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ABSTRACT

Dietary fats are a major component of our diet; the quantity and the quality of

dietary fats have been associa ted with the risk of cardiovascu lar disease (CVD).

Epidemiological and laboratory studies have show n that increased consumption of

saturated fatty acids (SFA) are associa ted with an increased risk of CVD, whereas

consumption of polyunsaturated fatty acids (PUFA) are associate d with reducing the risk

of CVD. The current recommendations to replace SFA with PUFA have led to an

increased consumption of omega-S (n-6) PUFA, shifting n-6 to omega-3 (n-3) PUFA

ratio from the 2-3: 1 in the diets of early hunter-gatherers to 25: 1 in the Western diet,

which may raise the risk of CVD. One of the objectives of this thesis was to investigate

the effect of various dietary n-6 to n-3 PUFA ratios on the regulation of lipid and

lipoprotein metabolism using C57BLl6 mice as an anima l model. The findings showed

significant altera tions in biochemica l parameters of C57 BU6 mice fed diets varying in n­

6 to n-3 PUFA ratios , which formed the basis for the maternal nutrition study . It is now

apparent that maternal diet during gestation and lactation may predispose the offspring to

CVD in later life. According to the 'develop mental orig ins of health and disease '

hypothesis, foetus responds to the nutritional environment by undergoing a series of

irreversible adaptations that predisposes the offspring to metabolic disorders in later life.

Given the health benefits of maintaining a proper ratio of dietary n-6 to n-3 PUFA, it was

of interest to understand the role of altered maternal dietary n-6 to n-3 PUFA ratio on the

regulation of lipid and lipoprotein metabolism in the offspring of C57 BU6 mice at

weaning. Offspring at weaning were selected to isolate the effects of pre-weaning diet,



excluding the post wea ning diet, on the offspring's lipid and lipoprotein metabolism. The

C57 BU6 mice were selected for the current study as these have been already established

as an anima l model in our laboratory to study ' in utero ' progra mming of lipid and

lipoprotein metabolism in the offspring.

In the one month feeding study, female C57 BU6 mice were fed a diet containing

20% w/w fat with n-6 to n-3 PUFA ratio of either 5:1, 15:1 or 30:1 to establish the effec t

on the regulation of lipid and lipoprotein metabolism . Mice were sacri ficed after one

month and variou s metabo lic paramet ers were measured. Feedin g diets with varying n-6

to n-3 PUFA ratios to C57 BLl6 mice led to the incorporation of dietary fatty acids in red

blood cell (RBC) phospholipid s (PL), and also altered the regulation of lipid and

lipoprotein metabol ism. In the materna l nutrit ion study, 8 week old female C57 BLl6 mice

were fed a diet contain ing 20% w/w fat with n-6 to n-3 PUFA ratios of either 5:1, 15:1 or

30: I for two weeks before mating, during gestation and lactation. Both male and female

offspring from eac h dietary group (n = IO/group) were sacrifice d at wea ning and var ious

metabo lic parameters were measured. A higher n-6 to n-3 PUFA ratio in the maternal diet

of C57 BLl6 mice led to higher plasma lipid and lipoprotein conce ntratio ns com pared to a

lower ratio in the offs pring at weanin g. Moreove r the ef fect of materna l diet was gender

spec ific. In conclusio n, a maternal diet high in n-6 to n-3 PUFA ratio resulted in higher

levels of lipid and lipoprot eins in the offspring at wea ning, which may be assoc iated with

an increase risk ofC VD in later life.
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Chapter 1: Introduction



1.1 Cardiovascu lar Disease

1.1.1 Global burden of card iovascular disease

Cardiovascu lar disease (CV D) is one of the leading causes of death in North

America and globally. It involves diseases of the heart and blood vesse ls and is the most

common end stage of a number of distinct diseases and therefore is multi factorial in

nature (Riediger et al., 2008). CVD is the largest single contributor to global mortality

(WHO, 2009) . The World Health Organization claims that 30% of global deaths in 1999

occurred due to CVD (WHO , 2005). It is estimated that a 55% rise will occur in the

proportion of deaths due to CVD, between 1990 and 2020 in the developing countries

(Murray and Lopez, 1996). According to Statistics Canada (2008), 29% (69,648) of

deaths were due to CVD; there was one death due to CVD in every 7 minutes. The costs

associa ted with CVD in Canada may exceed $20.9 billion annually (Statis tics- Heart and

Stroke Foundation of Canada, 2008). Thus there is an urgent need to design dietary based

therapeutic strategies for the treatment and prevention of CVD.



1.1.2. Risk factors associated wit h ca rdiovascular d isease

Risk factors ofCVD arc of two types: genetic and environmental (Tymc huk et al.,

2006). Since a rapid progression of incidence of CVD within a generation has been

observe d during the last few decades, some researchers sugges t that the causes for CV D

arc mostly enviro nmental rather than genetic (Symonds & Gardn er, 2006) . In contrast,

population based studies illustrate that the pathoge nesis ofC VD evo lves over decades and

has a genetic component and begins as early as childhood (Gi llman, 2005) .

1.1.3. Dietar y fat s as a ri sk factor of cardiovascul ar disease

Among environmental factors, diet and nutriti on have long been identifi ed as

major risk factors for CVD. The current research claims that increased incidence of CV D

within past few decades is due to sedentary lifestyle and consumption of a high caloric ,

high fat diet (Drewnowski & Popkin , 1997; Popkin , 2006) . A high fat diet alters the

regulation of lipid and lipoprot ein metaboli sm which may predi spose the individual to

develop CVD (Guo & Jcn, 1995; Chechi & Cheema, 2006; Magdc ldin et al., 2009).

1.2. Regul ati on of lipid and lipoprotein metab olism

Dietary lipids are a compl ex group of biomolecules which act as buildin g blocks

of cellular membr anes (German, 20 11). They act as substrates for metabolic energy and

provide a precur sor pool for a diverse range of metaboli c signalling molecules (German,

20 11). The recommended fat intake for adu lts is between 20-3 5% of total ca lories

(Dietary Guidelines of Americ ans, 2005). The lipids usuall y introdu ced with diet are

triglycerides (TG), phospholipids (PL) and cholesterol esters (CE) (Rader & Daugherty,



2008). Once dietary fats and cholesterol arc absorbed, they are transported via the

lymphatic system as chylomicrons and enter into the blood circulation. Chylomicrons

transport fatty acids to peripher al tissues such as adipose and muscle tissue. Lipoprotein

lipase (LPL) acts on chylomicrons releasing glycerol and free fatty acids (FFA) which are

taken up by the muscle and adipose tissues.

Liver is the main organ involved in the regulation of lipid and lipoprotein

metabolism. The liver is capable of de /l OVO fatty acid synthesis and secre tes very- Iow­

density lipoproteins (YLDL) which, upon the action of LPL, are converted to low-density

lipoprotein (LDL). LDL is cleared from the circulation mainl y through liver LDL

receptors. In addition, high-density lipoprotein (HDL) is generated by the intestine and

the liver, and is mainly involved in the reverse cholesterol transport (RCT) process. HDL

scave nges cholesterol from peripheral tissues and macrophages through the actions of the

transporter ABCA- I, forming nascent HDLs, promoting the efflux of cholesterol from

tissues. The free cholestero l (FC) in nascent HDL is esterifi ed to CE by the enzyme

lecithin cholesterol acyltransferase (LCAT) which creates mature HDLs, to deliver

cholestero l directly to the liver through the receptor SR-BI and indirectly by cholesterol

ester transfer protein (CETP) (Rader & Daugherty, 2008; Flock et aI., 20 11). Alterations

in the regulation of lipid and lipoprotein metabolism is associate d with an increased risk

ofC YD(Rader & Daugherty, 2008).



1.2.1 Pathogenesis of Cardiovascular Disease: Role oflipids and lipoproteins

Research on pathoge nes is of CY D has identified several independent factors

assoc iated with the morb idities of CY D, i.e. ox idative stress (Ce riello, 2002) , high LDL­

cholestero l (Ca rmena et al., 2004 ; St-Pierre et al., 2005) hyperglycemia (Wahab et al.,

2002 ; Eguchi et al., 2007), hyperinsulinemia (Inge lson et aI, 2005), and elevated markers

of inflamm ation such as C-reactive protein (CRP) and interleukin -6 (IL- 6) (Pearson et aI,

2003). Amon gst these factors, high LDL-chol esterol levels play a significant role in the

pathogenesis of CYD (Carmena et al., 2004). Oxid ative modifi cations of LDL have been

shown to result in numerou s changes in its biolo gic properti es that could have pathogenic

importance in atherosc lerosis (Steinbre cher et aI., 1990). These oxidized LDL particles

trigger a series of inflamm atory respon ses result ing an increased express ion of adhesion

molecules in the endothelial cells (Kita et al., 200 1). Th is leads to the recruitm ent of

macro phages which take up the ox idized LDL, transformin g them into foam cells. The

foam cells continue to grow and then ruptur e lead ing to a huge deposit of cholesterol on

the endothelial wa ll, recru iting more macroph ages and the cycle continues (Kita et al.,

200 1).

It has been reported that 1% increase in LDL-cholestero l is asso ciated with a 2%

increase in CYD, while a I% decrease in HDL-cholesterol was assoc iated with a 3-4%

increase in CYD (Wil son , 1990). Althou gh, the role of TG levels as an independent risk

factor of CYD remains uncertain , increased plasma TG levels were also known to be

asso ciated with increased risk of CYD (Shaikh et al., 1991; Bergeron & Havel, 1997). An

increased plasma TG conc entration has been shown to be assoc iated with the formation of



small CE rich chylomicron remnant s, which mediate cholesterol influx into the

endothel ial wall along with LDL (Shaikh el al., 1991). Therefore, factors related to

altered plasma lipid and lipoprotein levels are highl y associa ted with CV D risk, and

dietary fats have been identified as one of the major causes leadin g to altered lipid and

lipoprotein parameters (Mattson & Grund y, 1985a).



Figure 1.1 Lipid and lipoprotein metabolism

Modifi ed from Flock et al., 20 11. CETP and cholesterol ester exchange between

lipoproteins and HDL was removed from this figure as mice lack CETP.

TG = Triglyeerides, ACAT = Acy l-Co A cholestero l aey ltransferase , CE = cholesterol

ester, SR-B I = scavenge r reccptor-L, C = cholesterol, VLDL = very low-density

lipoprotein , LDL = low-density lipoprot ein, RCT = Reverse chol esterol transport, HDL =

high-density lipoprotein , LDLr = low-density lipoprotein receptor



1.3. Quality of dietary fats a nd cardiovascu lar disease

1.3.1. Dietary saturated and polyu nsatu r ated fatty aci ds in cardiovascular disease

Previous research has shown that the qualit y of dietar y fats playa major role in

altering plasma lipid and lipoprot ein levels (Mattson & Grund y, 1985b; Mensink &

Katan , 1989). Based on their saturation levels, dietary fats are mainl y of three classes ;

saturated fatt y acids (SFA), monounsaturated fatty acids (MU FA) and polyunsatur ated

fatty acids (PUFA). An increased consumption of saturated fatty acids (SFA) has been

associated with an increased prev alence ofCYD (Hu et al., 2001 ). Satur ated fatty acids

increase serum total cholesterol (TC), LDL-chole sterol and TG levels in human subjec ts,

which are known to be CY D risk factors (Hegs ted et al., 1993). A prospective

epidemiologica l study of 100 I middl e aged men reported that those who died from CY D

had high intake of SFA and a low consumpti on of PUFA, 20 yea rs prior to their death

(Kushi et al., 1985). Simi larly, high TC and LDL-chol esterol levels were reported in

human s who consumed a die t rich in SFA compared to a diet rich in PUFA (Matt son &

Grundy, 1985b). On the other hand , a meta-analy sis of 60 selected trials concluded that

the intake of PUFA, especia lly the intake of linoleic acid (LA), has been assoc iated with

reduced serum TG levels and TC levels compared to the diets rich in SFA (Mensink et

al., 2003). Linoleic acid is also associ ated with lowerin g LDL-cholesterol when replacing

dietary SFA (Hayes, 2000 ). Thu s, increased consumption ofP UFA has been sugges ted to

be assoc iated with decrea sed risk of CYD (Russo , 2009). In contrast, dietary intake of

SFA may increase the risk of CYD.



1.3.I.l Effects of dietary omega-6 polyunsaturated fatty acids in cardiovascular

disease

Dietary PUFA consist of omega -6 (n-6 PUFA) and omega-3 PUFA (n-3 PUFA),

which are esse ntial fatty acids for humans due to lack of desaturase enzymes respons ible

for introd uction of doubl e bonds beyond 6.9 position for de novo fatty acid synthesis .

Linoleic acid is the prim ary dietary n-6 PUFA, which gets converted to arachidonic acid

(AA) after elongation and desaturation (Harris et al., 2009) . On the other hand , parent n-3

PUFA , a-linolenic acid (ALA), gets converted to longer chain polyun saturat ed fatty acid

(LC-PUFA) , esse ntially docosahexaenoic acid (DHA) and eicosa pentaneo ic acid (EPA)

after elongation and desaturation, but this conversio n is poor in the presence of n-6

PUFA.

Previously it was reported that higher dietary PUFA levels are assoc iated with a

reduced ratio of total to HDL-lipoprotein cholesterol (Siguel, 1996). On the other hand ,

diets high in LA have been shown to increase the susceptibility of LDL- cholesterol

oxidation promotin g vascular inflamm ation (Steinberg et al., 1989; Ts imikas et al., 1999).

An increased risk of acute myocardial infarction was reported with high dietary AA

intake (Kark et al., 2003) . Om ega-6 PUFA are also invo lved in increasing the oxidation

susce ptibility of LDL and VLDL and thereby exerting deleterious ef fects on development

of CVD (Louheranta et al., 1996) . Collectively, these data indicate that the benefi cial

effects of n-6 PUFA on the onset of CVD are controversial. Thu s, it appears that the

cardio protective ef fect of PUFA may be highly attributed to n-3 PUFA



1.3.1.2 . Effects of om ega-3 po lyunsaturated fatty acids in cardiovascular disease

Among PUFA, n-3 PUFA are known to exert cardioprotcctive effec ts and are thus

increasingly being used in the prevention and management of several CV D risk factors

such as hypertension, dyslipid emia and metabolic syndrome (Yas hodhara et al., 2009).

Cardiovasc ular benefits from n-3 PUFA are mediated through several aspects, i.e.

modific ations of the lipoprot ein profil e, essentially by reducing TG levels, TC levels and

by increas ing the LDL particl e size (Sanders et al., 1997; Kelley et al., 2007).

Furthermor e, n-3 PUFA have been shown to reduc e tumour necrosis factor -alpha (TNF­

alpha) and interl eukin-I levels, which are known inflamm atory cytokines involved in

atherosclero sis (Caughey et al., 1996). In addition, n-3 PUFA are assoc iated with reduced

platelet aggrega tion (vo n Schacky, 2000), anti-arrhythmic effec ts (Kang & Leaf, 2000)

and improved endothelial dysfunction (Goodfellow et al., 2000), exerting

cardiopro tective effec ts.

1.3.2. Effect s of omega-3 polyu nsatu r ated acids on lip id and lipoprotein metabolism

Hypertri glycerid emia is a known risk factor for atherosclerosis (Groo t et al., 1991;

Austin, 1998); a number of studies have confirmed that n-3 PUFA can reduce plasma TG.

Dietary supplementation of n-3 PUFA to humans has been show n to reduce plasma

VLDL and TG levels comp ared to dietary supplementation of safflower oil rich in n-6

PUFA (Fisher et al., 1998; Chan et al., 2002) . Similarl y, a 24% reduct ion in fasting TG

levels and 92% redu ction in large VLDL particle s were reported in a double blind
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randomize d study after consuming 7.5 g of DB A oil/day for 45 days in

hypertriglyceridemic men (Kelley et al., 2007).

Anima l studies have also demonstrated the TO lowering effects ofn-3 PUFA ; by

increasi ng beta oxidation in the liver (Yamazaki et al., 1987; Halminski et al. , 1991) and

by decreasing the delivery of non-esterified fatty acids to the liver (Otto et al., 1992).

These mechanisms decrease plasma TO levels by reducing the substrate availab ility for

TO synthesis . Moreover , n-3 PUFA have also been shown to lower TO synthesis by

reducing the diglyceride acy ltransferase (DOAT) activity which is the rate limit ing

enzyme of TO synthes is (Gcc lcn et al., 1995).

Increased LDL-cholestero l levels are well known to be associated with an

increased risk ofCVD (Me nsink, 20 11). However, cardioprotec tive effects of n-3 PUFA

are not associa ted with decreas ing the plasma LDL levels, but by increasing the LDL

particle size as sma ller LDL partic les are more atheroge nic and larger particles are less

atheroge nic . Previous studies have repo rted an increase in the diameter of LDL­

cholestero l particles after consumption of n-3 PUFA in humans with hyperl ipidemia

(Contacos et al., 1993; Kelley et al., 2007) . A 0.25 nm increase was demonstrated in the

LDL part icle size in hyperlipidemic men after consuming 4 g of purified DBA for 6

weeks, although an 8% increase in the LDL cholesterol levels had also been observe d in

hyperlipid emic men (Mor i et al., 2000). In additi on, it was sugges ted that larger amounts

of fish oil could lower LDL-cholesterol concentrations (Harris et al., 1983).
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Another known cardioprotective mechanism by which n-3 PUFA could lower

cholesterol synthesis is by down regulating stero l regulatory clement-binding protein- I

(SREBP- I), a transcription factor that plays a vital role in choles tero l, fatty acid, and TO

metabolism. A study in LDL-r knockout mice reported that dietary n-3 PUFA, essent ially

EPA and DHA, markedly decreased plasma lipid levels by suppressing the activity of

hepatic fatty acid synthesis; this was due to reduction in the mRNA level of fatty acid

synthase (FAS) enzyme that was mediated via the reduction in SREBP- I expression

(Vasandani et al., 2002) . Recent studies, however, sugges t that a proper n-6 to n-3 PUFA

ratio is more beneficial in terms of reducing CVD risk than thc higher intake of n-3 PUFA

alone (Simopoulos, 2002; Simopoulos, 2008).

