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Abstract

Lumbopelvic dynamic stability is often evaluated by clinicians using the single leg
stance (SLS) test when assessing patients with chronic low back pain (CLBP) .
One of the main stabilizing muscles that is thought to be dysfunctional when
there is an inability to maintain lumbopelvic stability during SLS is the gluteus
medius . Clinicians often note dysfunction of this hip muscle in patients with CLBP
and treat these apparent muscle imbalances . However , there is insufficient
evidence to support these clinical findings and the treatment approach . There is
evidence of gluteus maximus , abdominal and back muscles contribution to
lumbopelvic stability . These muscles contract in anticipation to movement to
maintain equilibrium and stability of the spine . With CLBP , the deep stabilizing
spinal muscles appear to become weak or have delayed recruitment and the
superficial stabilizing muscles appear to become overactive. Other evidence
supports the altered recruitment of the agonists/ antagonists and superficial!
deep muscle groups with CLBP compared to their healthy counterparts. As CLBP
is heterogeneous in nature , a diverse pattern of motor recruitment has also been
found in the gluteus maximus from weakness , poor endurance , and delay in
recruitment to over activation . However , there are very few studies that examine
the gluteus medius function and its relation to LBP. Weak hip abductors and co­
ordination of right and left gluteus medius have been associated with the
development of LBP in healthy subjects. However , there are no studies that
examine gluteus medius recruitment and strength in a CLBP population.
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1. INTRODUCTION

1.0 Overview

Low back pain (LBP) is the most common chronic condition in Canada

accounting for 25% of all chronic diseases and over a life time, 4 out 5

Canadians will experience at least one episode of LBP (Murphy et at., 2006). The

direct and indirect economic costs of LBP are enormous , between visits to health

care profess ionals , medication , insurance costs, hospitalization , lost wages , sick

leave and reduced productivity . The indirect economic costs of employee

absenteeism and disab ility far outweigh the direct medical cost of treating LBP

(van Tulder, 2002; Coyte et aI., 1998). Maeztel and Li (2002) report estimated

annual losses of 149 million work-days due to LBP in the United States with

101.8 million of these days due to work related LBP. Given the financia l and

human costs of LBP, a large amount of research has been devoted to

understand ing the nature of LBP.

Diagnosing and treating LBP is very complex and desp ite the multitude of

literature, it remains poorly understood . In fact, a specific cause of LBP such as

disc herniation only accounts for 10% to 15% of all diagnoses (vanTulder et aI.,

2002) . The majority of patients who present with LBP are class ified as having

non-specific LBP as there is no one identifiable cause . There are recognized risk

factors that are linked with its development; such as sedentary lifestyle , weak

trunk musculature , poor posture , obesity , smoking and heavy or incorrect lifting

(Murphy et aI., 2006) . Improperly function ing muscles that support the trunk and



pelvic girdle are thought to be one of the main contributors to LBP when they no

longer provide support and stability to the spine (Panjabi , 1992; Hodges and

Richardson , 1996; Hodges and Richardson , 1998; Nadler et aI., 2002 ;

Hungerford et aI., 2003 ; Nelson-Wong et al. 2008).

One test that clinicians use to assess the ability of the lumbopelvic muscles to

provide dynamic stability to the spine is single leg stance (SLS). The SLS test

can be subdivided into Trendelenburg and Stork or Gillett tests . Patients may

show lateral pelvis hiking or adduction on the stance side (Trendelenburg sign)

with SLS or during gait indicating in part weakness of the gluteus medius

(Hardcastle & Nade, 1985; Lee, 1997; Dorman 1997; Sahrmann 2002 ; Roussel

et aI., 2007; Tidstrand & Horneij , 2009) . An anterior innominate movement during

SLS indicates gluteus maximus dysfunction or sacroiliac dysfunction (Stork or

Gillett test) (Hungerford et aI., 2003; Hungerford et aI., 2007 ; Potter & Rothstein ,

1985). The SLS test has been shown to have high inter-rater and test-retest

reliability in the chronic LBP (CLBP) group (Roussel et aI., 2007 ; Tidstrand &

Horneij, 2009). The inability to control the pelvis during SLS is thought to be due

to weakness or poor motor control of the abdominals , deep back musculature

and the glutei. To treat these deficits therapeutic exercises are prescr ibed

accordingly. There are a multitude of studies that note motor control deficits of

the deep abdominal and back muscles and gluteus maximus in the CLBP patient

(Hodges & Richardson , 1996; Hodges & Richardson , 1998; Bruno and Bagust ,

2007; Borghuis et aI., 2008). One group showed that there were motor control



deficits of the gluteus medius in healthy subjects who develop LBP during a

prolonged standing task (Nelson-Wong et aI., 2008 ; Nelson -Wong & Callaghan ,

2009a; Nelson-Wong et aI., 2009b) . However , there is insufficient evidence to

support the clinical finding that there are motor control deficits of the gluteus

medius in the non-specific CLBP group.

1.1 Purpose of the study

This study aims to determine the relationship between altered gluteal muscle

activation and CLBP . Our specific objectives are:

1) To measure the onset in the gluteal muscles (gluteus medius and gluteus

maxim us) in subjects with CLBP compared to a gender and age matched

control group during single leg stance test.

2) To determine if a positive clinical test of single leg stance is associated with

timing delays in the gluteal muscles.

1.2 Hypotheses

It was hypothesized that:

1) The LBP will have a delay in the gluteus medius activation compared to the

control group .

2) There will be a greater amount of positive SLS tests in the LBP group

compared to controls .

3) The gluteal muscles will be weaker in the LBP group compared to the

control group .



2. Review of the Literature

2.0 Gluteus Medius Anatomy and Function

Gluteus medius is traditionally described as a hip abductor when the limb is non­

weight bearing. This broad pennate muscle originates from the outer surface of

the ala of the ilium and inserts into the greater trochanter. The anter ior fibers of

the gluteus medius contr ibutes to hip internal rotation while the poster ior fibers

along with the gluteus maximus contr ibute to hip external rotation . During weight­

bearing, the vertical orientated anterior and middle portions of the gluteus medius

were found to be most active during the SLS phase of gait (Lyons et aI., 1983;

Soderberg & Distak , 1978; Gottschalk et aI., 1989; AI-Hayani , 2009) providing a

stable lumbopelv ic region during single limb support .

The gluteus medius , like the mult ifidus is a uni-art icular muscle that is comprised

of mostly type I fibers , whose primary funct ion is thought to be stabilization rather

than movement (Richardson et a1.1999; Gibbons & Comerford , 2001). Some

authors propose the gluteus medius ' prime function to be a hip and pelvic

stabilizer rather than just a hip abductor (Gottschalk et aI., 1989; Norris, 1995;

Richardson et aI., 1999; Gibbons & Comerford , 2001 ; Kibler et aI., 2006 ;

Borghuis et aI., 2008) . The fibers of the poster ior port ion of the gluteus medius

are horizontal and run parallel to the neck of the femur (Gottschalk et aI., 1989;

AI-Hayani , 2009). Contraction of the posterior fibers first occurs at heel strike

phase of the gait cycle and cont inues until toe off. It is thought that this posterior

portion approximates the head of the femur into the acetabulum to maintain joint
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congruency during movement in a similar fashion to the supraspinatus in the

glenohumeral joint (Gottschalk et aI., 1989; AI-Hayani , 2009) . Reverse origin­

insertion contraction of the gluteus medius during closed kinetic chain activities

maintains a level pelvis to create a stable base for contrala teral lower limb

movement and contributes to maintaining a neutral lumbar spine. When the

gluteus medius is deficient , it is proposed to be one of the contributing factors to

the inability to maintain a level pelvis during weight bearing activities (Sahrmann ,

2002; Lee, 1997; Hardcastle, 1985; Roussel et aI., 2007 ; Tidstrad & Horneij ,

2009) which can be related to back or lower extremity dysfunction due to

excessive pelvic motion. However, recent studies have found only a weak

correlation between hip abductor weakness and lateral pelvic drop during SLS in

healthy and LBP subjects (DiMattia et aI., 2005 ; Marshall et aI., 2010) .

