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Abstract

We study the n-existential closure property of graphs which was first considered by

Erdd

nd Rényi in 1963. A graph G is said to be n-cxistentially closed, abbreviated
as n-e.c., if for each pair (4, B) of disjoint subsets of V/(G) with |A| + |B] < n there
exists a vertex in V(G) \ (A U B) which is adjacent to each vertex in A and to no

vertex in B. Accordingly, we call the largest integer n (if it for which a given

G).

graph G is n-c.c. the existential closure number of G, and we denote it by =

.., only a handful of explicit

Despite the fact that there are many graphs that are n-

families of graphs with the property have been found.
Recently the property has become a subject of renewed interest and several tech-

niques have appeared in the literature to construct n-e.c. graphs. These techniques

benefit from design theory, finite geometry, probability theory, matrix theory, as well

as computer search over classes of graphs that are likely to contain n-e.c. graphs.

we fo

obtaining 3-existentially closed graphs using

on two subje
graph operations and investigating the n-e.c. property of the block intersection graphs
of infinite designs.

In 2001 Bonato and Cameron examined several graph operations to see which
operations could be used to construct n-e.c. graphs from given n-e.c. graphs, and

showed that the symmetric difference of two 3-e.c. graphs is a 3-e.c. graph. In 2008




another 3-e.c. preserving graph operation was introduced by Baker et al. We have

taken a different approach to the construction of Baker et al. that enables us to relax
the requirement that the two graphs considered be both 3-e.c. We formulate the
construction as the modular graph product denoted by © and we determine necessary
and sufficient conditions for the graph GOH to be 3-e.c. given that H itself is a 3-e.c.

graph. We then use this operation to construct new classes of 3-e.c. graphs of the

The classes that we consider are those

form GOH where G is not necessarily
for which G is cither a complete multipartite graph or a strongly regular graph. The
graphs G for which we show that GOH is 3-c.c. can have as few as four vertices,
which represents an improvement in comparison to when G is required to be 3-e.c.

As part of an effort to find n-e.c. graphs, Forbes et al. first considered the block

ems, and later McKay and Pike studied the n-

intersection graphs of Steiner triple s)
e.c. property of graphs arising from BIBDs. We extend the study of the n-existential
closure property of block intersection graphs of designs to infinite designs. An infinite
t-(v, k, ) design D is a design with an infinitely many points while k, ¢ and A can be
either finite or infinite. The block intersection graph of a design D denoted by Gp is
a graph with the block set of D as the vertex set and two vertices of Gp are adjacent
if their corresponding blocks share a point. These graphs have infinite vertex sets and

have motivated us to investigate whether we can use the construction to find another



construction of the Rado graph (the countably infinite random graph that is known
to be n-e.c. for all n).

‘We suppose that ¢ and A are finite and solve the problem in two cases: when k is
finite and when k is infinite. If k is finite, then for such an infinite design D we show

that Z(Gp) = min{#, A1 +1} if A = Land 2 < ¢ < k, and 2 < E(Gp) < min{t, [§]}

ifA>2and 2 <t < k— L Our results show that block intersection graphs of such
infinite designs are different from countably infinite random graphs as n is bounded
for the n-existential closure property of the block intersection graphs of such infinite
designs.

If & is infinite and (£, A) # (1,1), then for each non-negative integer n, we show
that there exists a t-(v,v,A) design D such that Z(Gp) = n. We also show that there

exists a t-(v,v, \) design D’ such that G is n-e.c. for each non-negative integer n.

This implies the existence of -(Rg, R, ) designs whose block intersection graphs are

isomorphic to the Rado graph. However, if k < v, then £(Gp) < min{(, t} where £ is

the smallest cardinal such that there are ¢ blocks of D whose union is a superset of

another block of D.
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Chapter 1

Introduction

In this chapter, we present the required definitions and terminology used throughout

. These

the thesis as well as a review of previous results that are related to the thes

mainly inchude results on the existential closure property of graphs.

1.1 Existential Closure: Definition and Origin

The n-existential closure property was originally studicd in 1963 by Erdés and Rényi [22]

where they showed that almost all graphs have the property. The n-existential closure

property is defined as follows

tentially closed, or n-e.c., if for cach

Definition 1.1 A graph G is said to be n-exi
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Figure 1.1: The n-existential closure property.

pair (A, B) of disjoint subsets of V(G) with |A| + |B| < n there exists a vertex

in A and to no verter in B.

2 € V(G)\ (AU B) which is adjacent to cach ver

Equivalently, a graph G with vertex set V(G) is said to be n-existentially closed,

or n-e.c., if for each proper subset S of V(G) with cardinality [S| = n and each subset

some vertex « not in S that is adjacent to each vertex of 7' but

T of S, there exis
to none of the vertices of S\ 7.

The n-existential closure property of a graph is illustrated in Figure 1.1, The solid

edges between @ and the set A show adjacency between & and all the vertices in A,

and

and the dashed edges between x and the set B indicate non-adjacency between 2
all the vertices in B

It is then clear from the definition that a graph G is l-e.c. if and only if for any
vertex u of G, there exists a vertex adjacent to u and there is a vertex non-adjacent
to w. Equivalently, a graph G is 1-c.c. if and only if it has no isolated vertex and has

1o universal vertex. Similarly, a graph G is 2-e.c. if and only if for any set S of two
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u

Figure 1.2: Example of a 1-e.c. graph.

s of S in all four

vertices, there are four other vertices that are joined to the v

possible ways.

we call the largest integer n for which a given graph

Definition 1.2 [29] If it exists,

th ential closure number of G, and we denote it by =(G)

G is n-

4-e.c. but is not 5-e.c. has existential closure

For example, a graph G that i

Cpn) = 1 since Gy

mumber 4; Z(G) = 4. Also, for a cycle Gy, with length m > 4,
is I-e.c. but not 2-e.c. This is because for any vertex u of Cy, with m > 4, there is a

7y non-adjacent to u (see Figure 1.2);

vertex @y adjacent to u and there is a vertex

however, for any pair of adjacent vertices of C, with m > 4, there is no vertex

adjacent to both of them.

we remark that

Although we will not focus on directed graphs in this th

ential closure property has been defined for directed graphs as well and

the n-

referred to as

mostly has been considered for complete directed graphs, which
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tournaments. For the definition, results, and open problems the reader is referred
to [11,13,28].

Some of the early research regarding existential closure of graphs was asymptotic

and probabilistic in nature. The probability space G (m, ) consists of graphs with

vertices {0,1,...,m — 1} so that two distinct vertices are joined independently and

proved in [22] and states that

o).

with probability L. The following theorem was

almost all finite graphs have the n-e.c. property; for a proof

Theorem 1.3 For a fived integer n > 1

satisfies the n-e.c. property,

1. with probability 1 as m — 00, a graph G € G(m, }

1= &ym=n < 1, then there is an n-e.c. graph of

2. if m is chosen so that ()

order m.

Although Theorem 1.3 implies that for a fixed integer 7, there are many examples
of n-e.c. graphs, to date, only a handful families of graphs have been found to have
the property.

Theorem 1.4 below is useful in the study of n-e.c. graphs; the proof is trivial
Theorem 1.4 For a fived integer n, if the graph G is n-e.c., then

1. the graph G is m-e.c. forall 1 <m <n-—1,
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2. the graph G has order at least n +2", and at least n2"~" edges,
3. the graph G is n-e.c. where G is the complement of G.

Most of the n-e.c. graphs known to date are strongly regular or vertex-transitive;

these properties are defined as follows.

Definition 1.5 A k-regular graph G in which cach pair of adjacent vertices has ex-
actly X common neighbours, and each pair of non-adjacent vertices has ezactly i com-
mon neighbours is called a strongly regular graph; we say that G is a SRG(v,k, A, 1)

withv = [V(G)|.

Definition 1.6 A graph G is vertex-transitive if for every pair z,y € V/(G) there is

an automorphism of G that maps @ to y.

Similarly, a graph G is edge-transitive if for all e, ¢ € E(G) there is an automor-

phism of ' that maps the endpoints of e; to the endpoints of 5.

1.2  Minimum Orders

A challenge in the search for n-e.c. graphs is to find such graphs on small orders.
With m.(n) we denote the minimum order of an n-c.c. graph. By the second item

in Theorem 1.3, for each positive integer n, n-e.c. graphs exist and hence m(n)
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is well-defined. One can easily find the smallest non-isomorphic graphs which have

existential closure number 1 (sce Figure 1.3).

Py

Figure 1.3: Py, Cy and Cy are the smallest 1-e.c. graphs.

As we have shown in Figure 1.3 and is proved in [10], m.(1) = 4. It is also
known that m..(2) = 9 since the graph K;OK; is the unique smallest graph with
existential closure number 2 [10]; see Figure 1.4. For years, the Paley graph of order
29, P(29), was the smallest known 3-e.c. graph (Paley graphs will be discussed in

Section 1.3). Later in 2001, Bonato and Cameron showed that mc.(3) > 20, and they

carch through

also found two non-isomorphic 3-e.c. graphs of order 28 by a computer
the vertex-transitive graphs of order 20 and up [10]. Very recently, Gordinowicz and

Pralat have improved the lower bound for m,.(3) by eliminating the values 20, 21,22

and 23 [27).
Theorem 1.7 [10,27] 24 < m,.(3) < 28.

Similarly, Bonato and Costea have conducted a computer search among the class

of strongly regular graphs and vertex-transitive graphs of orders between 24 and 30.
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Figure 1.4: K30k is the unique smallest 2-e.c. graph.
They have found two 3-e.c. graphs of order 30 which are the complements of each

. graphs of order 28 by

other. They also have found several non-isomorphic 3

deleting vertices of P(29) and adding edges to the resulting graphs [12].

1.3 Existential Closure and Paley Graphs

Because Paley graphs were the very first families of graphs that were discovered to
contain n-e.c. members for all integers n, we will review some of their history. Paley
graphs are self-complementary, strongly regular, and vertex and edge-transitive. Blass
et al. first proved that Paley graphs contain members satisfying Axiom n 7). A graph
G is said to satisfy Axiom n if for any two n-sets A and B of vertices, there is a vertex
in V(G)\ (AU B) that is adjacent to each vertex in A and to no vertex in B,

Finite fields of order ¢ (i.c., fields that contain a finite number of elements and

which are denoted by F,) are important in various branches of mathematics including
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combinatorics. There is exactly one finite field up to isomorphism of size p* for each
prime p and positive integer k. Paley graphs of order g, ¢ a prime power, have as

their vertex sets the elements of .

Definition 1.8 The Paley graph of order q where q is a prime power with q =

1 (mod 4) is a graph denoted P(q) whose vertices are the elements of the finite field

F, in which two distinct vertices © and y are joined if and only if —y = 2* for some

zeF,
Theorem 1.9 [7,8] If ¢ > n?2"%, then P(q) is n-e.c.
Given that Paley graphs of order ¢ are n-e.c. for sufficiently large g, by using

higher order residues on finite fields other classes of graphs which are called cubic

and quadruple Paley graphs have been generated that are n-e.c. for sufficiently large

vertex set.

Definition 1.10 For g = 1 (mod 3), a prime power, the cubic Paley graph, P(q) is

defined as follows: the vertices of P*(q) are the elements of the finite field Fy, and

two vertices x and y are adjacent if and only if x —y = 2 for some z € F,. Also, for
g=1 (mod8) a prime power, the quadruple Paley graph P*(q) is defined as follows:
the vertices of P*(q) are the elements of the finite field F,, and two vertices x and y

are adjacent if and only if & —y = 2* for some z € F.
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Cubic and quadruple Paley graphs were first introduced as generalised Paley

graphs in (1] where they were shown to be n-c.c. for sufficiently large ¢. Later on, it

was proved that cubic Paley graphs are n-c.c. whenever ¢ > 72"~ and quadruple

Paley graphs are n-e.c. whenever g > 9n6*"2 [2].
Theorem 1.11 2] Let ¢ =1 (mod 3) be a prime power. If ¢ > n*2"""2, then P*(q)
has the n-e.c. property.
Theorem 1.12 [2] Let ¢ = 1 (mod 8) be a prime power. If q > 9n6*""%, then
P*(q) has the n-e.c. property.

Also, let ¢ = p" be a prime power such that p =3 (mod 4) and ¢ = 1 (mod 4), let
F, denote the finite field with ¢ elements, and let z be a generator of the multiplicative

group of the field. The graph P*(q) has vertex set F,, and two vertices = and y are

adjacent if 2 — y = 2/ where j = 0 or 1 (mod 4). Kisielewicz and Peisert have shown

that for sufficiently large ¢, P*(q) is n-c.c.

