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Abstract

In today’s wireless networks, diversity is regarded as an efficient and established
means to combat multipath fading. Moreover, user cooperation has emerged lately as an
clegant technique to achieve spatial diversity over wireless channels, where the
installation of multiple antennas on handheld, battery-powered, mobile terminals is often
impractical. Recently, the application of network coding in cooperative wireless networks
has gained increasing interest with its potential to further boost the network performance,
such as in terms of the achievable throughput. With network coding, the relaying nodes
are allowed to linearly combine packets from multiple source nodes, and then forward the

combined packets for better resource utilization.

Ifuseni based network-coded

We propose mutual user pairing in
cooperative wireless networkto realize network coding, in the absence of dedicated relay
nodes. We propose an optimal user pairing algorithm, and tailor it to maximize the
network capacity. Next, we develop heuristic pairing algorithms which approach the

optimal performance at a reduced analysis is in terms

of the average capacity per user, average outage probability per user, and user-fairness.

For energy i twork-coded coop networks, we

address the problem of ission power minimization. A joint optimization problem is

formulated and solved to find the pairing which maximizes the network capacity, and
minimizes the transmission power, such that certain performance constraints in terms of

the average capacity per user or average outage probability per user are satisfied.
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Chapter 1

Introduction

In modern wireless communication networks, there is a consistently growing
demand for higher data rates, improved service quality, better coverage area, and shorter
processing times. The impediments to achieving these goals are primarily the limited
available channel bandwidth and the dynamic nature of the wireless channels. In addition,
wireless channels are unpredictable, owing to the effects of small and large scale fading
[1]. The small scale fading, usually simply termed as fading is often the most detrimental.
In a wireless medium, multiple copies of the transmitted signal, resulting from the
random scattering of the electromagnetic wave from the surrounding objects arrive at the
receiver. These copies arrive at the receiver having undergone different channels, and
thus arrive with different gains, phase shifts, and delays. The multiple copies interfere at
the receiver and can add in a constructive or destructive fashion, which results in the
amplification or the attenuation of the received signal. In case of attenuation, the signal is
said to have undergone fading. This may result in the unsuccessful reception of the
transmitted signal, as the receiver may not be able to distinguish the received signal from

thermal noise [2]-[3].




1.1 Diversity in Wireless Networks

In wireless communication systems, diversity is regarded as an efficient and
established means to combat the small scale fading. It is the technique by which multiple
copies of the transmitted signal can be received over independently faded channels at the
receiver and combined. In case one or more copies of the signal are affected by severe
fading, the receiver can still detect the signal from the other copies. The term diversity
gain is used to quantify the number of independently faded copies of the transmitted
signal at the receiver. In practice, independent channels can be achieved primarily in three
physical domains: time, frequency, and space. Diversity could also be achieved in other
forms such as space-time diversity and cooperative diversity [4].

Time diversity could be achieved by transmitting the same signal multiple times,
in different time slots. These time slots should be separated at least by the coherence time
of the channel such that it is made sure that the channels at these time slots are
independent. The drawback of time diversity is the decreased data rate and increased
latency. Frequency diversity can be achieved by transmitting multiple copies of the same
signal in different frequency bands. The frequency separation should be enough to
guarantee channel independence. However, more spectrum is required to achieve
frequency diversity. Finally, space diversity is achieved by sending and/or receiving the
signal over multiple antennas, separated well enough, such that the channels are
independent. Spatial diversity on the other hand neither causes increased latency, nor
decreases the bandwidth efficiency, and therefore has attracted extensive interest from

industry and research community in recent years. Communication systems employing




multiple transmit and/or receive antennas are called Multiple-Input Multiple-Output
(MIMO) systems. It is important to situate the multiple transmit and/or receive antennas
sufficiently far apart (usually more than half a wavelength) such that the fading over the

channels between any pair of transmit and receive antennas is statistically independent.

Although the gains associated with the use of multiple antennas in MIMO systems,

such as improved channel capacity, higher better error per , and
energy efficiency, are very well established, there are certain limitations associated with
their practical deployment. For instance, installing multiple antennas can often be
impractical owing to the additional resource overhead, such as in terms of space for
installing multiple antennas, or power. This is particularly true for mobile terminals, and
these limitations on the installation of multiple antennas make the achievement of
transmit diversity (from the end-user’s perspective) impractical.

To overcome these drawbacks, distributed nodes in a wireless network can
cooperate and intelligently share their antennas to form the so-called virtual antenna
arrays. This form of user cooperation has emerged lately as an elegant technique to
achieve spatial diversity over wireless channels, such as in the form of cooperative
diversity, which exploits the broadcasting nature of the wireless medium [5]. The notion
itself stems from the classical relaying model with intelligent antenna sharing and signal
combining at the receiver to realize spatial diversity. In cooperative transmission, users
can utilize their time, frequency, and/or other resources to share their antennas to form
virtual antenna arrays and emulate the operation of a MIMO system. Besides retaining the

benefits innate toMIMO systems, cooperative diversity brings about few more, such as




Fig.1.1.A typical cooperative wireless network.

improved energy efficiency, and has been widely shown to achieve remarkable

performance gains in wireless networks [4], [6].

1.2 Overview of Cooperative Transmission Protocols

Fig. 1.1 shows a typical cooperative transmission network which consists of a
source node (S) transmitting to a destination node (D) with the assistance of a relay node
(R). The cooperative transmission consists of two phases. During the first phase, the
source node transmits its message to the destination (D). Due to the broadcasting nature
of the wireless medium, this message is overheard at the relay node (R). In the second
phase, the relay node then forwards the overheard packet (after necessary processing) to

the ination over an channel. The destination then bines the two copies

of the same packet received from the source and the relay over the two phases using any

of the bini i such as i Ratio Combining (MRC), Equal-Gain




Combining (EGC), or Selection Combining (SC). This way, spatial diversity is achieved,

as the two copies of the same packet are received over potentially uncorrelated channels.

The protocols for cooperative transmission can be broadly categorized on the basis

of a number of options. These could be the relaying strategy, relaying behaviour in case

of a decoding failure, and the type of coding employed in the second phase. For instance,

some of the common relaying strategies are [4]:

Amplify-and-Forward: In this type of relaying strategy, the relay node simply
amplifies the received message from the source and forwards it to the destination.
Amplify-and-Forward achieves the full diversity gain. However, the disadvantage
of this protocol is that the forwarded message is a noisy version of the original

message, as the noise added at the relay node is also amplified.

Decode-and-Forward: With Decode-and-Forward relaying, the relay node first
decodes the message received from the source, re-encodes it, and forwards the
source message to the destination. Decode-and-Forward performs better in case of
good source-relay channels, i.e., when the outage probability over the source-relay
link is low, whereas Amplify-and-Forward performs better when the source-relay
channels are of poor quality.

Compress-and-Forward: Tn this protocol, the relaying node digitizes and
compresses the message received from the source in order to decrease the
redundancy. The compressed message is then re-encoded and forwarded to the

destination. The destination then combines the packets from the source and relay.




Some other relaying strategies include d-forward and quanti: d-

forward. Moreover, the relaying protocols can also be static and adaptive[4]. In static
protocols the relay node would always forward the source’s packet, irrespective of
whether it was received successfully or not. On the other hand, protocols could also be
adaptive, such that the relay forwards the source’s message only if it decoded the message

correctly to avoid error propagation.

1.3Introduction to Network Coding

Network coding was first introduced in [7] for wireline networks. The central
notion behind network coding is to allow the network nodes to combine the information
packets from multiple sources before transmission, instead of simply relaying/forwarding
them as in classical routing. In effect, the intermediate nodes in the network between the
source and destination (such as relays and routers) can perform coding of the packets to
achieve the multicast capacity of the network graph. This is demonstrated in Fig. 1.2
which shows a classic “butterfly” network. It is assumed that the source S wants to
multicast two bits @ and b to two sinks D1 and D2 simultaneously, with each link having
a capacity of 1 bps. With traditional routing, each of the intermediate nodes will simply
forward a copy of the packet they receive. The shaded node can forward @ or b. This will
make it impossible to achieve the multicast capacity of 2 bps. However, with network
coding, the intermediate relay node (which is shaded) can perform coding, which is a bit-
wise XOR operation, on a and b and multicast over the two outgoing links. This way, D1
receives a and a + b, and can recover b as b = a+ (a+b). In the same manner, D2receives

b and a + b and can hence recover a. Both D1 and D2 therefore receive at 2 bps,
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Fig.1.2. Butterfly network [1].

and thus achieve the multicast capacity.

The utility of network coding in multicast wireline networks was first
demonstrated in [1]. Ever since, itis extended to various wireless applications [1]. In fact,
wireless packet networks tend to be naturally suited for network coding owing to the
special characteristics of the wireless links, such as theirbroadcasting nature and
unreliability,for which network coding itself is a natural solution. Moreover, combined
with the fact that protocol design for wireless communication is much more flexible than
for the wireline case, network coding seems an ideal means to achieve remarkable
performance gains in wireless networks.

