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Abstract

The research presented in this Dissertation concerns the elucidating the origin of

observed photoinduced dynamics in two distinct types of dendritic chromophores.

Physical phenomena such as photon absorption, radiative and non-radiative decay,

Forster and Dexter energy transfer, Marcus electron transfer, and Energy Gap Law of

non-radiative decay are introduced and discussed in this context.

Following a general introduction of the physical, chemical, and photophysical

properties of dendrimers, the unique excited state dynamics of a family of heteroleptic

ruthenium polypyridyl complexes of the form [Ru(bpY)2L]2+ (where L represents a ligand

derivatized with several sizes of poly(phenylenevinylene) dendrimers) are presented and

discussed. Laser flash photolysis and emission spectroscopy reveal the presence of atypical

risetime kinetics and dual emission in these compounds. It is hypothesized that

conformational dynamics about these dendritic groups cause profound attenuation of

interligand charge transfer, leading to emission from two separate 3MLCT states.

The second part of the research involves two families of Frechet-type dendrimers

surrounding a tris(methyl viologen) core, wherein the potent electron accepting ability of

the M\f2+* excited state drives electron transfer and long-term charge trapping. The

structural features of these dendrimers that yield such long-lived charge separated states

are addressed in the context of the inverted region for non-radiative decay as described by

Energy Gap Law.
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Chapter 1. Introduction.

The purpose of this Section is to introduce some of the theory and background that is

important to the understanding and discussion of the research presented in this

Dissertation. Topics such as the origin and implications of Energy Gap Law for non

radiative decay, the basic principles of energy and electron transfer, the origin of the

Marcus inverted region and the physical and photochemical properties of

poly(phenylenevinylene) and poly(aryl ether) (i.e. Frechet-type) dendrimers are addressed

in some depth. Some basic principles of photophysics that underpin the theory described

in Section 1.1 can be found in Appendix A.

1.1 Fermi Golden Rule.

For situations where the probability of a transition between initial and final states is

constant in time, this probability A./_F is dependent on the magnitude of coupling

between initial and final states (expressed as the matrix element for interaction, M/_ F )

and on the number of pathways through which the transition can occur (which is

effectively the same as the density of final acceptor states, PF)'

[1.1]



where n= h /2n , and h = Planck's constant. Alternately, this equation can be restated in

terms ofwavefunctions 'P, wherein the causative interaction for the transition is treated as

a potential V that operates on the initial state, taken over all space:

[1.2]

Noting that the probability A/_Fis related to the rate constant of a transition, [1.1] can be

expressed in terms of the rate constant k'_F for a transition between states described by

these two wavefunctions, whereby the initiator of the transition (previously the potential

operator V) is expressed by the Hamiltonian operator H1_ F in equation [1.3]:

[1.3]

These equations are all alternate expressions of the Fermi Golden Rule,1.2 which is the

result of subjecting a time-independent wavefunction to a time-dependent Hamiltonian,

a treatment that is known as time-dependent perturbation theory. Substituting the fully

separated wavefunction [1.4] (see Appendix A for a derivation of this expression)

into the latter result [1.3] yields an expression relating the probability of a transition to

the product of three separate matrix elements,



kl-F =('PFIH1_FI'Py PF =[('PFI'P/)EI-FrPF

= [PF E7-F ]('PFI'll I /

=[PFE7_F ](tP,1.F ItPe/,l)2 (tPs.F ItPS.l)2 (Xv.F IXv,/)2

=k~",[./;"xfsxfv] [1.5]

electronic spatial (orbital), spin selection, and vibrational overlap integrals, respectively.

These terms are defined as the prohibition factors for a transition between weakly

interacting states, which describe the effect of changes in the orbital, spin, and vibrational

configurations in the transition from initial to final states, relative to the maximum

possible rate constant for the transition, k~ax; thus, these prohibition factors are less than

or equal to one.1•2

1.2 Franck-Condon Principle.

Given that the Fermi Golden Rule describes the probability of a transition as being

dependent upon the degree of coupling between initial and final states, there must

therefore exist some degree of overlap of all three pairs of wavefunctions in both the

initial and final states for the transition to occur (in other words, (tPFltP/);"O). A key

ramification of this requirement is that the initial and final vibrational wavefunctions -

which correspond to the configuration and nature of the nuclei of the molecule - must

overlap, and the greater the degree of overlap the greater the probability that the

transition will take place; this is a description of what is known as the Franck-Condon



principle (Figure 1.1)Y The vibrational prohibition factor (also known as the Franck-

Condon factor) acts as a selection rule for allowed vibrational transitions and is thus of

great importance in spectroscopy, as it provides an explanation for the observed

intensitiesof these transitions. In particular, this principle states that the so-called

"vertical" transition between potential energy surfaces is the most probable, demonstrating

that the nuclear coordinates are largely static on the timescale of electronic transitions.

~,..------'"""'...- 6
5

:-q;:
Nuclear Coordinate

Figure 1.1 Depiction of vertical transitions between potential energy surfaces in
accordance with the Franck-Condon principle. Note the lack of
wavefunction overlap between the v' = 0 and v" = 0 levels, preventing a
direct transition between these states.3



1.3 Radiative and Non-Radiative Transitions ofExcited States.

1.3.1 Radiative Transitions.

In the absence of conditions that are conducive to excited state depletion by stimulated

emission, the rate of radiative decay of a molecule from the excited state (ES) to an

excited vibrational level of the ground state (GS) is dependent on the Einstein coefficient

of emission, A 21 :

[1.6]

[1.7]

where equation [1.6] is the equation of spontaneous emission [A.B] and A21 is as

delineated by [A.15] from Appendix A; kr is the rate constant for spontaneous emission;

and -r;. is the lifetime of the excited state. Equation [1.7] describes the rate at which this

process takes place, but as it can only address the states that spontaneously emit it offers

little insight into how many or few excited states relax by this mechanism. It could, for

example, be useful to know what fraction of the absorbed photons are re-emitted by a

molecule. Thus, the quantum yield ¢ for emission is defined as

¢=_kr _

kr+kllr

[1.8]

where k,,, is the rate constant of non-radiative decay, a process which is addressed in the

next Section. Combining the latter two equations, it can be seen that

[1.9]



[1.10]

where [1.10] yields L, the experimentally-observed excited state lifetime.4

1.3.2 Non-Radiative Transitions.

Equation [1.10] demonstrates that the longevity of an excited state, which is often

determined by measurement and quantification of radiative processes, is inextricably tied

to concurrent non-radiative relaxation pathways as well (Figure 1.2). These radiationless

transitions can be conceptualized as molecular energy disposal processes that allow these

excited states to relax back to a vibrationally-excited state of the ground state. This is

most commonly achieved by vibrational cooling, caused by the coupling of wavefunctions

of donor states in the molecule with appropriate acceptor states in the surrounding

medium, causing mixing of the otherwise orthogonal Born-Oppenheimer adiabatic states.

This mechanism is favoured in condensed phases where there are countless appropriate

acceptor states available to the molecule, enabling dissipation of the excess energy into

vibrational states involving large molecules that experience only weak interactions with

solvent (such as certain situations where the molecules in question are embedded in a

rigid matrix), there is little opportunity for non-radiative decay by dumping excess energy

into this large heat sink. Rather than depending on the environment to act as a heat bath,

some molecules can exploit acceptor vibrational modes within their own structure to

spread and dissipate this excess energy.



Figure 1.2 Radiative (k,) and non-radiative (kn,) transitions of an excited singlet state
SI, formed by absorption of a photon hv by the ground state GS. kIc and
kISC are non-radiative spin-allowed and spin-forbidden transitions to
singlet states S2 and triplet states T, respectively; (k, + kn,) is the observed
rate of decay of an excited state.

Alternately, there are pathways through which a molecule does not dispose of energy

by vibrational cooling, and instead uses this excited state energy to induce a transition to

another electronic state of lower energy. The coupling of wavefunctions for two states of

the same spin or of opposite spin gives rise to two different types of transitions; namely,

internal conversion (IC) and intersystem crossing (ISC), respectively. Transitions between

states of opposite spin are typically disallowed processes, and it is only by the mixing of

spin states induced by spin-orbit coupling that these transitions are permitted.2



1.3.2.1 Total Rate ofNon-Radiative Decay.

The development of the theory of non-radiative decay by Lin, Freed, and ]ortner4
•

11

considered not just the transition of one predominant donating excited vibronic state to

one predominant accepting vibronic level of the ground state, but rather sought to devise

a more inclusive description of non-radiative decay by including a summation of

contributions from all available donor and acceptor vibronic states. To reach this

formulation of radiationless decay, the ground and excited states must first be defined

according to equations [1.11] and [1.12], respectively:

3N-6

Ground state = IJI", UX:nCQ.)

Excited state = IJI" UX~,(Q.)

[1.11]

[1.12]

where IJI and XvCQ.) represent the electronic and vibrational wavefunctions of quantum

number v, respectively; Q~ is the internal coordinate for the normal mode k, and m and n

represent ground and excited states. From this point the development is predicated on the

assumptions that transitions arise from a Boltzmann distribution of vibrational levels and

that vibrational relaxation is more rapid than electronic relaxation; this requires that the

excited state be in equilibrium with its solvent environment. Incorporating these terms

into the Fermi Golden Rule yields equation [1.13]:



Applying the Franck-Condon principle, the dependences of the electronic

wavefunctions IJI upon the nuclear coordinates are ignored, and thus the matrix element

of [1.13] is reformulated in terms of an electronic coupling matrix C:~ (equation [1.14]),8

where the introduction of the Dirac delta function is necessary for conservation of energy

and the electronic coupling element C~~ is given as equation [1.15],

[1.15]

Equations [1.14] and [1.15] introduce the vibrational modes k' as part of the electronic

coupling element matrix, and thus they describe vibrational modes that enable mixing

between these electronic wavefunctions. Therefore, as this coupling matrix equals zero for

those modes k' that do not enable mixing and is non-zero for those that do, these k'

modes are known as promoting modes; furthermore, in large systems the superposition of

large numbers of closely-spaced vibrational modes lifts the k =I:- k' restriction. Equation

[1.16] can be greatly simplified by eliminating the summation of coupling matrices by

recognizing that the majority of transitions are enabled by one dominant promoting

mode, yielding an expression that describes one effective transition from one excited

vibronic state to one ground vibronic state. For a complete determination of the rate of

non-radiative decay this assessment must be expanded to consider transitions between all

available vibrational levels of both the excited and ground states, and then weighting



them according to the Boltzmann population p(nv') of the excited states (thereby

incorporating not only the number of potential transitions, but also the likely magnitude

of the contribution of each vibronic state to the overall rate at a given temperature).4

[1.16]

1.3.2.2 Energy Gap Law.

Equation [1.16] is a complete representation of the rate of non-radiative decay. This

equation is commonly recast in terms of single predominant promoting and accepting

modes k' and k, along with a number of weak lower frequency acceptor modes I to yield

the expression [1.17], which is known as the Energy Gap Law: 12

In this expression, wk and wk' are the vibrational angular frequencies of the medium

acceptor k and promoting k' modes, Eok' = Eoo - tlwk, is the energy gap for where ~Q., the

change in the nuclear coordinate for the medium acceptor mode k, is zero. r is

represented by the expression [1.18],

[1.18]

10



n, is the average number of excited vibrations for the normal mode I,

[1.19]

and S" is the Huang-Rhysfactor (equation [1.20]), where M" is the reduced mass,

[1.20]

This formulation of the total rate of radiationless decay (equation [1.17]) is valid in the

so-called weak coupling limit, where the energy gap Eoo (defined as the energy difference

between the zeroth vibrational levels of the excited and ground potential energy surfaces)

is much larger than the product Ak = S/IOJk • A" is called the reorganization energyl3 and is

briefly described in this context as the amount of energy required to rearrange the

geometries of a molecule and of solvent to accommodate the structural and electronic

changes caused by photon absorption. By the Franck-Condon principle this

reorganization is not instantaneous, and thus this energy is part of the total energy of

vertical excitation, representing an energetic barrier to formation of an excited state. In

the strong coupling limit (Figure 1.3), the total energy of this transition (EO/' = !J.G + A,) is

greater than the difference in Gibbs energy !J.G of the potential energy surfaces, while }.,

(required for reorganization) comprises the balance of the full energy of excitation. This

excess energy is consumed by motion of the molecule and solvent as they reorganize

themselves to accommodate the new electronic environment of the excited state. 12

11



tiC

Figure 1.3 Illustration of the interaction of potential energy surfaces in the weak
(left) and strong (right) coupling limits (see text), where the increased
horiwntal displacement tiQ of the excited state PE surface in the strong
coupling limit yields a marked increase in the reorganization energy (At)
and the total energy of excitation (Eop) relative to the weak coupling limit.

1.3.2.3 Attenuation ofkn,in Nested Potential Energy Surfaces.

The formulation of the total rate of non-radiative decay presented in [1.17] yields a

surprising, counterintuitive result: it predicts that, with all other things being equal, as the

driving force for non-radiative decay increases (meaning that the excited state potential

energy surface lies at higher and higher energies, yielding increasing separation between

the v = 0 states of excited and ground state PE surfaces) the rate of non-radiative decay

decreases. The key to understanding this behavior lies in the Franck-Condon factors for

the ground and excited states, as the rate of a transition between states is dependent upon,

among other things, the degree of overlap between vibrational states. At increasing values

12

- ---- ----------------------'



of !'J.G, the overlap (and thus, coupling) between the n' = 0 mode of the excited state and

an appropriate acceptor mode of the ground state decreases, leading to smaller Franck

Condon factors for the transition, and slower rates as per equation [1.5]. Thus, excited

ground state PE surface pairs with the appropriate combination of large !'J.G and small

Huang-Rhys factors (the latter of which are dependent on (!'J.Q)2) will yield so-called

"nested" PE wells with low rates of non-radiative decay.

1.3.2.4 Spin-Orbit Coupling.

The probability that a transition between states that requires a change in electron spin

(the two most prominent examples being singlet-triplet and triplet-singlet) will occur is

mediated by the spin prohibition factor j in the Fermi Golden Rule ([1.5]). This is a

reflection of the degree of spin-orbit coupling between the electron spin and the electron

orbital motion, wherein the interaction between these two parameters causes a "flip" in

the spin direction of one of the electrons.2 To a fust approximation, the spin prohibition

factor selects between transitions that are either spin allowed or spin forbidden, as

determined by the spin overlap integral (7/J,.FI7/Js.I)' Due to the orthogonality of these

wavefunctions, this integral is identically 1 when there is no change in spin (i.e. spin

allowed) and identically 0 otherwise (i.e. spin forbidden). However, due to the motion of

electrons about a charged nucleus, perturbations to these wavefunctions can arise which

break their strict orthogonality and relax these prohibitory factors. The most prominent

of these perturbations arises via an interaction of the magnetic moment of an electron's

13



spin with the orbital angular momentum, which allows for the conservation of magnetic

energy of the two states for the spin-flipping transition.2 Furthermore, given that the

magnitude of a magnetic field (and thus, the magnetic moment) produced by a moving

charge is proportional to its velocity, it then follows that the electrons of heavier atoms

will yield a larger degree of spin-orbit coupling. This is due to the near-relativistic

velocities exhibited by these particles in response to the large electrostatic attraction of the

nuclei of heavy atoms.2 For this reason, spin-orbit coupling is often a potent effect in

larger transition metals as exemplified by the mixed electronic states exhibited by Ru

polypyridyl complexes, discussed in Chapter 2.

1.4 Energy Transfer (ENT) and Electron Transfer (ELT) Theory.

The formation of an excited state donor D* by absorption of a photon necessarily leads

to the eventual relaxation of this state by disposal of the excess energy, be that by radiative

decay, cooling via vibrational coupling with solvent, or by methods such as electron or

energy transfer from an excited D* state to an appropriate acceptor A. The main driving

force for ENT or ELT reactions lies in the ability of a molecule in an excited state to

stabilize itself (that is, reduce its energy) by coupling with a different molecule in its

ground state. Interactions between half-filled HOMOs and LUMOs of D* and A, for

example, serve to stabilize excited states.2 The pathway that leads to quenching of the D*

excited state is determined by a variety of parameters, such as by the degree of coupling

between D* and A states, or by the manner in which these states interact with each other.

14



1.4.1 An Overview ofENT Mechanisms.

Energy transfer in molecules can proceed by several mechanisms: (1) trivial ENT,

wherein an emitted photon from an excited state D* is absorbed by an acceptor A;2,!4 (2)

Forster ENT, a long-range, dipole-dipole donor-acceptor interaction involving singlet

states; (3) Dexter ENT, a short-range, singlet-singlet or triplet-triplet quantum

mechanical electron exchange mechanism;15 or (4) quantum-coherent electron ENT, a

recently discovered mechanism of ENT which relies on quantum mechanical resonances

(roughly akin to standing waves) between donor and acceptor groups over intermediate

(sub-nanosecond) distances. 16
,!? The latter mechanism is discussed here for the sake of

completeness, but given that quantum coherency is unlikely to persist for nanoseconds at

a time it is not relevant to the observed photodynamics of the dendritic chromophores

discussed in this Dissertation.

The trivial ENT mechanism is rather dissimilar from the other three mechanisms. This

process involves an emissive excited state D*, whereby the photons released by an emissive

event are captured by a suitable acceptor A. Because this involves a vertical photophysical

transition between potential energy surfaces, this mechanism has been found in molecules

with no suitable electron exchange or dipole-dipole interactions, as the only requirement

for this mechanism to occur is that there must be overlap between the absorption and

emission spectra of the two molecules in question.2

Forsterl4,18 energy transfer (also known as dipole-dipole, or Coulombic ENT) involves a

resonant interaction between an excited state donor D* and a ground state acceptor A

15



through the overlap of their respective dipolar electric fields. The energy of electrostatic

interaction of dipoles (equation [1.23]) is classically proportional to (a) the magnitudes of

the dipoles ilv' and ilA' and (b) the inverse of the cubed distance of separation between

dipoles R~'A'

[1.21]

This classical relationship can be integrated into a quantum mechanical framework

through the Fermi Golden Rule by considering the interaction of the donor and acceptor

wavefunctions of both the initial and final states through an appropriate dipole-dipole

operator. In this manner it is shown that the rate of Forster ENT is proportional to the

square of the energy of electrostatic interaction, and thus the rate of transfer is inversely

proportional to the 6th power of the distance of separation.

The application of the Fermi Golden Rule introduces prohibition factors to the

Forster ENT process, the most important of which (in this case) is the requirement for

non-orthogonal spin states; for this reason, Forster transfer is exclusively a singlet-singlet

interaction, as triplet dipoles are too weak for ENT to occur at any appreciable rate.2
,14 The

final derivation of the probability for Forster ENT is shown in equation [1.22],

[1.22]

where n is the refractive index of the solvent; LV' is the radiative lifetime of D'; QA is the

integrated area of the absorbance spectrum of A; and RV'A is the donor/acceptor distance

16



of separation. The latter half of this equation represents the overlap of the Franck-

Condon states of donor and acceptor, where fD,(E) and FA(E) are the normalized

emission and absorption spectra, respectively. 14,15

Dexter19 energy transfer, on the other hand, involves the mutual transfer of two

electrons via their exchange interaction (a quantum mechanical property with no classical

analogue) wherein the interconversion of identical particles is an energetically desirable

property. The equations that govern this mechanism can be derived in a similar manner as

those of the Forster ENT mechanism, whereby the dipole-dipole interaction operator is

replaced by one for electron exchange. The rate of Dexter ENT can be expressed in a

similar form to that seen in equation [1.22] for Forster ENT; that is,

where L is the sum of the average Bohr radii for the donor and acceptor; and Y is a

dimensionless quantity that accounts for overlap cancellation as a result of sign changes in

the overlapping wave functions. 15
,19 K is a dipole orientation factor given as

[1.24]

Alternatively, the rate of Dexter transfer can be expressed as in equation [1.25],

[1.25]

17



where Kis an orbital interaction coefficient; R~A is the "critical" distance of separation, or

the sum of the van der Waals radii ofD* and A; and]is the spectral overlap integral,

[1.26]

where I D' (V) is the intensity of emission as a function of wavenumber.

Comparing the terms of the rate equations for both of these mechanisms, the most

notable differences are that (a) whereas the rate of Dexter ENT decreases as an

exponential of the D'-A distance of separation, Forster ENT rates are inversely

proportional to the 6th power of the D"-A distance, owing to the different mechanism of

interaction of these two mechanisms (Coulombic vs. orbital overlap); and (b) the Forster

mechanism is strongly dependent on the spectral properties of the donor ( orD") and the

acceptor (QA) while the Dexter mechanism is not, due to differences in the operators for

these two pathways. However, as shown in Figure 1.4, while the Dexter mechanism is the

most rapid at short separations, the Forster mechanism does not depend on orbital

overlap and therefore is effective at much longer distances; for this reason, Forster transfer

is most commonly seen in biological systems while Dexter transfer is typically reserved for

smaller molecules. 20

18
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Figure 1.4 Comparison of the distance dependence of dipole-dipole (Forster) and
exchange (Dexter) mechanisms for energy transfer.2 Reproduced from
Modern Molecular Photochemistry of Organic Molecules, by Turro,
Ramamurth and Scaiano, (2010) University Science Books. All rights
reserved.

1.4.2 ELT: Marcus Theory.

Marcus' theories of ELT were largely influenced by the previous work of Libby,13,21

who applied Franck-Condon principles to electron transfer reactions in solution,22 noting

that the solvent and nuclear coordinates of the ground state were inappropriate for the

excited state. However, Marcus reasoned that while Libby's interpretation of the electron

transfer process occurring as a vertical transition was valid for photoinitiated ELT

reactions, it was unlikely that the mechanism for a thermally-driven ELT reaction would

require amassing sufficient thermal energy to cause a vertical transition to a separate

potential energy surface. 13,21

19



Instead, Marcus reasoned that a thermal transfer would not require a large vertical

transfer, but rather small and subtle solvent and geometric perturbations that ensured that

thermal equilibrium was maintained at all points along the reaction coordinate, and

would thus allow the transfer of an electron from one state to another by a rougWy

horizontal PE surface crossing (Figure 1.5).13 This mechanism considered a wide variety

of reaction conditions, ranging from strongly coupled adiabatic ELT to the non-adiabatic

ELT of weakly-interacting states (Figure 1.6)Y Importantly, Marcus incorporated a

modification of Libby's theories regarding solvent and geometric reorganizations,

recognizing the importance of these parameters in the rates ofELT reactions.2

0+ - L - A-

Figure 1.5 Illustration of the energetics of ELT, where)., is the reorganization energy
and represents the vertical transition to an excited state; !J.(}J is the
difference in Gibbs energy between the reactants and products; fLo is the
electronic coupling of initial and final states; and D, L and A signify
donor, link (i.e. bridge) and acceptor, respectively.23

20
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ADIABATIC

NONADIABATIC STRONGLY

NONADIABATIC

Figure 1.6 Illustration of adiabatic vs. nonadiabatic potential energy surface
crossings.21 Adapted with permission from Kavarnos, G. J. and Turro, N.
J., Chern. Rev. 1986,86,401. © 1986 American Chemical Society.

Marcus' theory states that the barrier to transfer of an electron is not the vertical

transition from one ground state PE to another, but rather the barrier to a horizontal

transition along the PE surface that results from the intersection of the PE surfaces of the

reactants and products. The small solvent and geometric perturbations cause, when taken

together, reorganization of the solvent/nuclear coordinates into a configuration that is

appropriate for the transition state of the R --+ P ELT reaction, which is located at the

point of crossing of the two PE curves. Thus, the rate of the ELT reaction can be

determined by application of transition state theory, resulting in the expression [1.27],

21



( !1G') ( !1G')k£r=Aexp =-- =vN/(exp =--
I RT RT

[1.27]

where the pre-exponential A represents the probability of a transition occurring from

reactants to products, such that a fully-allowed reaction (wherein the probability of

transition -1) has a pre-exponential of -1013 S·1 and occurs at the maximum possible rate

of reaction, ko; VN is the collisional/vibrational frequency of interaction between states

(depending on whether the interaction is inter- or intramolecular); /( is the normalized

electronic transmission coefficient, which relates the orientation of a molecule to the

probability of ELT occurring; and !1G" (or MJ*) is the Gibbs energy of activation at the

transition state (i.e. the point ofPE surface crossing). From this point the Marcus theory

for electron transfer can be derived, resulting in the well-known expression for the driving

force (i.e. Gibbs energy), equation [1.28],24

[1.28]

and therefore by [1.27] it follows that the rate ofELT is

[1.29]

The reorganization energy At is given as At = A;n + A.ut, where A;n is the inner-sphere

(vibrational trapping) reorganizational energy and A.ut is the outer-sphere (solvent

trapping) reorganizational energy. Using a harmonic oscillator model, A;n is estimated as

22



[1.30]

where k; is the reduced force constant for the i-th inner shell vibration, (d~ -d~)i is the

difference in the equilibrium bond distances in the two oxidation states, and the

summation is over all molecular vibrations. Similarly, A.UI was expanded by Marcus using

dielectric continuum theory into

2( I 1 1)( I 1)Aow=(lJ.e) -+-+- ---
2ad 2all r Dop Ds

[1.31]

where Dop and D, are the optical and static dielectric constants of the solvent; ad and au are

the radii for the donor and acceptor, separated by r; and lJ.e is the quantity of charge

transferred from one reactant to another.2•24

As shown in Figure 1.5, there is often no true "point" of intersection of two surfaces,

as the PE wells split apart to form the adiabatic PE surface over which the E LT reaction

will take place, as well as a separate high-lying potential energy surface that is accessible

only by a vertical transition. The size of this splitting (that is, the difference in energy

between the two PE surfaces at the transition state) is a reflection of the magnitude of

electronic coupling between the donor and acceptor states, denoted as HAB• This

parameter serves as an indicator of the adiabaticity of the reaction, as a fully non-adiabatic

transition will show no splitting and a distinct point of PE surface crossing, while a fully

adiabatic transition between higWy-coupled states will show a very large separation

between ground and excited state PE surfaces.
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It is within equation [1.29] that an extremely unexpected result can be found: Marcus'

theory states that reaction rates will increase with decreasing 8(;0 (increasing driving

force) until the reaction becomes energetically barrierless, i.e. 8(;0 = -)., and thus

kELT = VNK. From this point onward, increasing the driving force for ELT actually yields a

decrease in reaction rate, and systems for which 8(;0 < -J.. are said to reside in the Marcus

inverted region. This counterintuitive result was a source of great controversy until

experimentally verified some 25 years after its initial proposal (Figure 1.7).13,21

Figure 1.7 Experimental confirmation of the Marcus inverted region in the
intramolecular electron transfer reaction of the 4-biphenylyl ion to a
series of acceptors with similar reorganization energies.25 Adapted with
permission from Closs et al., J Phys. Chern. 1986, 90, 3673. © 1986
American Chemical Society.
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1.4.3 Qy.antum Mechanical ELT Theory.

