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Abstract

In today 's wireless networks , diversity is regarded as an efficient and established

means to combat multi path fading. Moreover , user cooperation has emerged lately as an

elegant technique to achieve spatial diversity over wireless channels , where the

installation of multiple antennas on handheld, battery-powered, mobile terminals is often

impractical. Recently , the application of network coding in cooperative wireless networks

has gained increasing interest with its potential to further boost the network performance ,

such as in terms of the achievable throughput. With network coding , the relaying nodes

are allowed to linearly combine packets from multiple source nodes , and then forward the

combined packets for better resource utilization.

We propose mutual user pairing in amulti-user infrastructure-based network-coded

cooperative wireless networkto realize network coding, in the absence of dedicated relay

nodes . We propose an optimal user pairing algorithm , and tailor it to maximize the

network capacity. Next , we develop heuristic pairing algorithms which approach the

optimal performance at a reduced complexity .Performance analysis is conducted in terms

of the average capacity per user, average outage probability per user, and user-fairness.

For energy-constrained network-coded cooperative networks , we subsequently

address the problem of transm ission power minimization . A joint optimization problem is

formulated and solved to find the pairing which maximizes the network capacity, and

minimizes the transmission power, such that certain performance constraints in terms of

the average capacity per user or average outage probability per user are satisfied.
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Chapter 1

Introduction

In modem wireless communication networks, there is a consistently growing

demand for higher data rates, improved service qual ity, better cove rage area, and shorter

processing times. The impediment s to achieving these goals are primarily the limited

available channel bandwidth and the dynamic nature of the wireless channels. In addition,

wireless channels are unpredict able, owing to the effects of small and large scale fading

[I]. The small scale fading , usually simply termed asf ading is often the most detrimental.

In a wireless medium , multiple copies of the transmitted signal, result ing from the

random scattering of the electroma gnetic wave from the surrounding objects arrive at the

receiver. These copies arrive at the receiver having undergone different channels, and

thus arrive with different gains, phase shifts, and delays. The multipl e copies interfere at

the receiver and can add in a constructive or destructive fashion , which results in the

amplification or the attenuation of the received signal. In case of attenuation, the signal is

said to have undergone fading. This may result in the unsucce ssful reception of the

transmitted signal, as the receiver may not be able to distinguish the received signal from

thermal noise [2]-[3].



1.1 Diversity in Wireless Networks

In wireless communication systems, diversity is regarded as an efficient and

established means to combat the small scale fading. It is the techniqu e by which mult iple

copies of the transmitted signal can be received over independently faded channels at the

receiver and combined. In case one or more copies of the signal are affected by severe

fading, the receiver can still detect the signal from the other copies. The term diversity

gain is used to quanti fy the number of independently faded copies of the transmitted

signal at the receiver. In practice, independent channels can be achieved primarily in three

physical domains: time, frequency, and space. Diversity could also be achieved in other

forms such as space-time diversity and cooperative diversity [4].

Time diversit y could be achieved by transmittin g the same signal multiple times,

in different time slots. These time slots should be separated at least by the coherence time

of the channel such that it is made sure that the channels at these time slots are

independent. The drawback of time diversity is the decreased data rate and increased

latency. Frequency diversity can be achieved by transmitt ing mult iple copies of the same

signal in different frequency bands. The frequency separation should be enough to

guarantee channel independence . However , more spectrum is requir ed to achieve

frequency diversity. Finally, space diversity is achieved by sending and/or receiving the

signal over multiple antennas, separated well enough, such that the channels are

independent. Spatial diversity on the other hand neither causes increased latency, nor

decreases the bandwidth efficiency, and therefore has attracted extensive interest from

industry and research community in recent years. Communication systems employing



multiple transmit and/or receive antennas are called Multiple-Input Multiple-Output

(MIMO) systems . It is important to situate the multiple transmit and/or receive antennas

sufficiently far apart (usually more than half a wavelength) such that the fading over the

channels between any pair of transmit and receive antennas is statistically independent.

Although the gains assoc iated with the use of multiple antennas in MIMO systems ,

such as improved channel capacity , higher throughput , better error performance , and

energy efficiency , are very well established , there are certain limitations associated with

their practical deployment. For instance, installing multiple antennas can often be

impractical owing to the additional resource overhead , such as in terms of space for

installing multiple antennas, or power . This is particularly true for mobile terminals , and

these limitations on the installation of multiple antennas make the achievement of

transmit diversity (from the end-user 's perspective) impractical.

To overcome these drawbacks , distributed nodes in a wireless network can

cooperate and intelligently share their antennas to form the so-called virtual antenna

arrays. This form of user cooperation has emerged lately as an elegant technique to

achieve spatial diversity over wireless channels , such as in the form of cooperative

diversity , which exploits the broadcasting nature of the wireless medium [5]. The notion

itself stems from the classical relaying model with intelligent antenna sharing and signal

combining at the receiver to realize spatial diversity . In cooperative transmission , users

can utilize their time, frequency, and/or other resources to share their antennas to form

virtual antenna arrays and emulate the operation of a MIMO system. Besides retaining the

benefits innate toMIMO systems, cooperative diversity brings about few more , such as



Fig. I. I.A typica l cooperative wireless networ k.

improved energy efficiency, and has been widely shown to achieve remarkable

performance gains in wire less networks [4], [6].

1.2 Overview of Cooperative Transmission Protocols

Fig. 1.1 shows a typical cooperative transmission network which consists of a

source node (8) transmitting to a destination node (D) with the assistance of a relay node

(R). The cooperative transmission consists of two phases . During the first phase, the

source node transmits its message to the destination (D). Due to the broadcasting nature

of the wireless medium, this message is overheard at the relay node (R). In the second

phase, the relay node then forwards the overheard packet (after necessary processing) to

the destination over an orthogonal channel. The destination then combines the two copies

of the same packet received from the source and the relay over the two phases using any

of the combining techniq ues such as Maximum-Ratio Combining (MRC), Equal-Gain



Combining (EGC) , or Selection Combining (SC). This way, spatial diversity is achieved,

as the two copies of the same packet are received over potentiall y uncorrel ated channels.

The protocols for cooperative transmission can be broadl y categorized on the basis

of a number of options. These could be the relaying strategy, relaying behaviour in case

of a decoding failure , and the type of coding employed in the second phase. For instance,

some of the common relaying strategies are [4]:

• Amplify-and-Forwa rd: In this type of relaying strategy, the relay node simply

amplifies the received message from the source and forwards it to the destination.

Amplify-and-Forward achieves the full diversity gain. However, the disadvantage

of this protocol is that the forwarded message is a noisy version of the original

message, as the noise added at the relay node is also amplified.

• Decode-and-Forward: With Decode-and-Forward relaying, the relay node first

decode s the message received from the source, re-encodes it, and forwards the

source message to the destination. Decode-and-F orward performs better in case of

good source-relay channels, i.e., when the outage probability over the source-relay

link is low, whereas Amplify-and-Forw ard perform s better when the source-relay

channels are of poor quality.

• Compress -and-Forward: In this protocol, the relaying node digitizes and

compre sses the message received from the source in order to decrease the

redundanc y. The compres sed message is then re-encoded and forwarded to the

destination. The destination then combines the packets from the source and relay.



Some other relaying strategie s include demodu late-and -forward and quantize-and­

forward . Moreover , the relaying protocols can also be static and adapti ve[4]. In static

protoco ls the relay node would always forward the source's packet , irrespective of

whether it was received succes sfully or not. On the other hand, protocols could also be

adaptive , such that the relay forwards the source's message only ifit decoded the message

correctly to avoid error propaga tion.

1.3Introduction to Netwo rk Coding

Network coding was first introduced in [7] for wireline networks . The central

notion behind network codin g is to allow the network nodes to combine the information

packets from multiple sources before transmi ssion, instead of simply relaying/forwardin g

them as in classica l routing. In effect, the intermediate nodes in the network between the

source and destination (such as relays and routers) can perform coding of the packets to

achieve the multicast capacit y of the network graph. This is demon strated in Fig. 1.2

which shows a classic "butterfly" network . It is assumed that the source S wants to

multicast two bits a and b to two sinks DI and D2 simultaneou sly, with each link having

a capacit y of I bps. With traditional routing , each of the intermediate nodes will simply

forward a copy of the packet they receive . The shaded node can forward a or b. This will

make it impossible to achieve the multicast capacity of 2 bps. However, with network

coding , the intermed iate relay node (which is shaded) can perform codin g, which is a bit­

wise XOR operation , on a and b and multicast over the two outgoing links. This way, D I

receives a and a + b, and can recover bas b = a+ (a+b). In the same manner , D2receives

b and a + b and can hence recover a. Both D I and D2 therefore receive at 2 bps,
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Fig.1.2. Butterfly network [I] .

and thus achieve the multicast capacity .

