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Abstract

Thi:; the:;is describe:; the development of an Attitude and Heading Reference Sy:;­

tem (AHRS) to sense three-dimensional orientation for collision avoidance control

in small un manned aircraft. Unmanned aircraft are currently restricted to flight in

designated airspace due to safety concerns of collision with manned aircraft. There­

fore. collision avoidance is necessary to ensure the safety of both aircraft. Technical

challenges. mainly in sensor limitations, restrict AHRS performance in attitude es­

timation during high-g maneuvers. Using sensor filtering techniques and a robu:;t

attitude representation, an AHRS :;uitable for colli:;ion avoidance is developed. Ac­

celeration di turbanees are reduced using estimates of non-gravitational accelerations

including centripetal acceleration and model-based acceleration to improve gravity

vector measurement during aircraft maneuvers. Simulation results with a variety of

maneuvers deemed challenging for most AHRS are given showing accurate attitude

estimates. Flight data from an existing commercial autopilot is compared with th

results of the AHRS to demonstrate the validity of the solution with real flight data.
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Chapter 1

Introduction

1.1 Background

Flight of small unmanned aircraft (sUA) is currently restricted to within line-of-sight

from specially authorized runways by TI:ansport Canada due to safety concerns of an

aircraft or ground collision. Part of the solution to these safety concerns is known as

sense and avoid. sUA must have the ability to sense obstacles and avoid them with

cvcry possible method of evasion, including self-destruction. The ability to sacrifice

the unmanned aircraft provide::; a unique advantage to sUA versu::; paramount survival

for manned aircraft during collision avoidance (CA).

sUA can perform high-g maneuvers in any attainable orientation. whereas human

pilots can become unconscious in situations where the acceleration approaches 5 g,

as stated in the work by Beaudette [1]. The advantage of sUA for maneuvering more

aggressively than manned aircraft is an encouraging point for CA. sUA can likely and

potentially avoid predicted collisions with less available response time than manned

aircraft.

There is a distinction made between airborne colli::;ion avoidance system::; (ACAS)



and airborne separation assurance systems (ASAS), intended for CA and self-separation

(SS), respectively. To maintain SS, rules governing right of way are applied. However.

CA is an emergency situation and any maneuver can be employed to prevent a colii­

son. Collision is defined as physical contact while separation has varying definitions

depending on the application. For example, the Traffic Collision Avoidance System

(TCAS) [2], is designed for commercial air traffic while FLARM [3] is intended for

smaller aircraft, in particular gliders, which can be in close proximity without danger

of collision. Most, if not all. of these systems are transponder-based and alert the

pilot to take action with some information about the threat. In some cases there are

guidelines for avoidance maneuvers. However. defining the quantitative distinction

between SS and CA is outside the scope of this thesis, but is discussed in a paper by

Van Gent et al. [4]. SS is intended to avoid CA encounters with a subtle maneuver or

course alteration. In the event of a CA encounter. s A require an automatic maneu­

vcr to avoid the intruder. The CA control requires an attitude and heading reference

system (AHRS) capable of providing accurate feedback throughout the maneuver.

The attitude and heading must be detected electronically and the nature of the

platform limits resources available in terms of size, weight, power consumption. and

cost. Making use of hardware that meets these criteria, the software is key to tracking

the attitude and heading despite sensor flaws or complex trajectories. Therefore,

existing methods for attitude and heading estimation, such as attitude representation

and filtering, must be tailored to the CA requirements of sUA.

1.2 Problem Statement

The goal of this thesis is to develop an AHRS that fulfil!:> automatic CA maneuver

sensor requirements for high-g motion in any orientation.



1.2.1 Technical Difficulties

Sensor limitations are the main difficulty in achieving an accurate attitude and head­

ing estimate. Gyroscopes have an inherent bias that requires integration, resulting

in an orientation error that grows with time, along with other sources of error such

as rate limitation, non-linearity, and crosstalk, though these arc less critical. The

bicu; integration error must be corrected with a non-integrating source of orientation

measurement, in most cases gravity and Earth's magnetic field. Accelerometers suffer

from similar sources of error as gyroscopes, but more importantly, non-gravitational

accelerations are a large disturbance to the measurement of gravity. Likewise, mag-

netic measurements are subject to disturbances in the local magnetic field.

The secondary difficulty in developing an AHRS specifically for CA is in the

mathematical representation of the attitude and the smooth resolution of the vector

measurements into this attitude representation.

These difficulties exist for any AHRS development. For CA maneuvering, it is

advantageous that as few restrictions as possible be placed on the types of available

maneuvers. Technically, this can be interpreted as any trajectory possible with the

airframe. or any possible orientation and rate. Therefore, two aspects are crucial: the

attitude representation and removing non-gravitational accelerations, while remain-

ing within sensor saturation limits. However, the latter is considered a low concern

as the sensor range is generally sufficient. There is also a connection between the

attitude representation and removal of non-gravitational accelerations involving the

mechanization 1 of the vector attitude measurements. The vector attitude measure-

ment must be independent of the orientation which is not the case with many common

methods, e.g. simple trigonometric calculation, but this issue has been addressed in

I Mechanization is a term originating from gimballed INS, which are mechanically stabilized in
the inertial frame, essentially what is done mathematically in a strapdown INS.



~pacecraft attitude determination and solutions can be applied here.

In summary. the main technical difficulties are:

1. Gyroscope bias integration error,

2. Gravity measurement obscured by non-gravitational accelerations,

3. Magnetic field distortions affecting compass measurement, and

4. Resolving gyroscope and vector measurements into a common, unique attitude

representation.

1.3 Expected Contributions

To achieve the goal of creating an AHRS for CA applications in sUA. the previ­

ously stated technical challenges must be overcome. The expected contributions from

solving these technical challenges include the integration of various existing meth­

ods in filtering, attitude representation, and disturbance estimation. This integration

requires the following original work:

1. Quaternion-based Extended Kalman filter (EKF) integrated with vector atti­

tude measurements using logical constraints to ensure reliability,

2. Derivation of Jacobian matrix for quaternion rate integration with gyroscope

biases in the state vector.

3. Application of centripetal and model-based acceleration correction for an im­

proved estimate of the gravity vector, and

4. Development of a closed-loop simulation to verify results.



1.4 Organization

This thesis is organized as follows: in Chapter 2, an overview of the literature is

provided regarding AHRS development, mainly in terms of attitude representation,

filtering techniques. and aiding sources. In Chapter 3, the theory required to create

an AHRS is presented, beginning with an introduction to the sensors used, then an

overview of the mathematics behind the quaternion representation of aircraft attitude

and EKF. and finally an overview of the practical constraints used in the system. The

preparation and results from MATLAB simulation, which comprise the majority of

the results, arc found in Chapter 4. This chapter also contains the results from using

recorded flight data and compares the results with those of another autopilot. The

conclusions from the AHRS development, contributions, and future work are given in

Chapter 5.



Chapter 2

Background and Related Work

2.1 Attitude Representations

An extensive review of modern attitude representations is given in the survey paper

by Shuster [5], a summary of which follows.

Rotation matrices are the standard for comparison with other representations.

Rotations are represented by 3 x 3 matrices. therefore dimension 9, and form what is

called the special orthogonal group in 3 dimensions, or SO(3) as referred to in related

literature using this attitude representation, such as the work by Mahony et al. [6]'

and also applied to sUA by Euston et al. [7]. There are various methods for composing

rotation matrices, one popular method is direction cosines. With this method, the

resulting rotation matrix is usually referred to as a direction cosine matrix (DCM).

This is a common attitude representation used. for example, by Edwan et al. [8].

The most familiar attitude representation is Euler angles. This representation

has minimum dimension 3 but is computationally burdensome compared to rotation

matrices and singularities exist for certain rotations. Hence this representation is

rarely used for attitude tracking. Euler angles are the representation of choice when



it comes to human interpretation of the attitude and, as such, are used in all attitude

plots in the subsequent chapters.

Similar to Euler angles is the Axis-Azimuth representation which is defined as a

rotation about an axis. The representation uses 3 angles: two to define the elevation

and right-ascension of the axis, respectively, and a third angle to define the rotation

about that axis. This representation is of particular use in application to spinning

spacecraft and is described by Wertz [9]. This representation is interesting as a unique

geometric interpretation for CA may be possible. Another parameterization of the

Axis-Azimuth representation is a vector t defined in the reference frame where the

magnitude t defines the angle to be rotated about the axis to align the frame of

interest into the reference frame.