Marcus' derivation of the rate of ELT from the principles of classical transition state

theory clearly allows for ELT reactions to take place between weakly coupled states via

small steps along a shared potential energy surface. Such a treatment is naturally ignorant

of quantum mechanical effects such as tunneling, but these shortcomings can be

addressed in a semi-classical fashion (by introducing coefficients relating to quantum

mechanical properties) or by developing the principles of ELT in a full quantum

mechanical treatment. This is necessary to account for ELT reactions that occur in spite of

factors that should cause near-complete cessation of electron transfer (such as, for

example, prohibitively large values of I!.G', or a small value of A in equation [1.27]). As

the biggest contribution to the rate of electron transfer is the short-range interaction of a

reactant pair, the observed rate for an outer-sphere reaction is given bf6-29

[1.32]

where

[1.33]

where KA is the equilibrium constant for the formation of the reactant pair separated by a

distance r, V n is an effective nuclear frequency; K E,.T is the electronic factor (if K E,.T - 1 the

reaction is adiabatic, if K E,.T < 1 it is nonadiabatic); r). is a nuclear tunneling factor; and

I!.G' is the Gibbs energy of activation of the reaction.
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More rigorously, quantum mechanical approaches have been used to explain the

behavior of non-adiabatic reactions, wherein simple perturbations are not sufficient to

enable coupling of initial and final states via a transitory state. Instead, the region of

thermal crossing between the two PE surfaces that is created by electronic coupling of

states is replaced with a consideration of the overlap of the vibrational wavefunctions of

initial and final states. Returning to the Fermi Golden Rule and relating it to an

electronic transition,26.30

the electron transfer of a donor in its vibrational ground state is given by

[1.35]

Interestingly, equation [1.35] bears more than a passing resemblance to the Energy Gap

Law expression derived in equation [1.17], though they describe very different processes.
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1.5 Dendrimers.

1.5.1 Origins and Development ofDendrimer Research.

Early synthetic polymer research was focused on the study of simple linear polymers,

wherein the underlying structural motif was generally that of one-dimensional covalent

repetition of a small subunit (Figure 1.8). The creation of monomers with the potential to

polymerize at more than one site led to branched polymer chains with three-dimensional

structure on a local scale, but this method would often tend towards the formation of

non-uniform macromolecular structures of somewhat random size and composition. The

A
A ~ A-A

(ii (iii

Figure 1.8 Evolution of polymeric structures, from (i) linear chains to (ii)
hyperbranched macromolecules to (iii) dendrimers.31 Adapted with
permission from Grayson, S. M. and Frechet, J. M. J., Chern. Rev. 2001,
101,3819. © 2001 American Chemical Society.
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development of research into combining the best properties of both classes of polymer

was initially based in the theoretical works of Flory,32 who examined the feasibility of

preparing large three-dimensional branched polymers without the incidence of gelation.

Progress towards realizing the macromolecular structures of Flory's theoretical predictions

was slow, but the development of an "iterative cascade" method of branched amine

polymer synthesis by Vogtle33 produced the first rational syntheses of the monodisperse

three-dimensional macromolecular architectures that would come to be known as

dendrimers. However, the modern concept of a dendrimer as a higWy-symmetrical

globular structure was truly first represented in the StarburstOll poly(amidoamine)

(PAMAM) polymers of Donald Tomalia in 1985.34

Dendrimers (from the Greek word "OtV'tpo" or "O€YOPo", which translates as "tree"35)

are composed of a central core surrounded by layers of repeating, branching subunits, and

it is by the number of these layers of branches that these macromolecules are

characterized (known as the dendrimer "generation"). Finally, capping of each of these

individual chains of subunits by an end group terminates the coupling reactions and

completes the dendrimer (Figure 1.9). While the quantity of end groups of a family of

dendrimers is found to grow exponentially with increasing generation, the volume of the

dendrimer can only expand as the cube of the radius, resulting in rising steric dispersion

forces concomitant with the increasing density of surface groups until the clustering of

surface groups reaches a critical threshold at which uniform growth of further dendrimer

generations is no longer possible; this process is described as de Gennes dense packing.36
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R=endgroup
n=generationnumber

Figure 1.9 Illustration of the general structure of a dendrimer.

In practice, the generation at which the de Gennes limit inhibits further growth varies

greatly upon the nature of the dendrimer being prepared, and sometimes does not playa

role until the macromolecule in question reaches a truly vast scale; for example, the

original synthetic strategies employed in the StarburstO molecules were used commercially

to prepare PAMAM dendrimers of generation number 13, corresponding to structures

with molecular masses in excess of one million daltons.37

The ability to prepare a vast array of dendritic architectures in a controlled and

uniform manner allows researchers some ability to alter and tune their physical properties

as desired. Furthermore, the properties of low generation number dendrimers can vary
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quite profoundly from high generation number dendrimers with the same repeating

subunits and end groups owing to the isolated, globular nature of these macromolecules.

As these structures become increasingly crowded on their periphery, the centre of the

nanostructure can become isolated from its environment, resulting in a structure whose

properties are largely governed by the end groups, largely irrespective of the nature of the

internal subunits that make up the dendrimer (described as "site isolation" in recognition

of the use of this phrase to describe the effects of protein folding about the active sites of

enzymes).38.39 As a dendrimer increases in generation number, the number of capping

end groups increases exponentially and shields the long chains of repeating subunits that

make up the interior of the macromolecule. Consequentially, the physical and chemical

properties of dendrimers are initially driven by the properties of the individual branching

chains but become increasingly dominated by the end groups in larger generations, such

that modification of the external groups can greatly change their physical properties

(Figure 1.10).J1 This non-aggregating, globular nature persists in the molten state,

making them potentially useful as additives in materials science.40

1.5.2 Synthetic Strategies.

Modern methods for dendrimer synthesis were developed in order to combine the best

properties of both linear and hyperbranched polymers into a uniform three-dimensional

macromolecular architecture. By using iterative chain-lengthening synthetic methods,

dendrimers are produced with a desirable combination of the uniformity of linear
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Hydrophobic solvent

Figure 1.10 Demonstration of how the properties of large sterically-crowded
dendrimers are driven by their surface groups.3! Adapted with permission
from Grayson, S. M. and Frechet,]. M.l, Chern. Rev. 2001, 101,3819. ©
2001 American Chemical Society.

polymers and the three-dimensional scale of hyperbranched polymers. Importantly, the

monodispersity of these molecules simplifies the correlation of their observed physical and

chemical properties with their own physical dimensions and surface topology.

Tomalia's aforementioned work in PAMAM dendrimer synthesis is exemplary of the

cascading, or "divergent" synthetic method, whereby an initiator core is expanded upon,

layer-by-layer, in a stepwise fashion to iteratively prepare larger and larger structures

(Figure 1.11). A synthetic scheme that typifies this method employs a monomer with two
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Figure 1.11 Representation of the convergent and divergent synthetic methods.37 ©
2002 Wiley Periodicals, Inc..

active functionalities, whereby one is usually a protected or modified version of the active

sites found on the core molecule and the other is reactive to these core molecule groups.

Exposure of the core molecule to an excess of monomeric reagent followed by separation

and purification steps should yield a monodisperse, first-generation dendrimer product.

By this strategy the steps of reaction, purification and deprotection are cycled to make

progressively larger and larger dendrimers; however, while the generation number

increases linearly, the number of active sites that require deprotection and coupling

increases exponentially, such that the efficacy of the synthetic strategy becomes limited

both by its capability to carry out these propagation cycles quantitatively and in the

methods used to achieve this objective.
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As the ultimate goal is to achieve the synthesis of fully monodisperse macromolecular

assemblies, complete inhibition of site defect formation is of critical importance. This

challenge is temporarily overcome by using a large excess of reagents to drive the

equilibrium towards the monodisperse product, but as the number of active sites increases

exponentially the quantity of reagent required increases at an even greater rate.

Ultimately, the ability to extend the dendrimer generation to larger and larger sizes

becomes dependent upon the kinetics of the reaction, the ability to isolate and purifY the

end product from ever-increasing quantities of side product and unused reagent, and in

steric encumbrance within the final product. Once sterics start to interfere with the

complete conversion of all available reaction sites then purification is required to eliminate

side products. However, with increasing generation this task also becomes increasingly

onerous, as the magnitude of difficulty of separating "fully-monodisperse" product from

"nearly-monodisperse" side product scales dramatically with increasing generation,

especially as the size of the molecule approaches the de Gennes limit and the surface

characteristics of the various products become virtually indistinguishable.31

The second synthetic strategy in use is the "convergent" method (Figure 1.11), which

was first advanced and popularized by Jean Frechet41 in order to minimize the difficulties

caused by exponential scaling encountered in the divergent synthetic approach. While the

latter method is an expensive approach that requires a great deal of synthetic material and

time and effort for separation/purification, the convergent strategy is not unlike that used

in conventional organic synthetic chemistry, whereby a large target molecule is first
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retrosynthetically fragmented into smaller segments and each segment is then synthesized

separately in order to minimize the profound impact of product losses by non-quantitative

reaction yields and sample handling on overall product yield. The convergent strategy of

building dendrimers from the terminal groups towards the core reduces the number of

active sites with each successive iteration, thereby eliminating the requirement for

exponentially increasing quantities of starting materials to drive the reaction equilibrium

to completion at all active sites. As a result, convergent synthetic methodologies tend to

produce dendrimers with greater monodispersity than their divergent counterparts.42

Though not exploited in the dendrimers studied in this Dissertation, an attractive

feature of convergent synthetic strategies is that they can allow for the introduction of

more than one type of peripheral or spacer group in the final molecule, which can

theoretically expand their utility by, for example, enabling such a polyfunctional

dendrimer to simultaneously carry out multiple processes.43-45

1.5.3 Photoinduced ENT and ELT in Dendrimers.

An important feature of dendrimers is that they provide researchers with the means to

prepare a stunning variety of structures by enabling the synthesis of larger and larger

monodisperse macromolecules with large surface areas. The ability to arrange multiple

chromophoric groups into well-defined polymeric arrays46 and the means to prepare long

conjugated47-49 or non-conjugated46,49,50 chains to funnel charge and/or energy to a central

acceptor core seems to be a perfect fit for researchers hoping to create novel materials for
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photoinduced charge and energy transfer or artificial photosynthetic applications. In

particular, the three-dimensional hyperbranched structure that is the hallmark of these

macromolecules makes them ideal antennae for light-harvesting applications.46.51.52 This

expansive structure potentially allows for absorption of a large cross-section of incident

photons, enabling the transfer of photonic energy through the dendritic structure by

multi-step electron53-57 or energy transfer49.57-63 reactions, eventually terminating in (for

example) a redox-active site. A great deal of research effort has been invested into energy

transfer processes in these dendritic systems, specifically into the ability of dendrimer

singlet states to carry out through-space energy transfer via dipole-dipole coupling of

donor and acceptor states (i.e. the Forster ENT mechanism).64 Alternately, short range

ENT can also occur by a Dexter mechanism, whereby the method of transfer is by an

electron exchange process, and is therefore dependent on the degree of overlap between

the donor and acceptor states. Of the two, the role of the Dexter pathway in these

dendrimers seems to be less thoroughly investigated.63-68

However, as dendrimers grow to ever larger and larger sizes, they begin to exhibit

properties that are deleterious to their utility as conduits for energy and/or electrons.

With increasing dendrimer generation (and, thus, increasing size and molecular weight)

these complex macromolecules can begin to suffer from internal backfolding as a

consequence of their internal flexibility and due to the close packing of their polymer

chains. This internal association of neighbouring dendrons can lead to excimer formation

and quenching side reactions, so bigger molecules and larger numbers of chromophores
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will not necessarily yield better results in charge/energy transfer applications.46.69 The key,

it seems, is to strike a balance between the enhanced opportunity of photon absorption

afforded by creating larger dendrimers with more chromophores, with the increased

likelihood that this increase in molecular size will cause quenching side reactions, due to

the interaction of neighbouring dendron arms.

1.5.4 Poly(aryl ether) (Frt\chet-type) Dendrimers.

Dendrimers based upon the 3,5-dihydroxybenzyl alcohol monomer were successfully

prepared by the research group of Frechet41 in the first example of a convergent

dendrimer synthesis, and these poly(aryl ether) structures are commonly called Frechet

type dendrimers in recognition of this fact (e.g. Figure 1.10). Their relative ease of

preparation has led to the synthesis of a wide variety of structures by modification of this

simple monomeric unit (Figure 1.12)/1 as well as by the introduction of other functional

groups into the polymer structure. For example, in order to overcome the steric hindrance

that impedes synthesis of larger dendrimers (beyond the 5th generation), the use of

monomers with spacer groups has been successful in synthesizing larger structures and

with better yields than is possible with the 3,5-dihydroxybenzyl alcohol-based

synthesis.31,41,70.73 Poly(aryl ether) dendrimers based on this synthetic strategy have been

used in a wide variety oflight harvesting applications.74'78
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Figure 1.12 A selection of monomers that have been used in the preparation of
Frechet-type poly(aryl ether) dendrimers.31 Adapted with permission from
Grayson, S. M. and Frechet,]. M. ]., Chern. Rev. 2001, 101,3819. © 2001
American Chemical Society.

1.5.5 Poly(phenylenevinylene) Dendrimers.

The literature regarding the synthesis and properties of poly(phenylenevinylene)

dendrimers is rather scant relative to that for the poly(aryl ether) dendrimers. The

purpose of constructing a dendrimer in such a manner is to yield a highly conjugated

polymer for the purposes of efficient ENT; however, the physical properties of

macromolecules such as dendrimers are often far less straightforward and predictable than

expected. The synthesis of a poly(phenylenevinylene) dendrimer requires strict control of
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the stereochemistry of the alkene functionalities, while the presence of myriad stilbene

groups introduces the potential for photoinduced isomeratizations and undesired side

reactions;79.82 this topic is addressed in the following Sections. In addition, the 1,3,5-

trisubstituted nature of the aryl rings in these polymers introduces cross-conjugation83 and

was thought to limit their utility and efficiency as ENT/ELT antennae, though subsequent

research has suggested that this may only be valid in the ground state (Figure 1.13).64

There have been few reports of the photophysical properties of such structures, save for

discussions regarding photoisomerization of the stilbenoid moieties.79.82 The exception to

this is in the research of Burn et al. into the utility of these polymers as organic LEDs,

where spin-coating of these molecules into films virtually eliminates any deleterious side

reactions.83-88

Figure 1.13 Example of a poly(phenylenevinylene) dendrimer.84 © 1999 WILEY
VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
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1.5.6 Excited State Properties ofStilbene.

TRANS 90° CIS

ANGLE OF TWIST

Figure 1.15 Potential energy surfaces of the So and SI states of stilbene.89 Adapted with
permission from Waldeck, D. H., Chern. Rev. 1991, 91, 415. © 1991
American Chemical Society.

The photodynamics of stilbene and its related compounds have been studied for over

65 years, as it is an ideal structural motif for examining the intimate details of the

properties ofC=C bonds in general and of cis/trans isomerization processes in particular.89

Isomerization in stilbene is a rapid and efficient process that can proceed via direct

photoinitiation or by sensitization through inter- or intramolecular energy transfer.80,90,91

Upon irradiation the stilbene molecule isomerizes from cis-to-trans or trans-to-cis,

depending on the initial configuration of the parent molecule upon excitation. Though

the potential barrier to rotation about this C=C bond is sufficiently large to inhibit

thermal isomerization along the ground state potential energy surface from either isomer,

this barrier is circumvented upon excitation of either isomer to the excited state potential

energy surface (Figure 1.14). The cis and trans isomers can freely interconvert between
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each other on the 51 potential energy surface with a small thermal barrier to trans-to-cis

isomerization due to the existence of a "twisted" singlet state that lies on a shared pathway

to isomerization between the cis and trans 51 states (herein named l C* and It*,

respectively).80.92.93 In opposition to its role in the ground state - where the intermediate

state lies at the apex of the barrier to rotation between the isomers - this twisted excited

state lies at lower energy than either 51 state, and the intermediate to isomerization is at

its lowest energy when rotation of half of the molecule about the C=C double bond forms

a perpendicular geometry (referred to as Ip*) relative to the plane of the other half of the

molecule.89 Whereas the trans-stilbene isomer is fluorescent (rp'n> = 0.04, '1:= 70 ps) the cis

isomer is both non-fluorescent and photochemically reactive, either undergoing cis-to

trans isomerization or cyclization to form dihydrophenanthrene (DHP), with the latter

process occurring with a quantum yield on the order of rp = 0.10.94 While this cyclization

is reversible in an inert atmosphere, dehydrogenation takes place in air (or in the presence

of a suitable oxidant) to form phenanthrene.so

While these properties have been carefully studied and rather well mapped out, the

interaction of isomers of stilbene with triplet excited state donors is rather less

straightforward. It was found by Hammond et al that cis-stilbene is not only an eager

acceptor of triplet excitation energy but that it does so very quickly and at unexpectedly

large rates. Notably, there are cases where the energy of the donating triplet state lies

below that of the accepting triplet state of the cis-stilbene molecule, but the transfer

nonetheless proceeds.91·95.97 It is believed this is because the geometry of the excited state
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that is formed upon photoexcitation is not representative of the excited state that is

involved at the moment of sensitization, such that the true accepting state lies at a lower

energy than that expected of the triplet excited state based on the Franck-Condon

geometry. This process is described as "nonvertical" energy transfer, owing to the fact that

the geometry formed from the "vertical" (Le. spectroscopic) photoexcitation and energy

transfer pathway is not representative of the true active species.9l ,96,98

The T I potential energy surface for stilbene also demonstrates a low-lying 3p* twisted

state that is nearly degenerate with the Ip twisted state.99 The 3p* state is analogous to the

Ip* state in that it lies between the 3C* and 3! excited states with an activation barrier

impeding 3! --+ 3C*, so the mechanism of population of either ground state isomer follows

a similar pathway from both the 3p* and Ip* states (Figure 1.15).

~ ~
Sl-pstate ,:'

\T1-tranS-~-_2:!~./
--Tl-p,'
';~

Figure 1.15 Overview of the potential fates of excited states of stilbeneYlO Adapted
with permission from Dugave, C. and Demange, L., Chern. Rev. 2003,
103,2475. © 2003 American Chemical Society.
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1.5.6.1 as-trans Isomerism in Sterically-Hindered Environments.

Figure 1.17 Comparison of the "hula twist" (HT) to the "one-bond flip" (OBF)
olefinic isomerization mechanism. 101 © 2001 WILEY-VCH Verlag
GmbH, Weinheim, Fed. Rep. of Germany.

The ability of the isomers of stilbene and other such small molecules to quickly and

efficiendy rotate about their C=C bond is logically not shared by sterically-encumbered

compounds, such as the poly(phenylenevinylene) dendrimers of Deb et al.. 102 Such

molecules can have molecular weights that number into the thousands of grams per mole,

and simple 1800 rotation about a single C=C bond would not be possible without

considerable volume displacement, solvent reorganization and expenditure of energy.

However, it has been reported that such molecules not only undergo cis/trans

isomerization, but that the rate of such processes is largely insensitive to the size of the

compound, even when considering the 3'd or 4th generations of these dendrimers. The

mechanism for isomerization in these compounds is not a simple 1800 one-bond rotation

but rather a so-called "hula twist" mechanism, whereby the bonds on either side of a

central atom undergo a concerted rotation, inverting the stereochemistry about the

olefinic bond (Figure 1.17).101,103,104 This mechanism involves almost no side chain motion

relative to that of the one-bond rotation model, and as such the hula twist mechanism is

predominant in situations where steric encumbrance or restriction of motion due to rigid
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media or low temperature are a concern.10l.103,I05 This has been proposed as the active

mechanism in the cis/trans isomerization of the stilbene-centered poly(benzyl ether)

dendrimers of Arai, where structures of M w - 6000 g mol-1were found to isomerize

within 10 ns. 105 Interestingly, it has been reported that the presence of steric hindrance is

not a requirement, as studies of free stilbenes in the gas phase suggest that the hula twist

mechanism may in fact represent the lowest energy pathway. 106

1.6 Conclusion.

The preceding Sections serve to summarize key concepts in photophysics that pertain

to the study of the types of chromophoric systems described in this Dissertation. For the

purposes of the work presented here, an introduction of key theoretical concepts - such as

the Fermi Golden Rule and the Franck-Condon Principle - is important for developing

an understanding of the importance of later topics, among which the Energy Gap Law

and the inverted region (as predicted by Marcus Theory) are of particular relevance. This

discussion of the underlying theory is succeeded by an introduction of the physical and

electronic properties of dendrimers in general, as well as of the poly(aryl ether) and

poly(phenylenevinylene) dendrimers discussed in this Dissertation in particular, as this

information is vital to gaining a comprehensive understanding of the photophysics of this

class of molecules.
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Chapter 2. Conformational Dynamics of Dendritic Poly(phenylenevinylene)

Substituted Bipyridines in [Ru(bpyML)]2+ Complexes.

2.1 Introduction.

A family of 2,2'-bipyridines with substitutions by poly(phenylenevinylene)-based

dendrimers in the 5 and 5' positions are examined, both as free ligands and as part of

heteroleptic ruthenium polypyridyl complexes. Analysis of these Ru metal complexes by

emission spectral fitting and global analysis reveals that conformational dynamics

attenuate delocalization of the 3MLCT state onto the dendron arms. This inhibits

intraligand charge transfer between bpy-based and dendrimer-based 3MLCT states,

giving rise to dual emission from these states as well as the observation of growth kinetics

on a nanosecond timescale in fluorescence and transient absorption decay measurements.

2.1.1 Photophysics of RuII Polypyridyl Metal Complexes.

Ruthenium (II) tris-2,2'-bipyridine ion (Figure 2.1) and its associated family of RuII

polypyridyl compounds make up one of the most thoroughly studied and well-

documented classes of transition metal coordination compounds in Chemistry. Since the

first reference to the luminescent properties of [Ru(bpY)3]2+ was reported nearly 50 years

ago by Paris and Brandt,! these octahedral d 6 coordination complexes of approximately

D3 symmetry have been successfully employed in a broad array of photoconversion devices

and applications including dye-sensitized solar cells (DSSCs, or Griitzel cells),2 DNA or

protein probes,3,4 medical imaging and anti-cancer applications,s's pressure-sensitive
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Figure 2.1 Structure of [Ru(bpY)3P+.

dyes9, and photochemical water oxidation centres,IO·11 which illustrates the diversity of the

chemistry of these compounds. The widespread utility of RuII polypyridyl compounds is

due to their favourable chemical properties such as potent excited state redox character

(Figure 2.2), long-term stability, long-lived luminescent excited states, and - at least for

the less complex cases - relative ease of preparation. 12 Despite these successes, there are

still many unanswered questions about these compounds, and a tremendous amount of

current research effort is being dedicated to the goal of gaining a comprehensive

understanding of the photophysical properties and behaviour of RuII polypyridyl

complexes, from initial photon capture to form the Franck-Condon state, through the

onset of solvent dynamics and vibrational reorganization, and on to the formation of a

thermally equilibrated excited state and/or to excited-state relaxation via anyone of a

number of available pathways.
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Figure 2.2 Summary of relevant species and molecular quantities associated with
energy and electron transfer processes of [Ru(bpyhF+* relative to the
ground state. With kind permission from Springer Science+Business
Media: Photochemistry and Photophysics of Coordination Compounds:
Ruthenium, 2007, p. 129, Sebastiano Campagna, Fig. 10.

