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ABSTRACT
Changes in vegetation distribution due to climate change are a concern in alpine
tundra ecosystems. Past vegetation change was assessed and a cellular automata-Markov
(CA-Markov) model was used to predict future land cover scenarios in the Torngat
Mountains National Park Reserve (Labrador, Canada). Post-classification image
comparison was applied to classified, multi-temporal satellite imagery to detect changes

in vegetation patterns since 1985. Deciduous shrubs (typically less than 3m in height)

increased in areal coverage whereas heath (low-growing, woody ion) i d

a decrease in coverage. Transition matrices were developed from these observed
changes, and were used in the Markov chain component of the model. Topographic
variables were classified, and used as prior information to calculate Bayesian probabilities
(Brrob). The Bprop’s describe suitable areas of growth based on known patterns and were
used as a suitability map in the cellular automata component of the model. The CA-
Markov model was initially used to predict a known vegetation pattern for 2008, using
classified imagery from 1985 and 2001. The model predicted the 2008 land cover with
70.7% accuracy and data, recorded in 2008, was used to predict scenarios for 2018, 2028,

and 2038. Results of the CA-Markov sil ions show that decil shrubs will

increase in area by 7.7% but heath will decrease by 14.4%. The results indicate that
deciduous shrubs have a tendency to move into higher elevations over an extended period

of time.
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1. INTRODUCTION

1.1 Rationale
Recent studies have shown there has been a warming trend in the earth’s climate during
the past one hundred years and that temperatures are increasing at a faster rate than ever
before (ACIA, 2005; IPCC, 2007). General circulation models predict future climate
scenarios and are being developed with increased scrutiny in an attempt to reduce model
errors that may have been overlooked in the past. This is done to try to remove some of
the uncertainty associated with predicting how climate may change. These models (Figure
1.1) have shown that the greatest amounts of warming and increases in precipitation will
occur in high latitude ecosystems (ACIA, 2005; IPCC, 2007). Arctic regions may
experience a warming up to 5°C while southern regions will warm by 2 to 3°C. These
changes may impact ecosystems throughout the world with increased intensity and
frequency of storms as well as shifts in plant and animal geographic extent (IPCC, 2007).
Cannone ef al. (2007) determined that vegetation in the European Alps experienced more

growth with increased temperatures between 1950 and 2003. They found that alpine

are in danger of iencing changes in vegetation distribution and extent, if
the temperature increase continues. It has also been shown that climate is often the major
limiting factor when it comes to vegetation growth (Korner and Paulsen, 2004; Pauli er
al., 1996). This suggests that increases in temperature correspond with increased species
diversity at high elevations. Shifts in species habitat could therefore be more pronounced

‘
\
|

in the alpine regions than at lower elevations.
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Figure 1.1 Predicted annual temperature change for North America between 1980-1999
and 2080-2099, averaged over 21 models. Source: Intergovernmental Panel on Climate
Change (IPCC), 2007.

¢ ing the i ip between i ic and climatic

are factors in ining how vegetation will react to changing climate.

Developing spatial models is one way of investigating these relationships and

how will advance and move upslope in an alpine

(Guisan and Zi 2000).



1.2 Purpose

The earth’s future climate can be understood by assessing the response of existing
ecosystems to change in temperature. The study site, located at 58° 38.5" N, 63° 22.5"W,
is within the newly established Torngat Mountains National Park Reserve in Labrador,
Canada. Land management, park zoning and continued monitoring are all issues that will
likely be addressed in the future and the results of this research could potentially be used

in ing these decisions. Predictions of vegetation scenarios will

provide some insight to the impending stresses exerted on this fragile alpine ecosystem.
The methodology used in this research could also be expanded to incorporate larger areas
of the park so that vegetation dynamics can be understood over extended regions. The
research will encourage park managers to continue data collection year round to develop
more complete and accurate data sets. Accurate data are the key to attaining greater

certainty in predictive models and a better understanding of alpine vegetation dynamics.

1.3 Research Objectives
The main objective for this research project is to develop a predictive model that will

current hic conditions as well as observed vegetation change over

M.

time to determine the future spatial distribution of ion in the Torngat

Labrador. To achieve this objective, a series of sub-objectives will be addressed:

1. Generate a time series of classified satellite imagery.
2. Determine the quantity and location of vegetation change at the study site.

3. Develop a set of suitability maps for land cover change and Bayesian
probability methods.



4. Predict current vegetation patterns in the Torngat Mountains using
historic satellite data to assess model accuracy.

1.4 Study Area
Regions in far northern latitudes are expected to be some of the most affected areas on
Earth due to climate change. Several projected climate scenarios suggest that the high
latitude regions of the world could warm by as much as 7.5°C by 2099 (IPCC, 2007). As
a result, impacts on vegetation will be greatest in the north. Vegetation changes are
becoming more evident in the landscape and modeling these changes is important to
understand the impact that climate change is having on high latitude regions of the world.

Research was conducted in the Torngat Mountains National Park Reserve located
in the northernmost part of Labrador. Clark (1988; 1991) documents the glacial history of
the region that created the fjords that define the landscape. The specific site is located in
the southern portion of the park at approximately 58° 38.5° N, 63° 22.5°W, which is cast
of Nakvak Brook. The study area covers an area of approximately 35 km” and has an
elevation range of 840m (Figure 1.2).

The study area is an appropriate region to assess changing vegetation patterns
because it has a number of distinct vegetation types in a relatively small area. This is
primarily due to the elevation change from the valley floor near Nakvak Brook, to the
highest peak located less than 4km to the east. Although the entire region is considered an

Arctic Tundra envi the ion at lower ions is quite different from the

vegetation at higher, more exposed, areas. At low elevations, shrubs can reach

approximately 2m in height, but get progressively shorter with increasing elevation.
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Figure 1.2 Study area extent, Torngat Mountains National Park Reserve

At about 400m, vegetation does not exceed 20-30 cm from the ground. At the highest

elevations, frost-shattered rock is the predominant feature and vegetation is almost non-



existent. The changes in elevation throughout the entire region range from Om to 1155m
(Figure 1.3).

There is potential for the vegetation patterns in this region to change with a
changing climate. The larger shrubs at lower elevations extend up the side of the valley,
indicating the potential for these shrubs to live at higher elevations. Exposure to wind and
snow might be the factors that are currently preventing some species from becoming
established at the 400m to 750m elevation range. A warming climate, however, could

create more itions at higher it These itions make the area a

suitable location to investigate how vegetation has changed in the past and if shrubs have

potential to move upslope in the future.

1.5 Context of Research
The research project is funded by the International Polar Year (IPY) Climate Change
Impacts on Canadian Arctic Tundra (CiCAT) project. This CiCAT project is aimed at
assessing past, present and future impacts of climate change on tundra ecosystems in
Canada (Henry, 2010). IPY also aims to leave a legacy of research results and
infrastructure to be used by future researchers and people in northern communities

(Henry, 2010).

Group (LHRG) at Memorial University of Newfoundland. The LHRG researches the
sensitivity of tundra ecosystems to climate change in highland regions of Newfoundland

\
i
This research project is part of the work of the Labrador Highlands Research
and Labrador, including the Torngat Mountains. The objectives of the LHRG is to
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Figure 1.3 Relief map for study region, Torngat Mountains.



understand the evolution of these ecosystems and their relation to local climates and
attempts to predict what will happen under future climates (Labrador Highlands Research
Group, 2010). This research helps contribute to both the CiCAT and LHRG objectives by
investigating the recent history of vegetation change in the region and providing insight

into future scenarios.



2. LITERATURE REVIEW

This chapter provides a review of the literature relating to vegetation change in the
landscape and how change has been predicted using a cellular automata Markov chain
approach. The first section discusses how topographic variables have been used to
describe the landscape and how they have been used to illustrate and predict where
vegetation will grow. The second section discusses change detection methods applied to
satellite imagery. Vegetation change cannot be predicted unless there is evidence that

change has occurred in the past. Post: ificati ison and image dif

are presented due to their simple application and effectiveness in detecting change. The
third section deals with Bayesian methods and their usage in landscape ecology. The
theory behind Bayesian methods will be addressed, including some of the methods in
which they have been applied using spatial data. The final section deals with cellular
automata Markov chain (CA-Markov) modelling methods. Cellular automata and Markov
chain models will be discussed separately as well as how they can be used in conjunction

with one another to predict future vegetation patterns.

2.1 Topographic Variables

It has been well documented that basic topographic variables such as elevation, slope and

aspect influence ion patterns and bi in the (Fuet al., 2004;
Ostendorf and Reynolds, 1998; Rezaei and Gilkes, 2005). Moore ef al. (1991) classified
topographic variables into primary and compound classes. The authors considered

primary variables to be those related to vegetation patterns, and derived from digital

elevation models (DEM). This includes variables such as slope, aspect, elevation, and



curvature which are related to characteristics such as hydrology, solar radiation and soil
water content (Moore ef al., 1991). Compound variables are substitutes for more complex

biophysical processes and include indices for soil moisture, soil properties and terrain

shape or position. These positional istics can influence ion by affecting
other variables such as wind and snow exposure, snow accumulation, moisture runoff and
accumulation, and soil characteristics (Rezaei and Gilkes, 2005).

Combinations of topographic variables can define where vegetation will grow in
the landscape. Elevation can be used to delineate the limits of tree growth as low
temperatures at higher altitudes make it difficult for certain types of plants to grow.
Similarly, some species would have difficulty growing on steep slopes or on northerly
aspects due to insufficient sunlight. These variables are calculated from a DEM and are
used to calculate compound variables such as topographic shape or moisture
accumulation indices.

Topographic variables have been utilized in recent years for predictive vegetation
modelling and to describe and explain vegetation changes in the landscape. The variables
used depend on the research objectives and the type of landscape under consideration.

A vegetation model developed by Ostendorf and Reynolds (1998), predicted
vegetation patterns in the Arctic by using the inverse relationship between slope and
discharge. Discharge was considered a measurement of soil moisture, while slope is
inversely related to it. A more detailed methodology is presented by Ostendorf and
Reynolds (1998) whereby the authors attain a goodness of fit of 78%, using only two
variables in their model. Bennie, e al. (2006) also considered two variables when

attempting to explain where in the landscape chalk grasslands were changing the most.



Historical data combined with an updated field survey were used to observe change and
ANCOVA was used to determine the statistical relationship between the areas of change
and the slope and aspect. They were able to determine that flat terrain was much more

vulnerable as the amount of change d d with i ing slope angle. South-facing

slopes were found to be the most resistant to change and had more light demanding
vegetation while north-facing slopes were less resistant.

Recent studies have focused on how topographic variables affect soil properties
and the influence they have on vegetation patterns (Fu ef al., 2004; Rezaei and Gilkes,
2005). Several multivariate statistical techniques were used by Fu et al. (2004) to assess
the relationship that elevation, aspect, slope and slope position had with soil fertility and
quality. The results demonstrated that topography is an important factor in explaining the
variability in soil properties. It was shown that elevation and aspect had a direct
relationship with shrub richness and diversity, while elevation also had a positive
relationship with soil organic matter (Fu ef al., 2004). Rezaei and Gilkes (2005) examined

similar relationships in an alpine rangeland and also found that soil properties exhibit

variability based on different hi itions. They ined that slope has a
particularly strong relationship with soil stability and aspect was directly related to soil
nutrients. Primary variables (such as slope, aspect, and elevation) have been shown to
have positive relationships with vegetation growth and can be used effectively in

analyzing change in the landscape.




2.2 Change Detection Analysis
Documenting past vegetation change is important for understanding present and future
conditions. It is difficult to predict future vegetation patterns without an understanding of
the topographic and climatic factors that influence those patterns. Earth observing satellite
sensors have been recording multispectral satellite imagery since the early 1970s. The
affordability of multi-date imagery has made digital change detection, the method of
choice when it comes to monitoring urban, rural or natural landscapes. Its popularity has
grown due to the increased availability of satellite imagery at a more frequent temporal
scale meaning some areas can be monitored on a yearly, monthly or daily basis.

Many change detection methods are being used effectively to detect changing
landscapes. Lunetta (1998), Nelson (1983), Singh (1989), Yuan er al. (1998) have
reviewed digital change detection methods ranging from image differencing to
applications of principal components analysis or change vector analysis. The following

sections evaluate image di ing and p ificati ison as two methods

that have been used in various applications.

2.2.1 Image Differencing
Image differencing is a common method of change detection analysis which involves
subtracting an image band at time ¢, from the same band at time £,. This procedure is

based on Equation 2.1 (Singh, 1989):

Dxfi= xf(t2)- xf-t; + C (Equation 2.1 Image Differencing)

Where:
xi is the pixel value for band k at the ith row and jth column
1 is the earliest date




1, is the latest date
C'is a constant used to produce positive digital numbers

The output is an image that shows the difference in brightness values between two dates
for each pair of bands. A threshold has to be applied to the output in order to identify
areas of significant spectral differences. Generally, a threshold is based on standard
deviation (SD). Lunetta (1998) states that the lower SD will include greater amounts of
the changed pixels and thus a higher potential for errors of commission.

