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Abstract 

Active suspension has shown all ability to selectively improve various aspects of 

suspension performance. These criteria can range from limiting vertical accelerations 

to more economically using s\lspensioll or tire deflections. This is used as a starting 

point in the development of a quarter car test apparatus. 

This research develops optimal controllers for various car models and provides a 

comparison which is useful in determining l"CQuired model complexity. All electricbl 

model of an actuator is incorporated into the more basic quarter car model and again 

an optimal controller is developed and simulated. The results show that there is 

potential for real world applications using a slightly more complex optimal controller 

incorporating all actuator modeL Using these simulations various parameters are 

generated to develop a design of a quarter car test apparatus. Initial work on a 

development of an actuator was conducted which led to the selection of an off-the­

shelf voice coil along with other various parts. Being mindful of future developments, 

the test apparatus was designed and developed around a Field Programmable Cat.e 

Array (FPCA) based controller. The FPGA has potential for high speed parallel 

processing which makes it ideal for running multiple comrollers simultaneously as 

well as implementing mathematically intensive operations but at a significant cost in 

development time. A basic optimal control implementation was developed and tcsted 

and proved to function very well, opening the possibilities of other development. 
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Chapter 1 

Introduction 

1.1 Background a nd Motivation 

The advent of anti-lock braking systems, electronic stability controllers, electronic 

power steering, semi-active and active suspensions, and other new technologies are 

creating safer vehicles. \Vilile each system on its own can be exhaustively tested, once 

it is integrated into a very complicated non-linear system and subjected to human 

control, the performance of the system becomes less predictable. Once a vehicle is 

ncar the limits of deflections or traction, the prediction of the system in a simulation 

environment becomes difficult to accurately reproduce. The current options used ill 

industry are full scale testing or complex simulation environments. 

Full scale testing at the limits of vehicle operation is extremely high risk in terms 

of cost of equipping a vehicle that may be irrcparably damaged, and in the control 

of the vehicle in relation to human life. Instrumenting a vehicle absorbs the bulk of 

the project cost leaving li~tle for the actual experimentation. This results in testing 



scenarios much less demanding and catering primarily to the day to day driving 

style but not the high risk extreme manoeuvres that could more strongly relate to 

increasing vehicle safety. 

Vehicle simulation software such as CarSim [1 1 is reaching a high level of matu­

rity providing a good simulation platform. In contrast, the design of the controllers 

happens on simple models, CarSim provides an environment to test and refine them 

before they ever reach a real vehicle. However good the simulation is, it is dependent 

on the underlying models which will have some foundation in empirical experimenta­

tion. These models may not reflect the real world perfectly, especially at the limits 

of hardware performance and actuator implementations. 

Similitude is a method of translating one model to that of Il.nother. It is normally 

used in relationship to fluid dynamics for drag, lift, and dynamics of ai rcraft and shipt;i 

More recent work has helped develop similitude for scale ground vehicles to full sized 

ground vehicles with regards to lateral dynamics by te8ting a small scale vehicle 011 

a rolling road[2, 3, 4, 5, 61. This method utilizes Buckingham Pi analysis to design 

the vehicle and obtain appropriate dynamics from the ~t(~ring actuator. Promising 

results are opening the doors to more scale vchicle dynamics experimentation 

Electric hybrid vehicles have an easily accessible energy storage device. :Jormany 

active suspension requires actuators which have commonly been of a hydraulic variety, 

requiring a hydraulic pump connected to the engine. A battery enables electro­

magnetic actuators such as voice coils or linear motors to be utilized, giving potentially 

higher bandwidth. Under this pretense it is permissible to develop an electric scale 

test apparatus with active suspension for the testing of suspension controllers. 



1.2 Research Ou tline 

Whlle active suspension work surged and receded to some extent in the early 19908, 

there is an abundance of research Oil creating a better force actuator system. The 

low cost launch point that would allow testing new theories is that of a linear plant 

with a wide bandwidth actuator for which work by Gysen e1. al [71 has shown great 

promise with the field of electric actuators. III order to facilitate the development of 

a scale vehicle for active suspension COJltrol, the first step is an examination of the 

background material in all the related fields in chapter 2. The various levels of model 

complexity are discussed and developed in chapter 3. This allows the suspcnsiO)l 

setup to be tuned to give the appropriate suspension and tire natural frequencies 

when compared to a full scale vehicle. l\Ialching all the dynamics of the system Illay 

be impossible, but certain aspects sucll as the natural frequencies of the suspension 

and the tires are critical to the dynamics of a suspension system. 

Once the dynamics arc appropriate, an optimal control technique is needed. In 

this case the Linear Quadratic Regulator, or LQR, technique is chosen and explained 

in chapter 4. This controller is normally shown as an example using a quarter car 

model. Exploration into what is an appropriate level of controller complexity r:­

quires the comparison of quarter, half, and full car model based controllers. Due to 

issues resulting in an inability to sohll the control scheme for a full car based con-

troller, quarter and half car models are explored. The results of these simulations are 

explained in chapter 5. 

This optimal control is entirely theoretical in regards to its output being a force. 

No simple actuator exists solely where a force is the direct output to a commanded 



input, irutead a force actuator is of another type with its own feedback controller. 

Thus, the actuator dynamics play into the response of the system. 1o.'Iodelling the 

actuator and modifying the chosen control system gives a better understanding of 

how the dynamics of the actual system may work, and the results of this work is 

shown in chapter 6. 

In order to validate the simulation work a 1/4 car test rig is designed based on 

the specifications from the previous simulations. The design is required to be robuSt 

but very simple and serviceable as it has to accommodate a wide array of controllers. 

An explanation of the design requirements and constructioll is detailed in chapter 7. 

The controller needs to be implemented in hardware as well as having states 

recorded. This is implemented through a combination of Field Programmable Gate 

Array, or FPGA, and a microcontroller. Some aspects of the contro!lers to be im­

plemented may require complex mathematical filtering, such as Kalman fitlers and 

variations thereof. In order to effectively control the system this would require signifi­

cant microprocessing requirements. The FPGA allows for a hardware implementation 

that rUIlS at a consistent speed and has an ability to be reconfigured easily. While 

mathematical operations can be implemented and run in parallel for processing speed, 

interface operations are very complicated. A relatively simple to program microcon­

troller is interfaced to the circuit in order to sanlple data and send it to a computer 

via USB. The details of this development is shown in chapter 8. 

Finally the results of initial simulations are shown in chapter 9. A discussion of 

these results and of potential future work is presented in chapter 10. 



- --- - --------

Chapter 2 

Literature Review 

2.1 Ve hicle Models 

Studying active suspension involves comparing and utilizing several different typ~s 

of vehicle models. A wide background of models is provided by Hrovat [8]. Several 

key models are identified by Hrovat 's survey of the developments ill active sw;;pel15ion. 

The linear time invariant models generally follow a simple progression with increasing 

degrees of freedom (DO F). The main modcffi include: 

• 1 OOF quarter car 

• 2 OOF quarter car 

• 2 DOF half car 

• 4 DOF half car 

• 3 DOF full car 



• 7 DOF full car 

There are three main models each with an associated variation; the quarter car 

model, the half car model and the full car model. The simple versions of these 

remove the effects of the ti re stiffness (spring) and unsprung mass (weight of tire, 

wheel, uprights, and percentage of A-arms and suspension componcnts). The I DOF 

quarter car is a simplification where the entire mass of the vehicle is assumed to only 

heaYe, and as a result all four springs are modelled as a single spring. When the tire is 

modelled as an unsprung mass (potentially with damper) then the associated model 

complexity rises with another DOF per wheel. Thus the 2 DOF quarter car model is 

the classic problem of two masses, one connected to the ground and the other mass 

via separate springs and dampers. 

Figure 2.1 shows the reduced complexity models that have eliminated the un­

sprung weight and tire stiffness. The half car model assumes that the vehicle can 

pitch and heave, so the front and rear have springs that idealize the front left and 

right, and the rear left and right springs and dampers. The full car is allowed to pitch, 

hcave and roll so all 4 springs and dampers have to be modelled. These models have 

been used to illustrate several key concepts related more to controls theory rather 

than actual performance. Tseng and Hrovat [91 examined the simplified 2 DOF quar­

ter car as shown in figure 2.2 but without the spring and the damper which is t.he 

primary components of a passive suspension. This is the most ideal case of a 2 DOF 

model because it negates the effects of gravity and limitations of potentially available 

actuators. 



As an extension to this, the half car pitch model, shown in figure 2.lb, is the 

next logical step in modelling the dynamics, is to develop a controller. Using this 

model, which again negates the effects of unsprung mass and the tire compliance, 

provided an examination of model complexity. Krtolica and Hrovat 's study of the 

decoupling [10] effect, which is to say a method for determining when the front and 

rear can be treated separately for controller design, provides the basis of criteria to 

model the front and rear sections of the vehicle separately. Krotlica and Hrovat use 

the performance index: 

Where T"1 through T" 4 are weighting terms relating to the heave acceleration Z2, 

pitch acceleration 0;, front deflection z" and rear deflection respectively z •. Using 

this as the performance index they ""-cre able to determine that if pitch inertia Jp 

relates to sprung mass m. as per equation 2.2 within 20% via the front and rear 

length (figure 2.1 ), that the front and rear of the vehicle are sufficiently decoup\ed. 

The second critcra relates to the weighting factors for the front and rear deflection as 

per equation 2.3 however the sensitivies of this term have yet to be itwcstigated 

(2.2) 

(2.3) 



Wong [U ) uses a different method of deconpling the from and the rear of the 

vehicle for a passive suspension. The theory uses a model similar to that shown 

in figure 2.1b, but without the damper. This allows one to determine two coupling 

terms that allows one to adjust the front stiffncss and rear stiffness to satisfy equation 

2.4. This causes the pitch motions to be decoupled from the bounce motions. He 

states that under this criterion that the passive suspension would result. in poor ride 

quuality which is very different than that of Krtolica and Hrovat. 

(2.4) 

2.2 Active Susp e nsion 

Hrovat's comprehensive works cited in his survey [8] provide t.he basis for the de-

velopment and implementation of active suspension within a theoretical framework. 

Original works citied to be some of the first attempts in active suspension used a 

Linear Quadratic Gaussian Regulator approach to a simple one DOF model. This 

model is the most basic implementation of optimal control where the only elements 

are the sprung mass, the actuator, and the road input. shown in figure 2.3. 

From this, a considerable amount of work was completed, including work sur-

rounding the idea of a skyhook damper [12], a damper that is collnected from the 

mass to a reference inertial frame. Continued work 011 the quarter car model eye/}-

tually brings research to a 2 DOF model for passive suspension shown in figure 2.2a 

and the active equivalent having both the suspension stiffness and damper replaced 



a) 2 OOF quarter car 

a •. a. 1, 

b) 2 OOF half car 

c) 3 DOFfulicar 

Figure 2.1: Simple ~Iodel.'l 



,il]~ ' 
X ' 
a) 2 OOF quarter car 

b) 4 DOF half car 

C)7DOFfulicar 

Figure 2.2: Improved ~lodeL~ 
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1, 

1, 

Figure 2.3: Simple 1 DOF Active Suspension 

by a force actuator or in some cases the unsprung mass is set to zero and puts the 

force actuator in series with the tire stiffness. 

2.3 Scale Vehicles 

Hrovat speculates in his research [8] that the original attempts at active suspcnsi0!l 

were less successful for a number of reasons, inlcuding that of Coulomb friction causing 

Ilon-lincarities when elements are static and a friction force that is related to normal 

force. That is, in order to move the suspension, a higher force is required to start the 

movement than to keep it going. This becomes a primary concern when attempting 

to implement active suspension on a vehicle for rcal world application. 

Several attempts ha\'c been made at full active suspension including that of the 

Lotus 99T and lOOT [131 Formula One racing cars. \Vhilc the technology was short­

lived ill Formula One, it has been continually looked at for bencfits. Currcntly, 

semi-act ive suspensions have made significant ingress and call be found Oil scveral 
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production cars using magneto-rheological dampers to adjust damping continuously 

[14[. 

Recent work conducted at the University of California at Berkcley relates to explo­

ration of vehicle improvements using preview control suspension on a full-sized vehide 

[15]. Lotus Engineering originally equipped the vehicle with hydraulic actuators, load 

cells, LVDTs, accelerometers, and gyros as well as a preview sensor. 

There is a relatively high cost to this setup and large risks would be taken by test-

ing near operational limits. The arrangement of sensors already requires sigllificaut. 

cost on the order of tens of thousands of dollars. Brennan [2, 3] argues that there 

are four primary motivating factors relating to the use of sealed vehicles: cost, safety, 

cOllvellicllcc, aud flexibility. Brennan's work primarily relates to lateral dynamics 

and similitude which is expanded in [4, 5, 6J. Eventually, the work with the Illinus 

Roadway Simulator reached a fairly substantial level of development where Brennan 

implemented and tested the limits of lateral steering control [16, 17, 18]. 

Under the guidance of Brennan, Perersheim continued work related to seale vehi­

cles, specifically in the area of dcwloping guidelines Oil the scaling of vehicle compo­

nents [19] while v,.urking on t he more recently designed Pennsylvania St.ate University 

Rolling Roadway Simulator (PURRS). 

It. should be noted that Brennan's work required the use of a simple bicycle model 

which relies heavily on cornering stiffness and tire models. A bicycle model is .a 

model that assumes the lateral dynamics of a vehicle can be idealized as a single 

front and rear tire. The front wheel can be steered, while the rear remains aligned 

with the vehicle body. The forces on the vehicle relate to the velocity and steering 

angles combined with a tire model. Generally the Magic Tire Formula [20] developed 
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by Pacejka is used for this purpose. However, simple derivations utilize a cornering 

stiffness to determine these forces. In order to facilitate this, he initially derived 

cornering stiffness experimenta.lly [2]. This work would later be expanded by Polley 

[21 J and is the primary resource for scale tire models. Further work now expands 

this to solid rubber tires by Witaya et a!. [22] who has also started development on 

the Scaled Vehicle for Interactive Dynamic Simulation, SIS. SIS is a l/lOth scale RC 

vehicle modified for lateral dynamics. While the vehicle appears to have a suspension 

it "'.'QuId be of minimal importance to the current research. 

While it may be argued that rolling roadways are beginning to mature, they are 

entirely limited to the lateral dynamics of vehicles currently. As mentioned before, 

Witaya et a1. have begun to expand the research by removing the vehicle from the 

roadway but little work has been done on scale vehicle suspensiou dynamics. Som.e 

basic work surrounding vehicle roll-over was used to clJaracterize important factors by 

.Mittal and Gulve utilizing a scale vehicle[23] . .\{ore recentiy, work has bccn conducted 

using a modified scale vehicle by Verma et aL for longitudinal dynamics research [24]. 

This work was primarily related to that of scaling theory for motor, transmission, 

and vehicle properties such that the full scale vehicle, a High Mobility Multipurpose 

\Vheeled Vehicle (H'\1MWV) , could be emulated. 

However, scale dynamics incorporating vehicle suspensions is still a very new topic 

with very little research. The only available information on any developments was 

a publication by Annis and Southward [25] where a large scale RC vebicle was cut 

down the middle and mOllnted with the rear wheels held rigid. This is referred to 

as a Quarter-car but appears to possibly incorporate some pitching dynamics. It was 

demonstrated with some basic sky-hook semi active controls. 
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2.4 Quarter Car Test Rigs 

A two degree of freedom quarter car as mentioned previollsly is a major topic and is 

the first means of developing active suspensions in a laboratory environment. Due to 

the non-dimensionality already mentioned in terms of natural frequencies, the weights 

and size of a quarter car are not the most important aspects when designing an active 

suspension quarter car test rig. The illtended goal has dictated the designs used. 

Langdon highlights the initial development of a full scale non-linear 2 DOF sus-

pension rig with interchangeable suspension attachments in (26]. It was intended as 

Ii passive nOll-linear suspension test rig and backed out a lincar model that fit well 

but showed some limitations at the extents of operations. 

Chantranuwathana and Peng provided mally real world solutions to implement-

ing active suspensions in [27]. They were expanding initial work with the assumption 

that LQR would be used and a force tracking controller would be required. They 

eliminated the need for a load cell by using an observer based on accelerations, ve­

locities, and displacements to determine actuator force to feed back into an Adapti;e 

Robust Control technique. The motivation for this was previous implementMions on 

test rigs saw that hydraulic actuators ""'ere limited to under 2 Hz operations and thus 

could not provide significant improvements without controller instability. 

Pneumatics was initially explored by Anakwa et al. in [281 however it was entirely 

targeted as an academic exercise. It was a simple 1 DOF active suspension with 

a roller-cam as a road input to simulate a sinusoid. It showed some promise but 

appears to have not bccn fully explored and is inteuded for a tool for students to 

learn industrial controls 
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Lauwerys et al. [29] have developed a semi-active / active sllspension test rig with 

an electro hydraulic actuator, and use frequcncy identification mcthods to develop 

a transfer function and suspension model through experimental work. Limitations 

of hydraulic actuators are later outlined by Gysen et al. [7] highlighting the initi~l 

development of a 3 phase linear actuator to be packaged inside a BMW 540 Macpher­

son strut volumetric envelope. It used roll data from a lap of the Nurburgring and 

the target of stopping body roll as the design requirement. This v.'()rk was expanded 

by Gysen et al. [30] to include more experimental work on a linear quarter car test 

rig using a random road input and an LQR controller producing a force target to be 

matched by the actuator through current sensing of the 3 coils. The force-current 

relationship proved linear to 2100N of force , where non-linearities were visible. No 

explanation was given as to why this non-linearitics was introduced. 

While similar to Gysen, Lee and Kim [31] developed a quarter car test rig and 

linear brushless permanent-magnet motor and combined it with a variety of controllers 

The work showed good correlation with a basic test rig comprised of a sprung and 

unsprung mass, a linear motor, and suspension spring. The system used a solid wheel 

with a rigid interface to the unsprung mass. This meant that the tire dynamics were 

almost removed. The solid wheel was actuated with a spinning cam so there was no 

designed tire compliance. 

2 .5 Literature Motivation 

The cumulative effort of all of this research is renewed exploration into active sus­

pensIOn. The new possibilities for implementation are prompted by the promise of 
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higher bandwidth electrically powered actuators in the form of linear motors or sim­

ilar devices. Combining this with the possibilities of dynamic similitude it should. 

be possible to explore responses using a scaled test apparat.us. In order to facilitate 

this, investigations into the models should be conducted first to provide the necessary 

design criteria to design and develop such a test setup. 
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Chapter 3 

Vehicle Models 

3.1 Overview 

Generally there are three distinct vehicle models that are normally used to design 

and simulate vehicle controls. These are the quarter car, the half car, and the full 

car model. T he quarter car is the classic two masses with springs and dampers be­

tween the two masses and between the lower mass and road input. The simplifying 

assumption is that Lire damping is negligible and the tire stiffness is significantly 

higher than that of the suspension. The half car model uses two masses connected 

to road inputs through springs which are connected to a singular beam at either end. 

Chantranuwathan8 et al. [271 have experimental data that shows tire damping coef­

ficients are on the sallle order of magnitude of suspension damping, but the stiffness 

of a tire is approximately 10 times that of the suspension. This indicates that tire 

damping should be included in model developmeni. 
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,----------, ----.t z. 

K. 

Figure 3.1: Quarter Car r-.Iodel 

3.2 Quarter Car 

A quarter car model represents a corner of a vehicle as shown in figure 3.1 The sprull"g 

mass of the car body, m., is connected by a spring and damper to the unsprung mass 

of the suspension components, m~, by the suspcmion spring, K., and t.he damper, 

B. . The tire interfaces with the road via the tire which is modeled as a spring, 

K t . Tire lift-off is permitted. It is generally assumed that the tire damping, b" 

is negligible; however it, is included ill the model derivation due to its importance 

described previously. 

The gcncrallincar system is described by 

x=Ax+Bu (3.1) 
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\Vhen gravitational and road inputs are separated out of ll , the equation becomes 

x = Ax + BFa + Cg+Lzr (3.2) 

Where the vehicle states, spring deflection (qk.), sprung velocity (vm.), tire deflec­

tion (qk,), and unsprung velocity (vm..), are: 

(3.3) 

Using Bond Graphs, the system is modelled in figure 3.2. The governing equa-

tions using bond graphs are formed from the derivatives by taking the differential 

of the power at an element with respect to itself (equation 3.4). This Bond Graph 

methodolgy was originally developed by Kamopp, r-,'largolis, and Rosenberg [32]. The 

derivative of momentum (V) is equal to the effort (e) in equation 3.5. The derivative 

of the displacement (4) is equal to the flow (f) in equation 3.6. In order to keep things 

organized , the bonds are numbered for the quarter car as shown ill figure 3.2. 

p~ =€. f (3.4) 

Pet = €et (3.5) 

q. ~f. (3.6) 
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Bond Graph ;\!odel Figure 3.2: Quarter Car 
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Starting with spring deflection qk8 we have: 

/13 = /14 = ~ 
m, 

Thus: 

. P14 P7 l q., ~;;;; - ;;;; 

The momentum of the prung mass can be calculated in the same way: 

I 1113 = € 10 = ell +e12 - /",(t) 
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Thus: 

Pm. = - m.· 9 - Ql1k. - b. (~ _.E!..) + fa{t) j m, m" 

Following the same pro OOure for the tire deflection: 

Thus: 

And finally for the unSrung mass momentum: 
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e9 = e11 + e12 - fa(t) 

e9=qllk.+b. - -- -fa(t) ( p" p,) 
1n. 111. .. 

Thus· 

. (p" p,) Pm .. =e7 = -f"l"lu ·g+q11k.+ b. - --
m. m" 

- fa(t) - q,k, - b, (f'!.- - v(t)) 
'"" 

However some minor manipulation is required to convert the momentum terms, 

P14 and PI , to m .V14 and f"l"luVr. \Vith the state variables identified, matrices A and B 

for the linear system are developed and shown in equations 3.7 and 3.8, respectively 

...!.. _-1-

- k. -~ 0 
(3.7) 

k. ... - k, -~ 

-*, 

B ~ 
-~ 

(3.8) 

~ 
A non-linear tire is added, such that the tire only generates force in compression 

(negative displacement). If the tire spring deflection is positive, corresponding to 
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tension, then the tire will produce no restoring force. Gravity then becomes the only 

restorative force. This is dOlle through editing the code for the states as shown 

parameters 

real c • 1. 18343e-4 ; I ICompliance. StiffnessCN/m) --1 

equations 

state· int(p.f); Ilpf • flow, or velocity of the deflection 

if state < a then 

p . e • 0; 

else 

p.e • state I c; 

end; 

3.3 Half Car 

In many situations the pitching motion of the vehicle becomes important and as a 

result requires a model with the additional degrees of freedom shown in figure 3.3. 

The main body consists of a mass that is free to rotate and heave vertically. The 

angles of rotation are assumed to be small so that the end points will be considered 

to move vertically and the model will be linear. The vehicle states, sprung mass 

velocity (vm. ), pitch velocity (WI .. ), front and rear suspension deflection (q/6 and 

q,. ), nnsprung velocity (vm,~ and vm.J, and tire denections(qk" and qkrl ), are: 
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Figure 3.3: Half Car .\·Iodel 

As with the quarter car model, the linear system is developed from the bond graph 

model shown in figure 3.4. The states are adjusted such t hat momentum is converted 

to velocities. The matrices A and B, as describe earlier, for the linear system are 

shown in equations 3.10 and 3.11, respectively. 

_m. - 1 _ m. - 1 

B = (3.1l) 
-m..., -I 

25 



_ 1 
1 "", R 

I I 
Msr U9__ _ MSf 

! 1 
&-.-B----B 

Figure 3.4: Half Car Bond Graph 
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-~ l(b.(-b"l,. 
- k.! - k" "'- ""-

'" m., 
I.b.,-I,b.,. _ I,I.(b. ,H •• ) 

"'" -"" -~ -"'-m,lfl. [~.l/I . 

" 
,. m~/I/ m~.{. 

-L , , 
-7;;ij 

-L -"'- --'--
A x= ' .. 

~ _!.J.!& 
k' f -~ - ktj ' .. m., 

"" !uk k" -~ - klr ' .. 
-'--

-'-- 0 

(3.10) 

3 .4 Full Car 

When both the pitch and roll motions in a single vehicle dynamics simulation becomes 

important a full car model is required. This is effectively two half-car models whose 

bodies are tied together such that the vchicle is allowed to roll. Figure 3.5 shows an 

illustration of a linear full car model. A similar development approach was conducted 

as in previous sections using the bond graph shown in figure 3.6 to develop the 

matrices A and B. Due to the size of t.hese matrices they are included ill Appendix 

A. All the states are listed in equation 3.12. 

27 



Figure 3.5 F\lll Car i\'lodel 

(3.12) 
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Figure 3.6: Full Car Bond Graph 
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3.5 Vehicle Parameters 

The work by DanIS et at. [33] studied a full car optimal controller for an average vehI­

cle. It is one of the few asymmetric full car parameter sets available in the literature. 

In order to supplement this, the parameters of a compact car arc utilized. The moti­

vation for this relates to decoupling criteria outlined in chapter 2. When a compact 

car is laden with only one passenger the vehicle can satisfy the first coupling criteria 

However, in the evcnt that the vehicle is laden with a driver and five pa&;engers it 

falls outside of the 20% requirement outlined Krotlica et al. [10] to be considered de­

coupled. This requirement would normally necessitate the use of a higher complexity 

controller. A combination of both these vehicle parameters are used ill the develop .... 

ment of the quarter and half car optimal controllers. All the vehicle parameters are 

presented in table 3.1. 
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Th 

Item Darus Small Small unit 

[33[ w/pass 

Sprung :\1ass 1500 1054 1360 kg 

Front Unsprung l\hss 59 30 30 kg 

Rear Unsprung l\Iass 59 30 30 kg 

Pitch Inertia 2160 1326 1536 kgm2 

Front Suspension Stiffness 35 12.8 12.8 kNjm 

Rear Suspension Stiffness 38 20.9 20.9 kN/n 

Front Damping 1000 850 850 Nos/m 

Rear Damping 1100 1565 1565 Nos/m 

Dist Front axle to CG 1.4 0.953 Ll38 

Dist Rear axle to CG 1.7 1.422 1.237 

Front Tire Stiffness 190 97.5 97.5 kNjm 

Rear Tire Stiffness 190 97.5 97.5 kN/rn 
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Chapter 4 

Optimal Linear Quadratic 

Regulator Controller 

4.1 Overview 

The idea of a controlled system extcnds back to historical mechanical apparatus stich 

as the flyball governor. The heart of a controller is the idea that there is an ideal state 

for the system to be in, and with somc sort of controller and method of actuation, it 

will be in this statc. If the system is not ill this ideal state, then it is not performing 

at optimum cffidely. 

