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ABSTRACT 

Changes in vegetation distribution due to climate change are a concern in alpine 

tundm ecosystems. Past vegetation change was assessed and a cellular automata-Markov 

(CA-Markov) modcl was uS<.-d to predict future land cover scenarios in the Torngat 

Mountains National Park Reserve (Labrador, Canada). Post-classification image 

comparison was applied to classified, multi-temporal satellite imagery to detect changes 

in vegetation patterns since 1985. Deciduous shrubs (typically less than 3m in height) 

increased in areal coverage whereas heath (low-growing, woody vegetation) experienced 

a decrease in coveragc. Transition matrices wcre developed from these observcd 

changes, and wcre used in the Markov chain component of the model. Topogrnphic 

variablcs were classified, and used as prior infonnation to calculate Bayesian probabi lities 

(Brrol,). The BI'rob's describe suitable areas of growth based on known patterns and were 

used as a suitability map in the cellular automata component of the model. The CA

Markov model was initially used to predict a known vegetation pattern for 2008, using 

elassified imagery from 1985 and 200 I. The model predicted the 2008 land cover with 

70.7% accuracy and data, recorded in 2008, was used to predict seenarios for 20 18, 2028, 

and 2038. Results of the CA-Markov simulations show that deciduous shrubs will 

increase in area by 7.7% but heath will decrease by 14.4%. The results indicate that 

deciduous shrubs have a tendency to move into higher elevations over an extended period 

of time. 
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1. INTRODUCf ION 

1.1 Rationale 

Recent studies have shown there has been a wanning trend in the earth's climate during 

the past one hundred years and that temperatures arc increasing at a faster rate than ever 

before (AC1A, 2005; lPCC. 2007). General eireulation models predict future climate 

scenarios and arc being developed with increased scrutiny in an attcmpt to reduce modcl 

errors that may have been overlooked in the past. This is done to try to remove some of 

the uncertainty associated with predicting how climate may change. These modcls (Figure 

1.1) have shown that the greatest amounts of warming and increases in precipitation will 

occur in high latitude ecosystems (ACIA, 2005; IPCC, 2(07). Aretic regions may 

experience a wanning up to 5"C while southern regions will wann by 2 to J"C. These 

changes may impact ecosystems throughout the world with increased intensity and 

frequency ofstonns as well as shifts in plant and animal geographic extent ( IPCC, 2007). 

Cannone ttl al. (2007) detennined that vegetation in the European Alps experienced more 

growth with increased temperatures between 1950 and 2003. They found that alpi ne 

ecosystems are in danger of experiencing changes in vegetation distribution and extent, if 

the temperature increase continues. It has also been shown that climate is often the major 

limiting factor when it comes to vegetation growth (Korncr and Paulsen, 2004; Pauli el 

al., 1996). This suggests that increases in temperature correspond with increased specics 

diversity at high elevations. Shifts in species habitat could therefore be more pronounced 

in thc alpinc regions than at lowcr elevations. 
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Figure 1.1 Predicted annualtcmperaturc change for North America between \980-\999 
and 2080-2099, averaged over 21 models. Source: Intergovernmental Panel on Climate 
Change (IPCC), 2007. 

Understanding the relationship between vegetation, topographic and climatic 

conditions are factors in detennining how vegetation will react to changing climate. 

Developing spatial models is one way of investigating these relationships and 

understanding how vegetation distributions will advance and move upslope in an alpine 

environment (Guisan and Zimmcnnann, 2(00). 



The earth's future climate can be understood by assessing the response or existing 

ecosystems to change in temperature. The study site, located at 58° 38.5' N, 63° 22.S'W, 

is within the newly established Tomgat Mountains National l>ark Reserve in Labrador, 

Canada. Land management, park zoning and continued monitoring are all issues that will 

likely be addressed in the ruture and the results orthis research could potentially be used 

in supporting these management decisions. Predictions or vegetation scenarios will 

provide some insight to the impending stresses excrted on this rragile alpinc ecosystem. 

The mcthodology used in this rescareh could also be expanded to incorporate larger areas 

or the park so that vegetation dynamics can be understood over extended regions. The 

research will encourage park managers to continue data collection year round to develop 

more completc and accuratc data SCIS. Accurdte data are the key to attaining greater 

certainty in predictive models and a better understanding of alpine vegetation dynamics. 

1.3 Research Objectives 

The main objective ror this research projcct is to develop a prt:'(iictive model that will 

incorporate current topographic conditions as well as observed vegetation change over 

time to detennine the ruture spatial distribution orvegctation in the Tomgat Mountains, 

Labrador. To achieve this objective, a series or sub-objectives will be addressed: 

I. Generate a time series or classified satellitc imagery. 

2. Detennine the quantity and location or vegctation change at the study site. 

3. Develop a set or suitabil ity maps ror land cover change and Bayesian 
probability methods. 



4. Predict current vegetation patterns in the Torngat Mountains using 
historic satellite data to assess model accuracy. 

1.4 Study A.-ell 

Regions in rar northern latitudes arc expected to be some or the most affected areas on 

Earth due to climate change. Several projected climate scenarios suggest that the high 

latitude regions orthe world could wann by as much as 7.5°C by 2099 (l PCC, 2007). As 

a result, impacts on vegetation wi ll be greatest in the north. Vegetation changes are 

becoming more evident in the landscape and modeling these changes is important to 

understand the impact that climate change is having on high latitude regions orthc world. 

Researeh was conducted in the Torngat Mountains National Park Reserve located 

in the northernmost part or Labrador. Clark ( 1988; 199 1) documents the glacial history or 

the region that created the fjords that define the landscape. The specific site is located in 

the southern portion orthe park at approximately 58 0 38.5' N, 63° 22.5'W, which is cast 

orNakvak Brook. Thc study arca covers an area orapproxinllltcly 35 km2 and has an 

clevation range or 840m (I:igure 1.2). 

The study area is an appropriate region to assess changing vegetation patterns 

becausc it has a number or distinct vegetation types in a relatively small area. This is 

primarily due to the elevation change rrom the valley floor near Nakvak Brook, to the 

highest peak located less than 4km to the cast. Although the entire region is considered an 

Arctic Tundra environment, the vegetation at lower elevations is quite different rrom the 

vegetation at higher, more exposcd, areas. At low elevations, shrubs can reach 

approximately 2m in height, but get progressively shorter with increasing elevation. 



Figure 1.2 Study area extent, Tomgat Mountains National Park Reserve 

At about 400m, vegetation docs not exceed 20-30 em from the ground. At the highest 

elevations, fTost-shattered rock is the predominant feature and vegetation is almost non-



existent. The changes in elevation throughout the entire region range from Om to 1155m 

(Figure 1.3). 

There is potential for the vegetation patterns in this region to change with a 

changing climate. The larger shrubs at lower clevations extend up the side of the valley, 

indicating the potential for these shrubs to live at higher elevations. Exposure to wind and 

snow might be the factors that are currently preventing some species from becoming 

established at the 400m to 750m elevation range. A warming climate, however, could 

create more favourable conditions at higher elevations. These conditions make the area a 

suitable location to investigate how vegetation has changed in the past and if shrubs have 

potential to move upslope in the future. 

1.5 Contexi of Resea rch 

The research project is funded by the International Polar Year (IPY) Climate Change 

Impacts on Canadian Aretic Tundra (CiCAT) project. This CiCAT project is aimed at 

assessing past, present and future impacts of climate change on tundra ecosystems in 

Canada (Henry, 20 10). IPY also aims to leave a legacy ofrcscarch results and 

infrastructure to be used by future researchers and people in northern communities 

(Henry, 2010). 

This research project is part of the work of the Labrador Highlands Research 

Group (lHRG) at Memorial University of Newfoundland. The LHRG researches the 

sensitivity of tundra ecosystems to climate change in highland regions of Newfoundland 

and Labrador, including the Torngat Mountains. The objectives of the LHRG is to 



Elevation (m) 

. 0-100 _ 300-400 0 600-700 _ 900-1000 _ wale( 

_ 100-2oo C] 400-SOO c:::l 700-800 _ 1000-1100 - R,ve(ISlream 

_ 200_JOO D soo.600 _ 800_900 _ 1100_1155 _ SludyArea 

Figure 1.3 Reliefmap for study region, Tomgal Mountains. 



understand the evolution ofthesc ecosystems and their relation to local climates and 

attempts to predict what will happen under future climatcs (Labrador Highlands Research 

Group, 2010). This research hclps contribute to both the CiCAT and Ll-iRG objectives by 

investigating the recent history of vegetation change in the region and providing insight 

into future scenarios. 



2. LITERAT URE REVIEW 

This chapter provides a review of the literature relat ing to vcgetation change in thc 

landscape and how change has been predicted using a ccllular automata Markov chain 

approach. The first section discusses how topographic variables have been used to 

describe the landscape and how they have been used to illustrate and predict where 

vegetation wi ll grow. The second section discusses change detection methods applied to 

sate ll ite imagery. Vegctation change cannot be predicted unlcss thcrc is evidence that 

change has occurred in the past. Post-classification comparison and image differencing 

arc presented due to thei r simple application and effectiveness in detecting change. The 

third section deals with Bayesian methods and their usage in landscape ecology. The 

theory behind Bayesian methods will be addressed. including somc of the methods in 

which they have been applied using spatial data. The final section deals with cellular 

automata Markov chain (CA-Markov) modelling methods. Cellular automata and Markov 

chain models will be discussed separately as well as how they can be used in conjunction 

with one another to predict future vegetation patterns. 

2.1 TO]lOgraphk Varillbles 

It has been well documented that basic topographic variablcs such as elevation, slope and 

aspect influence vegetat ion pattcrns and biodiversity in the landscape (Fu el at., 2004; 

Ostendorf and Reynolds, 1998; Rezaei and Gilkes, 2005). Moore el at. (1991) classified 

topographic variables into primary and compound classes. The authors considered 

primary variables to be those related to vegetation patterns, and derived from digilal 

elevation models (OEM). This includes variables such as slope, aspect. e levation, and 



curv[lturc which are related to characteristics such as hydrology, solar radiation and soil 

w[lter content (Moore el aI., 1991). Compound vru"iables are substitutes for more complex 

biophysical processes and include indices for soil moisture, soil properties and terrain 

shape or position. These positional chamcteristics can influence vegetation by affecting 

other variables such as wind and snow exposure. snow accumulMion, moisture runoff and 

[lccumul[ltion., and soil characteristics (Rezaei and Gilkes, 2(05). 

Combinations of topographic vru"i[lbles can define where vegetation will grow in 

the landscape. Elevation c[ln be used to delineate the limits of tree growth as low 

temperatures [It higher altitudcs make it difficult for ccrtain types of plants to grow. 

Similarly, some species would have difficulty growing on steep slopes or on northerly 

aspects due to insufficient sunlight. These vari[lbles arc c[l1culated from a OEM and are 

uscd to calculate compound vari[lbles such as topographic shape or moisture 

accumulation indices. 

Topographic vru"iables have been utilized in recent years for predictive vegetation 

modelling and to describe and explain vegetation changes in the landscape. The variables 

uscd depend on the researeh objectives and the type of landscape under consideration. 

A vegetation model developed by Ostendorf and Reynolds (1998), predicted 

vegetation patterns in the Arctic by using the inverse relationship between slope and 

discharge. Discharge was considered a measurcmcnt of soil moisture. while slope is 

inversely related to it. A more detailed methodology is presented by Ostendorfand 

Reynolds (1998) whereby the authors attain a goodness offit of78%, using only two 

variables in their model. Bennie, el ul. (2006) also considered two vru"iables when 

attempting to explain where in the landse[lpe chalk grasslands were changing the most. 

10 



Historical data combined with an updated field survey were used to observe change and 

ANCOVA was used to determine the statistical relationship between the area~ of change 

and the slope and aspect. They were able to dctennine that flat teIT'din was much more 

vulnerable as the amount of change decreased with increasing slope angle. South-facing 

slopes were found to be the most resistant to change and had more light demanding 

vegetation while north-facing slopes were less resistant. 

Recent studies have focused on how topographic variables alTect soil properties 

and the influence they have on vegetation patterns (Fu el al.. 2004; Rezaei and Gilkes. 

2005). Several multivariate statistical techniques were used by Fu el al. (2004) to assess 

the relationship that elevation. aspect, slope and slope position had with soil fertility and 

quality. The results demonstrated that topography is an important factor in explaining the 

variability in soil properties. It was shown that elevation and aspect had a direct 

relationship with shrub richness and diversity, while elevation also had a positive 

relationship with soil organic matter (Fu et al., 2004). Rezaei and Gilkes (2005) examined 

similar relationships in an alpine rangeland and also found that soil properties exhibit 

variabi lity based on different topographic conditions. They detennined that slope has a 

particularly strong relationship with soil stability and aspect was directly related to soil 

nutrients. Primary variables (such as slope. aspect. and elevation) have been shown to 

have positive relationships with vegetation growth and can be used effectively in 

analyzing change in the la.ndscape. 

II 



------------------------ ---- --

2.2 Change I>ctCCfion Analysis 

Documenting past vegetation change is important for understanding prescnt and future 

conditions. It is difficult 10 predict future vegetation patterns without an understanding of 

the topographic and climatic factors that influence those patterns. Earth observing satellite 

scnsors have been recording multispectral satellite imagery since the early I 970s. The 

afTordability of multi-dalc imagery has made digital change detection, the method of 

choice when it comes to monitoring urban, rural or naturdl landscapes. Its popularity has 

grown due to the increased availability of satelli te imagery at a morc frequent temporal 

scale meaning some areas can be monitored on a yearly, monthly or daily basis. 

Many change detection methods are being used effectively 10 detcct changing 

landscapt"S. Lunetta ( 1998), Nelson (1983). Singh (1989), Yuan el al. (1998) have 

reviewed digital change detection methods ranging rrom image differencing to 

applications or principal components analysis or change vector analysis. The following 

sections evaluate image differencing and post-classification comparison as two methods 

that have been used in various applications. 