2.1 Motor Control and the Spine

Traditional clinical manual muscle testing on the CLBP population does not

always elicit weakness but there can be apparent loss of functionallumbopelvic

stability . The spine and pelvis maintains its functional stability by a complex

interact ion between the pass ive inert structures , active muscu lar system and

neural control (Panjabi, 1992; Comerford & Mottram , 2001 ; Borghuis et aI.,

2008). This model of stability is true for all joints but it is particularly important in

the spine as without the support of the muscular system mediated by the neural

system, the spine would buckle under a load of only 2 Kg (Morris et aI., 1961). In

the spine , a properly functioning muscular system requires only 5-10% of the

I I



abdominals and 25% of back muscles ' maximal voluntary contraction to prov ide

maximal joint stiffness and functional stab ility (Cholewicki 1999 ; Cresswell et aI.,

1994). Insuffic ient muscle func tion leads to excess stress on the spinal joints

and ligaments that may lead to pain and dysfunct ion (Hodges & Richardson ,

1996; Panjab i, 1992 ; Hodges et aI., 2003) . There have been many stud ies that

examine the extent of muscle activat ion or strength in the muscles that suppo rt

the spine and pelvis with inconsistent results . Motor contro l stud ies that exam ine

the onset of muscle contraction or the coordination between agon ist and

antagonist may be better suited to assess muscle dysfunction assoc iated with

CLBP.

The deep local stabil izing muscles of the spine are descr ibed as originating and

insert ing with in the spine , cross one to 2 jo ints and have a high concentration of

muscle spind les for propr iocep tive feedback to maintain spinal stab ility

(Bergmark, 1989; Comerford & Mottram , 2001; Gibbons & Comerford, 2001 ;

Hammill et aI., 2008 ; Borghu is et aI., 2008 ). Examining the temporal ana lys is of

deep lumbopelvic muscles that contr ibute to spinal stab ilizat ion has shown that

the onset of muscle contraction occurs prior to external perturbation to the spine

in the healthy populat ion. These muscles , such as the transversus abdominus,

multifidus and internal oblique seem to function to stabilize the spine in mult iple

direct ions . External perturbation to the spine created by rapid movement of the

upper or lower limb or the applicat ion of externa l force to the trunk have shown

that the transversus abdom inus contracts in anticipa tion to prevent movem ent of
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the spine and that this muscle invariably contracts before all other trunk muscles

(Cresswell et aI.,1994 ; Hodges & Richardson , 1996 ; Hodges & Richardson,

1997; Hodges & Richardson, 1998 ; Hodges et aI., 1999 ; Moseley et aI., 2002 ;

Hodges et aI., 2003 ; Tsao et aI., 2008) . The deep stabilizing muscles are close

to the axis of rotation producing lumbopelvic stabilization in mult i-direct ions

whereas the superficial trunk muscles contribute to spinal stabilization with

specific directions.

The global muscle system is described as the larger, more superficial muscles

that cross many joints and whose function is to transfer load between the thorax

to the pelvis (Bergmark, 1989 ; Comerford & Mottram, 2001 ; Gibbons &

Comerford , 2001 ; Hammill et aI., 2008 ; Borghuis et aI., 2008) . Expanding on

Rood 's model of stab ilizer and mobilizer muscle classification, Comerford and

Mottram (2001) subdivide the local and global system into local stabilizers, global

stabilizers and global mobilizers. The global stab ilizing muscles also provide

stabilization to the spine but in a different manner than the local muscles .

Stability provided to the spine by the global stabilizing muscles is direction

specific ; the antagon ist muscle group controls external perturbations with

eccentric contractions. Direction specific preparatory activation has been shown

with global muscle system. The abdominals anticipated movement during rapid

shoulder extension, the erector spinae during rapid shoulder flexion (Aruin &

Latash, 1995 ; Hodges & Richardson , 1996; Hodges et aI., 1999) and the external

obliques with oblique spinal perturbations (Santos & Aruin , 2008) . However, with
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rapid lower extremity movement, all of the abdomina Is and erector spine have

anticipatory activation with hip flexion , abduction and extension regardless of the

direction of limb movement (Hodges & Richardson , 1997; Hodges & Richardson,

1998). These non-direction specific preparatory contractions may be due to the

higher perturbation demand caused by the heavier lower limb movement.

Likewise, when a 5 kg weight was applied to the trunk ventrally and dorsally, all

of the abdominal and erector spinae muscles contracted in anticipation to both

perturbation forces (Cresswell et aI., 1994). Conversely, Santos and Aruin (2008)

found that the rectus abdominus did not anticipate movement created by manual

resistance of a swinging pendulum from various angles . As the local stabilizing

muscles are thought to always contract in anticipation an external perturbation

regardless of the load in the healthy population, the global stabilization muscles

may respond to direction specific loads and when the demand of the external

force is great enough regardless of the direction (Ebenbichler et aI., 2001) .

This anticipatory or feedforward contract ion of muscles to create stability appears

to be mediated by the central nervous system (CNS) in response to limb

movements or external perturbations that displace the body 's center of gravity

(Bouisset & Zattara, 1981; Hodges & Richardson , 1996; Ebenbichler et aI., 2001 ;

Borghuis et aI., 2008; Tsao et aI., 2008). The CNS may mediate two parallel

systems that generate voluntary contractions simultaneously with postural

stabilizing contractions to maintain spinal equilibrium and stability (Ebenbichler et

aI., 2001) . One system initiates the voluntary contraction while the second
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system initiates contraction of the stability muscles to control the perturbation

created by the voluntary movement. The deep local stabilizing muscles that do

not produce movement of the spine such as the transversus abdominus and

deep multifidus are thought to function in this way (Hodges & Richardson , 1999;

Ebenbichler et aI., 2001; Gibbons & Comerford, 2001; Comerford & Mottram,

2001; Moseley et aI., 2002). Conversely , there may be a hierarchical system

where the reaction to perturbation is fixed (Hodges & Richardson , 1999;

Ebenbichler et aI., 2001) . Global stabilizing postural muscles that are direction

specific in their anticipatory functions may follow this theory in which they

contract in anticipation depending on the direction of movement or amount of

stability required. The anticipatory contraction to pre-stiffen joints prior to

movement is not unique to the spine and has been shown in peripheral joints as

well.

The contraction of the upper trapezius , biceps and rotator cuff of the shoulder

and the vastus medialis of the knee (Comerford & Mottram , 2001 ; Richardson et

aI., 1999) have been shown to anticipate movement in healthy subjects. More

proximally, anticipatory contractions of the glutei are thought to be direction

specific global stabilizers of the lumbopelvic region .

There have been limited studies that examine the temporal parameters of the

glutei. Bouisset & Zattara (1981) found that the gluteus maximus contracted

before the deltoid during rapid finger pointing in the healthy population . Likewise,
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Bruno & Bagust (2007) found the gluteus maxim us to contract prior to prone hip

extension . However, Guimaraes et al. (2010) found the gluteus maxim us to

contract after the erector spinae and semitendinosus during prone hip extension .

The gluteus medius has also been found to be anticipatory with unilateral

perturbations to the spine on an oblique and lateral angle and bilaterally with

resistance in the sagittal plane (Santos & Aur in, 2008). Rogers & Pai (1990)

noted the gluteus medius to be anticipatory during SLS during self-paced and

fast speeds but not during a slower speed. On the contrary, Hungerford et al.

(2003) found that neither the gluteus maximus nor the gluteus medius were

anticipatory to movement during SLS . The speed during SLS was not noted in

this study , which could account for the conflicting findings as with slower speeds

there may not be enough perturbation to the spine to trigger preparatory

contraction .

2.2 LBP and Muscle Dysfunction

Changes in the motor control of the stabilizing lumbopelvic muscles have been

associated with non-specific LBP. In subjects with chronic non-specific LBP the

transversus abdominus and internal obliques have a delayed contraction

compared to control subjects during rapid arm or leg movement in various

directions (Hodges & Richardson, 1996; Hodges & Richardson, 1998, Tsao et aI.,

2008) . Delays in transversus abdominus and internal obliques contraction have

also been associated with specific sacroiliac dysfunction during SLS (Hungerford

et aI., 2003) . Clinically induced acute LBP produced temporal delays of the

16



transversus abdominus and deep multifidus muscles (Hodges et aI., 2003)

indicating that these changes may not be compensatory but a direct reaction to

localized lumbar pain. Altered muscle recruitment is not only found in the

periphery but in the CNS . Tsao et al. (2008) noted that the CLBP group who had

a delay in the transversus abdominus contraction also displayed altered cortical

mapping of the transversus abdominus in the motor cortex . The authors theor ize

that patients with CLBP have reorganization of postural muscle representation in

the CNS not just in the periphery .