From this has grown the idea of measuring thcsc desired states and finding meth­

ods of actuation to achieve them. The goals of active suspension are broader but 

confined by some basic principles. The tire is the interface to the road and as stich it 

is very stiff and difficult to adjust quickly. The vehicle body is a suspended system 

and as a result it cannot truly be actuated by anything in the ustationary" world. 
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The only viable place where an actuator can bc placed is between the unsprung and 

sprung masses. If the goal was to control only the displacement of this, or potentially 

the velocity, then the control strategy would be very simple. A PID (proportional '-

integral - derivative) controller could be used to achieve this goal [34]. 

The actual goals of active suspension relate to the driver and occupants, the 

terrain, and the type and purpose of the vehicle. Loosely stated, in normal driving 

situations the sprung acccleration is the real goal as it relates to occupant comfort 

as people do not wish to be bounced around. If a vehicle is traversing over rough 

terrain at speed then handling might need to be improved and this can be done 

through holding tire displacement constant and minimizing the tire vcloeity. The 

tire effectively aC1S a..':i a spring with the resulting traction related to this norm"l 

force. This available traction and relation is commonly calculated using The Magic 

Tire Formula [20] of Pacejka. If this force is changing, then in one instant when an 

operator believes the vehicle has traction but does not, the tire can break free and 

slide. Once the normal force is increased, if the tire is already sliding, it may not 

Ilecessarily regain traction. From the operatioll perspective it is best to keep this as 

consistent as possible. 

Vehicles slleh as "Rock Cro.wlers" utilize huge suspension travels but still reach 

their limits due to soft suspensions. Controlling the orientation of these vehicles '.0 

keep the body level would provide ability to transverse rougher terrain. Formula 

style race cars, on t.he other hand, may need to operate at a set distance from the 

ground for maximum down force and as a result nCt.><:\ to control sU.'3pension travel as 

well. They may be on a rougher track, such as the road race held in Monaco and 

thus controlling suspen.-;ioll deAection may be a concern coupled with sprung mass 
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velocity. 

There are many other scenarios but the primary areas of investigation have been 

the areas of ride quality and road holding. Ride quality is easily defined as sprung 

mass acceleration, but road holding has seen many different definitions alld weightings 

but generally is regarded as a minimizing of the tire (unsprung) velocity and deflection 

more so than the suspension deflection and sprung velocity. As Butsuen references 

in his thesis [35], there are many techniques available fOf control but Optimal Lillear 

Quadratic Regulators suit the system goals. 

4.2 Linear Quadratic Regulator 

In order to determine optimal gains using the LQR method, a perfofmance index is 

required. The method is described in many text.s such as [36, 37, 38]. Initially, a 

performance index is the integral over time of several fact.ors which is intended to 

be minimized. For a linear syst.em, such as that described by equation 4.1 where 

matrix A describes the system and matrix B the inputs. A performance index can 

be described with positive semi-definite symmetric matrices as in equation 4.2 with 

terms for all the state variables multiplied together, as well as a similar combination 

for the inputs. All optimal gain matrix, K, can be assumed ill equation 4.3 where K is 

the gain matrix 8Jld x is the state variable matrix . Under the idea of the LQR system, 

it has been found that the matrix K can be described as equation 4.4 referencing the 

solution, P, to the matrix Riccati equation shown in equation 4.5. 

x = Ax+ Bu (4.1) 
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('.2) 

u = -Kx ('.3) 

('.4) 

('.5) 

In the case of active suspension it is the body acceleration and road holding that 

are competing objectives. We weight the importance of these factors for a desired 

result and various gains can be calculated using the described method to create a full 

state feedback controller for a force actuator. However, due to the complexity of the 

Multiple Input ?l'IuitipJe Output System (l\HMO) it becomes more difficult to solve . 

. Matlab [39] was unable to solve the half car controller scenario with either of its LQR 

or CARE commands. Octave (an open source r-,Ia tlab competitor) was able to solve 

numerically for gains, but the gains for the half car model proved to be unstable. 

3Sigma [40] provided a I\IapJc [41] toolbox plugin that was able to solve numerically 

for stable gains for the half car modeL It ut.ilized additional techniques and fifty 

decimal place internal precision to which 3Sigma at tributed its ability to solve the 

solution. The solving technique> used in 3Sigmft and many other solvers has been 
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described in the paper by Arnold and Laub in [421. However, there was no numerical 

solution found to the full car model. This is generally found to be a limiting factor 

in the literature [8]. Hrovat presents that there have been some numerical solutior,s 

available but a reduced order model is required [8], reducing it frOIll 7 OOF to a more 

manageable 6 OOF. This limits the ability to investigate a full controller comparison 

to half car and quarter car controllcrs. 

4.3 Quarter Car 

Butsuen [35] originally developed the performance index in equation 4.6 which has 

been used extensively to opt.imize quarter ca!' controllers [43, 44, 451. The performance 

index has weights PI through P4 which are relative to the body acceleration i~ . As a 

result , heavily weighted body acceleration requires that the p terms are below unity, 

while penalizing for other factors requires weightings above unity. 

As this is a linear time invariant system, i~ is a direct function of the state vari­

ables. This results in a more complicated weighting function. In order to sol\'e the 

Riccati equation for optimal gaills the expanded performance index is needed in the 

Matrix form: 

(4.7) 
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The first step in developing the weighting matrix, Q, is to setup the performa.nce 

index. For the quarter car, the original equation by Butsuen will be used. In terms 

of the performance index equation z. - z~ is the suspension deflection qko, and z" - Zr 

is the tire deflection qkt. The sprung mass velocity, i ., is v. and the unsprung mass 

velocity, Z,, ' is v". Substituting the sprung mass acceleration from the state equation 

3.2 into equation 4.6, the performance index becomes equation 4.8. 

J~ ( 00 _" ,vm.l (' ) _ ,q"kJ(') _ ,/(t)g 
Jo m.2 m.2 m. 

-2 v", .. b/v"" + 2 v", .. bJ(t ) _ 2 qkok.v",~ b. 
m. 2 m/ m .. 2 

+2 qh~~:~Vm, + 2 qk~:9 _ 2 v:: .. g 

+2b.v",.g + Qh2k.2 + v", .. 2b.2 

m. m/ m/ 
+ b,2V,,;. 2 +f(t~2 + g2+ P1Qk,2 

m. m. 

(4.8) 

Writing J in the form of equation 4.7 requires matching coefficient terms. It should 

be notoo that mally of the terms are multiplied by two. This becomes beneficitLl is 

the matrix is symmetric. Consider the equation: 

- 2 vm .. b,2vm• 
m,' 

This equation is made up of state variables vm~ and vm" The coefficients in the 

weighting matrix are: 
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au au au 

x T 
a" a" a" 

(4.9) 

a" an a" a" 

ft.!! a" an a" 

When multiplied through the matrix xTQx becomes: 

ol1Qf. G'lZQk,V",. QI3Q",Qkt a14qk.v",~ 

°Z\Qk6V",. 022V~ O'23V",. Qkt 024 Vm,V",u 
(4.10) 

031QI<.QI<! Ct:3Z V",.Qkt o33Qft O'34QkIV",,, 

0'41Q",V",u Cl'4ZV ",. V",u 0'43Qk!V",u 0'44V;;'" 

From this it can be seen that there exists a O'Z4V",. V", .. and a 0'4zV""V""H but. there 

only exists one term in the performance index equation. Since the weighting matrix 

is symmetric we divide the term equally over both weighting terms in the Q matrix. 

This develops the Q, N , and R matrices shown in equations 4.11 , 4. 12, and 4.13. 

Matching coefficients is suitable for simple matrices but for morc complicated control 

systems a morc efficient method to match the coefficients is proposed ill the nc}.:t 

section. 

~+Pl ~ -~ 

~ ~+P2 0 -~ 
Q ~ (4.11) 

p, 

-~ -!6 0 !6+P4 
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-~ 

N ~ 
-~ 

(4.12) 

(4.13) 

Two optimal quarter car controllers will be used on a half car model, olle on the 

front and one Oil the rear. The control gains arc based 011 the four quarter car slales at 

each end with sprung mass pitch acceleration being resolved to vertical accelerations 

of the front and rcar ends of the vehicle. 

4.4 Half Car 

The half car performance index is developed in an identical manlier to that of the 

quarter car modeL First a performance index is defined shown in equation 4.15 

The vertical acceleration is still left as the reference of all other weighting terms 

of PI through pg. Both the sprung mass heave acceleration, z:, and the sprung 

mass rotational acceleration, 0:, can be written in terms of t he state variables and 

substituted into the performance index. 
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J = l"";~ + PliJ~ + P2(Z., - Z",)2 + P'JB-; (4.14) 

+P4(Z", - ~,)2 + P5V~, + P6(Z .. - Z".)2 + P7V~ 

The equation can again be expanded and put in the form of equation 4.7. Due to 

the size of the matricies, the individual terms arc listed in Appendix B. As previously 

a!luded to, partial derivatives call be used matching of coefficients more quickly. If 

the performance index has its derivative taken with respect to any two variables the 

remainder should be the term left in the corresponding matrix position. The matrix is 

symmetric along the diagonal and as a result the derivatives need to be divided by two. 

The terms in the diagonal are halved as well as there is a squared term in the initial 

equation. As a result all matrices can be developed in a similar fashion to thaI. shown 

in equation 4. 15. This operation was automated using the ~Iaple software package 

and allows to match coefficients for much larger matrices. \Vhen other elements are 

introduced, such as an electrical model of the actuator, this becomes a very useful 

technique as there are more states, and these states are not generally associated wiLh 

Lhis type of system. 

"', "', "', 
Wi'i ~ 20",8"'8 

'" "', "', 
x T ~ "'! ~ (4.15) 

"', '" '" ~ ~ wr: 
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4.5 Parameter Weightings 

The performance indices are set such that they relate to three C6$CS. A ride qual-

ity weighted case has all relative weights (relative to vertical acceleration) less than 

one. There is a modified pitch case such that the pitch acceleration is weighted 

higher. By setting the pitch acceleration term higher it violates the second criteria of 

Krotilica and Hrovat for decoupling. This effectively allows for an investigation into 

the sensitivity of the original decoupling requirement outlined in chapter 2, equation 

2.3. Finally a road holding case has all relative weights greater than one with pitch 

acceleration left as one. The weights used for simulation are presented in table 4.1. 
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Table 4.1: Performance Index Wei hts 

Parameter 1/ 2 Car 1/ 4 Car C~ I C~2 C~3 

Coefficient Coefficient Ride Ride Rood 

Quality Quality Holding 

Pitch 

Weighted 

z. unity 

jj,u p, 20 

"-, f" '" 0.16 0.16 

(J'J:~ '" 0,16 0.16 

qk/O '" p, 0.4 0.4 4.0E5 

qk ... pO 0.4 0.4 4.0E5 

vm,~ 0.16 0.16 100 

vm .. _ 

"" 0.16 0.16 100 

qk" p, i» 0.4 0.4 1.OE6 

qk .. , '" 04 04 1.OE6 
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Chapter 5 

Simulation comparison of 1/4 car 

and 1/2 car 

5.1 Controller Overview 

This chapter details the comparison of two control techniques 011 a half car model. As 

previously describe the cOllventional idea of using a half car corMoller Oil a half car 

model is presented. As a comparison, the idea of using two quarter car controllers on 

the half car model is described. The method of implementing these two controlbs 

is explained ill section 5.2. From this, there is an overview in section 5.3 of the 

results which arc expanded in section 5A discussing discreet bumps as all input, and 

in section 5.5 discuSSing the random road input representing a poor quality road. 

43 



b) Half Car with one half car controller 

vur,qm) 

qkfs, qk .. ,Vuf, 
Vur,qkft,qkft) 

Figure 5.1: Quarter Car And Half Car Controllers On A Half Car }Iodel 
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5.2 1/ 4 Car Controller on 1/ 2 Car Model 

Normally it is appropriate for a quarter car optimal controller to be used with a 

quarter car model. By extension, a half car optimal controller is used with a half 

car model. There is another option, a half car pitch model with two quarter car 

controllers, one for the front suspension and one for the rear suspension, shown in 

figure S.ls. The decoupling criteria mentioued previously from Krtolica et al. [101 

relates the usc of this type of controller scheme. The two quarter car controllers both 

act independently, and indirectly on the pitch mode, and neither has state feedback 

from the other. These are essentially two individual controllers dcve\op(..-c\ using weight 

distribution to divide the sprung mass bct .... 'CC1l the front and rear, and the technique 

for the quarter car described in chapter 4. A half car pitch model with an optimal 

half car controller is shown in figure 5.1 b. This model has the output of the front aId 

rear actuator based on all the vehicle states including pitch 

The two quarter car controllers have to be designed with a different performance 

index, as described in cllapter 4, from thai of the half car controller. However, both 

models can be tcsted on the same virtual roadway and the half car performance index 

can be used to evaluate both models. In order to utilize a reduced order complexity 

controller on a higher order model, the performancc indices will be different. There 

is no direct way to translate weightings but it is possible to leave the component and 

acceleration terms Weighted identically. A quarter car based performance index wi.!l 

not have a pitch or roll acceleration term as the vehicle mass is divided over each 

corner and used to solve the simple quarter car controller problem. For instance, t ..... -o 

quarter car based controllers, one at the front and rear of a vehicle, will control pitch 
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indirectly by minimizing vertical acceleration at each end. 

The t ..... u models are tested with a variety of weights and on a combination of 

road surfaces for each weighting with several different vehicle properties. Repeated 

discrete bumps form one surface, while the sc<:ond surface uses a rough random road 

model. 

The results indicate that it takes a significantly high performance index weight on 

pitch acceleration to warrant the use of a half car controller. It will also be shown that 

even when the decoupling criteria ill equation 2.2 are not met for certain vehicles, stich 

as fully loaded compact cars, that quarter car controllers can still provide superior or 

equivalent performance for both ride quality and rood holding. 

5.3 Simulation Results and Analysis 

The half car performance index described earlier is used to calculate a live performance 

index for simulations in the time domain. This is conducted in Bond Graphs utilizing 

a custom code block in 20-Sim [461 with t.he code shown below. 

parameters 

real rho " 1. 0; 

real rho1 .. 1.0; 

real rho2 • 400000.0; //rho1 1/4 suspension deflection 

real rho3 " 1.0; 

real rho4 .. 1. Oe6; / /rho3 1/4 tire deflection 

real rho5 .. 100 . 0; //rho4 1/4 unsprung velocity 

real rho6 .. 400000 . 0; 
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real rho7 - 1.0; /lrho2 1/4 sprung velocity 

real rhoS - 1. Oe6; 

r eal rho9 • 100 . 0; 

equations 

output - int{rho • Accel_Heave A 2) + 

int(rho1 * Accel_Pitch A 2) + 

int(rho2 * Sus_Deflect]ront A 2) + 

int(rho3 * Vel_Pitch A 2) + 

int{rho5 * Vel_Un]ront A 2) + 

int(rho6 * Sus_Deflect_Rear A 2) + 

int( r ho7 * Vel_Heave A 2) + 

int (rhoS * Tire_Deflect_Rear A 2) + 

int(rho9 * Vel_Un_Rear A 2); 

The states are input into the performance index and integrated during two differ­

ent scenarios; repeated discrete bumps and a random road profile over a 200 second. 

When the two quarter car controllers are used on the half car mooel, all the states 

are input into the half car performance index with the half car weightings. All the 

acceleration and component v.'Cightings are identical for the development of each LQR 

optimal controller. The code block has embedded comments such that they can easily 

be identified. 

The results show an interesting finding that the half car controller is not superior 

in all cases. It was originally assumed that when the decoupling criteria of [10] was 
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Table 5.1: Superior Controller for Scenarios 

Ride Ride w / P itch Road Holding 

1508606 'poor' Two 1/4 1/2 Car 1/4 or 1/2 

Repeated Bumps Two 1/4 1/2 Car 1/4 or 1/2 

not met, the half car controller would prove consistently superior. A summary of 

the results are shown in table 5.1. The two cases to be discussed, an 1508606 'poor' 

road case, which is a standard for rating road quality from vcry good to vcry poor, 

and a repeated bumps cases. With the exception of very significant. pitch weighting, 

the quarter car controllers are superior or equivalent to the more complex half car 

controller. 

5.4 Repeated Discrete Bumps 

The discrete bUlIlps fI rc modeled with a cOlltillllOIiS Illation profile shown ill fib'UfI' 

5.2. When the simulation was run for 15 seconds with zero intitial conditions the 

three suspensions produced the performance index valnes shown ill table 5.2 for the 

parameters in [331. The same profile was sent to the front and rcar wlwels with a 

delay corresponding to a forward velocity of 72 km/hr (20 m/s). 

Table 5.2 shows significant differences between the performance of the passive, 

half car controller, and quarter car controllers. For the ride quality case the quarter 

car controllers are an order of magnitude lower, while the half car controller is a fifth 

of the magnitude of the passive suspension. When the pitch acceleration weighting is 

increased the quarter car responses remain the same due to lack of direct pitch input, 
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Figure 5.2· Road Bump Profile 

Table 5.2: Performance Index Results for Re eatcd Bum s 

Passive Half Car Quarter Car 

Ride Quality 6.S0E6 1.23E6 2.43E5 

Ride Quality w/Pitch 1.12ES J.54E6 4.06E6 

Road Holding 6.S0E6 3.03ES 7.51E7 
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leading to the half car controller giving marginally superior performance. 

The road holding case presents a challenge in determining the superior controller 

using the performance index. In order to increase the road holding ability, vertical 

and pitch acceleration performance is sacrificed. This is effectively stating that ac-

celerations are not as important as the unsprung velocities and suspension and tire 

deflection. The absolute magnitudes of the acceleration terms are much higher than 

the other states such as tire deflection, and the terms are squared in the traditional 

performance index. The acceleration terms dominate unless other weighting factors 

are made extremely high, causing controller instability. The performance index has 

been modified by separating out the velocities and the deflections, thus focusing on 

the states most relevant to road holding and is shown in equation 5.2 

J = l'" P2(z., - z .. d + P3ti~ + P4(Z .. , - z.d 

+P5V~, + P6(z .. - Z".)2 + Prv; + PS(Z"r - Zrr)2 

(5.1) 

The lIew performance index results for the same 15 second run are showlI in table 

5.3. Both the half and quarter car controllers reduce the performance index with the 

half car cont.roller being only slightly better. The response for hitting a single bump 

is shown in figure 5.3. The responses of the quarter and half car controllers are very 

similar but it can be seen that as the rear wheel hits the bump that there is a ripple in 

the response for the half car controller, while the two quarter car controllers remain 

morc level. The model with two quarter car controllers has a response preferable for 

road holding as it leads to more consistent tire forces. If the original performance 
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Figure 5.3: Tire DeAection(Road Holding With Repeated Bumps) 

index results are referred to in table 5.2, this improvement ill performance for ihe half 

car controller is at a cost of vertical and pitch accelerations. As a result the quarter 

car controller may be the preferable option. 

5.5 R andom Road Profile 

Following Tyan et at., fl raudolll road can be gcnerated llsing a first order filter lIlodr.l 

in conjullction with a random number generator [47). This allowed a random road 

of a pre-defined roughness, based on the ISO 8606 classification, to be generated and 
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T, ~. : RI I I Pe , Re .. h, 

C"'" (DARUS) Passive Half Car Quarter Car 

Ride Quality 2.20E9 2.16E8 6.86£7 

Ride Quality wfPitch 2.75ElO 3.95E8 9.44E8 

Road Holding 2.20£9 6,64E9 4.62E9 

stored. A rough road with a rating of "poor" to "vcry poor" was created for testing. 

As with the repeated bumps, a velocity of 72 km/hr (20 m/s) is used. This should 

be a sufficiently high velocity on a difficult road which should make apparent the 

differences in the controller performance. A sample of the road profile is shown in 

figure 5.4 

5.5.1 Ride Quality 

The performance index results show the two quarter car controllers are superior to 

that of the half car controller for ride quality. Figure 5.5 shows a sample from the 

simulation that indicates that both controllers are significantly superior to the passive, 

but on average the quarter car response is of lower magnitude, The two quarter 

car controllers actually control pitch better than the half car controller as shown in 

figure 5.6. The normal trade-off for reduction in sprung mass acceleration (increased 

deflections and velocities) is observed to be conserved in figure 5.7. 

When the controllers were tested for vehicles with coupled and decoupled suspen-

.'lions, depending on loading, the results were very similar. The performancc index 

results are summarized in tables 5.5 and 5.6 for a 40 second simulation time and again 

verify the effectiveness of the quarter car controllers. 
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Road Profile 

Time(s) 

Figure 5.4: Sample of Random Road Profile 

Table 5 5· Compact Car Performance Index Results(Decoupled) 

C"", Passive Half Car Quarter Car 

Ride Quality 8.82E7 6.60E7 4.20E6 

Ride Quality w j P itch 2.86E8 9.72E6 1.59E7 

Road Holding (modified) 28325 13465 13672 

Table 5.6: Compact Car wj Passengers Performance Index Results (Coupled) 

Caw Passive Half Car Quarter Car 

Ride Quality 8.90E7 8.60E6 6.39E6 

rude Quality wj Pitch 2.71E8 1.46E7 2.67E7 

Road Holding (modified) 31275 14122 14189 
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Figure 5.5: Sprung r-,·Iass Vertical Acceleration (Ride Quality) 

Figure 5.6: Sprung Mass Pitch Acceleration (Ride Quality) 
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Figure 5.7: Unsprung i ... lass Velocity (Ride Quality) 

5.5.2 Ride Quality With Increased Pitch Weighting 

When the weight for sprung mass pitch acceleration is increased, the two quarter car 

controllers are inferior to that of the half car controller. While the vertical acceleration 

magnitudes for both controllers are similar, the half car controller appears to have 

reduced magnitudes for pitch accelerations as seen in figure 5.8. 

When the compact car scenarios are taken into consideration along with a lower 

pitch weighting (pd of 5, the increased pitch weight performance index for the half 

car controller is 61 % of the quarter car controller performance index for the decoupled 

vehicle. For the vehicle with coupled suspensions motions the fraction decreases to 

55%, showing that the performance gains of the half car controller increase with 

coupling when pitch motion suppression is given higher weighti ng. 
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Table, ,,,,,hoi P,do,malce Index RestltlL 

Case Passive Half Car Quarter Car PI 

Decoupled 1.67E8 8A7E7 8.59E7 2.6 

Coupled 1.34E8 l.lSE7 1.l5E7 2.0 

Through adjusting the pitch weighting term, Ph the performance of a half car 

controller can be matched to that of the quarter car controller. From the results in 

table 5.7, an inverse relationship for quarter car controller performance can be seen. 

When the decoupled vehicle is considered, the pitch weight can be increased 92% 

relative to the heave acceleration through equation 2.3. When the coupled model 

is considered this drops to 42%. Thus, os the mass-inertia coupling increases the 

available range of allowable pitch weights for which the quarter car controller would 

be superior decreases. Referring to 2.3, this indicates that the pitch acceleration 

weighting term on the right hand side ca.n be approximately 40% larger than the left 

hand side of the equation. 

5 .5.2.1 Road Holding 

The responses of both controllers did show improvements for road holding through 

minimizing tire deflections and unsprung velocities of which a sample is shown in 

figure 5.9. However, it is again noted that the performance index had bias due to 

the magnitudes of the large accelerations. Separation of the important parameters 

provides a better view of the results. Table 5.8 shows the performance indices without 

the vertical or pitch acceleration terms 

Like the repeated bumps scenario, the quarter car controllers shows similar perfor-
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Figure 5.8: Sprung !I'lass Pitch Acceleration (Ride Quality With Increased Pitch 

Weight) 
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Table 5.8: Mo(i cd P,do man" In, , R"ul" 

C"", (DARUS) Passive Half Car Quarter Car 

Road Holding 2.36E5 6.87E4 7.15E4 

Compact Decoupled 28325 13465 13672 

Compact Coupled 31275 14122 14189 

mance w that of the half car controller in all tested models. Similar to ride comfort, 

the quarter car controllers are providing very good performance so long as they are 

within certain limits for pitch acceleration weighting. Road holding ability is more 

concerned with minimizing other aspects and would not be expected to have higher 

magnitude piteh acceleration weightings 

5.6 Conclusions 

The development of quarter car and half car models and controllers in the outlined 

scenarios highlighted situations where the model complexity rC(juired for a controller 

was not easy to predict intuitively. In order to determine the rC(juired complexity for 

a controller, a performance index was generated. Using optimal gains from the linear 

quadratic regulator technique for two half car models were tested. 

Vo,ihen vertical accelerations were required to be minimized, a quarter car controlkr 

at both ends of a half car model performed betler than a half car based controller for 

coupled and decoupled models. When pitch acceleration suppression was most im-

portant, the quarter car controllers could not differentiate the vertical heaving from 

the pitching and the half car controller was superior. It was found that the pitch 
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Figure 5.9: Unsprung Velocity (Road Holding) 

acceleration weights could be approximately 40% higher, using equation 2.3, than 

heave accelerat.ion and still maintain identical performance even when I!. model was 

coupled. This increases to 90% for decoupled models. For road holding, a modi-

fled performance index showed that the performance of the half car and Quarter eer 

controllers were nearly identical for all decoupled and coupled scenarios. 

Generally speaking, the individual quarter car controllers provided similar re-

sponse at a reduced complexity level for both ride quality and road holding cases 

with the exception of when strong pitch control was required. This expands the 

usable range for which individual quarter car controllers can be utilized 011 vehicle 

models especially for more realistic simulations 

FUrther, this provided the basis for motivation the development of a 1/4 car test 
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rig as it showed how effective a quarter car suspensiou cau be and that debugging 

and tuning it would have direct implications 011 higher DOF future test apparatus. 
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Chapter 6 

Simulation of Five State 1/4 Car 

Controllers 

6.1 Overview 

As discussed by Hrovat [8], original attempts to develop test beds based OIL LQR con­

trol schemes were of poor quality especially when using hydraulic actuators. Gyscn's 

work and background [48, 7, 30] extols the limitations of pneumatic and electro­

hydraulic actuators citing a bandwidth of approximately 1 Hz, while his team's tubu­

lar permanent-magnet actuator, TP}IA, or Lee's direct-drive tubular linear brushless 

permanent-magnet motor LBPj\Ii\I [31] , show much greater bandwidth with greater 

SllCCess for both in LQR and LQG control techniques. 

