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ABSTRACT

Dictary fats are a major component of our diet; the quantity and the quality of
dictary fats have been associated with the risk of cardiovascular disease (CVD).
Epidemiological and laboratory studies have shown that increased consumption of
saturated fatty acids (SFA) are associated with an increased risk of CVD, whereas
consumption of polyunsaturated fatty acids (PUFA) are associated with reducing the risk
of CVD. The current recommendations to replace SFA with PUFA have led to an
increased consumption of omega-6 (n-6) PUFA, shifting n-6 to omega-3 (n-3) PUFA
ratio from the 2-3:1 in the diets of early hunter-gatherers to 25:1 in the Western diet,
which may raise the risk of CVD. One of the objectives of this thesis was to investigate
the effect of various dietary n-6 to n-3 PUFA ratios on the regulation of lipid and
lipoprotein metabolism using C57BL/6 mice as an animal model. The findings showed

in bi i of C57BL/6 mice fed diets varying in n-

6 to n-3 PUFA ratios, which formed the basis for the maternal nutrition study. It is now
apparent that maternal diet during gestation and lactation may predispose the offspring to

CVD in later life. According to the ‘developmental origins of health and discase’

hypothesis, foetus responds to the i i by ing a series of

that i the offspring to metabolic disorders in later life.
Given the health benefits of maintaining a proper ratio of dietary n-6 to n-3 PUFA, it was
of interest to understand the role of altered maternal dietary n-6 to n-3 PUFA ratio on the
regulation of lipid and lipoprotein metabolism in the offspring of CS7BL/6 mice at

weaning. Offspring at weaning were selected to isolate the effects of pre-weaning diet,



excluding the post weaning diet, on the offspring’s lipid and lipoprotein metabolism. The
CS7BL/6 mice were selected for the current study as these have been already established
as an animal model in our laboratory to study ‘in utero’ programming of lipid and

lipoprotein metabolism in the offspring.

In the one month feeding study, female C57BL/6 mice were fed a diet containing
20% w/w fat with n-6 to n-3 PUFA ratio of either 5:1, 15:1 or 30:1 to establish the effect
on the regulation of lipid and lipoprotein metabolism. Mice were sacrificed after one
month and various metabolic parameters were measured. Feeding diets with varying n-6
to n-3 PUFA ratios to C57BL/6 mice led to the incorporation of dietary fatty acids in red
blood cell (RBC) phospholipids (PL), and also altered the regulation of lipid and
lipoprotein metabolism. In the maternal nutrition study, 8 week old female CS7BL/6 mice
were fed a diet containing 20% w/w fat with n-6 to n-3 PUFA ratios of either 5:1, 15:1 or
30:1 for two weeks before mating, during gestation and lactation. Both male and female
offspring from each dietary group (n =10/group) were sacrificed at weaning and various
metabolic parameters were measured. A higher n-6 to n-3 PUFA ratio in the maternal diet
of CS7BL/6 mice led to higher plasma lipid and lipoprotein concentrations compared to a
lower ratio in the offspring at weaning. Moreover the effect of maternal diet was gender
specific. In conclusion, a maternal diet high in n-6 to n-3 PUFA ratio resulted in higher
levels of lipid and lipoproteins in the offspring at weaning, which may be associated with

an increase risk of CVD in later life.
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Chapter 1: Introduction



1.1 Cardiovascular Disease

1.1.1 Global burden of cardiovascular disease

Cardiovascular disease (CVD) is one of the leading causes of death in North
America and globally. It involves diseases of the heart and blood vessels and is the most
common end stage of a number of distinct diseases and therefore is multifactorial in
nature (Riediger er al., 2008). CVD is the largest single contributor to global mortality
(WHO, 2009). The World Health Organization claims that 30% of global deaths in 1999
occurred due to CVD (WHO, 2005). It is estimated that a 55% rise will occur in the
proportion of deaths duc to CVD, between 1990 and 2020 in the developing countries
(Murray and Lopez, 1996). According to Statistics Canada (2008), 29% (69,648) of
deaths were due to CVD; there was one death due to CVD in every 7 minutes. The costs
associated with CVD in Canada may exceed $20.9 billion annually (Statistics- Heart and
Stroke Foundation of Canada, 2008). Thus there is an urgent need to design dietary based

therapeutic strategies for the treatment and prevention of CVD.



1.1.2. Risk factors associated with cardiovascular disease

Risk factors of CVD are of two types: genetic and environmental (Tymchuk et al.,
2006). Since a rapid progression of incidence of CVD within a generation has been
observed during the last few decades, some researchers suggest that the causes for CVD
are mostly environmental rather than genetic (Symonds & Gardner, 2006). In contrast,
population based studies illustrate that the pathogenesis of CVD evolves over decades and

has a genetic component and begins as early as childhood (Gillman, 2005).

1.1.3. Dietary fats as a risk factor of cardiovascular disease

Among environmental factors, diet and nutrition have long been identified as
major risk factors for CVD. The current research claims that increased incidence of CVD
within past few decades is due to sedentary lifestyle and consumption of a high calorie,

high fat diet (Drewnowski & Popkin, 1997; Popkin, 2006). A high fat diet alters the

regulation of lipid and li i ism which may i the individual to

develop CVD (Guo & Jen, 1995; Chechi & Cheema, 2006; Magdeldin er al., 2009).

1.2. of lipid and lipop!

Dictary lipids are a complex group of biomolecules which act as building blocks
of cellular membranes (German, 2011). They act as substrates for metabolic energy and
provide a precursor pool for a diverse range of metabolic signalling molecules (German,
2011). The recommended fat intake for adults is between 20-35% of total calories

(Dictary Guidelines of Americans, 2005). The lipids usually introduced with diet arc

iglycerides (TG), ipids (PL) and esters (CE) (Rader & Daugherty,



2008). Once dietary fats and cholesterol are absorbed, they are transported via the
lymphatic system as chylomicrons and enter into the blood circulation. Chylomicrons
transport fatty acids to peripheral tissues such as adipose and muscle tissue. Lipoprotein
lipase (LPL) acts on chylomicrons releasing glycerol and free fatty acids (FFA) which are

taken up by the muscle and adipose tissues.

Liver is the main organ involved in the regulation of lipid and lipoprotein
‘metabolism. The liver is capable of de novo fatty acid synthesis and secretes very-low-
density lipoproteins (VLDL) which, upon the action of LPL, are converted to low-density
lipoprotein (LDL). LDL is cleared from the circulation mainly through liver LDL
receptors. In addition, high-density lipoprotein (HDL) is generated by the intestine and
the liver, and is mainly involved in the reverse cholesterol transport (RCT) process. HDL
scavenges cholesterol from peripheral tissues and macrophages through the actions of the
transporter ABCA-1, forming nascent HDLs, promoting the efflux of cholesterol from
tissues. The free cholesterol (FC) in nascent HDL is esterified to CE by the enzyme
lecithin cholesterol acyltransferase (LCAT) which creates mature HDLs, to deliver
cholesterol directly to the liver through the receptor SR-B1 and indirectly by cholesterol
ester transfer protein (CETP) (Rader & Daugherty, 2008; Flock ef al., 2011). Alterations
in the regulation of lipid and lipoprotein metabolism is associated with an increased risk

of CVD(Rader & Daugherty, 2008).




1.2.1 Pathogenesis of Cardiovascular Disease: Role of lipids and lipoproteins
Research on pathogenesis of CVD has identified several independent factors
associated with the morbidities of CVD, i.. oxidative stress (Ceriello, 2002), high LDL-
cholesterol (Carmena ef al., 2004; St-Pierre ef al., 2005) hyperglycemia (Wahab et al.,
2002; Eguchi et al., 2007), hyperinsulinemia (Ingelson et al, 2005), and clevated markers
of inflammation such as C-reactive protein (CRP) and interleukin-6 (IL-6) (Pearson ef al,
2003). Amongst these factors, high LDL-cholesterol levels play a significant role in the
pathogenesis of CVD (Carmena ef al., 2004). Oxidative modifications of LDL have been
shown to result in numerous changes in its biologic properties that could have pathogenic

in is (Stei et al., 1990). These oxidized LDL particles

trigger a series of inflammatory responses resulting an increased expression of adhesion
molecules in the endothelial cells (Kita er al., 2001). This leads to the recruitment of
macrophages which take up the oxidized LDL, transforming them into foam cells. The
foam cells continue to grow and then rupture leading to a huge deposit of cholesterol on
the endothelial wall, recruiting more macrophages and the cycle continues (Kita et al.,

2001).

It has been reported that 1% increase in LDL-cholesterol is associated with a 2%
increase in CVD, while a 1% decrease in HDL-cholesterol was associated with a 3-4%
increase in CVD (Wilson, 1990). Although, the role of TG levels as an independent risk
factor of CVD remains uncertain, increased plasma TG levels were also known to be
associated with increased risk of CVD (Shaikh ez al., 1991; Bergeron & Havel, 1997). An

increased plasma TG concentration has been shown to be associated with the formation of

5




small CE rich chylomicron remnants, which mediate cholesterol influx into the

endothelial wall along with LDL (Shaikh er al., 1991). Therefore, factors related to
altered plasma lipid and lipoprotein levels are highly associated with CVD risk, and
dietary fats have been identified as one of the major causes leading to altered lipid and

lipoprotein parameters (Mattson & Grundy, 1985).



Figure 1.1 Lipid and lipoprotein metabolism

Modified from Flock er al., 2011. CETP and cholesterol ester exchange between

lipoproteins and HDL was removed from this figure as mice lack CETP.

TG = Triglycerides, ACAT = Acyl-Co A CE =
ester, SR-BI = scavenger receptor-1, C = cholesterol, VLDL = very low-density

LDL = low-density li in, RCT = Reverse cholesterol transport, HDL =

high-density i in, LDLr=low-density I in receptor



|t o

1.3. Quality of dietary fats and cardiovascular disease

1.3.1. Dietary d and p ated fatty acids in cardi

Previous research has shown that the quality of dietary fats play a major role in
altering plasma lipid and lipoprotein levels (Mattson & Grundy, 1985b; Mensink &
Katan, 1989). Based on their saturation levels, dietary fats are mainly of three classes;
saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated
fatty acids (PUFA). An increased consumption of saturated fatty acids (SFA) has been
associated with an increased prevalence of CVD (Hu ef al., 2001). Saturated fatty acids
increase serum total cholesterol (TC), LDL-cholesterol and TG levels in human subjects,

which are known to be CVD risk factors (Hegsted et al, 1993). A prospective

| epidemiological study of 1001 middle aged men reported that those who died from CVD

had high intake of SFA and a low consumption of PUFA, 20 years prior to their death

(Kushi e al., 1985). Similarly, high TC and LDL-cholesterol levels were reported in

humans who consumed a diet rich in SFA compared to a diet rich in PUFA (Mattson &

Grundy, 1985b). On the other hand, a meta-analysis of 60 selected trials concluded that

the intake of PUFA, especially the intake of linoleic acid (LA), has been associated with

reduced serum TG levels and TC levels compared to the diets rich in SFA (Mensink e

al., 2003). Linoleic acid is also associated with lowering LDL-cholesterol when replacing

| dietary SFA (Hayes, 2000). Thus, increased consumption of PUFA has been suggested to

be associated with decreased risk of CVD (Russo, 2009). In contrast, dietary intake of

SFA may increase the risk of CVD.



1.3.1.1 Effects of dietary omega-6 polyunsaturated fatty acids in cardiovascular
disease
Dictary PUFA consist of omega-6 (n-6 PUFA) and omega-3 PUFA (n-3 PUFA),

which are essential fatty acids for humans due to lack of desaturase enzymes responsible

for introduction of double bonds beyond A9 position for de novo fatty acid synthesis.

Linoleic acid is the primary dietary n-6 PUFA, which gets converted to arachidonic acid
(AA) after clongation and desaturation (Harris e al., 2009). On the other hand, parent n-3
PUFA, o- linolenic acid (ALA), gets converted to longer chain polyunsaturated fatty acid

(LC-PUFA), essentially docosahexacnoic acid (DHA) and cicosapentancoic acid (EPA)

after ion and ion, but this is poor in the presence of n-6

PUFA.

Previously it was reported that higher dictary PUFA levels are associated with a
reduced ratio of total to HDL-lipoprotein cholesterol (Siguel, 1996). On the other hand,
dicts high in LA have been shown to increase the susceptibility of LDL-cholesterol

oxidation ing vascular i i i et al., 1989; Tsimikas et al., 1999).

An increased risk of acute myocardial infarction was reported with high dictary AA
intake (Kark ef al., 2003). Omega-6 PUFA are also involved in increasing the oxidation
susceptibility of LDL and VLDL and thereby exerting deleterious effects on development
of CVD (Louheranta et al., 1996). Collectively, these data indicate that the beneficial
effects of n-6 PUFA on the onset of CVD are controversial. Thus, it appears that the

cardio protective effect of PUFA may be highly attributed to n-3 PUFA




1.3.1.2. Effects of omega-3 pi fatty acids in it disease

Among PUFA, n-3 PUFA are known to exert cardioprotective effects and are thus
increasingly being used in the prevention and management of several CVD risk factors
such as hypertension, dyslipidemia and metabolic syndrome (Yashodhara ef al., 2009).

Cardiovascular benefits from n-3 PUFA are mediated through several aspects, i.c.

of the li in profile, ially by reducing TG levels, TC levels and
by increasing the LDL particle size (Sanders e al, 1997; Kelley et al, 2007).
Furthermore, n-3 PUFA have been shown to reduce tumour necrosis factor-alpha (TNF-
alpha) and interleukin-1 levels, which are known inflammatory cytokines involved in
atherosclerosis (Caughey ef al., 1996). In addition, n-3 PUFA are associated with reduced
platelet aggregation (von Schacky, 2000), anti-arrhythmic effects (Kang & Leaf, 2000)

and improved i i (G

et al, 2000), exerting

cardioprotective effects.

1.3.2. Effects of omega-3 polyunsaturated acids on lipid and lipoprotein metabolism

Hypertriglyceridemia is a known risk factor for atherosclerosis (Groot ef al., 1991;
Austin, 1998); a number of studies have confirmed that n-3 PUFA can reduce plasma TG.
Dictary supplementation of n-3 PUFA to humans has been shown to reduce plasma
VLDL and TG levels compared to dictary supplementation of safflower oil rich in n-6
PUFA (Fisher et al., 1998; Chan et al., 2002). Similarly, a 24% reduction in fasting TG

levels and 92% reduction in large VLDL particles were reported in a double blind



randomized study after consuming 7.5 g of DHA oilday for 45 days in

hypertriglyceridemic men (Kelley ez al., 2007).

Animal studies have also demonstrated the TG lowering effects of n-3 PUFA; by
increasing beta oxidation in the liver (Yamazaki et al., 1987; Halminski ef al., 1991) and
by decreasing the delivery of non-esterified fatty acids to the liver (Otto ef al., 1992).
These mechanisms decrease plasma TG levels by reducing the substrate availability for
TG synthesis. Moreover, n-3 PUFA have also been shown to lower TG synthesis by
reducing the diglyceride acyltransferase (DGAT) activity which is the rate limiting

enzyme of TG synthesis (Geelen et al., 1995).

Increased LDL-cholesterol levels are well known to be associated with an
increased risk of CVD (Mensink, 2011). However, cardioprotective effects of n-3 PUFA
are not associated with decreasing the plasma LDL levels, but by increasing the LDL
particle size as smaller LDL particles are more atherogenic and larger particles are less

atherogenic.  Previous studies have reported an increase in the diameter of LDL-

particles after ion of n-3 PUFA in humans with hyperlipidemia
(Contacos et al., 1993; Kelley ef al., 2007). A 0.25 nm increase was demonstrated in the
LDL particle size in hyperlipidemic men after consuming 4 g of purified DHA for 6
weeks, although an 8% increase in the LDL cholesterol levels had also been observed in
hyperlipidemic men (Mori et al., 2000). In addition, it was suggested that larger amounts

of fish oil could lower LDL-cholesterol concentrations (Harris er al., 1983).