While a key highlight of Paris and Brandt's report was their early recognition that the

transition of an electron from a Ru d orbital to an antibonding Tt orbital on a bipyridine

ligand yields a broad absorption band due to the availability of a number of vibrationally

excited Tt ligand states,1 it is now more clearly known that the symmetry and apparent

simplicity of the [Ru(bpY)3F+ ion belie the presence and mutual interaction of a complex

manifold of closely-spaced, thermally-accessible excited states (Figure 2.3).13-16 The

absorption spectrum of [Ru(bpY)3]2+ is primarily characterized by a strong, sharp high

energy band at -285 nm and a broad absorbance centred at -450 nm. The high energy
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Figure 2.3 Jablonski diagram of [Ru(bpY)3]2+ at room temperature. Adapted with
permission from Qy et. al., Langmuir 2000, 16, 4662. 16 © 2000 American
Chemical Society.

transition is a ligand-centred (LC) band that arises from :TC -> Tt!' transitions, while the

characteristically broad absorption band results from promotion of a metal-centred d:TCRu

electron into one of several available ligand-based :TCt,f'Y* states of predominantly singlet

character «d:TCRu)6 -> 1[(d:TCRu)5(Tt!'bf'Y)I]) and is known as a metal-ligand charge transfer

(MLCT) transition (Figure 2.4).12.13 This IMLCT excited state is very weakly emissive

and extremely short-lived with a decay lifetime of (15 ± 10) fs in H 20P and its formation

is succeeded by an ultrafast non-radiative internal conversion from this state of mostly

singlet character to a state of mostly triplet character CMLCT) in a process known as

intersystem crossing (ISC). These are described as being states of "mostly" singlet and

triplet character because the presence of the heavy Ru atom causes spin state mixing
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Figure 2.4 Absorbance (solid, with electronic transitions listed)l2.l8 and corrected
luminescence (dashed) spectra (A"x, = 446 nm) of [Ru(bpY)3]2+ in CH3CN
((298±3)K,latmN2).

through spin-orbit coupling; thus, the use of spin labels is an approximation. This mixing

of spin character facilitates ISC, and as a result 3MLCT formation occurs with ~100%

efficiency (I/>Jsc ~ 1) at A"x, = 300 nm. l9-2l

The luminescent 3MLCT state of RuJI polypyridyl complexes is actually a

superposition of several states; specifically in the case of [Ru(bpY)3]2., low-temperature

studies have established the presence of three thermally-accessible states that lie 10 cm-l

and 60 cm-l apart, along with a fourth state of largely singlet character2,23 that can be
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found a further -600 cm-1 higher in energy.13.24-29 The relatively long lifetime of this

3MLCT state, along with its ability to function as a good energy donor, electron donor

and electron acceptor,13 makes [Ru(bpY)3F+* an extremely versatile reagent. In contrast to

the uncertainty and debate surrounding the ultrafast dynamics that lead to its formation

the available relaxation pathways for the resultant 3MLCT state are well-known: (1)

cooling of the excited state as it dumps energy into the solvent through low frequency

vibrational modes, resulting in relaxation via non-radiative decay to the ground state

(GS); (2) 3MLCT -+ GS luminescence; or (3) ligand-loss photochemistry via population

of thermally-accessible antibonding ligand field (LF), or dd, states (dJtdo")14.30.31 (Figure

2.5). Despite these multiple potential outcomes, the [Ru(bpY)3]2+* excited state

nonetheless persists for a long period of time (7: = 0.58 f.!s in H 20 at 25 OC)32 relative to

the IMLCT state; however, since the quantum yield for radiative decay (k,) is generally

low in Rull metal complexes (e.g. lAm = 0.042 for [Ru(bpyhF+ in H 20), non-radiative

decay (kn,) and deactivation via ligand-loss photochemistry are the dominant pathways for

excited state relaxation.14.33.34 Population of the metal-centred 3dd excited state has been

found to lead to ligand dissociation, and though this state lies higher in energy (Figure

2.5) it is thermally accessible from the 3MLCT state or readily populated by ISC from the

IMLCTstate.14
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Figure 2.5 Illustration of the potential energy surfaces of the major metal-centred
states of [Ru(bpyhF+

2.1.2 The Role ofConfonnational Dynamics in Chromophoric System Design.

Recent research into the excited state dynamics of photoactive molecules is being

carried out with the long-tenn goal of developing reliable, efficient, and inexpensive

artificial photosynthetic devices. The elucidation of the mechanisms of charge and energy

transfer in the excited state can lead to the rational design of chromophores or

photoactive devices, with the aim of maximizing these useful properties and minimizing

the effects ofvarious types of disfavoucable behavior, i.e. photodissociation. This is a non-

trivial task as the mechanisms of excited state formation and relaxation are widely varied

S6



due to the nature of the ligands and are very rapid, but considerable progress towards this

goal has been achieved using synthetic modifications of the acceptor ligand.34 Such

control can be achieved in a number of ways, examples of which include: selecting

appropriate ligands to produce a metal complex with non-zero absorbance across the

whole visible range (a so-called "black" chromophore);35 synthesis of a "panchromatic"

sensitizer dye for use in dye-sensitized solar cells;36 inhibition of dd state intervention and

subsequent enhancement of radiative decay rates upon introduction of a Rull polypyridyl

chromophore into a rigid matrix;3? or influencing the excited state behaviour of a

chromophore through synthetic means (such as by using sterk hindrance to inhibit decay

by an otherwise favourable pathway).38

Designing systems with the intention of exploiting conformational dynamics as their

mechanism of control is not a trivial endeavor, requiring careful and rational design to

create a chromophore with the desired excited state properties. Efforts to study these

effects by Wasielewski et al. relied on studying the mechanism for charge separation in

different donor-acceptor pairs with increasingly-long oligo-p-phenylenevinylene bridges

(Figure 2.6), where it was found that a distance-dependent superexchange charge transfer

mechanism at short distances was superseded by a bridge-mediated hopping mechanism

in longer chain lengths, and that conformational effects within the bridge attenuated

electron transfer, impeding their utility in charge separation applications.39
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Figure 2.6 Use of increasingly long oligo-p-phenylenevinylene (OPV) bridges to
separate a tetracene (TET) electron donor from a pyromellitimide (PI)
electronacceptor.39

More success was reported in research carried out by Damrauer's group that studied

the rates of photoinduced electron transfer in [Ru(bpy)z(bpy-</>-MV)] (PF6)4 and

[Ru(tmb)z(bpy-</>-MV)](PF6)4 (tmb = 4,4',5,5'-tetramethyl-2,2'-bipyridine, ¢ = phenylene

spacer, MV = methyl viologen) (Figure 2.7), where the rate of electron transfer was found

to be nearly identical for both complexes, despite there being a 100 mV increase in the

driving force in the tmb-based complex, indicating that the forward transfer process was

"barrierless" (Figure 2.8).
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Figure 2.7 Structures of the ligands used in Damrauer's study. Three types of spacer
were used (Ri;R2=H, Ri;R2=CH3, Ri=H and Rz=CH3) to alter the degree
of sterk inhibition of planarization of the MV and bpy groups.38

Following Marcus theory (see Chapter 1), the Gibbs energy for electron transfer (~CO)

and the total reorganization energy (A,) must be in a regime where ~CO - At. Damrauer

achieved this by excited-state electron delocalization in the 3MLCT states, which is a

consequence of conformational changes in the ligands.38 This was followed up by DFT

studies by the same group, which found that the torsional angle between the bipyridine

ligand and the pendant aryl substituent increases with the addition of sterk bulk in the

ground state in the gas-phase, but that upon formation of the excited state a significant

reduction in the magnitude of torsional angle was observed. Once again, this scaled with

increasing sterk bulk in the chromophoric ligand and was due to the attempted

planarization of the aryl group upon excited state delocalization. Interestingly, this forced

quasi-planarization yields a state that is no longer in the ideal molecular or electronic

configuration for back electron transfer. Reversal of this planarization is a necessary step
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Figure 2.8 Conformational gating in an intramolecular donor-acceptor pair: charge
trapping by using sterics to attenuate back-electron transfer. 40

to back electron transfer and relaxation to the ground state (Step (iv) in Figure 2.8) but it

was found that increasingly bulky groups inhibit this process, leading to greatly enhanced

forward/backward electron transfer rate ratios.40 Ultimately, exploitation of this

"conformational gating" effect manifested itself as an 8-fold increase in charge separation

lifetime across the series of chromophores prepared through the systematic introduction

of methyl groups to increase the overall steric bulk of the molecule, illustrating the

potential versatility and utility that could be gained from careful consideration of these

conformational dynamic effects.

Other research41 has confirmed the intuitive assumption that conformational changes

can have a profound impact on excited state effects, such as intramolecular electron
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transfer. The angle of rotation of 470 between two pyridyl rings of N-methyl-4,4'

bipyridinium cation (MQ:) in [(bpy)Re(COMMQ:)](PF6)2 creates a barrier to the

favoured bpy-to-MQ: excited state interligand electron transfer (ILCT) reaction, as

excitation of the MQ: ligand requires planarization of these rings to establish good

electronic overlap and coupling. By freezing this complex in a glass the planarization is

inhibited and the MQ:-based emission is no longer observed; excitation under the same

conditions as in solution causes an ILCT between MQ: and bpy (that is, the reverse of

what is observed in solution) and ultimately results in bpy-based emission. Similar effects

have also been reported in studies of solute-solvent interactions of a host of 5,5'

derivatized 2,2-bipyridines.42

2.2 Experimental Details.

2.2.1 Materials.

Acetonitrile (CH3CN) (UV B&J Brand grade; Honeywell Burdick & Jackson),

anhydrous ethanol (EtOH) (purchased from Commercial Alcohols Ltd.), butyronitrile

(n-PrCN) and propionitrile (EtCN) (purum grade, ~99.0% by ec; Fluka), methanol

(MeOH), methylene cWoride (CH2Ch), and cWoroform (CHCh) (ACS grade; ACP)

were used as supplied for all spectroscopic analyses. Poly(methyl methacrylate) (PMMA)

(average molecular weight - 966,000 by epc; Aldrich), coumarin-450 laser dye (99.9%;

Exciton, Inc.), acetonitrile-d3 and methylene cWoride-d2 ampoules (Cambridge Isotope

Labs) were all used as received.
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2.2.2 Synthesis.

The syntheses of the compounds studied in this work were accomplished at the

American University in Beirut (AUB) by Dr. Tarek Ghaddar's research group using

reported procedures.43-45 The dendritic poly(phenylenevinylene) aldehydes Gn-CHO (n =

o - 3),43 5,5'-bis(diethylmethylphosphonate)-2,2'-bipyridine,44 and ruthenium

bisbipyridine dicWoride (Ru(bpY)2Ch)44.46 were used to prepare the dendritic 5,5'

derivatized-2,2'-bipyridines (Gn-bpy, n = 0 - 3) and the resultant RuII polypyridyl

complexes ([Ru(bpyMGn-bpy)](PF6)2 (n = 0 - 3), hereupon referred to as RuDn) as

delineated in Figures 2.9 - 2.12.
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Figure 2.9 Syntheses of GO-bpy and RuDO.
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Figure 2.11 Syntheses of G2-bpy and RuD2.
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Figure 2.12 Syntheses of G3-bpy and RuD3.
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2.2.3 Instrumentation and Methods.

Sample Preparation. For room temperature experiments, dendrimer sample solutions

were prepared in 1.0 cm2 Spectrosil quartz fluorometer cuvettes (supplied by Starna) in an

appropriate solvent (either CHCb, CH2Ch or CH3CN, as indicated) with absorbances

below 0.15 at the excitation wavelength, unless otherwise stated. These solutions were

sparged with N2 for at least 20 minutes to reduce the concentration of dissolved O 2•

For temperature-dependent studies, sample solutions were prepared in -1 cm

pathlength rounded quartz tubes (-320 nm cutoff) of a local design. Solutions were

prepared by adding the solid dendrimer compound to either 4:1 (v/v) EtOHlMeOH or

4:5 (v/v) n-PrCN/EtCN solutions until the appropriate concentration was reached.

Glass-supported films were prepared by dissolving 6 g of PMMA in 30 mL of CHCb

followed by 1 h of magnetic stirring. A pre-calculated amount of dendrimer was added to

this solution to make a film with an absorbance of -0.4 at 470 nm. These heterogeneous

mixtures were poured onto a glass microscope slide and left for 24 h, drying to produce a

thin film. Due to its slow rate of diffusion in PMMA (D = 1 x 10-8 cm2 S'I), no

precautions were taken to prevent excited-state quenching by 02.47-51

UV-Visible Absorbance Spectrophotometry. UV-Visible absorbance spectra were

acquired using an Agilent HP8453A UV-Visible diode array spectrophotometer (190 

1100 nm range, <± 0.5 nm precision). Spectra were collected and manipulated using

Agilent's ChemStation software suite.
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Luminescence Measurements. Steady-state luminescence spectra were measured using

a Photon Technology International (PTI) QIantaMaster 6000 spectrofluorometer. The

excitation light was provided by a 75 W Ushio xenon arc lamp, with wavelength selection

provided by a Czerny-Turner f/3.4 grating monochromator. For fluid samples the

excitation beam was directed into the front face of the cuvette through a variable slit (set

at 4 nm) and the emitted light was measured at 900 to this incident beam, while for

samples in a PMMA film the excitation was at a 600 angle to the surface of the film and

was directed through the backside of the Pyrex support, as per Figure 2.13.

Figure 2.13 Illustration of 90° excitation of samples in solution (a, left) and 600

excitation of samples in Pyrex-supported films (b, right). Excitation of
films was through the backside of the support to minimize scattering of the
excitation source towards the detector.

The emitted light passed through a second 4 nm slit and Czerny-Turner f/3.4 grating

monochromator, and was then detected by a Hamamatsu R-928 five-stage PMT (in

photon-counting mode) in a PTI Model 814 PMT housing. This PMT accessory was

enclosed in a Products For Research S600 PHOTOCOOL Peltier cooling device to
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minimize contributions from dark current spectral artifacts. The emission spectra were

corrected for instrument response and light loss using correction factors supplied by the

manufacturer. Following fluorescence measurements, UV-Vis absorbance spectra were

routinely acquired to monitor for spectral changes that would suggest that photochemical

reactions had occurred over the course of the measurement. Spectra were acquired at a 1

nm spacing with an integration time of 1.0 s, but photosensitive compounds were

analyzed using an integration time of 0.1 s with narrow excitation slit widths to minimize

spectral changes.

Time-Resolved Emission Measurements. Excited state lifetimes were obtained using

a PTI LaserStrobe TM-3 fluorescence lifetime spectrofluorometer that consists of a PTI

GL-3300 N 2 1aser with a PTI GL-302 dye laser module. The fundamental laser line ()" =

337.2 nm, 800 ps fwhm) generated from the N 2 laser was either used as the excitation

source or was directed through two matched Spectrosil quartz laser dye fluorescence

cuvettes mounted in the dye laser module, each containing 2.5 mM solutions of

coumarin-450 in EtOH to generate the 446 nm excitation pulses. The laser was pulsed at

a 10 Hz repetition rate and was directed into the sample chamber by a 40-foot fiber optic

cable. Detection of the pulsed emitted radiation was at 900 to the excitation source. The

signal was passed through a Czerny-Turner f/3.4 grating monochromator and detected by

a Hamamatsu R-928 five-stage PMT in photon-counting mode.
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The timings of both the laser pulse and data acquisition were controlled by a Stanford

Research System Model DG535 four-channel digital delay pulse generator using a

proprietary stroboscopic technique developed by PTI. The observed data is not the

intrinsic fluorescence decay of the solution in question, but rather a convolution of the

true fluorescence decay with the non-exponential signal produced in response to the finite

temporal width of the excitation pulse. Determination of the true fluorescence decay is

achieved by first acquiring the instrument response function (IRF) by use of a colloidal

scattering solution. This IRF is then iteratively convoluted with a model exponential

function until a satisfactory fit of the experimental data is achieved. Further analysis of

deconvoluted experimental data was carried out using the data analysis software Origin

Pro (OriginLab Corporation) or IGOR Pro (Wavemetrics, Inc.).

Laser Flash Photolysis. Laser flash photolysis experiments were performed using an

Applied Photophysics LKS 60 laser flash photolysis spectrometer. Pulsed laser excitation

was provided by a Qtantel Big Sky Laser Brilliant B Nd:YAG laser (Aexc = 1064 nm, 5.4

ns fwhm fundamental), using doubling and tripling non-linear optical crystals to generate

532 nm and 355 nm light. To prevent sample damage from the high intensity 532 nm

light the second harmonic generator was detuned and a lens was used to defocus the

excitation beam onto the sample. The sample was probed by 900 crossed-beam excitation

from a monitoring beam produced from a Ushio 150 W pulsed xenon flash lamp, and the

resultant transient absorption signal was directed into a variable slit-width Czerny-Turner
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f/3.4 grating monochromator. Signal detection was achieved using a five-stage

Hamamatsu R-928 PMT, and subsequent digitization of this signal provided by an

Agilent Infiniium 54830B 600 MHz oscilloscope. The data was initially fit to an

appropriate decay function using proprietary software provided by Applied Photophysics

and then further analyzed using data analysis software packages. Absorption spectra were

taken before and after excited state measurements to assess the photostability of the

samples, which were routinely changed after minimal spectral changes were observed.

Variable Temperature Measurements. Temperature-dependent emission spectra,

fluorescence decay traces and transient absorption decay traces and spectra were acquired

using an Oxford Instruments Optistat DN (for solutions) or DN-V (for PMMA fIlms)

liquid nitrogen-cooled optical spectroscopy cryostat coupled to an Oxford Instruments

ITC 503 Temperature Control Unit. Within the Optistat DN cryostat the fluid samples

were kept in an atmosphere of N2 inside an internal optical chamber, while the outside

chamber was kept at ultrahigh vacuum (<10-8 bar) using a Leybold BMH 70 Dry

turbomolecular vacuum pump. Following each temperature change (usually in increments

of 10-15 K), samples were typically allowed at least 15 minutes to thermally equilibrate.

Two measurements were acquired at any given temperature following cooling as well as

heating in order to monitor for hysteresis effects.
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Kinetics. Kinetic analyses for samples prepared in fluid media at or near room

temperature were carried out by fitting the raw data to appropriate single and/or

biexponential decay functions (equations [2.1] and [2.2]). Samples prepared in a rigid

medium and/or analyzed at low temperatures were initially fit using the empirical

Williams-Watts/Kohlrausch (WWK) distribution function (equation [2.3])52-54 and

biexponential decay functions,

[2.1]

[2.2]

[2.3]

where II + 12 = 1 for the biexponential decay function [2.2]' The WWK function is an

empirical function used to model dielectric relaxation times in "disordered media". The

underlying distribution, as reflected by the stretching exponent, (3, empirically assesses the

degree of distribution of states that arises from the nonexponential behaviour of MLCT

states in a heterogeneous rigid medium.48
,55-61 The average lifetime of a distribution (r)

modeled by the WWK distribution function [2.3] is given as

[2.4]

where the gamma function r(n) is defined as

[2.5]
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All kinetic spectral data for RuDO in CH3CN and PMMA were analyzed using the

ReactLab Kinetics program Gplus Consulting). The global analysis fitting routine is

based upon the method of Zuberbiihler and Maeder.62 Briefly, this method reduces data

sets of transient absorption decay traces to yield both the spectra of the individual

components and rate constants for conversion between these components in accordance

with a kinetics model developed by the user.48.63 A fitting algorithm assesses the difference

between the data predicted by the model and the real data (the residual square sum) and

attempts to minimize this with successive iterations. Using a form of the Levenberg

Marquardt algorithm (a method of minimizing a non-linear function across a field of

parameters), this iterative process manipulates the free parameters of the kinetics model

and then adjusts the calculated spectra of the coloured components to reduce the residual

squaresum.64

Emission Spectral Fitting. Analysis of the MLCT spectral proflles of the dendrimer

samples were carried out using a single average mode Franck-Condon line shape analysis

by the follOwing procedure.48.65-67 Emission spectra were converted from a scale of

arbitrary counts vs. wavelength to one of quanta emitted per unit of energy by the method

of Parker and Rees. 68 First, an emission data set (J..;, Yi) (where J..; is in nm and Yi is in

arbitrary units) with an emission maximum Am", and minimum Amin is converted from an

abscissa ofwavelength to one ofwavenumbers by:
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[2.6]

The spectrum is then corrected for baseline by

Yi' = Yi - Ymin [2.7]

The intensity of emission is also corrected for losses in signal due to slit width effects,

which are proportional to the square of the wavelength:

[2.8]

Room temperature spectra were fit by a one-mode Franck-Condon analysis with a

least squares program based on a Simplex algorithm written by J. P. Claude.69 Room

temperature emission spectra were modeled by the one-mode fitting equation [2.9]70-72;

I(v)= lu(V) = ±j(Eo-VMhWM)3(~)eXP[_4In(2)(V-Eo~VMhWM)2]) [2.9]
10 UM-O Eo vM · ~VO.1/2

where/(V) is the intensity of emission at the energy v in cm-1 relative to the intensity of

the VI =a~ v =a transition, v is the energy abscissa in wavenumbers, Eo is the energy

gap between the zeroth vibrational levels of the ground and excited states, vM is the

vibrational quantum number and hWM is the quantum spacing of averaged coupled

vibrational modes of medium frequency; ~VO,l/2, the full width for individual vibronic

lines at half-maximum height, includes contributions from solvent and low-frequency
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vibrational modes, treated classically as per equation [2.10],

[2.10]

SM, the Huang-Rhys factor (equation [2.11]), is a unidess parameter that reflects the

geometric distortion along averaged medium-frequency quantum modes,

[2.11]

where M is the reduced mass of the vibrating system, w is the frequency of vibration and

6Q is the nuclear displacement.

The procedure for one-mode spectral fitting of room temperature data uses a fixed

value of 11w to yield values for SM, Eo and 6"1/2' In the fits, tiw was fixed at 1300 cm- l

(based on 11w for [Ru(bpY)3)2+) while Eo, SM, and 6"1/2 were allowed to vary until a

minimum was found in the squared sum of the residuals. Using these optimized values for

Eo, SM, and 6"1/2' additional fits were run while varying the value of nWM until the

squared sum of the residuals was again minimized. Mter having determined an optimal

value for 11w a number of different initial values of Eo, SM, and 6"1/2 were used to check

the uniqueness of fit and avoid a local minimum on the error surface.
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Experimental Details for AUB. NMR spectra acquired by Dr. Ghaddar's group at

AUB were carried out on a Bruker AM 300 MHz spectrometer. MALDI-TOF

measurements were carried out at Georgia Tech Research Corporation (Adanta, GA,

USA) in positive ion mode with a concentration of 10 mg/mL, using a

cyanohydroxycinnamic acid (CHCA, 10 mg/mL) as the matrix. UV-Visible spectra were

acquired on a Jasco V-570 UV-Vis/NIR spectrophotometer, while luminescence spectra

were recorded on a Jobin Yvon Horiba Fluorolog-3 spectrofluorometer.
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2.3 Results.

2.3.1 Absorbance Spectra ofGn-bpy (n =0 - 3).

240 270 300 330

Wavelength (nm)

360 390 420

Figure 2.14 Absorbance of Gn-bpy (n = 0 - 3) in CHCL «298 ± 3) K, 1 atrn N2).

Spectra were normalized relative to their wavelength of maximum
absorbance.

The absorption spectra of the Gn-bpy dendrirners in CHCL are shown in Figure 2.14,

while the wavelengths of maximum absorbance in CHCL and CH2Cb (CH2Cb data

acquired at AUB) are listed in Table 2.1. With increasing dendrimer generation n there is

an increase in the apparent extinction coefficient and a shift of Am", towards the higher

energy in accordance with an exponential increase in the number of stilbenoid moieties,
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which scales by (2(n+1))! (i.e. 2, 6, 14, 30). GO-bpy in CHC1J exhibits a strong n --> Tt

absorbance at Am.. = 323 nm (31,000 cm-l) with shoulders at 280 nm (35,700 cm-l) and

345 nm (29,000 cm-l), while the remaining dendrimers show Am.. = 320 - 321 nm

(31,300 - 31,200 cm-l).

Table 2.1 Absorbance data for Gn-bpy in CHC1J and CH2Ch.

A~: , nm (E.bs , cm-l)]

I----:CHCb I CH2Ch
f-:G=O----c--b----j----=3-=-=-23 (31,960) 1

G1-b 320---;-(3:-1'--:-,25=0-:-)+-13:-2--:-2-;-:-(3--:-1,-'-06C-:-:0)----1

G2-b 321 (31,150) 1 320 (31,250)
G3-b 320 (31,250) 1 318 (31,450)

2.3.2 Absorbance Spectra of RuDn (n = 0 - 3) in Fluid Media.

The absorption spectra of RuDn (n = 0 - 2) in CH3CN are shown in Figure 2.15.