The BOlld Graph modelling technique as shown previously is a highly effective 

method of modelling any system. One of the more powerful features is its ability to 

model interconnecting systems For instflilce an electro-hydraulic system is comprised 
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of electrical, hydraulic, and mechanical systems that are all coupled together. Con­

ventional theory for active suspensions dictates the idea that the mcchanical system 

governs the force target, and a secondary controller is then utilized to match this 

force. With Bond Graphs it is easier to model the actuator and the system together 

as one linear system, and then, based on all state variables, develop a truly optimal 

controller. 

6 .2 Load Cell PID follower 

The original 4 state LQR outlined in chapter 5, will produce a force as an output. 

As discussed earlier, force actuators are either motors or mechanisms that generally 

do not produce a force directly, but have a feedback mechanism. The conventional 

approach is outlined in the top loop of figure 6.1. The linearity between force and 

current shown by Gysen et al. [30] allows the loop to be altered for a low cost current 

sensor instead of the higher cost load cell shown in the middle loop. For illustrative 

purposes the 5 State LQR is shown at the bottom of the figure highlighting its shorter 

command structure. 

6 .3 Five Stat e LQR 

Similar to that of the original development of the 4 state quarter car model in chapter 

3 using Bond Graphs, the 5 state LQR is derived in a similar manner, but with several 

main differences. According to Karnopp [32], an ideal motor is modelled as a gyrator 

with an inductance and a resistance for the winding. This relates the current to the 
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Figure 6. 1: 4 State versus 5 State Flow Comparison 

force, and t he back electro motive force to the velocity and connects the mechanical 

and elcctrical components. The resulting new mechanical model is shown in figure 

6.2. W hen incorporated into the bond graph this becomes the model shown ill figure 

6.3. As can be seen the inductor is providing the integral causality on the current , and 

the resistor is all energy d issipater reprcscnting heat lost proportional to the current. 

As previously described, the linear system is given ill equation 6.1. Usillg the bond 

graph method, and modifying the state variables to velocitics and currents, give the 

system of equations 6.2. Of note is how t he current is the only related state for the 

force actuator. As previously shown iu thc bond graph version of the systcm, the 

output from the I\ISE, or Modulated Source Effon , is not force but. a \'oltll.ge. T his 

volt.age can be easily targeted with any comlllon PWI\·f algorithm. 

x = Ax +Bu (6. 1) 
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Initial attempts to reuse the original performance index shown in equation 6.3 

were unsuccessfuL The Riccati solvers could 1I0t reach a numerical conclusion as the 

current was not included ill the performance index causing a zero value to occur in the 

performance index, Q. A requirement of the performance index in matrix form is that 

all values arc posith'c semi-definite, which was not met. As a result the performance 

index was modified to include the current as a state and is penalized significantly 

less than all other states. III order for the Q matrix to be positive semi-definite and 

always increasing the performance index is modified for the 5 state to equation 6.4 
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Figure 6.3: 5 Stat e Bond Graph 
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ITt~: 6 
i 5 St.t, Sim'r~:~:,j""~::;r 

Sprung .\1ass 4,8 kg 

Unsprung Mass kg 

Suspension stiffness 172.8 N/m 

Tirestiffncss 8450 N/m 

Suspension Damping 8.64 :-J·S/ m 

with the current term squared 

(6.2) 

J r'2 ( )' ., ( )2 ·2 ·2 dt = 10 Z,+Pl z.-z" +P2Z,+P3 z .. -~ +P4 Z .. +Pr.I""d (6.4) 

6.4 Ride Quality 

Based on initial estimates of a scale vchicle, the parameters selected in order to 

simulate a 4 state controller versus a 5 state controller arc shown in table 6. 1. The 

simulatiollil performance for two scenarios; a swept sine wave, and a random foad 

with weightings shown in table 6.2. Using these weights, and the 3Sigma Riccati 

solver in ~Iaple, the state feedback gains were calculated and are shown in table 6.3. 

In terms of LQR based gains, the 4 state is the theoretical limit, thus it call be 

regarded as the ideal case. 
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Table 6.2: 5 State Performance Index Wei hts: Ride Quality 

State Parameter value 

'. umty 

Q • • p, 0.4 

urn. p, 0.16 

q., P, 0.4 

urn, p, 0.16 

icoOl p, 1.0e-5 

Table 6.3: Ride uality Gains 

Controller 0.. Urn. 0., Urn , icool 

4 State (Active) -168.8 -2.2 1.3 6.7 

4 State w/ Proportional (Control) -168.8 -2.2 1.3 6.7 

5 State (Electric) - 11148.2 -173.5 52.3 451.8 658.6 
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Figure 6.4: Performance Index Swept Sinewave Ride Quality 

6.4.1 Swept Sine Wave 

Using a swept sine wave from 0 to 62.83 rOOls (0 - 10 Hz) it is seen that the per-

formRncc indices for a 3mm amplitude input relates to t he graph in figure 6.4 where 

the performance of the 5 state and the 4 state are very closely matched. Even the 4 

state with a feedback loop with a gain of 50 gives good performance. As before, the 

t ires can lift off ill this 8ill1ulatioll, which is a uui<llle feature , and once lhis wheel hop 

frequency is reached there is a marked decline in performancc from the 4 state with 

a force feedback loop. From table 6.4 , samples are chosen from the swept input. It is 

1I0ticeabie that tllcrc is very little difference bctweeu the active controllers and the 5 

state. 
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Table 6.4: Performance Index Results: Swept Sinewave Ride Quality 

Name Controller 3 Hz 8 Hz 10 Hz 

Passive Passive 2.06421 16.19155 90.689455 

Active Theoretical Active 0.023565 1.13473 7.84353 

Electric 5 State 0.023719 1.14640 7.92294 

Control Active with P controller = 50 0.027931 1.32560 9.14689 

Table 6.5: Performance Index Results: Random Road Ride Quality 

Name Controller Performance Index Value 

Passive Passive 5.6492 

Active Theoretical Active 1.0130 

Electric 5 State 1.Q208 

Control Active with P controller gain = 50 1.0359 

6.4.2 Random Road 

When the simulation is performed on a random road developed in a similar fashion 

to that used prior for the quarter car and half car comparison there was no noticeable 

difference in performance for a 200 second simulation . Examining the response of 

the sprung acceleration in figure 6.5 shows negligible differences. Even examining the 

response of the 5 state versus 4 state force actuator response, the 5 state and 4 state 

are nearly identical as seen in the sample in figure 6.6. When the performance index 

results are examined in table 6.5 or visually in figure 6.7, there is negligible difference 

between the 4 state and 5 state controllers, while the 4 state with the force feedback 

loop shows a slight decrease ill performance. 
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Figure 6.5: Sprung Acceleration Ride Quality 
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Figure 6.6: Ride Quality Force R(Xjuirement 
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Figure 6.7: Performance Index Random Road 

6.4.3 Control Delay 

Control delays will result in force commands being implemented later than desired. 

Even with an FPGA there is a delay in processing and adjustment to the output to the 

H-bridge chip via pulse width modulation. PWM is further explained in chapter 8. 

For instance, utilizing a 512 Hz sample time would introduce a 0.00195 second delay. 

Once this delay is introduced, a feedback gain of 50 is ullstable. It is found that 

the limit for the feedback gain is 1.1 for the proportional control as it is marginally 

stable at this wilue and the system becomes unstable very quickly as ShOWll in figure 

6.8 due to larger inputs. Using the maximum stable feedback gain of 1.05, the new 

results show how the [) state is superior to the delayed feedback control in table 6.6. 

Having th is delay for the control loop would be more representative of a real world 

implementation where the feedback loop would introduce even further delay in the 

system. 
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Figure 6.8: Random Road Unstable ProportionaJ Gain K = l.l 

With 8 stable gain the impact to the acceleration is noticeable as seen in figure 

6.9, but it is not near the theoretical limit. The 5 state in this regard shows greater 

promise for a real world implementation for ride quality. 

6.5 Road Holding 

6.5.1 R andom Road 

Using the sa.me ralldoJll road profile as the ride quality case, uew LQR. gains were 

calculated for both the 4 and 5 state controllers with values for the weights corre­

sponding to road holding based on Rajamani and Butsucn's work [43, 351. Table 

G.7 shows the wcightings, while table 6.8 shows the calculated gains based again Oil 
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Table 6.6: Performance Index Resulbi; Random Road With Dela Ride Quality 

Name Controller Performance Index Value 

Pas;;ive Passive 5.6492 

Aetive Theoretical Active 1.0130 

Ehx:tric 5 State 1.0208 

Control Active with P controller 3.6461 

gain = 1.05 with 0.00195s delay 

Figure 6.9: Acceleration Ride Quality With Delayed Controller 
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Table 6,7: 5 State Performance Index Wei hts: Road Holding 

State Parameter value 

'. unity 

q,. p, 10000 

v rn • h 100 

q" '" 10000 

v rn• p, 100 

1"",1 '" L0e-5 

ft " 1.Oc-5 

(i""'l* /t )/2 '" 1.Oc-5 

Table 6.S· Road Holdin~ Gains 

Controller "'. V rn • "" V rn• icool Feedback 

4 State 307.2 76.2 -533.7 -42.9 

4 State w j Proportional 307.2 76.2 -533. 7 -42.9 50 

5 State 20233.8 5D12.0 -35D44.0 -2819.2 658.9 

3Sigma's Riccati solver in l\'laple 

It is interesting to note the results show the 5 state, the 4 state and the 4 state 

with a proportional feedback loop have near identical performance values which are 

all approximately half that of the passive suspension shown in table 6.9. Responses 

to suspension deflection and tire deflection examined in figures 6.10 and 6.11 show 

that therc is virtually no difference betwecn the control schemes. \Vhen the area 

is magnified as seen in figure 6.12, the differences ill performance are well below 
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Table 6 9 Performance Index Results: Random Road Road Holding 

Controller Performance Index Value 

Passive 124.993 

Theoretical Acth·e 61.354 

Active with P controller = 50 61.260 

5 State 61.354 

experimental tolerances. 

6.5.2 Contro l Delay 

\Vhen a control delay is introduced as in the previous section of 1/512th of a second, 

the performance changes. A gain on the feedback controller of > I produced very 

unstable results, while a gain of 0.9 produced an even lower performance index value 

which is surprising. This can be seen in the response with a gain of 1.0 in the 

acceleration in figure 6.13 and in the performance index in figure 6.14. 

An interesting side effect of introdllcing a delay is the 4 state with a force feedback 

loop actually achieved a lower performance index value as seen ill the summary in 

table 6.10. This could be potentially due to a lag controller being more appropriate 

for the road holding case, and the artificial delay thus provides better real world 

performance, This should be investigated in the future. 
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Figure 6. 10: Suspcnsion Dcflection Road Holding 

Figure 6.11: Tire Deflection Road Holding 
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Figure 6.12: Suspension Deflection Detail Road Holding 

Figure 6.13: Road Holding Unstable Acceleration 
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Figure 6.14· Performance Index Road Holding Unstable 

'fable 6.10: Performance Index Results With Delay: Random Road Road Holding 

Controller Performance Index Value 

Passive 124.993 

Theoretical Active 61.354 

Active with P controller = 0.9 59.369 

5 State 61.354 
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6.6 Conclusions 

The two scenarios presented using a 5 state versus a 4 state LQR highlighted that 

there is potential improvement in the real vmrld performance of a 5 state versus a 4 

state LQRcontroller, This is due to there being only one controller instead of two for a 

real world implementation. Delays to the system "'1)re shown to cause instability very 

easily, and a major reduction in the maximum feedback gain values. Ride quality gaills 

over 1.05 and with road holding gains larger than 0.9 caused huge instabilit.y. When 

the feedback gains were kept below these values for this set of model parameters t\:e 

system maintained stability for long simulation times but could 1I0t achieve near the 4 

state limits or the 5 state limits for ride Quality, There is the slightly anomalous result 

that. t.he delayed controller actually performed better in a road holding scenario and 

investigation into a lead or lag controller should be conducted to highlight if any other 

improvements are possible. It should be noted that operating near the outlined gains 

may prove to be difficult in a real world situation and could easily cause instability 

giving another potent.ial advantage to the 5 state controllers. 
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Chapter 7 

1/4 Car Test Apparatus 

Development 

7.1 Overview 

To test the real world benefits of active suspension, a physical testing apparatus is 

required. The theoretical implementations arc valuable but are of unverified practical 

significance. The primary concern is the actuator, and that most thc0retical imple­

mentations assume an ideal infinite force / bandwidth actuator with zero delay. Rcal 

implementations are less than ideal and Hrovat alludes to the difficulties surrounding 

implementation in his active suspension survey [8]. Concerns mainly surround tpe 

bandwidth of the actuators and Coulomb friction at key pivot points. 

This chapter is broken down into several sections. Based on previous work there 

is a discussion on the requirements including the estimated weights and suspension 

parameters and how they relate to the general consiruction, in section 7.2. In section 
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7.3 an outline of provisions for further experiments is presented. The motivating 

factor is to not limit the design of a test apparatus and keep several possible future 

investigations open by requiring minimal modifications. In order to develop a working 

active suspension the mailllimitation has been the actuator itself, which is why section 

7.4 discusses initial development of prototypes and available off the shelf actuators 

that .. vere proposed. After the requirements, provisions and actuator are defined, the 

remainder of t he required parts are specified and described in section 7.5. Finally the 

groundwork has been laid and a discussion of the actual design is found in section 

7.6. 

In order to gh'e a better idea of what a quarter car test apparatus looks like, figure 

7.1 of the finalized desigll has been illrlude<l fLlld can be referenced throughout for 

explanation. 

7.2 R equirem ents 

A quarter car linear test apparatus is to be built to simulate the simple quarter car 

shown in figure 7.2 which has been previously discussed and developed. It consists of 

a sprung mass mOl an unsprung mllilS 1n", a suspension spring k6 , suspension damping 

b6 , and a tirc stiffncss k t . 

In order to keep the design as simple and expandable as possible a single square 

linear rail, THK 25 type, is used. The linear bearings have 4 threaded holes which 

provide a strong support for the apparatus. The guide blocks have recirculating ball 

bearings arranged such that the blocks can handle torques as well as normal force; 

and constrain all movement to one direction. This eliminates the need for multiple 
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Figure 7.1: Quarter Car Test Apparatus Design 
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~------~--------
Figure 7.2" Quarter Car 

rails and overall can reduce the bulkiness. 

There are many constraints involving the design of such a test apparatus. Suc.'1 

COIlEtraints include: 

1. Component Weights 

2. Suspension Parameters 

3. Ideal Tire :-"'iodel 

4. General Construction 

7.2.1 Component We ights 

In order to test a wide range of component parameters, it was necessary to be allow 

additional weight to be added to the sprung and unsprung components. This meant 

mounts were required for additional weights, or an easy way of connecting to the 
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linear guide bloek mounts had to be designed. It also requires tha~ ~he weights of the 

machined parts were to be kept as low as possible. At the initial conception it was 

apparent that the force actuator would be a significant mass, and depending on the 

arrangement, would significantly impact the design. 

7.2.2 Suspension Parameters 

The suspension parameters include both the spring stiffness and the damping term 

It is permissible that the operator would wish to adjust the natural frequency of the 

suspellsioll which impacts the suspensioll effc('tiw~lIcss for ride quality and road hold-

ing [431. Assuming that the sprung mass, m., stays constant the stiffness must be 

adjusted to the appropriate term through equation 7.1. This gives a non-dimensional 

method of relating the suspension dynamics regardless of scale. The damping relation-

ship shown in equation 7.2 is the non-dimensional form relating the actual damping 

value to that of the critical damping. 

(7.l) 

(=2~ (7.2) 

In order to adjust these parameters it is required to also have a variety of sus-

pension springs as well as an adjustable damper. An available hydraulic actuator 

discussed later in section 7.5 gives a better idea of the size requirement.s. The hy-

draulic actuator uses a PID controller and a servo valve. The background literature 

revealed these are not effective at higher frequencies and have reduced strokes. This 
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was factored into the sizing. They are, however, very powerful. The available unit 

could support a very large weight. but with size comes additional cost and difficulty in 

setup, modifications and repairs. The apparatus needed to be able to be installed by 

hand without hoists or lifts and able to be debugged when connected to a controller 

on a desktop. This gave an idea of an approximate size but left a wide range available. 

The most effective size would be determined throughout the course of sourcing parts 

based on availability and costs. 

There is a limited availability of dampers available for the required size with the 

most. appropriate being from the scale RC manufacturers which are a coil-over variety. 

Their most basic adjustable damper is selected for which the only adjustment is to the 

internal orifice plate. l\lore complicated shocks incorporate progressive spring stiffness 

as well as variable damping (variable rate; independentJy adjustable compression and 

rebound damping) . While there arc obvious performance benefits associated with 

variable dampers, they would require significant experimentation, measurement, and 

linearization in order to create the theoretical simulation baseline which would have 

to be integrated into the LQR model. 

A linear model using bond graphs for a variable shock damping system was con­

ducted for Sram Bicycle corporation by Redfield and Sutela [49]. The spring and 

damper totals 5 individual states, none of which are directly measurable without sig­

nificant or bulky instrumentation. If such a shock was implemented it would require 

a sophisticated observer model in order to estimate t.hese states. 

85 



7.2.3 Ideal Tire Model 

7.2.3.1 T ire Stiffness 

A tire is normally modelled as a linear spring of significant stiffness which would result 

in the tire wheel hop frequency through equation 7.3 which is all idealization that 

is widely accepted and shown by Rajamani [43J. This, like the suspension natural 

freq uency, provides a non-dimensional term regardless of scale and is therefore easily 

adjustable by varying the stiffness to match the appropriate frequency. 

(7.3) 

7.2.3.2 Lift Off 

Most active suspension simulations are conducted using a simple spring without grav-

ity. In order to make the simulation more closely mimic that of the real world it has 

to be recognized that it is permissible that the tire can leave the ground. In order 

to facilitate this, a guide method for a tire spring is required and the spring must 

be free to disconnect. While this tends to represent a very difficult scenario it is a 

common occurrence that happens during speed bumps and pot holes. Thus, for the 

suspension dynamics for testing rcal world cases, it is a required part of the quarter 

car test apparatus. 

7.2.4 General Construction 

The test apparatus needs to be very robust and simple to \lSC and modify. In order 

to reduce costs the simplest mounting blocks for the road, the unsprung mass, and 
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the sprung mass are required. This will generally aid in robustness of the design as 

simpler mounts tend to be more effective. 

Mountings need to be easily accessible which is challenging given the variet.y of 

shapes available for sensors, actuat.ors, and springs. Compromises will be made at­

tempting to keep a simplified structure to which all components may be mounted. 

7.3 Future Work Provisions 

There is a wide range of potential expansions to the initial basic active suspension 

implementation. Potential future work includes: 

• Scale tire and platform 

• Drive motor and roller road 

• Non-linear suspension 

Rather than use a spri ng to model the tire, an actual tire could be used. This 

requires the potential to mount to the unsprung mass as well as install a tire platform 

on the road profile. 

A further extension of this would be to drive the tire and to have a cylinder shaped 

roller. This would enable testing traction control schemes with an accurate hardware 

implementation of the Magic Tire Formula model. 

The most complicated extension is that of the non-linear suspension dynamics 

This would require suspension gcomctry such as a Macpherson strut, double A-arms, 

or a multi-link suspcnsion setup. It would likely require completely re-engineering 

the test apparatus but could potelllially mount to existing blocks 
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ForceOir«t1on 

Figure 7.3: 3-Pha.se Linear h'iolor Magnetic Poles 

7.4 Actua tor Deve lopment 

7.4.1 Linear Motor Prototype 

Early in the development, a custom designed actuator WIIS pursued. The initial type 

WIIS that of a 3-phase brushlcss motor that WIIS heavily focused on replicating the work 

of Lu et at. [501. Lu had positivc success with creating a small actuator uti lizing a 

3-phase design with magnets of alternating polarity and translator blocks to create 

radial magnetic poles. Thcre WIIS also much work related to linear motors for full 

scale suspensions [51, 48 , 7, 30, 52]. As CII.Il be sccn ill figu re 7.3, the translators 

are connected to the samc poles at opposite cnds causing magnetic flux from the 

permancnt magncts to exit radially. According to Lenz law shown in equation 7.4 , 

thc force is proport ional to t he magnetic flux density crossed with the current and 

length of thc conductor in that flux. 

F=f3xii (7.4) 

Work WIIS begun in the Ansys Magneto-Static simnlation environment [531 shown 

in figu re 7.4 is the simulation used to estimate the average fl ux. Based on available 
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Figure 7.4: J..-Phasc Brushlcss Motor Simulated Flux Field 

N42 ratoo 1/2" x 1/2" cylinder magnets properties and average steel pcrmability of 

1.138518-3 Hi m, the averaged nux field was e8timated to be O.069T . This would have 

produced a force based on 32 gauge wire of 7.5IN/Amp. 

This fell within all allowable region to fully design and begin work Oil the COIl­

struction of this 3-phase linear motor. The original design is shown ill figure 7.5. The 

idea was that more coils could be added to produce more force if needed, expanding 

t he design for the future. A rapid prototyper, snch as a fused deposition machine, 

could produce the stator assembly while magnets and translators could be inserted 

into a 1/2" 10 rod and have its ends capped as shown in the sectioned vicw in figure 

7.6. Sincc a 3 phase design was going to be used, a method of detecting the corrcct 

field direction was required. Low cost Hall effect sensors were choscll and call be SCCII 

in both figures 7.5 alld Hi. 

The initial prototypc produced 0. Illco.suro.blc force but sigll ifico.lltly below that 
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Figure 7.5: Linear Motor Ocsign 

Figure 7.6: Linear 1-,·lotor Oalign - Sectioned View 

estimated. Attempting to usc the prototyped structure as a guiding surface provided 

a significant amount of friction. As a result t he actuator produced only negligible 

forces and it was apparent that the desigu was insufficient for t he application. 

The limiting factors proved to be frictional losses combined witll a weak field 

flux , whkh droppl.'ti off significantly witll distance. It was apparent that the magllet 

rod could 1I0t be used with collventional steel bearings and sliding friction was very 

significant. The original li mitations such as the complicated control scheme and 

potential for force ripple, where llot addressed. It was determined the design would 

require significant work to be fUllctional. An alternative design was sought which 

would provide the necessary force , size, and simplicity. 
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Figure 7.7: Voice Coil Prototype 1vlagncto-Static Analysis 

7.4.2 Voice Coil Prototype 1 

McBean and Breazeal [541 investigated the development and usc of a voice coil with 

a moving magnet assembly. Its main parts were very similar to that. of t.he previously 

dcsigncd linear motor and an investigation into the voice coils as an alternative was 

started. Initially, reuse of magnetic components from the linear motor was chosen 

to speed development and determine feasibility of voice coils. Gyscn et al. [301 had 

already shown good linearity for a 3 phase linear motor utilizing current sensors which 

permitted the idea that voice coils could provide a superior linear relationship due to 

the simpler design. Magneto-static simulations were conducted to determine the f3 

term under this lincar assumption and arc shown in figurc 7.7. 

Using the material properties provided for the same 1/2" x 1/2" N42 cylinder 

magnets thc magncto-static analysis rcvealcd that thc fl ux in this prototype design 

was between O.2T to OAT. This simulation allowed for the radial layout of the magnets 
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T,hle .T~t' 

Force (N) Current (A) 

2.982 0.200 

6.062 0.392 

in a design to be built on the rapid prototyper. The design is shown in figure 7.8 and 

the final prototype is shown ill figure 7.9. 

Based on the 12.7mm diameter of the magnets, it was inferred that the primary 

active area of the coil was only 12.7mm tall. From the samples collected shown i:I 

table 7.1 there is a good linear relationship between force and current. The first 

sample point provides 14.91 Nj A while the second point provided 15.46 N/ A. The 

temperature of the coils elevated at 1 A with 26 gauge wire but was not excessive 

after several minutes of operation. Simulations conducted previously indicated that 

< 10 N of force could provide measurable improvements to ride quality for the scale 

test apparatus. 

The stroke of this design was only 20mm which was llot sufficient for use, nor 

was the design capable of being mounted to 11Ily test fixture. Instead, it provided the 

foundation of a redesign. Utilizing the relationship previously seen in equation 7.4, 

the flux term, fl, could be calculated and is seen in equation 7.7. Using t.his as an 

estimate for a new design, magnet lengths were calculated for a new active area and 

the shap!~ was modified for packaging. 
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Figure 7.8: Voice Coil One Prototype Design 
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Figure 7.9: Voice Coil One Prototype Constructed Prototype 

F = {Jx·l 

6.062 {J x 0.392 311m 
12.7mm/33mm 

O.13T 

7.4.3 Voice Coil Prototype 2 

(7.5) 

(7.6) 

(7.7) 

A long term goal for actuator development beyond the scope of this thesis was that 

the actuator could be used in a standalone scale full car model. As II. result there had 

bccn some preliminary work designing a scale vehicle. The promising nature of the 

original prototype meant that the second prototype might be able to be designed for 

use in a quarter car apparatus in development while gaining provisions for a full car 

apparatus. The decision to impose these requirements was deemed acceptable. 

At this point development started on a second prototype wit.h several provisions 

for the IIsage in a quarter car and full car model. Design work had been proceeding 
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Figure 7.10: Mark IV full car design 

already 011 the full car model shown in figure 7.10, The overall design included four 

independent motors with front and rear differentials that could be cOllnected together 

if needed, shown in figme 7.11. The idea was that push rods with a rocker arm similar 

to that of Traxxas Revo RC ear setup would be used shown in figure 7.12. 

When this ideology was combined with the voiee coil prototype a full redesign was 

conducted of the full car model in order to determine p06itioning and approximate 

weights and is shown in figure 7.13. The design undcrwcnt major altcrations to 

accommodate direct actuation. ThL<; WIlS motivllted mainly by the f3 constant which 

was determined from the original voice coil prototype. The direct actuation mcthod 

was chosen as the alternative, a higher force and lowcred displacement actuator, 

meant additional packaging problems related to the coil diameter. 