Another attitude representation is known as Euler-Rodrigues symmetric parame­

ters or, more commonly. the quaternion of rotation. Altmann [10J gives an interesting

account on the origins of this representation. The quaternion of rotation is dimension

4, which is the minimum dimension required to avoid any singularities. Besides this

advantage of compactness over rotation matrices, quaternions of rotation al '0 feature

a simple composition rule for successive rotations and have only one constraint ver­

sus six constraints for rotation matrices. That is, the quaternion of rotation must

have a total magnitude of unity, whereas rotation matrices must maintain orthogo­

nality. Therefore, the constraint is much easier to impose. Due to these qualities, this

is the representation used in Chapter 3 and also by Bar-Itzhack and Oshman [11],

Choukroun et al. [12]. Hall et al. [13], and Marins et al. [14], in each of which the

quaternion is a main aspect of the work. In terms of the vector t for the Axis-Azimuth

representation. a quaternion representation can be derived as in Equation 2.1, from

Section 3.6.4.1 of Titterton and Weston [15].



qo cos(t/2)

Q= ql (t,jt)sin(t/2)
(2.1)

q2 (ty /t)sin(t/2)

q3 (tz /t)sin(t/2)

where tx, ty,tz are the component~ of the angle vector t.

There are also some variations on quaternions of rotation such as the Gibb~ vec­

tor, in which the normalization constraint is implicit and the dimension reduced to

3. However, these variations result in more complication than the Euler-Rodrigues

symmetric parameters and are excluded here.

Shuster [5] also goes on to describe the attitude kinematics for each representation.

This is the relationship between the temporal derivative of the attitude representation

and the angular velocity, which is required for integration of the gyroscope rates into

the attitude e~timate. In summary. the quaternioll of rotation representation i~ eho~en

for use in Chapter 3 as it has the least restriction versus any of the other attitude

representations.

2.2 Filtering Methods

To reduce error in the attitude estimate, regardless of attitude representation. filtering

must be applied. Filtering, in this contell.'t, refers not only to the reduction of noise

but the fusion of attitude estimates from various sources. In general, these sources

include a high-rate attitude estimate from angular rate integration and a low-rate

attitude estimate from a non-integrating ~ource. AHRS and INS have long benefited

from the work of Kalman [16]. who introduced the Kalman filter. The Kalman filter

generates a statistically optimal estimate of the state of a system given a linear model



of the system dynamics and noisy measurements of the output. A block diagram of

the linear Kalman filter is shown in Figure 2.1 and is from Appendix A of Tittertol1

and Weston [15].

Random inputs
(v,w)

(y)

(51)

Figure 2.1: Block diagram of linear Kalman filter.

In terms of Figure 2.1, the system under consideration is assumed linear and

contaminated by Gaussian noise w. The output of the system y is a linear combination

of the state vector x with additional Gaussian noise v. The Kalman filter uses a

model of the system with knowledge of the system and measurement noise tatistics

(in the form of covariance matrices Q and R, respectively) to generate an estimate

of the state x. The output is predicted using the state estimate and compared with

the measurement. The difference is weighted by the Kalman gain to provide a best

estimate correction to the estimated state vector in a least-squares sense. The Kalman

gain is updated with each time step according to the calculated process covariance P.

Further details of the Kalman filter equations are given in Section 3.2.3 which covers



the EKF, a non-linear e},.'tension of the Kalman filter.

The attitude kinematics, which compose the system model for an AHRS filter,

are generally non-linear. Therefore, non-linear filtering methods must be considered.

A survey of non-linear filtering methods is given by Crassidis et al. [17], from which

a summary of relevant points follows.

The EKF is the most common non-linear estimator. It works much like the linear

Kalman filter described above. except the system model is linearized with a first­

order approximation using the current state estimate. Variations of the EKF are also

common, depending on the application. For example. the multiplicative EKF which

represents the attitude as the product of an attitude estimate and a small deviation

from that attitude, the advantage being that the deviation cannot reach a singularity

as it is small. This method was used, for example, in the work by Murrell [18] for

NASA. Many of the variations relate to how the state vector is chosen, but the most

straight-forward method is to simply include a non-singular attitude parameterization

in the state vector, as done in Section 3.2.3.

Another common attitude determination method is known as QUEST and was

introduced by Shuster and Oh [19]. This method determines the attitude based on

vector measurements and is similar to the method used in Section 3.2.2.2 for the non­

integrating measurement. The method was later extended to a filter by Shuster [20]

for when an estimate is required over a period of observations rather than an instant,

but the Kalman filter has seen more use in practice.

Among the remaining non-linear filtering methods of interest are the Unscented

Kalman Filter (UKF) and Particle Filters (PF). The UKF is based on the principle

that it is easier to estimate a Gaussian probability distribution versus a non-linear

function. This method has seen some popularity in AHRS development such as the

work by Pourtakdoust and Asl [21] and Huimin and Wenyong [22], which are re-

10



cent attitude filters based on the UKF. PF are methods that have come about from

increased availability of computational power: they have the advantage of being op­

timal estimators for both non-linear and non-Gaussian systems. This method has

been used for attitude determination, for example, by Cheng and Crassidis [23]. The

disadvantages of PF include computational burden and complex implementation. As

mentioned in the introduction, the UKF was considered, but the performance was

found to be nearly identical to that of the EKF, which was chosen to reduce imple­

mentation complexity.

Crassidis et al. [17] describes some other non-linear filtering methods in the survey

paper, which are not mentioned here, but the conclusion of the paper is that the EKF

is still the standard for attitude determination. As the focus is not to improve filtering

methods but improve performance during CA maneuvers, the standard quaternion­

based EKF was chosen as the core of the AHRS.

2.3 Model Aiding

In recent years, aiding of inertial sensing with dynamics modeling has bccome a pop­

ular research topic, particularly for ground and surface marine vehicles, which have

more motion constraints than aircraft. For example, under normal operation a car can

only travel in the direction the tires are pointing. it cannot move sideways. A general

purpose INS can report motion perpendicular to the tires from drift or acceleration

disturbance, or vertical motion despite the vehicle being on the ground. If the vehicle

dynamics were considered, this rcported motion could be constrained. An aircraft is

not constrained in any direction of motion, but is governed by certain dynamics which

can be estimated with a model to improve navigation performance.

One of the first papers specifically on INS aiding with aircraft dynamics is by

11



Koifman and Bar-Itzhack [241. These authors used a full aircraft dynamics model and

INS separately and used an EKF to correct the errors in each from the difference in

the two estimates of the position, velocity, and attitude. The paper reports success

in improving the overall performance of low-grade INS. A similar paper, also report­

ing successful INS improvement, focusing on underwater vehicles was published by

Hegrenaes et al. [25]. Another similar paper was written for land vehicles by Ma et al.

[26]. Using a full dynamics model for AV with low-cost sensors was described in a

paper by Bryson and Sukkarieh [27] with promising simulation result:,;.

Embedded vehicle model aiding where the model is part of the EKF was considered

in a paper by Vasconcelos et al. [28]. The authors report equivalent success in using

the embedded model versus external aiding with the advantage of a computational

savings by including the INS states in the model filter.

Use of a full dynamics model in real-time requires a lot of computational power and

for AHRS alone. a full model is not necessary. Euston et al. [7] use a first-order model

to estimate angle of attack dynamics based on pitch rate. This i:,; a similar approach

to the model aiding used in Section 3.2.2.4 to estimate non-gravitational acceleration

using elevator input instead of pitch rate. It may be possible to estimate angular

rates if necessary, but non-gravitational acceleration estimation is the most valuable

aspect of model aiding to develop an AHRS for CA. However, model aiding requires

customization for each application, depending on the airframe and environment. This

requires previous system identification or on-line identification which identifies the

model parameter:,; during flight.