The superficial global stabilizing muscles have noted temporal and recruitment

dysfunctions with certain directions of movement or functional tasks . The rectus

abdominus , internal oblique and erector spinae were delayed in a CLBP group

during rapid shoulder (Hodges & Richardson , 1996) or hip (Hodges &

Richardson, 1998) flexion compared to a healthy group. However , only the

erector spinae was delayed with rapid shoulder or hip extension in the same

CLBP groups . Radebold et al. (2001) found that only the antagonist muscle

group was delayed in contracting while the agonist was delayed in relaxing

during quick trunk flex ion and extension in a CLBP group . Chronic LBP has also

been linked with early or over recruitment of certain global muscles . Ferguson et

al. (2004) found that the erector spinae in a CLBP group contracted earlier and

longer during functional lifting tasks compared to matched healthy subjects . This

may indicate altered programming of motor recruitment patterns depending on

the type of muscle involved and the demand of the work load of the task .
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The deep stabilizing muscles are thought to be delayed or have reduced

activation with pain and dysfunction , while the superficial global stabiliz ing or

mobilizing groups tend to be over-recruited (Norr is, 1997; O'Sullivan et aI., 1997;

Gibbons & Comerford , 2001 ; Comerford & Mottram , 2001). In addition to altered

temporal parameters , changes in recruitment of agonist and antagonist muscles

and activation ratios of lumbopelvic muscle groups have also been linked with

the CLBP population . Nouwen et al. (1987) found greater activat ion of the erector

spinae with end range of seated lumbar flexion with CLBP patient while the

external oblique had less activation . vanDieen et al. (2003) also found the CLBP

group had greater recruitment of the antagonist muscle group over the agonist

group compared to the healthy group with seated trunk flexion and extension . In

concurrence, Lariviere et al. (2000) found the erector spinae were overactive with

repeated trunk movements in a LBP group however , they did not find any

difference in the obliques or the rectus abdominus activat ion.

O'Sullivan et al. (1997) and Silfies et al. (2006) noted that the ratio of lower

abdominal activity (internal obliques) was less than the rectus abdominus activity

with CLBP groups . Likew ise, Ng et al. (2002) found that the external oblique was

over-active compared to the multifidus in the CLBP group during spinal

movement. During gait , the erector spinae had noted early and greater activation

compared to the pain free subjects (Lammoth et aI., 2006 ; Vogt et aI., 2003) .

vanDieen et al. (2003) did not find this same over-activation of the rectus
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abdominus over internal obliques with CLBP. Although there are varying results

of muscle contraction in relation to CLBP, it is clear that there is altered

contraction of the muscles that support the spine .

2.3 LBP and Hipl Pelvic Dysfunction

Due to the hip joints' proximity to the lumbar spine, clinical examination of hip

range of motion (ROM), strength and function are routinely performed when

assessing LBP which have led to many studies examining these relationships to

LBP. Hip-Spine Syndrome has been described when patients presents with non­

specific LBP and conjunct hip dysfunction or osteoarthritis (Offierski & MacNab ,

1983; Rieman et aI., 2009) . Vogt et al. (2003) found reduced sagittal hip ROM

during the gait cycle with CLBP by more than 12 degrees compared to healthy

subjects . Asymmetrical hip rotation has also been associated with LBP as

reduced hip joint movement can result in increased mechanical forces in the

lumbar spine contributing to LBP. Hip internal rotation that is significantly less

than external rotation was found in male subjects with CLBP (Ellison et aI., 1990;

Mellin, 1998) while female subjects with CLBP showed more prominent loss of

external rotation (Ellison et aI., 1990). However , Gombatto et al. (2006) found

that men with CLBP had reduced hip external rotation and increased lumbopelvic

movement. Chestworth et al. (1994) and van Dillen et al. (2008) did not find any

gender differences in their studies but they did find that the LBP group had

significantly less overall hip rotation than the control group . LBP groups also

demonstrated asymmetry between right and left hip ROM compared to matched
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healthy groups (vanDillen et aI., 2008) . Due to the heterogeneous nature of LBP,

various asymmetr ies of hip ROM and possible altered hip muscle recruitment

could be assoc iated with LBP.

Muscles that act on the hip joint and link the hip to the pelv is and spine have

been studied in association with LBP with varying results . A LBP group with

sacroiliac dysfunction had a delay of onset of the gluteus maximus during SLS

(Hungerford et aI., 2003 ). Bruno and Bagust (2007) also found a significant delay

in the gluteus maximus with prone hip extension in a CLBP while the erector

spinae and hamstrings did not have any alteration in temporal parameters. In a

similar study , Guimaraes et al. (2010) did not find any delay in the gluteus

maximus during prone hip extension in subjects with CLBP compared to the

onset of the semitend inosus and erector spinae. The extent of gluteus maximus

activat ion was less var iable during level walking , hill walking and stair climbing in

a LBP group where as the healthy group were able to alter the amount of gluteus

maximus contrac tion to match the demand of the activ ity (Himmelreich et aI.,

2008). Likewise, with a CLBP group Pirouzi et al. (2006) found over-recruitment

of the gluteus maximus during isometric lumbar rotat ion and Vogt et al. (2003)

found early and prolonged activation of the gluteus maximus during gait.

However , other research groups have found gluteus maximus to have greater

fatigue and reduced recruitment during lumbar movement in a CLBP group

compared to healthy controls. Kankaanpaa et al. (1998) and McKeon et al.
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(2006) found that the gluteus maximus had reduced torque production and

greater fatigue with resisted lumbar extension. Although considered a hip

extensor , the gluteus maximus was also found to be a greater contributor to

isometric lumbar extension fatigue than the erector spinae in healthy subjects

during the Sorensen and Modified Sorensen test (Champagne et al. 2008). The

gluteus maximus of a CLBP group showed a delay with lumbar flexion, early

recruitment during lumbar extension and reduced endurance in both sagittal

spinal movements compared to the erector spinae and their healthy counterparts

(Leinonen et aI., 2000) . In addition to altered recruitment patterns , decreased

gluteus maximus strength may also be associated with LBP. Nadler et al. (2001)

found that college athletes that had asymmetrical gluteus maximus strength had

a greater occurrence of LBP development during the academic year . This

variation in the recruitment of the gluteus maximus associated with LBP may be

a result of the various methodologies of investigation and an indication of the

diverse motor recruitment patterns of the superficial global muscles that appears

to occur in the LBP population .

Clinician text books note and clinical examinations suspect deficits in the gluteus

medius and specific exercises are prescribed to treat the CLBP population

accordingly (Lee , 1997; Sahrmann , 2002). However , there are very few studies

that examine gluteus medius dysfunction and its possible relationship to LBP.

Nadler et al. (2001 & 2002) compared the strength of the right and left hip

abductors and extensors in college athletes over several academic years . They
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found that those female college athletes that required treatment for non-traumat ic

LBP had significantly reduced left hip abductor strength compared to the right

(Nadler et aI., 2002) . However , in their earlier study they did not find any

predictive value for hip abductor weakness (Nadler et aI., 2001) . Asymmetrical

hip abductor or extensor strength was not predictive for LBP in male athletes in

either study . A recent study found a significant difference of hip abductor strength

in CLBP subjects compared to healthy subjects (Kendall et aI., 2010) . Although

both of these groups consisted of male and female subjects , 80% of each group

was females . Gender differences in hip muscle strength may be due to the

increased Q-angle in females compared to males . The strength of the hip

muscles in these studies was measured with a hand-held dynamometer which

does not account for motor control patterns of muscle recruitment.

Nelson-Wong et al. (2008 & 2009b) and Nelson-Wong and Callaghan (2009)

studied the co-ordination of spinal and hip muscles during a low level simulated

occupational standing task with a healthy subject group . Prior to the standing

task, the subjects underwent a typical physical therapy spinal exam and found

that the only test that was predictive for the subjects developing LBP was their

ability to control the pelvis during side lying hip abduction . During the standing

task, independent examiners were able to predict which subjects developed LBP

by the pattern of right and left gluteus medius recruitment. They found a

significant difference in subjects who developed LBP throughout the standing

task as they had co-act ivation of the right and left gluteus medius as opposed to

a reciprocal synergistic contract ion in the group that did not develop LBP. There
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was also a significant difference in the coordination of the left external oblique

and left erector spinae in this group. However , there was no significant difference

in the co-ordination between the lumbar and thoracic erector spinae , nor the

rectus abdominus and erector spinae that was noted previously with the CLBP

population (Nouwen et aI., 1987; Lariviere et aI., 2000 ; Silfies et aI., 2006).