Theorem 1.13 [32] If ¢ > 8n?2%", then P*(q) is n-e.c.

1.4 Existential Closure and Graph Products

Binary graph operations such as Cartesian product or the join of two graphs produce

a new graph when given two graphs G and H. It is natural to ask if it is possible
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to produce an n-e.c. graph by some graph operations that are applied to two n-e.c.
graphs. It has been shown that such operations are rare and moreover, there is no
such operation known for n > 4.

Bonato and Cameron in 2003 examined several common binary graph operations
to see which ones preserve the n-e.c. adjacency property. Of the operations that they

examined, although some of them are shown to preserve the l-e.c. or 2-e.c. property,

eration was shown to preserve the 3-c.c. adjacency

only the symmetric difference ops

property.

Definition 1.14 The symmetric difference of two graphs G and H, GAH, is a

graph with vertex set V(G) x V(H) and for two vertices (a,b),(c,d) € V(GAH),

(a,b)(c,d) € E(GAH) if and only if ezactly one of ac € E(G) or bd € E(H).

Theorem 1.15 [10] If G and H are 3-c.c. graphs, then GAH is 3-c.c.

Also in 2003, Baker et al. presented another binary graph operation that preserves
the 3-e.c. adjacency property [3]. We will discuss this operation in detail later in

this operation is even stronger and can produce

Chapter 2 where we show that in f

3-c.c. graphs from two graphs, only one of which needs to be 3-e.c.
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1.5 Existential Closure and the Rado Graph

As we have already mentioned, the n-e.c. adjacency property was originally studied
in 1963 by Erdés and Rényi [22], at which time they observed the uniqueness of the

countably infinite random graph.

Definition 1.16 A graph G is said to be existentially closed, or e.c., if it is n-e.c.

for all positive integers n.

The countably infinite random graph is known to be e.c. as first shown in [22]. A

random graph on a given set X of vertices can be chosen by deciding, independently

with probability § whether each unordered pair of vertices should be joined by an

edge or not. Any two countably infinite random graphs having the e.c. property are

isomorphic, and the Rado graph, also known as the random graph or the Erdds-Renyi
graph, is the unique (up to isomorphism) countably infinite random graph R

In an attempt to describe the meaning of existential closure of finite graphs,

Bonato [9) has stated that “with the example of R in mind, if a finite graph G is

n-e.c., then G may be viewed as a finitary version of K.
The Rado graph was initially constructed in 1964 by Richard Rado [36]. Since

then, additional explicit representations have appeared in the literature; see (18]. For

more information on the random graph one can refer to [16,17). In Chapter 4, we
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present a new construction of the Rado graph by considering the block intersection

graphs of infinite combinatorial designs with certain parameters.

1.6 Existential Closure and Combinatorial Designs

In searching for n-e.c. graphs, researchers have tried to construct such graphs using

combinatorial and geometrical structures. Combinatorial designs such as Steiner sys-
tems, balanced incomplete block designs, affine designs, and Hadamard designs are

mostly considered

Definition 1.17 A t-(u,k, \) design is a v-set of points V' with a collection B of k-

subsets called blocks with the property that every t-subset of the point set is contained in

precisely A blocks. A Steiner system is a t-(v,k, 1) design and is denoted by S(t,k,v).

The parameter X is referred to as the index of the design, v is referred to as the
order of the design, and the mumber of blocks of a design is denoted by b; b= |B|. In
studying designs, there are two families of designs, Steiner triple systems and balanced

incomplete block designs, that are of most interest.

Definition 1.18 A 2-(v,k, \) design is called a balanced incomplete block design and

is denoted by BIBD(v, k, \).
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Definition 1.19 A 2-(v,3,1) design is called a Steiner triple system of order v and

is denoted by STS(v).

Definition 1.20 An affine plane of order q is a 2-(¢%,q,1) design.

The blocks of an affine plane are referred to as the lines of the plane. Affine planes
are frequently used in the study of designs. Hadamard designs are another kind of
design that we briefly present here. Both of these designs can be used to construct

n-e.c. graphs.

Definition 1.21 A Hadamard matriz of order n is an n x n matriz H with entries

from {1} such that HH"

nl,.

Fisher proved that in any BIBD(v,k, A), v < b (Fisher's inequality) [24]. The

extreme case of the inequality gives symmetric designs.

Definition 1.22 In a BIBD(v,k,\), if b = v then the design is said to be symmetric.

As the following theorem states, Hadamard matrices and symmetric designs are

interrelated.

Theorem 1.23 [6] There exists a Hadamard matriz of order 4m if and only if there

ists a symmetric BIBD(4m — 1,2m — 1,m = 1).
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Definition 1.24 A symmetric BIBD(4m — 1,2m — 1,m — 1) is called a Hadamard
design.

Definition 1.25 [fq = 3 (mod 4), the vertices of the Paley tournament P(g) are the

elements of the finite field F, and there is a directed edge from a vertez x to another

vertez y if and only if y — x = 2* for some = € F,.

In 2002, Fon-Der-Flaass presented a prolific construction of strongly regular graphs
using affine planes [25]. Later on Cameron and Stark presented a prolific construction
of strongly regular graphs with the n-e.c. property by considering Hadamard designs
obtained from Paley tournaments [19] rather than affine planes as presented in [25].

In fact by probabilistic methods they have shown that:

Theorem 1.26 Suppose that q is a prime power such that q = 3 (mod 4). There
are non-isomorphic SRG((q + 1)%, q(q + 1)/2, (¢* — 1)/4, (¢* — 1)/4) which are n-c.c.

whenever g > 16n2"

Given a combinatorial design, there are several ways to obtain graphs from it, one

of which is constructing its block intersection graph
Definition 1.27 The block intersection graph of a design D is the graph denoted by

Gip, having vertex set the set of blocks B, and two vertices are adjacent if and only if

their corresponding blocks share at least one point of V.
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The fact that the block intersection graphs of Steiner triple systems are strongly
regular has motivated research on these classes of graphs in order to obtain new n-e.c.
graphs. However, the results show that n-e.c. graphs arising from these designs are

rare. Here are two main results by Forbes et al.:

Theorem 1.28 [26] The block intersection graph of a Steiner triple system of order

stentially closed if and only if v > 13

Theorem 1.20 [26] The block intersection graph of a Steiner triple system of order

v can be 3-e.c. only if v =19 or 21

In 2004, it was shown that there are precisely 11,084,874,829 non-isomorphic

Steiner triple systems of order 19 [31]. Using a computer search among those that have

non-trivial automorphism group, Forbes et al. found two non-isomorphic STS(19)
whose block intersection graphs are 3-existentially closed [26]. Very recently, in was

confirmed that there are exactly two STS(19) with 3 block intersection graphs [21].

block intersection graph has

il open for no STS(21) with 3-¢

The case v = 21 is

been found, and there is no enumeration of non-isomorphic Steiner triple systems of

oder 21 in order to conduct a computer search.

Later, McKay and Pike considered the existential closure property of the block in-

tersection graphs of balanced incomplete block designs in general, and they presented
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bounds on the parameters of such designs whose block intersections are n-existentially

closed [33).

Definition 1.30 A design is said to be a simple design if it does not contain repeated

blocks.

By Lemma 1.31 below, if we want to consider the n-existential closure property

of the block intersection graphs of combinatorial designs, we assume that our designs

are simple.

Lemma 1.31 (93] If n > 2 and D is a BIBD(v,k,\) such that Gp is n-e.c., then

D is simple.

McKay and Pike have found bounds on n and v in order for the block intersection

graph of the BIBD(v, k, A) to be n-e.c.

Theorem 1.32 (93] The block intersection graph of a BIBD(v,k, ) with k > 3 is

2-e.c. if and only if v > k* + k- 1.

While Theorem 1.32 establishes a lower bound on v for a BIBD(v,k, \) with
k > 3 to have a 2-e.c. block intersection graph, the following theorem establishes

upper bounds on v for the case n > 3 by considering two possibilities for A: A = 1

and A >
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Theorem 1.33 (38 Let n > 3 and D be a BIBD(v,k, \) for which the block inter-
section graph is n-e.c. If A\ =1 then v < k' — nk® + (2n — 2)k* — nk + k + 1, and if

A > 2 thenv < MY — Ank® + (A + 1)(n — k2 — nk + k+ 1.

It was also determined that if the block intersection of a BIBD(v,k, A) is n-e.c.,

then n cannot exceed k.

Theorem 1.34 (35 If D is a BIBD(v,k,A) such that G is n-e.c., then n < k for

A=1landn <[4 for A > 2.

The n-c.c. graphs arising as incidence graphs of partial planes resulting from
affine planes are another example of graphs with the property being constructed from
combinatorial designs.

Definition 1.35 A partial plane results from an affine plane by deleting some set of

the lines of the affine plane.

Definition 1.36 If P is a partial plane resulting from an affine plane, then the
collinearity (or point) graph of P is the graph with vertices equal to the points of

the affine plane, with two points joined if they are joined by a line of P.

In 2003, using geometric methods, new explicit examples of 3-e.c. graphs were pre-

sented which are the collinearity graphs of partial planes derived from affine planes (3]
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In 2008 using probabilistic and geometric techniques, new examples of graphs with the
n-e.c. adjacency property which are the collincarity graphs of certain partial planes
derived from affine planes of even order were given by Baker et. al. [4].

In 2009, using random constructions new infinite classes of regular n-c.c. graphs
arising from resolvable BIBD(v, k, 1) were presented [5). A resolvable design is defined

as follows.

s can be arranged into v

Definition 1.37 A BIBD(v,k,A) is resolvable if the bl

sets so that (b/r) = (u/k) blocks of each set are disjoint and contain in their union
cach element of the point set cxactly once. The sets are called resolution classes or

parallel classes.

1.7 Infinite Designs

In Chapters 3 and 4, we will extend the study of the n-existential closure property of

sets of such graphs

block intersection graphs of designs to infinite designs. The vertex
are infinite, which motivates research in order to construct infinite graphs with certain
properties.

In this section, we introduce infinite designs as described in [20] by Cameron and

Webb. With an infinite design we mean a design whose point set is infinite and the
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other parameters can either be finite or infinite. However, throughout this thesis, we

assume that ¢ and \ are finite intege

Definition 1.38 [20] A t-(

i, A) design is a v-set of points with a collection B of

k-subsets called blocks, with the properties that:

no block is a strict subset of any other block;

e

the cardinality of the set of points missed by a block is non-zero, and is inde-

pendent of the block;

o

if i,j are non-negative integers with i + j < t, then the cardinality, denoted by

Xij» of the set of blocks containing all of i given points and none of j

given points y1,....y; (where the ws and ys are all distinct) depends only on i

and j, and not on the chosen points.

We have A = (\; , where A is defined as above fori+j < t, and undefined
e i

fori+j >t+1. In particular, Mg = A, Ao = r where 7 is the number of block

containing a point of the design, and Moo = b.

Note that in the definition above, the matrix A is for general infinite designs, but

as we are dealing with finite values for £ and X in this thesis, it suffices for us to refer

to infinite (v, k, A) designs. This is because when ¢ and A are finite, if a structure
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satisfies the first condition in the definition, and every set of ¢ points is a subset of

precisely A blocks, then the third condition also holds for the structure by Theorem
3.1 and Proposition 4.1 stated in [20]. So Definition 1.38 turns out to be as follows

when ¢ and A are finite:

Definition 1.39 [20] A t-(v,k, \) design is a v-set of points with a collection B of

k-subsets called blocks, with the properties that:

no block is a strict subset subset of any other block;

e

. the cardinality of the set of points missed by a block is non-zero, and is inde-

pendent of the block;

o

cach set of t points is a subset of exactly A blocks.

To see the full description of conditions in order for an infinite structure to be an

infinite design the reader is referred to [20]

1.8 Outline of Thesis

At this point we have briefly reviewed the back d, termi ¢, and
and particularly on n-existential closure property. In the following chapters we present

our results and advances in this topic as is outlined here.
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We mainly focus on two problems: constructing new families of 3-e.c. graphs
using modular graph product and finding the existential closure number of block

intersection graphs of infinite designs.

In Chapter 2 we will consider the modular graph product and will show that it can

to obtain a new 3-e.c.

sarily 3

be applied on two graphs one of which is not ne

owed

graph. The operation has been first considered by Baker et al. where th

that it preserves the 3-e.c. property [3].

In Chapters 3 and 4 we study the n-existential closure property of block inte
tion graphs of infinite +-(v, k, A) designs with finite ¢ and . We will show that if the

block size is finite, then n is bounded above for the block intersection graph of infinite

designs to be n-e.c. In contrast, we will establish that there are infinite designs with

infinite block size whose block intersection graphs are e.c.