2.2.1 Image Differencing 

Image differencing is a common method of change detect ion analysis which involves 

subtracting an image band at lime 1/ from the same band at time /2. This procedure is 

bast.-d on Equation 2.1 (Singh, 1989): 

(Equation 2.1 Image Differencing) 

Where: 
XI~ is the pixel value for band k at the jth row andjth column 
1/ is the earliest date 

12 



I) isthe latcstdate 
C is a constant used to produce positive digita l numbers 

The output is an image that shows the difference in brightness values between two dates 

for each pair o f bands. A thresho ld has to be appl ied to the output in order to ident ify 

areas of significant spectral differences. Generally, a thresho ld is based on standard 

deviation (SO). Lunetta (1998) states that the lower SO will include greater amounts of 

the changed pixels and thus a higher potential for errors of commission. 

Nelson (1983) evaluated image differencing for delineating gypsy moth 

defoliation because it was the most widely used method and provided a good comparative 

index. The SO method of thresholding was used to detennine the maximum classificat ion 

accuracy to within 0.05 SO. The author also found that classification accuracies were 

comparable to othcr methods that were tested, making image differencing a useful option. 

The other techniques were only slightly bellcr than this baseline method, with differences 

between accuracies being on the order of tenths of a pereent. 

2.2.2 Post-classifieation comparison 

Another method of change detection is post-classification comparison. This method 

involves creating classi fi ed images through one of a varicty o f supervised or unsupervised 

methods. Given classified imagery from two time periods, change maps arc created that 

show differences in vegetation types. This method uses classified satellite imagery, 

thereby minimizing problems with atmospheric and scnsor differences (Singh. 1989). 

I-l ighly accurate classifications are required in order for change detection to be effective 

because the joint classification rate is lower than the images from which it is derived. 

Singh ( 1989) provides an example of two images with 80% accuracy having only 64% 

13 



(80% X 80%) joint accuracy. Post-classification comparison was successfully applied by 

Weismiller el of. (1977), who identified areas of change in coastal zone environments in 

Texas. Of the four change detection methods they tested, post-classification comparison 

provided the most reliable results. Mas (1999) demonstrated that the procedure can be 

applied to vegetation studies if accurate classifications of different land covers are 

available. Accuracies in excess of85% were obtained for post-classification analysis 

which was the best of the change detection methods tested. High change detection 

accuracies were attributed to the high image classification accuracy. Mas (1999) discusses 

how this method is less sensitive to radiometric differences and is more appropriate for 

dealing with a time series of satellite imagery. The nature of the changes is also easily 

understood because they represent a transition from one type of land cover to another. 

Post-classification change detcction is one of the most effective and intuitive methods of 

digital change detect ion if satellite imagery can be accuratcly classified. 

2.3 Bayesian Methods 

McCarthy (2007) discusses some of the advantages of using Bayt.."Sian methods in the 

field of ecology. These advantages include: 

I. The ability to make predictions about the state of a system. 

2. The ability to incorporate prior infonnation into the analysis and thus being 
able to incorporate multiple sourees of infommtion. 

3. The ability to be integrated with geographic infonnation systems (GIS) and 
spatial models for addressing ecological and environmental problems. 

As a result, Bayesian methods have become very popular amongst ecologists. 
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Bayesian analysis can be thought of as incorporating prior knowledge and data 

into a model to output posterior knowledge. It uses Bayes' rule, which is based on a 

conditional probability that calculates the probability of "event A" occurring given that 

"event B" has occurred. Conditional probability has been adapted from Bonham-Carter 

(1994) and McCarthy (2007) and is given by: 

P(AIB)" P(AnB) I P(9) (Equation 2.2. Conditional Probability) 

Where: 
P(AIB) = the conditional probability of event A, given the presence of event B. 
P(AnS) = the proportion of total area occupied by events A and B together. 
PCB) = the proportion of the total area o f occupied by event B. 

To assess the probability of event A occurring given the presence of multiple events (Bi 

and B;+I), the conditional probability can be written as: 

P(AIB;nB;t l) = P(AnB;nB;. d I P(BnB;+d (Equation 2.3 Conditional Probability 
of MUltiple Events) 

Equation 2.4 is adapted from Bonham-Carter ( 1994) and can be used with multiple 

independent events. The output is the probability of finding "event An given unique 

combinations of multiple events. The Bayesian conditional probabilities are versatile in 

that an infinite number of independent events can be used and they can be added or 

removed at any lime to assess a particular variable's impact on the output. 

One application of Bayesian methods is presented by Aspinall (1992), who 

generated a probability model using environmental variables to describe the distribution 

of red deer in north-east Scotland. This model uses an inductive modelling procedure, 
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which is based on Bayesian methods, to assess relationships between variables in order to 

estimate probabilities of occurrencc. The procedure was effective in mooclling the 

distribution of Ted deer and provided error assessments for the model. 

Bonham-Carter el af. (1988) used Bayesian statistics combined with multiple 

regression analysis to predict favourable sites for gold exploration in Nova Scotia.. 

Canada. Posterior probabilities were calculated using unique conditions mapping which 

identified different combinations of the patterns to be modelled. The unique conditions 

were used to evaluate areas where gold was most likely to occur. The authors 

acknowledge that sever.!! sites with no known gold occurrence were identified by the 

model. These could be considered sites of potential interest for geologists. 

Vaiphasa el al. (2006) used Bayesian methods as a post classifier for mangrove 

mapping in Thailand. They found that integrating soi l-related parameters improves the 

overal l accuracy of mangrove maps from 76% to 88%. This is a way of enhancing 

classified satellite imagery by incorporating additional predictive variables using 

Bayesian methods. 

The above examples demonstrate that Bayesian methods are being considered a 

final result in tenns of probability models. Outputs arc given as a probabil ity of 

occurrence or divided into varying thn.-sholds based on the likelihood of occurrence 

(Aspinall, 1992; Bonham-Carter et al .. 1988). Vaiphasa et al. (2006) use the method as a 

way to refine a classification system; however, the Bayesian process is still the primary 

method of modelling. 

There remains an opportunity for Bayesian statistics to be applied to spatial 

modelling as a method for defining suitability maps. Bayesian statistics can define the 
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probability of occurrencc of any land cover type based on a set of suitable predictor 

variables. The probabilities identify areas that arc suitable for vegetation growth and can 

be input into cellular automata (CA) models. CA models require rules that enable and 

restrict the spatial distribut ion of specific vegelation. The following section discusses CA

Markov chain models in more detail, whi le a discussion of incorporating Bayesian 

statistics into the model is presented in the methodology. 

2.4 Cellula r a utomata, Ma rkov cha in a nalysis 

Both the cellular automata (CA) model and Markov chain (Me) analysis can be applied 

as independent models. They a lso have the ability of being ust."<i in conjunction with one 

another to make predictions about future scenarios. MCs calculate the probability of 

transitioning from one state to another, over a specified time period. This is uscd by the 

CA model to predict future land cover distributions given prescnt suitability conditions. 

The following sections discuss both CA and MC separately. as well as some examples of 

how they have been applied elsewhere to vegetation distribution analysis or modelling. 

'llIe cellular automala Markov chain (CA-Markov) models are diseussed. and some 

examples of how they arc used by other researchers is presented. 

2.4.1 Cellular automata 

In their most common fonn, CA models are 2·dimcnsional arrnys ofregutar shaped, 

square cells. They arc not restricted to this fonn because they can also be comprised of 

other regular grids of triangles or hexagons. or irregular shaped Voronoi polygons (De 

Smith el 01 .• 2007; Wolfram, 1983). A CA model can be broken into fi ve separate 
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components as outlined by Dc Smith el al. (2007). They divide the model into state 

variables, a spatial framework, neighbourhood structures, transition rules, and time. 

State variables refer to the state or value of cells at any particular point in time. In 

the simplest form of model. the cells are binary although, more complex examples have 

been developed that incorporate multiple states, such as different land-use elasses. These 

values change as model runs arc completed through diserete time steps. The spatial 

framework is the entire lattice of cel ls. The 2-D array of cells discussed above would be 

considered the framework of a CA model. 

The third component is the neighbourhood structure, which is the area 

surrounding each cell of the frdJl1ework. Neighbourhoods are typically the same for each 

individual cell; however. there are ditTerent forms that can be used. Two common types 

arc the Moore and Von Neumann neighbourhoods (Figure 2.1). The Moore 

neighbourhood consists of all immediately surrounding cells in an array and can be 

varying sizes. A three by three Moore neighbourhood incorporates the eight cells adjacent 

to the centre cell, while a five by five neighbourhood incorporates twenty-four 

surrounding cells. The Von Neumann only considers the four cardinal neighbours in the 

analysis (De Smith el al. 2007). 

The founh component is the set of transition rules for a CA model. These rules 

define how each celIoI' a model will change over time by assessing the stales of the cells 

in the defined neighbourhood, and assigning a value to the cell in question. Most models 

use simple transition rules to define requircments for change to occur, but recent studies 
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Figure 2.1. A three-by-thrcc Moore neighborhood (left) and a Von Neumann 
neighborhood (right). 

have used probabilistic rules (Colasanti et al., 2007; Lanzer and Pillar, 2002). 

The final parameter of a CA model is time, which is defined in discrete steps. At 

each time interval the transition rules are put into effect and all cells change their state 

simultaneously. A new state is established and the transition rules arc put into effect again 

for the next time interval (Dc Smith et al .. 2007). Thesc components of a CA model 

simplify the modelling process and helped make CA a popular method of simulation in a 

variety of fields . 

CA models are used to simulate changing vegetation pattems in the landscape. 

Colasanti et al. (2007) studied high level community processes by utilizing a 2D 

probabilistic CA model. They used a set of physiologically based rules, derived from a 

common system of plant functional types, to model individual plant behaviour. The 

model is based on the plants growth ability, survival ability, and reproductive capabilities 

and the ruks were developed from accepted plant population models. 
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Lanzer and Pillar (2002) used a set of probabilistic rules. generated from empirical 

data, to prcdictland cover as being one of nine classes. They argue that their CA model 

docs not reaeh a stable final state that would be found with a Markov model. They used 

several runs of the model to define a range of potential outcomes. Their results indicate 

that the CA model worked as wcll as an MC model. which was also used on the same 

dataset. The research reviewed here arc two examples of how CA models have been 

implemented to model vegetation systems. 

2.4.2 Markov chain analysis 

Markov ehain (MC) models have frequently been used in vegetation studies (Balzter, 

2000; Benabdellah el of .. 2003; lsagi and Nakagoshi, 1990; Lippe el of., 1985; Pueyo and 

lkgueria, 2007; Usher, 1981). A MC is defined as a stochastic process thaI fulfills the 

Markov property (Balzter, 2(00). The Markov property stales that future conditions do 

not depend on past conditions. Thus. a MC depends only upon the present state ofa 

system. These models also rely on the assumption that vegetation succession is an orderly 

process and that probabilities for the transition between diffcrent states can be detennined 

(Usher. 1981). Other assumptions include lime homogeneity and spatial independence. 

which implies, ehanges in one particular location will have no effcct on nearby locations 

(Balzter, 2(00). This means that spatial autocorrelation is not accounted for in MC 

analysis. A Markov chain represents a system of varying states that, over time. make 

transitions from one state to another. 

The MC modcls require discrete classes as input. Thus when using multi-temporal 

satellite imagery, a classified image is appropriate. Differences in land cover classes 
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betwecn images, are used to generate transition probabilities that give the likelihood of a 

particular elass changing. Multiple images allow transition probabilities to be generated 

for different time periods, which can be compared to dctcnnine whether rates of change 

are increasing or decreasing. It also eliminates the assumption of time homogeneity 

because a series of models can be constructed to show variation over time (Pucyo and 

Begueria, 2007). 

A distinct advantage of the Markov model is that it can generate reliable 

predictions of future vegetation states without having to know or understand. all of the 

underlying processes that create a very complex ecosystem (Balzter, 2000). The result is 

Ihal the mechanisms of succession arc not well understood, even though accurate 

predictions can be made (Usher, 1981). Obtaining satellite imagery is a much more cost 

efficient method of observing the Earth than collecting field data on a long tenn basis. 

Field work is still required for ground truthing purposes bUlless time and money is 

expended investigating underlying processes in the landscape. 

Balzter (2000) analy-.lcd twcnty-two applications of Markov models that examined 

grassland communities for various in Europe. Inconsistent results were found in this study 

because of disturbances that altered ecological factors and generated unpredictable 

changes in the vegctation. Suggestcd solutions inelude thc generation ofa ]-lidden 

Markov model to account for elimate variation, and the development of separate 

transition matrices for shorter time periods tojustify time homogcneity (Bab~ter, 2000). If 

spatial autocorrelation is present in the data then a spatio-temporal Markov chain might 

be more appropriate. This type of model requires many more parameters as input thus, the 

advantage ofa simple Markov model , is no longer applicable. 
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Benalxiellah el al. (2003) used Markov models to genemte predictions of forest 

succession for their study site in Gennany. They generated a time homogeneous Markov 

model on the assumption that. environmental conditions remain constant. They also 

genemted a time inhomogeneous model for regions that were highly polluted by S02. 

This enabled calculations oftmnsition matrices before and after S02 pollution damaged 

the vegetation. The inhomogeneous model is a way to ineorpomte disturbance into the 

analysis. The authors found that the Markov models could be useful for management 

decisions, but acknowledge that aceumcy was only evaluated qualitatively. They elaim 

that a quantitative assessment should be ~rfonned on the results to detennine the 

accuracy of the model. 

Pueyo and Begueria (2007) predicted secondary vegetation succession after fann 

abandonment in the Centml Spanish Pyrenees. They used a multivariate logistic 

regression from spatially distributed variables to improve transition probabilities used by 

the Markov model. This is a way of incorpomting abiotic factors into the Markov 

analysis. They found this method was successful in modelling spatial and tempoml 

patterns of secondary succession. They also identified tem~rature gradient with 

elevation, and potential solar radiation, as the most imponant predictor variables (Pueyo 

and Begueria. 2007). lhis infonnation is not obtainable through a standard Markov 

model. 