Owing to the simplicity and the potential of network coding, the wireless

research ity has expended signi interest and effort to utilize

it in a variety of applications in wireless networks. These range from opportunistic
routing in mesh networks to distributed storage in sensor networks [8]. Network coding

for wireless networks isessentially a coding strategy for the decode-and-forward



Fig.1.3. Two sources S1 and S2 communicating with the help of relay node R.

cooperative transmission protocol. With network coding, the relay node, after
decoding, is allowed to perform further processing of the source’s packet before
forwarding it to the destination. The application of network coding in cooperative
wireless networks has recently gained increasing interest[9], with its potential to
significantly boost the network throughput and performance. A typical example of
network coding in wireless networks is depicted in Fig. 1.3. The network consists of two
sources S1 and S2swapping their packets with the help of the relay node R,over
orthogonal channels. Assuming Time Division Multiple Access (TDMA), S1 transmits its
packet first, followed by S2in the first phase. Meanwhile, the relay node R overhears both
these transmissions, and combines the two packets, for instance using the bit-wise XOR
operation, and then broadcasts the combined packet in the second phase which helps both
source nodes S1 and S2 to achieve diversity gain.

Another network coding scenario is presented in Fig. 1.4, where the network
consists of two sources S1 and S2, transmitting to a common destination (D) with the help
of the relay node (R). The sources S1 and S2 send their respective information packets to

the destination node (D) over orthogonal channels during the first phase. These packets




Fig. 1.4. A typical wireless network with two sources transmitting to a common
destination with the assistance of a common relay node.

are also overheard at the relay node (R). The relay decodes the two information packets,
and can subsequently combine the two packets, for instance using the bit-wise XOR
operation. It then forwards the combined packet in the second phase which helps both
sources S1 and S2 to achieve diversity gain. Assuming TDMA, a total of three
time slots are required with network coding, whereas in case of traditional routing, the
number of required time slots are four to achieve a diversity order of two for both nodes.
This directly results in a 25 percent throughput improvement.

The application of network coding to wireless networks promises to change many
aspects of networking. In effect, network coding deviates from the classical networking
approach where wireless networks are treated as physical means of data transportation,
allowing for data manipulation within the network. The application of network coding in
wireless networks has been studied in a variety of settings, including the cases of (a) two

sources transmitting to a common destination[10]-[13], as is depicted in Fig.1.4. This case




is an important building block for ifestations of wireless

such as the infrastructure-based cellular networks,

(b) multi-cast [14]-[15], where network coding is employed at the intermediary nodes in

the network to improve the for i ion di ination, and

(c) for two-way relay channels [16]-[19], for instance in ad hoc networks, where the
intermediary nodes in the network serve as relays by forwarding the network coded

packets for the source-destination pairs.

1.4 Relay Selection in Cooperative Wireless Networks

The design criterion which greatly impacts the performance of cooperative
networks, both without and with networkcoding is the proper relay selection [16]. As user
cooperation and intelligent relay selection can significantly boost the network throughput
with antenna sharing, an improperly selected relay can however deteriorate the system

performance.

1.4.1 Literature Review of Relay Selection Schemes in Cooperative Networks

Directed by the significance of relay selection in cooperative networks, the
problem of relay selection/assignment is receiving extensive interest from the research
community. The array of proposed solutions fall mainly into two categories:
infrastructure-oriented protocols which usually comprise of optimal solutions (often

based on exhaustive searches), and b-optimal i i iented




heuristicsolutions. In this section, we survey some of the most conspicuous and
representative publications in this area from the literature.

The authors in [20] address the issue of joint optimization of relay selection and
power allocation to maximize the average network capacity. They first propose an
optimal solution for the joint optimization problem. However, to alleviate thecomplexity,
they separate the joint optimization problem into the sub-problem of single best relay
selection with uniform power distribution between the source and relay nodes, and then
optimal power allocation for the chosen source-relay pair. A so called “semi-distributed”
algorithm is then proposed for a network environment with multiple source-destination
pairs where each relay node individually decides on its suitability to act as a relay, and the
final decision is made by the central entity. It has been shown that the sub-optimal

can provide performance

algorithm with reduced
to that of the optimal scheme, which is based on exhaustive search. The authors consider
the system model as shown in Fig. 1.5 [20].

The network consists of multiple source and dedicated relay nodes, and a single
destination node. The relays are assumed to operate in the Amplify-and-Forward mode.
For finding the optimal solution for a single source, the set of feasible relay nodes (i.c.,
the ones which can provide better capacity performance than direct transmission) are
searched for, and the one which maximizes (1.1) is selected as relay,

hy [Pl ygl® SNR
i=arg max by FUkal” SNR_ s (1.1)
ol | (g |+ hyql) SNR+1
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Fig.1.5. System model of a wireless network [20].

where SNR is the Signal-to-Noise ratio at the itter, i, and h, are the channel

coefficients from the source to relay j,and relay j to destination respectively, and N, is
the number of relays. The channel coefficients integrate the multipath fading and the
propagation path-loss. If none of the potential relay nodes offer an increased capacity
over direct transmission, i.e., if the set of feasible relay nodesisempty, thesource node
goes with direct transmission. The authors then find an optimal solution for power
allocation to further improve the performance after relay selection.

Following this optimal solution, the authors propose a semi-distributed relay
selection scheme for a network environment which comprises multiple source and relay
nodes, under the assumption of equal power allocation between a pair of source and relay.
The algorithm is divided into two steps:feasible set generation, and relay node allocation.

In the first phase, the nodes transmit hand-shaking packets before actual data transmission




to allow the relay nodes to estimate the channel gains from the source and destination

nodes. All relay nodes can hence decide on their feasibility (this happens in a distributed

fashion), and report their respective indices to the ination. The ination can then
perform the relay node allocation from the feasible set by randomly picking a relay node
and assigning it to one of the source nodes. Thissub-optimal scheme with

i i PR e
P!

The authors of [21] propose the so-called Optimal Relay Assignment (ORA)
algorithm for a network environment with multiple source and relay nodes. The objective

is to maximize the minimum capacity among the pairs of source and destination nodes.

The notable features of this algorithm are (i) guarantee of optimality, (i) p ial time
complexity, and (iii) final capacity of every source-destination pair is more than that
achievable with direct transmission. In the proposed scheme, a source-destination pair is
assigned at most one relay, and a single relay node can assist at most one source-
destination pair. After an initial “random” relay node assignment, the solution is adjusted
in each iteration to achieve a greater value of the objective function (the minimum
capacity among all source-destination pairs). In particular, the source node with the
lowest capacity is identified and a better relay node for it is searched. However, in case
the “better” relay is pre-assigned to some other source, another relay for that other source
node is searched for, and so on. Hence within a single iteration, there are two possibilities:
(i) a better solution (i.e., a higher value of the objective function) is found, and the
algorithm moves on to the next iteration, or (i) a better solution could not be found, and
the algorithm terminates. The algorithm is shown to run in a polynomial time; also, it is

argued that in case of a non-optimal solution, the algorithm would keep on iterating, and

13




would terminate only in case the assignment solution is optimal. The optimality of the
algorithm is also formally proven.

In [22], the authors consider relay selection in a multiple-access network with a
single base station to extend the coverage area using cooperation. The authors derive the
optimal relay locations based on two cases, i.c., if the destination uses packets from the
relay as well as the source MRC for detection, or only the packet from the relay node. In
the former case, the optimal (normalized, wr.t. to the distance between source and
destination) relay location (along the line joining the source and destination) from the
destination is shown to be

x= % s (12)

1+0.5V7"

where pis the path loss exponent. In case p>2, an interesting observation is that the
optimal relay location is closer to the source node. In the case of no-MRC at the receiver,
the optimal relay position is shown to be at the mid-point between the source and
destination along the line joining the source and destination. The authors then propose a
simple distributed algorithm — nearest neighbour routing, in which the relay nearest to the
source node can be selected as the helper. Though far from optimal, it is very easy to

implement in a distributed fashion.

1.4.2 Literature Review of Relay Selection Schemes in Cooperative Networks
employing Network Coding

Network coding has recently been studied extensively for cooperative wireless

networks as the combining of data at intermediate relay nodes can further improve the




Fig.1.6. A cooperative network with n communication pairs and m relays [23]-[24]

network as well as In parti the two-way relay channel model

has received the most interest as it could be regarded as the basic building module of
many wireless networks. Relay selection in network coding environments is particularly
interesting as more than one source nodes have to be involved in the relay selection

process justone i i ive networks. In this section, some of

the most representative schemes from the literature addressing relay selection/assignment
in cooperative networks with network coding are surveyed.