1.3.3 Significance of the omega-6 to omega-3 polyunsaturated fatty acid ratio in

cardiovascular disease

Mammals canno t convert n-6 PUFA to n-3 PUFA as they lack the converting

enzyme n-3 desaturase (Harris et al., 2008). Since these two classes of essential fatty

acids (EFA) are not inter-convertible and arc metabolically and functionally different,

they often exert opposing physiological functions. Thus, it is important to have both of

these EFAs in the diet. Elongation and desaturation of LA and ALA result in their

biologically active forms of longer chain derivatives such as AA, EPA and DHA. Since

these EFAs compete for the same enzyme system for their conversion, an optimum

balance is required for proper physiological functioning (Wijendran & Hayes, 2004;

Harris elal. ,2008)
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Both n-3 and n-6 PUFA act as primary subs trates for eicosa noids, which are

signalling molecules, derived from the oxidation of fatty acids and further production of

prostagland ins, thromb oxanes, and leukotrienes (Youdim et 01., 2000; Jordan, 20 10).

Biologically active eicosanoids from AA, an n-6 PUFA, are pro-infl amm atory,

prothromb otic, and generally promote atherosclerosis , while eicosanoids derived from

EPA and DHA, the n-3 PUFA, have been shown to be anti-inflammatory anti­

thromb otic, and have protective effects against atherosclerosis (Greenberg et 01., 2008;

Ott et 01., 2011). It has been stated that EPA and DHA are produc ed more efficiently than

AA, under higher levels of dietary ALA (Cetin et 01., 2009) . Thu s, higher dietary intake

of n-3 PUFA are recomm ended for many pathological conditi ons such as CYD and

autoimmune diseases in order to reduce the produ ction of prostanoids derived from AA

(Cetin et 01., 2009) . Alth ough it has been show n that the desatur ation and elongation

processes favour n-3 PUFA over n-6 PUFA (Hagve & Christopherse n, 1984), a higher

consumption of n-6 PUFA diets shifts the pathway in favour of the produ ction of more n­

6 PUFA derivatives (Jordan, 20 I0). Thus, it has been recomm ended that a lower n-6 to n­

3 PUFA ratio is beneficial in lowering the risk ofCYD (Sanders et 01., 1997; Simopoulos,

2008) .

Many human studies have reported benefici al effects of a lower dietary n-6 to n-3

PUFA ratio on lipid and lipoprotein metaboli sm. A decrease in both fasting and

postprandi al plasma TG levels were reported in older men and wom en fed a lower n-6 to

n-3 PUFA ratio compared to a higher n-6 to n-3 PUFA ratio (Moore et 01.,2 006; Sanders

et 01.,2006). Simil arly , reduction in plasma TG levels and favourable changes in LDL
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size were associated with the lower n-6 to n-3 PUFA ratio where subjec ts were fed n-6 to

n-3 ratio of 3:1, 5: I and 10: I (Griffin et al., 2006) . In addition, an in vivo study confirmed

that platelet aggrega tion was decreased, whic h is a know n risk faetor for atherosclerosis,

as the dietary n-6 to n-3 PUFA ratio was decreased (Freese et al., 1994). It has been

show n that the potential CV D benefit of ALA was achieve d only when the dietary LA is

reduced concurrently rather than when fed higher LA levels in male pigs (Ghosh et al.,

2007). Similarly, a study in apoE -/- LDLr-/- doubl e knock out mice reported a significant

reduction in plasma LDL-chole sterollevels after feedin g a low dietary n-6 to n-3 PUFA

ratio (0.29) compared to a higher dietary ratio betwe en 1.43-8 (Yama shita et aI., 2005) . lt

is therefore apparent that the n-6 to n-3 PUFA ratio plays an important role in

deve lopment ofCVD in adult life.
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DI ET

n-6 fatt y acids n-3 fatt y acid s

Alpha Iinolenie acid (18:3n-3)

Docosahexaenoic acid (22:6n-3)

Acyl-CoAoxidasc

Delta-6-de sat ura seI

•
24:5n-6

Linoleie acid (18:2n-6)

Gamma linolenic acid (18:3n-6)

Docosapcntacnoic acid (22:5n-6)

D
Octadecatetraenoic acid (18:4n-3)

• Elongase D
Homo gamma linolenic acid (20:3n-6) Eicosatetraenoic acid (20:4n-3)

• Delta-5- desat uras e D
Arachidonic acid (20:4n-6) Eicosapentaenoic acid (20:5n-3)

• Elongase D
Docosatetraenoic acid (22:4n -6) Docosapentaenoic acid (22:5n-3)

• Elongase D
Adrenic acid (24:4n-6) Tetracosapentaenoic acid (24:5n-3)

• Delta-6-desaturase D
Tctrahexaenoic acid (24:6n-3)

• DD

Figure 1.2: Elongation and desaturation of omega-6 and omega-3 polyunsaturated

fatt y acid

Modified from (Gao et al., 20 II )

15



1.4. Foetal Ori gins Hypoth esis

The foetal orig ins hypothesis states that the condi tions in-utero have a

programming effec t on the foetal physiology and metabolism (Barker et al., 1990; Barker ,

1997). This was originally proposed by Barker and accor ding to his theory , if a foetus is

dep rived of adequate nutrient supply during the gestation period, it wi ll be irrevoca bly

programmed in order to survive in the adverse conditions, predisposing the offspring to

deve lop diseases in later life. Prelim inary epidemio logical studies carr ied out by Barker

provided the initia l evidence supporting the foetal origins hypothesis. These studies

showed a relat ionship between materna l under-nutrition, low birth weight and

developm ent of adult diseases such as dyslipidemia (Barker et al., 1993), hypertension

(Barker et al., 1990) and insulin resistance (Phillips et al., 1994). All these studies

highlighted the importance of maternal nutrition on the onset of CV D in offspring's later

life. Thus, it has been sugges ted that low birth weig ht was a resu lt of maternal under­

nutrition during the cri tical period of the developm ent of the foetus. Subsequent studies

from Austra lia and South India on poor nutrition have further confirme d the strong

relationship between maternal under-nut rition and high risk of developin g CV D in the

offspring's later life (Fall et al., 1998; Hoy et al., 1999).

It is sugges ted that animals arc capable of developing a variety of ways of

adapting to the environment. Small size and slow metaboli sm facilita te an animal's ability

to thrive in adverse circ umstances, whereas large size and rapid metabolism facilitate

repro ductive success when the resources are more abundant (Hales & Barker, 200 I ;

Rajaleid et al., 20 11; Wells, 20 11). Often, these charac teristics arc induced in early life,
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depend ing on the environment where the mother is being expose d. However, once an

individu al is adapted to one environment, it may be at risk when exposed to a different

environment; this phenomenon is called developm ental plasticity (Bateso n et al., 2004) .

Observat ions in some human studies , where no relationship was reported between

maternal under-nut rition and development ofCYD in offspring's adult life (Stanner et al.,

1997; Huxley et al., 2002), have been explained on the basis of the " thrifty genotype

hypothesis" . Thi s hypothe sis explain s the selection of a "thrifty gene" and an increase in

the body' s capacity to store fat durin g periods of food shortage . Thi s predisp oses the

individual to an increased risk of developing insulin resistance when food becomes

abundant. Thi s adaptation could be delet erious if there is a difference between in-utero

and postnatal nutriti on , which predisposes the individual to diseases in later life (Neel ,

1962). None theless, foetal programm ing is not an express ion of pathological progression ;

rather it is an adjustment made during foetal developm ent to ensure adaptation to

postnatal life and sustenance of good health (Barker, 1990; Gluck man & Hanson, 2007;

Gluckman et al., 2008) . Considering these theories as the base, the effect of maternal

under-nut rition on developm ent of CYD in the offspring 's later life has been extensively

studied over the last few decades (Garofano et al., 1997; Vickers et al., 2000) . However,

in recent years, the attention has also been focused on excess matern al consumption of

dietary fats, which is one of the major causes behind the risk for CYD.
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1.5. Role of place nta in intrauter ine fatt y acid transfer

Accordi ng to the foetal origins hypothesis, there arc cri tical period s duri ng

gestation where nutrition plays a vital role in the development of the foetus leading to

persistent alterations in adulthood. The foetus so lely depends on the nutri ents provided by

the mother for its grow th and development dur ing intrauterine life. Among nutrients,

PUFA are mainl y provided to the foetal circulation by placental transport and the quality

and quantit y of PUFA reachin g the placenta depend on the matern al diet and metabolism

(Wittmaac k et al., 1995; Hanebutt et al., 2008) . During pregnancy, maternal metaboli sm

is altered in order to support the fatty acid requir ement of the foeto-pl acental unit. In

addition, the placent a also plays a major role in determinin g the quality and quantity of

PUFA levels in the foetal circulation throu gh its transfer ability and metabolism

(Hendrickse et aI., 1985; Berghaus et al., 1998; Haggarty, 2002) .

Previously it was reported that the fatty acid profil e is diffe rent in the foetal

circulation compared with that of the maternal, where a higher proportion of LC-PUFA

and a lowe r percentage of their precursors, LA and ALA were observe d in the umb ilical

artery (Crawfo rd et al., 1976; Benassayag et al., 1999). This observ at ion suggested the

abi lity of the placenta to increase LC-P UFA percentages in foetal blood in order to

support rapid foetal growth and central nervou s system developm ent. However, stable

isotope experiments in vitro and in vivo showed that the higher accretion of AA and DHA

in the foetus is due to the placental abilit y to preferenti ally transfer DHA and AA over

ALA and LA into the foetal circulation (Ruyle et al., 1990; Haggarty et al., 1999; Larqu e

et al., 2003) .
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Recent studies have shown that spec ific transport proteins in the placenta lead to

this preferential transfer of LC-P UFA to the foetus. These proteins are plasma membrane

fatty acid binding proteins (FABPpm), fatty acid translocase protein (FAT) , fatty acid

transporter proteins (FATP) and intracellular fatty acid bindin g proteins (FA BP) located

in microv illus and endothelial membranes of foetal capillaries (Campbell et al., 1998a;

Campbe ll et al., 1998b). The lack of specificity for a particular type of fatty acid and the

location of FAT and FATP on both sides of troph oblast cells in the placenta allows fatty

acids to transport bidire ctionally. Howev er, for its exelu sive location on the matern al side

and its preference for LC-PUFA , FABPpm seems to be impli cated in their sequestration

in the placenta (Dutta-Roy, 2000). Beside s, fatty acids arc also transported via simple

di ffusion across the conce ntration gradient to a certain extent (Hanebutt et al., 2008).

Onc e in the placenta, part of the fatty acids are ox idized in mitochondria to

produ ce energy and the rest are inco rporated into phospholipids. Also a certain proportion

of longer chain n-6 and n-3 PUFA are converted to prostagland ins by cyelooxyge nases .

The res idual fatty ac ids are elongated, desaturated and then released into the foetal

circu lation (Co leman & Haynes, 1987; Thorburn, 1991). This placental metabolism of

fatty acids is also a reason for increased LC-PUFA levels in the foetal circulation

compared with that of the maternal circulation. All of these data sugges t that adequate

LC-PUF A transfer to the foetal side is ensured via placent al fatt y acid transport proteins

in order to facilitate foetal growth and devel opm ent. Since, foetal fatty acids are

correlated to the maternal levels, it is important to maintain prop er LC-PUFA status in the

mother through diet in order to ensure optimal health of the offspring.
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1.5. 1. Role of matern al d iet on fatty acid compos itio n of milk

The maternal dietary fatty acid compositio n is one of the majo r factors which

determi nes not only the quality of fatty acids transferred across the placenta but also the

quality of fatty acids secre ted in the breast milk. The fatty acids in milk mainly originate

from one of three sources : mobil ization of endoge nous stores of fatty acids, synthesis of

fatty acids by the liver or breast tissue, and derivation from the diet (Insull et aI., 1959). It

has been show n that high maternal SFA and PUFA intake were reflected in breast milk

fatty acids (Mellies et al., 1979; Finley et al., 1985; Helland et al., 200 1). A high DHA

supplementation to women during the lactation period also showe d an elevated DHA

content in milk and in plasma of the infant (Jensen et al., 2000). Similarly, a numb er of

anima l studies have demonstrated that there was a significa nt corre lation between the

maternal diet and the breast mi lk fatty acid composi tion where anima ls were fed different

n-3 to n-6 PUFA ratios in rats (Jen et al., 2009) and in mice (Kago hashi et al., 2010).

Furthermo re, it has been reported that n-6 to n-3 PUFA ratios in breast milk and

erythrocyte (RBC) com position was nearly the same as that of the maternal diet. All of

these studies have demo nstrated that breast milk fatty ac id com position is greatly altered

by the maternal diet which plays a signi ficant role in determining the health of the

offsp ring in later life (Innis, 2005).
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1.6. Matern al dietary fatt y acid s and foetal pro gramming

Studies on the evo lutionary aspect of the hum an die t indicate that major changes

had taken place in the quality and quantity of dietary fats during last 200 years with a

significant increase in total and SFA intake (Simopoulos, 199 1; Simopoulos, 2006) .

Therefore, a high consumption of dietary SFA and a low PUFA intake may have

increased the prevalence of CVD. It is therefore, important to focus on the role of dietary

fats in development al origins of CVD.

1.6. t . Effect of mat ernal diet ar y saturated and pol yun saturated fatt y acid s on lipid

and lipoprotein metabolism of th e offsp ring

Previous studies carried out in our laboratory using C57BLl6 mice have shown

that, feedin g a high fat diet (20% W/W) rich in SFA during the perinatal period was

deleterio us compared to a diet rich in n-6 PUFA (Chechi & Cheema, 2006) . Elevated

total- and LDL-cholesterol levels were observe d in II week old offspring from dams fed

SFA during the perinatal period, while high HD L-cholesterol levels were observed in

offspring of dams fed n-6 PUFA (Chechi & Cheema, 2006) . In addition, it was reported

that higher LDL-cholesterol levels were associate d with reduced LDL-r expression in

female offspring obtained from mothers fed a diet rieh in SFA (Chechi et al., 2009).

Therefore, maternal die tary exposure to SFA may be associa ted with an increased risk of

CVD in the offspring by inducing dyslipidemia.

Oth er studies have also confirmed deleterious effects of matern al consumption of

SFA, and favourable effects of maternal consumpt ion of PUFA on offspring 's lipid
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metabol ism. Khan et 01., (2003) reported higher plasma TC levels in male offspring and

TG levels in female offspring at 360 days of age, when dams were fed a high fat diet rich

in SFA durin g the perinat al period compared to offsprin g of dams fed a control diet in

rats. Both male and female offspring were reported to have low levels of HDL-cholesterol

suggesting an adverse ef fect of perinat al SFA exposure (Khan et 01.,2003) . Similarly,

higher TC levels and lower HDL-cholesterol levels were observed in 160 day old rat

offspring obtained from dam s fed a high fat diet rich in SFA compared to offsprin g from

dam s fed a control diet (Gho sh et 01., 2001). Contrary to maternal expo sure ofa high fat

diet rich in SFA , a diet rich in EPA and DHA, resulted in lower TC level and TG levels in

macro somi c Wist ar rats at 2 and 3 month s compar ed to the offsprin g obtained from dams

fed a control diet (Yessoufou et 01., 2006) . These studies on foetal programmin g sugges t

that the quality of dietary fatty acids in maternal diet plays a significant role in

predisposing the offspring to develop CVD in later life.

Docosahexaenoic acid and AA are rapidl y incorp orated in the retina and nervous tissue

durin g last trimester of pregnancy and lactation period (Clandinin et 01.,1980a; Martinez,

1992) and it has been estimated that the human foetus needs 50 mg/kg/day of n-3 PUFA

and 400 mg/kg/day of n-6 PUFA (Clandinin et 01., 1980b). Therefore, many studies on

foetal programmin g have investigated the dev elopment al effects of n-3 PUFA on

neuroco gniti ve and visual function s of the offspring. Perinatal n-3 PUFA suppl ement ation

showed beneficial effect s on visual acuity (Birch et 01., 1992) and increased IQ levels

(Helland el 01.,2001) of the human offspring . Howe ver , to date, there is little evidence of

22



developm ental effec ts of maternal n-3 PUFA on offspring's lipid and lipoprotein

metabolism.

1.6.2. Effect of maternal ome ga-3 polyun saturated fatt y acid on th e lipid and

lipoprotein metabolism of th e offspring

As discussed in the above section ( 1.3.2), the cardio pro tective effects of n-3

PUFA in adults arc firmly established. A handful of studies have inves tiga ted the role of

maternal n-3 PUFA supplementation on the regulation o f lipid and lipoprotein

metabolism of the offspring. Low plasma TG levels and high HDL- cholestero l levels

were reported in I I week old rat offspring of dams who were supplemented with DBA

compared to dams fed a control diet (Go ng et al., 2009) . Similarly, low VLDL and LDL

levels were reported in rat offspring where diabetic dams were fed an EPAlDHA diet

compared to diabetic dam s fed a diet rich in vege table oil (Sou limane-Mok htari et al.,

2008) . Another study in diabetic rats demon strated that supplementation of EPAlDHA

dur ing pregnancy decreased serum TG and cholestero l levels in macro somic pups in

adulthood, at day 60 and day 90 (Soulimane-Mokhtari et al., 2005). Thu s, maternal

supplementation of EPA and DHA ass isted in improvi ng lipid anomalies in the offspring .