In Chapter 5 we present some open problems and some potential research areas

on the n-existential closure property and infinite designs.




Chapter 2

Modular Product and Existential

Closure

2.1 Introduction

The scarcity of other readily recognised families of n-e.c. graphs for arbitrary n has
motivated research into classes of graphs that are n-e.c. for small values of n; however,
it is not easy to find explicit example of such graphs even for n = 3. A graph G is
3-existentially closed if for each 3-set S of vertices, there are eight additional vertices
that are joined to the vertices of S in all possible ways. Although the property is

straightforward to define and almost all graphs are 3-e.c., it is not easy to find explicit
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example of such graphs.

It has been shown that every 3-c.c. graph has at least 24 vertices and examples

of 3-¢.c. graphs of order 28 have been found [10,27]. In 2001, Hadamard matrices of
order 4m with odd m > 1 were used to obtain 3-c.c. SRG(16m?,8m? — 2m, dm? —

g

2m, 4m? — 2m) [14]. Also in 2001, Baker et al. presented new 3-e.c. graphs ari
from collinearity graphs of partial planes resulting from affine planes [3]. Tn 2002,
Cameron and Stark presented a family of 3-e.c. graphs, however, the smallest such
graphs produced have at least 84,053,089 vertices [19]. Recently, another construction
of 3-c.c. graphs of order at least p for prime p > 7 and d > 5 was presented using
Jzq) and Y = (.

quadrances (a quadrance between points X = (z1,. va) in Z¢

is the number Q(X,Y) = (21 — 1) + -+ + (2 — ya)?) [38]. Also it was confirmed
that there are only two STS(19) with 3-e.c. block intersection graphs [21,26].
As part of an effort to find new explicit examples of finite n-e.c. graphs, Bonato and

Cameron examined several common binary graph operations to see which operations

preserve the n-e.c. property for n > 1 [10]. They showed that the symmetric difference

of two 3-e.c. graphs is a 3-e.c. graph. Baker et al. subsequently introduced another

graph construction which i c. preserving [3).
In this chapter, we take a different approach to the construction in [3] that en-

ables us to relax the requirement that the two graphs considered be both 3-e.c. We
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formulate the construction as a binary non-commutative graph operation denoted by
the symbol © and we determine necessary and sufficient conditions for the graph
GOH to be 3-e.c., given that H itself is a 3-e.c. graph. We then use this operation

to construct new classes of 3-c.c. graphs of the form GOH when G is not necessarily

as:

a 3-e.c. graph. In particular, the classes that we consider are those for which G is
cither a complete multipartite graph or a strongly regular graph. The graph G for

which we show that GOH is 3-c.c. can have as few as four vertices, which represents

an improvement in comparison to when G is required to be 3-c.c.
The results of this chapter are accepted for publication in The Australasian Jour-

nal of Combinatorics [35].

2.2 The Modular Product and a Characterisation

Theorem

If G and H are two graphs, then we let GOH represent the graph with vertex set

V(G) x V(H) in which two vertic

r,u) and (y,v) are adjacent if

(a) xy € E(G) and wv € E(H), or

(b) ay ¢ E(G) and uv ¢ E(H).
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It so happens that GOH is the complement of a construction that was introduced
by Vizing in 1974 [39]. Tn keeping with [37,40], we shall refer to GO H as the modular
product of G and H.

Unless stated otherwise, we shall generally assume that the graph G has a loop

at each vertex and also that H is 3-e.c. When describing the graph GOH, for each

somorphic to H and cons

vertex 2 € V(G) let H, be the subgraph of GOH that
of all vertices of the form (z,u) where u € V(H). Since the vertices of H, can be
considered to be indexed by V(G), we will often use the notation u, to denote the
vertex (z,u). Two vertices u, = (,u) € H, and v, = (y,v) € H, will be said to be

congruent if u = v; otherwise they are incongruent. An example of GO H is illustrated

in Figure 1, for G = K2 and H = Ky

It can be easily deduced that GOH = GOH where G is the simple complement of
G (the complement of a loop is a non-loop and the complement of a non-loop remains
a non-loop). Also, note that when G has a loop at every vertex, GOH is isomorphic

to the graph G(H) as described in [3] in which the following theorem was proved:

Theorem 2.1 [3] If the graphs G and H are both 3-c.c., then the graph GOH is

also -e.c.

We devote the remainder of this section to the development and proof of a charac-

terisation of 3-e.c. graphs of the form GO H where H is 3-e.c. but G is not necessarily



2.2 The Modular Product and a Characterisation Theorem 26

Figure 2.1: GOH.
so. This characterisation will help us to find smaller 3-c.c. graphs by simplifying the

process of checking when GOH is 3-e.c.

For a graph G, given a set § C V(G) and a subset T of S, we say a vertex

x € V(G)\ S is a T-solution with respect to S if z is adjacent to every vertex in T'

and to none in S\ 7. A solution for S is said to exist if there is a T-solution for every
T € P(S) where P(S) denotes the power set of S. Observe that if a solution exists
for every n-subset of V, then G is n-e.c.

We say a graph G is weakly n-existentially closed, or n-w.e.c., if for any set S with
|S| = n and any T C S, there exists a vertex in V(G) that is adjacent to each vertex

in 7" and to no vertex in S\ T or there exists a vertex that is adjacent to each vertex



2.2 The Modular Product and a Characterisation Theorem 27

in S\ 7 and to no vertex in 7. Such a vertex is called a weak T-solution with respect
to S. Note that K;OH = H and it can easily be confirmed that if [V(G)| € {2,3},
then G cannot be 3-w.e.c., so we henceforth assume that |V (G)| > 4.

For a graph G and a vertex = € V(G) we define N[z] = {y € V(G)| zy € E(G)},
and for a set A of vertices we let N[A] = U, N[z] and N'[4] = ¢, N[z]. Also,
for a set of vertices A C V(GOH) and for each a € V(G), we let A, = {u, €
V(H,)| there is some € V(H) such that u, € A}.

With these notations, note that a graph G is 3-w.e.c. if and only if for every

3-subset A C V(G), the following two items hold
(1) N'[A] # 0 or V(G) \ N[A] # 0, and
(2) for every vertex t € A, N[t]\ N[A\ {t}] # 0 or N'[A\ {t}]\ N[1] # 0.
We are now ready to state and prove a characterisation theorem.

Theorem 2.2 Let G be a graph with |V(G)| > 4 and with loops at every vertex of
V(G) and let H be a 3-c.c. graph. The graph G is 3-w.c.c. if and only if GOH is
Se.c.

Proof Suppose that H is 3-e.c. and G is 3-w.e.c. In order to show that GOH is

3-e.c., for an arbitrary set of three vertices S = {u,,v,,w.} C V(GOH) we show that
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there exists a T-solution for each T € P(S). Note that since GOH = GOH, then
if there is a T-solution in GOH for |T| = 0 (1, resp.), then there is a T-solution for
7] = 3 (2, resp.). To see this, suppose that there is an (-solution in GOH, and since

H is 3-e.c., there is an (-solution in GOH and hence in GOH, too. This implies that

there is an S-solution in GOH. A similar argument holds for the case |T| = 1.
Let A= {2,y,2} and B = {u,v,w}. So 1 < |A|,|B| < 3. If |A| = 1, then since H

ilities for

is 3-e.c., there exists an S-solution. Now we consider the remaining pos
Band A

Case 1. Suppose that |A] = 3. First consider the case 7' = 0. Let a be weak

(-solution with respect to A. If a € V(G) \ N[A], then if  is an S,-solution with
respect to S,, t, is an (-solution with respect to S. If a € N'[A], then if ¢ is an
(-solution with respect to S, t, is an (-solution with respect to S.

16 T = {u,}, then let a be a weak {a}-solution with respect to A. 1f a € Nfz]\

N[A\ {2}], then if ¢ is an S,-solution with respect to Sy, to is a {u,}-solution with

respect to S. If a € N'[A\ {x}]\ N[z], then if ¢ is an (-solution with respect to Sy, ta
is & {u,}-solution with respect to S. Similar arguments hold for T € {{v,}, {w:}}.
Case 2. Next suppose that |A| = 2. We argue this case in two subcases depending

on whether the vertices of S are congruent or incongruent.

e, Uy, Wy}

Case 2.a. First suppose that the vertices of S are incongruent; S
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We first consider the case T'= (). Let a be weak (-solution with respect to A. If
a € V(G)\ N[A], then if ¢ is an S,-solution with respect to S,, £, is an ¢-solution

with respect to S. If a € N'[A], then if ¢ is an (-solution with respect to S, t, is an

(-solution with respect to S.

167 = {u,}, then let a be a weak {x}-solution with respect to A. Ifa € N[z)\N[y],

then if ¢ is an S,-solution with respect to Sy, t, is a {u, }-solution with respect to S.

If a € N[y \ N[z, then if ¢ is an (-solution with respect to Sa, ta is a {u,}-solution
with respect to S.

167 = {v,}, then let a be a weak {}-solution with respect to A. Ifa € N[y]\N[z],

then if ¢ is a {u, v, }-solution with respect to Sy, fa is a {v,}-solution with respect
to S. If a € Nfz] \ N[y], then if t is a {w,}-solution with respect to S, ta is a

= {wy}

{y }-solution with respect to S. A similar argument holds for 7
Case 2.b. Now suppose that § contains congruent vertices; § = {u,, uy,w,}. In

thi

e, the only difference with Case 2.a. is in finding a {w, }-solution. Let a be
weak -solution with respect to A. If a € V(G) \ N[A], then if ¢ is a {u,}-solution

with respect to S,, t, is a {w,}-solution with respect to S. If a € N'[A], then if ¢ is

a {w, }-solution with respect to Sa, t, is a {w, }-solution with respect to S.

Note that for any 3-subset § C V(GOH), and any a € V/(G), since H, is isomor-

phic to H and hence is 3-e.c., then for each 7" C S, there exists a T"-solution with




2.2 The Modular Product and a Characterisation Theorem 30
respect to S,. Observe for each case considered in this argument, the solutions found
are in V(GOH)\ S. As there is a solution for an arbitrary set of three vertices of

GOH, we conclude that GOH is 3-e.c.

but G is not 3-

To prove the converse implication, suppose that GOH is 3

y,2} C G for which there is no weak T-solution for some

w.e.c. Assume that A
T C A Let S = {u,uy,u.}.

As an initial case, suppose that there is no weak (-solution. If every vertex of G
is in the neighbourhood of at least one and at most two of the vertices in A, then

every vertex of GOH is adjacent to at least one and at most two of the vertices in S,

and so there is no vertex of GOH that is an S-solution with respect to S.
Now suppose that there is no weak T-solution for some T' C A with |T] = 1.

@ and N{{y, z}]\ N[z] = 0.

Without loss of generality suppose that N[]\ N[{y, =

is also in N[{y, 2}] and any vertex in N[{y, z}] is also in N[z].

So, any vertex in Nla

These imply that any vertex in N[z] is in N[y] or N[2] and any vertex in V(G) \ N[
is in at most one of N[y] and N[z]. Thus any vertex of GOH that is adjacent to u,
is also adjacent to u, or to u, and so there is no {u, }-solution with respect to S.

In each case we establish the contradition that the graph GOH is not 3-e.c., and

the argument is complete. W

Theorem 2.1 now becomes a corollary of Theorem 2.2.
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Proof of Theorem 2.1 Since G is 3-e.c., it is also 3-w.e.c. W

In general, given graphs G and H such that H is 3-e.c., in order to determine
whether or not GOH is 3-e.c., we need to examine the existence of 8(1V(@1 U1l
T-solutions. However, by applying Theorem 2.2, we only need to examine if G is

3-w.e.c., and hence at most 8("()

sets would need to be compared with the empty
set

Having shown that the modular product can produce 3-e.c. graph given a 3-w.e.c.

graph and a 3-c.c.

graph, we now find graphs G that are 3-w.e.c. We focus our
attention on cases in which G is either a complete multipartite graph or a strongly

regular graph.

2.3 Weakly 3-e.c. Complete Multipartite Graphs
In this section we show that most of the complete multipartite graphs are 3-w.e.c.

Theorem 2.3 The complete i-partite graph Ko, o, with €; > 2 for allj € {1,2,.....,i}

is J-w.e.c.

Proof Let X and Y be two distinct parts in the obvious partition of Kr,

Consider a set of vertices A =

12} of Kty sy, 1f all three vertices of A are in
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the same part, say A C X, any vertex in Y is a weak (-solution with respect to A.
Also € N[z]\ N[{y. z}], and similarly y € N[y]\ N[{z, 2}] and = € N[z]\ N[{z,4}],

and so there exists a weak T-solution for any 7' C A with [T] = 1.