The utility of network coding in multica st wireline network s was first

demon strated in [I] . Ever since, itis extended to various wireles s applications [I] . In fact,

wireless packet networks tend to be naturally suited for network codin g owing to the

special characteri stics of the wireless links, such as theirbroadcasting nature and

unreliabilit y,for which network coding itself is a natural solution. Moreover, combined

with the fact that protoco l design for wireless communic ation is much more flexible than

for the wireline case, network coding seems an ideal means to achieve remarkable

performance gains in wirele ss network s.

Owin g to the simplici ty and the potential of network coding, the wireless

communication research community has expended significant interest and effort to utilize

it in a variety of applications in wireless network s. These range from opportun istic

routing in mesh networks to distributed storage in sensor network s [8]. Network coding

for wireless networks isessentially a coding strategy for the decode- and-forw ard



Fig.1.3. Two sources 8 1 and 82 comm unicating with the help of relay node R.

cooperative transmission protocol. With network coding, the relay node, after

decoding, is allowed to perform further processing of the source's packet before

forwarding it to the destination. The application of network coding in cooperat ive

wireless netwo rks has recently gained increasing interest[9] , with its potential to

significantly boost the network throughp ut and performance. A typical example of

network coding in wire less networks is depicted in Fig. 1.3. The netwo rk consists of two

sources 8 I and 82swap ping their packets with the help of the relay node R,over

orthogonal channels. Assuming Time Division Multipl e Access (TDMA), 8 I transmits its

packet first, followed by SZin the first phase. Meanwhile, the relay node R overhears both

these transmissions, and combines the two packets , for instance using the bit-wise XOR

operation , and then broadcasts the comb ined packet in the second phase which helps both

source nodes 8 I and 82 to achieve diversity gain .

Another network coding scenar io is presented in Fig. 1.4, where the network

consists of two sources 8 I and 82, transmitting to a common destination (D) with the help

of the relay node (R). The sources 8 I and 82 send their respective information packets to

the destinatio n node (D) over orthogona l channels during the first phase. These packets



S2

Fig. 104. A typical wireless network with two sources transmitting to a common
destination with the assistance of a common relay node.

are also overheard at the relay node (R). The relay decodes the two information packets,

and can subsequently combine the two packets, for instance using the bit-wise XOR

operation. It then forwards the combined packet in the second phase which helps both

sources SI and S2 to achieve diversity gain. Assumin g TDMA , a total of three

time slots are required with network coding , whereas in case of traditional routing, the

number of required time slots are four to achieve a diversity order of two for both nodes.

This directly results in a 25 percent throughput improvement.

The application of network codin g to wireless networks promi ses to change many

aspects of networkin g. In effect, network coding deviates from the classical networking

approach where wireless networks are treated as physical means of data transportation ,

allowing for data manipulation within the network . The application of network coding in

wireless networks has been studied in a variety of setting s, including the cases of (a) two

sources transmitting to a common destination[1 0]-[13] , as is depicted in Fig.IA. This case



is an important bui lding block for numerous manifestations of wireless communication,

such as the infrast ructure-based cellular networks,

(b) multi-cast [14]-[1 5], where network coding is employed at the intermediary nodes in

the network to improve the throughput for information dissemination, and

(c) for two-way relay channels [16]-[19], for instance in ad hoc networks, where the

intermediary nodes in the network serve as relays by forwarding the network coded

packets for the source-des tination pairs.

1.4 Relay Selection in Cooperative Wirele ss Networks

The design criterion which greatly impacts the performance of cooperative

networks , both without and with networkcoding is the proper relay selection [16]. As user

cooperation and intelligent relay selection can significantly boost the network throughput

with antenna sharing, an improperly selected relay can however deteriorate the system

performance.

1.4.1 Literature Review of Relay Selection Schemes in Cooperative Networks

Directed by the significance of relay selection in cooperative networks , the

problem of relay select ion/assi gnment is receiving extensive interest from the research

community. The array of proposed solutions fall mainly into two categories:

infrastructure-oriented protoco ls which usually comprise of optima l solutions (often

based on exhaustive searches) , and sub-optima l implementation-oriented

10



heuristicsolutions. In this section, we survey some of the most conspicuous and

representative publications in this area from the literature .

The authors in [20] address the issue of joint optimization of relay selection and

power allocation to maximize the average network capacity . They first propose an

optimal solution for the joint optimization problem. However , to alleviate thecomplexity ,

they separate the joint optimization problem into the sub-problem of single best relay

selection with uniform power distribution between the source and relay nodes, and then

optimal power allocation for the chosen source-relay pair. A so called "semi-distributed"

algorithm is then proposed for a network environment with multiple source-destination

pairs where each relay node individually decides on its suitability to act as a relay, and the

final decision is made by the central entity . It has been shown that the sub-optimal

algorithm with reduced computational complexity can provide comparable performance

to that of the optimal scheme , which is based on exhaustive search. The author s consider

the system model as shown in Fig. 1.5 [20].

The network consists of multiple source and dedicated relay nodes , and a single

destination node . The relays are assumed to operate in the Amplify-and-Forward mode.

For finding the optimal solution for a single source , the set of feasible relay nodes (i.e.,

the ones which can provide better capacity performance than direct transmission ) are

searched for, and the one which maximi zes (1.1) is selected as relay ,

(1.1)

11
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Fig.I.5 . System model of a wireless network [20].

where SNR is the Signal-to-Noise ratio at the transmitter , hy and hJd are the channel

coefficients from the source to relay j , and relay j to destination respectively , and N R is

the number of relays. The channel coefficients integrate the multi path fading and the

propagation path- loss. If none of the potential relay nodes offer an increased capacity

over direct transmission, i.e., if the set of feasible relay nodesisempty, thesource node

goes with direct transmission. The authors then find an optimal solution for power

allocation to further improve the performance after relay selection.

Following this optimal solution , the authors propose a semi-distributed relay

selection scheme for a network environment which comprises multiple source and relay

nodes , under the assumption of equal power allocation between a pair of source and relay.

The algorithm is divided into two steps :feasible set generation , and relay node allocation .

In the first phase, the nodes transmit hand-shaking packets before actual data transmission

12



to allow the relay nodes to estimate the channel gains from the source and destination

nodes. All relay nodes can hence decide on their feasibilit y (this happens in a distributed

fashion) , and report their respective indices to the destination . The destination can then

perform the relay node allocation from the feasible set by randoml y picking a relay node

and assigning it to one of the source nodes. Thissub-optim al scheme with

lesscomputational comp lexityisdemonstratedtoachievenear-optimal performanc e.

The authors of [21] propose the so-called Optim al Relay Assignment (ORA)

algorithm for a network environment with multiple source and relay nodes. The objective

is to maximi ze the minimum capacity among the pairs of source and destinat ion nodes.

The notable features of this algorithm are (i) guarantee of optim ality, (ii) polynomial time

complexity , and (iii) final capacity of every source-destination pair is more than that

achievable with direct transmi ssion. In the proposed scheme, a source-destination pair is

assigned at most one relay, and a single relay node can ass ist at most one source­

destination pair. After an initial "random" relay node assignment , the solution is adjusted

in each iteration to achieve a greater value of the objective function (the minimum

capacity among all source-destination pairs). In particular, the source node with the

lowest capacit y is identified and a better relay node for it is searched. However, in case

the "better" relay is pre-assigned to some other source, another relay for that other source

node is searched for, and so on. Hence within a single iteration, there are two possibilities:

(i) a better solution (i.e ., a higher value of the objective function) is found, and the

algorithm moves on to the next iteration, or (ii) a better solution could not be found, and

the algorithm terminat es. The algorithm is shown to run in a polynomial time; also, it is

argued that in case of a non-optimal solution, the algorithm would keep on iterating, and

13



would terminate only in case the assignment solution is optimal. The optima lity of the

algorithm is also formally proven.

In [22], the author s consider relay selection in a multipl e-access network with a

single base station to extend the coverage area using cooperation. The authors derive the

optimal relay locations based on two cases, i.e., if the destination uses packets from the

relay as well as the source MRC for detection, or only the packet from the relay node. In

the former case , the optimal (norma lized, wr.t. to the distance betwee n source and

destination) relay location (along the line jo ining the source and destination) from the

destination is shown to be

(1.2)

where p is the path loss exponent. In case p ~ 2 , an interesting observation is that the

optimal relay location is closer to the source node. In the case of no-MRC at the receiver,

the optimal relay position is shown to be at the mid-point between the source and

destination along the line join ing the source and destination. The authors then propose a

simple distributed algorithm - nearest neighbour routing, in which the relay nearest to the

source node can be selec ted as the helper. Though far from optimal , it is very easy to

implement in a distributed fashion.

1.4.2 Literature Review of Relay Selection Schemes in Cooperative Networks

employing Network Coding

Netwo rk codi ng has recently been studied exte nsively for cooperative wireless

networks as the combining of data at intermediate relay nodes can further improve the

14



Fig.I .6. A cooperative network with n commun ication pairs and m relays [23]-[24]

network throughput as well as robustness. In particular , the two-way relay channel model

has received the most interest as it could be regarded as the basic buildin g module of

many wireless network s. Relay selection in network codin g environm ents is particularly

interesting as more than one source nodes have to be involved in the relay selection

process asopposedto ju stone inconventionalcooper ative networks. In this section, some of

the most representative schemes from the literature addressing relay selection/ass ignment

in cooperative network s with network codin g are surveyed.