Distinctive features can be observed at A = 290, 317, -355 and 464 nm (34,500, 31,500,

-28,200 and 21,600 cm-l) for RuDI and RuD2. The smallest dendrimer RuDO lacks a

prominent absorbance band at 317 nm, but exhibits a peak at 344 nm (29,100 cm- l
) that

is only detectable as a low-energy shoulder in the larger dendrimers. The absorbance at

317 nm that is absent in RuDO grows quickly with increasing generation relative to the

other bands, allowing the assignment of this transition as a dendritic ligand-based n --> Tt

band. The peak at 290 nm is ascribed to a bipyridine-Iocalized [nl --> n2*] transition,

while the 464 nm feature is assigned to a [(dn)6] --> 1[(dn)5(nl*)1] IMLCT transition. The

band at 344 nm is tentatively assigned (in comparison to [Ru(bpY)3]2+) as a higher-lying
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[(d.71)6] --+ 1[(d.71-)5(Jr2*)I] absorbance band, while the small peaks at 244 and 255 nm

(41,000 and 39,200 em-I) are tentatively assigned as high energy MLCT absorbancesY

These bands experience some solvatochrornism (Table 2.2), and the relative intensities of

these absorbances are also solvent dependent (Figure 2.16); these features are briefly

addressed in Section 2.5.2.

--RuDO
--RuD1
--RuD2

~ ~ ~ ~ ~ ~ ~ ~ ~

Wavelength (nm)

Figure 2.15 Absorption spectra ofRuDO - RuD2 in CH3CN ((298 ± 3) K, 1 atm N2).
Spectra were normalized relative to their wavelength of maximum
absorbance.
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Figure 2.16 Absorbance spectra of RuDO in CHCLJ (black) and CH3CN (red) ((298 :!:

3) K, 1 atm Nz). Spectra were normalized relative to their wavelength of
maximum absorbance.

2.3.3 Absorbance Spectra ofRuDn (n = 0 - 3) in a Rigid Medium.

The absorption spectra of RuDn (n = 0 - 3) in PMMA are shown in Figure 2.17,

normalized to the maximum of the (dJrRu)6 -> 1[(dJrRu)5(n'\py)l] absorbance band. The

greater concentrations of dendrimer complexes used in the preparation of these rums

yields the strong absorbance extending up to -375 nm (26,700 cm-I
) in RuDO-RuD2 and

up to -400 nm (25,000 cm- I ) in RuD3. As listed in Table 2.2, the wavelengths of

maximum absorbance of these dendrimers show the same relative insensitivity to the

solvent medium in a rigid PMMA matrix as in fluid solution.
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Table 2.2 Absorbance data for RuDn in CH2Ch, CHCb, CH3CN, and PMMA.

;..::::.:, nm (Eabs , em-I)]

CH2Cli CHCb CH3CN PMMA
291 (34,360) 290 (34,480)

RuDO
336 (29,760) 337 (29,670) 345 (28,990)
361 (27,700) 352 (28,410) 467 (21,410)
463 (21,600) 465 (21,510)

290 (34,480)
291 (34,360)

294 (34,010)
318 (31,450)

313 (31,950)
RuDl 320 (31,250) 332 (30,120) 464 (21,550)

470 (21,280)
366 (27,320)

355 (28,170)
468 (21,370)

464 (21,550)
297 (33,670)

294 (34,010) 317 (31,550)
RuD2 320 (31,250) 331 (30,210) 462 (21,650)

470 (21,280) 414 (24,150)
466 (21,460)

RuD3
320 (31,250) 322 (31,060) 466 (21,460)
470 (21,280) 429 (23,310)

I Data acqUIred at AUB.

-RuDO
RuD1

-RuD2
-RuD3

450 500

Wavelength (nm)

Figure 2.17 Absorbance spectra ofRuDn (n =0 - 3) in PMMA «298 ± 3) K, 1 atm
N2). Spectra were normalized relative to ;..:: at -465 nm.
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2.4 Excited States.

2.4.1 Photochemistry.

Wavelength (nm)

Figure 2.18 Comparison of absorbance spectra of GO-bpy in CH3CN and CHCL
((298 ± 3) K, 1 atm N2). The transition at -375 nm is assigned to cis-GO
bpy. See text for details.

The intensity of a small band at -375 nm in the absorbance spectrum of GO-bpy was

found to be dependent upon the exposure of the sample to light prior to measurement.

This peak is more prominent in the larger Gn-bpy dendrimers. In CH3CN the

absorbance spectrum of GO-bpy shows rather little difference from that in CHCL ()..",ax =

323 nm (Eahs = 31,000 em-I)) though the small absorbance at 375 run is no longer present

(see Figure 2.18) Sustained irradiation of the major absorbance band of the Gn-bpy

dendrimers yields rapid "quasi-reversible" changes in the absorbance spectra, depleting

the primary absorbance band while causing growth of this 375 nm feature (Figure 2.19).
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Figure 2.19 Changes in absorption of GO-bpy in CHCb upon extended photolysis (A.xt
= 355 nm) using an Nd:YAG laser source «298 ± 3) K, 1 atm N 2). (In
decreasing order at 325 nm: GO-bpy in CHCb; 1, 2, 6, 17 and 27 laser
shots.)

In order to assess the reversibility of these spectral changes, the absorbance spectrum of

a freshly prepared and sparged solution of G3-bpy in CHCb was acquired prior to this

solution being subjected to repeated and prolonged 322 nm (31,100 em-I) excitations.

This compound was stored in the dark overnight, and the absorbance spectrum was

reacquired after 15 minutes of sparging on the following day (Figure 2.20). Prolonged

photolysis times led to a general loss of absorbance at 322 nm, a much stronger
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absorbance at 250 - 280 nm (40,000 - 35,700 em-I), and increased baseline absorbance at

longer wavelengths relative to the fresh G3-bpy solution. Changes were observed in the

absorbance band envelope, where the slight shoulder peaks at 310 nm (32,300 em-I) and

335 nm (29,900 em-I) are more prominent due to a decrease in the relative intensity of

the Am.. peak of 322 nm, which is slightly blue-shifted to 319 nm (31,300 em-I) in the

aged solution.
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Figure 2.20 Absorption spectra of G3-bpy in CHCb ((298 ± 3) K, 1 atm N2). Black
line: Fresh solution. Red line: Spectrum following prolonged 322 nm
excitations. Blue line: After storage for 24 hours in the dark.
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As the first photoinduced conversion is facile, it seems reasonable to assume that the

inconsistent detection of this 375 nm band was due to the method of preparation,

handling and storage, and "freshness" of the dendrimer solution. These spectral changes

are made up of two distinct processes as indicated by the observation of two isosbestic

points; one at -350 nm and another at - 355 nm. The loss of the first isosbestic point at

350 nm and appearance of the second point at -355 nm occurred only following sustained

irradiation, suggesting that a new photochemical process (addressed in the Discussion) is

responsible for the irreversible changes. These observations were not further investigated.

2.4.2 Emission Spectra.

2.4.2.1 Fluorescence ofGn-bpy in Fluid Media.

Excitation of the l[n .n"'] absorption band of the Gn-bpy dendrimers in CHCb

results in singlet fluorescence as shown in Figure 2.21, while the wavelengths of

maximum emission intensity in CHCb and CH2Ch are summarized in Table 2.3. In

contrast to the increase in extinction coefficients with increasing dendrimer generation,

the fluorescence quantum yield in CH2Ch was qualitatively found to decrease, while ;"::x
became slightly blue-shifted from G1-bpy to G3-bpy. The fluorescence bands ofG2-bpy

and G3-bpy also show two peaks, versus the one peak seen in GO-bpy and G1-bpy.
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-GO-bpy
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325 400 475

Wavelength (nm)

550 625

Figure 2.21 Normalized and corrected fluorescence spectra of the Gn-bpy (n =0 - 3)
dendrimers in CHCL «298 ± 3) K, 1 atm N2).

Table 2.3 Luminescence data for Gn-bpy in CHCL, CH2Ch and
4:5 (v/v) n-PrCNlEtCN.

;..,:. , nm (E"", em-I) ;":. , nm (E"", em-I)

CHCL CH2Ch
4:5 (v/v) n-PrCNI
EtCN + lO%EtI

GO-bpv 372 (26,880)

Gl-bpy 417 (23,980) 420 (23,810)
594 (16,840)
654 (15,290)

402 (24,880) 400 (25,000) 600 (16,670)
G2-bpy 639 (15,650)

412 (24,270) 414 (24,140) 664 (15,060)
396 (25,250) 394 (25,380) 604 (16,560)

G3-bpy 642 (15,580)
416 (24,040) 412 (24,270) 666 (15,020)
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The emission spectra were normalized to account for photoinstability of these

compounds in the solution phase; accordingly, their quantum yields were not measured.

Initial changes in the emission spectra upon irradiation were quite pronounced but still

reversible, though with sustained irradiation some irreversible changes were detected. The

presence of isoemissive points and reversible spectral changes suggest that

photoisomerization occurs, while the irreversible changes indicate that a slow second

reaction pathway takes place. Time-resolved fluorescence of GO-bpy in degassed CH2Cb

solution showed biphasic kinetics, where a rapid initial component with an observed

lifetime of 01, obs - 15 s was followed by a much slower (02, obs - 1 h) decay (Figure 2.22).

100 200 300 400

Time (5)

500 600

Figure 2.22 Luminescence decay of GO-bpy in CH2Cb upon sustained 363 nm
irradiation ((298 ± 3) K, 1 atm N2). (01 - 15 s, 02 -1 h).
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2.4.2.2 Variable Temperature Phosphorescence Spectra.

Experiments carried out at AVB demonstrated that the Gn-bpy chromophores do not

phosphoresce at 77 Kin 4:5 (v/v) n-PrCN/EtCN. However, the introduction of EtI

enhances the rate constant for intersystem crossing, leading to weak phosphorescence

(Figure 2.23).73 In contrast to the blue-shift in the room-temperature fluorescence

spectra, the phosphorescence of the Gn-bpy dendrons was observed to red-shift with

increasing generation (summarized in Table 2.3). To the best of our knowledge, this is

the first known observation of phosphorescence in poly(phenylenevinylene) dendrimers.

M~ 200
><

~

~ 150
o
l:
Q)
o
f 100
Co
~

Co
l/)

~ 50
a. .......

580 600 620 640 660 680
Wavelength (nm)

Figure 2.23 Phosphorescence spectra of: (dashed) G1-bpy, (dotted) G2-bpy and
(solid) G3-bpy in 10% EtI in 4:5 (v/v) n-PrCN/EtCN at 77 K(A.cx = 320
nm). Figure provided by Dr. Tarek Ghaddar at AUB.
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2.4.2.3 Luminescence Spectra ofRuDn (n = 0 - 3) in CaCN at Room Temperature.

--RuDO
--RuD1
--RuD2

500 550 600 650 700

Wavelength (nm)

750 800

Figure 2.24 Corrected luminescence spectra of RuDn (n = 0 - 2) in CH3CN upon

excitation of A': of the [(d.1r)6] ---> 1[(d.1r)5(n")1] absorbance bands (see

Table 2.2) «298 ± 3) K, 1 atm N2).

Steady-state luminescence spectra of RuDn (n = 0 - 2) in CH3CN are shown in

Figure 2.24, demonstrating that the luminescence of these compounds is virtually

invariant with increasing dendrimer generation. Excitation into each of the bpy-based

[.1r---> n"], stilbene-based [.1r ---> n"] or [(d.1r)6] ---> 1[(d.1r)5(n")1] absorption bands yields

varying degrees of 3MLCT emission (Figure 2.25), indicating that ligand-centred

excitation initially leads to sensitization of the lMLCT state and then, following
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intersystem crossing, population of the 3MLCT state. Interestingly, some degree of

ligand-based emission is also visible at -385 nm, suggesting that RuDO is a weak dual

emitter (this ligand-based emission was not investigated in the larger dendrirners).

3MLCT emission is quenched in these dendrirners relative to the intensity of fluorescence

of the free ligand, as shown in the luminescence of Gl-bpy and RuDl in CH2Ch in

Figure 2.26.

--290 nm excitation
-- 340 nm excitation
--465 nm excitation

300 350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

Figure 2.25 Corrected luminescence spectra of RuDO in CHCh upon 290, 340 and
465 nm excitations «298 ± 3) K, 1 attn N2). The break in the spectrum
from A.,m = 660 - 700 run is due to the second harmonic of the excitation
light (Aac = 340 run).
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Figure 2.26 Steady state luminescence of G l-bpy and RuDl in CH2Ch upon 320 nm
excitation. RuDl (solid) emission magnified lOx relative to Gl-bpy
(dotted). Inset: Relative luminescence intensity of RuDl in CH2Ch upon
320 nm (dotted) and 470 nm (solid) excitation. Figure provided by Dr.
Tarek Ghaddar at AVE.
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2.4.2.4 Luminescence Spectra ofRuDn (n = 0 - 3) in PMMA at Room Temperature.
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Figure 2.27 Corrected lwninescence spectra of RuDn (n = 1 - 3) in PMMA upon

excitation of A~ of the [(d.n-)6] -+ 1[(d.n-)5(Jt')I] absorbance bands (see

Table 2.2) «298 ± 3) K, 1 atm N2).

Normalized lwninescence spectra of RuDn (n = 1 - 3) in PMMA resulting from 464

nm excitation are shown in Figure 2.27. Whereas the luminescence maxima were found

to be rather invariant with respect to dendrimer generation in both CHCL and CH3CN

(Table 2.4), in a rigid medium the spectra of RuD2 and RuD3 are blue-shifted by 290

cm- l (12 nm) relative to RuDl. Care must be taken to ensure that the fluorescence of the

dendrimers is not convoluted with that of the PMMA matrix at ;.... = 482 nm. The
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Table 2.4 Luminescence data for RuDn in CH2Ch, CHJCN and PMMA.

A~:x , nm (E,m, em-I)

CH2Ch I CHJCN I PMMA
RuDO 654 (15,290) I 667 (14,990) I
RuDt 652 (15,340) I 671 (14,900) I 647 (15,460)
RuD2 652 (15,340) I 670 (14,930) I 635 (15,750)
RuD3 652 (15,340) I I 635 (15,750)

emission spectra in PMMA are somewhat blue-shifted compared to those spectra

acquired in CH2Ch (between 120 - 410 em-I) and significantly blue-shifted relative to

those in CHJCN (between 560 - 820 em-I).

While the RuDn dendrimers are more resistant to the photodegradative changes

observed in the free ligands in solution, this effect becomes less pronounced with

increasing dendrimer generation (that is, as the complex becomes more "ligand-like").

This reactivity also appears to be medium dependent, as the absorbance and luminescence

of RuDO remain rather constant with prolonged irradiation in CHJCN but are

susceptible to changes under the same conditions in CHCG. However, encasing these

molecules in the rigid plastic matrix PMMA prevents these changes altogether.
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2.4.3 Emission Spectral Fitting.

Table 2.5 Emission spectral fitting parameters, Franck-Condon factors and
reorganization energies for [Ru(bpY)3](PF6)2 in CH3CN and PMMA, and

RuDn (n = 0 - 2) in CH3CN «298 ± 3) K).a

[Ru(bpY)3] (PF6)z' RuDO RuD1 RuD2

CH3CN PMMA CH3CN CH3CN CH3CN
nwM(cm'l) 1350 1350 1325 1325 1325
Eo (cm'l) 16,320 16,950 15,111 ± 2 15,020 ± 6 15,060 ± 40

Sm 1.1 1.14 0.497 ± 0.004 0.460 ± 0.01 0.46 ± 0.06
llvI/2(cm,l) 1750 1498 1476 ±6 1620 ± 10 1520 ± 70
In[F(calc)] -18.63 -19.67 -25.53 -25.37 -25.33
E,m(cm'l) 16,080 16,950 15,060 14,936 14,993

D, 36.2 3.6 36.2 36.2 36.2

Do! 1.81 2.22
1-

1.81
1-

1.81 1.81 -
AjMLCT(cm'l)b 1490 1540 658 609 603

A:LCT(cm'l)
I- I-

1300 980
I~-

I-lES 14.1 14.1

Ao.j(cm'l) 940 360

a Averaged values from fits carried out with nWM = 1300 and 1350 cm'l.

bCalculated from AjMLCT = SMnwM .48 'From reference 46.

The emission spectra of RuDn (n = 0 - 2) were analyzed by the single, average-mode

Franck-Condon line shape analysis (see Section 2.2.3). The physical parameters

generated by this fitting routine can be found in Table 2.5, along with those calculated for

[Ru(bpY)3]Cb in both CH3CN and PMMA.48 These parameters were then used to

calculate the vibrational overlap factors for non-radiative decay, F(calc), which is

displayed in logarithmic form
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In[F(CaIC)]=-~ln[ tUJJMEO 2]-S-(lSL)+ (Y+l)'(~::r [2.12]
2 (IOOOcm- l

) 1'zwM 161n2

where the factor of 1000 cm-I is an arbitrary scaling factor to make the logarithmic term

unitless, Eo, 1'zwM and ~V1/2 are in em-I, and y is given in equation [2.13]/4

[2.13]

This formalism is valid in the weak coupling (Eo» SM1'zwM), low-temperature limit

(1'zwM »ks7), and assumes equal quantum spacings in the ground and excited states, i.e.

1'zw = 1'zw'. For polypyridyl complexes, SM and 1'zwM are average values based on

contributions from a number of mainly C=C- and C=N-based symmetrical v\'py stretching

modes, while ~V1/2 contains the solvent reorganization and the Ru-N modes, treated

classically.48,75,76 Initial fitting of the RuDO 3MLCT emission spectrum yielded

satisfactory results, though the calculated data did not properly represent the experimental

data at higher energies. This discrepancy was surprising given the general quality of the

fit, and an examination of the residual data in RuDO showed the presence of a second

low-intensity emissive contribution that was being masked by the strong 3MLCT

emission (Figure 2.28, top). The shape and AmID< of this band were reminiscent of a Ru

polypyridyl 3MLCT band, leading to the hypothesis that this emission arose from either

(a) an emissive impurity or (b) a second, competitive emissive 3MLCT state. The
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Figure 2.28 (top) Residual data from the initial fitting procedure. (bottom)
Comparison of spectral fitting results of RuDG in CH3CN before and after
spectral subtraction (procedure described in text).
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3MLCT emission spectrum of [Ru(bpY)3P' was appropriately scaled and subtracted from

the RuDO 3MLCT emission spectrum and the resultant modified spectrum was then

subjected to the spectral fitting routine, resulting in almost no change in the calculated

spectral fit but a much better representation of the experimental data (Figure 2.28,

bottom) as quantified by visual estimation and a reduction in both root-mean-squared

deviation and in the degree of correlation between spectral fitting parameters SM, t.V1/2

and Eo.

2.4.4 Time-Resolved Luminescence Decay ofthe RuDn Dendrimers.

The luminescence decay of the 3MLCT state of the RuDn dendrimers upon 446 nm

excitation was assessed at multiple temperatures and in both fluid and rigid media.

2.4.4.1 Luminescence Decay in Fluid Media at Room Temperature.

The luminescence decay of RuDn in solution and rigid media at room temperature

upon 446 nm excitation is summarized in Table 2.6. 3MLCT luminescence decay of

RuDO in CH3CN (Figure 2.29) shows biphasic kinetics, where a short risetime (k l = (9.1

± 0.5) x 107 s-1, 01 = (11 ± 2) ns) is followed by a longer monoexponential decay (k2 = (3.6 ±

0.1) x 106 S·l, 02 = (280 ± 10) ns). Similar kinetics are also found in dendrimer generations

n = 1 and 2 (Figure 2.29), where the values for kl and k2 are greater for RuD2 relative to

RuDO and greater again for RuD1 relative to RuDO.
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Table 2.6 Summary ofluminescence decay data from biexponential and WWK fits of
RuDn in several solvents.

Solvent
Dendrimer

RuDa

RuD1

RuD2

RuD3

.1 = (11 ±2) ns.2 = (280 ± 10) ns

.1 = (21 ± 6) ns
.2 = (290 ± 10) ns

.1 = (19 ± 2) ns.2 = (268 ± 5) ns

4:1 (v/v)
EtOHlMeOH (77 K)

.1 = (0.22 ± 0.17) !J.s
.2 = (15.1 ± 1.2)!J.s

98

PMMA

f3 = 0.313 ± 0.008
Al = 0.45 ± 0.01

.1 = (0.36 ± 0.06) !J.S
fu = 0.55 ± 0.02.2 = (2.4 ± O.3)!J.s
f3= 0.44 ± 0.02

Al =0.45 ± 0.06.1 = (0.25 ± 0.04) !J.s
A2 = 0.55 ± 0.01

.2 = (2.5 ± 0.2)!J.s
f3= 0.37 ± 0.02

Al = (0.48 ± 0.04).1 = (0.31 ± 0.05) !J.S
A2 = (0.52 ± 0.03)
.2 = (2.3 ± O.4)!J.s

f3= 0.30 ± 0.01
Al = (0.62 ± 0.03).1 = (0.22 ± 0.02) !J.S
A2 = (0.38 ±0.01).2 = (1.7 ± O.l)!J.s
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Figure 2.29 (top) Luminescence decay of RuDO in CH3CN (0-1000 ns timescale).
Inset: Luminescence decay from 40-200 ns for emphasis of risetime (1: =

(11 ± 2) ns). (bottom) Luminescence decay of RuDn (n = 0 - 2) in
CH3CN. All spectra acquired at (298 ± 3) K under 1 atm N2•
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2.4.4.2 Luminescence Decay in a Frozen Medium at 77 K.
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Figure 2.30 Luminescence decay of RuDO in 4:1 (v/v) EtOHlMeOH at 655 nm upon
446 nm excitation at 77 K under 1 atm N2.

Luminescence decay of RuDO was acquired in 4:1 EtOHlMeOH solution at 77 K

(Figure 2.30), where a dramatic enhancement of excited state lifetime (02 = (15.1 ± 1.2)

f.ls) was observed relative to that in fluid solution at room temperature (Table 2.6), along

with a 20-fold increase in the lifetime of the rapid growth kinetics (01 = (220 ± 17) ns).
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2.4.4.3 Luminescence Decay in a Rigid Medium at Room Temperature.

--RuDO
--RuD1
--RuD2
--RuD3

Time (I-!s)

Figure 2.31 Luminescence decay of RuDn (n = 0 - 3) in PMMA at 640 nm (Aac = 446
nm) «298 ± 3) K, 1 atm N2).

The luminescence decay of RuDn (n = 0 - 3) in rigid PMMA fIlms is displayed in

Figure 2.31. Satisfactory fits of the data were achieved using both a biexponential decay

model and a WWK treatment (see Experimental in Section 2.2.3), the results of which

are listed in Table 2.6. The relative merits of these approaches are addressed in the

Discussion. In both cases, there is a trend towards decreasing decay lifetimes and

decreasing f3 values with dendrimer generation in the order RuD1 > RuD2 > RuD3,

while RuDO stands apart.
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2.4.5 Laser Flash Photolysis.

2.4.5.1 RuDO in a Fluid Medium at Room Temperature.

Transient absorption decay traces of RuDO in CH3CN upon 355 nm excitation were

acquired at 5 nm intervals from 365 - 650 nm (data in Appendix B; a representative

sample is shown in Figure 2.32), and the resultant time-resolved transient absorption

spectra can be found in Figure 2.33. An increase in absorbance was seen from 380 - 400

nm, 500 - 580 nm, and 615 - 650 nm, which were assigned as n --+ n* transitions of the

bpy and dendron groups, dn'" --+ n'" MLCT transitions, and dendrimer-based n"'-n'"

transitions, respectively.77 Losses of absorbance were observed at 445 - 495 nm and at 580

- 615 nm, due to bleaching of the ground state absorbance and to 3MLCT emission,

'§ 0.004

Q)

0.003

0

.0

Q)
0.001

~ 0.000

~

-0.002
75 225 300

Time (ns)

375

Figure 2.32 Transient absorption decay trace of RuDO in CH3CN at 385 nm (A.xl =

355 nm) «298 ± 3) K, 1 atm N 2).
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Figure 2.33 3D (top) and 2D (bottom) transient absorption spectra of RuDO in
CH3CN (~ = 355 nm) «298 ± 3) K, 1 atrn N2).
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respectively. All of the transient absorbance decay traces exhibited a monoexponential

decay component with a lifetime in the - 110 - 150 ns time regime, but the kinetics were

wavelength dependent on short timescales. The positive absorbance decay traces at 380 

400 nm and 500 - 650 nm also showed a fast rise time component that was reminiscent

of the risetime dynamics measured in the fluorescence decay measurements; preliminary

results from nonlinear curve fitting routines yielded a decay lifetime of. - 10 ns for this

rapid component. Isosbestic points were found at 375, 440, and 495 nm, but the fact that

these points lie on the !!.A = 0 line indicates that isomerization or other such processes do

not contribute to the observed excited state decay dynamics. A more rigorous analysis of

the data was carried out by the global kinetic analysis procedure, as described in the

Discussion.

2.4.5.2 RuDO in a Rigid Medium at Room Temperature.

Transient absorption decay traces resulting from 355 nm excitation of RuDO in

PMMA were collected from 400 - 690 nm in 10 nm increments (data in Appendix B; a

representative sample is shown in Figure 2.34) and the resultant time-resolved transient

absorption spectra can be found in Figures 2.35a-b. The kinetics in PMMA were rather

more complex than those observed in CH3CN solution, with three separate kinetic phases

observed on the nanosecond-to-microsecond timescale of this experiment.
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Figure 2.34 Transient absorption decay trace of RuDO in PMMA at 400 nm (Am =

355 nm) ((298 ± 3) K, 1 atm N2).