Another known cardioprotective mechanism by which n-3 PUFA could lower
cholesterol synthesis is by down regulating sterol regulatory element-binding protein-1
(SREBP-1), a transcription factor that plays a vital role in cholesterol, fatty acid, and TG
metabolism. A study in LDL-r knockout mice reported that dietary n-3 PUFA, essentially
EPA and DHA, markedly decreased plasma lipid levels by suppressing the activity of
hepatic fatty acid synthesis; this was due to reduction in the mRNA level of fatty acid
synthase (FAS) enzyme that was mediated via the reduction in SREBP-1 expression
(Vasandani et al., 2002). Recent studies, however, suggest that a proper n-6 to n-3 PUFA
ratio is more beneficial in terms of reducing CVD risk than the higher intake of n-3 PUFA

alone (Simopoulos, 2002; Simopoulos, 2008).

1.3.3 Significance of the omega-6 to omega-3 polyunsaturated fatty acid ratio in
cardiovascular disease

Mammals cannot convert n-6 PUFA to n-3 PUFA as they lack the converting
enzyme n-3 desaturase (Harris er al., 2008). Since these two classes of essential fatty

acids (EFA) are not int ible and are ly and ionally different,

they often exert opposing physiological functions. Thus, it is important to have both of
these EFAs in the diet. Elongation and desaturation of LA and ALA result in their
biologically active forms of longer chain derivatives such as AA, EPA and DHA. Since
these EFAs compete for the same enzyme system for their conversion, an optimum
balance is required for proper physiological functioning (Wijendran & Hayes, 2004;

Harris et al., 2008)




Both n-3 and n-6 PUFA act as primary substrates for eicosanoids, which are
signalling molecules, derived from the oxidation of fatty acids and further production of

and i (Youdim et al., 2000; Jordan, 2010).

Biologically active cicosanoids from AA, an n-6 PUFA, are pro-inflammatory,
prothrombotic, and generally promote atherosclerosis, while cicosanoids derived from
EPA and DHA, the n-3 PUFA, have been shown to be anti-inflammatory anti-
thrombotic, and have protective effects against atherosclerosis (Greenberg ef al., 2008;
Ott et al., 2011). It has been stated that EPA and DHA are produced more efficiently than
AA, under higher levels of dietary ALA (Cetin ef al., 2009). Thus, higher dictary intake

of n-3 PUFA are for many i iti such as CVD and

autoimmune diseases in order to reduce the production of prostanoids derived from AA
(Cetin ef al., 2009). Although it has been shown that the desaturation and clongation
processes favour n-3 PUFA over n-6 PUFA (Hagve & Christophersen, 1984), a higher
consumption of n-6 PUFA dicts shifts the pathway in favour of the production of more n-
6 PUFA derivatives (Jordan, 2010). Thus, it has been recommended that a lower n-6 to n-
3 PUFA ratio is beneficial in lowering the risk of CVD (Sanders et al., 1997; Simopoulos,

2008).

Many human studies have reported beneficial effects of a lower dietary n-6 to n-3
PUFA ratio on lipid and lipoprotein metabolism. A decrease in both fasting and
postprandial plasma TG levels were reported in older men and women fed a lower n-6 to
n-3 PUFA ratio compared to a higher n-6 to n-3 PUFA ratio (Moore et al., 2006; Sanders

et al., 2006). Similarly, reduction in plasma TG levels and favourable changes in LDL
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size were associated with the lower n-6 to n-3 PUFA ratio where subjects were fed n-6 to
n-3 ratio of 3:1, 5:1 and 10:1 (Griffin ef al., 2006). In addition, an in vivo study confirmed
that platelet aggregation was decreased, which is a known risk factor for atherosclerosis,
as the dietary n-6 to n-3 PUFA ratio was decreased (Freese ef al., 1994). It has been
shown that the potential CVD benefit of ALA was achieved only when the dietary LA is
reduced concurrently rather than when fed higher LA levels in male pigs (Ghosh e al.,
2007). Similarly, a study in apoE-/- LDLr-/- double knockout mice reported a significant
reduction in plasma LDL-cholesterol levels after feeding a low dietary n-6 to n-3 PUFA
ratio (0.29) compared to a higher dictary ratio between 1.43-8 (Yamashita et al., 2005). It
is therefore apparent that the n-6 to n-3 PUFA ratio plays an important role in

development of CVD in adult life.
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Modified from (Gao et al., 2011)



1.4. Foetal Origins Hypothesis

The foetal origins hypothesis states that the conditions in-utero have a
programming effect on the foetal physiology and metabolism (Barker et al., 1990; Barker,
1997). This was originally proposed by Barker and according to his theory, if a foetus is
deprived of adequate nutrient supply during the gestation period, it will be irrevocably
programmed in order to survive in the adverse conditions, predisposing the offspring to
develop discases in later life. Preliminary epidemiological studies carried out by Barker
provided the initial evidence supporting the foctal origins hypothesis. These studics
showed a relationship between maternal under-nutrition, low birth weight and
development of adult diseases such as dyslipidemia (Barker ef al., 1993), hypertension
(Barker et al., 1990) and insulin resistance (Phillips ef al., 1994). All these studies
highlighted the importance of maternal nutrition on the onset of CVD in offspring’s later
life. Thus, it has been suggested that low birth weight was a result of maternal under-
nutrition during the critical period of the development of the foetus. Subsequent studies
from Australia and South India on poor nutrition have further confirmed the strong
relationship between maternal under-nutrition and high risk of developing CVD in the

offspring’s later life (Fall er al., 1998; Hoy et al., 1999).

It is suggested that animals are capable of developing a variety of ways of
adapting to the environment. Small size and slow metabolism facilitate an animal’s ability
to thrive in adverse circumstances, whereas large size and rapid metabolism facilitate
reproductive success when the resources are more abundant (Hales & Barker, 2001;

Rajaleid er al., 2011; Wells, 2011). Often, these characteristics are induced in early life,
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depending on the environment where the mother is being exposed. However, once an

individual is adapted to one environment, it may be at risk when exposed to a different

this is called plasticity (Bateson ez al., 2004).

Observations in some human studies, where no relationship was reported between
maternal under-nutrition and development of CVD in offspring’s adult life (Stanner ef al.,
1997; Huxley et al., 2002), have been explained on the basis of the “thrifty genotype
hypothesis”. This hypothesis explains the selection of a “thrifty gene” and an increase in
the body’s capacity to store fat during periods of food shortage. This predisposes the
individual to an increased risk of developing insulin resistance when food becomes

abundant. This ion could be i if there is a diffc between in-utero

and postnatal nutrition, which predisposes the individual to discases in later life (Neel,

1962). foctal ing is not an ion of

rather it is an adjustment made during foetal development to ensure adaptation to
postnatal life and sustenance of good health (Barker, 1990; Gluckman & Hanson, 2007;
Gluckman et al., 2008). Considering these theories as the base, the effect of maternal
under-nutrition on development of CVD in the offspring’s later life has been extensively
studied over the last few decades (Garofano et al., 1997; Vickers et al., 2000). However,
in recent years, the attention has also been focused on excess maternal consumption of

dictary fats, which is one of the major causes behind the risk for CVD.




1.5. Role of placenta in intrauterine fatty acid transfer

According to the foetal origins hypothesis, there are critical periods during
gestation where nutrition plays a vital role in the development of the foetus leading to
persistent alterations in adulthood. The foetus solely depends on the nutrients provided by
the mother for its growth and development during intrauterine life. Among nutrients,
PUFA are mainly provided to the foetal circulation by placental transport and the quality
and quantity of PUFA reaching the placenta depend on the maternal diet and metabolism
(Wittmaack ef al., 1995; Hanebutt et al., 2008). During pregnancy, maternal metabolism
is altered in order to support the fatty acid requirement of the foeto-placental unit. In
addition, the placenta also plays a major role in determining the quality and quantity of
PUFA levels in the foetal circulation through its transfer ability and metabolism

(Hendrickse et al., 1985; Berghaus et al., 1998; Haggarty, 2002).

Previously it was reported that the fatty acid profile is different in the foetal
circulation compared with that of the maternal, where a higher proportion of LC-PUFA
and a lower percentage of their precursors, LA and ALA were observed in the umbilical
artery (Crawford et al., 1976; Benassayag et al., 1999). This observation suggested the
ability of the placenta to increase LC-PUFA percentages in foetal blood in order to
support rapid foetal growth and central nervous system development. However, stable
isotope experiments in vitro and in vivo showed that the higher accretion of AA and DHA
in the foetus is due to the placental ability to preferentially transfer DHA and AA over
ALA and LA into the foetal circulation (Ruyle ef al., 1990; Haggarty et al., 1999; Larque

etal., 2003).
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Recent studies have shown that specific transport proteins in the placenta lead to
this preferential transfer of LC-PUFA to the foetus. These proteins are plasma membrane
fatty acid binding proteins (FABPpm), fatty acid translocase protein (FAT), fatty acid

transporter proteins (FATP) and intracellular fatty acid binding proteins (FABP) located

in mi i and i of foetal illaries (Campbell ef al., 1998a;
Campbell ef al., 1998b). The lack of specificity for a particular type of fatty acid and the
location of FAT and FATP on both sides of trophoblast cells in the placenta allows fatty
acids to transport bidirectionally. However, for its exclusive location on the maternal side
and its preference for LC-PUFA, FABPpm seems to be implicated in their sequestration
in the placenta (Dutta-Roy, 2000). Besides, fatty acids are also transported via simple

diffusion across the concentration gradient to a certain extent (Hanebutt ef al., 2008).

Once in the placenta, part of the fatty acids are oxidized in mitochondria to

produce energy and the rest are i into ipids. Also a certain

of longer chain n-6 and n-3 PUFA are converted to prostaglandins by cyclooxygenases.
The residual fatty acids are clongated, desaturated and then released into the foetal
circulation (Coleman & Haynes, 1987; Thorburn, 1991). This placental metabolism of
fatty acids is also a reason for increased LC-PUFA levels in the foetal circulation
compared with that of the maternal circulation. All of these data suggest that adequate
LC-PUFA transfer to the foetal side is ensured via placental fatty acid transport proteins
in order to facilitate foetal growth and development. Since, foctal fatty acids are
correlated to the maternal levels, it is important to maintain proper LC-PUFA status in the

mother through diet in order to ensure optimal health of the offspring.
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1.5.1. Role of maternal diet on fatty acid composition of milk

The maternal dietary fatty acid composition is one of the major factors which
determines not only the quality of fatty acids transferred across the placenta but also the
quality of fatty acids secreted in the breast milk. The fatty acids in milk mainly originate
from one of three sources: mobilization of endogenous stores of fatty acids, synthesis of
fatty acids by the liver or breast tissue, and derivation from the diet (Insull er al., 1959). It
has been shown that high maternal SFA and PUFA intake were reflected in breast milk
fatty acids (Mellies er al., 1979; Finley et al., 1985; Helland et al., 2001). A high DHA
supplementation to women during the lactation period also showed an elevated DHA
content in milk and in plasma of the infant (Jensen ez al., 2000). Similarly, a number of

animal studies have that there was a signi ion between the

maternal diet and the breast milk fatty acid composition where animals were fed different
n-3 to n-6 PUFA ratios in rats (Jen ef al., 2009) and in mice (Kagohashi ef al., 2010).
Furthermore, it has been reported that n-6 to n-3 PUFA ratios in breast milk and
erythrocyte (RBC) composition was nearly the same as that of the maternal diet. All of
these studies have demonstrated that breast milk fatty acid composition is greatly altered
by the maternal diet which plays a significant role in determining the health of the

offspring in later life (Innis, 2005).




1.6. Maternal dietary fatty acids and foetal programming

Studies on the evolutionary aspect of the human diet indicate that major changes
had taken place in the quality and quantity of dietary fats during last 200 years with a
significant increase in total and SFA intake (Simopoulos, 1991; Simopoulos, 2006).
Therefore, a high consumption of dietary SFA and a low PUFA intake may have
increased the prevalence of CVD. It is therefore, important to focus on the role of dietary

fats in developmental origins of CVD.

1.6.1. Effect of maternal dietary saturated and polyunsaturated fatty acids on lipid
and lipoprotein metabolism of the offspring

Previous studies carried out in our laboratory using C57BL/6 mice have shown
that, feeding a high fat diet (20% W/W) rich in SFA during the perinatal period was
deleterious compared to a diet rich in n-6 PUFA (Chechi & Cheema, 2006). Elevated
total- and LDL-cholesterol levels were observed in 11 week old offspring from dams fed
SFA during the perinatal period, while high HDL-cholesterol levels were observed in
offspring of dams fed n-6 PUFA (Chechi & Cheema, 2006). In addition, it was reported
that higher LDL-cholesterol levels were associated with reduced LDL-r expression in
female offspring obtained from mothers fed a diet rich in SFA (Chechi er al., 2009).
Therefore, maternal dietary exposure to SFA may be associated with an increased risk of

CVD in the offspring by inducing dyslipidemia.

Other studies have also confirmed deleterious effects of maternal consumption of

SFA, and favourable effects of maternal consumption of PUFA on offspring’s lipid
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metabolism. Khan ef al., (2003) reported higher plasma TC levels in male offspring and
TG levels in female offspring at 360 days of age, when dams were fed a high fat diet rich
in SFA during the perinatal period compared to offspring of dams fed a control diet in
rats. Both male and female offspring were reported to have low levels of HDL-cholesterol
suggesting an adverse effect of perinatal SFA exposure (Khan ef al., 2003). Similarly,
higher TC levels and lower HDL-cholesterol levels were observed in 160 day old rat
offspring obtained from dams fed a high fat diet rich in SFA compared to offspring from
dams fed a control diet (Ghosh ef al., 2001). Contrary to maternal exposure of a high fat
diet rich in SFA, a diet rich in EPA and DHA, resulted in lower TC level and TG levels in
macrosomic Wistar rats at 2 and 3 months compared to the offspring obtained from dams
fed a control diet (Yessoufou et al., 2006). These studies on foetal programming suggest
that the quality of dietary fatty acids in maternal diet plays a significant role in

predisposing the offspring to develop CVD in later life.

Docosahexaenoic acid and AA are rapidly incorporated in the retina and nervous tissue
during last trimester of pregnancy and lactation period (Clandinin ef al., 1980a; Martinez,
1992) and it has been estimated that the human foetus needs 50 mg/kg/day of n-3 PUFA
and 400 mg/kg/day of n-6 PUFA (Clandinin et al., 1980b). Therefore, many studies on

foetal ing have i i the effects of n-3 PUFA on

neurocognitive and visual functions of the offspring. Perinatal n-3 PUFA supplementation
showed beneficial effects on visual acuity (Birch er al., 1992) and increased 1Q levels

(Helland et al., 2001) of the human offspring. However, to date, there is little evidence of




developmental effects of maternal n-3 PUFA on offspring’s lipid and lipoprotcin

metabolism.