This mcant that a Significant displacement and lowcr force actuator was required. 

Thc model also provided a weight estimatc for unsprung mass so as to conduct sim­

ulation into the required force in various scenarios. From this design, and combined 

with suspension and tire natural frequencies of 1.12 Hz and 8.7Hz respcctively, with 8 
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Figurc 7.11: Mark IV full car design - Transmission Overview 

Figurc 7.12: Tr8XXas Revo Pushrod Suspension 
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Table 7.2: Simulation pro erties 

Item Value Unit 

Sprung ~\-Iass kg 

Unsprung l\-Iass kg 

Suspension stiffness 400 N/ m 

Tirestifflless 30000 N/ m 

Suspension Damping 33.94 N·S/ m 

damping ratio of 0.3, table 7.2 was derived. Previom;ly developed Bond Graph models 

for the full scale quarter car active suspension were utilized to determine the amount 

of force required through a 6mm amplitude swept sine wave cun"e input ranging from 

o to 94 rad/ s. The graph shown in figure 7.14 shows t he force output of the actuator 

for the aforementioned input, based on a ride quality scenario with weighting factors 

shown in table 7.3. The graph shows that as the input frequency increases from zero 

to the wheel hop frequency the force increases from approximately +/- 1 N to approx­

imately +/- 5 N. At the wheel hop frequency the unique feature of tire lift off with 

gravity as the restoring foree changes the graph. Normally this would just increase 

to a peak and then reduce as the frequencies increase. In this case the wheel is forced 

off the ground at each pcak alld the force requiremcnts increase. It is not expected 

to have road profiles above the wheel hop frequency but operation near it will be 

permitted. From this requirement it was found a force window of approximately ION 

was required for the actuator as well as approximately fiOmm of travel. 

The finalized actuator design utilized 2" x 1/ 4" wide x 1/ 8" thick N42 magnets 

arranged in two circles with an overall exterior diameter of 65mm. The actuator had 



Figure 7,13: Murk V Prototype with Actuators 

Table 7.3: Simulation Active Suspension Wcightli 

Weight Value Description 

p, 0.4 SWlPCIlSioll Dcfle<:tioll 

'" 0.16 Sprung Velocity 

'" 0.4 Tire Deflection 

p, 0.16 Unsprung Velocity 
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Figure 7.l4: Force Plot For 6mm Swept Sine Waye Input Ride Quality 

a stroke length of lOOmm with an approximately 50mm active coil area making the 

winding area 150mm long. The design is shown in figure 7.15 while the near finalized 

version is shown in fig:uf\' 7.16. It incorporated a rod placed internally and insertable 

bearings in the stator assembly. This would allow the whole system to be fully guided 

without need for external bearings, similar to a coil over shock. 

With the assumed f3 constant, a spreadsheet was created to determine the expected 

force shown in appendix C. It was estimated that at a maximum of 3A the force 

producible \';ould be 56N. Assuming all energy was to be dissipated as heat in a 

stationary setup, basic thermal relationship allowed an estimated operating time. 

Using copper wire with an enamel coating that can sustain 180 degrees Celsius, it 

was permissible to assume a temperature several degrees below this for operatiOi;. 

Assuming no heat dissipation and 150 degrees maximum with a room temperature 

of 30 degrees the operating period at 3A would be 43 seconds maximum. This would 

provide intermittent operation at higher forces if needed. 
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Figure 7.15: Voice Coil Two Design 
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Q=mc6T (7.8) 

Due to an inability to drive the voice coil with enough current to experimentally 

lift the coil weight, a flux meter was used to measure the field. This was determined 

to be approximately O.03T, or 1/5th the original estimate. This was speculated to 

be caused by thinner magnets which significantly reduced the flux much more than 

expected. This reduced available force by 1/5th as well causing the force constant 

to drop to 3.72 N/ A. It also meant that the heating period of the coil of 43 seconds 

could occur for normal duty cycles as tON was a continuous forc ing requirement. 

It was apparent at this stage that the magnet thickness and continuity of the field 

had a larger effect than anticipated Oil the field strcllgth. An off the shelf solution 

was sought at this point. 

7.4.4 Moticont Voice Coil 

tI.-Ioticont was able to supply a voice coil similar in design to the dimensions of the 

second prototype. In order to keep cost down a shorter stroke was selected with a 

similar diameter. LVCr..-I-05J-089-0J was selected with specifications shown in table 

7.4, and is shown in figure 7.17. It has a similar force output as the original predictions 

for the second voice coil design but at a slightly reduced stroke. It was determined 

that this could be compensated for by adjusting the sprung weight to adjust the 

natural frequency combined with not using as aggressive road inputs. While the 

overall dimensions are similar to that of t.he second prototype there are several key 

differences 
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· Co·I Two Constructed Prototype Figure 7.16: VOIce I 
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Table 7.4: Moticollt LVCM 051 089-01 Properties 

Item Value Unit 

Intermittent Force @ 10% Duty Cycle 0.4 ~ 

Continuous Force 0.16 N 

Force Constant 10.1 NjA 

Back E~-!F Constant 10.1 V· s/m 

Stroke 57.2 

Coil Clearancc Pcr Side 0.38 

Coil Assembly Mass 195 

Body Mass 1155 

Coil Resistance 6.8 ohm 

Coil Inductance @ 120 6.8 mH 

1-1ax Continous Power 40 Watt 

The voice coil is unguided and thus requires external linear bearing tracks. This is 

a major design hurdle as using an internal support shaft makes it. very easy to package 

and deal with handling moments caused by minor misalignments at the attachment. 

This requires a minimum of two round linear bearings or a square linear rail system 

that can support the entire mechanism with 2 degrees of constraint for forces and 2 

degrees of constraint for torques 
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Fignre 7.17: rl'loticont LVCM-051-089-01 

7.5 Parts 

7.5.1 Linear Potentiometer 

In ordcr to measure tire deflection and sllspension deflection a linear sensor is re-

qlli red. Linear Variable Differential Transformer (LVDT) displacement LrJtllsdueers 

arc normally us<-u to measure displacement, however, due to the design of the trans­

former assembly, these are approximately three to fOllr times longer when collapsed 

compared to the distancc they can measure. This would inhibit their incorporation 

into a small test apparatus and would also add unnecessary weight. 

A linear potclltiometer presented itself as a smaller alld more cost effective way of 

measnring displacement. Initially an OMEGA LP804-3 was found to meet requin.>d 

specifications, but orl'IEGA advised that they arc in end of life. P3 America providl-u 

an alternative with tllC RC13M-75 shown in figure 7.18. 

Thc plastic pinch clamps, shown ill figure 7.19, a!1ow for very versatile installation 
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Figure 7.18: RCI3 Linear Potentiometer 

Figure 7.19: Linear Pot Schematic 

and adjustments as the two clamps can be positioned anywhere along the shaft. 

7.5 .2 Coil Over Shock 

The quarter car test apparatus corresponds approximately to a 1/5th scale RC vehicle. 

Due to the size of application, there are few dampers or coil over shocks that exist 

between the 1/lOth and 1/8th scale RC and a full scale vehicle. The HPI Baja 58 

shock, shown in figure 7.20, is the largcst available RC vehicle coil over but suits the 

application very well. Its original design utilizes aluminum shocks with adjustable 

damping by a rotatable orifice plate showl! in figure 7.21. Various springs are !lVl'Lilable 

shown in figure 7.22 providing a wide range of stiffucss. 

The orifice plate has 5 opellings of sizcs 1.46 mm. 1.32 mill , 1.20 Illlll, 1.14 mm, 

and 1.00 mm, to provide various damping constants. Should this prove not to be 
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Figure 7.20: HPI Coil Over Shock 

Figure 7.21: Adjustable Orifice Plate 

suflicient to match the appropriately required damping tllere are various wcigilts of 

oil from 5 wt to 6Owt. The largest opening of 1.46 mm was set and the shock was 

filled with 20 wI oil 

Determining the damping coefficient is necessary in order to design the LQR 

controller. In order to facilitate this, the spring of the coil over shock was removed 

as shown in t he sct\IP ill figure 7.2:1. The govcrning c<]uation for the motion of 

ally linear system is shown in equation 7.9. However, with the spring removed this 

equation becomes equation 7.10. In a scenario where the sprung mass is raised and 

allowed to free fall, wi th no external forces except gravity, the block accelerates, but 

begins to slow related to the damping, 'b' term. Eventually the damping term will 

balance with the gravitational term giving equation 7.1 [. Assuming in this scenario 
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Figure 7.22: Alternative Springs 

that the velocity remains very '·flat" over this region, we can calculate the damping 

coefficient, h. 

LF = mx + bi:+kx (7.9) 

LF = mx + bi: (7.10) 

m·g = bi: (7.11 ) 

Eleven drop tests were conducted. The data logger based Oil all Arduino, which 

is further described in chaptcr 8, to store position from the linear potcntiometer. 

Velocity was calculated on the Ardllino by simple differentiation shown in equation 
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Figure 7.23: Baja 5B Coil Over Shock - Spring Removed 

7. 12. The previolls displacement sample is subtracted from the current displacement 

sample, divided by the time bel.wl'eJi :salllples. This ba:sic differentiation at a high 

enough rate pro\'ides a good approximation. There are limitations to thi:s :scheme 

which will be delicribed in chapter 8. 

After removing all the air from the lihock ~vcral t imcs the drop test provided 

very good lillea.r results as shown ill tests 1 awl 2 ill figure 7.24. The averaged re:;ults 

for each drop arc shown in table 7.S. The averaged velocity over 11 drops WIIS taken. 

Tile motivation for thili was the thermal conliideratiom for longcr operation. Thc idea 

was to average the performalK"C over the expected operating period of a few minutcs. 

T he dropping mass WIL.~ measnred at 2.038 kg and gravity was assumed to be 9.81 

m/ s2 providing a force of 20.0N. From the previous relation in equation 7.11 , with an 

averaged velocity from table 7.5 of 0.356 mis, this gives a damping constant of 56.1 

(N·sl/m More data is available in appendix D. 

(7.12) 

T hesllspensioll springs were tested u~ing a dri ll pre:;:; alld It weight scale to measure 
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Velocity vs Time 

Figure 7.24: Drop Test Results Sample 

Table 7.5: Damper Drop Test 

Trial Velocity (m/s) 

-0.384 

-0.370 

-0.350 

-0.355 

-0.357 

-0.373 

-0.354 

-0.345 

-0.348 

10 -0.341 

11 -0.344 

Average -0.356 
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the force as shown in figure 7.25. The spring is depre:;scd at approximately lON 

intervals and the deHection measured. A linear regression is taken as well as an 

R2 value to ensure that the curve is linear. The original 2 long black springs were 

tested and their deflection force curves are ShaWl} in figures 7.26 and 7.27, while 

other regression data is available in appendix E. As can be seen from the figures 

both springs arc very linear and both are very similar. That is not the case for all 

available springs as shown in table 7.6 where matched springs coefficients can differ 

by 0.1% (Stock Long Black Springs) to 10% (Stock Short Black Springs). In most 

arrangements there are two springs placed in series with a small plastic slider. This 

reduces the spring stiffness similar to putting resistors ill parallel by the relationship 

shown in equation 7.13. 

7.5.3 Tire Springs 

1 1 1 -=-+­
k.q kl kz 

(7.q 

Two tire springs are available for use as shown in figure 7.28. They have stiffnesses 

of 15.7 N/mm (short) and 10.5 N/mm (long) which allows a level of t.uning. It is 

noticeable that each spring is of different length. The design takes into account. this 

issue, as a maximum stroke of 75mm is permissible. As a result the full length of 

each spring fits near mid stroke in the design and even in a fully oollapsed state both 

springs remain within the travel. They are both permitted to extend approximately 

25 mm before the travel of the linear potentiometer is exhausted. 
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Figure 7.25: Spring Test Setup 

Stock Spring 1: Force vs Deflection 

~:j ~., ... 
20 -liftt"IS~" .. 1) 

,. 
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~1ofI(mm) 

Figure 7. 26: Spring Test 1 Regression Curve 
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Stock Spring 2: Force vs Deflection 

V'·I .56411>·0150591 
R':Ott818 

Figure 7.27: Spring Test 2 Regression Curve 

Figure 7.28: Tire Springs 
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Table 7.6: S rin Test Results 

Spring k (N/ mm) k (N/ mm) Spring 

Description R' R' Description 

Stock Black Long 1.67 1.66 Stock Black Long 

Damped Shock 0.999 1.000 Undamped Shock 

Black Short 3.51 3.87 Black Short 

Damped Shock 0.997 0.995 Undamped Shock 

Red Long 1.76 1.72 Red Long 

Label A 0.999 0.998 Label B 

Red I\ led 2.64 2.78 Red Med 

Label A 0.998 0.997 Label B 

Red Short 4.62 4.43 Red Short 

Label A 0.999 0.995 Label B 

Orange Long 1.50 1.57 Orange LOllg 

Label A 0.999 0.998 Label B 

Orange .Med 2.02 2.05 Orange Moo 

Label A 0.999 0.999 Label 8 

Black Long 1.83 1.89 Black Long 

Label A 0.997 1.000 Label B 

Black 1\100 2.56 2.45 BlackMed 

Label A 0.999 0.997 Label B 
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7.5.4 Instron 8800 / MTS Actuator 

An Instron 8800 Controller combined with a hydraulic actuator as shown in figures 

7.29 and 7.30 ""'ere used to create a road input. The lostron 8800 is controlled by a 

software package that utilizes a PID control with a higb accuracy LVDT and a servo 

valve to provide positional control. It is able to follow a variety of waveforms lIS well 

as follow an analog reference input which is useful for future simulations. 

7.6 Design 

Based on the selected parts, provisions, and requirements previously outlined com­

bined with a standard 25mm square linear rail , a prototype linear plant was designed 

as shown in figure 7.31. It utilized three aluminum blocks bolted to linear guide 

bearings. These linear bearings act lIS a support for the sprung and unsprung masses, 

as well as a road input, but also provided the required alignment between the sprung 

and unsprung masses for the Moticont voice coil. 

Each block was designed with a specific purpose and provisions for future redesign. 

There are threaded bolt holes on both the road input block and the unsprung block 

that could facilitate an armature to hold a tire and a platform for it to rest upon. This 

would allow true tire dynamics to come into effect which would include tire damping. 

The full plans for the blocks arc shown in appendix F. 

Once constructed the test- apparatus had all potentiometers aligned along with 

the voice coil on a flat surface and was t.ested for functionality as shown in figure 

7.32. This fac ilitated testing of the LQR controller. 
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Figure 7.29: Instroll 8800 Controller 
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Figure 7.30: MTS Hydraulic Actuator 
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Road Input 
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Figure 7.31: Qllarter Car Design 
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Figure 7.32: Quarter Car Constructed Prototype 
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Figure 7.33: Quarter Car 1'elt Apparatus J..{ounted On MTS Actuator 
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Chapter 8 

Hardware Controller 

8.1 Overview 

As mentioned earlier a radically different approach to the controller is being taken 

by utilizing a Field Programmable Gatc Array. An FPCA consists of many recoll­

figurable logic blocks that connect to input and output blocks (lOB). These are set 

up in a grid array as shown in figure 8.1. Each of these logic blocks contain basic re­

configurable elements that can create logical blocks such as AND, OR, NAND, XOR, 

etc. gates. These can then be arranged in such a way to create adders, multipliers, 

conditioning algorithms, or even general purpose processors. 

The complexity of these systems necessitates a much higher level approach to 

program ming. An idea similar to how programming languages arc built on top of 

libraries, which themselves have been based on a lower level code, a descriptive lan­

guages approach has developed to accomplish tasks in hardware with an FPGA. 

Tv.·o primary languages have evolved: Verilog and VHDL (V[ery High Speed Inte-
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Logic Block 

• • • • 
• • • • • • • • • • • • 

10 Block 

Figure 8.1: FPGA blocks 

grated Circuit] Hardware Description Language). While both prcscnt challenges and 

strengths VHDL was chosen to illlplement the controller due to availability of fixed 

point rnathcrnaticallihraries. 

T his chapter is divided into several sections starting with a description of the 

electronics and continuing into a simple explanation of how a 1 bit adder is created 

in theory and in VHDL. From there it goes into the major component blocks of the 

controller followed by individual explanations on what each block does and finally a 

description of the overall interconnecting of the blocks. Due to time constraints a 

secondary device was used for logging. Originally logging directly from the FPGA 

into a computer via the serial port was the planued method; however implementation 

of this did Ilot fit into the time frame. :\Iost the basics of VHDL programming are 

derived from several text.s by Browll, Perry, and Kilts [55, 56, 57] respectively. 
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Figure 8.2: Spartan 3 Development Board 

8 .2 Electronics 

The FPCA chosen was originally a Digilent S3 development board based on a Spartan 

j XCjS2UO shown in figure 8.2. However, the code wfl.~ evclltually ported to II. Ncxsys 

2 with a Spartall jE chip shown ill figure 8.3. This was easily doue by changing the 

user constraint file to point to the correct pins, allel t.he setup which is included in 

appendix C. 

Referring t.o figure 8.5, the FPGA is directly wired to 4 analog to digital convertor 

(ADC) integrated circuit (IC) froUl Microchip, model number .MCP3201. There is 

an i'i-Bridge Chip with its control lines connected to the FPGA which drivC'S the 

linear motor. However , the current is fUll through a Hall cffect basoo scnsor which 

provides an analog output. This is pulled up to + 5 volt through two resistors SO that 

rather than a +1- voltage, it is always positive for the expected current as shown in 
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Figure 8.3: Nexsys 2 Development Board And Circuit. 

figure 8.4 The ou~put is tied to OIlC of the analog to digital colwerters. The current 

sensor wquirCti +/- 15 volts in order to operate correctly which is supplied through 

two regulators. T he two lincar potcntiometers conncct to two ADC inputs and thc 

analog output of the MTS machiue for pooition connects to a fourth ADC. 

8.3 Mathematical Adder 

A I-bit adder has two inputs, each with tWO states, and requires a 2-bit output. Input 

A can be 1 or 0 and Input B can be I or O. Utilizing an XO R and an AND gate it 

can produce a summation. To create an adder t hat can calculate 1 + 1, or in binary 

12 + 12 = l(h, the ones place needs a resul t of 0 through 12 XO R 12 = O2 while the 

tens place needs a result of 1 through 12 AND 12 = 12. This is shown schematically 
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Figure 8.4: Pullup Resistor Divider 
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Figure 8.5: FPGA and Support Electronics Schematic 
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in figure 8.6. 

Ao--...... ~ 

B o-t--+--#I 

Figure 8.6: Basic Half Adder 

5 

c 

However, when Illultiple bits are used the AND gate becomes a 'carry out' gate 

for the ones place, but a 'carry in' gate bccomcs necessary for any bit greater than 

1. The truth table for this is shown in table 8.1. The VHDL implementation is very 

simple and is shown below. 

library IEEE; 

use IEEE. STD_LOGIC_1164. ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

entity Adder is 

Port. ( A : in STD_LOGIC; 

B : in STD_LOGIC; 

out: out STD_LOGIC_VECTOR (1 downto 0)); 

end Adder; 
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"hlo' . ie,1'",," , 
Inputs Outputs 

A B Cin Cout S 

0 0 0 0 0 

1 0 0 0 1 

0 1 0 0 1 

1 1 0 I 0 

0 0 I 0 I 

1 0 1 1 0 

0 1 1 1 0 

1 1 1 1 1 

archi tecture Behavioral of Adder is 

signal sum : std_logicvector(1 downto 0) : - "00"; 

begin 

sum <- a + b; 

out <- sum 

This adder works ycry well, however, it may need to be controlled by a clock signal 

or have a re8CI or enable line. The ADC reader exaillple shown in the next section 

will illuminate the differences 
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Figure 8.7: .\ICP 3201 Chip Pinout 

8.4 ADC Reader 

The basis of inputs in digital control is still usually 8n analog signal. III this case it 

is from linear potentiometers and a voltage output from the MTS machine that is 

appropriately scaled. The common ADC from 1licrochip, the ~ ICP3201, was used 

shown in figqrc 8.7. This chip is a 12 bit serial output, and as such it requires a clock 

signal and a CS signal. \Vhen the CS signal is pulled low and a clock is sent to the 

ADC, the data. output starts sending individual bits descending from most significant 

to least significant as shown in figure 8.8. This is a basic unidirectional form of and 

SPI, or Serial Peripheral Interface Bus without any form of commands or flow control. 

In order to facilitate this, a counter was implemented running on the FPGA clock 

cycle ill VHDL with enable, and reset lines. As can be seen in figure 8.9, the ADC 

!'eader has 4 inputs datain through dataill4, a clock. an enable, and 1Y~set lines. The 

clock input is a reduced clock signal from the 50 i\IHz onboard oscillator providing a 

clock signal at a rate of (50E6/113) Hz, or 442477.876 Hz. It takes the ADC reader 
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Figure 8.8: MCP 3201 Timing 

27 clock signals to sample the data from the ADC. A minimum of 19 is required but 

27 is utilized to provide a final sampling rate of 16388.0695, which has a 0.02% error 

to the target of 214 , 16384. 

In order t.o get a more accurately differentiated signal a running average is used 

Implementing a mathematical routine to average samples in floating point math pre-

sented a problem of using a large amount of FPGA logic blocks for a relatively simple 

operation. The rea.,?()!ling behind this is that a mierocontroller will take Illany clock 

cycles to do floating poill! math in order to average a number. However, division 

by 2 is effectively a shift register in binary. ThiS means that adding n bits together 

yields an n+l bit storage. If L is the number of bits, or the lcngth, then an average 

technique over 2 samples can be conducted by adding n bits together and taking the 

nth bit down to (n+L)th bit. 

The VHDL code for the following explanation is found in appendix G. Initially 

there are included libraries that define 'common constructs '. These explain how to 

convert basic mathematical operations into hardware. The entity defiuitio\l defines 

ports into ,and out of the block. These call be connected to exterior I/O pins or 

using a schematic, shown later, to other blocks. The' architecture behavioral' of the 
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ADCread 
ely 

dalan cll':oul 

enable Sll)NdoCk 

Figure 8.9: ADC Read Schematic Block 
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'ADCread' block is essentially the variables. These act as storage units and can be 

manipulated depending on definition. 

The act.ual code is driven by the clock and is allowed to start counting if enable 

is high, and reset is low, at which point it lowers cssta/e causing the ADC to sample 

and hold I he value. The clkout drives the clock line on the adc and after 4 pulses 

it begins'to read out the data storing it in a temp vector. At a count of 12 (13th 

count), it changes the sign of the slowclk, which is the clock signal that will drive the 

rest of t he code such as the running average. Its state is changed again near the end 

when t.he temp value is moved to the output. At the very bottom of the code the 

variables are pointed towards the I/ 0 blocks. These pins do not ha\'e states and as 

such need to be tied to another value. These call happen continuously, as done here, 

or as conducted with datain inside the main code block, triggered by clock signals. 

Ail the code is provided in appendix G. 

8.5 Running Average 

In order to reduce noise, 16 samples are taken and a\·eraged out OYer a period of 32 

samples. This reduces the approximatcly 16384 samples a second to 512 samples per 

second . It. iurrrR..';e.'; till' flrcuracy of 1 he diff!'relJliavu signal along with smoothing 

the position signals. Noise is cffcctively reduced by the square root of the number of 

samples, and as a result reduced by a factor of 4: hOKever this does introduce a one 

elock cycle latency in the controller, or 1.95ms. 

According to the code below, if the count is below 17 counts it keeps adding the 

input, din, to the position. Once it is at the 17th count {O counts as a sample timc, 
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runaverage2 

Pigure 8.10: Running A vcragc 2 Block 
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effectively 0 - 15 is 16 samples), it performs the calculation as outlined previously. 

The top 12 most significant bits are selected and output. This is effcctively dividing 

by 16. However, it can be seen that the calculation for the velocity is conducted with 

t he full 16 accumulated bits, even ~hough the inpm is 12bit. Since these will be scaled 

later, and it is based on a time sample, it would be best to keep all the bits. It. will 

add lIoise, but it would get truncated later on. The code call be found in appendix 

G. 

8.6 Fixed Point Controller 

Earlier it was explained how a basic adder works. T he procedure is more compli­

cated for multiplication, but in its simplest form a multiplier several shift registers 

and adders, one for each bit. This can be very consuming for t he FPGA in terms cf 

logical blocks if over utilized which is a major problem. The limitation is that this 

only works with integer math directly with current libraries. As seen in the code, all 

STD_LOCICYECTORS, or signed values, are integers. This presents a problem 

when the LQR calculated gains that are decimal numbers based on multiplication 

to meters or meters/second. Floating point math is extensively utilized in the mi­

crocontroller and microprocessor world, but implementation of such schemes is very 

costly for transistor resources and requires many clock cycles in a processor to be 

conducted. An alternative is fixed point math The idea is similar to integer math 

For example: 

1 0 1 1 

x 1 0 1 1 
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1 0 1 1 

1011-

0000 - -

+ 1 0 1 1 - - -

1 1 1 1 0 0 1 -> 64 + 32 + 16 + 8 + 1 '" 121 

11 

, 11 

11 

+11-

121 

With fixed point math, a pOint is chosen to represent where the decimal place is. 

This is always related to the integer least significant bit O. The positions after .the 

decimal place count negative and represent the value given in equation 8.1. Thus 

the -1 place is the value of 1/ 2 if represented by a binary 1, while the -2 place is 

1/4, and so on. As can be seen below t.he storage of bits for 8 4b.4b multiplied by 

a 2b.2b is 6b.6b This is critical to remember ill utilizing the IEEE proposed fixC'i 
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point libraries, As these are incomplete, they do not return crrors when assigned 

to incor~ect bit sizes, Instead they compile and will be capable of programming the 

FPGA but will give an unpredictable result. 