12



2.4 AHRS Development

AHRS refers specifically to a system to detect the attitude, or pose, of an aircraft,

and the heading. This differs from an Inertial Navigation Systcm (I S) as only an

estimate of the attitude and heading is made and there is no extension to position and

velocity. Modern AHRS are referred to as strapdown, meaning the sensors are rigidly

attached to the platform and the inertial frame is determined mathematically. In

the past. gyroscopes were mechanically stabilized in the inertial frame. Development

of an AHRS specifically for CA has not been done before, but existing AHRS may

already suffice for CA. Many high-cnd AHRS are used in military applications, such

as missile guidance, and arc not available for comparison. It is likely that they 'xceed

the requirements for CA. However. the cost of these high-end AHRS is very high and

prohibitive for low-cost sUA. The low-cost AHRS make use of filtering to estimate

gyroscope biases and correct errors to offset the relatively low accuracy of the sensors

used. The accuracy of the AHRS estimates in the low-cost case varies depending on

the implementation and sensor quality.

A basic AHRS design is described by da Paixao et al. [29] which uses DCM, or

rotation matrix, for attitude representation and is implemented in hardware. The

authors do not mention acceleration corrcetion, and only desktop IMU re 'ults arc

given. These results are not indicative of real flight due to the absence of constant

non-gravitational accelerations from aircraft maneuvering.

Another design similar to that described in Chapter 3 is outlined by Guerrero­

Castellanos et al. [30]. Quaternions are used but with a multiplicative EKF which

considers small deviations in attitude. Again, no mention was made of acceleration

correction, and the results are not representativc of a CA maneuver.

Gebre-Egziabher et al. [31] describe both a Euler angle and quaternion based

AHRS with good results. These authors use a Global Positioning System (GPS)

13



batied attitude determination sytitem as an aiding tiource. The GPS batied attitude

determination is noisy and requires a larger airframe to separate the antennas to

increase the resolution between the GPS measurements and is therefore not applicable

to sUA.

Two more AHRS designs are described by Munguia and Grau [32] and Batista

et al. [33]. The first is quaternion-based using two EKF: one for updating attitude

kinematics and another for estimating gyroscope biases based on the error. The re­

tiultti do not indicate a truth measurement for attitude and are not really indicative

of the performance. The other AHRS is unique as it lacks an attitude representation.

The sensor measurements are filtered directly, and the attitude is calculated from the

filtered sensor measurements. This method avoids the problems associated with atti­

tude representation such as singularities, but there is no focus on attitude estimation

during high-g maneuvers. The experimental results are based on a calibration device

and they are not conclusive for CA.

Finally, Ryan and Miller [34] describe the development of an AHRS as a re­

placement for high-rate tiem;orti for a gimballed camera system. They do not have

many results of the actual AHRS performance, and the application is not for aircraft.

However, the focus on using a low-cost AHRS as a replacement for more expensive

high-rate sensors is in line with the focus of CA for sUA. The authors conclude that

they are able to meet the performance requirements of the gimballed camera with a

significant reduction in cost.

Other AHRS detiigns exitit, but some are commercial productti and not described

in academic literature. However, it b clear that many authors do not contiicler the

effects of high-g maneuvers on AHRS performance. Currently, much of the focus is

on optimizing attitude representation, improving filtering methods, or developing a

new configuration of these two or more methods. This can result in a reduction of

14



theoretical error but, for high-g maneuvers using MEMS-based sensors, the numerical

accuracy is unimportant compared to reducing error during significant motion. There­

fore. the use of the quaternion attitude representation and EKF, which are proven

AHRS methods, is coupled with non-gravitational acceleration estimation techniques

to reduce the error during these maneuvers. The theory and specification of the math­

ematics behind the AHRS developed in this thesis is presented in the next chapter.

15



Chapter 3

Theory

This chapter is organized with a brief introduction followed by a detailed descrip­

tion of the equations required for an ARRS. The innovations required to satisfy the

requirements of CA are described in the final sections.

3.1 Preliminaries

In this chapter. the mathematical framework and description of the sensors required

to create a functional ARRS are described. The following sections up to Section

3.3 contain previous work developed by others, summarized here using consistent

notation. As this thesis is focused on creating an ARRS for use in CA, many of

the design decisions in terms of attitude representation and acceleration correction

are directed towards this end. The focus is on using low-cost sensors with the best

possible software algorithms to create a robust solution to the sensor requirement for

CA. An overview of inertial sensors. notation. and conventions follows.

16



3.1.1 Inertial sensors

Two types of true inertial sensors are used for most AHRS: gyroscopes to sense angular

rate, and accelerometers to sense acceleration. The term gyroscopes implies angular

rate sensors, contrary to the traditional differentiation between rate gyroscopes and

gyro~copes which reported attitude angles. The two are discussed further in the

following subsections, where thi~ information is re~tated from Titterton and Weston

[15]. These sensors alone cannot give a reliable heading. Therefore. it is necessary to

include a magnetometer to create a complete AHRS. Technically, the magnetometer

is not an inertial sensor, but is often included as part of an IMU. The Micro Electro­

Mechanical Systems (MEMS) grade of sensors is considered here, as the cost of high­

end sensors which operate on different principles is usually prohibitive for use in sUA

outside of military application~.

3.1.1.1 MEMS Gyroscopes

MEMS gyroscopes operate on the principle of the Coriolis acceleration effect on a

vibrating proof mass, which is given by Equation 3.1.

(3.1)

where V is the vclocity and [2 is the rate of rotation around the sensing axis. This

equation i~ illustrated in Figure 3.1.

The proof m~s i~ in vibrating oscillatory motion along an axb perpendicular

to that of the sensing axis. From the cross product in Equation 3.1. the coriolis

acceleration is perpendicular to both the sensing axis and the direction of motion.

The acceleration is detected and with previous knowledge of the velocity of oscillation.

the rate of rotation can be calculated.

17



Rotation-O

LinearMotion-V

Coriolisacceleration- acmi = 2Vx 0

Figure 3.1: Diagram of Coriolis force cross product.

This simple design is susceptible to external disturbances. however, and in most

modern designs a balanced tuning fork design is used. This design uses a balanced

oscillator to reduce the effect of external disturbances. This is simplified compared to

what is actually in production MEMS gyroscopes, but the basic principle is the same

for most gyroscopes based on the tuning fork design.

3.1.1.2 MEMS Accelerometers

MEMS accelerometers operate based on the mechanical properties of the materials

from which they are constructed, which is almost exclusively silicon. There are two

main classes of MEMS accelerometers. The pendulous mass accelerometer detects

acceleration by sensing the displacement of a proof mass suspended by a hinge in the

presence of an applied acceleration. The other class of MEMS accelerometer is based

on the principle that the vibrational frequency will change when a mechanical loading

is applied due to the acceleration along the sensing axis. The design choices for each

of these classes determines the operating range. For example, the pendulous mass
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accelerometer mu~t be rotationally displaced versus its hinge and there is clearly a

limited range to this type of rotation. The resonating accelerometer has limits on

its operating range due to the mechanical limitations of the material and structure.

Other types of MEMS accelerometers exist but these are the two most common and

popular designs.

3.1.2 Notation and conventions

Inertial navigation and aeronautics in general is inconsistent in notation. Most nota­

tion for inertial systems follows conventions such as those proposed by Britting [35].

There is also an IEEE Standard for Inertial Systems Terminology [36] which contains

many useful definitions and some quaternion notation.

Thc sign convcntion used in most of this development and the definition of the

po'itive roll rP, pitch B, and yaw 1/1 angles is shown in Figure 3.2.

Figure 3.2: Definition of roll, pitch, and yaw angles.

When referring to the angular rates associated with each axis, the axis name is

used as a subscript. For example, W", refers to an angular rate about the x-axis.

affecting the roll rP.
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The attitude repretientation utied ill this thesis is the quaternion of rotation or

Euler-Rodriguez parameters. These are a subset of the quaternion as the quaternion

of rotation must have a modulus of 1, whereas the quaternion itself does not have

this constraint. However, quaternion is used in this thesis to represent the quaternion

of rotation. The IEEE Standard for Inertial Systems Technology recommends the

following terminology for quaternions:

(3.2)

where>. or go represent the scalar part of the quaternion and p represents the vector

part. The quaternion components are used in this thesis as they form part of the

state vector.