Nelson (1983) evaluated image differencing for delineating gypsy moth
defoliation because it was the most widely used method and provided a good comparative

index. The SD method of ing was used to d ine the

accuracy to within 0.05 SD. The author also found that classification accuracies were
comparable to other methods that were tested, making image differencing a useful option.
The other techniques were only slightly better than this baseline method, with differences

between accuracies being on the order of tenths of a percent.

2.2.2 Post-classification comparison

Another method of change detection is post-classification comparison. This method
involves creating classified images through one of a variety of supervised or unsupervised
methods. Given classified imagery from two time periods, change maps are created that
show differences in vegetation types. This method uses classified satellite imagery,

thereby minimizing problems with ic and sensor dif (Singh, 1989).

Highly accurate classifications are required in order for change detection to be effective
because the joint classification rate is lower than the images from which it is derived.

Singh (1989) provides an example of two images with 80% accuracy having only 64%




(80% X 80%) joint accuracy. P ificati ison was applied by

Weismiller ef al. (1977), who identified areas of change in coastal zone environments in
Texas. Of the four change detection methods they tested, post-classification comparison
provided the most reliable results. Mas (1999) demonstrated that the procedure can be
applied to vegetation studies if accurate classifications of different land covers are
available. Accuracies in excess of 85% were obtained for post-classification analysis
which was the best of the change detection methods tested. High change detection
accuracies were attributed to the high image classification accuracy. Mas (1999) discusses

and is more iate for

how this method is less sensitive to
dealing with a time series of satellite imagery. The nature of the changes is also easily
understood because they represent a transition from one type of land cover to another.
Post-classification change detection is one of the most effective and intuitive methods of

digital change detection if satellite imagery can be accurately classified.

2.3 Bayesian Methods
McCarthy (2007) discusses some of the advantages of using Bayesian methods in the

field of ecology. These advantages include:

. The ability to make predictions about the state of a system.

2. The ability to incorporate prior information into the analysis and thus being
able to incorporate multiple sources of information.
3. The ability to be i with ic il ion systems (GIS) and

and problems.

spatial models for

As a result, Bayesian methods have become very popular amongst ecologists.



Bayesian analysis can be thought of as incorporating prior knowledge and data
into a model to output posterior knowledge. It uses Bayes® rule, which is based on a

that calculates the probability of “event A” occurring given that

“event B” has occurred. Conditional probability has been adapted from Bonham-Carter

(1994) and McCarthy (2007) and is given by:

P(A|B) = P(AMB) / P(B) (Equation 2.2. Conditional Probability)
Where:
P(A|B) = the conditional probability of event A, given the presence of event B.
P(AnB) = the proportion of total area occupied by events A and B together.
P(B) = the proportion of the total area of occupied by event B.

To assess the probability of event A occurring given the presence of multiple events (B;

and Biyy), the conditional probability can be written as:

P(A[BinB;1) = P(ANBinBy1) / P(BinBi) (Equation 2.3 Conditional Probability
of Multiple Events)

Equation 2.4 is adapted from Bonham-Carter (1994) and can be used with multiple
independent events. The output is the probability of finding “event A” given unique
combinations of multiple events. The Bayesian conditional probabilities are versatile in
that an infinite number of independent events can be used and they can be added or
removed at any time to assess a particular variable’s impact on the output.

One application of Bayesian methods is presented by Aspinall (1992), who

generated a p: ility model using envi variables to describe the distribution

of red deer in north-east Scotland. This model uses an inductive modelling procedure,



which is based on Bayesian methods, to assess relationships between variables in order to

estimate ilities of The was effective in modelling the

distribution of red deer and provided error assessments for the model.
Bonham-Carter ef al. (1988) used Bayesian statistics combined with multiple
regression analysis to predict favourable sites for gold exploration in Nova Scotia,

Canada. Posterior ilities were using unique itions mapping which

identified different combinations of the patterns to be modelled. The unique conditions
were used to evaluate areas where gold was most likely to occur. The authors
acknowledge that several sites with no known gold occurrence were identified by the
model. These could be considered sites of potential interest for geologists.

Vaiphasa et al. (2006) used Bayesian methods as a post classifier for mangrove
mapping in Thailand. They found that integrating soil-related parameters improves the
overall accuracy of mangrove maps from 76% to 88%. This is a way of enhancing
classified satellite imagery by incorporating additional predictive variables using
Bayesian methods.

The above examples demonstrate that Bayesian methods are being considered a

final result in terms of probability models. Outputs are given as a probability of

occurrence or divided into varying based on the likeli of
(Aspinall, 1992; Bonham-Carter et al., 1988). Vaiphasa ef al. (2006) use the method as a
way to refine a classification system; however, the Bayesian process is still the primary
method of modelling.

There remains an opportunity for Bayesian statistics to be applied to spatial

modelling as a method for defining suitability maps. Bayesian statistics can define the



probability of occurrence of any land cover type based on a set of suitable predictor

variables. The probabilities identify areas that are suitable for vegetation growth and can
be input into cellular automata (CA) models. CA models require rules that enable and
restrict the spatial distribution of specific vegetation. The following section discusses CA-
Markov chain models in more detail, while a discussion of incorporating Bayesian

statistics into the model is presented in the methodology.

2.4 Cellular automata, Markov chain analysis
Both the cellular automata (CA) model and Markov chain (MC) analysis can be applied
as independent models. They also have the ability of being used in conjunction with one
another to make predictions about future scenarios. MCs calculate the probability of

transitioning from one state to another, over a specified time period. This is used by the

CA model to predict future land cover distributions given present

The following sections discuss both CA and MC separately, as well as some examples of

getati ion analysis or

how they have been applied el o
The cellular automata Markov chain (CA-Markov) models are discussed, and some

examples of how they are used by other researchers is presented.

2.4.1 Cellular automata

In their most common form, CA models are 2-dimensional arrays of regular shaped,
square cells. They are not restricted to this form because they can also be comprised of
other regular grids of triangles or hexagons, or irregular shaped Voronoi polygons (De

Smith et al., 2007; Wolfram, 1983). A CA model can be broken into five separate



components as outlined by De Smith ez al. (2007). They divide the model into state
variables, a spatial framework, neighbourhood structures, transition rules, and time.

State variables refer to the state or value of cells at any particular point in time. In
the simplest form of model, the cells are binary although, more complex examples have
been developed that incorporate multiple states, such as different land-use classes. These
values change as model runs are completed through discrete time steps. The spatial
framework is the entire lattice of cells. The 2-D array of cells discussed above would be
considered the framework of a CA model.

The third component is the neighbourhood structure, which is the area
surrounding each cell of the framework. Neighbourhoods are typically the same for each
individual cell; however, there are different forms that can be used. Two common types
are the Moore and Von Neumann neighbourhoods (Figure 2.1). The Moore
neighbourhood consists of all immediately surrounding cells in an array and can be

varying sizes. A three by three Moore neighbourhood incorporates the eight cells adjacent

- ohbourhood i P

to the centre cell, while a five by five
surrounding cells. The Von Neumann only considers the four cardinal neighbours in the
analysis (De Smith er al. 2007).

The fourth component is the set of transition rules for a CA model. These rules
define how each cell of a model will change over time by assessing the states of the cells
in the defined neighbourhood, and assigning a value to the cell in question. Most models

use simple transition rules to define requirements for change to occur, but recent studies



Figure 2.1. A three-by-three Moore neighborhood (left) and a Von Neumann
neighborhood (right).

have used probabilistic rules (Colasanti ef al., 2007; Lanzer and Pillar, 2002).

The final parameter of a CA model is time, which is defined in discrete steps. At
each time interval the transition rules are put into effect and all cells change their state
simultaneously. A new state is established and the transition rules are put into effect again
for the next time interval (De Smith ef al., 2007). These components of a CA model
simplify the modelling process and helped make CA a popular method of simulation in a
variety of fields.

CA models are used to simulate changing vegetation patterns in the landscape.
Colasanti ef al. (2007) studied high level community processes by utilizing a 2D

probabilistic CA model. They used a set of physiologically based rules, derived from a

common system of plant i types, to model indivi plant iour. The
model is based on the plants growth ability, survival ability, and reproductive capabilities

and the rules were developed from accepted plant population models.




Lanzer and Pillar (2002) used a set of probabilistic rules, generated from empirical
data, to predict land cover as being one of nine classes. They argue that their CA model
does not reach a stable final state that would be found with a Markov model. They used
several runs of the model to define a range of potential outcomes. Their results indicate
that the CA model worked as well as an MC model, which was also used on the same
dataset. The research reviewed here are two examples of how CA models have been

implemented to model vegetation systems.

2.4.2 Markov chain analysis

Markov chain (MC) models have frequently been used in vegetation studies (Balzter,
2000; Benabdellah er al., 2003; Isagi and Nakagoshi, 1990; Lippe et al., 1985; Pueyo and
Begueria, 2007; Usher, 1981). A MC is defined as a stochastic process that fulfills the
Markov property (Balzter, 2000). The Markov property states that future conditions do
not depend on past conditions. Thus, a MC depends only upon the present state of a
system. These models also rely on the assumption that vegetation succession is an orderly
process and that probabilities for the transition between different states can be determined

(Usher, 1981). Other ions include time ity and spatial ind

which implies, changes in one particular location will have no effect on nearby locations
(Balzter, 2000). This means that spatial autocorrelation is not accounted for in MC
analysis. A Markov chain represents a system of varying states that, over time, make
transitions from one state to another.

The MC models require discrete classes as input. Thus when using multi-temporal

satellite imagery, a classified image is appropriate. Differences in land cover classes



between images, are used to generate transition probabilities that give the likelihood of a
particular class changing. Multiple images allow transition probabilities to be generated
for different time periods, which can be compared to determine whether rates of change

are i ing or ing. It also elimi; the ion of time

because a series of models can be constructed to show variation over time (Pueyo and
Begueria, 2007).

A distinct advantage of the Markov model is that it can generate reliable
predictions of future vegetation states without having to know or understand, all of the
underlying processes that create a very complex ecosystem (Balzter, 2000). The result is

that the isms of ion are not well even though accurate

predictions can be made (Usher, 1981). Obtaining satellite imagery is a much more cost
efficient method of observing the Earth than collecting field data on a long term basis.
Field work is still required for ground truthing purposes but less time and money is
expended investigating underlying processes in the landscape.

Balzter (2000) analyzed twenty-two applications of Markov models that examined
grassland communities for various in Europe. Inconsistent results were found in this study
because of disturbances that altered ecological factors and generated unpredictable
changes in the vegetation. Suggested solutions include the generation of a Hidden
Markov model to account for climate variation, and the development of separate
transition matrices for shorter time periods to justify time homogeneity (Balzter, 2000). If
spatial autocorrelation is present in the data then a spatio-temporal Markov chain might
be more appropriate. This type of model requires many more parameters as input thus, the

advantage of a simple Markov model, is no longer applicable.
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Benabdellah ef al. (2003) used Markov models to generate predictions of forest

succession for their study site in Germany. They generated a time homogencous Markov

model on the ion that, envi itions remain constant. They also
generated a time inhomogeneous model for regions that were highly polluted by SO,.
This enabled calculations of transition matrices before and after SO; pollution damaged
the vegetation. The inhomogeneous model is a way to incorporate disturbance into the
analysis. The authors found that the Markov models could be useful for management
decisions, but acknowledge that accuracy was only evaluated qualitatively. They claim

that a quantitati should be on the results to determine the

accuracy of the model.

Pueyo and Begueria (2007) predicted secondary vegetation succession after farm
abandonment in the Central Spanish Pyrenees. They used a multivariate logistic
regression from spatially distributed variables to improve transition probabilities used by
the Markov model. This is a way of incorporating abiotic factors into the Markov
analysis. They found this method was successful in modelling spatial and temporal
patterns of secondary succession. They also identified temperature gradient with
elevation, and potential solar radiation, as the most important predictor variables (Pueyo
and Begueria, 2007). This information is not obtainable through a standard Markov
model.

Finally, Lippe et al. (1985) tested a Markov model on an Empetrum nigrum
heathland in the Netherlands, with the objective of determining whether the Markovian
assumption held for that type of landscape. It was reported that the MC model did not

support their dataset, primarily because of disturbances caused by insects and climate.



The disturbances caused changes in the transition matrix which is not accounted for in a

simple Markov model (Lippe et al., 1985). An inhomogeneous model, as was tested by
Benabdellah er al. (2003) is one way of accounting for this. Lippe ef al. (1985) also
acknowledged that temporal trends in the transition matrices are not accounted for. They
document a methodology in which the Markov model can be adjusted to account for these

problems but would also cause the model to lose its simplicity.

