceed 100 billion per annum (Knowler & Barbier, 2000). Furthermore,

invasive species are associated with declining ecosystem 'health' in many areas (Hassan et al.,

2005) and are often the primary cause of native species declines or extinction, especially on

islands (e.g. Fritts & Rodda, 1998).

However, in this adversity rests opportunity. Multiple introduction and colonization

events represent serendipitous "natural experiments" from which ecological and

evolutionary questions can be investigated. Among these questions are: What is the rate and

form of natural selection in nature? What factors (e.g., evolutionary history of the invaders,

physical habitat conditions of the new environment, and the structure of the biological

community of the new environment) determine invasion successes and failures? Are

adaptations of exotic species and affected native species predictable or chaotic? Do reduced

genetic variability and population bottlenecks limit the capacity for adaptation to novel

conditions? How does adaptive phenotypic plasticity influence the evolutionary trajectory of

populations?

In this introductory chapter of my thesis I review: 1) my derivation and definition of

'invasive', 2) a brief history of non-native invasive species as natural experiments, 3) the

historical roots of the brown trout invasion to Newfoundland set within the context of the

time period, 4) phenotypic plasticity, the 'Baldwin effect' and their importance to invasion,

and 5) conclude with a brief overview and synopsis of each manuscript (chapters 1-4). While

reading this thesis you may note a change in pronouns (from 'I' to 'We') between chapters 1,



and the remainder of chapters. This was intentional and correctly represents the intellectual

contribution to the work; either it was entirely my own, or a true collaboration with others.

For a complete explanation of authorship and citations of publications that have already

resulted and are intended to result, see the included co-authorship statement.

Invasive species defined

Before proceeding too far, it is wise to clarify my usage of the term 'invasive non­

native' species. Adventives, alien, established, exotic, naturalized, noxious, pest, waif, and

weed are just a few of the terms that researchers have affixed to their description of non­

native species. In a recent attempt to review the subject and provide an all-encompassing

definition, Valery et al. (2008) failed to provide additional clarity and posited a cumbersome

definition with enough necessary stipulations to ensure a highly conservative classification of

invasive (Table 1). I tabulated definitions from some of the more often cited works on

invasive species and conclude that the most apparent similarities among definitions of

invasive species included: 1) species occur outside their native or natural range, 2) humans

played a role in them getting there, 3) the organisms acquire or maintain a competitive

advantage over native species, and 4) their actions result in economic and/or ecological

damage.



Table1. Tabulated definitions of 'invasive' species

EltOn(1959) 1 o fonnal definition given:

You know an alien species when rou sce onc

ChungKim.nd~IcPhcron(1993)

WiIIi.mson(1996)

Mooncy.ndHobbs(2000)

Cox (2004)

Lockwoodcl.I.(2007)

Sax CI.1. (2007)

V.lcrycl.I.(2008)

Westlcy (2009; present review)

Wide reaching definition of 'pcSI':

Anyorb~nismwilhadeslructive(roublcsometendencics

Invasionoccurswhcnanorganism.~mysortororganism.arrivcs

somcwherebe}'ondirsprcviousmngc



In this thesis, I use the term 'invasive' for species that have spread outside their

natural geographic range via direct or indirect human mediated dispersal and that have

established self-sustaining populations. These species mayor may not acquire competitive

dominance over native species and need not result in ecological or economic damage to

quaJjfy. Direct human mediated dispersal is used synonymously here with intentional or

unintentional introductions. Examples of intentional introductions include the transport of

species for biological control (e.g., Gambtlsia affinis for mosquito control) and unintentional

introductions include transport of organisms unknowingly (e.g., plant invasions initiated

through soil ship ballast, see Mack (2003) for a review). Indirect human mediated dispersal is

the spread of a non-native species on its own accord following establishment from direct

human dispersal (e.g., the spread of introduced rabbits in AustraJja following release of 24

individuals; Williams and Moore (1989)).

How should managers tasked with species conservation and ecosystem functioning

view invasive species? This is increasingly difficult in a world where the divides between

native and non-native invasive are blurred by time and societal perceptions. Indeed, in a

recent paper Davis et al. (2011) argued that species should be judged on their ecological roles

in new ecosystems rather than their origins. For the remainder of the thesis I set aside the

important question of how to deal with the clear and present threat of biological invasions

and focus on what can be learned about ecology and evolution from invasive species.

A brief history of non-native invasive species as experiments in nature

Capitalizing on the introduction and spread of invasive species as experiments is not

a novel concept. The historical legacy of invasive species in ecological and evolutionary



inquiry began simply with opportunistic observations and developed through time into

elaborate experiments designed to explicidy examine factors surrounding invasion.

Following a unusually severe storm in the winter of 1898 Herman Bumpus, professor at

Brown University in Rhode Island, noticed 'scattered about the ground dead or exhausted, a

large number of English sparrows (Passer dottlesticlIs) from the colony wintering in the vines of

the old athenaeum'(Bumpus, 1899). In a biography written by his son, the elder Bumpus was

'quick to see that here before his eyes was an experiment in nature' (Bumpus, 1947). He

collected 136 birds and examined and compared traits among those that lived and those that

died. Bumpus demonstrated what is now referred to as stabilizing selection; individuals close

to the population mean survived at a higher rate than individuals at the extremes of the

distribution (Bumpus, 1899), but also revealed that selection can act differendy on correlated

traits. Bumpus' paper in 1899 has become a classic and the resulting dataset has been the

subject of extensive reanalyses in the primary literature (for example see Janzen & Stern,

1998). Perhaps most importandy, this fortuitous natural experiment with introduced

sparrows represents the first demonstration of the capacity to observe and quantify natural

selection in nature.

In addition to being the first models for investigating natural selection, introduced

house [aka English] sparrows were among the first species to be examined for rapid

population divergence. In the summer of 1917 Joseph Grinnell joined colleagues from the

Museum ofVerrebrate Zoology of the University of California to 'collect' specimens in the

Inyo region of south-eastern California. To his surprise he encountered house sparrows,

which were likely colonizing descendants of individuals introduced to New York City during

the period 1860-1864 and those examined by Herman Bumpus in the winter of 1899. He,



like Bumpus, argued that this was a natural experiment to examine, in real time, the

divergence of populations. However, no obvious differences were discernible in the new

colonists (Grinnell, 1919). Grinnell presumed this lack of differentiation resulted from

insufficient time since colonization of the new habitat. This explanation, as it turns out, was

likely correct: approximately 50 years laterJohnston and Selander (1964) expanded on

Grinnell's ground work and reported the rapid evolution of 'races' of introduced house

sparrows throughout North America.

Herman Bumpus and Joseph Grinnell, though pioneers in the use of invasive

species to examine ecological and evolutionary questions, were precursors to the

development of invasion biology as a defined scientific discipline. What Rachel Carson was

to the ecological effects of pesticides, Charles Elton was to the ecology of animal and plant

invasions. With astounding foresight, Elton (1958) articulated the primary questions that still

largely constitute the base of current invasion biology. Among these questions were: what

characteristics make some species invasive and others not? What causes the lag in time

between introduction and population explosion? What characteristics of the ecosystem

facilitate or resist invasion? Many of his hypotheses, such as native species diversity as a

repellent force to invasion, have been embraced by many contemporary invasion biologists

(Lockwood et al. 2007 and references therein), but some of his other insights have proven

incorrect (or simplistic). For example, Elton observed that environments with higher degrees

of anthropogenic disturbance were more likely invaded than more pristine areas. However,

this led him to erroneously surmise that the disturbance per se was the important causal

mechanism. Current research suggests that disturbance is a correlate of other more

important large scale drivers such as propagule pressure7 (Lockwood et aI., 2005).



Regardless, Charles Elton's pioneering work on invasive species marks the emergence of

invasive biology as a defined discipline.

Enter the contemporary invasion biologists. A dizzying amount of literature on

invasion ecology and biology has been written in the past decades (reviewed by Lockwood et

al. 2007), and much of it has focused on the control and spread of perceived 'pest' and

'weed' species of plants and animals (Myers & BazeJy, 2003, Coombs et al., 2004,

Williamson, 1996). An emergent subset of researchers has capitalized on the opportunity to

use invasive species as convenient model organisms to examine ecological and evolutionary

questions. Recent reviews of ecological and evolutionary insights gained from studying

invasive species (Sax et al., 2005, Cox, 2004, Sax et al., 2007) provided a convenient

launching point for the following thesis.

Brown trout in Newfoundland: historical roots of a serendipitous research
programme

The establishment of brown trout in Newfoundland is a small sentence in an epic

global story of salmon and trout (family Salmonidae) introductions. Efforts to introduce

these fish around the globe were daunting. Present day ecological consequences of these

introductions norwithstanding (McDowall, 2006), the effort to introduce salmon and trout

can be understood as passionate attempts to create the comforts of familiarity by homesick

expatriates. Indeed, Wilson's (1879) chronicle Salmon at the Antipodes described his attempts

to bring Atlantic salmon and brown trout to Australia as a 'labour of love.' In a similar

chronicle, MaitJand meticulously describes the process of construction and operation of

Howietoun Fishery, among the first commercial salmon and trout hatcheries in Europe. For



example, Maitland describes the processes of brood stock collection and spawning, and

describes (below) packaging of fertilized ova in containers of ice-moistened-moss for

shipments around the globe (Fig. 1.):

"'Each tray has four hoCes cut in the siaes to aamit air freeCy to the moss
ana to faciCitate a4Justing between the fiCCets. 5l. Carge ice-tray rests on the toy of
the ova trays anais beveCCeaoutwardS so as to entireCy dose the insiae of the
outer box, the Ciaofwhich is mereCy fastenea by a wooaenyinyassing through a
sta6Ce, so that crushea ice may be easiCy suyyCieaas aescribed. 5l. deverfy
aesigneaarain is fittea in the bottom of the vox to carry off the meCteaice. In
one of these voxes ova can ve safeCy transyorteaauring a yerioaofsixty aays."

Fig. 1. Wooden shipping container used to send fertilized ova from the Howietoun
Hatchery to locations around the globe (described in the quote above). This image
from page 42 in Maitland (1887) was drawn to convey the scale and layout of this
custom made containers, but by coincidence, shows the container destined to John
Martin in St. john's, Newfoundland. Maitland likely chose Newfoundland as an
example, at least in part, to boast about his success sending brown trout overseas but
currently serves to highlight Newfoundland's place in a larger global story.



In addition to wanting the familiar sport fish of home, brown trout were also likely

imported because St. John's - a city that by the end of the 191h century had been settled for

approximately 400 years - was apparently suffering from the effects of over-population,

poUution, and overfishing of native Atlantic salmon and brook trout. Evidence for this

comes in a letter written in 1885 to the local St. John's newspaper by a citizen in favour of

government support for stocking of brown trout (as cited by Hustins 2007):

"The anB{er miBht thrash the same waters for a week now antinot ki{{a Booa
fish. The same ovservations ayy{y in a somewhat Cesser aeBree to the 'Petty J-{arvor
'PondS anato a{{ the yonas within a radius ofa aozen mires of St. John's. These yonas
are fishea out."

Regardless of precise motives, the first definitive evidence of brown trout

importation to Newfoundland was in 1883 at the request ofJohn Martin, a civil engineer

with the Water Works of the capital city of St. John's and president of the Newfoundland

Game Fish Protection Society (Hustins 2007). This precedes the frequently cited 1886 date

provided by Andrews (1965), but supports the first date of importation reported by others

(Frost 1940; Scott and Crossman 1964; van ZyU de Jong et al. 2004). Preserved

correspondence by John Martin in Maitland (1887) indicates that early introductions of Loch

Leven (a Scottish lake near Edinburgh) strain brown trout were highly successful:

5'1. JOJf:N's, j'UNE 8"',1886
J'vt)J 'DT.JI.n SI'R,- I am B{aa to say the Loch{even trout ova has aone were - in

fact, I may say, it was ayerfect success, not five yercent of foss on the whofe rot.
In fac t, a{{ the ova I Bot from you was the same - no foss worth syeakinB of The
first I Bot is three years oranow, anafine fish. I think they syawn this year, as
they are the size ofherrinB now, anavery fat. The water suyy{y for my new
hatchery is first-dass, anay{enty of it, so that is the main thinB. I hatchea
900,000 fast winter, anaa{{diawe{{with me.- yours tru{y,

].J'vtartin

10



This correspondence is especially illuminating for two reasons. First, it provides

evidence that indeed the first importation was of Loch Leven brown trout in 1883 (his first

fish were three years old and the letter dated 1886). Second, it conveys the scale of the

hatchery operation thatJohn Martin had operating at Long Pond, the headwaters of the

Rennie's River/Quidi Vidi watershed. nfortunately the records of the numbers of trout

produced and stocked to local waters are, at best, incomplete.

In addition to Loch Leven brown trout, two other strains, so called 'German' and

'English', were also introduced to Newfoundland. However, the precise origins of these

latter strains of trout are not entirely clear. It: is likely that the German von Behr strain

originated in rivers near Hamburg and was used for importation to other European

watersheds, orth America, and Chile (Smiley, 1884, Frost, 1940), whereas the English

strain may have been propagated from brood stock originating from chalk streams in the

English Midlands or conceivably from mixed strains originating from Germany or Denmark

(A. Ferguson, Queen's University of Belfast, personal communication, January 2008). The

second chapter of this thesis, summarizes the available information regarding stocking

numbers and locations and concluded that at least 156,000 hatchery raised brown trout were

introduced to 16 watersheds. Moreover, the results suggest that over 90% of the stocked fish

were Scottish Loch Leven descendants.

Since their first introduction in 1883, brown trout populations have volitionally

spread throughout eastern Newfoundland. Humans may have accelerated or facilitated the

patterns of population expansion through stocking, but most watersheds have probably been

successfully colon.ized by straying anadromous trout. In the second chapter we go into more

detail, but suffice it to say here that similar patterns of straying and colonization are observed
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in other systems. For example, a contemporary brown trout invasion is occurring in the sub-

Antarctic Kerguelen Islands (Davaine, 1997, Launey et al., 2010), where straying fish have

rapidly spread to many watersheds after first introduction. Ultimately, the route of

introduction - either natural straying or human stocking - is inconsequential for

understanding how the environment shapes the phenotypes of the surviving colonizers and

the role of phenotypic plasticity in facilitating survival in novel conditions.

The Baldwin effect, adaptive phenotypic plasticity, and the successful
colonization of novel environments

Plasticity describes the ability of organisms to respond to environmental conditions

by modifying their phenotype within their life time. This formal concept was first

popularized in plants by Bradshaw (1965) and modernized by researchers such as Sonia

Sultan (e.g. Sultan, 1987), Massimo Pigliuccci (e.g. Pigliucci, 2001), and Trevor Price (e.g.

Price et al., 2003). Here I adopt a wide reaching definition of phenotype and consider any

quantifiable trait in an organism's morphology, physiology, behaviour, or life history to be

part of the phenotype. The essentially infinite number of potential phenotypes that an

individual can express across environmental gradients has led some to suggest the utility of

thinking about the observed phenotype as just one possibility in an individual's 'phenome'

(e.g., West-Eberhard 2003). Phenotypic plasticity is ubiquitous in nature; however, not all

plasticity is adaptive (i.e., plasticity that allows individuals to have higher fitness than it would

were it not plastic; sensu Ghalambor 2007). Phenotypic plasticity has attracted recent

attention and controversy with regards to its role in adaptive evolution of populations

(reviewed by West-Eberhard, 2003); with the debate whether plasticity impedes or advances
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evolution being especially contentious. I set this evolutionary controversy aside and here

focus on the relationship between plasticity and biological invasion to novel environments.

What does the empitical evidence reveal about the role of adaptive plasticity in

biological invasions? Interestingly, the role of plasticity for survival in novel environments

has a historical legacy. Baldwin (1896) proposed the concepts of 'organic selection' and

'orthoplasy' collectively referred to as the 'Baldwin Effect' (reviewed by Crispo, 2007), which

predicts that plasticity will facilitate survival and reproduction in novel environments

(organic selection) and steer the evolutionary trajectory in the direction of the plastic

response (orthoplasy). It is not surprising that contemporary invasion biologists frequently

suggest that plasticity faciJjtates invasion via the expression of advantageous phenotypes in a

broad range of novel environments (e.g., Daehler, 2003, Davidson et al., 2011). However,

recent models suggests that phenotypic plasticity may actually serve to oppose invasion by

steepening the fitness landscape and thereby making invasion more difficult even by plastic

invaders (peacor et al., 2006). While frequently cited as important in biological invasion (e.g.,

Rejmanek et al., 2005), the extent and thoroughness of the discussion of plasticity and

invasion is often limited. For example, recent book reviews of biological invasion either

make no reference (Cox, 2004, Sa-x et al., 2005) or passing reference (Kim & McPheron,

1993, Lockwood et al., 2007) to phenotypic plasticity. Similarly, West-Eberhard's (2003)

review of developmental plasticity and evolution made no explicit reference to non-native

invasive species.

The first empirical demonstration of the Baldwin was made by Georgii Gause, a

Russian biologist best known for his articulation of the "exclusion principle" in ecology and

his work on antibiotics. In a series of experiments summarized in a 1942 publication, Gause
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demonstrated that the salinity tolerance of clones in ParalllCal/l1l cauda/1II1l (a typically

freshwater species, which sometimes occur in brackish environments) increased markedly

after exposure to hyper-saline conrlitions (Gause, 1942).

~ 0.65

.~ 0.6

:f°.55
~ 0.5

Fig.2. Change in salinity resistance (expressed as the concentration of salt
killing 50% of inrlividuals in 24 hours) in clones of Paramecium caudatum
(each line represents a clonal strain) prior to and post acclimation to 0.36%
salinity. Data plotted from Table 1 in Gause (1942).

Patterns of plastic change in salinity resistance clearly showed a consistent increase in

tolerance and an apparent convergence of level of resistance (Fig. 2). This suggests that

clones exposed to higher salinity responded via phenotypic plasticity in a direction that

facilitated survival. These results demonstrated, in the laboratory, the first critical stages in

the Baldwin effect. Though he did not quantify rile evolutionary significance of his finrlings,

Gause concluded that rile adaptive morlifications he observed "prepare the way for the

subsequent evolutionary advance."
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In addition, the Gause experiments provide a convenient springboard to introduce

the concept of reaction norms (interchangeably called norms of reaction). Phenotypic

plasticity is often mathematically and graphically described by a norm of reaction, a function

(usually linear but not necessarily so) that expresses how phenotypic values among group of

organisms change along environmental gradients (Schmalhausen, 1949, Schlichting &

Pigliucci, 1998, Hutchings, 2004). Plasticity is evidenced by reaction norms with non-zero

slopes whereas the absence of plasticity is inferred when trait values do not change with the

environment. Reaction norms that run parallel suggest that the response to environmental

change is similar among organisms, while crossing reaction norms suggest genetic variation

in plasticity or so called genotype x environment (G x E) interactions. If this genetic

variation is additive, natural selection could drive evolutionary change in the shape of the

reaction norm. The norms of reaction depicted in Fig. 2. demonstrate both plasticity (non­

zero linear slopes) and G x E interactions. Two general approaches to modelling plasticity

are taken in the literature; the character state or the polYnomial (sometimes confusingly referred

to as the reaction norm) approach (discussed in detail by Via et al., 1995). In the character

state approach, norms of reaction are modeled as the value of a phenotypic character that

would be expressed by genotypes or groups of organisms as a function of the environment.

The polynomial approach models the reaction norm as a polynomial function of the

phenotypic values across environments. Underpinning these two approaches rests the idea

that phenotypic plasticity is a phenotypic trait per se, separate from the phenotypic value of a

given trait with its own separate genetic control. In this thesis I adopt a character state

approach as it is appropriate when examining the response of organisms to discrete

environments but do consider plasticity and character trait values as separate traits, each
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capable of incurring and responding to selection. Moreover, in discrete environments,

polynomial and character state approaches are mathematically equivalent (De Jong, 1995).

Plasticity can be adaptive or non-adaptive both of which have consequences for

contemporary evolution in novel environments (Ghalambor et aI., 2007). I consider plastic

responses that either occur in the direction consistent with selection or that facilitate survival

to be adaptive. For a thorough review on the differences between adaptive plasticity and

plasticity as an adaptation see Gotthard and ylin (1995).

Taken as a whole, few studies have explicitly examined the role of plasticity in

invasion beyond the controUed conditions of a laboratory or greenhouse. In the foUowing

paragraphs I briefly discuss two examples that provide insight into plasticity and invasion in

Fountaingrass Pet/niset/If" setacelllll, a C. perennial grass, was introduced for its

ornamental appeal in the early 1900s to the Hawaiian Islands. Fountaingrass has

subsequently invaded a wide range of habitats of varying altitude from sea level to nearly

3000 m. Sites differ dramatically in temperature (mean winter temperature 2°C in sub-alpine

site; 17°C in coastal site) and timing of rainfall. Correspondingly, plants show adaptive

divergence in morphological, physiological, and reproductive traits. In a reciprocal transplant

experiment with clones of plants from three populations (coastal, middle, sub-alpine),

Williams et al. (1995) reveal no genetic influence on observed differences in phenotypes

indicating that plasticity has maintained the diversity of form in nature. Plasticity has

apparently done such a good job of maintaining adaptive phenotypes in a given environment

that there is insufficient heritable material on which selection can act, thereby precluding

local adaptation. Alternatively, Williams et al. (1995) suggested that introduced fountaingrass
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has not evolved local adaptation because genetic variation was limited by a genetic

bottleneck. Reductions in genetic variability are often cited as hindering local adaptation in

introduced species; however, empirical evidence suggests that adaptation is possible even

when very small numbers of individuals are introduced (salmonids: Koskinen et al., 2002,

Drosophila: Huey et al., 2005, mammals: Williams & Moore, 1989).

Additional evidence for an important role of plasticity and the establishment of

novel environments comes from the colonization of low-land habitats by dark-eyed juncos

(junco hycmolis) in California. Juncos are native to Norrh America and in the early 1980s, a

small population colonized the coastal environment surrounding the University of

California, San Diego (UCSD) campus from a nearby mountainous area. Yeh and Price

(2004) investigated the influence of variation in breeding season length (a reportedly

'classically plastic trait') on population persistence in both derived and ancestral populations.

They reported a markedly longer breeding season length in the new population, resulting in

higher offspring production and recruitment compared to the ancestral population.

Interestingly, the new population has shown virtually no change in population size through

si.x years of intense monitoring, thereby suggesting that increased reproductive output is

necessary to compensate for higher juvenile to adult mortality rates in the colonized range.

Without the compensatory effect of lengthened breeding season it was estimated (while

controlling for immigration, density-dependent offspring recruitment, and habitat carrying

capacity) that the new population would decline by approximately 20% per year and quickly

go extinct. The mechanism(s) underlying the failed recruitment from fledglings to adults are

unclear as movement by juveniles from the study area was indistinguishable from mortality.

To date, this example provides the strongest and clearest quantitative support of Baldwin's
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idea of organic selection (plasticity mediated survival and reproduction in novel

environments). In addition, more recent evidence suggests that these plastic responses have

influenced trait evolution in this system. Price et al. (2008) reported that lengthened breeding

season has directed the evolutionary trajectory of a heritable sexually selected trait, white tail

feathers, in this population.

These empirical examples provide evidence for an important role of adaptive

plasticity in biological invasions, but fail to provide key insight during the first critical stages

of colonization and introduction. No study that I am aware of has attempted to explkitly

track the fitness consequences of phenotypically plastic traits of transplanted individuals

from the earliest stages of introduction. Indeed, few studies have been fortunate to monitor

the first few generations of natural colonization (though see Anderson & Quinn, 2007,

Anderson et al., 2008). This research gap is echoed by Ghalambor et al. (2007) who

suggested that 'If an identifiable subset of individuals that possess a particularly favourable

combination of plastic traits are found to be the successful colonizers of new environments,

such evidence could show an important role of plasticity in facilitating adaptation.' As

highlighted here, evidence suggests adaptive plasticity can facilitate invasion and population

persistence in novel environments; however, the role of plasticity in tile earliest stages of

invasion and whether it represents a prominent driving force toward local adaptation in

nature is unclear. Furthermore, it remains to be seen whether phenotypic plasticity will

hinder or promote adaptive responses of native and invasive species to the rapidly changing

global climate (Chown et al., 2007).
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Thesis overview and rationale

The chapters that follow are my attempts to understand the ecological and

evolutionary consequences of the biological invasion by brown trout in ewfoundland, and

in doing so aim to address some of the outstanding questions surrounding the role of the

environment and phenotypic plasticity in shaping the outcome during the first stages of an

invaslOn.

I set the stage for this work in Chapter One, where I asked a broad and general

question concerning what we have learned about the rate and form of phenotypic change in

populations via the study of invasive species. To do so, I expanded an existing database of

available rates of phenotypic change in 90 species of plants and animals and showed that the

majority of our inferences about population divergence and evolution are based on invasive

species. Moreover, I show that in spite of presumably strong selection pressures, native

species are evolving as quickly as invasive species along similar temporal trajectories.

However, I do reveal an important role of phenotypic plasticity in explaining phenotypic

change and suggest that differences may exist in the plastic potential between invasive and

native species.

In Chapter Two I turn my attention to brown trout in Newfoundland and ask, in

general terms: Who are these invaders? Where did they come from? Where and how many

were introduced? Where have they gone and why? Where are they going? Though brown

trout has been established in ewfoundland for over a century, surprisingly little had been

done to address these questions. Chapter two expands on the history presented in this
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introduction and includes the numbers and locations of first introductions. We also

assembled a large database of watershed that had either been or not been successfulJy

invaded by brown trout to understand the landscape factors that may explain and predict

population establishment. We conclude that populations are not distributed randomly across

the landscape but seem to occur in watersheds that are relatively large and productive

compared to watersheds where brown trout are absent. Curiously, this pattern mirrors the

patterns of distribution by brown trout within watersheds: brown trout are typically found in

the lower, more productive reaches of watersheds both in their native European (Korsu et

aL, 2007) and introduced North American (Budy et aL, 2008) range.

The observation of populations established among a range of physical environments

sets the stage for Chapter Three, where we investigate the relationship between adaptive

phenotypic traits (i.e. likely linked to fitness) and environmental factors in 16 trout

populations. We reveal differences among populations in a swte of traits (e.g. body shape

and colour) and find significant correlations with habitat features. Specifically, we show that

large and presumably faster flowing streams are associated with individuals with relatively

robust body shapes compared to smaller, slower flowing streams. Similarly, dark

environments with greater canopy cover correlate with darker pigmentation in trout.

Chapter Four combined a common-garden and a reciprocal- transplant experiment

to simultaneously address questions concerning local adaptation, the adaptive significance of

observed phenotypes, the underlying genetic influence on phenotypes, and the role of

plasticity in facilitating survival in the early stages of an invasion. Results suggest that, at least

in the three populations examined, local adaptation (based on survival and growth of tagged

individuals) to environmental conditions is likely. The populations displayed significant
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differences in swimming and feeding related morphology even when reared in different

environments, providing strong evidence of underlying genetic control. Moreover,

morphology was plastic and varied across environments in a manner consistent with patterns

observed in the field. That is, large rivers tend to induce larger more robust body shapes.

However, counter to predictions, plasticity in morphology was often counter to the direction

of natural selection. Overall, attempts to predict the plastic responses of organisms to novel

environments may be more complicated than previously appreciated.
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Chapter 1: What invasive species reveal about the rate and form of
contemporary phenotypic change in nature
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Abstract

Biological invasions represent opportunities to gain insight into fundamental

evolutionary questions as abrupt changes in selection pressures and reproductive isolation

are likely to lead to rapid evolutionary change. Here I formally investigate the role of invasive

species in revealing the rate and form of contemporary phenotypic change in wild

populations. To do so, I expand and utilize a database of over 5,500 evolutionary rates of

phenotypic change from 90 species of plants and animals. On an absolute basis, invasive

species have disproportionately contributed to the available evolutionary rates; however, the

preponderance of these rates is the consequence of extensive study in a smalJ number of

individual species. Invasive species are more often examined with experimental designs

suited to elucidating divergence among populations rather than change within populations.

Contrary to expectations, I found mixed evidence to support the hypothesis that phenotypic

change is positively associated with amount of time of divergence depending on whether

interpretation is based on change measured in darwins (phenotypic change per year) or

haldanes (standard deviations of change per generation). Results suggest that both invasive

species and native species provide evidence that phenotypic change can be markedly abrupt

as observed changes during short time intervals were often as great as those seen in longer

time intervals. Finally, results here reveal a potentialJy important role of the environment and

by extension phenotypic plasticity to drive trait change in wild populations, though the

potential for plasticity to influence evolutionary trajectories remains unclear. Thus future

work should continue to seek an understanding of the mechanistic underpinnings -both

genetic and environmenta.l- of how phenotypic variation aUows populations to adapt to

rapidly changing global environments.
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Introduction

Darwin's recognition of natural selection as the primary evolutionary force marks the

beginning of a debate that still abounds today. At face value, the question of how quickly

organisms evolve seems straight forward; however, elucidating a conclusion and reaching a

consensus is anything but trivial (recently reviewed in Gingerich, 2009). The emergent voices

in this debate generally align in one of the following three archetypical camps: I) evolution is

necessarily gradual and slow (e.g. Darwin, 1859, Fisher, 1930), il) evolution is punctuated,

and thus is sometimes fast and sometimes slow but never in between (Elredge & Gould,

1972), and iil) evolution is often fast (Hairston et aI., 2005, Palumbi, 2001). Inferences into

the rate of evolution are drawn from investigations using the fossil record (Gingerich, 1993,

Gingerich, 2009, Hunt et al., 2008), longitudinal studies tracking trait changes in laboratory

(Lenski et al., 1991) and wild populations (Grant, 1999, Reznick & Ghalambor, 2001) or

meta-analyses from literature (Hendry & Kinnison, 1999, Kinnison & Hendry, 2001,

Darimont et al., 2009). A key insight is that the role of evolution is inversely proportional to

the temporal scale of observation, thus resulting in the observation that the 01110/1111 of

evolutionary change (e.g. mean trait change between two points in time) is essentially

independent of time frequently reported (e.g. Hendry et aI., 2008, Schluter, 1996, Gingerich,

1993, Gingerich, 2009). However, this seems difficult to reconcile with the typically high trait

heritability (reviewed by Carlson & Seamons, 2008) and intense selection often observed in

nature (Kingsolver et aI., 2001, Kingsolver & Pfennig, 2007).

One potential explanation is that natural selection fluctuates in direction and

intensity through time and thus may explain periods of both long-term stasis and short-term
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abrupt evolutionary change (Bell, 2010, Siepielski et aI., 2009). Selection is expected to be

intense during extraordinary environmental changes (Lande, 2009, Reznick & Ghalambor,

2001), such as when populations are transplanted outside their native ranges or colonize

newly accessible habitat (for an empirical example see Anderson et al., 2010). These species

invasions thereby represent opportunities to gain insight into the evolutionary process over

short timescales. Following in the pioneering footsteps ofJoseph Grinnell (1919) and

Charles Elton (1958), researchers are increasingly using biological invasions to investigate

key ecological and evolutionary processes (Sax et aI., 2005 and references therein). Insights

into the mechanisms driving adaptation to novel environments have been illuminated from

these opportunistic studies of invasive species (reviewed by Sax et al., 2007) as well as many

empirical examples of contemporary evolution (i.e. the evolution occurring in the recent past

of approximately 200 generations or fewer). For example, population bottlenecks and

reductions in genetic diversity, rarely seem to limit the capacity for adaptive evolution in

novel environments (Wares et aI., 2005). Koskinen (2002) provide support for this via their

study of small introduced grayling populations (Tf?yIllOlllls thymolllls). In short, rapid

phenotypic divergence occurred within 100 years even though very few individual fish were

introduced to several alpine orwegian lakes. Additionally, research derived from the

paradoxical ability of invasive species to sometimes outcompete local species suggests that

individuals are not always optimalJy adapted to their environments (Sax & Brown, 2000,

Korsu et aI., 2007); though only a small subset of species that are transplanted become

successful invaders thereby suggesting the power of local adaptation (\'V'illiamson, 1996).

Furthermore, research on phenotypic changes in populations of invasive species supports

the hypothesis that adaptive evolution can occur in only a few to dozens of generations
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(Huey et al., 2005, Reznick & Ghalambor, 2001, Palumbi, 2001). Indeed, some of the now

iconic examples of contemporary evolution in nature are derived from studying invasive

species such as mosquito fish (GalllbJlsia afJiflis) in Hawaii (Steams, 1983), salmon

(Oflcor!ijnchJls spp.) in ew Zealand (Quinn et al., 2001a) and Lake Washington, SA

(Hendry et al., 2000), Trinidadian guppies (Poecilia reticJllate) transplanted across predation

barriers (Endler, 1988), and old world fruit flies (Drosophila obsCllra) introduced to North and

South America (Huey et aI., 2000).