In [23] the author s consider the system model as shown in Fig. 1.6.The number of

relay nodes is assumed to be greater or equal to the number of communicating pairs, and

the direct link between the pairs is ignored. Moreover , only asingle relay is assigned to

every pair. For ease of comp rehension , it is assumedthat one of the nodes in the

communicating pair is the Source (S) and the other one is the destination (D). In the first

timeslot, the node S transmits its packet which is received and decoded at the selected

15



relay. Similarly, in the second timeslot , node 0 transmits its packet and it is received and

decoded at the relay node . The relay then XORs the two packet s and broadcasts the

network coded packet which is then heard by both Sand 0 (thereby saving one timeslot

compared with tradition al relaying using TDMA for instance). The authors then propose

an optimal and a sub-optimal scheme for best-relay selection. They consider the channel

coefficients over the two links, i.e., the source-relay and relay-destination, and assume

that the weaker of the two coefficients will dominate the end-to-end performance. The

proposed optimal relay assignment criterion is such that the minimum channel coeffic ient

over the two links is maximi zed. For the optimal solution, all possible assignment

permutations are considered (which are P: ' INR , where P represe nts permutations, in

case of NR relays and m pairs). If 0 denotes the set consisting of all possible

permutations, the index of the optimal assignment, k· , is given by

(1.3)

where Ih Ik.min is the weakest source-relay or relay-destination sub-channel. The authors

then propose a sub-optimal scheme by exploiting the correlation within the elements of

set 0 . The set 0 is partition ed into P:' INR' smaller subsets. The subsets containing

correlated elements are not searched for, hence reducing the number of permutations over

which the search is run.

In [17] , the authors propose analog network codin g using differential modulation

over two-way relay channels, such that the Channel State Information (CSI) is not

requiredto be known at the source, destination , or the relay nodes, and is therefore
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S2

Fig.l. 7.Two sources transmitting to a common destination; the relay overhears the
transmissions [II].

estimated . Only a single pair of sources is considered in the model with multiple

intermediary relay nodes. An optimal relay selection criterion is proposed; the relay

which minimizes the estimated sum Symbol Error Rate (SER) of the two sources is

selected, according to

where SER\.k(hi,*, h2,k ) and SER2,k are the estimated Symbol Error Rates for Source I

and Source 2, respectively , for relay k, hl ,k is the channel coefficient from Source I to

relay k, and h2,k is the channel coefficient from Source 2 to relay k.

The best-relay selection is carried out by only one source; hence the decision

making node has to calcu late the SER for the other source node . The authors then propose

a simple sub-optimal relay selection scheme , in which the relay which minimize s the

maximum estimated SER of the two sources is selected , i.e.,
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The sub-optimal min-max scheme is demon strated to perform very close to the optimal

solution, especially as the number of available relay nodes increases.

A multiple-access scenario as depicted in Fig. 1.7 is considered in [II] . The two

sources transmit their respective packets to the base station (BS) in the first phase, which

compri ses two timeslots. These packets are also overheard at the intermed iate nodes. In

the second phase (i.e., the network coding phase), the selected relay combines the

decoded packet s from the sources in the first phase and relays the network coded packet

to the BS. A single transmi ssion from the relay thus helps both sources to achieve

diversity gain. For relay selection, the authors propose a rather unappealing solution of

exhaustiv e search for the best relay (in terms of maximi zation of the sum capacity of the

two nodes). This scheme is infeasible for network environments which usually comprise

multiple relay nodes ; development of implementation- oriented solutions is an extremely

interesting and worth-while area for future investigation .

In the works on cooperative wireless network coding surveyed in this section, and

within others from the literature, the relays are assumed to be dedicat ed, i.e., they transmit

nothing for themsel ves when relaying. In practice this translates to the fact that the

relaying node cannot transmit for itsel f while it is helpin g another user. A possibili ty is

for the network provider to deploy stand-alone dedicated nodes to act as relays. In effect,

the assumption of dedicated relay nodes places additional constraints on wireless

terminal s, or necessitates additional infrastructure from the service provider to support the

network .
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Fig. 1.8. Cooperative wirele ss network .

Moreo ver, in the case of multiple -access networks (i.e., the case of multiple

sources transmitting to a common destination , such as a base station in [25]), truly multi­

user environments are not considered. The number of sources in the network is limited to

two, and the issue of scalability to real-world mult iuser network s is not addressed.

Moreover, the assumption of the presence of dedicated relays in the network is

maintained .

1.5 Thesis Motivation and Contributions

In perspective of the outlined limitations of related works , we are motivated to

address the problem of partner selection (pairin g) in a truly multi-u ser environment,

where users emplo ynetworkcodingto transmit to acommon destination (e.g. a base station

in a cellular environment ), in the absence of dedicat ed relay nodes. This is an important
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communicationscenario, and to the best of our knowledge, the problem of mutual user

pairing in such multi-user environments has not been addressed previously in the

literature . In the absence of dedicated relay nodes, and as shown in Fig. 1.8, users are

considered to mutually pair among themselves to realize network coding. The pairing

should be performed to optimize certain system performance metrics, such as network

capacity , outage probability, and/or fairness. Nodes constituting a pair periodically swap

the roles of source and relay for the mutual benefit of achieving diversit y gain .

Our objectives are:

(a) to address the problem of mutual user pairing in a multiuser environment , such

as to optimize certain system performance parameters , and

(b) in conjunction with the user pairing schemes, to address the transmission power

optimization, with constraints on certain network performance metrics.

The major contributions of this thesis are summarized as follows:

I. We formulate and solve an optimization problem to obtain the user pairing

which optimizes system performance metrics. We tailor our algorithm to

maximize the network capacit y, but this can also be used to optimize the outage

probability , user-fairness , or other performance metrics .

2. The optimality of the algorithm is verified ; however , to address the

computational complexity , we then propose implementation-oriented heuristic

user pairing algorithms. The heuristic schemes are designed to approach the

optimal performance at a significantly reduced complexity. We propose
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algorithms which address average network capacit y, average outage probabilit y,

and user-fairness. The perform ance of the optimal and heuristic algorithms is

investigated through extensive simulations.

3. Onc e the problem of user pairin g is solved, we next addre ss the issue of power

minimization, and solve a joint optimi zation problem . We perform user pairing

to maximi ze the total network capacit y, and minim ize the transmission power

per user , such that certain network performanc e constraint , such as in terms of

the average capacit y or average outag e probability, is satisfied.
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1.6 Or gani zation of the The sis

The rest of the thesis is organized as follows. In Chapter 2 we layout the system

model , and then comp ute the capacit y and outage probabilit y for the network-cod ed

cooperation under consideration. Chapter 3 describes the pairing algo rithms to realize

network coding. We propose various optima l and heuristic pairing schemes which address

network performance parameter s, such as capacit y, outage probability , and user-fairn ess.

In Chapter 4, we perform power minimization , and solve the joint optimi zation problem

to minimize the transmission power, while meeting certain constraint s on the network

performance. Performance analysis of the proposed algorithm s is condu cted in Chapter 5,

with extensive simulations. Scenario s are highlighted as to when certain (pairing and

jo int/constrained optimiza tion) algorithms are preferab le over others. Chapter 6

summarizes the findings of this thesis, outlines the main conclu sions, and finallypresents

recommendations for possible future research directions.
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Chapter 2

Capacity andOutage Probability Analysis of
Network-Coded Cooperation

In this chapter , we outline the system and signal model for the network-coded

cooperation. We subseq uently perform the capacity and outage analysis of the network-

coded cooperation by presenting the capacity and outage probabi lity expressions . For

sufficiently large packet length , the outage probability demonstrates a lower bound on the

packet error rate [26] . Throughout the analysis , we assume perfectly orthogonal channels,

exhibiting quasi-static (i.e. block) Rayleigh fading , and half-duplex transmissions.

Section 2. I outlines the system and the signal model. The network-coded

cooperation scenario under consideration is presented in Section 2.2. Subsequently , the

capacity and outage probability analysis is performed in Section 2.3.

2.1 Sys tem Mo del

The system model of the network coded cooperation considered in this work is

shown in Fig. 2.1. We consider a single cell with an even number of users (NIL" '..)'Nodes

areuniformly and random ly distr ibuted over the entire cell and are assumed to be

equippedwith sing le antennas. We assume no dedicated relay nodes inthe cell.

Usersstrategicallypair among themselves , and periodically swap the roles of the source
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Fig.2. l . System model under consideration.Dotted and solid lines represent source- and
network-coded packet transmissions respectively.

andrelay to realize network coding, and achieve spatia l diversity . Nodes constituting a

pair first broadcas t their respective packets to the base station , and also overhear each

other 's transm issions. In case ofa successful detection of the partner 's packet , a network-

coded packet is subsequent ly transmitted by the overhearing node, which helps both

nodes in the pair to achieve diversity gain .