As with the results acquired in CH3CN at room temperature, an initial absorbance at

400 nm (Figure 2.34) is attributed to a TC --+ rt transition on a reduced bpy ligand.

However, there was no prompt risetime observed at this or at any other wavelength. This

absorbance feature nonetheless exhibited biphasic kinetics, with an initial decay of -rl -

(1.19 ± 0.03) I-lS that was succeeded by a long-lived bleach whose lifetime extends well

beyond the temporal limits of the experiment. The TC --+ :rt" absorbance of the dendrimer

ligand was again observed between 500 - 650 nm, showing exponential kinetics (-r- 3 I-ls)

with a long-lived component. The bleach of ground state MLCT absorbance exhibiting
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Figure 2.35 3D (top) and 2D (bottom) transient absorption spectra of RuDO in
PMMA (}.." =355 nm) «298 ± 3) K, 1 atm N2).
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biphasic kinetics was detected from 440 - 500 nm, with an initial component of.1 - 200

- 300 ns and a second component with .2 - 1.0 - 1.5 ""s.

The T A spectra in Figures 2.35a-b show a pair of isosbestic points at 440 and 500 nm

that lie on the !J.A = 0 line on either side of the MLCT bleach. These points are

prominent at medium and longer timebases but are absent at earlier times. There is a

dynamic shift in the breadth of this negative absorbance band shortly following excitation,

resulting in a narrowing from -430 - 510 nm to -440 - 500 nm in >1 ""s. However, a

third isosbestic point is observed at 650 nm that is static for the duration of the LFP

experiment and that resides on the !J.A = 0 line, confirming that the dynamic changes

seen in the MLCT bleach are intrinsic to the sample and are not due to a

photodegradative process.

2.5 Discussion.

2.5.1 Spectral Properties and Photochemistry of the Gn-bpy Dendrimers.

The absorption and room temperature emission spectra of the Gn-bpy dendrimers are

unique relative to those of other previously-reported poly(phenylenevinylene) dendrimers,

in that the spectral band shapes for the Gn-bpy dendrimers show changes as a function of

dendrimer generation, while previous results showed little to no changes with dendrimer

generation.43
•78 For example, the optical properties of stilbene-containing dendrimers with

a tris(styrylbenzyl)amine core demonstrate insensitivity to increasing chain length,

ostensibly due to the cross-conjugation that arises from the 1,3,5-substitution pattern of
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these polymers, which inhibits delocalization and causes electronic isolation of the

individual stilbenoid units. 79•s2 In the case of the Gn-bpy dendrimers, the increase in

extinction coefficient with increasing dendrimer generation is merely a statistical effect,

initially suggesting little evidence of electronic communication between the stilbenoid

moieties of the dendrimer arms or with the bipyridine core in the ground state.

However, other results provide some evidence of electronic communication in these

dendrimers, as a decrease in fluorescence energy of 2900 cm-1 was observed in going from

GO-bpy to Gl-bpy in CHCb followed by a trend towards slighdy higher energies with

increasing dendrimer generations. Though this seems incongruous, excluding the

seemingly anomalous photophysical properties of GO-bpy from the comparison is sensible

based on the fact that it has no branching stilbene moieties and has a fundamentally

different structure from the first-, second- and third-generation dendrimers. This trend

towards higher energies with increasing generation (above Gl) has previously been

observed in rigid perylene-terminated poly(phenylacetylene) dendrimers and was

attributed to the enhancement of non-radiative decay with increasing size in these

systems.S3 The initial decrease in absorbance energy is often ascribed to a stabilizing effect

from some degree of excited state delocalization in G I-bpy relative to GO-bpy, but if this

is correct then its decreasing prominence with increasing generation suggests that this is a

short-range phenomenon that rapidly diminishes in influence as the dendrimer size

increases with each successive generation. An alternative explanation for the reduction in

absorbance energy is the reduction in ~Q by equation [2.11] as the dendron becomes
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more electronically delocalized, resulting in a smaller reorganization energy upon

excitation relative to a less delocalized excited state that experiences more distortions (as

reflected in 8M and tlQ).

The spectroscopy of the Gn-bpy dendrimers is dictated by their sensitivity to

photoinduced spectral changes, ostensibly due to trans-to-cis isomerization about the

numerous stilbene moieties in these molecules. Largely reversible spectral changes with

isosbestic points that slowly become irreversible with continuous irradiation (Figures 2.19

and 2.36) suggest that cis/trans isomerization of the stilbenoid moieties is a prominent

photophysical process in these dendrimers. Decreased fluorescence intensity, changes in

spectral band shapes and the observation of irreversible photochemistry are all consistent

with photoconversion of the emissive trans-stilbene isomer to the short-lived cis-stilbene

isomer from which photochemical side products are known to accrue (Figure 2.37).84

Irradiation of the absorbance band at 322 nm of G3-bpy in CHCh (Figure 2.36)

results in pronounced photoisomerization of many of the stilbenoid groups as indicated

by the thorough depletion of this band, yielding isosbestic points corresponding to the

aforementioned reversible and irreversible processes. That these spectral changes are

detected at all in the largest dendrimer seems to confIrm the model discussed in Section

1.5.6.1; namely, that the conventional one-bond flip mechanism becomes secondary to

the hula twist (HT) mechanism in increasingly bulky or rigid environments.
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Figure 2.36 Isomerization of G3-bpy in CHCb upon prolonged irradiation (A.xc =322
nm) as evidenced by changes in the corrected fluorescence spectra acquired
periodically during the irradiation «298 ± 3) K, 1 attn N2).

Figure 2.37 Illustration of branching ratios along the SI and So potential energy
surfaces of stilbene.84 Reprinted with permission from Sension et. aI., J
Chem. Phys. 1993,98,6291. © 1993, American Institute of Physics.
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2.5.2 Ground State Photophysics of the RuDn Dendrimers.

The absorbance spectral envelope of the RuDn species are superimposable in the

MLCT region from one to another, beyond an increasingly significant contribution from

the stilbene groups with increasing dendrimer generation, leading to larger extinction

coefficients in concert with the increasing number of chromophores per molecule, akin to

a dilution of the chromophores. These changes are the most pronounced for the shorter

chain length dendrimers, where the significant bipyridine-localized [Jr -+ n"] transition of

RuDO in CH3CN (A.,ax (abs) = 290 nm) quickly becomes overwhelmed by the growth of

the stilbene-based [Jr-+ n"] band in RuDt (A.,ax (abs) = 313 nm) and RuD2 (Amax (abs) =

318 nm). However, in all cases Amax (abs) for the individual transitions is virtually

unchanged with increasing dendrimer number.

As absorbance spectra are typically composed of many separate transitions, the

composition of the absorbance spectrum of RuDO in CH3CN can be determined by

deconvoluting the spectral envelope into a series of Gaussian peaks as shown in Figure

2.38, while the spectral characteristics of these bands and their assignments can be found

in Table 2.7. With the exception of the most intense absorbance band centred at 34520

cm- l (290 nm), the remaining absorbances at -41,050/39,250 cm- l (244/255 nm),

30,360/27,430 cm- l (330/365 nm), and 22,700/20,860 cm- l (441/479 nm) each appear to

be composed of two Gaussian peaks, ostensibly due to the differing absorbances of the

substituted and non-substituted bipyridine chromophores. The locations of these peaks

roughly correspond with those found in the absorbance spectrum of [Ru(bpyh]2+ in
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Figure 2.38 Gaussian deconvolution of the absorbance spectrum of RuDO in CH3CN
(dark yellow line shows cumulative fit from individual peaks).

Table 2.7 Spectral characteristics of peaks determined from Gaussian deconvolution
of the absorbance spectrum ofRuDO in CH3CN.

Assignment
Eahs,cm,1

fwhm [em'I]
Relative

(Aw" [nm)) Intensity (x10·14)
(d.n)6_1[(d.n)5(.n"2*)] 41,050 (244)" c c
(d.n)6_1[(d.n)5(Jr2*)] 39,250 (255)" c c

Jr-.n"'(bpy) 34,520 (290) 2940 2.76
[Jr-.n"'] + [(dJr)6_(dJr)5Jr*la 30,360 (330) 4020 1.96
[Jr-.n"'] + [(dJr)6_(dJr)5Jr*t 27,430 (365) 3670 2.50

(dJr)6 _ 1[(dJr)5(JrI*)] (bpy) 22,700 (441) 3330 2.14
(dJr)6 _ 1[(dJr)5(JrI*)] (DO) 20,860 (479) 2330 2.97

..
• Tentatlvely assigned as overlappmg ligand-based and metal centre-based transltlons.
"Determined from 1" and 2nd derivative plots. 'Fixed to improve fitting procedure.
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Figure 2.39 Normalized absorbance of GO-bpy and RuDO in CHCb and CH3CN
((298 ± 3) K, 1 atm N2).

CH3CN, with the exception of the 30,360127,430 cm-l absorbance, which is found in

both Gn-bpy and RuDn absorbance spectra. This supports the assignment of the

absorbances at 243 and 255 nm as MLCT-based transitions, while the 290 nm

absorbance is likely associated with the bpy ligands, as the dendrimer chains absorb at

lower energies in both Gn-bpy and RuDn (n = 1 - 3).

Normalized absorption spectra of RuDO and GO-bpy in CH3CN and CH2Ch are

shown in Figure 2.39. The relative absorbance intensities of the lMLCT bands at 335

and 466 nm show an apparent solvent dependence, increasing in relative intensity in
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CHJCN relative to CHCL. The enhancement of the band at 344 nm relative to that at

464 nm is greater in CHJCN than in CH2Ch. It is difficult to ascertain the microscopic

origin of these intensity differences from normalized spectra, but some general statements

can be made. It is likely that the observed changes are due to a combination of (a) a small

amount of solvatochromism of the (dn)6 -+ 1[(dn)5(.n")] bands, and (b) changes in

extinction coefficient due to the effect of changing solvent dielectric constants on excited

state dipole moments, as per equations [2.14-2.15]48.85.86:

}. =(6.j1)2[Jl2._~)
o aJ 2Ds +1 2Dop +!

lose = f e(v)dv= 30~::~:1OIMI2

[2.14]

[2.15]

where D, and Dop are the static and optical dielectric constants, respectively; a is the radius

of a spherical cavity enclosing the molecule; [2.15] is the oscillator strength of an

absorption band as a function of the integrated absorptivity, f e(v)dv; c is the speed of

light, n is the refractive index of the solvent; and M is the transition moment. The large

static dielectric constant of CHJCN (D, = 36.3) reflects the ability of this solvent to

tolerate larger dipole moments and charge densities relative to CH2Ch (Ds = 8.9),87 Thus,

there is a drive towards planarization and delocalization of charge in CH2Ch, while

CHJCN can accommodate a broad distribution of conformations and, thus, JMLCT

states. Starting in Section 2.5.3, these effects are described in greater detail.
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The RuDn complexes show a reduction in the quantity of isomerization relative to the

free ligands, and the smallest RuDO species is stable to repeated and prolonged

excitations in CH3CN; however, in CHCb or with increasing dendrimer size decreased

spectral stability is seen. Interestingly, despite the potential availability of the HT

mechanism there is nonetheless a dramatic rigid medium stabilization effect that causes

attenuation of photoinduced spectral changes, both reversible and irreversible, of the

RuDn dendrimers in PMMA ftlms. This behaviour was previously observed where an

increased activation barrier to isomerization was reported in "frictional" or viscous

environments relative to non-frictional environments.84.88,89 It has also been reported that

isomerization of stilbenes in fluid solution is also dependent on the polarity of the solvent,

as polar solvents reduce both the lifetime of the stilbene excited state and the quantity of

side product formation by stabilizing the "p. state;88,90 this accounts for the stability of

RuDO and RuD1 in CH3CN relative to CHCb. Not only does this stabilization effect

enhance the rate of relaxation of the twisted intermediate state - partitioning itself into a

-1:1 distribution of cis and trans ground state geometries - but it also increases the height

of the thermal barrier to IC• state population and, thus, decreases the rate of

dihydrophenanthrene (DHP) formation by the IC• ----t IDHp· pathway (as previously seen

in Section 1.5.6 and Figure 2.37).
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2.5.3 Excited State Photophysics ofthe RuDn Dendrimers.

2.5.3.1 Emission Spectra.

As with their absorbance spectra, the luminescence spectra of RuDn are insensitive to

increasing dendrimer generation. Interestingly, the RuDn dendrimers do demonstrate a

great deal of variability in their degree of photoinstability as a function of solvent; for

example, whereas there are some spectral changes upon irradiation of RuDO in CHClJ,

very little change is detected when the solvent medium is CH3CN. As mentioned in the

discussion of the Gn-bpy dendrimers, studies on the fate of the excited state of stilbene

have revealed an attenuation of both excited state lifetimes and of rate of DHP side

product formation with increasing solvent polarity, which has been ascribed to improved

stabilization of the charge-localized Ip' twisted intermediate state in polar solvents.88
•
90

This may suggest that there is a distance-dependent energy transfer from the

poly(phenylenevinylene) chromophores to the core for dendrimers of an intermediate size,

which is supported by literature reports that dendron-to-core energy transfer proceeds via

a Forster ENT mechanism.81

While it is unclear if this lp' stabilization effect is also present in dendrimers

constructed from a series of stilbenoid units, the aforementioned cross-conjugation of the

poly(phenylenevinylene) structure may cause these dendrimer chains to behave less like a

polymer and more like a collection of monomers, and the minimal spectroscopic changes

observed with larger dendrimer generations relative to smaller generations suggest that

this inference may have some validity. Also, the absorption spectral changes are consistent
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with those observed in the photoinduced trans-cis reactions of other stilbene-based

compounds.91 On the other hand, the absorption spectra of free and complexed dendritic

ligands are rather different, indicating that there is significant electronic communication

between the metal centre and the ligand states in all generations. For example, excitation

into the higher energy absorbance bands of RuDO causes IL --> MLCT sensitization and

intense emission, and so it is likely that this pathway plays a significant role in the

observed reduction in the yield of isomerization and cyclization products for the RuDn

species relative to the free ligands in solution.

Despite this communication between the ligands and the metal centre, excitation of

the ligand-based absorption bands nonetheless gives rise to ligand fluorescence as well as

3MLCT luminescence. That these two relaxation pathways are both available may

indicate that the dendrimer side chains are only weakly coupled, due to cross-conjugation.

2.5.3.2 Emission Spectral Fitting.

Emission spectral fitting of the steady-state luminescence of RuDn in CH3CN

uncovered a very weak secondary emission band that is thought to originate from a

secondary emissive bpy-based 3MLCT state, based on the similarity of the shape and

emission wavelength of maximum intensity of this band with that of [Ru(bpY)3]2+.

Subtraction of this [Ru(bpY)3]2+-like band from the original emission spectrum, followed

by emission spectral fitting of the resulting 3MLCT luminescence, revealed surprisingly

small values of 8M and ~V1/2 for RuDn in CH3CN relative to [Ru(bpY)3](PF6)2 in the
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same solvent. As discussed in the Experimental section, the Huang-Rhys factor 8M is

related to the degree of geometric distortion in the excited state relative to the ground

state, and so a small value of 8M means that the degree of distortion of the excited state

geometry of RuDn (relative to its ground state geometry) is less than that for the excited

and ground states of [Ru(bpY)3](PF6)2. As ~V1/2 is a measurement of the width of the

emission band at half-height, a small value of ~V1/2 describes an emission band that is

more narrow (and, therefore, less strongly coupled with the solvent) than expected,

relative to [Ru(bpY)3]2+. While placing [Ru(bpY)3]2+ in a rigid PMMA matrix yields no

change in 8M (1.14, from 1.1 in CH3CN) but causes a dramatic lowering of ~V1/2 from

1750 em-I to 1498 em-I, it is interesting to note that the values of~v'/2 for RuDn (and

especially RuDO) in fluid media are comparable with or even smaller than that for

[Ru(bpY)3]2+ in a rigid PMMA matrix, clearly indicating that the 3MLCT excited state of

these compounds does not interact strongly with the surrounding solvent medium.

The observed reduction of both 8M and ~Vl/2 could be caused by a delocalized

3MLCT state, which would distribute the excited state charge density and the geometric

distortions produced by excited state formation over a larger framework than would a

localized excited state, reducing both inner- and outer-sphere reorganization energies in

the RuDn complexes. The invariance of RuDn 3MLCT absorbance and luminescence

with increasing dendrimer generation does not appear to agree with this analysis, as we

might expect delocalization over larger and larger frameworks to yield changes in both the
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energy and shape of these spectra. On the other hand, SM = 0.47 for both RuDl and

RuD2 while ~V1l2 falls from 1600 to 1500 em'! on moving from RuDl to RuD2. These

data, combined with the invariant 3MLCT absorbance and luminescence peaks, describe

an excited state that is indeed delocalized, but over a relatively short distance. In light of

the spectral data it seems reasonable to assume that the delocalization occurs over the

entirety of the dendritic arms of RuDO, but once we move to RuDl the extension of this

delocalization is inhibited by cross-conjugation. For this reason, RuDl and RuD2 exhibit

similar values of SM as their excited states are distributed over a very similar framework.

For RuDO, the slightly higher SM (0.52) and Eo (15,060 em'!, vs. -14,947 and 15,993 em'!

for RuDl and RuD2) are ostensibly due to a slightly shorter delocalization length, while

the lower value of ~V1l2 (1498 em'!) is due to the diminished interaction of the

delocalized excited state (which encompasses the whole dendritic structure of the ligand)

with the solvent. Thus, the principal effect of increasing dendrimer generation in RuDn

is not increased delocalization length, but rather decreased coupling between the solvent

and the excited state due to the increased steric bulk of the larger dendrimer. There

appears to be a trade-off between the electronic isolation due to delocalization seen in

RuDO and the occlusion of solvent due to increasing steric bulk around the metal complex

seen in RuD2, resulting in a higher value of~V l/2 for the intermediate case of RuDl.
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2.5.3.3 Time-Resolved Luminescence Decay.

Luminescence decay measurements of the RuDn dendrimers in CH3CN at room

temperature yielded biphasic kinetics, where monoexponential decay with 02 = 270 - 280

ns was preceded by a brief risetime which had a lifetime of -11 ns in RuDO and -20 ns in

RuDI and RuD2. Though it is impossible at this point in the Discussion to determine

what is causing this risetime, this result may suggest that the interpretation of the

anomalous residual signal in the emission spectral fitting data as being a weak emission

band may be correct. These biphasic kinetics persist in the luminescence decay of RuDO

at 77 K in a 4:1 EtOHlMeOH glass, where enhancement of both decay lifetimes was

seen relative to those measured at room temperature, but excitation of RuDn

encapsulated in rigid PMMA matricies yielded rather different excited state dynamics.

The decay traces for RuDn (n = 0 - 3) were all successfully fit to biexponential decay

functions to yield the data in Table 2.6, where an initial decay of 01 = 220 - 310 ns is

followed by a long-lived monoexponential decay of 02 = 1.7 - 2.5 f..ts. By once again

considering RuDO as a being in a class of its own, the lifetime of the long-lived

exponential process decreases from 2.5 to 2.3 to 1.7 f..ts from RuDl - RuD3, while 02 =

2.3 f..ts for RuDO, the same as RuD2. Interestingly, the solution phase data seem to

exhibit a similar trend, showing that the lifetimes of RuDO and RuD2 are within

experimental error of each other, while the lifetime of RuDI is slighdy greater. However,

evidence for a discernable trend in the first exponential is quite a bit more scant.

120



The decay traces were also fit to a WWK stretched exponential distribution function

in order to assess the degree of nonexponentionality of the data arising from the

heterogeneity of the rigid PMMA matrix. In this analysis it was found that f3 ranges from

0.44 to 0.37 to 0.30 for RuD1-RuD3 and 0.31 for RuDO, indicating that the RuDn

chromophores are contained within a higWy heterogeneous solvent environment as a

consequence of the plastic film casting process; the nonexponential behaviour of MLCT

states in rigid media is a well-known phenomenon.48

2.5.3.4 Laser Flash Photolysis and Global Analysis.

The transient absorption data of RuDO in CH3CN were prepared for processing using

the global kinetic analysis routine that was outlined in the Experimental section, by

fitting the individual decay traces to appropriate exponential functions by non-linear

curve fitting routines. The resultant functions were compiled into a transient absorption

spectrum to reduce contributions to the global fitting results from shot noise, which result

from random source/detector variability (Figures 2.32 - 2.35). In order to minimize

contributions to the risetime component from the instrument response due to the 5.4 ns

laser pulse width, all transient absorption decay data up to t = 8.55 ns (the point in time at

which the contribution to the decay traces was judged to be negligible relative to the

intensity of the transient absorption signal) was excluded from the curve fitting analyses.

121



[Ru(bpy) 2(Dn)] 2+

Figure 2.40 Proposed 3-step kinetic model (the "dual emission model") for global
analysis oflaser flash photolysis data acquired for RuDO in CH3CN.

Initially the data was fit to a kinetic model of dual emissive 3MLCT states, where one

weakly emissive, higher-lying 3MLCTbpy state was dynamically coupled with a second

lower-lying 3MLCTL state (Figure 2.40),

[2.16]

[2.17]

[2.18]

This hypothesis was predicated upon the discovery of a weak secondary emission in the

spectral fitting analysis and on the observation of prompt luminescence and transient
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absorption risetimes. In the proposed model, population of the IMLCT state is followed

by rapid population of both bpy-Iocalized eMLCTbpy) and dendrimer-Iocalized

eMLCTd states. A central assumption of this 3-step model is that the unusually small

values of 8M and t.V1/2 inhibit the normally rapid interligand charge transfer (ILCT)

process, slowing this kinetic process (kl in Figure 2.40) sufficiently to permit its

observation on a nanosecond timescale. Initial values of k1 = 1/(10 ns) and k2 = 1/(150 ns)

were approximated from fits of individual transient absorption decay traces, while a value

of k3 = (900 ns)-I was chosen based on the observation of a [Ru(bpY)3]2+-like signal in the

3MLCT luminescence spectrum. Unfortunately this model appeared to be unsatisfactory,

as the fitting routine failed to converge and no value for k3 could be determined.

Analysis of the data was successful upon removal of the third step from the global

analysis fitting procedure; thus, the transient absorption spectrum was fit to a two-step

reaction model (Figure 2.41).

where 3MLCT1, 3MLCT2, and GS represent the short-lived, weakly emissive

intermediate, the thermally-equilibrated excited state, and the ground state, respectively.

Rather than invoke a weakly emitting bpy-based 3MLCT state, this model attributes

the early timescale kinetics to the conversion of a short-lived conformer of the dendrimer

to the geometry required for formation of its thermally-equilibrated state. The driving

force for this geometric reorganization is ascribed to planarization of the
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Figure 2.41 Proposed 2-step kinetic model (the "conformational dynamics model") for
global analysis oflaser flash photolysis data acquired for RuDO in CH3CN.

poly(phenylenevinylene) chains that is required for subsequent delocalization of the

3MLCT spin density and, ultimately, stabilization of the thermally-equilibrated 3MLCT

state. This fitting procedure yielded k, = (9.2 ± 0.3) x 107 s·, (., = (10.6 ± 0.4) ns) and k2 =

(7.36 ± 0.02) x 106 s·, (.2 = (135.8 ± 0.4) ns) (see Figure 2.42), values that are in good

agreement with those measured by analysis of individual transient absorption decay

measurements, as previously discussed. Also, the value of k, is also in good agreement

with that determined from luminescence decay curve fitting.
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Figure 2.42 Concentration proflles of 3MLCTbpy (A, blue), 3MLCTL (B, green), and
ground states of RuDO in CH3CN as determined from global analysis of
laser flash photolysis data.

A similar approach was taken with the transient absorption spectrum of RuDO in

PMMA but the kinetics have yet to be modeled successfully. Nonetheless, this data is

interesting and may prove useful in understanding the unusual behaviour of these

dendritic metal complexes. Of particular interest is the observation of wavelength-

dependent kinetics in the 3MLCT bleach on early timescales that gradually become

wavelength-independent, as a result of the formation of isosbestic points at 440 and 500

nm. There is clearly a dynamic process taking place that involves the 3MLCT state of

RuDO that results in a narrowing of the negative absorption band at longer timescales,

suggesting that either (a) an initial short-lived 3MLCT intermediate state undergoes an

interligand transfer to yield the thermally-equilibrated excited state, or (b) the observed

spectral changes are due to an intramolecular reorganization of the dendritic ligand.
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2.5.4 Elucidation of the Origin of Dual Emission and Growth Kinetics in

Luminescence and Transient Absorption ofthe RuDn Dendrimers.