Marshall et al. (2011) also found altered recruitment of the gluteus medius when

they reproduced the 2 hour standing activity methodology. The authors purposed

that during low level occupational standing activities altered coordination

between the hip muscles would be a greater predictor for those employees who

are at higher risk to developing LBP than coordination of the spinal muscles .

A motor control study of the lumbopelvic muscles in a LBP group diagnosed with

sacroiliac joint dysfunction did reveal delay in deep abdom inal muscles and

gluteus maximus and early activat ion of the hamstrings on the affected side

(Hungerford et aI., 2003) . Unlike an earlier study that noted preparatory activation

of the gluteus medius during SLS (Rogers & Pai, 1990), there was no noted

gluteus medius contraction prior to movement in either healthy or LBP group in

this study . The gluteus medius is theorized to contribute to increased force

closure of the sacroiliac joint to enhance joint stability (Dorman, 1997) ; however ,

there did not appear to be any gluteus medius motor recruitment deficits on the

affected side of subjects with this sacroiliac joint dysfunction group. Perhaps the

SLS activ ity or the speed of the SLS in this study was insufficient to perturb the
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spine and pelvis to pre-activate the gluteus medius . The SLS test can be used in

many ways clinically to assess a patients' function.

2.4 Single Leg Stance

The single leg stance test is a very functional test used by clinicians to assess

the co-ordination , strength and endurance of the lumbopelvic and lower extremity

muscles. A negative SLS is noted by the ability to maintain a level pelvis for 20­

30 seconds without any pelvic or spinal rotation or femoral adduction or rotation

(Hardcastle & Nade, 1985; Lee, 1997; Sahrmann, 2002; Roussel et aI., 2007;

Tidstrand & Horneij, 2009) . Although it is recognized that it requires a

coordinated effort of the lumbopelvic and lower extremity muscles and the

neurological system to maintain a single leg stance, movement dysfunction

during this test leads to the assumption of gluteus medius weakness (Hardcastle

& Nade, 1985; Lee, 1997). However , there are no studies that confirm that

altered gluteus medius muscle recruitment, activation or strength is related to a

positive SLS test. Schmitz et al. (2002) found that the gluteus medius had the

greatest extent of electromyography (EMG) activity when the stance limb was at

0° of hip and knee extension in healthy subjects when compared to various

degrees of hip knee and flexion. The gluteus medius anticipatory recruitment

before the initiation of movement when transferring from double to single limb

support during the SLS test indicates preparatory stabilization function of this

muscle (Rogers & Pai, 1990) .
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Clinicians routinely use the functional SLS test when assessing the CLBP

population . Maintenance of spinal and pelvic stability during single limb support

activities such as walking , running and ambulating stairs depends on muscu lar

control (Borghuis et aI., 2008 ; Livengood et aI., 2004) . Therefore , any inability to

maintain lumbopelv ic stability during SLS is an indication of poor muscular

control. An unstable pelvis during single limb support can lead to excessive

lumbar movement during daily activities, leading to LBP. The SLS test has been

shown to have high inter-rater and test-retest reliability in patients with CLBP

(Roussel et aI., 2007; Tidstrand & Horneij, 2009) . The SLS test has been utilized

as a key indicator for clinical outcome and predictor of long term recovery after

surgery for lumbar disc hern iation. One study compared several clinical

functional tests in pre and post lumbar surgery and found that a positive SLS test

at 6 weeks post surgery was predictive for increased pain at 1 year after surgery

compared to those patients who had a negative test at 6 weeks (Millisdotter et

aI., 2003). However , these studies do not address the muscle dysfunction that

may be involved in this test. Two studies have found a weak positive correlation

of weak hip abductors and an inability to maintain a level pelvis (DiMattia et aI.,

2005 and Kendall et aI., 2010) . Determ ining if indeed the gluteus medius is at

fault, would improve evidence based practice for clinicians .

2.5 Conclusion

There is building evidence that traditional classification of muscles into flexors ­

extensor or abductors-adductors, for example are too simple to explain the
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complex neuromuscular interaction involved in human movement (Aruin &

Latash, 1995). The gluteus medius is now theorized to be primarily a lumbopelvic

stabilizer rather than a hip mover. As a result , poor lumbopelvic stability during

the SLS test is thought to be in part due to a dysfunctional gluteus medius . The

evidence to support this clinical practice unfortunately is not available in the

literature. Lack of spinal stability due to altered recruitment patterns , weakness

and poor endurance of the gluteus maximus, abdominal and back musculature

have all been associated with CLBP. The studies that examine the gluteus

medius and its relation to LBP are very limited. The SLS test is recognized as a

reliable test for the CLBP population but the muscle dysfunction related to a

positive test are not known. Future studies that examine gluteus medius

recruitment patterns and strength during a SLS test in the CLBP group will aid in

improving evidence based practice for treating this population .
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3.0 Abstract

Purpose: To compare the strength , timing and activation of the gluteus medius in
a chronic low back pain (CLBP) group compared to controls during single leg
stance (SLS). Spinal stabilizer muscle timing delays and global muscle weakness
and altered activation have been associated with CLBP. However, the gluteus
medius activation pattern is unknown in CLBP population .
Methods : Twenty -two male and female subjects with CLBP and 21 age and
gender matched healthy subjects were studied. Maximum bilateral hip abductor
and extensor strength was measured using a handheld dynamometer.
Electromyography of the gluteus medius and maximus were recorded during SLS
and manual muscle testing .
Results : The mean hip strength of each gluteal muscle in the low back pain
group was lower than the control group, but only significant in the right gluteus
medius (t= 2.58, p<0.05). No timing delay was found in the gluteal muscles of the
CLBP group compared to the control. There was a significant difference between
the right (t= 2.73, p=0 .007) and left (t=2.08, p<0 .05) gluteus medius extent of
activat ion between the two groups .
Conclusion: Gluteal muscle strength impairment was demonstrated in a CLBP
group. There are activation changes in the gluteal muscles of the CLBP group
but they appear to be similar to other global muscles. These findings support the
inclusion of gluteal muscle strength assessment in the chron ic low back pain
patient.

Key Words: gluteal , gluteus maximus, low back pain , stability, motor control



3.1 Introduction

Non-spec ific low back pain (LBP) that accounts for 80-85 % of all diagnoses is

thought to be in a large part due to dysfunctional muscles that surround and

support the lumbopelvic area (vanTulder et aI., 2002 ; Comerford & Mottram ,

2001 ; Borghu is et aI., 2008) . The muscles that support the spine can be divided

into the local stabilizing and global system. The local stabilizing muscles originate

and insert within the spine , cross one to 2 jo ints and have a high concentration of

muscle spindles for proprioceptive feedback to maintain spinal stability whi le the

global muscle system is described as the larger , more superficial muscles that

cross many joints and whose function is to transfer load between the thorax to

the pelv is (Bergmark, 1989; Comerford & Mottram , 2001 ; Gibbons & Comerford,

2001 ; Hammill et aI., 2008 ; Borghu is et aI., 2008) . The global muscle system has

been further divided into the global stabizers and global mobilizers (Comerford &

Mottram , 2001 ; Gibbons & Comerford , 2001).

In subjects with LBP , the deep local stabiliz ing muscles have demonstrated

motor contro l deficits , specifically timing delays in the onset of contraction. For

example , the transversus abdominis and the deep fibers of the multifidus have

been found to have delayed contraction when the spine is perturbed in some

manner (Cresswell et aI., 1994 ; Hodges & Richardson , 1996 ; Hodges &

Richardson , 1997 ; Hodges & Richardson, 1998 ; Hodges et aI., 1999 ; Moseley et

aI., 2002 ; Hodges et aI., 2003 ; Tsao et aI., 2008 ). It is theorized that the global

stabil ity muscles will respond to pain and dysfunction with inner range weakness,



inhibition and poor low threshold recruitment while the global mobilizer muscles

tend to respond with over-activation and shortening , both resulting in global

muscle imbalances (Comerford & Mottram , 2001; Gibbons & Comerford, 2001) .

However, the literature has demonstrated various responses in the LBP

population of the global muscle system .