The received signal at the relay or destination nodes is given by

y[m] =h[m]x[m]+ n[m] (2.1)

where x[m] is the transmitted signal, h[m] is the channel coefficie nt which integrates the

effect of path loss and frequency non-selective Rayleigh fading, and m is the time

index. The term n[m] is the zero-mean additive white Gaussian noise (AWGN) with
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Fig. 2.2. Packets transmitted by the paired nodes i and j in the two phases . Incase of
inter-user transmission failure , an individual packet is transmitted by the relaying node in

the network coding phase.

power spectral density (No),capturing the effect ofthermal noise at the receiver.

We model the inter-user and user-destination channels as non-ideal (i.e. noisy with

Rayleigh fading). Thus, a node constituting a pair sometimes may not be able to detect

the packet of its partner , and as a result, it may not always forward the network-coded

packet to help its partner. The network-coded packet transmission and detection of a pair

of nodes follow the model proposed in [27]. The communication with the common

destination (such as a base station or access point) is performed over two phases , and each

phase consists of two orthogonal channels (we assume Time Division Multiple Access

(TDMA ) in this work) . This model is depicted in Fig. 2.2, where it is assumed that nodes

i and j constitute a pair, where i, j E {I, ..., Nu.,m}' and i *- j. The node i transmits its

packet to the base station in the first time slot during the first phase , i.e., the direct

transmission phase, while node j overhears . Subsequently , node j transmits its packet in

the second time slot while node i overhears. This is followed by the second , orthe

network coding phase of transmission I. Now, if node ihad decoded its partner ' s packet in

the previous phase, it would combine it with its ownpacket, and send the network coded

packet to the base station . Otherwise , node i would send an additional packet for itself.

I The terms "first phase " and "direct transmission " phase , and "second phase" and
"network coding phase" are used interchangeably in the context.
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Meanwhile, node j does the same in the second time slot of the seco nd phase. At the base

station, the two independently faded network coded packets arecombined using any of the

well-known combining techniqu es, such as Selection Combinin g (SC) , Equal-Gain

Combining (EGC) , or maxim ratio combining (MRC) [3]. This packet is then jointly

decoded with the packets received in the first phase to recover the information bits. A

maximum diversity order of two for each user can therefore be achieved. This concludes

the two phases of communication with the base station.

The energy allocation is non-equal but symmetric (with respect to the two phases),

i.e., individual nodes within the pair may use different transmission powers in a single

phase, but the transmission power of a particular node is equal in the two phases. Cyclic

redundancy checks are assumed to detect decoding errors at the receiving nodes.

Moreover, incorporating an additional flag bit in the packets transmitted in the second

phase helps the base station determine the success of inter-user transmissions, and hence

the nature of the packets received in the second phase.

Noteworth y is the fact that we assume no dedicated relays in the cell, as the relay

nodes also transmit for themselves when relaying. Moreover, since users transmit over

orthogonal channels, there is no same-cell interference. All channels, i.e. inter-user and

source-destination, are assumed to be spatially independent, frequency flat Rayleigh

fading, with pure AWGN. We assume block fading, such that all channels remain

constant during the two phases. The signal model for the two-pha se network coded

cooperation scenario is formally presented next.

2.1.1 Signal Model
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In the first phase , the source node i transmit s L / 2 symbols, and therefore the

time index m =I,..., L / 2. For the source-to-des tination transmi ssion , the symbols

receiv edat the destinations are given by

(2.2)

where sJm] are the transmitt ed source information symbols, nD[m] is the AWGN noise at

the receiver, and the channel coe fficient (h,,n[m]) captures the effect of path loss and

frequen cy non-selective Raylei gh fading . We assume perfect chann el state information at

all recei vers, i.e., the channel coe fficients are perfectl y estimated , and that perfect

synchronization exists between nodes which perform coherent detection . The channel

coe fficie nt is assumed to be constantover the two phases (including 2L symbols), and the

dependency of h on time m is henceforth dropp ed. The received symbols at node j are

(2.3)

where nj[m]is the AWGN noise at node j,and h,)s the coeffi cient of the channel from

node i to node j. Similarl y, for m =L / 2 + I, ..., L, node j (now assuming the role of

source) sends its packet to the base station, which is ove rheard by i.The received symbols

at D and i are given respecti vely as

(2.4)

and

(2.5)
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where s)m] are symbols transmitted by node j , n,[m] is the noise at node i, and hJ./Jand

hi., are the coeffic ients of the channel between jand D,a nd jandi, respectively. In the

seco nd phase of transmission, i and j transmit for m =L + I, ...,3L / 2 and

m = 3L / 2 + I, ..., 2L, respectively. The received symbols at D from i and j are given

respective ly by

(2.6)

and

where' ED ' denotes the bit-wise XOR operator .

In case the partn er does not decode the source's packet, it transmits additional

symbols for itse lf dur ing the secon d phase of transmission .

2.2 Ca pacity and Out age Analysis of the Network Coded Coopera tion

In wireless communication, the dynamic and time-varying nature of the fading

channels makes the design of commun ication systems extremely challenging. An efficient

means to comba t the effec ts of time-varying fading over wireless channels is through the

use of spatia l diversity. In this work we consider network-coded cooperation as a

cooperative transmission approach to realize spatial diversity. We consider mutu al user

pairing, where users strategically pair, and swap the roles of source and relay to real ize

network coding and achieve spat ial diversity. The relay nodes are not dedica ted, i.e., they

transmi t for their partner, as well as for themselves when relaying.
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The inter-source and source -destination channel capaci ties for nodes i and j are

functions of the corresponding channel coef ficients, and, therefore they are random

variab les. Moreove r, an outage ove r a link is defi ned as the event of throughp ut falling

below a target information rate. We use the outage probabilit y at a certain rate as a metric

of the packet error rate (PER) for the block-based transmi ssions under con sideration [28].

The inter-so urce channel s are modeled as non-ideal (due to noise and fading), and

successful decod ing at the relay is not guaranteed. This translates to the fact that the relay

forwards a network coded packet in the second phase only if it decoded its partner ' s

packet correc tly. Other wise, it transmits its own packet only. Hence, the average

throughput of the pair depends on the success of inter-source transmissions, which must

first be determin ed.

2.2.1 Direct Transmission Phase

In the direct transmission phase, nodes i and j sequentially broadcas t their

respective packets, containin g k information bits, to the base station and also overhear

each other's transmis sion s. The inter-source information theoreti c channel capacity for

node i is C,.} = log2(1+ r,) [bits/sec/Hz], where r., =/h,.} 1
2 P,/ No is the instantaneous

SNR of the inter-so urce link, with p, as the transmit power. An outage occurs whenever

Ci.} < 2 R, where R is the packet information rate in case of the point -to-point

transmission . For Raylei gh fadin g, the outage probabilit y for node i is given as [27]

P,.} = 1_ exp( _ 2;, .~ I),
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where f i .) is the average SNR of the inter-source link. The outage probabilit y for node

j can similarly be calc ulated by replacin g f i •i by f i .i in (2.8).

2.2.2 Network Coding Pha se

The success of inter-source packet transmi ssions can lead to the following four

distinct cases [27] :

Case A: When both nodes i and j forming a pair decode each other ' s packets , they both

transmit the network-coded packet in the second phase , which results in a full cooperation

scenario, for that pair.

Case B: When none of the two nodes decode each other ' s packet, they send additional

packets for themselves in the second phase, and the system returns to a non-cooperative

scenario, for that pair of packets.

Case C: When only node j decodes i, and not vice-versa, only node j transmits the

network-coded packet in the second phase (which helps both nodes), whereas node

i repeats its own packet.

Case D: When only i decode s j's packet, and not vice-versa, only node i transmits the

network-coded packet in the second phase (which helps both nodes), whereas node

j repeats its own packet.

We consider maximum ratio combinin g (MRC) at the destination , which forms

the combined packet by the weighted sum of the received packets over the two phases. To
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determin e the channel capacit y and outa ge probability for the four possible cases , parts of

the packets from nodes i and j which are used for decodin g at the destination should be

identified. In this subsection , we perform the capacit y and outage analy sis for the four

possible cases for node i only. A similar approach holds for node j. The underlying

assumption is that nodes i and j constitute a pair , and mutu ally cooperate to realize

network codin g. The algorithms for user pairin g in a multiu ser environment will formall y

be presented in the follo win g chapter.