(8.1) 

1 1 0 1 1 1 0 1 

11 0 1 

1 1 . a 1 1 1 a 1 

000 00000-

1 1 a 1 1 1 0 1 - -

+ 1 1 0 1 1 1 a 1 - - -

1 a 1 1 a 0 1 1 1 0 a 1 -> 

32 + 8 + 4 + 1/2 + 1/4 + 1/8 + 1/64 - 44.890625 

13.8125 

x 3 . 25 

0.690625 

2.7625--

+ 41.4375--
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44.890625 

Utilizing this fixed point math it is possible to scale the 0 - 4095 value from the 

ADC to a numerical va.lue related to the 0.00 - 75.00mm output. Ho\\·ever, a morc 

effective method is to zero the ADC output, creating a 'signed' value. T his zeroing is 

activated by a button input Oll the dcycJopmcnt board. This evellt stores the current 

ADC value, e.g. 2154, and then omputs a value of In minU.'l the stored value. This 

is then scaled using a scaling factor in fixed point math 

position = scale * (sfixcd(zcroedpos) * sfixed('O'&scale)) (8.2) 

The matter of differentiating the velocity signal has bccn discussed earlier, and 

utilizing all the bits from the 16 samples relates specifically to the issue of scal­

ing. In a 1/ 512th time period if there is a change of 1 bit, and each bit scales to 

0.018310546mm than the example shown in equation 8.3 highlights the problem. A 

very high resolution ADC is required to calculate the velocity accurately or a larger 

time sample is required. If 16 samples are summed together however it relates to a 

16 bit value. If during half the sc<:olld 16 samples are 1 bit larger than the sensitivity 

gets increased and example becomes equation 8.4 and shows a potcntiallower value. 

This theoretically increases the accuracy of the 12 bit ADC for use in differentiation. 

The effecth·eness of this algorithm has not bccn numerically verified. 

v = 1 * O.OJ831054611lm/(1/512)s = 9.374999552mm/s (8.3) 

v = (8 - 0) 1 * 0.018310546mm/(( 1/ 512)s * 16samples) = 4.68749824mm/s (8.4) 
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In the case of the LQR for the quarter car model as described in chapter 4, the 

states are the spring deflections and the absolute velocities. A fixed point gain can 

be multiplied directly to the zeroed deflections, while the yelocities of the sprung and 

unsprung masses have to be calculated by simple addition as shown in equations 8.5 

and 8.6. The r..lTS machine has a high resolution high speed analog output and can 

be scaled as needed as shown in figure 8.11. This signal originates with an LVDT that 

is sampled at 16 bits, and then scaled internally to a 16 bit output with a full scale 

voltage of +/- lOY. Since the analog digital converters are calibrated to 0 - 5V, it was 

scaled such that 20mm = IV. Due to some calibration error in the setup, the actual 

,:alue needed to be input is approximately 25mm to get this scaling. The zero pOint 

of the system is raised until the voliage reading is 2.5V. This allows for the maximum 

vertical travel in both the upward and downward direction with the desired accuracy 

VUn.prt",y = VRood + VTireDeflection (8.5) 

8.7 PWM 

P'ulse-width modulation, or PWI\I uses the idea that if an energy source is switched 

Oil and off '"ery quickly that the capacitance and the inductance of a circuit will keep 

the curreut flowillg causillg a current ripple thronghout dcpending on the dllty cycle 

(how long the system is all Ycrsus off) and the type of load. For irutancc an inductive 
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Figure 8.1 1: MTS Machine Analog Out Scaling 
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Figure 8. 12: Pulse Width Modulat.ion 

load will produce It saw wave like current ripple while It capacitive load will be more 

logarithmic ripple. This can be sccn in the sine wave shown in figure 8.121. 

The saturated output from the fixed point controller is fed into the PWM con-

troller. The PWr-." is all 11 bit counter using the first bit for direction. It cont.inually 

counl.s up and compares the incoming value with the count. If the count is less than 

the incoming value then the output is switched Oil , and if the count is greater than 

the incoming value then the output is switched off. T his allows for a linear PWI\I 

output for the values. With a 11 bit range this means It maximum value of 2048. 

Given an input of 1024, the PWj\I duty cycle is 50%. If the input is greater than 

1024 then the PWJ· .. 1 duty cycle is greater than 50% and vice versa. In VHDL this 

relics again on the elk signal and the schematic representation with the clock, enable, 

reset and speed lines as inputs, and a PW:M output, Short Brake, and Direction as 

!{Cyril BUTTAY. derh'3tivc work: Krishnavedala, 2011-05-29 03:52 (UTC)) 
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outputs. 

P·WM 
CLOCK 

ENABLE 

RST 

PWMout 

SB 

SP~ED(1H)) Dlr 

Figure 8.13: PW\1 Block 

These outputs depend on the various H-Bridge chips used, as some may utilize 

two direction lines, or opposite values Of) the S8 or direction lines. The LMD18200 

H-bridge chip is utilized due to its high voltage with suits the Moticont voice coil 

well. It is rated at 55v and 3A continuous giving a potential continuous power of 165 

watts minus losses. The chip can survive 6A peak loading at short duty cycles. In 

order to do this would require an operating voltage of approximately 40V. 
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Figure 8.14: Controller Schematic 

8.8 Interconnection 

All of the previously outlined VHDL code can be compiled into schematics symbols 

shown throughout. These can be wired together as an analog to designing a circuit. 

The ADCread block connects to the RunAverage2 block. This in turn connccts to 

the fixed point controller which also contains the current feedback control. Finally 

this gives a 12 bit output used to drive the PWl\1 controller completing the FPGA 

based controller. The schematic representation is shown in figure 8.14. 

8.9 Logging 

The Arduino [58] is a simple 8 bit micro controller that is based on an Atmega 

328 from Atmel Corporal-ion with an open source bootloader. The Atmega 328 is 
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Figure 8. 15: Arduino Development Environment 

a versatile micro controller t.hat has become a very important and common purt of 

the hobbyist electronics community. The heurt of the Arduino is the development 

cnvironment based on 'Java' and thc 'Processing' cnvironment. Its syntax is nearly 

idcntical to that of the programming language C. The cllvironmcut. is shown ill figure 

8. 15 while the Illicrocolltrollcr dl.'VClopmcnt board is shown ill figurc 8.1G. 

A 'sketch' is written that samples four of the six illtcmal ADCs which arc tied in 

parallel to the analog inputs of the ADC that the FPGA are controlliug. There arc 

~vernl issues with this that wcre deemed acccptabic in order to speed development, 

they are: 

1. Sample time is variable 

2. Onbomd processing would reduce t he number of samples/sccond 

3. ADCs are only 10 bit compared to the MCP3201 12 bits 
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Figure 8. I(j: Arduillo Microcontroller 

4. ADCs are internal and may be 1II0re susceptible to noise frOIll other circuits 

The Arduino is programmed to sample as fast as pffi<;ible and average iO samples 

on 4 ADCs, then output t he raw data over the serial bus at I 15200bps. Part of the 

issue with II. microcontroller is that when it is sampling data the controller is not doing 

anything else. The workaround is called 'interrupts ' which interrupt the current task 

for a more important one. This is a stark contrast to t hat of an FPGA where there 

is no processor; rather it is all based in hardwired logic. Because everything happens 

SC<luentially any change in cycle time of the program by anyone clement means that 

the clapsed time is no longer constant. As snch more processing time must be wasted 

to log the time bet\\"CC1l samples. 

Within these limitatiolL" the Arduino is still chosen as a temporary logging device 

for two reasons: ( I) It is very fast to develop for because it is possible to reuse 

pre-written libraries, and (2) onboard logging with an FPGA directly is difficult to 

142 



interface with common flash memory such as an SD card. A transitional effort to 

send the samples and calculated values to the Arduino digitally would enable it to 

deal the control structure for a file system such as FAT32 and communication to 

an SD card. The long term goal would be to store data onboard which could be 

accomplished by embedding a microcontroller in the FPGA and tying it to the data 

digitally. This would further reduce communications delays but could take several 

months of development time. 

The code for t.he Arduino logger can be found in appendix G. 
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Chapter 9 

Results 

9.1 Overview 

Experimental work with the quarter car test apparatus was minimal due to long de­

velopment time. This work is to serve as an initial baseline by providing a basic LQR 

implementation utilizing an FPGA and a voice coil actuator. Some background is 

provided about the setup and values used in the LQR solution ill section 9.2. As 

described previously, a separate logging device was used. In order to speed up COIll­

munications only the raw values are sent over the serial port. Section 9.3 describes 

this as well as how this raw data was processed. The experimental results are pre­

sented and examined in section 9.4 for both the passive and the ride quality cases. 

An expansion of this work is discussed in section 9.5 where the road input is used as 

the input to the Bond Graph model and simulated in 2G-Sim. This allows a direct 

comparison of the ideal active suspension, and that of the actual setup. Tile road 

input is also used to simulate a passive suspension to give a better indication of the 
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performance gains. The conclusion in section 9.6 talks about how a voice coil can 

successfully be used as high bandwidth actuator and provide good results for ride 

quali ty. 

9.2 Setup 

The components of the quart car model were weighed , and experimentally obtained 

values for spring stiffness and damping established a complete representation of the 

linear plant parametrically. The quarter car test apparatus parameters are shown 

in table 9.1. LQR gains were calculated for the ride quality scenario similar to that. 

of t.he original quarter car design with weights shown in table 9.2. The current 

sensor and force proportionality constants allow an error to be calculated between 

actual and target forces allowing for a proportional controller to be implemented as 

described previously. A gain for this error to be multiplied by was experimentally 

derived. Several gains were tested and a gain of 100 provided very good results without 

saturating when used with the PWM controller. The PWM controller provide 0- 100% 

voltage output over a 0-2047 integer range. AU gains are shown in table 9.3. 

This is the setup for the 4 state with a feedback loop which was shown to have 

potential limitations when compared with the 5 state. The 4 state LQR hardware 

development was already being developed when the 5 state was being investigated. 

Due to the required amount of programming and debugging the implementation of a 

5 state LQR is beyond the scope of this thesis but is to be investigated in the futurl> 

A sine wave was utilized [or the road with a frequency range of 0.1 - 6.00 Hz 

with target amplitude of approximately 11.8mm. Due to calibration errors in the 
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Figure 9. 1: Experimental Road Input 

software, this meant that 15mm was the input value ill the software but 11.8mm was 

the actual stroke on the actuator. Initially the MTS software was set to produced a 

IV / 25.4mm output but when this was calibrated for the FPGA scaling factor over 

the expected movement range, it was found that IV corresponded to 20mm. The 

testing for the frequency range from 0.1 Hz - 3 Hz was conducted at 0. 1 Hz intervals 

while 3 Hz to 6 Hz was conducted at 0.2 Hz intervals. The ~-ITS setup uses its own 

PID control for position, and as a result of t.he ma&<; and hydraulic system, the actual 

amplitude achieved is smaller at higher frequencies than requested. This phenomena 

is seen by the position and velocity graphs for t he active suspension test in figure 9.1. 

9.3 Processing 

The Arduino outputs very basic data over thc serial COM port formatted as shown 

below: 

2343 , 6373 , 5925, 5176, 4700 
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Table 9.1 Quarter Car Test Apparatus Simulation Parameters 

Item Value Unii 

Sprung r-,Iass 4.7 kg 

Unsprung .r-. lass 1.5 kg 

Suspension stiffncss 1005 N/ m 

Tircstiffness 10458 N/ m 

Suspension Damping 56.096 N·s/ Ill 

Table 9.2: Quarter Car Test Apparatus LQR Weights 

·Weight Value Description 

p, 0.4 Suspension Deflection 

'" 0.16 Sprung Velocity 

'" 0.4 Tire Deflection 

p, 0.16 Unsprung Velocity 
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2340, 6372, 5925, 5179, 4512 

2340, 6374, 5924, 5180, 4524 

All described in the previous chapter, this corresponds to the various sensors. The 

comma separated values represent 10 integer summations of raw sensor data for the 

suspension deflection, tire deflection, current scnsor, and road position (from lnstroll 

8800 analog output). The last column is the time in microseconds between samples. 

This is required to more accurately differentiate the signal to produce a velocity 

since no low C08t velocity sensors were available. Ii also clearly highlights the issue 

u.sing a microcontroller. Bet.ween the first and second samples an identical amount 

of data was processed, but none of their times match perfectly. This would lead to 

differentiation error and inaccurate \·clocity samples if it was not accounted for. 

Using Excel, an average was taken over the stationary period before the experi­

ment of the raw samples and used to zero the input. The data was then scaled with 

the appropriate constants to millimeters, or force. Using the sample times, the sprung 

and unsprung velocities were calculated. This data was imported into 20-Sim and a 

10 Hz low-pass filter was placed on the positional outputs as the natural frequency 

was less than 10 Hz, and the road input was less than 10 Hz. It is assumed that 

since all natural frequencies are < 10 Hz (Wheel hop is approximately 6.54 Hz) and 

all actuations signals are also < 10 Hz that this should reduce noisc while kecping 

the dynamics needed to be examined. Due to cumulative sensor noise, from up to 

three sensors, it was also necessary to reduce the noise Oil the velocities, again using 

a simple 2nd order low-pass filter. 
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9.4 R esults 

While the experiments are performed for the passive and active cases nearly identi­

cally, the exact time the apparatus runs at a specified frequency is controlled by the 

operator. As such when comparing the two experiments the time scales should not be 

weighed heavily, rather the shapes and magnitudes should be scrutinized. Figure 9.2 

shows how there is reduced sprung velocity with the active suspension when compared 

to that of the passive suspension. For the ride quality case the goal is to decrease 

sprung mass accelerations, and when actuated with a sinewave the sprung velocity is 

decreased which would generally related to reduce sprung accelerations. This shows 

the basic implementation is performing correctly with regards to the sprung velocity. 

A clearer indication is given if the data is transformed into the frequency domain 

shown in figure 9.3. This shows decreased sprung velocities throughout the entire 

range. For the active suspension the maximum amplitude and frequency occurs at 

approximately 46 mm/s, 0.785 Hz. For the passive suspension this is approximately 

69mm/s, 1.321 Hz. According to the works of Rajamani and Butsuen [43, 35[, this 

is the expected result. The suspension natural frequency shifts to a lower frequency 

and the amplitude is reduced. 

In order to decrease the sprung velocity there are normal trade-offs; with ride 

quality the main trade off is the utilization of suspension deflection in order to ab­

sorb road inputs. Referring to figure 9.4 , the suspension deflections stay relatively 

constant with the passive suspension, while the active suspension utilizes larger sus­

pension deflections at lower frequencies in order tu mitigate accelerations. When thiS 

is transformed into the frequency domain in figure 9.5, the passive suspension is rel-
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Figure 9.2: Quarter Car Experiment - Sprung Velocity 

Figure 9.3: Quarter Car Experiment - Sprung Velocity FIT 
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Figure 9.4: Quarter Car Experiment - Suspellsion Ddlect.ion 

atively tlaL, while the active suspension has a shape that indicating high utilization 

at low frequencies. At approximately 0.1 Hz there is very large suspension deAcction 

t.hat decrenst.'S until it is operating at sufficiently high enough frequency road input 

that this tapers. This seems to again indicate functioning implementation of the LQR. 

scheme. 

The unsprung velocities time series and FFT transformed data reveal very little 

information but arc shown in figures 9.6 and 9.7. Previolls works indicate very little 

changes in the unsprung velocity between the active and passive suspensions. Due 

to the high stiffness of the tire, the velocities and deAcctions will generally be much 

lower. Differellliat ing t.he positional sign al gives a noisy velocity signal which makes a 

strong inferences difficult.. Howevcr, looking at maximulTls and minimums rcveal that 

with active suspension the velocities range from 76.76 mm/s to -75.68 mmls whilc 

the passive range frolll 73.10 Illlllis to -72.69 IIllll/s. This indicates that the normal 

trade off of increasing unsprung velocity is likely happening. 
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Figure 9.5: Quarter Car Experiment - Suspension Deflection FFT 

Figure 9.6: Quarter Car Experiment - Unsprung Velocity 
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Figure 9.7: Quarter Car Experiment - Unsprung Velocity FIT 

Like suspension deflectioll , tire deflection is generally increased to roouce sprung 

accelerations. This is visibly apparent in t he time and frequency series data sccn ill 

figu res 9.8 and 9.9. Throughout the entire time series t here is morc tire defl ection 

than the passive range, and this is emphasized most at lower frequencies. In figure 

9.8 it is noticeable that there is all offset between the simulations. This is the result 

of scveral cumulat.ive effccts brought about by the Coulomb friction. In order to rUII 

a test the code has to be zeroed first. This can only be done with the test apparatus 

stationary. It is possible that when the apparatus is stationary that its positions are 

not completely representative of the zero point when actuated with a sine wave. The 

Coulomb friction from the linear bearing can hold the test rig a small amount higher 

or lower causing an offset ill the result. 

153 



Figure 9.8: Quarter Car Experiment. - Tire Deflec~ioll 

Figure 9.9: Quarter Car Experiment - Tire Deflection FPT 
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9.5 Simulation With Experimental Data 

Recording all states means that the road input is stored, and has the potential to 

be utilized for simulation at a later time. A comparison of the experimental data 

and the ideal passive and active simulations are possible. ShOW11 in figure 9.12 is the 

sprung Ii.Cceleraiioll result:; for ihe experimental and simulation based on the road 

input for the recorded time series. This has been a double differentiated position sig­

nal leading to a significant amount of noise, howc\u it does show that at frequencies 

above 0,6 Hz the sprung acceleration is reduced. At low frequencies, less than 0.4 

Hz approximately, the sprung acceleration is greater for the experimental setup while 

the theoretical is siguificantiy less thall both. It should be noted that the Coulomb 

friction was not included in the theoretical model used for comparison or controller 

development. When the frequency approaches 1 Hz the experimental data approxi­

mates thf' theorctical respollSC. A morr detailed view of figure 9.12 is shown ill fiur(' 

9.13. 

If the passive experimental data is used for simulation in a similar fashion the 

results show good correlations. Figure 9.10 shows the experimental sprung acceler­

ation when compared with that of the simulated llsing the road input results. At 

lower frequencies they are nearly identical except for some impulses and flats where 

the Coulomb friction causes discontinuties, but at higher frequencies there appears to 

be a higher damping constant than determined from the experimental data. Similar 

results are seen in the sprung velocity comparison shown in figure 9.11 where the shift 

in peak to a lower frequcncy and the reduction in velocity is characteristic of higher 

damping ratio. UufOl"t.unfttply, Coulomb friction is difficult to measure in an exper-
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Figure 9.10: Sprung Passive Acceleration Comparison 

imcntaJ scnse, and due to issues with creating a linear time invariant system it has 

1I0t been included. \Vork in the future should attempt to incorporate and measure 

this for more accurate simulations. 

In order to reduce the sprung acceleration, the sprung velocity must be reduced 

as well. This is a less noisy signal as the position has only been differentiated ollce, 

as opposed to twice for acceleration. Heferring to fi~"ure 9.14 it is apparent that 

at low frequencies the response of the experimental sctup is not. as effective IL'> the 

theoretical but docs perform better than passive at frequencies above 0.6 Hz. This is 

again showing successful LQR implementation for ride quality. 

When the time series is enlarged ill figure 9.15 it can be seen that while the cxpcr~ 

imClltal is llOt as effective as the theoretical , there is a significant. reductioll in sprung 

velocities. As the system reaches higher frequencies of actuation t.he experimental 

comes mueh closer to reaching that of the theoretical. This is likcly attributable to 
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Figure 9.11: Sprung Passive Velocity Comparison 

Figure 9.12: Sprung Acceleration Comparisoll 
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Figure 9.l3: Sprung Acceleration Comparison - Detail 

Figure 9.14: Sprung Velocity Comparison 
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Figure 9. 15: Sprung Velocity Comparison Zoomed 

Coulomb friction which is much morc of an issue at lower velocities. At an actuation 

frequency of 0.60 Hz the experimcntal active suspension begin to show noticcable 

ride quality improvemcnts. Once the actuation frequency reaches 1.56 Hz the ex­

perimental reaches a lilllit in performance. Thc pcrformancc at highcr frequencies 

is maintained until the end of the experiment at approximately 4.03 Hz. Thcl"c is a 

mild decren.sc in performance huc. ic. is HOC. significaHt. Actuation velocities ovcr 5.00 

Hz were difficult to achieve with MTS hydraulic actuator. While the data from 4.00 

- 5.00 Hz should bc available, 2O-Sim prcscnted issues, potentially due to a higher 

required sampling frequency. 

Wheu the suspension deflection is colllparcd betwccn theoretical active, passive, 

and the experimental, several things become apparent when referring to figure 9.16. 

The major problem of note is that there is considerable issllc with zeroing the suspen­

sion deflection due to the Coulomb friction. The point at which the suspension moves 

159 



", 

Figure 9. 16: Suspension Dcflectioll Comparison 

around which normally pertains to the zero is not that of the original set before the 

experiment is rUIl. This may have positively or negatively influenced the results. The 

other major poillt of 1I0te is that at lower frequencies the experimental implementa­

tion did not usc as lIluch suspension deflection. This could potentially be II. p~iti\'e 

attribute as thOOTcticai impiclllcntatiolls require very significant suspension travel at 

low fwqucncics from the resulting Coulomb friction. 

The experimental tire dcflcctioll however did Ilot correlate well with that of the 

theoretical as seen ill figure 9.17. At low frequencies the amount of tire deflection 

was significantly greater than that of thc t.heoretical, but at higher frequencies of 3.00 

to 4.00 Hz, the actual utilized was lower than expected. This relates to 1I0t having 

lIS high a performance fIS the theoretical hut could be very accept.able ill a practical 

implementation. 

As conducted previolL<;ly, a performance index can be solved for the experimental 

and theoretical setup:; and is shown in figure 9.18. The performance of the cxperi-
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Figure 9.17: Tire Deflection Compari;K)n 

mental setup is very close to that of the theoretical active and well below that of the 

passive suspension. This indicates that for a range of 0.6 Hz to 4.00 Hz that the voice 

coil active suspension can successfully mitigate road inputs. 

At frequencies lower than 0.6 Hz, it is interesting to note that the performance 

index results arc slightly peculiar for the experimental set.u p. Accordiug to figure 

9.19, the act.ive suspension in the frequency sweep from 0.1 Hz to lAO Hz. Shows 

that the passive is better at very low frequencies. This can likely be attributed again 

to t he Coulomb friction. While the actuator is trying to apply a force, it is illsufficiCllt 

to overcome the Coulomb friction of the system. The system stops accumulating error 

and increasing the performance index score until the movements are fast enough that 

the Coulomb friction is 110 longer a significaut factor. While the theoretical active 

is least favourable for ride quality at these very low frequencies the experimental 

implementation is not as harsh. The experimental implementation does as a result 
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Figure 9.18: Performance Index Comparison 

take a little longer to show its performance benefits 

Finally the force actnator is examined in figure 9.20 where it can be seen that the 

positional offset enconntered earlier is leading to a constant amount of force bcing 

added. At low frequencies the forces appear truncated as the motion stop~ due to 

the Coulomb friction, but at higher frequencies where this is not as apparent the 

expcrimental and theoretical force ranges are similar. 

9.6 Conclusion 

According to the rcsults, the implementation with the FPGA and a voice coil showed 

very positive result~ and unlike that of hydraulic or pneumatic implementations ref-

erenced previou~ly, the voice coi l provided high frequency responsc of over 4.00 Hz. 

The limitat.ions of the test equipment. meant that benefits at frequencies above 4.00 

Hz l-"Ould not be analyzed, but it appears that it could potentially continue for fre .. 

quencies potentially as high as the wheel hop fralueTicy. The limitation on this is 

162 



/ 

Figure 9.19: Performauce Index Comparison Zoomed 

" , 

Figure 9.20: Experimental Force Comparison 

163 



related to the electrical slew rates of the current sensors, the ADC sampling, and 

speed and accuracy of the P\V~'I implementation. It also highlights the potential 

for implementing multiple controllers with ease in an FPGA and opens the door for 

future developments. 
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Chapter 10 

Conclusion 

There are several conclusions that call be drawn over the course of this research each 

relating to a different area that contributed to the development and testing of the 

quarter car test apparatus. There has been previous work relating to the simulation 

of control techniques for a range of model complexity. When the LQR method was 

initially implemented ill the real world, the results .... -ere poor. This was attributed 

to t .... ,o main issues, Coulomb friction aud poor actuator dynamics. The lack of an 

actuator whose output is a force has been a limitation for active suspension. Recent 

work has found promising results using linear electric motors which bridge this gap 

and have a significantly higher bandwidth than hydraulic and pneumatic actuators. 

It has been from that point which development has preceded Oil a test apparatus. 

10.1 Simulat ion 

Firstly, simulation work began with the most basic active suSp<!nsion setup, a Lin­

car Quadratic Regulator controlled quarter car active suspension. This work was 
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conducted with Bond Graphs initially as an exercise in skills development. This ul­

timately led to questions on what is the most effective starting point for a real world 

implementation. An investigation was started into half and full car controllers. Ap­

plying multiple quarter car controllers to higher order models was suggested as a 

means of reducing controller complexity. Simulations were conduded of two quarter 

car controllers on a half car model and compared to simulations of a half car controller 

on a half car model. The performance index used in designing the half car controller 

was used during simulations to create an objective comparison. The overall finding 

was that the quarter car conuollers were generally superior except in cases where the 

pitch acceleration was weighted very highly. 

These simulations led to several design decisions in order to get approximate 

weights, stiffncsses, and damping coefficients which would be needed later for de­

sign. This allov."ed very crude work to begin on design and evaluation of potential 

components. 

10.1.1 Future work 

While the full car model is developed, the LQR control problem was unsolvable di­

rectly. Reducing model complexity through division of the problem, presented by 

Hrovat [8], could be used as the full car baseline for the full car controller. This could 

potentially give risc to comparing four quarter car controllers and two different varia­

tions of using half car controllers, either align(.'(/ for pitch or aligned for roll. However, 

the findillgs of the quarter car and half car comparison along with the works of Hrovat 

indicate that the most optimal controller may actually be the quarter car controller 
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supplemented with the pitch and roll states. This adds only minor complexity but 

would require extensive simulations to test its performance. 

10.2 Five Stat e LQR 

One major strength of Bond Graphs is their ability to easily interconnect various 

systems in the same model and create the governing equations without regard to the 

type of system. As Bond Graphs proved useful in modelling the quarter and half car 

controllers, and considering that electric motor~ arc generally a very simple model, 

it was feasible to expand the normal idea of a four state quarter car (sprung mass 

velocity, unsprung mass velocity, and tire and suspension deflections) to include the 

state of the current in the motor coil. This was termed the five state LQR controller. It 

was generally assumed that the 4 state would be the theoretical limit as it represents 

the perfect response of the system but it was theorized that once more real world 

elements were added to the four state model that the fiyc state could potentially be 

superior as the control loop was shorter, simplcr, and closer to the ideal four state. 