The erector spinae has been found to have delayed recruitment (Hodges &

Richardson , 1996 & 1998) , early recruitment (Ferguson et aI., 2004) , or over­

activation (Nouwen et aI., 1987; Laviviere et aI., 2000 ; Vogt et aI., 2003;

Lammoth et aI., 2006) in LBP groups . The internal obliques have been noted to

be delayed (Hodges & Richardson , 1998) or to have decreased activation

(O'Sullivan et aI., 1997) while the external obliques have shown over activation

(Ng, 2002 ; Ferguson et aI., 2004 ; Silfies et aI., 2005) in LBP subjects. The

gluteus maximus has also shown a diverse activation pattern with LBP. It has

been found to have a delay (Bruno and Bagust, 1995; Leinonen et aI., 2000 ;

Hungerford et aI., 2003), to be over-active (Vogt et aI., 2003 ; Pirouzi et aI., 2006;

Himmelreich et aI., 2008), to have greater fatigability (Kankaanpaa et aI., 1998;

Leinonen et aI., 2000 ; McKeon et aI., 2006) and to display weakness (Nadler et

al.,2000).

Clinically , gluteus medius dysfunction has been theorized to be associated with

chronic LBP (CLBP) (Lee, 1997; Sahrmann , 2002) , however there are few

studies that examine this potential link in this population . Asymmetrical hip



abductor strength has been linked with the development of LBP (Nadler et aI.,

2001; Nadler et aI., 2002) and hip abductor weakness noted in the LBP

population (Kendall et aI., 2010) . Co-active recruitment of right and left gluteus

medius (Nelson-Wong et aI., 2008 ; Nelson-Wong and Callaghan , 2009 ; Marsha ll

et aI., 2011) and poor endurance (Marshall et aI., 2011) have been used to

predict the development of LBP during standing tasks in a previously pain-free

population . However , there are no studies that examine the motor control of the

gluteus medius in patients with CLBP.

One clinica l test that is used to assess the funct ional strength of the gluteus

medius is the single leg stance (SLS) test. The abil ity to maintain a level pelvis

during single limb support is an indication of the strength and function of the

muscles that attach to the pelvis and femur. Weak gluteus maxim us and/ or

sacroiliac joint dysfunction is thought to cause increased anter ior iliac movemen t

(Hungerford et aI., 2003 ; Hungerford et aI., 2007; Potter & Rothste in, 1985) while

gluteus medius weakness results in a lateral pelvic movement (Hardcastle &

Nade, 1985; Gottschalk 1989; Lee, 1997, p. 449-450 ; Dorman 1997; Sahrmann

2002; Livengood et aI., 2004 ; Roussel et aI., 2007 ; Tidstrand & Horneij , 2009).

However, only a weak correlat ion between hip abductor weakness and lateral

pelvic drop during SLS has been found in healthy and LBP subjects (DiMattia et

aI., 2005; Marshall et aI., 2010). The SLS test has been found to have high inter­

rater reliability in the subjects with LBP but no correlation between a positive test

and LBP has been exam ined.



This study aims to determine the relationship between altered gluteal muscle

activation and CLBP . Our specific objectives are:

1) To measure the onset in the buttocks muscles (gluteus medius and gluteus

maxim us) in subjects with CLBP compared to a gender and age matched

control group during single leg stance test.

2) To determine if a positive clinical test of single leg stance is associated with

timing delays in the gluteal muscles .

3.2 Methodology

3.2.1 Participants

The LBP group consisted of 13 male and 9 female subjects with non-specific

CLBP with a mean age of 46± 15.2 years, a mean height of 171± 8.7 em and

mean weight of 79.8± 17.9 kg. The control group consisted of 13 male and 8

female age matched control subjects with a mean age of 44± 15.5 years , a mean

height of 171± 11.4 em and mean weight of 78.5± 16.8 kg.

Inclusion and Exclusion Criteria: In the CLBP group, subjects who experience

non-specific low back pain that mayor may not radiate to the leg that was

present for 12 weeks or greater were included. Participants in the control group

were excluded if they were currently experiencing LBP or if the experienced

regular LBP within the last 12 months. Subjects were excluded from both groups

if they had been diagnosed with neurological deficits , had a specific diagnos is

such as disc pathology, spinal stenosis , rheumatoid arthritis , had previous back



surgery, had an underlying neurological condition , hip pathology, were pregnant

or less than 6 months post-partum .

3.2.2 Outcome Measures:

The subject rated their pain by using the Visual Analog Scale (VAS), marking a

pen mark between 0 mm and 100 mm line on a 100 mm line (Summers, 2001) .

The amount of perceived disability due to low back pain was rated on the

Oswestry Disability Questionnaire with the highest level of disability scoring a

maximum score of 100% (Fairbank and Pynsent, 2000). The Physical Activity

Questionnaire recorded the perceived levels of activity with a maximum score of

11 indicating greater physical activity .

3.2.3 Electromyographic Recordings

Electromyography (EMG) activity was recorded with bipolar surface electrodes

(Meditrace 133 Ag-AgCI, Kendall) from two muscles , gluteus medius and gluteus

maximus. Electrodes were placed on bilateral gluteus medius, 1 inch distal to the

iliac crest at the mid point between the anterior iliac spine (ASIS) and posterior

iliac spine (PSIS) of the pelvis (Hungerford & Hodges, 2003; Nelson-Wong,

2008). The bilateral gluteus maximus electrodes were placed midway between

the lateral border of the sacrum and greater trochanter in the mid-muscle belly

(Ekstrom et aI., 2007) . A reference electrode was placed over the ASIS. All

electrodes were placed parallel to the fiber orientation with an interelectrode

distance of 20mm. The skin was shaved, abraded with sandpaper and cleaned



with an isopropyl alcohol swab to reduce the skin impedance to below 50.

(Hodges & Bui, 1996; Hodges & Richardson , 1996; and Perry and Bekey , 1981).

The raw EMG was amplified with a gain of 2000 and sampled at 2000 Hz with an

input range of ±2.5V, input impedance =2MO, common mode reject ion ratio>

110 dB min (50/60 Hz), analog -to-digitally converted (12bit) , and stored on a

computer for later analysis. All EMG data was digitally filtered using FIR

Blackman -92 dB bandpass filter (10Hz and 500 Hz). A FIR filter was chosen as

there is minimal delay of the filtered data .

3.2.4 Force Plate

The initiation of vertical motion was determined by using an AMTI Biomechan ics

force plate (model BP400600HF). Force plate data was collected for 30

seconds , sampled at 2000 Hz and analyzed using analog-to-digital NIAD

software program .

3.2.5 Procedure

1) Single leg stance

Each subject stood with an equal bipedal stance as an experienced clinician who

was blind to the subject group knelt behind the subject with their hands on the

pelvis and eyes level to the subject's pelvis . The subject was asked to stand on

one leg, lifting their non-stance leg between 60° and 90° of hip flexion for 30

seconds . Subjects were permitted to use one finger on the back of a chair on the

stance side for balance . Subjects were rated for their abil ity to maintain pelvic



control. A negative test was indicated if the stance side of the pelvis remained

level without lateral drop or anterior or posterior rotation . A positive test was

noted in 4 different ways for the stance side: 1) lateral pelvic tilt , 2) anterior iliac

rotation , 3) posterior iliac rotation or 4) combined anterior and lateral.

2) Hip Abductor and Extensor Strength and Maximal Voluntary Isometric

Contraction

Each subject was assessed by the same experienced physiotherapist who was

blinded to the subject grouping for right and left hip abductor and extensor

strength using a Layfayette hand held dynamometer. The subjects lay on their

side as the examiner resisted hip abduction just superior to the ankle with the hip

slightly extended. For hip extension , the subject laid prone as the

physiotherapist manually resisted hip extension just above the knee with the

knee flexed 90° (Kendall, 1993; Ekstrom et aI., 2007). Each subject received

strong verbal encouragement to provide their maximal resistances for a 3 second

maximal voluntary contraction (MVC) . Two repetitions with 1 minute of recovery

between repetitions were performed unless there was greater than 5% difference

between the two measures and thus a third contraction was performed . The

amount of force that each muscle produced was recorded from the hand held

dynamometer in kilograms . EMG was also recorded of the gluteus medius and

maximus during each MVC trial in order to calculate the normalized values during

the single leg stance procedure.