If x is a vertex in a part, say # € X, and y and = are in another part, say

{y,2} C Y, then & € N'[A] and so there is a weak (-solution with respect to A.

Also note that since ¢; > 2, then there exists a vertex r € X \ {z}, and hence

r € N'[{y,2}] \ Nla]. Also, z € N'[{z,2}] \ N[y], and y € N'[{z,y}] \ N[z].
It now remains to consider the case when each vertex in A is in a distinct part.
Suppose that 2/, y' and 2/ are vertices of V(K z,..4,) \ A and in the same parts as

x, y and z respectively. We have z € N'[A] and so there exists a weak (-solution

with respect to A. Also o/ € N'[{y,z}] \ Nlal, ¥ € N'[{x,2}]\ Nlyl, and 2’ €

N[{, y}] \ N[2] and so is a weak T-solution for any T C A with [T] = 1. So, A has

a weak solution and the graph K, g,...¢, with £; > 2 is 3-w.c.c. W

1t follows from Theorem 2.3 that every bipartite graph K, with {,m > 2 is

3-w.e.c. The only remaining bipartite graphs to consider are of the form Ky, with

Let A = 2} € V(Kim). We will show that there is a weak solution

for A. If all the vertices of A are in the same part, then the argument is similar to

the corresponding case in the proof of Theorem 2.3. Now without loss of generality

So,

suppose @ is the singleton part, and y, z and r are in the part with m vertices.
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z € N'[A], y € N'[{z,y}] \ N[}, = € N'l{z, 2}] \ N[y] and r € Nla]\ N[{y,}] and
50 Ky is 3-w.e.c.

We have shown that K50 H and Ky 40 H are 3-e.c. if H is 3-e.c., thereby produc-
ing two non-isomorphic 3-e.c. graphs of order 4|V (H)|. Since the smallest 3-e.c. graph
that is known to date has order 28 [27), this order of 4|V (H)| is much smaller than
28|V (H)| if both graphs were required to be 3-existentially closed (as was required

in [3]).

2.4 Weakly 3-e.c. Strongly Regular Graphs

A kregular graph G in which cach pair of adjacent vertices has exactly A common
neighbours, and each pair of non-adjacent vertices has exactly 4 common neighbours

is called a strongly regular graph; we say that G is a SRG(v, k, A, 1) with v = |V(G)|.

s the

In this section we recognise a few classes of strongly regular graphs that po:

3-w.e.c. adjacency property.
Theorem 2.4 The empty graph G with |V(G)| > 4 is 3-w.e.c.

Proof Let A = {z,y,2} C V(G) and t € V(G) \ A. Obviously, ¢ € V(G)\ N[4]

ence of a weak {-solution. Also z € N[z \ N[{y,z}],

which establishes the e:
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y € N[\ N[{z, 2}], and z € N[]\ N[{z, y}] which establish the existence of a weak

T-solution with respect to A for any set T C A with |T|=1. B

By Theorem 2.4, in addition to the two 3-e.c. graphs KppOH and Ky 30H, we
obtain K;OH as another 3-e.c. graph on 4|V(H)| vertices. We now characterise

another family of 3-w.c.c. strongly regular graphs.
Theorem 2.5 The Petersen graph P, SRG(10,3,0,1), is S-w.e.c.

Proof Let A = {z,y,2} C V(P). First we show there is a weak (-solution with

respect to A.
If at least two pairs of the vertices in A are adjacent, then N’[A] # 0, and so there

is a weak (-solution with respect to A.

If only one pair, say « and y, of the vertices in A are adjacent, then z and y
have 1o common neighbour, whereas & and = (resp. y and =) have only one common
neighbour. Considering that the degree of each vertex is three, then [N[A]| = 8, and
since |V(P)| = 10, there are two vertices in V(P) \ A that are not a neighbour of z,
y or z, and hence V(P)\ N[A] # 0.

If all

If there is no pair of adjacent vertices in A, then we deal with two cas

the vertices in A share a neighbour, then N’[A] # 0. Otherwise if N'[A] = 0, since

Pis

regular, and since every pair of the vertices of A have a common neighbour,
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Figure 2.2: The Petersen graph; SRG(10,3,0,1).
then [N[A]| = 9 and V(P)\ N[A] # 0. So in any case there is a weak (-solution with
respect to A.

Now it only remains to show the existence of a weak T-solution with respect to

Afor any T C A with |T| = 1. Without loss of generality we assume that 7' =

7}
If x is adjacent to both y and z, then 2 and y have no common neighbour, and also
¢ and = have no common neighbour. Since deg(x) = 3, then there exists a vertex
different from y and = which is adjacent to x and non-adjacent to both y and 2 and
so Nfa] \ N[A\ {z}] #0.

If @ is adjacent to exactly one of y or z, say y, then x and y have no common
neighbour, and z and z have only one common neighbour. Again, since deg(x) = 3,

then there exi

ts a vertex different from y which is adjacent to x and non-adjacent to
both y and z. This implies that N[z]\N[A\ {z}] # 0. The case that z is non-adjacent

to both  and z can be argued similarly. In each case we find that N{z]\N[A\{z}] # 0
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and hence there is a weak T-solution for any 7'C A and so P is 3-w.c.c. B
Theorem 2.5 can now be generalised.
Theorem 2.6 If G is a SRG(v, k, A, 1) such that
(i) v > max{3k — A — 2+ 2,3k — 3+ 4} and
(ii) k > max{2X\ + 3, A + p+2,2u + 1},
then G is 3-w.e.c.

Proof Let A = {x,y,2} C V(G). We first show that there is a weak @-solution with
respect to A.
If at least two pairs of the vertices of A are adjacent, then N'[A] # @ and so there
is a weak (-solution with respect to A.
If there is only one pair of adjacent vertices in A, say 2 and y, then x and y have
A common neighbours, whereas o and z (resp. y and =) have y common neighbours.
“onsidering that the degree of cach vertex is k, then by the principle of inclusion
and exclusion we have [N[A]| = 3k — A — 2+ 1+ [N[A]|. Now if [N'[4]] # 0,
then clearly there is a weak (-solution with respect to A. Otherwise |N[A]| = @ and

IN[A]] = 3k = A= 2+ 1, and since v > 3k — A= 2+ 1 by (i) then there is a vertex
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in V(G) \ A that is not a neighbour of x, y, or z; hence V(G) \ N[A] # 0 and there
is a weak (-solution with respect to A.

Finally, if there is no pair of adjacent vertices in A, then since G is k-regular and
since every pair of the vertices of A have ;i common neighbours, then by the principle
of inclusion and exclusion [N[A]| = 3k — 3 + 3+ |N[A]|. Again, if [N[A]] # 0, then
there is a weak -solution with respect to A. Otherwise |[N'[A]| = 0 and [N[A]| =
3k — 3y + 3, and since v > 3k — 3u + 3 by (i) then there exists a vertex in V(G) \ A
that is non-adjacent to every vertex in A; hence V(G) \ N[A] # 0 which establishes
the existence of a weak (-solution with respect to A.

Now it only remains to show that there is a weak T-solution with respect to A for
any T C A with |T| = 1. Without loss of generality let t = 2. If z is adjacent to both y
and =, then z and y (resp. z and 2) have A common neighbours. Since deg(x) = k and
k > 2\ +2 by (ii), then there exists a vertex different from y and = which is adjacent
to z and non-adjacent to both y and z. This implies that N[z] \ N[{y, z}] # 0.

If z is adjacent to one of y or z, say y, then x and y have A common neighbours,
and z and = have y common neighbours. Again, since deg(z) = k and k > A+p+1 by
(i), then there exists a vertex different from y which is adjacent to  and non-adjacent
to both y and z, and hence N[z] \ N[{y, z}] # 0. The case that x is non-adjacent to

both y and = can be argued similarly.
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So, there is a weak solution for A and G is 3-w.e.

Note that the graphs that satisfy the conditions of Theorem 2.6 tend to be sparse.
Examples of such graphs are the Clebsch graph (a SRG(16,5,0,2)), the Hoffman-
Singleton graph (a SRG(50,7,0,1)), the Gewirtz graph (a SRG(56, 10,0, 2)), the M22

graph (a SRG(77,16,0,4)), the Brouwer-Haemers graph (a SRG(81,20,1,6)), the

Higman-Sims graph (a SRG(100, 22, 0,6)), the Local McLaughlin graph (a SRG(162, 56, 10, 24)),

and the n x n square rook’s graph (a SRG(n?,2n — 2,n — 2,2)) for large enough n.

Next we present a family of 3-w.e.c. that are dense.
Theorem 2.7 If G is a SRG(v,v — 2,0 — 4,v —2) with v > 4, then G is S-w.e.c.

Proof Note that since G is (v — 2)-regular, for each set of three vertices of G at least
two pairs of the vertices are adjacent. Let A = {z,y,2} C V(G) be a set of three
vertices, and without loss of generality suppose that z is adjacent to both y and 2.
Since deg(z) = v — 2, there exists a vertex r € V(G) \ A such that rz ¢ E(G) and
{ry,rz} C E(G). Note that z € N’[A] and and so there is a weak (-solution with
respect to A. It only remains to show that there is a weak 7T-solution with respect to
Afor any T C A with |T] = 1. We will consider two cases depending on whether or
not yz € E(G).

As a first case, suppose that yz ¢ E(G). Soy € N'[{z,y}]\ N[2], = € N'[{z, 2}]\
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Nly] by symmetry, and r € N'[{y,2}] \ N[z

Second, suppose that yz € B(G) and

. We have r € N'[{y, 2}] \ N

without loss of generality let ¢ ymmetry

similar arguments establish the cases ¢ = y and ¢ = 2. So there is a weak T-solution

with respect to A for any 7 C A with || =

So, there is a weak solution for A and G is 3-w.e.c. B

Note that for each even v > 4, SRG(v,v — 2,v — 4,v — 2) is the complement of a

perfect matching on v vertices.

2.5 Discussion

Now that we are able to recognise some classes of graphs G that are 3-w.e.c. and
hence enabling us to construct new 3-e.c. graphs GOH given that H is 3-e.c., in this
section we discuss some graphs G for which G is not 3-w.e.c. In Theorem 2.3 we
showed that Koy is 3-w.c.c. By observing that Kyp is isomorphic to Cy, it is natural
to ask which values of m result in 3-w.e.c. Cy. As it happens m = 4 is unique in this

regard.

Proposition 2.8 The cycle Cyy of order m is S-w.e.c. if and only if m = 4.

ckwise order by

Proof Suppose that we have labelled the vertices of Cy, in the cl

1,2,...,m. The graph Cj is isomorphic to Kz for which we have shown Kap is
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3-w.e.c. If m # 4, then for A = {1,2,3} there is no weak {2}-solution with respect

to A because N'[{1,3}]

2) = 0 and N[2)\ N[{1,3}] = 0. m

It is also natural to ask whether it might be possible to use the modular product

to obtain graphs that are 4-e.c.

Proposition 2.9 If G and H are two graphs such that |V(G)| > 2 and H is 4-c.c.,

then GOH cannot be 4-e.c.

v

o}

Proof Let H be a d-e.c. graph, and let G be any graph. Consider § = {u,u,, vy,

a st of four vertices of GO H such that & # y, u, and u, are congruent, and v, and

{1tz 1,2} there is no T-solution. W

v, are also congruent. For 7




Chapter 3

Block Intersection Graphs of
Infinite Designs Having Finite

Block Size and Index

3.1 Introduction

Recall that the block intersection graph of a design D is the graph denoted by Gp,
having vertex set the set of blocks B, and two vertices are adjacent if and only
if their corresponding blocks share at least one point of V. As we mentioned in

Chapter 1, several results on the n-existential closure property of block intersection



3.1 Introduction 42
graphs of finite designs appear in the literature [26,33]. In [26] Forbes, Grannell,
and Griggs studied the n-e.c. property of block intersection graphs of Steiner triple
systems. Subsequently, some results have been found on the n-e.c. property of the

block intersection graphs of finite designs with ¢ = 2 in general [33]. When v is finite,

the block intersection graph of a 2-(v,3,1) design is 2-e.c. if and only if v > 13, and

if it is 3-c.c., then v must be 19 or 21 [26]. Also, in [33], it has been shown that

=(Gp) < k for a finite design D with ¢ = 2, and if A > 2, then Z(Gp) < [5].

For infinite designs there has been no work in this area until now. Here, our aim is
to investigate the n-e.c. property of the block intersection graphs of infinite t-designs
with k and A finite. We show that the block intersection graph of an infinite t-design
D with k finite, 2 < ¢ < k, and A = 1 has min{¢, 41| + 1} as its existential closure
number. However, when 2 <t < k— 1 and A > 2, then 2 < £(Gp) < min{t, [£]}.