Finally. Lip~ el al. (1985) tested a Markov model on an £mpelrum nigrum 

heathland in the Netherlands, with the objcctive of detennining whether the Markovian 

assumption held for that ty~oflandsea~. It was reponed that the MC model did not 

support their dataset, primarily because of disturbances caused by insects and climate. 
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The disturbances caused changes in the tmnsition matrix which is not accounted for in a 

simple Markov model (Lippe et al .. 1985). An inhomogeneous model, as was tested by 

Bcnabdellah et al. (2003) is one way of accounting for this. Lippe et al. (1985) also 

acknowledged that temporal trends in the transition matrices are not accounted for. They 

document a methodology in which the Markov model can be adjusted to account for these 

problems but would also cause the model to lose its simplicity. 

2.4.3 Cellular automata Markov chain analysis 

CA-Markov models combine the stochasticity of the Markov chain with the spatial 

dependence of the CA model. Balzter el af .. (1998) define these models as having spatial 

and temporal dependence. The spatial component is introduced through the 

neighbourhood of the CA, while the temporal aspect is incorporated through the Markov 

analysis. Several studies have used CA-Markov models to predict future land cover 

conditions. 

Silvenown el aI., (1992) used a40 by 40 lattice of square cells to model 

competition between five different species of grass. The state ofa cell was dependcnt 

upon a Von Neumann neighbourhood at time I-I, and a sct of rules that defined the cxtent 

of invasion for each species. This model uSt:tI the transition matrix from the Markov 

model. and incorporated the spatial dimension by using real data. They found that the 

model with a random initial starting scenario was a good representation of the spatial 

ammgements used in standard competition experiments. 

Balzter el af. (1998) modelled population dynamics of three plant species on a 

lawn. They found that the CA-Markov approach successfully modelled one species, but 
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the others were subject to selective grazing by an expanding rabbit population. The 

assumption that transition matrices were stationary over time is no longer valid, and the 

model did not simulate those species accurately. 

2.5 Literature Review Summary 

The review of the literature suggests that the objectives of this study can be 

achieved with methods applied by other researchers. Different combinations of 

topographic variables have proven to be effective predictors of where vegetation is likely 

to grow in the landscape. Given high classification accuracies, post-classificat ion image 

comparison is one of the better digital image change detection methods. A CA-Markov 

hybrid model incorporates temporal and spatial dependence and presents an opponunity 

to incorporate Bayesian probabilities as a method of defining suitable areas of growth. 

24 



3.DlltIlSourc:es 

3.1 Field Datil 

Field data were collected between August Sth and August 14th. 2008. The vegetation 

survey is used to classify the satellite data, which provides the input for change detection 

analysis. Thc stratified random sample (Figure 3. 1) was selected based on variations in 

aspect. elevation, and spectral signature o f the 200 I Landsat imagc. This ensured that 

samples were taken at dilTerent lopographic positions and for varying vegetation types. 

During the field season, 90 sitcs(Figure 3.1) were visited at which the IPY CiCAT 

protocol for mapping arc tie vegetation was implemented (Chen. el aI.. 2007). At each 

silc. 1m2 quadrats were placed 10m from a centre coordinate in each of the four cardinal 

direc tions (Figure 3.2). One of the intcnnediate directions, (NE, NW, SE. or SW) was 

selccted randomly to be the location of the fifth quadrat at each sitc. Thc CiCAT protocol 

ensured appropriate coverage ofan area that corresponded with satellite imagery at 30m 

resolution. At each quadrat. the fo llowing data were recorded: 

I . Plant species present 

2. Ground cover of each species ('Yo) 

3. Average height for each specics (measured in em from the base 10 the tallest 
stem on random samples in each plot). 

4. Approximate soi l depth (em) 

S.Aspect 

6. Elevation (m). latitude and longitude recorded from GPS 

7. A colour, vertical photograph of each quadrat 
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Figure 3.1. Field locations visited between August SUI and August 14U1 , 2008. 
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Figure 3.2 Plot scheme for arctic tundra regions. Source: Chen, et 01., 2007. 

Satellite image classification was perfonned us ing identification of plant species 

and colour photographs as the primary inronnation source. Identifying each plant species 

individually, enabled the vegetation to be aggregated into ditTerent classes used in this 

study. A DEM (I :50,(00) provided Ihc elevation and aspect values used in thc analysis 

and thc ground truth data were critical to the accuracy assessment of the classification and 

thc certainty attained in the final model. Vegetation height and approximate soil depth 

were not specifically used in the analysis. 

Presence of vegetation was initially recorded at the species level such that land 

cover classes CQuid be aggregated and defim:d. Because of the accessibil ity and temporal 

scale of Landsat imagery, a spatial resolution of 30m was selt:-cted to classify land cover 
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(Chen, et al., 2007). This resolution, combined with vegetation zone descriptions from 

Meades ( 1990) and recommendations given by Dr. Luise Hennanutz (2009)1, was used to 

define three d ifferent land cover classes. Hlrec broad classes of heath/grasses and SL-dges 

(HO), dL'C iduous shrub (OSH) and rocklbarc ground (ReK) were used in the analysis. 

Additional classes were initially developed such as separate classes for heath and grasses. 

but their spL'Ctral signatures showed little separability. This was partly due to the 

existence of multiple vegetation lypeS within a 900m2 area. The 30m resolution of the 

Landsat imagery was too coarse to classify those vegetation types seperately. 

The three remaining classes represent three broad groups of land cover that arc 

well defined and distinguishable from one another. Table 3.1 provides a description and 

defining characteristics along with the common vegetation types found within each class. 

The HG class is the most difficult to define because of its coexistence with the RCK 

class. The OSI·I class is much easier to distinguish because there is a clear difference from 

HG and RCK classes. These classes allowed for adequate classification accuracy while 

maintaining the ability to observe whether temporal changes in vegetation oecurred. 

I Personal communication, Dr. Luise Hennanutz, Department of Biology, Memorial 
University of Newfoundland (2009). 

28 



--------------_.-

Table 3.1 Land cover classifications used in this projcct (fypicaJ plots for each land cover 
arc shown on the right). 

Class Dominant Description I Photogrdph (1m quadrat) 
Vegetation Defining 

Characteristics 

HG -Grasses / sedges -Low growing 
vegetation 

· Dwarf Labrador 
Tca(Ledum -Prcsenceofalpinc 
pah/slre) species such as 

Diapensia 
-Bi lbcrry lapponica. 
(Vaccinium 
uliginosum) -Oftcn a mixture of 

rock and HG found 
-Diapensia together. 
(Diopensia 
/apponica) 

-Dwarf Birch 
(Bewla 
glandulosa) 

·DwarfWiliow 
Species (Salix 
spp.) 

DSII -Balsam Poplar -Specil"ll can grow 
(Populus up to 3m in height. 
balsamifera) 

-Found at lower 
·MounlainAlder elevations. 
(AlmlScri.l'pa) 

-Fewer dominant 
-Willow Species speciesprcscnt 
(Salix ~pp.) 
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Table 3.1 Continued 
RCK -None 

3.2 Satellite Imagery 

-Frost shattered 
rock often having 
moss and lichen 
growth 

-Often mixed with 
species from the 
HGclass 

Four satellite images were obtained for the study site. A Landsat-5 Thematic Mapper 

(TM) image taken on August 9,1985 was the earliest image available. Additional 

imagery included a Landsat-5 TM from August 5,1992 and a Landsat-7 Enhanced TM 

(ETM+) from August 22, 2001. The final image of the time series was recorded on July 

21,2008 using the Satellite Pour l'Observation de la Terre (SPOT). This time frame 

corresponds elosely to the vegetation survey field season. All of the Landsat images were 

recorded at 30m resolution while the SPOT image was recorded at 10m resolution. The 
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SPOT image was re-sampled to 30m resolution in order to comply with the IPY CiCAT 

protocol (Chen, el al., 2007). Each image was recorded during summer months when 

vegetation would have been at, or near its ma.ximum growth for the season. This ensured 

that the vegetation types are in a similar state in each image and seasonal variations arc 

minimized in the analysis. 

Pre-processing of the satelli te imagery involves geometric, atmospheric. and 

radiometric corrections. Each image is geometrically corrected with half pixel accumcy. 

to the 1:50000 National Topogmphic System (NTS) map sheets. Atmospheric corrections 

were perfonned using the dark object subtract ion method (Chavez Jr. , 1996), which is 

based on the assumption that pixels in complete shadow or areas ofelear, deep water 

should have no reflectance. Thus, any radiance receivt.'(f at the satellite sensor, over areas 

of dark shadow or deep water, is caused by atmospheric scattering. Subtrncting thi s 

radiance value from the enti re image, accounts for atmospheric scattering in the satellite 

image. Finally, the multi-date image nonnalization technique was applied for rndiometric 

calibration. 'Ibis method uses regression analysis to co-calibrate the spectral 

characteristics of sate Iii Ie images obtained on different dates (Hal l et al.. 1991). The 

applied correction allows for the imagery to be compared to one another because the 

detected changes will not include radiometric inconsistencies. 

3.3 Image C lassification 

Each image in the time series was classified using a maximum likelihood algorithm. The 

dataset was split into two sets of 45 points so the ficld data could be incorpornted into 

both the training and reference sites. Polygons were digitized around each point in the 
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training dataset to include nearby pixcls, which corresponded to the land cover 

represented by that point. This increased the number of pixels from which training data 

could be extracted. In the reference dataset, only the pixel corresponding to each 

sampling site was digitized. The classification of each pixel was verified with the hclp of 

a colour aerial photogmph, recorded in 2005 at a I m spatial resolution, along with the 

photographs taken in the field and the record of species present for each plot. In order to 

increase the size of these small datasets, an additional 45 points were randomly generated 

for both thc training and referencc data. Each of those points was classified using only thc 

aerial photograph as a reference. Points where the land cover was not definitive wcre 

removed from the dataset. The additional points resulted in 63 polygons being used for 

the training sites, and 70 for the reference points. Signature data generated from the 

tmining sites were used to classify each satellite image. while the reference sites were 

uSt."d to perfonn an accuracy assessment for each classification. 

3.3.1 1985 Classification 

This section discusses the 1985 image classification because of an area of misclassified 

pixels that were identified in the output. As a result, three different versions oflhe 1985 

classification were compared. The accuracy assessment for the 1985 classifications is 

presented using producer's accuracy (omission error) and lL~er's accuracy (commission 

crror). Producer's accuracy gives the probability ofa reference pixel being correctly 

classificd, whereas uscr's accuracy is thc probability that a classified pixel actually 

represents that particular class on the ground (Congalton and Mead, 1983). The accuracy 

assessment for the classifications of the remaining satellite imagery is also provided. 
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The initial classification of the 1985 image contained some commission errors for 

the DSH class that required further processing of the training data (Table 3.2). RCK had 

both high commission and omission errors. Overall kappa for the classification was 

64.4%, a reasonable value considering the ground truth data were from 2008 and the 

image was recorded in 1985. There were also no aerial photos available from 1985 to help 

identify vegetat ion classes. 'Ibe kappa value measures the relationship of the agreement 

beyond chance, with the expected disagreement. It is a robust accuracy measurement 

because it incorporates al l of the cells in a matrix and not just the diagonal (Rosenfield 

and Fitzpatrick-Lins, 1986). The area highlighted in blue in Figure 3.3 is considered to be 

a problem because it is separate from the region where DSH is expected to be found and 

was not present in any other classification. Based on fie ld observations, there was no 

evidence that DSH ever grew in that location. One method of corrceting this problem was 

to perfonn image purification with image processing software. lbis reduces Ihe effect 

that the problem area would have on subsequent analysis. 

Table 3.2 Vegetation accuracy for original 1985 classification 
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Figure 3.3 Original classification for 1985. Problem area is outlined in blue. 
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Thc nonparamctric mcthod of image purification rcmoves outliers from the 

training sitcs used to creatc the classification. Clustcr analysis was first used to dcfinc thc 

entire image as one of the three previously defined clusters. Original training sites were 

used to define the locations under consideration in the clustcr output. The areal proportion 

of each training class was calculated, and a dccision to retain or discard a pixel was 

determined using a defined areal threshold. lfany class has a proportion that is Icss than 

or equulto the areal thrcshold, thc pixcls are removed from the purified training sites. A 

combination of the purified training sites and the originallraining sites was used for the 

classification. The original training sites for HG and thc purified sites for DS I-I and RCK 

were used in the final classification. Those three spectral signatures exhibited the greatest 

amount of separation and were more likely to yield a bettcr classification. Thc purified 

classified imagc is presented in Figure 3.4. The problcm area outlined is still a significant 

issue in the purified image, although the area is smallcr compared to the original output 

image. The cross-classification matrix shown in Tablc 3.3 indicatcs that there was a 

ncgligiblc change in per-class accuracy and the overall kappa was 64.8%. This shows 

thcre was little to no changc in classifications. which was partially duc to thc limited 

number of refcrencc points. The purification process did not correct thc area of DSH near 

the centre ofthc image. 

Further analysis ofthc problem area used an itcrative, sclf-organizing. clustcr 

analysis was performed on the imagc to identify different clusters of signatures. Elcven 

clusters were gencratcd and thc cluster that made up the majority of the problcm region 

was removed from thc classificd image. The missing data from that classification wcrc 

thcn intcrpolated using indicator kriging. 
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Figure 3.4 Purified classification for 1985. 
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Table 3.3 Vegetation accuracy fOT purified 1985 classification 

3.3.2 Indicator Kriging 

Indicator kriging was initially developed for modcling mineral deposits, but has since 

been adapted for interpolating missing data in satellite imagery (Rossi et aL 1994; Van 

Ocr MecT, 1996), Indicator kriging uses a weightcd linear average of available data to 

estimate unknown data. The method offers some advantages over traditional interpolation 

methods, whereby it utilizes both distance and geometry for weighting available data and 

minimizing the variance of the expected error (Rossi et al .. 1994). Indicator kriging was 

utilized to estimate the data at locations that were removed from the purified 1985 

classified image. 