Sugges ted plausibl e mechanisms of improvement of TG levels in the offspring of dams

fed n-3 PUFA included reducing the substra tes for TG synt hesis through enhanceme nt of

mitochondri al beta oxidation, which was supported by an increase in carnitine

palmi toyltransferase I (CPT- I) mRNA expre ssion in the rat offspring of dams

supplemented with DHA (Go ng et al., 2009) . CPT-I is the rate- limiting step of the

carnitine palmitoyltransferase sys tem, catalyzing the transfer of the acyl group from
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coe nzyme A to carnitine to fonn acy lcarnitine, which is an esse ntial step in the beta­

ox ida tion of fatty acids.

Alth ough the above dat a support a beneficial effect of maternal n-3 PUFA

supplementation on of fspring, detriment al effec ts of dietary n-3 PUFA supplementation

also have been reported. Recentl y it was show n that excess ive ly rich or deficient levels

of n-3 PUFA in the matern al diet led to shortened life span of the offs pring (Church et

al., 20 10), which was sugges ted to be due to adve rse effec ts of excess ive n-3 PUFA

durin g the perinat al period cau sin g "nutritional toxicity" . Alth ough the mechani sms of

these programm ing effec ts are still unexplained , above data draw the conclus ion that any

cha nge , esse ntia lly inadequate or excess fatty acid supply during cr itical periods of

deve lopmen t can affec t ce ll grow th and differen tiat ion lead ing to health issues in the

offs pring in later life (Georg ieff & Innis, 2005) . Therefore, it may be importa nt to

consider the ratio o f n-6 to n-3 PUF A in the matern al diet as oppose d to simply increas ing

theintakeofn-3 PUFA .

1.6.3. Effect of maternal omega-6 to omega-3 polyunsaturated fatty acid ratio in

body weight and body length of the offspring

Accor ding to the developm ental origins of diseases hypoth esis, adve rse

intraut erine conditions lead to disproporti onate foetal grow th or low birth weig ht (Barker,

1995). Some studies hav e suggested that the perin atal dietary n-6 to n-3 PUFA ratio is

significant in determining health outcomes comp ared to the ind ividu al supplementation of

these fatty acids (Simo poulos, 2002; Simo poulos, 2008) .
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Growth and behavioural retardation has been reported in the offspring of dams fed

a diet with a n-6 to n-3 PUFA ratio of(0.32) compared to offs pring from dams fed a n-6

to n-3 PUFA ratio of four (Wainwright et al., 1999). The authors reported a 12%

decrease in body weight at weanin g suggesting that an imbalance of the dietary n-6 to n-3

PUFA ratio in the maternal diet deleteriously affeeted the gro wth rate of the offspring.

Other s have also reported a shorter body length in the offspring of dams fed either an

extremely low or a very high n-6 to n-3 PUFA ratio (Korotkova et al., 2002; Korotkova et

al., 2004 ; Santillan et al., 20 10). Some of the programmin g effects are not reversible as

significantly lower DHA levels were detected in the hypothalamus of off spring from

dams fed a high n-6 to n-3 PUFA ratio after switchin g to a diet rich in ALA durin g the

postnatal period (Kodas et al., 2002; Li et al., 2006). The above studies collective ly

sugges t that maternal exposure to extreme n-6 to n-3 PUFA ratios decreased growth rate

of the offspring thereby demon strating the importance of maint ainin g proper dietary n-6

to n-3 PUFA ratio durin g pregnancy.

Low birth weight was found to be assoeia ted with an increased risk of CV D

(Barker et al., 1989; Frankel et al., 1996; Rich- Edwards et al., 1997). Several studies

have shown the impa ct of matern al n-6 to n-3 PUFA ratio on the bod y weig ht and body

length of the offspring, thus a balance between the n-6 to n-3 PUFA in the maternal diet

may be an important factor in the outcome of CVD in the offsprin g. To date, there are no

studies investigating the impact of maternal n-6 to n-3 PUFA ratio on the regulation of

the offspring' s lipid and lipoprot ein metabolism which may be related to the future

developm ent of CVD .
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1.7. Evo lutionary as pec ts of di et a ry fatty aci ds

To day's diet has und ergone nutritional transition , which may be a maj or factor for

the increased incide nce of CVD. The dietary shift from increased complex carbohydrate

and high fiber content to an energy- dense diet containing high levels of SFA, was a major

factor contributing to the dram atic increase in CVD (Drew nows ki & Popkin , 1997).

Recent recomm endations are to replace atherogenic SFA diet with PUFA (Moza ffarian et

01.,20 10; Martik ainen et 01.,2011), whi ch has led to an increased con sumpti on of n-6

PUFA in the Western world (Simopoulos, 200 6; Simopoulos, 2008). Although

considerable amou nts of plan t derived ALA are consumed throu gh walnut s, flax seeds,

canola oil , spinach and Brussels sprouts in a typi cal Western diet, biocon version of ALA

to EPA and DHA is low (Jordan , 2010). In contrast, preform ed DHA and EPA are

consumed to a lower extent in a Western diet (Kris-E therton et 01.,2002; Innis, 20 11).

Thu s, diet ary shift from SFA to n-6 PUFA may not faci lita te the reduction of the

incidence of CVD; instead, it may aid in the developm ent of chron ic diseases due to

inadequ ate n-3 PUFA consumpti on and lead to an imbalance in the dietary n-6 to n-3

PUFA rat io. It has been estimated that the PUFA ratio of n-6 to n-3 in the present

Western diet is approximately 20-30:1 (Simopoulos, 2008 ; Wan et 01.,2010; Gomez

Candela el 01., 2011) wherea s human s evolved on a ratio of 1:1 (Kris-E therton et 01.,

2000; Simopoulos, 2008; Wan et 01., 20 10; Gome z Ca ndela et 01.,2011 ). It has been

suggested that, the appropriate ratio of dietary n-6 to n-3 PUFA for optimal bod y function

is around 3-5 :1 (Kris -Et herton elal., 2000) .
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The Foo d and Agr icultura l Organizat ion rep ort ed that co ns um ption of vege tab le

oi l has inc rease d fro m 13 g pcrsonlday" to 30 g personlday" in developed countries

ove r the per iod of 1961-1963 to 2001 -200 3 (Wo lmara ns , 2009) . Acco rding ly,

epide mio log ica l studies co nducted in Ca nada and Euro pe have co nfi rme d that the

maj orit y o f pregnant wo me n do not co nsume adequ ate am ount s of n-3 PUFA, especia lly

DHA (Loose mo re et al., 2004; Denomm e et al., 2005) . Given that the dietary n-6 to n-3

PUFA ratio in the current North Ame rican diet is 25-30 :1, it is most likely that this is the

n-6 to n-3 PUFA ratio con sumed by wo men of child bearin g age and durin g pregnancy

and lact ation in We stern soc iety.

1.8. Rationale of the study

N-3 and n-6 PUFA have ind ependent effec ts on metab olic pathways, thus an

optimum balan ce is requi red between these classes of PUFA to maintain who le body

hom eostasi s. The presen t study was designed to invest igate whet her alte ring n-6 to n-3

PUFA ratios in the maternal diet has programming e ffects on the regu latio n of lip id and

lipop rotein metab ol ism of the offs pring as altered lipid me tabo lism is a risk fac tor for the

deve lopme nt of CY D. C57 BU6 mice arc highly susce ptible to diet- ind uced

hyperlip idemi a and atheros clerosis (Sc hreye r et al., 1998). Our lab oratory has es tab lished

C57 BU6 mice as an anima l mod el to study matern al di etary fat- me diated programm ing

o f lip id and lipoprotein metab oli sm in the of fsprin g (C hec hi & Che ema, 2006; Chec hi et

al., 2009; Chechi et al., 20 10) . Thu s, C57 BLl6 m ice were used as an anima l model in the

current study to investi gate the effec ts of various matern al diet ary n-6 to n-3 PUFA ratios

on the reg ulatio n of lipid and lipopr otein metab oli sm o f the offs pring at we aning . Dietary
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ratios of n-6 to n-3 PUFA were 5:1,15:1 and 30 :1; the 30:1 ratio represe nts the eurrent

ratio in a Western diet , 5:1 ratio repr esent s the reeomm end ed , while 15:1 ratio is in the

middl e for a dose response effect of ma tern al dietary n-6 to n-3 PUFA ratios on the

regulation of lipid and lipopr otein metabolism of the offs pri ng at wea ning. Our previous

studies have shown gender speei fic regula tion of lipid and lipopro tein me tabo lism in

C57BU6 mice (C hec hi & Chee ma, 2006; Chechi et al., 2009), thus bo th male and fema le

offs pring were used to identify gender specific effects of maternal diets varyi ng in n-6 to

n-3 PUFA ratios . Th e co ntribution of post-n atal diet on developm ent of CY D can be

contro lled by altering the diet ary habit s of an indi vidu al. However, it is important to

determ ine whether matern al diets dur ing gestatio n and lactat ion will affect the regu lation

of lipid and lipoprotein metabo lism of the offs pring at weaning. The findings from this

study desig n may ass ist in design ing pro per die tary regimen for pregnant and lactating

mo thers (pre-weaning diets) to prevent the onset of me tabo lic diseases in the offs pring in

later life. The focus of the current study was thus to investigate the effects of maternal

diet on the lipid and lipoprotein metaboli sm of the offspri ng at wea ning thereby

eliminating the effec t o f post-weanin g diets .

The mot her is the so le provider of nutrients for the developing foetus, wh ile breast

mi lk is a nutrient source after birt h. Determination of total milk fatty acid composition of

dams fed var ious n-6 to n-3 PUFA ratios wo uld indicate the effec t of breast milk fat

compos ition on changes in the lipid and lipoprot ein metab oli sm of the offspring. The PL

fatty ac id composi tio n of RBCs are known to be corre lated wi th die tary fatty acid

compositions (Witte et al., 20 10) and is common ly used as a biomarker for n-3 PUFA
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status in the body (Harris el af., 2009) . Therefore, analyses of the offspring RBC PL fatty

acids will assis t in understandin g the degree of incorporation of maternal dietary fatty

acids intake in the body. Total milk fatty acid analysis and RBC PL analysis of various

dietary groups were therefore determin ed in the curre nt study. The curre nt study was

designed to address the above research questions with the spec ific aims and underlying

hypotheses as stated below.

1.9. Objectives and hypotheses

Aim 1: (one month feeding study) - To investigate whether feedin g a high fat diet with

varying n-6 to n-3 PUFA ratios will alter the regulation of metabolic parameters in

C57BU6 female mice after 4 wee ks of feeding.

Hypothesis: A diet high in n-3 PUFA is known to reduce plasma TG levels compared to

a diet high in n-6 PUFA. It was hypothesized that a lower dietary n-6 to n-3 PUFA ratio

will lower plasma lipid levels of females compared to a higher dietary n-6 to n-3 PUFA

ratio after 4 weeks of feeding.

Aim 2: (Maternal nutrition study) - To investigate the effec ts of altered maternal

dietary n-6 to n-3 PUFA ratios on breast milk fatty acid composi tion.

Hypothesis: Varying the maternal n-6 to n-3 PUFA ratios will alter breast milk fatty acid

composition to refl ect the dietary composition of the moth ers.

Aim 3: To investigate the effec ts of altered maternal dietary n-6 to n-3 PUFA ratios on

the RBC PL fatty acid compos ition of the offspring.
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Hypothesis: Varyi ng the maternal n-6 to n-3 PUFA ratios will alter RBC PL fatty aeid

compos ition to reflect the dietary composition of the mothers.

Aim 4: To investigate the effec ts of a high fat mate rnal diet with vary ing ratios of n-6 to

n-3 PUFA on the lipid and lipoprotein metabolism of the offspring at wea ning.

Hypothesis: A lower maternal dietary n-6 to n-3 PUFA ratios will lower plasma lipid

levels of the offspring at weanin g compar ed to a higher maternal dietary n-6 to n-3 PUFA

ratio.

Findings from the current study will establi sh whether a lower maternal n-6 to n-3

PUFA dietary ratio will lower plasma lipid levels of the offspring at wea ning.
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Chapter 2: Methodology
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2.1 Diets and Animals

2.1.1 Diets

A base semi-sy nthetic diet design ed specifica lly to permit the control of fat level

at 20% w/w was obtained in powdered form with the fat source omi tted (M P

Biomedicals , 0/-1, USA). The macronutr ient composi tion of the semi-synthetic diet is

give n in Ta ble 2.1. Fish oi l (Men haden) was obtained from Sig ma -Aldrich (USA),

whereas lard , sa fflower oil and ex tra-v irgin olive oil we re obtained from a local

supermarket to prepare three different oi l mixture s with n-6 to n-3 PUFA ratio s of 5:1,

15: I , and 30: I . The amount of saturated fatty acids (SFA), monoun satu rated fatty acids

(MUFA) and total polyun satur ated fatty acids (PU FA) was kept consta nt. Gas- liquid

chro ma togra phy (GLC) was utilized to de term ine the fatty ac id com posi tion of the oi l

mixtures and to confi rm the proper n-6 to n-3 PUFA ratios in all experimenta l diets,

wh ich is give n in Tabl e 2.2. Th e high-fat diets with di fferent n-6 to n-3 PUFA ratios were

prepared by mixin g semi-synthetic powd ered diets with the oil mixtures at 20% w/w and

diets were kept froze n at -20 °C und er nitro gen.

2.1.2 Animals:

2.1.2.1 Feeding diets with varying omega-6 to omega-3 polyunsaturated fatty acid

ratios to C57BLl6 female mice

Seven week old , femal e C57BL/6 mic e were purchased from Charles River

Laborator ies (MA, USA ). An ima ls were hou sed und er contro lled temp eratur e (2 1± 1°C)

and humid ity (35 ± 5%) in a single room with a 12-hour ligh tll 2-hour dark (7am-7pm,
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light ; 7pm-7am, dark) period cycle. Mice were fed commercial rodent chow pellets

during one week of acclimatization. Mice were randomly divided into three groups and

fed experimental diets (n-6 to n-3 PUFA ratios of5 :1, 15:1 and 30:1) for one month (n =8

per diet treatment). Animal s were provided with deioni zed water and fresh food ad­

libitum, every other day. Body weights were recorded once a week while food intake was

recorded every other day.

After one month (30 days) of feeding, mice fasted overnight and were euthanized

the next mornin g using isotluran e. Blood was collect ed by cardiac puncture in tubes

containing EDTA (4.5 mM, pH 7.4) and centrifu ged immediatel y at 3000g, 4°C for 15

minutes to separate plasma. All biochemical analyses were performed within one week

using fresh plasma stored on ice at 4°C. Various tissues and organs were also removed

and weighed at the time of sacrifice, snap frozen in liquid nitrogen and stored at -80°C

until further analyses . All the experimental procedures were done in accordance with the

principles and guidelines of the Canadian Council on Animal Care and were approved by

Memorial University's Anim al Care Committee.

2.1.2.2 Feeding diets with varying omega-6 to omega-3 polyunsaturated fatt y acid

ratios to female C57BL/6 mice during gestation and lactation to study their effect on

the offspring metabolism

Seven week old C57BLl6 male and female mice were purchased from Charles

River Laboratorie s (MA, USA). Female and male mice were housed in separate cages

under controlled temperature (2 1± 1°C) humidity (35 ± 5%) conditions in a single room
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with a 12-hour ligh tll 2-hour dark (7am-7 pm, light ; 7pm-7a m, dark) period cycle. Mice

were fed comme rcia l rodent chow pellets durin g a one wee k accli ma tiza tion period.

Afte r this period , female mice were rand oml y divided into three gro ups and fed

exper imenta l diets that di ffered in n-6 to n-3 PUFA rat ios (5 :1, 15:1 and 30 :1) for two

wee ks . One male was then introdu ced into eac h fema le cage for mating and was removed

afte r 14-days. Pregnancy was confinne d by vag inal plug forma tion. Pregnant female mice

were then housed in individu al clean new cages until pup s were born . After 2 wee ks,

cages were exa mined daily for the presence of litter s. Once the litters were born , they

were counted on postnatal day I , after which the moth ers and pup s were not disturb ed in

ord er to prevent cannib ali sm that was previou sly noted in our laboratory with high fat

diets. Moth ers we re continued on the experimental diets throughout the ges tat ion and

lactat ion period s. Fresh deion ized wa ter and food was provided ad-li bitum daily. Body

weight and food intake of dams were record ed eac h week during ges tation and lactation.

All the experi menta l procedures were done in acco rda nce wit h the principles and

guide lines of the Ca nadia n Council on Anima l Ca re and were approve d by Memo rial

Univers ity 's Anima l Ca re Co mmittee .

At the time of wea ning (3 wee ks afte r birth), pup s were faste d ove r nigh t. Body

weig ht and bod y length of the pups were measured ; pup s were then euthanize d usin g

isoflu rane. Blood was co llected by card iac pun ctur e in tubes containing EDTA (4.5 mM ,

pH 7.4) and centrifuged immedi ately at 3000g , 4°C for 15 minute s to separate plasma.