However, it remains unclear whether recently invading species that are likely

experiencing abrupt directional selection in their novel habitats and native species that are

likely maintained around adaptive optima via stabilizing selection are evolving at similar rates

and along similar temporal trajectories. Here I expand on an existing database of

evolutionary rates (Kinnison & Hendry, 2001, Hendry et al., 2008, Hendry & Kinnison,

1999) to address this and other questions with the overarching objective of formally

investigating invasive species' role in illuminating our understanding of contemporary

phenotypic change in wild popuJations. Specifically, I ask the following questions:

What proportion of available rates of phenorypic change (influenced by

both genetics and environment) is derived from the study of invasive vs.

native species?

ii) What proportion of available rates provides evidence for population

divergence from a common ancestor (i.e. synchronic experimental design,

sensu Hendry and K.innison 1999) vs. change through time within

populations (i.e. aIlochronic design)? Similarly, what proportion of

available rates are the results of common-environment or quantitative

genetics studies, thereby indicating that trait change likely have a heritable

basis?
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iii) What is the relationship between trait changes and the amount of time of

divergence (i.e. what is the shape of evolutionary trajectories between

species)? Are invasive species and native species changing similarly through

time and thus is there evidence of similar temporal evolutionary

trajectories? Does the shape of the relationship between traits and time of

divergence support the hypothesis of gradual or abrupt phenotypic

change?

iv) What role does the environment and thus potentially phenotypic plasticity

(i.e. the ability of individual genotypes to produce multiple phenotypes in

different environments) play in our interpretation of phenotypic change in

invasive and native species?

Materials and methods

To investigate the contribution of invasive species to our understanding of

contemporary phenotypic change, I searched the ISI Web of Knowledge database (version

4.2; Thomson Reuter) with combinations of the foUowing keywords: exotic species, invasive

species, introduced species, contemporary evolution, rapid evolution, evolutionary rates,

haldanes, and darwins. AdditionaUy, I searched for the papers that had cited Hendry et al.

(2008) assuming that researchers reporting rates of contemporary phenotypic evolution

would cite this publication. My intention here is a broad-strokes attempt to investigate the

role of invasive species compared to native species in illuminating the rate and form of

evolution in nature (though see Cox, 2004, Reznick & Ghalambor, 2001), thus only papers

that report evolutionary rates in either of two metrics, darwins and/or haldanes were

included in the database (evolutionary rates were not calculated from data reponed in

publications).
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In short, darwins represent rates of phenotypic change expressed on rhe logarirhmic

scale (base e) per million years and is calculated by taking the difference in naturallogarirhm

of trait means (observed wirhin a population through time, or across wirh a common

ancestor) and dividing by the lengrh of time in millions of years (Haldane, 1949, Gingerich,

1993). In contrast, the haldane represents rhe change in mean phenotype expressed in

srandard deviations per generation (Gingerich, 1993, Hendry & Kinnison, 1999), which

facilitares comparisons among species with dramatically different reproductive systems and

generation times (generation lengrh, in years, ranged from 0.1-30 in the database). For

furrher discussions concerning the derivation and interpretation of darwins and haldanes see

Gingerich (1993), Hendry and Kinnison (1999), and Hendry et al. (2008), and Appendix 1-1.

To a previously published version of the database (Hendry et al. 2008), I was able

to add a total of 305 rates of phenotypic change extracted from 10 papers (i.e. Seeley, 1986,

Bone & Farres, 2001, Fisk et aI., 2007, Gienapp et al., 2008, Hargeby et al., 2004, Haugen et

al., 2008, Herrel et aI., 2008, Michaud et al., 2008, Quinn & Adams, 1996, Eroukhmanoff et

al., 2009). The result was an expanded database of 2,989 and 2,570 estimates in darwins and

haldanes, respectively. The database includes rates from 90 species across a range of taxa:

plants (n= 26 species), freshwater invertebrates (n=2), marine invertebrates (n=7), insects

(n=4), teptiles (n=2), amphibians (n=2), fish (n=18), birds (n=18), and mammals (n=ll).

Each rate was assigned to one of two descriptive groups, invasive or native.

Definitions and terminology surrounding invasive species are often vague and contentious

(Valery et aI., 2008). I assigned the designation of 'invasive' to species that have been moved

beyond their native range (defined by rheir intrinsic dispersal capacity) through obvious

human activity, such as intentional introductions for sport fishing (e.g. Chinook salmon in
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Z, Kinnison et al., 2001), sport hunting (rabbits in Australia, WiJ]jams & Moore, 1989),

bio-control (mosquito fish in Hawaii, Steams, 1983), or research (guppies introduced above

waterfalls in Trinidad, Endler, 1988). Additionally, the spread of species beyond the site of

initial introduction via range expansion was included in the invasive species category.

Alternatively, species were categorized as 'native' if they were evolving in locations within

the confines of their own dispersal capabilities (e.g. the finch species complex in Galapagos,

Grant, 1999). Furthermore, species were considered native that were colonizing new habitat

in the absence of direct human assistance (e.g. aquatic isopods colonizing new habitat in

Swedish lakes; Eroukhmanoff et al., 2009). This methodology resulted in four instances

where species were categorized as both invasive and native depending on the context, such

as sockeye salmon (0. nerko) which is native to the Columbia River (Quinn & Adams, 1996)

and an invader to Lake Washington (Hendry et al., 2000), though the number of these

instances were too small to allow a formal analysis. There is additional ambiguity in some

designations such as whether brown trout (5011110 InitIo) colonizing portions of a native

watershed following passage around hydropower dams (Haugen et al., 2008) should be

categorized as native or invasive (they were analyzed as natives). Echoing the sentiments of

Hendl)1 et al. (2008), I invite readers to reanalyze the evolutionary database (available at

http://dx.doi.org/l0.5061/dryad.8078) with the designations they feel are most appropriate.

Additional information was collected for each evolutionary rate such as details of the

experimental design and whether a trait in question had a demonstrated genetic basis.

Phenotypic change within a population through time was assigned an allochronic

experimental design whereas between-popuJation divergence through time was categorized

as a synchronic experimental design (sensu Hendry and Kinnison 1999). Evolutionary rates
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resulting from 'common-garden' experiments or from quantitative genetic studies were

designated as 'genetic', and others were designated 'phenotypic.' This last categorization

facilitated investigations of the potential role of environmentally induced phenotypic

plasticity in divergence between native and invasive species.

I based analyses on the average amount of change at the species, genus, and family

taxonomic levels to control for non-independence of evolutionary rate estimates (following

Einum & Fleming, 2002). This non-independence, which arises from the disproportionate

contribution of certain species to the database, is henceforth referred to as the 'Steams

Effect' (in honour ofSteve Steams' copious work on mosquito fish life history evolution).

This hierarchical methodology assumes that higher level taxonomic groupings have a greater

degree of evolutionary independence, thereby facilitating the interpretation of differences

between invasive and native species while controlling for possible confounds of shared

ancestry. Furthermore, evolutionary rates scale negatively with time due in part to spurious

self-correlation (Hendry & Kinnison, 1999, Gingerich, 1983), thus analyses to investigate

differences in the rate and form of phenotypic change were conducted on the averages of

the absolute value of the numerator of darwins or haldanes as following Hendry and

Kinnison (1999), to account for temporal effects.

A combination of visual inspection of evolutionary rates (representing all rate

estimates) and binomial tests for equality of proportions (after correcting for the Steams

effect) were used to investigate differences in the contribution of invasive vs. native species

to evolutionary studies (Crawley, 2002). Chi-square tests on number of species classified as

invasive or native species that were derived from aIlochronic vs. synchronic experimental

designs and from designs conducted in the field or common-environments. Generall.inear
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models with temporal covariates ( CaVA) were fit to various taxonomic subsets of data

(e.g. species, genus, family) to investigate differences in absolute rate of phenotypic change

between invasive and native species and to test for evidence supporting an abrupt or gradual

model of phenotypic change. I interpreted a lack of correspondence between the amount of

phenotypic change and the time interval of observation as evidence for abrupt phenotypic

change whereas positive relationships between trait change and time was interpreted as

evidence of gradual change. That is, under the abrupt model of phenotypic change the

amount of change during short time intervals is as great as during long intervals and under

the gradual model the extent of phenotypic change increases with time interval of

observation.

The database assembled here precludes a direct examination of the influence of

environmental factors such as phenotypic plasticity on population divergence, thus I used an

indirect measure by fitting CaVA models to subsets of data resulting from I) field

studies; rates are 'phenotypic only', il) common-rearing/greenhouse studies; 'genetic only',

and iil) pooled datasets. I assume that the role of the environment and phenotypic plasticity

is maximized and minimized in the 'phenotypic only' and 'genetic only' datasets, respectively,

and that the pooled dataset integrates the role of genetics and the environment. Regardless of

the dataset used, A CaVA models were first fit to test interactions between the temporal

covariates and fixed grouping term (invasive or native species classification). on-significant

interactions were removed and the models were refit to aUow a direct examination of

differences among species designations (i.e. invasive vs. native). All statistical analyses were

conducted in R. v2.10.1 (R Development Core Team 2009). Finally, I refrain from referring

to observed phenotypic divergence observed in the database as evolution except in select
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cases (e.g. allochronic studies of heritable beak size evolution in Geospizafortis). I take this

conservative approach as inferring evolution from patterns of divergence has known

problems (e.g. see Fig.1. in Hendry and Kinnison 1999). Ultimately, identifying the genetic

basis of a trait does not in and of itself suggest evolutionary change as divergence of known

heritable traits can be the result of phenotypic plasticity as well as adaptive evolution

(discussed by Losos et aI., 2001, \XIest-Eberhard, 2003).

Data quality and potential biases

Comparisons of rate and form of phenotypic change were done while attempting to

control for additional variation and potential data biases. I controlled for the pervasive

influence of anthropogenic disrurbance on wild populations by comparing evolutionary

change in invasive species to native species in the absence of other obvious human

perturbations. Analyses comparing evolutionary trajectories and the potential role of the

environment and phenotypic plasticity in invasive species were based on rates from systems

of 'invasion and range expansion after invasion' where as rates for native species were

derived from systems labelled as 'in-situ natural conditions and natural range expansion' (i.e.

minimal anthropogenic disturbance). Mounting evidence suggests that anthropogenic activity

influences both the strength of selection and rate of evolutionary response in wild animal

populations (Hendry et al., 2008, Darimont et aI., 2009) and failing to control for such

effects resulted in altered interpretation and obscured comparisons of invasive and native

species (results not presented here).

Invasive species comprise a non-random small subset of species with traits that are

likely conducive for establishing and invading new habitats (Kolar & Lodge, 2001, Kolar &
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Lodge, 2002, Williamson, 1996) and are unrepresentative of most species (i.e. are biased).

However, this bias is biologically pertinent and is not an artifact of data collection or

publication partiality and thus differences in the rate or form of phenotypic change between

invasive species and native species arising from this 'bias' is still of interest. In contrast, there

could be a bias towards publication of dramatic or 'rapid' evolutionary change that may be

more common in invasive species or individuals transplanted among habitats (e.g. Reznick et

al., 1997) compared to native species. On the other hand publication of evolutionary rates

using native species are often done during events where selection may be abruptly strong,

such as climatic events like El Nino (Grant, 1999). Ultimately then, the discrepancy between

comparing rates of invasive and native species due to publications biases alone may not be

severe as it seems.

To investigate the role of the environment and by extension potentially

phenotypic plasticity in influencing rates of divergence between invasive and native species I

compared a subset of data from quantitative genetics studies and common rearing

experiments ('genetic rates' where environmental effects should be minimized) to data

coUected from wild populations (,phenotypic rates' where divergence is due to genetics and

environment). This comparison had the potential to lead to dubious interpretation arising

from inherent experimental biases, specifically potential gene by environment interactions

occurring in the 'genetic' dataset that is absent in the 'phenotypic' dataset. This interaction

may occur in comparing divergence of F I lab raised offspring of wild parents which

obviously have been reared in different environments. This gene x environment interaction

is likely not an issue in quantitative genetics studies conducted in wild populations or in

long-term laboratory studies on strains or clones. To investigate this potential bias I
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categorized the genetic rates of evolution as the result of 'wild' (experiments done entirely in

the wild), 'semi-wild' (experiments done on lab reared F1 offspring of wild parents), or 'lab'

(experiments based on F20r greater generations or cloned strains).

o potential bias was observed between experimental groups in either haldanes or

darwins (interaction term of ANCOVA with temporal covariate F2• 3Z =0.04, P =0.97). This

suggests that 'wild', 'semi-wild', and 'lab' groups are cliverging similarly through time and are

clirectly comparable to the 'phenotypic' dataset as no potential gene x environment

interaction was found. Ideally, one would compare rates of trait clivergence from stuclies

reporting both a phenotypic and genetic rate of evolution; however, I only found 14 studies

that fit this criteria resulting in comparisons of a very small number of species (five invasive

and four native) making interpretation clifficult. Thus, the investigation of the role of the

environment and potentially phenotypic plasticity utilized the entire 'genetic' and

'phenotypic' datasets while acknowledging these underlying caveats.

Results

Have invasive and native species contributed equally to the database of evolutionary
rates?

Taken as a whole, 83% and 84% of the available rates (all rates combined, not

controlling for non-independence of rates, 'Steams Effect') in darwins and haldanes,

respectively, were derived tllrough the study of invasive species (Table 1-1). However, this

dramatic skew in contribution is due mostly to tile Steams Effect (e.g. 1,100 rates in

haldanes are contributed by Steams personaUy) and controlling for species non-

independence results in a greater proportion of species in tile database classified as native

35



rather than invasive. Of the 90 species in the database, 33% were classified as invasive and

67% were classified as native, even though more individual rates are derived from the

invasive species. This skew towards native species in the database is statistically significant

(darwins, X 2
df=1 =16.1, p<O.OOl) indicating that over half of the species examined in studies

of contemporary evolution were evolving within their native ranges.

Are invasive species typically investigated in the context of divergence from a
common ancestor or within-population divergence and do rates of phenotypic
change typically result from traits with a known genetic basis?

First examination of Table 1-1 suggests that invasive species reveal more about

population divergence from a common ancestor rather than about within-population

change, and more about overall phenotypic change than about change with a known genetic

basis. Indeed, approximately 81 % of the available estimates involving invasive species in

both darwins and haldanes result from studies with synchronic experimental designs (Table

1-1). Similarly, 70-72% of the rates from invasive species results from observations of trait

changes without confirmed genetic bases, and thus potentially results from environmental

effects and includes a role of phenotypic plasticity (Table 1-1). Invasive species were

significantly more likely to be examined within the context of between-population

divergence (synchronic studies) rather than within-population change (a1lochronic studies)

even after controlling for the effect of non-independence of available rates, the Steams

Effect (X2df =1= 18.9, p<O.OOl). In contrast, controlling for the Steams Effect yielded

statistically similar proportions of invasive and native species used in common-environment

vs. field studies (X2df = I =0.06, P =0.80).
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Are native and invasive species evolving along similar trajectories and do they
support the hypothesis of gradual or abrupt phenotypic change?

Results with darwins as a rate metric suggest that invasive and native species are

evolving along similar trajectories at all taxonomic levels, as inferred by insignificant

interaction terms to fit CaVA models (fable 1-2). Moreover, the temporal covariate (in

years) was not significant at any taxonomic level, indicating that invasive and native species

are evolving over similarly flat trajectories (Fig. 1-1). Trait change that is independent of time

interval of observation in both invasive and native species supports the model of abrupt

phenotypic change and suggests that the magnitude of change occurring early in the time

series is similar to magnitude of time occurring later. FinaUy, removal of non-significant

interaction terms and non-meaningful covariates yields similar and non-significant (via

ANOVA) estimates of mean phenotypic change between invasive and native species (fable

1-2), thereby suggesting that the both the rate and form of phenotypic change is similar

among species.

In contrast, results with haldanes as the rate metric yield different interpretation

among invasive and native species. Highly significant (p<0.001) interaction terms were

detected between the temporal covariate (measured in generations) and the grouping

classification term (invasive or native) at the species, genus, and family taxonomic levels

(fable 1-2). This interaction was the result of differences in evolutionary trajectories

whereby trait change in invasive species showed no relationship to time and trait change in

native species varied positively and significantly with time (p<0.001 at aJl taxonomic levels,

Fig. 1-1). The influence of three observations (advance in egg-laying date in Sterna paradisaea

and Stllrniaphillippensis, reported in Gienapp et al. (2008) and divergence of a suite of traits in
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an aquatic isopod Asel/lls aqllaticlls Eroukhmanoff et al. (2009) ) is apparently driving this

interaction effect as removal of these observations yields non-significant interaction terms

(generation*invasion status p=0.21). Implications for the underlying potential role of the

environment and by extension perhaps phenotypic plasticity in this interaction are discussed

subsequently.

Are environmental effects such as plasticity influencing our interpretation of
divergence between invasive and native species?

To investigate the potential role of phenotypic plasticity, ANCOVA models were fit

to subsets of data at the species taxonomic level that included studies that were 'phenotypic

only' and 'genetic only.' Analyses at higher taxonomic levels yielded similar interpretation

and are not reported here. Phenotypic only studies were the result of field observations or in

instances where heritable bases for traits had not been determined. In contrast, genetic only

studies were the result of studies done in common environments or the results of

quantitative genetic research. Thus, it was assumed that the influence of the environment

and potentially phenotypic plasticity would be most obvious in the phenotypic only studies

and its influence minimized in genetic only studies.

A potentially important role of environmental effects such as phenotypic plasticity in

driving species divergence emerged from two lines of evidence, both surrounding results

from native rather than invasive species. First, invasive species and native species showed

statistically similar rates and forms of divergence in all analyses where the potential role of

the environment and plasticity were possible (datasets including phenotypic rates), but a

highly significant (FII,241=5.68, p=0.03, Table 1-2, Fig. 1-2) difference in the mean rate of

change when controlling for the environment (Table 1-2, Fig. 1-2). Native species displayed
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a larger phenotypic response in the dataset of genetic rates compared to their invasive

counterparts, suggesting both a high evolutionary and plastic potential. However, these

results also suggest a high evolutionary potential of invasive species despite clear evidence of

them being extraordinarily plastic.

Second, results in haldanes reveal a significantly positive relationship observed in

native species between absolute phenotypic change and time (in generations), which was the

result of phenotypic studies, and particularly driven by tlle influence of observations of

advancing egg-laying date in Stenia paradisaea and SttlnliaphiJlippensis. Changes in breeding

phenology in birds is often assumed to have a strong environmental component (Gienapp et

aI., 2008, Yeh & Price, 2004) and thus the marked changes in egg-laying date observed here

may potentially be due to plastic responses to climatic change (Fig. 1-2). In contrast to the

results discussed above in darwins, no significant difference in the mean magnitude of trait

change was detected between invasive and native species (fable 1-2) when controlling for

the potential influence of the environment and plasticity.

Discussion

Taken as a whole, results here suggest an important role of invasive species in

revealing the rate and form of phenotypic change in wild populations. Both invasive and

native species provide evidence for abrupt rather than gradual phenotypic change as change

is typically independent of time. Results suggest that the apparent abrupt changes observed

may be due in part to phenotypic plasticity. Counter to expectation, invasive species did not

exhibit markedly greater phenotypic change compared to native species even though rapid

reproductive isolation and marked changes in selection pressures following biological
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invasions seem ripe for driving dramatic phenotypic change. However, several caveats

emerged with regard to the utility of invasive species as models for illuminating evolution.

First, the preponderance of individual rate estimates was derived from the study of invasive

species, but the majority of these rates result from the extensive study of only a few species.

Indeed, many studies using invasive species employ study designs to investigate trait changes

in multiple populations derived from a recent common ancestor. Thus on an individual

species level, native species rather than invasive species contribute disproportionally to the

database of evolutionary rates. Second, the majority of individual rates extracted from

invasive species are phenotypic only and do not have determined heritable components,

thereby integrating both environmental and genetic effects. Caveats notwithstanding, results

here highlight the role of invasive species as opportunistic models for examining population

divergence and evolution.

Invasive species contribution to available estimates of phenotypic change

On an absolute basis, invasive species have disproportionately contributed to the

database of available rates of phenotypic change, which is indicative of their suggested utility

as excellent models for investigating contemporary evolution (Huey et aL, 2005). However,

the total number of invasive species investigated in studies of contemporary phenorypic

change is relatively small compared to the number of native species used as models to

examine evolution in nature. As a result, the number of estimates on a per species basis

derived through the study of invasive species is large (-SO/species) compared to native

species (-IO/species). This discrepancy is driven by the combination of large number of

rates extracted from a relatively small number of invasive species used as models. The small

number of invasive species used should perhaps not be a surprise as only a small fraction of
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species that are introduced succeed in establishment and successful invasion (Williamson,

1996, Lockwood et aI., 2007). Furthermore, the same species are introduced repeatedly to

locations across the globe (Rahel, 2000), simultaneously representing their social value (e.g.

use as sport or biological control) and inherent ability to successfully establish self-sustaining

populations (I olar & Lodge, 2002). The resulting global biotic homogenization likely has

lasting ecological and evolutionary implications, though a refined understanding of the

consequences of community homogenization is still emerging (Olden et al., 2004). At a more

basic level, studies using invasive species usually employ multiple pair-wise comparisons of

trait changes between populations derived from a single common ancestor thereby inflating

the number of estimates derived from a single species. These caveats surrounding the use of

invasive species as evolutionary models should not detract from their value as opportunistic

natural experiments. Indeed, investigating the eco-evolutionary dynamics of the small, non­

random, subset of species that become serial global invaders may well give insight into

species invasibility and biological invasions in general (e.g. Kinnison et al., 2008).

Experimental design and genetic control of traits

Biological invasions lend themselves to synchronic experimental designs, which by

definition serve to quantify phenotypic divergence through time. Correspondingly, results

here suggest that invasive species are significantly more likely, even after controlling for the

Steams Effect, to be examined in this context rather than in allochronic studies that better

serve to investigate within-population phenotypic evolution per se. In contrast, native

species are used in both synchronic and allochronic experiments at statisticaLly similar

proportions. Synchronic studies are designed to provide insight into population divergence;

however, they can also provide insight into evolution, albeit with careful interpretation. An
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observed rate of population divergence is the product of multiple evolutionary trajectories,

which may be indicative of similar or markedly different rates of evolutionary change. Thus,

caution must be used when interpreting and inferring evolutionary change from observed

divergence rates (discussed by Hendry & Kinnison, 1999). It is here that contemporary

invasions of non-native species provide opportunities to disentangle divergence from

evolution via tracking trait change in the early years of the invasion or colonization and

ideally coupling with laboratory rearing studies. Thankfully, there are many excellent model

systems to examine, such as fishes colonizing newly accessible habitat (Milner et aI., 2008,

Whiteley et al., 2009, Anderson et aI., 2010) or passerine birds invading the campus of the

University of California San Diego (Yeh, 2004).

Traditional definitions of phenorypic evolution are predicated on a determined genetic

basis for traits in question (e.g. West-Eberhard, 2003). Thus, trait change with no determined

heritable basis is potentially the result of environmental effects (e.g. maternal investment)

and/or phenotypic plasticity, thereby limiting the utility for understanding evolution as such.

This does not imply that invasive species are not excellent models for investigating

evolutionary processes, but rather the lack of a clear genetic basis to traits fails to control for

the influence of other important sources of trait variation. Results here reveal that on an

absolute basis the majority of available rates derived from invasive species come from traits

with no determined heritable component, which at face value suggests that invasive species

provide less insight into phenotypic evolution. However, on a species level after correcting

for the Steams Effect, statistically equal proportions of rates in invasive and native species

result from common garden experiments (environment controlled, determination of genetic

basis possible) or wild experiments (environment not controlled, determination not
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possible). This latter result confirms the intuitive prediction that both invasive and native

species have potential to provide insight into phenotypic evolution in nature.

Are native and invasive species evolving along similar trajectories and do they
support the hypothesis of gradual or abrupt phenotypic change?

Results here provide little evidence that invasive and native are evolving over

separate trajectories and generally support the model of abrupt phenotypic change as trait

change rarely varied as a significant function of time. These results are, by and large,

analogous to the findings of Hendry et al. (2008) and Darimont et al. (2009) who report

similar evolutionary trajectories (slope of phenotypic change regressions) between systems

evolving under natural vs. anthropogenic contexts. In accordance with the findings here,

both Hendry et al. (2008) and Darimont et al. (2009) report that phenotypic change was

independent of the time interval of observation thereby supporting the model of abrupt

phenotypic change. However, two notable distinctions emerged between the findings here

and those analyses and prior work. First, a significantly positive relationship between

phenotypic change and time was detected in native species when measured with haldanes.

This pattern suggests that, in this case, native species support the model of gradual

evolutionary change whereby the magnitude of phenotypic change increases as a function of

time. Additionally, this emergent pattern supports unique evolutionary trajectories between

native and invasive species; however, subsequent analyses suggest that environmental effects

and potentially phenotypic plasticity maybe underpinning this result (see below).

Furthermore, it is possible that this pattern arises because time in haldanes is based on

generations, rather t1,an years, which is more appropriate for comparing across species that
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differ greatly in generation lengrh (range =0.1-30 years in the database). For this and several

other reasons, Hendry and Kinnison (1999) conclude that rates measured in haldanes,

compared to darwins, are more appropriate in studies of contemporary phenotypic change;

however, inclusion of darwins in this analysis revealed insights into the potential role of

plasticity that might otherwise have been overlooked.

Second, I found little evidence that the magnitude of phenotypic change differed

between native and invasive species while controlling for the effect of time. In contrast,

Hendry et al. (2008) and Darimont et al. (2009) show that, compared to natural systems, the

magnitude of phenotypic change is greater in systems experiencing anthropogenic

disturbance (including biological invasions) and especially high in animal popuJations subject

to selective harvest. That no difference in the magnitude of phenotypic change in native and

invasive species was detected here is curious given that abrupt changes to natural selection

pressures are expected following introduction to novel habitats (Lahti et aI., 2009) or during

extraordinary environmental conditions (Lande, 2009). It is plausible that research involving

native species is biased towards circumstances of similarly abrupt changes in selection, such

as characters shifts in beak morphology of Darwin's finches following El ino events

(Grant, 1999) or advances in bird breeding phenology during periods of global climate

change (Gienapp et al., 2008).

Furthermore, this result indirectly supports the increasingly reported pattern tllat

human activity in natura'! systems acts as a powerful evolutionary force (Hendry et aI., 2006,

Palumbi, 2001, Darimont et al., 2009, Hendry et aI., 2008). Here I report no difference in the

magnitude of phenotypic change between species of human-mediated biological invasions

and native species, thereby suggesting that the effect of anthropogenic activities reported
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elsewhere must primarily arise from other mechanisms besides species invasions. The

obvious mechanism likely underpinning dramatic phenotypic changes in anthropogenically

disturbed systems is directed harvest and exploitation of wild populations. Recent empirical

evidence based on long-term datasets of exploited populations reveals complex patterns of

trait selection (Edeline et al., 2007, Kendall et al., 2009, Carlson et al., 2007, Siepielski et al.,

2009) and the patterns of phenotypic change are correspondingly complex (Darimont et al.

2009).

How does the environment and potentially phenotypic plasticity influence our
interpretation of divergence between invasive and native species?

Results here suggest that environmental effects such as phenotypic plasticity may be

contributing to the emergent patterns of native and invasive species phenotypic change. This

is inferred by two general sources of evidence using both darwins and haldanes as rate

metrics, both emerging from results of native species. First, invasive and native species show

similar magnitude of phenotypic change in contexts including a potential role of the

environment and plasticity, but native species exhibit greater response in contexts

minimizing the effect of the environment. This result is counter to the expectation that

invasive species exhibit greater phenotypic plasticity compared to their native counterparts

(Richards et aI., 2006 and references therein). However, to date, empirical evidence that

supports this expectation has been equivocal (Hulme, 2008). This equivocation likely stems

from inherent difficulty in drawing comparisons as the results are contingent on the

environments in which they are conducted (Wiiliams et aI., 2008), sensitive to source

populations used (Colautti et aI., 2009), and dependent upon the chosen metric of plasticity

(ValJadares et al., 2006). Similarly here, interpreting species differences in the potential to
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exhibit phenotypic plasticity is dubious as suites of different traits are being compared

among environments. Indeed the environmental influences on studies of plasticity make it

exceedingly difficult to accurately predict responses to changing environments (Husby et al.,

2010), thereby representing a daunting challenge in a rapidly changing global climate.

Furthermore, the magnitude of phenotypic trait change expressed by invasive species

in common-garden environments was significantly less than native species in the same

context. Theory predicts that invasive species are likely to experience loss of genetic

vatiability following introduction (Lock-wood et al., 2007), which in turn is expected to

influence the capacity for expressing phenotypic variability (Allendorf & Luikart, 2007).

However, empirical evidence suggests that newly established invading populations rarely

show signs of reduced genetic variation (Wares et al., 2005) and correlations between genetic

and phenotypic variability are often weak (Allendorf & Luikart, 2007). Thus, it seems

plausible that the significantly reduced magnitude of phenotypic change by invasive species

observed here is the result of additional, though not mutually exclusive, mechanisms. For

example, it is possible that the common-garden environments chosen for examining the

invasive species were too benign to elicit phenotypic responses in these species (pujolar et

al., 2006, Ghalambor et al., 2007) and that other common-gardens would have yielded

different interpretations (Williams et al., 2008).

Second, results with haldanes as a rate metric provide complimentary evidence for

the role of phenotypic plasticity in the divergence of native and invasive species. Native

species displayed evidence for a gradual model of evolution via a significantly positive

relationship between phenotypic change and time (as measured in generations). However,

this relationship is non-significant when controlling for environmental effects (i.e. when



traits with determined genetic components are analysed separately) thereby implicating the

role of plasticity and suggesting that native species are capable of exhibiting dramatic

phenotypic responses in nature. The ability for plasticity to maintain continued trait change

observed in native species is intriguing and worthy of additional investigation, but only

seems plausible if plasticity itself was evolving through time. Interestingly, the potential for

plasticity to evolve is supported by recent theoretical (Lande, 2009) and empirical findings

(Crispo eta!., 2010).

Recently, there has been rejuvenated interest in the role of phenotypic plasticity to

influence the evolution of populations (reviewed by West-Eberhard, 2003) though debate

and confusion surrounding its mechanisms and evolutionary role still abound (Via et aI.,

1995, Crispo, 2007, Pigliucci, 2007). Specifically, it is unclear whether plasticity serves to

shield genotypes from selection or works as a mechanism to create novel variation on which

selection acts and thus whether plasticity enhances or retards the rate of phenotypic

evolution (Ghalambor et al., 2007). Results here support the hypothesis that plasticity

underlies the phenotypic variation observed in wiJd popuJations, but it remains unclear

whether these popuJations have genetically diverged. Meta-analyses confirm significantly

positive correlations between indices of population differentiation for quantitative traits and

neutral genetic markers, thereby suggesting that phenotypic divergence observed here may

indeed be indicative of underlying genetic changes (Leinonen et aI., 2008, MeriJa &

Crnokrak, 2001). Thankfully, attempts to understand, in a holistic fashion, the mechanistic

underpinnings -both genetic and environmental- of phenotypic variation are mounting,

especiaJJy with regard to how phenotypic variation allows organisms to respond adaptively to

novel or extreme environments (Ghalambor et aI., 2007, Lande, 2009). This is especiaLly
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timely in an era of dramatic global change; however, it remains to be seen how abruptly

changing interactions of phenorypic change, firness, and population abundance (i.e. eco­

evolutionary dynamics) influences the long-term sustainability and persistence of exploited

or invading species (Kinnison & Hairston, 2007, Kinnison et al., 2008).
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Chapter One Tables

Table 1-1. Contribution of invasive species and native species to available estimates of
evolutionary change in two rate metrics, haldanes and darwins. Proportions of total available
rare estimates are shown within the context of experimental design (alIochronic or
synchronic) and whether the rate derived from a trait with (genetic) or without (phenotypic)
a determined heritable basis.

Species designation

haldanes(N=2131)
darwins (N=2450)

Experimental design
Allochronic vs. Synchronic Genetic vs. Phenotypic

0.03 0.81 ----"-'.0......;..13-'---"---'--0.7;..;.0.0""'"'-

0.02 0.81 0.13 0.72

haldanes(N=539)
darwins (N=439)

0.07
0.09

0.09
0.08

0.06
0.06

0.11
0.11

49



Table 1-2. Results of statistical comparisons between invasive species and native species based on mean absolute phenorypic change
observed at the species, genus, and family taxonomic levels using metrics of Datwins and Haldanes. ANCOVA models were fit to subsets
of data based on traits with (genetic) or without (phenotypic) determined heritable components or pooled data (pheno & Gene). Sample
sizes (N) represent the number of species involved in comparisons and values are F-statistics for the effects of classification (invasive or
native), time (years or generations), and their interaction. Means are least-square estimates of phenorypic change in invasive and native
species while controlling for time. Values significant at P<0.05* or P<O.Ol **.