Indicator kriging is useful for this analysis because it uses binary data as input and 

the output is given as a probability ofexcccding a user defined cut-offvalue (Babish, 

2006). The area of interest in this ease is located in an I·IG dominated area, so the image 

was reclassified 10 give all areasofHG,a value of I and all areasofDSH and RCK. a 
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value ofO. The specified cut-offvalue was then set to 0 such that indicator kriging would 

output the probability ofexcccding O. or the probabil ity ofbcing I--IG. 

A r.mdom sample of 10 000 points was created for the classified image from 1985 

and assigned a corresponding value 1 for HG areas and 0 for non HG areas. The output 

surface indicating the probability of finding I--IG in the area of interest is presented in 

Figure 3.5. 

Most of the area removed from the central part of the image, has greater than 50% 

probability of being HG (Figure 3.5). There arc few pixels that are less than 50010. Most of 

the lower probabi li ties are located near the southwest comer of the study area where the 

DSH land cover is found. Using a cut olTvalue of 500/0, these missing pixels can be 

classified into HG, or not HG, and replaced in the 1985 classification. The pixels 

classified as not I-IG, were returned to their original classification from 1985. The 

resulting classified image is shown in Figure 3.6. The deciduous shrub patch located near 

the centre part of the image was reduced in size, thus the influence it would have on the 

final model was minimized. Based on field observations, this adjusted classification was a 

beller representation of the landscape. There was no presence of woody stems or dcad 

matter at the study site that suggested deciduous shrubs grew there recently. The cross 

classification matrix (Table 3.4) shows little improvement in classification accuracy, 

which can be attributed to low numbers ofreferencc points. Overall kappa is the highest 

for this classification at 65.7% compared to 64.4% for the original and 64.8% for the 

purified classification. This suggests indicator kriging slightly improved the 

classification. 
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Figure 3.5. Probability or fi nding HG in the problem region of the 1985 classifica tion 

39 



o 375 r~ 1.500 -

Interpolated 1985Cla"irieatlon 

D Water 

_ Heath / Gran 

_ Oecidoous Shrub 

_ Rock 

- StudyArea 

Figure 3.6. Maximum likelihood classification of 1985 Landsat MSS image. Indicator 
kriging was used to interpolatc area that was removed from thc signature analysis. 
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Table 3.4 Vegetation accuracy for the interpolatt:d 1985 classification 

Error assessment of the interpolated model can be analyzed using the histogram, 

summary statistics of the errors, and by mapping the distribution of the errors (Rossi el 

at. , 1994). A perfect model would result in the mean, median, variance, and quantiles all 

being zero. These statistics were used to evaluate how ""-ell the model perfonned. 

Table 3.5 lists the summary statistics for the model. Overall, these statistics 

suggest that the model was a good representation. The mean. median and variance all 

have very low values and the quartilcs suggest that most of the error was between -0.142 

and 0.114. This indicates that the errors are clustered in a low mnge of values. Of the 

10000 poims used for the interpolation, 1291 had an error of 0 which accounted for 

12.9% of the total sample. The small positive skewness value indicates that the model 

tends to have a small bias toward overestimated error. This was also evident in the 

histogram (Figure 3.7), which shows the overestimation as negative values and 

underestimation as positive values. The negative values represent points that weTC not l·IG 

but were estimated as being HG to some degree. The positive values represent points that 
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were HG but were estimated as having some probability of not being HG. The histogram 

shows that the highest frequencies of overestimation and underestimation occur among 

very low errors. This is an indication that the model provided a good representation of the 

data. 

Table 3.5 Summary statistics of errors for the interpolated surface. 

m!II!!II 
Mom 0.000 

Median -0.010 
Vanancc 0.100 

Quartile 1 -0.142 

Quartilc3 0.114 

Skewness 0.340 

Kurtosis 1.027 

Figure 3.7 Histogram showing fn:·qucncy of errors from krigcd model. 
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The error values are also mapped for the interpolated area (Figure 3.8). 

Underestimated values are a little higher in the centre portion of the image but there were 

also some overestimated values in the same region. The over and underestimated errors 

were distributed randomly throughout the area of interest, as shown in Figure 3.8. 

Overall, indicator kriging appropriately estimated the land cover for the area 

considered to be inaccurate in the 1985 classification. The patch of deciduous shrub 

outlined in Figures 3.3 - 3.6 was reduced in size and beller represented the conditions 

observed in the fi eld. The revised classification (Figure 3.6) provided a baseline 

classification for modell ing vegetation changc in the study area. 
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Figure 3.8 Overestimated and underestimated crrors produced by the geostatistical model. 
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3.3.3 1992 2001 and 2008 ctassifications 

The ctassifications for the remaining three images did not require any special 

consideration. This is partly because the imagery is more recent, and allowed for more 

accurate representations of the ground cover. Each image was ctassified using the 

maximum likelihood algorithm. Cross-ctassification matrices for each of the 

classifications from 1992,2001 and 2008 are presented in Tables 3.6 - 3.8. There are sti1 l 

some commission errors in the classifications, but ovcrall kappa values improved with 

80.2%,88.2% and 86.2% respectively. Per-class Kappa Indcx of Agreement (KIA) values 

was a lso very high. Table 3.9 compares the pcr-class KIA values for the each of the 

classifications. It is evident that the pcr-class KIA values are much higher for the more 

recent imagery, than for any of the 1985 imagery. Thc pcr-class accuracies were a lso used 

to aceount for error in the Bayesian analysis by multiplying the accuracy value by the 

Bayesian probability. 'lbcse KIA values arc used to account for certainty in thc Bayesian 

analysis and the final CA-Markov model. 

Table 31.6.ii.~~fOii',thi' .I99i2.'~''''ii'.ifi.''itiOii"~ 
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The classifications are presentcd in Figures 3.9·3.11. The most noticeable 

diflcrence between these and the 1985 classification is the large area ofOSH outlined in 

Figures 3.3 (page 34). The patch is missing from all three more recent classifications. 

OSH is located at lo\\--cr elevations in the southwest region of each image, with very little 

presence elsewhere. This is evidence that the patch of DSH in the centre of the 1985 

images is an anomaly. The middle portion of the classification is comprised primarily of 

the HG class. The area is representative of elevation ranging from approximately 300m to 

700m. RCK is the dominant class above this elevation and located in the eastern part of 

the image. Visually, all images are somewhat s imilar, indicating there has not been any 

dramatic change in vegetation. The 2008 image tends to have more of a speckled 

appearance, particularly with the mixture of HG and RCK classes. This is an artefact 

related to the original 10m resolution of the SPOT image. 
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Figure 3.9 Maximum likclihood classification for 1992 Landsat 5 TM image. 
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Figure 3.10 Maximum likelihood classification for 2001 Landsat 7 TM image 
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Figure 3. 11 Maximum likelihood classification for 2008 SPOT image 
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3.4 Topographic Variables 

Topographic variables are used in predictive vegetation mapping as a way to describe the 

landscape and also as independent variables in statistical models. The majority of 

predictive vegetation models use elevation, aspect, and slope as variables (Franklin, 

1995). These variables are utilized in this project along with two additional variables. The 

first is a relative moisture index (RM I) that measures the moisture potential of the land, 

based on slope and flow accumulation (Moore et aI. , 1993). The second variable is the 

topographic shape index (TSI) which represents the position along a slope. All of the 

topographic variables were created using map algebra in ArcMap 9.3. 

3.4.1 Elevation 

Elevation is directly related to the growth of vegetation because of its association with 

temperature. The relationship between elevation and vegetation growth in tundra 

environments has been well established (Cannone et al .. 2007; Komer and Paulsen, 

2004). Elevation was derived directly from a DEM , on which a 9 pixel by 9 pixel filter 

was applied to remove artefacts from the model. This produced a smooth surface from 

which other indices could be derived. Elevation ranged from approximately 75m in the 

valley ncar Nakvak Brook to a maximum of915m. 

The vegetation at all elevations is typical of the tundra elevational zone which 

consists of dwarf shrubs, gmsscs, mosses and lichens. Elevation classes are based on the 

distinct areas where each land cover elass is located. Each elevation class is defined as the 

mean elevation plus one standard deviation for each vegetation class. The classes of 

elevation arc displayed in Table 3. 10. This method of classification is possible because of 
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the distinct locations of each vegetation class. Based on field observations, it was clear 

that DSH was dominant below 250m but not particularly abundant above that clevation. 

Mid elevations arc dominated by 1-10 and higher elevations are comprised mostly of rock. 

This method of classifying elevation is based on divisions observed in the landseape and 

is a general guideline describing the elevation divisions of the tundra landscape. 

Table 3.10 Classification scheme for elevation. 

3.4.2~ 

As]X.'Ct was calculated and classified using the original raster layer. Ni ne elasses tot:ll 

were used for aspec t. They corresponded to each of the four cardinal dircctions and the 

intenncdiate d irec tions, along with a class for flat areas. The classification scheme shown 

in Table 3.11, displays the 45° intervals used to define the classes. 
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Table 3.1 1 Classification scheme for aspect based on equal interval divisions. 

337.5-0-22.5 N 

22.5 67.5 NE 

67.5 11 2.5 

112.5 157.5 SE 

157.5 - 202.5 

202.5 247.5 SW 

247.5 292.5 W 

292.5 337.5 NW 

Flat -1 

3.4.3~ 

Slope is directly rclatt.-<.\ to other variables such as exposure, soil moisture, and 

topography of the land. For the purpose of this analysis, slope was expressed as ·percent 

rise'. This is thc rise in elevation divided by the horizontal distance, mUltiplied by 100. 

Pereent rise is equal to 100% when the horizontal displacement is equal to the rise in 

elevation and can approach infinity when the slope approaches vertical. 

Slope was reclassified into seven separate classes adapted from Dobos el of. 

(2005). The slope classification gradually increases from more gent le slopes to more 

extreme, steep slopes (Table 3.12). 
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Table 3.12 Classification scheme for slope adapted from (Oobos el aJ" 2005) 

~n~~~~'If.j2l~ ~~~~~:~,~~,u.~~~~'~~~ ~;.- ~ 
Flat 0 - 2 1 

Gently Undulating 2 -5 2 

Undulating 5 - 8 3 

Rolling 8 - 15 4 

Moderately Steep 15 ·30 5 

Steep 30· 60 6 

Very Steep 60 + 7 

3.4.4 Relative Moisture Index 

The Relative Moisture Index (RM I) provides a measure for moisture levels at a site when 

actual field data are not availablc. RMI calculates thc relative amount of water nowing 

into a location, represented by one pixel, in relation to the amount nowing out to the 

locations represented by surrounding pixels. [t is adapted from Moore et af. (1993) and is 

represented by map algebra Equation 3.1. 

RMI = In«flow accumulation + 1) I (Slope +1» 

Equation 3.1 Relative Moisture Index 

Flow accumulation represents the accumulated weight of all cells that flow into 

down-slope cells and is calculated using a raster layer showing flow direction. Flow 

direction is detemlined from aDEM. 

The relative moisture index was classified based on Young (2006), who used a 

simple division of wet and dry. The classification adapted here uses wet and dry as a 
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guideline, but has equal interval classes between the extreme ends of the scale to create a 

gradient ofwetncss (Table 3. 13). 

Table 3.13 Classification scheme for RM[ adapted irom Young, (2006) 

I ~ip~ R:Vll C lass 

-10 to-2 Very Dry ' Well Drained 

-2 to-I 

t -I to 0 

Oto I 

Ito 2 

2 to 10 Very Wet ' Poorly Drained 

3.4.5 Terrain Shape Index 

The Terrain Shape Index (TSI) is a measure orthe convexity or concavity of the 

landscape. This index was adapted from McNab (1989), by taking the mean relative 

difference in elevation between a centre cell and its eight surrounding neighbors. It is 

given by Equation 3.2. 

TSI = OEM - Focal Mean Equation 3.2 Terrain Shape Index 

Where a given OEM value is the centre cell and the foca l mean is the average of the eight 

surrounding neighbors. The TSI can have values from negative to positive infinity. For 

thi s study area, the range was from -372 to 287. 

The classification given in Table 13. 14 is modified slightly from Zimmenlmnn 

(200 I) to account for the specific landscape of the study area. The index describes 

varying positions on a slope. Values increase with movement up-slope, so that the highest 
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negative values represent valley bottoms and highest positive values represent peaks or 

ridges. Values ncar zero arc mid-slope positions. 

Table 3.14 Classification scheme forTSI adapted from (Zimmennann, 2001). 

iI~Ct lSI Int<.'nal [)~scnptl{ln lSI <. l.lss 

-1000 to -200 Valley Bottom 

-20010-75 Toc Slope 

-75100 Mid Slope 

Oto 150 Upper Slope 

ISOto 1000 Ridge 

3.5 landscape Ocscription 

This section relates the three land cover classes with the topographic variables to gain an 

understanding oflhe distribution of vegetation in the landscape. I-listograms for each 

topographic variable are categorized by land cover class to show the differences between 

classcs. 

Elevation was divided into 20m intervals to show variability in the histogram. The 

small clevation intervals show in detail where the vegetation classes occur. The result 

(Figure 3.12) shows that each of the three land cover classes is dominant at different 

elevations. The DSH class occurs primarily below 240m with relatively low levels of 

occurrence above that elevation. DSH also has the most limited elevation range of the 

three classes as is shown by the statistics of Table 3.15. I-IG is dominant between 

approximately 340m and 500m, but is found throughout the entire landscape below 850m. 

RCK has the largest range of the classes because it is found at every e levation. Although 
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rrequeneies orRCK in the 440.-600m and 700·900m ranges are similar, it is at the higher 

elevations where RCK is the dominant land cover. 

~,,~n~~n:n~§n~~~n~ 

~§~§~~~H~H~~H~~~~~~ 
Elevatlon lml 

Figure 3. 12 Histogram or elevation per land class. 