3) Single Leg Stance on the Force Plate

Subjects stood with one leg on the force plate (stance leg) while the other leg

was on the floor which was level with the force plate . EMG for all muscles was

collected as each subject balanced on their stance leg for 30 seconds by lifting

the other leg to a minimum of 60° but less than 90° of hip flexion . The first 1-2

seconds of the trial was recorded with the subject in bipedal stance to record

baseline vertical force . Subjects were permitted to use one finger for balance on

the stance side on the back of a chair. Each subject performed 3 non­

randomized trials on each leg with a quiet bipedal stance for 1 minute in between

trials. A five minute rest was allotted between all three test procedures .

3.2.6 Data Analysis

Force Plate

Recording of the vertical ground reaction force on the force plate was used to

determ ine the onset of movement from bipedal to single leg stance . A computer

generated algorithm calculated the baseline mean of vertical force during bipedal

stance. As in similar studies , the onset of movement was determined when the

vertical force deviated greater than 3 standard deviations (SD) below the

baseline mean for a 100 frames (50 ms) (Hungerford et ai, 2003 ; Simms and

Brauer , 2000; Rogers and Pai, 1990). Visual inspection of data of multiple

random trials confirmed the accuracy of the computer generated onset times of

movement. The onset time for vertical loading was used as a reference point as

'time zero' for the onset of EMG data of its corresponding trial.



Electromyography (EMG)

The EMG data was full-wave rectified and the digitally filtered with a critically

dampened low pass 6 Hz (linear envelope) after the initial low pass filtering (50

Hz FIR Blackman -92 dB filter) (Bruno and Bagust , 2007 ; Hungerford et aI., 2003;

Hodges and Richardson , 1997; Hodges and Bui, 1996; DiFabio , 1987) . The

mean EMG amplitude during bipedal stance was calculated for each muscle to

determine the baseline muscle activity . The onset of muscle activity on the

stance side was determined when the mean activat ion was greater than 3 SD of

the baseline mean in one 50 ms epochs. The onset of muscle contraction was

checked visually to ensure to ensure the accuracy of the computer derived onset

times of muscle contraction (Hodges and Richardson , 1997; Hodges and Bui,

1996). Onset of muscle contract ion was compared to the onset of movement on

the force plate (time zero) . Onset of muscle contraction that occurred before 'time

zero' reference point on the force plate was assigned a negative number and

afterwards a positive number. Muscle activation prior to or within 20 ms after

vertical loading ("time zero"), was considered to meet the criteria of preparatory

or feedforward muscle activation, indicating gluteal muscle contract ion prior to

weight shift (See Figure 3.6). Any reflex muscle activity due to the onset of

movement would require greater than 20 ms for nerve conduction and synaptic

transmission to occur (Hungerford et aI., 2003; Hodges and Richardson , 1997).



To evaluate the extent of gluteal muscle activity during the SLS trials, EMG

activity was full wave rectified and averaged over 25 ms frames, calculating the

root mean square (RMS) . EMG data was normalized to the MVC.

3.2.7 Statistical Analysis

SPSS statistical software version 18.0 (SPSS, Inc., Chicago ,IL, USA) was used

for all analysis . Multivariate analysis of variance (MANOVA) was performed with

dependent variables for all subject demographics (age, height, weight and sex)

and questionnaires (VAS , Oswestry and Physical Activity) with the independent

variable of subject group (LBP and control) . Separate MANOVA's were

performed for the dependent variables right and left mean gluteal onset times ,

peak gluteal strength and RMS of gluteal activation to determine if there was any

difference between two independent variables of group (LBP and control) and

right or left SLS test (positive or negative). Separate MANOVA 's were performed

to prevent comparing muscle activation for example on a non-stance side to the

stance side which could produce result in error for this study design . The

significance was set at p < 0.05. Effect size was estimated using partial eta

squared (0 2) with a 0.0099 indicating a small effect , 0.0588 a medium effect and

0.1379 a large effect (Cohen , 1988). Kolmogorov-Smirnov test for normal

distribution and Levene 's test for homogeneity of the variance were also

performed .

3.3 Results

Participant anthropometric data and questionnaires . There was no significant

difference between the LBP and control group in age, height and weight (Table



3.7). The LBP group rated their pain and disability significantly greater than the

control group (VAS F (1.41) =30.96, p= 0.000); Oswestry F (1,41) =69.28, p= 0.000)

but the LBP group also had a sign ificantly lower self-reported phys ical act ivity

compared to the control (F(1.41) = 8.54, p= 0.006) .

Group Effect: The multivariate group effect was not significant for gluteal onset ,

strength or activation when compared with subject group alone and with the

respective SLS test (Pillai 's Trace p >0.05). There was a large effect size for the

right gluteal tests (0 2 =0.17) and for the left group (0 2 =.0.13) indicating that

0.17% (right) and 0.13% (left) of the variance between the means can be

attributed to LBP and control group differences.

Gluteal Onset . The univariate effect for each muscle onset time was not

significant when compared between the two groups and between negative and

positive SLS test. There was a medium effect size comparing right gluteus

medius mean onset times between the two groups (0 2 =0.091) but when the

SLS test was factored in the effect size was small (0 2=0.030). Left gluteus

medius and maxim us mean onset times had a small effect size between groups

(0 2 =0.035 and 0 2 =0.041 , respectively). However, when SLS test was factored

in the effect size was insignificant. The onset times of the gluteal muscles were

found to meet the preparatory criteria in only a few subjects (greater number in

the control group) with the onset of muscle contraction being before or with in 20

ms of the start of movement. However , the overall mean onset time of each



group did not meet the preparatory criteria as it was greater than 20 ms. The

onset times had a large variation between subjects as indicated by the large

standard deviation in both groups (Table 3.8; Figure 3.9).

Gluteal Strength. The overall mean peak strength of each gluteal muscle was

stronger in the control group compared to the LBP group , however it was only

significant in the right gluteus medius (F(1,41) = 5.996 , p= 0.019 , Figure 3.10,

Table 3.11). The mean difference between the LBP and control group had a

large effect size for the right gluteus medius (0 2 = 0.13) and a medium effect size

for right gluteus maximus (0 2 = 0.068) , left gluteus medius (0 2 = 0.07) and left

gluteus max imus (0 2 = 0.058) . When a posit ive or negative SLS test was

factored with the subject grouping , only the left gluteus medius and maxim us had

a small effect size (0 2 =0.040 , 0 2 = 0.041 respectively) (Table 3.11).

Gluteal Activation : The overall relative EMG RMS amplitude of the gluteal

muscles was greater in the LBP group compared to the control group from the

onset of contraction until full SLS was achieved in all muscles except the left

gluteus med ius. The mean activation of the right gluteus medius was greater in

both the control and LBP groups compared to all other muscles. The univariate

analysis showed only the right gluteus medius activation to be significant

between the LBP group and control group (F(1,41) =5.498 ; P = 0.024) with a

medium effect size (0 2 = 0.12) but a non-s ignificant effect size when compared

with SLS test. Right gluteus max imus mean RMS had a small effect size when



the two independent variables of group and SLS test were compared (0 2 =

0.025) . The left gluteus maximus was non-significant between groups but it had a

small effect size (0 2 =0.024) but not when SLS test was factored in (Table 3.12).

Single Leg Stance Test. Univariate tests that compared positive and negative

SLS test to their respective gluteal muscle tests were non-significant for all

dependent variables (gluteal onset, strength and activation) between the two

groups . When each mean muscle strength was subdivided into LBP or control

group with a negative or positive SLS rating, those with a positive SLS test had

less strength in the all 4 muscles in the control group but only the right gluteus

medius in the LBP group had less strength (Table 3.11). The left gluteus medius

and maximus onset times were earlier in both the control and LBP groups if the

subject had a negative SLS test (Table 3.10). However, only the right gluteus

medius in the control group and the right gluteus maximus in the LBP group had

earlier onset times if they had a negative SLS test (Table 3.8) .

SLS test was found to be negative in both sides for only 5 subjects (4 in the

control group and 1 in the LBP group). Right SLS test ratings was almost equal

between the two groups each with each having 9 negative ratings, and the

control group having 11 and the LBP group having 13 positive SLS tests . There

was a greater difference between the two groups with the left SLS test. There

were 17 positives in the LBP group but only 10 positives in the control group

(Table 3.13). Subjects that were given a positive rating were also noted if the

movement fault was anterior, lateral , posterior or a combination of two . There



were many subjects with a posit ive SLS test that were unable to mainta in a level

pelvis in more than one direction movement (i.e. the pelvis moved anterior and

lateral). The LBP had a greater number of positive tests that had a movement

fault in more than one direction during compared to the control group (Table

3.14).