2.4.3 Cellular automata Markov chain analysis

CA-Markov models combine the stochasticity of the Markov chain with the spatial

dependence of the CA model. Balzter et al., (1998) define these models as having spatial

The spatial is i d through the

and temporal d
neighbourhood of the CA, while the temporal aspect is incorporated through the Markov
analysis. Several studies have used CA-Markov models to predict future land cover
conditions.

Silvertown et al., (1992) used a 40 by 40 lattice of square cells to model
competition between five different species of grass. The state of a cell was dependent
upon a Von Neumann neighbourhood at time -1, and a set of rules that defined the extent
of invasion for each species. This model used the transition matrix from the Markov
model, and incorporated the spatial dimension by using real data. They found that the
model with a random initial starting scenario was a good representation of the spatial
arrangements used in standard competition experiments.

Balzter et al. (1998) modelled population dynamics of three plant species on a

lawn. They found that the CA-Markov approach successfully modelled one species, but
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the others were subject to selective grazing by an expanding rabbit population. The
assumption that transition matrices were stationary over time is no longer valid, and the

model did not simulate those species accurately.

2.5 Literature Review Summary
The review of the literature suggests that the objectives of this study can be
achieved with methods applied by other researchers. Different combinations of

topographic variables have proven to be effective predictors of where vegetation is likely

to grow in the land: Given high ificati ies, post: ification image
comparison is one of the better digital image change detection methods. A CA-Markov

hybrid model incorporates temporal and spatial d and presents an

to incorporate Bayesian probabilities as a method of defining suitable areas of growth.
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3. Data Sources

3.1 Field Data

Field data were collected between August Sth and August 14th, 2008. The vegetation
survey is used to classify the satellite data, which provides the input for change detection
analysis. The stratified random sample (Figure 3.1) was selected based on variations in
aspect, elevation, and spectral signature of the 2001 Landsat image. This ensured that
samples were taken at different topographic positions and for varying vegetation types.
During the field season, 90 sites (Figure 3.1) were visited at which the IPY CiCAT
protocol for mapping arctic vegetation was implemented (Chen, ef al., 2007). At each
site, Im? quadrats were placed 10m from a centre coordinate in each of the four cardinal
directions (Figure 3.2). One of the intermediate directions, (NE, NW, SE, or SW) was
selected randomly to be the location of the fifth quadrat at each site. The CiCAT protocol
ensured appropriate coverage of an area that corresponded with satellite imagery at 30m
resolution. At each quadrat, the following data were recorded:

1. Plant species present

2. Ground cover of each species (%)

3. Average height for each species (measured in cm from the base to the tallest
stem on random samples in each plot).

4. Approximate soil depth (cm)
5. Aspect
6. Elevation (m), latitude and longitude recorded from GPS

7. A colour, vertical photograph of each quadrat
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Figure 3.1. Field locations visited between August 3™ and August 14", 2008.
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Figure 3.2 Plot scheme for arctic tundra regions. Source: Chen, e al., 2007.

Satellite image i ion was using i i ion of plant species
and colour as the primary i ion source. ifying each plant species
, enabled the ion to be d into different classes used in this

study. A DEM (1:50,000) provided the elevation and aspect values used in the analysis
and the ground truth data were critical to the accuracy assessment of the classification and
the certainty attained in the final model. Vegetation height and approximate soil depth
were not specifically used in the analysis.

Presence of vegetation was initially recorded at the species level such that land
cover classes could be aggregated and defined. Because of the accessibility and temporal

scale of Landsat imagery, a spatial resolution of 30m was selected to classify land cover
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(Chen, et al., 2007). This resoluti bined with vegetation zone iptions from
Meades (1990) and recommendations given by Dr. Luise Hermanutz (2009)’, was used to ‘
define three different land cover classes. Three broad classes of heath/grasses and sedges
(HG), deciduous shrub (DSH) and rock/bare ground (RCK) were used in the analysis.
Additional classes were initially developed such as separate classes for heath and grasses,
but their spectral signatures showed little separability. This was partly due to the
existence of multiple vegetation types within a 900m” area. The 30m resolution of the
Landsat imagery was too coarse to classify those vegetation types seperately.

The three remaining classes represent three broad groups of land cover that are
well defined and distinguishable from one another. Table 3.1 provides a description and
defining characteristics along with the common vegetation types found within each class.
The HG class is the most difficult to define because of its coexistence with the RCK
class. The DSH class is much easier to distinguish because there is a clear difference from
HG and RCK classes. These classes allowed for adequate classification accuracy while

maintaining the ability to observe whether temporal changes in vegetation occurred.

! Personal ication, Dr. Luise D of Biology, Memorial
University of Newfoundland (2009).
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Table 3.1 Land cover classifications used in this project (Typical plots for each land cover
are shown on the right).

Class Dominant Description / Photograph (1m” quadrat)
Vegetation Defining
Characteristics
HG | -Grasses / sedges | -Low growing
vegetation
-Dwarf Labrador
Tea (Ledum “Presence of alpine
palustre) species such as
Diapensia
-Bilberry lapponica.
(Vaccinium
uliginosum) -Often a mixture of
rock and HG found
-Diapensia together.
(Diapensia
lapponica)
-Dwarf Birch
(Betula
glandulosa)
-Dwarf Willow
Species (Salix
spp.)

DSH | -Balsam Poplar -Species can grow
(Populus up to 3m in height.
balsamifera)

-Found at lower
-Mountain Alder | elevations.
(Alnus crispa)

-Fewer dominant
-Willow Species species present

(Salix spp.)
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Table 3.1 Continued

RCK | -None -Frost shattered
rock often having
moss and lichen
growth

-Often mixed with
species from the
HG class

3.2 Satellite Imagery
Four satellite images were obtained for the study site. A Landsat-5 Thematic Mapper
(TM) image taken on August 9, 1985 was the earliest image available. Additional
imagery included a Landsat-5 TM from August 5, 1992 and a Landsat-7 Enhanced TM
(ETM+) from August 22, 2001. The final image of the time series was recorded on July
21,2008 using the Satellite Pour I'Observation de la Terre (SPOT). This time frame
corresponds closely to the vegetation survey field season. All of the Landsat images were

recorded at 30m resolution while the SPOT image was recorded at 10 m resolution. The




SPOT image was re-sampled to 30m resolution in order to comply with the IPY CiCAT
protocol (Chen, et al., 2007). Each image was recorded during summer months when
vegetation would have been at, or near its maximum growth for the season. This ensured
that the vegetation types are in a similar state in each image and seasonal variations are
minimized in the analysis.

Pre-processing of the satellite imagery involves geometric, atmospheric, and

Each image is corrected with half pixel accuracy,
to the 1:50 000 National Topographic System (NTS) map sheets. Atmospheric corrections
were performed using the dark object subtraction method (Chavez Jr., 1996), which is
based on the assumption that pixels in complete shadow or areas of clear, deep water
should have no reflectance. Thus, any radiance received at the satellite sensor, over areas
of dark shadow or deep water, is caused by atmospheric scattering. Subtracting this
radiance value from the entire image, accounts for atmospheric scattering in the satellite
image. Finally, the multi-date image normalization technique was applied for radiometric
calibration. This method uses regression analysis to co-calibrate the spectral
characteristics of satellite images obtained on different dates (Hall et al., 1991). The
applied correction allows for the imagery to be compared to one another because the

detected changes will not include radiometric inconsistencies.

3.3 Image Classification
Each image in the time series was classified using a maximum likelihood algorithm. The
dataset was split into two sets of 45 points so the field data could be incorporated into

both the training and reference sites. Polygons were digitized around each point in the



training dataset to include nearby pixels, which corresponded to the land cover
represented by that point. This increased the number of pixels from which training data
could be extracted. In the reference dataset, only the pixel corresponding to each
sampling site was digitized. The classification of each pixel was verified with the help of
a colour aerial photograph, recorded in 2005 at a 1m spatial resolution, along with the
photographs taken in the field and the record of species present for each plot. In order to
increase the size of these small datasets, an additional 45 points were randomly generated
for both the training and reference data. Each of those points was classified using only the
aerial photograph as a reference. Points where the land cover was not definitive were
removed from the dataset. The additional points resulted in 63 polygons being used for
the training sites, and 70 for the reference points. Signature data generated from the
training sites were used to classify each satellite image, while the reference sites were

used to perform an accuracy assessment for each classification.

3.3.1 1985 Classification
This section discusses the 1985 image classification because of an area of misclassified
pixels that were identified in the output. As a result, three different versions of the 1985

classification were compared. The accuracy for the 1985 ifications is

presented using producer’s accuracy (omission error) and user’s accuracy (commission
error). Producer’s accuracy gives the probability of a reference pixel being correctly
classified, whereas user’s accuracy is the probability that a classified pixel actually
represents that particular class on the ground (Congalton and Mead, 1983). The accuracy

for the ifications of the ining satellite imagery is also provided.
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The initial classification of the 1985 image contained some commission errors for
the DSH class that required further processing of the training data (Table 3.2). RCK had
both high commission and omission errors. Overall kappa for the classification was
64.4%, a reasonable value considering the ground truth data were from 2008 and the
image was recorded in 1985. There were also no aerial photos available from 1985 to help
identify vegetation classes. The kappa value measures the relationship of the agreement
beyond chance, with the expected disagreement. It is a robust accuracy measurement
because it incorporates all of the cells in a matrix and not just the diagonal (Rosenfield
and Fitzpatrick-Lins, 1986). The area highlighted in blue in Figure 3.3 is considered to be
a problem because it is separate from the region where DSH is expected to be found and
was not present in any other classification. Based on field observations, there was no
evidence that DSH ever grew in that location. One method of correcting this problem was
to perform image purification with image processing software. This reduces the effect

that the problem area would have on subsequent analysis.

Table 3.2 Vegetation accuracy for original 1985 classification

Commission
Error (%)

DSH

b RCK

Producer’s Accuracy
(%)

Omission Error (%)
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Figure 3.3 Original classification for 1985. Problem area is outlined in blue.



The nonparametric method of image purification removes outliers from the
training sites used to create the classification. Cluster analysis was first used to define the
entire image as one of the three previously defined clusters. Original training sites were
used to define the locations under consideration in the cluster output. The areal proportion
of each training class was calculated, and a decision to retain or discard a pixel was
determined using a defined areal threshold. If any class has a proportion that is less than
or equal to the areal threshold, the pixels are removed from the purified training sites. A
combination of the purified training sites and the original training sites was used for the
classification. The original training sites for HG and the purified sites for DSH and RCK
were used in the final classification. Those three spectral signatures exhibited the greatest
amount of separation and were more likely to yield a better classification. The purified
classified image is presented in Figure 3.4. The problem area outlined is still a significant
issue in the purified image, although the area is smaller compared to the original output
image. The cross-classification matrix shown in Table 3.3 indicates that there was a
negligible change in per-class accuracy and the overall kappa was 64.8%. This shows
there was little to no change in classifications, which was partially due to the limited
number of reference points. The purification process did not correct the area of DSH near
the centre of the image.

Further analysis of the problem area used an iterative, self-organizing, cluster
analysis was performed on the image to identify different clusters of signatures. Eleven
clusters were generated and the cluster that made up the majority of the problem region
was removed from the classified image. The missing data from that classification were

then interpolated using indicator kriging.
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Figure 3.4 Purified classification for 1985.
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Table 3.3 Vegetation accuracy for purified 1985 classification

Reference

HG DSH RCK

Commission
Error (%)

User’s
Accuracy (%)

HG 0 6 87.2 12.8
DSH 6 0 75.0 25.0
RCK 0 11 733 26.7

100 64.7
0 353

3.3.2 Indicator Kriging

Indicator kriging was initially developed for modeling mineral deposits, but has since
been adapted for interpolating missing data in satellite imagery (Rossi ef al., 1994; Van

Der Meer, 1996). Indicator kriging uses a weighted linear average of available data to

estimate unknown data. The method offers some over
methods, whereby it utilizes both distance and geometry for weighting available data and
minimizing the variance of the expected error (Rossi ef al., 1994). Indicator kriging was
utilized to estimate the data at locations that were removed from the purified 1985
classified image.

Indicator kriging is useful for this analysis because it uses binary data as input and
the output is given as a probability of exceeding a user defined cut-off value (Babish,
2006). The area of interest in this case is located in an HG dominated area, so the image

was reclassified to give all areas of HG, a value of 1 and all areas of DSH and RCK, a
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value of 0. The specified cut-off value was then set to 0 such that indicator kriging would

output the ility of ing 0, or the ility of being HG.

A random sample of 10 000 points was created for the classified image from 1985
and assigned a corresponding value 1 for HG areas and 0 for non HG areas. The output
surface indicating the probability of finding HG in the area of interest is presented in
Figure 3.5.