3.1.2.1 List of Symbols

A brief list of symbols excluding those explicitly defined in this chapter:

Roll angle a~ Body-frame centripetal acceleration

Pitch angle gb Body-frame gravity measurement

Yawangle gn Navigation-frame gravity vector

Angular rate vector m b Body-frame magnetometer meatiurement

Q Quaternion of rotation m n Navigation-frame magnetic reference vector

Quaternion component J.L Gyroscope bias vector

6.t Calculation time-step Estimated state vector

Body-frame velocity Input vector

Va Airspeed
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3.2 AHRS Framework

The basis of strapdown AHRS is the mathematics used to condition the sensor read­

ing~ to obtain an accurate ~olution of attitude and heading. A block diagram of

the AHRS algorithm developed in this thesis is shown in Figure 3.3. Generally, two

sources of measurement are used to develop the attitude and heading solution. Gyro­

scopes provide the high-rate measurement which is integrated to determine the angle

of rotation. However, from this integration, these measurements suffer from drift due

to bias in the sensor readings. To correct this drift, another source of measurement is

used which does not require integration. Vector measurements in the body frame arc

made of quantities known in the navigation frame and attitude is calculated by deter­

mining the rotation required to align the vectors. For example, a three dimensional

measurement of acceleration will contain gravitational acceleration which is known to

be directed downwards. At least two vector measurements are required to obtain a

unique solution. In this case, the Earth's gravity and it's magnetic field are used as

the reference vectors. These vector measurements are considered low-rate compared

to the gyroscope integration.

The EKF achieves three objectives: sensor fusion, noise rejection, and gyroscope

bias estimation. Sen~or fu~ion, in this case. refer~ to the creation of an e~timate based

on the integrated angular rate~ and the vector attitude measurement. The gyro~cope

biases are then estimated to minimize the error between the two measurements. The

EKF principle of operation is described in Chapter 2. The state transition function. or

model, used by the EKF is the quaternion integration algorithm described in Section

3.2.1. The EKF itself is described in more detail in Section 3.2.3. Using this method

alone, a good estimate of the attitude and heading can be obtained.

The main source of error is due to non-gravitational acceleration corrupting the

gravity measurement. Thb i~ particularly a problem during the high-g maneuver~
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Gyro Biases

Figure 3.3: Block diagram of attitude and heading reference :;y:;tem.

being con:;idcred in thi:; thesi:;. Therefore, removing non-gravitational acceleration

from the accelerometer output before calculating the low-rate attitude and heading

measurement is a priority. Two corrections are made to the accelerometer output

to improve the accuracy of gravity in the measurement: the centripetal acceleration

shown in Figure 3.3 from the corrected angular rates. and an estimate of the trans­

lational acceleration in the body frame obtained via an aircraft dynamics model and

elevator input signal multiplied by the squared airspeed. Each component of the

:;y:;tem is explained in more detail in the following sub:;ection:;.

3.2.1 Quaternion integration algorithm

The quaternion of rotation is updated with gyroscope rate information at each time

step using the quaternion integration algorithm as given in Section 11.2.5 of Titterton

and Weston [15]. The matrix form of the integration equation is:
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where

~=~WQ

W= W x 0 W z -Wy

W y -Wz 0 Wx

(3.3)

(3.4)

and wx , wy , and W z are the components of w. Equation 3.3 is well-known and forms

the basis for strapdown inertial navigation systems using the quaternion attitude

representation.

If the orientation of the rate vector, w, remains fixed over the update interval,

the above equation can be diseretized as:

(3.5)

The integral can be rewritten

(3.6)

where (T = ~tw, which gives

(3.7)

The matrix exponential can be expanded and written as a quaternion product, the
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derivation details of which are given in the reference above, to give:

(3. )

where @ represents the quaternion product and QAB is the quaternion of rotation

from coordinate system (A), the body axes at time tk, to coordinate system (B), the

body axes at time tk+l, and is given by:

and

a.= sin~/2)

(3.9)

(3.10)

(3.11)

(3.12)

This is the algorithm used in this thesis for the quaternion integration. However,

the following third-order expansion l is used for calculation of ac and a.:

(
(0.50")2)

a. = 0.5 1- -3!-

(3.13)

(3.14)

and the estimated gyroscope bias vector p, = [J-Lx J-Ly J-LzJT is subtracted from the rate

vector w prior to calculation.

lTablc 11.2 in Tittcrton andWcston 115] shows that expansion beyondthird-ordcrisunncccssary
given the intended sensor resolution u·ed in this application
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3.2.2 Vector measurements

The vector measurements include gravity and magnetic field. The gravity reference is

assumed to be straight down in the navigation frame. Given the limited range of the

sUA considered in this thesis, this assumption is valid. The magnetic ficld reference

is determined either by an almanac or calibration procedure.

The accelerometers and magnetometers provide two measured unit vectors gb and

m b in the body frame. The components of the two corresponding vectors gravity gn

and magnetic m" in the navigation frame are also known. The goal is to find the

quaternion representation of the rotation matrix A such that:

(3.15)

(3.16)

This type of problem was first posed by Wahba [37] in 1965.

3.2.2.1 Wahba's problem

The problem, restated by Markley [38], is to find the rotation matrix A that minimizes

the loss function

(3.17)

where {bi } is a set of n unit vectors in the body frame, {r;} is a set of n unit vectors

in the reference frame, and {ail is a set of non-negative weights.

There have since been many solutions to this problem, as stated in the above ref­

erence. Of particular use to this thesis are the solutions which solve for the quaternion

representation of the rotation matrix A. The following section describes the cho en

solution.
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3.2.2.2 Attitude estimation

The optimal quaternion estimation method detailed by Markley [38] was chosen as

the solution to the previously described problem. This is due to the inherent use

of the quaternion of rotation and the optimality of the solution. The computational

load of this optimal method is not a burden on modern mieroproee:;:;ors and therefore

there is little reason to consider :;uboptimal method:;. Alternatives to this :;olution

exist, but do not offer significant advantages over this method.

The algorithm derivation are given in the above reference, with the essential details

as follows, using the notation introduced above for this application. The following

normalized cross products simplify the solution:

(3.18)

(3.19)

Given the weight:; 0.1 and 0.2 for the gravity and magnetic measurement:;, respec­

tively, the following intermediate quantities arc defined:

er:= (1 + b3 [3) (algb . gn + a2mb . mn) + (b3 x [3)' (algb X gn + Q.2mb x mn)

(3.20)

(3.21)

I:=~

The estimate is then computed as either:
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As commented by Markley [38]. the overall sign of Q is irrelevant because there

is a quadratic relation between Q and the rotation matrix A and therefore has no

effect on the solution to the problem as originally stated. However, the overall sign is

important in the filtcring stages, and this is discussed further in Section 3.3.2.2. This

method requires that the two reference vectors are not colinear, which is normally

the ca:;e on Earth. Also, there is a singularity condition if b3 = -r3 which call be

avoided by solving for the attitude in a reference frame rotated 1800 from the original

reference frame and then rotating the solved attitude back to the original reference

frame.

3.2.2.3 Centripetal acceleration correction

A component of the acceleration detected by the accelerometers is the centripetal

acceleration experienced during turning maneuvers. Of particular interest are banked

turns, during which the normalized gravity reading is biased by the centripetal accel-

eration. In the case of a horizontal banked turn, this results in an incorrect estimate

of the roll angle.

To correct for this error, the centripetal acceleration can be estimated and removed

from the accelerometer output. The centripetal acceleration can be calculated as in

Hibbeler [39], or any dynamics text:

ac = w x (w x pr)
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where p is the radius of the turn and r is a unit vector towards the center of the turn.

The radius of the turn is normally not known, but can be estimated with GPS. In this

thesis, however, GPS is avoided and the centripetal acceleration can be estimated by

assuming w x pr can be approximated by the airspeed Va as done by Euston et al. [7].

The airspeed is assumed to be along the x-axis of the aircraft. The x-axis component

of the groundspeed is required when considering the effect of wind. but the airspeed is

equivalent in the absence of wind. This results in the following equation for centripetal

acceleration:

where

a~ = w x v

v = [va 0 O]T

(3.26)

(3.27)

Test results indicate that this is a valid approximation for the centripetal acceleration,

as will be shown in subsequent chapters. However, it is necessary to reverse the overall

sign of the centripetal acceleration term during inverted flight. This is because only

the scalar speed is used for the approximation rather than the vector towards the

center of the turn. which would be reversed during inverted flight. This is handled

similarly to the gravity correction in Section 3.3.2.1.