Tt follows that the block intersection graphs of infinite designs with a countably
infinite number of blocks that are each of finite size k are different from the countably
infinite random graph. This can be scen by observing that such block intersection

graphs, despite having countably infinitely many vertices, are not n-e.c. for any integer

n such that n > min{t+ 1, |51 +2} if A = 1 (resp. for any n > min{t +1, [51+1}

if A > 2). In contrast, the countably infinite random graph is e.c.

By comparing our results with those of [33] and [26], we also sce that infinite
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designs behave differently from finite ones, for the block intersection graphs of infinite
designs with 2 < t < k — 1 are guaranteed to be 2-e.c. regardless of the values k and
A. In addition, for the case A = 1 we get the exact value of the existential closure

number.

In the following sections we are going to investigate the n-existential closure prop-

erty of infinite designs with k and A finite. Note that the block set of any 1-(v, k, 1)

a partition of its point set and hence the block intersection graph of the

design i
design must have existential closure number 0 (since no two blocks share a point).
Thus, in our results throughout this chapter we will often assume that (t,A) # (1,1).
Also, when ¢ = k and A > 2, there are repeated blocks and D is not a simple design,

50 we also assume that if A > 2 then t < k.

The results of this chapter have been published in Journal of Combinatorial De-

signs (34).

3.2 When A=1

In this section we consider the existential closure of the block intersection graphs

of infinite designs with k finite and A = 1. We show that if 2 < t < k, then

Z(Gp) = min{t, [£=}] + 1}. We begin with the following lemma:
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Lemma 3.1 Let D be an infinite t-(v, k, 1) design with k finite. Let n be a positive

integer such that (n — 1)(t — 1) < (k= 1). If S = {By,By,...,B,} is an n-set of

blocks of D, then for cach i € {1,2,...,n}, there exists a point x; such that z; € B;

and z; ¢ Bj for 1 < j <n and j #i.

Proof We will show that by the assumptions of the lemma, every block B; € S
contains a point z; that does not belong to any other blocks of S\ {B:}. Every t
elements occur in exactly one block, and so the intersection of any two blocks has at
most ( — 1) elements; i.e., |B; N Bj| < (t — 1) where 1 < j < n and j #i. Note that
IS\ {B:}| =n—1and (n—1)(t — 1) < (k- 1). As a result, the number of elements
in common between B; and the blocks in 8\ {B;} is at most (¢ —1)(n — 1) which is at
most (k — 1). Since B; is of size k, there exists an element, say x;, such that z; € B;
and @, ¢ B, for 1 < j <nand j #i. The case t = 1 gives a partition of the point

set as blocks, and obviously the lemma holds. B

Note that Lemma 3.1 holds for finite designs as well. Moreover, note that Lemma 3.1

is stronger than establishing the existence of a system of distinct representative for

S which is defined as follows.

Definition 3.2 A system of distinct representative of a collection of sets Ay, As, ..., Ar,

is a collection of distinct elements x1,%s, ..., Ty, such that z; € A; for each i.
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Theorem 3.3 If D is an infinite t-(v,k, 1) design with k finite and t > 2 and n is

an integer such that 1 <n <t <k and (n—1)(t —1) < (k — 1), then =(Gp) > n.

Proof Let n be such an integer and we show that Gp is n-e.c. Let S = {By, Ba,..., B}

be a set of n blocks of D and T be an m-subset of S such that 0 < m < n. Without

loss of generality, let T = {By, By,..., B} and T° = {Bns1, Busa, ..., Ba}. Weare

going to show that there exists a block not in S that intersects every block in 7" and
is disjoint from every block in 7.

By Lemma 3.1, for every block in 7 we can find a point that belongs to it but
does not belong to the other blocks in S. For each i € {1,2,...,m} fix z; € B; such
that z; ¢ B; for 1 < j < nand j #i. Let X = {1,x2,...,2,,}, and observe that
since the elements of X are distinct, |X| = |T].

As a first case, suppose T = S, and so | X| = n. If | X| < (¢ 1), then add ¢ — | X|
additional distinct points of V\Ji, Bi to X to get a t-set of points. By the definition
of a t-design, there is a unique block, say B, that contains these ¢ points and hence
intersects all the blocks in 7.

For a second case, suppose 0 < [T < (n—1). In this case we have 0 < | X| < (t-1).
Add to X an additional t — |X| distinct points of V' \ Ui, Bi until we have a t-set

X = {a wr sty @) Since X, is a t-set, by the definition of a t-design,

there is a unique block, say B, containing X;. If no points of the blocks in 7° are
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inters

in BY, then B = BO and we are done; i.e., we have found a block whic

every block in 7" and is disjoint from all blocks in 7. Otherwise, there is a point of

BW, say 2, in some block in T¢ Now let X5 = (X \ {#}) U {1} where zy, is
a point selected from V \ (UL, B;) U BY). Such a point exists since v is infinite
and ([, Bi) U B contains a finite number of points. Since X; is a t-set of points,
there is a unique block B® containing X,. Observe that z, ¢ B®), for if z, € B®)

then B® would contain the t-set {2, as,..., 21,2}, and since A = 1, it follows

that BY = B®; but BY # BO for x4 € B\ BY. The block B® intersects
all blocks in T, and if it does not intersect any block of T°, then B = B®) and
we are done. Otherwise we take an iterative approach in which we suppose each of
BW,BO,... BO have been constructed. In general, if B intersects a block of
T¢ then proceed to find a next block B which is the unique block containing
Xewr = (X \ {me4e-2}) U {meger} where wger € V\ (Ui, B) U (U B9)).

Note that if block BY for 1 < j < ¢ intersects some block of T¢ at point z;, then

B A {2, 2,..., 2} = 0 i.c., in each iteration we avoid at least one point of the
blocks in 7¢. Since there are at most k(n — m) points in the blocks of 7¢, whereas v
is infinite, and since each time that we get a new block we avoid at least one point of
the blocks in 7, then after a finite number of iterations, say p, we will get a block

B = B® intersecting all the blocks of T and none of T°.
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Note that in both cases above, B ¢ S. To justify this, we consider two cases.
First, if |X| < 1, then in each iteration, since ¢ > 2, the set X; contains ¢ — [X] > 1
distinct points of V' \ I_, Bj, and any block BY (and consequently B) containing

will be

inct from each block B; for 1 < i < n. Second, if |X| > 2 (which

implies [7] > 2), then X contains at least two distinct points, one from each block
in 7. Since X C B, B will contain at least two points, one from each block in T
however, any block in § contains at most one point of X, because each block in 7"

intersects X in exactly one point, and the blocks in T7* are disjoint from X. B

By Theorem 3.3, it follows that any infinite 3-(v,5,1) design has 3-c.c. block
intersection graph. In general, when k = (t — 1)? + 1, we get the maximum bound of
t on n for the block intersection graph of an infinite design to be n-c.c.

We now proceed to establish upper bounds on the existential closure number,

beginning with two results that hold for all A > 1.

Lemma 3.4 If D is an infinite t-(v,k, \) design with k and X finite, then for any

fized positive integer m there evists an m-set of mutually pairwise disjoint blocks.

Proof Given an infinite design D with k and A finite, and given the positive integer
m, our goal is to construct an m-set, S = {By, By, ..., Bn}, of pairwise disjoint

blocks of the design D. Let By = {p1,pa,...,px} be an arbitrary block of D, and let
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C = {B}. We will now proceed to find By.

Let X,

1y, ... ) be an arbitrary t-subset of V \ By, and consider all the
A blocks containing Xa, and add them to the set C. If one of them is disjoint from
By, then let it be By, Otherwise, if 2 is a point of By which appears in some such

blocks, then add all the A blocks containing (X5 \ {&.}) U {21} to C. Then, consider

s = (X2 \ {2}) U {@s1} where again 211 € V\U,_, B Now consider all the A

bec
blocks containing X, and add all of them to the set C. If any of them is disjoint from

By, then let it be By; otherwise if some of them intersect By at a point, say then

add all the A blocks containing (X3 \ {zi+1}) U {z2} to the set C, and consider the
toset Xy = (Xo\ {@e1}) U {142} where 2040 € VAU, B After at most k iterations
(the mumber of the elements of B;) we will get a block By disjoint from Bj.

Now, given two disjoint blocks By and By, we are going to find a third block By

which is disjoint from B, and B, by a similar approach. We let Y3 = {y1, 11, ., 4}

be a t-set of points of V\U, . B and consider all X blocks containing it and add them

to C. If one of them is disjoint from both By and By, then let it be By. Otherwise, if
21 € ByUB, is a point that appears in some of these blocks, then add to C all blocks
containing (Y \ {1:})U{z1"} and let Yy = (Y3\ {:})U{ves1} where yyy € VAU, B-

The procedure now continues in a manner similar to how we found By. It is possible

in at most 2k iterations to find Bs. Continue this process to get an m-set of pairwise
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isjoint blocks § = {Bi, By,..., B,}. Since finding each B; is possible in at most

(i = 1)k iterations where 2 < i < m, and given that m is finite, whereas the number

of points is infinite, then after a finite number of iterations we obtain the set S. B

Theorem 3.5 If D is an infinite t-(v,k, \) design with k and X finite, then Z(Gp) <

| 2

Proof To prove the theorem, we show that the block intersection graph of an infinite
t-(v, k, A) design D with k and A finite is not n-c.c. for any n > (t +1)

Let S = {Bi,B,,...,Bi} be a t-set of pairwise disjoint blocks as stated in
Lemma 3.4. We are going to construct a block B such that there is no block in-

8 = 8 U{B} (and hence Gp will

tersecting all the blocks in the (t + 1)-set of blo

fail to be (t + 1)-e.c.). For Gp to be (t + 1)-e.c., there should be a block, say B*,

intersecting all blocks in S. So, the block B* should contain at least one point of each
block B; for 1 < i < t. Since the blocks B; are pairwise disjoint for 1 < i < t, B*
must contain ¢ distinct points, one from each block B;

Let A be the set of all blocks containing at least one point of each block B;.
|A| is at most Ak', and hence the number of points in the blocks of A is at most
Ak Now, take any ¢ distinct points of V'\U,_, B. If at least one of the A blocks
containing these ¢ points is disjoint from all the blocks in A, then let it be the block

B. Otherwise, by using a similar argument as in the proof of Theorem 3.3 where
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we were trying to find a block disjoint from all the blocks in 7¢, in at most Ak‘*!

iterations we can construct a block B which is disjoint from all the blocks in A

To have a block intersecting all B; for 1 < i < t, we have to pick one of those in
A, but every block in A is disjoint from B, so there is no block intersecting all blocks
in S, and hence Gp is not (t + 1)-e.c. as desired

Since Gp is not (£ + 1)-e.c., by Theorem 1.4 it cannot be n-e.c. for any n > (t+2)

as well. Therefore Gp is not n-e.c. for any n > (¢ + 1) and hence Z(Gp) < t. B

In addition to Theorem 3.5, we also have the following upper bound on existential

closure number.

Theorem 3.6 For the block intersection graph of an infinite t-(v,k, 1) design D with

k finite and t > 2, E(Gp) < (n — 1) for any integer n such that (n — 1)(t = 1) > k

Proof We will show that if (n — 1)(t — 1) > k then Gp is not n-e.c. by showing that
for the least such n, there is a set of n blocks S = { B, By, ..., B,} such that there

is no block intersecting one of them, but disjoint from the others.

Suppose n is the least integer such that that (n—1)(t—1) > k,so (n=1)(t—1) =
k+s where 0 < s < (t —2). Having this and by the fact that n is the least
integer for which (n — 1)(t — 1) > k holds, we let (n — 2)(t — 1) + &' = k where

1< < (t—1). Now let By be an arbitrary block of D and then fix a partition of
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By = X;UXpU -+ UXyu_2U X,y such that |X;| =t—1for 1 <i<n—2and

/. We also let 41,3, Yn-3, 21, - -, 51—y be arbitrary distinet points in

| X

V '\ B,. Now we are going to construct blocks Biyy for 1 < i < (n — 1) such that
there is no block which intersects By and is disjoint from By for 1 < < (n—1)
Let By for 1 < i < (n—2) be the block containing the t-set of points X; U {:},
and B, be the block containing the f-set X,_; U{z1,...,2—¢}. Obviously, any block

intersecting By intersects at least one of Biy; for 1 <i < (n—1). B

At this point, we have determined the existential closure number for the block

intersection graph of infinite t-designs (v, k, 1) with 2 < ¢ < k and k finite as follows:

Proposition 3.7 For the block intersection graph of an. infinite t-(v,k, 1) design D

with k finite and 2 < t < k, Z(Gp) = min{t, |£=1] + 1}.