3.4 Discussion

The most important findings in this study there were as follows . 1) There was no

significant difference in the onset times of the gluteal muscles between the LBP

and control group and that overall; neither group met the preparatory activation

criteria during SLS. 2) The overall gluteal strength in the LBP group was less

than the control group with right gluteus medius strength being significantly

weaker in the LBP group . 3) There was overall greater activation of the gluteal

muscles in the LBP group with a significant difference in the right gluteus medius

activation. 4) A simple rating of negative or posit ive SLS test was not sensitive

enough to detect any difference between the control and LBP group .

3.4.1 Gluteal Onset

This study did not find the overall gluteus medius or maximus onset times to be

preparatory during SLS in both of the test groups . As well , the gluteal onset times

of the CLBP group were not significantly delayed compared to the control group .

This study did find a trend of earlier gluteal onset times in the subjects who had a

negative SLS test but it was not consistent in the right gluteal muscles. Likewise ,

Hungerford et al. (2003) found that the gluteus medius and maximus were not



activated prior to the start of movement from bipedal to single limb stance in a

healthy nor sacroiliac joint pain groups. However , unlike this study they did find

the gluteus maximus to be significantly delayed in the symptomatic group than

the asymptomatic group . These two studies did not control for the speed of the

SLS test, whereas one study that encouraged increased speed during SLS did

elicit preparatory gluteus medius contraction (Rogers & Pai, 1990).There are very

limited studies that examine the temporal parameters of the gluteal muscles in

the CLBP group but there are a few other studies that have examined the timing

of the gluteus maximus. Bruno and Bagust (1995) compared the onset of the

gluteus maximus to the erector spinae and hamstrings during prone hip

extension and found that the CLBP group had a delay in the gluteus maxim us

contraction whereas the erector spinae and hamstrings did not show the same

dysfunction. Leinonen et al. (2000) compared the onset of the gluteus maxim us,

bicep femoris and erector spinae during standing spinal flexion and extension .

The healthy group recruited the gluteus maximus after the erector spinae and

biceps femoris during flexion and extension . The CLBP group showed an altered

recruitment pattern . During spinal extension , the gluteus maximus was activated

first while in flexion it showed a delay in contraction compared to the healthy

group.

Contradictory to the current study , the gluteus medius and maximus have been

found to be preparatory in healthy subjects (Rogers & Pai, 1990; Santos and

Aruin , 2008; Bouisett and Zatarra , 1981). During the transition to SLS on a force



platform, the gluteus medius was found to be preparatory when the speed was

controlled for natural and fast speed but not at a slow speed (Rogers and Pai,

1990). The methodology to determine the onset of movement in this study was

calculated at toe off compared to calculating 3 standard deviations about

baseline mean during bipedal stance as in the current study . Finding an

anticipatory contraction of the gluteus medius during the former methodology is

more likely as the point of compar ison occurs at a later point of time . Santos and

Aruin (2008) found the gluteus medius to be preparatory when a weighted

external perturbation was applied in oblique and lateral angles to the trunk while

subjects remained in bipedal stance. To maintain the body's center of mass

during a resisted oblique or lateral movement a greater activation of the gluteus

medius may be required . The gluteus maximus showed preparatory activation in

the healthy populat ion as well with quick shoulder flexion (Bouissett and Zattara ,

1981) and prone hip extension (Bruno and Bagust, 1995). Both of these studies

cause a shift in the body's center of mass in an anterior-posterior direction ,

targeting the posterior oriented gluteus maximus which is a different directional

force required to transfer to a SLS as in this study .

Antagonistic muscle activation to counteract forces from an opposite direction to

maintain the body 's center of mass has been found in other global stabilizing

muscles (Hodges and Richardson 1999; Hodges and Richardson , 1997;

Cresswell et aI., 1994; Radebold et aI., 2001) . In addition to the direction of the

perturbat ion force , the amount of force required to maintain the body's center of



mass may influence whether a muscle contracts in preparation. The

neuromuscular demand to maintain equilibrium resisting a weighted bar would be

greater than a controlled transfer to a SLS.

The gluteus medius has been theorized to act as a stab ilizing muscle as it is

uniarticular, has a pennate orientation and thought to have a greater

concentration of type I muscle fibers (Gottschalk 1989 ; Richardson et aI., 1999;

Fredericson, 2000 ; Comerford and Mottram , 2001, Gibbons and Comerford,

2001 ; Livengood et aI., 2004). Local deep stabilizing spinal muscles, such as the

transversus abdominus and multifidus have similar anatomy to the gluteus

medius . These muscles are found to have preparatory activation to stab ilize the

spine in the healthy population and with dysfunction, they have consistently been

found to have a delay in contraction (Cresswell et aI., 1994 ; Hodges &

Richardson, 1996; Hodges & Richardson, 1997 ; Hodges & Richardson , 1998;

Hodges et aI., 1999 ; Moseley et aI., 2002 ; Hodges et aI., 2003; Tsao et aI.,

2008) . This study did not find the gluteus medius to function in this way and may

be better categorized as a global stabilization muscle .

Global stabilization muscles are recruited in a different pattern than the local

stabilization muscles in the healthy population . When enough force is applied to

perturb the spine, they are recruited after the local stability muscles

antagonistically to maintain spinal equilibrium (Bergmark, 1989 ; Comerford &

Mottram, 2001 ; Gibbons &Comerford , 2001 ; Hammill et aI., 2008 ; Borghuis et

aI., 2008) . Global stabilization muscle response during pain and dysfunction is

different than the local stability group as well. These muscles may have



recruitment imbalance between the agonist and antagonist muscle groups and

develop adaptive shorten ing and weakness with dysfunction (Comerford and

Mottram, 2001; Gibbons and Mottram , 2001 ; Hammill et aI., 2008) . Conversely ,

the global mobilizing muscles are thought to respond with an over activation and

spasm when pain and dysfunction are present. Altered gluteus medius

recruitment was found to be predictive to the development of LBP in prev iously

pain free subjects that spent 2 hours standing in a simulated occupat ional task

(Nelson-Wong and Callaghan , 2009; Marsha l et aI., 2011). These theories and

the findings of this study support the classification of the gluteus medius and

maximus into the global muscle group.

3.4.2 Gluteal Strength

This study found that the CLBP group had overall less strength in the hip

abductors and extensors compared to the control group during isomet ric muscle

testing with a hand held dynamometer. However , it was only significant in the

right hip abductors . The control group did show a trend of having less gluteal

strength in those who had a positive SLS test ; however this trend was not shown

in the CLBP group . Hip abductor and extenso r weakness has been associated

with LBP in other stud ies as well. Kendall et al. (2010) found hip abductor

strength to be significantly less in a LBP group compared to a healthy subject

group. Asymmetry of right and left hip abductor and extensor isometric strength

was associated with the development of LBP (Nadler, 2002 ; Nadler 2001) . Hip

strength measured at the beginning of the academ ic year was found to be

predictive to the development of non-traumat ic LBP in female college students



over the course of the year . These findings differ from those in a more recent

study . Marshall et al. (2011) compared isometric hip abductor strength and

activat ion patterns in healthy subjects during a prolonged standing activity. In the

previously pain-free group, 71% developed LBP during the 2 hour standing

simulated occupational tasks . They did find altered recruitment patterns to be

correlated with LBP development but not hip abductor weakness. Subjects that

have CLBP may have different recruitment patterns and strength compared to an

acute clinically induced LBP . As well , clinical isometric muscle testing in standard

test positions may not capture the functional strength of the hip abductors and

extensors . Some authors propose that with dysfunction, muscles may only test

weak in shortened or lengthened positions (Sahrmann, 2002 ; Kendall , 1993). As

well , hip abductor strength alone may not be an indicator of lateral hip function.

Complex interaction of all of the muscles that insert on the greater trochanter and

those that control the iliotibial band playa role (Grimaldi , 2010) .

3.4.3 Gluteal Activation

The extent of gluteal activation was greater in the CLBP group for all muscles

except the left gluteus medius , but only the right gluteus medius activation level

was significantly different between groups . Global stabilizing muscles are thought

to have altered recru itment with pain and dysfunction (Comerford and Mottram ,

2001 , Gibbons and Mottram , 2001 , Sahrman txt, 2002 ; Hammill et aI., 2008) .

Some authors report an increase in the extent of activation in global muscles .