3.2.2.4 Aircraft model aiding

The only detectable non-gravitational acceleration term remaining is due to transla­

tional accelerations in the body frame of the aircraft. The body frame velocities of the

aircraft are referred to by Phillips [40] as u, v, w for the x, y, z axes, respectively, where

the x-axis is aligned along the center-line of the aircraft. Therefore, the body frame

translational accelerations are given by it, iI, tu. Unfortunately. there is no accurate

way to measure the body frame velocities.
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Simulation results have shown that the vertical component of the acceleration

can be estimated using the control signal for the elevator. It can be derived from

flight mechanics (such as the text by Phillip [40]) that the total vertical acceleration

is proportional to the rate of change of the pitch angle. Also. the rate of change

of the pitch angle is proportional to the elevator deflection angle, which is clearly

proportional to the elevator control signal. The proportionality is dependent on the

squared airspeed, v~, of the aircraft. From simulation. where all quantities arc known

precisely, it has been found that the elevator control signal is proportional to the

remaining vertical translational acceleration term. Using Oe to represent the elevator

control signal, and at,. as the remaining vertical translational acceleration term:

(3.28)

By using system identification techniques such as those described in Ljung [41], it

is possible to identify a model which can accurately predict at,. for use as a correction

term to be removed from the accelerometer output. Simulation and system identifi­

cation methods have shown that a 2nd-order state-space model results in an accurate

fit of the data for the MATLAB simulation. This method may be less effective for a

manually controlled flight, as there is no coupling between the altitude and speed via

the controller. The coupling in this case is due to the nature of the controller used

for the simulation, which controls the altitude using the throttle.

3.2.3 Extended Kalman filter

The quaternion rate integration and vector attitude measurement are fused to create

a filtered estimate using the EKF2 The state transition function f is non-linear and

2The unscented Kalman filter was also considered, but filtering performance was found to be
identical to the EKF, and because the Jacobian matrix was known exactly it was more straightforward
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the EKF linearizes f about the current state to update the process covariance using

a first-order approximation. The state is predicted using the previous state and ill put

signals with a model of the system dynamics. This state prediction is then corrected

with the attitude measurement information. A block diagram of the EKF is given in

Figure 3.4 which is adapted from Welch and Bishop [42].

Figure 3.4: EKF block diagram.

The state vector, defined by Equation 3.29, is initialized with i o which contains

the starting attitude, heading, and bias estimates. The initial state covariance Po

is also provided, and afterwards updated each calculation step. These are generally

known in advance or a small initial value is assumed. Given the previous state and its

covariance, thc state covariance is updatcd using a linearization of the state transition

function found using the Jacobian matrix and described in Section 3.3.1. The state

prediction is then made with the state transition function f. In the correction step,

the Kalman gain K k is first calculated from the state and measurement covariances

and the observation matrix Hk . The Kalman gain is then used to update the state

to implement the EKF.
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prediction with the error between the measurement and the current prediction. The

state covariance is then again updated with information from the Kalman gain.

(3.29)

The state vector contains the four quaternion elements, with qo being the scalar

component, and the three gyroscope bias estimates. The input vector Uk contains the

corrected angular velocities, which are referred to explicitly in the following equations.

Using the matrix form of the quaternion product in Equation 3.8, the state transition

function is given by:

qo -ql -q2 -q3 ae

ql qo -q3 q2 a.ux

q2 q3 qo -ql a.uy

q3 -q2 qj qo asuz

l~1
(3.30)

where ae and a. are defined in equations 3.10 and 3.11, respectively. except:

and ~t is the calculation time-step. Therefore, the rate information with the esti-

mated bias removed is integrated to predict the attitude and the gyroscope bia es are

modeled as constants.

The observation matrix, given by Equation 3.32, is linear in this case as the

quaternion elements are provided directly by the measurement Zk
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The only remaining requirements are the process and measurement covariances,

Qk and Rk , respectively. These depend on the sensor characteristics and are also used

to tune the filter for performance for a given airframe and application. Tuning is not

a major concern in this thesis as this is intended to be generally applied to a variety

of platforms and only basic tuning was performed which involved characterizing the

process noise Qk from the sensor data sheets and then varying Rk to reduce attitude

and gyroscope bias estimation error.

3.3 Original Contributions

The remaining sections of this chapter are original contributions developed for this

particular application.

3.3.1 Jacobian calculation

The Jacobian matrix, defined here by Equation 3.33 is a matrix of partial derivatives

of the state transition function with respect to each state variable. It is used to

linearize the state transition function about the current state estimate and is also

used in the update of the state error covariance as shown in Figure 3.4.
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(3.33)

The gyroscope biases arc present in all of the functions for the quaternion eompo-

nents, resulting in complex expres:;ions for the partial derivatives of function:; 1 ~ 4

with respect to states 5 ~ 7. Therefore. these expres:;ions are given separately. The

complete Jacobian matrix is then given by Equation 3.34.

ac -asax -asay -asaz A I ,5 A1,6 A I ,7

asax ac asaz -asay A2,5 A2,6 A2,7

asay -asaz ac asax A3,5 A3,6 A3,7

Ak = a.az a.ay -a.ax ac A4,5 A4 ,6 A4,7 (3.34)

where
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This expression for the Jacobian matrix was derived for this thesis. The derivation

is not given here in the interest of brevity.

3.3.2 Logical constraints

Despite the elegance of the present mathematical framework, artifact::; can occur in

the attitude estimate under some circumstances. Inversion of the quaternion estimate

is possible in two situations, which are described in the following subsections.

3.3.2.1 Gravity versus orientation

During level flight, the corrected gravity vector should not be positive, i.e. upward in

the body frame of the aircraft. However, for example, during recovery of a dive, there

can be a large upward acceleration, which can be greater than 1 g. The vector attitude

calculation gives an independent estimate at each time-step, therefore during such a

situation the attitude measurement will indicate inverted flight. A logical method to

avoid attitude inversion is given by Algorithm 1.

34



/ / If upright
/ / If gravity upward

/ / If inverted
/ / If gravity downward

/ / Get roll & pitch angles from latest quaternion estimate

roll = GetRoll(Q);
pitch = GetPitch(Q);
if I Toll I < 90° and I pitch I < 90° then

I

if az > 0 then
I skip measurement;

end
else

I

if a. < 0 then
I ~kip measurement;

end
end

Algorithm 1: Inverted gravity correction.

Therefore, if the aircraft is within 90° in roll or pitch, the gravity estimate should

never be upward. If the sensors indicate that it is, then the measurement will be

excluded and gyroscope angular rates are used to predict the attitude. Conversely,

if the aircraft is beyond 90° in roll or pitch. then the gravity estimate should not be

downward in the body frame. An example of the result when this is not used in shown

at the cnd of Section 4.1.1.1.

3.3.2.2 Quaternion continuity

As mentioned in Section 3.2.2.2, the overall sign of the quaternion from the vector

attitude measurement is irrelevant to the solution of the proper rotation matrix. The

attitude is calculated at each time-step with new sensor information and is there-

fore independent of previous measurements. The filtered attitude estimate. however,

requires continuity of the measurement and estimate for accuracy. In some orienta-

tions, the attitude measurement will change overall sign. Inversion of the quaternion

attitude measurement is detected and the sign is corrected by Algorithm 2.
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if IQk - Qk-II > 1then II Quaternion modulus

I Qk=-Qk
end

Algorithm 2: orrection for quaternion inversion.

If the difference between the current attitude measurement and thc previous fil-

tcred attitudc estimate is grcater than 1, thcn the overall sign of the ncw attitudc

measurement is reversed. The quaternion of rotation has magnitude 1 by definition

and therefore a difference greater than this value indicates a complete rotation in a

single time-step. which is not possible for an aircraft. An example of the result when

this is not used is shown at the end of Section 4.1.1.3.