1.6.2. Effect of maternal omega-3 polyunsaturated fatty acid on the lipid and
lipoprotein metabolism of the offspring

As discussed in the above section (1.3.2), the cardioprotective effects of n-3
PUFA in adults are firmly established. A handful of studies have investigated the role of
maternal n-3 PUFA supplementation on the regulation of lipid and lipoprotein
metabolism of the offspring. Low plasma TG levels and high HDL-cholesterol levels
were reported in 11 week old rat offspring of dams who were supplemented with DHA
compared to dams fed a control diet (Gong et al., 2009). Similarly, low VLDL and LDL
levels were reported in rat offspring where diabetic dams were fed an EPA/DHA diet
compared to diabetic dams fed a diet rich in vegetable oil (Soulimane-Mokhtari er al.,
2008). Another study in diabetic rats demonstrated that supplementation of EPA/DHA
during pregnancy decreased serum TG and cholesterol levels in macrosomic pups in
adulthood, at day 60 and day 90 (Soulimane-Mokhtari ef al., 2005). Thus, maternal

supplementation of EPA and DHA assisted in improving lipid anomalics in the offspring.

plausible isms of imp of TG levels in the offspring of dams
fed n-3 PUFA included reducing the substrates for TG synthesis through enhancement of
mitochondrial beta oxidation, which was supported by an increase in camnitine
palmitoyltransferase 1 (CPT-1) mRNA expression in the rat offspring of dams
supplemented with DHA (Gong et al., 2009). CPT-I is the rate-limiting step of the

camnitine palmi system, ing the transfer of the acyl group from




coenzyme A to carnitine to form acylcamnitine, which is an essential step in the beta-

oxidation of fatty acids.

Although the above data support a beneficial cffect of maternal n-3 PUFA

on offspring, i effects of dietary n-3 PUFA supplementation

also have been reported. Recently it was shown that excessively rich or deficient levels
of n-3 PUFA in the maternal diet led to shortened life span of the offspring (Church ef
al., 2010), which was suggested to be due to adverse effects of excessive n-3 PUFA
during the perinatal period causing “nutritional toxicity”. Although the mechanisms of

these ing effects are still ined, above data draw the conclusion that any

change, essentially inadequate or excess fatty acid supply during critical periods of
development can affect cell growth and differentiation leading to health issues in the
offspring in later life (Georgieff & Innis, 2005). Therefore, it may be important to
consider the ratio of n-6 to n-3 PUFA in the maternal diet as opposed to simply increasing

the intake of n-3 PUFA.

1.6.3. Effect of maternal omega-6 to omega-3 polyunsaturated fatty acid ratio in
body weight and body length of the offspring
According to the developmental origins of discases hypothesis, adverse

lead to di ionate foetal growth or low birth weight (Barker,

1995). Some studies have suggested that the perinatal dietary n-6 to n-3 PUFA ratio is
significant in determining health outcomes compared to the individual supplementation of

these fatty acids (Simopoulos, 2002; Simopoulos, 2008).
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Growth and behavioural retardation has been reported in the offspring of dams fed
a diet with a n-6 to n-3 PUFA ratio of (0.32) compared to offspring from dams fed a n-6
to n-3 PUFA ratio of four (Wainwright e al., 1999). The authors reported a 12%
decrease in body weight at weaning suggesting that an imbalance of the dietary n-6 to n-3
PUFA ratio in the maternal diet deleteriously affected the growth rate of the offspring.
Others have also reported a shorter body length in the offspring of dams fed either an
extremely low or a very high n-6 to n-3 PUFA ratio (Korotkova et al., 2002; Korotkova et
al., 2004; Santillan et al., 2010). Some of the programming effects are not reversible as
significantly lower DHA levels were detected in the hypothalamus of offspring from
dams fed a high n-6 to n-3 PUFA ratio after switching to a diet rich in ALA during the
postnatal period (Kodas ef al., 2002; Li ef al., 2006). The above studies collectively

suggest that maternal exposure to extreme n-6 to n-3 PUFA ratios decreased growth rate

of the offspring thereby ing the i of maintaining proper dietary n-6

to n-3 PUFA ratio during pregnancy.

Low birth weight was found to be associated with an increased risk of CVD
(Barker ef al., 1989; Frankel et al., 1996; Rich-Edwards et al., 1997). Several studies
have shown the impact of maternal n-6 to n-3 PUFA ratio on the body weight and body
length of the offspring, thus a balance between the n-6 to n-3 PUFA in the maternal diet
may be an important factor in the outcome of CVD in the offspring. To date, there are no
studies investigating the impact of maternal n-6 to n-3 PUFA ratio on the regulation of
the offspring’s lipid and lipoprotein metabolism which may be related to the future

development of CVD.




1.7. Evolutionary aspects of dietary fatty acids

Today’s diet has undergone nutritional transition, which may be a major factor for
the increased incidence of CVD. The dietary shift from increased complex carbohydrate
and high fiber content to an energy-dense diet containing high levels of SFA, was a major
factor contributing to the dramatic increase in CVD (Drewnowski & Popkin, 1997).

Recent ions are to replace ic SFA diet with PUFA (Mozaffarian et

al., 2010; Martikainen et al., 2011), which has led to an increased consumption of n-6
PUFA in the Western world (Simopoulos, 2006; Simopoulos, 2008). Although
considerable amounts of plant derived ALA are consumed through walnuts, flax seeds,
canola oil, spinach and Brussels sprouts in a typical Western diet, bioconversion of ALA
to EPA and DHA is low (Jordan, 2010). In contrast, preformed DHA and EPA are
consumed to a lower extent in a Western diet (Kris-Etherton et al., 2002; Innis, 2011).
Thus, dictary shift from SFA to n-6 PUFA may not facilitate the reduction of the
incidence of CVD; instead, it may aid in the development of chronic diseases due to

n-3 PUFA ion and lead to an i in the dietary n-6 to n-3

PUFA ratio. It has been estimated that the PUFA ratio of n-6 to n-3 in the present
Western diet is approximately 20-30:1 (Simopoulos, 2008; Wan et al., 2010; Gomez
Candela ef al., 2011) whereas humans evolved on a ratio of 1:1 (Kris-Etherton ef al.,
2000; Simopoulos, 2008; Wan e al., 2010; Gomez Candela et al., 2011). It has been
suggested that, the appropriate ratio of dietary n-6 to n-3 PUFA for optimal body function

is around 3-5:1 (Kris-Etherton et al., 2000).




The Food and Agri Organization reported that ion of vegetable

oil has increased from 13 g personday” to 30 g person”'day” in developed countries
over the period of 1961-1963 to 2001-2003 (Wolmarans, 2009). Accordingly,
epidemiological studies conducted in Canada and Europe have confirmed that the
majority of pregnant women do not consume adequate amounts of n-3 PUFA, especially
DHA (Loosemore ef al., 2004; Denomme ef al., 2005). Given that the dietary n-6 to n-3
PUFA ratio in the current North American diet is 25-30:1, it is most likely that this is the
n-6 to n-3 PUFA ratio consumed by women of child bearing age and during pregnancy

and lactation in Western society.

1.8. Rationale of the study

N-3 and n-6 PUFA have independent effects on metabolic pathways, thus an
optimum balance is required between these classes of PUFA to maintain whole body
homeostasis. The present study was designed to investigate whether altering n-6 to n-3
PUFA ratios in the maternal diet has programming effects on the regulation of lipid and
lipoprotein metabolism of the offspring as altered lipid metabolism is a risk factor for the
development of CVD. C57BL/6 mice are highly susceptible to diet-induced
hyperlipidemia and atherosclerosis (Schreyer ef al., 1998). Our laboratory has established
CS7BL/6 mice as an animal model to study materal dietary fat-mediated programming
of lipid and lipoprotein metabolism in the offspring (Chechi & Cheema, 2006; Chechi et
al., 2009; Chechi et al., 2010). Thus, C57BL/6 mice were used as an animal model in the
current study to investigate the effects of various maternal dietary n-6 to n-3 PUFA ratios
on the regulation of lipid and lipoprotein metabolism of the offspring at weaning. Dictary
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ratios of n-6 to n-3 PUFA were 5:1, 15:1 and 30:1; the 30:1 ratio represents the current
ratio in a Western diet, 5:1 ratio represents the recommended , while 15:1 ratio is in the
middle for a dose response effect of maternal dietary n-6 to n-3 PUFA ratios on the
regulation of lipid and lipoprotein metabolism of the offspring at weaning. Our previous
studies have shown gender specific regulation of lipid and lipoprotein metabolism in
C57BL/6 mice (Chechi & Cheema, 2006; Chechi ef al., 2009), thus both male and female
offspring were used to identify gender specific effects of maternal diets varying in n-6 to
n-3 PUFA ratios. The contribution of post-natal diet on development of CVD can be
controlled by altering the dietary habits of an individual. However, it is important to
determine whether maternal diets during gestation and lactation will affect the regulation
of lipid and lipoprotein metabolism of the offspring at weaning. The findings from this
study design may assist in designing proper dietary regimen for pregnant and lactating
mothers (pre-weaning diets) to prevent the onset of metabolic diseases in the offspring in
later life. The focus of the current study was thus to investigate the effects of maternal
dict on the lipid and lipoprotein metabolism of the offspring at weaning thereby

climinating the effect of post-weaning diets.

The mother is the sole provider of nutrients for the developing foetus, while breast
milk is a nutrient source after birth. Determination of total milk fatty acid composition of
dams fed various n-6 to n-3 PUFA ratios would indicate the effect of breast milk fat
composition on changes in the lipid and lipoprotein metabolism of the offspring. The PL
fatty acid composition of RBCs are known to be correlated with dietary fatty acid

compositions (Witte ef al., 2010) and is commonly used as a biomarker for n-3 PUFA

28




status in the body (Harris et al., 2009). Therefore, analyses of the offspring RBC PL fatty

acids will assist in ing the degree of i ion of maternal dictary fatty

acids intake in the body. Total milk fatty acid analysis and RBC PL analysis of various
dictary groups were therefore determined in the current study. The current study was
designed to address the above research questions with the specific aims and underlying

hypotheses as stated below.

1.9. Objectives and hypotheses

Aim 1: (one month feeding study) - To investigate whether feeding a high fat diet with
varying n-6 to n-3 PUFA ratios will alter the regulation of metabolic parameters in

C57BL/6 female mice after 4 weeks of feeding.

Hypothesis: A diet high in n-3 PUFA is known to reduce plasma TG levels compared to
a diet high in n-6 PUFA. It was hypothesized that a lower dietary n-6 to n-3 PUFA ratio
will lower plasma lipid levels of females compared to a higher dietary n-6 to n-3 PUFA

ratio after 4 weeks of feeding.

Aim 2: (Maternal nutrition study) — To investigate the cffects of altered maternal

dietary n-6 to n-3 PUFA ratios on breast milk fatty acid composition.

Hypothesis: Varying the maternal n-6 to n-3 PUFA ratios will alter breast milk fatty acid

composition to reflect the dietary composition of the mothers.

Aim 3: To investigate the effects of altered maternal dietary n-6 to n-3 PUFA ratios on

the RBC PL fatty acid composition of the offspring.
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Hypothesis: Varying the maternal n-6 to n-3 PUFA ratios will alter RBC PL fatty acid

composition to reflect the dietary composition of the mothers.

Aim 4: To investigate the effects of a high fat maternal diet with varying ratios of n-6 to

n-3 PUFA on the lipid and lipoprotein metabolism of the offspring at weaning.

Hypothesis: A lower maternal dictary n-6 to n-3 PUFA ratios will lower plasma lipid
levels of the offspring at weaning compared to a higher maternal dictary n-6 to n-3 PUFA

ratio.

Findings from the current study will establish whether a lower maternal n-6 to n-3

PUFA dietary ratio will lower plasma lipid levels of the offspring at weaning.



Chapter 2: Methodology



2.1 Diets and Animals

2.1.1 Diets

A base semi-synthetic dict designed specifically to permit the control of fat level
at 20% wiw was obtained in powdered form with the fat source omitted (MP

Biomedicals, OH, USA). The i ition of the semi-synthetic diet is

given in Table 2.1. Fish oil (Menhaden) was obtained from Sigma-Aldrich (USA),
whereas lard, safflower oil and extra-virgin olive oil were obtained from a local
supermarket to prepare three different oil mixtures with n-6 to n-3 PUFA ratios of 5:1,
15:1, and 30:1. The amount of saturated fatty acids (SFA), monounsaturated fatty acids
(MUFA) and total polyunsaturated fatty acids (PUFA) was kept constant. Gas-liquid
chromatography (GLC) was utilized to determine the fatty acid composition of the oil
mixtures and to confirm the proper n-6 to n-3 PUFA ratios in all experimental diets,
which is given in Table 2.2. The high-fat diets with different n-6 to n-3 PUFA ratios were
prepared by mixing semi-synthetic powdered diets with the oil mixtures at 20% w/w and

diets were kept frozen at -20°C under nitrogen.
2.1.2 Animals:

2.1.2.1 Feeding diets with varying omega-6 to omega-3 polyunsaturated fatty acid
ratios to CS7BL/6 female mice

Seven week old, female CS7BL/6 mice were purchased from Charles River
Laboratories (MA, USA). Animals were housed under controlled temperature (21+1°C)

and humidity (35 + 5%) in a single room with a 12-hour light/12-hour dark (7am-7pm,
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light; 7pm-7am, dark) period cycle. Mice were fed commercial rodent chow pellets
during one week of acclimatization. Mice were randomly divided into three groups and
fed experimental diets (n-6 to n-3 PUFA ratios of 5:1, 15:1 and 30:1) for one month (n =8
per diet treatment). Animals were provided with deionized water and fresh food ad-
libitum, every other day. Body weights were recorded once a week while food intake was
recorded every other day.

After one month (30 days) of feeding, mice fasted overnight and were cuthanized
the next morning using isoflurane. Blood was collected by cardiac puncture in tubes
containing EDTA (4.5 mM, pH 7.4) and centrifuged immediately at 3000g, 4°C for 15
minutes to separate plasma. All biochemical analyses were performed within one week
using fresh plasma stored on ice at 4°C. Various tissues and organs were also removed
and weighed at the time of sacrifice, snap frozen in liquid nitrogen and stored at -80°C
until further analyses. All the experimental procedures were done in accordance with the
principles and guidelines of the Canadian Council on Animal Care and were approved by

Memorial University’s Animal Care Committee.

2.1.2.2 Feeding diets with varying omega-6 to omega-3 polyunsaturated fatty acid
ratios to female CS7BL/6 mice during gestation and lactation to study their effect on

the offspring metabolism

Seven week old C57BL/6 male and female mice were purchased from Charles
River Laboratories (MA, USA). Female and male mice were housed in separate cages

under controlled temperature (21 1°C) humidity (35 + 5%) conditions in a single room
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with a 12-hour light/12-hour dark (7am-7pm, light; 7pm-7am, dark) period cycle. Mice
were fed commercial rodent chow pellets during a one week acclimatization period.

After this period, female mice were randomly divided into three groups and fed
experimental diets that differed in n-6 to n-3 PUFA ratios (5:1, 15:1 and 30:1) for two
weeks. One male was then introduced into each female cage for mating and was removed
after 14-days. Pregnancy was confirmed by vaginal plug formation. Pregnant female mice
were then housed in individual clean new cages until pups were born. After 2 weeks,
cages were examined daily for the presence of litters. Once the litters were born, they
were counted on postnatal day 1, after which the mothers and pups were not disturbed in
order to prevent cannibalism that was previously noted in our laboratory with high fat
diets. Mothers were continued on the experimental diets throughout the gestation and
lactation periods. Fresh deionized water and food was provided ad-libitum daily. Body
weight and food intake of dams were recorded each week during gestation and lactation.
All the experimental procedures were done in accordance with the principles and
guidelines of the Canadian Council on Animal Care and were approved by Memorial

University’s Animal Care Committee.