Himmelre ich (2008) found that a LBP group had a greater extent of act ivation in



the gluteus maximus on incline and stair climbing compared to a control group .

Likewise, Pirouzi (2006) and Laviviere (2000) found that the gluteus maximus

and erector spinae had greater activation in the LBP group compared to the

control group with resisted lumbar movement. Another global stabilizing muscle ,

the external oblique showed a greater extent of activation in a LBP group while

the deep stabilizing muscle, multifidus had a decrease in activation with resisted

lumbar rotation (Ng 2002) . Altered muscle recruitment has also been found in

global muscle during the gait cycle. Lammoth (2006) and Vogt (2003) found that

the extent of activation in the gluteus maximus and erector spinae was greater in

a LBP group compared to a healthy population . Some authors proposed that one

muscle group may increase the extent of activation to compensate for those

muscles that have decreased activation . Although the exact mechanism is not

clear, it does appear that with pain and dysfunction the global muscles are

recruited in a different pattern. These studies may reveal different results than

this current study as the muscle demand to stand on one leg is less than more

dynamic movements like walking and stair climbing or with resisted trunk

movements .

3.4.4 Single Leg Stance Test

There was no significant difference between the LBP and control groups with the

rating of positive and negative SLS test despite finding less hip abductor and

extensor strength in the LBP group. As noted above , there was a trend for

subjects with a positive SLS test to have less gluteal strength and later onset



times compared to those with a negative SLS test. However, as most subjects in

this study had at least one positive SLS test, there was no statistical difference

between the two groups . This widely used clinical test appears to not be a

specific test with a simple rating of positive or negative to detect group

differences between CLBP and a pain free population.

This study defined any movement of the pelvis during the 30 second SLS test to

be positive . We found that subjects who had a very small amount of pelvic

movement near the end of the 30 seconds with maintenance of neutral spine and

balance received the same positive rating as a subject who had immediate loss

of a level pelvis , neutral spine and balance . Other studies have proposed the

SLS test to have good inter-rater and test-retest reliability (Roussel et aI., 2007 ;

Tidstrand and Horneij, 2009) and a positive test to be predictor of future LBP in a

surgical lumbar disc herniation group (Millsdotter et al. 2003). However, these

studies only examine subjects with a CLBP diagnosis , with no comparison

between healthy and LBP subjects. Although the SLS test may be reliable within

the CLBP group, this study did not find that this test is sensitive enough to

identify subjects with LBP with a positive rating. Having a positive SLS test sub­

divided into weighted categories may able to detect group differences that the

current simple rating was not.

A positive SLS test with a lateral pelvic drop, referred to as a Trendelenburg

Sign, is thought to be related to weak hip abductors (Hardcastle & Nade, 1985;

Gottschalk 1989; Lee, 1997; Dorman 1997; Sahrmann 2002 ; Livengood et aI.,



2004; Roussel et aI., 2007 ; Tidstrand & Horneij, 2009) . However , this has not

been found in other studies . DiMattia et al. (2005) and Kendall et al. (2010) found

only a weak positive correlation between weak hip abductors and a contralateral

pelvic drop during a SLS test in CLBP and healthy groups . These authors

suggest that weak hip abductors have limited use in determining pelvic control.

Cadaver ic studies showed that excision of the gluteus medius , minim us and

maximus allowed 10° of lateral pelvic tilt but excision of the iliotibial band on its

own allowed 30° of lateral pelvic tilt (Fetto and Aust in, 1994) . This evidence has

led authors to suggest that the ability to maintain pelvic stability during SLS is

due to a complex interaction between all of the muscles that insert on the greater

trochanter and those that control the iliotibial band (Grimaldi, 2010) .

3.5 Caveats

1) The challenge with studying muscle activation of the CLBP population is that

they are heterogeneous in nature and although they may all have LBP they may

present with very different muscle imbalances . This makes it very difficult in

analyzing the results of a group that may not be exactly the same .

2) Rating the SLS test as a simple positive or negative was not able to capture a

difference between the two groups . A positive test with a subcategory such as

slight, moderate or severe amount of movement might help detect differences

between groups. As well , since the gluteals also move the hip joint , palpating

greater trochanter movement during SLS might aid in detecting a difference and

may provide better information .



3) EMG was only recorded from the middle fibers of the gluteus medius . There is

some evidence that the anterior fibers may be more act ive in single limb support .

As well , the poster ior or anter ior fibers may have been dysfunctional in this

group, not just the middle fibers.

3.6 Conclusion

The gluteus medius and the gluteus maximus were not found to be preparatory in

the LBPor healthy group during the SLS test. A delay in contraction of the gluteal

muscles during SLS was not associated with LBP. An overall gluteal weakness

seems to be associated with the LBP group. Gluteus maximus and the right

gluteus medius have a greater extent of activation in the LBP group . These

findings are similar to those found in the global muscle system as opposed to the

deep stabilizing muscles . Following this theory, retraining of these muscles would

incorporate low-load strengthening while maintaining lumbopelvic stability.

The simple rating of a negative or positive SLS test was unable to capture any

difference between the LBP and control groups . There was a trend of a positive

SLS test , regardless of group , to have a later onset of gluteal contraction and

less strength . Creat ing a grad ing sub-category in future studies such as mild,

moderate and severe may allow ident ifying differences . As well, since the gluteal

muscles also mobilize the hip joint , noting any change in greater trochanter

movement may shed more light on their function during the SLS test.





3.7 FIGURE LEGEND

Figure 3.1 Blind examiner rating the 30 second SLS test. Negative test noted
with maintaining level pelvis on the stance side. Positive test noted if the pelvis
moved anteriorly , laterally, poster iorly or combined anterior -lateral.

Figure 3.2 Recording of MVC of gluteus medius EMG during manually resisted
hip abduct ion with hand held dynamometer.

Figure 3.3 Recording of MVC of gluteus maximus EMG during manually resisted
extension with hand held dynamometer.

Figure 3.4 SLS test with the stance side on the force plate. EMG recording in
bipedal stance for 1-2 seconds at beginning of 30 second test gluteus medius
and maximus.

Figure 3.5 SLS test on the force plate. Subject was required to maintain position
for 30 seconds.

Table 3.6 Subject anthropometric data summary and questionnaire results.

Table 3.7 Summary of positive SLS test. Direction of stance side pelvic
movement was noted to be anterior , lateral , posterior or a combinat ion of the
lateral and anterior .

Figure 3.8 Mean onset times (ms) of the gluteus medius and maximus on the
stance side during SLS of the CLBP and control groups .

Figure 3.9 Mean hip abductor and extensor strength (kg) as recorded with hand
held dynamometer, CLBP compared to contro l group. Aster isks indicates a
significant difference (p< 0.05) between LBP and control groups.

Table 3.10 Mean RMS , standard deviation and p value of gluteus medius and
maximus during SLS from the onset of contraction to the end of the 30 second
trial.

Table 3.11 Gluteus medius and maximus fatigue index during the 30 second SLS
trial (the first 5 seconds divided by the last 5 seconds) . A number less than 1
would indicate an increase in EMG activity at the end of the trial.
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Figure3.3
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Figure 3.4
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Figure3.5
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LBP Control

N 22 (M=13. F=9) 21 (M= 13, F=8)

Age (years ) 46± 15.2 44± 15.5

Weight (kg) 79.8±17.9 78.5±16.8

Height (em) 171.0±8.7 171.0±1IA

VAS 20.5±15.9 O.9±2A

Oswestry 17.9±9.2 O.5±2A

Physical Activity 6.7±2.8 9.1±2.6

Table 3.6
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Muscle Group RMS SO p

L Max LBP 1.17 +/-1 .30 p> 0.05

Control 0.88 +/-0.66

RMax LBP 2.64 +/-2.10 p> 0.05

Control 2.17 +/-1.54

LMed LBP 1.25 +/-0.57 p<0.05

Control 1.46 +/-0.58

R Med LBP 5.63 +/-2.52 p= 0.007

Control 4.43 +/-2.49

Table 3.10
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Muscle Group Fatigue Index SD p

LMax LBP 1.01 +/-0.16 p< 0.05

Control 0.93 +/-0.23

RMax LBP 1.01 +/-0.24 p> 0.05

Control 0.92 +/-0.30

LMed LBP 1.14 +/-0.27 p< 0.05

Control 1.04 +/-0.17

RMed LBP 1.83 +/-5.75 p> 0.05

Contro l 1.55 +/-4.07

Table 3.11
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