This concludes the mathematical details of the AHRS algorithm: the quater-

nion angular rate integration, vector attitude measurement including centripetal and

model-based acceleration correction, EKF and derivation of thc Jacobian matrix, and

logical constraints. The following chapter describes the results of simulation which

illustrate some of the effects of the acceleration correction and logical constraints, and

results from a flight test.
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Chapter 4

Simulation & Experimental Results

This chapter is divided into two sections: results from simulation and flight test

rcsults. Simulation comprises the most significant portion of the results as this was the

method used to develop and validate the AHRS algorithm developed in the previous

chapter. The flight test is based on an actual flight conducted in the field by the

RAVEN team. The details of these are presented in t,he following sections.

4.1 Simulation

The AHRS was validated in simulation, mainly using MATLAB. Simulation is nec­

essary for development because the true values of the attitude and heading can be

obtained for validation. which can be difficult to do for field trials. The simulation

also provides the nece'sary measurement value::; for the AHRS including body-frame

acceleration and angular velocity, airspeed, and elevator input. Maglletometer out­

puts in three dimensions are generated using the true orientation based 011 a given

reference unit vector for north as in Equation 4.1:

(4.1)
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where C is a rotation matrix representation of the true attitude.

The inertial measurements are simulated using a noise model typical of MEMS

accelerometers and gyroscopes given by Equations 4.2 and 4.3:

h. = h+J-t,,+v

and

f,L,,=J-t,,+w

(4.2)

(4.3)

where v and ware Gaussian white-noise processes. h represents one channel of mea-

surement, h is the true value, and J-th is the bias.

The variances for the initial bias, in-run bias stability, and output noise are taken

from the data sheet for the ADIS16364 IMU [43] and given in terms of standard

deviations in Table 4.1.

Sensor Characteristic

Gyroscope initial bias
in-run bias stability
output noise

Accelerometer initial bias
in-run bias stability
output noise

Value (±lo') Units

3°/sec
0.007 a/sec

0.8°/sec
8 mg

0.1 mg
5 mg

Table 4.1: ADIS16364 noise characteristics for simulation.

The magnetometer outputs each have Gaussian white-noise added with a variance

of 0.01, unit-less because the magnetic reading was generated from a normalized

reference. Likewise, the airspeed has white-noise added with a variance of 6.25. These

noise figures were chosen based on experience and are substantially higher than those

applied to the inertial sensors to represent the disturbances inherent in magnetic and

airspeed measurements which have unmodeled disturbance effects. While specific
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quantities from this particular sensor package were used, the AHRS algorithm is

intended to be used with any sensor package with little tuning.

4.1.1 MATLAB Simulation

The MATLAB simulation was based on Airlib, which is a Simulink aircraft model

library created by Campa [44]. The model used is based on the lAl Pioneer airframe.

A simple PlD-based controller was designed to control the model in terms of roll

angle, airspeed, altitude, and sideslip angle.

Simulation runs were performed to verify the performance of the AHRS algorithm

in terms of both attitude and bias estimation error. The errors for many AHRS occur

during constant banked turns and high-g maneuvers. The simulation scenarios are

designed to evaluate these situations with increasing complexity. They are all based

on 100 seconds of simulation with variations in the input to the flight controller.

However, the trajectory of the aircraft is not controlled; only the roll angle, airspeed,

altitude, and sideslip angle are controlled. Therefore, the resulting attitude, heading,

and trajectory response is due to the controller and can vary significantly between

scenarios with only subtle input changes. This is partly lrrelevant because the desired

maneuvers are still achieved, with the main interest being the banked turn and high-g

turns. A brief summary of each simulation run is listed here:

• Run A begins with level flight moving into a banked turn at 45° to the right and

held for almost a complete (360°) rotation of heading then smoothly transitioned

to a banked turn at 45° to the left, which is held for another complete rotation

of heading then returned to level flight .

• Run B is the same as Run A only the transition time between the two banked

turns is significantly reduced. This results in a sharp reversal of heading repre-
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sentative of a CA maneuver.

• Run C is the same as Run B with an airspeed increase during the transition

between banked turns. The result is another sharp reversal of heading at a

higher airspeed which can be considered a high-g maneuver.

To estimate the vertical acceleration from the elevator input as described in Sec­

tion 3.2.2.4, system identification techniques were used on a separate simulation sim­

ilar to those described but with different banked turn angles to prevent the effect

of fitting the data. The model identified is used as part of the AHRS in all of the

following simulations unless otherwise noted. The results of the system identification

are described in Section 4.1.1.4.

The specific attitude and trajectory of each of the simulations is given in the

following subsections along with the results. The trajectory plots were generated

using the script by Scordamaglia [45]. Due to MATLAB limitations, the reference

system is not consistent with Figure 3.2, but the visualization effect is the same. The

airframe 3D model is not representative of the simulated aircraft.

4.1.1.1 Run A: smooth turns

The first simulation scenario was chosen to demonstrate attitude and heading es­

timating during banked turns without large acceleration disturbances. The control

reference inputs are given by Table 4.2.

The reference is linearly interpolated between each time specification which allows

control over the reference rate of change. In this simulation. 10 seconds were given

between the banked turn reversal.

A 3D perspective of the attitude and trajectory is shown in Figure 4.1. The

corresponding plot of attitude angles is given directly below in Figure 4.2. The heading
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Time (sec) Roll Angle (0)

o 0
20 0
25 -45
45 -45
55 45
75 45
80 0
100 0

Altitude (m)

100
100
100
100
100
100
100
100

Speed (m/sec)

60
60
60
60
60
60
60
60

Table 4.2: MATLAB ~imulation run A input parameter~.

i~ wrapped about ±180° in all attitude angle plot~ for con~istency.

The estimation error is very small and it is difficult to discern the estimate from

the true attitude in the attitude plot. The error between the estimate and the true

attitude is shown more clearly in Figure 4.3.

The bias estimation with the true randomly generated bias and the EKF estimate

is shown in Figure 4.4. In each axis, the bias estimate tracks the true value well. with a

good estimate being obtained after about 40 seconds of simulation. The initial bias is

assumed to be zero for all axes, in practice, a better initial estimate could be provided

with calibration. However, the worst case ~cenario of assuming zero knowledge of the

bias i~ used to demonstrate the EKF performance.

Referring to Figures 4.3 and 4.4 simultaneously, it can be seen that the error is

significantly reduced once a good estimate of the gyroscope bias is obtained. This is

true because the two banked turn maneuvers are very similar, so the only difference

between the left (second) turn and the right turn is the better bias estimate, resulting

in a smaller error.

The gyroscope bias i~ randomly generated using the specifications in Table 4.1,

and is therefore different in each simulation run. To evaluate the performance of the

EKF on average. several runs were performed to obtain a Root Mean Square (RMS)
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Figure 4.1: 3D perspective of attitude and trajectory for run A with approximate
time labels indicated.

.---.--,.----.---.----.---,--------,---,------,------,

Figure 4.2: True (solid) and estimated (dashed) attitude angles for run A. Yaw, pitch,
and roll are blue, green. and red. respectively.
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Figure 4.3: Attitude estimate error for run A. Yaw, pitch, and roll error are blue.
green, and red, respectively.

~t 0f--'----.:..::...::.~-,~~~~ ~ ---,-----------

~J-0.1

50
Time(s)

Figure 4.4: 'frue (solid) and estimated (dashed) gyro biases for run A. X, Y. and Z
gyroscope biases are blue, green, and red, respectively.
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RMS Error Yaw Pitch Roll Units

Attitude Angle 2.02 ±2.13 1.46 ±1.56 1.29 ±1.01 0 ± la
Gyroscope Bias 0.15 ±0.19 0.19 ±0.22 0.14 ±0.14 o/sec ± la

Table 4.3: MATLAB simulation run A error figures (10 runs).

error for cach run. This RMS error was averaged over 10 runs. The average RMS

error and standard deviation is given in Table 4.3

In this scenario, the greatest error is in yaw, and the smallest error in roll. Gen-

erally, there is less heading information available than roll and pitch. particularly

during a smooth flight. This is because the gravity measurement provides no heading

information and the magnetic field is subject to disturbances, which are modeled here

with higher noise figures. Roll and pitch havc more correction data available from the

gravity mea:;urement and during smooth flight can produce a good estimate.

Figure 4.5 shows the roll angle estimate versus the true roll angle when no gravity

logic correction is used. The acceleration becomes inverted in the vertical axis, re-

suiting in an inverted attitude which causes a discontinuity in the EKF estimate that

returns to the true value after some time.