In [23] the authors consider the system model as shown in Fig. 1.6.The number of
relay nodes is assumed to be greater or equal to the number of communicating pairs, and
the direct link between the pairs is ignored. Moreover, only asingle relay is assigned to
every pair. For ease of comprehension, it is assumedthat one of the nodes in the
communicating pair is the Source (S) and the other one is the destination (D). In the first

timeslot, the node S transmits its packet which is received and decoded at the selected

15



relay. Similarly, in the second timeslot, node D transmits its packet and it is received and
decoded at the relay node. The relay then XORs the two packets and broadcasts the
network coded packet which is then heard by both S and D (thereby saving one timeslot
compared with traditional relaying using TDMA for instance). The authors then propose
an optimal and a sub-optimal scheme for best-relay selection. They consider the channel
coefficients over the two links, i.e., the source-relay and relay-destination, and assume
that the weaker of the two coefficients will dominate the end-to-end performance. The
proposed optimal relay assignment criterion is such that the minimum channel coefficient
over the two links is maximized. For the optimal solution, all possible assignment
permutations are considered (which are P /N, , where P represents permutations, in

case of N, relays and m pairs). If © denotes the set consisting of all possible

permutations, the index of the optimal assignment, k", is given by

k' =arg m“k,Tav’,‘,:,‘h‘zhm-m (1.3)
where | hl, ., is the weakest lay or relay-destination sub-channel. The authors
then propose a sub-optimal scheme by iting the ion within the elements of

set®. The set © is partitioned into B /N,, smaller subsets. The subsets containing
correlated elements are not searched for, hence reducing the number of permutations over
which the search is run.

In [17], the authors propose analog network coding using differential modulation
over two-way relay channels, such that the Channel State Information (CSI) is not

requiredto be known at the source, destination, or the relay nodes, and is therefore




Fig.1.7.Two sources jtting to a common destination; the relay overhears the
transmissions [11].

estimated. Only a single pair of sources is considered in the model with multiple
intermediary relay nodes. An optimal relay selection criterion is proposed; the relay
which minimizes the estimated sum Symbol Error Rate (SER) of the two sources is
selected, according to

k' min {SER Oh o by )+ SERy (s ) 4

where  SER (. 5 )and SER, ; are the estimated Symbol Error Rates for Source 1
and Source 2, respectively, for relay k, Ay is the channel coefficient from Source 1 to
relay k, and hy ; is the channel coefficient from Source 2 to relay k.

The best-relay selection is carried out by only one source; hence the decision
making node has to calculate the SER for the other source node. The authors then propose
a simple sub-optimal relay selection scheme, in which the relay which minimizes the

maximum estimated SER of the two sources is selected, i.c.,



mi“,\« max{SERU(h.l'hZ.I:)’SERZ.k(hI.k'hZ.Iz)}v (1.5)

The sub-optimal min-max scheme is demonstrated to perform very close to the optimal
solution, especially as the number of available relay nodes increases.

A multiple-access scenario as depicted in Fig. 1.7 is considered in [11]. The two
sources transmit their respective packets to the base station (BS) in the first phase, which
comprises two timeslots. These packets are also overheard at the intermediate nodes. In
the second phase (i.c., the network coding phase), the selected relay combines the
decoded packets from the sources in the first phase and relays the network coded packet
to the BS. A single transmission from the relay thus helps both sources to achieve
diversity gain. For relay selection, the authors propose a rather unappealing solution of
exhaustive search for the best relay (in terms of maximization of the sum capacity of the
two nodes). This scheme is infeasible for network environments which usually comprise
multiple relay nodes; development of implementation-oriented solutions is an extremely
interesting and worth-while area for future investigation.

In the works on cooperative wireless network coding surveyed in this section, and
within others from the literature, the relays are assumed to be dedicated, i.e., they transmit
nothing for themselves when relaying. In practice this translates to the fact that the
relaying node cannot transmit for itself while it is helping another user. A possibility is
for the network provider to deploy stand-alone dedicated nodes to act as relays. In effect,
the assumption of dedicated relay nodes places additional constraints on wireless
terminals, or necessitates additional infrastructure from the service provider to support the

network.




Fig. 1.8. Cooperative wireless network.

Moreover, in the case of multiple-access networks (i.e., the case of multiple

sources itting to a common destination, such as a base station in [25]), truly multi-

user environments are not considered. The number of sources in the network is limited to
two, and the issue of scalability to real-world multiuser networks is not addressed.
Moreover, the assumption of the presence of dedicated relays in the network is

maintained.

1.5 Thesis Motivation and Contributions

In perspective of the outlined limitations of related works, we are motivated to
address the problem of partner selection (pairing) in a truly multi-user environment,

where users

transmit to ination (e.g. a base station

in a cellular environment), in the absence of dedicated relay nodes. This is an important
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communicationscenario, and to the best of our knowledge, the problem of mutual user
pairing in such multi-user environments has not been addressed previously in the
literature. In the absence of dedicated relay nodes, and as shown in Fig. 1.8, users are
considered to mutually pair among themselves to realize network coding. The pairing
should be performed to optimize certain system performance metrics, such as network
capacity, outage probability, and/or fairness. Nodes constituting a pair periodically swap

the roles of source and relay for the mutual benefit of achieving diversity gain.
Our objectives are:

(a) to address the problem of mutual user pairing in a multiuser environment, such

as to optimize certain system performance parameters, and

(b) in conjunction with the user pairing schemes, to address the transmission power

optimization, with constraints on certain network performance metrics.

The major contributions of this thesis are summarized as follows:

We formulate and solve an optimization problem to obtain the user pairing
which optimizes system performance metrics. We tailor our algorithm to

maximize the network capacity, but this can also be used to optimize the outage

5 fai; , or other metrics.

| od

The optimality of the algorithm is verified; however, to address the
computational complexity, we then propose implementation-oriented heuristic
user pairing algorithms. The heuristic schemes are designed to approach the

optimal at a signi reduced ity. We propose
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algorithms which address average network capacity, average outage probability,
and user-faimess. The performance of the optimal and heuristic algorithms is

investigated through extensive simulations.

w

. Once the problem of user pairing is solved, we next address the issue of power
minimization, and solve a joint optimization problem. We perform user pairing
to maximize the total network capacity, and minimize the transmission power
per user, such that certain network performance constraint, such as in terms of

the average capacity or average outage probability, is satisfied.

List of Publications:

Our work, during the course of this thesis has resulted in the following publications:

. T. Rasheed, M. H. Ahmed, and O. A. Dobre, "User-Pairing for Capacity

Maximization in Cooperative Wireless Network Coding," submitted to /EEE ICC 2012.

. T. Rasheed, M. H. Ahmed, O. A. Dobre, and M. Saad, "Optimal User-Pairing in
Cooperative Wireless Network Coding with Constrained Power Minimization," accepted

to IEEE RWS 2012.

. T. Rasheed, Y. P. Chen, O. A. Dobre, and M. H. Ahmed, "Medium Access
Control in Wireless Sensor Networks: Contemporary Design Issues and Future Research

Directions," in Proc. IEEE NECEC 2010.

. T. Rasheed, M. H. Ahmed, and O. A. Dobre, "Cooperative Communication for

Cognitive Radio Networks," in Proc. JEEE NECEC 2010.



e T. Rasheed, M. H. Ahmed, and O. A. Dobre, "Relay Selection Schemes for
Cooperative Communication and Network Coding: A Survey, " in Proc. IEEE NECEC

2010.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we lay out the system
model, and then compute the capacity and outage probability for the network-coded
cooperation under consideration. Chapter 3 describes the pairing algorithms to realize
network coding. We propose various optimal and heuristic pairing schemes which address
network performance parameters, such as capacity, outage probability, and user-fairness.
In Chapter 4, we perform power minimization, and solve the joint optimization problem
to minimize the transmission power, while meeting certain constraints on the network
performance. Performance analysis of the proposed algorithms is conducted in Chapter 5,

with extensive simulations. Scenarios are highlighted as to when certain (pairing and

j ) i are ble over others. Chapter 6

summarizes the findings of this thesis, outlines the main conclusions, and finallypresents

recommendations for possible future research directions.




Chapter 2

Capacity and Outage Probability Analysis of
Network-Coded Cooperation

In this chapter, we outline the system and signal model for the network-coded
cooperation. We subsequently perform the capacity and outage analysis of the network-
coded cooperation by presenting the capacity and outage probability expressions. For
sufficiently large packet length, the outage probability demonstrates a lower bound on the
packet error rate [26]. Throughout the analysis, we assume perfectly orthogonal channels,
exhibiting quasi-static (i.e. block) Rayleigh fading, and half-duplex transmissions.

Section 2.1 outlines the system and the signal model. The network-coded

scenario under i ion is presented in Section 2.2. Subsequently, the

capacity and outage probability analysis is performed in Section 2.3.

2.1 System Model

The system model of the network coded cooperation considered in this work is
shown in Fig. 2.1. We consider a single cell with an even number of users (N,,,, ). Nodes
areuniformly and randomly distributed over the entire cell and are assumed to be
equippedwith single antennas. We assume no dedicated relay nodes inthe cell.