Table 3.15 Elevation statisties ror each land cover class. 

j 
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The histogram for aspect was divided into eight cardinal direction classes (Table 

3.1 1). Figure 3.13 illustrates that westerly facing slopes dominatc this landscape. Hight-'St 

occurrence levels for all threc land covers are located in a western direct ion. The 

histogram does show that OSH is nearly absent from NW facing slopes even though HG 

and RCK maintain the higher pixel counts in this category. The low values for OS I-1 along 

general ly north facing slopes indicate that lower amounts ofsunlighl associated with 

thesc areas may inhibit OSH from growing. HG appears to grow in every aspect and RCK 

occurs in every part of the landscape. 

20 

18 

Aspect in Degrees 

Figure 3.13 1·lislogram showing distribution of aspect per land elass. 
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The histogram showing the relationship between slope and thc land cover classes 

(Figure 3.14) illustrates that the majority of slopes are between 8% and 30%. This 

corresponds to rolling or moderatcly steep areas presented in Table 3.12. Thc highest 

occurrence ofDSH occurs on slopes in the 30-60% rangc which suggests that a steep 

slope docs not rcstrictthe growth ofDSH. Its occurrence along the valley wall, which 

make up most of the 30-90"10 slopes. has not prevcnted DSH growth along these slopes. 

So, based on this distribution, it is plausible that DSH can overcome stl:ep inclines and 

move into upslope regions providt:d soil and aspect provide a suitable habitat. 

"I 
20 

15 - 30 

Slope!%) 

Figure 3.14 Histogram showing the distribution of slope per land class. 
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The distribution for the relative moisture index (Figure 3. 15) shows that DSI-I and 

HG will grow equally well in all mositure levels. Higher occurrences of I-IG are found in 

intennediate moisture areas and there is a slight skewness showing that RCK is found 

more in dry, well.draincd areas. 

Figure 3.16 displays the distribution of the topographic shape index (TS I). This 

index shows the positioning of a land cover on a slope and it is clear that DSH is found 

primarily on the middle to lower portion of the hills. I-IG is more dominant in the mid and 

upper slopes while RCK dominates the ridges. This is similar to observations for 

elevation (Figure 3.12) because the TSI is a composite of terrain characteristics. 

-1 - 0 
(VervDrv) (Very Wet} 

Figure 3.15 Histogram showing the distribution ofRMJ per land elass. 
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10 

Valley Bottom ToeSlope Mid Slope Upper Slope Ridge 

Topographk: Shape Index 

Figure 3.16 Histogram showing the distribution orTSI per land class. 

3.6 C limate D.atll 

[t is difficult to obtain complete and accurate datascts of his/on cal climate for northern 

regions of Canada. Sparsely located climate stations, irregular maintenance schedules, 

and adverse weather conditions all contribute to climate data ~ing either incomplete. or 

absent for a particular region. A potential solution to this problem is using interpolated 

dataselS 10 estimate temperature and precipitation values at the study site. Hutchinson el 

af. (2009) used a trivarialc, thin-plate smoothing spline to model daily temperature and 

precipitation, for all of Canada. Model resolution was 300 arc seconds (92S8m) of 

latitude and longitude and they report that errors for northern Canada were significantly 

largcr than those in southern Canada. Root mcan square errors for maximum temperatures 

ranged from 1.45°C to 2.37°C (Hutchinson el 0/.,2009). For each sample point in Figure 
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3.1. mean maximum and mean minimum temperatures for 1970 to 2007 were supplied by 

Dr. Dan McKenney (2009/. The dataset represents the best climate data avai lable for the 

study area because it provides complete coverage over the entire time period and ha~ 

reasonable errors of esti mate associated with it. More accurate data is desirable; however 

th is is only possible if there were more climate stations in nonhern regions. 

The data were suppl ied in point fonn for each of the field survey locations 

displayed in Figure 3. 1. [t was intcrpolated to raster fonnat using an inverse distance 

weighted algori thm. The raster layers were subsequently used to examinc trends and 

pattcrns in changing temperatures and to compare trends in vegetation change. 

3.7 Summary of Data 

Topographic and vegctation covcr data are required for change detection analysis and 

predictive modelling. A vegetation survey enabled plants to be identified and quantified 

as percent cover. Each image was classified into DSH, HG, and RCK classes using a 

maximum likelihood algorithm. Anomalous areas in the 1985 classi fi cation were 

minimized using indicator kriging and a classification accuracy of65.7% was attained. 

The classifications for 1992, 2001, and 2008, had accuracies of 80.2%, 88.2%. and 86.2% 

respt.'Ctively. The lower accuracy for 1985 occurred because the 1985 classification was 

generated using 2008 field data. lbe difference in classification accuracy is an indication 

that vegctation change has occurred. Topographic variables describe the landscape and 

thc conditions in which differen t vegetation will grow. Elevation, aspect, s lope. 

topographic shape, and relative moisture were used to describe the vcgetation distribution 

2 Personal Communication. Dr. Dan McKenney, Canadian Forest Scrvice, Great Lakes 
Forestry Centre (2009). 
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and will be used to define suitable areas for growth. Interpolated climate data arc the most 

complete dataset available for northern regions of Canada. They will be used to assess 

trends in temperatures compared to obscrved changes in vegetation. 

63 



4. PRELIMINARY RESU LTS 

4.1 C ha nge Detection 

Change detection analysis was applied to classified satell ite data. as well as climate data 

for this projcct. The post-classification comparison provided infomJation concerning net 

change. for each land cover class. The climate change detection procedure was effective 

in establishing the trends in temperatures for the study area and providing some insight 

into changes in the length of the growing season. These applications arc discuSSt.-u in full 

detail in the following sections. 

4.1.1 Post-cla .. sification image comparison 

Predicting future changes of vegetation patterns can only be done if historical data 

provides evidence that changes have occurred in the past. This infonnation is required for 

any spatial modcls deal ing with changes in natural land cover. Post-classification image 

comparison is used to verify whether vegetation distribution in the Torngat Mountains has 

changed since 1985. Additionally. change detect ion was appl ied to quanti fy the amount of 

change expected in the future. This infonnalion is used to verify whether spatial models 

will provide reasonable estimates of future predictions. 

The focus of this projcct was to detect land cover changes between 1985 and 

2008. This was the longest time frame for which data was available to observe vegetation 

change. Intenncdiate years of 1992 and 2001 were also assessed in order to observe 

trends over the time series. J ia el al., (2009) found vegetation greenness in the Arctic 

changed on a decadal time scale between 1982 and 2006 thus the time scale for this 
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research is appropriate. It should be noted that the interpolatcd version of the 1985 

classification was used for this and a ll further analysis. 

Initially, one should deseribe the current conditions of each vegetation class 

observed in the study area. Table 4.1 outlines the area in km2 for each vegetation class in 

2008 as well as the percent area for the entire study region. It is clear that the region is 

made up primarily ofHG and RCK. 

Table 4.1 Proportion of land cover class prescnt in 2008. 

Change in total area of each vegetation class is presented in Figure 4.1. The graph 

shows that the HG class is the most abundant vegetation type followed by RCK and OSI-1. 

The HG class had a gradual dL"Crease in area over the extent of the time series. This 

resulted in RCK being exposed and therefore RCK experienced an increase. Figure 4.2 

has a more suitable scale for OSH and shows that it has an increasing trend. There is not a 

continuous upward trend, although there is a clear increase in area when comparing the 

earl ier classifications with the later classifications. 

Figures 4.1 and 4.2 show that comparing the 1985 and 2008 classifications will 

yield the greatest difference in area for any vegetation class. The exception here is OSH 
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Figure 4.1 Total area of each land cover class for classification in the historical time 
series. 
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Figure 4.2 Tota[ area for DSH class over the time series. 
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where 1992 and 2001 have the greatest difference. Consecutive images tend to have less 

difference between them which is indicative that changes are occurring on a dt:cadal time 

scale. To interpret changes in the landscape, it is best to look over a timescale of at least 

ten years. At this time interval, it is more [ikely that significam change will be observed. 

For this reason. the majority of the remaining change analysis was pcrfonned using the 

[985 and 2008 classifications. This provided twenty-three years over which change could 

be observed and provided the best opportunity for detection. 

Further analysis of the changes in area, was examined through gains and losses of 

eaeh land cover class between 1985 and 2008 (Figure 4.3). RCK had the largest increase 

in area, relative to the amount of area that was lost while 1-10 had a larger decrease than 

increase. OSH experienced a net gain in area but the change was much smaller than those 

observed for RCK or HG. This was expected due to the relative proportions of each cla<;s. 

Figure 4.4 shows that the vast majority of change occurred between RCK and HG, with 

OSH accounting for the remaining net change. Since the total area of the DSH is only 

2.81 km2 in 2008, 0.30 km2 represents a 10.7% increase in the tolal area. This is 

comparable to a 22.2% increa<;e for RCK and [9.7% dccrea<;e in total area for HG. 

The following paragraphs discuss the spatial pattern of vegetation change in the 

study area. The HG class experienced a loss in area over the twenty-three years. Figure 

4.5 shows the distribution of the gains and losses in this class between 1985 and 2008. 

These results contradict those found by other studies (Canone el aI. , 2007; IPCC, 2007). 

This is related to low joint classification accuracies of the HG (42.7%) and RCK (6 [.1 %) 

classes in the 1985 classification. 
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Figure 4.3 Total area gained and lost between 1985 and 2008 for each land cover class. 
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Figure 4.4 Net change for each land cover class between 1985 and 2008. 
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Figure 4.5 Areas of gains and losses of HG c1a"s between 1985 and 2008. 
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Inaccuracies in classification may be caused by mixing between the HG and RCK classes. 

Areas where these classes coexist can be classified differently due to renective 

differences of the landscape and without field data from 1985, it is difficult to achieve 

beller classification accuracy for 1985. 

The pattern for gains and losses of DSH is confined to lower elevations in the 

southwest comer of the study area. Figure 4.6 shows that the majority of losses are 

located among the region toward the centre of the image where the classification issues 

were identified. This region had its extent minimized but still impacted the change 

analysis. Aside from the larger clusters of pixels that indicate a loss, there are very few 

areas where a loss in DSH was detected. Most of the change in DSH indicates that therc 

was growth in the region. Thc pixels are primarily located along the edges of persistent 

shrubs where change is expectcd to occur. This change indicates that the shrubs expanded 

thcir extent and began moving upslope into higher elcvations. The persistent DSH area 

from Figure 4.6 had a mean elevation of 141.1 m while the areas of gain had a mean 

elevation of203.0 m. II is evident from those values thai the areas of gain had been 

growing at higher average elevations. Visually, most new growth appears to occur on the 

northeast edge of the persistent DSH. 
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Figure 4.6 Areas of gains and losses in DSI-I between 1985 and 2008 
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4.1.2 Climatc changc asscssmcnt 

Thc elimate data provided by Dr. Dan McKenney (2009) were used to calculate mean 

monthly tcmperatures from 1985 to 2007. The time series, which nearly covered the 

temporal span of the satellite imagery, was used to assess the interannual and seasonal 

trends in temperature. 

The median trend in average temperature was analyzcd to dctenninc if a warming 

trend could be observed in thc data. It was calculated using a Theil-Sen median trend 

operator which detennines the slope between every pairwise combination in thc time 

series and then calculates thc mt:d ian (Eastman, el aI., 2009). This method of detennining 

trends in a time series is recommended when a dataset is very small or noisy. In the case 

of this time series, the Thcil-Sen median trend was utilizcd because thc data representcd a 

small sample size of twenty-two years. Figure 4.7 shows thc trend ovcr the extcnt ofthc 

study area. The region in the eastern pari ofthc image, at highcr elcvation, waoned fastcr 

than the wcstern area however, the difference in temperature is 0.24°C. This is less than 

the RMSE values of 1.45°C to 2.37°C, which was reported by Hutchinson el al. (2009) so 

there is no certainty in the diffcrence between the temperatures at different elevations. 

The wanning trend is a lso evident by looking at mean annualtempcratures and applying a 

linear trend to the data (Figure 4.8). lbese values are simi lar to the temperature increases 

reponed by the Arctic Climate Impact Assessment (ACIA). They showed an averagc 

temperature increase of 1.06°C per decade for North America between 1981 and 200 1 

(ACIA. 2005). Givcn those values. an increaseof2.8°C to 3.0°C isat the upper limit of 

cxpectcd warming for the twenty-two year time period. 

72 



o 375 750 1,500 

Meters 

Median Trend in Temperature 

Degrees Celsius 

High : 3.07 

Low : 2.83 

Figure 4.7 Theil-Sen median trend in temperature. Represented as total change in 
temperature ovcr the twenty-two year timc series. 
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fIledseasonalCU'Yes(:c476849.ooy.6497222 .00) 

Figure 4.8 Fitted seasonal curves for 1985-1991 (green) and 2001-2007 (red). Diffcrenccs 
between curves represent average changes in temperature between time periods. 

Seasonal trends are analyzed by assessing the shape of the seasonal curve over the 

extent of the time series (Eastman, et uf .. 2009). The result of this analysis focuses on a 

small area in the valley, where the lowcst temperature increases were observed. This area 

corresponds to the location where DSH existed in 2008 and provides an indication 

whether climate change is also evident with corresponding vegetation movement upslope. 

The lack oftemperdture variation in this area makes it a reasonable representation of the 

entire study region. Hannonic regression was applied to the time series to extract the 

mean annual temperature image and the annual cycle. 

Two curves were initially fitted to the lime series. One curve corresponds to the 

first seven years of the time series while the other corresponds to the last seven years 

(Figure 4.8). This was an appropriate interval for the twenty-two year time span because 

it provides a good reprcsentation of the beginning and end of the time series. The 

differences in the curves depict an increase or decrease in temperature from onc lime 

period to the next. Figure 4.8 shows a clear separation of temperatures between time 
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periods. The 2001·2007 temperatures remain above thc 1985-1991 temperatures 

indicating that evcry month is warmer on average for the later part of the time series. 