4.1.1.2 Run B: turns with sharp transition

The second simulation scenario is based on the previous simulation with the only

change being the duration of the transition between the two banked turns. Due to

the controller. this results in a sharp U-turn which is representative of a CA maneuver.

The simulation input parameters are given in Table 4.4.

Instead of interpolating for 10 seconds between the right banked turn and the

left. the interpolation is performed within 2 seconds. All other simulation parameters

remain the same.
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«-20
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Time(s)

Figure 4.5: 'frue (solid) and estimated (dashed) roll angles for run A without gravity
logic correction. The discontinuities are caused by vertical gravity inversions.

Time (sec) Roll Angle (0)

o 0
20 0
25 -45
49 -45
51 45
75 45
80 0
100 0

Altitude (m)

100
100
100
100
100
100
100
100

Speed (m/sec)

60
60
60
60
60
60
60
60

Table 4.4: MATLAB simulation run B input parameters.

The 3D perspective of the attitude and trajectory is shown in Figure 4.6. The

time plot of the attitude angles is given in Figure 4.7.

From the trajectory plot, the sharp turn can be seen around the 50 second mark.

The error is greatest at this point due to the acceleration disturbances. From Figure
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Figure 4.6: 3D perspective of attitude and trajectory for run B with approximate
time labels indicated.

,-----,--,-----r--..,.----,----.-----,----,-------,-_

Figure 4.7: True (solid) and estimated (dashed) attitude angles for run B. Yaw, pitch,
and roll are blue, green. and red. respectively.
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4.8 it it; t;een that the error growt; initially ~ the gyroscope biases are determined,

then the error sharply grows during the transition between the two banked turns.

The error is then reduced as the trajectory steadies and the gyroscope biases are

determined. The gyroscope bias estimation can be seen in Figure 4.9.

This simulation was also performed 10 times with randomly generated gyroscope

biases and measurement noise. The average RMS errors and their standard deviations

for the angles and gyroscope biases is given in Table 4.5.

RMS Error Yaw Pitch Roll Units

Attitude Angle 1.76 ±1.59 1.66 ±1.24 1.72 ±1.56 0 ± la
Gyroscope Bias 0.13 ±0.13 0.20 ±0.19 0.17 ±0.20 o/sec ± la

Table 4.5: MATLAB simulation run B error figures (10 runs).

Overall, the attitude error is on average higher than the previous simulation sce-

nario, as is expected. However, the heading error is slightly reduced which may be

due to the increased amount of data available as the heading changes.

The results are good as the error remains very low for this scenario which demon-

stratcs a sharp maneuver applicable to CA.

The effect of acceleration correction is clear in Figure 4.10. Pure gravitational

acceleration meat;urement will never exceed 1 9 in total magnitude, by definition,

but in this simulation. uncorrected accelerations exceed 8 g. This demonstrates the

overwhelming effect of non-gravitational acceleration disturbances. Also from the

figure, it can be seen that Y-axi acceleration is close to zero without correction

during the banked turns. This is due to the centripetal acceleration which negates

the component of gravity present in the Y-axis measurement during the 45 degree

banked turnt;.

As stated in the introduction, the work by Beaudette [1] indicates that human

47



Figure 4.8: Attitude estimate error for run B. Yaw, pitch, and roll error arc blue.
green, and red, respectively.

,---,--,-------.----,-------,---,------,---,--~-----,

¥ 0

i
}-0.1
~
"-0.2

Figure 4.9: True (solid) and estimated (dashed) gyro biases for run B. X, Y, and Z
gyroscope biases are blue, green, and red, respectively.
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Figure 4.10: Non-corrected (solid) and corrected (dashed) accelerations for run B. X,
Y. and Z axe~ are blue, green. and red, re~pectively.

pilot~ can become uncon~ciou~ with acceleration~ greater than 5 g. In thi~ simulation,

accelerations were greater than 8 g. The AHRS is still able to track the attitude with

reasonable accuracy during this time which demonstrates that unmanned aircraft are

certainly capable of more extreme maneuvers than manned aircraft.

4.1.1.3 Run C: turns with sharp transition and airspeed increase

The third scenario is an extension of the previous simulation with an airspeed increase

during the transition between banked turns. The airspeed is increased by 20 m/sec

as shown in Table 4.6.

By increasing the airspeed during the banked turn transition, the non-gravitational

accclerations experienced are also increased. Therefore, this scenario is indicative of

a high-g maneuver.
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Time (sec)

o
20
25
49
51
75
80
100

Roll Angle (0)

o
o

-45
-45
45
45
o
o

Altitude (m)

100
100
100
100
100
100
100
100

Speed (m/sec)

60
60
60
80
80
60
60
60

Table 4.6: MATLAB simulation run C input parameters.

The 3D pen;pective of the attitude and trajectory is shown in Figure 4.11. Despite

the subtle change in airspeed only from the previous scenario, the trajectory is signif-

icantly changed. This is due in part to the controller used to control the simulation.

The result, however, is the sharp banked turn near the 50 second mark. The attitude

plot is shown in Figure 4.12.

The attitude plot shows that the estimation error is greater than in the previous

simulations, particularly near the 50 second mark. The error is shown in more detail in

Figure 4.13. As with the other simulations, the error grows initially with an inaccurate

bias estimate, then becomes more accurate as the true bias is found. The large

error spike during the sharp turn is due to the large non-gravitational accelerations

experienced by taking this turn at a higher airspeed. Once the trajectory has returned

to steady flight the error is significantly reduced and the bias estimate is good as shown

in Figure 4.14.

This simulation scenario has consistently larger errors than either of the previous

simulations. The average RMS error for attitude angle and gyroscope bias with their

standard deviations is given in Table 4.7.

The average attitude angle error is greater than in any of the previous simulations.

The error remains small, despite this, and the results show that estimating even during
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Figure 4.11: 3D perspective of attitude and trajectory for run C with approximate
time labels indicated.

,------.----,------,---,---------.---,--------,---.--------,-,

Figure 4.12: True (solid) and estimated (dashed) attitude angles for run C. Yaw,
pitch, and roll are blue. green, and red. respectively.
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Figure 4.13: Attitude estimate error for run C. Yaw, pitch, and roll error are blue.
green, and red, respectively.

0.6

Figure 4.14: True (solid) and estimated (dashed) gyro biases for run C. X, Y, and Z
gyroscope biases are blue, green, and red, respectively.
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RMS Error Yaw Pitch Roll Units

Attitude Anglc 2.80 ±1.99 3.08 ±1.35 2.67 ±1.45 0 ± la
Gyroscope Bias 0.21 ±0.18 0.18 ±0.18 0.16 ±0.16 o/sec ± la

Table 4.7: MATLAB simulation run C error figures (10 runs).

high-g mancuvcrs can bc moderately accuratc.

Figure 4.15 shows the attitude angle estimates versus the true attitude angles

when no quaternion inversion logic correction is used. The quaternion attitude be-

comes inverted, but still represents the same overall attitude. However, the EKF

cannot handle these discontinuities and large errors occur as a result.

Figure 4.15: True (solid) and estimated (dashed) attitude angles for run C with­
out quaternion inversion corrcction. Yaw, pitch, and roll arc blue, green, and rcd,
respectively.
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4.1.1.4 System identification of model parameters

The total acceleration experienced by the aircraft is due to the sum of gravity, cen­

tripetal acceleration, and translational acceleration. As discussed in Section 3.2.2.4,

it is possible to estimate the vertical component of the translational acceleration from

the elevator input under standard flight conditions (Le. no strong wind disturbance

or stall condition). Statistical system identification techniques were used to identify

such a model for acceleration correction in this simulation. The identification data

ineluding the elevator input scaled by squared airspeed, the input, and the Z-axis

acceleration with centripetal acceleration and gravity removed, the output, are shown

in Figure 4.16.

Figure 4.16: Elevator input (blue) and Z-axis vertical acceleration with centripetal
acceleration and gravity removed (red). Both are normalized.
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The ~y~tem was identified in this ca~e using the N4SID algorithm I described by

Ljung [41]. This is a state-space identification technique and the model order was

chosen as 2, from analysis of the results with various orders. The resulting state­

space model, in this case. is given by Equation 4.4.