 ?

lypair among th Ives, and periodically swap the roles of the source



Fig.2.1. System model under consideration.Dotted and solid lines represent source- and
k-coded packet issi pectively.

andrelay to realize network coding, and achieve spatial diversity. Nodes constituting a
pair first broadcast their respective packets to the base station, and also overhear each

other’s transmissions. In case of a successful detection of the partner’s packet, a network-

coded packet is I i by the ing node, which helps both
nodes in the pair to achieve diversity gain.
The received signal at the relay or destination nodes is given by

Ym] = Hm)x{m]+nlm] @1

where x{m] is the transmitted signal, h[m]is the channel coefficient which integrates the
effect of path loss and frequency non-selective Rayleigh fading, and mis the time

index. The term n{m]is the zero-mean additive white Gaussian noise (AWGN) with



irect T jission Phase—a- Coding Phase ——»
sjfomnodej | si@s; from node i | ;s from node j

Fig. 2.2. Packets transmitted by the paired nodes i and j in the two phases. In case of
inter-user ission failure, an individual packet is itted by the relaying node in
the network coding phase.

sy from node i

power spectral density (N, ), capturing the effect ofthermal noise at the receiver.

We model the inter-user and user-destination channels as non-ideal (i.e. noisy with
Rayleigh fading). Thus, a node constituting a pair sometimes may not be able to detect
the packet of its partner, and as a result, it may not always forward the network-coded
packet to help its partner. The network-coded packet transmission and detection of a pair
of nodes follow the model proposed in [27]. The communication with the common
destination (such as a base station or access point) is performed over two phases, and each
phase consists of two orthogonal channels (we assume Time Division Multiple Access
(TDMA) in this work). This model is depicted in Fig. 2.2, where it is assumed that nodes
i and jconstitute a pair, wherei, j€{l,...,N,,,},andi# j. The node i transmits its
packet to the base station in the first time slot during the first phase, i.c., the direct
transmission phase, while node j overhears. Subsequently, node j transmits its packet in
the second time slot while node i overhears. This is followed by the second, orthe
network coding phase of transmission'. Now, if node i had decoded its partner’s packet in
the previous phase, it would combine it with its ownpacket, and send the network coded

packet to the base station. Otherwise, node i would send an additional packet for itself.

! The terms “first phase” and “direct transmission” phase, and “second phase” and
“network coding phase” are used interchangeably in the context.
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Meanwhile, node j does the same in the second time slot of the second phase. At the base
station, the two independently faded network coded packets arecombined using any of the
well-known combining techniques, such as Selection Combining (SC), Equal-Gain
Combining (EGC), or maxim ratio combining (MRC) [3]. This packet is then jointly
decoded with the packets received in the first phase to recover the information bits. A
maximum diversity order of two for each user can therefore be achieved. This concludes
the two phases of communication with the base station.

The energy allocation is non-equal but symmetric (with respect to the two phases),
i.e., individual nodes within the pair may use different transmission powers in a single
phase, but the transmission power of a particular node is equal in the two phases. Cyclic
redundancy checks are assumed to detect decoding errors at the receiving nodes.
Moreover, incorporating an additional flag bit in the packets transmitted in the second
phase helps the base station determine the success of inter-user transmissions, and hence
the nature of the packets received in the second phase.

Noteworthy is the fact that we assume no dedicated relays in the cell, as the relay
nodes also transmit for themselves when relaying. Moreover, since users transmit over
orthogonal channels, there is no same-cell interference. All channels, i.e. inter-user and
source-destination, are assumed to be spatially independent, frequency flat Rayleigh
fading, with pure AWGN. We assume block fading, such that all channels remain
constant during the two phases. The signal model for the two-phase network coded

cooperation scenario is formally presented next.

2.1.1 Signal Model




In the first phase, the source node i transmits /2 symbols, and therefore the
time index m=1,.,L/2. For the source-to-destination transmission, the symbols

receivedat the destinations are given by
Vi.olm) = hp[mls [m]+n,[m], (22

where s,[m] are the transmitted source information symbols, 7, [m]is the AWGN noise at
the receiver, and the channel coefficient (/ ,[m]) captures the effect of path loss and
frequency non-selective Rayleigh fading. We assume perfect channel state information at
all receivers, i.e., the channel coefficients are perfectly estimated, and that perfect
synchronization exists between nodes which perform coherent detection. The channel

is assumed to be the two phases (including 27 symbols), and the

dependency of 4 on time mis henceforth dropped. The received symbols at node j are

Vi km)=hy s, [m]+n,[m], 23)

where n [m]is the AWGN noise at node j,and 4, is the coefficient of the channel from
node i to node j. Similarly, for m=L/2+1,...,L,node j (now assuming the role of
source) sends its packet to the base station, which is overheard by i. The received symbols
at Dand i are given respectively as

V,olml=h, s, [m=L12]+n,[m], 24
and

v, m=h, s [m=L/2]+n[m], 2.5)



where s [m] are symbols transmitted by node j, n[m]is the noise at nodei,and h,;, and
h,, are the coefficients of the channel between jand D,and j andi, respectively. In the
second phase of transmission, i and j transmit for m=L+1,..,3L/2 and
m=3L/2+1,..,2L, respectively. The received symbols at D from iand j are given
respectively by

Violml=h, (s m=L1®s,[m—L])+n,[m], (2.6)
and

Y, plml=h, (s [m=3L121®s,[m~=3L/2))+n,[m], @7
where ‘@ denotes the bit-wise XOR operator.
In case the partner does not decode the source’s packet, it transmits additional

symbols for itself during the second phase of transmission.

2.2 Capacity and Outage Analysis of the Network Coded Cooperation
In wireless communication, the dynamic and time-varying nature of the fading

channels makes the design of ication systems ing. An efficient

means to combat the effects of time-varying fading over wireless channels is through the
use of spatial diversity. In this work we consider network-coded cooperation as a
cooperative transmission approach to realize spatial diversity. We consider mutual user
pairing, where users strategically pair, and swap the roles of source and relay to realize
network coding and achieve spatial diversity. The relay nodes are not dedicated, i.c., they

transmit for their partner, as well as for themselves when relaying.
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The i and destination channel ities for nodes i and j are

functions of the corresponding channel coefficients, and, therefore they are random
variables. Moreover, an outage over a link is defined as the event of throughput falling
below a target information rate. We use the outage probability at a certain rate as a metric
of the packet error rate (PER) for the block-based transmissions under consideration [28].
The inter-source channels are modeled as non-ideal (due to noise and fading), and
successful decoding at the relay is not guaranteed. This translates to the fact that the relay
forwards a network coded packet in the second phase only if it decoded its partner’s
packet correctly. Otherwise, it transmits its own packet only. Hence, the average
throughput of the pair depends on the success of inter-source transmissions, which must

first be determined.

2.2.1 Direct Transmission Phase

In the direct transmission phase, nodes i and j sequentially broadcast their

pective packets, ining ki ion bits, to the base station and also overhear

cach other’s issi The int i ion theoretic channel capacity for

node i is C,, =log,(1+7,,) [bits/sec/Hz], where 7, =|h,, [* P,/ Nyis the instantaneous
SNR of the inter-source link, with £ as the transmit power. An outage occurs whenever
C,, <2R, where R is the packet information rate in case of the point-to-point

transmission. For Rayleigh fading, the outage probability for nodei is given as [27]

(2.8)
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where T, ;is the average SNR of the inter-source link. The outage probability for node

j can similarly be calculated by replacing T by T, in (2.8).

2.2.2 Network Coding Phase

The success of inter-source packet transmissions can lead to the following four

distinct cases [27]:

Case A: When both nodes i and j forming a pair decode each other’s packets, they both
transmit the network-coded packet in the second phase, which results in a full cooperation
scenario, for that pair.

Case B: When none of the two nodes decode each other’s packet, they send additional
packets for themselves in the second phase, and the system returns to a non-cooperative

scenario, for that pair of packets.

Case C: When only node j decodes i,and not vice-versa, only node j transmits the
network-coded packet in the second phase (which helps both nodes), whereas node

irepeats its own packet.

Case D: When only i decodes j's packet, and not vice-versa, only node i transmits the
network-coded packet in the second phase (which helps both nodes), whereas node

j repeats its own packet.

We consider i ratio ining (MRC) at the ination, which forms

the combined packet by the weighted sum of the received packets over the two phases. To




determine the channel capacity and outage probability for the four possible cases, parts of
the packets from nodes iand j which are used for decoding at the destination should be
identified. In this subsection, we perform the capacity and outage analysis for the four
possible cases for node i only. A similar approach holds for node j. The underlying
assumption is that nodes iand j constitute a pair, and mutually cooperate to realize
network coding. The algorithms for user pairing in a multiuser environment will formally

be presented in the following chapter.