Plasma was store d on ice at 4°C and all biochem ical ana lyses were perform ed with in one

week . The rema ining plasma was stored at -80°C for further ana lyses. Var ious tissues and
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organs were removed and weighed at the time of sacrifice, snap frozen in liquid nitrogen

and stored at -80°C until further analyses. At weaning, dams were milked after

anesthetizing with pentob arbital (35mglkg/ intraperitonea l (IP) / (0. ImI/IOOg) and

stimulating milk secretion using oxytocin (4 IU/kg IP). Dams were then euthanized;

blood and tissues were coll ected as described abo ve.
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Table 2.1 Composition of th e semi-purified diet with 20% (w/w) fat level

Ingredients

Casein

Corns tarch

Alphacel non-nutritive bulk

Vitamin mix'!'

Semi -synthetic diets (glkg)

305

190

50

40

Supp lied in quan tities adeq uate to meet NRC requirements (Natio nal Research Council,
1995).
'¥Vitamin Mix ( I kg) : Thiamine hydrochloride, 0.6 g; riboflavin , 0.6 g; pyridox ine
hydrochloride, 0.7 g; nicotinic acid, 3.0 g; d-calcium pantothenate, 1.6 g; folic acid, 0.2 g;
d-biotin, 0.02 g; cyanoco balamin (vi tamin 812) , 0.00 1 g; ret inyl palmitate (vitami n A)
pre-mix (250, 000 IV/g), 1.6 g; DL-a-t ocopherol ace tate (250 IU/g), 20 g; cholecalcifero l
(vitamin D3, 400,000 IU/g), 0.25 g; menaquin one (vitamin K2), 0.005 g; sucrose, finely
powdered, 972 .9 g

*Mineral Mix: Ca lcium phosphate dibasic, 500 .0 g/kg; sod ium chloride , 74.0 g1kg;
potassium citrate monohydrat e, 220.0 g/kg; potassium sulfate, 52.0 g/kg; magnesi um
oxide , 24.0 g/kg; manganese carbonate (43-48% Mn), 3.50 g/kg ; ferric citrate (16- 17%
Fe), 6.0 g1kg; zinc carbonate (70% ZnO) , 1.6 g/kg; cupric carbonate (53-55 % Cu), 0.30
g1kg; potassium iodate, 0.01 g/kg; sodium selenite, 0.01 g/kg ; chromium potassium
sulfate, 0.55 g1kg; sucrose, finely powdered, 118.0 g/kg
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Table 2.2 Fatty acid compo sition of th e exper imental diets

Fatty Acid 5:1 Diet 15:1 Diet 30:1 Diet
% w/w

C14:0 1.26 0.39 0.11
C16:0 8.71 7.43 6.32
C 18:0 2.67 4.53 5.35

L SFA 12.64 12.35 11.77

C 16: ln7 2.41 0.09 0.36
C I8 : ln9 +C I8: ln7 25.14 25.8 1 27.82
C20: l n9 0.61 0.54 NO

L M UFA 28.16 26.43 28. 18

C 18:2n6 47.86 57.03 57.73
C20:4n6 0.23 0.14 0.11

C 18:3n6 0.10 0.04 0.04

C22:4n6 0.54 NO 0.09

LOmega-6 48.90 57.18 57.92

C18:3n3 0.78 0.64 0.55
C20:5n3 3.64 1.37 0.3 1
C22:6n3 3.19 1.16 0.39
C 18:4n3 0.87 0.20 0.15

C22:5n3 0.63 0.32 0.46

C20:4n3 0.66 0.12 0.08

L Omega-3 9.76 3.8 1 1.93

L PUFA 59.38 61.05 60.00

LOmega-6/0mega-3 5.00 15.00 30.0 1

Lipids were extracted from various diets and the fatty acid composition was determined

by gas chromatography. Abbreviations: NO= Not detected,:E SFA= sum of saturated

fatty acids, :EMUFA= sum of monounsaturated fatty acids,:E PUFA= sum of

polyunsaturated fatty acids, :EOmega-6= sum of omega-6 fatty acids, :EOmega-3= sum

ofomega-3 fatty acid
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2.2 Analyses of biochemical parameters

Plasm a TC and TG co nce ntrations we re determ ined usin g cho les tero l assay kit

#234-60 and TG assay kit #236-17 (Ge nez yme Diagnosti cs, P.E., Ca nada) . For the

plasm a TC assay, CE were hyd rolyzed to FC by cho les tero l es terase and FC was then

oxi dized to choles t-4-ene-3- one by cho les tero l oxid ase with a simultaneo us produ ction of

hydro gen peroxide. The produced hydro gen peroxide couples with 4-aminoant ipyrine and

p-hydro xyben zo atc , in the presence of peroxidase, yie lding a chro mog en with absorbance

at 500 nm .

For the plasm a TG assay, TG were hydrol yzed to gl ycerol and FFA s by lipase ;

glyce ro l was phosphorylated to glycero l- I -phosphate in the pre senc e of AT P and glycero l

kinase. Glycerol-I-phosph ate was then oxidi zed by glycero l phosphate oxid ase to yield

hydrogen peroxide leadin g to oxid ative coupling of p-chl orophenol and 4-

ami noa ntipyrine . Th is produces a red co lored quin oneim ine dye co mplex whi ch has a

maximum absorba nce at 520nm . Th e intensity o f the color produ ced was taken as dir ectly

prop orti on al to the conce ntration of TC and TG in the samples .

Non-HDL chol esterol was precipit ated from plasm a usin g kit #200-26A (DCL ,

P.E.! , Ca na da) and the supernatant was used for measurin g l-IDL-ch olesterol usin g total

choles tero l assay kit #234-60 following the same principle as stated above .

Plasma LDL-cholesterol concentration was calcul ated using plasma TC, HDL -

choles tero l, and TG concentration according to the method of Fried ewald et al . ( 1972).

Plasma FFA conce ntration wa s determined using kit# 999-3 46 9 1 (Wako Chemical s Inc.,

USA). Coenz yme A (CoA) was acylated by the pre senc e of seru m non esterified fatly
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acids in the presenc e of added acy l-CoA synthetase. Produ ced acy l-coA was oxidized by

added acy l-CoA oxidase with the genera tion of hydro gen peroxide. This produced

hydrogen perox ide permittin g oxidative condensa tion of 3-methyl-N-ethy l-N-(P-

hydroxyethyl)-an iline with 4-aminoantipyrine in the presence of peroxidase to form a

purpl e colored produ ct, which was measured co lorimetrically at 550 nm .

Plasma FC concentration was determined using kit# 435-358 0 1 (Wako Chemicals

Inc., USA) . Free cho lesterol in the serum was oxidized to cholestero lzrt-cholestcnonc by

cholestero l ox idase which produced hydrogen peroxide. Hydrogen peroxide, 3,5-

dimethoxy-N-eth yl-N-(2-hydroxy-3-sulfopropyl) aniline sodium and 4-aminoantip yrine

then undergo ox idative condensation in the presence of peroxid ase producing a blue color

that was measured co lorimetrically at 600 nm. Plasma CE was calculated by subtracting

plasma FC values from plasma TC values. Fasting blood glucose concen tratio ns were

measured at the time of sacrifice using a commercially avai lable glucomete r (Lifesca n

Inc, CA, USA) after snipping the tail.

2.3 Fatty acid ana lyses

2.3.1. Fatty acid ana lyses of diets

To analyze the fatty acid compos ition of the oils used for diet preparation , lipids

were extracted from safflowe r oil, fish oil, olive oil and lard using the method of Folch et

al. ( 1957). Fatty acid methyl esters were then prepared by heatin g the samp les with 2 ml

of trans-methylation reage nt (6% concentrated sulfuric acid and 94% methanol + few

crys tals of hydroquinone added as an anti-oxidant) for 2 h at 65°C in order to increase
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the volati lity of the fatty ac ids (Arv idson & Olivecro na, 1962). All of the organic

extractions were perform ed using hexane and water . Subseq uently, the samp les were

placed at -20°C overnig ht to freeze the trapped wate r and were transferred to a new tube

the followi ng mornin g. The samples were then dr ied under nitrogen (Ni) gas and

dissolved in 50 III of carbon disulfid e (Keough and Davis, 1979). The GLC parameters

were set as: ove n, 200°C; injector, 240°C; detector 260°C . GLC was ignited and allowed

to run overnig ht prior to runn ing samples in order to ensure that the baseline was stable.

Samples were run for 60 minut es on an Omegawax X 320 (30 m x 0.32 mm) column

from Supleco (Sigma-Aldrich, Canada) using a flame ionizatio n detector. PUFA

standards -2 and -3 (Sigma-Aldrich, Canada) were used as standards for identification of

fatty acids by retention time.

Once the fatty acid compos itions of four indivi dual oils were determ ined using

GC, tota l SFA, MUFA, n-6 and n-3 PUFA contents of each oil was calculated and fed

into a mathematical package, "Maple" as a coefficie nt matrix. Data were analyzed to

obtain the amount of each oil to be mixed in order to acco mplish three differe nt n-6 to n-3

PUFA ratios of5: 1, 15:1 and 30:1.

2.3.2. Fatty acid analyses of breast milk

To tal lipids were extracted from breast mi lk using the method of Folch et al.

(1957); and fatty acid methyl esters were prepared and the fatty acid com posi tion was

determined using GLC as describ ed in 2.3.1.
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2.3.3. Fatt y acid analyse s of red blood cell (RBC) membrane phospholipids (PL)

To tal lipids were extracted from RBC using the method of Folch et al. (1957).

Phospholip ids were separa ted from total lipids using thin layer chromatogra phy; lipid

samples were dissolved in IOO~tl of chloro form and spotted on Whatman 250 11mlayer,

20 x 20 em flexibl e plates coated with silica gel (Cata logue no: 4420222, Whatman Ltd.

UK). Phospholipids were separated using the solvent sys tem hexane: ethyl ether: acetic

acid (70 :30:2 v/v) (Keenan et al., 1982). Phospholipid spots at the point of origin were

scraped and extracted using 2: I chloroform:methanol. Fatty aeid compos ition of total

phosph olipids was determin ed using GLC as described above .

2.4. Statistical anal yses

The effec t of diet on various biochemical parameters was analyzed using one-way

analysis of var iance (ANOVA) and a New man-Keuls pos t hoc analysis was used to test

significant di fferences among groups (Graph Pad Prism- Version 5.0). Values were

expressed as group means ± SO. Differences were considere d to be statistically

significant if the assoc iated P value was <0.05. Breast milk fatty acid and RBC fatty acid

composi tion were expresse d as weig ht percentage of the total extracted fatty acids . This

percentage data for fatty ac id compositions were then arcsine transformed before

subject ing to sta tistical analysis in order to norm alize the data distribut ion as data was

skewed. Corre lation coe fficients (r) of dietary fatty ac ids vs . breast milk fatty ac ids and

RBC phospholipid s fatty acids vs. plasma lipids and lipoproteins were determin ed using

Graph pad Prism software (Prism version 5.0).
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Chapter 3: Results
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3.1 Effects of dietary omega-6 to omega-3 polyunsaturated fatt y acid ratio s on

regulation of metabolic pathways: One month feeding study

3.1.1. Body weight , food and caloric intake , pla sma glucose and non- esterified fatt y

acid (NEFA) concentrations

Body weight, food and caloric intake, plasma glucose and NEFA concentrations

of female mice fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios for one

month are show n in Table 3.1. A significantly lower body weig ht was observe d for

females fed a 15:1 diet compared to females fed 5: 1 and 30:1 diets (p=0.008), however,

there was no difference between females fed 5:1 and 30: 1 diets (Table 3. 1). Furthermore,

a significa ntly higher ovaria n fat content was observe d in 5:1 group while 15:1 group

showed the lowest ovaria n fat content (p=0.0347) ; the ovaria n fat content in 30:1 group

did not differ either from 5: I or 15: I groups.

Food intake and caloric intake did not differ significantly among various dietary

groups . No significa nt differences were observed in NEFA concentrations and blood

glucose concentrations among various dietary groups .
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Table 3.1: Body weight , food intake, caloric intake, non- esterified fatt y acid

concentrations (NEFA) and glucose concentrations of female C57BL/6 mice fed

exper imental diet s for one month

5:1 Diet 15:1 Diet 30:1 Diet

BW(g) 21.67± 1.21a 19.78 ± 1.496 21.95 ± 1.02a

FI (g/week) 25.94 ± 1.50 28.87 ± 9.10 26.82 ±6.00

C I/day 16.03 ± 0.90 17.84 ± 5.60 16.58 ± 3.70

Ovarian fat (g) 0.53 ±0.2I a 0.30 ±0.13b 0.39 ±0.07ab

NE FA (mmol /L) 0.59 ±0.13 0.54 ±0.09 0.44 ±0.08

Blood Gluco se (mmoVL) 9.03 ±2.55 7.40 ± 1.56 7.92 ± 1.87

Values arc expresse d as means ± SO, n = 8. Data were analyzed using one-way ANOVA .

Significan t effects were further analyzed using Newman-Keuls post hoc tests.

Superscri pts represent significant differences among various dietary groups having p <

0.05. BW, body weight; FI, food intake; CI, caloric intake .

3.1.2 Effects of dietary omega-6 to omega-3 polyun saturated fatt y acid ratio s on red

blood cell phospholipids fatt y acid composition

The RBC PL fatty acid composition of female mice fed diets containing 5:1, 15:1

and 30: 1 n-6 to n-3 PUFA ratios for one month are shown in Table 3.2. No significant

differences were observe d in total SFA and total MUFA content among various dietary

groups. The 5: 1 diet group had lower stearic acid content compared to 15:1 and 30:1 diet
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groups (p=0.003), howe ver, there was no difference betw een the \ 5:\ and 30: 1 groups.

The eicosae noic ac id content was also lower in the 5: \ group compared to the 30:1 group

(p=0.04); \ 5: I group did not di ffer either from 5: I or 30: \ group.

A significantly higher total n-6 PUFA (p=0. 002) content was observe d in 30: \ diet

group compared to 5:1 diet group, however, \5 : \ diet group did not di ffer from 5:1 or

30:1 diet groups. Amon gst individual n-6 PUFA, AA and docosate traenoic acid content

was the lowest in 5:1 diet group, followed by 15:\ diet group compared to the 30: 1 group

(p<O.OOO I). However, a higher LA (p<0.0006) content was observe d in 5:\ diet group

compared to \ 5:1 and 30: \ diet groups.

The 5: \ dietary group had a significantly higher total n-3 PUFA content than 15:1

and 30: I dietary groups (p<O.OOO\). Amongs t indivi dual n-3 PUFA, EPA, OPA and OHA

contents were significantly higher in the 5: I diet group compared to the 30:1 diet group.

A significa ntly higher EPA content was observe d in 5:1 diet gro up compared to 15:1 and

30: \ diet groups (p=0.0007) whereas OPA conten t was higher in both 5:1 and 15:1 diet

groups compared to the 30:1 group (p<O.OOOI). OHA content was highest in the 5:1 diet

group followed by 15:1 and 30: 1 diet group (p<O.OOO\).
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Table 3.2: Red blood cell phospholipid fatty acid composition of female C57BL/6

mice fed experimental diets for one month *

5:1 Diet 15:1 Diet 30:1 Diet

Diet (%w/w)

C14:0 0.21 ± 0.20 0.17 ± O. l l 0.19 ±0 .09

C16:0 19.95 ± 3.50 IS.99 ± I.S2 20.30 ±2.7S

C18:0 IS.S4 ± 1.27b 2 1.77 ±3 .0 Ia 22.53 ± o.n a

I SFA 3S.99 ±3 .26 40.92 ± 4.57 43.02 ± 2.34

C18:1n9 11.19 ±0. 97 II. S ± I.I S II A3 ± 0.53

C18:1n7 IA9 ±0.32 1.9S ±0.SO 1.50 ±0.16

C20:1n9 OA ± 0.06b 0041± 0.06ab 0049± 0.07a

I MUFA 13A6 ± 1.11 I4.3S ± I.S5 13.69 ±0. 62

C18:2n6 15.93 ± 1.07a 14.31 ± 1.22b 13.56 ± 0.53b

C18:3n6 0.17 ± 0.02 0.15 ±0.07 0.19 ±0.02

C20:4n6 12.03 ± l.31 c 16.10 ± 2.76b 19.07 ± 1.03a

C22:4n6 0.74 ± 0.13c l.3 7 ±0.17b 2.10 ± 0.14a

I n-6 PUFA 2S.S7 ±2.3 0b 31.93 ± 4.02ab 34.92 ± 1.60a

C20 :5n3 3.SI ± 1.6a 1.46 ± 0.94b 0041± O.IOb

C22:5n3 2.54 ± OASa 2.0 1 ± O.77a 0.S5 ± 0.30b

C22:6n3 12.07 ± 1.13a S.SI ± 1.93b 6.77 ± O.78C

I n-3 PUFA IS.66 ± 1.25a 12.76 ± 2.25b S.37 ± 0.9IC

*Data are expressed as weight percentage of total extracted fatty acids after separation of

phospholipids by thin layer chromatography. Statistical analysis was performed after
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transform ing the data using arcs ine equat ion. Values are expresse d as mea n ± SO, n = 8.

Data were assesse d usin g one-way ANOV A. Significant effec ts we re furth er analyzed

using Newm an-K eul s post hoc tests. Superscripts represe nt signi ficant di fferences among

var ious dietary groups where p<0 .05 was considere d significant.