2.5.4.1 Luminescence oflmpurities or Ligand-Based States.

As introduced in Section 2.4.3, spectral fitting of steady-state luminescence of the

RuDn dendrimers in CH3CN uncovered a small secondary emission band that was

thought to originate from an emissive bpy-based 3MLCT state, a ligand-based IL state or

an emissive impurity. Spectral artifacts originating from a impurity can be difficult to

definitively isolate and identify; however, while MALDI-TOF and NMR data indicate

that there were no foreign species present,92 the strongest indication that these

photophysics are intrinsic to the molecule comes from the observation of similar growth

kinetics and monoexponential decay from excitation into different absorbance bands

(MLCT excitation at 446 nm in luminescence decay and a mix of metal- and ligand-

based excitation at 355 nm in transient absorption decay measurements). The intensity of

the fluorescence and transient absorption growth kinetics relative to the primary

monoexponential decay are quite significant (e.g. -20% of the fluorescence decay intensity

of RuD2 in CH3CN) and too great to be attributed to an otherwise nigh-on-undetectable

trace impurity. Also, the intensity of the secondary emission and of the risetimes is similar

in RuDO, RuD1 and RuD2 despite the vastly different molecular weights of these

compounds; given that these signals scale with increasing dendrimer size it is highly

unlikely that they are due to contaminants.
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Transient absorption decay traces and spectra were acquired from the excitation of an

absorption band that is likely to contain both dendrimer and metal centre character (at

355 nm), whereas luminescence decay traces of the 3MLCT state of RuDn complexes

accrue from excitation of the [(dn:)6 -+ l(dn:)5(n:).] band using 446 nm light. As previously

stated, risetimes of approximately 0 - 10 ns were observed in both transient absorption

and fluorescence measurements, followed by monoexponential transient absorption decay

lifetimes of 0 - 110 - 150 ns and fluorescence decay of 0 = 280 ns. These data indicate

that population of either ligand- or metal-based states ultimately results in a brief risetime

followed by luminescence from the 3MLCT state, suggesting that formation of the

ligand-based IlL state by laser flash photolysis quickly leads to sensitization of the

3MLCT state, possibly via either the IlL -+ 31L -+ 3MLCT or IlL -+ IMLCT -+

3MLCT pathways. Steady-state luminescence of RuDO demonstrates that excitation of

ligand-based states yields both 3MLCT and (a small amount of) ligand-based emission.

The question of whether ligand-based states are responsible for these atypical kinetics

was briefly thought to have been addressed by Arai et at. who reported93 that the rate of

photoisomerization in certain stilbene-containing dendrimers was dependent on the

singlet excited state lifetime, which was found to be 0 = 10 ns (i.e. the same as the lifetime

for the risetime kinetics of RuDn). However, this -10 ns lifetime was only observed in

dendrimers with molecular weights above M = 6000 g mol-Iand the luminescence decay

risetime observed in this work is very similar for both RuDO (0 = (11 ± 2) ns, M =

1288.24 g mol-I) and RuD2 (0 = (19 ± 2) ns, M = 2930.78 g mol-I); therefore, these data
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seem to suggest that Arai's result is not pertinent to these compounds. Furthermore, if

the observed risetime in the laser flash photolysis experiments is indeed due to

sensitization of the JMLCT state originating from a ligand-based IlL state, then there

should be no observable risetime in the fluorescence decay experiments where excitation is

into a metal-centred absorption band and the ligand states are avoided altogether, as is

the case in the fluorescence decay measurements of RuDn.

This analysis does not discount the participation of ligand-based states in the excited

state behaviour of the RuDn dendrimers as a whole, but it does suggest that the short-

lived risetime is indeed due to metal-centred dynamics. Attempts to rationalize the

observed photophysics led to the development of two separate models: (a) the

conformational gating model (i.e. the 2-step kinetic model introduced in Section 2.5.3.4)

and (b) the attenuated interligand charge transfer model (the 3-step model).

2.5.4.2 The Role of Conformational Gating in the Dynamics and Spectroscopy of a

Non-Thermally-Equilibrated JMLCT State.

Global analysis of laser flash photolysis data of RuDO in CHJCN favoured a kinetic

model involving transfer from a non-emissive JMLCTI state to the thermally-equilibrated

JMLCT2 state, as opposed to the dual emitting JMLCT states model that is discussed in

Section 2.5.4.3. In either case, it is apparent that there are two distinct excited state

processes involved, where population of the thermally-equilibrated JMLCT state first

occurs through a separate MLCT state. While the latter model favours a transfer between

discrete JMLCT states from different ligands in the metal complex, the conformational
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gating model invokes a more fluid and dynamic picture of the nature of the 3MLCT state

of these complexes, one where the dendrimer side chains playa non-innocent role in the

mechanism of formation of these states.

The growth kinetics can theoretically be explained by dynamic intraligand

reorganization of the 3MLCT state on a nanosecond timescale. Formation of a 'MLCT

state and subsequent ISC of RuDn in CH3CN occurs on an ultrafast timescale, initially

leading to a vibrationally and energetically hot 3MLCT, excited state that is localized on

the bipyridine molecule94
,95 of the derivatized ligand. The dendrimer side chains are

randomly oriented as they share no 3MLCT spin density on this early timescale. With

time, this 3MLCT, state begins to stabilize by delocalization of the excited state spin

density onto these side chains, a process that is aided by the fact that the first stilbenoid

moiety is indeed fully conjugated with the bipyridine molecule, as the aforementioned

cross-conjugation of subsequent poly(phenylenevinylene) groups occurs only at branching

points further along the polymer chains (Figure 2.43). As previously discussed, it is also

likely that this limited conjugation length is the cause of the invariance of RuDn 3MLCT

absorbance and luminescence to increasing dendrimer size. In this manner, delocalization

stabilizes the 3MLCT, state by reducing the magnitude of structural perturbations in the

molecule, enforcing planarity and rigidity in the dendritic side chains and thereby

decreasing SM and ~V1/2 in the nascent 3MLCT2 state. Thus, the 3MLCT, and 3MLCT2

excited states represent not discrete, wholly-independent species, but rather two ends of a

continuum. This conformational change is a relatively slow process, as the observation of
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Figure 2.43 Illustration of the lack of cross-conjugation in RuDO (top) relative to
RuD! (bottom), where cross-linked sites are denoted by arrows.
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a risetime in the emission and transient absorption decay traces demonstrates that the

3MLCT\ and 3MLCT2 states are not in equilibrium with one another.

A comparison of transient absorption spectra of RuDO in both CH3CN and PMMA

may lend further support to this model of dynamic conformational change, specifically

with regard to differences in the position and nature of the isosbestic points straddling the

negative transient absorbance band centred at -470 nm. The evolution in time of the TA

spectra of RuDO in CH3CN result in clearly defined isosbestic points at 440 and 495 nm,

whereas the analogous points in PMMA are not as clearly defined at early times. The

negative absorbance band found in the PMMA TA data is initially broader and more

intense than that found in fluid solution and becomes progressively narrower, spanning

from 430 - 510 nm at early times to 440 - 500 nm. This narrowing is a spectral

manifestation of the observation of reduced values of 8M and ~V112 in particular, given

that the latter parameter dictates bandwidth. The current model would explain this

observation as being due to the rigid matrix causing attenuation of the dynamic side chain

motion that permits excited state delocalization, slowing the conversion of the

[Ru(bpY)3]2+-like 3MLCT\ state to the rigid and constrained delocalized 3MLCT2 state.

2.5.4.3 Attenuation oflLCT Between Dual Emissive 3MLCT States.

A second reaction model was proposed in Section 2.5.3.4 wherein the unique physical

and electronic properties of RuDn in CH3CN result in the establishment of a barrier to

interligand charge transfer from the two 2,2'-bipyridine groups to the dendritic ligand,
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attenuating the rate of 3MLCTbpy-to_3MLCTL transfer sufficiently for radiative decay

from the 3MLCTbpy to become a competitive process on a nanosecond timescale. This

hypothesis was initially predicated upon the results of room temperature emission spectral

fitting, as it was observed that the weak luminescence seen in the residual data was

strongly suggestive of a [Ru(bpY)3)2+-like 3MLCT state, both in energy and in shape.

Excitation into the [(d.71)6 ---> l[(d.71)S(.n")l] absorption band of RuDn quickly populates

the dendritic thermally-equilibrated 3MLCT state, but there are also two bpy ligands

present that will readily form a 3MLCT excited state under these conditions. Typically,

heteroleptic complexes such as these exhibit luminescence from only one excited state in

accordance with Kasha's rule,96 which states that all non-equilibrated excited states of a

chromophore naturally cascade down to the lowest-lying state, and it is this state from

which all observed photophysics will accrue. However, the observation of a second weak

emission at higher energy coupled with the growth kinetics led to the assumption that the

usual unsubstituted bpy-to-dendritic bpy interligand transfer was being attenuated by

some unknown factor, allowing the observation of the typically ultrafast interligand

transfer on a nanosecond timescale and providing the opportunity for a small portion of

the 3MLCTbpy population to relax by other pathways (e.g. luminescence).

Examination of the potential energy (PE) surfaces and emission spectral fitting results

lends some insight into a possible origin for the attenuation of this IL transfer. Not only

do the small 8M values determined from emission spectral fitting of RuDn in CH3CN

inform that the 3MLCTL state in these compounds is rather nested relative to its ground
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state, it also reports a value for ~V1l2 that indicates that the 3MLCTL PE surface is more

narrow than that of [Ru(bpY)3P' in CH3CN and similar or nearly identical to that of

[Ru(bpY)3P' in a PMMA film. The reduced magnitude of ~VII2 suggests that the excited

state of RuDn does not associate as strongly with its environment and thus has a

narrower PE surface than [Ru(bpY)3P' in CH3CN or, for that matter, than a 3MLCTbpy

state that is very similar to the 3MLCT state of [Ru(bpY)3]2'. While the 3MLCTL state

has relatively small values for 8M and ~Vll2 and lies above the ground state PE surface in

a semi-nested manner, the 3MLCTbpy state is broader and lies at a higher energy. Thus, as

illustrated in Figure 2.44, while Eo for the 3MLCTbpy state is sufficiently large to enable

facile bpy-to-dendrimer interligand transfer, the unusually small values of 8M and ~vJI2

for the 3MLCTL state result in the establishment of an activation barrier to the putative

room temperature 3MLCTbpy-to-3MLCTL PE surface crossing proposed by this model.

This additional energetic demand attenuates the observed rate for interligand crossing

sufficiently to allow a small portion of the 3MLCTbpy population to relax by radiative

decay, resulting in (a) the observation of nanosecond risetime kinetics and (b) the

appearance of weak luminescence from the 3MLCTbpy state.
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Figure 2.44 Illustration of the effect of small 8M and AVll2 values on 3MLCT potential

energy surfaces. Note the higher energy of the point of intersection
between 3MLCTbpy and 3MLCTL (red) versus a more typical 3MLCT PE
surface (pale red), inhibiting ILCT without changing the driving force for
this reaction.

2.5.4.4 Comparison ofModels.

The mechanism of intramolecular reorganization was introduced in response to the

failure of the dual emissive state model during the global analysis fitting procedure. The

very unusual nanosecond emission and transient absorption risetimes suggested that some

rather surprising excited state dynamics were occurring in these molecules, as the kinetics

that lead to formation of thermally-equilibrated 3MLCT states in RuII polypyridyl
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complexes typically occur on ultrafast timescales that far surpass the resolution of the

equipment used in the experiments described in this Dissertation. The results from global

analysis support the mechanism presented by the conformational dynamics model,

whereby ISC from the lMLCTstate populates a 3MLCT1 state on a non-planar dendritic

ligand, followed by stabilization of the ligand through planarization and subsequent

delocalization to yield the thermally-equilibrated 3MLCT2 state. However, while

emission spectral fitting demonstrated the presence of a weak emission with very similar

characteristics to those of [Ru(bpY)3]2+, this sequential two-step global analysis model

precludes the existence of a second emissive state.

While this was initially of concern, one must consider that spectral fitting determined

that the underlying structure of this secondary emission band is very similar to the

structure of bpy-based 3MLCT emission of [Ru(bpY)3]2+, and 3MLCT luminescence from

a 5,5'-derivatized 2,2'-bipyridine should not have the same spectral characteristics as the

luminescence of[Ru(bpY)3]2+, no matter how ordered or disordered its side chains are. For

example, Am", for [Ru(bpY)3](PF6h, [Ru(dmb)3](PF6)2 and [Ru(dmbMvbpy)] (PF6)2

(Figure 2,45) in CH3CN are 622, 642 and 670 nm,48.77 demonstrating that even simple

methylation of the 5 and 5' positions causes a significant red-shift of Am", for Rull

polypyridyl complexes. It is highly unlikely that the 5,5'-derivatized dendritic ligands

employed in this work could be responsible for the secondary emission, which then

suggests that the 2,2'-bpy ligands are the origin of this signal.
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Figure 2.45. Structures of dmb and vbpy ligands from references 46 and 91.

Dual emission has been previously reported for Rull polypyridyl complexes at low

temperatures,97-100 which reduces the rate of any interligand electron transfer process that

would depopulate a competing, secondary emissive 3MLCT state, but there are precious

few reports of dual emission occurring in mononuclear Rull complexes at room

temperature.lOl-103 On the other hand, the results presented in this document suggest that

it may be difficult to determine whether this is truly an unusual event, or whether it

occurs more frequently than expected but that researchers fail to recognize thiS. 104

The failure of global analysis to yield a model that accommodates the weak secondary

fluorescence is somewhat less surprising when one considers that the intensity of the

signal that was discovered by spectral fitting is only -4% of that of the primary 3MLCT

fluorescence, so it is quite likely that this is signal is too weak to be detected by the rather

less sensitive technique of laser flash photolysis (which yields the data processed by global

analysis to yield the hypothetical 2- and 3-step mechanisms). Furthermore, the lifetime of

fluorescence decay of RuDO in CH3CN at 600 nm (A,X( ~ 446 nm) was found to be 1:' ~

(98 ± 7) ns, indicating that this 2,2'-bipyridine-based 3MLCT state is strongly quenched;
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this would make its detection by nanosecond laser flash photolysis rather less likely.

While it is hardly an unprecedented phenomenon, simultaneous emission from

competing 3MLCT states is nonetheless not recognized as being particularly common in

Rull polypyridyl complexes.

Fitting luminescence decay traces of RuDn (n = 0 - 2) in PMMA to both biexponential

decay and WWK distribution functions yielded fits of very high quality. In assessing the

nonexponential kinetics of these systems, it can be reasoned that the large distribution of

local free volumes in the rigid plastic matrix48 should constrain the

poly(phenylenevinylene) chains of the dendritic ligands in many different conformations,

ostensibly permitting varying degrees oPMLCT delocalization and, consequently, widely

varying rate constants for luminescence decay from this state. While population of the

"twisted" 3MLCT state is followed by planarization in fluid solution, this process is

inhibited in PMMA to a sufficiently thorough degree that it can no longer be observed

spectroscopically on a nanosecond timescale. Instead, it is likely that this process has been

inhibited to such a degree that radiative decay becomes a more feasible relaxation

pathway, resulting in a broad distribution of fluorescence decay rates as determined by the

extremely small (3 values produced by the WWK analysis. In contrast to the behaviour in

PMMA, luminescence decay at 77 K in a 4:1 (v/v) EtOHlMeOH glass (a much more

constrained environment than a PMMA matrix, which doesn't so much surround the

chromophores as much as it encapsulates them within its relatively large internal free

volumes) seems to show a 20-fold lengthening of the lifetime of this risetime. However,
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whereas PMMA is a rigid plastic, this EtOHlMeOH glass is a frozen solvent, and the

energies associated with formation of the excited state and its resultant reorganizations

are sufficient to cause microscopic melting. It is still possible to observe the fluorescence

risetime in this environment because while the duration of the kinetic process that

produces the risetime is increased, so too is the lifetime of the thermally-equilibrated

excited state and, thus, the fluorescence decay. It is nonetheless unclear why the smallest

generation dendrimer RuDO should have such a small value of (J (suggesting a broader

distribution of excited states) relative to the much larger RuD1 and RuD2.

The development of the models was largely based on (a) global analysis results and (b)

the observation of a weak secondary emission and a risetime in the fluorescence decay

traces. In light of the above arguments, it is apparent that the assumption that both

emission signals in (b) were directly due to the same kinetic process was erroneous, and

the debate of whether the 2-step or 3-step mechanism is more appropriate is somewhat

irrelevant. Instead, a picture is emerging of a system that exhibits both dual emission and

conformational dynamics.
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2.5.5 Re-Evaluation ofthe Model ofExcited State Dynamics ofRuDn.

l[Ru l1l «bpy)z(Dn)nz+'

(lMLCn

3[Ru lll (bpy)z(Dn-)jZ+**

eMLCT1)

ks(CD)

kz (k,+ kn) 3[Ru III(bpy)z(Dn-)] ZH

/ ~ (3MLCTz)

~k6(kf+kn)

[Ru(bpy) z(Dn)]z+

Figure 2.46 Summary of excited state dynamics of the RuDn dendrimers,
demonstrating the interplay of conformational dynamics and ILCT. See
text for details.

The complex picture of the excited state kinetics of RuDn dendrimers presented in

Figure 2.46 is more readily understood by monitoring the evolution through time of (a)

emission and ILCT from a bpy-based eMLCTbpy) state, and (b) the impact of

conformational dynamics in dendrimer-based eMLCT/3MLCT2) states on ILCT. The

kinetics of formation and relaxation of the bpy-based 3MLCTbpy are shown in equation

[2.19]' Excitation of ground state RuDn yields a lMLCT excited state, followed by ISC

to yield 3MLCTbpy (k1) and 3MLCT1 (k3) states. Due to the presence of an activation
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d[3MLCfbPY ] =k [IMLCf]-(k +k )[3MLCf ]
dt I 2 4 bpy

d[3MLCf2Lk [3MLCf ]-k [3MLCf ]
dt - 5 I 6 2

[2.19]

[2.20]

[2.21]

barrier to bpy-to-dendron ILCT (k4) (Figure 2.44), a small amount of the 3MLCTbPY

state persists long enough to decay directly to the ground state by k2 (note that k2 = (k, +

kn,)2). This is the origin of the weak secondary signal detected by emission spectral fitting.

The kinetics of the vibrationally-hot dendritic ligand-based 3MLCT1 state are

summarized by equation [2.20]' ISC from the IMLCT state (k3) initially yields 3MLCT

states that are localized upon the 2,2-bipyridine moiety of the dendritic ligand.94
•9s With

time, conformational dynamics within these dendritic 3MLCT states (ks) start to enforce

planarization of the dendron backbone, improving intramolecular electronic overlap

between the bpy donor and dendritic acceptor and enhancing the extent of delocalization

until the energy-minimized, thermally-equilibrated 3MLCT2 configuration is reached

(equation [2.21]). Due to a combination of all these factors, the 3MLCT1 and 3MLCT2

(and all the configurations in between) states are not in equilibrium on the nanosecond

timescale, thereby producing the risetime kinetics presented in this Dissertation.
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2.5.6 The Origin ofUltrafast Excited State Dynamics ofthe RuDn Dendrimers.

This Discussion has thus far concerned itself with determination of the mechanism by

which these dendrimers yield such unusual luminescence and transient absorption

kinetics, so it is now necessary to attempt to explain why the excited state dynamics of

these compounds are so atypical relative to other such heteroleptic Rull polypyridyl

complexes.

An investigation into the rate constants for interligand electron transfer between

excited states was carried out using equation [2.22]' where k is the observed rate constant

for the process in question; ko is the diffusion-limited rate constant (ko = 1012 S·I); t:.CO is

the driving force for the electron transfer process (irrespective of the magnitude of the

activation barrier for that process) and is defined as the difference between the

v' = 0 --+ v = 0 energy gaps of both the initial ( E~ ) and final ( E; ) states as demonstrated

in equation [2.23]; kB is the Boltzmann constant (expressed in units of cm- I K-l).

[2.22]

X, is the total reorganization energy of the system, expressed in equation [2.24] as the

sum of outer-sphere (Xo ) and vibrational (Xv) reorganization energies averaged between

the initial and final states, where Xo and Xv are defined in equations [2.25] and [2.26],

respectively:48.85
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SM = \,
;'WM

(t1VI/S = (t1VO,IIS +16itokBTln2

[2.23]

[2.24]

[2.25]

[2.26]

Using the results of emission spectral fitting, a lower limit of r - 670 ps can be

calculated for the lifetime for bpy --+ L interligand transfer from equations [2.22] -

[2.26], which differs by an order of magnitude from the lifetime of r - 11 ns determined

for the risetime that was observed in the transient absorption and luminescence decay

experiments. There are two major assumptions being made in this calculation, which are

that (a) the spectral fitting parameters determined for the 3MLCT state of

[Ru(bpY)3](PF6h in CH3CN are closely representative of those of the bpy-like state in

RuDn in CH3CN, and (b) the electronic and geometric configuration of the thermally-

equilibrated 3MLCT2 state accurately represent the active state of RuDn at the moment

of interligand electron transfer. Given that the [Ru(bpY)3]2+-like contribution to the

3MLCT luminescence spectra of RuDn was initially detected by spectral fitting routines,

as well as the successful subtraction of a scaled [Ru(bpY)3]2+ luminescence spectrum from

that of RuDO, it is likely that the spectral fitting parameters of the 3MLCTbpy state are

sufficiently similar for the purposes of this calculation. On the other hand, it is unlikely

that the second assumption is valid, as the spectral fitting parameters determined from

the planar, delocalized conformation ostensibly adopted by the thermally-equilibrated

3MLCT2state do not accurately represent the nature of the acceptor in the ILCT process.
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A review of the [Ru(bpY)3]2+ literature with regards to the dynamics of formation of the

3MLCT state reveals that there is a long-standing debate about the instantaneous

dynamics of formation of this state. Specifically, a great deal of research has attempted to

determine whether this state is delocalized over all three bpy ligands or localized upon a

single bpy ligand following femtosecond ISC from the IMLCT state. The seemingly

contradictory data may be reconciled by current efforts in our research group towards the

the introduction of a new model for ultrafast formation of 3MLCT states in such t!'

polypyridyl complexes. Briefly, this model ascribes the ultrafast excited state dynamics to

rapid electron hopping and coupled electron hole transfer between the three degenerate

3MLCT states via low-frequency vibrational modes, producing a rotating dipole that - on

the timescales before the onset of nuclear motion - is insensitive to the solvent

environment. At longer timescales, the solvent begins to reorient itself in response to this

transient polarization, in turn causing the rotational motion of the dipole moment to slow

and allowing for increasing degrees of population of excited states on both derivatized and

non-derivatized 2,2'-bpy ligands. In the work reported in this Chapter, it is this rotational

mechanism that permits the onset of excited state dynamics from 3MLCTbpy and

nonequilibrated 3MLCT1 and 3MLCT2 states, gradually populating the 3MLCT states of

all three ligands for longer and longer periods and ultimately culminating in the

delocalization of the excited state spin density onto the poly(phenylenevinylene) arms to

yield the final thermally-equilibrated 3MLCT2 state. Thus, given that it is expected that

the acceptor state will have different values for SM, ~V1/2 , and Eo than those of the
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thermally-equilibrated state, the discrepancy between observed and expected ILCT rates

is unsurprising given the fact that these latter values were used in equations [2.21] 

[2.25] to determine the 670 ps lifetime for ILCT. In summary, while the energetics of

the 3MLCTbpy and 3MLCT2 states favour a rapid ILCT event, conformational dynamics

of the dendritic ligand impose an activation barrier to this process, ultimately slowing this

process down to a nanosecond timescale.

The mechanism for disappearance of the prompt risetime in the luminescence decay

traces of RuDn (n = 0 - 2) in PMMA is interpreted as inhibition of conformational

changes that allow planarization of the dendritic acceptor. Incorporation of the

chromophores in a rigid PMMA matrix should "freeze" the dendron arms into a number

of conformations, resulting in a broad distribution of fluorescence decay lifetimes

(observed as extremely small fJ values) as well as by attenuating or preventing the

3MLCT1 -+ 3MLCT2 process from occurring. The origin of these differences may lie in

the mechanics of dipole rotation in fluid or frozen media vs. a rigid plastic, as the slowing

of this rotation is initiated by the interaction of the dipole moment of the excited state

with surrounding solvent. The rotating dipole could be expected to have an even weaker

solvent polarizing effect within the distribution of large free volumes of the rigid PMMA

matrix. In this manner, the distribution of solvent microenvironments causes both

attenuation of and broad variability in the rate constants for 3MLCTbpy emission, bpy-to

dendrimer ILCT, 3MLCT1 -+ 3MLCT2 conversion, and 3MLCT2 emission.
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2.6 Conclusions and Future Work.

Poly(phenylenevinylene) dendrimers are quite susceptible to both reversible and

irreversible changes upon absorption of light, demonstrating that they may be of

questionable utility in chromophoric applications. Incorporation of these structures into a

ruthenium polypyridyl coordination complex leads to stabilization of these side chains by

quenching their photoactivity through the formation of MLCT states, and some

sensitization of the metal centre can be observed following excitation of ligand-based lr-->

Tt states. However, the results acquired in this research suggest that this stabilization

effect is imperfect, as it is limited to polar solvents of high dielectric constant and

becomes less useful as the size of the dendritic ligand increases.

The determination of unusually small values of 8M and~vl/2 along with the detection

of a secondary weak emission signal from emission spectral fitting demonstrated that the

RuDn dendrimers exhibit emission from their thermally-equilibrated dendrimer-based

3MLCT state, as well as a weak signal from a higher-lying bpy-based 3MLCT state for

which luminescence competes with interligand charge transfer to the lower-lying

dendritic ligand. This model was developed from the observation of a rapid risetime

preceding the decay of the thermally-equilibrated 3MLCTL state, as determined by time

resolved luminescence decay and laser flash photolysis measurements.