Case A: Both nodes iand j comprising the pair decode each other’s packets in
the direct transmission phase. Each node transmits the network coded packet (s, @) in
the network coding phase. For decoding, a packet [s,,(s, @, )'] of length N is formed,
where the prime denoted the MRC. As this packet contains 2k information bits, its code

.2k . " "
rate is W:ZR. The two parts of this packet are essentially received over parallel

channels whose capacities add together. The outage event for node iis [27]
C,p=alog,(1+7,,)+(1-a)log,(1+(7,, +7,,)) <2R, 2.9
where « is the fraction of time allocated to the first phase. From the perspective of
capacity, the effect of MRC at the receiver is reflected by the addition of the two received
SNRs (as in the second term in 2.9). The outage probability of the event in (2.9) is

approximated as (the derivation is shown in Appendix A)

ani_pia
P2 =gy, @.10)

[




This the outage ility given the of Case A. The

probability of occurrence of Case A is given by the product of probabilities of successful
decoding at nodes i and j which can be computed from (2.8). Defining the overall

outage probability as P, , where ‘A’ indicates the case, we get

Ppa=(-F)(-P

e @i
Case B:Neither of the two nodes iand j constituting the pair decode each other’s
packets. Each source node transmits additional packets for itself. At the destination, a

packet [s,,s,]is formed whose code rate is R. The outage event in this case is [27]
C,p=alog,(1+7,,)+(1-a)log,(1+7,,) <R. 2.12)
where the two terms in (2.12) come from the contributions to the total capacity from the

two phases, respectively. Following the same approach as in Case A, the outage

probability is approximated as

5 .55 |2°-1
Fon= P,_,J',{ } (2.13)

Case C:Only jcan correctly decode i's packet, but not vice versa. In this case,
node j helps i, but i transmits for itself during the network coding phase. The
(2—-a)N and code rate of 2R/(2—a). The outage event for node iin this case is

information symbols of i are decoded from the packet [s,, (s, @, ), s, ] with length of

C,p=alogy(1+7,,)+(1-a)log,[(1+7,,)1+7,,)] <2R/ 2~ a). 2.14)




Following the same approach as in Case A, the outage probability is computed as

ooy

Poc %(1*7’,_,)-5 ! (2.15)

AT

Wl jp

Case D:Only node i can correctly decode node j's packet and not vice versa. In
this case ihelps j,but j transmits for itself during the network coding phase. To decode
i'sinformation symbols, a packet [s,,(s, s, )] of code rate 2R is formed at the destination.

The outage event for this case is
C,p=alog,(I+7,,)+(-a)log,(1+7,,) <2R, (2.16)

and following the same approach as Case A, the outage probability is approximated as

2.17)

The total outage probability is the sum of the outage probabilities for the four cases, i.e.

Po=BputPoa+Boc+Pon

D.C

(2.18)

Foa

2.3 Conclusion

In this Chapter, we presented the signal and system model for the network-coded
cooperation under consideration. We presented and capacity and outage probability

analysis for a pair of nodes, considering non-ideal inter-user channels. In the next chapter,



we address the challenging problem of the mutual pairing of users in the multi-user
cellular environment. More specifically, we propose and present optimal and heuristic
user-pairing strategies to address various network performance metrics, such as average

capacity, average outage probability, and user-fairness.
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Chapter 3

User Pairing in Network-Coded Cooperative
Wireless Networks

3.1. Mutual User Pairing to Realize Network Coding
‘We address the problem of the mutual pairing of users, or partner selection in a

Iti k-coded cooperative wireless network, to achieve spatial diversity. As

outlined in Chapter 2, users, having data to transmit, mutually pair among themselves to
realize network coding, while transmitting to a common destination. This could be an
access point in a wireless local area network or a base station in a cellular environment.
Two nodes constituting a pair periodically swap the roles of source and relay for the
mutual benefit of achieving diversity gain. Hence, only users with data to transmit
participate into cooperation, and idle users are not engaged. This system model is
depicted in Fig. 3.1.

T ission to a common ination in a wireless network is an important

communication scenario, and to the best of our knowledge, the problem of mutual user
pairing in such multi-user environments has not been addressed previously in the

literature.
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Fig. 3.1. The system model. Dotted and solid lines represent source- and network-coded-

packet transmissions, respectively.

3.2 User Pairing to Optimize System Performance

As shown in Fig. 3.1, users strategically pair among themselves to realize spatial

diversity. For this k-coded ion scenario under i ion, the user
pairing strategy directly impacts the overall network performance. Moreover, the user
pairing can be performed to optimize certain network performance metrics, such as
maximizing the total network capacity, minimizing the outage probability, and/or
maximizing the per-user throughput fairness.

In this chapter, we first formulate and solve an optimization problem (using the

maximum weighted matching algorithm) to obtain the user pairing which yields the




total network put. In order to facilitate the pairing process,

we propose il i iented heuristic algorithms which approach

lar, we

the optimal performance at a reduced i ity. In
propose max-max pairing to maximize the network capacity at a significantly reduced
complexity. Moreover, max-min pairing algorithm is proposed to minimize the outage

, with a very low

3.2.1 Optimal User Pairing %" to Maximize Network Capacity

We formulate and solve the problem of determining the optimal user-pairing "
which maximizes the total network capacity. We have the set of all possible pairing sets
1T, such that every set ® e IT is the pairing containing V,,,, /2 disjoint user pairs. Each
pairing ® is therefore a symmetric mapping of elements from the set

Xefl,2,..,N,,, }totheset ¥ €{1,2,.., N}, with the restriction of an element from X'

not being mapped to the same element in ¥. The goal is to find the optimal pairing ®"
that maximizes the total network capacity given by:

CcR=NC G.1)
Therefore,

®" =argmaxC,,,, (®). 32)

®ell "
At first glance, this looks like the problem of maximum weighted matching (i.c.,
pairing) in bipartite graphs, and any of the assignment algorithms, such as the well-known

Hungarian algorithm [29], seems as acandidate solution. However, asit was observed, a
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Fig. 3.2. A potential matching in the weighted, undirected graph; the edges drawn with

thick lines are part of the matching.

weight matrix W, with zeros on the main diagonal and symmetric entries,
[W],, = [W],, =C,,+C,,, where C,, and C,,, are the source-destination channel
capacities for and j, respectively, and [W], and [W],, describe the weight of the
assignment of node i to j, and node j to i, respectively (where i and j constitute a
potential pair), did not always lead to a symmetric assignment. To find the optimal
solution, we therefore model this problem as maximum weighted matching in general
graphs.

We construct a weighted undirected graph & = (V, E), where the vertices V' are
the users to be paired, connected by the set of edges E. Furthermore, |V |= N, and
1E1= N s

W,

~1)/2 (as the graph is fully connected), where |.|denotes the cardinality
of the set. Each edge (i, /) has an associated weight w,, =C, , +C, . The goal is to find

the matching (i.c., pairing) with the maximum total weight. This maximum weighted
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matching covers all the vertices in the graph, and each vertex is connected only to a single
edge. Moreover, each edge in the graph connects two distinct vertices. One such potential
matching for a weighted graph with four nodes is shown in Fig. 3.2. It is noteworthy that
the edge with the maximum weight may not be a part of the maximum weighted matching.

‘When the number of users to be paired is large, the problem of finding the optimal
pairing (i.e., the matching with the maximum total weight) is clearly far from trivial,

whereas an ive search is prohibiti pensive. To solve this pairing problem, we

use Jack Edmond’s maximum weighted matching algorithm for general graphs, which is
described in [30]. In the following, we present a succinct description of the algorithm, and
the reader is referred to [30] for more details.

The idea is to start with an empty pairing, and then, during each stage, to find an
augmenting path in the graph which yields the maximum increase in weight. The
blossoms method is used for finding the augmenting pathsin the graph. To explain this
problem of maximum weighted matching in general graphs, we clarify some terms from
graph theory. A matching in a graph is a set of edges, such that no two edges share a
common vertex. A sample matching in a non-fully connected graph, consisting of 8
vertices is shown in Fig. 3.3. Furthermore, a vertex in the graph withrespect to a matching
CIf is free if none of the edges in the matching are incident on thatvertex.An alternating
pathinthe graph with respect to the matching Cif" is such that its edges alternately belong
to the matching Cif, and not to the matching Cif'. Moreover, an augmenting path is an

alternating path between free vertices.




The matching CIf is nor maximum matching if and only if there is an augmenting

path with respect to Cif'. We search for the augmenting paths in the graph by performing

N\
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Fig. 3.3. The solid lines show the edges forming a matching.