3.1.3 Effect of dietary omega-6 to omega-3 polyunsaturated fatt y acid ratios on

plasma lipid levels

Plasma TC and TG conce ntrations of females fed diets containing 5:1, 15:1 and

30 :1 n-6 to n-3 PUFA ratios for one month are show n in Figure 3. 1. A higher TC

concen tration was obse rved in 30: 1 group compared to 5: 1 and 15:1 gro ups (p=0 .0046) ,

however, no significant diff erence was observe d between 5:1 and 15:1 groups (Figure

3. IA) . No sig nificant di fference was observe d in plasma TG levels amo ng various dietary

gro ups (Figure 3.18) .

Plasma LDL-cho lestero l concen tration and HDL-cholesterol conce ntrations of

females fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios for one month are

shown in Figure 3.2 . A higher LDL-cholestero l conce ntration was observe d in 30: I

gro up compared to 5:1 and 15:1 groups (p=0.002) however, there was no difference

between 5: I and 15: I groups (Figure 3.2A) . No significant diff erences were observe d in

plasma HD L-chol esterol concentrations among var ious dietary gro ups (Figure 3.28) .

Plasma LD LlHD L rat io and CE concentration of females fed diets containing 5:1,

15:1 and 30:1 n-6 to n-3 PUFA rat ios for one month are show n in Figure 3.3. Similar to

plasma LDL-cholestero l levels, a higher LDLl HDL ratio was observed in 30 :1 dietary
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group compare d to 5: I and 15: I groups (p=0.007), however, no significant difference was

observe d betw een 5:1 and 15:1 groups (Fig ure 3.3A) . Th e 30:1 diet gro up was associate d

with significa ntly higher CE concentrations followed by 15:1 and 5: I gro ups (p=0 .0008)

(Fig ure 3.38). However, no significant differences were observe d in plasma FC levels

(mea ns ± SO; 5:1=0.23 ± 0.03 mm ol/L, 15:1=0.23 ± 0.04 mm ol/L, 30:1 =0 .24 ± 0.04

mm ol/L) amo ng the various dietary groups.
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Figure 3.1: Plasma concentrations of (A) total cholesterol and (B) tri glycerid es of

C57BL/6 femal e mice fed diet s var ying in n-6 to n-3 PUFA ratio s for one month

Values are expresse d as means ± SO, n = 8. Data were assessed using one-way

ANOV A. Significa nt effects were further analyzed using New rnan- Kculs post hoc tests .

Letters repr esent signi ficant differences between var ious dietary gro ups having p < 0.05.

A

1.50

'51 .25
E
§,1 .00

e
*0.75
~

~ 0.50

]iO.25
~

:J'
'5 0.4
E

iO.3
1°·2
.g> 0.1
t=

49



Figure 3.2: Plasma concentrations of (A) LDL-cholesterol and (B) HDL-chol esterol

of C57BL/6 female mice fed diets varying in n-6 to n-3 PUFA ratios for one month

Values are expresse d as means ± SO, n = 8. Data were assessed using one-way

ANOVA . Significant eff fects were further analyzed using New man-Keuls post hoc tests .

Letters represe nt significa nt di fferences havingp < 0.05.
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Figure 3.3: Plasma LDLlHDL cholesterol ratio (A) and cholesterol ester

concentration (B) of C57BLl6 femal e mice fed diets varying in n-6 to n-3 PUFA

ratio s for one month

Values are expresse d as means ± SO, n = 8. Data were assessed using one-way

ANOVA. Significant effe cts were further ana lyzed using Ncw man- Keuls post hoc tests.

Letters represe nt significant di fferences having p < 0.05.
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3.2: Effects of maternal dietary omega-6 to omega-3 polyunsaturated fatt y acid ratio

on regulation of metabolic pathways of the offspring

3.2 .1: Maternal body weight, food and caloric intake, pla sma glucose and NEFA

concentrations

Body weight, food and caloric intake , plasma glucose and NEFA concentrations

of females fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during

pregnancy and lactation are shown in Tab le 3.3. No significan t differences were obse rved

in the body weight, food intake and caloric intake among var ious dietary groups (Tab le

3.3). NEFA conce ntration and fasting blood glucose concentration did not show

significan t differences among various dietary groups, however, the 30: I group showed a

trend (p=0 .22) towards higher NEFA and blood glucose levels (Table 3.3).

3.2.1.1: Pregnancy rate, pup survival r ate and sex ratio of the offspring at the tim e

of weaning

Pregnancy rate was defined as the numb er of pregnant mice divided by the

numb er of femal e mice used for mating (Table 3.4) . Surv ival rate was defined as the

number of live pups at wea ning divided by the numb er of live pup s at birth (Tab le 3.4).

Sex ratio was defined as the number of male pups divided by the numb er of female pups

obtained from a dietary gro up of mothers counted at the time of weaning (Tab le 3.4) .

The pregnancy rates of the mice fed high n-6 to n-3 PUFA ratio diet (30: I ) and

low n-6 to n-3 PUFA ratio diet (5: 1) were similar. However, pregnancy rate of mice fed

n-6 to n-3 PUFA ratio of 15:1 diet was slightly lower. The surviva l rates of pups were
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similar in the three dietary groups. Male to female ratio was almost 50% in pups obtained

from mothers fed a 5:1 diet , whereas pups from mothers fed 15:1 and 30: 1 diet

demonstrated a male to female ratio of 2:I and 1.4:I, respectively.

Table 3.3: Body weight, food intake , caloric intake, non esterified fatt y acid

concentrations (NEFA) and glucose concentrations of female C57BL/6 mice fed

experimental diets during gestation and lactation

5:1 Diet 15:1 Diet 30:1 Diet

BW(g) 31.52 ± 0.33 29.76 ±3.38 27.56 ±2.5

FI (g/week) 27.95 ± 5.40 26.04 ± 4.80 28.07 ±7.80

CI (kcal/day) 22.56 ±3 .90 21.02±4.10 22.66 ±6.30

NEFA (mmol/L) 0.50 ±0.22 0.44 ±0.11 0.59 ±0.19

Blood Glucose (mmol/L) 5.32 ± 1.72 5.61 ± 1.27 6. 12 ± 0.95

Values are expressed as means ± SO, n = 4. Data were assesse d using one-way ANOVA.

Significant effects were further analyzed using Newman-Keuls pos t hoc tests. BW, body

weight; FI, food intake; CI, caloric intake.
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and sex ratio of th e offspring at the

:1 Diet 15:1 Diet 30:1 Diet

87.50 76.92 87.50

80 ± I 83 ± I 81 ± 2

13/11 22/13 18/13

7 ± I 9 ± 1 9 ± I

Tabl e 3.4: Pr egnancy rate , pup survival rat e

time of weaning

5

Preznancv Rate (%)

Pup Survival Rate (%)

Male/FemaleRatio

Litter size
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3.2.2: Eff ect s of maternal dietary omega-6 to omega -3 polyunsaturated fatt y acid

ratio on breast milk total fatt y acid composition

Breast milk total fatty acid com posit ion of females fed diets contain ing 5:1, 15: I and 30: I

n-6 to n-3 PUFA ratios during gestation and lactation is shown in table 3.5 . No significant

differe nces were observe d in total SFA and total MUFA con tent amo ng the various

dietary groups. Similarly, no significan t diffe rences were observed among gro ups for the

individua l SFA and MUFA .

No significant differe nces were observed in total n-6 PUFA con tent among various

dietary groups. Amongst individual n-6 PUFA, AA content was higher in 15:1 and 30:1

group compared to 5: I group (p=0.004) , however, there was no difference between 30: I

and 15:1 group.

A significantly higher total n-3 PUFA conte nt was observed in 5:1 group followed by

15:1 and 30: 1 groups (p<O.OOO I) . Amongs t individ ual n-3 PUFA, EPA (p<O.OOOI), DPA

(p<O.OOO I) and DHA (p=0.003) contents were significantly higher in the 5: 1 group

followed by 15:1 group however, the levels were undetectable in the 30:1 group.

Although tota l PUFA con tent did not show a significa nt differe nce amo ng various dietary

groups, the n-6 to n-3 fatty acid ratio of 7:1 and 15:1 was observed in breast milk of 5:1

and 15:1 group. Converse ly, a 42:1 n-6 to n-3 PUFA rat io was observed in breast milk of

30:1 group. Pearson's corre lation coeffic ients (r) between dietary fatty acid composition

and breast milk fatty acid composi tions were 1.00,0.87 and 0.87 for 5:1, 15:1 and 30:1

groups, respec tive ly.
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Table 3.5: T otal breast milk fatt y acid compo sition of femal e C 57 BL/6 mice fed

exper ime ntal diets during pre gnancy and lactation*

5:1 Diet 15:1 Diet 30:1 Diet
FA

(% w/w)

C 14:0 2.85 ± 1.64 3.41± 2.06 2.52 ± 1.28

C16:0 14.13 ± 2.50 14.95 ± 2.75 15.53± 1.99

C18:0 6.92 ± 4.53 5.84 ±0.89 5.28 ± 0.48

L SFA 23.91± 3.84 24.19±5 .05 23.32 ±2.83

C 18: l n9 21.84 ±6.65 29.5 1± 1.57 26.47 ±2.05

C20: l n9 0.59 ±0 .05 0.82 ± 0.09 0.87 ± 0.24

L MUFA 27.34 ±9 .14 32.78 ±4.96 34.13 ±3 .02

C18:2n6 39.60 ±5.67 36.92 ± 1.51 39.63 ±4.37

C18:3n6 0.50 ±0 .18 0.40 ±0.11 0.45 ±0. 19

C20:4n6 1.44±0.13b 1.89±0.12' 2.02 ±0.05'

L Omega-6 41.76 ±5.79 39.97 ± 1.90 42.18 ±4.46

C 18:3n3 0.36 ±0.16 0.32 ±0.01 0.23 ±0.20

C20:5n3 1.68 ± 0.56' 0.42 ±0. IOb NO'

C22:5n3 1.30 ± 0.26' 0.66 ±0. l lb NO'

C22:6n3 2.69 ±0 .61' 1.22 ± 0.37b 0.12±0.21'

L Omega-3 6.46 ± 1.73' 2.80 ± 0.56b 0.36 ±0.37'

L PUFA 48.74 ±5 .52 43.02 ± 1.76 42.54 ±4.83

Om ega-610me ga-3 6.98 ±2.8 9 14.72 ± 3.32 42.18 ±0.00

*Oata are expressed as weight percentage of the total extracted fatty acids . Statistical

anal ysis was perform ed after transforming the data using arcsine equation. Values are
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expressed as mean ± SO, n = 3. Data were assesse d using one-way ANO YA. Signifieant

effec ts were further analyzed using Newma n-Keuls post hoc tests. Superscripts represent

significant differences where p< 0.05 was considered signi ficant.

3.2.3: Body weight, plasma glucose and non-ester ified (NEFA) fatty acid

concentrations of male and female offspring at wea ning

Body weight , plasma glucose and NEFA concentrations of male and female

offspring obtained from mother s fed diets containin g 5:1, 15:1 and 30:1 n-6 to n-3 PUFA

ratios durin g gestation and lactation are shown in Tab le 3.6 and in Table 3.7. No

significant di fferenc es were observed in plasma glucose and NEFA concentration s among

the various dieta ry groups in both male and female offsprin g. A higher body weight was

observe d in 30: 1 group compared to 5:1 and 15:1 groups (p=0.0006) in male offspring;

however, there was no difference between 5:1 and 15:1 gro ups. In female offspring, a

higher bod y weight was observe d in 15:1 and 30: 1 gro up compared to 5:1 group

(p=0.05); however, there was no difference between the 15: I and 30: I dietary groups. No

significant differences were observed in body length of both male and female offsp ring

among the various dietary groups.
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Table 3.6: Non-esterified fatty acid (NEFA) concentrations, blood gluco se

concentrations, body weight and body length of male offspring of C57BL/6 mice fed

experimental diets during gestation and lactation

NEFA Blood Glucose Body Length
Diet (mmo/L) (mmol/ L) Body Weight (g) (em)

5:1 OA6 ± 0.21 8.73 ±2.13 6A6 ± 0.52b 6AO ±0.35

15:1 OAO±0.12 7.95 ±2.33 6.50 ± 0.96b 6A 3 ±0.39

30:1 0.39 ± 0.15 6.63 ± 2.73 7.64 ± 0.7 1" 6.38 ±0.36

Values are expressed as means ± SO, n = 10. Data were assesse d using one-way

ANOVA . Significant effects were further analyzed using Newman- Keuls post hoc tests.

Superscr ipts represent significant differences having p< 0.05.

Tabl e 3.7: Non-ester ified fatty acid (NEF A) concentrations, blood glucose

conc entrations, body weight and body length of female offspring of C57BL/6 mice

fed experimental diets during gestation and lactation

NEFA Blood Glucose Body Length
Diet (mmo/L) (mmoI/L) Bod y Weight (g) (em)

5:1 OA7 ± 0.13 8.54 ± 1.05 5.95 ± 0.95b 6.15 ±OA2

15:1 OA5 ± 0.17 6.83 ± 1.21 7.22 ± 1.28" 6.38 ± 0.29

30:1 0.56 ±0.15 7.84 ± 2.04 7.01 ± 0.76" 6.38 ±0.36

Values are expressed as means ± SO, n = 10. Data were assesse d using one-way

ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

Superscr ipts represent significant differences having p< 0.05.
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3.2.4: Effec ts of maternal omega-6 to omega-3 polyunsaturated fatty acid rat io on

red blood cell phospho lipids fatty acid compos itio n of ma le offs pr ing

The RBe PL fatty acid compositio n of male offspring obtained from mothers fed

diets containing 5:1,1 5:1 and 30:1 n-6 to n-3 PUFA ratios during gestation and lactation

arc show n in Table 3.8. To tal SFA content did not show a significant di fference among

various dietary groups. A significantly higher stearic acid content was observe d in 15:1

group compared to 5:1 and 30: I groups (p=0 .039); however, 5: I and 30: I groups were

not diff erent.

A significantly higher total MUFA content was observ ed in 30:1 group compared

to 5:1 and 15:1 groups (p<O.OOOI) ; however, no significant di fference was observe d

between 5:1 and 15:1 group. Simil arly, a higher oleic acid content was observe d in 30:1

group compared to 5:1 and 15:1 groups (p<O.OOOI) ; however, 5:1 and 15:1 groups were

not different.

As expec ted, a higher total n-6 PUFA content was observe d in 30:1 group

followed by 15:1 and 5: 1 groups (p<O.OOOI). Despite no significant diff erence in LA

content in the breast milk among vario us dietary groups, a significantly higher LA content

was observe d in 5: 1 diet group compared to the 15:1 and 30:1 diet groups (p=0.04 I).

However, no significant difference was observed between 15:1 and 30:1 groups. In

contrast, a higher AA and docosatetraenoic acid content were observed in 30: I group

followed by 15:1 and 5:1 groups (p<O.OOO I).
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A higher tota l n-3 PUFA conten t was observe d in 5:1 gro up followe d by 15:1 and

30 :1 gro ups (p<O.OOOI) . Amo ngs t individ ual n-3 PUFA, EPA, OPA and OHA conten ts

were sig nifica ntly higher in the 5:1 die t group followe d by 15:1 and 30 :1 groups

(p<O.OOOI) . Interest ingly, n-6 to n-3 PUFA ratio was sustained between 1:1 to 1:5 for all

the die tary gro ups, however, it was closer to I : I in 5: I gro up; 2: I in IS: I group and 4: I in

30 :1 gro up.
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Table 3.8: Red blood cell phospholipid s fatt y acid compo sition of male offsprin g of

C57BLl6 mice fed experimental diet s during gestation and lactation*

5:1 Diet 15:1 Diet 30:1 Diet

FA (% w/w)

C14:0 0.S3 ±0.12 0041± 0.27 OAO±0 .22

C16 :0 23.S3 ± 1.60 21.3 1± 1.41 23.SI ± 2.20

C18:0 14A4 ± 2.74b 17.76 ± 3.18a 14.69 ±0.79b

ISFA 38.S0 ±3 .28 39.S0 ±4.01 38.61 ± 2.37

C 18:1n9 10.SO± 0.2Sb 10.76 ± 0.76b 12.27 ± 0.S4a

C 18:l n7 1.72 ± O.OS 1.20 ± 0.60 1.50 ±0.12

C20:ln9 0.21 ± 0. 14 0.30 ±0. 16 0.37 ±0. IS

I MUFA 12.66 ±OA8b 12AO± 0.90b 14.2S ± 0.S7a

C18:2n6 11.9S ± 0.97" 10.13 ± 1.69b 10.SI ± i.u "

C20:4n6 14.32 ± 1.37C 19.74 ± 0.69b 23.21 ± I.S8a

C22:4n6 I.IS ±0.20C 3.10 ± 0.17b 4.99 ±0.32a

I O mega-6 27.S0 ± 1.I0C 33.13 ±2.23b 38.83 ±2.IS a

C20:5n3 2.6S ±OA6a 0.SS±0.34b O.IO ±O.II C

C22:5n3 3.18±0.62a 1.9S ±0.20b 0.77 ± 0.32C

C22:6n3 IS.04 ± 1.38a 12.11 ± 1.27b 7.23 ±OA1 c

I Omega-3 21.3 1± 2.1Sa 14.94 ± 1.29b 8.28 ±0.34C

I PUFA 48.82 ± 2.98 48.08 ±3.37 47.12±2.12

Omega-6 /0mega-3 1.29 ± 0.10 2.22 ±0.11 4.69 ±0.3S
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*Data are expressed as weight percentage of the total extrac ted fatty acids . Statistical

analysis was perform ed after transform ing the data using arcsine equation. Values are

expressed as mean ± SO, n = 10. Data were assesse d using one-way ANOV A. Significant

ef fects were further analyzed using Newman-Keuls post hoc tests. Superscripts represent

significant di fferences where p < 0.05 was considered significa nt.