Case A: Both nodes i and j compri sing the pair decod e each other 's packets in

the direct transmission phase. Each node transmits the network coded packet (s, E9S j) in

the network coding phase. For decod ing, a packet [s;,(s, E9S j )' ] of length N is formed,

where the prime denoted the MRC . As this packet cont ains 2k inform ation bits, its code

rate is *=2R. The two parts of this packet are esse ntially received over parallel

channels whose capaciti es add together. The outag e event for node i is [27]

where a is the fraction of time allocated to the first phase. From the perspective of

capacity, the effect ofMRC at the receiver is reflected by the addition of the two received

SNRs (as in the second term in 2.9) . The outage probabilit y of the event in (2.9) is

approximated as (the der ivation is shown in Appendix A)

(2. 10)
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This represents the outage probability given the occurrence of Case A. The

probability of occurrence of Case A is given by the product of probabilities of successfu l

decoding at nodes i and j which can be comput ed from (2.8). Defining the overall

outage probability as P"D,Awhere' A' indicates the case , we get

P,,lJ,A= (I- P" j ) . (I- ~ " )· p,,D · (2.11)

Ca se B:Neither of the two nodes i and j constituting the pair decode each other ' s

packets. Each source node transmits additional packets for itself. At the destination , a

packet [spSj] is formed whose code rate is R.The outage event in this case is [27]

where the two terms in (2.12) come from the contribut ions to the total capacity from the

two phases , respec tively. Following the same approach as in Case A, the outage

probability is approximated as

(2.13)

Case C:Only j can correctly decode fs packet , but not vice versa. In this case,

node j helps i, but i transmits for itself during the network coding phase. The

(2 - a) N and code rate of 2R / (2 - a). The outage event for node i in this case is

information symbols of i are decoded from the packet [s" (s; EB Sj)' s;] with length of
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Following the same approach as in Case A, the outage probabilit y is computed as

(2.15)

Case D:Only node i can correctl y decode node j's packet and not vice versa. In

this case i helps j, but j transm its for itself during the network codin g phase. To decode

Psinformation symbols , a packet [Si,(Si ffi s)) ] of code rate 2R is formed at the destination.

The outage event for this case is

and following the same approach as Case A, the outage probabilit y is approximated as

_ _ _ [22R-I]
P, .D .D "'P, .j'(l-~ ./ ) , - r- .

I ,D

(2.17)

The total outage probabi lity is the sum of the outage probab ilities for the four cases, i.e.

2.3 Co nclus ion

p, = P'.D.A+ P,.D.B+ P" D.C+ P,.D,D (2.18)

In this Chap ter, we presented the signal and system mode l for the network -coded

cooperation under consideration. We presented and capacit y and outage probability

analysis for a pair of nodes , considerin g non-ideal inter-user channel s. In the next chapter,
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we address the challenging problem of the mutual pairing of users in the multi-user

cellu lar environment. More specificall y, we propose and present optimal and heuristic

user-pairing strategies to address various network performance metrics , such as average

capacity, average outage probability , and user-fairness.
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Chapter 3

User Pairing in Network-Coded Cooperative
Wireless Networks

3.1. Mut ua l User Pairin g to Real ize Network Coding

We address the problem of the mutual pairing of users, or partner selection in a

multi-user network-coded cooperative wireless network, to achieve spatial diversity. As

outlined in Chapter 2, users, having data to transmit , mutually pair among themselves to

realize network coding , while transmitting to a common destination. This could be an

access point in a wireless local area network or a base station in a cellular environment.

Two nodes constituting a pair periodically swap the roles of source and relay for the

mutual benefit of achie ving diversity gain. Hence , only users with data to transmit

participat e into cooperat ion, and idle users are not engaged. This system model is

depicted in Fig. 3.1.

Transmission to a common destination in a wireless network is an important

communication scenario, and to the best of our knowledge, the problem of mutual user

pairing in such multi-user environments has not been addressed previously in the

literature .
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Fig. 3.1. The system model. Dotted and solid lines represent source- and network-coded-

packet transmissions , respectivel y.

3.2 User Pairing to Optimize System Performance

As shown in Fig. 3.1, users strategically pair among themse lves to realize spatial

diversity. For this network-coded cooperation scenario under consideration , the user

pairing strateg y directl y impacts the overall network performance. Moreover, the user

pairing can be performed to optimi ze certain network performance metric s, such as

maximi zing the total network capacity, minimizing the outage probabi lity, and/or

maximizing the per-user throughput fairness .

In this chapter , we first formulate and solve an optimization problem (using the

maximum weighted matchin g algorithm ) to obtain the user pairing which yields the
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maxim um achievab le total network throughput. In orde r to facili tate the pairing process ,

we subsequently propose implementation-oriented heuristic algorithms which approach

the optimal performance at a reduced computational complexity. In particul ar, we

propo se max-max pairing to maximi ze the network capacity at a significantly reduced

comp lexity . Moreover, max-m in pairing algorithm is proposed to minimize the outage

probability, with a very low complexity.

3.2.1 Optimal User Pairing ~' to Ma ximize Network Capacity

We form ulate and solve the problem of determ ining the optimal user-pairing ~'

which maximi zes the total network capacity. We have the set of all possible pairing sets

Il ,such that every set ~En is the pairing containing N",m / 2 disjoint user pairs. Each

pairing 1'!? is therefore a symmetric mapping of elements from the set

X E {I, 2, ...,N"",..} to the set JY E{ I,2 ,..., N",er..}'with the restriction of an element from X

not being mapped to the same element in JY.The goal is to find the optimal pairin g 1'!? '

that maximizes the tota l netwo rk capacity given by:

Therefore ,

C,um= L iCi'

~' =arg w:: C,um(~) .

(3.1)

(3.2)

At first glance , this looks like the prob lem of maximum weighted matching (i.e .,

pairing ) in bipartite grap hs, and any of the assignment algorithms, such as the well-known

Hungarian algorithm [29], seems as acandidate solution. How ever , asit was obs erved , a
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Fig. 3.2. A potenti al matchin g in the weighted, undirected graph; the edges drawn with

thick lines are part of the match ing.

weight matrix W , with zeros on the main diagonal and symme tric entries,

twi, = [W] l .1=C" D+C l ,IJ' where C,.D and C}.D are the source-destination channel

capac ities for i and j, respectively, and [Wl,.} and [W]}.I describe the weight of the

assignment of node i to j, and node j to i, respectively (where i and j constitute a

potent ial pair), did not always lead to a symmetric assignment. To find the optimal

solution, we therefore model this problem as maximum weighted matching in general

graphs.

We construct a weighted undirected graph c9= (V, E) , where the vertices V are

the users to be paired, connected by the set of edges E. Furthermore, 1V 1= Nu,m and

1£1= Nu<e" (Nu,m - 1) / 2 (as the graph is fully connected), where 1. ldenotes the cardinality

of the set. Each edge (i, j) has an associated weight w,,} = C"D+Cl .D. The goal is to find

the matching (i.e., pairing) with the maximum total weight. This maximum weighted
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matching covers all the vertices in the graph, and each vertex is connected only to a single

edge. Moreove r, each edge in the graph connects two distinct vertices . One such potential

matching for a weighted graph with four nodes is shown in Fig. 3.2. It is noteworthy that

the edge with the maximum weight may not be a part of the maximum weighted matching.

When the number of users to be paired is large, the problem of finding the optimal

pairing (i.e., the matching with the maximum total weight) is clearly far from trivial,

whereas an exhaustive search is prohibitively expensive. To solve this pairing problem, we

use Jack Edmond's maximum weighted matching algorithm for general graphs, which is

described in [30]. In the following, we present a succinct description of the algorithm, and

the reader is referred to [30] for more details.

The idea is to start with an empty pairing, and then , durin g each stage, to find an

augmenting path in the graph which yields the maximum increase in weight. The

blossoms method is used for finding the augmenting pathsin the graph. To explain this

problem of maximum weighted matching in general graphs , we clari fy some terms from

graph theory. A matching in a graph is a set of edges, such that no two edges share a

common vertex. A sample matching in a non-full y connected graph, consisting of 8

vertices is shown in Fig. 3.3. Furtherm ore, a vertex in the graph withrespect to a matching

0{{ isfree ifn one of the edges in the matching are incident on thatvertex.An alternating

pathinthe graph with respect to the matching e lf is such that its edges alternately belong

to the matching olf, and not to the matching ot t . Moreover , an augmenting path is an

alternating path between free vertices.
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The matching elf is not maximum matching if and only if there is an augmenting

path with respect to elf. We search for the augmenting paths in the graph by performing

. . . '

8

0

0
8

Fig. 3.3. The solid lines show the edges formin g a matching.

---

---
Fig. 3.4. A cycle of inner and outer vert ices.

a breadth-fir st search starting from free vertices. We call an edge in the matching as

'so lid' and an edge not in the matchin g at 'dotted' . To search for the augmenting path

from a free vertex, we build a tree of alternating paths. The root, as well as all the vertices

which are at an even distance from the root are called 'i nner vertices ' . If we run into a

free inner vertex , then an augmenting path to that vertex can be constructed.
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The step of building the tree is based on scanning an outer vertex, v. Each solid

edge (v, w), where w is not already in the tree, is added to the tree. Vertex w is designated

an ' inner' , and the solid edge (w,x), which is unique, and is incident with wi s added to

the tree, and x is labeled as 'o uter' .

During the process of scanning the outer vertex v, if we encounter an edge (v, w),

in which w is outer, we then form a cycle as in Fig. 3.4. In this case , we contract the

cycle to form a super-vertex, called a blossom, and continue so on. Moreover, if we

encounter a free vertex, then an augmenting path can be constructed from the root to that

vertex. We show this with an example. Consider the following graph:

0-····0-0·····cp

0-CP-6 53
6·····0

Starting with a breadth-first search from vertex 1, we see cycle 5 - 10 - 9 in the following

graph.