At the time of weaning (3 weeks after birth), pups were fasted over night. Body
weight and body length of the pups were measured; pups were then euthanized using
isoflurane. Blood was collected by cardiac puncture in tubes containing EDTA (4.5 mM,
pH 7.4) and centrifuged immediately at 3000g, 4°C for 15 minutes to separate plasma.
Plasma was stored on ice at 4°C and all biochemical analyses were performed within one
week. The remaining plasma was stored at -80°C for further analyses. Various tissues and
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organs were removed and weighed at the time of sacrifice, snap frozen in liquid nitrogen

and stored at -80°C until further analyses. At weaning, dams were milked after

with ital (35mgkg/ i i (IP) / (0.1ml/100g) and
stimulating milk sccretion using oxytocin (4 [U/kg IP). Dams were then cuthanized;

blood and tissues were collected as described above.



Table 2.1 Composition of the semi-purified diet with 20% (w/w) fat level

Ingredients Semi -synthetic diets (g/kg)
Casein 200
DL -methionine 3
Sucrose 305
Corn starch 190
Alphacel non-nutritive bulk 50
Vitamin mix® 1
Mineral mix* 4
Fat 200

Supplied in quantities adequate to meet NRC requirements (National Research Council,
1995).

*Vitamin Mix (1 kg): Thiamine hydrochloride, 0.6 g; riboflavin, 0.6 g; pyridoxine
hydrochloride, 0.7 g; nicotinic acid, 3.0 g; d-calcium pantothenate, 1.6 g; folic acid, 0.2 g;
d-biotin, 0.02 g; cyanocobalamin (vitamin By2), 0.001 g; retinyl palmitate (vitamin A)
pre-mix (250,000 [U/g), 1.6 g; DL-a-tocopherol acetate (250 1U/g), 20 g; cholecalciferol
(vitamin D3, 400,000 1U/g), 0.25 g; menaquinone (vitamin K3), 0.005 g; sucrose, finely
powdered, 972.9 g

*Mineral Mix: Calcium phosphate dibasic, 500.0 g/kg; sodium chloride, 74.0 g/kg;
potassium citrate monohydrate, 220.0 gkg; potassium sulfate, 52.0 g/kg; magnesium
oxide, 24.0 g/kg; manganese carbonate (43-48% Mn), 3.50 g/kg; ferric citrate (16-17%
Fe), 6.0 gkg; zine carbonate (70% ZnO), 1.6 g/kg; cupric carbonate (53-55% Cu), 0.30
gkg; potassium iodate, 0.01 gkg; sodium selenite, 0.01 g/kg; chromium potassium
sulfate, 0.55 g/kg; sucrose, finely powdered, 118.0 g/kg
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‘Table 2.2 Fatty acid composition of the experimental diets

Fatty Acid 5:1 Diet 15:1 Diet 30:1 Diet
Yowlw
Cl14:0 1.26 0.39 0.11
C16:0 8.71 743 6.32
C18:0 2.67 4.53 535
Y SFA 12.64 12.35 11.77
Cl16:1n7 241 0.09 0.36
Cl18:1n9 + C18:1n7 25.14 25.81 27.82
C€20:1n9 0.61 0.54 ND
2 MUFA 28.16 2643 28.18
C18:2n6 47.86 57.03 57.73
C20:4n6 0.23 0.14 0.11 |
C18:3n6 0.10 0.04 0.04
C€22:4n6 0.54 ND 0.09
¥ Omega-6 48.90 57.18 57.92
C18:3n3 0.78 0.64 0.55 ;
C€20:5n3 3.64 1.37 031 ‘
C€22:6n3 3.19 116 039 ‘
Cl18:4n3 0.87 0.20 0.15
C€22:5n3 0.63 0.32 0.46
C€20:4n3 0.66 0.12 0.08
3 Omega-3 9.76 3.81 1.93
Y PUFA 59.38 61.05 60.00
3 Omega-6/0Omega-3 5.00 15.00 30.01

Lipids were extracted from various diets and the fatty acid composition was determined
by gas chromatography. Abbreviations: ND= Not detected, £ SFA= sum of saturated
fatty acids, £ MUFA= sum of monounsaturated fatty acids, £ PUFA= sum of
polyunsaturated fatty acids, £ Omega-6= sum of omega-6 fatty acids, £ Omega-3= sum

of omega-3 fatty acid
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2.2 Analyses of biochemical parameters

Plasma TC and TG were ined using assay kit
#234-60 and TG assay kit #236-17 (Genezyme Diagnostics, P.E., Canada). For the
plasma TC assay, CE were hydrolyzed to FC by cholesterol esterase and FC was then

oxidized to cholest-4 3 by oxidase with a si ion of

hydrogen peroxide. The produced hydrogen peroxide couples with 4-aminoantipyrine and

with

p-hydroxybenzoate, in the presence of peroxidase, yielding a

at 500 nm.

For the plasma TG assay, TG were hydrolyzed to glycerol and FFAs by lipase;
glycerol was phosphorylated to glycerol-1-phosphate in the presence of ATP and glycerol
kinase. Glycerol-1-phosphate was then oxidized by glycerol phosphate oxidase to yield
hydrogen peroxide leading to oxidative coupling of p-chlorophenol and  4-
aminoantipyrine. This produces a red colored quinoncimine dye complex which has a
maximum absorbance at 520nm. The intensity of the color produced was taken as directly

proportional to the concentration of TC and TG in the samples.

Non-HDL cholesterol was precipitated from plasma using kit #200-26A (DCL,

P.E.I, Canada) and the was used for ing HDL. using total

cholesterol assay kit #234-60 following the same principle as stated above .

Plasma LDL-cholesterol concentration was calculated using plasma TC, HDL-
cholesterol, and TG concentration according to the method of Friedewald et al. (1972).
Plasma FFA concentration was determined using kit# 999-34691 (Wako Chemicals Inc.,

USA). Coenzyme A (CoA) was acylated by the presence of serum non esterified fatty
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acids in the presence of added acyl-CoA synthetase. Produced acyl-coA was oxidized by
added acyl-CoA oxidase with the generation of hydrogen peroxide. This produced

hydrogen peroxide itting oxidative ion of 3-methyl-N-ethyl-N-(B-

hydroxyethyl)-aniline with 4-aminoantipyrine in the presence of peroxidase to form a

purple colored product, which was measured colorimetrically at 550 nm.
Plasma FC concentration was determined using kit# 435-35801 (Wako Chemicals

Inc., USA). Free cholesterol in the serum was oxidized to cholesterolA*-cholestenone by

cholesterol oxidase which produced hydrogen peroxide. Hydrogen peroxide, 3,5-

N-ethyl-N-(2-hyd: 3 ) aniline sodium and 4-aminoantipyrine
then undergo oxidative condensation in the presence of peroxidase producing a blue color
that was measured colorimetrically at 600 nm. Plasma CE was calculated by subtracting
plasma FC values from plasma TC values. Fasting blood glucose concentrations were
measured at the time of sacrifice using a commercially available glucometer (Lifescan

Inc, CA, USA) after snipping the tail.

2.3 Fatty acid analyses

2.3.1. Fatty acid analyses of diets

To analyze the fatty acid composition of the oils used for diet preparation, lipids
were extracted from safflower oil, fish oil, olive oil and lard using the method of Folch et
al. (1957). Fatty acid methyl esters were then prepared by heating the samples with 2 ml

of u ion reagent (6% sulfuric acid and 94% methanol + few

crystals of hydroquinone added as an anti-oxidant) for 2 h at 65°C in order to increase
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the volatility of the fatty acids (Arvidson & Olivecrona, 1962). All of the organic
extractions were performed using hexane and water. Subsequently, the samples were
placed at -20°C overnight to freeze the trapped water and were transferred to a new tube
the following moming. The samples were then dried under nitrogen (N;) gas and
dissolved in 50 pl of carbon disulfide (Keough and Davis, 1979). The GLC parameters
were set as: oven, 200°C; injector, 240°C; detector 260°C. GLC was ignited and allowed
to run overnight prior to running samples in order to ensure that the baseline was stable.
Samples were run for 60 minutes on an Omegawax X 320 (30 m x 0.32 mm) column
from Supleco (Sigma-Aldrich, Canada) using a flame ionization detector. PUFA
standards -2 and -3 (Sigma-Aldrich, Canada) were used as standards for identification of
fatty acids by retention time.

Once the fatty acid compositions of four individual oils were determined using
GC, total SFA, MUFA, n-6 and n-3 PUFA contents of each oil was calculated and fed
into a mathematical package, "Maple" as a coefficient matrix. Data were analyzed to
obtain the amount of each il to be mixed in order to accomplish three different n-6 to n-3

PUFA ratios of 5:1, 15:1 and 30:1.

2.3.2. Fatty acid analyses of breast milk

Total lipids were extracted from breast milk using the method of Folch et al.
(1957); and fatty acid methyl esters were prepared and the fatty acid composition was

determined using GLC as described in 2.3.1.
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2.3.3. Fatty acid analyses of red blood cell (RBC) membrane phospholipids (PL)

Total lipids were extracted from RBC using the method of Folch et al. (1957).
Phospholipids were separated from total lipids using thin layer chromatography; lipid
samples were dissolved in 100yl of chloroform and spotted on Whatman 250 um layer,
20 x 20 cm flexible plates coated with silica gel (Catalogue no: 4420222, Whatman Ltd.
UK). Phospholipids were separated using the solvent system hexane: ethyl cther: acetic
acid (70:30:2 v/v) (Keenan et al., 1982). Phospholipid spots at the point of origin were

scraped and extracted using 2:1 Fatty acid i of total

phospholipids was determined using GLC as described above.

2.4. Statistical analyses
The effect of diet on various biochemical parameters was analyzed using one-way
analysis of variance (ANOVA) and a Newman-Keuls post hoc analysis was used to test

significant differences among groups (Graph Pad Prism- Version 5.0). Values were

expressed as group means + SD. Di were i d to be

significant if the associated P value was <0.05. Breast milk fatty acid and RBC fatty acid
composition were expressed as weight percentage of the total extracted fatty acids. This
percentage data for fatty acid compositions were then arcsine transformed before
subjecting to statistical analysis in order to normalize the data distribution as data was
skewed. Correlation coefficients (r) of dietary fatty acids vs. breast milk fatty acids and
RBC phospholipids fatty acids vs. plasma lipids and lipoproteins were determined using

Graph pad Prism software (Prism version 5.0).



Chapter 3: Results
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3.1 Effects of dietary omega-6 to omega-3 polyunsaturated fatty acid ratios on

regulation of metabolic pathways: One month feeding study

3.1.1. Body weight, food and caloric intake, plasma glucose and non-esterified fatty
acid (NEFA) concentrations

Body weight, food and caloric intake, plasma glucose and NEFA concentrations
of female mice fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios for one
month are shown in Table 3.1. A significantly lower body weight was observed for
females fed a 15:1 diet compared to females fed 5:1 and 30:1 diets (p=0.008), however,
there was no difference between females fed 5:1 and 30:1 diets (Table 3.1). Furthermore,
a significantly higher ovarian fat content was observed in 5:1 group while 15:1 group
showed the lowest ovarian fat content (p=0.0347); the ovarian fat content in 30:1 group

did not differ cither from 5:1 or 15:1 groups.

Food intake and caloric intake did not differ significantly among various dictary
groups. No significant differences were observed in NEFA concentrations and blood

glucose concentrations among various dietary groups.
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Table 3.1: Body weight, food intake, caloric intake, non-esterified fatty acid
concentrations (NEFA) and glucose concentrations of female C57BL/6 mice fed

experimental diets for one month

5:1 Diet 15:1 Diet 30:1 Diet
BW (2) 20675 121° 1978+ 1.49° 21.95% 1.02°
FI (g/week) 25944150 2887+ 9.10  26.82%6.00
Cl/day 16034090 17.84+560  16.58+3.70
Ovarian fat (g) 053+021°  030£013°  039+0.07°
NEFA (mmol/L) 059+0.13  0.54+009  0.44+0.08

Blood Glucose (mmol/L) 9034255 740156  7.92+1.87

Values are expressed as means + SD, n = 8. Data were analyzed using one-way ANOVA.
Significant effects were further analyzed using Newman-Keuls post hoc tests.

represent signi i among various dietary groups having p <

0.05. BW, body weight; FI, food intake; CI, caloric intake.

3.1.2 Effects of dietary omega-6 to omega-3 polyunsaturated fatty acid ratios on red
blood cell phospholipids fatty acid composition

The RBC PL fatty acid composition of female mice fed diets containing 5:1, 15:1
and 30:1 n-6 to n-3 PUFA ratios for one month are shown in Table 3.2. No significant

differences were observed in total SFA and total MUFA content among various dietary

groups. The 5:1 diet group had lower stearic acid content compared to 15:1 and 30:1 diet
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groups (p=0.003), however, there was no difference between the 15:1 and 30:1 groups.
‘The cicosacnoic acid content was also lower in the 5:1 group compared to the 30:1 group

(p=0.04); 15:1 group did not differ cither from 5:1 or 30:1 group.

A significantly higher total n-6 PUFA (p=0.002) content was observed in 30:1 dict
group compared to 5:1 dict group, however, 15:1 dict group did not differ from 5:1 or
30:1 diet groups. Amongst individual n-6 PUFA, AA and docosatetracnoic acid content
was  the lowest in 5:1 diet group, followed by 15:1 diet group compared to the 30:1 group
(p<0.0001). However, a higher LA (p<0.0006) content was observed in 5:1 diet group

compared to 15:1 and 30:1 diet groups.

The 5:1 dictary group had a significantly higher total n-3 PUFA content than 15:1
and 30:1 dietary groups (p<0.0001). Amongst individual n-3 PUFA, EPA, DPA and DHA
contents were significantly higher in the 5:1 diet group compared to the 30:1 diet group.
A significantly higher EPA content was observed in 5:1 diet group compared to 15:1 and
30:1 diet groups (p=0.0007) whereas DPA content was higher in both 5:1 and 15:1 diet
groups compared to the 30:1 group (p<0.0001). DHA content was highest in the 5:1 diet

group followed by 15:1 and 30:1 dict group (p<0.0001).
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Table 3.2: Red blood cell phospholipid fatty acid composition of female CS7BL/6

mice fed experimental diets for one month*

5:1 Diet 15:1 Diet 30:1 Diet

Diet (% wiw)

C14:0 0214020  0.17 £0.11 0.19+0.09

C16:0 19954350  18.99+1.82 20304278

C18:0 1884+ 127"  21.77+3.01° 2253072

¥ SFA 38994326 40924457 43024234

C18:1n9 11194097 118+ 118 11.43+0.53 |
C18:1n7 1494032 1.98+0.80 1.50+0.16 ‘
C20:1n9 044006 041006  0.49+007" |
YMUFA 1346+ 111 14384185  13.69+0.62

C18:2n6 1593+ 1.07*  1431+122°  13.56+053°

C18:3n6 0.17+0.02 0.1540.07 0.1940.02

C20:4n6 1203+ 131°  1610+2.76"  19.07+1.03*

C22:4n6 074+0.13°  137£0.17°  2.10+0.14°

¥ n-6 PUFA 28.87+230° 3193402  34.92+1.60°

C20:5n3 381+ 1.6° 1.46+0.94° 0.41+0.10"

C22:5n3 254+048  201£077°  0.85+0.30°

C22:6n3 1207 113" 881+1.93° 677078

¥ n-3 PUFA 1866+ 125"  1276+225°  837+091°

*Data are expressed as weight percentage of total extracted faity acids after separation of

phospholipids by thin layer chromatography. Statistical analysis was performed after
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transforming the data using arcsine equation. Values are expressed as mean + SD, n = 8.
Data were assessed using one-way ANOVA. Significant effects were further analyzed
using Newman-Keuls post hoc tests. Superscripts represent significant differences among

various dietary groups where p<0.05 was considered significant.