Fig. 3.4. A cycle of inner and outer vertices.
a breadth-first search starting from free vertices. We call an edge in the matching as
“solid” and an edge not in the matching at ‘dotted’. To search for the augmenting path
from a free vertex, we build a tree of alternating paths. The root, as well as all the vertices
which are at an even distance from the root are called ‘inner vertices’. If we run into a

free inner vertex, then an augmenting path to that vertex can be constructed.
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The step of building the tree is based on scanning an outer vertex, v. Each solid
edge (v,w), where wis not already in the tree, is added to the tree. Vertex w is designated
an ‘inner’, and the solid edge (w,x), which is unique, and is incident with wis added to
the tree, and x is labeled as ‘outer’.

During the process of scanning the outer vertex v, if we encounter an edge (v,w),
in which w is outer, we then form a cycle as in Fig. 3.4. In this case, we contract the
cycle to form a super-vertex, called a blossom, and continue so on. Moreover, if we
encounter a free vertex, then an augmenting path can be constructed from the root to that

vertex. We show this with an example. Consider the following graph:

Starting with a breadth-first search from vertex 1, we see cycle 5 — 10 - 9 in the following
graph.
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A blossom is formed by shrinking vertices 5, 10, and 9, and the search is continued.

‘We hence find an augmenting path in the shrunk graph. By unshrinking, the following

augmneting path in the original graph can be found.

‘We start with an empty pairing, and during each stage find an augmenting path in
the graph which leads to the maximum increase in weight. The algorithm solves the
pairing problem in O(N*)time, and avoids the need for an exhaustive search. Moreover, if
the number of users to be paired is large, the set of users can be split into randomly chosen
smaller groups to reduce the complexity of the algorithm, while however compromising

the performance. ‘

3.3 Heuristic User Pairing Algorithms — Approaching Optimal Performance ‘
In this section, we propose computationally simpler heuristic user-pairing schemes

to simplify the pairing process. In particular, we propose max-max pairing to maximize
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the total network capacity. Moreover, max-min pairing is proposed to minimize the

average outage probability.

3.3.1 Max-max pairing
This algorithm pairs users with the objective of approaching the optimal capacity at

a much reduced computational complexity. A weight matrix W with zeros on main

diagonal, and symmetric entries [W],, =[W],, = C,, +C, , is established, where i and

Jj are potential pairs. The O(N’) algorithm is formally presented in the following:

a) Initialize an empty pairing ®,
b)Select the largest element from W, for instance [W], , and form the pair by
augmenting ® with jand j,
¢) Update W by removing the rows and columns corresponding to the pair formed in (b),
d) Continue from (b) until ®is complete and all nodes have been paired.

Max-max pairing has the same big O complexity as the optimal pairing, which
depicts that it scales similarly to the changes in input size, as the optimal pairing.
However, max-max pairing is significantly computationally simpler than the optimal

pairing, as it requires simpler computations. This is also reflected in the average simulation

times which are referred to in Chapter 5.

3.3.2 Max-min pairing
This heuristic algorithm is designed to address the system outage probability. We

start with the weakest user (in terms of the SNR to the BS) in the cell and pair it with the
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user having the strongest of the weaker of source-relay and relay-destination links, since
the outage performance is always determined by the weaker of the two links [31], and
continue so on for other users. The algorithm has complexity of O(N?),and is formally
presented as follows:

a) Initialize an empty pairing ®,

b) Select a node i with the lowest y, ,, and pair it with j with max[min(y, ,,7, ,)I,

¢) Augment the pairing % with the pair formed in (b), and update the set of eligible nodes.

d) Continue from (b) until ® is complete and all nodes have been paired.

Apparently, max-min pairing is computationally efficient because it involves

cheap computations. This is also reflected by the simulation times as stated in Chapter 5.

3.3.3 Random pairing

Pairing users randomly is the most straight-forward strategy, and is the simplest to
implement in practice. From the set of eligible users, two randomly chosen nodes are
paired. ® is augmented, the set of eligible users is updated, and the algorithm repeats until
all users have been paired. Although random selection is not an effective way of pairing,

we include it here for comparison purposes.

3.4 Conclusion
In this chapter, we considered the problem of mutual user pairing in network-coded

cooperative networks. We proposed an optimal pairing algorithm, and tailored it to

maximize the network capacity. We proposed i simpler
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heuristic pairing algorithms. In particular, we proposed the max-max pairing with the
objective of maximizing the network capacity. Moreover, we proposed the max-min
pairing to minimize the outage probability.

The performance analysis of the proposed optimal and heuristic algorithms is
presented in Chapter 5,where these are compared in terms of average capacity, average
outage probability, and user-faimess. The suitability of these algorithms, in view of

varying system performance requirements is also discussed.




Chapter 4

Power Minimization: Joint & Constrained
Optimization

In energy-constrained wireless networks, the design of energy efficient protocols

we have

is imperative. For the k-coded ion scenario under
emphasized that the gains associated with cooperation and network coding are the
improved throughput and outage performance, brought about by the achieved spatial
diversity. However, for energy constrained wireless networks such as sensor and cellular
networks, where minimizing the energy consumption is one of the objectives, these
performance gains can be traded-off with encrgy savings, and can therefore result in
significantly improved battery lifetimes.

In this chapter, we consider power minimization, and solve a joint optimization
problem. In the joint optimization problem, we perform user pairing to maximize the total
network capacity, and minimize the transmission power per user, such that certain
network performance constraint in terms of the average outage probability per user, or the
average capacity per user is satisfied. We use the maximum weighted matching algorithm
(as described in Chapter 3, Section 3.2.1) to obtain the optimal user pairing which leads to

the maximum total network capacity. Subsequently, we use the bisection optimization
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[32], to solve for the minimum transmission power per user, such that the given constraint

on the average capacity per user, or on the average outage probability per user is satisfied.

4.1 Power Minimization: Joint Optimization of Power and Capacity
We first find the optimal user pairing ®° which maximizes the total network
capacity

Coan=2,C: 1)

Therefore,

" =argmax C,,, (%), 42)

where I7 is the set of all possible user pairing sets, such that every set ® eIl is the
pairing containing N, /2 disjoint user pairs. The maximum weighted matching
algorithm is used to solve the problem of determining the optimal user pairing which
leads to the maximum total network capacity. We construct a weighted undirected graph
@ =(V,E), where the vertices V¥ are the users to be paired, ie.,
i,je{l,..,N,,.}, i # j,connected by theset of edges E. Furthermore, |V'|=N,,,, and
|E|=N,., (N, ~1)/2 (as the graph is fully connected), where || denotes the
cardinality of the set. Each edge (i, /) has an associated weight w, =C, ,+C, ,.The

pairing is obtained from the maximum weighted matching algorithm (explained in

Section 3.2.1, Chapter 3).
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Afterdetermining the optimal capacity pairing %,, we use it further, and perform
power minimization using the bisection optimization method [32], such that the network
performance constraint is met. Equal power allocation is assumed for all users. The

bisection method, sometimes also referred to as the binary search algorithm, can be used

to locate the root of a continuous function by enclosing it in an initial search interval, and

then successively halving it, such that the root stays enclosed within the new interval [32].
4.1.1 Power Minimization & Capacity Maximization, with a Constraint on Average
Outage Probability per User
Given the performance constraint in terms of the average outage probability per
user, i.e.,
D, (P)SO, (43)

out_ih?

where ®,,(P) is the average outage probability per user, which is a monotonically

function of the ission power per user, P, and ®,, , is the maximum

acceptable average outage probability per user. The optimal transmission power per user,

P, i.c., the minimum power which meets thisconstraint on outage probability satisfies
st = Dous (P )= 0- “4)

We use the bisection method to solve this constrained optimization problem. To find

P,

, we locate the root of the function

F(P)=®,, s =P, (P). @.5)




An upper and lower bound on the transmission power define the initial search
interval [P, P,], such that it contains the root of F(P), i.e., P,,". The function F(P) will
have opposite signs at the endpoints of this search interval, as the root is contained within
this interval. This search interval is halved in subsequent iterations, and the value of either
B, or P,(whichever is farther from the root) is updated, and assigned the value equal to
the mid-point of the interval in the previous iteration. This is done such that the root stays
trapped within the new interval, i.e., F(P) still has opposite signs on the new end points.

The bisection method converges to the actual root with a predefined tolerance, &. The

algorithm for outage d power minimization is for as:
(1) Choose the initial values for £, and P,, such that the root lies within [£,P,],

(2) Set the transmission power to P=F +(P,~F)/2, i.., the mid-point of the search
interval,

(3) Obtain the new optimal capacity pairing %, (using the maximum weighted matching
algorithm) for the current transmission power P,

(4) IfF(P) =0, exit

Else if(P,—P) <& AND F(P)> 0, exit

Else if F(P)-F(B) >0, then P, = P

Else P, =P

g0 to step (2).