Most of the area removed from the central part of the image, has greater than 50%
probability of being HG (Figure 3.5). There are few pixels that are less than 50%. Most of
the lower probabilities are located near the southwest corner of the study area where the
DSH land cover is found. Using a cut off value of 50%, these missing pixels can be
classified into HG, or not HG, and replaced in the 1985 classification. The pixels
classified as not HG, were returned to their original classification from 1985. The
resulting classified image is shown in Figure 3.6. The deciduous shrub patch located near
the centre part of the image was reduced in size, thus the influence it would have on the
final model was minimized. Based on field observations, this adjusted classification was a
better representation of the landscape. There was no presence of woody stems or dead
matter at the study site that suggested deciduous shrubs grew there recently. The cross
classification matrix (Table 3.4) shows little improvement in classification accuracy,
which can be attributed to low numbers of reference points. Overall kappa is the highest
for this classification at 65.7% compared to 64.4% for the original and 64.8% for the
purified classification. This suggests indicator kriging slightly improved the

classification.
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Figure 3.5. Probability of finding HG in the problem region of the 1985 classification
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Figure 3.6. Maximum likelihood classification of 1985 Landsat MSS image. Indicator
kriging was used to interpolate area that was removed from the signature analysis.
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Table 3.4 Vegetation accuracy for the i 1985

40 0 5 88.9 1.1
2 6 0 75.0 25.0
R 5 0 12 70.5 29.5

o 85.1 100 70.5

% 14.9 0 29.5

Error assessment of the interpolated model can be analyzed using the histogram,
summary statistics of the errors, and by mapping the distribution of the errors (Rossi et
al., 1994). A perfect model would result in the mean, median, variance, and quantiles all
being zero. These statistics were used to evaluate how well the model performed.

Table 3.5 lists the summary statistics for the model. Overall, these statistics
suggest that the model was a good representation. The mean, median and variance all
have very low values and the quartiles suggest that most of the error was between -0.142
and 0.114. This indicates that the errors are clustered in a low range of values. Of the
10 000 points used for the interpolation, 1291 had an error of 0 which accounted for
12.9% of the total sample. The small positive skewness value indicates that the model
tends to have a small bias toward overestimated error. This was also evident in the
histogram (Figure 3.7), which shows the overestimation as negative values and
underestimation as positive values. The negative values represent points that were not HG

but were estimated as being HG to some degree. The positive values represent points that
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were HG but were estimated as having some probability of not being HG. The histogram

shows that the highest ies of imation and imation occur among
very low errors. This is an indication that the model provided a good representation of the
data.

Table 3.5 Summary statistics of errors for the interpolated surface.

Mean 0.000

Median -0.010
Variance 0.100
Quartile 1 -0.142
Quartile 3 0.114
Skewness 0.340
Kurtosis 1.027
2000
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Figure 3.7 Histogram showing frequency of errors from kriged model.
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The error values are also mapped for the interpolated area (Figure 3.8).
Underestimated values are a little higher in the centre portion of the image but there were
also some overestimated values in the same region. The over and underestimated errors
were distributed randomly throughout the area of interest, as shown in Figure 3.8.

Overall, indicator kriging appropriately estimated the land cover for the arca

idered to be i in the 1985 ification. The patch of deci shrub

outlined in Figures 3.3 — 3.6 was reduced in size and better represented the conditions

observed in the field. The revised classification (Figure 3.6) provided a baseline

for i ion change in the study area.
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Figure 3.8 Overestimated and underestimated errors produced by the geostatistical model.
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3.3.3 1992. 2001, and 2008 classifications

The classifications for the remaining three images did not require any special
consideration. This is partly because the imagery is more recent, and allowed for more

accurate representations of the ground cover. Each image was classified using the

algorithm. Ci ification matrices for each of the

classifications from 1992, 2001 and 2008 are presented in Tables 3.6 — 3.8. There are still

some ission errors in the ifications, but overall kappa values improved with
80.2%, 88.2% and 86.2% respectively. Per-class Kappa Index of Agreement (KIA) values
was also very high. Table 3.9 compares the per-class KIA values for the each of the
classifications. It is evident that the per-class KIA values are much higher for the more
recent imagery, than for any of the 1985 imagery. The per-class accuracies were also used
to account for error in the Bayesian analysis by multiplying the accuracy value by the
Bayesian probability. These KIA values are used to account for certainty in the Bayesian

analysis and the final CA-Markov model.

Table 3.6 Vegetation accuracy for the 1992 classification

Reference
- Us Commission
HG /% Error (%)

HG 0 2 95.4 4.6
DSH 6 0 75.0 25.0
RCK 0 15 833 17.7
Pr‘xducer"iu?ccuracy 100 882
Omission Error (%) 0 11.8
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Table 3.7 Vegetation accuracy for the 2001 classification

HG
DSH
o RCK
Producer’s Accura
(%)
ion Error (%)

HG
2 DSH

o RCK

Producer’s Accuracy
(%)
Omission Error (%)

Reference

3¢} DSH

Commission
Error (%)
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Reference
v 3 S U S
HG DSH RCK Accuracy.(%)

Commission
Error (%)

Table 3.9 Kappa Index of Agreement (KIA) values for all classifications

1985 Original
1985 Purified
1985 Interpolated
1992 Classification
2001 Classification

2008 Classification
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‘The classifications are presented in Figures 3.9 - 3.11. The most noticeable

difference between these and the 1985 classification is the large area of DSH outlined in
Figures 3.3 (Page 34). The patch is missing from all three more recent classifications.
DSH is located at lower elevations in the southwest region of each image, with very little
presence elsewhere. This is evidence that the patch of DSH in the centre of the 1985
images is an anomaly. The middle portion of the classification is comprised primarily of
the HG class. The area is representative of elevation ranging from approximately 300m to
700m. RCK is the dominant class above this elevation and located in the eastern part of
the image. Visually, all images are somewhat similar, indicating there has not been any
dramatic change in vegetation. The 2008 image tends to have more of a speckled
appearance, particularly with the mixture of HG and RCK classes. This is an artefact

related to the original 10m resolution of the SPOT image.
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Figure 3.9 Maximum likelihood classification for 1992 Landsat 5 TM image.
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Figure 3.10 Maximum likelihood classification for 2001 Landsat 7 TM image
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Figure 3.11 Maximum likelihood classification for 2008 SPOT image




3.4 Topographic Variables
Topographic variables are used in predictive vegetation mapping as a way to describe the
landscape and also as independent variables in statistical models. The majority of
predictive vegetation models use elevation, aspect, and slope as variables (Franklin,
1995). These variables are utilized in this project along with two additional variables. The
first is a relative moisture index (RMI) that measures the moisture potential of the land,
based on slope and flow accumulation (Moore et al., 1993). The second variable is the
topographic shape index (TSI) which represents the position along a slope. All of the

topographic variables were created using map algebra in ArcMap 9.3.

3.4.1 Elevation
Elevation is directly related to the growth of vegetation because of its association with
temperature. The relationship between elevation and vegetation growth in tundra

has been well i (Cannone e al., 2007; Korner and Paulsen,

2004). Elevation was derived directly from a DEM, on which a 9 pixel by 9 pixel filter
was applied to remove artefacts from the model. This produced a smooth surface from
which other indices could be derived. Elevation ranged from approximately 75m in the
valley near Nakvak Brook to a maximum of 915m.

The vegetation at all elevations is typical of the tundra elevational zone which
consists of dwarf shrubs, grasses, mosses and lichens. Elevation classes are based on the
distinct areas where each land cover class is located. Each elevation class is defined as the
mean elevation plus one standard deviation for each vegetation class. The classes of

elevation are displayed in Table 3.10. This method of classification is possible because of




the distinct locations of each vegetation class. Based on field observations, it was clear
that DSH was dominant below 250m but not particularly abundant above that elevation.
Mid elevations are dominated by HG and higher elevations are comprised mostly of rock.
This method of classifying elevation is based on divisions observed in the landscape and

is a general guideline describing the elevation divisions of the tundra landscape.

Table 3.10 Classification scheme for elevation.

Vegetation Mean Standard Total (m) Elevation Elevation
Elevation Deviation (Mean + Range (m) Class
(m) (m) SD)
DSH 160 87 247 0-247 1
HG 433 123 556 247 - 556 2
RCK NA N.A NA 556 -915 3
3.4.2 Aspect

Aspect was calculated and classified using the original raster layer. Nine classes total
were used for aspect. They corresponded to each of the four cardinal directions and the
intermediate directions, along with a class for flat arcas. The classification scheme shown

in Table 3.11, displays the 45° intervals used to define the classes.
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Table 3.11 Classification scheme for aspect based on equal interval divisions.

337.5-0-22.5 N 1
25-675 NE 5]
6751125 E 3
1125-157.5 SE 3
157.5-202.5 S 5
20252475 SW G
2475-2925 W 7
29253375 NW 8
Flat a

3.4.3 Slope

Slope is directly related to other variables such as exposure, soil moisture, and

topography of the land. For the purpose of this analysis, slope was expressed as ‘percent

rise’. This is the rise in elevation divided by the horizontal distance, multiplied by 100.
Percent rise is equal to 100% when the horizontal displacement is equal to the rise in
elevation and can approach infinity when the slope approaches vertical.

Slope was reclassified into seven separate classes adapted from Dobos ef al.
(2005). The slope classification gradually increases from more gentle slopes to more

extreme, steep slopes (Table 3.12).




Table 3.12 Classification scheme for slope adapted from (Dobos et al., 2005)

Flat 1
Gently Undulating 2-5 2
Undulating 5-8 3
Rolling 8-15 4
Moderately Steep 15-30 5
Steep 30-60 6

Very Steep 60 + 7

3.4.4 Relative Moisture Index
The Relative Moisture Index (RMI) provides a measure for moisture levels at a site when
actual field data are not available. RMI calculates the relative amount of water flowing
into a location, represented by one pixel, in relation to the amount flowing out to the
locations represented by surrounding pixels. It is adapted from Moore et al. (1993) and is
represented by map algebra Equation 3.1.
RMI = In((flow accumulation +1) / (Slope +1))
Equation 3.1 Relative Moisture Index

Flow i the weight of all cells that flow into

down-slope cells and is calculated using a raster layer showing flow direction. Flow
direction is determined from a DEM.
The relative moisture index was classified based on Young (2006), who used a

simple division of wet and dry. The classification adapted here uses wet and dry as a
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guideline, but has equal interval classes between the extreme ends of the scale to create a

gradient of wetness (Table 3.13).

Table 3.13 Classification scheme for RMI adapted from Young, (2006)

-10t0 -2 Very Dry / Well Drained 1
-2to-1 2
2y
-lto0 g E 3
Oto1 g3 4

£ 2
Tto2 5
21010 Very Wet / Poorly Drained 6

3.4.5 Terrain Shape Index

The Terrain Shape Index (TSI) is a measure of the convexity or concavity of the
landscape. This index was adapted from McNab (1989), by taking the mean relative
difference in elevation between a centre cell and its eight surrounding neighbors. It is
given by Equation 3.2.

| TSI = DEM - Focal Mean Equation 3.2 Terrain Shape Index

Where a given DEM value is the centre cell and the focal mean is the average of the eight
surrounding neighbors. The TSI can have values from negative to positive infinity. For
this study area, the range was from -372 to 287.

The classification given in Table 13.14 is modified slightly from Zimmermann
(2001) to account for the specific landscape of the study area. The index describes

varying positions on a slope. Values increase with movement up-slope, so that the highest
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negative values represent valley bottoms and highest positive values represent peaks or

ridges. Values near zero are mid-slope positions.

Table 3.14 Classification scheme for TSI adapted from (Zimmermann, 2001).

-1000 to -200 Valley Bottom 1
-200 to -75 Toe Slope 2
<7510 0 Mid Slope 3
0to 150 Upper Slope 4
150 to 1000 Ridge 5
3.5 Landscape Description

This section relates the three land cover classes with the topographic variables to gain an

of the distribution of ion in the land i for each

topographic variable are categorized by land cover class to show the differences between
classes.

Elevation was divided into 20m intervals to show variability in the histogram. The
small elevation intervals show in detail where the vegetation classes occur. The result
(Figure 3.12) shows that each of the three land cover classes is dominant at different
elevations. The DSH class occurs primarily below 240m with relatively low levels of
occurrence above that elevation. DSH also has the most limited elevation range of the
three classes as is shown by the statistics of Table 3.15. HG is dominant between
approximately 340m and 500m, but is found throughout the entire landscape below 850m.

RCK has the largest range of the classes because it is found at every elevation. Although
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frequencies of RCK in the 440-600m and 700-900m rang

re similar, it is at the higher

elevations where RCK is the dominant land cover.
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Figure 3.12 Histogram of elevation per land class.

N

#HG

= RCK

Percentage of Area (%)

uDSH

“ M

2
]
°
g

i

dduhli

] 44
g
g
3
8

0

60-80 |

100- 120

140 - 160

460 - 480

500- 520
700 - 720 F—
740-760 =—rt
780-800 P——
820-840
860-880 ——

I
g
8
3
]
8
8

y L
8 8
888

)
88
83
oo
28
28

220-240
420-440
900 - 920

nmnm (m)

Table 3.15

tion statistics for each land cover class.