3.1.3 Effect of dietary omega-6 to omega-3 polyunsaturated fatty acid ratios on

plasma lipid levels

Plasma TC and TG concentrations of females fed diets containing 5:1, 15:1 and
30:1 n-6 to n-3 PUFA ratios for one month are shown in Figure 3.1. A higher TC
concentration was observed in 30:1 group compared to 5:1 and 15:1 groups (p=0.0046),
however, no significant difference was observed between 5:1 and 15:1 groups (Figure
3.1A). No significant difference was observed in plasma TG levels among various dictary

groups (Figure 3.1B).

Plasma LDL-cholesterol jon and HDL. ions of
females fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios for one month are
shown in Figure 3.2. A higher LDL-cholesterol concentration was observed in 30:1
group compared to 5:1 and 15:1 groups (p=0.002) however, there was no difference
between 5:1 and 15:1 groups (Figure 3.2A). No significant differences were observed in

plasma HDL-cholesterol concentrations among various dietary groups (Figure 3.2B).

Plasma LDL/HDL ratio and CE concentration of females fed diets containing 5:1,
15:1 and 30:1 n-6 to n-3 PUFA ratios for one month are shown in Figure 3.3. Similar to

plasma LDL-cholesterol levels, a higher LDL/HDL ratio was observed in 30:1 dietary
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group compared to 5:1 and 15:1 groups (p=0.007), however, no significant difference was
observed between 5:1 and 15:1 groups (Figure 3.3A). The 30:1 diet group was associated
with significantly higher CE concentrations followed by 15:1 and 5:1 groups (p=0.0008)
(Figure 3.3B). However, no significant differences were observed in plasma FC levels
(means + SD; 5:1=0.23 + 0.03 mmol/L, 15:1=0.23 % 0.04 mmol/L, 30:1=0.24 + 0.04

mmol/L) among the various dietary groups.



Figure 3.1: Plasma concentrations of (4) total cholesterol and (B) triglycerides of

(C57BL/6 female mice fed diets varying in n-6 to n-3 PUFA ratios for one month
Values are expressed as means + SD, n = 8. Data were assessed using one-way

ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

Letters represent significant differences between various dietary groups having p < 0.05.
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Figure 3.2: Plasma concentrations of (1) LDL-cholesterol and (B) HDL-cholesterol

of C57BL/6 female mice fed diets varying in n-6 to n-3 PUFA ratios for one month
Values are expressed as means + SD, n = 8. Data were assessed using one-way
ANOVA. Significant efffects were further analyzed using Newman-Keuls post foc tests.

Letters represent significant differences having p < 0.05.
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Figure 3.3: Plasma LDL/HDL cholesterol ratio () and cholesterol ester
concentration (B) of C57BL/6 female mice fed diets varying in n-6 to n-3 PUFA
ratios for one month

Values are expressed as means + SD, n = 8. Data were assessed using one-way
ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

Letters represent significant differences having p < 0.05.
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3.2: Effects of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid ratio

on regulation of metabolic pathways of the offspring

3.2.1: Maternal body weight, food and caloric intake, plasma glucose and NEFA

concentrations

Body weight, food and caloric intake, plasma glucose and NEFA concentrations
of females fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during
pregnancy and lactation are shown in Table 3.3. No significant differences were observed
in the body weight, food intake and caloric intake among various dietary groups (Table
3.3). NEFA concentration and fasting blood glucose concentration did not show
significant differences among various dietary groups, however, the 30:1 group showed a

trend (p=0.22) towards higher NEFA and blood glucose levels (Table 3.3).

3.2.1.1: Pregnancy rate, pup survival rate and sex ratio of the offspring at the time

of weaning

Pregnancy rate was defined as the number of pregnant mice divided by the
number of female mice used for mating (Table 3.4). Survival rate was defined as the
number of live pups at weaning divided by the number of live pups at birth (Table 3.4).
Sex ratio was defined as the number of male pups divided by the number of female pups
obtained from a dietary group of mothers counted at the time of weaning (Table 3.4).

The pregnancy rates of the mice fed high n-6 to n-3 PUFA ratio diet (30:1) and
low n-6 to n-3 PUFA ratio diet (5:1) were similar. However, pregnancy rate of mice fed

n-6 to n-3 PUFA ratio of 15:1 diet was slightly lower. The survival rates of pups were
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similar in the three dictary groups. Male to female ratio was almost 50% in pups obtained

from mothers fed a 5:1 diet, whereas pups from mothers fed 15:1 and 30:1 diet

demonstrated a male to female ratio of 2:1 and 1.4:1, respectively.

Table 3.3: Body weight, food intake, caloric intake, non esterified fatty acid

concentrations (NEFA) and glucose concentrations of female C57BL/6 mice fed

experimental diets during gestation and lactation

5:1 Diet 15:1 Diet 30:1 Diet
BW (g) 31.52+£033  29.76+3.38 27.56+2.5
FI (g/week) 27.95+540 26.04+4.80 28.07+7.80
CI (keal/day) 2256 +3.90  21.02+4.10 22.66 +6.30
NEFA (mmol/L) 0.50+0.22 0.44£0.11 0.59+0.19
Blood Glucose (mmol/L) 532172 561+127  6.12+0.95

Values are expres:

d as means + SD, n = 4. Data were assessed using one-way ANOVA.

Significant effects were further analyzed using Newman-Keuls post hoc tests. BW, body

weight; FI, food intake; CI, caloric intake.



Table 3.4: Pregnancy rate, pup survival

rate and sex ratio of the offspring at the

time of weaning

5:1Diet | 15:1Diet | 30:1 Diet
Pregnancy Rate (%) 87.50 76.92 87.50
Pup Survival Rate (%) 801 831 8142
Male/Female Ratio 13/11 22113 18/13
Litter size 71 9:1 9:+1




3.2.2: Effects of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid
ratio on breast milk total fatty acid composition

Breast milk total fatty acid composition of females fed diets containing 5:1, 15:1 and 30:1
n-6 to n-3 PUFA ratios during gestation and lactation is shown in table 3.5. No significant
differences were observed in total SFA and total MUFA content among the various
dietary groups. Similarly, no significant differences were observed among groups for the

individual SFA and MUFA.

No significant differences were observed in total n-6 PUFA content among various
dietary groups. Amongst individual n-6 PUFA, AA content was higher in 15:1 and 30:1
group compared to 5:1 group (p=0.004), however, there was no difference between 30:1

and 15:1 group.

A significantly higher total n-3 PUFA content was observed in 5:1 group followed by
15:1 and 30:1 groups (p<0.0001). Amongst individual n-3 PUFA, EPA (p<0.0001), DPA.
(p<0.0001) and DHA (p=0.003) contents were significantly higher in the 5:1 group

followed by 15:1 group however, the levels were undetectable in the 30:1 group.

Although total PUFA content did not show a significant difference among various dietary
groups, the n-6 to n-3 fatty acid ratio of 7:1 and 15:1 was observed in breast milk of 5:1
and 15:1 group. Conversely, a 42:1 n-6 to n-3 PUFA ratio was observed in breast milk of
30:1 group. Pearson’s correlation coefficients (r) between dietary fatty acid composition
and breast milk fatty acid compositions were 1.00, 0.87 and 0.87 for 5:1, 15:1 and 30:1

groups, respectively.
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Table 3.5: Total breast milk fatty acid composition of female C57BL/6 mice fed

experimental diets during pregnancy and lactation*

5:1 Diet 15:1 Diet 30:1 Diet
FA
(% wiw)

Cl4:0 285+ 1.64 341£2.06 252£128
C16:0 14.13£2.50 14.95+2.75 15.53 % 1.99
C18:0 692:4.53 5.84+0.89 5284048
¥ SFA 2391384 24.19£5.05 23324283
C18:1n9 2184665 29514 1.57 26474205
C20:109 0.59+005 0.82+0.09 0.87+0.24
¥ MUFA 27.34£9.14 32,78+ 4.96 34.13£3.02
C18:206 39.60:+5.67 3692151 39.63£4.37
C18:3n6 0.50+0.18 0.40£0.11 045£0.19
C20:4n6 144£0.13° 1.89:40.12° 2,02 0.05°
¥ Omega-6 41.76:£5.79 39.97+ 1.90 42.18+4.46
C18:3n3 0.36+0.16 032001 0234020

C20:5n3 1.68£0.56" 0.42+0.10° ND*

C22:503 130£0.26" 0.66+0.11° ND*
; C22:6n3 2.69+0.61° 1224037 0.12£021°
‘ ¥ Omega-3 6.46+1.73 2.80 £ 0.56" 0.36+0.37°
YPUFA 48744552 43.02£1.76 42544483
| Omega-6/Omega3  6.98+2.89 1472332 42,184 0.00

*Data are expressed as weight percentage of the total extracted fatty acids. Statistical
analysis was performed after transforming the data using arcsine equation. Values are
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expressed as mean + SD, n = 3. Data were assessed using one-way ANOVA. Significant
effects were further analyzed using Newman-Keuls post hoc tests. Superscripts represent

significant differences where p< 0.05 was considered significant.

3.2.3: Body weight, plasma glucose and non-esterified (NEFA) fatty acid
concentrations of male and female offspring at weaning

Body weight, plasma glucose and NEFA concentrations of male and female
offspring obtained from mothers fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA
ratios during gestation and lactation are shown in Table 3.6 and in Table 3.7. No
significant differences were observed in plasma glucose and NEFA concentrations among
the various dictary groups in both male and female offspring. A higher body weight was
observed in 30:1 group compared to 5:1 and 15:1 groups (p=0.0006) in male offspring;
however, there was no difference between 5:1 and 15:1 groups. In female offspring, a
higher body weight was observed in 15:1 and 30:1 group compared to 5:1 group
(p=0.05); however, there was no difference between the 15:1 and 30:1 dietary groups. No
significant differences were observed in body length of both male and female offspring

among the various dictary groups.




Table 3.6: Non-esterified fatty acid (NEFA) concentrations, blood glucose

concentrations, body weight and body length of male offspring of CS7BL/6 mice fed

experimental diets during gestation and lactation

NEFA Blood Glucose Body Length
Diet (mmo/L) (mmol/L) Body Weight em)
521 0.46 £0.21 8.73+2.13 6.46+0.52° 6.40 +0.35
15:1 0.40 +0.12 7.95+233 6.50 +0.96 6.43 +£0.39
30:1 0.39+ 0.15 6.63 +2.73 7.64+ 0.71" 6.38 +0.36

Values arc expressed as means + SD, n = 10. Data were assessed using one-way

ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

represent signi having p< 0.05.

Table 3.7: Non-esterified fatty acid (NEFA) concentrations, blood glucose
concentrations, body weight and body length of female offspring of C57BL/6 mice

fed experimental diets during gestation and lactation

NEFA Blood Glucose Body Length
Diet (mmo/L) (mmol/L) Body Weight (g) (cm)

5:1 047+0.13 8.54+ 105 595+ 0.95° 615042
151 045+0.17 683+ 121 722+ 128 6384029
30:0 0.56+0.15 7.84£2.04 7.01+0.76" 638036

Values are expressed as means + SD, n = 10. Data were assessed using one-way
ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

Superscripts represent significant differences having p< 0.05.



3.2.4: Effects of maternal omega-6 to omega-3 polyunsaturated fatty acid ratio on
red blood cell phospholipids fatty acid composition of male offspring

The RBC PL fatty acid composition of male offspring obtained from mothers fed
diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during gestation and lactation
are shown in Table 3.8. Total SFA content did not show a significant difference among
various dietary groups. A significantly higher stearic acid content was observed in 15:1
group compared to 5:1 and 30:1 groups (p=0.039); however, 5:1 and 30:1 groups were

not different.

A significantly higher total MUFA content was observed in 30:1 group compared
to 5:1 and 15:1 groups (p<0.0001); however, no significant difference was obscrved
between 5:1 and 15:1 group. Similarly, a higher oleic acid content was observed in 30:1
group compared to 5:1 and 15:1 groups (p<0.0001); however, 5:1 and 15:1 groups were

not different.

As expected, a higher total n-6 PUFA content was observed in 30:1 group
followed by 15:1 and 5:1 groups (p<0.0001). Despite no significant difference in LA
content in the breast milk among various dietary groups, a significantly higher LA content
was observed in 5:1 diet group compared to the 15:1 and 30:1 diet groups (p=0.041).
However, no significant difference was observed between 15:1 and 30:1 groups. In
contrast, a higher AA and docosatetracnoic acid content were observed in 30:1 group

followed by 15:1 and 5:1 groups (p<0.0001).
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A higher total n-3 PUFA content was observed in 5:1 group followed by 15:1 and

30:1 groups (p<0.0001). Amongst individual n-3 PUFA, EPA, DPA and DHA contents
were significantly higher in the 5:1 diet group followed by 15:1 and 30:1 groups
(p<0.0001). Interestingly, n-6 to n-3 PUFA ratio was sustained between 1:1 to 1:5 for all
the dictary groups, however, it was closer to 1:1 in 5:1 group; 2:1 in 15:1 group and 4:1 in

30:1 group.



Table 3.8: Red blood cell phospholipids fatty acid composition of male offspring of

(C57BL/6 mice fed experimental diets during gestation and lactation*

5:1 Diet 15:1 Diet 30:1 Diet
FA (% wiw)
Cl14:0 0.53+0.12 041+027 040022
C16:0 2353160 2131141  23.51+220
C18:0 1444274 1776 +3.18"  14.69+0.79°
Y SFA 38504328  39.50+4.01  38.61+2.37
C18:1n9 1050+025°  10.76+0.76"  12.27+0.54"
C18:1n7 1.7240.05 120+0.60  1.50+0.12
C20:1n9 021+0.14 030+0.16  037+0.15
¥ MUFA 1266+ 048" 12.40+0.90° 14.25+0.57"
C18:2n6 11.95+097° 1013+ 1.69" 10.51+1.11°
C20:4n6 1432 137°  19.74+0.69° 2321+ 1.58
C22:4n6 L15£020°  3.10£0.17°  4.99+032°
¥ Omega-6 2750+ 1.10°  33.13+£223° 3883+2.15
C20:5n3 265+046°  0.55+034"  0.10+0.11°
C22:5n3 3184062 1954020 077032
C22:6n3 1504+ 138" 12.011£127° 723041
¥ Omega-3 2031£2.15°  1494%129° 828034
¥ PUFA 48824298  48.08+337 47.12+212
Omega-6/0Omega-3 129+0.10 2224011 469035




*Data are expressed as weight percentage of the total extracted fatty acids. Statistical

analysis was performed after transforming the data using arcsine cquation. Values are
expressed as mean + SD, n = 10. Data were assessed using one-way ANOVA. Significant
effects were further analyzed using Newman-Keuls post hoc tests. Superscripts represent

significant differences where p < 0.05 was considered significant.

3.2.5: Effects of maternal omega-6 to omega-3 polyunsaturated fatty acid ratio on
red blood cell phospholipid fatty acid composition of female offspring

The RBC PL fatty acid composition of female offspring obtained from mothers
fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during gestation and
lactation are shown in Table 3.9. No significant difference was observed in total SFA
content among various dietary groups. However, a significantly higher myristic acid
content was observed in 5:1 and 15:1 diet groups compared to 30:1 diet group (p=0.002);

there was no difference between 5:1 and 15:1 groups.

No difference was observed in total MUFA content among various dictary

groups. Similar to male offspring RBC PL fatty acid composition,

significantly higher
oleic acid content was observed in 30:1 group compared to 5:1 group (p=0.047);

however, 15:1 group did not differ from cither 5:1 or 30:1 groups.

A higher total n-6 PUFA content was obscrved in 30:1 group followed by 15:1
and 5:1 groups (p<0.0001). A significantly higher LA content was observed in 5:1 diet

group compared to 15:1 diet group (p=0.01), however, 30:1 diet group did not differ from
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cither 5:1 or 15:1 groups. Converscly, a significantly higher AA (p<0.0001) content was

obscrved in 30:1 diet group compared to 15:1 diet group followed by 5:1 dict group.