These curves also provide a better indication of seasonal temperatures. The greatcst 

wanning has occurred during winter months. Temperatures are as much as 4°e warmer 

during January and February whereas temperatures in July and August arc about 1°C 

wanncr on avcrage. Temperatures are also exceeding 0 °e earlier in the season which is 

demonstrated through green-up and grcen-down measurements. The approximate time 

period corresponding to spring and fall were set to green-up and grcen-down respectively. 

It was dClennined that the green-up period occurred approximately 10.7 days earlier in 

the 2001-2007 time period than it did from 1985-1991. The grcen-down period oceurred 

approximately 11.3 days latcr than it did in the earlier time period. The effect of 

temperatures surpassing ooe is evident in the lcngth of the growing season which was 

approximately three weeks longer between 200 I and 2007 than it was between 1985 and 

1991. 'Ibis indicates that there is greatcr potential for vegetation to occupy a larger spatial 

extent and to become more dominant in areas where it currently exists. 

Mean annual temperatures were calculated for the time serics and a Theil-Sen 

slope was applied as a trend line to visualize change in temperature. This is referred to as 

'amplitude 0' and is shown in Figure 4.9, The trend in the data show an increase of 

approximately 3°e overall. Additionally, the data suggests that there is a trend in the 

annual difference between winter and summer temperatures. 'Ibis is represented in Figure 

4.10 a~ 'ampiludc 1'. Thc graph has a decreasing trend, indicating that the difference 

between mean wintcr temperatures and mean summer lemperdtures is getting smallcr. 
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Figure 4.9 Amplitude 0 showing Theil-Sen slope indicating the trend in mean annual 
temperature. 
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Figure 4.1 0 Amplitude 1 which shows the difference between winter and summer 
temperatures is decreasing on avemge. 

This implies that winter season has experienced a greater amount of \\'Unning than the 

summer season and helps verify the observations of Figure 4.8, which shows winter 

temperatures warmed more than summer temperatures. The amplitude 0 and amplitude I 

graphs incorporate the entire time series rather than the first and last seven years. 
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To gain a geneml understanding of the relationship between vegetation change 

and observed climate change, mean avemge tempemture and total area of each land cover 

class, were plotted in Figure 4.1 1. The increasing trend in tcmpcmturc corresponds with 

the increase in area of RCK and inversely corresponds with HG. DS H has a small 

increasing trend indicating there is some association between DSH growth and increasing 

tempemtures. Figure 4.11 indicates there could be some correlation between the dynamic 

vegetation patterns in the study site and changing tempemtures, but these changes need to 

be moni tored over decades to beller understand the relationship. 
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Figure 4.11 Trend in average mean temperature compared to change in area of vegetation 
class. 
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4. 1.3 Summary of Change Detection Analysis 

Post-classification image comparison was used to detennine changes in vegetation cover 

over time. [t was found that DSH experienced an increase in areal coverage whereas HG 

area decreased. Expanded areas of DSH occurred along persistent vegetation which 

suggests growth will occur ncar well established areas ofOSH. Losses in HG occur along 

the boundary between HG and RCK however, those changes were associated with very 

low classification aceuraciesofthe 1985 satel[ite image 

Climate change was assessed using interpo[att.'d climate data and indicated that 

temperatures have wanned by as much as 3.0°C since 1985. On average, there are about 

twenty-two more days during the year thattcmperatures exect.'d O°C, thus providing 

longer growing seasons for vegetation. The results suggest that DSH has potential to 

continue to expand in areas with these inereased temperatures. 

4.2 Bayesian I'robabilitics 

Bayesian probabilit ies (BI'nlt» were used in this study as a secondary method of change 

detection and to define suitable areas of growth in the cellular automata Markov chain 

(CA-Markov) model. Calculations were made for each land cover class for each satellite 

image. This enabled the BProb to be compared over time and allowed them to be input into 

the model on a per elass basis. The method of calculating BI'rob and applying them to 

vegetation change detection is discussed in this section. 
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4.2.1 Calculating Bayesian Probabilities 

Prior probabilities must be evaluated before calculating Bayesian probabilities. Prior 

probabilities represent the probability of finding a particular land cover class based on the 

ex isting coverage in the study region. These can be calculatcd by finding the proportion 

of each land cover class for each year using Equation 4.1 

Equation 4.1 Prior probabili ty 

Where PPrior is the prior probability, A LCi is the area ofa particular land cover class, and 

A Tor is the total area of the study area. The prior probabilities for each land cover class 

for each year are given in Table 4.2, and are a gencral represcntation of thc entire 

landscape for each year. BI'rob have the advantage of incoTJXlrating additional infonnation 

to improve the prediction of land cover classes. For this research, the additional 

infonnation comes in the fonn of the elevation, aspect, slope, relative moisture index and 

topographic shape index, variables presented in section 3.4. The variablcs describe where 

particular land cover classes exist, and can be used to help predict the most likely areas 

where these land cover classes will exist in the future. The calculation of BI'rob requires 

the assumption of conditional independence which means that each topographic variable 

includt:d in the calculation are considered independently from one another (Bonham-

Carter, 1994). BI'rob were calculated for each land cover class using a simplification of 

Bayes Rule shown in Equation 4.2. 

Equation 4.2 Bayesian probability (Bonham-Carter, 1994). 
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Where: LC1j = a particular land cover (I) for a particular year (J) 

TE == Elevation 
Ts == Slope 
TA == Aspect 
TTs = TSI 
TM == RMI 

Table 4.2 Prior probabilities for each classified image (%). 

A geographic infommtion system union operator was utilizt:d to create the 

necessary layers for calculating the Brroo. The classified topographic vector layers were 

input to the union operator. This operator overlays the layers to create a geometric 

intersection. Polygons output with the same combination of topographic classes were 

grouped together as multi-part polygons bt.'Causc they shared common topographic 

characteristics. Multi-part polygons are uSt.'<I to estimate the probability ofa land cover 

class occurring. The area of each unique combination of variables is calculated and used 

to find the proportion each multi-part polygon had in the enti re study area. This procedure 

is described by Equation 4.3, where: 

Equation 4.3 Probability of finding unique combinations of topogr-.lphic variables 
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Whcre AcrE n Ts n TA n TTS n T u) is the total area ofcach unique combination of 

topogrdphic variables and ATOTAL is thc total area of thc study region. All probability 

calculations were completed using ArcMap 9.3. 

The numerator for Equation 4.1 is calcuated in the same manner as Equation 4.3 

with the one exception being that the land covcr class Leij is included in the geometric 

intersection of layers. With these calculations, Equation 4.1 provides the probability of 

findi ng a land cover class in a particular year, given the presence ofa unique combination 

of topographic characteristics. The BProb varies over space and are more effective at 

showing local variation in the probability ofbcing a particular land cover class. Figure 

4.12 illustrdtes areas where DSH was most likely to be found in 2008. The highest values 

are at the vaUey bottom and toe slopes where most DSn is found . Probabilities decrease 

through the transition area with increasing distance away from persistent vegetation. To 

account fo r certainty in the BProb land cover values, the classification accuracy, derived 

fro m the Kappa Index of Agreement (KIA) were multipl ied by the B",,,,, layers for eaeh 

class. For example, the KIA value for HG in 2008 was 73.4 %, which was multiplied by 

the BProb layer for HG fo r the given year. Thus, any pixel in the BProb layer with a value 

of 1.0, would now have a value of 0.734 or 73.4% (e.g. 1.0 X 0.734 X 100). This reduces 

the probability of HG occurring at a given pixcl , but accounts for uncertainty in the 

analysis. 

The profile plot shown in Figure 4.13 demonstrates how the I3I'rob ernJ vary over 

space. The profile was digitized in a southwest to northeast orientation from the valley 

boltom to the highcr elevation areas. It shows how the BProb clearly identify the most 
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favourable areas to fi nd DSH. HG and RCK. There is also evidence that the transition 

areas between these classes are suitable for morc than one class. This indicates there is 

potential for DSH to move into up-slope areas that are currently only suitable for HG 

growth. 
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Figure 4.12 Bayesian probability map for DSI-I in 2008. 
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Figure 4.13 Profile of Bayesian conditional probabilities (%). 
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One Bf'rob map is generated for eaeh land eover class for eaeh classified image. 

lbe ehange detection analysis using Bf'rob is discussed in the next scction while the 

integration ofBf'rob layers in CA-Markov modelling is discussed in Chapter 5. 

4.2.2 Bayesian probabilities for change detection 
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1-
Image differencing techniques arc utilized 10 evaluate the amount of change in BI"rub 

between 1985 and 2008. The BI'rob for like classes arc subtracted from one another to 

assess whether the probability of finding a land cover class has increased or decreased 

over limc. The method for determining the difference between images is represented by 

Equation 4.4 (Nelson, 1983; Si ngh, 1989). 

Equation 4.4 Image differenci ng 

Where xij is the pixel value at row i, column) at time (tt) and (t2 ) and DXij is the 

difference at row i, and coiumnj. 

[mage differencing was performed using a raster data format. The earliest 1985 

Brroo layers are subtracted from the 2008 layers to find areas ofincrcasc and decrease. To 

account for certainty in the BI'rob the product of me per class KIA values for 1985 and 

2008 is multiplied by the resulting change image. This accounted for the error inherent in 

the classifications. As a result the change image for OSH was multiplied by 1.0, HG was 

mul tiplied by 0.428 and RCK by 0.611. The outputs from this analysis are shown in 

Figures 4.14 through 4.16 respectively. 

The percent change in BI'roII for OSH (Figure 4.14), ranges from -100'% to + 100% 

because the per-class accuracy for the two BI'roII layers was 1000/0. Figure 4.14 shows the 

overall trend of increasing probability of finding OSII . The general area ofpcrsistent 

DSH (sec Figure 4.6) has smaller increases in BI'rob values bceausc the vegetation is 

already well established. Areas along the edge of persistent vegetation are where the 

largest increases are found. The areas of dark red represent large increases in probabili ty 
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and visual comparison with Figure 4.6 shows that areas of gain in DSH correspond well 

with large changes in Bf'rob. There are very few areas of loss for DSH. The most notable 

area of loss is near the centre of the image which has already been identified as a si te of 

potential misclassification in the 1985 image (Figure 3.6). This map suggests that there is 

a decrease in the probabili ty of finding DSH at that location. 
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Figure 4. 14 Di fference in Bayesian probabi lities for deciduous shrub between 1985 and 
2008. 
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Figure 4.15 shows the change in BP1<Jb for HG. The majority of changc occurs 

throughout the centre ofthc study area because this is where HG is primarily located. 

Most of these areas of change arc shaded light blue to represent a decrease in the 

probability of finding I·IG. This is in agreement with post classification change 

comparison discusscd earlier, suggesting that HG experienced a loss in area during the 

past twenty-three years. Figure 4.15 shows that there is a lower probability of finding HG 

in 2008 than in the past. 'Ine increases that were observed tend to have high probabilities, 

however these areas are very small compared to the areas of loss. The range of increases 

or decreases is limited to a maximum value of +/- 42.8% because of the accuracy 

adjustment. 

Changes in the RCK class are displayed in Figure 4.16. The post-classifieation 

analysis showed that rock was increasing in area over the time series which is consistent 

with the change in probabilities of finding RCK. Increases in probability occur at higher 

clcvations toward the eastern side of the study area. This area represents the elevational 

limit of the HG class. These are the types of areas where RCK and HG coexist and the 

spectral signature of RCK becomes the dominant signature. It is also possible that HG 

cannot sustain itself in these particular areas, and as a result rock and bare ground has 

become visible and is being detected by the satellite sensors. 

The Bayesian probabilities provide another method of assessing where changes 

occurred in the landscape and also provide insight into the likelihood of change occurring. 

If there is historical evidence of change in an area, one can infer these are also potential 

areas of future change. 
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Figure 4. 15 Difference in Bayesian probabilities for HG between 1985 and 2008. 
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Figure 4.16 Difference in Bayesian probabilities for rock between 1985 and 2008. 
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The spatial nature of BProb layers allows for integration into a spatial model. BPruII layers 

are suitability maps that describe the likelihood ofoccurrcnce ofa particular land cover. 

This aspect of the BPruII layers is discussed in Chapter 5 on the development of the CA

Markov model. 

4.2.3 Summary of Bayesian Analysis 

For each classified image, BPruII layers are calculated for each land cover class. Certainty 

in the B1_ values was accounted for by multiplying the BPruIIlayers by pcr-class KIA 

values, which were derived from the classified images. Orr,,!) layers were used to 

determine whether the probability of finding a particular class was increasing or 

decreasing ovcr timc. The analysis revealed that DSH had an increase in the probability 

of being observed for most locations, whereas HG experienced an overall decrease. 

Although the loss ofHG is due to classilieation accuracy, these results are in agreement 

with the post-classification image comparison. 
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s. Cellular Automata-Ma rkov Chain Modelling Results 

5.1 Overvie~' 

The CA-Markov model was implemented using a sct of modules specifically designed for 

spatial modelling (Eastman, 2009). An overview of the modell ing process is provided 

here followed by a discussion on error assessment and the procedure of generating 

prt.-dictive models for the study area. Results of the CA-Markov simulations are also 

presented. Model accuracy is evaluated by comparing the simulated layer and the 

classification for 2008 as well as assessing the Kappa statistics and cross-classification 

tables. Matrices generated by the Markov analysis are evaluated and the final simulations 

from the CA-Markov model are presented. 

5.1. 1 CA-Markov Model 

The spatial modelling modules, available in Idrisi Taiga, are specifically designed 10 run 

CA-Markov models using classified satell ite imagery. A Markovian transition estimator 

is used to generate transition probability and transition area matrices using a pair of land 

cover images from different dates. Probabi lity matrices provide the likelihood that a pixel 

will remain in the same class or transition to another class during the next time period. 

Transition areas matrices report the expected total area for each vegetation class in the 

next time period. The module also produced a set of conditional probability images that 

assign an entire land class a probability of changing to another class. The B_ values 

vary within each class and thus provide empirical evidence for the CA model. Il_ layers 

are used as suitability layers for the remainder of the analysis instead oflhe Markovian 

conditional probabilities bttausc of this variation. The number of years between images 
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must be specified in the model along with the number of years to project into the future. 