ANCOVA with interaction ANCOVA without interaction Means
Rate metric Taxanomiclevel Study design N:invasive/native Classification Time Interaction Classification Time Invasive Native

Darwins Species Pheno&Gene 32/29 0.49 0.22 1.00 0.49 0.22 0.13 0.20
Darwins Genus Pheno & Gene 29/29 1.02 0.45 0.53 1.03 0.46 0.16 0.27
Darwins Family Pheno&Gene 23/23 0.48 0.67 1.84 0.05 0.32 0.16 0.27
Darwins Species Phenotypiconly 23/19 2.77 0.01 0.00 2.83 0.01 0.12 0.08
Darwins Species Genetic only 15/11 3.89 1.39 0.00 4.06 1.46 0.15" 0.58"

Haldanes Pheno & Gene 33/29 3.91 0.00 19.1""
Haldanes Pheno&Gene 30/26 3.50 0.02 16.5""
Haldanes Pheno & Gene 23/20 2.90 0.02 11.4""
Haldanes Phenotypiconly 24/25 10.8" 0.01 43.6""
Haldanes Genetic only 13/10 0.15 0.14 0.638
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Fig. 1-1. Phenotypic changes in invasive species (filled points) and native species
(open points) in darwins Qeft column) or haldanes (right column) expressed at the
species (a,b), genus( c,d), and family (e,/:) taxomomic level plotted as a function of
time interval (years or generations for darwins or haldanes, respectively). Lines
represent ordinary least squares regressions fit to averages from invasive species
(dotted line) and native species (solid line).
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Fig. 1-2. Absolute phenotypic changes (darwin/haJdane numerator) in invasive species
(filled points) and native species (open points) in darwins Qeft column) or haldanes (right
column) expressed at the species taxomornic level plotted and plotted as a function of
time interval (years or generations for darwins or haJdanes, respectively). Top panels
represent 'Phenotypic' data where traits were measured in wild individuals and bottom
panels are changes in traits measured in common-garden or quantitative genetic studies
'Genotypic'. Lines represent ordinary least squares regressions fit to averages from
invasive species (dotted line) and native species (solid line).
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Chapter 2: Landscape factors that shape a slow and persistent
aquatic invasion- brown trout in Newfoundland 1883-2010
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Abstract

Aim: We investigated watershed-scale abiotic environmental factors associated with

population establishment of one of the 'world's 100 worst alien invaders' on a temperate

Atlantic island. Within the context of the conservation implications, we aimed to quantify 1)

the early history and demographics (numbers and origins) of human-mediated brown trout

(Sa/mo Inltta) introductions, 2) the current distribution of established populations, and 3) the

indentify watershed-scale environmental factors that may resist or facilitate trout

establishment.

Location: Island of Newfoundland, Canada.

Methods: We combined field sampling with historical and contemporary records

from literature to assemble a presence-absence and physical habitat database for 312

watersheds on Newfoundland. Probability of watershed establishment was modelled witll

general additive ANCOVA models to control for non-linear effects of propagule pressure

(i.e. the distance to and number of invasion foci within a biologically relevant range) and

model performance based on AlC

Results: Between 1883 and 1906, 16 watersheds were introduced with brown trout

from the Howietoun Hatchery, near Stirling, Scotland. Since that time populations have

established in 51 additional watersheds at an estimated rate of spread of 4 km y(1 . We do

not detect any obvious abiotic barriers to resist trout establishment, but show that for a

given amount of propagule pressure that relatively large and productive watersheds are most

likely to be established.

Main conclusions: Brown trout have successfully invaded and established in

watersheds of Newfoundland and are currently slowly expanding on the island. Populations

are more likely to establish in relatively large and productive watersheds, thereby supporting

predictions of island biogeography theory. However, we suggest that all watersheds in

Newfoundland are potentially susceptible to successful brown trout invasion and that abiotic

factors alone are unlikely to sufficiently act as barriers to population establishment.
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Introduction

Island biogeography theory (lBT) predicts that distributions of organisms are

maintained by a dynamic balance between local extirpation and colonization (MacArthur &

Wilson, 1967). According to classic IBT, the asymptotic number of species (i.e. species

richness) should increase with increasing size of an island or habitat fragment and decrease

with greater distance from a colonization source. IBT is elegant in its simplicity, has been

supported empirically by iconic experimental manipulation of whole islands (Simberloff &

Wilson, 1969) as well as contemporary research in fragmented landscapes (e.g. Leach &

Givnish, 1996), and has been influential to the fields of conservation and invasion ecology

(Losos et aI., 2009).

Humans frequently bridge the barriers to dispersal thereby facilitating the spread of

organisms around the globe (Lockwood et aI., 2007) representing large-scale replicated

experiments to test tenets of IBT (Sa.,x et aI., 2005). One of the emerging insights of these

imperfectly planned experiments is that ecological systems rarely show signs of saturation

and that establishment of non-native species into novel environments is common (Sax et aI.,

2007). However, the ability to successfully invade varies among taxa (Williamson, 1996,

Jeschke & Strayer, 2005) and is context dependent (Korsu et aI., 2007) making predictions of

which species will become invaders especially elusive. What is becoming increasingly clear is

that vertebrates are exceptionally successful invaders, and once introduced have a high

potential to become established Oeschke & Strayer, 2005).

Freshwater fishes species of the genera Microptertls (Warner, 2005). Oncorhy!lc/JIIs

(Crawford & Muir, 2008), Sa/ue/illtls (Dunham et aI., 2002), and Sa/llIo (MacCrimmon &
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Marshall, 1968) are successful global invaders, having been repeatedly spread through

intentional introductions for recreational fishing and aquaculture. Recent years have shown a

substantial increase in our understanding of the ecological risk factors (e.g. diet and niche

breadth, temperature tolerances, and life history strategies) that likely underpin the success of

these species (Kolar & Lodge, 2002, Olden et aI., 2006, Ruesink, 2005). Additionally, recent

work has highlighted the important role of propagule pressure, the societal motives behind

the original introductions, and interactions with abiotic environmental features associated

with invasion success (reviewed by Ruesink, 2005, Lockwood et al., 2005, Moyle &

Marchetti, 2006). Taken together, these tools have greatly enhanced our ability to understand

the patterns and processes behind the successful invasions of these freshwater fish species;

however, continued work remains vital as members of these species are often implicated in

the decline or extirpation of local species (McDowall, 2006) and the disruption of

ecosystems (Schindler et aL, 2001).

Among the most successful freshwater fish invaders is brown trout (5. tmlta). Brown

trout has the ominous distinction as one of the '100 worst invasive alien species' by the

Invasive Species Specialist Group (Lowe et 01., 2000), and is a current conservation concern

in many regions including ew Zealand (McDowall 2006), the Falkland Islands (McDowall

et aL, 2001), the Patagonia region of South America (pascual, 2007), and orth America

(Waters, 1983, van Zyll de Jong et aI., 2004). One of the first sites of brown trout

introduction to North America was to the island of Newfoundland in the late 19th century

(Scott & Crossman, 1964, Andrews, 1965, Hustins, 2007 Fig. 2-1). The introduced trout,

which were descendants of non-anadromous (i.e. freshwater resident) ancestors, quickly

established self-sustaining populations and, as they have in other regions (e.g. Launey et 01,
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2010), spread to new locations presumably by anadromous (i.e. sea-going) dispersers.

However, very little is known about the current distribution of brown trout on the island

and the physical environmental factors associated with establishment of watersheds are

entirely unknown. Moreover, recent declines in populations of native salmonids (Atlantic

salmon, S. salarand brook chare, S.fotltitlalis) in Newfoundland (DFO, 2006) mirror patterns

of species displacement and competitive exclusion shown elsewhere (Waters, 1983, Korsu et

aI., 2007), thus a better understanding of the brown trout invasion is urgently needed for

planning for conservation of native fishes.

The overarching goal of this paper is to quantify the watershed-scale factors

associated with brown trout population establishment with the aim of informing future

conservation plans for the long-term persistence of native fish. To meet this objective, we 1)

document the early history and demographics (numbers and origins) of human-mediated

brown trout introductions, 2) determine the current distribution of established populations,

and 3) identify abiotic environmental variables associated with presence of trout populations

in an attempt to elucidate the factors facilitating or impeding establishment. Here we

combine field sampling and data assembled from literature and existing government

databases to test predictions generated from lBT and invasion theory that probability of

watershed establishment is positively associated with watershed size and productivity while

controlling for distance to invasion sources (a surrogate for propagule pressure).
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Materials and methods

Species description

Brown trout is a polytypic species with a native Eurasian distribution, which in the

course of approximately 90 years (ca.1852-ca.1938) became a successful global invader via

extensive intentional introductions (MacCrimmon & Marshall, 1968, Elliott, 1994). The life

history of brown trout varies markedly among populations and among individuals within

populations, but in general involves fall spawning by mature individuals in flowing waters,

parental care by females in the form of egg burial, protracted embryonic development and

use of small streams by juvenile trout (Bagliniere & Maisse, 1999). Brown trout exhibit two

alternative life history strategies, a complete life-time in freshwater (freshwater residency) or

temporary feeding migrations to sea (anadromy) followed by homing to natal streams for

reproduction (Stuart, 1957, Crisp, 2000, Jonsson & Jonsson, 1993). Brown trout are capable

of highly accurate homing (Armstrong & Herbert, 1997); however, a small proportion of

individuals either fails or 'decides' not to home and stray to other systems to breed. Straying

by anadromous brown trout thereby represents a mechanism for invasion of suitable habitat

(Launey et aI., 2010).

Invasion origins

The brown trout invasion process to ewfoundland follows the archetypical pattern

of all successful biological invasions (Kolar & Lodge, 2001): I) transport of propagules and

survival upon introduction, it) establishment of populations, iit) spread to novel areas, and iv)

ecological impact. A detailed history of brown trout importation and introductions goes

beyond the scope and objectives of this paper so we only provide a brief overview here.
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Shipments of trout embryos from the Howietoun hatchery in Stirling, Scotland began in

1883 and were followed by other importations in 1884, 1892, 1905-1906 (Frost, 1940,

Andrews, 1965, Scott & Crossman, 1964, Hustins, 2007). The majority of imported trout

were 'Scottish' strain, though latter shipments were comprised by 'English' and 'German'

strains (Hustins, 2007). Imported trout survived well upon introduction and established

populations in watersheds in the surrounding vicinity of St. John's laitland, 1887). Brown

trout escaped into a watershed with a route to the sea in 1884 representing the first potential

source of anadromous colonizers. Subsequent watersheds were established presumably by

straying anadromous fish, though the timing and order of watershed invasion and

establishment are unknown. Ecological impacts of the brown trout invasion are not well

understood, but likely include competition and c1isplacement of native fish (van ZyU de Jong

et al., 2004, Gibson & Cunjak, 1986) and hybriclization with Atlantic salmon (Verspoor,

1988, McGowan & Davidson, 1992). Readers should refer to Hustins (2007) and Fig. 2-2.

for additional details.

Data sources and quality

Database of population establishment

We used multiple sources of data to address the invasion origins, c1istribution of

established popuJations, and watershed factors associated with brown trout establishment.

Data to investigate the historical origins and demographics of early introductions were

compiled from Maitland (1887) and Hustins (2007 and references therein). We assembled a

database of watersheds that are established or unestablished by brown trout populations

from the Department of Fisheries and Oceans (DFO) ewfoundJand Freshwater Salmonid
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Inventory, which was initiated to provide base line data on all river systems on the island of

ewfoundland 1
• We combined these records with historical data from Maitland (1887),

Hustins (2007), and the reported clistribution of brown trout by DFO's Angler Guide (DFO,

2010), which lists brown trout watersheds managed for sportfishing. In doing so, we

recognized that the numbers and locations of historical stocking, as weU as DFO's data on

the current clistribution of brown trout are conservative and have associated caveats.

Uncertainty in tl,e current known distribution of brown trout arises from a host of

complicating factors such as angler effort in certain areas or habitats (e.g. estuaries or salt

ponds), misidentifications with the closely related Atlantic salmon, and lack of reporting.

Thus in an attempt to address the uncertainty in the assembled presence-absence

database we used data from independent field sampling in 2008 and 2010. We selected

watersheds to sample within and near the edge of the presumed dispersal range of brown

trout (Fig. 2-3). Our choice of watersheds reflects a balance in time and large clistances to

cover as weU as objectives of other on-going complimentary projects concerning the trout

invasion. We employed single pass upstream electrofishing with a backpack electrofisher for

a minimum of an hour of active shocking time. We focused our sampling in the lower

sections (- Skm from the mouth) of watersheds assuming that if popuJations are established

inclividuals are most likely detected in these parts of the watershed (for empirical examples of

this pattern see Korsu et aI., 2007, Budy et aI., 2008). Moreover, we focused our efforts in

habitats associated with brown trout, such as pools, cut banks, and side-channels (Armstrong

et aI., 2003, Westley et aI., 2011). Taken together, we are confident that our sampling

I Brown lroutprescnccabscnccdalacompilcd from:
http://public.gcoportal-geoportail.gc.ca/dfoGeoPortal/
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protocol is sufficient in detecting thoroughly established populations as single pass

electrofishing is frequently used to accurately assess trout populations in streams (Kruse et

al.,1998).

We managed to sample a total of 24 watersheds by e1ectrofishing during 2008 and

2010. There was a strong concordance (96%) berween the assembled presence-absence

database and our field sampling. We found 100% agreement between our sampling and the

database for seven systems reportedly absent of trout and brown trout were encountered in

all but one of 17 reportedly established watersheds. Given subsequent evidence to support

the presence of brown trout in this watershed (e.g. it is a managed brown trout system) we

retained the record in the presence data. Furthermore, we returned to 10 watersheds in 2010

that had been surveyed in 2008 and again found evidence of established popuJations in all of

those systems, indicating certain establishment.

(b) Abiotic environmental factors and propagule pressure

The DFO online database also contained two classes of watershed-scale

environmental variables for 312 watersheds, measures of watershed size and water

chemistry. The specific variables were: watershed area (km\ watershed width (km),

watershed length (km), watershed perimeter (km), watershed relief (m), length of mainstem

flowing water (km), total length of flowing waters (km), number of tributaries, pH, hardness

(ppm), conductivity (f-LS cm· 1 at 25°C), turbidity a.T.U), alkalinity (ppm), calcium (ppm),

chloride (ppm), bicarbonate (ppm). For more information on the collection and

measurement of these variables, see (porter et aI., 1974). Unfortunately, data on obstructions

in watersheds were not sufficiently available for incorporation into our analyses. However,

obstructions are only likely to be important when they form a complete barrier at the mouth
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of a watershed as brown trout are apparently pre-adapted to establishing the lower sections

of watersheds (Budy et al., 2008, Korsu et aI., 2007). Environmental data were not available

for 23 locations of established popuJations shown in Fig. 2-3. The locations with missing

data result mainly from original stockings into landlocked ponds tllat were not surveyed by

DFO and multiple sites of known populations within watersheds (e.g. six sites within the

Renme's watershed, Table 2-2) rather than inherent biases in how the database was

assembled.

We attempted to elucidate the association between watershed establishment and

physical environmental factors while controlling for distance to and number of nearby

invasion foci (a surrogate for propagule pressure). We modelJed propagule pressure as the

interaction of the distance (km) of the mouth of each watershed to the mouth of the closest

source watershed (i.e. established with brown trout) and the total number of sources within a

lOO-km radius of each watershed. We based the lOO-km radius on the typical distance an

anadromous brown trout may travel at sea (KIemetsen et aI., 2003 and references therein).

Distances were calculated using the least cost distance tool in ArcGIS, v. 9.2 (ESRI), which

provides a consistent and realistic framework for estimating distance through the ocean.

That is, our estimates represent tlle shortest distance of a watershed to the source by

excluding travel through land, thereby estimating the shortest distance a sea-going colonist

would have to travel from the source to a potential invasion site. This surrogate measure of

propagule pressure was applied and incorporated in our models as a smooth non-linear term

folJowing the general approach and logic of Rouget & Richardson (2003).

Data analysis of watershed-scale factors associated with establishment
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We investigated the factors associated with watershed establishment in several steps.

First, the relationship between presence and absence of brown trout was investigated using

correlation and principal components analysis (PCA) on continuous physical environmental

variables that were standardized to account for order of magnitude differences in watershed

characteristics such as watershed area. PCA was used to distil a highly correlated set of 16

habitat variables data into a less-correlated data set for subsequent use in explaining brown

trout establishment. The number of principal components used in interpretation was based

on deviations from the broken-stick distribution as described by (peres-Neto et aI., 2003).

We then used variables from this informative and less correlated data set to

investigate brown trout presence and absence using a linear modelling information-theoretic

framework. We formulated three a priori candidate models and assessed the weight of

support of each model using (MIC) as our selection metric which simply represents the

difference between the AIC value of a candidate model to the AIC value of the candidate

model with the lowest AIC value. We interpreted models with MIC scores of 0-3 to have

substantial empirical support, scores of 4-7 to have markedly less support, and scores of

greater than 7 to have very little support (Burnham & Anderson, 2002). Additionally, we

calculated AIC weights as a measure of modelling selection uncertainty. We interpret AIC

weights as the probability of selecting a candidate model as the best model if the modelling

procedure was done many times (Hobbs & Hilborn, 2006). We fit binomial ANCOVA

models, with binomial error and logit link, using the GAM function in the 'mgcv' library in R

v. 2.10.1 to account for auto-correlation and non-linearity in our covariate surrogate for

propagulepressure (Crawley,2007).
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Results

Invasion demographics

The records we have compiled indicate that at least 156,000 juvenile brown trout

were introduced across 21 locations in the immediate vicinity of St. john's and to adjacent

communities (fable 2-1, Fig. 2-1.). These records also indicate that the preponderance (93%)

of the 156,000 brown trout introduced to ewfoundland waters were of the Scotish Loch

Leven-strain originating from the Howietoun hatchery. In contrast, only 7% of the originally

introduced trout were of the German von Behr-strain. Unfortunately no records of numbers

of stocked English-strain brown trout are known for the stockings that did occur.

Current distribution

The number of watersheds established by brown trout increased four-fold from 16

in 1883 (fable 2-1) to 68 in 2009 (fable 2-2). Brown trout populations are currently

established in watersheds on the Avalon, Burin, and Bonavista peninsulas (Fig. 2-3).

Environmental factors associated with establishment

The pattern of watershed establishment in (Fig. 2-3.) and initial analyses including all

312 watersheds suggested dispersal limitation by brown trout. Only our measure of

propagule pressure had any power to predict establishment (results not shown) and inclusion

of these systems obscured the role of environmental factors associated with establishment

elsewhere. Thus, for the remainder of the study we focused on elucidating environmental

factors associated with established (n=45) or unestablished (n=68) watersheds within the

presumed trout dispersal range (Fig. 2-3).
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Forty percent of the watersheds examined were established by brown trout (45

established/113 total) and abiotic environmental variables varied markedly (fable 2-3)

between these watersheds; however, many variables were highly correlated (fable 2-4). Thus,

a principal components analysis (PCA) facilitated the distillation and interpretation of these

highly correlated habitat characteristics for quantifying presence or absence of established

brown trout populations. The first two axes of the PCA explained 69% of the total variance

in the data (fable 2-5) and were the only axes interpreted based on the broken-stick method.

The first axis described a gradient of increasing watershed area, width, length, perimeter,

length of mainstem river, total length of flowing waters, and number of tributaries. The

second axis described a gradient of watersheds with increasing pH, hardness, conductivity,

alkali ru ty, calcium, and bicarbonate.

We modelled the importance of watershed area (representing PCA axis 1) and

conductivity (pCA axis 2) on predicting brown trout presence or absence while controlling

for the non-linear effect of propagule pressure. We chose to use these important variables

from the two axes of the PCA rather than principal component scores in our subsequent

modelling to facilitate direct interpretation and to correspond to predictions of biogeography

(e.g. larger watersheds should be more likely to be established than smaller ones). Watershed

area and conductivity values were logarithmically transformed prior to modelling to meet

parametric assumptions. We chose to model the importance of conductivity because

conductivity correlates with important biological processes in Newfoundland (Adams, 2006)

and has been used elsewhere as a surrogate for watershed productivity (Copp, 2003, Ryder,

1982).
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Brown trout establishment was positively associated with both watershed area and

conductivity. We found strong evidence in favour of a model containing watershed area and

conductivity as parametric predictors and a measure of propaguJe pressure as a smoothed

term covariate. This model explained 80% of the observed deviance and received virtually

indisputable support based on the model's AlC weight (1/1; =0.99). In contrast we found little

support for models containing only conductivity (deviance explained = 66%, MIC =15,1/1.

= 0.01) or watershed area (deviance explained = 25%, MIC =31,1/1; -0) again while

controlling for non-linear effects of propaguJe pressure.

Discussion

Brown trout have successfully invaded and established populations are slowly

expanding on the island of ewfoundland. The initial roots of the trout invasion trace their

origins to the Howietoun Hatchery in Stirling, Scotland and were predominately descendants

of non-anadromous Loch Leven broodstock. Approximately 125 years since their first

introduction, brown trout have spread from 16 watersheds of introduction to invade and

establish populations in at least 51 additional watersheds. Our results suggest that the brown

trout invasion is a contemporary process, as new populations have continued to establish

over the past two decades. Modelling the presence-absence of established brown trout

popuJations in watersheds of Newfoundland indicates that for a given measure of propagule

pressure large and productive watersheds are more likely to be established relative to

unestablished watersheds. Taken as a whole, these results suggest an important role of

watershed area and productivity in the dynamics of establishment by brown trout in
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ewfoundland watersheds, but also suggest that no watershed is inherently immune to

establishment.

Invasion origins and current distribution

Documenting the history and demography of a species' introduction is an important

first step towards understanding the dynamics of a biological invasion. Our documentation

of the history surrounding the invasion of brown trout to tlle island of ewfoundland yield

several salient points. The majority of introduced trout were descendants of non­

anadromous (i.e. freshwater resident) Loch Leven parents (Hustins, 2007) though

anadromous (sea-going) populations of brown trout are currently common in

Newfoundland watersheds (van ZyU de Jong et aL, 2004). Hatchery propagation of brown

trout ceased by the beginning of the 20'h century, which makes the current distribution of

brown trout in watersheds of ewfoundland particularly striking. We suggest, as others have

(Bradbury et al., 1999, van ZyU de Jong et al., 2004), that the majority of watersheds have

been established by straying anadromous trout, a pattern documented in other brown trout

invasions (e.g. Launey et at. 2010). Fish with anadromous life histories are difficult to

transplant outside the native range (Quinn et al., 2001 a) and anadromy is often implicated in

the failure of transplanted species to establish (Quinn, 2005). Brown trout in ewfoundland

are thus a rare exception where anadromy and subsequent straying are primary drivers of

invaSion success.

The Newfoundland brown trout invasion is apparently an on-going contemporary

process. By combining data sources with our field surveys, we confirmed several systems to

be established within a twenty year period. For example, our electrofishing surveys

confirmed the presence of an established population in the Southeast Placentia River (Fig. 2-
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3), which apparently had not been established when (Verspoor, 1988) thoroughly sampled

this river. Similarly, the presence of an established population in Bonavista Bay (Fig. 2-3) is

likely now acting as a source of colonists to slowly expand the range westward.

Unfortunately the data assembled here do not reveal information on the founders of

established watersheds and underlying interactions between founders and landscape factors

are possible as three 'strains' of trout were originally imported and introduced to

Newfoundland waters. It is possible that watersheds in Newfoundland have been colonized

by 'favoured founders' who represent non-random pre-adapted subsets of potential colonists

(sensu Quinn eta/. 2001). In a recent empirical example, Launey et al. (2010) show that by

combining microsatellite information to assess founder origins with demography they are

able to better understand the processes by which brown trout introduced to three rivers on

the Kerguelen Islands have successfuJJy colonized 16 additional rivers in approximately 40

years.

Landscape factors associated with establishment

Watershed establishment was positively associated with watershed area and

conductivity (a surrogate for ptoductivity) while controlbng for the influence of propagule

pressure. Large watersheds are more likely to receive colonizers based on chance alone

(MacArthur & Wilson, 1967), but may also attract roaming potential colonizers, thereby

increasing the propagule pressure experienced by these watersheds. This is possible given the

general pattern that some watersheds serve as 'magnets' to straying salmonid species, though

why some rivers are more attractive than others is not known (reviewed in Quinn, 2005).

However, our analysis attempted to control for the effect of propagule pressure and thus

suggests that large watersheds are easier to establish relative to smaller watersheds. The
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positive association between watershed size and establishment is in general agreement with

predictions of island biogeography theory and corroborates patterns found in translocated

cutthroat trout (O.clarh, Haring & Fausch, 2002) and brown trout (Marchetti et al., 2004,

Launey et aI., 2010) populations. The positive relationship between watershed area and trout

invasion are consistent with species saturation and biological resistance to invasion at small

scales (Levine, 2000). However, the mechanisms underpinning invasion success may vary at

fine (e.g. within habitat segments of a river) or coarse (e.g. watershed) spatial scales and are

thus difficult interpret. The ability of a biological community to resist invasions varies among

scales (Shea & Chesson, 2002, Levine & D'Antonio, 1999) and have received particular

attention in plant species where spatial heterogeneity of resources appear to explain this scale

dependence (Davies et 01.,2005). In California, watersheds with the most invasive species

also contain the most native species (Marchetti et al., 2004, Moyle & Marchetti, 2006) though

biotic interactions, such as predation, may enhance community resistance to invasion within

river segments of these watersheds (Harvey et 01., 2004).

Watershed productivity, which we modelJed with water conductivity as a surrogate

(Ryder, 1982), was also an important factor associated with establishment. This result

supports the Subsidized Island Biogeography hypothesis (sensu Anderson & Wait, 2001)

that suggests an important role of aBochthonous inputs in predicting species diversity on

smaB islands or habitat fragments. The low productivity and high acidity of ewfoundland

watersheds (Table 2-3) I.ikely provides a proximate explanation for the relatively slow growth

by stream-dwelling Atlantic salmon compared to their European counterparts (Hutchings &

Jones, 1998) and have been used to predict fish assemblages in Newfoundland lakes (Van

ZyIJ de Jong et 01.,2005). It is possible that low productivity reduces the probability of
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successful establishment by brown trout via increased inter and/or intra-specific competition

for limited food resources (Elton, 1958). Additionally, productivity often correlates with

other potentiaJly important variables such as disturbance (Lockwood et aI., 2007).

Anthropogenic sources of disturbance in watersheds of Newfoundland are minor except for

those containing large human populations, such as those near St. John's where streams have

been channelized and flow regimes altered (Gibson & Haedrich, 1988). Paradoxically,

growth of salrnonids in these disturbed city rivers is exceptionally high compared to other

watersheds on the island, presumably due to high nutrient input (Gibson & Haedrich, 1988).

Thus, productivity and disturbance appeared correlated in some Newfoundland systems,

though data deficiencies preclude a formal evaluation of these ideas. Curiously, disturbance

does not appear a necessary condition for successful salmonid establishment, thereby

suggesting a role of productivity per se. For example, brown trout are associated with

relatively undisturbed watersheds in California (Marchetti et aI., 2004) and Chinook salmon

have invaded the virtually pristine region of Patagonia (Correa & Gross, 2008).

Future outlook and conclusions

Brown trout have successfully invaded the island of I ewfoundland and in

approximately 125 years established populations in a range of watersheds; however, their

apparent rate of spread is comparably slow relative to other documented salmonid invasions.

In twenty-five years, Chinook salmon invaded a large portion of South America (14 degrees

of latitude) at a rate of approximately 54km/yr (Correa & Gross, 2008) and in New Zealand

Chinook invaded at a rate of approximately 13km/yr (Unwin & Quinn, 1993). Similarly, pink

salmon (O.gorbl/scha) have rapidly spread throughout the vast Great Lakes Basin since their

introduction into the Current River, a tributary of Lake Superior, in 1956 (Mills et aI., 1993).
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In contrast, brown trout on the Island of ewfoundland have established in watersheds

within 500 km of the primary introduction sources near St. John's, which translates to a

modest 4km/yr invasion rate. Assuming this rate remains constant the most distant

watersheds in ewfoundland would not be expected to be established until the 24'h century.

Managers should take caution in this latter assumption, however, as many invading species

exhibit periods of slow population growth followed by dramatic non-linear rates of

establishment and spread after variable amounts of lag time (Faean et aI., 2006).

Previous work on the biology of anadromous brown trout in Newfoundland

suggests at least two mechanisms to explain this relatively slow invasion rate. First,

O'Connell (1982) reports small distance (typically less than 50 km) marine migrations by

anadromous trout in Newfoundland, which led him to suggest that these short migrations

reduced the probability of fish straying into suitable watersheds. Second, O'Connell (1982)

reported a high proportion of upstream migrating adults that were not maturing in a given

season (i.e. skip spawning), thereby slowing the rate of population growth, slowing the time

to habitat saturation, and potentially reducing the number of strays produced. Brown trout

exhibit highly variable life history traits such as age and size at maturity and skipped

spawning between seasons appears common in populations (Klemetsen et aI., 2003);

however, it is not clear how skipped spawning may alter population dynamics and in turn

how this may affect the rate of dispersal by brown trout or other invading species (Kot et aI.,

1996).

In conclusion, our analyses suggest that all watersheds in Newfoundland are

susceptible to trout invasion as abiotic environmental factors substantially overlap between

established and unestablished systems (fable 2-3). That is, we detected no obvious abiotic
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factors acting as strong barriers to establishment. However, we do show that trout are more

likely to establish in relatively large and productive watersheds after controlling for the effect

of propaguJe pressure (i.e. the distance to and the total number of potential nearby sources)

and thus it seems likely smaller and less productive watersheds will become established given

sufficient time and propagule pressure. Indeed, we provide evidence of a dispersal boundary

that suggests it is only a matter of time, albeit potentialJy a long time, before distant

watersheds beyond this boundary receives invaders. Therefore, we suggest extra vigilance to

detect early invaders in these especialJy susceptible systems as results presented here coupled

with global patterns suggest that establishment is likely in brown trout invasions.
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Chapter Two Tables

Table 2-1. Watershed, waterbody (location within watersheds), destination of water from
watersheds or landJocked if water does not drain to sea, geographical coordinates
(degrees, minutes, decimaJ seconds) of waterbody locations, year and number of
individuaJs introduced (when ava.iJable), and source strain of brown trout introduced to
the island of ewfoundJand. Data compiled from Hustins (2007).

Latitude Longitude Vcar (number introduced)

Whitcway's 473952.23524555.74 1892.1896(1,000) Gennan

Brigus HodgewalerPond Conception Bay 473027.73531617.24 1892 Gennan
Clement Clement's Pond Landlocked 473058.28525531.50 1905-1906 English

Cove Pond Cove Road Ponds Landlocked 472502.28530900.70 1886(10,000) Loch Leven

472946.97533246.90 1889(10,000) Loch Lcvcn

Lee's Pond 472430.92531135.91 1896(4,000)

Lee's Pond 472430.92531135.91 1905-1906 English

Lower Island Ponds 480013.02525946.28 1888(10,000) Loch Leven

Mundy's Mundy'sPond 473306.30524422.10 1886(5,000) Loch Leven

Murray's Murray'sPond Landlocked 473651.69524913.01 1905-1906 English

PcnyHarbour Petty Harbour Ponds Atlanlic(eaSlemAvalon)' 472707.41 524235.68 1888(10,000).1889(3,000) Loch Leven

Long Pond St.John's 473440.99524400.74 1888(40,000) Loch Leven

QuidiVidi St.John's 473452.53524123.77 1886(10,000) Loch Leven

473440.45524257.34 1884 Loch Levcn

St.John's 473416.08524546.64 1886(20,000) Loch Leven

St.John's 473624.39524207.18 1886(1,000) Loch Levcn

Lnndlocked 473925.87524542.90 1892(1,000) Gemlan

Rocky HodgcWatcrCatHills St.Mary'sBay 472446.72533159.86 1896(4,000) Gcnnan

Rocky Ocean Pond St.Mary'sBay 472723.13533745.18 1892

Topsail Topsail Road Ponds Conception Bay 473203.92525639.64 1886(15,000),1889(2000) Loch Levcn

Trinity Trinity Bay Ponds Trinity Bay 482220.32532322.84 1889 Loch Leven
Windsor Windsor Lake St.John's 473555.07524734.00 1883(5,000),1884(5,000) Loch Levcn

·Currenlly landlocked due to impassable hydropower planI
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Table 2-2. Characteristics of eS!:'1.blished brown trout systems in ewfoundland. Established watersheds
(presented in alphabetical order), waterbody Oocation within watersheds), geographic coordinates, source
strain (if known), and applicable reference.