A significantly higher total n-3 PUFA content was observed in 5:1 group followed
by 15:1 and 30:1 groups (p<0.0001). Amongst individual n-3 PUFA, EPA, DPA and
DHA contents were significantly higher in 5:1 group followed by 15:1 and 30:1 groups
(p<0.0001). Although no significant difference was observed in total PUFA content
among the various dietary groups, the n-6 to n-3 PUFA ratio was sustained between 1:1 to
1:5 for all the dietary groups and was closer to 1:1 in 5:1 group; 2:1 in 15:1 group and 4:1

in 30:1 group.
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Table 3.9: Red blood cell phospholipids fatty acid composition of female offspring of

CS7BL/6 mice fed experimental diets during gestation and lactation*

5:1 Diet 15:1 Diet 30:1 Diet
FA (% wiw)
C14:0 086+0.12°  0.78%0.10" 0.59+0.12"
C16:0 26524153 27.60+222  25.56+2.03
C18:0 1632+3.16 18474492 1816+233
¥ SFA 43714226 4686+3.04 44324325
C18:1n9 1041+032° 1089+ 133" 11.650.74"
C18:1n7 1.66+0.10 1.09 4 0.55 1424007
€20:1n9 0224009 0.2640.13 040+ 0,05
¥ MUFA 1262+0.66 1233 +0.82 13.56 +0.76
C18:2n6 1063+ 113" 8.72+044" 9.6+ 1.10"
C20:4n6 13.41£0.57°  17.74£120°  20.78+2.07*
C22:4n6 1.0540.15 226+ 112 3.76+1.59
¥ Omega-6 25.07+124°  2874+185°  34.30+245°
C20:5n3 1994034 0324025 0.110.11°
C22:503 2874025  1.84+0.18 091+ 0.08
C22:6n3 13.00+0.55*  9.72:+1.09° 6.43+081°
3 Omega-3 1849+0.93* 1204+ 130" 780088
¥ PUFA 4366+192 40794283 42114297
Omega-6/0Omega-3 136+ 0.06 240+0.18 4434047




*Data are expressed as weight percentage of the total extracted fatty acids. Statistical
analysis was performed after transforming the data using arcsine equation. Values are
expressed as mean + SD, n = 10. Data were assessed using one-way ANOVA. Significant
effects were further analyzed using Newman-Keuls post hoc tests. Superscripts represent

significant differences where p< 0.05 was considered significant.

3.2.6: Effect of dietary omega-6 to omega-3 polyunsaturated fatty acid ratios on

plasma lipid levels of male and female offspring at weaning

Plasma TC concentration and TG concentrations of male and female offspring of
mothers fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during gestation
and lactation are shown in figure 3.4 A and B respectively. A significantly higher TC
concentration was observed in 30:1 group compared to 5:1 and 15:1 groups in both male
(p<0.0001) and female (p=0.01) offspring however, no significant difference was
observed between 5:1 and 15:1 groups in both genders (Figure 3.4A). Female offspring
showed a significantly higher TG concentration in 30:1 group compared to 5:1 and 15:1
groups (p=0.004) with no significant difference between 5:1 and 15:1 groups. Male
offspring did not show a significant difference in plasma TG concentrations among
various dietary groups; however, 30:1 group showed a trend towards higher plasma TG

concentrations (Figure 3.4B).

Plasma LDL. and HDL. ions of male and female

offspring of mothers fed dicts containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios

during gestation and lactation are shown in Figure 3.5 A and B, respectively. A

higher LDL. ion was observed in 30:1 group compared
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to 5:1 and 15:1 groups (p<0.0001) in male offspring; however, there were no significant

differences between 5:1 and 15:1 groups. On the other hand, female offspring showed
lower LDL-cholesterol concentrations in 15:1 group compared to 5:1 and 30:1 groups
(p=0.009); however, no significant difference was observed between 5:1 and 30:1 groups
(figre 3.5 A). No significant differences were observed in HDL-cholesterol
concentration in both male and female offspring amongst various dietary groups (figure

3.5B).

Plasma LDL/HDL-cholesterol ratio of male and female offspring of mothers fed
diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during gestation and lactation
are shown in Figure 3.6. A higher LDL/HDL-cholesterol ratio was observed in 30:1
group compared to 5:1 group (p=0.02) in male offspring; however, 15:1 group did not
differ from cither 5:1 or 30:1 groups. A lower LDL/HDL-cholesterol ratio was observed
in 15:1 group compared to 5:1 and 30:1 groups (p=0.02) in female offspring however, no
significant difference was observed between 5:1 and 30:1 groups (Figure 3.6).

Plasma FC and CE concentrations of male and female offspring of mothers fed
dicts containing :1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during gestation and lactation

are shown in Figure 3.7 A and B, ively. A signi higher FC

was observed in 15:1 and 30:1 groups compared to 5:1 group in female offspring
(p=0.02); however, no significant difference was observed between 15:1 and 30:1 groups.
In contrast, no significant differences were observed in FC concentrations in male
offspring among various dictary groups (Figure 3.7 A). Cholesterol ester concentrations

of the male offspring were, on the other hand, significantly higher in the 30:1 group
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compared to 5:1 and 15:1 group (p<0.0001); no significant difference was observed

between 5:1 and 15:1 groups. Female offspring showed a lower CE concentration in the
15:1 group compared to 30:1 groups (p=0.022); however, 5:1 group did not differ from

cither 15:1 or 30:1 groups (Figure 3.7 B).

3.2.7. Correlation analysis of biochemical parameters with red blood cell
phospholipid fatty acid composition

A correlation analysis was performed between plasma lipid levels and RBC PL
fatty acid composition for both male (Figure 3.8) and female (Figure 3.9) offspring of
mothers fed diets containing 5:1, 15:1 and 30:1 n-6 to n-3 PUFA ratios during pregnancy

and lactation.

In male offspring, an increase in DHA content was associated with lower plasma
TC concentrations (r = -0.65, p=0.001) and lower LDL-cholesterol concentrations (r = -
0.71, p=0.0003). Similarly, increased EPA content was correlated with lower plasma
LDL-cholesterol concentration (r = -0.48, p=0.03) while an increase in AA content was
associated with higher plasma LDL-cholesterol concentrations (r = 0.48, p=0.03). Other
fatty acids were not significantly correlated with plasma lipid levels in the male offspring

Female offspring, on the other hand, showed no significant correlation between
EPA, DHA or AA with plasma TC concentrations (Correlation coefficient (r); -0.26, -
0.43 and 0.40 respectively). However, an increase in AA was associated with increased

plasma TG concentrations (r = 0.61, p= 0.005) while an increase in DHA content was
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associated with lower plasma TG concentrations (r = -0.66, p=0.002). Other fatty acids
were not significantly correlated with plasma lipid levels in the female offspring.
Figure 3.4: Plasma concentrations of (4) triglyceride and (B) total cholesterol
of male and female offspring

Values are expressed as means + SD, n =10. Data were assessed using one-way
ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

Letters represent significant differences between various dietary groups having p < 0.05.
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Figure 3.5: Plasma concentrations of (4) LDL-cholesterol and (B) HDL-cholesterol

of male and female offspring

Values are expressed as means + SD, n =10. Data were assessed using one-way

ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests

Letters represent significant differences between various dietary groups having p < 0.05.
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Figure 3.6: Plasma LDL to HDL- cholesterol ratio of male and female offspring
Values are expressed as means + SD, n =10. Data were assessed using one-way
ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

Letters represent significant differences between various dietary groups having p < 0.05.
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Figure 3.7: Plasma ons of (4) Free and (B) C! esters
of the male and female offspring

Values are expressed as means + SD, n =10. Data were assessed using one-way
ANOVA. Significant effects were further analyzed using Newman-Keuls post hoc tests.

Letters represent significant differences between various dietary groups having p < 0.05.
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Figure 3.8: Correlation analysis between plasma lipid levels and red blood cell

fatty acid ition of male ing: (A) total and
docosahexaenoic acid (DHA) content (B) LDL-cholesterol and arachidonic acid (AA)
content (C) LDL-cholesterol and docosahexaenoic acid (DHA) content (D) LDL
cholesterol and eicosapentaenoic acid (EPA) content. Correlation coefficient (r) was

determined using Graph pad Prism (version 5)
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Figure 3.9: Correlation analysis between plasma lipid levels and red blood cell
phospholipid fatty acid composition of female offspring. (A) triglycerides and
arachidonic acid (AA) content (B) triglycerides and docosahexaenoic acid (DHA)

content. Correlation coefficient (1) was determined using Graph pad Prism (version 5.0)
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Chapter 4: Discussion



4.1: One month study

Increased plasma lipid levels are associated with the increased risk of many
metabolic disorders including CVD, obesity, and diabetes mellitus. The objective of the
current study was to determine whether feeding diets with varying n-6 to n-3 PUFA ratios
will alter the regulation of metabolic pathways in C57BL/6 female mice after 4 weeks of
feeding. Our findings suggest that a higher ratio of n-6 to n-3 PUFA in the diet leads to

higher plasma lipid parameters compared to a lower ratio of n-6 to n-3 PUFA.

4.1.1: Effect of dietary omega-6 to omega-3 polyunsaturated fatty acid ratios on food
intake and body weight

Consumption of energy dense foods, resulting in higher caloric intake and higher
dietary fat intake, is one of the most important contributing factors for predisposition to
metabolic syndrome (Prentice & Jebb, 2003). In the current study, no significant
differences were observed in food intake and caloric intake among various dietary groups,
suggesting that food intake and caloric intake were not confounding factors for the
observed changes in lipid metabolism. There was a small but significant increase of body
weight in 5:1 and 30:1 groups compared to 15:1 group. A higher ovarian fat content was
observed in the 5:1 group compared to the 15:1 group; however, the increase in the fat
content was not sufficient to account for the increase in body weight (2 g increase in body
weight vs 0.2 g increase in fat weight). There were no significant differences in other
organ weights among the dietary groups thus higher body weight in the 5:1 group could

be due to higher ovarian fat and other non-measured fat depots.
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The effect of dietary PUFA on body weight gain is controversial. Some studies

report that n-3 PUFA reduce body weight in men (Couet ef al., 1997), in obese women
(Kunesova ef al., 2006) and in mice (Ruzickova ef al., 2004); however, n-6 PUFA was
shown to be associated with increased cpididymal fat pad weight and increased body
weight in mice (Massiera ef al., 2003). Contrarily, no difference in body weights were
observed in rats fed high fat diets rich in n-3 PUFA and n-6 PUFA (Awad ef al., 1990;
Dziedzic et al., 2007). A study designed to investigate the cardiovascular effects of
designer oils in C57BL/6 mice with a low ratio of n-6 to n-3 PUFA (2:1) using different
sources of n-3 PUFA, together with a control diet where n-6 to n-3 PUFA ratio was 25:1,
found no significant difference in body weight among the experimental groups (Riediger

et al., 2008).

On the other hand, a recent study by Nuemberg ef al., 2011 reported a higher
body weight in mice fed high fat diets rich in n-3 and n-6 PUFA compared to a control
diet. These authors observed a higher abdominal and perirenal fat content in both n-3 and
n-6 groups, however, the liver fat content was significantly lower in the n-3 group
compared to the n-6 group. It was proposed that a diet rich in n-3 PUFA may facilitate
shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. This may

also explain our findings on higher ovarian fat content observed in the 5:1 group.



4.1.2: Effect of dietary omega-6 to omega-3 polyunsaturated fatty ratios on plasma

triglyceride levels

No significant differences were observed in plasma triglyceride (TG) levels
among various dietary groups after one month of feeding diets varying in n-6 to n-3
PUFA. Others have also reported similar findings that showed no- significant differences
in plasma TG levels between n-3 PUFA and n-6 PUFA fed groups afier 4 weeks of
dietary exposure in mice (Zampolli e al., 2006; Riediger et al., 2008) and in rats
(Balasubramaniam er al., 1985). On the other hand, several studies support the TG
lowering effect of an n-3 PUFA rich diet; however, this TG lowering effect was generally
detectable after 2 months of dietary exposure to n-3 PUFA rich diet. Zampolli et al.,
(2006) reported a lower TG level in the fish oil fed group rich in n-3 PUFA compared to
the corn ol fed group rich in n-6 PUFA after 20 weeks of dietary exposure in LDLr-/-
mice. Studies in rats reported a hypotriglyceridemic effect of n-3 PUFA compared to n-6
PUFA after 16 weeks (Catherine Jen er al., 1989), 7 weeks (Niot er al., 1994) and 3
months (Froyland ef al., 1997). Therefore, a longer dietary exposure (more than 4 weeks)

may be required to observe the TG lowering effects of n-3 PUFA.

4.1.3: Effect of dietary omega-6 to omega-3 polyunsaturated fatty acid ratios on
plasma total -cholesterol levels

The plasma TC concentration was significantly lower in the 5:1 group and 15:1
group compared to the 30:1 group suggesting that n-3 PUFA lower plasma cholesterol
levels compared to n-6 PUFA. Interestingly, even the 15:1 group had lower plasma
cholesterol levels compared to the 30:1 group, suggesting a dose response effect of
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changing the n-6 to n-3 PUFA ratio. No significant differences were observed in FC
levels among the various dietary groups; however, low CE levels were observed in 5:1
and 15:1 groups compared to the 30:1 group thus lower TC levels appear to be due to

low CE levels in 5:1 and 15:1 groups.

A recent study in CS7BL/6 mice also reported a significantly lower plasma TC
concentration in an n-3 PUFA fed group compared to an n-6 PUFA fed group after a one
month feeding trial (Magdeldin er al., 2009). Other studies in various animal models have
also reported a decrease in plasma cholesterol levels after feeding diets enriched in n-3
PUFA compared to n-6 PUFA rich diet (Niecuwenhuys et al., 1998; Zampolli et al., 2006;

Lee et al., 1989).

Magdeldin et al., (2009) proposed that the lowered TC levels in the plasma of n-3

PUFA fed group may be due to the ability of n-3 PUFA to inhibit fatty acid synthesis and

promote mi ial fatty acid b idation.  Pro-i y mediators are
released from PUFA, which bind to nuclear receptor proteins called peroxisome
proliferative activators (PPARs), which play an essential role in regulating beta oxidation.
The affinity of an n-6 PUFA, essentially AA, to PPARSs is lower compared to EPA and
DHA, thus n-3 PUFA are known to stimulate beta oxidation to a greater extent compared
to n-6 PUFA, which may be responsible for a decrease in plasma lipid levels (Schmitz &

Ecker, 2008).

The cholesterol lowering effect of n-3 PUFA has been suggested to be due to

increased ism, reduced i is and increased biliary



excretion of cholesterol (Balasubramaniam ez al., 1985; Du et al., 2003; Oh et al., 2009).

It will be interesting to investigate in future studies whether the decrease in plasma TC
levels in the current study was due to a decrease in cholesterol synthesis by inhibiting
HMG-CoA reductase activity, or due to an increased breakdown of cholesterol by

increased activity of cholesterol 7a hydroxylase (CYP7).

4.1.4: Effect of dietary omega-6 to omega-3 polyunsaturated fatty ratios on plasma
LDL- and HDL- cholesterol concentrations

A higher LDL-cholesterol concentration was observed in 30:1 group compared to
the 5:1 and 15:1 groups. Low LDL-cholesterol was observed in humans who were
supplemented with salmon oil, a rich source of n-3 PUFA, compared to a high n-6 PUFA
group (Harris ef al., 1983). Animal studies have also reported a significant reduction in
plasma LDL-cholesterol levels after feeding diets enriched in n-3 PUFA compared to
feeding diets rich in n-6 PUFA in rats (Roach et al., 1987; Ventura et al., 1989; Spady,
1993) as well as in mice (Vasandani et al., 2002; Zampolli et al., 2006; Magdeldin et al.,

2009).