The simulations of the original systems performed as expected. The theoretical 

four state controller was superior to all other controllers. This model was augmented 

by adding a control loop. The model would provide a force target and a proportional 

error controller with a very high gain was used. Since there was no control delay 

there was no limit to this gain. As this gain was increased it proved to be superior to 

that of the five state LQR. When a dday Wati introduced to the proportional feedback 

controller that would be representative of the real world the results changed. The 

proportional gain was very unstable and requin .. '<i a reduction to a value at which 
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poinL the five state LQR controller was now noticeably superior. 

10.2.1 Future Work 

The primary motivating factor of the de\'elopmenL of a five state LQR controller was 

that it could easily rely on low cost current sensors rather than high cost load cells. 

Due to lack of development time the five staLe LQR never saw implementation on the 

test rig. A four state controller was implemented firs~ as a baseline. Modifications to 

this controller should be of very high priority to compare the controllers in real test 

setup. 

While it was already shown that most scenarios could use quarter car controllers 

with good results there is still room for a simulation exercise implementing a variation 

of the five state controller OIL a half car model. This eQuid potentially be referred to 

as the ten state half car and compared with the 8 state half car (analog to 4 state 

quarter car) once control delays are introduced. 

10.3 Quarter Car Apparatus 

Throughout the development of simulations, several cases were chosen a.nd refined to 

provide estimated parameters for the development of the quarter car test apparatus, 

From these values a significant amount of time and resources were utilized ill searching 

for the most appropriate actuator. High cost and lower than expected suitability 

meant that some development of an actuator was conducted. Due to the previous 

success of linear motors it was determined to develop a three phase brushless linear 

motor, the primary idea being that the limiting factor would be the length and coil 
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sets. This proved more difficult to develop and had less than impressive results 

relating to directional flux density. 

New magnetostatic simulation work indicated that field strength for a voice coil 

arrangement would be significantly higher as well as provide more area for wire. 

Utilizing available parts from the linear motor design a prototype voice coil was 

developed. The intial prototype appeared sucessful but was never designed to actually 

be used in a test apparatus. A second version was designed, but due to using a 

different shape and t1lickuess of magnet, the flux dellsity again proved to be much 

lower than expected. While it was determined that this problem could be rectified 

through another redesign a significant amount of time had been utilized and was 

holding up the devclopment of the test apparatus and it was inconclusive if another 

iteration would be usable or if more work would still be required. The approximate 

values for these actuators were then used to determine the specifications for an off 

the shelf unit. Once an available production voice coil was chosen a more finalized 

design could be developed of the quarter car apparatus. 

One of the major issues when switching to a production voice coil was that it 

required linear bearings to support its alignment. Due to the size of the setup square 

linear rails were chosen for the design. The choice for square rails was motivated 

by reducing complexit.y and any potential alignment issues when compared to round 

rails. The size was chosen mainly based on the estimated sized of other components 

for mounting and construction. Insufficient attention was paid to the frictional aspects 

of the larger linear bearings which resulted in some non-linearities. 

Other component.s were chosen relating to t.he size and weights such as the coJ 

over shock, allowable block mass, and tire stiffness. Several provisions were made for 
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future work to keep the apparatus as expandable as possible. 

10.3.1 Future Work 

The quarter car test apparatus has great potential for testing the real world perfor­

mance benefits of the five state LQR, but also hM potent.ial for use in preview active 

control. \Vith the built in provisions for mounting real tires an examination of tire 

damping can be investigated and aggressive simulations where the wheel separates. 

In order to mitigate the Coulomb frictional issues, a larger value for the unsprung 

mass should be utilized. The other options include replacing the rail for a lower fric· 

tional design. Damping at various suspension settings and spring settings should be 

investigated using Design of Experiments (DOE). 

10.4 Controller and Logging 

0ne of the expected developments to happen is elimination of some sensors, SUcll 

as the one for tire deflection, and replacement with Kalman filters to estimate these 

states. This is a very processing intensive algorithm and can easily tax microcon­

trollers to the point of taking up to a second to process depending on the algorithm. 

It was decided that an FPGA might be a good alternative with the downside being 

longer development times. This meant the initial four state LQR controller was de­

veloped in the language VHDL with fixed point mathematics techniques. Fixed point 

math offered a compromise to float ing point math that microcolltrollers normally usc 

for reduced memory requirements. Development wa;; ~ignificantly slower than that of 

a microcolltroller but with one specific benefit; the system could do things in parallel 
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and at perfectly repeatable time intervals. When the state of a sensor is sampled 

the other sensors are sampled at the exact same time. This is not generally possible 

with a micro controller and considering that the analog signals were digitized and 

differentiated due to lack of a velocity sensor, this ability was especially desirable. 

Since multiple 12 bit ADC chips were easily available, without requiring surface 

mount technique, it meant that at higher sample rates the differentiation of the signals 

could be noisy. In order to combat this a running average technique was adopted and 

implemented. This appeared to clean up the signal when the outputs were observed 

but no empirical measurements were taken 

The four state LQR is implemented with fixed point math with a proportional 

feedback control. The voice coil has a calibrated current sensor which means that the 

signal is scaled from a numerical value to that of a force by combining two scaling 

constants (Amps/hit * Newtons/ Amp). This showed good results for the quarter car 

controller especially over 1.2 Hz. Previous works indicate a 2 Hz limit for hydraulic 

actuators hut even with Coulomb frictional issues, the four state LQR showed good 

results up to 4 Hz. 

10.4.1 Future Work 

Since the controller is in its infancy, there arc significant improvements to be made. As 

mentioned previously, the fi ve state LQR should be impIememed and tested against 

the four state LQR. Effective implementation of Kalman filtering algorithms will 

require very clever programming tcchniquf!s aJl(I fixed point or floating poillt math­

ematics. Due to the availability of VHDL fixed point packages that will soon be 
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standard for FPGA development it is strongly suggested that development be con­

ducted in VHDL otherwise the significant amount of fixed point math that would be 

required and manually tracked would be overwhelming. 
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Appendix A 

Full Car Linear Model 

a(l , I) a(I,2) a(I,15) 

a(2, I) a(2,2) a(2,15) 
(A.I ) 

n(15,1) a( IS,2) a(15,15) 

a( l , 1) = _!!..!E. _!!.!!i. _ a, .... _ B'1r 
m. 1'11, m. m. 

a(I,2) = _ S.nb + S.jla _ B ..... b + B.lra 
m. m. m. m. 

a(1 , 3) = - 1/ 2 B'f1 Tj + 1/ 2 B.rr I'r - 1/2 BJrlTr + 1/ 2 B'frTf 
m. m. m, m. 

a(1,4)=~ 
m, 

a(1,5) =~ 
m, 

a( 1 ,6)=~ 
m. 

a(1,7)=~ 
m, 
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a(I,8) = _ B •• 
m. 

a(I,9) = _ B~ 
m. 

a(I, 10) =_!!2! 
m. 

a(l,ll)= -~ 
m. 

a(l, 12) = a(l , 13) = a(l, 14) = a(l, 15) = 0 

a(2, 1) = _ ~:b + ~:a _ ~:b + ~:a 

a(2, 2) = _ 8;;;2 _ 8;::2 _ 8;;:2 _ B;:a2 

a(2,3) = 1/2 B'7~Tr + 1/2 B,;:}, _ 1/2 B-;!Tr - 1/2 B.;:xT/ 
a(2,4) = - G/; 

a(2,5} = b:; 

a(2,6) = - aI~ 

a(2, 7) = &/;; 
a(2,8} = ~:a 

a(2,9) = _ ~:b 

a(2, to) = ~:a 

a(2, 11) = _ ~:b 

a(2, 12) = a(2, 13) = a(2, 14) = a(2, 15) = 0 

a(3, 1) = 1/2 B~;yrr + 1/2 Bf;! _ 1/2 B;;yTr _ 1/2 B~~f 

a(3,2) = 1/2 B'7;Tr -1/2 B';yUyTf - 1/2 87!Tr + 1/ 2 B';;yTf 
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a(3,3) = - 1/4 B,,.,.Tr2 - 1/4 B.frTf -1 /4 B.n Tr2 - 1/4 B'fl Tj2 
Iyy Iyy Iyy Iyy 

a(3,4) ~ - 1/2 T~:t 

a(3, 5) = -1 /2 ~:; ... 

a(3, 6) = 1/ 2 T~y;fI 

a(3, 7) = 1/ 2 ~y~ 

a(3,8) = 1/2 B~;j 

a(3, 9) ~ 1/2 BT,y" 
a(3, 10) ~ - 1/ 2 B1;/ 
a(3, 11) = - 1/ 2 B;;; 

a(3, 12) = a(3, 13) = a(3, 14) = a(3, 15) = 0 

a(4, 1) =-1 

a(4,2) = 1/2 itTj 

a(4, 3) = a(4, 4) = a(4,5) = a(4 , 6) = 0 

a(4, 7) =-1 

a(4,8) ~ a(4, 9) ~ a(4, 10) ~ a(4, 11) ~ a(4 , 12) ~ a(4, 13) ~ a(4, 14) ~ a(4, 15) ~ 0 

a(5, 1) =-1 

a(S, 3) = 1/ 2 Tr 

a(5, 4) ~ a(5, 5) ~ a(5, 6) ~ a(5, 7) ~ a(5, 8) ~ 0 
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a(5,9) ~ - 1 

a(5, 10) ~ a(5, 11) ~ a(5, 12) ~ a(5, 13) ~ a(5, 14) ~ a(5, 15) ~ 0 

a(6,1) =-1 

a(6,2) = a 

a(6, 3) ~ - 1/ 2 Tf 

a(6, 4) ~ a(6, 5) ~ a(6, 6) ~ a(6, 7) ~ a(6, 8) ~ a(6, 9) ~ 0 

a(6, 10) ~ - 1 

a(6, 11) ~ a(6, 12) ~ a(6, 13) ~ a(6, 14) ~ a(6, 15) ~ 0 

a(7, 1) ~ -1 

a(7, 2) ~ -b 

a(7,3) ~ - 1/ 2 71" 

a(7, 4) ~ a(7, 5) ~ a(7, 6) ~ a(7, 7) ~ a(7, 8) ~ a(7, 9) ~ a(7, 10) ~ 0 

a(7, 11) = -1 

a(7, 12) = a(7, 13) = a(7, 14) = a(7, 15) = 0 

a(S, \ ) = _ 8 3/r 
m." 

a(S, 2) = B.fra 
m>fr 

a(8, 3) ~ 1/' B'fr Tf 
m>fr 

a(8,4) = k./r 
m." 

a(8, 5) ~ a(8, 6) ~ a(8, 7) ~ 0 
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a(8,8) = _ B'fr _ Btfr 
m...,.. m..". 

a(8, 9) ~ a(8, 10) ~ a(8, 11) ~ 0 

a(8, 12) ~ _ k"" 
mofr 

a(8, 13) = a(8, 14) = a(8, 15) = 0 

a(9, I) ~ _ B,. 
rll .. ,.,. 

a(9, 2) ~ _ B~b 
m •• 

a(9, 3) ~ 1/2 B~ Tc 
m •• 

a(9,4) ~ 0 

a(9,5) ~ k,. 
m •• 

a(9, 6) ~ a(9, 7) ~ a(9, 8) ~ 0 

a(9,9) = _ B .... _ B," 
m ..... m ..... 

a(9, 10) ~ a(9, 11) ~ a(9, 12) ~ 0 

a(9, 13) = _ kt ... 

111,," 

a(9, 14) = a(9, 15) = 0 

a(lO, 1) = _ B.ft m., 
a(1O,2) = B.fla 

moft 

a(10,3) ~ - 1/2 B'fl T! 
m"" 

a(1O,4) = a(lO, 5) = 0 

a(lO, 6) = k'f! 
m"" 
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a(lO, 7) ~ a(10,8) ~ a(10, 9) ~ 0 

a(lO, to) = _ B.jI _ 8 1ft 

m,.j! mufl 

a(lO, 11) = a(lO, 12) = a(IO, 13) = 0 

a{IO, 14) = _ krJl 
m·ft 

a(lO, 15) = 0 

a(ll,I)=_Bm 
m.N 

a(ll, 2) = _ B.rlb 
m.N 

a(11,3) = - 1/2 B.,.Tr 
m.N 

a(11,4) ~ a(11,5) ~ a(11,6) ~ 0 

a(ll,7) = k.rl 

m.N 

a(Il,8) = a(1l,9) = a(ll, 10) = 0 

a(ll, 11) = _ B"I _ 8/rl 
m"rl 1n .. rl 

a(I!, 12) = a(I!, 13) = a(Il, 14) = 0 

a(1l,15)=-~ 
m.N 

a(12, 1) = a(12,2) = a(12,3) = a(12,4} = a(12,5) = a( 12,6) =a(12, 7) = 0 

a(12,8) = 1 

a(12, 9) = a(12, 10) = a(12, 11) = a(12, 12) = a(12, 13) = a(12, 14) = a(12, 15) = 0 

a(13, 1) ~ a(13, 2) ~ a(13, 3) ~ a(13, 4) ~ a(13, 5) ~ a(13, 6) ~ a(13, 7) ~ a(13, 8) ~ 0 

a(13,9) = 1 
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a(13, 10) = a(13, 11) = a(13, 12) = a(13, 13) = a(13, 14) = a(13, 15) = 0 

a(14, I) ~ a(14,2) ~ a(14,3) ~ a(14,4) ~ a(14,5) ~ a(14,6) ~ a(14, 7) ~ 0 

a(14, 8) ~ a(14 , 9) ~ 0 

0(14,10) = 1 

a(14, 11) = a(14, 12) = a(14 , 13) = a(14, 14) = a(14 , 15) = 0 

a(15, I) ~ a(15,2) ~ a(15,3) ~ a(15,4) ~ a(15,5) ~ a(15,6) ~ a(15, 7) ~ 0 

a(15,8) = a(15 ,9) = a(15, 10) = 0 

a(15, 11) = 1 

a(15, 12) = a(15, 13) = a(15, 14) = a(15, 15) = 0 

b(I,I ) b(I ,2) b(I,3) b(I,4) 

b(2,1) b(2,2) b(I,3) b(2,4) 
(A,2) 

b(15, 1) b(15,2) b(15,4) 

b(1 , 1) = _ m. - 1 

b(I,2) =_m.- 1 

b(I,3) = _ m. - 1 

b(I,4) =_m. - 1 

b(2 , 1 )= ~ 

b(2, 2) = --/I;; 
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b(2,3) = i;;; 
b(2,4) ~--/f;; 

b(3,1)~1/2f,f;; 

b(3,2) ~ 1/2fiy 

b(3,3) ~- 1/2f,f;; 

b(3,4) ~ - 1/2fiy 

b(4, I) ~ b(4,2) ~ b(4,3) ~ &(4,4) ~ 0 

b(5, I) ~ b(5,2) ~ b(5,3) ~ b(5,4) ~ 0 

b(6, I) ~ b(6,2) ~ b(6,3) ~ 6(6,4) ~ 0 

b(7, I) ~ b(7,2) ~ 6(7,3) ~ 6(7,4) ~ 0 

b(8,1) = - mufr - 1 

b(8, 2) ~ b(8, 3) ~ b(8, 4) ~ 0 

6(9,1) ~ 0 

b(9, 2) = _m~rr - 1 

6(9,3) ~ 6(9,4) ~ 0 

b(lO, I) ~ b(IO,2) ~ 0 

b(10,3) = -m"fI - 1 

b(10,4) ~ 0 

b(1l, I) ~ b(II,2) ~ 6(11,3) ~ 0 
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&(11,4) = -m"r/ - l 

b(12, 1) ~ b(12,2) ~ b(12,3) ~ b(12,4) ~ 0 

b(13, 1) ~ b(13, 2) ~ b(13, 3) ~ b(13, 4) ~ 0 

b(14 , 1) ~ b(14, 2) ~ b(14,3) ~ b(14,4) ~ 0 

b(15, 1) ~ b(15,2) ~ b(15,3) ~ b(15,4) ~ 0 
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Appendix B 

Half Car Performance Index 

wp" wp" wp" wp" wp" wp" wp" wp" 

wp" wp" wp" WP2~ wp" wp~ wp" Wp" 

WP31 wp" wp" wp~ wp", wp" Wp" Wp" 

WP41 wp" wp" wp" WP45 wp" wp" wp" 
Q ~ (8.1) 

WP51 Wp" Wp" WPM Wpr,s Wp" Wp" wp" 

1L11ls1 wp" W7'~ WPM wp" WP" wp" WPM 

wP" wp" wp" wp" wp" wp" wp" wp" 

wp", wp" WPro 1iipS4 wp" wP" wp" wp., 

P1bPB..,.2 Pla12B./ B./ 
WP!1=~+~+P7+m.2 

+ B.r 2 _ 2 Pial B.fbl S .r + 2 BAf E .,. 
m .2 Ixx 2 m,2 
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WP13 = _ k./B.J _ k.jB.rr + Plalk.,bl Bn- _ ~ 
m.2 m . 2 lxr? Ixx 

WP14 = _ B.,k.r _ k,rB.r + p]aIB.,blk" _ P 1bI2k.rB.,. 
m,l m,l Ixx 2 lx:r/ 

WP15 = B.,8 ... _ PlaIB.IbIS". + p]aI2S,/ + B./2 

m.l [xxl Ixx2 m,l 

WP16 = B,jE ... _ PlaiE.IbIS" + Pl bfS4f'2 + B./ 
m,l Ixx2 Jx:r,2 m.l 

WP21 = _ BJ/l al + B,,2bl + P1B>/aPbIB.r _ PlaIB,j B4f'bf 
m. l m/ [xz2 Ixx2 

B.JB.rbl B,/alS,r PIB./all PI B .. 2bI3 
+~-~-~+~ 

WP23 = _ k,jB.rbl + k.f 8./ul + PlaI3k./B., + Pial k' IBn- btZ 
m,l m.2 lxx2 Ixx2 

k.rB.rbl B./alk.r P1bl3k.,.B.r P1B./aPbl k" 
WP24 = -----;n; + ~ -~ -~ 

WP25 = B,":';bl _ pl~!:aI3 _ B~:2al _ Pial ~::r~"bP 

WP26 = _ B·~:2B.r + Pl~~:bI3 + ~~:2bl + P1B'fl~:1 B.r 

WP27,WP2g =0 

WP31 = _ k.,B./ _ k#B.,. + ~ _ ~ 
m/ m. l f xx IXL 
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WP32 = _ k./ B Jr bl + k,/ B./al + PlaI3k,/ B./ + PIal kJjBsr bf 
m.2 m/ Ixx2 fxxz 

PlaI2k./ 2 k./ 2 
WP33=~ + m;+P2 

WP34 = k~~;r _ PI at ;:)1 k.r 

WP3S = _~ _ k./B./ 
Ixx m , 2 

WP36 = _ k~~ ... + PIal ;;,~l B, .. 

WP37,WP:l8 = O 

WP41 = _ BJjk.r _ kJr B ... + PIal B Jj bl k ... _ P1be ksr B ... 
m.2 m, 2 Ixx2 fxxz 

WP42 = _ k ... B ... bl + B./alk.r _ P1bek ... B,r _ P1B./afblk ... 
m , 2 m.2 Ixxz Ixx 2 

WP43 = k~~;r _ PI al :~~l k.r 

WP44 = P l bI12~ ... 2 + ~+P6 
'" m. 

WP45 = _ B~7" + Pial ~;;:lk.r 

WP.j6 = _ PI bl;:;;Bs .. _ k':n~'" 

WP47, WP46 = 0 

WPSI = B~~.,. _ Plal~::r~IBsr +Pl ~:~'/ + ~~: 

WPS2 = B.~~bl _ Pl ~::x:ae _ B~~:l _ Pial ~::r~.rbf 

W~ = _ PlaI2k./B./ _ k.,B., 
Ixx2 m .2 

WP54 = _ B~~.r + p)al::}lk ... 

WP55 = _ B~~2·r + Plal ~;::lk.r 
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WP56 = B~~n- _ PIal ~:)l B.r 

WP57,WP58 = 0 

W~l = B./B .r _ P1alB'/,blB.r + Plb[2B",.2 + B.r2 

m,2 Ixx 2 1x:r;2 m.2 

WP62 == _ B,/al Bn- + P1B,r2b[3 + B.r2bl + ~ 
m,2 1x:r;2 m,2 lxx 

WP63 = _ k~~.r + PIal ~::x~l B",. 

P1bt2k.rB.r k ,rB.r 
WP64=-~-~ 

WP65 = B:~~ .. _ PI al ~~~l Bn-

PlbeB./ B ,,2 
tvpoo= ~+ m.2 +pg 

WP77 = P4 

WV;s, WPsl. WPs2, WJ)s3, W]Js4, WPs5, WP8(;, WPS7 = 0 

WP8S = {Is 
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N ~ 

-~-~ ~-~ 

~-~ -~-~ 

~+~ -~+~ 

~-~ ~+~ 

R ~ [ m.-'+eg: -~+m'-'l 
_p,<&lbl +m _2 m _2+ p,bl' 
~ •• J;i'F 
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Appendix C 

Force Actuator 
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Force Actuator 

gauge dia (mm) Wire Area ohm/ 1000ft ohm/ meter 

26 0.40386 1.28101E-07 41.02 0.134580052 

28 0.32004 8.04449E-08 65.33 0.21433727 

30 0.254 5.06707E-08 103.7 0.340223097 

32 0.2032 3.24293E-08 162 0.531496003 

36 0.127 1.26677E-08 414.8 1.360892388 

'0 0.07874 4.86946E-09 1079 3.540026247 

10 2.58826 5.26145E-06 0.9989 0.003277231 

12 2.05232 3.30811£006 1.588 0.005209974 

I' 1.62814 2.08196&06 2.525 0.008284121 

16 1.29032 1.30763&06 4.016 0.013175853 

18 1.02362 8.22939E-07 6.385 0.020948 163 

20 0.8128 5.18868E-07 10. 15 0.033300525 

22 0.64516 3.26907E-07 16.14 0.052952756 

2' 0.51054 2.04715E-07 25.67 0.08421916 
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Force Actuator 

gauge OD(mm) ID(mm) :-'1ean Dia(m) Circumference 

26 0.0455 0.0375 0.0415 0.130376095 

28 0.0455 0.0375 0.0415 0.130376095 

30 0.0455 0.0375 0.0415 0.130376095 

32 0.0455 0.0375 0.0415 0.130376095 

36 0.0455 0.0375 0.0415 0.130376095 

40 0.0455 0.0375 0.0415 0.130376095 

10 0.0455 0.0375 0.0415 0.130376095 

12 0.0455 0.0375 0.0415 0.130376095 

14 0.0455 0.0375 0.0415 0.130376095 

16 0.0455 0.0375 0.0415 0.130376095 

18 0.0455 0.0375 0.0415 0.130376095 

20 0.0455 0.0375 0.0415 0.130376095 

22 0.0455 0.0375 0.0415 0.130376095 

24 0.0455 0.0375 0.0415 0.130376095 

197 



Force Actuator 

gauge Height(mm) Area Packing Factor TUrns 

26 0.1564 0.0006256 0.6 2930.194354 

28 0.1564 0.0006256 0.6 4666.05212 

3D 0.1564 0.0006256 0.6 7407.824346 

32 0.1564 0.0006256 0.6 11574.72554 

36 0.1564 0.0006256 0.6 29631.29738 

40 0.1564 0.0006256 0.6 77084.54054 

10 0. 1564 0.0006256 0.6 71.34151173 

12 0.1564 0.0006256 0.6 113.4665772 

14 0.1564 0.0006256 0.6 180.2912363 

16 0.1564 0.0006256 0.6 287.0537675 

18 0.1564 0.0006256 0.6 456.1215417 

20 0.1564 0.0006256 0.6 723.4203463 

22 0.1564 0.0006256 0.6 1148.21507 

24 0.1564 0.0006256 0.6 1833.574502 
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Force Actuator 

gauge Length (m) R (ohm) B(T) Current P, (N) F~;~ (N) 

26 382.0272978 51.41325 0.03 3 34.38245 11.167 

28 608.3416551 130.3902 0.03 3 54.75074 17.783 

30 965.8032116 328.5885 0.03 3 86.92228 28.233 

32 1509.067518 802.0634 0.03 3 135.8160 44.114 

36 3863.212846 5257.416 0.03 3 347.6891 112.93 

40 10049.98139 35577.1 0.03 3 904.4983 293.79 

10 9.30122772 0.030482 0.03 3 0.837110 0.2719 

12 14.79332926 0.077072 0.03 3 1.331399 0.4324 

I' 23.50566737 0.194723 0.03 3 2.115510 0.6871 

16 37.4249493 0.493105 0.03 3 3.368245 1.0940 

18 59.4673455 1.245731 0.03 3 5.352061 1.7383 

20 94.31671988 3.140796 0.03 3 8.48850 2.7571 

22 149.6997972 7.92701 0.03 3 13.47298 4.3761 

24 239.0542837 20.13295 0.03 3 21.51488 6.9882 
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Force Actuator 

gauge Jig Kg/cm3 Volume M"" Voltage Pov;'Cr 

26 0.385 8.94 4.8938£..05 437.505 154.239 462.7192 

28 0385 8.94 4.8938£..05 437.505 391.170 1173.512 

30 0.385 8.94 4.8938£..05 437.505 985.765 2957.297 

32 0.385 8.94 4.8938£..05 437.505 2406.19 7218.571 

36 0.385 8.94 4.8938£..05 437.505 15772.2 47316.75 

40 0.385 8.94 4.8938& 05 437.505 106731.5 320194.7 

10 0.385 8.94 4.8938&05 437.505 0.09144 0.274340 

12 0.385 8.94 4.8938&05 437.505 0.23121 0.693655 

14 0.385 8.94 4.8938&05 437.505 0.58417 1.752514 

16 0.385 8.94 4.8938&05 437.505 1.47931 4.437950 

18 0.385 8.94 4.8938&05 437.505 3.73719 11.21158 

20 0.385 8.94 4.8938&05 437.505 9.42238 28.26716 

22 0.385 8.94 4.8938&05 437.505 23.7810 71.34315 

24 0.385 8.94 4.8938&05 437.505 60.3988 181.1965 

200 



Force Actuator 

gauge T_ T._ Delta Joules timem..., 

26 150 30 120 20212.75231 43.68253714 

28 150 30 120 20212.75231 17.22414585 

30 150 30 120 20212.75231 6.83487389 

32 150 30 120 20212.75231 2.800104385 

36 150 30 120 20212.75231 0.427179618 

40 150 30 120 20212.75231 0.063126426 

10 150 30 120 20212.75231 73677.62486 

12 150 30 120 20212.75231 29139.45908 

14 150 30 120 20212.75231 11533.57486 

16 150 30 120 20212.75231 4554.523871 

18 150 30 120 20212.75231 1802.845262 

20 150 30 120 20212.75231 715.0611394 

22 150 30 120 20212.75231 283.3173461 

24 150 30 120 20212.75231 111.5515241 
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Appendix D 

Drop Test 

Velocity vs Time Drop 1 

I~ I~'''' '\ Jf ... ~ 
~ : \.. .. 1 ... 4- ......... __ 

U II II --
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Velocity vs Time Drop 1 

Velocity vs Time Drop 3 

Velocity vs Time Drop. 

u --
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Velocity vs Time Drop 5 

-j it .. ""''''')if •• '· ... 4.wwI 

i~ == \ 1 <= , -:-
~ .y .......... ~~ 

u u 

Vekx:ity vs Time Drop 6 

Vekx:ity vs Time Drop 7 

~ --
204 



Velocity 'IS Time Drop 8 

3 ~I"". +I\~"''''ko'''. 
, .. r t I r~ \ 
:.: l _ •• ~ 

-GA.- WI' 
~~ 

Velocity 'IS Time Drop 9 

3 ~',,,,,\! ........... ,... 
I§I '/ 
:.: \ "- ... ~ 

-G.4 - V 

Velocity 'IS Time Drop 10 

-~ r·"'. "" .... " j~ ) 1 ~ l 1,...- ... AAJ 
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Velocity vs Time Drop 11 

~ --
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Appendix E 

Spring Test 

Stock Black Long on Damped Shock 

Distance (mm) 122 115 110 104.5 98 93 

Scale (g) 38 1113 2087 3004 4080 4941 

Delta (mm) 0 -7 -12 -1 7.5 -24 -29 

Force (N) 0.373 10.919 20.473 29.469 40.025 48.471 

Stiffness (Njmm) -1.670 R' 0.999 

Stock Black long on Damped Shock 

~~t~ ~ ..... krir:s:1 

- l .... lsCl"ksl) 

~ y = - l...66999iIIIf-Q.04436 

-C> -30 -10 -10 0 R"" =Q.99940 
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Stock Black Long on Undamped Shock 

Distance (mm) 123 116 110 105 98.5 94.5 

Scale (g) 42 1035 2073 3008 4074 4835 

Delta (mm) -7 - 13 -18 -24.5 -28.5 

Force (N) 0.412 10.153 20.336 29.508 39.966 47.431 

Stiffness (N/mm) -1.664 R' 1.000 

Stock Black Long on Undamped Shock 

~ 
-25 y =-l..6642b- QQI59'1 .. -...... 