Aquaforte
Avondalc

Baulinc

Dildo
Dildo

Green's harbour

Harbour Main

Lower Island

Manuel
Mobile

Waterbody Latitude Longitude

AquaforteRiver 470017.86525910.07

AvondaleRiver 472607.09 531223.99
Whilew.y·s 473952.23 524555.74

Whitew.y'sRiver 474105.59 532813.50
Bise.y Bay River 464701.46531643.93
HodgewaterPond 473027.73531617.24
C.pe Broyle River 470535.41525838.33

Ch.nee Cove Brook 473838.07534839.73
Ch.pel Arm River 473107.57 534209.20

Clement's Pond 473058.28525531.50

Colinelriver 471315.60533256.26

Co~~~~:~a;i~~;er :~;~ :~.~ ~~ ~~ ~~.~~
ComebyChaneeRiver 475048.23535854.65

Cove Road Ponds 472502.28530900.70
Soulh Dildo Pond 472946.97533246.90

SoulhDildoRiver 473250.77533138.99
Green'sHarbourRiver 473737.2053.2936.14

GaHowsCove 472714.39 530526.14
474653.25531100.34

475239.88532028.96
475226.15532205.66
474610.72 532701.85
464935.72 533627.08
473606.82533035.12
472715.21530525.17
474359.14531350.18
472940.21530032.78
472430.92 531135.91
472430.92531135.91

Liule Salmonier River 470243.23 534410.37

Lower GuHies River 472827.36 530148.30
Lower Island Ponds 480013.02 525946.28

ManuelsRiver 473059.72 524630.97
Mobile River 471512.06 525306.83

aturalcolonization(sourccunknown)

aturalcolonization(sourccunknown)

Genna"
Natural colonization (source unknown)

atural colonization (SOUfCC unknown)

German
Natural colonization (source unknown)

Nalural colonization (source unknown)

Natural colonization (source unknown)

English
German

Natural colonization (source unknown)

Natural colonization (source unknown)

Natural colonization (source unknown)

Loch Lcvcn

Loch Lcvcn

atural colonization (sourcc unknown)

atural colonization (source unknown)

aturalcolonization(sourccunknown)
Natural colonization (sourcc unknown)

Naluralcolonization(sourccunknown)
Loch Lcvcn

NalUral colonization (source unknown)

Nalural colonization (sourcc unknown)

Natural colonization (source unknown)

Natural colonization (soureeunkllown)

Natural eolollization(souree unknown)

Natural eolonization (souree unknown)

German

English
atural eolonization (sourecunknown)

atural eolonization (sourecunknown)

Loch Lcvcn

aturaleolonization(sourecunknown)

alural colonization (source unknown)

DFO(2008)

DFO(2008)
HlISlins(2007)

DFO(2008)
DFO(2008)

HlISlills(2007)
DFO(2008)
DFO(2008)
DFO(2008)

Hustins(2007)

HUSlins(2007)
DFO(2008)
DFO(2008)

DFO(2008)
HUSlins(2007)
HUSlins(2007)

DFO(2008)

DFO(2008)
OFO almonidFishlnvcntory

DFO(2008)
DFO(2008)

HlIstins(2007)
DFO(2008)

OFOSalmonid Fish Invcnlory

DFO(2008)
DFO(2008)

DFO(2008)
DFO(2008)

HUSlins(2007)
Hustins(2007)

DFOSalmonid Fish Inventory
DFO(2008)

Hustins(2007)
DFO(2008)
DFO(2008)
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Table 2-2. Continued

47522615 5~o;f~~: DFO(2oo8)

Rennies
Rcnnies
Rennics
Rexlon
Robin's

Windsor
Witless

Mozzen
Mundy
Mumy

NEPlacentia
ERiver

ewHarbour

orthAnn
orthHarbour
orthRiver

orthwestRiver
O'Donnells

Salmonier
SEPlacentia
Seal Cove
Shearslown

Shoal Harbour
South River
SprcadEagle
Stone Ducky

473306.30524422.10 Huslins(2oo7)
473651.69524913.01 Hustins(2oo7)

:~ ~~ ~~:~~ ~~ ~~ ~~:~ Natural colonilzation ,(source' unknown) V~::~~:~8)

:~~; ~:~ ~~ ~ ~~:~~ Natural colonilzation(sourte' unknown) Gibson~:~~~~:~ (1986)

471055.10533747.84 Hustins(2oo7)
473227.60 531839.74 Natural colonization I(source unknown) DFO(2oo8)
464552.76532105.91 DFO(2oo8)

:~ ~~ ~:~~ ~~ ~~ ~~:~ Natural colonization I(source unknown) ~~~ ~:::~~:~ ~::~ :~:~~:~~

472707.41524235.68 Hustins(2oo7)
475524.89541626.16 DFO(2oo8)
471331.39540048.75 DFOSalmonidFishlnvcntory

Portugal Cove South Stoney River 464701.46531643.93 Endersetal.2007
Princcton PrincctonBrook 483933.36530656.66 DFO(2008)
Rcncws Renews River 465633.03525832.11 DFO(2008)
Rcnnies 473440.99524400.74 Hustins(2007)
Rcnnies 473452.53524123.77 Loch Levcn Hustins(2007)
Rcnnies 473452.53524123.77 Natural colonization (sourcc unknown) DFO(2oo8)

473440.45524257.34 Loch Leven Hustins(2oo7)
473416.08524546.64 Loch Lcven Hustins(2oo7)
473624.39524207.18 Loch Leven Hustins(2oo7)
482342.28531932.12 Natural colonization (source unknown) DFO(2oo8)
473925.87524542.90 Gcnnan Hustins(2oo7)
472723.13533745.18 Gcrman Hustins(2oo7)
471357.03533322.01 Gennan Hustins(2oo7)
472446.72 533159.86 Gcrman Hustins(2oo7)
474655.43531030.50 atural colonization (source unknown) DFO(2oo8)

Salmonicr 471025.84533947.84 Gennan Hustins(2oo7)
SE Placentia River 471310.96535513.49 DFO(2oo8)
Seal Cove River 472759.53530411.72 DFO(2oo8)

ShearstownRivcr 473526.05531815.23 DFO(2oo8)
Shoal Harbour River 481136.66 540058.52 DFO(2oo8)

South River 473213.73531627.39 DFO(2oo8)
473150.73 533656.52 DFO(2oo8)
471946.39524914.84 DFO(2oo8)
473135.38525419.92 DFO(2oo8)
473203.92 525639.64 Hustins(2oo7)
482220.32532322.84 Loch Leven Hustins(2oo7)
473224.86524339.12 Natural colonization (source unknown) DFO(2008)
473555.07524734.00 Loch Levcn Hustins(2007)

Picrrc'sBrook 471508.18525140.21 Natural colonization (source unknown) DFO(2oo8)

·EvidenccforlhcstrainoforiginisbascdonanunsubstantialcdhisloricallcltcrcilcdinHuslins(2007)
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Table 2-3. Factors associated with watershed unestablishment (absent) and
establishment (present) by brown trout in ewfoundland. Values represent the mean ±
standard deviation (SD) of each (n) watershed. See text for description of variables and
units of measure.

Absent (n=68)
Distance to nearest source 18 (20)
Number of sources 13 (8)
Watershed area 72 (86)
Watershed width 4 (2)
Watershed length 14(8)
Watershed perimeter 44 (27)
Watershed relief 243 (53)
Length of mainstem river 12 (10)
Total length of flowing water 64 (76)
Number of tributaries 18(14)
pH 6.2(0.4)
Hardness 7.8(6.5)
Conductivity 31.2(9.4)
Turbidity 1.4 (1.0)
Alkalinity 2.9 (1.9)
Calcium 1.4(1.4)
Chloride 7.4 (2.4)
Bicarbonate 4.3 (2.3)

Present (n=45)
II (14)
14 (7)

98 (123)
5(3)
16(8)

54 (32)
259 (60)

13 (9)
66 (81)
17(13)

6.4 (0.4)
6.8 (3.1)

40.4 (42.4)
1.1 (1.0)
2.7(1.4
1.4 (1.0)
7.8 (6.4)
3.5(1.7)



Table 2-4. Pearson correlation values of 16 habitat characteristics used in modelling brown trout establishment in watersheds on the
island of NewfoundJand. Correlations between variables greater than 0.5 are highlighted in grey. See text for description of variables and
units of measure.

length perim relief main len tot len num tribs pH hard conduct turb
drainage area 1
axial width 0.85 1
axial length 0.86 0.73 I
penmeter 0.94 0.84 0.85 I

relief 0.47 0.57 0.4 0.52 I
0.71 0.48 0.76 0.75 0.29 I
0.88 0.81 0.74 0.85 0.49 0.6 I
0.61 0.56 0.62 0.68 0.42 0.66 0.61 1

pH 0.05 0.2 0.09 -0.06 0.13 -0.14 0.01 -0.16 I
hardness 0.12 0.27 0.26 0.05 0.34 0.01 0.09 -0.08 0.65 I

conductivity -0.16 -0.08 -0.07 -0.23 0.1 -0.19 -0.19 -0.27 0.57 0.64 \

turbidity 0.19 0.19 0.26 0.23 0.57 0.26 0.22 0.26 0.08 0.3 0.35 \

alkalinity 0.07 0.19 0.06 0.02 0.29 -0.05 0.05 -0.08 0.66 0.8 0.58 0.24 I
calcium 0.08 0.26 0.21 0.01 0.35 -0.08 0.04 -0.13 0.75 0.89 0.79 0.36 0.8 \

chloride -0.3\ -0.33 -0.32 -0.33 -0.\6 -0.22 -0.29 -0.24 0.11 0.05 0.7 0.\8 -0.01 0.2\ I
bicarbonate 0.08 0.23 0.23 -0.02 0.25 -0.09 0.04 -0.1\ 0.76 0.89 0.63 0.24 0.87 0.92 -0.04
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Table 2-5. Results of a principal components analysis (peA) on environmental
variables of ewfoundland watersheds. See text for description of variables and
units of measure.

PCI PCIl
Eigenvalues 2.47 2.24

Cummulative % variance 38 69

Eigenvectors

drainage area 0.369 -0.105
axial width 0.357 -0.025
axial length 0.359 -0.055
perimeter 0.367 -0.143

relief 0.267 0.069
mainstemlength 0.290 -0.149

total length of flowing water 0.347 -0.111
number of tributaries 0.278 -0.166

pH 0.080 0.345
hardness 0.150 0.375

conductivity -0.003 0.381
turbidity 0.159 0.119
alkalinity 0.117 0.364
calcium 0.132 0.411
chloride -0.131 0.154

bicarbonate 0.130 0.393
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Chapter Two Figures

.=40.000.=20.000 .=10.000 .=1,000-5,000

Fig. 2-1. Island of ewfoundland showing watersheds (denoted by ftUed circles) of brown
trout introductions on the Avalon Peninsula, where the size of the circle is roughly
proportional to the numbers of trout introduced to a given watershed. See Table 2-1 for
additional information.
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Fig. 2-2. An annotated timeline of the brown trout invasion process to the island of Newfoundland.
Discrete stages in the invasion process follow the logic of (Lockwood et al., 2007, Kolar & Lodge,
2002) and are denoted by dashed horizontal lines. Important dates and details of the invasion are
provided on the left side of the figure and supporting images at each stage are provided on the right
a) image of the original shipping container for transporting brown trout ova showing its intended
destination to John Martin and St. John's, Newfoundland (Maitland, 1887), b) excerpt from a lerter
by John Martin where he proclaims successful importation of brown trout (Maitland, 1887), c)
images of representative size and age classes of brown trout, which we take as evidence for
establishment, d) image of a 115 mm potential anadromous colonizer, and e) a hybrid between a
brook trout and brown trout sampled in a St. John's river. Photographs by the authors.
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Fig. 2-3. Current distribution of watersheds established by brown trout populations on the island
of Newfoundland. The dashed lines denote the apparent dispersal boundary and thus only
watersheds to the right of the boundary were included in our analyses (see text). umbers
represent locations mentioned in the text: 1) Burin Peninsula, 2) Southeast Placentia River, 3) St.
John's, 4) Bonavista Peninsula, and 5) Bonavista Bay. See Fig.1. for other important locations.
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Chapter 3: Novel environments shape phenotypic variation in
recently established brown trout (Salmo trutta) populations
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Abstract

Species translocations represent excellent opportunities to investigate the early stages

of adaptive radiations. Abrupt changes in selection regimes and exposure to novel

environmental conditions can lead to phenotypic divergence in contemporary time. Brown

trout were transplanted from Europe to ewfoundland in 1883 and subsequently spread

from sites of original introductions to found established populations in watersheds differing

in abiotic habitat features. We quantified phenotypic variation among 16 populations of

brown trout in ewfoundland to test the hypothesis tllat populations have differentiated in a

suite of morphological, meristic, and growth traits in no more than 130 years. Additional.ly,

we tested whether the observed variation among popu.lations reflected characteristics of

novel abiotic environmental features. Discriminant function analysis based on size-adjusted

traits assigned individuals to population of origin at rates much greater than chance alone.

Moreover, multivariate analysis of variance MA OVA detected significant differences in

principal component scores based on size-adjusted traits, corroborating the results of the

discriminant function analysis. Results revealed a potentially important role of the

environment, and mus likely phenotypic plasticity, in explaining me observed variation. Body

shape of individuals, as quantified by geometric morphometrics, differed markedly among

populations and was correlated with habitat features such as river size and flow. In addition

to body shape, we detected significant correlations between similarity in suites of phenotype

traits and habitat characteristics using Mantel's tests. However, the strengtll and importance

of me correlations between specific habitat features and phenotypes differed among size and

age classes of fish suggesting ontogenetic changes in selection pressures or microhabitat use.

While the genetic role in the expression of the traits examined is not known, it is likely mat

many have at least some heritable basis and thus the observed difference among populations

may represent genetic adaptation to divergent regimes of selection. Alternatively the patterns

reported here may result from adaptive phenotypic plasticity that has likely facilitated

persistence in novel environments.

83



"And 't is so with many kinds of fish, and of trouts especially, which differ in their
bigness, and shape, and spots, and colour."-Izaak Walton (1653) from The COII/pleatAllgler

Introduction

Adaptive phenotypic divergence can occur rapidly in populations exposed to abrupt

environmental change and divergent regimes of natural selection (Schluter, 2000, Hendry &

Kinnison, 1999, Ghalambor et aI., 2007). Empirical examples of this 'contemporary'

phenorypic divergence are replete in the literature derived from a range of taxa, including

fruit flies (Huey et aI., 2000) aquatic isopods (Eroukhmanoff et aI., 2009), reptiles (Losos,

2009), fishes (Haugen & VoLlestad, 2001, Steams, 1983), birds Oohnston & Selander, 1964),

and mammals (Williams & Moore, 1989). Systems experiencing anthropogenic disturbance,

such as species invasions can reveal how abrupt shifts in selection pressures can drive

contemporary phenotypic change in wild populations (Westley, 2011, Hendry et al., 2008).

Indeed, some of the most compelling examples of contemporary adaptive change are

derived from the opportunistic natural experiments represented by biological invasions

(Huey et al., 2005,Sax etal.,2007).

Repeated global translocations of fishes such as salmon, trout, and charr (family

Salmonidae) afford excellent research opportunities to examine patterns and processes of

phenorypic divergence (e.g. Crawford & Muir, 2008). Salmon and trout are renowned for

their remarkable diversity in behaviour, ecology, morphology, and life history both among

species and among populations within species (Quinn, 2005, Groot & Margolis, 1991,

Elliott, 1994, Klemetsen et aI., 2003, Fleming, 1998). This diversity is typically thought to

reflect local adaptation to environmental conditions experienced by individuals and

populations during rearing and spawning (faylor, 1991, Garcia de Leaniz et al., 2007).
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Throughout much of the native salrnonid range, this diversity has evolved within 5,000­

15,000 years following the end of the last glaciaJ epoch (Hendry & Steams, 2004).

Translocations allow refinement of the time-scales over which adaptive change can arise, as

the precise age of popuJations are often known from stocking records and history (Ayllon et

aI., 2006, Quinn et aJ., 2001a, Hendry et aI., 2000). [oreover, saJmonid transplants allow

investigation into the role of the environment and phenotypic plasticity (i.e. ability of an

individuaJ to respond to environmentaJ conditions) in shaping and maintaining biological

diversity among newly founded popuJations (Hutchings, 2011). The interpretation of the

mechanisms giving rise to phenotypic variation among transplanted populations is frequently

complicated by continued artificiaJ propagation of multiple mixed genetic pools following

initial introductions (e.g. continued stocking of exotic salmonids to the Great Lakes, Mills el

aI., 1993). However, stocking of individuaJs from a sillgle common gene pool into different

environments affords the opportunity to investigate the environmental and genetic

architecture underlying fitness related phenotypic traits (Reed et aJ., 2010a). By extension, the

establishment of non-native populations from a common source imported into novel

environments represents an anaJogous serendipitous research situation.

Here we use brown trout (501"'0 InitIo) introduced to the island of ewfoundland,

Canada, as such a model system. Brown trout were imported for sport fishing to

Newfoundland beginning in the late 19'h century (reviewed by Hustins, 2007), survived upon

introduction, established self-sustaining populations, and spread to new areas without human

assistance. Populations are currently established in at least 70 watersheds that differ in

various environmental factors (Westley & Fleming, 2011). In this paper we address the

question of how recently established popuJations have responded to novel environments
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across a gradient of abiotic environmental factors. The primary goal of this study was to

quantify variation in a suite of morphological, meristic, and growth traits known to be, or

likely, linked to fitness among16 brown trout populations established within 130 years. The

objectives were to assess variation in body shape and fin sizes, colouration and pigmentation

patterns, and growth rates of individuals within and among populations, and correlate this

suite of phenotypic traits to habitat characteristics such as river size, water chemistry, and a

measure of isolation (i.e. distance of watersheds to their nearest neighbour). To the extent

that phenotypes are shaped or selected by the environment, we predicted that populations

exhibiting similar suites of phenotypic traits would also inhabit rivers with similar habitat

features. SpecificaIJy we predicted: 1) a positive association between river size and body

shape such that relatively large and deep rivers would correlate with the expression of deep­

bodied individuals, whereas smaIJ shaIJow streams would be associated with shaIJow-bodied

fish presumably to aid in streamlining, 2) colouration patterns would be inversely related to

extent of canopy cover and riparian vegetation where relatively drab and dark colouration

patterns would be expressed in relatively dark environments paralJel to the patterns observed

among colouration and canopy cover in Trinidadian guppies, Poeci/ia retiCII/ala , 3) water

conductivity (a surrogate for productivity) would mediate trait expression indirectly through

growth, and 4) that populations in close spatial proximity would be phenotypically similar

resulting from either environmental similarity (watersheds close in space may be similar) or

founder effects as spatial distance is interpreted as a proxy for time since population

establishment (populations near the putative source are assumed to be older than

populations near the edge of current range).
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Methods

Brown trout and population history

Brown trout is a member of the family Salmonidae native to Europe, North Africa

and western Asia. Their distribution has rapidly expanded via intentional introductions

around the globe and currently populations of trout are established on every continent,

except Antarctica (MacCrimmon & Marshall, 1968, Elliott, 1994). Brown trout display

dramatic variation in morphology, colour, and life history patterns, which has been

recognized by astute naturalists such as Izaak Walton since at least the 17''' century (Walton,

1653). The high level of within-species variability caused considerable taxonomic confusion

and historically nearly 50 distinct species were described based on ecomorphs and

subpopulations of brown trout before being recognized as one polyrypic species in 1911

(reviewed by Behnke, 1986, Elliott, 1994). More recently, this variation has been revealed to

reflect interactions between genetics and environmental factors (Ferguson, 1989, Ferguson

& Taggart, 1991, Ferguson & Mason, 1981, Hutchings, 2011, Bernatchez et aI., 1992).

The founding trout in Newfoundland were primarily comprised of non-anadromous

(freshwater resident) Loch Leven strain from the Howietoun Hatchery in Scotland.

Individuals from two other strains were also purportedly introduced, but apparently in much

smaller numbers (Hustins 2007). Thus, it is likely that the preponderance of established trout

populations were founded by common ancestral gene pool. The trout survived well upon

introduction to lakes, established self-sustaining populations, and spread to novel rivers and

watersheds via anadromous (sea-going) dispersal (Westley & Fleming, 2011).
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Sample collection

To quantify phenotypic differentiation among populations, we sampled a total of

1677 brown trout duringJune-September 2008 from 16 watersheds in eastern

ewfoundland (Fig. 3-1). These watersheds were selected to represent a variety of habitats

along a gradient of increasing distance from the putative source population near St. John's

(Fig. 3-1) and to cover a range of habitat types. Fish were collected with single-pass upstream

electrofishing (Smith-Root LR-24 backpack shocker) and with beach seines and gillnets

(3mm mesh size) in deeper pools of rivers where electrofishing was ineffective. We collected

fish throughout river sections (mean section length; 860m, range 82-6800 m) to reduce the

potential of sampling related individuals. Additionally, we attempted to collect across the size

and age classes available in each site (-100 individuals were targeted) and therefore we

sampled microhabitat associated with different age classes of fish (Armstrong et aI., 2003).

Fish processing and data collection

Fish were anesthetised in clove oil (0.25mL/L), measured (fork-length, nearest mm),

weighed (0.1 g), and photographed with a 12.1 mega-pixel Canon digital camera (powerShot

A650 IS) using a low compression JPEG format. Each photograph included a unique

identifying label, a scale bar to allow standardization among photos taken at different heights

(necessitated because fish ranged in size from 30 - 362 mm), and an X-Rite mini colour

checker card (X-Rite Inc., Grand Rapids, MI). ). This colour card contains vignettes designed

to express a known colour according to RGB digital colour space (Red-Green-Blue) allowing

for standardization of lighting among images (see Bergman & Beehner, 2008, Whiteley et aI.,
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2009 for examples of colour standardization). Salmonids, like other fish species, can change

melanin-based colour rapidly during periods of stress but adapt their colouration to

environmental conditions over periods of days or weeks (Sugimoto, 2002, Sumpter et aI.,

1985, Donnelly & Dill, 1984). To limit the effect of our handJjng on physiological colour

change we minimized the time from capture to photographing, and used standardized white-

coloured storage containers and consistent concentration of anaesthetic. After

photographing, a sample of scales was collected for subsequent ageing and the adipose fin

was removed and stored in 95% edlanol for future genetic analyses. Removal of the adipose

fin also provided an external mark to avoid resampling individuals between days. Fish were

allowed to recover and released.

Growth data

Scales were mounted on microscope slides and digitally photographed with a

Lumenra Infinity 2 camera affixed to an M420 1.25 x compound microscope under 10x -20

x magnification. Scales were assigned to year class where the number designation

corresponded to the number of winter marks on the scale. We then calculated specific

growth rates for each individual by dividing the log difference in lengrh-at-capture and

length-at-emergence by the number of growing days, which we defined as the number of

days from emergence to capture. This approached allowed us to assess growth of fish

collected over a 9 week span of the summer growing season. For simplicity, and because

individual values of size and day of emergence were not available, we assumed that all fish

emerged at 25 mm on May 15'h of their first spring. These values are based on laboratory

and field observations with these popuJations (\'{1esdey and Fleming unpublished data) and

from literature (Elliott, 1994, Klemetsen et al., 2003).
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Body shape data

Differences in body shape among populations were assessed with geometric-

morphometries (Adams et aI., 2004). Two-dimensional body shape was quantified by placing

14-homologous landmarks on digital images in the program tpsDig2, Version 2.12 (Rohlf,

2005). The landmarks (Fig. 3-2) were based on iichaud et al. (2008). Landmark data were

aligned to a single consensus shape configuration using Procrustes superimposition using the

program tpsRelw, Version 1.46 (Rohlf, 2006). After alignment, Relative Warp scores

(analogous to Principal Component scores) were calculated for each individual.

Interpretation of how each Relative Warp contributed to body shape was based on

visualizations of thin-plate spline transformations generated in tpsRelw.

Phenotypic suite data

We conducted a separate and complementary analysis based on a suite of 11

morphological, meristic, and growth traits, similar to the approach by Michaud et al. (2008).

Direct linear measures of six traits were measured from photographs using Image], Version

1.42q (freely available at: http://www.rsbweb.nih.gov/ij/). Traits measured included: 1)

surface area of the eye (mml, 2) surface area of the head (mml, 3) body depth (mm), 4)

length of the pectoral fin (mm), 5) length of the caudal fin (mm), and 6) depth of caudal

peduncle (mm). Measurements were taken by the same person to reduce variability and a

haphazardly-selected sample of 100 fish was re-measured to assess error in data collection.

Repeatability for all traits was excellent with r2 values of -0.99 between dupljcate

measurementsonthesameindjviduals.

Additionally, we recorded the number of pigmented spots and quantified two

metrics of colouration on each fish as such patterns are often used to differentiate among
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brown trout populations (Aparicio et aI., 2005), are herititable (Blanc et aI., 1994), and

apparently linked to fitness (Wedekind et aI., 2008). We counted spots irrespective of their

colour on the left flanks of each fish ignoring spots on fins as placement and position of fins

were not standardized sufficiently among photographs to always allow counts. To assess

colouration, we first standardized all photographs to a common colour vignette to account

for differences in lighting conditions during photographing (reviewed by Stevens et aI., 2007).

Overall amount of red colouration was then measured as the percentage of pixels where tlle

red value of the RGB colour space fell above a threshold of 50 points (-20%) above both

the green and blue pixel values. Next, we extracted the mean value of pixels in the red,

green, and blue spectrum and Llsed these values to interpret the overall lightness or darkness

of body colouration from individuals. This is justified as higher mean RGB values are

associated with bright colours and lower mean values associated with darker colours. Colour

analysis was conducted using the Image Processing Toolbox of Matlab © and automated

with custom written routines, which are available upon request.

Habitat sampling

We quantified five abiotic habitat variables from each sampling location that we

predicted may influence morphology of individuals among populations. Habitat surveys were

conducted within a two week span during periods of simiJar water conditions. At a total of

three haphazardJy chosen sites corresponding to the downstream, middle, and upstream end

of the sample section we measured: t) the ratio of wetted width to depth, it) stream gradient,

t'it) the extent of riparian canopy cover Llsing the categories: 'I =no cover or only grasses, 2 =

alders and willows along banks, branches encroached the stream, 3 =large alders and
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conifers present, branches and woody debris in channel, 4 =alders, conifers, and deciduous

species present, large amount of wood in the channel, and little light reaching stream, ill)

water transparency using a standard 1.3 m transparency tube (Dahlgren et aL, 2004), and Il)

water conductivity with an Accumet ® AP 85 handheld meter.

To these five variables we added a measure of spatial distance (km) from the mouth

of each sample watershed to the mouth of the Rennie's River watershed, which we identified

as the putative source of the original invasion in Westley & Flerning (2011). We assigned

negative distances to locations south of the invasion source and positive values to locations

north. In doing so, we obtained pairwise distances between the mOLlths of each sampling

watersheds. We calculated distances using the least-cost distance tool in ArcGIS with an

approach that provided a realistic distance that a fish would have to swim between locations,

thereby capturing the dynamics of potential gene flow and colonization (see Westley &

Flerning 2011 for details). The distances between sample locations are interpreted as

potential gene flow while the distance from the source represents a surrogate for time since

colonization assuming a stepping-stone type dispersal process.

Statistical analysis

Shape (warp scores) and morphological and meristic traits 0inear measures, spot

counts, and colouration) were size-adjusted prior to statistical analyses. This was necessary as

traits such as body shape can change markedly during ontogeny (Loy et aL, 1998),

complicating interpretation among individuals of different sizes and ages. Indeed,

exploratory data analysis revealed distinct patterns of allometry among fish sizes and

supported a division of our samples among the three primary size and age classes observed
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(small: <60mm, intermediate: 60-150mm, and large: >150mm, Fig. 3-3a). We then

conducted separate analyses using these subsets of data (henceforth referred to as 'size

groups'). We measured morphological and meristic traits from a common number of fish

per population and size group, which was set by the population where the minimum number

of fish in each group was sampled (n<6Omm=17, n60_ISOmm=19, n>'SOmm=15, Table 2). We only

sampled individuals from populations and size groups if sample numbers were greater than

the number of variables we were extracting (n=14 for the geometric morphometries and

n=ll for the suite of other variables).

All morphological and meristic traits varied significantly with size, thus each trait was

corrected to the mean length of each size group (45, 100, and 200 mm, respectively) using

common within-group allometric coefficients (Reist, 1986, McCoy et al., 2006). Allometric

coefficients for each trait represent the slope coefficient of analysis of covariance

( CaVA) on log (x+l) transformed trait and body length values. We verified common

within-group slope by testing for significant body size*population interaction terms of

CaVA for each trait. Within group allometry for all traits was statistically similar

(homogeneity of slopes), but differed markedly among groups supporting the presence of

size-dependent allometric effects. We chose to standardize to a common body length rather

than centroid size to aid in biological interpretation, and because preliminary analyses

suggested a strong linear relationship between these two covariates Qength = 0.7575 *

centroid + 7.0728,r2 = 0.998).

To test for differences in body shape among populations we used one-way ANOVA

with warp scores as the dependent variable and sampling location as a factor. Comparisons

and interpretation were done by visual inspection of means and Tukey HSD post-hoc tests.

93



To test for differences in the suite of phenotypic variables we used linear discriminant

function analysis (DFA) using a jackknife -leave one out procedure - to assess

reclassification rates of individuals to populations based on discriminant functions of size­

adjusted morphological and meristic traits. Variables used in DFA were: growth rate (not

size adjusted), weight, body depth, caudal depth, pectoral length, caudal length, head surface

area, eye surface area, number of spots, amount of red colouration, and overall brightness of

colour. Brightness values for each individual represent the first principal component scores

extracted from a separate principal components analysis on RGB data (Whiteley et aL, 2009).

We followed the DFA with principal components analyses (PCA) of size-adjusted variables

to reduce dimensionality and to account for correlation among traits. We based the number

of principal component axes for interpretation and inclusion in subsequent analyses on the

broken stick model (peres- eto et aL, 2003). Scores of retained principal components axes

were used as dependent variables to test for population differentiation with MANOVA.

Analyses were conducted separately among size groups.

We visualized morphological and habitat similarity (based on Euclidean distances)

among populations with non-metric multidimensional scaling (NMDS) plots fitted using the

ecodist package in R v.2.10.1 (R Core Development Team, 2009). Coordinates on the first

and second dimension represent the positions in multivariate space that best maintained the

order in the original similarity matrix (i.e. minimum stress) after 100 random starting

configurations. To aid interpretation of morphological and habitat similarity, we overlaid

vectors where lengths represent the correlation strength with each variable.

Ordinary least squares regression (OLS) was used to test the hypothesis that body

shape (Relative Warp scores) was significantly associated with the environment. For each
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size group, we fit seven apriori regression models to assess the weight of evidence to suggest

population-specific average body shape was influenced by environmental factors.

Specifically, we hypothesized that aspects of river size (i.e. width-depth ratio), stream flow

(i.e. width-depth ratio plus gradient), distances between sample locations (i.e. potential

founder effects), or productivity (i.e. conductivity) might explain observed variation in body

shape. We used b.AIC values as measures of evidence, where we interpreted MIC values <

4 to provide substantial support for a candidate model (see Westley & Fleming 2011 for a

similar approach).

We employed the BIO-ENV routine (C1arke & Ainsworth, 1993) to assess the

correlative relationship between phenotypic similarity in the suite of morphological, meristic,

and growth variables with environmental similarity. In short, this routine calculates a

similarity matrix of phenotypic values (based on retained PCA axes scores), selects all

possible subsets of environmental variables, calculates Euclidean distances for this subset,

and finds the correlation between the matrix of phenotype and the matrix of environmental

variables for each subset. Mantel's tests (Legendre & Legendre, 1998) were then used to test

the significance of the correlations generated for each size group from the BIO-E V

routine. Mantel statistics (RJ and probabilities based on 999 permutations were calculated in

the vegan package ofR (Team, 2009b). We included all six recorded environmental factors

to assess similarity, as we hypothesized each may be influencing some aspect of the observed

phenotypes. Specifically, we hypothesized that stream size and flow may influence features

of body shape (body and caudal depth and fin sizes), water clarity and riparian cover may

influence colouration patterns, and stream conductivity may relate to growth, which may

mediate other trait expression.
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Results

Population differentiation

Body shape

The first Relative Warp explained 43% of the variation in shape and described a

decreasing relative size of the head and deepening of the body and caudal areas (fable 3-1).

The second and third warps explained 14% and 8% of the variation in shape, respectively,

and suggested dorsal-ventral bencling of the fish during photographing. This 'arch effect' has

been described elsewhere and attributed to error in placement of specimens during photo

capture (Valentin et al., 2008, Michaud et aI., 2008). Furthermore, the 21 remaining warps

inclividually explained little variation and were not retained for subsequent analyses. Thus, we

limited our analyses of shape to scores of the first Relative Warp.

Overall, the first Relative Warp (body shape) varied significantly and non-linearly

with body size (Fig. 3-3a). However, three clistinct linear allometric trajectories were detected

corresponding to dominant size and age classes. Size- and age-specific allometric coefficients

motivated our approach to clivide samples into clistinct size groups as populations cliffered

markedly in frequency of fish sizes encountered (Fig. 3-3b). As a result, not all populations

are included in each size category (population n<60mm =13, n 60. 15Omm =16, n>ISOmm =7). In

general, shape changed most rapidly in fish less than 60 mm (linear coefficient of shape vs.

body size =0.07), intermediate in fish 60-150mm (coefficient =0.04), and slowest in fish

larger than 150 mm (coefficient =-0.01, Fig. 3-3c). Moreover, the sign of coefficient

changed from significantly positive (a trend toward smaller heads and deepening body) in the

first two size groups to significantly negative Qarger heads and streamlined bodies) in the

largest size group (see Fig. 3-3 for thin-plate spline visualizations).