Maximum Range

4783
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The histogram for aspect was divided into eight cardinal direction classes (Table

3.11). Figure 3.13 illustrates that westerly facing slopes dominate this landscape. Highest
occurrence levels for all three land covers are located in a western direction. The
histogram does show that DSH is nearly absent from NW facing slopes even though HG
and RCK maintain the higher pixel counts in this category. The low values for DSH along
generally north facing slopes indicate that lower amounts of sunlight associated with
these areas may inhibit DSH from growing. HG appears to grow in every aspect and RCK

occurs in every part of the landscape.
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Figure 3.13 Histogram showing distribution of aspect per land class.
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The histogram showing the relationship between slope and the land cover classes

(Figure 3.14) illustrates that the majority of slopes are between 8% and 30%. This
corresponds to rolling or moderately steep areas presented in Table 3.12. The highest
occurrence of DSH occurs on slopes in the 30-60% range which suggests that a steep
slope does not restrict the growth of DSH. Its occurrence along the valley wall, which
make up most of the 30-90% slopes, has not prevented DSH growth along these slopes.
So, based on this distribution, it is plausible that DSH can overcome steep inclines and

move into upslope regions provided soil and aspect provide a suitable habitat.

Percentage of Area (%)

5-8 8-15  15-30 30-60  60-90
Slope (%)

Figure 3.14 Histogram showing the distribution of slope per land class.
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The distribution for the relative moisture index (Figure 3.15) shows that DSH and

HG will grow equally well in all mositure levels. Higher occurrences of HG are found in
intermediate moisture areas and there is a slight skewness showing that RCK is found
more in dry, well-drained areas.

Figure 3.16 displays the distribution of the topographic shape index (TSI). This
index shows the positioning of a land cover on a slope and it is clear that DSH is found
primarily on the middle to lower portion of the hills. HG is more dominant in the mid and
upper slopes while RCK dominates the ridges. This is similar to observations for

elevation (Figure 3.12) because the TSI is a composite of terrain characteristics.

12 |
. |
| i mosH |
I anc |
T . mRCK |
I |
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Figure 3.15 Histogram showing the distribution of RMI per land class.
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Figure 3.16 Histogram showing the distribution of TSI per land class.

3.6 Climate Data
It is difficult to obtain complete and accurate datasets of historical climate for northern
regions of Canada. Sparsely located climate stations, irregular maintenance schedules,
and adverse weather conditions all contribute to climate data being either incomplete, or
absent for a particular region. A potential solution to this problem is using interpolated
datasets to estimate temperature and precipitation values at the study site. Hutchinson er
al. (2009) used a trivariate, thin-plate smoothing spline to model daily temperature and
precipitation, for all of Canada. Model resolution was 300 arc seconds (9258m) of
latitude and longitude and they report that errors for northern Canada were significantly
larger than those in southern Canada. Root mean square errors for maximum temperatures

ranged from 1.45°C to 2.37°C (Hutchinson ef al., 2009). For each sample point in Figure
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3.1, mean maximum and mean minimum temperatures for 1970 to 2007 were supplied by
Dr. Dan McKenney (2009)%. The dataset represents the best climate data available for the
study area because it provides complete coverage over the entire time period and has
reasonable errors of estimate associated with it. More accurate data is desirable; however
this is only possible if there were more climate stations in northern regions.
The data were supplied in point form for each of the field survey locations

displayed in Figure 3.1. It was interpolated to raster format using an inverse distance
weighted algorithm. The raster layers were subsequently used to examine trends and

patterns in changing temperatures and to compare trends in vegetation change.

3.7 Summary of Data
Topographic and vegetation cover data are required for change detection analysis and
predictive modelling. A vegetation survey enabled plants to be identified and quantified
as percent cover. Each image was classified into DSH, HG, and RCK classes using a

likelihood algorithm. A lous areas in the 1985 classification were

minimized using indicator kriging and a classification accuracy of 65.7% was attained.
The classifications for 1992, 2001, and 2008, had accuracies of 80.2%, 88.2%, and 86.2%

respectively. The lower accuracy for 1985 occurred because the 1985 classification was

generated using 2008 field data. The di in ification accuracy is an i
that vegetation change has occurred. Topographic variables describe the landscape and
the conditions in which different vegetation will grow. Elevation, aspect, slope,

topographic shape, and relative moisture were used to describe the vegetation distribution

2 Personal Communication, Dr. Dan McKenney, Canadian Forest Service, Great Lakes
Forestry Centre (2009).
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and will be used to define suitable areas for growth. Interpolated climate data are the most
complete dataset available for northern regions of Canada. They will be used to assess

trends in temperatures compared to observed changes in vegetation.
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4. PRELIMINARY RESULTS
4.1 Change Detection
Change detection analysis was applied to classified satellite data, as well as climate data

for this project. The post i i ison provided i i ing net

change, for each land cover class. The climate change detection procedure was effective

in ishing the trends in for the study area and providing some insight
into changes in the length of the growing season. These applications are discussed in full

detail in the following sections.

4.1.1 Post-classification image comparison

Predicting future changes of vegetation patterns can only be done if historical data
provides evidence that changes have occurred in the past. This information is required for
any spatial models dealing with changes in natural land cover. Post-classification image

comparison is used to verify whether ion distribution in the Torngat ins has

changed since 1985. Additionally, change detection was applied to quantify the amount of
change expected in the future. This information is used to verify whether spatial models
will provide reasonable estimates of future predictions.

The focus of this project was to detect land cover changes between 1985 and
2008. This was the longest time frame for which data was available to observe vegetation
change. Intermediate years of 1992 and 2001 were also assessed in order to observe
trends over the time series. Jia ef al., (2009) found vegetation greenness in the Arctic

changed on a decadal time scale between 1982 and 2006 thus the time scale for this



research is appropriate. It should be noted that the interpolated version of the 1985
classification was used for this and all further analysis.

Initially, one should describe the current conditions of each vegetation class
observed in the study area. Table 4.1 outlines the area in km? for each vegetation class in
2008 as well as the percent area for the entire study region. It is clear that the region is
‘made up primarily of HG and RCK.

Table 4.1 Proportion of land cover class present in 2008.

Land Cover Clas Proportion (%)

HG

DSH

RCK

Total

Change in total area of each vegetation class is presented in Figure 4.1. The graph
shows that the HG class is the most abundant vegetation type followed by RCK and DSH.
The HG class had a gradual decrease in area over the extent of the time series. This
resulted in RCK being exposed and therefore RCK experienced an increase. Figure 4.2
has a more suitable scale for DSH and shows that it has an increasing trend. There is not a
continuous upward trend, although there is a clear increase in area when comparing the

carlier ifications with the later

Figures 4.1 and 4.2 show that comparing the 1985 and 2008 classifications will

yield the greatest difference in area for any vegetation class. The exception here is DSH
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Figure 4.1 Total area of each land cover class for classification in the historical time

series.
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Figure 4.2 Total area for DSH class over the time series.




where 1992 and 2001 have the greatest difference. Consecutive images tend to have less
difference between them which is indicative that changes are occurring on a decadal time
scale. To interpret changes in the landscape, it is best to look over a timescale of at least
ten years. At this time interval, it is more likely that significant change will be observed.
For this reason, the majority of the remaining change analysis was performed using the
1985 and 2008 classifications. This provided twenty-three years over which change could
be observed and provided the best opportunity for detection.

Further analysis of the changes in area, was examined through gains and losses of
each land cover class between 1985 and 2008 (Figure 4.3). RCK had the largest increase
in area, relative to the amount of area that was lost while HG had a larger decrease than
increase. DSH experienced a net gain in area but the change was much smaller than those
observed for RCK or HG. This was expected due to the relative proportions of each class.
Figure 4.4 shows that the vast majority of change occurred between RCK and HG, with
DSH accounting for the remaining net change. Since the total area of the DSH is only
2.81 km? in 2008, 0.30 km” represents a 10.7% increase in the total area. This is
comparable to a 22.2% increase for RCK and 19.7% decrease in total area for HG.

The following paragraphs discuss the spatial pattern of vegetation change in the
study area. The HG class experienced a loss in area over the twenty-three years. Figure
4.5 shows the distribution of the gains and losses in this class between 1985 and 2008.
These results contradict those found by other studies (Canone et al., 2007; IPCC, 2007).
This is related to low joint classification accuracies of the HG (42.7%) and RCK (61.1%)

classes in the 1985 classification.
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Figure 4.3 Total area gained and lost between 1985 and 2008 for each land cover class.
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Figure 4.4 Net change for each land cover class between 1985 and 2008.

68



>z

0 375 750 1,500
— —

Meters

Heath / Grasses (1985-2008)
[ Absent
W Loss
[ Persistent
B Gain
—— Study Area

==

Figure 4.5 Areas of gains and losses of HG class between 1985 and 2008.
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Inaccuracies in classification may be caused by mixing between the HG and RCK classes.
Areas where these classes coexist can be classified differently due to reflective
differences of the landscape and without field data from 1985, it is difficult to achieve
better classification accuracy for 1985.

The pattern for gains and losses of DSH is confined to lower elevations in the
southwest corner of the study area. Figure 4.6 shows that the majority of losses are
located among the region toward the centre of the image where the classification issues
were identified. This region had its extent minimized but still impacted the change
analysis. Aside from the larger clusters of pixels that indicate a loss, there are very few
areas where a loss in DSH was detected. Most of the change in DSH indicates that there
was growth in the region. The pixels are primarily located along the edges of persistent
shrubs where change is expected to occur. This change indicates that the shrubs expanded
their extent and began moving upslope into higher elevations. The persistent DSH area
from Figure 4.6 had a mean elevation of 141.1 m while the areas of gain had a mean
elevation of 203.0 m. It is evident from those values that the areas of gain had been
growing at higher average elevations. Visually, most new growth appears to occur on the

northeast edge of the persistent DSH.
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Figure 4.6 Areas of gains and losses in DSH between 1985 and 2008
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4.1.2 Climate change assessment

The climate data provided by Dr. Dan McKenney (2009) were used to calculate mean
monthly temperatures from1985 to 2007. The time series, which nearly covered the
temporal span of the satellite imagery, was used to assess the interannual and seasonal
trends in temperature.

The median trend in average was analyzed to ine if a warming

trend could be observed in the data. It was calculated using a Theil-Sen median trend
operator which determines the slope between every pairwise combination in the time
series and then calculates the median (Eastman, et al., 2009). This method of determining
trends in a time series is recommended when a dataset is very small or noisy. In the case
of this time series, the Theil-Sen median trend was utilized because the data represented a
small sample size of twenty-two years. Figure 4.7 shows the trend over the extent of the
study area. The region in the eastern part of the image, at higher elevation, warmed faster
than the western area however, the difference in temperature is 0.24°C. This is less than

the RMSE values of 1.45°C to 2.37°C, which was reported by Hutchinson et al. (2009) so

there is no certainty in the di between the at different

The warming trend is also evident by looking at mean annual temperatures and applying a
linear trend to the data (Figure 4.8). These values are similar to the temperature increases
reported by the Arctic Climate Impact Assessment (ACIA). They showed an average
temperature increase of 1.06°C per decade for North America between 1981 and 2001
(ACIA, 2005). Given those values, an increase of 2.8°C to 3.0°C is at the upper limit of

expected warming for the twenty-two year time period.
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Figure 4.7 Theil-Sen median trend in temperature. Represented as total change in
temperature over the twenty-two year time series.
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Figure 4.8 Fitted seasonal curves for 1985-1991 (green) and 2001-2007 (red). Differences
between curves represent average changes in temperature between time periods.

Seasonal trends are analyzed by assessing the shape of the seasonal curve over the
extent of the time series (Eastman, ef al., 2009). The result of this analysis focuses on a
small area in the valley, where the lowest temperature increases were observed. This area
corresponds to the location where DSH existed in 2008 and provides an indication
whether climate change is also evident with corresponding vegetation movement upslope.
The lack of temperature variation in this area makes it a reasonable representation of the
entire study region. Harmonic regression was applied to the time series to extract the
mean annual temperature image and the annual cycle.