Proof It is a direct consequence of Theorems 3.3, 3.5, and 3.6. B

3.3 When A > 2

In this section we investigate the graphs arising from the designs with & finite and

A > 2. We show that for the block intersection graphs Gp of such infinite designs
2 < Z(Gp) < min{t, [£]} when 2 < ¢ < k—1, and the block intersection graph of an

infinite 1-(v, k, A) design has existential closure mumber 1.
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Theorem 3.8 If D is an infinite t-(v, k, \) design with k finite, 2 < t < k — 1, and

A > 2 and finite, then =(Gp) > 2.

nilar to that of The-

Proof We show that Gp is 2-e.c. The idea of the proof is s
orem 3.3. Suppose S = {B), By} is a 2-set of blocks of D. Let x; € By \ By and

x5 € By \ By. Since we are dealing with simple designs, such x, and x exist.

If T = S, then do as in Theorem 3.3 to get a t-set containing X = {x),a2}.
As there are A blocks containing each t-set, choose one of them to be the block B
intersecting B, and By. The block B is distinct from By and By because it does
contain both x; and x5; however, By and B, each contain only one of them.

If T = {B,}, let X = {x;} and construct the set X, to be a t-set containing ;

and (t—1) more points from V\ (B;UB3) as in the proof of Theorem 3.3, and proceed

in a similar fashion. But, since A > 2, whenever the set X has been constructed,

there are A blocks containing X;. If at least one such block is disjoint from By, then
we are done. Otherwise continue to find a block B intersecting B; and disjoint from
B, after at most k iterations (the number of elements of By, because in each iteration
we ignore all A blocks containing X; and we do not meet them twice) which is finite.
Evidently B ¢ S for it does contain at least one (exactly ¢ — |X| = £ — 1 points which
is at least one) point of V'\ (B, U B,).

The case where 7 =  is similar to the same case in the proof of Theorem 3.3. W
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Theorem 3.9 Let D be an infinite t-(v,k,\) design with k finite, X > 2 and finite,

and 1<t <k—1. ThenZ(Gp) < (n—1) for any n such that (n — 1)t > k.

Proof We show that Gp is not n-e.c. for any n such that (n— 1)t > k. The argument

milar to the proof of Theorem 3.6, except that here every ¢ elements occur in more

than one block, and hence for the block By = X1 UXaU-+-U X,y U X,y we assume

that [X;| =t for 1 <i<n—2and|X,| =¢ where 1 < &' < t. Since A > 2

there are other blocks containing each set X;. Let 21, 2y..., 2« be arbitrary distinct

points in V' \ By. For 1 <i < (n—2) let By, be any block containing the t-set of
points X;, and B, be any block containing the -set X,y U {21,...,2-v}. Again,
any block intersecting B, intersects at least one of By for 1 <@ < (n—1).

It is possible that we get B; = By for some 2 < j,j' < n. In this case, because

ity less than n, say n, for which

of the block repetitions, we get a set S with cardi

int from the blocks in 8\ {B}. As a result,

there is no block intersecting By and disj

Gip is not n'-e.c. and hence is not n-e.c. as desired. W

Proposition 3.10 Let D be an infinite t-(v,k, \) design with k finite, A > 2, and

1<t <k-1. Then E(Gp) < min{t, [¥]}.

Proof It is a direct consequence of Theorems 3.5, and 3.9. W
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Now that we have an upper bound for the existential closure number, we will see

that when \ is finite, for such block intersection graphs Z(Gp) > 2for2 <t < k-1,
although when A > 2, the block intersection graph is not necessarily 3-e.c. The

consequence of Theorems 3.3 and 3.8, since (1 = 1) <

following corollary is a dir
(k=1).

Corollary 3.11 If D is an infinite t-(v,k, \) design with k and X finite and 2 < t <
k-1, then Z(Gp) > 2.

So, the block intersection graph of an infinite t-design with 2 < ¢ < k — 1 is
guaranteed to be 2-e.c. when k and A are finite regardless of the value of . We now

show that the property of being 3-e.c. does not share this ubiquity.

Proposition 8.12 Let D be an infinite t-(v,k,\) design with k finite, > 2, and

2<t<k—1. Then Gp is not necessarily 3-e.c and 2 < =(Gp) < min{t, [5]}.

consider

Proof It is sufficient to prove that Gip is not necessarily 3-c.c. To see this,
a design with the block B having a partition B = X; U Xy such that X, and X; are
nonempty. Now consider two possible blocks By = X, UY;, and By = X, UY; where
[¥;] = k — |Xi| for i = 1,2. This is possible because of the fact that since A > 2, then
intersection of every two blocks can have any number of points less than k. Now if

S = {B, By, By}, then there is no block intersecting B and disjoint from B, By, So



=
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Gp is not necessarily 3-e.c and by Corollary 3.11 and Proposition 3.10 we conclude

that 2 < Z(Gp) < minft, [4]}. @

For A > 2 we can show that there exist infinite f-designs with block intersection

graphs that are not 3-e.c., however min{t, [¥]} > 3 holds. According to [15], for each

finite ¢ and k such that ¢ < k, large sets of infinite Steiner systems exist. A large set

of Steiner systems is a partition of the k-subsets of the point set so that each partition

is a Steiner s)

As an example consider an infinite 3-(Ro,7,A) with A > 2. By the results of

‘Theorem 3.8 and Proposition 3.10, we already know that the block intersection graph
of such a design is 2-e.c. and is not 4-e.c., but we do not yet know whether it is

stems,

n = 3-e.c. or not. Consider a large set of infinite Steiner y L73, on a

countably infinite set V, for k = 7, and ¢ = 3. For A = 2, we construct an example

of an infinite design which is the union of two distinct Steiner systems D, D, of L3
whose block intersection graph is not 3-c.c. We let D be a Steiner system having
blocks B, B, such that B = {1,2,3,4,5,6,7} and BN By = {1} (note that r = v, so
there are infinitely many blocks having point 1 beside B). Also we let D, be a Steiner
system having block B, = {2,3,4,5,6,7,8} (since in a Steiner system A = 1, B and
B, cannot appear together in the same design and hence D # D). Now the union of

D and D, is an infinite 3-(Ro, 7, A) design with A = 2 whose block intersection graph
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is not 3-e.c. as there is no block intersecting B and disjoint from By and By.

More generally, suppose we would like to construct an infinite t-(v,k,A) de-

sign with A > 2, and min{t,[¥]} > 3 whose block intersection graph is not 3-

e.c. We consider a large set of infinite Steiner ems Ly, Let D € Ly, be

1Ty oo\ Tiey Ty Tegs oo, Tk}, and By =

a Steiner system having blocks B =
{1,420+ Yoot Yo Y- - U} Also let Dy € Ly be a Steiner system having block

Ce o Tyo1y gy Tygy -, Tk} (note that D # Dy). Now consider the union

of D, Dy, and A—2 more distinct Steiner systems of the large set other than D, D,. Of

course, this is an infinite {-design with index A, and since there is no block intersecting

B and disjoint from By and B, its block intersection graph is not 3-e.c.




Chapter 4

Block Intersection Graphs of
Infinite Designs Having Infinite

Block Size

4.1 Introduction

In this chapter, we consider the n-existential closure property of block intersection
graphs of infinite t-(v, k, A) designs with finite values of # and A and infinite block size.
In Chapter 3 we considered the case when the block size is finite; for such an infinite

design D it was shown that Z(Gp) = min{t, [} + 1} if A\ =1 and 2 <t <k, and

B

o
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2 < E(Gp) < minft, [£]}if A>2and2<t < k-1

Throughout this chapter we will be working in Zermelo-Fraenkel set theory with
the axiom of choice. The reader is referred to [30] for basic facts about set theory

and cardinal arithmetic. Also note that the block set of any 1-(v,k, 1) design is a

partition of its point set and hence the block intersection graph of the design must

have existential closure number 0 (since no two blocks share a point). Thus, in our

results throughout this chapter we will often assume that (#,A) # (1,1). The main

results of this chapter are as follows.

Theorem 4.1 Let v be an infinite cardinal and let t and X be positive integers such

sts a t-(v,v,))

that (t,\) # (1,1). Then, for cach non-negative integer n, there e

design D such that Z(Gp) = n. Furthermore, there exists a t-(v,v, A) design D' such

that Gp is n-e.

Jfor each non-negative integer n.

Theorem 4.2 Let v and k be infinite cardinals with k < v and let t and A be positive
integers such that (t, A) # (1,1). Then there exists at-(v,k, ) design D with =(Gp) =

n if and only if
en=twhen\=1ort=1;

e 2<n<twhentA>2.
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Furthermore, if D is a t-(v,k,A) design then =(Gp) = min{(,t}, where  is the

smallest cardinal such that there are { blocks of D whose union is a superset of another

block of D.

Theorem 4.1 is proved in Section 4.2, where we consider infinite t-(v, k, A) designs
with k = v. The case k < v is considered separately in Section 4.3, where we prove

Theorem 4.2.
The results of this chapter have been published in the Journal of Combinatorial

Designs [29]

4.2 When k=v

Our main goal in this section is to prove Theorem 4.1. In Lemma 4.5 we establish

istential

the existence of the required designs with block intersection graphs having e»

stablish

closure number n for some non-negative integer n, and in Lemma 4.6 we

the existence of the required designs with block intersection graphs which are n-e.c
for cach non-negative integer n. We will make use of the following well-known result

(for a proof see [20], for example).

Lemma 4.3 Let a be an infinite cardinal and let A be an a-set. Then, for each
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positive integer i, there are ezactly a i-subsets of A.

Corollary 4.4 Let a be an infinite cardinal and let A be an a-set. Then, for each

positive integeri, there are exactly a ordered pairs (X, Y) of disjoint subsets of A such

that | X| + |V = i. Also, there are exactly a ordered pairs (X,Y) of disjoint subsets

of A such that |X| + |Y| is finite.

Proof Let A be an a-set and, for each positive integer i, let P, be the set of ordered
pairs (X, Y) of disjoint subsets of A such that | X|+|Y| = i. Since, by Lemma 4.3, the
number of i-subsets of A is a for each positive integer 4, it follows that [P] = 2'a = a
for each positive integer i. Let P be the set of ordered pairs (X,Y") of disjoint subsets
of A such that |X| + [Y] is finite. Then P = (0,0) UU,cz+ P and it follows that

IPl=1+Na=a B

Lemma 4.5 Let v be an infinite cardinal and let t and X be positive integers such

that (t,) # (1,1). Then, for cach non-negative integer n, there evists a t-(v,v,\)

design D such that Z(Gp) = n.

Proof We will show that for a fixed non-negative integer n there exists a t-(v,v,A)
design whose block intersection graph is n-e.c. but not (n + 1)-e.c. Let V be a point

set with V| = v. Throughout this proof when we refer to a block this will imply that

it is a v-subset of V. By Lemma 4.3 there are v t-subsets of V and hence we can
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write the set of all t-subsets of V as {T\}aco, a family of sets indexed by the set of
ordinals less than v. Let By be a set of n.4 1 pairwise disjoint blocks such that there
are v points of V which are in no block in By. Let Uy = Upeg, B. Since [V \ Ug| = v

we can find v pairwise disjoint v-subsets of V' \ Up, {Sh}a<y say. For each a < v let

'\ (Upea Ts) and observe that [S,| = v for each a < v (note that, since v is

a cardinal, |a] < v and hence | Uy, T3] < tla] < v).

We claim that there is a transfinite sequence {Bq }a<y of sets of blocks such that,

for cach ordinal o < v, B, satisfies
(i) for each ordinal 8 < a, By C Ba;
(i) any two blocks in B, intersect in at most ¢ points;
Sp

(iii) no block of B, contains any of the points in 4., Sgi

(iv) each t-subset of V is a subset of at most A blocks of B, and, for each ordinal

< a, Ty is a subset of exactly A blocks of By

(v) for cach ordinal 8 < a and for any pair of disjoint sets (', ) such that X C By,

Y C By and |X| + Y] = n, there exists a block in By \ (¥ UY) which intersects

cach block in X and is disjoint from each block in Y;

(vi) each block in B, \ By intersects at least one block in By; and
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(vil) |Bal is finite if s finite and |B,] < |a if a is infinite.

Note that, for each ordinal a < v, |a| < v since v is a cardinal and hence (vii) implies

that |Ba| < v.