A likely explanation for the decreased circulating levels of plasma LDL-
cholesterol in 5:1 and 15:1 groups is the increased clearance of LDL from circulation.

Removal of LDL-cholesterol from the circulation is mainly regulated through liver LDLr,

circulatory is (Brown & Goldstein, 1984). It was
previously shown that enhanced LDLr activity was associated with lower plasma LDL-

cholesterol levels in rats fed n-3 PUFA enriched diet compared to n-6 PUFA enriched diet



(Ventura ef al., 1989; Spady, 1993). Therefore, low plasma LDL-cholesterol levels in the

5:1 and 15:1 groups may be due to an increased expression of LDL-r activity.

No significant changes were observed in HDL-cholesterol in the various dietary
groups. Similar to our observations, recent studies in mice have also reported no change
in HDL- cholesterol level between n-3 PUFA and n-6 PUFA fed groups for 4 weeks
(Zampolli et al., 2006), 20 weeks (Magdeldin ef al., 2009) and for 32 weeks (Wang et al.,
2009). HDL-cholesterol is of two sub-classes: HDL-2 and HDL-3; HDL-2 cholesterol
involved in scavenging more cholesterol from the peripheral tissues compared to HDL-3
(Ballantyne et al., 1982; Asayama et al., 1990). Preliminary findings from our laboratory
show that plasma from mice fed a 5:1 diet has higher cholesterol efflux capacity
compared to plasma from animals fed a 30:1 diet (data not published). Although we
observed no significant difference in total HDL-cholesterol levels among the various
dietary groups, it is possible that 5:1 and 15:1 groups contain higher HDL-2 cholesterol

levels which have better cholesterol efflux capacity compared to 30:1 group.

One of the markers for the development of CVD is the ratio of plasma
LDL/HDL-cholesterol (Lemieux er al., 2001; Panagiotakos et al., 2003). In the current
study, a lower LDL/HDL-cholesterol ratio was observed in 5:1 and 15:1 groups compared
to the 30:1 group suggesting that a continuous exposure to higher n-6 to n-3 PUFA ratio
may increase the risk of developing CVD. Previous dietary intervention studies have also
shown that n-3 PUFA is associated with lower LDL/HDL-cholesterol ratio in humans

(Dawczynski et al., 2010) and in rats (Vijaimohan ef al., 2006).



4.1.5: Effect of dietary omega-6 to omega-3 polyunsaturated fatty acid ratio on red

blood cell phospholipid fatty acid composition

The best marker of dictary intake of EPA, DHA, AA and LA is RBC PL,
expressed as a percentage of total fatty acids (Matorras ef al., 1998).The objective of the
determination of RBC PL fatty acid composition was to test the hypothesis that dictary

fatty acids are reflected in the RBC PL.

As expected, a higher total n-6 PUFA content was observed in the 30:1 group
compared to the 5:1 group. However, total n-6 PUFA content in the 15:1 group was not
significantly different from 5:1 or 30:1 groups. These observations indicate that there is

a higher incorporation of n-6 PUFA in to RBC PLs when the diet is rich in n-6 PUFA.

Amongst individual n-6 PUFA in the RBC PL fatty acids, LA content in the 5:1
group was higher compared to the 15:1 and 30:1 groups. However, AA content and
docosatetracnoic acid content were low in 5:1 group compared to the 15:1 group followed

by 30:1 group. These findings suggest that the conversion of LA to AA is low in the 5:1

group, which is likely due to an increased ition for ion and

enzymes between n-6 PUFA and n-3 PUFA. However, a higher content of AA with a
concomitant decrease in LA indicates that LA was likely converted to AA and
docosatetracnoic acid to a greater extent in the 15:1 group followed by 30:1 group,

suggesting that as the amount of n-3 PUFA increase, there is a gradual decrease in the
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conversion of LA to AA due to ition for ion and ion enzymes

between n-6 and n-3 PUFA (Emken et al., 1994).

As expected, a higher total n-3 PUFA and DHA content was observed in the 5:1
group compared to the 15:1 group followed by 30:1 group, which reflected the dictary
composition. A higher conversion rate of ALA to EPA, DPA and DHA was observed in

the 5:1 group compared to the 15:1 group followed by 30:1 group.

Recent epidemiological studies in humans also revealed that RBC membrane
fatty acids accretion is influenced by the amount and the balance of dietary n-6 and n-3
PUFA (Cartwright ef al., 1985; Friesen & Innis, 2010; Friesen et al., 2010), confirming
that there was a competitive interaction of dietary LA with AA, EPA and DHA to get
incorporated into membrane lipids. It has also been shown that LA reduced the
concentrations of n-3 PUFA in the RBC membrane by competing for acylation (Friesen
& Innis, 2010). A study in rats also demonstrated that endogenous synthesis of n-3 PUFA
from the precursor ALA is more regulated by substrate competition for existing enzymes
than by their expression of desaturase and elongase genes (Tu ef al., 2010). Thus, it can
be suggested that a higher n-6 or n-3 PUFA incorporation in to RBC PLs is favoured by

increased dietary intake.

Besides the percentage of unsaturated fatty acids in RBC, the mean melting point
(MMP) is also an index of membrane fluidity. DHA and EPA have been shown to have
lower MMP and higher unsaturation level compared to LA and AA (Holman et al., 1991;

Torres & Trugo, 2009). Since the relative contribution of fatty acids with more
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unsaturated chains and lower melting points, such as DHA and EPA, is high in 5:1

group, RBCs from 5:1 group will have a higher membranc fluidity compared to 15:1 and
30:1 groups. Cartwright et al., (1985) reported that the supplementation of dictary EPA
and DHA for 6 weeks increased the total unsaturation of the RBC membrane leading to
increased lipid fluidity and reduced whole blood viscosity. Thus, it is suggested that a
lower n-6 to n-3 PUFA ratio may be beneficial in reducing the risk of diseases such as

CVD where the rheological propertics of blood plays a considerable role.

Previously, it was suggested that low dictary intake of n-3 PUFA led to low tissue
levels of n-3 PUFA which elicit systemic effects contributing to not only CVD but also to
rheumatoid arthritis (Bruinsma & Taren, 2000; Simopoulos, 2006) and depression (Pect
et al., 1998; Lucas et al., 2010). These findings further reinforce the clinical significance
of the importance of a lower dietary ratio of n-6 to n-3 PUFA, and our findings have
demonstrated that RBC PL fatty acid composition is reflective of the dietary n-6 to n-3

PUFA.

Overall, our findings from the one month study establish that feeding diets with
varying n-6 to n-3 PUFA ratios to CS7BL/6 mice for one month led to the incorporation
of dictary fatty acids in RBC PL and also altered the regulation of lipid and lipoprotein
metabolism. These findings formed the basis to initiate the project on investigating the
effects of maternal dietary n-6 to n-3 PUFA ratios on the regulation of lipid and

lipoprotein metabolism of the offspring.



4.2: Maternal nutrition study

The importance of the ratio of n-6 to n-3 PUFA has been emphasized by the
potential health benefits derived from diets high in n-3 PUFA. The high n-6 to n-3 PUFA

ratio found in Western diets has been shown to promote the pathogenesis of several

diseases such as cancer, i diseases, ive discases, and
autoimmune diseases. The objective of the current study was to test the hypothesis that a
maternal high fat diet with varying n-6 to n-3 PUFA ratios during gestation and lactation
will alter the regulation of lipid and lipoprotein metabolism in the offspring of CS7BL/6
mice at weaning. Our findings showed that, a) the breast milk fatty acid composition
was reflective of the maternal fatty acid composition, b) the offspring RBC PL fatty acid
composition reflected the fatty acid composition of the maternal diet, and c) high ratio of
n-6 to n-3 PUFA in the maternal diet was associated with higher plasma lipid parameters

compared to a lower ratio.

4.2.1: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid
ratios on food intake and body weight of the offspring at weaning

There were no significant differences in food intake, caloric intake and body
weight of mothers in the three dietary groups, suggesting that food intake and caloric
intake of the mothers were not confounding factors for the observed changes in the lipid
metabolism of the offspring. Interestingly, the 30:1 group showed a higher body weight
compared to both 5:1 and 15:1 groups. No differences were observed in the body length

and the organ weights of the offspring amongst the various dietary groups. However, we
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were not able to collect fat from animals at weaning and we did not measure the carcass
weight thus the difference in body weight could be due to a number of unexplained

reasons.

The effects of maternal dietary n-3 PUFA and n-6 PUFA on body weight of the
offspring is controversial. Similar to our observations, the offspring of female Sprague-
Dawley rats fed a low n-6 to n-3 PUFA ratio had a significantly lower body weight
compared to the offspring of mothers on high n-6 to n-3 PUFA ratio (Korotkova er al.,
2002; Korotkova et al., 2005). These and other investigators reported reduced adipose
tissue mass and reduced adipocyte size in the n-3 PUFA fed group (Massiera ef al., 2003;
Yessoufou er al., 2006). Thus it appears that there is a strong association between high
dictary n-3 PUFA, low body weight, and reduced adipose tissue mass. Studies have
shown that fatty acid oxidation in the body depends on the quality of dietary fat and the
fatty acid chain length in the adipose tissue (Yamazaki ef al., 1987; Halminski et al.,
1991). It is therefore logical to assume that n-3 PUFA reduces body fat deposition, and a

consequent reduction in body weight via increased fatty acid oxidation.

We were not able to collect any fat tissue in the offspring of various dietary
groups at weaning. A post weaning study of the offspring would therefore be necessary
to investigate the effects of different dictary n-6 to n-3 PUFA ratios on body fat

deposition and body weight gain.
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4.2.2: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid

ratios on plasma non esterified fatty acids and blood glucose of offspring at weaning

Intrauterine stress, especially maternal und trition is known to be associated

with onset of diabetes and CVD in the offspring at later life (Barker ef al., 1993; Barker,
1995; Barker, 1997). An increased level of NEFA in the serum and increased blood
glucose levels are important markers of diabetes mellitus (Min et al., 2005). In the current
study, no significant differences were observed in blood glucose and plasma NEFA levels

in both dams and in offspring at weaning.

No significant differences were reported in plasma NEFA and glucose levels in
offspring at postnatal day 90, of dams fed a high fat diet (21%) rich in n-6 PUFA (n-6 to
n-3 PUFA ratio of =28:1) and n-3 PUFA (n-6 to n-3 PUFA ratio of =2.5:1) during
perinatal period (Ibrahim et al., 2009). A recent study on rats also reported no difference
in glucose levels; however, lower plasma NEFA levels were reported in both male and
female offspring of dams fed a high DHA diet at weaning, possibly due to reduced
mobilization of fat from adipose tissue (Muhlhausler er al., 2010). In addition, it is
interesting to observe a higher male to female ratio in 15:1 and 30:1 groups compared to
5:1 group however the reason behind is unknown, which need to be explored in the

future.
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4.2.3: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid

ratio on breast milk total fatty acid composition

Breast milk is the ultimate energy source of an infant and provides fatty acids for
the developing membrane lipids and storage in adipocytes as TGs during the lactation
period (Novak & Innis, 2011). In the present study, dams were fed the experimental diets,
for 2 weeks before mating, during gestation and also during the lactation. No significant
differences were observed in total SFA and total MUFA content in the breast milk among
the various dietary groups; this finding is similar to the dietary fatty acid composition

establishing that maternal dictary fatty acid composition is reflected in the breast milk.

Similarly, total n-6 PUFA and LA content were not different among various
dietary groups. However, a significantly lower AA content was observed in the 5:1 group
compared to the 15:1 and 30:1 groups. Previous studies have shown that the AA content
in the milk depends on maternal storage levels and the conversion of LA to AA
(Arterburn et al., 2006; Brenna et al., 2007). Thus it is reasonable to assume that there
may be a lower conversion rate of LA to AA in the 5:1 group compared to the 15:1 and
30:1 group likely due to competition between n-6 and n-3 PUFA classes for the

and ion enzymes. further research is required to confirm

the above hypothesis.

A higher EPA and DHA content was observed in the 5:1 group followed by the
15:1 and 30:1 groups, thus breast milk reflected the fatty acid content of the various
maternal dicts. Studies have shown higher levels of DHA and EPA levels in breast milk

when lactating dams were fed diets high in n-3 PUFA (Jen et al., 2009; Novak & Innis,
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2011; Arterburn et al., 2006; Brenna ez al., 2007). Docosahexaenoic acid plays a critical

role in the perinatal period, especially in neuronal and visual development (Guesnet et al.,

1997).

In the current study, the n-6 to n-3 PUFA ratio in the breast milk closely reflected
the maternal dietary n-6 to n-3 PUFA ratio in all the dietary groups. Interestingly, breast
milk n-6 to n-3 PUFA ratio reflected nearly the same PUFA ratio as that of the maternal
diet and the ratios were 7:1, 15:1 and 42:1 in 5:1, 15:1 and 30:1 groups. The n-6 to n-3
PUFA ratio in breast milk is relatively stable during the first 3 months of lactation in
humans and gets higher as lactation progresses (Jang ef al., 2011), which could be the
reason for a higher n-6 to n-3 PUFA ratio observed in the breast milk of 30:1 mice.
Similar to our observation, similar n-6 to n-3 PUFA ratios have been reported in breast
milk at 1 week and 2 weeks after delivery as that of the maternal diet in mice (Kagohashi
et al., 2007; Kagohashi ef al., 2010). Previous studies and the current study highlight the
influence of maternal dietary fatty acids, and the n-6 to n-3 PUFA ratio, on breast milk

composition, which can have a major impact on the offspring’s health status in later life.

4.2.4: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid
ratios on plasma total -cholesterol levels of offspring at weaning

A growing body of evidence suggests that perinatal nutrition affects the health of
the offspring later in life (Lucas, 1998), thus the effects of maternal dietary n-6 to n-3
PUFA ratios on the offspring’s metabolic parameters are of considerable interest. In the

current study, lower plasma total cholesterol levels were observed in 5:1 and 15:1
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groups compared to 30:1 group in both male and female offspring at weaning obtained

from dams fed various dietary ratios of n-6 and n-3 PUFA.

There are few studies of the effects of maternal n-3 PUFA and n-6 PUFA
supplementation during the perinatal period on offspring lipid parameters. A lower
plasma cholesterol level was reported in macrosomic rat offspring where diabetic dams
were fed EPA+DHA (n-6 to n-3 PUFA ratio of = 0.49) compared to a control group (n-6
to n-3 PUFA ratio of =25.8) at day 60 and 90 days after birth (Yessoufou et al., 2006).
However, other studies in Sprague-Dawley rats reported no change in plasma cholesterol
levels in male and female offspring of dams fed diets containing (n-6 to n-3 PUFA ratios

of =2.5,8.3 and 17.5) at 3 weeks (Korotkova et al., 2002; Korotkova et al., 2005).