Two curves were initially fitted to the time series. One curve corresponds to the
first seven years of the time series while the other corresponds to the last seven years

(Figure 4.8). This was an iate interval for the year time span because

it provides a good representation of the beginning and end of the time series. The
differences in the curves depict an increase or decrease in temperature from one time

period to the next. Figure 4.8 shows a clear separation of temperatures between time
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periods. The 2001-2007 temperatures remain above the 1985-1991 temperatures
indicating that every month is warmer on average for the later part of the time series.
These curves also provide a better indication of seasonal temperatures. The greatest
warming has occurred during winter months. Temperatures are as much as 4°C warmer
during January and February whereas temperatures in July and August are about 1°C

warmer on average. Temperatures are also exceeding 0 °C earlier in the season which is

demonstrated through green-up and g ds The il time
period corresponding to spring and fall were set to green-up and green-down respectively.
It was determined that the green-up period occurred approximately 10.7 days earlier in
the 2001-2007 time period than it did from 1985-1991. The green-down period occurred
approximately 11.3 days later than it did in the earlier time period. The effect of
temperatures surpassing 0°C is evident in the length of the growing season which was
approximately three weeks longer between 2001 and 2007 than it was between 1985 and
1991. This indicates that there is greater potential for vegetation to occupy a larger spatial
extent and to become more dominant in areas where it currently exists.

Mean annual temperatures were calculated for the time series and a Theil-Sen
slope was applied as a trend line to visualize change in temperature. This is referred to as

‘amplitude 0” and is shown in Figure 4.9. The trend in the data show an increase of

3°C overall. Additi the data suggests that there is a trend in the
annual difference between winter and summer temperatures. This is represented in Figure

4.10 as ‘ampitude 1°. The graph has a ing trend, indicating that the di

between mean winter temperatures and mean summer temperatures is getting smaller.
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Figure 4.9 Amplitude 0 showing Theil-Sen slope indicating the trend in mean annual
temperature.
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Figure 4.10 Amplitude 1 which shows the difference between winter and summer
temperatures is decreasing on average.

This implies that winter season has experienced a greater amount of warming than the
summer season and helps verify the observations of Figure 4.8, which shows winter

temperatures warmed more than summer The litude 0 and i 1

graphs incorporate the entire time series rather than the first and last seven years.
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To gain a general und ding of the i ip between

getation change
and observed climate change, mean average temperature and total area of each land cover

class, were plotted in Figure 4.11. The il ing trend in with

the increase in area of RCK and inversely corresponds with HG. DSH has a small

trend indicating there is some iation between DSH growth and increasing
temperatures. Figure 4.11 indicates there could be some correlation between the dynamic
vegetation patterns in the study site and changing temperatures, but these changes need to

be monitored over decades to better understand the relationship.
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Figure 4.11 Trend in average mean temperature compared to change in area of vegetation
class.
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4.1.3 Summary of Change Detection Analysis

P ification image ison was used to d ine changes in vegetation cover
over time. It was found that DSH experienced an increase in areal coverage whereas HG
area decreased. Expanded areas of DSH occurred along persistent vegetation which
suggests growth will occur near well established areas of DSH. Losses in HG occur along
the boundary between HG and RCK however, those changes were associated with very
low classification accuracies of the 1985 satellite image

Climate change was assessed using interpolated climate data and indicated that
temperatures have warmed by as much as 3.0°C since 1985. On average, there are about
twenty-two more days during the year that temperatures exceed 0°C, thus providing
longer growing seasons for vegetation. The results suggest that DSH has potential to

continue to expand in areas with these increased temperatures.

4.2 Bayesian Probabilities
Bayesian probabilities (Bprb) were used in this study as a secondary method of change
detection and to define suitable areas of growth in the cellular automata Markov chain
(CA-Markov) model. Calculations were made for each land cover class for each satellite
image. This enabled the Bprop, to be compared over time and allowed them to be input into
the model on a per class basis. The method of calculating Bpr, and applying them to

vegetation change detection is discussed in this section.
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4.2.1 Calculating Bayesian Probabilities
Prior probabilities must be evaluated before calculating Bayesian probabilities. Prior
probabilities represent the probability of finding a particular land cover class based on the
existing coverage in the study region. These can be calculated by finding the proportion
of each land cover class for each year using Equation 4.1

Porior = % Equation 4.1 Prior probability
Where Pp,oy is the prior probability, A;¢; is the area of a particular land cover class, and

Argt is the total area of the study area. The prior probabilities for each land cover class

for each year are given in Table 4.2, and are a general representation of the entire

landscape for each year. Bpop, have the ge of i

to improve the prediction of land cover classes. For this research, the additional
information comes in the form of the elevation, aspect, slope, relative moisture index and
topographic shape index, variables presented in section 3.4. The variables describe where
particular land cover classes exist, and can be used to help predict the most likely areas
where these land cover classes will exist in the future. The calculation of Bpry requires

the ion of conditional i which means that cach topographic variable

included in the ion are i i ly from one another (Bonham-
Carter, 1994). Bpoy Were calculated for each land cover class using a simplification of
Bayes Rule shown in Equation 4.2.

P(LC;NTg NTs N Ty N Trs N Ty)

P(LC|Te N Ts N Ty N Trs 0 Ty) = P AT N TN TN )

Equation 4.2 Bayesian probability (Bonham-Carter, 1994).



Where: LC;; = a particular land cover (i) for a particular year (/)
Tg = Elevation

Ts = Slope

Ta = Aspect

Tps = TSI

Ty = RM

Table 4.2 Prior probabilities for each classified image (%).

Land Cover  Prior Probability Prior Probability ~Prior Probability  Prior Probability
Class (1985) (1992) (2001) (2008)
HG 60.3 59.6 57.6
DSH 85 7.6 10.1 9.5
RCK 312 328 323 40.1

A geographic information system union operator was utilized to create the
necessary layers for calculating the Bprop. The classified topographic vector layers were
input to the union operator. This operator overlays the layers to create a geometric
intersection. Polygons output with the same combination of topographic classes were
grouped together as multi-part polygons because they shared common topographic
characteristics. Multi-part polygons are used to estimate the probability of a land cover
class occurring. The area of each unique combination of variables is calculated and used
to find the proportion each multi-part polygon had in the entire study area. This procedure

is described by Equation 4.3, where:

ATENTSTANT 7SN Trr)
AroraL

P(TzNTsNTyNTrs N Ty) =

Equation 4.3 Probability of finding unique combinations of topographic variables



Where A(Tg N Ts N Ty N Trs N Tyy) is the total area of each unique combination of
topographic variables and Aoz, is the total area of the study region. All probability
calculations were completed using ArcMap 9.3.

The numerator for Equation 4.1 is calcuated in the same manner as Equation 4.3
with the one exception being that the land cover class LC;; is included in the geometric
intersection of layers. With these calculations, Equation 4.1 provides the probability of
finding a land cover class in a particular year, given the presence of a unique combination
of topographic characteristics. The Bprop, varies over space and are more effective at
showing local variation in the probability of being a particular land cover class. Figure
4.12 illustrates areas where DSH was most likely to be found in 2008. The highest values
are at the valley bottom and toe slopes where most DSH is found. Probabilities decrease
through the transition area with increasing distance away from persistent vegetation. To
account for certainty in the Bpyp, land cover values, the classification accuracy, derived
from the Kappa Index of Agreement (KIA) were multiplied by the By layers for each
class. For example, the KIA value for HG in 2008 was 73.4 %, which was multiplied by
the Bprop layer for HG for the given year. Thus, any pixel in the Bprp layer with a value
of 1.0, would now have a value of 0.734 or 73.4% (e.g. 1.0 X 0.734 X 100). This reduces
the probability of HG occurring at a given pixel, but accounts for uncertainty in the
analysis.

The profile plot shown in Figure 4.13 demonstrates how the Bprb can vary over
space. The profile was digitized in a southwest to northeast orientation from the valley

bottom to the higher elevation areas. It shows how the Bprop clearly identify the most
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favourable areas to find DSH, HG and RCK. There is also evidence that the transition
areas between these classes are suitable for more than one class. This indicates there is
potential for DSH to move into up-slope areas that are currently only suitable for HG

growth.
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Figure 4.12 Bayesian probability map for DSH in 2008.
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Figure 4.13 Profile of Bayesian conditional probabilities (%).

One Bprob map is generated for each land cover class for each classified image.
The change detection analysis using Bpros is discussed in the next section while the

integration of Bpys layers in CA-Markov modelling is discussed in Chapter 5.

4.2.2 Bayesian probabilities for change detection




Image differencing techniques are utilized to evaluate the amount of change in Bpry
between 1985 and 2008. The Bpry, for like classes are subtracted from one another to
assess whether the probability of finding a land cover class has increased or decreased
over time. The method for determining the difference between images is represented by

Equation 4.4 (Nelson, 1983; Singh, 1989).

Dxyj = xyy(t2) = % (t2) Equation 4.4 Image differencing

Where x;; is the pixel value at row i, column j at time (t;) and (t,) and Dx;; is the
difference at row i, and column ;.

Image differencing was performed using a raster data format. The earliest 1985
Bprop layers are subtracted from the 2008 layers to find areas of increase and decrease. To
account for certainty in the Bp the product of the per class KIA values for 1985 and
2008 is multiplied by the resulting change image. This accounted for the error inherent in
the classifications. As a result the change image for DSH was multiplied by 1.0, HG was
multiplied by 0.428 and RCK by 0.611. The outputs from this analysis are shown in
Figures 4.14 through 4.16 respectively.

The percent change in By for DSH (Figure 4.14), ranges from -100% to +100%
because the per-class accuracy for the two By layers was 100%. Figure 4.14 shows the
overall trend of increasing probability of finding DSH. The general area of persistent
DSH (see Figure 4.6) has smaller increases in Bprop values because the vegetation is
already well established. Areas along the edge of persistent vegetation are where the

largest increases are found. The areas of dark red represent large increases in probability



and visual comparison with Figure 4.6 shows that areas of gain in DSH correspond well
with large changes in Bprob. There are very few areas of loss for DSH. The most notable
area of loss is near the centre of the image which has already been identified as a site of
potential misclassification in the 1985 image (Figure 3.6). This map suggests that there is

a decrease in the probability of finding DSH at that location.
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Figure 4.14 Difference in Bayesian probabilities for deciduous shrub between 1985 and

2008.
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Figure 4.15 shows the change in Bprp, for HG. The majority of change occurs
throughout the centre of the study area because this is where HG is primarily located.
Most of these areas of change are shaded light blue to represent a decrease in the
probability of finding HG. This is in agreement with post classification change
comparison discussed earlier, suggesting that HG experienced a loss in area during the
past twenty-three years. Figure 4.15 shows that there is a lower probability of finding HG
in 2008 than in the past. The increases that were observed tend to have high probabilities,
however these areas are very small compared to the areas of loss. The range of increases
or decreases is limited to a maximum value of +/- 42.8% because of the accuracy
adjustment.

Changes in the RCK class are displayed in Figure 4.16. The post-classification
analysis showed that rock was increasing in area over the time series which is consistent
with the change in probabilities of finding RCK. Increases in probability occur at higher
elevations toward the eastern side of the study area. This area represents the elevational
limit of the HG class. These are the types of areas where RCK and HG coexist and the
spectral signature of RCK becomes the dominant signature. It is also possible that HG
cannot sustain itself in these particular areas, and as a result rock and bare ground has
become visible and is being detected by the satellite sensors.

The Bayesian probabilities provide another method of assessing where changes
occurred in the landscape and also provide insight into the likelihood of change occurring.
If there is historical evidence of change in an area, one can infer these are also potential

areas of future change.
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Figure 4.15 Difference in Bayesian probabilities for HG between 1985 and 2008.
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The spatial nature of Bpp layers allows for integration into a spatial model. Bprs layers
are suitability maps that describe the likelihood of occurrence of a particular land cover.
This aspect of the Bprop layers is discussed in Chapter 5 on the development of the CA-

Markov model.

4.2.3 Summary of Bayesian Analysis

For each classified image, Bprp layers are calculated for each land cover class. Certainty
in the Bproy values was accounted for by multiplying the Bpr layers by per-class KIA
values, which were derived from the classified images. Bprop layers were used to
determine whether the probability of finding a particular class was increasing or
decreasing over time. The analysis revealed that DSH had an increase in the probability
of being observed for most locations, whereas HG experienced an overall decrease.
Although the loss of HG is due to classification accuracy, these results are in agreement

with the post-classification image comparison.
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5. Cellular A Markov Chain ing Results

5.1 Overview
The CA-Markov model was implemented using a set of modules specifically designed for

spatial modelling (Eastman, 2009). An overview of the modelling process is provided

here followed by a di: ion on error and the of

predictive models for the study area. Results of the CA-Markov simulations are also
presented. Model accuracy is evaluated by comparing the simulated layer and the
classification for 2008 as well as assessing the Kappa statistics and cross-classification
tables. Matrices generated by the Markov analysis are evaluated and the final simulations

from the CA-Markov model are presented.