0- - - --0-0----0-C): _~
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A blossom is formed by shrinking vertices 5, 10, and 9, and the search is continued.

0· · · ··0-0· · · · ·0-e.~

We then shrink (5, 10,9),6, 8 into a single vertex.

o I 0 I 0 I

0· · ···0-0· ·· ··~·0

We hence find an augmenting path in the shrunk graph . By unshrinking , the following

augmneting path in the original graph can be found.

8 ·····0-0·····0-0····0-0·····0-0·····0
We start with an empty pairing, and during each stage find an augmenting path in

the graph which leads to the maximum increase in weight. The algorithm solves the

pairing problem in O(N 3
) time, and avoids the need for an exhausti ve search. Moreover, if

the number of users to be paired is large, the set of users can be split into randomly chosen

smaller groups to reduce the complexity of the algorithm , while however compromi sing

the performance .

3.3 Heuri stic User Pairing Algor ithms - Approaching Optimal Perform an ce

In this section, we propose computationally simpler heuristic user-pairing schemes

to simplify the pairing process. In particular, we propose max-max pairing to maximize
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the total netw ork cap acit y. Moreover , max-min pairin g is propo sed to minim ize the

average outage probabi lity.

3.3. 1 Max-max pairin g

Thi s algorithm pair s users with the objective of approaching the optimal capacity at

a much reduced computational complexity. A weig ht matri x W with zeros on main

diagonal, and symmetric entrie s [Wl,J = [W1J" = C"D+ Cl ,D is established, where i and

j are potential pair s. The O(N 3
) algorithm is formally presented in the follow ing:

a) Initializ e an empty pairing ~,

b)Selec t the largest element from W , for instanc e [Wl,l ' and form the pair by

augmenting ~ with i and j ,

c) Update W by remo ving the rows and columns correspond ing to the pair form ed in (b),

d) Continue from (b) unti l ~ is complete and all node s have been paired ,

Max-max pairing has the same big 0 comp lexity as the optima l pairin g, which

depict s that it sca les similarly to the chang es in input size, as the optima l pairin g,

However, max -max pairing is significantly comput ationally simpler than the optimal

pairing, as it requir es simpler comput ations. Thi s is also refle cted in the average simulation

times which are referred to in Chapter 5.

3.3.2 Max-min pairing

Thi s heuri stic algorithm is designed to addr ess the system outage prob abilit y. We

start with the weak est user (in term s of the SNR to the BS) in the cell and pair it with the
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user having the strongest of the weaker of source-relay and relay-dest ination links, since

the outage performance is always determ ined by the weaker of the two links [31], and

continue so on for other users. The algorithm has comp lexity of O(N 2
) , and is formally

presented as follows:

a) Initialize an empty pairing ~ ,

b) Select a node i with the lowest Yi.D and pair it with} with max[min( Yi,J' Yj,lJ)],

c) Augment the pairing ~ with the pair formed in (b), and update the set of eligible nodes.

d) Continue from (b) until ~ is complete and all nodes have been paired.

Apparent ly, max-min pairing is computa tionally efficient because it involves

cheap computations. This is also reflected by the simulation times as stated in Chapter 5.

3.3.3 Random pairing

Pairing users randomly is the most straight-forward strategy , and is the simplest to

implement in practice. From the set of eligible users, two randomly chosen nodes are

paired. ~ is augmen ted, the set of eligible users is updated, and the algorithm repeats until

all users have been paired. Although random selection is not an effective way of pairing,

we include it here for comparison purposes.

3.4 Conclu sion

In this chapter, we considered the problem of mutual user pairing in network-coded

cooperative networks . We proposed an optimal pairing algorithm , and tailored it to

maximize the network capacity . We subsequently proposed computationally simpler
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heuristic pairing algorithms. In particular , we proposed the max-max pairing with the

objective of maximizing the network capacity . Moreover, we proposed the max-min

pairing to minimize the outage probability .

The performance analysis of the proposed optimal and heuristic algorithms is

presented in Chapter 5,where these are compared in terms of average capacity , average

outage probability , and user-fairness. The suitability of these algorithms , in view of

varying system performance requirements is also discussed .
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Chapter 4

Power Minimization: Joint& Constrained
Optimization

In energy-constrained wire less networks , the design of energy efficient protocols

is imperative . For the network -coded coopera tion scenario under consideration , we have

emphasized that the gains associated with cooperation and network codin g are the

improved throughput and outage performance , brought about by the achie ved spatial

diversity. However , for energy constrained wireless networks such as sensor and cellular

networks, where minimizing the energy consumption is one of the objectives , these

performance gains can be traded-off with energy savings, and can therefore result in

significantly improved battery lifetimes .

In this chapter, we consider power minimization , and solve a joint optimi zation

problem . In the joint optimization problem, we perform user pairing to maximi ze the total

network capacity , and minimize the transmission power per user, such that certain

network performance constrain t in terms of the average outage probabi lity per user, or the

average capacity per user is satisfied. We use the maximum weighted matching algorithm

(as described in Chapter 3, Section 3.2.1) to obtain the optimal user pairing which leads to

the maximum total network capacity. Subsequentl y, we use the bisection optimization
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[32] , to solve for the minim um transmi ssion power per user , such that the given constra int

on the average capacity per user, or on the ave rage outage probabi lity per user is satis fied.

4.1 Power Minimization: Joint Optimization of Power and Capacity

We first find the optim al user pairing le ' which maximi zes the total network

capacit y

There fore,

C,urn=L iCi'

le' =arg ~:; C,urn (le ),

(4.1)

(4.2)

where II is the set of all possible user pair ing sets, such that every set 1!'E II is the

pairing containin g Nu.,ers / 2 disjo int user pairs. The maximum weig hted matching

algorithm is used to solve the prob lem of determining the opt imal user pairin g which

leads to the maximum total network capaci ty . We construc t a weighted undirected graph

c9=(V, E), where the vertices V are the user s to be paired , i.e.,

i , j E {I, ..., Nu.<erJ , i ~ j, conne cted by theset of edges E. Furthe rmo re, IV 1= N",er.< and

IE1=Nu.,ers(Nu.<ers- I) / 2 (as the graph is fully connected), where 1·1 denotes the

cardinalit y of the set. Each edge (i, j) has an asso ciated wei ght Wi .} =C i•D + C } .D' The

pai ring is obtained from the maximum weighted matchin g algorithm (exp lained in

Secti on 3.2.1, Chap ter 3).
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Afterdetennining the optim al capacit y pairin g ~ap' , we use it further , and perform

power minimi zation using the bisection optimi zation method [32], such that the network

performance constrai nt is met. Equa l power allocation is assumed for all users. The

bisection method , sometimes also referred to as the binar y sea rch algorithm , can be used

to locate the root of a continuous function by enclos ing it in an initial search interval, and

then successively halving it, such that the root stays enclo sed within the new interval [32].

4.1.1 Power Minimization & Ca pacity Max imization, with a Const ra int on Average

Outa ge Probabili ty per User

Given the performance constraint in terms of the aver age outag e probabilit y per

user, i.e.,

(4.3)

where ct>au,(P) is the average outa ge probabilit y per user, which is a monotonically

decreasing funct ion of the transmission power per user , P, and ct>out_lh is the maximum

acceptable average outage probabilit y per user. The optimal transmi ssion power per user,

P
mm

' , i.e., the minimum power which meets thisconstraint on outage probabilit y satisfies

(4.4)

We use the bisecti on method to solve this constrained optimi zation problem . To find

Pmlt : , we locate the root of the function

(4.5)
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An upper and lower bound on the transmission power define the initia l search

interval [~ , l~J , such that it contains the root of F(P), i.e., r.; The function F(P) will

have opposit e signs at the endp oints of this search interv al, as the root is contained within

this interval. This sea rch interval is halved in subsequent iterations, and the value of either

~ or p"(whic heve r is farther from the root) is updated, and assig ned the value equa l to

the mid-point of the interval in the previo us iteration. This is done such that the root stays

trapped within the new interval, i.e., F(P) still has opposi te signs on the new end points.