4.1.2 Power Minimization & Capacity Maximization, with a Constraint on Average
Capacity per User

Given the performance constraint in terms of the average capacity per user, i.c.,

@, (P)2® (4.6)

cap_th>

where @, (P) is the average capacity per user, which is a monotonically increasing

function of the transmission power per user, P, and ®,,, , is the minimum acceptable

average capacity per user. The optimal transmission power, £,,", i.e., the minimum
power per user which meets this constraint on average capacity per user satisfies the
equation

D, @, (P, )=0. 4.7)

cap_th ™ Poap L

We use the bisection method to solve this constrained optimization problem. To find

P,

we locate the root of the function

F(P)=®,, ,-®_ (P). 4.8)

cap_th ™ Py

The algorithm for capacity — ined power minimization is as:
(1) Choose the initial values for , and P,, such that [£, F,] contains the root of F(P),

(2) Set the transmission power to the mid-point of the search interval, i.e.,
P=B+(P,-P)/2,

(3) Obtain the new optimal capacity pairing %," for the current transmission power P,

using the maximum weighted matching algorithm,




(4) IfF(P) =0, exit

Else if(P,~B) <& AND F(P) <0, exit

Else if F(P)-F(R)>0, then b =P

Else P, =P

20 to step (2).

4.2 Conclusion

In this Chapter, we considered the problem of power minimization for energy
constrained wireless networks. For the network-coded cooperation scenario under
consideration, we presented a joint optimization algorithm which maximizes the total
network capacity, and minimizes the transmission power per user, while meeting the
constraint on the network performance in terms of the average capacity per user, or the

average outage probability per user.



Chapter 5

Performance Analysis and Simulation
Results

In this chapter, we present the simulation results and performance analysis for the
network-coded cooperation frameworkconsidered in this thesis. We first show the
performance analysis for the problem of user pairing to maximize the total network
capacity, given fixed transmission power. The proposed algorithms are evaluated and
compared in terms of the average capacity per user, average outage probability per user,
and the per-user throughput fairness.

Performance analysis for the joint optimization problem for power minimization is
subsequently presented. The algorithms are evaluated in terms of the average
transmission power per user, average capacity per user, average outage probability per
user, and the per-user throughput fairness.

The simulation setup is as follows. We use the exponential path-loss model [33]
with a reference distance of 1 m, and path-loss exponent of 3.5. The inter-source and
uplink channel bandwidth is 10 MHz. The antennas at the mobile stations and the base
station are modeled as having absolute gains of 6 and 20 dBi, respectively. The

information rate R = 0.25 bps/Hz, and the users are uniformly and randomly distributed
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over a cell of radius 1 km, with the base station situated at the center. Equal power

allocation is assumed for all users.

5.1 User Pairing for Capacity imization: Fixed Power

In this section, we present the simulation results for the optimal and heuristic user
pairing algorithms, which we proposed in Chapter 3, to maximize the cell capacity. The
results are averaged over 10°randomly generated location sets, and IOJrandomly
generated Rayleigh channel samples per location. All users use a fixed transmission
power of 1 Watt. In Fig. 5.1, the average capacity per user is shown versusthe number of
users, for the four pairing schemes. As expected, the optimal pairing algorithm, based on
the maximum weighted matching, and designed to maximize the cell capacity, yields the
maximum throughput per user for all number of users (N, ), and is therefore used as

the benchmark for the heuristic schemes. The optimality of the algorithm was also

verified through i i with the search pairing. From the

proposed heuristic pairing algorithms, max-max pairing achieves the closest capacity to
the optimal pairing. For N, =30 and 40 for instance, the max-max pairing is shy of the
optimal pairing by 6.03 and 6.12 percent, respectively. This performance is achieved
approximately four times faster when compared with the optimal pairing in terms of the
average simulation times. Weighing the performance degradation against the relative
complexities of the two algorithms, max-max pairing emerges as a very good choice for
practical implementation. On the other hand, the max-min pairing algorithm is inferior to

max-max pairing, and performs worse than random pairing in terms of the average
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Fig. 5.1. Average capacity per user versus the number of paired users in the cell for the
proposed pairing algorithms.

capacity per user. This is anticipated, as max-min pairing is designed to address the
outage probability by pairing the strongest user in the cell (in terms of the source-
destination SNR) with the weakest one, and the second strongest with the second weakest
one etc., which leads to a lower value of average capacity per user.

Though the optimal pairing scheme is designed to maximize the network
throughput, it also achieves the best outage performance. Moreover,theoutage
performance oriented max-min pairing algorithm matches the optimal algorithm in terms
of the average outage probability per user, as they both demonstrate zero outage for all
values of N,,.. When compared with the optimal pairing, the max-min pairing achieves
this performance approximately forty times faster, as reflected by the average simulation

times. Results for the average outage probability per user for the max-max pairing and
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Fig. 5.2. Average outage probability per user versus the number of paired users in the
cell for the max-max and random pairing algorithms.

random pairing are depicted in Fig. 5.2. Max-max pairing is observed to perform worse

than random pairing for all N, . This is owing to the aggressive nature of max-max

pairing, which leads to a greater variance and spread within pairs (in terms of
throughput), and therefore results in relatively high average outage probability per user.

Fairness performance, measured in terms of the per-user throughput Jain’s fairness
N 2 Nego

index, which is defined as J/ =[2€,',,] [NX c, ,,Z], is depicted in Fig. 5.3. The
=) =

optimal pairing demonstrates the best fairness performance and achieves the maximum
value of Jain’s fairness index, which is around 0.98. This is because the Jain's fairness
index is averaged over all location sets, and provides a measure of the long-term fairness.
The performance of the heuristic schemes is worse than optimal pairing as both max-max
and max-min pairing lead to a greater spread and variance within pairs (in terms of

throughput), which leads to lower fairness. The max-max pairing leads to a slightly
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Fig. 5.3. Per-user throughput Jain’s fairess index versus the number of paired users in
the cell for the proposed pairing algorithms.

as

better per-user throughput faimess than max-min pairing for most values of N,

max-max pairing is designed to maximize the throughput for pairing users.

5.2 Power Minimization: Joint Optimization of Power and Capacity

We herein present the results for power minimization, given certain network performance
constraint. The performance constraint is in terms of the average outage probability per
user, or the average capacity per user. The pairing is performed to maximize the total
network capacity, using the optimal capacity pairing algorithm, outlined in Section 5.1.
The power is subsequently minimized using the bisection optimization, such that the

network performance constraint is satisfied. The results presented herein are averaged
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Fig. 5.4. Optimal (minimum) power allocation per user versus the number of paired users
in the cell, to meet the int on i average outage ility per user.
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Fig. 5.5. Average capacity per user versus the number of paired users in the cell. The
constraint is in terms of the maximum average outage probability per user.
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Fig. 5.6. Per-user throughput Jain’s fairness index versus the number of paired users in
the cell. The constraint is in terms of the maximum average outage probability per user.

over 10” randomly generated location sets and 10° randomly generated Rayleigh channel

samples per location.

5.2.1 Power Mini and Capacity imization, with a C int on

Average Outage Probability per User

In Fig. 5.4, the results for optimal power allocation per user (i.e., power
minimization) arepresented to meet the network performance constraint of the average
outage probability per user of 0.10 and 0.20, with the latter requiring lower power
(because of the inverse relationship of transmit power and outage probability). As it is
observed, the optimal power decreases monotonically with the number of pairing users.
As the number of users increase, the pairing opportunities improve, which allows the

threshold outage probability to be achieved with lower power.
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Fig. 5.7. Minimum average transmission power per user versus the number of pairing
users. Target capacity per user = 9.36 bps/Hz.

Fig. 5.5 shows the results for average capacity per user versus the number of
pairing users. A lower value of outage constraint leads to a higher average capacity, and
vice versa, because of the inverse relationship between outage probability and capacity. It
is noteworthy that the capacity for a certain outage constraint is steady, as anticipated.
However, with a fixed transmission power (i.e., without power minimization), the capacity
increases monotonically with the number of users as the pairing opportunities improve.

Results for the per-user throughput Jain’s faimess index versus the number of

pairing users are presented in Fig. 5.6. For a lower valueof the targetaverage outage

probability (meaning thereby a higher average capacity), the Jain’s fairness index is higher.

This is expected as the variations in the capacity for different users, relative to (a higher

value of) average capacity are lower, leading to a higher value of the fairness index.
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Fig. 5.8. Average outage probability per user versus the number of pairing users. Target
capacity per user = 9.36 bps/Hz.
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Fig. 5.9. Per-user throughput Jain’s fairness index versus the number of pairing users.
Target capacity per user = 9.36 bps/Hz.