5.1.1 CA-Markov Model

The spatial modelling modules, available in /drisi Taiga, are specifically designed to run
CA-Markov models using classified satellite imagery. A Markovian transition estimator
is used to generate transition probability and transition area matrices using a pair of land
cover images from different dates. Probability matrices provide the likelihood that a pixel
will remain in the same class or transition to another class during the next time period.
Transition areas matrices report the expected total area for each vegetation class in the
next time period. The module also produced a set of conditional probability images that
assign an entire land class a probability of changing to another class. The Bprp values
vary within each class and thus provide empirical evidence for the CA model. Bprp layers
are used as suitability layers for the remainder of the analysis instead of the Markovian

conditional probabilities because of this variation. The number of years between images
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must be specified in the model along with the number of years to project into the future.
This is used to evaluate changes for discrete time steps and limit the amount of change
that can occur in projections. The transition areas matrix was the only result used as direct
input into the cellular automata component of the model. The probabilities matrix was
used for comparative purposes to test whether or not the transition probabilities become
stationary.

The second module required for the analysis combined the stochastic component
of the Markov chain with the spatial component of a cellular automata model. To run the
CA-Markov model, the most recent classification was input as the base land cover image.
This corresponds to the most recent land cover image used in the Markov model. In
addition to the image, the Markov model-derived transition areas file was input to define
the expected amount of change between classes for a given time period. The transition
areas are used to limit the amount of change between classes. This ensures that the
projected change is consistent with the amount of observed change and the Bprs layers
help determine where the changes will be located. The Bayesian conditional probabilities
were used as the input suitability maps for the land cover classes in the model. A 3-by-3
mode filter was applied to each of the Bprs layers to reduce noise and eliminate
anomalies that were observed in the preliminary CA-Markov model outputs. To account
for certainty in the image classifications, per-class KIA values were multiplied by the
Bprob layers used in the analysis. Per-class KIA values can be reviewed in Table 3.9 (Page
46). The Bpry layers represent suitable areas where each land cover can grow because

they are based on previously known locations of the vegetation and their preferred

The suitability maps from the Markov model have a single
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probability assigned to all cells corresponding to a particular class. The Bprps have more

spatial variation than the Markov derived probabilities. The topographic variables play a

crucial role in helping predict land cover distribution. The unique combinations of
topographic variables create distinct polygons that are different from its neighbours.

The CA-Markov model outputs a prediction for a specified year using the above
input data and a defined neighbourhood. A-3 by-3 Moore neighbourhood was used
because it is assumed that the vegetation growth occurs near already persistent areas of
that particular vegetation. Field observations and classification maps indicate that the land
cover classes are distinct from one another. There is little mixing between HG and DSH
as both types have specific areas where they flourish. Additionally, the observed changes
in DSH imply that change is occurring within 30 m to 90 m of persistent DSH
neighbourhoods. This suggests a 3-by-3 pixel filter (representing an area of 8 100m?) will
define the area of vegetation change for this specific study site. The neighbourhood is
passed over a Boolean image of each land cover class from the base classification. Pixels
falling entirely within the class in question are given a value of one while areas outside
are given a value of zero. When the neighbourhood is passed over the border of two
different classes the pixels are given values between 0 and 1. This adjusts for the fact that

pixels further from the persistent land cover are less likely to change to that class. The

result is then iplied by the suitability map to d ight the ilities (Eastman,
2009). The CA-Markov model output is a classified layer that can be compared with
classified satellite imagery. The error assessment and specific model runs are discussed in

the following sections.
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5.1.2 Error Assessment

One convenient method of error in spatial ing is d by

predicting the land cover for a time when real conditions are known. This method has
been used in other studies such as Araya and Cabral (2010) who used it to verify the
accuracy of a model predicting land use change. They predicted the land cover for 2006
using observed changes between 1990 and 2000 images. The simulated 2006 image was
then compared to a classified 2006 image using Kappa variation statistics and a cross
classification between the two images. The same method was utilized in this study using
the 1985 and 2001 classifications to predict the 2008 land cover.

The KIA values are used to compare the known classification to the simulated
map. Kappa represents the proportional accuracy adjusted for chance agreement and is

into a variety of that provide a suitable method for comparing

classified imagery (Pontius Jr., 2000). The kappa statistics assess the model accuracy in
terms of the quantity of cells properly classified along with the location of the cells. The
Kappa statistics, Ksandards Knos Kiocation, are summarized in Table 5.1 and described in
detail in Pontius Jr. (2000). For this project, the simulated 2008 layer was compared to the
classified layer for the same year.

Another method used to assess accuracy is to generate a cross-classification table
between the simulated and classified layers for 2008. This table is used to assess the
amount of each land cover that was correctly predicted. It also indicates how the
simulated layer misclassified pixels. These two methods are good indicators of the

effectiveness of the CA-Markov model used in this analysis.
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Table 5.1 Description of Kappa statistics for assessing the accuracy of simulated land
cover layers (Pontius Jr., 2000).

Kappa Statistic Description
A measure of the simulated layers’ ability to attain perfect
classification.

Koo The proportion of pixels classified correctly relative to the expected
proportion classified correctly with no ability to specify quantity or
location.

Kiocation Locational accuracy of pixels in the simulation. Rxngcs from 0
(random location) to 1 (perfect location specifi

5.2 CA-Markov model and Accuracy A

The Markovian transition estimator is used to calculate the transition area and probability

matrices between 1985 and 2008 ificati This allows for twenty-three years over

ten year increments are used for the simulations. Projections are made for 2018, 2028 and

2038. The CA-Markov model assumes the changes that have occurred are likely to be

repeated over the same time period but beyond that, the transitions are unknown. For this

reason only one projection beyond the temporal range of the data was used.

The cellular automata model incorporated the transition area files from the

which change is detected. Given that vegetation change occurs over a decadal time scale,
\
|

Markov analysis as well as the Bayesian conditional probability dataset to formulate the

hybrid CA-Markov model. Bayesian it ility data, ing to 2008,

is used

for each simulation because it provides the most accurate representation of

suitable areas of vegetation growth. The model produced three land cover maps that are

analyzed using post-classification image ison. Changes are quantified and
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compared to known changes to assess whether the model accurately represented future
conditions.

As amodel indication process, the CA-Markov model was used to predict the
2008 land cover classification. Figure 5.1 shows both the original 2008 classification and
the simulated layer. Visually, the most notable difference is the actual classification had
more spatial variability throughout each land cover. This is particularly evident in the HG
dominated area where there is a lot of mixing with the RCK class (Figure 5.1). The

simulated layer has a smoother, more continuous appearance. This is because of the 1985

(Figure 3.6, P. 40) and 2001 (Figure 3.10, P. 49) classifications have a more

than the 2008 ification. Since the si) ion is based on those images, it

maintains those characteristics. Aside from this difference, the simulated layer retains the
overall pattern of vegetation throughout all three classes.

The Ky value is a better alternative than Kandara for assessing the overall accuracy
of the model (Pontius Jr., 2000). At 70.8%, the 2008 model performed well in its overall
ability to predict land cover. Models with accuracies in excess of 80% are typically
considered very strong predictive tools (Araya and Cabral, 2010). Guisan and
Zimmermann (2000) suggest that any model with a K value greater than 0.5 is considered
fair. This is considered an effective method of modelling the landscape as it is within this
accepted range. The Kiocation Value of 75.6% indicates that the model provides a
reasonable representation of location and based on the Kappa values the model will

reliably predict future land cover conditions. A cross-classification table was used to
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Figure 5.1 Original 2008 classification (left) and the simulated 2008 classification (right).
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assess the accuracy of the 2008 simulation. Table 5.2 shows the counts of pixels that are
classified the same on both the classification and the model. The simulation predicted the
2008 land cover with an overall Kappa value of 66%. Per-class KIA values for HG
(71.4%) and DSH (86.7%) suggest that those classes were predicted dependably in the
model (Table 5.2). RCK had a much lower KIA value at 55.1% which could be caused by
pixel mixing with the HG class. Table 5.2 shows that 3760 pixels were simulated as being
HG when they should have been RCK. This implies that the model does not predict RCK.
as well as the vegetation classes.

Table 5.2 Cross-classification table for the original 2008 classification and the 2008
simulation.

14417 321 3760 71.4
531 2748 197 86.7
R 1517 50 9167 55.1

5.3 Transition Matrices

Transition matrices generated by the Markov model provide information about the
amount of change and likelihood of change occurring before the final CA-Markov model
was produced. This section discusses the matrices for the three projections to show how
each land cover was projected to change. Transition area matrices were compared to the

total known areas of land derived from the ifications. The transition

matrix provides an initial indication of how the likeli of ing to a particular

class, changes over time. Each of these is discussed in more detail below.

98



5.3.1 Transition Area Matrices

Transition area matrices are used to assess the amount of area expected to change
between land cover classes for the different simulations. The three transition areas
matrices are displayed in Tables 5.3 to 5.5. Of particular interest is the relationship
between HG and DSH and, to a lesser extent, the relationship between HG and RCK.
Each matrix shows that the transition from HG to DSH is always greater than the amount
of change from DSH to HG. This results in a very small net gain for the DSH class.
Along with the small increase in DSH from RCK, this means that the DSH class should
experience small gains in total area.

The losses of HG to DSH and RCK far outweigh the gains in HG. This implies
that HG should experience a net loss in area. Much of the loss in HG resulted in an
increase of RCK because it would have been exposed as the vegetation retreated. These
transition area matrices show that the Markov component of the model effectively
predicts proportions of each land cover class. The total percent cover of DSH and RCK
increase with longer projections. The total percent cover for HG decreases over the time
series of projections. This is consistent with change detection analysis where it was
observed that DSH and RCK increased in total area by 10.7% and 22.2% respectively and

HG decreased by 19.7%.
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Table 5.3 Transition area matrix for the 2018 projection (%).

2.7 6.61
0.85 0
344 36.56
46.99 - B 317
Table 5.4 Transition area matrix for the 2028 projection (%)
10.54
0
: 3426
45.14 1004 44.80
Table 5.5 Transition area matrix for the 2038 projection (%).
33.29 242 14.67
2.15 731 0
771 T 02 31.93
43.15 10.25 46.60
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5.3.2 Transition Probability Matrices

The transition probability matrices give the likelihood of transition between classes. The
matrices presented in Tables 5.6 to 5.8 give the likelihood a particular class from 2008,
will change to another class or remain the same in the future. One trend is that over the

three projections the ility of ining in the same class decreases. HG

experiences the biggest drop between the first and last projections. Afier ten years, there
is an 84.7% chance a current HG pixel will still be HG however after thirty years that
value drops to 66.1%. It is also more likely for the HG class to transition to RCK rather
than DSH which is shown throughout Tables 5.6 to 5.8. There is a 29.1% chance that a
pixel representing HG in 2008, has turned to RCK by 2038. Other notable trends show
that the current DSH class is only going to turn into HG while RCK is more likely to
change to HG.

These matrices establish that the Markov chain assessed the changes between the
classified imagery for 1985 and 2008 and dependably based the projected probability of
change on observed values. The Markov model provided a suitable output for the cellular
automata component in terms of the area matrices. The results of the CA-Markov model

are discussed in the following section.
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Table 5.6 Transition probability matrix for the 2018 projection

84.7 2.1 13.1
8.9 T ) 0
86 03 911
Table 5.7 Transition probability matrix for the 2028 projection
75.6 34 209
163 83.7 [
138 08 854
|
Table 5.8 Transition probability matrix for the 2038 projection
29.1
e
s
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5.4 Cellular A Markov Chain Si

The results of the CA-Markov model for 2018, 2028, and 2038 are presented in this
section. Figure 5.2 represents the three projected land cover maps generated using the
CA-Markov approach. Each land cover does not exhibit dramatic changes at any point
throughout the time series. As a result, the projections maintain the gradual transition that
was observed between 1985 and 2008. The changes in distribution were quantified in
terms of change in area.

Each land cover class exhibited the same trend in change that was observed from
the classified imagery. Figure 5.3 illustrates that HG continued to decline in total area
while RCK increased in total area. The DSH region remained relatively constant
compared to the other two classes so it can be assumed that loss of HG contributed to the
majority of gain in RCK. Figure 5.4 illustrates DSH increased in area by 0.14 km?
between 2008 and the 2038 projection which accounts for a 7.7% increase in total areal
coverage of DSH. This is slightly smaller than the 10.8% increase observed between 1985
and 2008. The changes for HG and RCK are also lower for the projection than the actual
observed change. Figure 5.5 shows that the model consistently underestimates the amount
of change in area compared to what was observed. The Bpys suitability layers can cause
underestimation if there are no suitable areas for change to occur. Thus the topographic

variables are acting as a constraint because the combinations of variables define areas

where vegetation is likely to grow. This is a limitation of the environment and the

available suitable habitat in the study area. Bpros will have low probability at sites where
there is no evidence of past vegetation growth, therefore the model will not predict

vegetation growth at those sites.
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Figure 5.2 Projected land cover distributions using CA-Markov chain model.
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Figure 5.3 Area of each land cover class as represented by the classified imagery and
model projections.
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Figure 5.4 Area of DSH from the classified imagery and the model projections
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Figure 5.5 Differences in area as observed from classified imagery and projected by the
CA-Markov model.