The bisection method converges to the actua l root with a predefin ed tolerance, c . The

algorithm for outage probabil ity-c onstrained power minimi zation is forma llyexpressed as:

( I) Choose the initia l values for~ and p", such that the root lies within [~ , P" l ,

(2) Set the transmission power to P =~ + (P" -~) / 2, i.e., the mid-point of the search

interva l,

(3) Obtain the new optima l capacity pairing f!?ap'(using the maximum weig hted matching

algori thm) for the current transmission power P,

(4) IfF(P) =0, exit

Else if(P"-~) < e AN D F(P) > 0, exit

Else ifF(P) ·F(~» O, then ~ = P

Elsep"=P

go to step (2).
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4.1.2 Pow er Minimi zation & Capacity Maxim ization , with a Constraint on Ave rage

Capacity per User

Given the performance constraint in terms of the average capacity per user, i.e.,

(4.6)

where <1Jcap (P) is the average capacity per user, which is a monotonically increasing

function of the transmission power per user, P, and <1Jcap _
' h

is the minim um acceptable

average capacity per user. The optimal transmissio n power, P"1I: ' i.e., the minimum

power per user which meets this constraint on average capaci ty per user satisfies the

equation

(4.7)

We use the bisection method to solve this constrained optimization problem . To find

P"1I: ,we locate the root of the function

(4.8)

The algorithm for capacity - constrained power minimization is fonnallyexpressed as:

(I) Choose the initia l values for 1; and p", such that [1;,P"J contains the root of F(P),

(2) Set the transmission power to the mid-point of the search interval , i.e.,

(3) Obtain the new optimal capacity pairing ~ap' for the current transmission power P,

using the maximum weighted matching algorithm,
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(4) IfF( P) =0, exit

Else if(?" - ED < & AND F( P) < 0, exit

Else ifF(P)· F(~) > 0, then ~ =P

Else?,,= P

go to step (2).

4.2 Conclusion

In this Chapter , we considered the problem of power minimi zation for energy

constrained wireless networks. For the network-coded cooperation scenario under

consideration, we presented a joint optimization algorithm which maximizes the total

network capacity, and minimizes the transmission power per user, while meeting the

constraint on the network performance in terms of the average capacity per user, or the

average outage probability per user.
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Chapter 5

Performance Analysis and Simulation
Results

In this chapter, we present the simulation results and performance analysis for the

network-coded cooperation frameworkconsi dered in this thesis. We first show the

performance analysis for the problem of user pairing to maximize the total network

capacit y, given fixed transmission power . The proposed algorithms are evaluated and

compared in terms of the average capacity per user, average outage probability per user,

and the per-user throughput fairness.

Performance analysis for the joint optimization problem for power minimization is

subsequently presented. The algorithms are evaluated in terms of the average

transmiss ion power per user, average capacity per user, average outage probability per

user, and the per-user throughput fairness .

The simulation setup is as follows . We use the exponential path-loss model [33]

with a reference distance of 1 m, and path-loss exponent of 3.5. The inter-source and

uplink channel bandwidt h is 10 MHz. The antennas at the mobi le stations and the base

station are modeled as having absolute gains of 6 and 20 dBi, respectively. The

information rate R = 0.25 bps/Hz, and the users are uniformly and randomly distributed
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over a cell of radius I km, with the base statio n situated at the cente r. Equal power

allocat ion is assumed for all users.

5.1 User Pairing for Capacity Maxim ization: Fixed Power Allocation

In this section , we present the simulation results for the optima l and heuristic user

pairing algorithms, which we proposed in Chapter 3, to maximi ze the cell capacity. The

resu lts are averaged ove r 103randoml y ge nera ted location sets , and 103randoml y

generated Rayleigh channe l samples per locatio n. All users use a fixed transmission

power of I Watt. In Fig. 5.1, the average capacity per user is shown vers usthe number of

users, for the four pairing schemes. As expected, the opti mal pairing algorithm, based on

the maximu m weig hted matching, and designed to maximize the cell capacity, yields the

maximum throughput per user for all numb er of users (Nu,m)' and is therefore used as

the benchmark for the heuristic schemes. The opt imality of the algorithm was also

verifie d through extensive comp arisons wit h the exhaustive searc h pai ring. From the

proposed heuristic pairing algorithms , max-max pairing achieves the closest capacit y to

the optimal pairing . For Nu,er. = 30 and 40 for insta nce, the max-max pairing is shy of the

optimal pair ing by 6.03 and 6. 12 percent , respecti vely. This per form ance is achieved

approximately four times faster when compared with the optimal pairing in terms of the

ave rage simulatio n times . Weighi ng the perfo rmance degradation against the relative

complexities of the two algorithms, max-max pairing emerges as a very good choice for

practical implementation. On the other hand, the max-min pairing algorithm is inferior to

max-m ax pairing, and performs worse than random pairing in terms of the average
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Fig. 5.1. Average capacity per user versus the number of paired users in the cell for the
proposed pairing algorithms .

capacity per user. This is anticipa ted, as max-min pairing is designed to address the

outage probability by pairing the strongest user in the cell (in terms of the source-

destination SNR) with the weakest one, and the second strongest with the second weakest

one etc., which leads to a lower value of average capac ity per user.

Tho ugh the optimal pairing scheme is designed to maximize the network

throughput, it also achieves the best outage performance. Moreover,theoutage

performance oriented max-min pairing algorithm matches the optimal algorithm in terms

of the average outage probabi lity per user, as they both demonstrate zero outage for all

values of N,,,er.,' When compared with the optimal pairing, the max-mi n pairing achieves

this performance approximately forty times faster , as reflected by the average simulation

times. Results for the average outage probability per user for the max-max pairing and
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Fig. 5.2. Average outage probability per user versus the number of paired users in the
cell for the max-max and random pairing algorithms .

random pairing are depic ted in Fig. 5.2. Max-max pairing is observed to perform worse

than random pairing for all Nu.,m' This is owing to the aggressive nature of max-max

pairing , which leads to a greater variance and spread within pairs (in terms of

throughput), and therefore results in relative ly high average outage probability per user.

Fairness performance , measured in terms of the per-user throughput Jain's fairness

index , which is defined as J=('I'Ci.V]2/ (Nu.<er.,.'I'Ci.v2], is depicted in Fig. 5.3. The
,-I ,.1

optimal pairing demonstrates the best fairness performance and achieves the maximum

value of Jain 's fairness index , which is around 0.98. This is because the Jain 's fairness

index is averaged over all location sets, and provides a measure of the long-term fairness.

The performance of the heuristic schemes is worse than optima l pairing as both max-max

and max-min pairing lead to a greater spread and variance within pairs (in terms of

throughput), which leads to lower fairness . The max-max pairing leads to a slightly
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Fig. 5.3. Per-user throughput Jain 's fairness index versus the number of paired users in
the cell for the proposed pairing algorithms .

better per-user throughput fairness than max-min pairing for most values of Nu,er.<' as

max-max pairing is desig ned to maxim ize the throughput for pairing users .

5.2 Power Minimi zation: Joint Optimi zation of Power and Capacity

We herein present the results for power minimization , given certain network performance

constraint. The performance constraint is in terms of the average outage probability per

user, or the average capacity per user. The pairing is performed to maximize the total

network capac ity, using the optima l capacity pairing algorithm , out lined in Section 5.1.

The power is subseq uently minimized using the bisection optimization, such that the

network performance const raint is satisfied . The results presented herein are averaged
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Fig. 5.4. Optimal (minimum) power allocation per user versus the number of paired users
in the cell, to meet the constraint on maximu m average outage probability per user.

Fig. 5.5. Average capacity per user versus the number of paired users in the cell. The
constraint is in terms of the maximum average outage probability per user.
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Fig. 5.6. Per-user throughput l ain' s fairness index versus the number of paired users in
the cell. The constraint is in terms of the maximum average outage probability per user.

over 102 randomly generated location sets and 103 randomly generated Rayleigh channe l

samples per location.

5.2.1 Power Minimization and Ca pacity Maxi mizat ion, with a Const rai nt on

Average Outa ge Pr obabili ty per User

In Fig. 5.4, the results for optimal power allocat ion per user (i.e., power

minimization) arepresented to meet the network performance constraint of the average

outage probability per user of 0.10 and 0.20, with the latter requiring lower power

(because of the inverse relationship of transmit power and outage probability). As it is

observed, the optimal power decreases monotonically with the number of pairing users.

As the number of users increase, the pairing opportunities improve, which allows the

threshold outage probability to be achieved with lower power.
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Fig. 5.7. Minimum average transmission power per user versus the number of pairing
users . Target capacity per user = 9.36 bps/l-Iz.

Fig. 5.5 shows the results for average capacity per user versus the number of

pairing users. A lower value of outage constraint leads to a higher average capacity , and

vice versa, because of the inverse relationship between outage probability and capacity. It

is noteworthy that the capacity for a certain outage constraint is steady, as anticipated.

However , with a fixed transmission power (i.e., without power minimization) , the capacity

increases monotonically with the number of users as the pairing opportunities improve.

Results for the per-user throughput Jain 's fairness index versus the number of

pairing users are presented in Fig. 5.6. For a lower valueof the targetaverage outage

probability (meaning thereby a higher average capacity) , the Jain's fairness index is higher.

This is expected as the variations in the capacity for different users, relative to (a higher

value of) average capacity are lower, leading to a higher value of the fairness index.
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Fig. 5.9. Per-user throughput Jain ' s fairness index versus the number of pairing users.
Target capacity per user = 9.36 bps/Hz.
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5.2.2 Power Minimization and Capacity Maximi zation, with a Constraint on

Average Capacity per User

Fig. 5.7 shows the results for optimal power allocation (i.e ., power minimization)

against the number of pairing users, to achieve the threshold average capacity . The value

of the threshold capac ity is chosen as 9.36 bps/Hz, which is the value achieved with

optimal capacity pairing, for a fixed transmission power of I Watt , for N""" =20 (refer

to Fig. 5.1). As expected, the optima l power decreases monotonically with increasing

the number of pairing users, or, in other words, with improvi ng the pairing opportunities.