The considerable amount of thought and research effort directed towards determining

whether the excited state dynamics are driven by either ILCT or conformational

dynamics models appears to have yielded a mechanism of 3MLCT formation and decay
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that includes aspects of both models. Nonetheless, the primary origin for the unusual

growth kinetics and dual emission in the RuDn dendrimers is the inhibition of

interligand charge transfer between unsubstituted 2,2'-bipyridine ligands and the lowest

lying S,S'-derivatized dendritic 2,2'-bipyridine ligand, arising as a consequence of the

unusually constrained and isolated nature of the acceptor ligand as quantified by emission

spectral fitting parameters such as 8M and 1'1"112 .

Further examination of the photophysics of these dendritic complexes in a variety of

fluid and rigid media is required for a proper assessment of the ligand stabilization effect.

Similarly, the importance of sterics and electronic communication could be investigated in

a study into the consequences of modification of the poly(phenylenevinylene) chains.

Specifically, examining a series of dendrimers with increasing degrees of steric crowding

around the phenyl rings (in a similar manner to that studied by Damrauer's group38.40.105)

will extend our understanding of the roles that planarization and 3MLCT delocalization

play in the excited state properties of this class of dendritic coordination compounds.

Effects of this nature may be used as part of molecular switches, wherein conformational

dynamics and sterics can impart an "on/off' functionality to a molecule or could provide

the opportunity for selection of a particular reaction pathway, with the mechanism of

discrimination being provided by an appropriate wavelength of excitation, perhaps within

a particular temperature range and in the presence or absence of additional reagents.
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Chapter 3. Long-Lived Excited States in Benzyl- and Naphthyl-capped Frechet-type

Dendrimers with a Tris(Methyl Viologen) Core.

3.1 Introduction.

An investigation into the photophysical properties of two families of benzyl- and

naphthyl-capped Frechet-type dendrimers with a tris(methyl viologen) core revealed that

these structures undergo rapid electron transfer from the dendron arms to the dendrimer

core. Radical trapping by a strongly electron accepting methyl viologen unit yields a long-

lived charge separated state in the absence of O 2 • In this Chapter, the physical and

electronic properties of these dendrimers are discussed within the context of Energy Gap

Law to account for these anomalously long-lived charge separated states.

3.1.1 Ground and Excited State Electronic Properties ofMethyl Viologen.

1,1'-dimethyl-4,4'-bipyridinium ion, also known as methyl viologen (MV2+, Figure

3.1), is most commonly (and infamously) known for its Widespread use as the herbicide

Paraquat. However, in the field of chemistry this compound is viewed rather differently

and is employed in a broad array of applications and systems, such as for solar energy

conversion, in optical and optoelectronic devices, as the key reactive species in the

catalytic generation of hydrogen from cleavage of water, and as an important probe in

electron transfer studies. I-3 The versatility of MV2+ in these and other applications is a

direct result of its unique electronic properties, as it not only has strong electron accepting

character in the ground state but also has an extremely high excited-state reduction
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Figure 3.1 Structure of methyl viologen.

potential ofEO (MV2+*/MV+o) = +3.65 V following 266 nm excitation. l As a consequence,

excited state MV2+* is extremely reactive and is quenched by any species with a gas-phase

ionization potential of 10.84 eV or less. This was demonstrated by femtosecond laser

flash photolysis, whereby 265 nm excitation yielded the monoreduced cation radical form

of methyl viologen (MV+o) by rapid excited state quenching by MeOH (gas-phase IP =

10.84 eV) within the -180 fs resolution of the spectrometer. 1 Furthermore, due to the

large electron affinity (E. = 1.24 eV)5 of this compound, MV+o is extremely stable and can

persist in inert oxygen-free solvents for hours,6 though back ELT occurs within 430 fs in

MeOH. In the appropriate conditions MV2+ also acts as a two-electron acceptor. 7 While

MV2+ is non-emissive in solution, sterically-hindered derivatives of MV2+ have exhibited

fluorescence, ostensibly by inhibiting rotational freedom about the C-C bond that

interconnects the two pyridyl rings.8•9 The potent electron accepting nature ofMV2+ is the

origin of its herbicidal activity, as Paraquat acts by intercepting electrons from the plant's

photosynthetic apparatus to yield MV+o and then shunting them to molecular oxygen to

yield the destructive superoxide radical anion (02-), regenerating the dicationic MV2+ state

in the process. 10
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3.1.2 MVZ· as an Electron Acceptor.

The potent electron acceptor character of methyl viologen makes it desirable for

incorporation into systems designed for the study of electron transfer and/or electron

capture. A succinct description of the utility of MVZ· as an acceptor site in polymeric

structures was reported in laser flash photolysis studies of a polystyrene polymer

derivatized with [Ru(bpyMbpy-CONH-)p· units for the purpose of mimicking the

electron and energy transfer steps of photosynthesis. In this model system, the inclusion

of electron donating phenothiazine (PTZ) and electron accepting MVZ· units on

modified Rull polypyridyl chromophores was found to drive both electron (ELT) and

energy transfer (ENT) in two separate but simultaneous kinetic processes.

First (as summarized in Figure 3.2a), excitation of a bound chromophoric

[Ru(bpyMbpy-CONH-)](PF6)2 unit in the polymer yields a highly energetic 3MLCT

excited state (2.13 eV) that can sensitize a neighbouring chromophore through self

exchange ENT steps. This causes a propagation of this energy along the polymer by

sequential ENT events, ultimately terminating in the "reaction centre model", a modified

version of the aforementioned Rull polypyridyl chromophores that also contains one PTZ

and one MVZ· group. Migration of energy to this site initiates ELT from the metal centre

to the MVZ·, along with ELT to the metal centre from the PTZ unit. This reaction

pathway is terminated by the eventual return of the electron from MV·· to PTZ·· by an

intramolecular ELT which occurs in -160 ns at 298 K in CH3CN.
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A second reaction pathway (Figure 3.2b) is also available under the same experimental

conditions, wherein an ELT mechanism is responsible for forming an extremely long

lived (7: = 20.8 ms) redox separated state. In this case, excitation of a chromophore (which

yields a strongly reducing 3MLCT state) results in ELT to the electron accepting MV2+

unit of a neighbouring reaction centre model, followed by a second ELT process from an

adjacent RuIl polypyridyl centre to fill the hole on the oxidized RUllI polypyridyl

chromophore. In this way, the electron hole migrates away from the electron localized on

the methyl viologen by sequential RuII ~ RuIIl self-exchange ELT steps, until such a time

as it reaches a PTZ unit. At this point, ELT takes place from this potent electron donor

and ultimately yields a long-lived charge separated state, with the electron and hole

localized on isolated MV+· and PTZ+· groups, respectively. Intramolecular back electron

transfer in this case is quite slow, and so charge recombination is instead mediated by

diffusion, resulting in electron transfer between adjacent polymer chains.

3.1.3 MV2+ in Dendrimers.

Methyl viologen units are often used in dendritic polymers as well, and while examples

do exist of their incorporation into the dendritic arms themselves,3,ll.12 the potent electron

accepting character of MV2+ makes it a common choice to serve as part of the central core

of dendrimers capable of photoinduced electron transfer.7,13.17 Notably, while dendrimers

derivatized with a redox-active core commonly show an inverse relationship between rates

of electron transfer and molecular weight (and, thus, dendrimer size),IS,18,19 dendrimers
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employing M\f2+ as the redox-active unit (such as in Figure 3.3) do not appear to

experience the same attenuation of ELT due to isolation of the core with increasing

dendrimer generation as is seen in other systems. 14-16 While it has been theorized that the

core of dendrimers containing M\f2+ units are not as isolated as other such structures

(suggesting that the effect does not manifest itself in these dendrimers simply because of

inadequate dendron folding about the core),18 these rapid and electron transfer rates have

nonetheless been observed in systems where folding of the dendrons about the core raises

the reduction potential of the M\f2+ acceptor to a less negative value. 14

Figure 3.3 NBV32+: an example of a 3,d generation, Frechet-type M\f2+-cored
dendrimer with naphthalene capping groupS.7

Research into methyl viologen-cored, Frechet-type dendrimers (as in Figure 3.3) with

naphthalene terminal groups has revealed unusual transient absorption dynamics, wherein

the appearance of growth kinetics and a long-lived transient species were found to be

dependent on the laser power of the excitation source (Figure 3.4a).7 These results were
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attributed to back electron transfer from a doubly-reduced methyl viologen core to a 1,3-

dimethyleneoxybenzene group to yield strongly absorbing MV+·, as the absorption of

multiple photons by the dendrons that is required for two-electron reduction of the MV2+

core is dependent on laser power (Figure 3.4b). This is an important result, as while it is

known that a central MV2+ unit can accept two electrons via sequential one-electron

injections,12.20 this is the first demonstration of simultaneous two-electron injection in this

application, thus demonstrating the potential for using such systems to act as redox

centres for multielectron reactions, such as those required for realizing the lofty goal of

developing a device capable of carrying out artificial photosynthesis.21.
22

Figure 3.4 (left) Transient absorption decay of NB3V2+ in CH2Ch at 600 nm
following 266 nm excitation. The increase in I1A from a - d corresponds to
increasing laser power intensities (270 !Al, 520 !Al, 765 !Al, and 1.3 ml,
respectively.) (right) Plot of I1A vs. laser power for NB3V2+ at 600 nm,
taken after (circles) 10 ns and (squares) 20 ns. 7 Adapted with permission
from ref 7. Copyright © 2002 American Chemical Society.
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3.2 Experimental Details.

3.2.1 Materials.

CHCb (ACP) and CH3CN (ACS grade, ACP; UV B&J Brand grade, Honeywell

Burdick&Jackson) were used as received.

3.2.2 Synthesis.

All compounds were synthesized by Dr. Ghaddar's research group at AUB by the

procedures described in Figures 3.5 - 3.7. The products of these syntheses are

systematically named by the general scheme XBnV6., where X determines the terminal

group (B = benzene, N = naphthalene), B denotes 1,3-bis(methyleneoxy)benzene, the

type of monomer used to prepare the body of the dendrimer; n corresponds to the

dendrimer generation, ranging from 0 to 3; and V6. represents the tris(methyl viologen)

core unit (three MV2+ units = 6+ total charge).
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Br~

A = 3,5-dihydroxybenzyl alcohol, K2C03 in dry acetone
B = CBr4 and PPh3 in dry THF. R = Ph for BBnV6\ Np for NBnV6+

Figure 3.5 Synthesis of the tris(methyl viologen) core (1) and of the dendron arms for
dendrimer generations 0 - 3 (structures 2 - 5).
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3.2.3 Instrumentation and Methods.

Details of instrumentation and sample preparation are as stated in Chapter 2, unless

otherwise listed here.

Sample Preparation. Dendrimer solutions were prepared in a higher concentration

than usual at the excitation wavelength (A @ 266 nm - 1, versus a typical absorbance of

0.15) due to signal-to-noise concerns.

Laser flash photolysis. Laser flash photolysis of dilute solutions of BBOV6+, BB2V6+,

and NBnV6+ (n = 0 - 2) in CH3CN and NB3V6+ in CHCb was carried out using a

spectrometer that was configured for collinear excitation by a 266 nm excitation source.

The excitation line was produced from the fundamental laser line (A." = 1064 nm) of the

Nd:YAG laser described in Chapter 2, using a combination of second and fourth

harmonic generating crystals. The excitation beam passed through a prism that redirected

the incident laser light such that it was collinear with the xenon arc lamp output, which

has the effect of exciting more molecules that lie in the path of the probe beam and

thereby increasing the M signal relative to that acquired in a traditional perpendicular

pump-probe alignment.
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3.3 Results

3.3.1 Absorbance Spectra.

Table 3.1 Absorbance data ofBBnV6• (n = 0, 2) and NBnV6. (n = 0 - 2) in CH3CN.

A,~~:, nm (Eabs, cm-l)
BBOV6. BB2V6. NBOV6. NB1V6. NB2V6.

207 (48,310) 217 (46,080) 217 (46,080)
210 (47,620)
225 (44,440)

261 (38,310)
230 (43,480) 222 (45,050) 225 (44,440)

254 (39,370)
261 (38,310) 262 (38,170) 266 (37,590)
275 (36,360) 275 (36,360) 273 (36,630)

264 (37,880)
274 (36,500)

The absorbance spectra of BBnV6. and NBnV6. in CH3CN are shown in Figure 3.8

and their wavelengths and energies of maximum absorbance are summarized in Table 3.1.

Both sets of spectra are characterized by a benzene or naphthalene IT: -+ Tt transition at

- 200 nm, a 1,3-bis(methyleneoxy)benzene IT: -+ Tt band at -220 nm and a broad methyl

viologen IT: -+ Tt absorbance centred at -260 nm. Small differences in the wavelengths at

which these bands are evident from generation to generation, and are likely due to a

solvational effect arising from the varying conformational degrees of freedom of the

dendrimer. The tris(methyl viologen) core is unchanged from generation to generation,

and this is reflected in the MVl' absorbance bands that are largely invariant (With the

exception of a slight bathochromic shift) with increasing generation; however, the

benzyl/naphthyl and 1,3-bis(methyleneoxy)benzene bands do indeed scale with the

growth in dendrimer size and complexity. The spectra showed little photoinduced change

upon irradiation by either
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Figure 3.8 UV-Visible absorbance spectra ofBBnV6+ (n =0, 2) (top) and NBnV6+(n
= 0 - 2) (bottom) in CH3CN at (298 ± 3) K. Spectra were normalized to
the maximum absorbance of the MV2+-based band centred at -260 nm.
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Nd:YAG laser excitation source. Those changes that were observed are addressed in

detail in the Discussion. These bands did not yield an appreciable amount of fluorescence

in either the BBnV6+ or the NBnV6+ compounds, as ascertained by a steady-state

spectrofluorometer. However, some emission is observed in nanosecond fluorescence

decay and laser flash photolysis experiments, indicating that excitation into these n ~ Tt

transitions leads to emission with very small quantum yields.

3.3.2 Laser Flash Photolysis.

Table 3.2 Transient absorption decay lifetimes I for BBnV6+ and NBnV6+ dendrimers.

BBOV6+

BB2V6+

NBOV6+

NB1V6+

NB2V6+

400nm

(13.2 ± 0.4) f-lS

(22 ± 21) ns
(190 ± 70) ns

(39 ±7) ns

(370 ± 40) ns
(33 ± 3) ns

(330 ± 40)ns
(190 ± 140) ns3

(2.1 ± 4.3) f-lS3

590nm
See footnote 2

(34 ± 12) ns
(220 ± 50) ns

(110 ± 20) ns

(47± 6) ns

(1.25 ± 0.81) f-lS
(140 ± 20) ns3

I All reported lifetimes at 400 and 590 nm preceded a long-lived transient absorptIOn that
exceeded the time resolution capabilities of the spectrometer.

2 No decay process observed. 3 Poor signal strength resulted in questionable data.
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All compounds showed biphasic transient absorption decay behaviour upon 266 nm

excitation. At 400 nm in the NBOV6+ and NB1V6+ dendrimers, transient absorption

kinetics were biphasic with a short-lived component and a long-lived transient that

exceeded the detection limits of the spectrometer (Table 3.2). This biphasic decay was

quite prominent at both 400 nm and 590 nm (Figure 3.9), but the intensity of the

transient absorption signal was observed to increase at 400 nm and decrease at 590 nm

with dendrimer generation. The TA decay behaviour of BB2V6+ in Men (Figure 3.10)

was similar to that of the NBnV6+ dendrimers, at least within the margins of error.

Unfortunately, the small D.A and large signal-to-noise ratios in the transient absorption

data were endemic throughout these experiments, leading to larger-than-expected

margins of error. As mentioned in the Experimental, solutions were prepared with

relatively high concentrations and collinear excitation was employed to overcome this

obstacle. Furthermore, the experiments were complicated by a long-lived transient that

did not return to pre-excitation levels using the lowest repetition rate available on the

spectrometer. Therefore, the kinetic data were acquired with one laser shot at a time (that

is, without averaging), yielding poor signal-to-noise ratios. With these facts in mind the

interpretation of these results was carried out on a primarily qualitative basis. A solution

of the largest dendrimer NB3V6+ was prepared in CHCb (see Figure 3.9 for a

representative TA decay trace) due to its insolubility in CH3CN, but for this reason it was

not investigated at length.
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Figure 3.9 Transient absorption decay of NBnV6+ in CH3CN at 400 nm (top) and
590 nm (bottom) upon 266 nm collinear excitation at (298 ± 3) K.

169



Time (jJs)

Figure 3.10 Transient absorption decay ofBBOV6+and BB2V6+ in CH3CN at 400 nm
(top) and 590 nm (bottom) upon 266 nm collinear excitation «298 ± 3) K,
latmN2).
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Initially, no fluorescence was detected from any of the dendrimers as determined by

steady-state emission spectrum measurements. However, laser flash photolysis of the

NBnV6
+ (n = 1 - 3) dendrimers at 400 nm upon 266 nm excitation shows an extremely

short-lived fluorescence that is convoluted with the excitation pulse and that precedes the

previously reported biphasic transient absorption results (Figure 3.11). This observation is

addressed in more detail in the Discussion.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time(~s)

Figure3.11 Laser flash photolysis of NB1V6+ in CH3CN at 400 nm upon 266 nm
collinear excitation at (298 ± 3) K.

The excited state dynamics ofBBOV6+ in CH3CN (Figure 3.10) differ from that of the

other dendrimers in several ways. First, while this compound also demonstrated a long-

lived absorption signal at 590 nm, there was no initial observable decay process like those

observed for the larger dendrimers in the transient absorption decay trace; second, the T A
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decay trace collected at 400 nm had a lengthy exponential decay (1:" = 1.32 X 10-5 s) that

preceded the long-lived transient signal; and third, the transient absorption signal of this

compound was observed to be increasing upon multiple excitation pulses.

3.4 Discussion.

3.4.1 SpectroscopyofBBnV6+and NBnV6+.

3.4.1.1 Laser Flash Photolysis ofBB2V6+ and NBnV6+ (n = 0 - 2) in CH3CN.

Broadly speaking, the results of the laser flash photolysis experiments are quite similar

for both the benzene- and naphthalene-capped dendrimers studied, with the exception of

BBOV6+. The BB2V6+ and NBnV6+ (n = 0 - 3) dendrimers all exhibit biphasic kinetics on

surprisingly long timescales. As previously discussed, the longevity of these excited states,

along with their weak response to the laser flash photolysis experiment, made

measurement and interpretation of the kinetics somewhat challenging, as exemplified by

the uncertainties surrounding some of the calculated decay lifetimes posted in Table 3.1.

Despite these difficulties, these compounds exhibit rather interesting excited state

kinetics that warrant further investigation. A comparison of the relative intensities of the

laser flash photolysis data collected for the NBnV6+ series hints at the possibility that the

underlying kinetics are rather more complicated than they first seem. For example, while

Figure 3.12 demonstrates that NBOV6+ and NBIV6+ exhibit similar decay kinetics and

have similar /'"A values at 400 nm, the relative intensity of the long-lived component of

the NBOV6+ transient absorption is approximately 4 times larger than that ofNBIV6+ at
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Figure 3.12 Laser flash photolysis of BB2V6+and NBnV6+ (n = 0 - 2) in CH3CN at
400 nm (top) and 590 nm (bottom) upon 266 nm collinear excitation at
(298 ± 3) K.
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590 nm, which is instead comparable to that of NB2V6+. This indicates that while the

NBOV6+ and NB1V6+ dendrimers may share common structural features and a similar

initial kinetic feature, it is clear that the details of the kinetic process responsible for the

long-lived transient absorption (or, the kinetic process itself) are not the same.

Furthermore, laser flash photolysis of BB2V6+ in CH3CN yields rather similar kinetics

as seen for NB1V6+ and NB2V6+ in the same experimental conditions. Thus, it would

appear from these results that not only is the NBOV6+ species rather unlike the remaining

NBnV6+ dendrimers, but that they and the BB2V6+ dendrimers are much more similar to

each other than to NBOV6+; it is apparent that there is a property of NBOV6+ that sets it

apart from all the other benzene- and naphthalene-capped dendrimers that have been

discussed thusfar.

3.4.1.2 UV-Visible Spectroscopy and Laser Flash Photolysis ofBBOV6+ in CH3CN.

In light of these laser flash photolysis results, it would seem that the anomalous

kinetics of the BBOV6+ dendrimer are somewhat less unusual and that, in some ways, both

of the zeroth-generation dendrimers exhibit similar behavior. With that said, laser flash

photolysis of BBOV6+ still yields unique excited state dynamics that were not matched by

any of the other dendrirners, such as the absence of biphasic kinetics in the transient

absorption of this compound at 590 nm.

The observation of increasing transient absorbance of BBOV6+ upon repeated

excitations is particularly interesting, as it may indicate that photochemical changes may
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have been taking place or that the transiently absorbing BBOV6.* species had not relaxed

back to the ground state by the time the next excitation pulse was provided, causing an

increase in the total M signal with each measurement. This effect was quite profound,

and given that each of these dendrimers exhibit extremely long-lived excited states, the

ground state UV-Visible absorbance spectra were acquired using a UV-Visible

spectrophotometer before and after 266 nm excitation of this compound. These

measurements revealed that not only were there small but observable spectral changes

upon excitation, but that the resultant spectral changes were not permanent; rather, they

seemed to persist for several minutes. By periodically measuring the rate of change in the

UV-Visible spectrum of the solution at 400 nm, it was determined that the product of a

single 266 nm excitation pulse had a lengthy decay lifetime of. = -5000 s (Figure 3.13).

The combination of the observed wavelengths of maximum absorbance (i.e. A.b' - 400 and

590-600 nm) and the extremely long duration of this excited state strongly indicate that

the species responsible for these spectral changes is the methyl viologen cation radical

MV·· .1.23 Thus, it would appear that 266 nm excitation of these dendrimers ultimately

results in long-term electron trapping in the tris{methyl viologen) core, though it is not

clear at this time whether multiple MV2· species are being reduced or if only a single

electron is being injected into the electron acceptor core.
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Figure 3.13 Absorbance spectra of BBOV6+ in CH3CN following a single 266 nm
excitation pulse ((298 ± 3) K, 1 atrn N2). Spectra were acquired periodically
over 10 minutes in the order 1-8. (Inset: Baseline magnified to show
spectral changes with time.)

3.4.2 Charge Trapping in aTris(Methyl Viologen) Acceptor Core.

3.4.2.1 Long-Lived Transient Absorption ofMV+· Cation Radical at 590 nm.

Ultimately, 266 nm excitation of the BBnV6+ and NBnV6+ dendrirners in CH3CN

yields at least one long-lived monoreduced methyl viologen moiety in the dendrirner core,

meaning that the MV2+ is acting as the electron acceptor in a donor-acceptor (D-A) or

donor-bridge-acceptor (D-B-A) formalism. However, the absorbance spectra of these

compounds show that the absorbance band being probed by a 266 nm excitation source
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corresponds to a transition that is localized within the tris(methyl viologen) core, and not

on the dendrimer arms. Therefore, the observed excited state kinetics and electron

transfer dynamics originate from the acceptor core rather than the donor dendritic arms,

and charge trapping in these chromophores-quencher compounds is the result of hole

transfer from the M\f2' acceptors to the dendrimer.

As illustrated in Figure 3.10, laser flash photolysis of BBOV6' in CH3CN yields an

extremely long-lived transient absorption signal that does not appear to deteriorate within

a useful observable timescale for measurement by the laser flash photolysis spectrometer,

and subsequent measurement of this species by ground-state UV-Visible

spectrophotometry has assigned this absorbance as being due to the MV" cation radical.

However, in comparing this data with that ofNBnV6' (n = 0 - 2) and BB2V6, in CH3CN

(Figure 3.11), it is apparent that these latter decay traces differ in that they exhibit

biphasic kinetics under the same experimental conditions, where an initial decay of. - SO

- 100 ns precedes the familiar long-lived absorbance of BBOV6'. Thus, the fact that an

initial decay process was observed in all the dendrimers, save for BBOV6', leads to the

conclusion that these results are due to a property that is intrinsic to (or at least more

readily observed and most strongly expressed in) the zeroth-order dendrimers in BBOV6',

the smallest of all the molecules studied.
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3.4.2.2 Biphasic Transient Absorption Kinetics at 400 nm.

The excited state dynamics on display in the transient absorption decay traces of these

dendrimers at 400 nm are similar to those acquired at 590 nm, but important differences

are nonetheless observed. Each of the T A traces collected at 400 nm (for all dendrimers

except BBOV6+) not only exhibited long-lived absorbances, but these features all had

similar values of /1A. This suggests a common origin for this feature in each of the

different molecules, irrespective of dendrimer generation, and given the similarity of this

absorbance to that observed at 590 nm this signal is almost certainly also due to the MV+·

species, which is known to strongly absorb at both of these wavelengths. l These quasi

stable absorbances are each preceded by a more rapid exponential decay process of 7: - 30

- 40 ns, values that are similar to what was observed at 590 nm. While there is little

evidence of a trend across molecules in these decay processes at either wavelength, the

lifetimes are somewhat consistent within each molecule at both wavelengths, and though

attempting to quantify this data is a questionable practice for previously-stated reasons,

these similar decay rates seem to provide limited evidence to support the assertion that

the rapid exponential decays at 400 and 590 nm are in fact both due to the same kinetic

process. Given the wavelengths at which this occurs and the variability of the molecules

that exhibit this similar behavior, it is reasonable to assume that this process is due to loss

of MV+· cation radical absorbance. In the absence of compelling evidence one can

speculate that this decay process could be due to reverse hole transfer or by quenching via
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an undesirable side reaction, though it could also be the result of electron-hole

recombination from a doubly- or triply- reduced acceptor core.