5.2.2 Power Minimization and Capacity Maximization, with a Constraint on
Average Capacity per User

Fig. 5.7 shows the results for optimal power allocation (i.e., power minimization)
against the number of pairing users, to achieve the threshold average capacity. The value
of the threshold capacity is chosen as 9.36 bps/Hz, which is the value achieved with
optimal capacity pairing, for a fixed transmission power of 1 Watt, for N, =20 (refer
to Fig. 5.1). As expected, the optimal power decreases monotonically with increasing
the number of pairing users, or, in other words, with improving the pairing opportunities.
An interesting point on the curve is for N, =20, where the optimal power is
approximately 1.05 Watts. This point is consistent with the results observed in Fig. 5.1 in
Section 5.1, where a fixed power of 1 Watt produced an average capacity of 9.36 bps/Hz,
for optimal capacity pairing, for N, =20.The subtle discrepancy is owing to the
tolerance of the bisection optimization. The bisection optimization converges to the

solution (for optimal power), which can be greater than the true value by as much as a

predefined tolerance.

Results for the average outage probability per user are depicted in Fig. 5.8. The
outage probability is zero for N, >10,and is therefore not plotted on the logarithmic
scale. The outage probability diminishes to zero as the pairing opportunities improve with
the increasing number of users.

The per-user throughput Jain’s fairness index is shown in Fig. 5.9. For a single
channel realization at a particular location set, only the average capacity per user should

meet the threshold value, as different users in the cell achieve varying capacity. This
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means that user-fairness for a particular channel realization may not be high. However,
the fairness index plotted in Fig. 5.9 is averaged over the location sets, which provides a
good measure of the long-term user-fairness. The average per-user throughput fairness is

steady, and is close to unity.

5.4 Conclusions
In this chapter, we present the simulation results and performance analysis for

h d for the network-coded ion in this thesis. We present the

results for the algorithms to maximize the total network capacity, with a fixed
transmission power. It is observed that the optimal pairing algorithm achieves the best
performance in terms of the average capacity per user, average outage probability per user,
and the per-user throughput fairess. Of the heuristic algorithms, the max-max pairing
approaches the optimal capacity, and demonstrates good fairness, whereas the max-min
pairing algorithm matches the optimal pairing in terms of the average outage probability

per user.

We then consider joint optimization as we perform power minimization and

capacity imization, given network ints in terms of the average

outage probability per user, or average capacity per user. It is observed that the average
optimal power per user required to meet the performance constraint decreases

monotonically with the number of pairing users, as the pairing opportunities improve.
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Chapter 6

Conclusions and Future Work

Our novel work presented in this Thesis paves the way towards a practical
implementation of network coding in infrastructure-based cooperative wireless networks.
The major contributions, conclusions, and future research directions are presented in the

following sections.

6.1 Contributions of the Thesis

Our key contributions in this Thesis are enumerated as follows:

a) Realization of network coding in infrastructure-based cooperative wireless
networks through mutual user pairing, in the absence of dedicated relay nodes,
‘ b) Devising of an optimal mutual user pairing algorithm. In this work, we tailor
the optimal pairing algorithm to maximize the network capacity,

¢) Designing of the heuristic max-max pairing algorithm to approach the optimal

capacity at a signi reduced

d) Designing of the heuristic max-min pairing algorithm to minimize the outage

probability at a reduced complexity, and

¢) Capacity maximization and power minimization through joint optimization for

g i twork-coded perati wireless networks, given network

performance constraint in terms of the average capacity or average outage probability.
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These are summarized in the next sections.

6.1.1 Mutual User Pairing in Infrastructure-based Network-Coded Cooperative
Wireless Networks

The design criterion which greatly impacts the performance of cooperative

networks is proper relay selection. One of the ibutions of our work is ing the

problem of mutual user pairing in an i based network-coded per

wireless network, where users having data to transmit mutually pair among themselves to
realize network coding. We consider a truly multi-user environment, and assume no
dedicated relays in the cell. Two nodes constituting a pair periodically swap the roles of

the source and relay to mutually achieve spatial diversity. The inter-user channels are

modeled as non-ideal (noisy with Rayleigh fading). Conditioned on the successful
detection of the source’s packet, a network-coded packet is formed at the relay by a lincar
combination of its own packet and the source’s packet. This underlines the significance of
the quality of source-relay channel for the performance of network-coded cooperation. A
single transmission of this network-coded packet therefore helps both nodes to achieve
diversity gain. We assume spatially independent, frequency flat Rayleigh fading channels,

with additive white Gaussian noise (AWGN), exhibiting block fading.

6.1.2 Optimal User Pairing to Maximize Network Capacity
Our next objective it to perform user pairing to optimize certain network
performance metrics, such as average capacity, average outage probability, and/or user-

fairness. We propose an optimal user pairing algorithm and tailor it to maximize the
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network capacity. This is based on the Jack Edmond’s maximum weighted matching
algorithm in general graphs [30]. We construct a weighted graph where the vertices
represent the users to be paired, connected by the edges with weight equal to the sum of
the capacities of connected vertices, given that they pair with each other.

This optimal capacity pairing algorithm demonstrates the highest average capacity,
lowest average outage probability, and the highest per-user throughput faimess. For
networks with smaller number of users and where pairing complexity is not the foremost
concern, the optimal pairing is most favourable. The optimality of the algorithm is
verified through extensive comparisons with the exhaustive search pairing. The average
optimal capacity per user, with a fixed transmission power, increases monotonically with

the number of pairing users, as the pairing opportunities improve.

6.1.3 Max-max Pairing: Approaching the Optimal Capacity
We subsequently propose heuristic algorithms, designed to approach the optimal

at a reduced i ity. In i we first propose max-

max pairing to maximize the capacity. It was demonstrated that max-max pairing
approaches the optimal capacity (within ~7 percent of optimal capacity for the range of
number of users considered in simulations), and exhibits excellent average per-user
throughput Jain’s fairess index of more than 0.94 for all number of users. The average
simulation time of the max-max algorithm was four times lesser than that of the optimal
capacity pairing algorithm. Max-max pairing is therefore an excellent choice when high
throughput and fairness are desirable, at a reduced computational complexity. However,

due to the aggressive nature of max-max pairing to maximize the capacity, the spread
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among the pairs (in terms of capacity), for a single channel realization is higher, which

leads to a higher average outage probability per user.

6.1.4 M. in Pairing: Minimizing the Outage P

We then propose max-min pairing algorithm to minimize the outage probability.
The max-min pairing matches the optimal pairing in terms of the average outage
probability per user, as they both demonstrate zero outage for all channel realizations
considered in our simulations. The operation of max-min pairing underlines the fact that
the outage performance is dominated by the weaker of the source-relay and relay-
destination links. However, since max-min pairing pairs the weakest user in the cell with
the strongest user, and the second weaker with the second strongest etc., it demonstrates a
lower average capacity per user. Moreover, the max-min pairing is forty times faster than
the optimal capacity pairing in terms of the average simulation time. Max-min pairing is
therefore preferable for scenarios where the average outage probability is of vital concern

with a reduced computational complexity.

6.1.5 Power Minimization: Joint Optimization of Power and Capacity
Our next objective is to trade-off the achieved performance gains, in terms of

improved and outage for power minimization; this is vital for

energy-constrained wireless networks, such as sensor and cellular networks. We solve a
joint optimization problem to perform capacity maximization and constrained power
minimization, given the network performance constraint in terms of the average capacity

per user or the average outage probability per user. We use the maximum weighted




matching algorithm to obtain the user pairing which maximizes the network capacity. We
subsequently use the bisection optimization to obtain the minimum transmission power
which meets the network performance constraint. The optimal (i.e., minimum)
transmission power to meet the given constraint decreases monotonically with the
increase in the number of pairing users. As the number of pairing users increase, the
pairing opportunities improve, which allows the performance constraint to be achieved

with lower transmission power.

6.2 Recommendations for future research

Our novel work on infrastructure-based network coded cooperative networks
paves the way towards a practical deployment. Owing to the novelty of this work, there
are a number of off shooting research directions.

We consider equal power allocation to all users in the cell. Relaxation of this

condition, and consideration of non-equal transmit power is an important future

Moreover, optimization of the rate and power allocation between the first,

, direct, and second, i.c., the network coding phases of transmission, depending on the

inter-source and source-destination channel states is an intriguing problem for
investigation. Furthermore, the design and incorporation of network-channel codes into
the considered framework, which can enhance the performance is an interesting problem

for future consideration.




Appendix A.

We present herein the derivation of Equation 2.10. The outage event for node i is
C,p=alog,(1+7,,) +(1=a)log,(1+(,p +7,p) <2R. (A1)

The probability of outage is

Pp=P{(+7,5) (47,5 +7,)'™ <2%}, (A2)
1 Yo _Yio
Fn= exp(——> =)y, pdy s (A3)
" 'Ur/.nrl.u Lp T v

where A={(1+7,,)"(1+7,,+7,,)™* <2°"}. Extracting 7,,, and 7,,, from 4, and
using Taylor’s series in two variable, we get the ranges for 7, , and 7, , as
0<y,, <[220 1= (227 + 1]y, (A4)
0<y,, <[220 -1)1-a). (AS5)
Using these ranges to solves the integral, we get the outage probability as
Q2 _py2

1_’,‘”=2-(r & L (1-ay. (A6)

b
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