Dietary intervention studies in adult mice have reported that n-3 PUFA, mainly
EPA and DHA, reduced the expression of SREBP-1 which acts as a transcription factor
of the lipogenic genes (Kim et al., 1999; Nakatani et al., 2003). The n-3 PUFA, such as
EPA and DHA, are capable of reducing the expression of many lipogenic enzymes, i.c.
sterol-CoA desaturase (SCD) and fatty acid synthase (FAS), thereby inhibiting VLDL
production. Feeding diets high in n-3 PUFA to adult C57BL/6 mice also inhibit HMG-Co
A reductase activity, leading to reduced serum cholesterol levels compared to an n-6
PUFA diet (Du et al., 2003; Oh et al., 2009). It will be important to investigate in the
future whether varying the maternal n-6 to n-3 PUFA ratios alter HMG Co A reductase

activity or affect VLDL secretion from liver.
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The lipid lowering effect of n-3 PUFA could also be due to the regulation of

PPARs which are activated by n-3 PUFA and are known to up-regulate genes of fatty
acid oxidation (Couct ef al., 1997). The n-3 PUFA are more potent in vivo activators of
PPAR-a than n-6 PUFA (Engler & Engler, 2000; Frenoux ef al., 2001), thus n-3 PUFA
may lead to decreased plasma lipid levels by up regulating PPARs to increasing fatty

acid oxidation (Schmitz & Ecker, 2008).

The pattern of CE levels was similar to that of TC levels with no significant
changes in the FC levels among the dictary groups in male offspring. It is likely that the
lower TC levels in the 5:1 and 15:1 groups are due to low CE levels in the male offspring.
On the other hand, the female offspring obtained from mothers fed a 5:1 diet showed
lower FC levels compared to 15:1 and 30:1 groups; however, no difference was observed
in the 15:1 and 30:1 groups. A lower CE level was observed in 15:1 group compared to
30:1 group; however, 5:1 group did ot differ from cither 15:1 or 30:1 groups in female

offspring.

The synthesis of CE level is regulated by the enzyme acyl coenzyme A:
cholesterol acyltransferase 2 (ACAT2, EC 2.3.1.26) which converts FC to CE from FC in
the liver (Joyce ef al., 1999). Fish oil, a rich source of n-3 PUFA, has been shown to
decrease the activity and mRNA expression of ACAT (Smit ef al., 1991; Botham ef al.,
2003). Plausible explanations for reduced TC levels in 5:1 and 15:1 groups could be due
to all or one of the mechanisms discussed above. Therefore, further investigation is

needed to confirm whether the programming effects of lower n-6 to n-3 PUFA ratio are
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due to inhibition of HMG Co-A reductase activity, reduced SREBP expression, reduced

ACAT expression or by increasing beta oxidation due to activation of PPARs.

4.2.5: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid
ratios on plasma triglyceride levels of offspring at weaning

No significant differences were observed in TG levels in male offspring obtained
from mothers fed various n-6 to n-3 PUFA ratios, while there was a trend towards lower
TG levels in the 5:1 and 15:1 groups. The female offspring of mothers fed 5:1 and 15:1
diets showed significantly lower TG levels (40% and 22% decrease respectively)

compared to the 30:1 group.

There are only a few studies to show the effects of maternal n-3 PUFA and n-6
PUFA supplementation during pregnancy and lactation periods on plasma TG levels; data
from these studies are inconsistent. Three studies on rats reported no change in plasma
TG levels in male and female offspring of mothers fed n-3 PUFA diet and n-6 PUFA
diet at 105 days (Ibrahim e al., 2009) and at 3 weeks (Korotkova ef al., 2002; Korotkova
et al., 2005). However, Joshi ef al. (2003) reported a lower TG level at 6 months in male
offspring of dams fed an n-3 PUFA rich diet during pregnancy, while female offspring

showed no difference.

Studies using adult animal models have also reported differential effects of dietary
n-3 PUFA on plasma TG levels. Some studies in mice reported no change in TG levels
when fed n-3 PUFA diet (Zampolli et al., 2006; Riediger et al., 2008), while other studies
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on rats revealed that n-3 PUFA lowers plasma TG levels mainly through the down
regulation of TG synthetic enzymes (Rustan ef al., 1992; Ribeiro ef al., 1991; Geelen et
al., 1995) and by increasing in liver beta-oxidation (Yamazaki et al., 1987; Halminski et
al., 1991), compared to n-6 PUFA. Nevertheless, a majority of the data support the school
of thought that dictary n-3 PUFA reduce plasma TG level compared to n-6 PUFA (Harris

& Bulchandani, 2006).

The most plausible explanation for the reduced TG levels in the offspring of dams
fed a lower n-6 to n-3 PUFA ratio in the current study may be attributed to stimulation of
increased peroxisomal and mitochondrial beta oxidation due to higher accretion of n-3
PUFA. A high matemal n-3 PUFA dict has been shown to increase n-3 PUFA status in
human infants (Connor ef al., 1996; Elias & Innis, 2001; Helland ef al., 2001). It was
found recently that DHA is preferentially transported to the foetus compared to LA
(Larque ef al., 2003). In the current study, the 5:1 group showed the highest total n-3
PUFA and DHA levels followed by 15:1 and 30:1 group suggesting a higher
incorporation of n-3 PUFA. Since, n-3 PUFA are better in-vivo activators of PPAR-a
than n-6 PUFA (Engler & Engler, 2000; Frenoux ef al., 2001), cellular beta oxidation is
likely to be cnhanced in the 5:1 and 15:1 groups thereby resulting in lower TG levels

compared to the 30:1 group.

Many studies using adult rodents have shown that reduced TG levels in n-3
PUFA fed groups were due to decreased activity of TG synthesizing enzymes. It will

therefore be important to further investigate whether the programming effects of plasma
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TG levels in the current study were due to increased beta oxidation or decreased activity

of TG synthesizing enzymes.

4.2.6: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid
ratios on plasma LDL-cholesterol and HDL-cholesterol levels of offspring at
weaning

The association between CVD and high levels of LDL-cholesterol is well
established (Munro & Cotran, 1988; Kinsella ef al., 1990). Lower LDL-cholesterol levels
were observed in 5:1 and 15:1 groups compared to the 30:1 group in male offspring.
However, in the female offspring, 15:1 group showed lowest LDL-cholesterol levels

compared to the 30:1 group.

The effects of n-3 PUFA on plasma LDL-cholesterol levels are inconsistent. In
line with the low LDL-cholesterol levels in the male offspring in the current study,

Yamashita et al. (2005) also reported signi in plasma LDL.

concentrations in apoE-/- LDLr-/- double knockout mice fed diets enriched in n-3 PUFA.
On the other hand, fish oil supplementation with 6 g/day of EPA and DHA has been
reported to increase LDL-cholesterol in humans (Connor ef al., 1993). An increase in
LDL-cholesterol concentration was also reported in hypertriglyceridemic participants

after treatment with DHA enriched cggs (Maki ef al., 2003). However, it has been
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suggested that a higher amount of fish oil could lower LDL-cholesterol concentrations

(Harris et al., 1983).

One plausible explanation of low LDL-cholesterol levels observed in the 5:1 and
15:1 groups in male offspring may be due to enhanced expression of LDLr. Previous
reports have demonstrated that an increase in LDLr activity lowers plasma LDL-

levels after it ion with n-3 PUFA in rats (Ventura ef al., 1989;

Spady, 1993). On the other hand, decreased ACAT activity (Smit ef al., 1991; Botham ef
al., 2003) and TG levels (Rustan ef al., 1992; Ribeiro et al., 1991; Yamazaki et al., 1987;
Halminski e al, 1991) also result from n-3 PUFA supplementation, which may lead to
lower synthesis of VLDL, resulting in lower levels of LDL Whether a decrease in LDL-
cholesterol levels in the male offspring in the current study is due to an increase in LDLr

mRNA expression or a decrease in ACAT activity needs to be further investigated.

The reasons for increased LDL-cholesterol levels after fish oil supplementation
have never been clearly determined. Nonetheless, the growing body of evidence for
increased LDL-cholesterol levels by fish oil diet suggest alterations in the physical
properties of LDL particle. It has been suggested that the size of VLDL secreted by the
liver is small when fed fish oil and small VLDL particles readily convert to LDL,
resulting in increased LDL-cholesterol levels (Packard er al., 1984; Mori et al., 2000).
Studies have shown that fish oil feeding leads to increased LDL particle size, which is
less atherogenic in nature (Contacos ef al., 1993; Mori et al., 2000). It is likely that the

above is true for higher LDL-cholesterol levels observed in the female offspring in the
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current study; future studies are essential to establish whether the LDL particle size is

changed.

No significant changes were observed in HDL-cholesterol levels in cither male or
female offspring among the various dietary groups. Studies in adults also have shown no
change in HDL- cholesterol level between n-3 PUFA and n-6 PUFA fed groups for 4
weeks, 20 weeks and for 32 weeks (Zampolli ef al., 2006; Magdeldin ef al., 2009; Wang
et al., 2009). Since both female and male offspring demonstrated low total cholesterol
levels in the 5:1 and 15:1 groups, it is possible that these groups may contain higher
HDL-2 cholesterol levels which have better cholesterol efflux capacity compared to 30:1

group. Therefore, it will be i ing to further investi efflux capacity of

HDL particles among the various dietary groups.

A lower LDL to HDL-cholesterol ratio was observed in the 5:1 group compared to
the 30:1 group in male offspring. Previous studies have also shown that n-3 PUFA are
associated with lower LDL/HDL-cholesterol ratio in humans (Dawczynski et al., 2010),
and in rats (Vijaimohan ef al., 2006). Low LDL-cholesterol profile in 5:1 group in male
offspring may have led to low LDL/HDL-cholesterol ratio. On the other hand, female
offspring in 15:1 group showed the lowest LDL/HDL-cholesterol levels compared to the
5:1 and 30:1 groups however, there was no significant difference between the 5:1 and
30:1 group. Higher LDL/HDL-cholesterol ratio in 5:1 group is a result of increased LDL-

cholesterol levels.




4.2.7: Effect of maternal dietary omega-6 to omega-3 polyunsaturated fatty acid
ratio on red blood cell phospholipid fatty acid composition of offspring

The RBC PL fatty acid composition of the offspring was determined as an indirect
marker to evaluate the effect of various maternal dictary fatty acid ratios on the fatty acid
status of the offspring. No significant difference was observed in the percentage of total
SFA content in RBC PLs in cither male or female offspring reflecting the maternal

dietary SFA content.

A lower n-6 to n-3 PUFA ratio was associated with a lower C18:1n9 level in RBC
PL, which may be due to reduced expression of stearoyl-CoA desaturase-1 enzyme
(SCD-1), a rate-limiting enzyme in the synthesis of monounsaturated fatty acids (Ntambi
& Miyazaki, 2003). Previously, feeding dicts enriched in n-3 PUFA to rats have been

shown to reduce SCD-1 expression (Levy et al., 2004).

An increased LA content in RBC PLs in 5:1 group may be a result of poor
conversion of LA to long chain n-6 PUFA. It has been shown that both AS and A6
desaturase prefer n-3 PUFA to n-6 PUFA (de Gomez and Brenner, 1975; Hagve and
Christophersen, 1984). As the 5:1 group contains a higher level of n-3 PUFA, the reduced
conversion of LA to AA in 5:1 group appears to be due to a higher competition of n-3

PUFA for the elongation and desaturation enzymes.

The long chain n-3 PUFA, essentially EPA and DHA, are critical for normal
growth and development (Clandinin er al., 1980b). Higher total n-3 PUFA, DPA and

DHA content were observed in the 5:1 group followed by 15:1 and 30:1 groups reflecting
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the maternal dietary fatty acid composition. Previous reports have also shown a high
EPA, DHA content and a significantly lower n-6 to n-3 fatty acid ratio in RBC PLs where
mothers were fed fish oil during pregnancy (Dunstan ef al., 2004; Arbuckle & Innis,
1993; Carlson ef al., 1986; Hrboticky ef al., 1990). The RBC PL composition is a good
indicator of fatty acid composition of tissuc and brain of the offspring (Sanjurjo ef al.,
1995; Maurage et al., 1998). Therefore, RBC PL fatty acid composition can also be used

to predict the fatty acid composition of whole body fatty acid status.

A strong negative correlation between percentages of DHA and EPA in RBC PL
and plasma total- and LDL-cholesterol levels, and a positive correlation between
percentages of AA and plasma LDL-cholesterol levels in male offspring further supports
the effect of dictary PUFA on plasma lipid and lipoprotein profiles. Similarly, plasma TG
levels in female offspring were negatively correlated with percentages of DHA in RBC
PLs and positively correlated with percentages of AA in RBC PLs. These correlation
analyses suggest that n-3 PUFA are associated with reduced plasma lipid and

lipoproteins, whereas n-6 PUFA are associated with increased plasma lipoprotein levels.

The fluidity of RBC is highly dependent upon the lipid

(Colin et al., 1992). Since increased unsaturation results in an increase in membrane
fluidity, increased incorporation of DHA and EPA in to RBC PLs in 5:1 group may
increase the membrane fluidity of RBCs compared to 15:1 and 30:1 groups. Thus
increased flexibility of RBCs is likely to allow easier passage through narrow blood
vessels in tissue thereby improving blood supply and oxygen delivery. Morcover these
altered properties may favour the flow of blood and reduce thrombus formation leading to
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a reduced risk of atherosclerosis. Therefore in the current study, RBC PL fatty acid

compositions of offspring demonstrate the critical role of maternal dietary n-6 to n-3 fatty

acid ratio, on tissue accretion of fatty acids in the offspring.



4.3. Conclusion and Future work

Current recommendations to replace SFA with PUFA have led to an increased
consumption of n-6 PUFA, shifting the n-6 to n-3 PUFA ratio from 2-3:1 in the diets of
carly hunter gatherers to 25:1 in the Western diet, which may increase the risk of CVD. In
the current study, feeding diets with varying n-6 to n-3 PUFA ratios to CS7BL/6 mice for
one month altered the regulation of lipid and lipoprotein metabolism. A decrease in n-6 to
n-3 PUFA ratio decreased plasma TC levels, which could be due to a decrease in HMG-
CoA reductase activity, or an increased activity of CYP7. Future investigations are
needed to understand the mechanisms behind TC lowering effects of n-6 to n-3 PUFA
ratios. We also observed lower LDL-cholesterol levels as the n-6 to n-3 PUFA ratio was
lowered, which could be due to increased LDLr gene expression that is a topic for future

investigation.

The findings from the one month feeding study formed the basis to investigate the
effects of maternal dictary n-6 to n-3 PUFA ratios on the regulation of lipid and
lipoprotein metabolism of the offspring at weaning. The lower plasma TC in offspring
obtained from dams fed 5:1 and 15:1 diets is possibly due to inhibition of HMG Co-A
reductase activity, reduced SREBP expression, reduced ACAT expression or by
increasing beta oxidation due to activation of PPARs. Future investigations are needed to

the i ible for the chol 1 and TG lowering effects of

dicts varying in n-6 to n-3 PUFA ratios.



The offspring were studied at weaning to understand the effects of pre-weaning

diets. However, longer term studies should be planned where offspring can be fed, the

same diet as that of the mothers or by switching the diets to investigate whether the

effects of the pi ing dicts are when post-weaning diets are altered.
Previously it was suggested that PUFA metabolism is affected by sex hormones (Extier ef
al., 2010). Therefore differential effects observed in male and female offspring may be

due to differences in sex hormones, which need to be explored in the future.

A limitation of the current study is that the observations cannot be directly related
to humans due to differences in the lipid and lipoprotein metabolism.. In addition,
menhaden oil was used in the current study as a source of n-3 PUFA that provided high
amounts of EPA and DHA; whether alpha-linolenic acid, the essential n-3 PUFA, has
similar effects on the regulation of lipid and lipoprotein metabolism is not known. Future
studies can thus be designed using different animal models to relate changes in lipid and
lipoprotein metabolism to humans, and also by using different sources of n-3 PUFA to

establish whether the type of n-3 PUFA is important. .

Overall, findings from the current thesis support the role of maternal dietary n-6 to
n-3 PUFA ratios on the regulation of lipid and lipoprotein metabolism of the offspring of
CS7BL/6 mice. Our findings also show that the programming cffects are different in male

and female offspring.
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