This hypothesis has thus far been considered in the absence of the transient absorption

decay traces of BBOV6. in CH3CN. As shown in Figure 3.10, the rate of decay of the

initial "short-lived" component at 400 nm is more than 50 times slower for BBOV6.

relative to these properties in BB2V6•. This anomalous decay lifetime could have two

possible origins: either (a), given that the long-lived absorbance of BBOV6. persists for

minutes at a time, perhaps an increase in the lifetime of the initial rapid decay of the

MV·· could and should be expected; or (b), this decay process is due to a second species

that is present in BBOV6. but not any of the other dendrimers. Of these two options, (a)

initially seems to present the most reasonable and plausible scenario. However, if this

signal is indeed due to an attenuated rate of quenching of the MV··- cation radial, then,

based on the data collected for the other dendrimers, the same exponential decay process

should be observed at 590 nm; the data clearly demonstrate that this is not the case.

Therefore, either this invocation of an attenuated rate of decay is incorrect, or the

assignment of the decay process at 400 and 590 nm as being due to MV·· was incorrect.

For these (and other) reasons, in attempting to explain the unusual photophysics of

BBOV6., the assignment of this absorbance as being due to a hypothetical second excited

state must be carefully considered.
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3.4.2.3 Electron Transfer in BBnV6+ and NBnV6+.

Up to this point, the role of the dendrimer arms as electron donors and their

involvement in the excited state dynamics of the tris(methyl viologen) core has been

ignored. While the Discussion has thus far focused on the generation of the MV+' cation

radical species, it is important to remember that the hole transfer required to produce this

molecule results in the oxidation of some donor group, and thus the nature of this species

before and after photoexcitation must factor strongly into the longevity of the charge

separated state. By discussing the dynamics of electron transfer in the dendrimers of the

1" to 3'd generations, this Section aims to determine what property of the BBOV6+ (and to

a lesser extent, NBOV6+) dendrimer is responsible for yielding such unique and atypical

excited state dynamics upon excitation of the tris(methyl viologen) core.

Formation of the MV+' cation radical in these dendrimers is accomplished by electron

hole transfer via the oligomeric backbone to an appropriate hole acceptor. Examining the

structure of the dendrimers of 1" generation or greater, we see that each molecule is

composed of two types of structural moieties: "benzyl ether" (Le. 1,3

bis(methyleneoxy)benzene) groups (BnO) and naphthalene or benzene capping groups

(Np or Ph). Either of these functional groups can act as an electron donor source for the

tris(methyl viologen) core to yield a charge separated biradical state, resulting in the

formation of either a [MV+·/BnO+·] or, eventually, a [MV+'/Np+'(or Ph+')] pair. Both of

these species can be produced in significant quantities, as the driving force for electron

transfer in these donor-acceptor pairs is quite similar (fJ.CO = 2.0 and 1.8 eV,
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respectively),7 which also means that the BnO'· species can oxidize the terminal naphthyl

groups due to the slightly positive driving force for this process (/),(;0 = 0.2 eV). These

electron transfer processes were previously reported to be rapid enough to completely

quench the typically strong fluorescence from the 1,3,-bis(methyleneoxy)benzene

groups,14 and this appears to be supported by the lack of fluorescence in the BBnV6.

dendrimers in this study.

The proposed electron transfer kinetics of these dendrimers is shown in Figure 3.14.

Rapid electron transfer initially yields a MV'· cation radical and an oxidized donor group

on the vicinal1,3,-bis(methyleneoxy)benzene unit, which can then accept an electron via

back ELT to quench the MV'· species, or can accept an electron from a neighbouring

BnO group. The latter pathway uncouples the radical within the MV'· species from its

hole by causing hole migration out onto the dendrimer arm, causing long-term charge

trapping within the tris(methyl viologen) core. Furthermore, this migrated hole is

susceptible to interception by contaminants in solution.

This kinetic scheme affords some insight into the dynamics on display in the laser

flash photolysis results. The absorbance observed at both 400 and 590 nm in the 1"- 3ed

generation dendrimers is, as previously stated, due to formation of the MV'· cation radial

(Le. a [MV'·/BnO'·] pair). Thus, the rapid exponential decay that follows is ostensibly

due to radical/hole recombination by back ELT from the MV'· to the BnO'· group,

whereas the long-lived absorbance accrues from migration of the hole away from the

dendrimer core. Providing that the solvent is sufficiently pure and that the solution is free
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Figure 3.14 Hole migration via sequential ELT processes upon photoexcitation of the
tris(methyl viologen) core in NB2V6+ (remainder of structure omitted for
the sake of clarity). Hole quenching side reactions are not shown but are
possible from all BnO+· and Np+· states.

of oxygen, the resultant charge separated species should persist until hole migration back

towards the core re-enables radical/hole recombination. While the [MV+·/Np+·] pair does

lie at a slightly lower potential than the [MV+·/BnO+·] pair, the difference is sufficiently

small that some amount of reverse electron transfer will occur over time, eventually
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leading to quenching of the reduced core and relaxation of the chromophore to the

ground state. Thus, we see that while the excited state behavior of these dendritic

chromophores is initially determined by the methyl viologen units in the dendrimer core,

it is the interplay of ELT processes in the BnO and Np groups on the dendrimer arms

that drives the excited state dynamics of these molecules. Importantly, this observation is

key to understanding the rather more complex dynamics observed in BBOV6+.

3.4.2.4 The Energy Gap Law in Electron Transfer in BBOV6+.

BBOV6+ stands apart from the other dendrimers in this work in that the dendrimer

arms of this species lack both naphthyl and 1,3-bis(methyleneoxy)benzene units,

consisting instead of a 2-carbon aliphatic bridge terminated by a phenyl group (Figure

3.6). Therefore, the fact that 266 nm excitation of BBOV6+ yields MV+· cation radical

transient absorbance indicates that, just as with the other dendrimers, electron transfer

also occurs from the phenyl groups to the core. What is also clear from the results of laser

flash photolysis observed at 590 nm is that there is little to no decay of this MV+· state on

the - 50 !AS timescale being probed by the spectrometer, indicating that there is some

unique feature of this zeroth-order dendrimer that is preventing charge recombination

and subsequent relaxation of the chromophore.
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The laser flash photolysis results acquired at 400 nm demonstrate an initial decay

process of r = (13.2 ± 0.4) fols, and as it has already been stated that this is not due to the

MV+· cation radical, it stands to reason that this feature is due to the dendrimer arm of

BBOV6+; more precisely, it must be due to the decay of a substituted benzene cation

radical, which are known to absorb at and around 400 nm.24-26 The lack of any other

decay processes at 400 or - importantly - at 590 nm indicate that this transient species is

being quenched by something other than the ostensibly monoreduced tris(methyl

viologen) core, and in the absence of any other suitable functional groups on the

dendrimer itself, it would seem that this quenching is likely due to a scavenger species of

some sort (such as oxygen, or a solvent contaminant/impurity such as acrylonitrile). As a

result of this quenching, the electron that was transferred to the dendrimer core can no

longer undergo radical/hole recombination, and thus it remains trapped on the methyl

viologen moiety until such a time as an opportunistic quencher (likely O2) can scavenge

this radical. Indeed, a decrease in MV+· absorbance was seen in NB1V6+in high-purity

solvent relative to that seen in lower-quality solvent (Figure 3.15), which would imply

that a reduction in the rate of quenching by radical scavengers leads to less excited state

quenching and permits more back ELT to take place, reducing the amount of MV+· and

thus also the absorbance intensity detected by the UV-Vis spectrophotometer. It has been

reported that benzene and/or alkylbenzene cation radical is susceptible to deprotonation

by a suitable base; it is likely that this is a contributing factor in the interception of this

radical species by opportunistic scavengers.
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Brand CH3CN (bottom) following 266 nm excitation at (298 ± 3) K.
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While this interpretation of the results explains the unusually long-lived absorbance of

the MV-· cation radical, is not yet clear why this species is observed to decay

exponentially in all dendrimers, save for BBOV6_. That there exists a barrier to back ELT

in the BBOV6- species that is present in neither the 1st
- 3'd generation dendrimers nor in

NBOV6- clearly indicates that this is effect is due to a combination of (a) the presence of

terminal benzene groups and (b) the complete absence of 1,3-bis(methyleneoxy)benzene

or terminal naphthalene units. Recall that the similar values of t1CO for electron transfer

in the latter two groups enable hole migration and, as a result, are responsible for the

biphasic kinetics observed in the larger dendrimers at 400 and 590 nm. It is therefore

interesting to note that the oxidation potentials of naphthalene and benzene versus SeE

are 1.78 and 2.48 V, respectively.26,27 Therefore, whereas there is a positive driving force

of 0.2 eV for oxidation of a terminal naphthyl group by BnO-·, comparison of the

oxidation potentials indicates that oxidation of a terminal phenyl group under the same

conditions is energetically uphill by -0.5 eV; this in turn encourages MV-· quenching by

back ELT. While the oxidation potential of benzene is significantly higher than that of

naphthalene, it is important to note that its ionization potential of 9.25 eV,28 while very

large, is still below the 10.8 eV threshold reported for oxidation by MV-·.1

What is even more important than this interpretation of the data is that the resultant

benzene cation radical lies at a higher potential than either the naphthalene or 1,3

bis(methyleneoxy)benzene cation radicals relative to the ground state. Electron transfer to

the MV2- group by a benzene unit yields an excited state whose potential energy surface
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(B) Ph+-/MV+·

Figure 3.16 Illustration of potential energy surfaces corresponding to possible reaction
pathways of the BBnV6+ and NBnV6+ dendrimers. (a) The [Ph+o/MV+o]
charge-separated state lies in the inverted region, attenuating the rate of
relaxation by charge recombination. The [BnO+o/MV+o] and [Np+o/MV+o]
PE surfaces are not as nested and can easily undergo exchange with each
other. (b) Deprived of a facile back-reaction pathway, the [Ph+o/MV+o]
state is quenched interrnolecu1arly.

lies at higher energy and further into the inverted region (Figure 3.16). Therefore, the

attenuation of back ELT in BBOV6+ is as predicted by energy gap law, whereby the rate of

decay of an excited state is inversely proportional to the driving force for this process (as

stated in the Introduction). This is due to the lack of coupling between the potential

energy surface for the excited state and an appropriate acceptor mode of a lower-lying
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potential energy surface. Thus, while the Np+· and BnO+· species can undergo ELT

between themselves and, to a small degree, with the MV+· unit, back ELT from the Ph+·

species is energetically disfavoured. As a result, the benzene cation radical (which is a very

strong oxidant) preferentially reacts with other radical scavengers in solution, trapping the

radical in the tris(methyl viologen) core.

3.4.3 Emission in NBnV6+ Dendrimers.

Initially it was thought that all the dendritic compounds studied in this work were

non-emissive, and that is effectively the case on the timescales being probed by a steady

state spectrofluorometer. However, subsequent laser flash photolysis experiments have

shown that there is indeed an emission observed in the NBnV6+ (n = 1 - 3) dendrimers

when the solvent being used is sufficiently pure, though this signal could not be time

resolved as it was convoluted in the laser pulse. It is nonetheless possible, in concert with

the results previously discussed in this document, to glean some insight into the excited

state behavior of this class of compounds from this brief luminescence.

These dendrimers are composed of methyl viologen, 1,3-bis(methyleneoxy)benzene,

and naphthalene units, all of which yield emission when in the appropriate environment.

However, it has been shown previously that neither the MV2+* nor BnO* species are

fluorescent in these types of dendrimers, as the rapidity of electron transfer preemptively

quenches these luminescent states; therefore, the emission observed in the NBnV6+

dendrimers originates from the terminal naphthalene groups. MV2+ excitation rapidly

causes ELT from the vicinal BnO, and the resultant electron hole propagates away from
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the dendrimer core towards the terminal naphthyl units. Examination of the

thermodynamic driving force for each ELT step shows that this is possible because

transfer through the BnO units to the naphthyl-rich periphery is energetically downhill

by -0.2 eV. The end result is that excitation of the tris(methyl viologen) core in these

dendrimers causes rapid production of the Np·· species, which is ostensibly responsible

for the emission seen in these dendrimers; the lack of observable emission in any of the

benzyl-capped BBnV6. dendrimers seems to support this observation as well.

Furthermore, using a high-quality spectroscopic grade solvent will reduce radical

quenching rates and extend the lifetime of the Np·· species, enhancing the opportunity

for emission to accrue from this state. However, the clear lack of emission in the NBOV6.

molecule shows that Np·· is not the source of fluorescence either, as it would stand to

reason that this species should yield the greatest emission intensity relative to its long

lived transient absorbance intensity (which is due to the MV·· cation radical), owing to

the fact that the lack of 1,3-bis(methyleneoxy)benzene groups attenuates back ELT from

the Np·· to the MV·· unit in Oth generation dendrimers relative to the larger molecules.

An insight into this dilemma is provided by a slight modification of an experiment

carried out on BBOV6., wherein ground state absorbance spectra ofNB1V6. were acquired

in both low-quality and high-quality (Figure 3.15) grades of CH3CN immediately

following excitation by a 266 nm excitation source. The absorbances at 400 nm and -600

nm observed in reagent grade CH3CN are a clear indication of formation and persistence

of the MV·· cation radical due to trapping of the injected electron inside the tris(methyl
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viologen) core, which in turn is due to hole quenching, made possible by the presence of

opportunistic radical scavengers in the low-quality solvent. This is in stark contrast to the

spectra acquired in high-quality spectroscopic grade CH3CN, wherein a dramatic

reduction in the intensity of MV+· absorbance is observed; in fact, this data was collected

following 25 consecutive 266 nm pulses from an Nd:YAG excitation source. Simply put,

the comparative lack of contaminants in the high-quality solvent neither causes radical

quenching nor attenuation of radical/hole recombination, reducing the lifetime of the

MV+· species and accordingly decreasing its absorbance at 400 and -600 nm.

The spectra acquired in high-quality solvent differed from those acquired in the low

quality solvent in another important way: the absorbance feature that is centred at 475 nm

in the high-quality solvent spectra is unique to this environment, and did not manifest

itself in the other solvent system under any circumstances. Clearly, the solvent

dependence of both the new absorbance band and the rapid emission indicates that these

are spectral markers for another transient species formed in the NBnV6+ (n > 0)

dendrimers, one whose lifetime appears to be sensitive to radical quenching processes.

These results are ascribed to formation of a naphthalene dimer cation radical (NP2+· in

Figure 3.17), which is known to exhibit spectral features that strongly resemble those

observed in this study and have been observed in other naphthalene-containing

dendrimers.7.29.31 This complex is formed from the combination of a naphthalene cation

radical species with a nearby naphthalene group. Assigning the emission to this complex

logically precludes their detection in the benzene-capped dendrimers, and upon
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Figure 3.17 Electron transfer pathway and naphthalene cation radical dimer formation
in NB1V6+(majority of structure omitted for simplicity).

consideration of the structure of NBOV6+ it becomes apparent that such a small structure

cannot easily reorganize itself to accommodate facile dimerization of the terminal

naphthalene functionalities. Indeed, it has been previously demonstrated that when
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combining to form an excimer, naphthalenes preferentially arrange themselves to yield a

n:-stacked symmetrical dimer;29,32 this configuration cannot be readily accommodated by

the short dendrimer arm lengths ofNBOV6+.

It should be noted that naphthalene cation radical fluoresces and also yields absorbance

features at 390,485, and 570 nm at 77 K in a 1:1 (v/v) 1-chlorobutane/2-methylbutane

mixed solvent (though the 570 nm signal disappears upon warming).30 Nonetheless, the

lack of observable fluorescence or -475 nm absorbance in NBOV6+ confirms that Np+·

does not playa role in the spectroscopy of these compounds.

3.5 Conclusions and Future Work.

This research reaffirms the ability of methyl viologen units to act as electron acceptors

in synthetic antennae such as dendrimers. These groups are resistant to deleterious side

reactions and can store an electron for long periods of time, and the large redox potentials

required for ELT to occur drives hole migration and further chemistry within the

dendrons. However, this reactivity is initiated by excitation of the MV2+ molecule itself,

rather than excitation of the chromophores of the dendrons; this potentially limits the

utility of antenna based upon this design to applications where the excitation source is

highly-energetic UV light, as it is blind to longer (visible) wavelengths. Nonetheless,

other results that were referenced in this research (such as the PTZ-Ru polypyridyl-MV2+

polymers of Meyer et. al. 4) demonstrate how these molecules can be incorporated into

polymeric structures to assist in both ELT and ENT processes. Furthermore, previous

work by Ghaddar et. af.? and the research presented in this Chapter demonstrate that ELT
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can indeed proceed at reasonably fast rates in small uphill steps, exemplified by the -0.2

eV barrier to Np -t EnO hole transfer. This suggests that it may be possible to widen the

window of available wavelengths for excitation through the judicious choice of electron

donors and acceptors within a multichromophoric dendrimer.

The ability of a tris(methyl viologen) core to accept an electron is clear. What is less

certain is (a) whether each MV2+ is capable of simultaneously accepting and storing one

electron, (b) whether the electron is trapped on a single MV2+ or if there is potential for

site hopping, and (c) whether any MV2+ acceptor is capable of storing more than one

electron at a time. Power dependence studies akin to those used in previous work7 would

be a logical first step in ascertaining whether it is possible for multiple electron injections

to form any doubly-reduced methyl viologen units, while electroanalytical techniques may

determine the number of electrons such a tris(methyl viologen) core could accept. The

potential for these methyl viologen arrays to function as multielectron trap sites warrants

further investigation for scientific interest as well as the possibility of insight into design

of multielectron reaction centres.
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Appendix A. Qyantum Mechanical Description ofTransitions Between States.

Al The Schrodinger Equation.

Perhaps the most fundamental equation in quantum mechanics is the Schrodinger

equation (equation [A.l]), which invokes the idea of a wavefunction qJ that contains a

complete description of a system (in this case, a molecule) and the Hamiltonian operator

H, which in turn is comprised of the sum of operators that make up the kinetic and

potential energies of the molecule (equation [A2]):1

HqJ = EqJ [A.l]

[A.2]

While the classical kinetic energy operator f is based on the classical physics relation

of momentum and mass (T = L), Schrodinger instead applied a momentum operator
2m

that was appropriate for systems described by wavefunctions (equation [A3]),

[A.3]

Considering that the momentum portion of the Hamiltonian will be dependent on the

parameters of the atoms and the electrons of the molecule, this expression can be further

developed in terms of both the sum of kinetic energies of N nuclei of nuclear charge Z

described by coordinate vectors R and masses M N and the sum of kinetic energies of n

electrons described by coordinate vectors r and mass m:2
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[AA]

The potential energy function V(r,R) in equation [A.4] describes the forces involved

in the interaction of nuclei and electrons with each other within the molecule, and can be

expanded into a summation of all possible nucleus-nucleus, electron-electron, and

nucleus-electron interactions of the molecule (equation [A.S]):

[A.S]

The number of dependencies of the operator increases at an alarming rate with

increasing molecular size; thus, an exact solution of the Schrodinger equation is

impossible for all but the most simplistic quantum mechanical models.

A.2 Born-Oppenheimer Approximation.

Fortunately, an exact solution is rarely, if ever, necessary, because reasonable

assumptions and approximations can be made to simplif}r the computational burden of

determining solutions to this equation. Perhaps the most important of these

simplifications is the Born-Oppenheimer approximation/·J which arises from the

recognition that the masses of the nuclei are many orders of magnitude larger than the

mass of an electron, and on short timescales the significantly larger inertial moment
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effectively renders the motion of nuclei negligible relative to that of the electrons.

Therefore, the Hamiltonian can be separated into its electronic [A.6] and nuclear

components, yielding the electronic Schrodinger equation, [A.7]:

[A6]

[A7]

Given that nuclear motion is negligible on the timescale of electronic motion, the nuclear

coordinates R listed in the electronic energy and wavefunction in [A.7] are merely

parameters, and the wavefunction solutions of this equation can be further divided into

nuclear (Xv(R)) and electronic (IJl,CF,R)) wavefunctions (equation [A8]):

[A.8]

A3 Adiabatic Approximation.

While the B-O approximation has simplified the computational burden of solving the

Schrodinger equation, equation [A8] is still dependent on a large number of variables. At

this point, adiabatic theory is invoked to further simplify the wavefunctions.4 Simply put,

the adiabatic approximation states that so long as the rate of change of a Hamiltonian is

sufficiently gradual, then the wavefunction of the system will remain in its initial

eigenstate irrespective of the eventual total amount of change in the Hamiltonian.2os

Using the wavefunctions of [A8], elaboration of the Schrodinger equation using the
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expanded Hamiltonian of [A4] yields off-diagonal nuclear kinetic energy terms that can

be eliminated, reducing the summation of wavefunctions in [A.8] to a single term

(equation [A.9]):

[A.9]

Finally, the nuclear wavefunction X,(R)can be determined by the greatly simplified

expression [AID], corresponding to an equation where the potential energy term V(r,R)

is equivalent to the electronic energy Ee(R):

[AID]

While these equations are certainly easier to handle, the solution of the electronic

Schrodinger equation is still not trivial because of the complexity of the electronic

wavefunction. This is alleviated by treating the electronic wavefunction in terms of its

orbital ('l/J./r,R)) and spin ('l/J,CF,R)) components (equation [All]):
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A.4 Formation and Relaxation ofExcited States by Radiative Processes.

A.4.1 Absorption ofa Photon.

Sections 1.1 and 1.2 introduce a description of the probability - and thus the rate

constant - of a transition between two weakly interacting states as initiated by some

potential V or, more specifically, as initiated by the absorption of a photon. The

interaction of a photon with a molecule is a result of the coupling between the

electromagnetic field of the photon with that of the molecule. In the event that the

energy of this photon (hv) corresponds to the energy difference between two vibronic

states of energies E 1 and E2, the energy of the photon will be absorbed by the molecule

and the transition will proceed, resulting in the formation of an excited final state that lies

at a higher energy than the initial state from which it was formed. As per Einstein, the

rate for this absorptive process (R.A) is given in equation [A.12],6

[A.12]

where N 1 is the number of molecules in state 1 (the initial state), Pv is the energy density

of radiation with frequency v, and B l2 is the Einstein coefficient of absorption.

A.4.2 Spontaneous and Stimulated Emission of a Photon From an Excited State.

From this excited state there are two radiative (i.e. involving the release of a photon)

pathways for relaxation: spontaneous emission and stimulated emission.7 Just as a molecule

can accept photons of energy hv to yield an excited state, it can also decay from an excited
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state of energy E2' to a lower state of energy E I ' by releasing a photon of energy

E2 '- EI ' = tJ.E' =hv'; it is this ejected photon that is the origin of emission spectra, and

the rate ofgeneration of these photons (RSPE) is given in equation [A.l3],

[A.l3]

where A I2 is the Einstein coefficient of spontaneous emission, and N2 is the number of

molecules in state 2 (the excited state).

Spontaneous emission may be thought of as being the reverse of the mechanism of

photon absorption, but as equation [A.l3] demonstrates, the rate of emission by this

process is unaffected by the electromagnetic field of light and only depends on the

quantity of excited molecules populating state 2. Stimulated emission, on the other hand,

arises in situations where the energy supplied to the molecule by the electromagnetic field

of the light is quite large, and is shown to be a conceptual opposite of the process of

absorption by equation [A.14],

[A.14]

where B21 is the Einstein coefficient of absorption/stimulated emission, and is related to

the coefficient of absorption A by,9

[A.15]
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where c is the speed of light, n is the refractive index of the medium, and (v-3r' is the

inverse of the average energy value of v-3 of the emission. In situations where the energy

levels being described are non-degenerate, B l2 = B21 = B. (v-3r' can be evaluated as

'-3 -I (I I(V)dV)
(v)=-(I(V),)

f-v dv

[A.16]

where I is the intensity of emission in photons cm- l S-I.8.9 Just as absorption of a photon

required energy transfer from the electromagnetic field of the light to the molecule,

stimulated emission arises from a strong interaction of the EM field with the molecule,

which initiates energy transfer from the molecule to the field and results in ejection of a

photon.
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Appendix B. Laser Flash Photolysis Data.

B.1 Transient absorption decay traces from 365 - 510 nm and 520 - 650 nm
upon 355 nm excitation of RuDO in CH3CN solution at 298 K (450 ns
timescale, 5 nm increments, 2.325 nm slit width) .

..~ Equation y=A1*exp(-x/t1)+yO
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B.2 Transient absorption decay traces from 400 - 690 nm upon 355 nm
excitation of RuDO in a glass-supported PMMA film at 298 K (9.0 flS
timescale, 10 nm increments, 2.325 nm slit width).
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