96



Significant differences among populations were detected (via ANOVA) after

adjusting shape variables using within-size-group common allometric coefficients and mean

group body size (Table 3-1). Shape of the <60 mm size group differed markedly among

sampling locations (F13,604 =34.9, P < 0.001) with Parker's Pond Brook and Savage Creek

populations having the smallest and largest size-adjusted shape values, respectively (Table 3­

1). Intermediate sized fish (60-150 mm) also differed significantly in adjusted shape among

populations (F15.716 =48.8, P < 0.001), Fish from the Chance Cove, Renews River, and

Parker's Pond Brook populations had the smallest mean shape values, whereas the Savage

Creek and Torbay populations had the largest values (Table 1). Finally, and similarly, body

shape of individuals in the largest size group differed among populations (F6,240 =34,9, P <

0.01). Rennie's River and Virginia River populations were not different from each other in

body shape (relatively small warp values), but differed significantly from the remaining

populations, which had relatively large warp values (Table 3-1).

Suite of Phenotypic traits

Analyses of size-adjusted morphological, meristic, and growth variables provided

additional evidence of population differences (Appendix table 3-1). Results of linear

discriminant function analysis (DFA), based on size-adjusted traits on average, assigned 69%,

54%, and 57% of individuals correctly to populations in the small, intermediate, and large

size groups, respectively. These values are much greater than what is expected by chance

alone (6.3-14.3%; Table 3-2).

Principal components analysis (PCA) on the same traits resulted in the retention of

four significant axes for all size groups. These four axes explained ~65% of the variation in

each size group (Table 3-3). The first principal component in the smallest size group
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explained an inverse relationship between growth rate and caudal fin length, head size, eye

size, red colouration, and number of spots (fable 3-3a). The second axis described an

increasing gradient in body depth, weight, and caudal depth. Colouration values loaded

heavily on the third axis, while pectoral length and growth loaded positively on the fourth

axis.

Pectoral length, caudal length, head size, and eye size of intermediate sized fish

loaded heavily and inversely to growth on PCl (fable 3-3b). The second axis described a

gradient of body depth and caudal depth and the third axis described a positive association

between growth, red colouration, and spots. The final PC axis retained for intermediate sized

fish described an inverse relationship between weight, spots, and caudal length.

In contrast to the previous size groups, the first PC axis for the largest size group

described measures of overall size, such as body depth, weight, caudal depth, pectoral length,

and eye size (fable 3-3c). The second axis suggested an inverse relationship between body

depth, caudal depth, and eye size, while the third axis described an inverse relationship

between overall colour, red colour, and growth. Caudal length, caudal depth, and spots

loaded heavily and positively on the fourth axis.

Principal component scores from the four retained axes were significantly different

among popuJations for the small size group (MANOVA, Wilks A,2.210 = 0.05, P < 0.001),

intermediate group (Wilks A,5•309 = 0.16, P < 0.001), and large group (Wilks A6.106 = 0.27, P

< 0.001). Moreover, all PC variables in MANOVA were significantly different in each size

group (p < 0.001).
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on-metric multidimensional scaling MDS) plots facilitated visualization of

clifferences among populations (Fig. 3-4) and placed populations in multivariate space while

maintaining original similarities (i.e. low stress, range 0.10- 0.13) for small (Fig. 3-4a),

intermecliate (Fig. 3-4b), and large size groups (Fig.3-4c).

Habitat similarity

Physical habitat features varied markedly among sampling locations (Appendix Table

3-2). For example, systems ranged between 1.7 m to 16.9 m in average width and 12 cm to

38.1 cm in depth. Similarly, conductivity ranged widely between a low of 33.1 I-lS in Chance

Cove to a high of 299.3 I-lS in the Waterford River.

Nonmetric multiclimensional scaling placed populations in two climensions while

maintaining original similarity relationships (stress =0.03) and thus represents an accurate

visualization of similarity in habitat features. Results reveal a cluster of systems (i.e., Virginia

River, Rennie's River, Waterford River, Savage Creek, and Topsail) that are close to the

putative source of invasion and to each other, have high conductivity, and relatively low

water clarity (Fig. 3-5). Parker's Pond Brook which feeds the protected city water supply of

St. John's is an exception and is characterized by high gradient and small width/depth ratio

in adclition to low conductivity. The remaining populations generally aligned on a north­

south clistanceaxis (Fig. 3-5).

Environment-phenotype correlations

We detected the influence of abiotic environmental factors on body shape, based on

Relative Warp scores; however, the strength and specific environmental variable most
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influential on shape varied among size groups. Overall, environmental factors explained little

of the variation in the small size group (2-12%) and the most favoured model contained the

sole effect of conductivity, though it only explained 10% of the variation. Models with

combinations of distance, stream size (width-depth ratio), stream flow (size+gradient), and

conductivity all received substantial support based on MIC values, yet they explained little

of the observed variation (Table 3-4). Relative Warp scores were positively related to

conductivity and distance (increasing dorsal ventral and caudal axis, declining head size) and

inversely related to stream size (increasing streamlining).

In contrast, markedly more variation in body shape was explained by environmental

factors in the intermediate and largest size groups. The most favoured model contained the

individual effect of distance for both the intermediate (r2 =0.26) and large (r2 =0.25) size

groups. However, all other models tested also received substantial support (MIC < 4),

indicating that combinations of distance between watersheds, stream size and flow, and

conductivity may influence shape (Table 3-4). Body shape of intermediate size fish

responded similarly to distance, stream size, and conductivity as small fish (Table 3-4), while

the largest size group revealed a different pattern. Among population variation in body shape

of fish >150 mm was positively related to distance (similar to other groups) and stream size

but negatively related to conductivity.

Analyses based on population similarity in a suite of morphological, meristic, and

growth traits (visualized in Fig. 3-4) also revealed significant correlations in similarity of

environmental features, but were again dependent on size group (Table 3-5). Similar to the

results based on body shape alone, phenotypes among populations based on fish < 60 mm

were not significantly correlated with environmental variables. The BIO-ENV routine
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suggested that the strongest correlation was between phenotype and the combined effects of

riparian cover, stream size, stream gradient, and water clarity (Rm = 0.17); however, this

correlation was not statistically significant (p =0.122). In contrast, population phenotypes

based on the intermediate size groups were strongly and significantly correlated with al.l the

variables extracted from the BIO-ENV routine. The strongest correlation between

phenotype and environment was the result of distance between watersheds, riparian cover,

and stream size~=0.47, P < 0.005). Population phenotypes based on the largest size

group was best correlated with riparian cover and conductivity (Rm= 0.38), though the

correlation was not significant (p =0.06).

Discussion

We found evidence to support the hypothesis that brown trout populations in

Newfoundland currently differ in a suite of phenotypic traits no more than 130 years, or

approximately 32 generations, after first introduction. Body shape of individuals varied

significantly with habitat occupancy, consistent with the prediction that steeper, faster­

flowing streams select for more streamlined morphology whereas relatively small but

productive streams select for deeper bodied fish. Consistent with predictions, overall

population phenotypes based on 11 morphological, meristic, and growth variables correlated

significantly with 6 habitat variables, though the effects were more pronounced in larger fish.

Taken as a whole, populations displaying similar suites of phenotypes tended to inhabit

rivers characterized by similar suites of habitat features. It currently is unclear whether the

phenotypic differences among populations have resulted from local selection on a common
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population of founders, recurrent phenotypic plasticity as the same pool of genotypes have

been exposed to differences in environmental conditions during development, or some

combination of processes. In summary, we suggest that the established non-native trout

populations in Newfoundland display levels of phenotypic variation on par with that

observed in the native range (e.g., Karakousis et al., 1991, Pakkasmaa & Piironen, 2001) and

that this variation, acknowledged by Izaak Walton in 1653, has arisen in contemporary time.

However, the mechanisms and processes that have driven and maintained this phenotypic

variation are currently unclear.

Body shape

We detected distinct, non-linear allometry in body shape based on geometric

morphometries and Relative Warp analysis. Allometric relationships between shape and size

were linear Ivithill each size group but strikingly non-linear amoJlg the range of sizes observed.

To our knowledge this is the first report of such non-linear allometry in juvenile salmonids,

though such patterns have been reported elsewhere in species that exhibit marked shifts

between larval and juvenile morphologies (Loy et 01., 1998). The pattern of allometry

observed in this study serves as a poignant example of the danger in assuming linear,

common-group allometries when comparing morphological traits among populations and

environments (reviewed by McCoy et 01., 2006). We controlled for this underlying allometry

by size-adjusting body shape values using within-size-c1ass al.lometric coefficients and mean

body sizes.

Taken as whole, these patterns in body shape among populations are presumably

maintained by a combination of phenotypic plasticity and adaptive evolution. At least some

102



populations of salmonids display adaptive plasticity with regards to body shape, where

plasticity acts in the direction thought to be favoured by selection (pakkasmaa & Pjjronen,

2000, Haas et al., 2010, Franssen, 2011). Additionally, body shape in juvenile salmonids has

significant levels of underlying additive genetic variance, suggesting that evolutionary

responses in shape to natural selection are likely (Hard et aL, 1999).

Population variation in a phenotypic suite

In addition to differences in geometric morphometric analysis of body shape, we

detected significant interpopulation variation in a suite of morphological, meristic, and

growth traits of individuals. Overall, discriminant function correctly reassigned individuals to

populations based on this swte of traits at a rate much greater than predicted by random

chance. Principal components analysis (peA) followed by multivariate analysis of variance

on retained principal component axes scores corroborated these among population

differences and yielded some salient points. Traits representing the highest loadings on the

retained components varied among the three size groups of fish and correlations among

traits also varied with size. For example, we detected negative allometry between growth rate

and eye size and head size as reported elsewhere (McDowall & Pankhurst, 2005). In contrast,

eye and head size were independent of growth among fish in the large size group. Similarly,

we detected size-specific relationships between growth and amount of red colouration.

Growth was negatively correlated with red colouration in the small and large size groups,

and positively correlated in the intermediate size groups. We interpret these patterns to

indicate that the factors underlying expression of these traits vary with size and are

presumably related to ontogenetic shifts in habitat and resource use and availability (Nicieza,

103



1995, Michaud et al., 2008, Bisson et al., 1988). Furthermore, these fmdings support the

complex pattern of allometry revealed in geometric morphometric analyses on body shape.

The suite of phenotypic traits, which we reduced to principal component, axes scores,

differed significantly among populations. Thus we suggest that the similarity in phenotypes

visualized by non-metric multidimensional scaling plots (Fig. 3-4) represents statistically and

biologically significant differences among populations.

Environment-phenotype correlations

Body shape

Environmental features explained little of the among population variation (-10%) in

body shape of fish in the small size group. We suggest that the lack of association between

environmental factors and body shape may arise from environmental factors that were not

quantified or did not represent the appropriate spatial scale of the rearing dynamics in the

smallest fish. Alternatively, little differentiation in the small size group may reflect an

insufficient amount of time for plasticity and selection to act. Some combination of these

explanations are likely as previous work has demonstrated the influence of rearing

environments to drive body shape in salmonids of similar size and age (pakkasmaa &

Piironen, 2000, Pavey et al., 2010). Future work that seeks to precisely quantify microhabitat

use of small fish in these populations with the intention of predicting body shape may be

illuminating.

In contrast, markecUy more variation in body shape was explained among

populations based on the intermediate and largest size groups. For both groups, a trend of

increasing deepening of the body and caudal area was detected on a south to north gradient,

such that populations south of the invasion source were characterized by thinner bodies and
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populations to the north displaying more robust shapes. Distance was weakly and non­

significantly correlated with the other environmental variables predicted to influence body

shape, suggesting that this is not simply a result of underlying correlations between factors.

This pattern in body shape may have arisen from founder effects as it is plausible that

watersheds to the south and north of the original invasion source have been established by

different subsets of colonizers. On-going research to understand another contemporary

brown trout invasion in the Kerguelen Islands is illustrative as patterns of genetic diversity in

recently established populations were primarily understood by introduction history and

founder effects (Launey et aL, 2010). Interestingly, research in the Kerguelens also suggests

that landscape environmental factors mediate the rate and direction of trout migrations and

ultimately structure the genetics of colonizing populations.

In addition, an aspect of river size (i.e. width-depth ratios), gradient, and conductivity

were also important explanatory factors of body shape variation. Populations based on

intermediate (60-150mm) sized fish, rearing in streams characterized by relatively high

gradient and large width-depth ratios displayed narrower and more streamlined morphology.

This pattern is consistent with other studies thar report a general pattern of stream-lined

morphology in lotic habitats (flowing water) and robust body shape in lentic (stillwater)

habitats (K.eeley et al., 2007, Pakkasmaa & Piironen, 2000, Pavey et al., 2010, Haas et al.,

2010, Franssen, 2011). Curiously, body shape based on the largest size group (>150 mm)

was inversely related to conductivity and positively related to stream size. That is, high

conductivity apparently shaped or selected for large heads while streams with large width­

depth ratios were associated with deep-bodied individuals. While the underlying mechanisms

of this are unclear, it is plausible that the water flow and stream size exert different shaping
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and selection pressures in smaller fish and that growth beyond a critical size allows

ontogentic shifts to ctifferent habitats (e.g. pools and riffles; Nicieza, 1995, Bisson et aI.,

1988) or prey items (Michaud et al., 2008, Denton et al., 2009), which likely correspond to

changes in selection pressures.

Across ewfoundland, colonizing brown trout are more successful in establishing

populations in productive rather than unproductive watersheds (Westley & Flerning, 2011)

and the result here suggests that water chemistry and productivity influence also influence

body shape. Water chemistry may be both ctirectly (e.g. developmental plasticity) and

indirectly (e.g. shape mediated by growth ctifferences in response to productivity) influencing

body shape though mechanisms that can be complicated, and frequently unclear (Crispo &

Chapman,2011).

Phenotypic suite of traits

As predicted, our results suggest that populations ctisplaying similar suites of

phenotypic traits tend to inhabit rivers with similar abiotic environments. ot all abiotic

environmental variables were important correlates of phenotypes; however, and analogous

to the analysis of body shape, the importance of particular variables ctiffered among size

groups of fish. Correlations between phenotype and environment were weak and non­

significant in the smallest size group «60 mm), strong and significant in the intermediate

size group (60-150mm), and marginally significant in the largest size group (>150 mm). We

focus the remainder of the ctiscussion on the results of the intermediate size group as all

populations were represented and correlations with environmental features were strongest.
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Phenotypic similarity was best correlated with three environmental predictors:

distance between watersheds, the extent of riparian cover, and stream size (i.e., width-depth

ratio). We interpret the importance of distance among watersheds and stream size to explain

aspects of body shape, such as body depth, caudal depth, and head size, following our

previous logic. Moreover, we detected positive correlations of size-adjusted pectoral and

caudal fIns with stream size, supporting the observation that these traits, critical for

swimming performance, can be plastic depending on rearing environments (pakkasmaa &

Piironen, 2000, Bisson et al., 1988, Imre et aI., 2002).

Riparian cover was an important correlate of phenotypic similarity among

populations, which we attribute to the effect of riparian cover on resource availability and

growth patterns, which in turn, influences trait expression. In addition to providing physical

habitat structure, riparian cover determines the amount of light reaching streams and thus

influences photosynthesis and primary productivity. In Trinidad, canopy cover explains 93%

of the variation obsenred in guppy growth rates by influencing the standing crop of algae

and food availability (Grether et aI., 2001). Furthermore, riparian cover limits the potential

for algal pigments, such as chlorophylls and carotenoids, to be assimilated into the food

chain, which in turn, influence patterns of sexual colouration in guppies (Grether et aI.,

1999). The brown and black spots on the sides of brown trout are melanin-based and can be

synthesized by the animal directly, whereas the orange and red spots and fin colouration

contain high concentrations of carotenoids accumulated via the environment (Fig. 3-2.,

Stevens, 1948, Wedekind et al., 2008). Similar to the patterns reported by Grether et al.

(1999,2001), the extent of riparian cover was negatively correlated with growth (r14 = -0.34),

extent of red colouration (r14 =-0.16), total number of pigmentation spots (r14 =-0.16), and
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overall brightness of colouration (r14 =-0.07) in our study. The principal component analysis

revealed that slow growing fish tended to have fewer overall spots and less red colouration

compared to their faster growing counterparts. This suggests that colour and pigmentation

patterns are mediated by growth and pigment availability, which in turn, is affected by

riparian cover. Moreover, we detected a positive correlation (r14 =0.40) between eye size and

extent of riparian cover. Is unclear, however, whether dark environments select for the

expression of large eyes or again reflect patterns in growth as slow growing fish, whjch often

inhabit dark environments, tend to have large eyes.

The success of brown trout to establish populations around the globe is often

attributed to their wide-environmental tolerances and the ability to respond plastically to

environmental change (Elliott, 1994). Indeed, the success of invasive species as a whole is

frequently linked to adaptive phenotypic plasticity (Davidson et aL, 2011). Plasticity can allow

persistence in novel environments (Yeh & Price, 2004, Ghalambor et aI., 2007) and is an

important route towards genetically-determilled local adaptation (Chevin & Lande, 2011a,

Cheyjn et al., 2010, Lande, 2009, West-Eberhard, 2003). The similarity between phenotype

and environmental features, combined with the observation that many trillts are correlated

with growth, strongly implicates the underlying influence of phenotypic plasticity in shaping

brown trout populations in ewfounclland. This does not, however, preclude the possibiJity

that the phenotypic variation observed represents underlying genetic architecture. For

example, established populations of brown trout in the 1 ergueJen Islands have, as inferred

from neutral microsatellite loci, rapidly evolved in less than 20 years (AyUon et aL, 2006).

Moreover, correlations between phenotype and environment may arise from the successfuJ

colonization by a subset of pre-adapt individuals to certilln conditions (favoured founders'
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sensu Quinn et al., 2001a). Minor changes in trait values can have disproportionately large

influences on fitness and population vital rates, irrespective of whether the changes result

from environmentally-induced plasticity, genetic adaptation, or combinations of the two

(Kinnison et aI., 2008). Changes in vital rates and fitness can feedback on the potential for

species to spread and colonize new environments and thus, understanding the realized

fitness consequences of the observed phenotypic variation in ewfoundland brown trout

populations is an important next step towards testing for local adaptation and assessing their

potential to further invade.
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Chapter Three Tables

Table 3-1. Average ± SD size adjusted shape values based on the first relative warp scores.
Visualizations depict extreme values observed in each size group, exaggerated two times to
aid interpretation of differences.

Size 2fOUP Population n Size adjusted shape Shape\'isua!ization
Anmale 41 -0.019 ± 0.011
Chance ::!3 -0.02::! ±0.01O
Chapel -0.014 ± 0.009 . :..
Parl<ers 88 -0.039 ± 0.010 ..

Raym>IXIs 50 -0.032 ± 0.011
Renews ::!1 -0.030 ± 0.008

<60 mm Rel1lJies 46 -0.016 ±0.010
Re'\1on 34 -0.0 2 ± 0.014

SabnonCo\·e 46 -0.015 ± 0.013
Savage 1 -0.010 ± 0.00

SEPlacentia 40 -0.019 ± 0.008
Topsail 6_ -0.0__ ± 0.010
\\'it!ess 60 -0,029 ± 0.011

Avondale 0.00 0.010
Chance 4 -O.OO::! 0.011
Chapel ::!4 0.018 0.00 , ·.Parl<ers 19 -0.001 0.011 ~ . . ·Raym:>oos _0 0.D16 0.009
Renews -0.001 0.010
Re1lllies 33 0,013 0.010

60-150= Rexton 42 0.015 0.009
SabnonCo\'e _0 0.D::!1 0.010

Savage 0.0::!4 0.008
SEPlacentia 40 O.OO::! 0.010 . ·Topsail 3 0.018 0.008 .'. •..

Torbav 63 0.0::!3 0,008

\"~ 5 O.O::!O 0.009
Watertord 51 0.01 0.010

\\'it!ess 46 0.00 0.008

Rellllies ..,.., 0,018 0.0 I::! . ·SabnonCo\'e ::!5 0.02 0.010 .1. ··Sa\lIge ::!6 O.O::! 0.009 .
>150rrm Topsail 15 0.0::!6 0.009

Torbay 61 O.O::!::! 0.011
• I.

. .·\'irginia 48 O.D1i 0.010 . ·Waerbrd 30 O.O::!::! 0.011



Table 3-2. Reclassification rates based from linear discriminant function analysis based on 11 size­
adjusted morphological traits in 16 brown trout populations. Discriminant functions and
reclassifications were conducted separately in three size groups. Percentages are based on n=17, n=20,
n=15 fish per population in the <60 mm, 60-150mm, and >150mm size groups.

47

75

43

38

47

73

75

14.3

% correctly assigned

>150 mmPopulation <60 rrun 60-150 mm

Avondale 47 65

Chance Cove 82 68

ChapelArrn 65 75

Parker's 77 75

Raymond's 71 60

Renews 82 53

Rennie's 53 65

Rexton 76 40

Salrmn Cove 82 30

Savage 75 60

SEPlacentia 65 65

Topsail 65 67

Torbay 50

Virginia 38

Waterford 30

Witless 65 20

prior probability 7.7 6.3
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Table 3-3. Loaclings from the first four principal component axes based on growth
and size-adjusted morphological and meristic variables for three size groups of fish
a) <60 mm, b) 60-150 mm, c) >150 mm. Significant loadings are highlighted in grey.

PCI PC2 PC3

a)<6Omm
growth -0.326 0.258 -0.286 0.384
body depth 0.078 0.646 -0.176 -0.021
weight -0.14 0.47 0.36 -0.21
caudal depth 0.227 0.385 -0.093 0.043
pectoral length 0.270 0.083 0.305 0.643
caudal length 0.412 -0.001 -0.085 0.290
head size 0.332 0.288 -0.148 -0.294

0.433 -0.024 -0.044 -0.352
0.120 -0.155 -0.751 0.026

red coloration 0.391 -0.043 0.065 0.259
spots 0.330 -0.184 0.236 -0.180
Eigenvallle 3.17 1.63 1.21 1.02
% of total variance 28.9 14.8 11.0 9.3
% cumulative variance 28.9 43.7 54.7 64.0

b) 60-150 mm
growth 0.349 -0.215 0.303 -0.237
body depth -0.035 -0.648 -0.021 0.056
weight -0.076 -0.292 0.048 0.604
caudal depth -0.144 -0.590 -0.033 -0.039
pectoral length -0.479 0.036 0.073 -0.168
caudal length -0.340 -0.039 0.184 -0.384
head size -0.444 -0.154 -0.126 0.010

-0.488 0.140 -0.045 -0.069
0.204 -0.127 0.224 -0.211
-0.093 -0.022 0.781 -0.104

spots -0.141 0.192 0.434 0.581
Eigenvalue 2.71 1.85 1.25 1.16
% of total variance 24.7 16.8 11.3 10.6
% cumulative variance 24.7 41.4 52.8 63.4

c»150mm
growth 0.131 -0.284 0.313 -0.068
body depth 0.460 -0.334 -0.113 0.010
weight 0.314 -0.307 -0.274 -0.291
caudal depth 0.324 -0.448 -0.105 0.317
pectoral length 0.443 0.216 0.063 0.012
calldallength -0.088 -0.056 0.072 0.762
head size 0.471 0.336 0.017 -0.140
eye size 0.275 0.523 -0.021 0.146
coloration -0.062 -0.053 -0.616 0.210
red coloration -0.006 0.248 -0.590 0.069
spots 0.252 0.111 0.258 0.373
Eigenvalue 2.55 1.81 1.47 1.33 112
% of total variance 23.1 16.4 13.4 12.1
% cumulative variance 23.1 39.6 52.9 65.0



Table 3-4. Variation (r~ in body shape values (relative warp 1 scores from geometric
morphometries) of 16 brown trout popuJations in ewfoundJand. Models incorporating
combinations in conductivity, stream size (width-depth ratio), stream gradient, and distance to

putative ancestral source in explaining variation in shape that received substantial support
(MIC scores <4) are shown in bold. Analyses were conducted separately in three size groups
to account for differences in allometry.

Size group Predictors AIC t>AJC Coefficient

conductivity 0.1 -87.99 0 positive

distance 0.05 -87.12 -0.87 positive

size 0.03 -86.92 -1.07 negative

<60rrun tlow(size+gradient) 0.02 -85.03 -2.96

tlow(size+gradient),conductivity 0.1 -84.06 -3.93

distance, flow (size + gradient) 0.04 -83.3 -4.69

distance,f1ow(size+gradient),conductivity 0.12 -82.42 -5.57

2 distance 0.26 -106.31 0 positive

2 size (w.d) 0.25 -106.1 -0.21 negative

4 distance,tlow(size+gradient) 0.29 -105.6 -0.71

60-150mm 5 distance,tlow(size+gradient),conductivity 0.3 -105.31 -I

2 conductivity 0.16 -104.41 -1.9 positive

3 tlow(size+gradient) 0.19 -104.27 -2.04

4 tlow(size+gradient),conductivity 0.16 -103.01 -3.3

distance 0.25 -55.91 0 positive

tlow(size+gradient) 0.17 -54.83 -1.08

> 150rrun distance,tlow(size+gradient) 0.15 -54.59 -1.32

conductivity 0.23 -54.5 -1.41 negative

size (w.d) 0.09 -53.36 -2.55 positive

distance, tlow(size + gradient),conductivity 0.18 -53.12 -2.79

tlow(size+gradient),conductivity 0.09 -52.89 -3.02
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Table 3-5. Environmental factors correlated with population phenotype of ewfoundland brown
trout. Correlates represent the best combinations of variables associated with phenotype and
significance of the Mantel correlation (Rm) is based on Mantel's tests.

Size group

<60 mm

60- 150mm

>150 mm

Correlates

size
cover,size
cover, size, gradient
cover, size, gradient, clarity
distance, cover, size, gradient, clarity

distance, cover, size, gradient, clarity, conductivity

distance
cover, size

distance, cover, size
distance, cover, size, gradient
distance, cover, size, gradient, clarity
distance, cover, size, gradient, clarity, conductivity

conductivity
cover, conductivity
distance, cover, conductivity
distance, cover, gradient, conductivity
distance, cover, size, gradient, conductivity
distance, cover, size, gradient, conductivity, clarity

0.11
0.15

0.16
0.17

0.05
-0.02

0.31***
0.38***

0.47****
0.41***
0.34***
0.23**

0.3
0.38*

0.33
0.31
0.23
0.15

*p<O.I, **p <0.05, ***p<0.01,****p<0.005
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Chapter Three Figures

Fig. 3-1. Approximate locations of sampled brown trout populations on the island of ewfoundland,
Canada. umbers correspond to the following: 1) Southeast Placentia River, 2) Chance Cove River, 3)
Renews River, 4) Witless Bay/Pierre's Brook, 5) Raymond's Brook/Petty Harbour, 6) Waterford River,
7) Rennie's River, 8) Parker's Pond Brook/Windsor Lake, 9) Virginia River, 10) Savage Creek, 11)
Torbay River, 12) Topsail River, 13) Avondale River, 14) Salmon Cove River, 15) Chapel Arm River, 16)
Port Rexton River. For coordinates of these systems see Table 2 in Westley and Fleming (2011). The
city of St. John's is located in the vicinity of numbers 7, 8, and 9.
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Fig. 3-2. Location of homologous landmarks and linear measures used to quantify shape
differences in Newfoundland brown trout populations. Surface area of the head and eye
were also quantified using the Freehand polygon tool in Image]. Count of pigment spots
and quantification of red and overall colouration were also completed from photographs
(see methods).
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<60 mm

Fig. 3-3. Relative warp scores and thin-plate spline visualizations depicting the extreme
values of the first relative warp (a), cumulative frequency of total sampled fish in 16
trout populations based on fork length (b), and histogram of fork lengths pooled
across populations, arrows denote breaks corresponding to size groups in statistical
analyses (c). 117
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Fig. 3-4. Non-metric multidimensional scaling plots to visualize phenorypic
differentiation of brown trout populations in ewfoundland, based on fish <60 mm (a),
60-150 mm (b), and >150mm (c). Similarity represents Eucudean distance based on four
retained principal component axes scores on 11 phenorypic variables. See methods and
results for more details.
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width to depth ratio. See methods and results for more details.
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Chapter 4: Testing predictions of the Baldwin effect in nature­
does phenotypic plasticity facilitate survival during the
introduction stage of invasion?
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Abstract

Phenotypic plasticity - the ability of an organism to respond to an environmental stimulus

with a change in state, form, movement, or behaviour - is increasingly thought to represent a

mechanism for popuJations and species to cope with abruptly changing environmental

conditions. Over a hundred years ago,]. M. Baldwin proposed a 'new factor' in evolution

whereby plasticity couJd facilitate survival in new environments and allow selection to act on

the survivors in the direction of the plastic response. These predictions encapsuJate the first

vital stages of the 'Baldwin effect' whereby environmental induction of traits can shape the

course of subsequent evolution; however, few studies have attempted to empirically test

these predictions in nature. In this paper, we combine common-garden and reciprocal­

transplant experiments along with formal quantifications of natural selection to test the

hypotheses that phenotypic plasticity acting body size, growth rate, and functional

morphology in juvenile brown trout (Salmo Inltla) should allow individuals to persist when

introduced to novel environments and that plasticity shouJd be predictable based on patterns

of natural selection. To do so, we raised individuals from three popuJations in common

laboratory conditions until large enough to tag and track in the wild. We detected marked

plasticity in s\vimrning morphology, specifically the depth of the head and body, after

approximately two months of rearing in three wild streams. PopuJations that survived

introduction were generally consistent in their plastic responses, though we did detect

evidence of popuJation-specific plasticity suggesting underlying genetic variation. Counter to

predictions, the plasticity we observed was frequently in the opposile direction from selection

even though it moved in a direction generally asslIIlICd to be adaptive (i.e. small rivers seemed

to plastically induce shallow-bodies and vice versa in large rivers). We did detect evidence of

greater survival and growth of individuals reared in their local environments compared to

when reared in foreign locations, suggesting local adaptation has evolved in these

populations recently descended from common ancestors. OveraU, our results suggest that

plasticity may shape phenotypes in unpredictable ways and that attempts to forecast the

response of popuJations to rapidly changing global environments may be prone to faiJure.
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Introduction

Theory predicts that phenotypic plasticiry - the ability of an organism to respond to

an environmental stimulus with a change in state, form, movement, or behaviour - should

facilitate survival during periods of abrupt environmental change (Lande, 2009, Ghalambor

et al., 2007). Research to understand the role of phenotypic plasticity as an evolutionary

pathway has surged in recent decades (see reviews by West-Eberhard, 2003, Pigliucci, 2001)

after a long period of disfavour among many evolutionary biologists resulting, in part, from

the perception that plasticity is merely a 'proximate' rather than an 'ultimate' explanation of

the phenotype (e.g. Mayr, 1961). It is currently, and has been at least since the time of

Darwin, widely acknowledged and accepted that the environment shapes individual

phenotypes (Darwin, 1859, DeWitt & Scheiner, 2004). What remains controversial, however,

is whether plasticity serves to shield individuals from selection or produces novel variation

on which selection can act, and thus whether plasticity accelerates or retards the rate of

phenotypic evolution (paenke et al., 2007, Via et al., 1995). The desire to predict how species

and populations will respond to large-scale climate change and anthropogenic disturbance

has helped fuel the resurgent interest in phenotypic plasticity (Crispo et aL, 2010,

Charmantier et al., 2008), with a primary goal to understand whether plastic responses will be

sufficient to allow persistence (Reed et aI., 2011, Chevin & Lande, 2011 b). Theoretical

studies (i.e. mathematical modeUing and simulation, see Chevin et aI., 2010) have greatly

outpaced empirical research and many of the predictions from classical, as well as

contemporary work on plasticity remain to be tested in nature.
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Biological invasions and invasive species (i.e. species that are transplanted and

established beyond their native range) are serendipitous research systems to explore the

importance of phenotypic plasticity in the successful colonization of novel habitats (Westley,

2011). Brief bursts of directional selection are predicted and observed to occur during the

early stages of colonization and invasion (Reznick & Ghalambor, 2001), and plasticity is

frequently postulated as a means for individuals to withstand abruptly divergent patterns of

selection (for an empirical example in barnacles see Neufeld & Palmer, 2008). The

hypothesis that plasticity should facilitate survival in an altered environment or during

periods of stress is far from new. In 1896,J.M. Baldwin formulated a process now referred

to as the BaldllJin effect, by which response and accommodation to environmental inputs (i.e.

plasticity) would permit survival and allow time for selection to act on the traits of the

survivors, and by doing so, shapes the course of future evolution and adaptation (Baldwin,

1896). The Baldwin effect is related to, yet separate from, genetic assilllilation (sensu

Waddington, 1961); the process where an environmentally acquired character, through

selection, becomes genetically determined and canalized (for clarification see Crispo, 2007).

Phenotypic plasticity that results in greater individual fitness to a current

environment (i.e. adaptive plasticity) represents a fundamental component of the Baldwin

effect and was historically referred to as organic selection. In a series of laboratory experiments,

Gause (1942) demonstrated patterns in plasticity to salt resistance in clones of Paratlleci1l111 sp.

consistent with organic selection and the Baldwin effect (though Gause did not cite

Baldwin). Specifically, surviving clones all adjusted their tolerance to salt not only in the same

direction but in the direction that apparently allollJed SIIl7Jival. Though these early controlled

experiments suggest the potential for species to respond predictably to an abruptly changed
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environment, it is less clear whether we can observe, in natural settings, plasticity shifting the

phenotypes of invading and colonizing species in similarly predictable ways?