3.2.5: Effects of maternal omega-6 to omega-3 polyunsaturated fatty acid ratio on

red blood cell phospholipid fatty acid composition of female offspring

The RBC PL fatty acid compos ition of female offspring obtained from mothers

fed diets containing 5:1, 15:1 and 30: 1 n-6 to n-3 PUFA ratios during gestation and

lactation are shown in Table 3.9. No significant difference was observe d in total SFA

content among vario us dietary groups. However, a signific antly higher myristic acid

content was observe d in 5:1 and 15:1 diet groups compared to 30:1 diet group (p=0.002) ;

there was no difference between 5: I and 15: I groups.

No di fference was obse rved in total MUFA content among vario us dietary

groups. Similar to male offspring RBC PL fatty acid comp ositi on, a significantly higher

oleic acid content was observe d in 30: I group compared to 5: I group (p=0.047);

however, 15: I group did not differ from either 5: I or 30: I groups .

A higher total n-6 PUFA content was observed in 30:1 group followed by 15:1

and 5: 1 groups (p<O.OOOI) . A significantly higher LA content was obse rved in 5:1 diet

group compared to 15:1 diet group (p=O.OI), however, 30:1 diet group did not differ from
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either 5:1 or 15:1 gro ups . Co nverse ly, a significantly higher AA (p<O.OOO I) content was

obse rved in 30:1 diet gro up compare d to 15: I diet group followe d by 5: I diet gro up.

A sig nifica ntly higher total n-3 PUFA content was observed in 5: I group followed

by 15:1 and 30:1 gro ups (p<O.OOOI). Amongs t individual n-3 PUFA, EPA, DPA and

DHA contents we re sig nificantly higher in 5:1 group followed by 15:1 and 30: 1 groups

(p<O.OOOI) . Although no significan t difference was observe d in total PUFA content

among the various dietary groups, the n-6 to n-3 PUFA rat io was sustained between I :1 to

1:5 for all the dietary groups and was closer to I : I in 5:1 gro up; 2: I in 15: I grou p and 4: I

in 30 :1 gro up.
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Table 3.9: Red blood cell phospholipids fatty acid composition of female offsprin g of

C57BL/6 mice fed experimental diet s during gestation and lactation*

5:1 Diet 15:1 Diet 30:1 Diet

FA (%w/w)

C14:0 0.S6 ±0.12a 0.7S ±0. IOa 0.59 ±0.12b

C16:0 26.52 ± 1.53 27.60 ±2.22 25.56 ±2.03

C18:0 16.32 ± 3.16 ISA7 ± 4.92 IS.16 ± 2.33

ISFA 43.71 ± 2.26 46.S6 ±3.04 44.32 ±3 .25

C18:1n9 10041± 0.32b 10.S9 ± 1.33ab I 1.65 ± 0.74a

C18:1n7 1.66 ± 0.10 1.09 ± 0.55 IA2 ± 0.07

C20:1n9 0.22 ±0.09 0.26 ±0.13 OAO±0.05

I MUFA 12.62 ± 0.66 12.33 ± 0.S2 13.56 ±0.76

C 18:2n6 1O.63 ± 1.13a S.72 ± OA4b 9.61 ± 1.l0 ab

C20:4n6 13041 ± 0.57c 17.74 ± 1.20b 20.7S ±2 .07"

C22:4n6 1.05 ±0. 15 2.26 ± 1.12 3.76 ± 1.59

I Omega-6 25.17± 1.24c 2S.74 ± i.ss' 34.30 ±2A5a

C20:5n3 1.99±0.34a 0.32 ±0.25b 0.11 ± O.l lb

C22:5n3 2.S7 ±0.25a I.S4 ± 0.ISb 0.91± O.OSc

C22:6n3 13.00 ± 0.55a 9.72 ± 1.09b 6A3 ± 0.Slc

I Omega-3 ISA9 ± 0.93a 12.04 ± 1.30b 7.S0 ±0.SSc

I PUFA 43.66 ± 1.92 40.79 ±2.S3 42.11± 2.97

Omega-6/0mega-3 1.36 ± 0.06 2AO±0. IS 4043± OA7
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*Data are expresse d as weight percentage of the total extrac ted fatty acids . Statistical

analysis was perform ed after transform ing the data using arcsine equation. Values are

expressed as mean ± SD, n = 10. Data were assesse d using one-way ANOVA. Signifiea nt

effec ts were further analyzed using Newman-Keuls post hoc tests. Superscripts represent

significant di fferences where p< 0.05 was considered significant.

3.2.6 : Effect of di etary omega -6 to omega -3 polyun satu rat ed fatty acid ratios on

plasm a lipid levels of male and fem ale offsp r ing at wea ning

Plasma TC concen tration and TO conc entration s of male and female offspring of

moth ers fed diet s containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratio s durin g gestation

and lactation are shown in figure 3.4 A and 8 respectively. A significantly higher TC

concentration was observe d in 30:1 group compared to 5:1 and 15:1 groups in both male

(p<O.OOOI) and femal e (p=O.OI) offspring however , no significant di fference was

observe d between 5:1 and 15:1 groups in both genders (Figu re 3.4A) . Female offspring

showe d a significantly higher TO concentration in 30: 1 group compared to 5:1 and 15:1

groups (p=0.004) with no significant difference between 5:1 and 15:1 groups. Male

offspring did not show a significant difference in plasma TO concentrations among

various dietary groups; however, 30: I group showe d a trend towards higher plasma TO

concentrations (Figure 3.48).

Plasma LDL-cho lestero l and HDL-cho lesterol concentration s of male and female

offspring of mother s fed diets containing 5: 1, 15:1 and 30: 1 n-6 to n-3 PUFA ratios

durin g gestation and lactat ion are shown in Figure 3.5 A and 8 , respectively. A

significantly higher LDL-cholesterol concent ration was observe d in 30: I group compared
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to 5:1 and 15:1 groups (p<O.OOOI) in male offspring; however, there were no significant

di fferences between 5:1 and 15:1 groups. On the other hand , female offspring showed

lower LDL-cholestero l concentrations in 15:1 group compared to 5:1 and 30:1 groups

(p=0.009) ; howe ver, no significant difference was observed between 5: I and 30: I groups

(figure 3.5 A). No significant di fferences were observe d in HD L-cholesterol

concentration in both male and female offspring amongst vario us dietary groups (figure

3.5 B).

Plasma LDL/HDL- cholesterol ratio of male and female offspring of mothers fed

diets containing 5:1,1 5:1 and 30: 1 n-6 to n-3 PUFA ratios during gestation and lactation

are shown in Figure 3.6 . A higher LDL/HDL-cholestero l ratio was observe d in 30: I

group compared to 5:1 group (p=0.02) in male offsprin g; howe ver , 15:1 group did not

differ from either 5:1 or 30:1 groups. A lower LDL/HDL -eholesterol ratio was observe d

in 15: I group compared to 5: I and 30: I groups (p=0.02) in female offspring however, no

significant di fference was observed between 5: I and 30: I groups (Fig ure 3.6).

Plasma FC and CE concentrations of male and female offs pring of mothers fed

diets containing 5: 1, 15:1 and 30:1 n-6 to n-3 PUFA ratios dur ing gestation and lactation

are show n in Figure 3.7 A and B, respectively. A significantly higher FC concentration

was obse rved in 15:1 and 30: 1 groups compared to 5:1 group in female offspring

(p=0.02); however, no significant difference was observed between 15:1 and 30: 1 groups.

In contras t, no significant di fferences were observe d in FC conce ntrations in male

offspring among various dietar y groups (Figure 3.7 A). Cholesterol ester concentrations

of the male offspring were, on the other hand, significantly higher in the 30: I group
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compared to 5:1 and 15:1 group (p<O.OOOI); no significant diff erence was observe d

between 5:1 and 15:1 groups. Female offspring showed a lower CE concentration in the

15:1 group compared to 30:1 groups (p=0.022); how ever, 5:1 group did not differ from

either 15:1 or 30:1 groups (Figure 3.7 B).

3.2.7. Correlation analysis of biochem ical parameters with red blood cell

phospholipid fatty acid composition

A corre lation analysis was performed between plasma lipid levels and RBC PL

fatty acid comp osition for both male (Figure 3.8) and female (Figure 3.9) offspring of

mothers fed diets cont ainin g 5:1,1 5:1 and 30:1 n-6 to n-3 PUFA ratios dur ing pregnancy

and lactation.

In male offspring, an increase in DI-IA content was assoc iated with lower plasma

TC concentrations (r = -0.65, p=O.OOI) and lower LDL-cholesterol conce ntrations (r = ­

0.71, p=0 .0003 ). Similarl y, increased EPA content was correlated with lower plasma

LDL-cholesterol concentration (r = -0.48, p=0 .03) while an increase in AA content was

associa ted with higher plasm a LDL-cholesterol concentrations (r = 0.48, p=0.0 3). Other

fatty acids were not significantly correlated with plasma lipid levels in the male offspring.

Female offspring, on the other hand, showed no significant correlation between

EPA, DHA or AA with plasma TC concentrations (Correlation coeffic ient (r); -0.26, ­

0.43 and 0040 respe ctively). However, an increase in AA was assoc iated with increased

plasma TG conce ntrations (r = 0.61, p= 0.005) whil e an increase in DHA content was
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assoc iated with lower plasma TG concentrations (r = -0.66, p=0 .002). Other fatty acids

were not significantly correlated with plasma lipid levels in the female offs pring.

Figure 3.4: Pla sma conc entrations of (A ) tri glycerid e and (B) total cholester ol

of mal e and femal e offspring

Values arc expresse d as means ± SO, n = 10. Data were assesse d using one-way

ANOVA. Signifi cant ef fects were further analyzed using New man-Keuls post hoc tests.

Letters represent significant differences between various dietary groups having p < 0.05.
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Figur e 3.5 : Plasma concentrations of (A) LDL-cholesterol and (B) HDL-chole sterol

of male and female offspring

Values are expressed as means ± SO, n = 10. Data were assesse d using one-way

ANDV A. Significant effects were further analyzed using Newrnan-Keuls post hoc tests.

Letters represent significant differences between various dietary groups having p < 0.05.
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Figure 3.6: Plasma LDL to HDL- cholesterol ratio of male and female offspri ng

Values arc expressed as means ± SO, n = IO.Data were assess ed using one-way

ANOV A. Signifi cant effects were further analyzed using Newrnan-Kcul s post hoc tests,

Letters repre sent significant di fferences between various dietary groups having p < 0.05.
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Figure 3.7: Plasma concent rat ions of (A) Free cholestero l and (B) Cholestero l esters

of the male and female offspring

Values are expressed as means ± SO, n = 10. Data were assesse d using one-way

ANOVA. Signifi cant effec ts were further analyzed using New man-Keuls post hoc tests.

Leiters repre sent significant differences between various diet ary groups having p < 0.05.
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Figure 3.8: Corre la tion ana lysis between plasma lipid levels and red blood cell

phosph olipid fatty acid composition of male offspring: (A) total cholestero l an d

docosah exaenoic acid (OHA) content (B) LOL-cholestero l and arac hidonic acid (AA)

content (C) LOL-cholestero l and docosahexaenoic acid (OHA) content (0) LOL

cholestero l and eicosapentae noic acid (EPA) content . Correlation coefficient (r) was

determined using Graph pad Prism (version 5)
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Figure 3.9: Correlation anal ysis betwe en pla sma lipid level s and red blood cell

phospholipid fatt y acid composition of female offspring. (A) tri glycerides and

arachidonic acid (AA) content (B) trig lycer ides and doco sah exaenoic acid (DHA)

content. Corre lation coe ffic ient (r) was determined using Grap h pad Prism (version 5.0)
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Chapter 4: Discussion
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4.1: On e month stud y

Increased plasma lipid levels arc associa ted with the increased risk of many

metabolic disorders includin g CV D, obesity, and diabetes mellitu s. The objec tive of the

curren t study was to determ ine whether feeding diets with varyi ng n-6 to n-3 PUFA ratios

will alter the regulation of metabolic pathways in C57 BL/6 female mice after 4 weeks of

feeding. Our find ings sugges t that a higher ratio of n-6 to n-3 PUFA in the diet leads to

higher plasma lipid parameters compared to a lower ratio of n-6 to n-3 PUFA.

4.1.1: Effect of dietary omega-6 to omega-3 polyunsaturated fatty acid ratio s on food

intake and body weight

Consumption of energy dense foods, resulting in higher ca lorie intake and higher

dietary fat intake, is one of the most import ant contributing factors for predisposition to

metabolic syndro me (Prentice & Jcbb, 2003) . In the current study, no significant

differences were obse rved in food intake and caloric intake among var ious dietary groups,

sugges ting that food intake and caloric intake were not confounding factors for the

observe d changes in lipid metabolism. There was a small but significant increase of body

weight in 5: I and 30: I gro ups compared to 15: I group. A higher ovar ian fat content was

observe d in the 5:1 group compared to the 15:1 group; however, the increase in the fat

content was not sufficie nt to account for the increase in body weight (2 g increase in body

weight vs 0.2 g increase in fat weig ht). There were no significant di fferences in other

organ weig hts among the dietary groups thus higher body weig ht in the 5: 1 group could

be due to higher ovar ian fat and other non-measured fat depots.
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The effect of dietary PUFA on body weight gain is controversial. Some studies

report that n-3 PUFA redu ce body weight in men (Couet et al., 1997), in obese women

(Kunesova et al., 2006) and in mice (Ruzic kova et al., 2004); however, n-6 PUFA was

shown to be asso ciated with increased epid idymal fat pad weight and increased body

weight in mice (Mass iera et al., 2003). Contrarily, no difference in body weights were

observed in rats fed high fat diets rich in n-3 PUFA and n-6 PUFA (Awa d et aI., 1990;

Dziedzic et al., 2007). A study designed to investigate the cardiovasc ular effec ts of

designer oi ls in C57BL/6 mice with a low ratio of n-6 to n-3 PUFA (2:1) using different

sources of n-3 PUFA, together with a control diet where n-6 to n-3 PUFA ratio was 25: I,

found no significant diff erence in body weight among the experimental groups (Riediger

et al., 2008).

On the other hand , a recent study by Nuemberg et al., 20 II reported a higher

body weight in mice fed high fat diets rich in n-3 and n-6 PUFA compare d to a control

diet. These authors observe d a higher abdominal and perirenal fat content in both n-3 and

n-6 groups, however, the liver fat content was significantly lower in the n-3 group

compared to the n-6 group. It was proposed that a diet rich in n-3 PUFA may facilitate

shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. This may

also explain our findin gs on higher ovarian fat content observe d in the 5:1 group.
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4.1.2: Effect of dietary omega-6 to omega-3 polyunsaturated fatty ratios on plasma

triglyceride levels

No significant differences were observed in plasma triglyceride (TO) levels

among various dietary groups after one month of feeding diets varying in n-6 to n-3

PUFA. Others have also reported similar findings that showed no significant differences

in plasma TO levels between n-3 PUFA and n-6 PUFA fed groups after 4 weeks of

dietary exposure in mice (Zampolli et al., 2006; Riediger et al., 2008) and in rats

(Balasubramaniam et al., 1985). On the other hand, several studies support the TO

lowering effec t of an n-3 PUFA rich diet; however, this TO lowering effect was generally

detectable after 2 months of dietary exposure to n-3 PUFA rich diet. Zampolli et al.,

(2006) reported a lower TO level in the fish oil fed group rich in n-3 PUFA compared to

the com oil fed group rich in n-6 PUFA after 20 weeks of dietary exposure in LDLr-/­

mice. Studies in rats reported a hypotriglyceridemic effect ofn-3 PUFA compared to n-6

PUFA after 16 weeks (Catherine l en et al., 1989), 7 weeks (Niot et al., 1994) and 3

months (Froy land et al., 1997). Therefore, a longer dietary exposure (more than 4 weeks)

may be required to observe the TO lowering effects of n-3 PUFA.

4.1.3: Effect of dietary omega -6 to omega-3 polyunsaturated fatty acid ratio s on

plasma total-cholesterol levels

The plasma TC concentration was significantly lower in the 5:1 group and 15:1

group compared to the 30: 1 group suggesting that n-3 PUFA lower plasma cholesterol

levels compared to n-6 PUFA. Interestingly, even the 15:1 group had lower plasma

cholesterol levels compared to the 30: I group, sugges ting a dose response effect of
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changing the n-6 to n-3 PUFA ratio. No significant differences were observe d in FC

levels among the various dietary groups; however, low CE levels were observe d in 5: I

and 15:1 gro ups compared to the 30: 1 group thus lower TC levels appear to be due to

low CE levels in 5:1 and 15:1 groups.

A recent study in C57BLl6 mice also reporte d a significantly lower plasma TC

concentration in an n-3 PUFA fed group compared to an n-6 PUFA fed group after a one

month feeding trial (Mag de ldin et al., 2009). Other studies in various animal models have

also reported a decrease in plasma cholestero l levels afte r feeding diets enriched in n-3

PUFA compared to n-6 PUFA rich diet (Nieuwe nhuys et al., 1998; Zampolli et al., 2006;

Lee et al.,1 989).