This is used to evaluate changes for discrete t ime steps and limit the amount of change 

that can occur in projections. The transition areas matrix was the only result used as dircct 

input into the cellular automata component of the model. The probabilit ies matrix was 

used for comparative purpoS<.'S 10 lest whether or not the transition probabilities become 

stationary. 

The second module required for the analysis combined the stochastic component 

of the Markov chain with the spalial component ofa cellular automata model. To run the 

CA-Markov model, the most recent classificat ion was input as the base land cover image. 

This corresponds to the most recent land cover image used in the Markov model. In 

addition to the image, the Markov model-derived transition arcas file was input to define 

the expected amount of change between elasses for a given time period. The transition 

arcas arc used to limit the amount of change betwecn classes. This ensures that the 

projccted change is consistent with the amount of observed change and the BI'rob layers 

help detennine where the changes will be located. The Bayesian conditional probabilities 

were used as the input suitability maps for Ihe land cover classes in the model. A 3-by-3 

mode filter was applied to each oflhe BProb layers to reduce noise and eliminate 

anomalies that were observ('"<i in the preliminary CA-Markov model outputs. To account 

for certainty in the image classifications, per-class KIA values were multiplied by the 

BProb layers used in the analysis. Per-class KIA values can be reviewed in Table 3.9 (page 

46). The BI'mb layers represent suitable areas where each land cover can grow because 

they arc based on previously known locations of the vegetation and their preferred 

topographic conditions. The suitability maps rrom the Markov model have a single 
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probability assigned to all cells corresponding to a particular class. The BrrooS have more 

spatial variation than the Markov derived probabilities. The topographic variables playa 

crucial role in helping predict land cover distribution. The unique combinations of 

topographic variables create distinct polygons that arc diffcrent from its neighbours. 

The CA·Markov model outputs a prediction for a specified year using the above 

input data and a defined neighbourhood. A·J by-J Moore neighbourhood was used 

because it is assumed that the vegetation growth occurs near already persistent areas of 

that particular vegetation. Field observations and classification maps indicate that the land 

cover elasses arc distinct from one another. There is little mixing between HG and DSH 

as both types have specific areas where they flourish. Additionally, the observed changes 

in DSH imply that change is occurring within JO m to 90 m of persistent DSH 

neighbourhoods. This suggests a J-by-J pixel filter (representing an area of 81 OOm2) will 

define the area of vegetation change for this specific study site. The neighbourhood is 

passed over a Boolean image of each land cover class from the ba~e classification. Pixels 

falling entirely within the class in question are given a value of one while areas outside 

are given a value of ,,-ero. When the neighbourhood is pasSt.-d over the border of two 

different classes the pixels are given values between 0 and I. This adjusts for the fact that 

pixels further from the persistent land cover are less likely to change to that class. The 

result is then multiplied by the suitability map to down-weight the probabilities (Eastman, 

2009). The CA-Markov model output is a classified layer that can be compared with 

classified satellite imagery. The error assessment and specific model runs are discussed in 

the following se<:tions. 
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5.1.2 Error Assessment 

One convenient method of error assessment in spatial modelling is conducted by 

predicting the land cover for a time when real conditions arc known. This method has 

been used in other studies such as Araya and Cabral (20 I 0) who used it to verify the 

accuracy of a model predicting land usc change. They predicted the land cover for 2006 

using observed changcs between 1990 and 2000 imagcs. The simulated 2006 image was 

then compared to a classi fi ed 2006 image using Kappa variation statistics and a cross 

classification between the two images. The same method was utilized in this study using 

the 1985 and 2001 classifications to predict the 2008 land cover. 

The KIA values are used to compare the known elassification to the simulated 

map. Kappa represents the proponional accuracy adjusted for chance agreement and is 

subdivided into a variety of components that provide a suitable method for comparing 

classifi<:d imagery (Pontius Jr., 2000). The kappa statistics assess the model accuracy in 

tenns of the quantity of cells properly classified along with the location of the cells. The 

Kappa statistics, K5Iandanl, K"", KIo<M""', are summarized in Table 5.1 and described in 

detail in Pontius Jr. (2000). For this project, the simulated 2008 layer was compan.:d to the 

classified layer for the same year. 

Another method used to assess accuracy is to generate a cross-classification table 

between the simulated and classifit:d layers for 2008. This table is used to assess the 

amount of each land cover that was correctly predicted. It also indicates how the 

simulated layer misclassified pixels. These two methods are good indicators of the 

elTectiveness of the CA-Markov model used in this analysis. 
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Table 5.1 Description of Kappa statistics for asscssing thc accuracy of simulatcd land 
cover layers (Pontius Jr., 2000). 

A measure of the simulated layers ' ability to attain perfect 
classification. 
The proportion of pixels classified com:ctly relative to the expected 
proportion classified correctly with no ability to specify quantity or 
location. 
Locational accuracy of pixels in the simulation. Ranges from 0 

I (random location) to I ('perfect location specificatiorD. 

5.2 CA-Markov model development and Accuracy Assessment 

The Markovian transition estimator is used to calculate the tr.msition area and probability 

matrices betwecn 1985 and 2008 classifications. This allows for twenty-three years over 

which change is detected. Given that vegetation change occurs over a decadal time scale, 

ten year increments are used for the simulations. Projections are made for 2018, 2028 and 

20)8. The CA-Markov model assumes the changes that have occurred are likely to be 

repeated over the same time period but beyond that, the transitions are unknown. For this 

reason only one proj(.'Ction beyond the temporal range of the data was used. 

The cellular automata modcl incorporated the transition area files from the 

Markov analysis as well as the Bayesian conditional probabi lity dataset to fonnulate the 

hybrid CA-Markov modcl. Bayesian conditional probability data. corresponding to 2008, 

is used fo r each simulation because it provides the most accurate representation of 

suitablc areas of vegetation growth. The model produced threc land cover maps that are 

analyzed using post-classification image comparison. Changes arc quantified and 
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compared to known changes to assess whether the model accurately represented future 

conditions. 

As a model indication process, the CA-Markov model was used to predict the 

2008 land cover classification. Figure 5.1 shows both the original 2008 classification and 

the simulated layer. Visually, the most notable difference is the actual classification had 

more spatial variability throughout each land cover. This is particularly evident in the HG 

dominated area where there is a 101 of mixing with the RCK class (Figure 5.1). The 

simulated layer has a smoother, more continuous appearance. This is because of the 1985 

(Figure 3.6, P. 40) and 2001 (I;igure 3.10, P. 49) classifications have a morc conti nuous 

appearance than the 2008 classification. Since the simulation is based on those images, it 

maintains those characteristics. Aside from this difference, the simulated layer retains the 

overall pattcrn of vegetation throughout all three classes. 

The K"" value is a better alternative than KSiandM'd for assessing the ovcrall accuracy 

of the model (Pontius Jr. , 2000). At 70.8%, the 2008 model perfonned well in its overall 

ability to predict land cover. Modcls with accuracies in excess of800/o arc typically 

considered very strong predictive tools (Amya and Cabral, 2010). Guisan and 

Zimmennann (2000) suggest that any model with a K value greater than 0.5 is considered 

fair. This is considered an effective mcthod ofrnodclling the landscape as it is within this 

accepted range. n'e KlocIfoon value of75.6% indicates that the model provides a 

reasonable representation of location and based on the Kappa values the model will 

reliably predict fUlure land cover conditions. A cross-classification table was used to 
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Figure 5.1 Original 2008 classification (left) and the simulated 2008 classification (right). 
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assess the accuracy of the 2008 simulation. Table 5.2 shows the counts of pixels that are 

classified the same on both the classification and the model. The simulation predicted the 

2008 land cover with an overall Kappa value of 66%. Per-class KIA values for HG 

(71.4%) and DS11 (86.7%) suggest that those classes were predicted dependably in the 

model (Table 5.2). RCK had a much lower KIA value at 55.1% which could be caused by 

pixel mixing with the HG class. Table 5.2 shows that 3760 pixels were simulated as being 

BG when they should have been RCK. This implies that thc modcl docs not predict RCK 

as well as the vegetation classes. 

Table 5.2 Cross-classification table for the original 2008 classification and the 2008 
simulation. 

53 Transition Matrices 

Transition matrices generated by the Markov modcl provide infonnation about the 

amount of change and likelihood of change occurring before the final CA-Markov model 

was produced. This section discusses the matrices for the three projcctions to show how 

each land cover was projccted to change. Transition area matrices were compared to the 

total known areas ofland derived from the classifications. The transition probability 

matrix provides an initial indication of how the likelihood of belonging to a particular 

class, changes over time. Each of these is discussed in more detail below. 
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5.3.1 Transition Area Matrices 

Transition area matrices are used to assess the amount of area expected to change 

between land cover classes for the different simulations. The three transition areas 

matrices are displayed in Tables 5.3 to 5.5. Of particular interest is the relationship 

between HG and DSH and. to a lesser extent, the relationship between HG and RCK. 

Each matrix shows that the transition from l-IG to DSI", is always greater than the amount 

of change from DSH to HG. This results in a very small net gain for the DSH elass. 

Along with the small increase in DSH from RCK, this means that the DSH class should 

experience small gains in total area. 

The losses ofHG to DS I-I and RCK far outweigh the gains in I-IG. This implies 

that HG should experience a net loss in area. Much ofthe loss in HG resulted in an 

increase of RCK because it would have been expoSt:d as the vegetation retreated. These 

transition area matrices show that the Markov component of the model effectively 

predicts proportions of each land cover elass. The total percent cover ofDSH and RCK 

increase with longer projections. The total pereent cover for HG decreases over the time 

series of projections. This is consistent with change detection analysis where it was 

observed that DSH and RCK increased in total area by 10.7% and 22.2% respectively and 

HG decreased by 19.7%. 
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Table 5.3 Transition area matrix for the 2018 projection (%). 

Table 5.4 Transition area matrix for the 2028 projection (%). 

Table 5.5 Tmnsition area matrix for the 2038 projection (%). 
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5.3.2 Transition Probabilitv Matrices 

The transition probability matrices give the likelihood of transition betwecn classes. The 

matrices presentcd in Tables 5.6 to 5.8 givc the likelihood a particular class from 2008, 

will change to another elass or remain the same in the future. One trend is that ovcr the 

three projections the probability of remaining in the same class dccreases. HG 

experiences the biggcst drop between the first and last projections. After ten years, there 

is an 84.7% chance a eurrent l·IG pixel will still be HG however after thirty years that 

value drops to 66.1%. It is also more likely for the HG class to transition to RCK rather 

than DS H which is shown throughout Tables 5.6 to 5.8. Thcrc is a 29.1 % chance that a 

pixel representing HG in 2008, has turned to RCK by 2038. Other notable trends show 

that thc current DSH elass is only going to tum into HG while RCK is more likely to 

changc to HG. 

These matrices establish thaI the Markov chain assessed the ehangL"S between the 

classified imagery for 1985 and 2008 and dependably based the projected probability of 

change on observed values. The Markov model provided a suitable output for the cellular 

automata component in tenns ofthc area matrices. lbe results ofthc CA-Markov model 

are discussed in the following section. 
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Table 5.6 Transition probability matrix for the 2018 projection 

Table 5.7 Transition probability matrix for the 2028 projection 

Table 5.8 Transition probability matrix for the 2038 projection 
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5.4 Cell ular Automata-Markov Chain Sim ulat ions 

The results of the CA-Markov model for 2018, 2028, and 2038 arc presented in this 

section. Figure 5.2 represents the three proj<-"Cted land cover maps gener.lted using the 

CA-Markovapproach. Eaeh land cover does not exhibit dramatic changes at any point 

throughout the time series. As a result, the projections maintain the gradual transition that 

was observed between 1985 and 2008. The changes in distribution were quantified in 

terms of change in area. 

Each land cover elass exhibited the same trend in change that was observed from 

the elassifiL-d imagery. Figure 5.3 illustrates that UG continued to decline in total area 

while RCK increased in total area. The DSH region remained relatively constant 

compared to the other two elasses so it can be assumed that loss of HG contributed to the 

majority of gain in RCK. Figure 5,4 illustrates DSH increased in area byO.14 km2 

between 2008 and the 2038 projection which accowllS for a 7.7% increase in total areal 

coverageofDSU. This is slightly smaller than the 10.8% increase observed between 1985 

and 2008. The changes for HG and RCK are also lower for the projection than thc actual 

observed change. Figure 5.5 shows that the model consistently underestimates the amount 

of change in area compared to what was observed. The BI'TutI suitability layers can cause 

underestimation if there arc no suitable areas for change to occur. Thus the topographic 

variables arc acting as a constraint because the combinations of variables define areas 

where vegetation is likely to grow. This is a limitation of the environment and the 

available suitable habitat in the study area. BI'rob will have low probability at sites where 

there is no evidence of past vegetation growth, thereforc the model will not predict 

vegetation growth at those sites. 
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Figure 5.2 Projected land cover distributions using CA-Markov chain model. 

104 



20 

::::: 

~ L------
o - ~--

1985 1992 2001 2008 2018 2028 2038 

YCBr 

- DSI1 Area - HG Area - RCK Area 

\:igure 5.3 Area of each land cover class as represented by the classified imagery and 
model projections. 

3.2E 
;<- 2.: 
g26 
~ . 

< 2.4 

2.2 

1985 1992 2001 2008 

Year 

~DSI-I Arca 

2018 2028 

Figure 5.4 Area ofOSH from the classified imagery and the model projections 

2038 

105 



-4 -3 -2 -1 
Area (km2) 

• Observed Difference (1985 - 2008) • Projected Difference (2008 - 2038) 

Figure 5.5 Differences in area as observed from classified imagery and projected by thc 
CA-Markov model. 