Three biological examples suggest that adaptive phenotypic plasticity helps

determine the success of invasion and have potentially shaped the course of future

evolutionary change. The first empirical quantitative support of Baldwin's prediction that

plasticity can facilitate survival during the early stages of colonization comes from dark-eyed

juncos (jHf/CO hyemo/is) that established a population on the University of California, San

Diego campus approximately 30 years ago. Here plasticity in breeding length has allowed

population persistence as increased reproductive effort appears necessary to compensate for

high mortality experienced in the novel environment (Yeh & Price, 2004). The second line

of evidence comes from experimental introductions ofAf/o/is lizards to a series of small

Bahamian islands (reviewed by Losos, 2009). After 15 years the subset of individuals that

successfuIly colonized displayed morphological diversification in hind limb size beneficial to

particular habitat use (perch height and diameter in vegetation). Additionally, phenotypic

plasticity during early development was revealed to shape hind limb morphology in the

direction predicted by selection and habitat use and appears to foreshadow the adaptive

differentiation that evolves over additional generations (Losos et al., 2000). Finally, in a

recent review Badyaev (2009) suggests that novel adaptations observed in populations of

colonizing house finch (CorpodoclIs l7leXiCOf/HS) are consistent with the Baldwin effect. Here it

was concluded that novel environments experienced by expanding populations induced

developmental variation, that this variation was phenotypically accommodated and that the

induced developmental outcomes, favoured by selection, were transferred across

generations. Though these examples combine to provide a compelling case for plasticity to
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influence colonization and invasion, they all take (out of necessity) a retrospective approach

rather than catching the Baldwin effect 'in the act'. Indeed it is possible for important

processes to move so quickly as to pass us by (pigliucci & Murren, 2003).

In this paper we examine the importance of phenotypic plasticity to influence body

shape morphology and potentially facilitate survival of colonizing brown trout (Sallllo tnllta)

during the introduction stage of an invasion. We take a prospective approach and predict: 1)

that plastic responses to abrupt environmental change should move phenotypes of

populations and individuals within populations in similar directions and, if the traits are

largely environmentally induced, lead to phenotypic convergence toward the wild-type and

presumably optimal phenotype, 2) that plastic responses should be predictable and adaptive,

that is, phenotypic plasticity should act in the direction favoured by natural selection, and 3)

natural selection acting on colonizer phenotypes would be directional and strong. We addressed

these questions through the combination of laboratory 'common-garden' and reciprocal­

transplants experiments into natural river systems of three non-native brown trout

populations that shared common ancestors approximately 130 years (-30 generations) ago.

The complementary nature of the common-garden and reciprocal transplants allowed

simultaneous testing for the presence of fine-scale local adaptation by comparing the

performance of local- and wild-reared individuals against foreign groups and facilitated

assessment of the genetic underpinnings of body morphology and growth rates. Throughout

this experiment, we assume that phenotypic differentiation among populations reared in

common conditions is the result of underlying genetic differentiation.
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Methods

The study system

Brown trout is a member of the family Salmonidae that exhibits marked variability in

its biology and ecology (but see Jonsson &Jonsson, 2011, Elliott, 1994). Great variability

norwithstanding, an archetypical life history of brown trout includes fall spawning in streams

and rivers followed by protracted embryonic and larval development in gravel substrate.

Young fish, termed fry, emerge to claim and maintain feeding territories in the spring,

representing an important period of selection (Einum & Fleming, 2000). After a variable

amount of time rearing in small rivers fish, now termed parr, often migrate to larger habitats,

such as lakes, mainstem rivers, or the ocean to complete their juvenile rearing before the

majority of the population returns to natal sites for reproduction. This fine-scale homing of

brown trout and other salmonids to natal areas promotes reproductive isolation and local

adaptation of populations in response to site-specific regimes of natural and sexual selection

(Hendry et al., 2004). However, a small percentage of brown trout populations (-2-5%) may

stray to non-natal sites representing a mechanism for both gene flow and the colonization of

new habitat Oonsson &Jonsson, 2011 and references therein).

The native range of brown trout is Eurasian, but beginning in the late 19'h century,

brown trout's renown as a game fish motivated its wide-spread introductions around the

globe (MacCrimmon & Marshall, 1968). The island of Newfoundland was among the first

North American locales to receive shipments of brown trout embryos from Europe in 1883

(Maitland, 1887). The fish were first planted in a land-locked water body, Windsor Lake, in

the capital city of St. john's. The fish survived well upon introduction to Windsor Lake and
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in the following year of 1884, fry from Windsor Lake escaped to the Rennie's River

watershed and subsequently propagated there in a hatchery until the early 1900s, when all

hatchery production of brown trout ceased (Hustins, 2007). The introduction of fish to the

Rennie's River watershed is notable as it represents the first location in ewfoundland with

a traversable connection to the ocean and thus represents the first potential colonizing

source for other watersheds. The Waterford River watershed, along with at least 50 other

watersheds differing in a host of environmental features, have been successfully colonized,

presumably by straying anadromous individuals (Westley & Fleming, 2011).

Field observations reveal population-specific differences in a swte of phenotypic

traits likely important for fitness and the observed variation correlates predictably with

environmental features, such as river size and riparian canopy cover (\Vestley et aI., Chapter

three.). This pattern of environmental matching with phenotype is suggestive of genetic

adaptation, phenotypic plasticity in response to local conditions, or a combination of

mechanisms. However, the extent to which individual traits, such as body shape and growth

rates are genetically controlled, and thus may evolve in response to selection, is not known in

these populations. Moreover, the fitness consequences of observed differences in size,

growth rate, and body shape among populations have yet to be detennined. In addition, on­

going rnicrosatellite analyses on the study populations indicate significant pair-wise genetic

differentiation and large FSI values at many loci (O'Toole et al., in prep), suggesting limited

gene flow among populations, and thus potential for local adaptation.
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Experimental animals

During October and ovember 2008, mature brown trout were collected in Parkers

Pond Brook (a tributary of Windsor Lake), the Rennies River, and the Waterford River with

electrofishing, dipnets, and gillnets (Fig. 4-1). A total of23 families were successfully created

by crossing eight unique sires and dams at the Parkers and Rennies locations and seven

unique parents at the Waterford location. An eighth family originally created from the

Waterford suffered 100% mortality during early embryonic development. We measured the

fork length (mm), and mass (g) of the dams, along with wet mass (mg) of five eggs/female

(fable 4-1). Crosses were conducted on site at the Parkers and Rennies locations while

adults from the Waterford were transferred back to the laboratory and held in common

circular tanks as many of the females, though visually maturing at the time of capture, were

not sufficiently ripe to spawn in the field. Crosses were made in the laboratory when females

were ready to spawn (determined when females expressed eggs under light abdominal

pressure). \Y/e assume that the parents selected for crossing were a random sample of

spawning individuals and representative of the three populations.

Fertilized ova were incubated at the family level in standard hatchery trays on a

common source of flow-through water at ambient temperatures. Dead individuals (eggs and

larvae) were quantified and removed three times per week during the incubation phase.

Except for the one family from the Waterford that experienced 100% mortality, survival was

extremely high (>98% in all families). Hatching began on 21 December and was completed

by mid-January. Fry were removed from incubator trays (i.e. 'emerged') when their yolk sac

had been nearly absorbed and they exhibited free-swimming behaviour. All families had

emerged by mid-March 2009. ewly emerged fry were housed temporarily as separate
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families to monitor potential mortality during this critical emergent stage and introduced to

feed (live brine shrimp Artelllia p. mixed with 0.5 mm standard dry salmonid food, Corey

Feed Mills, Fredericton, B, Canada). After the fish had acclirnated to dry food, families

from each population were combined into communal 1 m2 diameter tanks (one tank per

population) as space limitations precluded separate rearing of families. Fish were kept at

ambient photoperiod, shared a common flow- through ambient water source and were fed

ad libitum 4-8 times daily with commercial dry salmon feed.

In late July and early August 2009 we collected, through electrofishing,

approximately 100 wild young-of-year individuals from each of Parkers, Rennies, and

Waterford populations and transported them to the laboratory for phenotypic sampling and

tagging (see next section). Wild fish were measured and tagged the day after capture and

allowed to recover fully before being returned into their home river with other experimental

groups (see subsequent).

Phenotypic measurements and tagging prior to release

In rnid- July, fish from all populations had obtained sufficiently large size (-50 mm

totallengrh and 1 g wet weight) to be implanted with unique passive integrated transponder

(pIT) tags (length 8.4 mm, weight 64 mg, frequency 134.2 kHz, Biomark, Boise, Idaho).

Three hundred haphazardly chosen individuals from each of the three laboratory

populations and 100 wild individuals collected from each location, were lightly anaesthetized

with MS-222, weighed to the nearest O.OOOlg on an analytical balance, and photographed

with a Nikon D9000 and 50 mm micro lens. Fish were photographed in a standardized

position on their right side following the procedures of Westley et al. (Chapter three.), under
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5200K true daylight fluorescent lights. Fish were then implanted with a PIT tag through a

small vertical incision in the abdominal cavity and allowed to recover in common 1m2

circular tanks. Momility as a result of tagging was very low «2%) and there was no signs of

tag-loss. In most cases, fish were feeding and behaving normally within 24 hours. In early

September 2009, 50 additional individuals from the Parkers, Rennies, and Waterford

laboratory populations were measured and PIT tagged to facilitate the tracking of individual

growth in the laboratory environment. All measurements, tagging, and housing of the

experimental animals were done in accordance with the guidelines provided by the Canadian

Council on Animal Care and with approval of Memorial University's Institutional Animal

Care Committee.

Experimental design- reciprocal transplants

Release

To test the prediction that phenotypic plasticity should shape phenotypes similarly in

the direction favoured by selection, we reciprocally planted four experimental groups into

three natural rivers, differing in environmental features (Table 4-2). Relative to the other

locations, Parkers was smaller in length, width, and depth, slower flowing, less productive

(conductivity as an indicator of productivity, Copp, 2003), cooler on average, and had greater

levels of canopy cover. In contrast, the Rennies and Waterford rivers were longer, larger,

faster flowing, higWy productive, warmer, and had less canopy cover. Rivers differed in

biotic variables such as conspecific density and the presence and abundance of potential fish

predators like the American eel, Angl/illa rostra/a, and larger, older conspecifics (Table 4-2).

All rivers would have historically contained brook trout (SallJclitlllsJonfinalis) but currently are
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dominated by brown trout, presumably resulting from competitive exclusion (\'Vestley et al.,

2011). Additionally, each release site was situated approximately 40 m downstream of

complete obstructions in the form of a perched culvert at Parkers (no brown trout detected

above the culvert, Westley & Fleming personal observations), a 3 m waterfall at Renmes (a

barrier even to full size adult trout, Robbins, 2001) and an 18 m section of chutes and rapids

at the Waterford River where water velocities exceeded 1.6 ms· l
, approximately twice the

prolonged swimming capacity of juveniJe brown trout (0.6-0.8 m/s; Bull, 2010). Thus the

upstream limit of the release locations were marked by complete obstacles to fish movement

and the downstream limits were taken to be where Parkers and Rennies entered large lakes

(\'Vindsor and Quidi Vidi lakes, respectively) and where the west branch of the Waterford

entered the mainstem of the river. Small fish are virtually absent in this mainstem stretch of

river, which we infer is a reflection of poor habitat for young of year trout (Westley et al.,

Chapter three.).

At each location we released individuals of three laboratory raised Ft populations (i.e.

one local and two foreign at each site) along with individuals from the local wild-born

population (referred to as 'wild'). Individuals from the laboratory groups were haphazardly

assigned to a release and rearing location. A1J groups were released in approximately equal

proportions (~100 in each group, slight deviations resulted from counting errors and

mortality during transit to release locations). Thus for example at the Rennies release

location; 100 local (laboratory-raised), 99 local (wild-born), 100 foreign Parkers (laboratory­

raised), and 102 foreign Waterford (laboratory-raised) individuals were released. The wild

fish from Parkers Pond Brook are the one notable exception to the balanced design as only

65 individuals were released. At the time of collection in late July, many of the young of year
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trout were less than the threshold size for tagging and as a result 48% of the 65 tagged wild

fish from Parkers were relatively large (>65 mm) yearlings. We chose not to t.'lg additional

large wild fish in order to avoid further confounding of the effect of population origin and

size.

Recapture

We conducted sampling to recapture tagged individuals beginning in early October

(-70 days post release) and continued through mid-November (for dates see Table 4-2). Our

goal was to search the length of the experimental rivers in their entirety in order to maximize

tag recovery and to accurately gauge relative survival between groups. To that end, we

employed the foUowing recapture protocol on the rivers: each location was divided into

sections based on habitat characteristics (e.g. pool or riffle) and sampling began at the upper

most section and sequentially proceeded downstream. In the foUowing year we initiated our

sampling at the bottom and worked sequentially upstream because we hypothesized that

greater numbers of fish may have dispersed to downstream areas over the winter. Each

section was shocked in an upstream direction with electrofishing. Captured fish, regardless

of size, were removed and temporarily stored in aerated containers until the upstream part of

the section was reached. All fish, including potential predators Qarge brown trout and eels),

were then scanned for PIT tags with handheld readers (pocket Reader, Biomark, Boise,

Idaho). We conducted additional upstream electrofishing passes when tagged individuals

were recovered and repeated the sampling of sections until subsequent passes yielded no

additional tags. In this manner, we systematically worked throughout the entire length of the

experimental river.
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Tagged individuals were recorded by river section, anesthetized with clove oil,

weighed (0.1 g), and photographed in the field using the same protocol and equipment

employed prior to release. Fish were released near their site of capture at the end of the

sampling day. Landmarks were placed on the photographs of recaptured individuals and

again used to calculate Relative Warp scores following the methods used prior to release.

Doing so facilitated investigations of shape-change plasticity of individuals and populations

reared in different locations.

Analytical approach and data analysis

Population-specific body shape in a common laboratory environment

We used a multivariate approach, geometric morphometries, to quantify body shape

among populations reared under common laboratory conditions. This allowed us to

compare the shape of fish raised in the laboratory versus wild environments, and to

investigate plastic changes in shape among environments (Adams et aI., 2004). Two­

dimensional body shape was quantified by placing 14-homologous landmarks on digital

images in the program tpsDig2, Version 2.12 (RoWf, 2005). The landmarks were modified

from Wescley et al. (Chapter three) to include points on the posterior and anterior insertion

of the orbit as to capture changes in eye size (Fig. 4-2). Landmark data were aligned to a

single consensus shape configuration using Procrustes superimposition using the program

tpsRelw, Version 1.46 (Rohlf, 2006). After alignment, Relative Warp scores (analogous to

Principal Component scores) were calculated for each individual. Interpretation of how each
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Relative Warp contributed to body shape was based on visualizations of thin-plate spline

transformations generated in tpsRelw.

We tested for significant relationships between body size and shape values and when

significant relationships were detected we adjusted shape values to a common mean length

using the equation (Hendry et al., 2002, Quinn et al., 2001 b, Reist, 1986, Fleming & Gross,

1989):

Eq.1

where Shape'dj is the adjusted shape, Shapeob' is the observed shape, Lengthm"m and

Lenghobs are the mean and observed lengths, respectively, and b is the common within-group

regression slope between shape Oog, + 1) and length Oog, + 1) from ANCOVA without an

interaction term. Shape variables were adjusted to a common body length rather than to the

centroid value to aid in direct biological interpretation, which was justified as body length

and centroid size were strongly related Oength =0.7575 * centroid + 7.0728, r2 =0.998).

We used analysis of variance ( OVA) followed by Tukey post-hoc tests, corrected

for multiple comparisons, to test the hypothesis that populations reared in common

conditions differed in mean size-adjusted body shape.

Apparent survival

We used recapture information (recaptured or not) as a proxy for survival to test for

differences in the relative performance among experimental groups released at each of the

three rearing locations. This approach has been used successfully elsewhere and deemed

highly appropriate for experimental designs, such as ours, that employ few recapture bouts
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(Nosi! & Crespi, 2006). Individuals that survived until fall 2009 were assigned a value of 1,

which we determined by either recapturing the individual in the fall or at any subsequent

time. That is, individuals that we did not recapture in the fall of 2009, but did recover in

2010 must have been alive in 2009 (similar logic employed by Car/son et al., 2004, Hendry et

al., 2003).

We modeled the proportion of fish surviving (number survived/number released)

until fall using a generalized linear model with binomial error and population origin and

rearing location as fixed categorical factors (Agresti, 2007). To assess the relative importance

of population origin, location, and the interacting effects of the two on survival we

compared four apriori models using AICc (Akaike Information Criterion corrected for small

sample size). Specifically, we fit models corresponding to the following hypotheses: 1)

survival varied solely as a function population origin (i.e. includes wild- reared and laboratory

raised-groups), 2) survival varied solely among rearing locations, 3) survival was higher

among populations in their local environment (i.e. population x rearing location interaction),

and 4) survival was completely random with regards to location or population (i.e. a null

model). The use of AlCc was appropriate as we detected no appreciable overdisperson (ratio

of residual deviance: residual df =0.8-1.09).

Growth

Specific growth rates were estimated for individuals that survived and were

recaptured in the fall. Growth information was not estimated for individuals known to

survive the fall but were not recaptured until the following summer. Organism growth rate
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varies as a function of size, thus we used a standardized mass specific growth rate (n)

following Osrrovsky (1995) to quantify growth among groups differing in size:

Q= M; _Mlr Eq.2

r*time

where M, and M2 are body mass (g) at the beginning and end of the experiment, respectively,

time is the number of days in the between observations, and T is the species-specific

allometric coefficient for the relationship between growth rate and body mass. We set T =

0.308 as the value is well established in brown trout (see Elliott et aI., 1995 and references

therein).

We again employed linear models in a selection framework to test for differences in

growth among populations and among rearing locations. Four A OVAs with the following

parameters (set as fixed factors) were fit to individual growth data: 1) population origin only

(this includes wild produced and laboratory raised groups), 2) location only, 3) population x

location, and 4) null model. Growth data were examined for normality and met parametric

assumptions of ANOVA prior to fitting. We interpret the importance of the population

term as evidence of genetic control over growth, the location term to be the role of

environmental forcing on growth, and the interaction between population origin and

location as evidence of underlying genetic control on growth norms of reaction (i.e.

populations grow fast in some environments and slow in others).

Shape plasticity
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We tested for the presence of population specific-patterns in phenotypic plasticity of

morphological shape and the potential for population x environment interactions using

similar logic to analyses of survival and growth. Again, four OVA models were fit to two

measures of average shape after individuals had reared for approximately 70 days in three

wild environments. We interpret the OVA with only a population term to examine dle

sole effect of population-level genetic control on shape, the ANOVA \vith location as the only

predictor to test for the sole effect of the environment, and the ANOVA with a population x

location interaction term to test for genetic x environmellt interactions (i.e. norms of reaction).

The weight of evidence to support each model was again assessed with AICc.

To test for evidence of phenotypic convergence of populations in each environment,

we fit A OVA models to shape data of individuals at release and again at recapture with

population as a sole categorical predictor. Specifically, if convergence of phenotypes as a

result of plasticity was complete we predicted that the ANOVA with a population term

would fare no better in model selection than that of the null model, again based on AICc. In

contrast, if population phenotypes remained distinct after rearing in common environments

we predicted continued support of the A OVA model with a population term compared to

the null model.

Finally, we examined patterns in plasticity at the individual level by plotting observed

head and body shape values of individuals at time of release (i.e. dleir shape after rearing in a

laboratory environment) and then again at recapture in the fall (their shape after rearing in

natural environments). This 'reaction norm' approach provided a visual representation and

examination of individual variation in phenotypic response. We interpreted zero slopes (i.e.
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horizontal lines) as lack of plasticity, non-zero slopes as evidence for the presence of

plasticity, and crossing lines among individuals as genetic differences in plastic response.

Quantifying natural selection and correlations with plasticity

To test the prediction that plasticity would move in the direction favoured by

selection, we first quantified the strength and shape of natural selection acting on, body size

and two metrics of body shape. Following standard procedures (reviewed by Brodie, 1995),

we standardized traits to a mean of zero and standard deviation of one based on group and

release location values. Additionally, we quantified location-specific selection by pooling all

groups within a rearing location. By definition, survival is described by a dichotomous

process (0 or 1) so we used logistic regression with a binomial error structure Oanzen &

Stern, 1998) to calculate selection gradients and selection differentials. Selection gradients

represent the strength of selection acting directly on each trait -excluding indirect selection

acting through other traits- whereas selection differentials represent the totol strengrh of

selection - both direct and indirect selection- acting on a given trait (Lande & Arnold,

1983). Linear selection gradients (~) were estimated by regressing survival (0 or 1) against

standardized body size (fork length, mm), standardized body shape (first Relative Warp

derived from TPSreIW), and standardized head shape (fourth Relative Warp). Linear

selection differentials (I) were estimated by individually regressing survival against

standardized body size, standardized size-adjusted head shape, and standardized body shape.

We estimated non-linear selection gradients (V) and differentials (;) by adding squared

standardized trait terms to the previously specified models. egative and positive non-linear
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coefficients were interpreted as evidence of stabilizing and disruptive selection, respectively.

We report doubled estimates ofV and), following Stinchcombe et al. (2008).

The procedures outlined above were implemented to generate parameter estimates

and not to assess the 'significance' of the estimates. Rather, we assessed the strength of

selection observed acting on body size and shape by comparing linearly converted selection

coefficients Oanzen & Stern, 1998) against values in the Kingsolver et al. (2001) selection

database available at: http://www.bio.unc.edu/faculty/kingsolver/lab/. Specifically, we

compared the absolute values of our selection estimates against absolute values of linear

gradients and differentials. To compare the strength of non-linear selection, we first

multiplied the values of Vand) in the Kingsolver database by two, as many of the values

have likely been reported incorrectly as half their true value (Stinchcombe et al., 2008).

To visualize the shape of the selection function acting on body size, body shape, and

size-adjusted body shape we constructed univariate cubic splines (SchJuter, 1988). Splines

were fit for each population group at each release location using the GAM function with

binomial error in the 'mgcv' library in R (R Development Core Team, 2009a).

We regressed group average change in head shape and body shape in each release

location against group-specific selection, as measured in gradients and differentials, to test

the hypothesis that traits move plastically in the direction favoured by selection. In addition,

we used the sign (positive or negative) of the selection differentials and gradients generated

above as predictors of individual plastic change in head shape and body shape. Specifically,

we predicted that surviving individuals would shift their phenotype in the direction favoured

by directional selection. For example, if we detected positive directional selection acting on
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head shape (i.e. larger values of head shape increased probability of survival) then we would

expect individuals to shift their head shape toward positive values. In contrast, we would

expect the opposite given a negative selection differential or gradient. To test the hypothesis

that individual plastic responses were predictable based on the direction of selection, we

taJjjed the number of individuals in each population and rearing location that moved in the

predicted direction. We assume that each observation of individual plasticity is independent

of others. The number of fish moving in the predicted direction versus those that did not

was then compared to a binomial distribution with binomial tests.

Results

Population-specific body shape in a common laboratory environment

Relative Warp 1 and Relative Warp 4, which explained 23.7% and 5.3% of the

variation in shape, respectively, were retained for subsequent analyses. Relative Warp 1

described a gradient of increasing relative head and eye size, whereas Relative Warp 4

revealed a gradient of increasing body and caudal depth. Henceforth, we refer to Relative

Warp 1 as 'head shape', and Relative Warp 4 as 'body shape.' Relative Warps 2 and 3 were

interpreted as an arching of the body due to minor differences in placement of fish during

photographing and were thus not retained for analyses. This 'arch effect' has been observed

elsewhere and may be especially common in fish subjects (Michaud et aI., 2008, Westley et

aI., Chapter three., Valentin et al., 2008). The remaining warps explained little additional

140



variation, had no obvious biological interpretations, and were not retained for further

analysis.

We detected a significant relationship between body size (FL, mm) and head shape

(FI.IIS8 =591, P < 0.0001, r2 =0.34) but no relationship between body size and body shape

(FI.1158 =3.4, P =0.06, r2 =0). As a result, we adjusted observed values of head shape to a

common body size of 53.7mm (grand mean length of all fish, following Eg. 1). As no

relationship between size and body shape was detected, we used observed values.

Significant differences in head shape and body shape were detected with ANOVA

between populations grown in laboratory versus wild environments, even after controlling

for the effect of size. Laboratory-raised fish had relatively large heads and eyes compared to

their wild- raised counterparts (FI.1158 =608, P < 0.0001, Fig. 4-3a). We also detected

differences in body shape among environments; wild-raised individuals were more

streamlined in shape (i.e. thin, shallow-bodied) compared to the relatively deep-bodied

laboratory-raised fish (F1,I1S8 =7.3, P =0.007, Fig. 4-3b).

We also detected population-level differences in both head shape (FS.lI54 =163,

p<O.OOOOl, Fig. 4-4a) and body shape (FS.IIS4 = 5.07, P < 0.0001, Fig. 4-4b). All groups

differed (fukey post-hoc, corrected p < 0.05) in size-adjusted head shape (p < 0.05) except

for the wild populations from the Rennies and Waterford Rivers, which displayed statistically

similar head shapes (p =0.99, Fig. 4a). Populations were more similar in body shape than

head shape, yet significant differences were still detected. The laboratory-raised Rennies

population was significantly deeper-bodied than the laboratory-raised and wild-reared

Parkers populations (p < 0.005) and the wild-raised Waterford population (p < 0.005). All
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other population-level comparisons in body shape were not significantly different (p > 0.05,

Fig.4b).

Phenotypic plasticity in functional morphology

Brown trout displayed marked plasticiry in both head shape and body shape after ca.

70 days of rearing in three wild environments (Fig. 4-5a,b). On average, populations

displayed larger heads and eyes relative to their body size when reared in the Parkers location

and smaller heads and eyes when reared in the Rennies and Waterford locations (Fig. 4-5a).

Similarly, populations tended to be more streamlined in body shape in the Parkers location

and deeper bodied in Rennies and Waterford (Fig. 4-5b). Though reaction norms were

generally parallel among populations and locations, we did observe cases of crossing reaction

norms. This visual result was confirmed by strong evidence of population x location

interactions in head shape and body shape suggesting some degree of genetic control of

reaction norms (fable 4-3). Models with a population x rearing location interaction term

were heavily favoured over the next best model fit containing only the effect of location.

However, this interaction emerged in only a subset of populations and locations and differed

between shape traits. For example, the direction and magnitude of the plastic response in

head shape was generally similar among all populations in the Parkers and Rennies

environment (parallel reaction norms towards lower values of head shape, Fig. 4-5a). In

contrast, the Parkers population exhibited a lack of plasticiry between the Rennies and

Waterford locations, while the other populations showed a response towards smaller average

head and eye size. With regard to body shape, Parkers and Waterford populations exhibited

a more similar response to each other compared to the Rennies population. The Rennies
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population which diverged in shape in the Rennies location and converged with the other

laboratory reared populations in the Waterford (Fig. 4-5b).

Curiously, popuJations tended to respond similarly by shifting their shapes in the

same directions but showed little evidence of phenorypic convergence. In each rearing

location, models with a population grouping term fit to head shape and body shape of

individuals recaptured after approximately 70 days of rearing were favoured (i.e. 6AICc > 4)

over models with no popuJation variable (Appendix 4-1). This result emerged, at least in

part, from the maintained difference between wild and laboratory-raised populations. In each

rearing location the laboratory-raised fish were consistently deeper-bodied and had larger

heads and eyes compared to their shallow-bodied, small-headed wild counterparts (Fig. 4-5

a,b).

Shape and strength of natural selection

Patterns of natural selection acting on body size and two aspects of shape varied

among locations and among populations within locations. For example, selection

differentials - which integrate direct and indirect effects - on body size were positive Qarge

fish favoured) for laboratory-raised groups reared in the Parkers location, negative for tlle

same groups in Rennies, and variable in the Waterford (Table 4-4). Similarly, size-adjusted

head shape was negative (i.e. fish with small eyes and heads favoured in Parkers), positive in

Rennies, and variable in Waterford. Curiously, the wild-raised Parkers and Rennies groups

experienced patterns of selection acting on body size in the opposite direction than that of

the laboratory-raised groups. Selection gradients - which represent selection on a trait while
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controlling for indirect selection acting through correlated traits - generally yielded the same

interpretations suggesting independence between variables (fable 4-5).

Counter to the prediction that directional selection should be strong during the early

stages of an invasion to new environments, we detected weak directional selection based on

both standardized differentials and gradients compared to estimates of selection strength for

other organisms (Kingsolver et al., 2001). Only one estimate of directional selection (body

size of wild fish in the Parkers location) was greater than the 50th percentile in the Kingsolver

database, 10 were greater than the 25th percentile, 14 were greater than the 10th percentile,

and the remainder were less than the 10th percentile. In contrast, we detected the presence of

nonlinear patterns of selection acting on body size and shape (Fig. 6) and the strength of

nonlinear selection was strong. For example all but one selection gradient was greater than

the 25th percentile, 21 were greater than the 50th percentile, nine were greater than the 80th

percentile, and three exceeded the 95th percentile (fable 4-5). Patterns of selection were

complex among locations and populations (Fig. 4-6), but in general we detected stabilizing

selection on body size, disruptive selection on head shape, and variable selection on body

shape (stabilizing in the Parkers environment and disruptive in Rennies and Waterford).

Selection-plasticity correlations

Counter to our predictions, the patterns of plasticity in head shape and body shape

of brown trout reared in three wild environments were not predictable based on the

d.irection of natural selection. At the group level, plasticity in both head shape and body

shape was inversely related to the experienced selection pressures; however, the observed

relationship between selection and plasticity (taken as the difference in mean trait size
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between release from the laboratory environment and at recapture) was not statistically

significant (Fig. 4-7, P > 0.05). Interpretation of the relationship between plasticity and

selection was similar based on gradients (direct selection on the individual traits) and

differentials (direct and indirect selection on traits), though more of the variation in plasticity

was explained by selection gradients (Fig. 4-7).

We detected marked variation in plasticity of head shape and body shape within

individuals at each location (Fig. 4-8 to Fig. 4-13); however, individual change in phenotype

was not predictable by the patterns in natural selection. This was perhaps most striking in

the Parkers location (Fig. 4-8), where 92% of 85 individuals were observed to shift their head

shape in the positive direction even though selection acted in the opposite direction

(favoring smaller values of head shape). Assuming a binomial process, the probability of

seeing 92% of individuals move in the same direction is 2.79 x 10-16
• Individual plasticity in

body shape also trended towards positive values in the Parkers location, but was less

consistent than head shape. On a whole, body shape of 65% of individuals moved in the

positive direction, which again was counter to predictions of selection. Plasticity in head

shape and body shape in the Rennies and Waterford locations was less consistent among

individuals compared to the Parkers location. Except for two cases, the direction of

individual phenotypic change was significantly different from expectations of a binomial

process (50% moved positively, 50% moved negatively). Interestingly, the head shape and

body shape of wild fish in the Rennies and Waterford, respectively, moved in consistent

positive directions and was consistent with the direction of natural selection experience in

these locations (positive values of head shape and body shaped favoured).
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Apparent Survival

The number of recapture events (a proxy for survival) differed among populations

and locations (fable 6). Of the 1166 total fish released, we recovered 198 individuals in the

fall of 2009 and another 26 new individuals (i.e. those not recovered in the fall but must have

been alive) in the summer of2010. Thus on a whole, 19.2% of released fish survived until

the fall. We detected evidence of differential survival among locations and an interaction

between population and location (fable 4-3). Support for the model containing a population

x location interaction term is consistent with the hypothesis of local advantage. Overall, only

one foreign group (laboratory-raised Waterford fish reared in the Renn.ies) fared better than

a local group (laboratory-raised Rennies fish reared in the Rennies). Evidence for local

advantage was most obvious in the Parkers rearing environment, where the local individuals

(both laboratory and wild-raised local groups) were recovered at markeclJy higher rates

compared to the foreign groups (fable 4-6). Local advantage was less apparent, but still

present, in the Rennies and Waterford rearing locations. Moreover, we detected a consistent

advantage of the local wild-raised individuals over all other groups reared in the same

environments. In each location, we recovered the highest proportion of released wild-raised

individuals suggesting highest survival by these groups.

The pattern in survival observed among populations in the faU persisted until the

foUowing summer in the only population where a number of recaptures were made, Parkers

(60% of all recaptures), and is suggestive of a continued local advantage (fable 4-6).The

small sample sizes from the two other locations of release necessitate caution in

interpretation thus necessitate our focus on results obtained in the fall of 2009.
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Growth

We observed large c1ifferences in growth among environments; fish from all

populations grew over twice as fast when rearing in the Rennies and Waterford locations

compared to the Parkers or Laboratory environments (Fig. 4-14). In adclition, populations

exhibited c1ifferent patterns of growth among locations as inferred from A OVA where the

strongest model contained a population x location interaction term (fable 4-3). This is

consistent with the precliction that local populations would grow faster in their home

environment and slower in foreign locations. For example, Parkers inclividuals when reared

in Parkers grew faster than Rennies inclividuals, but grew slower than Rennies fish when

reared in the Rennies environment (Fig. 4-14). Moreover, Parkers fish tended to grow faster

in the laboratory environment than the Rennies or Waterford populations. Finally, growth of

wild fish within the Rennies and Waterford rearing locations were lOll/er than the growth

observed by the other groups provicling a potential explanation of the higher observed

recovery rates of wild fish in these environments. Indeed this was most apparent in the

Rennies location where laboratory raised fish of all populations grew, on average, nearly

twice as fast as the local wild Rennies population (Fig. 4-14).