Stock Black Short Oil Damped Shock 

Distance (mm) 59 55 53 50 47.5 45 

Scale (g) 19 1076 2056 3073 4018 4928 

Delta (mm) -4 -6 -9 - 11.5 - 14 

Force (N) 0.186 10.556 20.169 30.146 39.417 48.344 

Stiffness (N/ mm) -3.513 R' 0.997 
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Stock Black Short on Damped Shock 

Red Long A 

Distance (mm) 58 55 52 49.5 

So,", (gJ 21 1035 2057 3146 

Delta (mm) -3 -6 -8.5 

Force (N) 0.206 10.153 20.179 30.862 

Stiffness (N/mm) -3.867 R2 0.995 

Red Lone A 
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y =-3.5l29la- L25U1 
.. Q9!I538 

47.5 45.5 

4171 4857 

- 10.5 -12.5 

40.918 47.647 

, :::-1.7622211: - D.S7Ui6 
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Red r-,'Iedium A 

Distance (mm) lI6 111,5 108 105 104 101 98 

Scale (g) 41 lIoo 2038 2791 3151 4123 4918 

Delta (mm) -4 .5 -8 -ll - 12 -15 -18 

Force (N) 0.402 10.791 19.993 27.380 30.911 40.447 48.245 

Stiffness (N/mm) -2.640 R' 0.998 

Red Medium A 

-... 
........ 

-+-:SC~ --..... -... - ,-,,-"(Serltsll 

-s;, 
,, =-l..686Ola - D..83l.19 ......... 

Red Short A 

Distance (mm) 49.5 47 45 43 41 39 

Scale (g) 21 999 2051 3047 3896 4918 

Delta (mm) -2.5 -4.5 -6.5 -8.5 -10.5 

Force (N) 0.206 9.800 20,120 29.891 38.220 48.246 

Stiffness (N/mm) -4 .618 R' 0.999 
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Red Short A 

.......... 
~ 

.......... 
......... 

-.;;;;;;; 
-12 -UI -0 -6 -L. 

Orange Long A 

Distance (rnm) 132 124 118 111 

Scale (g) 36 1080 2029 3041 

Delta (mm) -8 -14 -21 

Force (N) 0.353 10.595 19.904 29.832 

Stiffness (N/mlll) -1.496 

Orange Long A 
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-+-Senr,sl 

- ....... ls.,-iI5]j 

1' = -4..6l.82511 - D..60173 ......... 
105 100.5 

4041 4836 

-27 -31.5 

39.642 47.441 

y =-L495861l- Q.61692 .. ....". 



Orange ~l'1edium A 

Distance (mm) 116 110 105.5 101 95.5 92 

Soal, (g) 46 1047 2012 3033 4064 4958 

Delta (mm) -6 - 10.5 - 15 -2V.5 -24 

Force (N) 0.451 10.271 19.738 29.754 39.868 48.638 

Stiffness (N/ mm) -2.016 R' 0.999 

Orange Medium A 

Stiffness (N/ mm) -1.833 R2 0.997 
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Black long A 

....... 
.......... ......... 

............. 
""SI. 

-~ -~ 

Black Medium A 

Distance (mm) 110 105.5 102 98 

Scale (g) 44 1038 2058 3071 

Delta (mm) -4.5 -8 - 12 

Force (N) 0.432 10.183 20.189 30.127 

Stiffness (N/mm) -2.562 R' 0.999 

Black Medium A 
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"""f-Senr,51. 

- L __ lsl')I"ifst) 

y = -L83292lI - Q.11157 .. """""" 

94 92 

4106 4733 

-16 - 18 

40.280 46.431 

y :-1.56264lI - Q37901 .. ....... 



Red Long 8 

Distance (mm) 132 125 119 11 4 108 104 

Scale (g) 46 1052 2097 3021 4039 4960 

Delta (mm) -7 -13 -18 -24 -28 

Force (N) 0.45 1 10.320 20. 572 29.636 39.623 48.658 

Stiffness (N/ mm) - 1.717 R' 0.998 

Red Long 8 

Red J..·ledium B 

Distance (mm) Ill.5 107.5 104 100 98 94 

Scale (g) 42 1075 2028 3095 3908 4959 

Delta (mm) -4 -7. 5 -11.5 -13.5 - 17.5 

Force (N) 0.412 10.546 19.895 30.362 38.337 48.648 

Stiffness (N/ mm) -2.781 R2 0.997 
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Red MediumB 

_'0 -" , =-2.18092.1 - Q3283S 
II"- D.9!J74, 

Red Short B 

Distance (mm) 45 41.5 39.75 38 36 34 

Scale (g) 23 1222 2044 3072 4037 4806 

Delta (mm) -3.5 -5.25 -7 -9 - 11 

Force (N) 0.226 11.988 20.052 30.136 39603 47.147 

Stiffness (N/mml -4.428 R2 0.995 

RedShortB 
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- -------------- --- .... _----

Orange Long B 

Distance (mm) 126 118 112 105 

Scale (g) 38 1058 2026 3085 

Delta (mm) -8 - 14 -21 

Force (:J) 0,373 10.379 19.875 30,264 

Stiffness (N/mm) -1.567 R' 0.998 

Orange Long B 

-~ _,n 

Orange Medium 8 

Distance (mm) 110 105 1DO 95 

Scale (g) 46 1084 2034 3125 

Delta (mm) -5 -10 -15 

Force (N) 0.451 10.634 19.954 30.656 

Stiffness (N/ mm) -2.055 R' 0.999 

216 

lDO 95 

4117 4929 

-26 -31 

40.388 48.353 

y =-1..S6703a- U1a4a .. ....,.. 