Change maps generated for the 2038 projection show where land cover changes 

are most likely 10 occur. Figure 5.6 displays the transitions bctwl'Cn all classes for the 

2038 projcction. HG 10 RCK is the most dominant transition observed in the projected 

land cover. Most oftha! change occurred on the eastem side of the study area, which 

corresponds with mid \0 high elevations. This is where HG transitions into RCK and is 

the expected area of change for these classes. Figure 5.7 displays the area where HG was 

lost to RCK thus giving a better perspective of the projected change. It shows that HG is 

decreasing along the boundary with RCK. This suggests that any change in vegetation 

cover will occur along the edges of persistent vegetation. 
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Figure 5.6 Transitions between classes for the 2038 CA-Markov projection. 
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.... 

108 



The model accurately depicts where changcs are cxpectcd to occur; this is in 

agreemcnt with thc observed changes in RCK land cover. Losses in RCK occur primarily 

in the centre part oflhe study area. This coincides with persistent areas of HG. Figure 5.6 

shows that both DSH and RCK contribute to gains in HG. Figure 5.8 shows that losses in 

area of HG are much more dominant than the gains. This agrees with the observations 

between 1985 and 2008 that showed net losses in the HG class. Also, much of this loss 

occurred along the boundary with adjacent classes and therefore it is occurring in arcas 

where change is expected. A loss in HG is nolthe nonnaltransition one would expect. 

This transition is relatcd to classification error in the RCK and HG classes. 

Gains and losses in the DSH class are concentrated in the southwest portion of the 

study region which indicates that the model is accurately predicting the best potential 

locations for vegetation growth. Figure 5.9 displays the areas of gains and losses in DSH 

while Figure 5.6 shows that the majority of gains come from the HG class with only a 

small contribution from RCK. Gains occurred mostly along thc eastern edge of persistent 

DSH and infilling was indicated by increasing Bi'r<>b values. The losses occurred among 

more dispersed regions ofDSH. Small clusters ofDSH located away from the large 

persistent region were the areas that transitioned to another vcgetation class in the model. 
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Figure 5.8 Gains and losses in HG fo r the 2038 CA Markov projection 
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Figure 5.9 Gains and losses in DSH for the 2038 CA-Markov projection 
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The model appears to accurately represent future land cover based on the amount 

of change that was detected. It correctly projected small gains in the DSH land cover and 

large gains in RCK. [t also effectively showed the losses in HG and established that most 

of the transition in the landseape is between the HG and RCK classes. The Markov 

component of the model is responsible for this because it restricted the amount of change 

that occurred between classes based on past change. 

The cellular automata component of the model also correctly positioned the 

changes for each land cover. This was limited by the defined Moore neighbourhood. as 

well as the Bayesian conditional probabilities which helped define suitable areas of 

growth for each land cover and introduced uncertainly inlo the model. 

One particular tendency oflhe model was that il generated smoother, more 

continuous surface classes. The elasses in each ofthe projeclions (Figure 5.2) were more 

continuous than the 2008 classification (Figure 3.11 , P. 50). This is partly because the 

model identified small regions entirely surrounded by a particular class 10 be the most 

suitable to trnnsition into that class. The resulting projections are visual1y more similar to 

the classifications developed for the Landsat imagery for 1985. 1992, and 2001. 

5.5 Summary of Results 

The CA-Markov modcl was used to prcdict2008 land cover conditions as a measure of 

model accuracy. The KIlO value of70.8% suggests that the modcl reasonably predicts 

current land cover conditions. Per-class, Kappa index of agree men I (KIA) statistics were 

also calculated as local measures o f accuracy whereby HG (71.4%) and DSH (86.7%) are 

well classified. RCK (55. 1%) was poorly classified because of mixing wilh the HG class. 
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Transition probability matrices assessed the likelihood of change occurring 

between classes. These results suggest that by 2038, 33.9% of HG wi ll have transitioned 

to DSH (4.8%) or RCK (29.1%). Shrub and rock arc projected to gain in total area over 

that time frame. The CA-Markov simulat ions arc consistent with the observed patterns of 

ehange and show that DSH and RCK will continue to cxpand in the futu re while HG will 

experience a deercasc in total area. The model also shows that gains and losses of each 

class occur along transition areas between land covers. The amount of projected change is 

less than what was observed between 1985 and 2008 for each of the land classes but the 

locations of the changes arc consistent with observations fro m historic satellite data. 
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6. CONCLUSION 

The primary objective of this study was to develop a CA-Markov model to predict future 

vegetation patterns based on topographic conditions and observed changcs in land cover. 

In order to achievc this objective, four sub-objcctives were completed: 

I. A time series of classified satellite imagery was created. 

2. Change detection methods were used to detennine the amount of vegetation 
change over the time series, and where it oceurred in the landseape. 

3. A set of suitability maps were created using Bayesian probability methods. 

4. A CA-Markov model was generated that effectively predicted current 
vegetation distribution, based on historical evidencc. 

6.1 C hlssifi ed Time Series 

Landsat images were obtained for 1985, 1992 and 2001 along with a SPOT image taken 

in 2008. The images were taken between late July and late August to minimize seasonal 

variation in vegetation growth. Images were pre-processed and resampled 10 30 m 

resolution to comply with lry CiCAT protocol (Chen, el af. , 2007). A maximwn 

likelihood supervised classification was used to cla~sify each image into three distinct 

land cover classes. Heath/grass (HG), deciduous shrub (OSH), and rock (RCK) were 

established as three classes that could be effectively distinguished from one another at the 

30 m resolution. lbis classification scheme achieved high accuracy rates for the classified 

imagery. The lowest accuracy was for 1985 but this was expected because 2008 field data 

was used 10 classify all images. Lower classification accuracy for 1985 might be an 

indication of vegetation change over the temporal span of the data. The land cover maps 

provided input for change detection analysis and the CA-Markov model. 
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6.2 C ha nge Detection Analysis 

Change detection analysis quantified the amount ofchangc betwt:t:n classificd images and 

provided methods to assess Ihe changes between the different classes. DSH and RCK 

experienced an increase in areal extent of 10.7% and 22.2% respectively. These gains 

came al the expense of HG which experienced a decrease of 19.7% over the twenty-three 

years. A decrease in HG is not commonly found in othcr studies of alpine vegetation. The 

decrease observed here is likcly due to low classification accuracies of the 1985 satel litc 

image. 

Mapping the distribution of the changes showed that most gains and losses in total 

area for a given land cover occur along the boundaries of the persistent land cover class. 

This suggests that a cellular automata method of modelling is effective because 

neighbourhood and suitability maps define potential areas of growth. It was also shown 

through change detection analysis that the change was a continuous process. thus the 

greatest amounts of change arc observed over the twenty-three year time series. The 

modcl was implemented using ten year intervals up 10 thirty years past the most recent 

satellite imagery. 

63 Bayesian Probabilities 

Bayesian conditional probabilities were used to define suitable areas for each land cover 

class and were based on the unique combinations oflopographic variables. The highest 

conditional probabili ties for any class arc locatt:d in the areas where a particular land 

cover is present. BProI> values decreased with increasing distance away from the present 
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land cover conditions. The BI'rob layers provide suitability map inputs for the CA-Markov 

model. 

The layers were also used as an alternative method of change dctcction. Image 

differencing methods are used on the probability maps for different years. The output 

identified areas where the probability of finding a particular land cover class had 

increased and decreased over time. Increasing probabilities represent areas where 

vegetation was becoming dcnser and well established in the landscape. Decreasing 

probabilities represent areas where a land cover class is being ovcrtakcn by a different 

land cover class. This change analysis is an alternative method of looking at how the 

classes are changing within the landscape. These results are consistent with the JXlst

classification image comparison. 

6.4 CA-Markov Model Accuracy Assessment 

To assess the accuracy of the CA-Markov model for this research, a predicted 

classification was made for a time period during which a known classification was 

available (Araya and Cabral, 2010). Using Kappa statistics., the predicted and observed 

classifications were compared. The validation model predicted the 2008 land cover with 

70,8% accuracy. HG and DSH had the best classification accuracies at 71.4% and 86.7% 

respectively. The model maintained the gencral structure of the land cover classes as well 

as the observed pattern. The DSH class dominated the southwest part of the study area. 

while RCK was located primarily to the east and HG was located between the two 

classes, at mid elevations. Onc noticeable feature of the output model is that it genemtcd 

smoother. more continuous groups of pixels for each elass. The classified 2008 image is 
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very fragmented with small clusters of pixcls representing one class, being mixed with 

another class. Thi s is generally absent from the projcctions and is a result of the 

neighbourhood used in the CA-Markov model. All of those small clusters of pixels arc 

identified as places that have a high probability of changing to the dominant class in the 

area. These small areas are amongst the first to change in the simulation. Given the 

results, this model could be used to make future predictions concerning land cover 

distribution in the Tomgat Mountains but it could be improved with some additions to the 

modelling process. 

A more extensive vegetation survey coupled with higher resolution satellite 

imagery would greatly improve image classification for the region. Higher classification 

accuracy would lead to greater certainty in modelling results. Further research into what 

topographic variables affcct tundra vegetation would also hclp refine the Bayesian 

probabilities. The most important topographic variables relating to vegetation habitat 

have not yet been identified for the study area. Understanding what those variables are 

would result in better suitability maps on which the CA-Markov modcl is based. 

6.5 Modelling Future Land Cover Scena rios 

The four sub-objcctives of the research generatt:d the infonnation and data required to usc 

a CA-Markov chain model to s imulate future land cover scenarios in the Tomgat 

Mountains. The time series of satellite imagery is the most important infonnation for the 

research. High accuracy rates for the DSH class allowed for more certainty in the final 

outputs. Change detection analysis results showed that change in vegetation patterns 

occurred at the study area between 1985 and 2008. This suggests that there is a dynamic 
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process at work and it provided a baseline for which futUfC projections of change was 

compared. Bayesian probabilities provided an alternative sct of suitabi lity maps that 

incorpomtcd site specific infonnation into the model. The probability layers provided a 

better representation of suitable areas of vegetation growth because it incorporated 

infonnation on preferred growing conditions based on the topographic variables. Finally, 

the accuracy assessment of the model demonstrated that the CA-Markov chain method is 

an effective method ofmodclling futurc vegetation patterns for the study area. 

The CA-Markov model was implemented using the 2008 classified image as the 

base land cover and the Bayesian conditional probabilities for 2008 as the suitability 

maps. Outputs for the three projected years gave consistent trends compared to the 

amount of change that was observed between 1985 and 2008. The HG class continued to 

lose area while RCK and DSH experienced increases in area. The modcl also 

appropriately located the most likely areas for change 10 occur. The projections showed 

that gains in DSI·I were primarily located along the edges of the persistent land cover. 

This implies that the shrubs wi ll grow outward from existing vegetation into adjacent 

areas if the topographic conditions are suitable. Similarly, losses in HG and gains in RCK 

occur mainly along the boundary between those two classes. 

The predicted land cover scenarios suggest that relatively small amounts of 

change will occur amongst the DSH class. Shrubs accounted for 9.5% of the total area in 

2008 and were projected to occupy 10.3% in 2038. That is a 7.7% increase in the total 

area ofDSH over a 30 year period. The model predicts that DSI-I will move tens of meters 

upslope over the next thiny years. This limited movement is not enough to suggest that 

DSH will be able to move into hight."1" elevations and become the dominant vegetation in 
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the study area. RCK, on the other hand increased from 40. 1% to 46.7% total coverage. 

That amounts to a 16.2% increase in total area. 1·IG dropped from 50.3%t043.1%, a loss 

of 14.4% in heath. Although the change detection analysis and projections from the 

model show I-IG is losing a lot ofarca to RCK, it is still the dominant land cover at mid

elevations. Previous studies have documented that some species are intolerant to 

competition and therefore have decreased in abundance with the onset of warming and 

greater nutrient availability (Gottfried et 01., 1999; Jagerbrand el al .. 2009; Pauli et (II. , 

2007). These situations imply that certain species or functional groups are being replaced 

by other vegetation. The results here show that the HG is retreating and leaving rock and 

bare ground exposed. This docs not suggest competition is an issue because the I-IG is not 

being replaced by other types of vegetation. One potential cause of the loss of HG could 

be related to frost damage. Increased occurrences of intense cooling, followed by 

warming periods during the spring grecn-up will make vegetation more susceptible to 

damage during these events. If the intensc cooling periods increase in frequency than 

there is a possibility that the vegetation could die and show a pattern of retreat. This is 

possible in the Torngat Mountains where there is less snow cover and vegetation is 

exposed earlier in the season. The vegetation in these areas could potentially retreat if 

these events occur repeatt:dly over multiple years. Gu, el af. (2008) looked at a spring 

freeze event in the United States and found considerable frost damage that devasted crops 

in the southern United States. 

This issue might also be related to classification issues. HG and RCK arc known 

10 co-exist in the landscape, thus RCK might have more dominant reflectance in these 

areas. Further refinement of the classification is necessary to identify and correct these 

119 



issues, if they exist. A more extensive vegetation survey would be required to target those 

areas and sec what is causing this pereeived vegetation retreat. 

6.6 l mpliutions 

Assuming that the predictions resulting from this research will occur over the next thirty 

years.. it appears that there is little threat of deciduous shrubs encroaching on existent 

heath lands in this area of the Tomgat Mountains. The movement that was observed and 

pn:.-dictt.'<I shows that it may take centuries for shrubs to dominate the landscape at higher 

elevations and will nevcr exist in more exposed, rocky areas. Aspect and slope will not 

restrict the growth of DSJ.1 in thc study site and elevation wi ll not limit growth given the 

current position of vegetation. The biggest habitat constraint will likely be the presence or 

absence of RCK. The higher elevations and absence of soil in areas of RCK wil l prevent 

DSH from growing in those areas. Interactions between the J.IG and RCK must be further 

analyzed to assess the present state of HG. Future studies involving remotely sensed 

image analysis should incorporate higher resolution imagery ifit is available, along with 

more extensive field analysis. This would provide a bener indication of the state of heath 

in the Tomgat Mountains. 
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