Discussion

To the best of our knowledge, the approach taken here is a novel attempt to test, in

wild settings, the preclictions derived from classical (Baldwin, 1896) and contemporary

theory (e.g. Lande, 2009). This theory suggests that phenotypic plasticity should facilitate

survival in new environments, move inclividuals in a consistent direction, and be predictable
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based on the direction of selection. We found evidence consistent with the prediction that

plasticity would shift phenotypes in consistent directions among environments. Populations

- based on mean values of head shape and body shape - typically tracked each other among

rearing locations, although we did detect marked variability in population-level and

individual-level plastic responses, as evidenced by crossing of reaction norms and significant

population x location interaction terms in ANOVA. This suggests genetic differences in

plastic capacity and, if this variation is additive, the potential for an evolutionary response to

selection on reaction norms. In spite of marked plasticity in head shape and body shape, we

detected little evidence of phenotypic convergence suggesting strong underlying genetic

control on shape. Counter to predictions, we did not find clear evidence that observed

plastic responses were adaptive, as change in head shape and body shape was consistently

independent and in some cases opposite to the direction favoured by selection. Thus, it was not

evident that plasticity abetted survival but rather individuals apparently survived despite their

potentially mal-adapted plastic responses. Moreover, the form and strength of natural

selection on body size and shape was non-linear and strong, counter to the prediction that

selection would be directional and strong when organisms are introduced to foreign

environments. We did; however, detect evidence of local advantage in performance, based

on both survival and growth, suggesting that local adaprati n can evolve quickly in

populations descended within approximately 130 years from common ancestors.

Phenotypic plasticity in shape without convergence

Brown trout, as a species, displays remarkable phenotypic plasticity in life history and

morphology (reviewed and discussed by Jonsson & Jonsson, 2011). True to this general
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pattern, we observed marked influence of the environment on the shape of juvenile trout

reared in three wild streams. These findings are consistent with other recent demonstrations

of morphological plasticity in juvenile salmonids and other fishes (pakkasmaa & Piironen,

2000, Pavey et al., 2010, Parsons et aI., 2011, Franssen, 2011). As we predicted, plasticity

worked in consistent directions among populations and locations. On average, fish from all

populations exhibited larger heads and eyes (adjusted for body size) when reared in the

Parkers location and displayed relatively small heads and eyes when reared in the Rennies

and Waterford locations. Similarly, populations were characterized by streamlined (shallow)

body shapes in the Parkers and Waterford environments and more robust body shapes in

the Rennies River. Although plasticity typically acted in concert, we did detect evidence of

population-specific patterns of plasticity in both aspects of shape. Head shape varied among

populations and locations consistently, save for a distinct difference in the Parkers

population, which revealed a canalized response when reared in the Rennies and Waterford

locations. That is, the Parkers populations responded like the other populations, with a shift

towards relatively large head and eyes in the Parkers location and smaller head and eyes in

the Rennies, but differed from the other populations by showing no change in shape

between the Rennies and Waterford (other populations revealed a further reduction in head

and eye size between these locations). Patterns of plasticity in body shape again generally

followed the same trend among populations and locations (shallow bodies in Parkers, deeper

bodies in Rennies, and shallow bodies again in Waterford), but here the Rennies population

showed a differential response, with a greater change in their home environment compared

to the other groups. These results combine to suggest that inferences of plasticity among

populations are sensitive to the traits under consideration and are context specific; that is,
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different traits in different populations in different common-gardens lead to different

interpretations (Williams et al., 2008). Population-specific responses in morphological shape

to different rearing environments suggest a heritable component to the reaction norms

(Hutchings, 2011) and highlight the potential for an evolutionary response to selection

(West-Eberhard, 2003). To be clear, we consider the values of shape and plasticiry in shape

observed among environments as separate traits each independently subject to selection.

Despite considerable plasticity in head shape and body shape, we detected equivocal

evidence of phenotypic convergence in any of the three natural stream environments. We

base our interpretation on both visual examinations of trait means across environments and

results of ANOVA, where models fit to head and body shape data provided as much

support for a population grouping effect after individuals had reared for ca. 70 days in

different rivers as at their time of release. These patterns are counter to observations made in

other systems. When transplanted from areas of relatively calm wave action to rough

environments, barnacles (Balamls glafldula) shift -with phenotypic plasticity - their feeding

and reproductive appendages such that individuals originally from calm and rough

environments come to display similar morphology within a common environment eufeld

& Palmer, 2008). Moreover, the direction of the plastic change observed was consistent with

predictions of what would be favoured by natural selection (though selection was not

quantified per se). By way of another example, Williams et al. (1995) reciprocally

transplanted clones of introduced fountaingrass (Penflisetlltll setaceulll) across a gradient of

elevations on Hawai'i and by doing so demonstrated the power of plasticity to shape

phenotypes. Here, plasticity was so good at producing suitable phenotypes that clones

moved to common environments displayed similar values in a suite of traits. These results

150



suggest that phenotypic plasticity shielded genotypes from selection perhaps masking any

underlying genetic adaptations. In contrast, our results are consistent with recent work to

understand the potential for domestication to alter growth response reaction norms in

Atlantic salmon (501"'0 solai'). In this example, researchers showed that wild, farmed, and

hybrid (crosses between wild and farmed fish) differed in the altered the height (y-intercept)

of the linear reaction norm but not the slope (Morris et al., 2010), and that this difference

may have resulted from domestication. Like our results, all groups displayed marked growth

plasticity but no evidence for convergence of growth phenotypes.

A lack of phenotypic convergence despite plasticity suggests strong underlying

genetic control on head and body shape. This is consistent with the interpretation of Hard et

al. (1999) and Keeley et al. (2007) who reveal genetic control on morphology in Chinook

salmon (Oncorf?yf/chlls tshaJ}1!Jscha) and ecotypes of rainbow trout (0. Tl(Jkiss). Moreover, tile

maintained phenotypic differences we observed among populations in common

environments contributes to the mounting evidence that morphology can evolve quickly in

introduced populations (Kinnison et al., 2003, Westley, 2011).

Is plasticity in shape predictable or chaotic?

Phenotypic plasticity yielded patterns of morphological shape in brown trout

populations consistent with frequently made predictions based on river size and presumed

flow regimes (pakkasmaa & Piironen, 2000, Pavey et aI., 2010, Bisson et aI., 1988, Haas et al.,

2010, Franssen, 2011). We detected a trend toward more robust morphology (e.g. body and

caudal depth) of fish reared in the relative large and fast flowing Rennies River, compared to

more streamlined morphology of fish reared in the relatively smaller and more placid Parkers
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and Waterford environments. Additionally, we detected a marked increase in relative eye size

of fish reared in the over-grown and dark Parkers environment compared to fish reared in

the relatively open and bright Rennies and Waterford Rivers. These patterns are often

interpreted as an adaptive response to environmental conditions (e.g. Pakkasmaa & Piironen,

2000); however, to our knowledge no study has simultaneously quantified body shape and

natural selection in juvenile salmonids to formally test this assumption (though see Carlson

et aI., 2009 for an example in adult sockeye salmon).

Our results suggest that plastic changes in morphology, though coincident with

general predictions of what should be adaptive, are notpredictable or explainable given

patterns of quantified natural selection. At the population-level, we detected an inverse

relationship between selection and plasticity, where plasticity moved traits in the direction

opposite to that favoured by selection. A similar pattern was observed within individuals

among environments where plastic change was either independent of selection or in the

opposite direction. In general, individual responses were varied in strengrh and form and

opposite to observed plastic responses. How can these results be reconciled? In the

following paragraphs we propose four non-mutually exclusive explanations.

First, body morphology may be pleiotropically linked to other traits that are also

targets of selection. Body size is the most immediate candidate for such a linkage; however,

we observed weak correlations between size and shape, and in addition, adjusted shape to

remove the effect of size prior to analyses. Moreover, correlative fitness relationships

between body size and shape - either positive or negative - were present but not

consistently so. Perhaps more likely, body shape values were inversely influenced by growth

rate (Fig. 4-15). Slow growth was associated with a plastic change in morphology toward
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large heads and eyes and streamlined bodies, whereas rapid growth was correlated with

deeper bodies and smaller heads and eyes. To be clear, these changes are independent of

size. That is, individuals of the same size that have grown at different rates displayed

different patterns of plasticity and morphology. This pattern is frequently revealed, but rarely

discussed, in other studies comparing morphology of populations among environments. For

example, in a recent study, popuJations of cyprinids (ejpriflel/a IlItreJ/sis) exhibited plastic

shifts towards deep-bodied morphology in reservoirs compared to their stream-dwelling

ancestors (Franssen, 2011). Though it was interpreted that these morphological shifts are

adaptive and reflective of rearing conditions, it also seems plausible that the change in

morphology reflects different growing conditions in lake versus stream environments. At a

mechanistic level, Devlin and colleagues (in revision) report tllat growth rate greatly

influences the allometry of somatic traits (e.g. eyes) in contrast to neural traits (e.g. brain

tissue). Fast growth can be favoured by selection in wild salmonid populations (e.g. Carlson

et al., 2004), but may come at the cost of inducing morphology poorly-suited to

environmental conditions. We detected an inverse relationship between survival and positive

trait values of head shape and body shape (i.e. deep-bodied, small headed and eyed fish were

favoured) despite observed consistent plasticity in the opposite direction. This could be

explained by selection favoring the faster growing, deep-bodied and small headed subset of

individuals. In contrast, we detected selection favoring the more shallow-bodied individuals

in Rennies and Waterford suggesting rapid growth was selected against in these

environments. This is a plausible scenario because despite growing slower, the wild fish were

recovered at much higher rates than the faster growing laboratory-raised populations.
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Unfortunately, the nature of our experimental design - specifically few recapture bouts­

does not allow for a formal quantification of selection acting on growth.

Second, temporal variation in the strength and form of selection may underpin the

apparent discrepancy between plastic response and natural selection. It is widely accepted

that selection varies in space among environments (Kawecki & Ebert, 2004) and increasingly

clear that selection varies in time within environments (Bell, 2010, Siepielski et al., 2009,

Siepielski et al., 2011). We quantified selection acting on aspects of morphological shape

during the introduction stage of an invasion and found that selection during this period was

frequently opposite of general predictions based on swimming capacity (i.e. shallow fish

favoured in small streams, and robust fish favoured in large streams) and opposite to

plasticity. Extensive work on Galapagos finches clearly demonstrates that selection varies

through time, where robust bill sizes are favoured during periods of drought and the

opposite during periods of precipitation (reviewed by Grant, 1986). Analogously, selection

may have changed in direction or strength over a longer time frame of observation.

Conditions during the winter are often harsh for stream-dwelling salmonids (Huusko et al.,

2007) and it is possible that increased flow regimes during the winter may have selected for

the morphology we observed. Thus, the plastic responses we detected may have

foreshadowed selection acting over longer timescales. Few fish were recaptured following

the winter, limiting our ability to directly assess this potential. Furthermore, it is possible that

alternative or additional fitness measures would have yielded different interpretations of how

selection acts on morphological shape. In a recent meta-analysis, Siepielski et al. (2011)

suggest that selection acting on fitness measures of reproductive success or fecundity is

stronger and less variable in direction than selection based on survival. We based
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interpretations on a proxy for survival - recapture probability - as following ragged groups

through their entire life history was not practical. However, doing so may undoubtedly have

yielded additional and different insights.

Third, the ability for plasticity to yield adaptive phenotypes rests on the assumption

that environmental cues are reliable and perceivable. This assumption was formally

investigared recently by Reed et al. (2010b), who showed that plasticity can buffer

populations from environmental stochasticity and facilitate persistence when optimal trait

values and cue reliability are tightly correlated. Previous experimental work suggests that

salmonids are capable of perceiving environmental cues and can respond with a change in

morphology (Donnelly & Dill, 1984, Pakkasmaa & Piironen, 2000). We observed a response

in morphology when fish were reared among environments differing in size and flow;

however, it remains unclear whether the plastic response was truly mal-adaptive (Ghalambor

et al., 2007), adaptive over a longer period of selection (Siepielski et al., 2009) or whether the

cues were poorly correlated with the optimal morphological values (Reed et al., 2010b).

Fourth, counter to predictions the strength of directional selection was weak and

strong non-linear selection prevailed. This result runs counter to theory (Reznick &

Ghalambor, 2001, Chevin & Lande, 2011 a) and empirical work (Anderson et al., 2010) that

propose that directional selection during the early stages of invasion should be strong. In a

recent review, Kingolver and Diamond (2011) aimed to better understand the factors that

limit directional selection, with particular emphasis on the potential effects of fitness trade­

offs, and indirect and fluctuating selection. Their results were inconsistent with the

hypothesis that trade-offs among different fitness components or indirecr selection (except

perhaps for body size) would limit total directional selection on phenotypic traits. Similarly,
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they suggest that temporal fluctuation in selection, though apparently wide-spread in nature,

has limited capacity to influence total directional selection observed in most systems. Putting

our results into this context, we suggests that the morphology of introduced fish was

sufficiently close to the optimal values in each environment and that directional selection

may not be the appropriate predictor of plastic responses.

Local adaptation

We detected higher relative survival and growth of individuals when reared in their

home environment than when reared in foreign conditions, suggesting that these three

populations - recently established from common ancestors - have quickly evolved

adaptations to local conditions. This is in general agreement with results from other systems

where salmonids have revealed the propensity to evolve quickly in new environments

(Quinn et al., 2001 a, Hendry & Steams, 2004, Taylor, 1991, Garcia de Leaniz et aI., 2007)

and across a range of spatial scales (Fraser et al., 2011, Meier et al., 2011). Evidence

supporting this interpretation emerges from two general patterns. First, ANOVA models

including a location x population interaction terms received the most weight of evidence

based on AlCe suggesting that populations did well (based on survival and growth) in some

locations and poorly in others. It is important to note, however, that a model including only

the sole effect of location also received substantial support in explaining survival(ll AICe =

3.3). This suggests that we cannot rule out the possibility that survival did not vary among

popuJations but solely among environments. Second, wild local individuals in each location

survived at higher rates than any of the other introduced groups, and grew at markeclJy
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clifferent rates (relatively fast in Parkers and slow in Rennies and Waterford compared to the

other groups).

We acknowledge the potential that wild groups may have had higher performance

based on prior experience in the streams, and thus the advantage of the wild-raised groups

may reflect environmental and not genetic effects. It is post plausible that a prior advantage

to wild fish was present in the form of territorial acquisition and maintenance (Gibson, 1993,

Einum & Fleming, 2000); that is, the wild fish presumably would have already established

feeding territories at the time of capture and tagging, giving them an advantage over other

groups upon release (Rhodes & Quinn, 1998). In addition, having pre-existing territories

may have limited the tendency for wild fish to move, which may have increased the

likelihood of recapture. Unfortunately, in this study, as in many capture-mark-recapture

experiments, survival is confounded with emigration and we cannot rule out the possibility

that inclividuals that were not recaptured and presumed dead simply moved outside of the

experimental sections. We purposefully chose experimental stream sections with upstream

limits to movement in the form of velocity barriers, but controlling for downstream

emigration was not feasible. We clid; however, assess the potential for inclividuals to move

out of Parkers downstream to Windsor Lake during the spring of 2010 with a fykenet set to

fully span the mouth of the stream, something that was not feasible in the other rivers.

Overall we detected little movement of tagged inclividuals (n=3) into Windsor Lake and left

the fyke net in place until stream-wide electrofishing surveys had been completed.

Ultimately, we assume that if inclividuals were clisplaced downstream it was the result of

competitive inferiority (Chapman, 1966, Elliott, 1994) maintaining the validity of relative

performance among released groups.
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The ctifferential patterns of growth observed among populations and locations also

suggest local adaptation. This was most evident in the Parkers population, which relative to

the other popuJations grew faster in environments where growth was poor and slower in

environments where growth was favorable. Specifically, Parkers inctividuals grew faster in

their own wild environment and the laboratory environment than in the Rennies and

Waterford, where growth was rapid. In contrast, the other groups - especiaUy the Rennies

population - grew relatively slow in Parkers and the laboratory and rapidly in the other

locations. Local adaptation to thermal regimes, as may have occurred here, has been

reported elsewhere in brown trout Oensen et al., 2008,Jensen et al., 2000) and evidence from

introduced grayling populations reveals that adaptation can evolve quickly (Haugen &

VoUestad, 2001, Haugen & VoUestad, 2000). Curiously, we observed that growth among

inctividuals raised entirely in the laboratory environments was slower than that of individuals

released into two wild environments, the Rennies and \'(1aterford. One explanation is that

relaxed selection (Lahti et al., 2009) in the laboratory setting may have allowed slow growing

inctividuals to persist, serving to lower the average growth rate. If this were the case, we

would expect to see much greater variation (i.e. error) around the observed mean growth of

laboratory fish compared to fish reared in the wild. In fact, we detected the opposite pattern

with greater variation in growth observed in wild-rearing individuals, though some of this

may be the effect of ctifferent sample sizes among environments (greater sample sizes for

laboratory-reared popuJations). Alternatively, the relatively slow growth in the laboratory

may be more about the conditions in the Rennies and Waterford than in the laboratory per

se. We observed remarkably fast growth in the Rennies and Waterford (many individuals at

least doubled in weight in approximately 70 days), corroborating the results of Gibson &
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Haedrich (1988), who reported 'exceptional' growth of experimental groups of Atlantic

salmon released into the same rivers.

Conclusions

The capacity of individuals to adaptively respond to a changing environment is

frequently invoked to explain how populations may persist in a rapidly changing world (Reed

et aL, 2011, Charmantier et al., 2008). Our results reveal that plasticity, whjJe prevalent and in

the direction often assllmed to be adaptive, may not necessarily be favoured by selection. We

detected a potential trade-off between growth and morphology, whereby growth consistently

shaped individuals in ways that may not be advantageous in all environments. Ultimately, the

plasticity in morphology we observed was not predictable based on patterns of selection,

suggesting that attempts to predict the plastic responses of populations and species may be

exceedingly difficult and prone to error. Over a hundred years after J.M. Baldwin suggested a

'new factor' in evolution, few studies have attempted to empirically test predictions derived

therein (Badyaev, 2009). We show here that the first stages leading to the Baldwin effect­

plasticity facilitating survival and selection in the direction of the plastic response - are more

complicated and varied than predicted by theory.
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Chapter Four Tables

Table 4-1. Number of families and biological information for the dams used in creating
experimental fish.

Parkers Rennies Waterford

Familiescreated(n) 8 8 7

Fork length (mm) 376(290-450) 272(195-468) 428(290-600)

Weight (g) 572.1(250-942) 230.8(67-910) 826.3(221-1931)

Egg wet weight (mg) 131.6±18.6 107.2±16.7 109.8±31.8
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Table 4-2. Abiotic and biotic characteristics of Parker's Pond Brook, Rennies River, and
Waterford River, ewfoundland.

Waterford
Release coordinates
Date of release

Dates ofrecapture

Section length (m)
Width (m)
Depth (cm)

Flow (m's)

Condllctivity(,s/cm)
Temperature
Canopy cover

C0l1specificdensity(!ifm2
.)

Eels (Angllillaroslrala)
Browntrolltaged~triblltion

47°36'06.44''N,52°46'18.21'W
7/31/2009

101712009,10/14/2009,612312010,
6124/2010,712912010,8/412010

386
1.8(0.81)
7.5(0.14)

0.12(0.04)

43.6(0.47)
10.3(1.5-21)

3.33

2.59(2.5)

absent
0-2

47°34'34.04''N,52°42'46.98'W

8/4/2009

1015/2009,101612009,10/1212009,
10/2312009,11111/2009,612512010,
7127/2010,81612010,817/2010

935
6.5(1.9)
23.2(4.2)

0.29(0.21)

246.3(17.1)
11.7(1.2-20)

1.67

2.21(1.6)

present(0.018IisWm2
)

0-5+

47°31'30.11''N,52°44'49.58'W

8/7/2009

10/1112009,1011312009,1012212009,
10/23/2009,612612010,7/2812010,
8/412010,81512010

725
5.6(0.30)
11.9(20.2)

0.24(0.08)

299.3(30.8)
11.3(0.9-21)

1

4.6(2.6)

present(0.02Ifr;lv'nl)
0-6+
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Table 4-3. Results of A OVA models fitted to survival, growth, and two aspects of
morphology in brown trout.

Variable Model Parameters AICc AICc

Survival Location + population + interaction 11 1125.68 0
Location 2 1128.94 3.3

null 0 1139.9 14.2
Population 5 1142.21 16.5

Growth Location + population + interaction 14 -173.84 0
Location 3 -156.43 17.4

Population 5 143.87 317.7
null 0 153.59 327.4

Location + population + interaction 11 -1301.2 0
Head shape Location 2 -1251.9 49.3

Population 5 -1203.6 97.6
null 0 -1151.9 149.3

Location + population + interaction II -1457.9 0
Body shape Location 2 -1452.1 5.8

Population 5 -1449.7 8.1
null 0 -1447.4 10.5
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Table 4-4. Standardized selection differentials on body size Qength, mm), head shape (Relative Warp 1), body shape (Relative Warp 4) of
four groups (origin) of brown trout released into three rearing locations in Newfoundland. The wild origin fish represent individuals raised
in their rearing location, while other groups are F) offspring of each population origin reared in the laboratory until release.

i(linear) j:Quadratic(-stabilizingf+disruptive)
Release Location Origin N (Alive:Dead)-Bodysize Head shape Body shape Body size Head shape Body shape

Parkers 30:71 0.0222(0.0231)* -0.0222(0.0227)* 0.0493(0.0528)* -0.342 (0.173)tt 0.308(0.133)tt 0.365 (O.l60)tt
Rennies 16:84 0.0293(0.0611)* -0.0605(0.128)** -0.0142(0.0290) -0.624 (0.283)ttt 0.539(0.189)ttt -0.255 (O.228)tt

Parkers Waterford 22:78 0.0463(0.0681)* -0.0564(0.0871)** -0.0642(0.103)** -o.786(0.261)ttt -o.227(O.195)tt -0.408 (0.269)tt
Wild 22:43 -0.134(0.208)*** 0.0932(0.120)** -0.0844(0.116)** -0.0732 (0.378)t -o.432(O.289)tt -0.984 (0.365)ttt
Pooled 90:276 -0.0101(0.00699) -0.0311(0.0206)* -0.0168(0.0113) -0.2oo(O.0803)tt -o.135(0.0825)t -0.203 (0.0978)tt

9:91 -0.0103(0.0506) 0.000824(0.00351) 0.0503(0.267)** -2.68 (0.957)tttt 0.141(0.254)t -0.0302(0.251)

11:89 -0.0384(0.130)* 0.0383(0.127)* -0.0297(0.0976)* -1.31 (0.489)ttt -0.242(0.223)tt -0.515 (O.307)ttt

Waterford 14:88 -0.123(0.487)** 0.107(0.367)** 0.0519(0.130)** -0.827 (0.633)ttt 0.453(0.231)tt 0.255 (0. 248) tt
Wild 25:74 0.0143(0.0171) 0.00395(0.00485) 0.0453(0.0585)* 0.146 (O.109)t -0.253(0. 199)tt 0.167 (O.141)t
Pooled 59:342 0.00(0.00) -0.0129(0.0143) 0.0304(0.0349)* 0.154 (O.0434)t 0.436(0.0930)tt 0.244 (O.0879)tt

17:84 0.00269(0.005) 0.00549(0.0105) -0.0182(0.00347) 0.0953 (0.161)t 0.531(0.179)ttt -0.137 (O.213)t

12:86 -0.0241(0.0736)* -0.0441(0.125)* -0.0479(0.155)* -0.0444 (0.194) t -0. 127(0.205)t 0.181 (O.238)tt
Waterford 18:82 0.0349(0.0637)* -0.0583(0.110)** 0.0166(0.00222) 0.476 (0.268)tt -0.386(O.266)tt 0.381 (O.l64)tt
Wild 28:72 -0.0275(0.0312)* 0.0215(0.0238)* 0.0344(0.0389)** -1.02 (O.268)ttt -o.143(O.215)t -0.305 (0.186)tt
Pooled 75:324 -0.00860(0.00726)-0.0370(0.0306)* 0.00456(0.00381) -0.358 (0.112)tt -o.0645(0.104)t 0.0732 (0.0887)t

*>lOthpercentile**>25thpercentile ***>50thpercentile
t tt ttt tttt

>25thpercentile >50thpercentile >80thpercentile >95thpercentile
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Table 4-5. Standardized selection gradients on body size Oength, mm), head shape (Relative Warp 1), body shape (Relative Warp 4). of four
groups (origin) of brown trout released into three rearing locations in Newfoundland. The wild origin fish represent individuals raised in
their rearing location, while other groups are F1 offspring of each population origin reared in the laboratory until release.

Origin

Waterford

Wild

Pooled

N (Alive:Dead)

30:71

16:84

22:78

22:43

90:276

Body size

0.0159(0.0194)

0.00255(0.00627)

0.00753(0.0154)

-0.175(0.463)***

-0.0616(0.0634)**

~(Iinear)

Head shape

-0.0049(0.00611)

-0.0593(0.139)**

-0.0454(0.0946)*

-0.0337(0.0800)*
-0.0717(0.0706)**

Body shape

0.0469(0.0513)*

-0.0143(0.0301)

-0.0597(0.0999)**
-0.0952(0.152)**

-0.0188(0.013)

y:Quadratic(-stabilizing/+disruptive)

Length' Headshape< Body shape

-0.384 (0.197)tt 0.398 (0.139)tt 0.340 (0.165)tt

-0.860 (0.321)ttt 0.811 (O.247)ttt -0.165 (0.225)t

-0.891 (0. 294) ttt 0.0538 (0.212)t -0.490 (0.272)tt

0.746 (0.469)ttt -0.262(0.327)tt -1.61 (0.442)tttt

-0.149 (0.0978)t 0.121 (O.104)t -0.197 (O.0968)tt

Waterford

Wild

Pooled

Parkers

Rennies

Waterford

Wild

Pooled

9:91

11:89

14:88

25:74

59:342

17:84

12:86

18:82

28:72

75:324

0.00347(0.0231)

-0.0182(0.0735)

-0.0804(0.386)**

0.0418(0.0670)*

-0.00941(0.0151)

0.00226(0.00495)

-0.0494(0.169)*

0.00145(0.0034)

-0.0257(0.0376)*

-0.0307(0.0289)*

0.000636(0.00387)

0.0331(0.132)*

0.0658(0.260)**

0.0287(0.0474)*

-0.0215(0.0334)

0.00316(0.0454)

-0.0632(0.218)**

-0.0567(0.132)**

0.00596(0.0084)

-0.0499(0.0461)*

0.0512(0.278)*

-0.0343(0.123)*

0.0152(0.0461)

0.0524(0.0688)*

0.0302(0.0355)*

-0.0173(0.0342)

-0.0544(0.199)**

0.0172(0.0324)

0.0359(0.00677)*

-0.00100(0.000877)

-3.56 (1.07)tttt

-1.45 (0.504)tttt

-0.955 (0.667)ttt

0.117 (0.122)t

0.123 (O.0477)t

0.0742 (0.175)t

-0.235 (O.226)tt

-0.891 (0.361)ttt

-1.12 (0.294)ttt

-0.398 (0. 115)tt

0.568 (0.323)tt

0.154 (0.242)t

0.589 (0.228)tt

-0.343 (0.211)tt

0.377 (O.loo)tt

0.574 (0.185)tt

0.240 (0.281)tt

-0.659 (O.344)ttt

0.164 (O.236)t

-0.00685(0.109)

0.283 (0. 26O)tt

-0.649 (0.339)ttt

0.177 (0.271)tt

0.170 (0.144)tt

0.231 (0.0894)tt

-0.223 (0.237)tt

0.409 (0. 250) tt

0.575 (0.287)t

-0.317 (0.189)tt

0.122 (0.0895)t

'>10thpercentile">25thpercentile "'>50thpercentile
t tt ttt tttt

>25thpercentile >50thpercentile >80thpercentile >95thpercentile
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Table 4-6. Percentage of released fish recaptured (a proxy for survival) in the fall of 2009 and
summer 2010 of four groups (origin) of brown trout released into three rearing locations in

ewfoundJand. The wild origin fish represent individuals raised in their rearing location,
while other groups are F1 offspring of each population origin reared in the laboratory until
release.

Rearing Location Origin survival(%)
fall over-winter

Parkers 101 30 12

Parkers Rennies 100 16 4

Waterford 100 22 8

Wild 65 34 4

Parkers 100 9

Rennies Rennies 100 11

Waterford 102 14

Wild 99 25

Parkers 101 17

Waterford Rennies 98 12

Waterford 100 18

Wild 100 28
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Chapter Four Figures

Fig. 4-1. Island of Newfoundland, Canada, showing the approximate locations of the three
study rivers, Parker's Pond Brook (1), Rennie's River (2), and Waterford River (3). See Table
2 for specific coordinates of release locations within the rivers and habitat characteristics.
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common laboratory conditions. Landmarks represent: 1) most posterior point of the
operculum, 2) insertion of the pectora] fin, 3) intersection of the pre-opercle and opercle
plates, 4) posterior insertion of the orbit, 5) anterior insertion of the orbit, 6)tip of the snout,
7) point directly above the middJe of the eye, 8) insertion of the skull, 9) insertion of the
dorsal fin, 10) narrowest point of the caudal peduncle, 11) insertion of the caudal fin to the
hyperual at the lateral line, 12) same as 10, 13) anterior insertion of the anal fin, 14) anterior
insertion of the pelvic fin.
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Fig. 4-3. Head shape (relative warp 1, a) and body shape (relative warp 4, b) of brown trout
raised in laboratory versus the wild. Note that increasing values of the first relative warp
correspond to increasing head size and eye size, whereas increasing values of relative warp
four correspond to increased streamIing (shallow-bodies and caudal peduncles).
Deformation grids of maximum and minimum observed warps are exaggerated by 3 x times
to facilitate interpretation 168
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Fig. 4-4. Head shape (relative warp 1, a) and body shape (relative warp 4, b) among
populations of brown trout. ote that increasing values of the first relative warp correspond
to increasing head size and eye size, whereas increasing values of relative warp four
correspond to increased streamling (shallow-bodies and caudal peduncles). Deformation
grids of maximum and minimum observed warps are exaggerated by 3 x times to facilitate
interpretation. The wild origin fish represent individuals raised in their rearing location,
while other groups are F, offspring of each population origin reared in the laboratory until
release

169



.-p rkers -+-Rennies -+-Walerford -+-Wild

Parkers Rennies

Rearing Location

Waterford

Fig. 4-5. Reaction norms of head shape (relative warp 1, a) and body shape (relative warp 4,
b) among populations of brown trout reared in three wild environments. Each point
represents average head shape (top panel) and body shape (bottom panel) of Parkers (red
symbols), Rennies (green), Waterford (blue), and Wild (black) origin fish when reared in
Parkers, Rennies, or Waterford environments. Error bars are ±1 SE.
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Fig. 4-6. Cubic spunes to visualize fitness as a function of body size Oength), head shape,
and body shape, for Parkers (red lines), Rennies (green unes), Waterford (blue unes), and
Wild (black unes) origin fish reared in the Parkers (top rows), Rennies (middle rows), and
Waterford (bottom rows) environments. Increasing values of head shape are interpreted an
increasing relative size of the head and eye, whereas increasing values of body shape are
interpreted as increased streamlining (decreasing dorsal ventral compression)
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Fig. 4-7. Relationship between directional selection and phenotypic plasticity (shape at
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average plasticity of Parkers (red symbols), Rennies (green), Waterford (blue), and Wild
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Fig. 4-10. Individual reaction norms ofParkers (a), Rennjes (b), Waterford (c), and Wild (d) origin fish reared in the Waterford River. Each
coloured line represents an individual's change in size adjusted head shape after ca. 70 days post-release. The thjck black line is the population-
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Fig. 4-11. Individual reaction norms of Parkers (a), Rennies (b), Waterford (c), and Wild (d) origin fish reared in Parkers Pond Brook. Each 176
coloured line represents an individual's change in body shape after ca. 70 days post-release. The thick black line is the population-average response.
The number of individuals responding in the direction predicted based on population-specific selection (P-SS) or site-specific selection (5-55),
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Fig. 4-15. Relationship between head shape (a), body shape (b), and growth. Each point
represents the average growth of Parkers (red symbols), Rennies (green), Waterford (blue),
and Wild (black) origin fish when reared in Parkers (circles), Rennies (diamonds), or
Waterford (squares) environments. Error bars represent ± 1 SE.
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General discussion and summary

The benefits of transporting species around the globe (e.g., to establish new

agriculrural crops and increase food supplies and recreation) notwithstanding, there is little

doubt that the biological invasions that sometimes ensue can cause lasting ecological and

economic damage (e.g., Townsend, 1996). Indeed, the last global ecosystem assessment

highlighted the detrimental impact of non-native invasive species not only on native species,

but also on the long-term maintenance of ecosystem health and biodiversity in all its forms

(Hassan et al., 2005). This thesis was an attempt to highlight what we have and can learn

about evolution and ecology through the examination of one biological invasion - brown

trout in Newfoundland. My motivation to do so was inspired by the call to consider

biological invasions as unplanned, large-scale, replicated experiments in narure to investigate

fundamental questions (Sax et al., 2005). Though researchers are increasingly thinking of

invasions as fortuitous research opporrunities (Sax et al., 2007), the sentiment in the

literarure is that the opportunities remain woefully under-utilized (see comments in Reed et

al., 2010a, Ghalambor et al., 2007). In this discussion I review the key points of each chapter

and highlight, where appropriate, the next research steps to be taken.