An interesti ng point on the curve is for N",m = 20, where the optima l power is

approximately 1.05 Watts. This point is consistent with the results observed in Fig. 5.1 in

Section 5.1, where a fixed power of I Watt produced an average capacity of 9.36 bps/Hz ,

for optimal capacity pairing, for N",m =20. The subtle discre pancy is owing to the

tolerance of the bisection optimization. The bisection optimization converges to the

solution (for optima l power) , which can be greater than the true value by as much as a

predefined tolerance .

Results for the average outage probability per user are depicted in Fig. 5.8. The

outage probability is zero for N",,,, > I0, and is therefore not plotted on the logarithmic

scale. The outage probability diminishes to zero as the pairing opportunities improve with

the increasing number of users.

The per-user throughput Jain's fairness index is shown in Fig. 5.9. For a single

channel realization at a particular location set, only the average capacity per user should

meet the threshold value, as differen t users in the cell achieve varying capacity . This
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means that user-fairness for a particular channel realization may not be high. However,

the fairness index plotted in Fig. 5.9 is averaged over the location sets, which provides a

good measure of the long-term user-fairne ss. The average per-user throughput fairness is

steady, and is close to unity.

5.4 Conclusions

In this chapter, we present the simulation results and performance analysis for

thepropo sed framework for the network-coded cooperation in this thesis. We present the

results for the algorithms to maximize the total network capacity, with a fixed

transmission power. It is observed that the optimal pairing algorithm achieves the best

performance in terms of the average capacity per user, average outage probability per user,

and the per-user throughput fairness. Of the heuristic algorithms, the max-max pairing

approaches the optimal capacit y, and demonstrates good fairness, whereas the max-min

pairing algor ithm matche s the optimal pairing in terms of the average outage probability

peruser.

We then consider joint optimization as we perform power minimization and

capacity maximization, given network performance constraints in terms of the average

outage probability per user, or average capacity per user. It is observe d that the average

optimal power per user required to meet the performance constraint decreases

monotonicall y with the number of pairing users, as the pairing opportunities improve.
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Chapter 6

Conclusions and Future Work

Our novel work presented in this Thesis paves the way towards a practical

implementation of network coding in infrastructure-based cooperative wireless networks.

The major contributions, conclu sions, and future research direction s are presented in the

followin g section s.

6.1 Contributions of the T hesis

Our key contributions in this Thesis are enumerated as follows:

a) Realization of network coding in infrastructure-based cooperative wireless

networks through mutual user pairing, in the abse nce of dedicated relay nodes,

b) Devising of an optimal mutual user pairing algorithm. In this work, we tailor

the optimal pairing algorithm to maximize the network capacity ,

c) Designing of the heuristi c max-max pairing algorithm to approach the optimal

capacity at a significantly reduced computational complexity,

d) Designing of the heuristic max-min pairing algorithm to minim ize the outage

probability at a reduced comp lexity, and

e) Capacity maximi zation and power minimization through joint optimization for

energy-constrained network-coded cooperative wireless networks, given network

performance constraint in terms of the average capacity or average outage probabi lity.
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These are summarized in the next sections.

6.1.1 Mutua l User Pairin g in Infr astructure-based Network-Co ded Coo perat ive

Wire less Networks

The design criterion which greatly impacts the perform ance of cooperative

networks is proper relay selection. One of the contribution s of our work is addressing the

problem of mutual user pairing in an infrastructure-based network-coded cooperative

wireless network , where users having data to transmit mutually pair among themselv es to

realize network coding. We consider a truly multi-u ser environment, and assume no

dedicated relays in the cell. Two nodes constituting a pair periodicall y swap the roles of

the source and relay to mutually achieve spatial diversity. The inter-user channels are

modeled as non-ideal (noisy with Rayleigh fading). Conditioned on the successful

detection of the source's packet, a network-coded packet is formed at the relay by a linear

combin ation of its own packet and the source's packet. This underlines the significance of

the quality of source-relay channel for the performanc e of network- coded cooperation. A

single transmission of this network-c oded packet therefore helps both nodes to achieve

diversity gain. We assume spatially independent , frequency flat Rayleigh fading channels,

with additiv e white Gaussian noise (AWGN), exhibitin g block fading.

6.1.2 Opt imal User Pairin g to Max imize Network Ca pacity

Our next object ive it to perform user pairing to optimize certain network

perform ance metric s, such as average capacity , average outage probability , and/or user­

fairness. We propose an optimal user pairing algorithm and tailor it to maximize the
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network capacity. This is based on the Jack Edmond's maximum weighted matching

algorithm in general graphs [30]. We construct a weighted graph where the vertices

represent the users to be paired, connected by the edges with weight equal to the sum of

the capaciti es of connected vertices, given that they pair with each other.

This optimal capacity pairing algorithm demonstrates the highest average capacity,

lowest average outage probability, and the highest per-user throughput fairness. For

networks with smaller number of users and where pairing complexity is not the foremost

concern , the optimal pairin g is most favourable. The optimality of the algorithm is

verified through extensive compari sons with the exhaustive search pairing. The average

optimal capacity per user, with a fixed transmission power, increases monotonically with

the number of pairing users, as the pairing opportuniti es improve.

6.1.3 Max-max Pa iri ng: Approac hing the Optimal Capacity

We subsequently propose heuristic algorithm s, designed to approach the optimal

performance at a reduced computation al complexity . In particular , we first propose max­

max pairing to maximi ze the capacity. It was demonstrated that max-max pairing

approaches the optim al capac ity (within - 7 percent of optimal capacity for the range of

number of users considered in simulations), and exhibits exce llent average per-user

throughput Jain' s fairness index of more than 0.94 for all number of users. The average

simulation time of the max-m ax algorithm was four times lesser than that of the optimal

capacity pairing algorithm . Max-max pairing is therefore an excellent choice when high

throughput and fairness are desirable, at a reduced computational complexity. However,

due to the aggressive nature of max-max pairing to maximize the capacity, the spread
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among the pairs (in terms of capaci ty), for a single channel realization is higher, which

leads to a higher average outage probabi lity per user.

6.1.4 Max-min Pairing: Minimizin g the Outage Probability

We then propose max-mi n pairing algorithm to minimize the outage probability .

The max-min pairing matches the optima l pairing in terms of the average outage

probability per user, as they both demonstrate zero outage for all channel realizations

considered in our simulations. The operation of max-min pairing underlines the fact that

the outage perfo rmance is dominated by the weaker of the source-re lay and relay­

destination links. However, since max-min pairing pairs the weakest user in the cell with

the strongest user, and the second weaker with the second strongest etc., it demonstrates a

lower average capacity per user. Moreover, the max-min pairing is forty times faster than

the optimal capac ity pairing in terms of the average simulation time. Max-min pairing is

therefore preferable for scenarios where the average outage probability is of vital concern

with a reduced computational complexity.

6.1.5 Power Minimization: J oint Optimization of Power and Capac ity

Our next objective is to trade-off the achieved performance gains, in terms of

improved throughput and outage performance for power minimization; this is vital for

energy-co nstrained wireless networks, such as sensor and cellular networks. We solve a

join t optimization problem to perform capacity maximizatio n and constrained power

minimization, given the network performance constraint in terms of the average capacity

per user or the average outage probability per user. We use the maximum weighted
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matching algorithm to obtain the user pairing which maximizes the network capacity. We

subsequently use the bisection optimi zation to obtain the minimum transmis sion power

which meets the network performance constraint. The optimal (i.e., minimum )

transmission power to meet the given constraint decreases monotonically with the

increase in the number of pairing users . As the number of pairi ng users increase, the

pairing opportunities improve , which allows the performance constraint to be achieved

with lower transmission power .

6.2 Recomm endation s for future research

Our novel work on infrastructure-based network coded cooperative network s

paves the way towards a practical deployment. Owing to the novelt y of this work , there

are a number of off shooting research directions.

We consider equal power alloca tion to all users in the cell. Relaxation of this

condition, and consideration of non-equal transmit power is an important future

consideration. Moreover, optimization of the rate and power allocation between the first,

i.e., direct , and second , i.e., the network coding phases of transmission, depending on the

inter-source and source-destination channel states is an intriguing problem for

investigation. Furthermore, the design and incorporation of network-channel codes into

the considered framework , which can enhance the performance is an interesting problem

for future consideration.
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Appendix A.

We present here in the der ivati on of Equation 2. 10. The outage eve nt for node i is

The prob abilit y of outage is

(A.2)

(A.3)

using Tay lor 's series in two variable, we get the ranges for Y,» and Y,» as

0 < r ,» < [22R1
( I- a ) - 1]- [22R1

( I - a ) +1]r i.D'

0 < r ,» < [22R1
(I - a ) - 1](1- a).

Using these ranges to so lves the integral, we get the outage prob ab ility as
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