Magdeldin et al., (2009) proposed that the lowered TC levels in the plasma ofn-3

PUFA fed gro up may be due to the abil ity of n-3 PUFA to inhibit fatty acid synthesis and

promote mitochondri al fatty acid beta-oxidation. Pro-inflamm atory mediators are

released from PUFA, which bind to nuclear receptor proteins called peroxisome

proliferative activators (PPARs), which play an esse ntial role in regulating beta oxidation.

The affinity of an n-6 PUFA, essentially AA, to PPARs is lower compared to EPA and

DB A, thus n-3 PUFA are known to stimulate beta oxidation to a greater extent compared

to n-6 PUFA, which may be responsible for a decrease in plasma lipid levels (Schmitz &

Ecker, 2008) .

The cholestero l lowering effec t of n-3 PUFA has been suggeste d to be due to

increase d cholestero l catabolism, reduced choleste rol biosynth esis and increased biliary
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excretion of cholesterol (Bala subramaniam et al., 1985; Ou et al., 2003; Oh el al., 2009).

It will be interestin g to investigate in future studies whether the decrease in plasma TC

levels in the current study was due to a decrease in cholesterol synthes is by inhibit ing

HMG-CoA reductase activity, or due to an increased breakd own of cholesterol by

increase d activity of cho lesterol 7a hydroxylase (CYP7).

4.1.4: Effect of dietary omega-6 to omega-3 polyu nsatura ted fatty rat ios on plasma

LDL- an d HDL - cho lestero l concentrations

A higher LOL-cholesterol concentration was observed in 30: I group compared to

the 5:1 and 15:1 groups. Low LOL-cholesterol was obse rved in humans who were

supplemented with salmon oil, a rich source ofn-3 PUFA, compared to a high n-6 PUFA

group (Harris et al., 1983). Animal studies have also reported a significant reduction in

plasma LOL-cholesterol levels after feeding diets enriched in n-3 PUFA compared to

feeding diets rich in n-6 PUFA in rats (Roach el al., 1987; Ventura el al., 1989; Spady,

1993) as well as in mice (Vasa ndani et al., 2002; Zampolli el al., 2006; Magdeldin et al.,

2009) .

A likely explanation for the decreased circulating levels of plasma LOL­

cholestero l in 5: 1 and 15:1 groups is the increased clearance of LOL from circulation.

Removal of LOL-cholestero l from the circulation is mainl y regulated through liver LOLr,

maintaining circulatory cholesterol homeostasis (Brown & Goldstein, 1984). It was

previously shown that enhanced LOLr activity was associa ted with lower plasma LOL­

cholestero l levels in rats fed n-3 PUFA enriched diet compared to n-6 PUFA enriched diet
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(Ventura et al., 1989; Spady, 1993). Therefo re, low plasma LDL-e holesterollevels in the

5: I and IS: I grou ps may be due to an increase d expressio n of LDL-r activi ty.

No significant changes were observe d in HDL-cholesterol in the vario us dietary

groups. Similar to our observatio ns, recent studies in mice have also reporte d no change

in HDL- cholestero l level between n-3 PUFA and n-6 PUFA fed groups for 4 weeks

(Zam polli et al., 2006) , 20 weeks (Magde ldin et al., 2009) and for 32 weeks (Wang et al.,

2009) . HDL-cholestero l is of two sub-classes: HDL-2 and HDL-3; HDL-2 cholestero l

invo lved in scave nging more cholestero l from the peripheral tissues compared to HDL-3

(Ba llantyne et al., 1982; Asaya ma et al., 1990). Prelimi nary findin gs from our laboratory

show that plasma from mice fed a 5:1 diet has higher cholestero l efflux capacity

compared to plasma from animals fed a 30:1 diet (data not published). Although we

observed no significant difference in total HDL-c holestero l levels among the various

dietary groups, it is possible that 5:1 and 15:1 groups contain higher HDL-2 cholestero l

levels which have better cholestero l efflux capacity com pared to 30: I group.

One of the markers for the development of CV D is the ratio of plasma

LDL/ HDL-cho lestero l (Lemieux et al., 200 1; Panagiotakos et al., 2003) . In the curren t

study, a lower LDL/ HDL-c holestero l ratio was obse rved in 5:1 and 15:1 groups compared

to the 30: I group sugges ting that a continuous expos ure to higher n-6 to n-3 PUFA ratio

may increase the risk of developing CVD. Previous dietary intervention studies have also

shown that n-3 PUFA is assoc iated with lower LDL/HDL-cholestero l ratio in humans

(Dawczynski et al., 20 I 0) and in rats (Vijaimo han et al., 2006).
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4.1.5 : Effect of dietary omega-6 to omega-3 polyunsaturated fatty acid ratio on r ed

blood cell p hospholipid fatty acid composition

The best mark er of dietary intake of EPA, DHA, AA and LA is RBC PL,

expresse d as a percent age of total fatty ac ids (Matorras et al., 1998).Th e objec tive of the

determin at ion of RBC PL fatty acid compos ition was to test the hyp oth esis that dietary

fatty ac ids are reflected in the RBC PL.

As expec ted, a higher total n-6 PUFA content was obse rved in the 30: 1 group

compared to the 5:1 group. Howe ver, total n-6 PUFA content in the 15:1 gro up was not

significa ntly different from 5: 1 or 30:1 groups . Th ese obse rva tions indi cate that there is

a higher incorp oration ofn-6 PUFA in to RBC PLs when the diet is rich in n-6 PUFA.

Amo ngs t individual n-6 PUFA in the RBC PL fatty acids, LA content in the 5: I

gro up was higher compared to the 15:1 and 30 :1 groups . Howev er, AA content and

docosatetraenoic ac id content wer e low in 5: I group comp ared to the 15:1 gro up followed

by 30:1 group. The se findin gs sugges t that the conversion of LA to AA is low in the 5: I

group, wh ich is likely due to an increased competition for elongation and desatur ation

enzy mes between n-6 PUFA and n-3 PUFA. However, a higher content of AA with a

conco mitant decrea se in LA indicates that LA was likely conve rted to AA and

docosatetraeno ic acid to a greater extent in the 15:1 group follow ed by 30 :1 group,

sugges ting that as the amount of n-3 PUFA increase , there is a gradual decrease in the
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conversio n of LA to AA due to competition for desaturation and elongation enzymes

between n-6 and n-3 PUFA (Emken et al ., 1994).

As expected, a higher total n-3 PUFA and OHA content was observe d in the 5:1

group compare d to the 15:1 group followed by 30:1 grou p, which reflected the dietary

compositio n. A higher conversio n rate of ALA to EPA, OPA and OHA was observed in

the 5:1 group compared to the 15:1 group followed by 30:1 group.

Recent epidemio logical studies in hum ans also revealed that RBC mem brane

fatty acids accre tion is influenced by the amount and the balance of dietary n-6 and n-3

PUFA (Cartwr ight et al., 1985; Friesen & Innis, 20 10; Friesen et al., 20 10), confirmi ng

that there was a competitive interaction of dietary LA with AA, EPA and OHA to get

incorporated into memb rane lipids. It has also been shown that LA reduced the

concentrations of n-3 PUFA in the RBC membrane by competing for acylation (Friesen

& Innis, 20 10). A study in rats also demonstrated that endoge nous synthes is of n-3 PUFA

from the precur sor ALA is more regulated by substrate competition for exis ting enzymes

than by their express ion of desatura se and elongase genes (Tu et al., 20 10). Thus, it can

be sugges ted that a higher n-6 or n-3 PUFA incorporatio n in to RBC PLs is favoured by

increase d dietary intake.

Besides the percentage of unsaturated fatty acids in RBC, the mean melting point

(MMP) is also an index of memb rane fluid ity. OHA and EPA have been shown to have

lower MMP and higher unsaturation level compared to LA and AA (Holman et al., 1991;

Torres & Tru go, 2009). Since the relative contribution of fatty acids with more

82



unsaturated chains and lower melting points, such as DHA and EPA, is high in 5:1

group, RBCs from 5:1 group will have a higher membrane fluidity compared to 15:1 and

30:I groups. Cartwright et al., (1985) reported that the supplementation of dietary EPA

and DHA for 6 weeks increased the total unsaturation of the RBC membrane leading to

increased lipid fluidity and reduced whole blood viscosity. Thus, it is suggested that a

lower n-6 to n-3 PUFA ratio may be beneficial in reducing the risk of diseases such as

CVD where the rheological properties of blood plays a considerable role.

Previously, it was suggested that low dietary intake of n-3 PUFA led to low tissue

levels of n-3 PUFA which elicit systemic effects contributing to not only CVD but also to

rheumatoid arthritis (Bruinsma & Taren, 2000; Simopoulos, 2006) and depression (Peet

et aI., 1998; Lucas el al., 2010). These findings further reinforce the clinical significance

of the importance of a lower dietary ratio of n-6 to n-3 PUFA, and our findings have

demonstrated that RBC PL fatty acid composition is reflective of the dietary n-6 to n-3

PUFA.

Overall, our findings from the one month study establish that feeding diets with

varying n-6 to n-3 PUFA ratios to C57BU6 mice for one month led to the incorporation

of dietary fatty acids in RBC PL and also altered the regulation of lipid and lipoprotein

metabolism. These findings formed the basis to initiate the project on investigating the

effects of maternal dietary n-6 to n-3 PUFA ratios on the regulation of lipid and

lipoprotein metabolism of the offspring.
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4.2: Mate rna l nutrition study

The importa nce of the ratio of n-6 to n-3 PUFA has been emphasized by the

potential hea lth benefi ts derived from diets high in n-3 PUFA. The high n-6 to n-3 PUFA

ratio found in Wes tern diets has been show n to promote the pathogenesis of several

diseases such as cance r, cardiovascu lar diseases, neurodegenerative diseases , and

autoimm une diseases. The objec tive of the current study was to test the hypothesis that a

maternal high fat diet with vary ing n-6 to n-3 PUFA ratios during ges tation and lactation

will alter the regulation of lipid and lipoprotein metabol ism in the offspring of C57B Ll6

mice at weaning. Our findin gs showe d that, a) the breast milk fatty acid compositio n

was reflec tive of the maternal fatty acid compos ition, b) the offspring RBC PL fatty acid

compos ition reflec ted the fatty acid compos ition of the maternal diet, and c) high ratio of

n-6 to n-3 PUFA in the maternal diet was associa ted with higher plasma lipid parameters

compared to a lower ratio.

4.2.1 : Effect of maternal dietary omeg a-6 to omega-3 polyunsaturated fatt y acid

ratios on food intake and bod y weight of the offspring at weaning

There were no significant di fferences in food intake, caloric intake and body

weig ht of mothers in the three dietary groups, sugges ting that food intake and caloric

intake of the mothers were not confounding factors for the observe d changes in the lipid

metabolism of the of fspring. Interestingly, the 30: I group showed a higher body weig ht

compare d to both 5:1 and 15:1 groups. No differences were observe d in the body length

and the organ we ights of the offspring amongst the var ious dietary groups. However, we
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were not able to co lleet fat from animals at weanin g and we did not measure the carcass

weight thus the diff erenc e in body weight could be due to a number of unexplained

The effects of maternal dietary n-3 PUFA and n-6 PUFA on body weight of the

offspring is contro versial. Similar to our observations, the offsprin g of female Sprague­

Dawley rats fed a low n-6 to n-3 PUFA ratio had a significantly lower body weight

compared to the offsprin g of mothers on high n-6 to n-3 PUFA ratio (Korotk ova et al.,

2002; Korotkova et al., 2005 ). These and other invest igator s reported reduced adipose

tissue mass and reduc ed adipocyte size in the n-3 PUFA fed group (Ma ssiera et al., 2003;

Yessoufou et aI., 2006 ). Thu s it appears that there is a strong asso ciation between high

dietary n-3 PUFA, low bod y weight , and redu ced adipose tissue mass. Studies have

shown that fatty acid oxidation in the body depends on the quality of dietary fat and the

fatty acid chain length in the adipose tissue (Yamaza ki et al., 1987; Halm inski et al.,

1991). It is therefore logical to assume that n-3 PUFA reduces bod y fat deposition, and a

consequent redu ction in body weight via increased fatty acid oxidation.

We were not able to collect any fat tissue in the offspring of various dietary

groups at weaning. A post weaning study of the offspring would therefore be necessary

to investigate the effects of different dietar y n-6 to n-3 PUFA ratio s on body fat

depo sition and body weight gain.
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4.2.2: Effect of maternal dieta ry omega -6 to omega-3 polyu nsa turated fatty acid

ratios on plasma non esterified fatty acids and blood glucose of offspring at weaning

Intraut erine stress , espec ially maternal under-nutriti on is know n to be associa ted

with onset of diabetes and CV D in the offspring at later life (Barker et al., 1993; Barker,

1995; Barker, 1997). An increased level of NEFA in the serum and increased blood

glucose levels are import ant mark ers of diabetes mellitu s (Min el al., 2005). In the current

study, no significant differences were observ ed in blood glucose and plasma NEFA levels

in both dams and in offspring at weanin g.

No significant di fferences were reported in plasma NEFA and glucose levels in

offspring at postnatal day 90, of dams fed a high fat diet (21%) rich in n-6 PUFA (n-6 to

n-3 PUFA ratio of =28: 1) and n-3 PUFA (n-6 to n-3 PUFA ratio of =2.5:1) dur ing

perinatal period (Ibrahim et al., 2009). A recent study on rats also reported no difference

in glucose levels; how ever , lowe r plasma NEFA levels were reported in both male and

female of fspr ing of dams fed a high DHA diet at weanin g, possibly due to reduced

mobili zation of fat from adipose tissue (Muh lhausler et al., 2010). In addition, it is

interestin g to obse rve a high er male to female ratio in IS: I and 30 : I groups compared to

5: I group however the reason behind is unknown , which need to be explored in the

future.
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4.2.3: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid

ratio on breast milk tota l fatty acid composition

Breast milk is the ultim ate energy source of an infant and provides fatty acids for

the developing membran e lipids and storage in adip ocytes as TGs durin g the lactation

period (Novak & Innis, 20 II) . In the present study, dams were fed the experimental diets,

for 2 wee ks before matin g, durin g gestation and also durin g the lactation . No significant

dif ferences were obse rved in total SFA and total MUFA content in the breast milk among

the various dietary groups; this finding is similar to the dietary fatty acid compos ition

establishing that maternal dietary fatty acid compos ition is reflected in the breast milk .

Similarly, total n-6 PUFA and LA content were not different among various

dietary groups. However, a significantly lower AA content was observed in the 5: I group

compared to the 15: I and 30:1 groups. Previous studies have shown that the AA content

in the milk depends on matern al storage levels and the conver sion of LA to AA

(Arterburn et al., 2006; Brenna et al., 2007). Thu s it is reasonable to assum e that there

may be a lower con version rate of LA to AA in the 5:1 group compared to the 15:1 and

30: 1 group likely due to competition between n-6 and n-3 PUFA classes for the

elongation and desatur ation enzyme s. Nonetheless, further research is requ ired to confirm

the above hypothe sis.

A higher EPA and DHA content was observ ed in the 5:1 group followed by the

15:1 and 30:1 group s, thus breast milk reflected the fatty acid content of the various

maternal diets. Studies have shown higher levels of DHA and EPA levels in breast milk

when lactating dams were fed diet s high in n-3 PUFA (Jen et al., 2009; Novak & Innis,
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20 11; Arterburn et al., 2006; Brenna et al., 2007). Docosahexaenoic acid plays a critical

role in the perin atal period , especia lly in neuronal and visual developm ent (Guesnet et al.,

1997).

In the curre nt study, the n-6 to n-3 PUFA ratio in the breast mi lk close ly reflected

the maternal dietary n-6 to n-3 PUFA ratio in all the dietary groups. Interestingly, breast

milk n-6 to n-3 PUFA ratio reflected nearly the same PUFA ratio as that of the materna l

diet and the ratios were 7:1, 15:1 and 42:1 in 5:1, 15:1 and 30: 1 groups. The n-6 to n-3

PUFA ratio in breast milk is relatively stable during the first 3 month s of lactation in

humans and gets higher as lactation progresses (la ng et al., 20 11), which could be the

reaso n for a higher n-6 to n-3 PUFA ratio observe d in the breast milk of 30:1 mice .

Similar to our observa tion, similar n-6 to n-3 PUFA ratios have been reported in breast

milk at I wee k and 2 wee ks after delivery as that of the maternal diet in mice (Kago hashi

et al., 2007; Kagohashi et al., 20 10). Previous studies and the current study highlight the

influence of materna l dietary fatty acids, and the n-6 to n-3 PUFA ratio, on breast milk

composi tion, which can have a major impact on the offspring's health status in later life.

4.2.4 : Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid

ratios on plasma total -cholesterol levels of offspring at weaning

A growi ng body of evide nce sugges ts that perinatal nutrition affec ts the health of

the offspri ng later in life (Lucas, 1998), thus the effec ts of maternal dietary n-6 to n-3

PUFA ratios on the offspring 's metabolic parameters are of considerable interes t. In the

current study, lower plasma total cholestero l levels were observe d in 5:1 and 15:1
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groups compared to 30: I group in both male and female offs pring at wea ning obtained

from dams fed various dietary ratios of n-6 and n-3 PUFA.

There are few studies of the effec ts of maternal n-3 PUFA and n-6 PUFA

supplementation dur ing the perinatal period on offspring lipid parame ters. A lower

plasma cholestero l level was reported in macrosomic rat offs pring where diabetic dams

were fed EPA+ DHA (n-6 to n-3 PUFA ratio of = 0.49) compared to a control group (n-6

to n-3 PUFA ratio of =25.8) at day 60 and 90 days after birth (Yessoufou et al., 2006).