If such a sequence exists, then the structure D with point set V' and block set
Uy Bu is & -(v, v, A) design such that Z(Gp) = n. To see this, note that (ii) implies

that no block of D is a subset of another, that (iii) implies that for each block of D

there are v points of V not in that block and that (iv) implies that every t-subset of
V is a subset of exactly A blocks of D. Thus D is a t-(v,v,A) design. Furthermore,
(v) implies that the block intersection graph of D is n-e.c. and (vi) implies that it
is not (n + 1)-e.c., and hence Z(Gp) = n. Thus it only remains to show that the
sequence {B, }ac, exists. We will do so by transfinite induction.

Note that By satisfies (i)-(vii). Now we assume that, for some ordinal y with
1 < 4 < v, we have constructed a sequence {B, }acy such that By satisfies (i)-(vii)
for each ordinal o < v, and we will demonstrate how to construct a set of blocks B,

which satisfies (i)-(vii) for a

If 7 is a limit ordinal then let B, = J,., Ba. Using the fact that, for each ordinal

o<y
a < 7, B, satisfies (i)-(vii), it is routine to check that B, satisfies (i)-(vii) for a =y

(to see that (vii) holds, note that |B,| = sup{|Ba| : @ < 7}).

If 4 is a successor ordinal, then we construct 5, from B,_; in the following way.
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1. Add all the blocks of B,_; to B,.

2. Let P be the set of all the ordered pairs (X, Y) of disjoint subsets of 5,_; such
that [X] + [¥] = n. Note that [P| < v since |P| is finite if |B,-,] is finite and,
by Corollary 4.4, |P| = |B,_,| < vif |B,_,| is infinite. For each block B € By,
take |P|+ A distinet points of B each of which is in no other block of B, (these

s B in at

exist since [B| = v, |B,_y| < v and every other block in B,_; inters
most ¢ points) and place them in one-to-one correspondence with the elements
of PU{1,2,...,\}. Also, take |P| + A pairwise disjoint v-subsets of S, and

A}

place them in one-to-one correspondence with the elements of PU{1,2,...
For cach (X,Y) € P, where X = {X, Xy,..., X,} say, do the following.
o 1f ByN X # 0, then add to B, the block {ay,as,...,2,} U S, where z; is

the point of X; corresponding to (X, ¥) for each i € {1,2,...,5} and S is

the v-subset of S, corresponding to (X, )

o 1f By X = 0, then add to B, the block {1, 23,...,2,} U{z*} U S, where

2y is the point of X; corresponding to (X, Y) for cach i € {1,2,...,s},
i the point of some block in By \ Y corresponding to (X', ¥), and S is the

v-subset of S, corresponding to (X, Y).

Note that the block corresponding to the pair (', ) intersects cach block in X
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w0

in exactly one point and is disjoint from each block in Y, and that each block
added in this step intersects each other block in B, in at most one point. If

t > 2, then, for each t-subset T of V, the number of blocks in B, which are

supersets of T either remains the same through this step or increases from zero
toone. If t = 1, then A > 2 and, for each point x of V, the number of blocks in
B, which contain x either remains the same through this step, increases from

zero to one, or increases from one to two.

. Let a be the number of blocks already in B, which are supersets of T,_y. If

a =\ then do nothing. If @ < A then do the following.
o If Ty_y NUp # 0, then, for each i € {1,2,...,A — a}, add to B, the block
T,-1 U S where S is the v-subset of S, corresponding to i.

o If T,y NUp = 0, then, for each i € {1,2,..., A — a}, add to B, the block

sponding

T,-1 U {z*} US where 2* is the point of some block in By cor

to i and S is the v-subset of S, corresponding to i.

Note that each block added in this step intersects each other block in B, in

at most ¢ points. If ¢+ > 2 then, for each t-subset T of V other than T)_;,

the number of blocl

in B, which are supersets of T either remains the same

through this

tep or increases from zero to one. If t = 1 then, for each point x
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of V other than the point in 74—y, the number of blocks in B, which contain
a either remains the same through this step, increases from zero to one, or
increases from one to two. Furthermore, through this step the number of blocks

to A

in B, which are supersets of T%,_; either remains at A or inc

Using the fact that B,_, satisfies (i)-(vii) for @ = 5 — 1, it is routine to check from
the construction that B, satisfies (i)-(vii) for @ = 7 (to see that (vii) holds, note that
|B,| < [Byoa| + |P| + A, that |P| is finite if |B,-| is finite, and that |P| = By

infinite). Thus the required sequence {Bq}acy does indeed exist and the

if Byl i

proof is complete. W

Lemma 4.6 Let v be an infinite cardinal and let t and X be positive integers such that

(t,A) # (1,1). Then there

sts a t-(v,v, ) design whose block intersection graph is

n-e.c. for all non-negative integers n.

Proof We can construct such a design by following an argument similar to the argu-

ment in the proof of Lemma 4.5 with the following exceptions. Firstly, we let By = 0.
Secondly, for each ordinal a < v, B, should, rather than (i)-(vii), satisfy (i)-(iv), (vii)

and

int sets (X, V) such that X C By,

(') for each ordinal # < a and for any pair of dis

Y C By, and |X|+|Y| s finite, there exists a block in B, \(¥UY) which inte
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each block in X’ and is disjoint from each block in .

Thirdly, in order to construct B, from B,y when 7 is a successor ordinal, we replace

steps 2 and 3 with the following.

2. Let P be the set of all the ordered pairs (X, Y) of disjoint subsets of B,_; such
that [X] + [)] is finite. Note that |P| < v since |P| is finite if |B,_| is finite
and, by Corollary 4.4, |P| = |B,,| < v if |B,_y| is infinite. For each block
B € B,_,, take |P| distinct points of B cach of which is in no other block
of B,_, (these exist since |B| = v, |B,-1| < v and every other block in B, 1
intersects B in at most ¢ points) and place them in one-to-one correspondence
with the elements of P. Also, take ||+ A pairwise disjoint v-subsets of S, and

place them in one-to-one correspondence with the elements of PU{1,2,...,A}.

For each (X,) € P, where X = {X;, Xa,..., X} say, add to B, the block

{21,232, ..., 2,}US, where z; is the point of X; corresponding to (X, Y) for each

i€{1,2,...,5} and S is the v-subset of S, corresponding to (X, ¥).

3. Let a be the number of blocks already in B, which are supersets of T,y If
a = A then do nothing, If a < A then, for cach i € {1,2,...,A — a}, add to B,

the block T, U S where § is the v-subset of S, corresponding to i.
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Observe that when v = Ro, Lemma 4.6 implies that there exists a t-(Ro, N, )

design whose block intersection graph is the Rado graph (it is well known that the

Rado graph is the only graph on Ry vertices which is n-e.c. for all non-negative integers

n).

Proof of Theorem 4.1 This follows immediately from Lemmas 4.5 and 4.6. ®
Now that we have our main results of this section, we present examples of two

designs which are more naturally constructed than those constructed in the proof of

Lemma 4.5 and whose block intersection graphs have existential closure numbers 1

and 2, respectively.

Example 4.7 Let D, be the 2-(2%,2%,1) design whose point set is R?, and whose

block

et consists of all lines in R®. Then Z(Gp,)

inct from L inter-

Proof Clearly Gp, is 1-e.c. as, for each line L, there is a line d

secting L and there is a line distinct from L parallel to L. However, Gp, is not 2-e.c.

as for a set of two parallel lines, there is no line outside of the set intersecting one

and disjoint from the other. Thus Z(Gp,) = 1. W

Example 4.8 Let D, be the 2-(Rg, Ry, 1) design whose point set is Z*, and whose

block set is {LNZ? : L € L} where L is the set of all lines in R* which contain
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at least one point in Z* and which are either vertical or have rational slope. Then
E(Gp) =2

Proof We first show that Gp, is not 3-e.c. For each i € {1,2,3}, let L; be the line

{(i,y) : y € R} and let B; = L; N Z2. Any block of D, which intersects By and B,

ting By and B, and disjoint

also intersects By, and hence there is no block inters
from By. Thus Gp, is not 3-e.c

. Let By = LN Z? and B; = Ly N Z? be two

We now prove that Gip,
distinct blocks of Dy, where Ly, Ly € £. Without loss of generality it suffices to find

s By and By, a block of D,

a block of Dy distinet from By and B, which inters

distinct from By and By which intersccts B, and is disjoint from By, and a block of

D, distinct from By and By which is disjoint from both By and By. Let L' be a line
which passes through a point of (L; N Z?)\ Ly and a point of (Ly N Z?)\ L;. It can
be seen that L' N Z? is a block of D, which intersects B; and By. Let L” be a line
which passes through a point of (L; NZ?)\ Ly and a point of (Ly N Q) \ (Z*U L;)
It can be seen that L” NZ* is a block of Dy which intersects By and is disjoint from
By. Let L' be a line in £ which passes through a point (z,3) of (L1 N (Q\ Z))\ Ly
and a point of Ly \ (Z2U L) (if Ly is not vertical then the line through (z,y) and
([«],y") for a sufficiently large integer y* suffices, and if Ly is vertical then the line

through (z,y) and (z*, [y]) for a sufficiently large integer z* suffices). It can be seen
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that L N Z? is a block of D, which is disjoint from both By and By. B

We conclude this section with a result linking the existence of infinite 2-(v,v, 1)

designs whose block intersection graphs have existential closure number 0 to the

ence of infinite 2-(v,v, 1) designs whose block set can be partitioned into sets

such that each set is a partition of the point set. It is tempting to call infinite

designs with this latter propert able, but we refrain from doing so pending an

resol

investigation of whether this is in fact the best definition of resolvability for infinite

designs in general. We first require the following lemma.

Lemma 4.9 Let v be an infinite cardinal, let t be an integer such that t > 2, and let

D be a t-(v,0,1) design. Suppose that there is a partition of the block set of D into
sets such that each set is a partition of the point set. Then there are v sets in the

partition and there are v blocks in cach set.

Proof Let « be a point of D. By Corollary 3.1 of [20], @ is contained in exactly v
blocks of D and hence, since each set of the partition contains exactly one block which
contains x, there must be v sets in the partition. Now suppose for a contradiction
that one set C of the partition contains fewer than v blocks. Since D is a t-design

with A = 1, a block of D not in € can intersect each block in C in at most £ —1 point

and hence must contain fewer than v points. This is a contradiction. W
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Theorem 4.10 Let v be an infinite cardinal. Then there ezists a 2-(v,v,1) design D
with Z(Gp) = 0 if and only if there exists a 2-(v,v, 1) design whose block set can be

partitioned into sets such that each set is a partition of the point set.

Proof Suppose that D is a 2-(v, v, 1) design with Z(Gp) = 0. Let V' be the point set

of D and let B be the block set of D. Clearly, for each block B in B there is another
block in B which intersects B. So, since Z(Gp) = 0, there must exist a block B* in
B such that every other block in B intersects B*.

For cach x € B, let B, be the set of blocks in B\ {B"} which contain z. By

Corollary 3.1 of [20] each point in V occurs in v blocks in B and hence |B,| = v for
cach x € B*. Since D is a 2-design with A = 1, P, = {B\ B* : B € B,} is a partition
of V\B* for each @ € B, and {P, : z € B*} is a partition of {B\ B* : B € B\{B'}}

Let D’ be the structure with point set V\ B and block set {B\B* : B € B\{B*}}.
1t is casy to confirm that D’ is a 2-(v, v, 1) design and we have seen that {P, : z € B'}
is a partition of its block set into sets such that each set is a partition of the point
set

In the other direction, suppose that there exists a 2-(v,v,1) design whose block
set can be partitioned into sets such that each set is a partition of the point set
In view of the result of Lemma 4.9 it can be seen that the procedure above can be

reversed to obtain a 2-(v,v,1) design whose block intersection graph has existential
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closure number 0. W

It is easy to see that the block sets of the designs given in Examples 4.7 and 4.8 can
be partitioned into sets such that each set is a partition of the point set (in Example
4.7 partition the lines according to their slope, and in Example 4.8 partition the
blocks according to the slope of their corresponding line). Thus the construction in
the proof of Theorem 4.10 can be applied to Examples 4.7 and 4.8 to obtain examples
of a 2-(2%, 2% 1) design and a 2-(Rg,Rg, 1) design whose block intersection graphs

have existential closure number 0.

4.3 When k <wv

In this section we will prove Theorem 4.2. We start with a lemma which will prove

useful throughout the section.

Lemma 4.11 Let v and k be infinite cardinals with k < v, let t and X be positive
integers, and let D be a t-(v, k, \) design. Let S and S' be disjoint subsets of the point

set of D such that |S| < t — 1 and |S'| < v. Then there is a block of D which is a

superset of S and which is disjoint from S'.