Change maps generated for the 2038 projection show where land cover changes
are most likely to occur. Figure 5.6 displays the transitions between all classes for the
2038 projection. HG to RCK is the most dominant transition observed in the projected
land cover. Most of that change occurred on the eastern side of the study area, which
corresponds with mid to high elevations. This is where HG transitions into RCK and is
the expected area of change for these classes. Figure 5.7 displays the area where HG was
lost to RCK thus giving a better perspective of the projected change. It shows that HG is
decreasing along the boundary with RCK. This suggests that any change in vegetation

cover will occur along the edges of persistent vegetation.
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Figure 5.6 Transitions between classes for the 2038 CA-Markov projection.
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Figure 5.7 Gains and losses in RCK for the 2038 CA-Markov chain projection
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The model accurately depicts where changes are expected to occur; this is in
agreement with the observed changes in RCK land cover. Losses in RCK occur primarily
in the centre part of the study area. This coincides with persistent areas of HG. Figure 5.6
shows that both DSH and RCK contribute to gains in HG. Figure 5.8 shows that losses in
area of HG are much more dominant than the gains. This agrees with the observations
between 1985 and 2008 that showed net losses in the HG class. Also, much of this loss
occurred along the boundary with adjacent classes and therefore it is occurring in areas
where change is expected. A loss in HG is not the normal transition one would expect.
This transition is related to classification error in the RCK and HG classes.

Gains and losses in the DSH class are concentrated in the southwest portion of the
study region which indicates that the model is accurately predicting the best potential
locations for vegetation growth. Figure 5.9 displays the areas of gains and losses in DSH
while Figure 5.6 shows that the majority of gains come from the HG class with only a
small contribution from RCK. Gains occurred mostly along the eastern edge of persistent
DSH and infilling was indicated by increasing Bprop values. The losses occurred among
more dispersed regions of DSH. Small clusters of DSH located away from the large

persistent region were the areas that transitioned to another vegetation class in the model.
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Figure 5.8 Gains and losses in HG for the 2038 CA Markov projection
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Figure 5.9 Gains and losses in DSH for the 2038 CA-Markov projection
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The model appears to accurately represent future land cover based on the amount
of change that was detected. It correctly projected small gains in the DSH land cover and
large gains in RCK. It also effectively showed the losses in HG and established that most

of the transition in the landscape is between the HG and RCK classes. The Markov

of the model is ible for this because it restricted the amount of change
that occurred between classes based on past change.

The cellular automata component of the model also correctly positioned the
changes for each land cover. This was limited by the defined Moore neighbourhood, as
well as the Bayesian conditional probabilities which helped define suitable areas of
growth for each land cover and introduced uncertainty into the model.

One particular tendency of the model was that it generated smoother, more

continuous surface classes. The classes in each of the projections (Figure 5.2) were more

than the 2008 ification (Figure 3.11, P. 50). This is partly because the
model identified small regions entirely surrounded by a particular class to be the most
suitable to transition into that class. The resulting projections are visually more similar to

the classifications developed for the Landsat imagery for 1985, 1992, and 2001.

5.5 Summary of Results
The CA-Markov model was used to predict 2008 land cover conditions as a measure of
model accuracy. The Ky, value of 70.8% suggests that the model reasonably predicts
current land cover conditions. Per-class, Kappa index of agreement (KIA) statistics were
also calculated as local measures of accuracy whereby HG (71.4%) and DSH (86.7%) are

well classified. RCK (55.1%) was poorly classified because of mixing with the HG class.
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Transition probability matrices assessed the likelihood of change occurring
between classes. These results suggest that by 2038, 33.9% of HG will have transitioned
to DSH (4.8%) or RCK (29.1%). Shrub and rock are projected to gain in total area over
that time frame. The CA-Markov simulations are consistent with the observed patterns of
change and show that DSH and RCK will continue to expand in the future while HG will
experience a decrease in total area. The model also shows that gains and losses of each
class occur along transition areas between land covers. The amount of projected change is
less than what was observed between 1985 and 2008 for each of the land classes but the

locations of the changes are consistent with observations from historic satellite data.
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6. CONCLUSION
The primary objective of this study was to develop a CA-Markov model to predict future
vegetation patterns based on topographic conditions and observed changes in land cover.
In order to achieve this objective, four sub-objectives were completed:
1. A time series of classified satellite imagery was created.

2. Change detection methods were used to determine the amount of vegetation
change over the time series, and where it occurred in the landscape.

w

. A set of suitability maps were created using Bayesian probability methods.
4. A CA-Markov model was generated that effectively predicted current
vegetation distribution, based on historical evidence.

6.1 Classified Time Series
Landsat images were obtained for 1985, 1992 and 2001 along with a SPOT image taken
in 2008. The images were taken between late July and late August to minimize seasonal
variation in vegetation growth. Images were pre-processed and resampled to 30 m
resolution to comply with IPY CiCAT protocol (Chen, et al., 2007). A maximum
likelihood supervised classification was used to classify each image into three distinct
land cover classes. Heath/grass (HG), deciduous shrub (DSH), and rock (RCK) were
established as three classes that could be effectively distinguished from one another at the
30 m resolution. This classification scheme achieved high accuracy rates for the classified
imagery. The lowest accuracy was for 1985 but this was expected because 2008 field data
was used to classify all images. Lower classification accuracy for 1985 might be an
indication of vegetation change over the temporal span of the data. The land cover maps

provided input for change detection analysis and the CA-Markov model.
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6.2 Change Detection Analysis

Change detection analysis quantified the amount of change between classified images and
provided methods to assess the changes between the different classes. DSH and RCK
experienced an increase in areal extent of 10.7% and 22.2% respectively. These gains
came at the expense of HG which experienced a decrease of 19.7% over the twenty-three
years. A decrease in HG is not commonly found in other studies of alpine vegetation. The
decrease observed here is likely due to low classification accuracies of the 1985 satellite
image.

Mapping the distribution of the changes showed that most gains and losses in total
area for a given land cover occur along the boundaries of the persistent land cover class.
This suggests that a cellular automata method of modelling is effective because
neighbourhood and suitability maps define potential areas of growth. It was also shown
through change detection analysis that the change was a continuous process, thus the
greatest amounts of change are observed over the twenty-three year time series. The
model was implemented using ten year intervals up to thirty years past the most recent

satellite imagery.

6.3 Bayesian Probabilities
Bayesian conditional probabilities were used to define suitable areas for each land cover
class and were based on the unique combinations of topographic variables. The highest
conditional probabilities for any class are located in the areas where a particular land

cover is present. Bprp, values decreased with increasing distance away from the present
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land cover conditions. The Bprop layers provide suitability map inputs for the CA-Markov
model.

The layers were also used as an alternative method of change detection. Image
differencing methods are used on the probability maps for different years. The output

identified areas where the probability of finding a particular land cover class had

increased and de d over time. i ilities represent areas where

vegetation was becoming denser and well i in the Dy
probabilities represent areas where a land cover class is being overtaken by a different
land cover class. This change analysis is an alternative method of looking at how the
classes are changing within the landscape. These results are consistent with the post-

classification image comparison.

6.4 CA-Markov Model Accuracy Assessment
To assess the accuracy of the CA-Markov model for this research, a predicted
classification was made for a time period during which a known classification was
available (Araya and Cabral, 2010). Using Kappa statistics, the predicted and observed

were d. The validation model predicted the 2008 land cover with

70.8% accuracy. HG and DSH had the best classification accuracies at 71.4% and 86.7%
respectively. The model maintained the general structure of the land cover classes as well
as the observed pattern. The DSH class dominated the southwest part of the study area,
while RCK was located primarily to the east and HG was located between the two
classes, at mid elevations. One noticeable feature of the output model is that it generated

smoother, more continuous groups of pixels for each class. The classified 2008 image is
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very fragmented with small clusters of pixels representing one class, being mixed with
another class. This is generally absent from the projections and is a result of the

used in the CA-Markov model. All of those small clusters of pixels are

identified as places that have a high probability of changing to the dominant class in the
area. These small areas are amongst the first to change in the simulation. Given the
results, this model could be used to make future predictions concerning land cover
distribution in the Torngat Mountains but it could be improved with some additions to the
modelling process.

A more extensive vegetation survey coupled with higher resolution satellite
imagery would greatly improve image classification for the region. Higher classification
accuracy would lead to greater certainty in modelling results. Further research into what
topographic variables affect tundra vegetation would also help refine the Bayesian
probabilities. The most important topographic variables relating to vegetation habitat
have not yet been identified for the study area. Understanding what those variables are

would result in better suitability maps on which the CA-Markov model is based.

6.5 Modelling Future Land Cover Scenarios
The four sub-objectives of the research generated the information and data required to use
a CA-Markov chain model to simulate future land cover scenarios in the Torngat
Mountains. The time series of satellite imagery is the most important information for the
research. High accuracy rates for the DSH class allowed for more certainty in the final
outputs. Change detection analysis results showed that change in vegetation patterns

occurred at the study area between 1985 and 2008. This suggests that there is a dynamic
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process at work and it provided a baseline for which future projections of change was

d. Bayesian ilities provided an ive set of suitability maps that
incorporated site specific information into the model. The probability layers provided a
better representation of suitable areas of vegetation growth because it incorporated
information on preferred growing conditions based on the topographic variables. Finally,

the accuracy of the model that the CA-Markov chain method is

an effective method of modelling future vegetation patterns for the study arca.

The CA-Markov model was implemented using the 2008 classified image as the

base land cover and the Bayesian i ilities for 2008 as the

maps. Outputs for the three projected years gave consistent trends compared to the
amount of change that was observed between 1985 and 2008. The HG class continued to
lose area while RCK and DSH experienced increases in area. The model also
appropriately located the most likely areas for change to occur. The projections showed
that gains in DSH were primarily located along the edges of the persistent land cover.
This implies that the shrubs will grow outward from existing vegetation into adjacent
areas if the topographic conditions are suitable. Similarly, losses in HG and gains in RCK
occur mainly along the boundary between those two classes.

The predicted land cover scenarios suggest that relatively small amounts of
change will occur amongst the DSH class. Shrubs accounted for 9.5% of the total area in
2008 and were projected to occupy 10.3% in 2038. That is a 7.7% increase in the total
area of DSH over a 30 year period. The model predicts that DSH will move tens of meters
upslope over the next thirty years. This limited movement is not enough to suggest that

DSH will be able to move into higher elevations and become the dominant vegetation in
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the study area. RCK, on the other hand increased from 40.1% to 46.7% total coverage.
That amounts to a 16.2% increase in total area. HG dropped from 50.3% to 43.1%, a loss
of 14.4% in heath. Although the change detection analysis and projections from the
model show HG is losing a lot of area to RCK, it is still the dominant land cover at mid-

elevations. Previous studies have documented that some species are intolerant to

competition and therefore have decreased in abundance with the onset of warming and
greater nutrient availability (Gottfried ef al., 1999; Jagerbrand et al., 2009; Pauli et al.,
2007). These situations imply that certain species or functional groups are being replaced
by other vegetation. The results here show that the HG is retreating and leaving rock and
bare ground exposed. This does not suggest competition is an issue because the HG is not
being replaced by other types of vegetation. One potential cause of the loss of HG could
be related to frost damage. Increased occurrences of intense cooling, followed by
warming periods during the spring green-up will make vegetation more susceptible to
damage during these events. If the intense cooling periods increase in frequency than
there is a possibility that the vegetation could die and show a pattern of retreat. This is
possible in the Torngat Mountains where there is less snow cover and vegetation is
exposed earlier in the season. The vegetation in these areas could potentially retreat if
these events occur repeatedly over multiple years. Gu, ef al. (2008) looked at a spring
freeze event in the United States and found considerable frost damage that devasted crops
in the southern United States.

This issue might also be related to classification issues. HG and RCK are known
to co-exist in the landscape, thus RCK might have more dominant reflectance in these

areas. Further refinement of the classification is necessary to identify and correct these
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issues, if they exist. A more extensive vegetation survey would be required to target those

areas and see what is causing this perceived vegetation retreat.

6.6 Implications
Assuming that the predictions resulting from this research will occur over the next thirty
years, it appears that there is little threat of deciduous shrubs encroaching on existent
heathlands in this area of the Torngat Mountains. The movement that was observed and
predicted shows that it may take centuries for shrubs to dominate the landscape at higher
elevations and will never exist in more exposed, rocky areas. Aspect and slope will not
restrict the growth of DSH in the study site and elevation will not limit growth given the
current position of vegetation. The biggest habitat constraint will likely be the presence or
absence of RCK. The higher elevations and absence of soil in areas of RCK will prevent
DSH from growing in those areas. Interactions between the HG and RCK must be further
analyzed to assess the present state of HG. Future studies involving remotely sensed
image analysis should incorporate higher resolution imagery if it is available, along with
more extensive field analysis. This would provide a better indication of the state of heath

in the Torngat Mountains.
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