Differential rates of phenotypic evolution and plasticity in native versus
invasive species

In Chapter One, I confirm in a quantitative sense the sentiments of Reznick &

Ghalambor (2001) and Kinnison & Hairston (2007), who suggest that many of the examples

of contemporary evolution emerge from contexts of invasion and colonization. Perhaps

most importantly, the results revealed that invasive species and native species are generally

evolving along similar trajectories and both are influenced by the environment and thus
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phenotypic plasticity. That is, our interpretation of the rate and form of how populations

evolve is not biased by the frequent use of invasive species as subjects. The lack of

difference between native species and invasive species is somewhat surprising as natural

selection is predicted to be strong during the first stages of colonization or invasion, which

seems likely to drive dramatic phenotypic change during biological invasions. An analogous

rationale was used by Darimont et al. (2009) to explain the observed differences in trait

change of species subject to human predation in the form of hunting and commercial fishing

versus other anthropogenic disturbance and natural conditions. Specifically, they concluded

that the markedly greater trait change observed in harvested populations was the result of

intense human-mediated 'unnatural' selection.

Assuming that natural selection, even in small populations, is the primary driver of

trait change the lack of difference between native species and invasive species suggests

generally similar selection pressures in contexts of invasion vs. natural conditions. One

potential, mentioned in the discussion of Chapter One, is that the conditions identified as

'natural' may be in fact periods of exceptional selection pressure. For example, changes in

beak size and shape in Galapagos finches were quantified during periods of abrupt and

intense, natural environmental change (i.e. El ino climatic events). Alternatively, selection

during invasion and colonization may not be as intense as previously thought. In Chapter

Four, I quantified natural selection on swimming morphology during the first stage of

invasion and detected weak directional selection and strong non-linear selection.

These results, coupled with the patterns observed in Chapter One highlight a

knowledge gap and fodder for a review. How does the strengrh and shape of natural

selection vary as a function of time since colonization? Is selection higher in contexts of
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anthropogenic disturbance, including invasion, compared to natural settings? To my

knowledge, no one has tested the hypothesis that natural selection is comparably strong

during the early stages of population establishment or that selection varies among contexts

of natural vs. anthropogenic disturbance (as suggested by Darimont et al., 2009). This is

somewhat surprising as the raw material for such as synthesis, namely the Kingsolver

selection database, is freely available. Moreover, the realization that selection varies through

time has become prominent (Siepielslci et al., 2009, Siepielslci et aI., 2011, Bell, 2010) and

contentious in the literature (Morrissey & Hadfield, 2011). Ultimately, it is unclear whether

we have a false sense of how selection operates in nature if indeed many of the estimates of

selection are based on species and systems in the context of invasion or other anthropogenic

disturbance.

The approach and results of Chapter One should be considered a starting rather than

an end point. This is not meant to minimize the utility and importance of the findings, but

rather to suggest there are far too few species included in the database, with a strong bias

towards vertebrates. I also suggest caution in comparing multiple traits among multiple ta..xa

to infer fundamental differences between invasive and native species. Increasingly, there is a

trend to test for differences IlIi/hill species that exist in a native and introduced range, especially

in plants. This approach, represents a more robust experimental design to control for

phylogenetic differences in species responses (see empirical example by Davidson et aI.,

2011). However, this approach has the obvious short-coming in only allowing comparisons

among species that are, in fact, invasive (i.e. have populations established out of the native

range).

Role of the landscape and biological interactions in shaping invasions
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Chaptet Two marks the initial steps to understand the brown trout invasion of

ewfoundland within the context of: Who, where and how many, why, and so-what?

Specifically, this chapter addresses the first three of these questions and sets the stage for

investigating the consequences of the invasion in the remaining chapters. The most

important aspects of this second chapter were that: 1) brown trout are established non­

randomly across the landscape in watersheds that are relatively large and productive, 2) the

invasion is occurring slowly relative to other salmonid invasions elsewhere (e.g., Chinook in

Patagonia).

The first finding is in general agreement with theoretical predictions of

biogeography. amely, larger areas are capable of supporting a larger number of species

compared to relatively smaller areas. In addition to having more resources to support rich

flora and fauna, large areas - watersheds in this case - may be easier to find or encounter

based on chance. By way of a non-fish analogy, a wandering bird is more likely to find Japan

(227,000 km~ than Java (127,000 km~ based on landmass alone. Moreover, productive

environments may facilitate establishment by relaxing intra- or inter-specific competition for

resources (see chapter 6 in Lockwood et al., 2007). Results from Chapter Four support this;

outcomes of foreign vs. local population performance were associated with habitat

productivity (inferred by growth rates and conductivity). Specifically, local fish performed

better in relatively unproductive habitats and on par with foreign groups in productive

environments.

The second general finding of relatively slow population expansion is curious. The

discussion of Chapter One highlights some of the possibilities of why this may be occurring,

with specific regard to abiotic factors. The ability of a community to resist invasion has
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traditionally been thought to vary inversely with native species richness (i.e. communities

with large numbers of native species should be less invasible and thus have fewer invasive

species). Support for this hypothesis, fIrst articulated by Elton (1958) and revisited by Levine

& D'Antonio (1999) apparently differs among spatial scales of examination (Shea &

Chesson, 2002). Biological resistance has been indicated in studies conducted at small spatial

scales (Levine, 2000), but not larger spatial scales (StoWgren et al., 2003, Marchetti et al.,

2004).

Watersheds in Newfoundland are depauperate and contain only a handful of fish

species (De Jong et aI., 2005). Brook trout is the most likely competitor with brown trout, as

the other species (e.g. Atlantic salmon, eels, and sticklebacks) occur in sympatry with brown

trout in its native range. An emerging hypothesis is that habitat-mediated interactions

between brook trout and brown trout may shape the distribution of brown trout in

Newfoundland and elsewhere (Korsu et al., 2007). Briefly I outline the evidence leading to

this hypothesis:

1. The spatial distribution of brown trout alllollg watersheds mirrors distribution

withill watersheds. In both the native and introduced range, brown trout tend to

occupy the lower elevation and gradient, warmer and more productive areas of

watersheds whereas brook trout tend to occupy the cooler, higher elevation and

gradient, headwater sections of watersheds (Budy et al., 2008, Dunham et aI.,

2002, Korsu et al., 2007). Within watershed distributions of brook trout and

brown trout in Newfoundland have not been published, but personal

observations formed during the data coLlection for chapters two and three of this

thesis support the pattern described above. Moreover, extensive sampling of the

185



Renews River watershed, from the estuary to the upper headwaters, provides

quantitative support (Lucas Warner, personal communication 2010).

2. Distributions reflect habitat-specific performance and fimess. Brook trout appear

to outcompete brown trout in oligotrophic environments whereas brown trout

are competitively superior in more productive habitats (Korsu et al., 2007). This

competition appears to occur even to the point of population extirpation in

some systems. For example in northern Sweden, introduced brook trout greatly

increase the probability of population extinction in brown trout, but only in the

highest altitude lakes (Spens et aJ., 2007). The proximate mechanisms underlying

the differential performance are not entirely clear but may relate, at least in part,

to spawning site requirements. Specifically, brook trout exclusively use

groundwater for spawning whereas brown trout mayor may not spawn in

upwelling areas (W'itzel & MacCrimmon, 1983). Survival of brook trout embryos

is much higher in areas of upwelling suggesting local adaptation to these

environments (Guillemette et aI., 2010).

Given these patterns and evidence, the clistribution of brown trout in Newfoundland

may likely be shaped by competition with brook trout that is context and habitat specific. To

test this species-interaction hypothesis one could compare a suite of performance metrics

between the species in either relatively productive or unproductive environments. This could

be accomplished by direct manipulation and stocking of fish in each environment (e.g. move

fish from upstream environments to downstream and vice versa), or again utilize the

fortuitous opportunities afford by invasions. An assessment of this hypothesis is timely and
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has consequences for preclicting the response of brown trout and brook trout to global

changes in temperature and freshwater productivity.

Environmental shaping of adaptive within - species diversity

It is increasingly clear that Ivitbin species cliversity -analogous to a cliverse financial

portfolio - buffers against perturbations and promotes long-term persistence in

heterogeneous environments (Schindler et aI., 2010, Hilborn et al., 2003, Reed et aI., 2011).

What is less clear is how quickly this diversity arises and the role of the environment in its

shaping. Great phenotypic cliversity is observed among trout populations established for no

more than 130 years and that much of this variation is predictable based on aspects of the

physical environment. Moreover, the relationship between aspects of the phenotype, such as

swimming morphology and body colouration, and the environment were in the clirection

often assumed to be adaptive. For example, body shape of small fish in high graclient rivers

was more streamlined and fusiform, presumably an adaptive response to living in fast water

flow (see logic in Pakkasmaa & Piironen, 2000). Adclitionally, colouration patterns in

populations inhabiting darker-more overgrown environments were drabber than populations

inhabiting brighter and relatively open environments, which I interpret as a likely adaptive

response for crypsis (but see the discussion in Chapter Three for other explanations).

Salmon and trout colouration has plastic (Donnelly & Dill, 1984) and genetic (Blanc

et aI., 1994) components, but it is unclear the extent to which the observed colour 'matching'

is environmentally vs. genetically controlled. In an attempt to address this question, all fish

collected in the wild and raised in the laboratory were photographed in standardized

positions with colour vignettes to allow for correction and robust comparisons. Future

analyses will investigate how colour change influences fitness (e.g. survival and growth) in
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the wild as well as assess the underlying genetic control by comparing colouration of four

populations maintained in common-laboratory conditions. Additionally, an experiment was

conducted in the winter of 2009 to examine population differences in colour reaction norms

in response to colour of rearing substrate. This experiment compliments the recent findings

that colonizing freshwater sculpins in southeast Alaska plastically modify their colouration

patterns to match novel stream conditions (Whiteley et al., 2009). In addition to quantifying

the extent of plasticity, the experiment undertaken with brown trout will illuminate the

potential for reaction norms to respond to natural selection in nature.

The resuJts of Chapter Three support the now unequivocal evidence that adaptive

variation can arise in contemporary time (Carrol! et aI., 2007, Reznick et al., 1997, Losos,

2009, Hendry & Kinnison, 1999). Since Darwin, it has been accepted that ecology can

influence the patterns of evolution but onJy recently has it emerged that evolution may

happen rapidJy enough as to shape ecological patterns (Hairston et aI., 2005). Like in Chapter

Two, the role of the biological community and the influence of inter-specific competition

represent an unfortunate knowledge gap in Chapter Three. The potential for competition

with Atlantic salmon and/or brook trout to influence morphology and perhaps lead to

character displacement in colonizing brown trout (or the native species) is intriguing and

worthy of future investigation. Here again, patterns of the invasion across the landscape lend

themselves to natural experiments; brown trout are found in systems comprised entirely of

brown trout (e.g. the Waterford River) or in sympatry (e.g. Raymond's Brook) with the other

species. However, brown trout occur more often in sympatry with Atlantic salmon than

brook trout, presumably due to intense competition with the latter.

Local adaptation, phenotypic plasticity, and the Baldwin effect
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The propensity of salmon and trout to return to natal locations for reproduction,

coupled with varying patterns of natural selection among locations, can lead to reproductive

isolation (Hendry et al., 2000) and local adaptation of populations (Carlson et al., 2009,

Quinn et al., 2001a, Hendry & Steams, 2004). Without question, salmon home to tributaries

within large rivers and evidence suggests the capacity to return to microhabitats within small

streams (Quinn et al., 2006). This leads to the intriguing question of the spatial scale at which

local adaptation may arise. In a recent meta-analysis, Fraser et 01. (2011) address the

magnitude and spatial scale of local adaptation in salmonid fishes and conclude that 1) local

adaptation is common, and 2) the magnitude of local adaptation increases with spatial scale,

such that populations inhabiting environments further separated in space are more likely to

show greater adaptation. However, they also reveal great variation in adaptation at small

spatial scales. To assess the extent and scale of adaptation observed in Chapter Four I

plotted results from the reciprocal transplant experiments against the data presented in

Fraser et 01. (2011). The outcome of this comparison is shown in Figure 3. Of the 15

comparisons, all but one suggested that local groups performed better (based on recapture

probability, a proxy for survival) than foreign groups. Additionally, the estimates of effect

size fall within expectations given the spatial proximity among populations. Moreover, the

largest effect sizes were the result of comparisons between local wild groups and laboratory

raised foreign populations. Taken as a whole, and viewed within this larger context, the

results of Chapter Four provide strong support that populatiolls of brown trout have

evolved local adaptations to environmental conditions within 130 years of establishment.
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As with most empirical studies of local adaptation, the mechanisms leading to the

observed local advantage over foreign groups are not clear. Predation is an important force

in driving and maintaining ecological divergence in some systems (Nosil & Crespi, 2006,

Carlson et al., 2009), and may be the proximate mechanism of mortality in foreign groups

here. Though we scanned all potential predators for ingested PIT tags (i.e. tags they may

have had in their stomachs by preying upon tagged trout), we only found definitive evidence

of one predation event. Interestingly, the predator (a 128 mm brown trout) was not
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recovered in the Rennies or Waterford where survival was low (implying high predation).

Rather, we found evidence of predation in Parkers, where the relatively large trout consumed

a Waterford fish released at 49 mm in length. Piscivorous coho salmon (0. kimtch) of

approximately equal size to the brown trout predator we observed are capable of completely

digesting sockeye salmon fry (0. lJerka, approximately the same size as the brown trout fry

we released) within 12 hours at 13°C (Ruggerone, 1989). Assuming generally similar

metabolic rates between coho and brown trout, and given the markedly warmer temperature

during the time of our experiment, digestion and passing of tags would have been even more

rapid. Thus, it is not surprising that we saw so little evidence of direct predation even if it

were occurring frequently. Future work, especially in the relatively small and secluded

Parkers location, could be conducted to assess the mechanistic role of predation to drive and

maintain local adaptation. All predators could be experimentally removed from sections and

performance between groups compared. Moreover, transplanted predators could be used to

artificially inflate predation pressures elsewhere in stream sections to examine the effects of

an increasing gradient of predation risk.

Functional morphology, namely the shape of the head and depth of the body and

caudal peduncle, displayed marked plasticity among environments and to a limited extent,

among populations. The population differences is phenotypic response suggest underlying

genetic variation that, if additive, could respond to selection in subsequent generations.

Previous work suggests that evolutionary responses to selection are likely as morphology in

salmonids is heritable and has underlying additive genetic variance (Kinnison et aI., 2003,

Hard et al., 1999). The potential for anthropogenic sources of selection, such as through

hatchery practice, to shape population norms of reactions is increasingly emerging (e.g.
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Morris et al., 2010). In a recent paper, Morris et al. (2010) reveal that domestication appears

to affect the height (i.e. the y-intercept) of the growth reaction norm in Atlantic salmon, but

not the slope. Indeed, the researchers in this paper report generally parallel reaction norms,

similar to the overall pattern observed in Chapter Four.

Similar to the findings above, parallel reaction norms maintained population

differences in morphology among environments countering predictions that morphology

would converge towards presumed site-specific optima. This is counter to the findings

resulting from reciprocal transplants of barnacles (Neufeld & Palmer, 2008) and

fountaingrass (Williams et aI., 1995), both of which report nearly complete phenotypic

convergence, resulting from plasticity, of groups reared in common conditions. The feeding

morphology of benthic and limnetic ecotypes of sticklebacks (Cas/efvs/ealls aClllea/IIs) becomes

more similar when reared on the other's diet, but differences remain (Day et al., 1994). This

finding is more congruent with the results of Chapter Four: plasticity resulted in more

similar morphology among populations in different environments than if plasticity was

absent, and yet significant population differences persist. This result suggests underlying

constraints on plasticity that are not clear, and may reflect past selection pressures

(Ghalambor et al., 2007, Cook &]ohnson, 1968, VaUadares et aI., 2007).

Theory predicts that plasticity should increase the probability of persistence when

directional selection acts on extreme phenotypes in novel environments (price et aI., 2003,

Ghalambor et aI., 2007, Chevin et aI., 2010). In contrast to this prediction, we detected weak

(relative to estimates of directional selection in the Kingsolver database) directional selection

acting on body size, and two aspects of shape. This finding is curious given theoretical

predictions and published empirical results (Anderson et aI., 2010, Kingsolver & Diamond,
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2011, Kingsolver et al., 2001, Charmantier et al., 2008). Moreover, the direction of the

phenotypic response was not predictable given the observed patterns of directional selection,

counter to expectations arising from the early stages of the Baldwin effect (Reed et al., 2011,

Badyaev, 2009, West-Eberhard, 2003). I conclude this discussion with several thoughts of

how to understand these contradictions.

First, a publication bias may exist towards studies reporting strong directional

selection and plastic responses in the direction of selection. Moreover, many attempts to

quantify selection in nature are done so during periods of abrupt change when the

conditions are presumably conducive for detecting strong selection. To my knowledge a

formal test for a publication biases in studies of selection has not been undertaken. While the

potential for such a bias to exist, I consider it unlikely that it would sufficiently explain the

outcome here. For example, in a recent review by Fraser et al. (2011) showed no bias in

publications reporting local adaptation in salmonids.

Second, directional selection may have been weak as phenotypic differences among

populations were perhaps sufficiently close to the local optima that non-linear selection

could prevail (Ghalambor et aI., 2007). It is possible that we would have seen more of an

effect if we had transplanted populations further in space (e.g. transplants from the origin of

the invasion to areas at the edge of the range) or if we had selected populations based on

extreme phenotypic values. Indeed, the populations of trout reciprocally planted differed less

from one another than classic models of ecological species like sticklebacks (Schluter, 1993)

and certainly differed less than the well-known morphs of brown trout found in some lakes

(Ferguson, 1989). While comparisons between more divergent populations may have led to

different interpretations, the design of our experiments may actually have better represented
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the true dynamics of invasions. If invasions proceed as stepping-stones rather than long

dispersal leaps, then colonizing individuals are likely not to be so dissimilar from source

populations.

Finally, the disparity between predictions and reality may have arisen from my

attempts to actually quantify selection, rather than assuming plasticity was adaptive. Indeed to

my knowledge no other study has simultaneously quantified swimming morphology and

selection in juvenile salmonids (see Fleming & Gross, 1994 for an example of selection and

sex traits in adult salmon), though assumptions about adaptive significance of morphology is

common (see logic in Pavey et aI., 2010, Pakkasmaa & Puronen, 2001, Franssen, 2011).

Though it is true that repeated patterns in morphology consistent with ecology strongly

implicates adaptation driven by natural selection, it is equally true that there is still

considerable progress to be made towards holistically understanding and predicting how

organisms will respond to a rapidly changing world.
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Appendices

Appendix 1-1 Evolutionary Indices: haldanes and darwins

John Jack' B.S. Haldane proposed two quantitative methods, now referred to as

units of darwins and haldanes, for estimating the rate of evolution in nature (Haldane 1949).

darwin = In X 2 -In XI
y

where X 2 and XI are mean trait values measured at time period 2 and 1 in allochronic

studies or mean trait values between populations 2 and 1 in synchronic studies and y is time

in years.

(~)-(~)

haldane=~
g

where X 2 and XI are mean trait values measured at time period 2 and 1 in aUochronic

studies or mean trait values between populations 2 and 1 in synchronic studies, Sp is the

pooled standard deviation, and g is number of generations (time of divergence divided by

generation length).

Obvious fundamental differences between the darwin and haldane exist. First, the

darwin assumes an exponential rate of change over time (linear rate between logarithims is

equivalent to exponential rate between untransformed values), while the ha.ldane has no such

constraint. Both units are susceptible to self-correlation if plotted against time interval and

thus should be avoided. The darwin has been employed more widely than the haldane,

perhaps due to its charismatic name or for the simplicity of application; however, the

haldane has a better grounding in the evolutionary process.
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Appendix table 3-1. Average ± SD values for growth rate and size adjusted morphological and meristic traits. Averages are based on n=17, n=20, and
n=15 fish per popularion in rhe <60 mm, 60-150 mm, and> 150 mm size groups, respecrively. Unirs: Growrh represents the specific growrh rate in mm, weight (g), body
depth (mm), caudal deprh (mm), pectorallengrh (mm), caudallengrh (mm), and head surface (mm2), eye surface (mm2), is the first principal component axes scores of
extracted red, green, and blue colour values, and % red is rhe percentage of pixels in standardized fish photographs that were determined to fall in rhe 'red' spectrum, SpotS
are counts of pigmentarion spots on rhe left sides of fish. See text for more informarion.

Sizecategory Population Growth Weight Bodydeplh Caudal depth Pectoral length Caudallength Head surface Eye surface Color % red SJX?ts

0.OO84±0.OO10 I.O±O.IO 8.19±0.50 3.72±0.21 7.42±0.32 6.63±0.28 55.77±4.64 5.93±0.66 -0.40±0.72 5.5±2.3 8±6

0.OO58±0.OOO8 1.0±0.14 8.36±0.27 4.01±0.12 8.1O±0.30 7.45±0.35 6O.41±3.94 7.93±0.52 -1.49±I.OO 19.8±4.9 15±6
0.OO73±0.OOI5 I.O±O.II 8.43±0.30 3.89±0.15 7.05±0.49 6.74±0.31 55.07±2.88 6.56±0.65 -0.94±0.90 1.8±1.9 10±5
0.0065±0.OOI2 0.9±0.12 8.56±0.34 3.96±0.16 7.77±0.57 6.83±0.33 63.19±2.44 8.14±0.78 -0.89±0.86 7.0±3.8 8±4

Raymond's 0.0092±0.OOI8 1.2±0.17 8.50±0.63 3.79±0.20 7.90±0.44 6.72±0.39 61.46±4.86 6.57±0.91 -2.40±0.58 3.9±3.2 7±3
Renews 0.OO52±0.OOO8 1.0±0.15 8.29±0.29 3.93±0.19 8.17±0.50 7.30±0.33 61.38±2.93 8.50±0.61 -1.04±0.58 17.9±3.5 25±8
Rennie's 0.OO79±0.OOI5 I.l±0.29 8.58±0.30 3.88±0.12 7.18±0.36 6.60±0.36 59.13±4.67 7.07±0.89 0.01±1.05 2.4±1.6 9±10
Rexton 0.OO78±0.OOll 1.2±0.29 8.28±0.56 3.81±0.14 7.72±0.66 6.33±0.36 53.55±4.19 5.56±0.75 -2.60±0.99 0.4±0.7 7±2
Sahnon 0.OO74±0.OO13 0.9±0.15 8.29±0.38 3.87±0.20 7.62±0.31 7.15±0.46 6O.50±3.44 7.82±0.73 2.22±1.07 3.7±2.0 9±4
Savage 0.OO75±0.OO13 1.2±0.32 8.54±0.34 3.94±0.13 7.24±0.59 6.56±0.43 55.40±2.58 5.38±0.71 -0.88±0.49 5.2±3.4 8±4

SEPlacemia 0.OO86±0.OOI0 1.0±0.ll 8.54±0.23 3.81±0.13 7.54±0.25 6.62±0.34 58.05±3.36 6.44±0.63 0.40±0.9714.3±7.0 9±3

Topsail 0.OO74±0.OOI2 1.0±0.21 8.79±0.40 4.1O±0.19 7.90±0.41 6.92±0.34 57.54±3.86 6.80±0.58 0.54±1.38 9.1±3.6 8±7
Witless 0.OO80±0.OO21 1.1±0.28 8.82±0.42 3.87±0.15 7.87±0.42 7.19±0.42 59.14±3.57 6.33±0.62 -1.02±0.75 9.7±2.8 7±4

Avonda le 0.OO29±0.OOO3 12.1±0.71 19.54± I 8.51±0.40 16.62±0.77 13.31±0.96 263.49±16.42 26.49±3.83 0.34±0.97 5.1±4.6 45±12

Chance 0.OO22±0.0004 11.4±1.12 19.67± 0.6 8.76±0.29 17.88±0.92 15.12±0.84 270.32±12.63 31.61±3.24 -1.69±0.81 16.0±7.4 50±10

Chapel 0.OO29±0.OOO5 12.1±1.4 19.86± 0.5 9.00±0.27 17.76±0.81 14.65±0.72 257.63±12.88 27.96±2.35 -0.14±1.23 4.2±5.8 35±8
Parker's 0.OO26±0.OOO3 12.0±0.62 21.02± 0.8 9.42±0.30 17.68±0.75 14.54±0.93 282.60±17.68 30.85±3.96 -1.I9±1.17 4.8±3.7 32±1O
Raymond's 0.OO32±0.0004 13.4±1.06 20.09± I 8.75±0.47 16.47±0.72 14.22±0.57 258.84±25.34 24.12±2.62 -1.02±1.27 4.9±5.6 38±8
Renews 0.OO28±0.OOI5 12.5±2.58 20.05± 0.8 8.80±0.36 17.98±0.98 15.Q7±1.28 277.83±16.59 32.68±3.06 -0.86±1.06 14.6±9.3 38±12

Rennie's 0.OO37±0.OOI8 11.7±1.83 20.6± 0.7 8.75±0.40 16.69±0.69 14.40±0.84 267.74±11.72 27.62±2.27 1.94±1.40 3.9±4.4 32±10

Rexton 0.OO33±0.OOO3 11.5±1.23 19.97± 0.9 8.70±0.48 15.89±0.69 13.27±0.83 249.33±23.65 23.87±2.00 0.48±1.I4 6.3±5.7 40±10

Sahnon 0.0066±0.OO39 11.8±1.81 20.23± 1.1 8.82±0.39 16.26±1.36 14.63±1.28 243.45±22.95 25.44±4.37 0.92±2.25 5.0±3.3 36±12

Savage 0.OO34±0.OOO3 11.5±1.83 20.88± 0.8 9.47±0.41 16.26±0.96 14.26±0.81 260.25±14.87 24.11±2.41 0.41±0.90 8.7±4.7 37±10

SEPlacentia 0.OO80±0.OO38 12.8±0.66 21.36± 0.8 8.96±0.49 16.34±0.72 14.36±0.71 257.00±19.49 23.42±4.45 0.67±1.23 17.2±8.4 34±10

0.OO32±0.OOO5 12.1±0.61 20.87± 0.7 9.05±0.35 16.81±0.60 14.56±0.55 253.62±12.93 26.44±2.09 2.27±0.90 8.7±5.4 39±11

0.OO36±0.OOO3 12.6±2.28 21.23± 0.9 9.1O±0.43 16.78±0.71 14.15±1.11 251.54±15.40 24.26±1.96 -0.82±1.07 5.7±4.3 4O±12

0.OO31±0.0006 11.9±1.05 20.96± 0.7 8.82±0.31 15.93±0.81 13.56±0.97 258.61±16.11 25.80±3.87 0.63±1.I9 10.6±8.5 38±9

0.OO35±0.OOO5 1I.4±I.72 20.24± 0.9 8.78±0.41 15.99±0.90 14.23±0.92 257.73±24.86 27.10±2.90 0.46±1.62 3.4±2.5 41±13

Witless 0.OO31±0.OOO312.1±1.3 20.6± 0.9 8.99±0.29 17.60±0.62 15.28±0.52 269.85±15.73 29.15±2.84 -0.34±1.36 10.6±7.7 46±15

Rennie's 0.OO2135±0.0004 89.9±7.95 42.07± 1.6 17.55±0.81 32.51±1.68 26.22±1.79 955.94±88.29 76.12±6.72 2.46±1.90 8.3±6.4 57±20

Sahnon 0.OO2907±0.0009 92.4±8.5 42.41± 1.7 17.93±0.46 31.74±1.73 25.72±1.41936.37±106.4467.46±6.45 1.37±1.06 6.0±4.5 73±21

0.OO2421±0.OOO2 84.4±6.34 4O.83± 1.9 17.93±0.68 32.55±1.55 26.55±1.I5 908.62±75.64 66.51±7.76 -0.1O±0.76 10.8±7.8 52±15

0.OOI939±0.0004 83.6±14.5 40.94± 2.8 17.14±1.I5 30.59±2.45 25.03±1.94 907.20±87.36 66.71±7.79 1.89±2.00 9.5±15.1 49±20

0.OO2735±0.OOO8 89.6±12.9 43.09± 1.7 17.42±0.69 31.59±2.33 24.78±2.13995.70±101.9871.26±7.91 -1.I5±1.04 4.3±3.4 6O±19

0.OO2125±0.0004 86.0±15.2 41.61± 2.9 17.13±1.05 32.69±1.62 24.75±1.311001.43±103.7482.17±10.17 1.04±1.28 18.1±11.3 59±16

0.OO2302±0.OOO5 76.4±17.4 41.68± 3.3 17.26±0.73 33.20±2.47 26.53±1.I81000.77±109.1080.07±11.1I 0.52±2.03 4.3±3.0 79±23
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Appendix table 3-2. Average physical habitat features at watersheds associated with brown trout
populations in ewfoundland. Distances (km) calculated as a fish would swim the putative original source
to each watershed, where negative values are south of the source and positive values are to the north of the
source, riparian cover categorized between 1 and 4, stream wetted -width (cm) and depth (cm), ratio of
wetted-width to depth, gradient % change in elevation (m) over the length of the sample reach (m),
conductivity (j..LS cm-I) ,and water clarity (cm).

Location Distance Cover Width Depth WidthlDepth Gradient Conductivity Clarity

Avondale 110 1.33 16.1 35.3 0.46 I.l 47.1 120

Chance Cove -140 1 10.4 23.3 0.45 0.8 33.1 110.7
Chapel Arm 250 1.67 13.3 28.4 0.47 0.7 38.5 102.8

Parker's 4.5 3.33 1.7 16.6 0.10 4.4 43.6 110.5
Raymond's -18 1.67 10.6 32.6 0.33 0.6 43.2 37.8

Renews -116 1.33 16.9 19.4 0.87 0.9 34.5 92.5
Rennie's 0 1.67 7.4 29.8 0.25 1.5 246.3 38.5
Rexton 155 1 3.4 12 0.28 6.3 48.4 102.2

Salmon Cove 92 1 11.9 30.9 0.39 0.4 48.1 120

Savage 12 1.33 5.5 23.1 0.24 3.9 178.9 95.5
SE Placentia -421 1 13.5 20.6 0.66 0.5 28.3 75.8

Topsail 92 2.33 5.9 36.4 0.16 3.9 200.2 84.5
Torbay 16 1 4.4 31.4 0.14 4.8 74 101.3
Virginia 0 1.33 4 25.7 0.16 2.2 278.3 49.5

Waterford -6 1 5.6 38.1 0.15 1.5 299.3 98.8
Witless -55 3 8.3 19.1 0.43 2.9 77.6 86.7
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Appendix 4-1. AICc values from A OVA models fit to head shape and body shape
variables of surviving individuals reared in the Parkers, Rennies, and Waterford
environments. Two models (one with a population term, and another with the population
term set to zero, that is, a null model) were fit at time of release and time of recapture to test
the hypothesis of phenotypic convergence following rearing in common environments.

Time period

Rearing location

Parkers

Shape variable

head

body

Release

Population

-514.9

-614.1

Null

-501.7

-610.32

Recapture

Population Null

-502.9 -486.3

-585.8 -582.7

Rennies head -357.8 -311.1 -378.5 -357.3

body -404.4 -404.3 -402.3 -397.7

Waterford head -402.9 -373.5 -427.7 -403.2

body -473.4 -474.4 -467.8 -461.7
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Digitization of Mouseion

The journal has had three names in its history, and three numberings as a result. In
its most current form, the journal is titled Mouseion, whose series runs from 2001
(volume 1) to the present (we're currently at 2010, volume 10 issue 1), with three
issues per volume. Immediately before this, the journal was titled Echos du Monde
ClassiquejClassical Views, which ran from 1982 (volume 1) to 2000 (volume19),
again with three issues per volume. The original series was titled Echos du Monde
ClassiquejClassical News and Views, running from 1957 (volume 1) to 1981 (volume
25), with varying numbers of issues per year (typically two or three).

In terms of naming the files for the sake of clarity, I would suggest listing the third
series as, e.g., Mouseion2007.v7.1, the second as, e.g., ClassicaIViews2000.19.2, and
the first as ClassicaINewsandViews1981.25.3.

Missing Volumes/Issues (to be delivered later)

Third Series: Mouseion: Complete

Second Series: Classical Views: 7.3 (1988)

First Series: Classical News and Views: 13.1 (1969)
2.3 (1968)
10.1-2 (1966)
1-8 [all issues] (1957[?]-1964)
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