Proof Since |S] < £ — 1 and |S'| < v, it is easy to see that there is a set ST of points

1. Let X be the set of all blocks of

of D such that § € S, StNS" = and |81 =
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D which are supersets of St and let Y be the set of all blocks of D which are supersets

of St and contain at least one point in §". It suffices to show that [Y] < |X].

Clearly there are exactly v t-sets of points of D which are supersets of S'. Thus,

ts of these s are those in X, since

since the only blocks of D which can be supers

sets, and since

by Lemma 4.3 a block of D can be a superset of at most k of thes

each of these t-sets is a subset of exactly A blocks of D, it follows that k|X| > Av and

hence that |X] > v (to be more precise, |X] = v since D has v block

Clearly there are |S'| t-subsets of the point st of D that are supersets of St and
also contain a point of . Thus, since each block in Y is a superset of at least one

of these t-sets and since each of these ¢-sets is a subset of exactly A blocks of D, it

follows that [¥] < AJS'| < v. So [¥] < || and the lemma holds. W

= 0. We will also

We will often make use of the special case of Lemma 4.11 where

make use of the following lemma which is an easy consequence of Lemma 4.11.

Lemma 4.12 Let v and k be infinite cardinals with k < v, let t and X be positive

integers, and let D be a t-(v,k, \) design. Then, for cach positive integer n, D has n

pairwise disjoint blocks.

Proof We proceed by induction on n. The result is trivial for n = 1. If D has m

joint blocks By, By, .., By, for some positive integer m then, by applying

pairwise d
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Lemma 4.11 with § = § and §' = By U ByU---U B,y we can find a block By of D

which is disjoint from By UByU-+-U By,. Then By, By, ..., By are m+ 1 pairwise

disjoint blocks of D. W

We now give a characterisation of the existential closure number of the block

intersection graph of an infinite design with k infinite and k < v.

Lemma 4.13 Let v and k be infinite cardinals with k < v, let t and X be positive

integers such that (t,\) # (1,1), and let D be a t-(v,k,\) design. Then Z(Gp) =
min{l, t} where € is the smallest cardinal such that there are € blocks of D whose

union is a superset of another block of D.

Proof Let m = min{(,t}. We first show that Gp is m-e.c. Let A and A’ be two
disjoint sets of blocks of D such that [A] + [A'| = m. It suffices to find a block of D

not in AU A’ that inters

s each block in A and is disjoint from each block in A'.

If A = 0, then |A| = m and we can find a block of D disjoint from cach block in
A by applying Lemma 4.1 with § = 0 and §' = e B (note that |S'| < mk < v).
If A" = 0, then [ A] = m and if we take a t-set T' of points of D which intersects each
block in A (one exists since m < t) then there is a block B of D that is a superset of T
and hence intersets each block in A. Thus we can assume that 1 < JA], |4 < m~1.

Let U' = Upe B and note that [U'] = k < v. Since no block of D is a subset of
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the union of at most m — 1 others, every block in A contains a point which is not
in U, Thus, since |A| < m —1 < t— 1, it follows that there is a set U of at most
t — 1 points of D that intersects each block in A and is disjoint from U’. By applying
Lemma 4.11 with S = U and " = U’, we can find a block of D which intersects each

block in A and is disjoint from each block in A’.

Now we show that Gp is not (m+1)-e.c. If m = € then let B*, By, ..., B¢ be blocks
of D such that B* C ByUB,U---U B. Clearly there is no block of D that intersects
B* and is disjoint from cach block in {By, By, ..., B¢} and hence Gp is not ((+1)-e.c.

1}

Thus we can assume that m = t. By Lemma 4.12 there exists a set {B), By, .

of t pairwise-disjoint blocks of D. Let C be the set of all blocks of D that intersect

cach block in {By, By,..., B;}. By Lemma 4.3 there are |B; U By U---U B = k
t-subsets of B;UB,U---U B,. Thus, since each block in C is a superset of at least one
of these t-sets and since each of these t-sets is a subset of exactly A blocks of D, it can

be seen that |C| < Mk = k. By applying Lemma 4.11 with S = 0 and ' = Uy B

it from

(note that |S'| < |Clk < k < v), we can find a block B! of D, that is disj
Usee B- By the definition of C there is no block of D that intersects each block in

{B1,By,..., By, B'} and hence Gp is not (t +1)-c.c. ®

Corollary 4.14 Let v and k be infinite cardinals with k < v, let t be an integer such

that t > 2, and let D be a t-(v,k,1) design. Then =(Gp) = t.
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Proof Since D is a t-design with A = 1, the intersection of any two blocks of D has

size at most ¢ — 1 and hence there cannot be finitely many blocks of D whose union

is a superset of another block of D. The result now follows from Lemma 4.13. B

Corollary 4.15 Let v and k be infinite cardinals with k < v, let t and X be positive

integers such that A > 2, and let D be a t-(v,k,\) design. Ift =1 ther

Gp) =1,

and if t > 2 then 2 < (Gp) < t.

Proof By the definition of an infinite design, no block of D is a superset of another

block of D. The result now follows by Lemma 4.13. B

Lemma 4.13 and Corollaries 4.14 and 4.15 establish the non-existence results of

Theorem 4.2. It only remains to establish the existence results.

Lemma 4.16 Let v and k be infinite cardinals with k < v, let t and X be positive

integers such that t,\ > 2. Then, for each { € {2,3,...,}, there s a t-(v, k,\)

design such that € is the smallest cardinal for which there are € blocks of D whose

union is a superset of another block of D.

Proof We will show that for a fixed ¢ € {2,3,...,¢} there exists a t-(v, k, \) design
D such that ¢ is the smallest cardinal for which there are ¢ blocks of D whose union is

a superset of another block of D. Let V' be a point set with |V'| = v. Throughout this
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proof when we refer to a block this will imply that it is a k-subset of V. By Lemma
4.3 there are v t-subsets of V and hence we can write the set of all t-subsets of V' as
{Ta}aco-

Let By = {B*, By, B, .., By} be aset of blocks such that B* C ByUByU---UB;,
|B* N Bi| = k for each i € {1,2,...,¢}, |Bi\ B*| = |B*\ Bi| = k for each i €
{1,2,...,0}, and BN Bj = 0 for all i,j € {1,2,...,6} with i # j. It is casy to
construct such a set of blocks.

We claim that there is a transfinite sequence {Bq }a<y 0f sets of blocks such that,

for cach ordinal < v, B, satisfies
(i) for each ordinal 8 < a, By C Ba;

(ii) any two blocks in BB, intersect in at most ¢ points unless one is B* and the other

is in {By, By, Bk

(iii) each t-subset of V' is a subset of at most A blocks of B, and, for each ordinal

f < a, Ty is a subset of exactly A blacks of By;
(iv) |Ba| is finite if a is finite and |By| < [af if o is infinite

Note that, for each ordinal a < v, |a] < v since v is a cardinal and hence (iv) implies

that |Ba| < v.
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If such a sequence exists, then the structure D with point set V' and block set

Uses Bu i a t=(v, k, A) design such that  is the smallest cardinal for which there are
€ blocks of D whose union is a superset of another block of D. To see this, note that

(i) together with the definition of By implies that no block of D is a subset of another,

that for each block of D there are v points of V' not in that block since v —k = v, and

t of V is a subset of exactly A blocks of D. Thus

that (iii) implies that every t-subs

Dis a t-(v, k, A) design. Furthermore, B* C By U By U+ U By and (ii) together with
the definition of By implies that no block of D is a subset of the union of £ — 1 others
(note that (ii) implies that only a block in By could possibly be a subset of £ — 1
others and by (ii) and the definition of By this is not the case). Thus £ is the smallest
cardinal for which there are ¢ blocks of D whose union is a superset of another block
of D. So it only remains to show that the sequence {Ba }a<, exists. We will do so by
transfinite induction.

Note that By

isfies (i)-(iv) (to see that (iii) holds recall that A > 2). Now
we assume that, for some ordinal 7 with 1 <+ < v, we have constructed a sequence
{Ba}a<y such that B, satisfies (i)-(iv) for each ordinal @ < 7, and we will demonstrate
how to construct a st of blocks B, which satisfies (i)-(iv) for o = 7.

B,. Using the fact that, for each ordinal

If 7 is a limit ordinal then let B, = U, .,

a < 7, B, satisfies (i)-(iv), it is routine to check that B, satisfies (i)-(iv) for o
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(to see that (iv) holds, note that |B,| = sup{|Ba| : @ < 7}).

If 4 is a successor ordinal, then we construct B, from B, in the following way.
Let a be the number of blocks in B,_; which are supersets of 7,_y. If @ = A, then let
B, =B, . I a<\ then form B, by adding to B, the blocks T, U 8y, Ty U

Sy, Ty_y U Sy_, where Sy, S,..., Sy, are pairwise disjoint k-subsets of V' such

that no point of S U S, U

U Sy—q is in a block of B,_; (note that such sets must
exist since at most k|B,_,| points of V are contained in the union of the blocks in
B,y and v — kB, ;| = v by (iv)). Note that cach of these blocks interscets cach

other block in B, in at most ¢ points. For each t-subset 7' of V' other than T)_y, the

number of blocks in B, which are supersets of T either remains the same through this

process or increases from zero to one. Furthermore, through this process the number

of blocks in B, which are supersets of T, either remains at A or increases to A.

outine to check from the

Using the fact that B,_; satisfies (i)-(iv) for a =y =1, it

construction that B, satisfies (i)-(iv) for a = 7. Thus the required sequence {Ba }acy

does indeed exist and the proof is complete. B

Proof of Theorem 4.2 Firstly, by Lemma 4.13, if D is a t-(v,k, A) design then
=(Gp) = min{(, t}, where ( is the smallest cardinal for which there are ¢ blocks of
D whose union is a superset of another block of D. By Corollaries 4.14 and 4.15,

if there exists a t-(v,k, \) design D with Z(Gp) = n, then n = ¢ when A = 1 or
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t=1,and 2 <n <twhentA>2 Ift=1thenitise to see that there exists

at(

k,A) design and if A = 1 then there exists a {-(v, k, A) design by Proposition

7.1 of [20]. From what we have already proved, such designs necessarily have block

intersection graphs with existential closure number ¢. If ¢, A > 2, then, by Lemma

416 (and by what we have already proved), for each n € {2,3,...,} there exists

(v, k, ) design whose block intersection graph has existential closure number n. W



Chapter 5

Conclusion and Future Work

In this thesis, we have studied the n-existential closure property of graphs by present-

ing the background in Chapter 1 and our contributions in Chapters 2, 3 and 4. We

mainly have produced new families of 3-c.c. graphs using a binary graph operation
and studied the existential closure property of block intersection graphs of infinite

designs. In this chapter we present some open problems that we have encountered

: and which may provide directions for future research,

80
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5.1 Graph Operations

In Chapter 2 we studied producing n-e.c. graphs using binary graph operations
whereby we constructed new families of 3-e.c. graphs using the modular graph prod-
uct. Although this graph operation was studied briefly before, the advantage of our
approach is that only one of the graphs in the operation needs to be 3-e.c. Here we

present some problems that need further investigations.

Problem 5.1 Other than graph complementation, no graph operation has yet been

found that preserves the n-c.c. property forn > 4. Find an n-e.c. preserving (binary)

operation for n = 4 and then for higher values of n

Problem 5.2 Produce n-c.c. graphs using graph operations such that none of the

graphs in the operation needs to be n

5.2  Minimum Orders

As was mentioned in Chapter 1, almost all graphs are n-e.c. by Theorem 1.3. This

theorem implies that there are many examples of n-c.c. graphs on large graph order

Also, most of the n-e.c. graphs known to date are of large orders. This motivates

research on finding n-e.c. graphs on small orders.
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Problem 5.3 It is known that 24 < m,(3) < 28. Find m.(3).

Problem 5.4 Improve the upper bound on m.(n) for n > 4. Find my.(n) or bounds

on it forn =4 and then for n > 5.

5.3 Block Intersection Graphs of Designs

In Chapters 3 and 4 we studied the n-existential closure property of block intersection

graphs of infinite designs. Some open rescarch arcas are as follows.

Problem 5.5 Conduct research on infinite designs with the property that their block

set can be partitioned into sets such that each set is a partition of the point set. Is

an approp Jor such design

Problem 5.6 In our investigations, we noticed that there is a lack of examples of
simple infinite t-(v,k, ) designs with k, X finite such that A > 2. Find explicit ezam-

ples of such designs.

Problem 5.7 Investigate the n-czistential closure property of block intersection graphs
of infinite designs with t or X infinite.

Problem 5.8 Investigate other properties of the infinite graphs which are the block

intersection graphs of infinite designs.
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