However, other studie s in Sprague-Dawle y rats reported no change in plasma cholesterol

levels in male and femal e offsprin g of dams fed diets containing (n-6 to n-3 PUFA ratios

of = 2.5,8.3 and 17.5) at 3 weeks (Korotkova et al., 2002; Korotkova et al., 2005).

Dietary intervention studies in adult mice have reported that n-3 PUFA, mainly

EPA and DHA, reduced the expression of SR EBP-l which acts as a transcription factor

of the lipogenic genes (Kim et al., 1999; Naka tani et al., 2003) . The n-3 PUFA, such as

EPA and DHA, are capable of reducing the expression of many lipogenic enzymes , i.e.

stero l-CoA desaturase (SC D) and fatty acid synthase (FAS) , thereby inhibiting VLDL

produ ction. Feeding diets high in n-3 PUFA to adult C57BU6 mice also inhibit HMO-Co

A reductase activity, leadin g to reduced serum cholestero l levels compared to an n-6

PUFA diet (Du et al., 2003; Oh et al., 2009) . It will be important to investigate in the

future whether varyi ng the maternal n-6 to n-3 PUFA ratios alter HMO Co A reductase

activity or affect VLDL secretion from liver.
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The lipid lowering ef fect of n-3 PUFA cou ld also be due to the regulation of

PPARs which are activa ted by n-3 PUFA and are known to up-regulate genes of fatty

acid oxida tion (Couet et af., 1997). The n-3 PUFA are more potent in vivo activators of

PPAR-a than n-6 PUFA (Engler & Engler, 2000; Frenoux et al., 200 1), thus n-3 PUFA

may lead to decreased plasma lipid levels by up regulating PPARs to increas ing fatty

acid oxidation (Schmitz & Ecker, 2008) .

The pattern of CE levels was similar to that of TC leve ls with no significant

changes in the FC levels among the dietary gro ups in male offs pring. It is likely that the

lower TC levels in the 5: I and 15: I groups are due to low CE levels in the male offspri ng.

On the other hand , the female offspring obtained from mothers fed a 5:1 diet showed

lower FC levels compared to IS: I and 30: I groups; however, no dif ference was observed

in the 15:1 and 30: 1 groups. A lower CE level was observed in 15:1 grou p compared to

30:1 group; however, 5: 1 group did not differ from either 15:1 or 30:1 groups in female

offspri ng.

The synthesis of CE level is regulated by the enzyme acy l coenzyme A:

cholestero l acy ltransferase 2 (ACAT2, EC 2.3.1.26) which converts FC to CE from FC in

the liver (Joyce et af., 1999). Fish oil, a rich source of n-3 PUFA, has been shown to

decrease the activity and mRNA expressio n of ACAT (Smit et af., 1991; Botham et al.,

2003) . Plausible explanations for reduced TC levels in 5: I and IS: I groups could be due

to all or one of the mechanisms discussed above. Therefore, further investiga tion is

needed to confirm whether the programming effec ts of lower n-6 to n-3 PUFA ratio are
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due to inhib ition of HMG Co-A reductase activi ty, reduc ed SREBP expressio n, reduced

ACA T express ion or by increas ing beta oxidation due to activa tion of PPARs.

4.2.5: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid

ratio s on plasma triglyceride levels of offspring at weaning

No significant di fferences were observe d in TG levels in male offspring obtained

from mothers fed various n-6 to n-3 PUFA ratios, while there was a trend towards lower

TG levels in the 5:1 and 15:1 groups. The female offspring of mothers fed 5:1 and 15:1

diets showed significantly lower TG levels (40% and 22% deerease respect ively)

compared to the 30:1 group.

There are only a few studies to show the effects of maternal n-3 PUFA and n-6

PUFA supplementation durin g pregnancy and lactation periods on plasma TG levels; data

from these studies are inconsistent. Three studies on rats reported no change in plasma

TG levels in male and female offspring of mothers fed n-3 PUFA diet and n-6 PUFA

diet at 105 days (Ibrahim et al., 2009) and at 3 weeks (Koro tkova et al., 2002 ; Korotkova

et al., 2005) . However, Joshi et al. (2003) reported a lower TG level at 6 months in male

offspring of dams fed an n-3 PUFA rich diet dur ing pregnancy, while female offspring

showe d no difference.

Studies using adult animal models have also reported differential effec ts of dietary

n-3 PUFA on plasma TG levels. Some studies in mice reported no ehange in TG levels

when fed n-3 PUFA diet (Zampolli et al., 2006; Riediger et al., 2008), while other studies
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on rats revealed that n-3 PUFA lowers plasma TO levels mainly through the down

regulation of TO synthetic enzymes (Rustan et al., 1992; Ribeiro et al., 1991; Geelen et

al., 1995) and by increasing in liver beta-ox idation (Yamaza ki et al., 1987; Halminski et

al., 1991), compared to n-6 PUFA . Nevertheless, a majority of the data support the schoo l

of thought that dietary n-3 PUFA reduce plasma TO level compared to n-6 PUFA (Harris

& Bulchand ani , 2006).

The most plausible explanation for the reduced TO levels in the offspr ing of dams

fed a lower n-6 to n-3 PUFA ratio in the current study may be attributed to stimulation of

increased peroxisomal and mitochondrial beta oxidation due to higher accret ion of n-3

PUFA. A high maternal n-3 PUFA diet has been show n to increase n-3 PUFA status in

human infants (Co nnor et al., 1996; Elias & Innis, 200 1; Helland et al., 200 1). It was

found recently that DHA is preferentially transported to the foetus compared to LA

(Larque et al., 2003) . In the current study, the 5: 1 group showe d the highest total n-3

PUFA and DHA levels followed by 15:1 and 30: 1 group sugges ting a higher

incorpora tion of n-3 PUFA. Since, n-3 PUFA are better in-vivo activators of PPAR-a

than n-6 PUFA (Engler & Engler, 2000; Frenoux et al., 200 1), cellular beta oxidation is

likely to be enhanced in the 5:1 and 15:1 groups thereby resu lting in lower TO levels

compared to the 30:1 group.

Many studies using adult rodents have show n that reduced TO levels in n-3

PUFA fed groups were due to decreased activ ity of TO synthesiz ing enzyme s. It will

therefore be important to further investigate whether the programm ing effects of plasma
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TO levels in the current study were due to increased beta oxidation or decreased act ivity

of TO synthes izing enzymes.

4.2.6: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatt y acid

ratio s on plasma LDL-cholesterol and HDL-cholesterollevels of offspring at

weaning

The associa tion between CV D and high levels of LDL-cholesterol is well

established (Munro & Cotran, 1988; Kinse lla et al., 1990). Lower LDL-cholesterollevels

were observe d in 5:1 and 15:1 groups compared to the 30:1 group in male offspring.

However, in the female offspring, 15:1 group showed lowest LDL-cholesterol levels

compared to the 30:1 group.

The effec ts of n-3 PUFA on plasma LDL-cholesterol levels are inconsis tent. In

line with the low LDL-cholesterol levels in the male offspr ing in the curre nt study,

Yamas hita et al. (2005) also reported signi ficant reduct ions in plasma LDL-cholesterol

concentrations in apoE-/- LDLr-/- double knockout mice fed diets enriched in n-3 PUFA.

On the other hand , fish oil supplementation with 6 g/day of EPA and DHA has been

reported to increase LDL-ehol esterol in humans (Connor et al., 1993). An increase in

LDL-c holestero l concentration was also repor ted in hypertriglyceridemic participants

after treatm ent with DHA enriched eggs (Maki et al., 2003) . However, it has been
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sugges ted that a higher amount of fish oil could lower LDL-c holestero l concentrations

(Harrise/al., 1983) .

One plausible explanation of low LDL-cholesterol levels observe d in the 5: I and

15:1 groups in male offspring may be due to enhanced expressio n of LDLr . Previous

reports have demonstrated that an increase in LDLr activity lowers plasma LDL­

cholestero l levels after supplementation with n-3 PUFA in rats (Ventura et al., 1989;

Spady, 1993). On the other hand , decreased ACA T activity (Smit et al., 1991; Botham et

al., 2003) and TG levels (Rustan et al., 1992; Ribeiro et al., 1991; Yamazaki et al., 1987;

Halmin ski et aI, 1991) also result from n-3 PUFA suppleme ntation, which may lead to

lower synthes is of VLDL, resulting in lower levels of LDL Whether a decrease in LDL­

cholestero l levels in the male offspring in the current study is due to an increase in LDLr

mR NA express ion or a decrease in ACAT activity needs to be further investigated.

The reaso ns for increased LDL-cholestero l levels after fish oi l supplementation

have never bee n clearly determin ed, Nonetheless, the growi ng body of evidence for

increased LDL-cholestero l levels by fish oil diet sugges t altera tions in the physical

properties of LDL particle. It has been suggeste d that the size of VLDL secreted by the

liver is sma ll when fed fish oil and small VLDL particl es readily conver t to LDL,

resulting in increased LDL-cholesterol levels (Packard et al., 1984; Mori et al., 2000) .

Studies have show n that fish oil feeding leads to increase d LDL particle size , which is

less atheroge nic in natur e (Contacos et al., 1993; Mori et al., 2000) . It is likely that the

above is true for higher LDL-cholestero l levels observed in the female offspri ng in the
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current study; future studies arc essen tial to esta blish whether the LDL particle size is

changed.

No significant changes were observed in HDL-cholesterollevels in either male or

female offspr ing among the various dietary groups. Studies in adults also have shown no

change in HD L- cholestero l level between n-3 PUFA and n-6 PUFA fed groups for 4

weeks, 20 wee ks and for 32 weeks (Zampo lli et al., 2006; Magdeldin et al., 2009 ; Wang

et al., 2009) . Since both female and male offspring demonstrated low total cholestero l

levels in the 5: 1 and 15:1 groups, it is possible that these groups may contain higher

HDL-2 cholestero l levels which have better cholestero l efflux capac ity compared to 30: I

group. Therefo re, it will be interesting to further inves tigate cholestero l efflux capacity of

HDL particles among the various dietary groups.

A lower LDL to HDL -cholesterol ratio was observed in the 5:1 group compared to

the 30: 1 group in male offspring. Previous studies have also show n that n-3 PUFA arc

associated with lower LDU HDL-cholesterol ratio in humans (Dawczynski et al., 2010),

and in rats (Vijaimohan et al., 2006). Low LDL-cholesterol profil e in 5: I group in male

offspring may have led to low LDLlHD L-cholesterol ratio. On the other hand, female

offspring in 15:1 group showe d the lowest LDLlHD L-cholesterollevels compared to the

5: I and 30: I groups however, there was no significa nt difference between the 5: I and

30:1 group. Higher LDLl HDL-cholestero l ratio in 5:1 group is a result of increase d LDL­

cholestero l levels.
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4.2.7: Effect of maternal dietary omega-6 to omega-3 pol yunsaturated fatt y acid

ratio on red blood cell p hospholipid fatty acid composition of offspring

The RBC PL fatty ac id compos ition of the offspring was det ermin ed as an indirect

marker to evaluate the effect of various maternal diet ary fatty ac id ratios on the fatty acid

status of the offs pring. No significant difference was observe d in the percentage of total

SFA content in RBC PLs in either male or female offs pring refle ctin g the maternal

dietary SFA cont ent.

A lower n-6 to n-3 PU FA ratio was ass oc iated with a lower C l8 : l n9 leve l in RBC

PL, whi ch may be due to reduc ed expressi on of stearoy l-CoA desaturase-I enzyme

(SC D- I), a rate-limiting enzyme in the synthesis of monounsatur ated fatty acids (Ntambi

& Miyazaki , 2003). Previously, feedin g diets enriched in n-3 PUF A to rats have been

show n to reduce SC D- I expression (Levy et al., 2004).

An increased LA content in RBC PLs in 5: I gro up may be a result of poor

convers ion of LA to long chain n-6 PUFA . It has been show n that both 65 and 66

desaturase prefer n-3 PUFA to n-6 PUFA (de Go mez and Brenn er, 1975; Hagve and

Christophersen, 1984) . As the 5: 1 group cont ains a higher level of n-3 PU FA, the reduced

conve rsion of LA to AA in 5: I group appea rs to be due to a higher competition of n-3

PU FA for the elongation and desaturati on enzymes .

Th e long chain n-3 PUFA , esse ntially EPA and DHA, are cr itica l for normal

gro wth and developm ent (Cl andinin et al., 1980b). Higher total n-3 PUFA, DPA and

DHA content were obse rved in the 5:1 group followed by 15:1 and 30:1 groups reflect ing
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the maternal dietary fatty acid compos ition. Previous reports have also show n a high

EPA, DHA content and a significantly lower n-6 to n-3 fatty acid ratio in RBC PLs where

mothers were fed fish oi l durin g pregnancy (Dunstan et al., 2004; Arbuckle & Innis,

1993; Carlson et al., 1986; Hrboticky et al., 1990) . The RBC PL compos ition is a good

indicator of fatty acid composi tion of tissue and brain of the offs pring (Sanjurjo et al.,

1995; Maura ge et al., 1998). Therefore, RBC PL fatty ac id compos ition can also be used

to predict the fatty acid compos ition of whole body fatty acid status.

A strong negative corre lation between percentages of DJ-lA and EPA in RBC PL

and plasma total- and LDL-cholesterol levels, and a positive corre lation between

percentages of AA and plasma LDL-cholesterollevels in male offs pring further supports

the ef fect of dietary PUFA on plasma lipid and lipoprotein profiles. Similarl y, plasma TG

levels in female offspring were negatively correlated with percentages of DHA in RBC

PLs and positively corre lated with percentages of AA in RBC PLs. These correlation

analyses sugges t that n-3 PUFA are assoc iated with reduced plasma lipid and

lipoproteins, whereas n-6 PUFA are assoc iated with increased plasma lipoprotein levels.

The fluidit y of RBC membr anes is highly depend ent upon the lipid composition

(Co lin et al., 1992). Since increased unsaturation result s in an increase in membrane

fluidity, increased incorpor ation of DB A and EPA in to RBC PLs in 5: 1 group may

increase the membr ane fluidity of RBCs compared to 15:1 and 30:1 groups. Thus

increased flexibilit y of RBCs is likely to allow easie r passage through narrow blood

vesse ls in tissue thereby improving blood supply and oxyge n delivery. Moreover these

altered prop erties may favour the flow of blood and reduce thrombu s format ion leading to
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a reduc ed risk of atherosc lerosis . Therefore in the curren t study, RBC PL fatty acid

composi tions of offs pring demonstrate the critica l role of maternal dietary n-6 to n-3 fatty

acid ratio, on tissue acc retion of fatty acids in the offspring.
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4.3. Conclusion and Future work

Curren t recom mendations to replace SFA with PUFA have led to an increased

consumptio n of n-6 PUFA, shifting the n-6 to n-3 PUFA ratio from 2-3:1 in the diets of

early hunter gathere rs to 25:1 in the Westem diet, which may increase the risk ofCVD. In

the current study , feeding diets with varying n-6 to n-3 PUFA ratios to C57BL/6 mice for

one month altered the regulation of lipid and lipoprotein me tabo lism. A decrease in n-6 to

n-3 PUFA ratio decreased plasma TC levels, which cou ld be due to a decrease in I-1MG­

CoA reductase activity, or an increased activ ity of CY P7. Future investigations are

needed to understand the mechanisms behind TC lowering effec ts of n-6 to n-3 PUFA

ratios. We also observe d lower LDL-cholestero l levels as the n-6 to n-3 PUFA ratio was

lowered, which could be due to increase d LDLr gene expressio n that is a top ic for future

investigation.

The findings from the one month feeding study forme d the basis to invest igate the

effec ts of maternal dietary n-6 to n-3 PUFA ratios on the regulation of lipid and

lipoprotein metabol ism of the offspring at weaning. The lower plasma TC in offspring

obtained from dams fed 5: 1 and 15:1 diets is possibly due to inhib ition of HMG Co-A

reductase activity, reduced SREBP expressio n, reduced ACA T expressio n or by

increasi ng beta oxidation due to activat ion of PPARs. Future investigations arc needed to

understand the mechan isms responsible for the cholestero l and TG lowering effec ts of

diets vary ing in n-6 to n-3 PUFA ratios .
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The offs pring were studied at weaning to understand the effec ts of pre-weaning

diets. However, longer term studies should be planned where offspring can be fed, the

same diet as that of the mothers or by switching the diets to inves tigate whether the

effects of the pre-weanin g diets are maintained when post-weanin g diets are altered.

Previously it was sugges ted that PUFA metabolism is affected by sex horm ones (Extier et

al., 20 10) . Therefore differential effects observe d in male and female offspring may be

due to differences in sex hormones, which need to be explored in the future .

A limitation of the current study is that the observa tions cannot be directly related

to hum ans due to dif ferences in the lipid and lipoprotein metabolism.. In addition,

menhaden oil was used in the current study as a source of n-3 PUFA that provided high

amounts of EPA and DHA ; whether alpha-linolenic acid, the esse ntial n-3 PUFA, has

similar effects on the regulati on of lipid and lipoprot ein metabolism is not know n. Future

studies can thus be designed using different animal models to relate changes in lipid and

lipoprotein metaboli sm to humans, and also by using different sources of n-3 PUFA to

establish whether the type of n-3 PUFA is important. .

Ove rall, findin gs from the current thesis support the role of maternal dietary n-6 to

n-3 PUFA ratios on the regulation of lipid and lipoprotein metabolism of the offspring of

C57 BLl6 mice. Our findings also show that the programmin g effects are different in male

and female offspring.
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