91 87 

'D02 4870 

-19 -23 

39.260 47.775 



Orange Medium 8 

~~~~ _ ... " 
- l __ ls~Ws1) 

, =-~t-CU3l.47 

-25 -lO -'5 - lD -5 . R"- = Q99!M2 

Black Long 8 

Distance (mm) 130 124 119 113 109 104.5 

Scal, (g) 40 1072 2007 3192 4032 4910 

Delta (mm) 0 -6 -II -17 -21 -25.5 

Force (N) 0.392 0.516 19.689 31.314 39.554 48.167 

Stiffness (Njmlll) -1.888 R' 1.000 

81acklong8 

....... ....... _ ... " 
............ 

.......... 
- L __ ISfJrlf51) 

"".:'So 
-," -25 -,. -" - ," 

y =-~7.-Q39569 .. """"'" 
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Black r-,Iedium B 

Distance (mm) ll2 lOS.5 104 99.5 96 93 

Scale (g) 42 1022 2036 3068 4020 4893 
\ 

Delta (mm) 0 -3. 5 -8 - 12.5 -16 -19 

Force (N) 0.412 10.026 19.973 30.097 39.436 48.000 

Stiffness (N/ mm) -2.448 R' 0.997 

81ack Medium 8 

'-~ ....... Sr:J1r:51 

- L .... (Sn-GJ) 

., =-2.44"J&o1b:+QS8ti91 

-lO ->5 -10 .,. 0 .,a = Q.99819 
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Appendix F 

Quarter Car Plans 
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Appendix G 

FPGA VHDL Code 

G.l ADCclker 

- Company: MemQrial University, Dr. Geoff Rideout 

- Engineer: Keith J lVakeham 

- Create Date.- 15:00:26 05/14/2010 

- Design Name: ADCclkr 

- Module Name; ADCclkr - Beha viQral 

- Project Name: Quarter Car LQR with P controller 

- Target Devices: XC3SE1200 

- Tool veT,ldan.!!.- Xilinx ISE 12.3 

- Description; Reduces clock signals 

- Dependenci es.- NjA 
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- Revision: 1,0 

- Revi sion 0.01 - File Created 

- Additianal Comments: 

- 34 count s on the ade and 1436 counts on the reduction clock 

gives an error of 0.008% 

- Pretty good 

library IEEE; 

use IEEE. STD-LOG rC_1164 .AIL; 

use lEEE.STD.LOGrC..ARlTH.AIL ; 

u se IEEE . SIn_LOGIC_UNSIGNED. AIL; 

- Uneomment the following library declarat i on if instantiating 

- any Xilinx primitives in this code. 

- library UNISIM; 

-use UNISIM. VComponents. all; 

entit y ADCcJkr is 

Port (elk in STD-LOGIC; 

sclk2 ou t STD.LOGrC; 

sdk out STD.LOGIC); 

end ADCcJkrj 

architecture Behavioral of ADCclkr is 
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s ignal slow std_logic_vector(18 downlo O} 

ooooooooooooooooooo~ ; 

s ig nal clkt std_logic:='O'j 

signal ~ount std_logicvec tor (6 downto 0) := " 0000000"; 

beg in 

process (el k) 

b egin 

If (elk = ' 1 ' and elk 'event) then 

slow <= slow + 1; 

if slow = 56 then ~56 

c lkt <= ' I '; 

c l a ir slow = 112 then - 112 

clkt <= ' 0 '; 

s low <= " 0000000000000000000"; 

end if ; 

count <= count + 1; 

end if ; 

sclk <= clkt; 

sclk2 <= slow( l ); 

e nd process ; 
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,------------------------------------------------

end Behavioral; 

G.2 ADCreader 

- Company: MemQrial University, Dr. Geoff Rideout 

- Engineer: Keith J Wakeham 

- Create Date: 19:1":-18 0-1/25/2011 

- Design Name: ADer-cad 

- Module Name: A DCread - Behavioral 

- Project Name: Quarter Car LQn wi th P controller 

- Target Device3: XC9SE1200 

- Tool venions: Xilinx ISE If.S 

- Description' Reads i ADC signals from MCPSftOl or similar 12 

bit ADC 

- Dependencies: NjA 

- Revision: 1.0 

- Revision 0.01 - File Created 

- Additional Comments: 
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library IEEE; 

use IEEE . STD_LOGIC_1164 .AIL; 

use IEEE .STD.LOGIC.ARITH. ALL ; 

use IEEE. STD..LOGIC_UNSIGNED. ALL ; 

- Uncomment the following library declaration if instantiating 

- any Xilinx primitives in this code. 

- l i brar y UNI81M; 

- use UNI8IM . VGomponents. all; 

entity ADCread is 

Port (el k in STD.LOGIC ; 

datain in STD.LOGIC : 

datain2 in STD.LOGlC; 

datain3 ;n STD.LOGIC; 

datain4 ;n STD.LOGIC; 

enable ;n STD.LOGIC; 

reset ;n STD.LOGIC; 

out STD.LOGIC; 

es2: o ut STD.LOGlC; 

es3: ou t STD-LOGIC ; 

es4: out STD.LOGIC; 

clkout o u t STD.LOGIC; 

slow clock o ut STD.LOGIC; 
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dataheld4a: out STD.LOGIC_VECTOR (15 

downto 0); 

dataheld4: out STD.J..OGIC_VECTOR (11 

downto 0) ; 

dataheld3 : out srD.J..OGIC_VEGI'OR ( 15 

downto 0) ; 

dataheld3a: o u t STD.LOGIC_VECTOR (11 

downto 0) ; 

dataheld2: out STD.J..OOIC_VECTOR (11 

downto 0) ; 

dataheld out STD.LOGIC_VECTOR ( 11 downto 0»); 

end ADCread; 

archi tectur e Behavioral of ADCread is 

s igna l count s t d_lo g ic _vector (5 downto 0) := MOOOOOO"; 

s ig nal temp !ltd _logic _ve c tor (11 downto 0) := MOOOOOOOOOOOO M; 

s ig nal temp2 s td _logi c_ vector ( ll downto 0 ) : = ~ OOOOOOOOOOOO "; 

s ignal temp3 std _logi c _vector ( ll downto 0 ) := " 000000000000"; 

s ignal temp4 std_logi c_ ve c tor ( ll downto 0) := " 000000000000"; 

s ignal o utput: s td _logi c _vector ( ll downto 0) := " 000000000000"; 

signal output2" std _logi e vector(il downto 0) := MOOOOOOOOOOOO"; 

s ig nal output3: s td _logievector( 15 downto 0) 

0000000000000000 " ; 

s ig n al outpu t4 : std _Io g ic_ ve c tor (1l downto 0) := " 000000000000"; 

s ignal pwmf : !l td _lo g ic := ' 0 '; 
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signal slow std _logic:= ' 0 ' : 

s ig n al csstate std_logic:= ' O ' ; 

begin 

process( elk ) 

b egi n 

if (clk = ' 0' and elk ' event ) then 

if reset = ' 0' then 

if enable = '!' then 

count <= count + I; 

if count = 0 then 

' 0 ' ; 

elsif count = 4 then 

temp( !l ) <= datain; 

temp2( 11) <= datain2; 

temp3(11 } <= datain3; 

temp4 ( 1l ) <= datain4; 

els if count = 5 then 

telllp ( lO ) <= datain ; 

temp2 ( 1O) <= datain2; 

tcmp3(10) <= dataill3; 

temp4( 10) <= datain4 ; 

e l s if count = 6 then 

temp (9 ) <= datain ; 
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temp2(9) <= datain2; 

tcmp3(9) <= datain3; 

telllp4 (9) <= datain4; 

e l si f count = 7 t h en 

tcmp(8) <= datain; 

temp2(8) <= datain2; 

tcmp3(8) <= datain3; 

telllp4(8) <= datain4; 

elsif count = 8 then 

tcmp(7) <= datain; 

telllp2(7) <= datain2; 

telllp3(7) <= datain3; 

telllp4(7) <= datain4; 

elsif count = 9 then 

telllp(6) <= datain; 

telllp2(6) <= datain2; 

telllp3(6) <= datain3; 

temp4(6) <= datai n4; 

e l s if count = 10 then 

temp (5) <= datain; 

temp2(5) <= dataill2; 

temp3{5) <= datain3; 

telllp4(5) <= datain4; 

el s if count = 11 then 

tcmp(4) <= datain; 
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temp2{4) <=" dataill2; 

temp3{4) <=" dataill3; 

temp4 (4) <=" datain4; 

elsif count = 12 then 

tcmp(3) <= datain; 

temp2 (3) <= datain2; 

tcmp3(3) <= dataill3; 

temp4(3) <= datain4; 

slo w <= not slow; 

clsif count = 13 then 

tcmp(2) <== datain; 

temp2 (2) <= datain2; 

temp3(2) <= datain3; 

tcmp4(2) <= datain4; 

elsif count = 14 then 

temp(l ) <= datain; 

temp2(1) <= datain2; 

temp3 (1) <= datain3; 

temp4(1) <= datain4; 

elsif count = 15 t h en 

tcmp(O) <= datain; 

temp2(0) <== data in 2; 

temp3 (0) <= datain3; 

tcmp4 (0 ) <= da tain4 ; 

cl s if con nt = 16 the n 
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csstate <= ' 1 '; 

el s if count = 26 the n 

end if ; 

end if ; 

e l s if reset = '1' theu 

temp <= "OOOOOOOOOOOO~; 

output <= temp; 

slow <= not slow; 

count <= ~ OOOOOO~ ; 

output2 <= temp2; 

output3(15 downto 4) <= tcmp3; 

output4 <= temp4; 

output <= ~ 000000000000"; 

output2 <= ~OOOOOOOOOOOO"; 

output3 <= "0000000000000000"; 

count <= ~ 000000" ; 

end if ; 

end if ; 

end process; 

cs <= css t ate; 

cs2 <= csstate; 

cs3 <=css t ate; 

cs4 <=csstate; 
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dataheld <=o utput ; 

clkout <= elk; 

slowclock <= slow: 

dataheld2 <= outpllt2: 

-dataheld3 <"" '0' (3 output fj "0000"; 

- dataheld3 < = '1' (3 not (output) fj "1111"; 

dataheld3 <= output3; 

datahe ld3a <= output3(15 downto 4); 

dataheld4 <= output4; 

dataheld4a <= output4 & "0000"; 

end Behavioral; 

G.3 RunAverage2 

- Company: Memorial University, Dr. Geoff Rideout 

- Engineer: Keith J Wakeham 

- Create Date: 19:14:48 04/25/2011 

- Design Name: RunAverage2 

- Module Name: RunAverage - Behavioral 

- Proj ect NarJU;; Quarter Car LQR with P controller 

- Target Devices; XC3SE1200 

- Tool version.~: Xilinx ISE 12.3 
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- Description: Averages 16 samples to reduce noi5e, provides 

different iated 5ignal 

- Dependencies: N/A 

- R evision: 1.0 

- Revi5ion 0.01 - F ile Created 

- Addit ional Comment5: 

librar y IEEE ; 

use IEEE. STD.LOG IC.1164 .AIL ; 

use IEEE.STD.LOGIC..ARITH.AIL ; 

use IEEE.STD.LOG1C.UNSIGNED. AIL ; 

- Uncomment the following library declaration if in5tantiating 

- any Xilinx primitive5 in this code. 

-li brary UN181M; 

-use UN1SIM. VCompQnents. all; 

e n ti t y runaverage2 is 

Port (elk in STD.LOGIC; 

slowclk out STD-LOGICj 

din in STD.LOGIC.VECrOR (II downto 0) j 
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din2: in SID-.LCKaC_VECI'OR ( 11 downto 

0); 

din3: in STDJ.OGIC_VECrOR (II downto 0) 

d in 4 in STD..LOGIC_VECTOR (11 downto 

0); 

dout out SI'DJDGIC_VECfOR (1 1 downto 0); 

dout2 out STD..LOGIC_VECrOR (11 downto 

0); 

dOllt3 out srn.LOGIC_VECrOR (11 downto 

0); 

dout4 out STD...LOGIC_VEcrOR (11 downto 

0); 

testout out ST'D.LOGIC_VECrOR( 15 

downto 0); 

dotout out signed ( 16 downto 0); 

dotOllt2 out signed (16 downto 0); 

dotout4 out signed ( 16 downto 0 »); 

end r unaverage2; 

architectur e Behavioral of runaverage2 is 

signal coun t std _logic _vector (4 downto 0) := "00000"; 

signal set std_log i c:= '0'; 
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s ignal position std_logic_vector ( 15 downto 0): = ~ 

0000000000000000" ; 

signal positiou2 std_logic_vector(15 downto 0):= 

oooooooooooooooo~ ; 

s ig nal position4 std_log ie-vec tor (15 downto 0):= 

0000000000000000" ; 

signal position 4a st d_ log i c-yector ( 15 dowuto 0):= " 

0000000000000000" ; 

s ig nal current std_logic_vector( 15 downto 0):= ~ 

0000000000 000000 "; 

signal c urrent a std_log ie-vector(15 downto 0): = " 

0000000000000000" ; 

s ignal pout std_log icvector{l 1 downto 0) := " 000000000000" ; 

s ignal vout signed (1 6 downto 0) := "00000000000000000 "; 

signal cout std_logicvector (I I downto 0) := "000000000000"; 

signal positio ll ll. std_logic_vector(15 dowl)to 0):= " 

0000000000000000" ; 

signa l positio n2 a std_ logicvector( 15 downto 0):= ~ 

0000000000000000" ; 
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s ignal pouta std_logic_vec tor (l l downto 0) := ~OOOOOOOOOOOO "; 

signal vouta signed(16 downto 0) := " OOOOOOOOOOOOOOOOO ~; 

s ig nal poutc std_logic-vector{l l downto 0) ;= "000000000000 "; 

signal voutc signed{1 6 downto 0) := "00000000000000000 "; 

b egi n 

process (clk) 

begin 

if (elk = ' 1' and elk 'event) then 

count <= count + 1; 

if set = ' 0' the n 

if count < 16 then 

position <= position + din; 

positiona <= positiona + din2; 

current <= current + din3; 

position4 <= position4 + din4; 
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e l s ir cou nt = 16 then 

pout <= position ( 15 downto 4); 

vout <= s ign ed ( ' 0 ' & po s ition ) - s igned 

(' 0 ' & po s ition2 ) ; 

-\lou t <= signed ( po si t i on ) - s igne d ( 

po si t ion.!?); 

pouta <= positiona{l5 downto 4); 

vouta <= s igned (' 0 ' & po s itiona l - sign e d 

( '0 ' & position2a ) ; 

cout <= curr e nt ( 15 downto 4); 

poutc <= po s ition4 (15 downto 4) ; 

voutc <= sign ed (' O' & position4 ) - signed 

(' 0' & position4a ) ; 

e l s if count = 17 then 

position2 <= " 0000000000000000"; 

po s ition2a <= " OOOOOOOOOOOOOOOO ~ ; 

currenta <= " 0000000000000000 "; 

position4a <= " OOOOOOOOOOOOOOOO ~ ; 

el s if count = 18 then 

set <= ' 1 '; 

end if ; 

e hlif set = ' I ' t he n 
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if count < 16 the n 

positionZ <= pos i tionZ + din; 

positionZa <= positionZa + dinZ; 

currenta <= currenta + d in3; 

position4a <= position4a + din4 ; 

e l s if count = 16 t h e n 

pout <= positionZ(15 downto 4); 

vout <:: signed ('0' & positio n Z) - ~igncd 

( ' 0' & posi t ion) ; 

-tJout <= signed(position2) - s ign ed( 

position ); 

pout a <= positionZa(15 downto 4); 

voutu <"" si g ned( ' O' & positionZ a) -

signed ('0' & positiona); 

cout <= currenta ( 15 downto 4) ; 

poute <= position4a(15 downto 4) ; 

voute <= signcd('O' & positioIl4a) ­

signed ('0' & position4); 

e l s if eount = 17 t hen 

position <= "0000000000000000"; 
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posi t iona <= " OOOOOOOOOOOOOOOO ~ ; 

current <= ~ 0000000000000000 " ; 

posi t ion4 <= "OOOOOOOOOOOOOOOO~; 

c l s if count = 18 then 

end if ; 

e nd if ; 

e nd if ; 

end process ; 

slowclk <= count ( 4 ) ; 

dout <= pout; 

dotout <= vout ; 

dout2 <= pouta ; 

dotout2 <= vouta; 

dout3 <= cout; 

dout4 <= poutc ; 

set <= ' 0 '; 
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dotout4 <= voutc; 

testout <= pout & " 0000"; -STD-LOGIC_VECTOR (pout(IS downto 0)) 

;--poutc & "0000"; 

end Behavioral; 

G .4 Fixed Point 

- Company: Memorial University, Dr. Geoff Rideout 

- Engineer: Keith J Wakeham 

- Create Date: 19:52:25 07/16/2011 

- Design Name: FixedP 

- Module Name: FixedP - Behavioral 

- Proj ect Name: Quarter Car LQR with P controller 

- Targ et Devices: XC9SEI200 

- Tool versions: Xilinx ISE 12.9 

- Description: Fixed Point mathematical Controller 

- Dependencies: N/A 

- Rev ision: 1.0 

- Rev ision 0.01 - File Created 

- Addit ional Comments: 
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library IEEE; 

u se IEEE. STD_LOC IC_1164 .AIL; 

use IEEE.STD.LOGIC...ARITH. AIL j 

use IEEE.STD.LOGIC_UNSICNEO. AIL j 

libr a r y ieee_proposed; 

use IEEE-proposed. fixed_float-types. a ll ; 

use IEEE-proposed. fixed_pkg . AIL; 

- Uneomment the following library declaration if using 

- arithm etic functions with Signed or Unsign ed values 

-use IEEE.NUMERlC.STD.ALL j 

- Uncomment the foI/ow i ng library declaration if instantiating 

- any Xi/inx primiti ve s in this code. 

-library UNISIM; 

-use UNISIM. VGomponents. all; 

e ntity Fixed P is 

Port ( 

elk in STD.LOGIC ; 

in STD.LOGIC; 

swO in STD.LOCIC ; 

sw l in STD.LOCIC ; 
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) ; 

end Fi xcdP ; 

s\\'2 in STD..LOGIC; 

sw3 in STD..LOGTC; 

Din in S1'D..LOGIC.VECTOR (11 

downto 0) ; 

Din2 in STD..LOGIC_VECTOR (11 

downto 0); 

Vin in signed (16 downto 0); 

Vin2 in signed (16 downto 0) ; 

Vin4 in signed (16 downto 0); 

Cin in STD..LOGIC_VECTOR (11 

downto 0); 

Driv eout out STD.LOGIC_VECTOR 

(11 downto 0); 

LED : out STDJ..DCIC.VECTOR (7 

downto 0) 

architecture Behavioral of FixedP is 

-PostiQIl 1 

s ignal zcroedpos signed (12 downto 0) :0:= MOOOOOOOOOOOOO " ; 

signal zerohcldpos std_logit-vector (11 downto 0) :0:= " 

000000000000" ; 
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s ignal scale ufixed ( -I downto -16) := "0000010010110000"; -" 

about 0.018910546 mn per bit" http://www. byteeralt.com/ 

Fixe d_Poin L Co nverter 

s ignal position sfixed (13 downto - 16) := to_sfixed (0, 13 , 16); 

- Position storage in mn from zero 

s ignal gain l sfixed (5 downto - 2) := to _s f ixed (0 , 5, - 2); -

GAIN 3, (0 . 009, 5, - 2) Ridequality, (O . 192 , 5 , -2) roadholding 

, (-0 .565, 5, -2) extreme tire 

si g nal force s fi xed (19 downto - 18) := to_sfixed(O,IS , JS); -

Posit i on storage in mn Irom zero 

signal forcetest std _Iogic _vector (7 downto 0) := "OOOOO OOO~; 

- Postion 2 

signal zeroedpos2 s ign ed (12 downto 0) := "0000000000000"; 

s ignal zeroheld pos2 std _logic-vector (I I downto 0) := " 

000000000000 " : 

s ignal scale2 ufixed (- 1 downto -16) := "00000 100101 10000"; -" 

about 0.018910546 mn per bit" http://www. byteeralt .eom/ 

Fixed_PoinL Conve r ter 

si g nal positio n 2 s fix ed (13 downto - 16) := to _s fixed(0,13, 16); 

- Positioll storage in mn Irom zero - 0.535 

signal gain 2 : sfixed (5 downto - 2) := to _sfixcd(O, 5, - 2); 

GAIN 1, (-1.002, 5, -2) Ridequality , (-0.524, 5, -2) 

roadhold in g, ( - 1.001 , 5 , -2) extreme tir e 
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signal forceA. sfixed ( 19 downto - IS) := to _s fixed(O, l S,lS); -

Position storage in rrm from zero 

s ig nal forcetesta std _logic _vector (7 downto 0) := "OOOOOOOO ~ ; 

- Ve locity 1 

signal vscale sfixed (0 downto - S) := to _sfixcd (0.5S59375 

,O,-S); - 0.018310546 .. 512 samples/ sec /16 for added bits 

of accuracy for oversampling 

signa l vresuit sfixed (17 downto -S) :=to_sfixed(0,17 ,-S); 

sig n al vgain: sfixcd (5 downto - 6) := to _sfixed(0.5 , 5 , - 6); ----: 

GAIN 4 (0.0561 , 5, - 6) Ridequality, (0.044, 5, -6) roadholding 

, ( - 0.335, 5, -6) extreme tire 

signa l forcc2: sfixed (24 downto - 14) := to _sfixcd(0,24,-14); 

signal force2trunc: sfixcd (19 dowllto -IS) := to _sfixed(0, 19, - 18); 

- Velocity 2 

signal vscale2: sf ix cd (0 dowllto -S) := to _sfixed (0.5859375 

,0, - 8); - 0.018310546 • 512 samples/ se c /16 for added bits 

of accuracy for oversampling 

s ignal vrcsuit2 sfixed (17 downto - 8) := to _sfixed(0 ,17,-S); 

s ignal vgain2: sfixed (5 downto - 6) := to _sfixcd(O, 5, -6);­

GAlN 2 (-0.0503, 5, - 6) Rideq uality, (0.0266 , 5, -6) 

roadho lding , ( - 0.050, 5, -6) extreme tire 

signal force2a.: sfixed (25 downto -14 ) := to _sfixed(O, 25 , -14); 
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s ig nal forceZtrunca: sfixed (19 downto ~18) : = to_sfixed(0,19,~18) 

-Velocity i 

s igna l vsca le4: sfixed (0 downto ~8) := to_sfixed{0.79568 ,0,~8); 

- left as old O.02i902 • 512 / 16 

s ignal vroad sfixed (l7 downto ~8) : = to _s fixcd{0 , 17, ~ 8); 

s ig nal vunsprung: sfixed (18 dowllto ~8) : = to _s fixed{0 , 19,~8); 

s ignal vsprung: sfixed (19 downto - 8) :=to_sfixed( 0 ,19, ~ 8); 

-Current 

s ig nal cscale s f ixed (0 downto ~ 16) := to _s fixed(0.063171561 

,0,~16); - 0.00625461 AMP / Bit * 10.1 N/A = 0.069171561 

s ignal zeroedcurrent signed (12 downto 0) := "OOOOOOOOOOOOO~; 

signal realforce sfixed ( 13 downto ~ 16) := to _s fixed{0,13,16); 

-Total Force P controller 

signal forcctarget sfixed (20 downto ~ 18) := to_sfixed (0,20, ~ 18); 

s ignal czcrohe ldcurrent s t d_logicvector{ll dowllto 0) := " 

000000000000" ; 
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---~----------------

s igna l forcetarge t trunc: s f ixed (13 downto - 16) :=to_sfixed 

(O, 13 ,- 16) ; 

signal error: sfixed ( 14 downto - 16) :=to_s fixed(O , 14 ,- 16)j 

signal pgain: sfixed (8 downto -1 ) := to_sfixed (-50,8, - I); 

si g nal D riveheld sfixed (23 downto -17) : = t o_s f ixed(O ,23 ,- 17) ; 

s ignal Driveheldtrunc signed (11 dowuto 0) := ~ 000000000000 " ; 

s ig nal switches std_!ogievector (3 downto 0); 

s ignal seg std_logic_vector ( 7 downto 0); 

beg in 

process(clk) 

begin 

If (e lk = ' I ' and elk 'event) the n 

-Basic zeroing 

if zero = ' I ' then 

zero h eldpos <= Din; 

zeroheldpos2 <= Din2; 

czeroheldcurrent <= Cin; 

end if ; 
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zeroedpos <= signed ('0' & zeroheldpos) - signed ('0' & Din 

); 

zeroedpos2 <= signed ('0 ' & zeroheldpos2) - signed ('0' & 

Din2); 

zeroede urrent <= signed('O' & czeroheldeurrent ) - signed 

(' 0 ' & Cin); 

-LED oll tpUt selection 

case swit ch es is 

when "000 0" => seg <= to_S LV(position(ll downto 

4 »; -- 0 

when "ODD} " => seg <= to_S LV (position 2(l1 downto 

4)); -- 1 

when "0010" => seg <= to _SLV(foree(ll downto 4»; 

-2 

when "~O li '' => seg <= to_S LV ( forcea{ 11 d ownto 4» 

; - 9forcetarget 

when " 0100 " => seg <= to_S LV(forcetarget(11 

downto 4»; 

when " OlOl ~ => seg <= to_SLV(error(11 downto 4»; 

when " OlIO " => seg <= STD.LOGIC_VECrOR( 

Driveheldtrunc ( 11 dowllto 4» ;-to_8L V ( 

realforce(13 d01lJnto 5)); - actual force 
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when "0111" => seg <= to _SLV(Vsprung(7 downt o 0)) 

~ to_SLV(Vunsprung(7 downto 0)) + 16; - to_SLV 

(realforce(7 down to 0)); - actual force 

when " 1000" => seg <= Din(7 downto 0); 

when " 1001 ~ :)- aeg <= Din2(7 downto 0); 

when " 10 10" => seg <= Cin(? downto 0); 

when "1011" => seg <= STD...LOOIC_VECTOR(Vin(7 

downto 0)); - to _slv(force2trunc{l9 down to 12) 

); - b 

when " 1100" => seg <= STD...LOOIC_VECTOR(ViIl2(7 

downto 0)); -- c 

when " 1101" :)- seg <= STD...LOOIC_VECTOR(ViIl4 (7 

downto 0)); - d 

when " 1110" => seg <= to_SLV( error (7 downto 0)); 

- E 

when others => seg <= "00000000"; - F 

end case; 

- Saturation Code 

if foree( l !)) = '0' and to _SLV(foree(18 downto 7)) > a 

the n 

foreetest <= "0111 1111"; 

c l a ir foree( 19) = '1 ' and to_SLV( not force(18 downto 7)) 

> 0 then 

forcetest <= "10000000"; 
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e lse 

forcetest <= to_S LV(force (7 downto 0»; 

end if ; 

if force2(24 ) = ' 0 ' and to_S LV(force2 (24 downto 19» > 0 

the n 

force2trun c( 19 downto - 18) <=" 

01111111111111111111111111111 11 1111111 "; . 

e l s if force2 ( 24 ) = ' 1 ' and to_SLV( not force2(24 downto 

19» > 0 the n 

e lse 

end if ; 

force2 t r u nc ( 19 downto - 18) <=" 

10000000000000000000000000000000000000" ; 

force2 t runc {19 downto - 18) <= force2(I9 downto 

- 14) & " 0000"; 

if force2a(25) = '0' and to_S LV (forcc 2a (25 downto 19» > 

o then 

force2trunca(19 downto - 18) <=" 

01111111 111 111111111111111111111111111 "; 

el s if force2a(25) = ' 1 ' and to_SLV( not force2a(25 downto 

19 » > 0 the n 

force2t r unca(I9 downto - 18) <=" 

10000000000000000000000000000000000000" ; 
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e ls e 

end if ; 

forc e 2trunca ( 19 downto - 18) <= for ce 2a(19 downto 

- 14) & " OOOO ~; 

if forcetarg e t ( 20 ) ':= ' 0 ' and to_SLV ( forc e tar ge t ( 19 downto 

13)) > 0 t hen 

for c etarge ttrunc (13 downto - 16) <= " 

0111 111111 11 1111 111 11111 111 111 "; 

e l s if force t ar ge t ( 20 ) = ' I ' and to_SLV ( uot fo r ce tar ge t ( 19 

downto 13)) > 0 the n 

else 

end if ; 

forccta r gett r un c (13 downto - 16) <=" 

100000000000000000000000000000 " ; 

forcctarg e ttrun c( !3 dowuto - IG ) <= forc e t ar ge t ( 13 

downto - 16); 

if Drivch c ld (23 ) = '0 ' and to_SLV ( Driveheld (23 downto 11) 

) > 0 then 

D riv c he ldtrunc ( ll downto 0) <= " 0 11111 1111 11 "; 

e ls i f Driv e he ld (23 ) = '1 ' and to_SLV ( not Driv ehe ld (23 

downto 11 )) > 0 th en 

Driveheldtrunc ( 11 downto 0) <= " 100000000000 "; 
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else 

end if ; 

end if ; 

Drivcheldtrunc(11 downto 0) <= signed (to_S LV ( 

Driveheld (I 1 dowuto 0»); 

end process; 

-Position 1 

position <= sfixed (zeroedpos) .. sfixed ('0' & scale); 

force <= position .. gainl; 

-Position 2 

position2 <= sfixecl(zeroeclpos2) .. sfixed('O' & scale2); 

foreca <= position2 .. gain2; 

-Velocity 1- relative velocity 

vresult <= sfixecl{Vin) .. vseale; 

foree2 <= vunsprung .. vgain; 

-Velocity 2- relative velocity 

nesult2 <= sfixed (Vin2) .. vseale2; 
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force2a <= vsprung * vgain2; 

- Velocity .( - ground velocity 

vroad <= sfixed (Vin4) vscaie4; 

-All the absolute velocities 

vunsprung <= vroad + vresult; 

vs prung <= vroad + vresu l t + \'result2; 

-Current to real force 

realforce <= sfixed (zeroedcurrent) " cscaie; 

-Force 

force t arget <= force + force2trunc + forcea + force2 t r u nca; 

error <= realforce - forcetarge t trunc; 

Driveheld <= erro r " pgain; 

switches (0) <= sw3; 

switches(l) <= sw2; 

switches (2) <= swJ; 

switches(3) <= swO; 
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LED <= seg; 

D riveout <= STIH.(>GIC_VECrOR(Drivehelcltrunc); 

e nd Behaviora l ; 

G .5 PWM 

- Company: Memorial University, Dr. Geoff Rideout 

- En9ineer: Keith J lVakeham 

- Create Date: 19:15:£6 11/90/£009 

- Design Name: PHM 

- Module Name: ~1 - Behavioral 

- Project Na~: Quarter Car LQR with P controller 

- Target Devices: X C9SE1£00 

- Tool versions: Xilinx [SE 12.3 

- Description: 11 bit Pulse Width Modulator for LMD18£00 

- Dependencies: N/A 

- Revision: 1.0 
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- Revision 0.01 - F ile Created 

- Additional Comments : 

library IEEE; 

u se IEEE. STD_LOGIC_ll64 .AIL ; 

use IEEE.STD-LOGIC-ARITH.AIL ; 

u se IEEE. STD...LOGIC_VNSIGNED. AIL; 

- Uncomment the following l i brary declaration if i nstantiating 

- any Xilinx primitives in this code. 

-li brary UN1SIM; 

- use UNIS1M . VComponents. a II; 

entity F\VM is 

Port ( OJX:K : in STD...LOGIC; 

ENABLE in STD..LOGIC; 

RSI' : in STD...LOGlC; 

SPEED: in SID..LOGIC_VECrOR (i I downto 0); 

PWMol.lt : out STD..LOGIC; 

-[n1 out STD-LOG[C; 

-ln2 out STD-LOGIC; 

S8 out STD...LOGlC ; 

-S82: out STD..LOGIC; 

Dir out STD...LOGlC); 
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end f\\~I; 

a r c hit ec t u r e Behavioral of ? W>I is 

s ignal count std_logic_vector (10 downto 0) := " 00000000000 " j 

s ign a l pwmh std_logic:= ' 0 '; 

s igna l dirs t ore: std_ logic :=' 0 ' ; 

-signal M£store: std_logic : = '0 '; 

s ig nal SBstore: std_logic :=' 0 '; 

s ignal Direc t ion std_logic:= ' 0 'i 

s ig nal speedheld std_logievec t or(IO dowllto 0) := " 00000000000 " 

b e gin 

process (a.cx:K) 

beg in 

if a.cx:K = ' 1 ' a nd a.ocK'event the n 

if RST = ' 0' the n 

if ENABLE = '1' the n 

SBstore <= '0 'j 

count <= coun t + I ; 
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e lse 

if count = 0 t hen 

end if ; 

Direction <= speed (II); 

speedhcld <= Speed( l O 

d ownto 0) ; 

if Di r ection = ' I ' the ll 

Dirstore <= ' I '; 

if cou nt > not (speedheld 

( 10 downto 0» then 

pwmh <= ' 0 '; 

el se 

pwmh <= ' I '; 

end if ; 

e l s if Direction = ' 0' the n 

end if ; 

DirStore <= ' 0 '; 

if count > speedheld (10 

downto 0) the n 

pwmh<= '0'; 

e lse 

pwmh <= ' I '; 

end if ; 

pwmh <= ' 0 '; 
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SBstore <= ' 1 '; 

DirStore <= ' 1 '; 

count <= " 00000000000" ; 

end H ; 

e l s if RST = ' 1 ' t he n 

end if ; 

end if ; 

end process; 

PWMout <= pwmh; 

SB <= SBstore; 

- SBf <= Not(SBstore} ; 

Dir <= DirStore; 

- Inl <= DirStore ; 

- In2 <= Not(DirStore}; 

end Behavioral; 

G .6 H ex Display 

pwmh<= '0'; 

SBstore <= '0'; 

DirStore <= ' 1 '; 

count <= "00000000000"; 
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- HEX .. IJJSPLA Y Chuck 

McManis 17-Feb-2001 

- This is a driver for a 7 segment LED display .. It converts a 

4-bit nybble 

- into a hexadecimal character 0-9a-f. Some letters are upper 

case others 

- lower case in an effort to distinguish them from numbers so b 

and 6 differ 

- by the presence of the top segment being lit or not. (for 

example) 

-Modified by Keith Wakeham to correct the output for the wiring 

sequence on 

- Digilent Spartan 3 development boards 

libr a r y IEEE; 

u se IEEE .. STD_LOG IC_1164 .AIL; 

u se IEEE .. NUMERlC..sID. AIL j 

use IEEE.STD..LOGIC_UNSIGNED .. AlL ; 

e ntit y hex_display i s 

Port (value in std_logic_vector ( 15 downto 0); 

elk in std_logic; 

blank in std_logic; 
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test in std_logic; 

o u t std_logic; 

an2 o ut std_logic; 

an3 ou t std _Iogic; 

an4 ou t std _Iogic; 

segs o u t std_logic _vector(7 d ownto 0)); 

end hex_display; 

- This is a good third project since it is simply combinatorial 

logic. When 

- synthesized the selection statement (case) generates a decoder 

that takes 

- Jour input lines and generates eight output lines. (the 

decimal point IS 

- always set to '0//.' 1/ you want to get decima l point control, 

try adding 

- another pin (dp) to the port desc ription, and then you can 

assign it with 

- a concurre'lt signal assignment 

a r c h i t ecture behavioral of hex _di!;;play i s 

sig n a l cou nt std_log i c_vector (1 downto 0) :: "00"; 

s ig n a l seg std_logiLvector(7 downto 0) := "OOOOOOOon; 
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b e gin 

process (va lue, bl ank, t est, elk) i s 

begin 

if elk = ' l ' and c lk ' even t t he n 

count <= count + 1; 

if count = 0 the n 

an4 <= '0'; 

an <= ' 1 ' ; 

if ( b la nk = ' 1 ') the n 

seg <= " OOOOOOOO ~ ; 

els ie ( te s t = '1 ') then 

seg <= " 11111111 "; 

els e 

ca se va lu e(15 downto 12 ) 

i , 

when " 0000" => scg <::: " 

00000011";- 0 

when " 0001 " => seg <=" 

10011111 "; - 1 

when " 0010 " => seg <= " 

00100101 "; - 2 

when "0011 " => seg <= ~ 

0000110 1"; - S 

when " 0100 ~ => seg <= " 

10011 001 ";- 4 
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when " 0101~ => seg <= ~ 

01001001~; - 5 

when "0 110" => seg <= ~ 

01000001~; - 6 

when " Olll ~ => seg <= " 

00011111 n ; - 7 

when " 1000" => seg <= " 

00000001 ~; - 8 

when " 1001 " => seg <= " 

00001001 ~; - 9 

when " 1010 n => seg <= n 

00010001 "; - A 

when " 1011 " => seg <:::" 

11000001 "; - b 

when " 1100" => scg <= " 

01100011" ; - c 

when " 110\" => seg <=" 

10000 101 "; - d 

when " 1110" => seg <=" 

01100001 "; - E 

when othe r s => seg <= " 

01 110001"; - F 

end case; 

end i f ; -ella case 
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e l s if count = I then 

an4 <= ' I '; 

an3 <= ' 0 '; 

if ( blank = ' I ') then 

seg <= ~ 00000000 " ; 

e l s if (tes t = ' I ') the n 

seg <= ~ llllll I 1 n; 

e lse 

case valuc ( 11 downto 8) 

i , 

when ~ 0000 " => seg <= ~ 

00000011 " ; - 0 

when ~ OOOl n => seg <= " 

10011111 ~; - 1 

when " 00 10" => se g <= " 

001001 0 1" ; - 2 

when " 0011 " => seg <=" 

000011 0 1"; - S 

when n O I OO ~ => seg <= " 

10011001 "; - .4 

when " 0101 " => seg <=" " 

0100 1001'; - 5 

when ~ Ol 10" => seg <= ~ 

OIOOOOOl n; - 6 
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when nO lll n => seg <= ~ 

00011111 "; - 7 

when " 1000" => seg <= " 

00000001 "; - 8 

when n IOOI " => seg <= n 

00001001"; - 9 

when " 1010" => seg <= " 

00010001"; - A 

when " lOll" => seg <=" 

11000001"; -b 

when " 1100" => seg <= " 

01100011 "; - c 

when " 1101 " => seg <=" 

10000101 "; - d 

when " 11 10" => seg <= " 

0110000 1"; - E 

when ot h e r s => seg <= " 

01110001 "; - F 

end case ; 

end if ; -end C(lse 

eisif count = 2 t hen 

an3 <= ' 1 '; 

an2 <= ' 0'; 

i f (bla nk = '1') t he n 

seg <= "00000000"; 
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elsif (tcst = ' I ') then 

scg <= " 11111111 "; 

else 

case value (7 downto 4 ) 

;, 

when " 0000 " => seg <= " 

00000011 " ; - 0 

when " 0001 " => seg <= " 

10011111 ~ ; - 1 

when " 0010 " => seg <= " 

00 100101" ; - 2 

when " ~Oll '' => seg <=" 

00001101 "; - 3 

when " 0100 " => seg <= " 

100liOOI"; - 4 

when " 0101" => seg <=" 

0100 1001 "; - 5 

when " 0110 " => seg <= " 

01000001 " ; - 6 

when " 0111 " => seg <= " 

00011111 "; - 7 

when " 1000" => seg <= " 

00000001 "; - 8 

when ~ 1001 " => seg <= " 

00001001"; - 9 
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when " 1010 ~ => seg <= " 

0001000 1"; - A 

wben "1011~ => seg <= ~ 

11000001";-b 

when " 1100 " => scg <= " 

OllOOOll";-c 

when ~liOl" => seg <=" 

10000101"j-d 

when " 1110" => seg <=" 

01100001 "; - E 

when othe rs => seg <= " 

01110001"; - F 

end case : 

end if ; -end case 

elsif count = 3 then 

Rn2 <==' '1' 

an <= 'O'j 

if (b l ank = ' 1 ') tbe n 

seg <= "00000000"; 

els if (test = '1') the n 

seg <= "1 1111111 "; 

e lse 

case value (3 downto 0) 

i , 
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when ~ OOOO ~ => seg <= M 

00000011 ~; - 0 

when " 0001 " => seg <= M 

10011 111 "; - 1 

when " 0010 " => seg <= " 

00100101 "; - 2 

whcn ~ 0011 " => seg <= M 

00001101 ~ ; - 9 

whcn " 0100 " => scg <= M 

10011001 "; -./ 

whcll " 0101 " => scg <= " 

01001001 "; - 5 

when " 0110 " => seg <=" 

01000001 "; - 6 

when " 0111 " => seg <=" 

00011111 ~; - 7 

when " 1000" => seg <= " 

00000001 "; - 8 

when " 1001 " => scg <= " 

00001001 "; - 9 

whcll " 1010" => seg <= " 

00010001 "; - A 

whcll " lOll " => seg <=" 

1100000l ~; - b 



when ~ 1100~ => seg <= ~ 

011000 11 ~; - t: 

when " 110 1" => seg <=" 

10000 10 1"; - d 

when "1110" => seg <=" 

01100001"; - E 

when othe r s => seg <= " 

OlllOOO I ~; - F 

end case; 

end if ; - end case 

end if ; - end count 

end If ; -end elk 

end process; 

segs <= Beg; 

end be h av iora l ; 

G.T Logger2 - Arduino 

Analog in put, analog outpu t , seria l output 

Reads an a n nJog input pin, maps the result to a range from 0 t o 

255 
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and uses the resul t to set the pulsewidth modulation (f'Y.\1) of an 

output pin 

Also prints the resu l ts to the serial monitor. 

The circuit; 

.. potentiometer connected to analog pin O. 

Ce nter pin of the potentiometer goes to the analog lJin. 

side pins of the potentiometer go to +5V and ground 

.. LED connected from digital pin 9 to ground 

created 29 Dec. 2008 

}.Iodified 4 Sep 2010 

by Tern Igoe 

Modified 27 July , 2011 

by Keith Wakeham 

This example code is in the publ ic domain . 

• j 

II These constants won't change. They're used to give names 

II to the pins used: 

const int analog ln Pin l = AO: II Analog input pin that the 

potentiome t er is attached 
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const int analoginPin2 = AI; 

int analog inPin3 = A2; 

int analog i n P in4 = A3; 

Ilconst int anaiogOutPin = 9; II Analog output pin that th e LED 

is attached to 

int sensorValue I = 0; 

illt sellsorValue2 = 0; 

illt sellsorValu.e3 = 0; 

int sensorValue4 = OJ 

illt sumI = 0; 

in t sum2 = 0; 

int SIlm3 = 0; 

int sIlm4 = OJ 

int count = OJ 

unsigned long timer; 

unsigned long puisetime; 

void setup() { 

II value read from the pot 

II initialize serial communications at 9600 bps ; 

Serial. begin(1l5200); 

void loop 0 { 
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/ / read th e analog in value: 

if (count < 10){ 

sensorValuel = analogRead(analog l nPinl); 

sensorValue2 = ana logRead(analog l nPin2); 

sensorValue3 = analog Read(analog l nPin3); 

sensorVa lue4 = analogRead(analog lnPin4 ); 

suml = sensorValuel + suml; 

sum2 = sc nsor Value2 + sum2; 

sum3 = se nsorValue3 + sum3; 

sum4 = SensorValue4 + sum4; 

co unt ++; 

else { 

// output = sum * 0.007324218;//0.003662109; 

//output2 = sum2*0.00435458 I j 

pulsetime = micros(} - timer; 

// dout = (sampleold - output)/(pulsctimc.le-3)j 

/ / sampleold = output; 

Serial. print(suml); 

Serial print ( ~, ") j 

Serial.print(sum2); 

Serial. print ( ~, ") j 

Serial. print(sum3); 
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Serial print( ", "); 

Serial. print (sum4 ); 

Serial. p r int ( ", "); 

Serial. println (p u lsetime); 

timer = micros() ; 

count = 0 ; 

suml = 0; 

sum2 = 0 ; 

sum3 = 0 ; 

sum4 = 0; 

jjdclay(J O) ; 
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