[

Xl'k+l] = [0.7839 -0.5784] [Xl,t
j
,+ 1.0-3[-0.2884] 6ev~

X2,k+1 0.1766 0.5562 X2,t -0.1645

at,. = [18.6362 -7.1273] [~J.t] (4.4)
X2,t

with the initial condition Xl,a, X2,a = -0.0877, -0.2286. This initial condition is re­

quired for these simulations as they begin in flight. but may be zero for a flight

beginning on the ground. These ~tate~ and parameters have no phy~ical meaning and

are a result of the chosen model order. This model i~ a ~tatistical fit ba~ed on the

relationship in Equation 3.28 and therefore has no algebraic derivation.

The result of this model is shown in Figure 4.17. The results show a good corre-

spondence between the model output and the original acceleration.

Using the model for correction is more effective when the acceleration disturbance

is high. For example, the error results are not significantly different for simulation run

A without model correction. The error for simulation run B, however, i~ con~istently

greater without model correction. A comparison of the error re~ults is shown in Table

4.8.

The attitude plot for simulation run B without model-based correction is shown in

IThis simulation was conducted with a closed loop controller. The N4SID algorithm does not
account for correlation between the input and output from controller behavior. However, the system
identifieation result isaceurate for the open loop identifieationmethod. Identifieation of the model
from flight test data will generally be from manually piloted flight and therefore can be assumed
uncorrelatedbeeausethepilotresponseisnotasdirectasanautomatie controller.
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50
Time(s)

Figure 4.17: Sy~tem identification results showing model e~timate (blue) of Z-ax.i~

vertical acceleration without centripetal acceleration and gravity (red) from elevator
input data.

RMS Error Yaw Pitch Roll Units

Run A with model 2.02 ±213 1.46 ±1.56 1.29 ±1.01 o±lu
Run A without model 2.59 ±3.13 1.06 ±1.l0 1.33±1.61 o±lu
Run B with model 1.76 ±1.59 1.66 ±1.24 1.72 ±1.56 o±lu
Run B without model 2.40±2.28 1.77±1.65 1.95±1.29 O±lu

Table 4.8: Error comparison for ~imulation runs A and B with and without model
correction (10 runs).

Figure 4.18. Thi~ plot shows notably more error than Figure 4.7, particularly during

the transition between turns at 50 seconds.

Identification of the model for a specific airframe requires a controlled flight test

with a truth measurement of attitude, from a non-inertial source. The correct gravity

vector can then be determined and removed from the total acceleration measurement
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Figure 4.18: True (solid) and estimated (dashed) attitude angles for run B without
model-based correction. Yaw, pitch, and roll are blue, green, and red, respectively.

along with the calculated centripetal acceleration. The elevator input and airspeed

are recorded for the input and the remaining acceleration is used as the output for

the system identification.

4.1.1.5 Centripetal acceleration correction

The most significant component of non-gravitational acceleration disturbance is from

centripetal acceleration effects. Removal of these accelerations from the measure-

ment is a major requirement of an AHRS for CA. To demonstrate the necessity of

this correction, several simulation runs were conducted without centripetal or model

correction based on the above scenarios for comparison.

The non-corrected results for run A are shown in Figure 4.19. The estimation

error during the banked turns and transition is much higher than the error when
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correction is used. The estimated pitch angle is particularly misleading as it should

be much closer to zero than is estimated. The roll and heading angles, while still

exhibiting error, are not as severely misleading and may not greatly affect the control

of the aircraft.

50
Time(s)

_200l.---'----'------'----'-----'----'-----'-----'------'--

Figure 4.19: True (solid) and estimated (dashed) attitude angles for run A without
centripetal or model-based correction. Yaw. pitch, and roll are blue. green, and red,
respectively.

The non-corrected results for run B are shown in Figure 4.20. The estimation

error is even larger in this case as the sharp transition between banked turns results

in a larger acceleration disturbance. The 55 second mark shows that the estimation

error is high for both roll and heading, which could result in incorrect control of the

aircraft.

The AHRS algorithm was evaluated without acceleration correction for 10 runs

as with the previous scenarios for comparison. The results are shown in Table 4.9.
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o

Figure 4.20: True (solid) and estimated (dashed) attitude angles for run B without
centripetal or model-based correction. Yaw. pitch, and roll are blue. green, and red,
respectively.

RMS Error Yaw Pitch Roll Units

Run A with correction 2.02 ±2.13 1.46 ±1.56 1.29 ±1.01 o±lu
Run A without correction 12.63±2.04 10.43 ±2.07 9.86±2.83 O±lu
Run B with correction 1.76±1.59 1.66 ±1.24 1.72 ±1.56 O±lu
Run B without correction 20.06 ±5.55 12.69 ±3.92 1l.67±2.16 o±lu

Table 4.9: Error comparison for simulation runs A and B with and without centripetal
and model-based correction (10 runs).

These results show that the average RMS error for all angles is nearly an order of

magnitude higher when non-corrected versus corrected even for the smooth turn case

of run A. For run B with the fast transition between the two banked turns. the average

RMS error is noticably higher than the previous case. This supports the use of the

approximation described in Section 3.2.2.3 for the centripetal acceleration estimate
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used to correct the acceleration measurement.

4.2 Flight Test

The AHRS was also evaluated with data from a live test flight. The test flight included

both manual and autopilot controlled flight using the MicroPilot [46] autopilot. This

autopilot is also based on inertial sensors and therefore cannot be considered a true

measurement for attitude and heading. However, a comparison can still be made

between the AHRS performance in this thesis versus the MicroPilot reported attitude.

The flight test was conducted in Argentia, NL with a Giant Big Stik airframe.

The estimated attitude versus the MicroPilot data is shown in Figure 4.21. This

plot shows only a segment of the flight for clarity, but is typical of the entire flight.

There is no 3D perspective of the attitude and trajectory in this case due to lack

of position data, but interpretation of the attitude plot can show that a rectangular

flight path is being followed with some wind. For example, from 25 to 40 seconds

the aircraft is in steady flight against the wind then from 40 to 48 seconds reverses

direction, travels downwind, and from 51 to 56 seconds reverses direction again to

complete the path. These times are approximate.

The error is shown in more detail in Figure 4.22. These errors are large at times,

reaching ±30°. However, it can be observed that much of the error is somewhat

constant, at least for each segment of the flight. This may be due to calibration

or misalignment which is internally corrected in the MicroPilot. For example, the

average pitch angle shows an offset error of about 5 degrees. The error spikes occur

during the turning maneuvers which may result from gyroscope scale calibration, also

internally corrected, or wind disturbance.

The overall error figures are given in Table 4.10. A standard deviation is given
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Figure 4.21: MicroPilot (solid) and estimated (dashed) attitude angles for field test.
Yaw, pitch, and roll are blue, green, and red, respectively.

Figure 4.22: Attitude estimate error for field test. Yaw, pitch, and roll error are blue,
green, and red, respectively.

61



RMS Error Yaw Pitch Roll Units

Attitude Angle 11.7 ±2.27 6.52 ±0.69 8.82 ±0.96 0 ± la

Table 4.10: Error between AHRS and MicroPilot reported attitude (10 runs).

which is due to the generation of the magnetic measurement which was not available

from the MicroPilot data. and therefore had random noise added as with the simula-

tion. The average RMS error of the estimation versus MicroPilot reported attitude is

acceptable, particularly the lower roll and pitch error. The true attitude is not known,

therefore it is not possible to say whether this error is a fault of either AHRS solu­

tion as there is no information available to indicate the extent of MicroPilot reported

attitude error during banked turns.
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Chapter 5

Conclusion

5.1 Summary

The development of an ARRS to fulfill the sensor requirement for CA with sUA is

described in the previous chapters. The requirement in this case was determined to

be an ARRS that gives an accurate estimate of attitude and heading for any aircraft

orientation and under high-g motion conditions.

The technical difficulties present in this task included mitigating gyroscope bias

integration error, gravity measurement ob~curation by non-gravitational acceleration~,

magnetic field distortions affecting compass measurement. and resolving the gyroscope

and vector attitude measurements into a common, unique attitude representation.

The gyroscope bias integration error was corrected by integration of many existing

techniques. A non-linear filtering solution, the EKF, was used to filter the attitude

estimate from the gyroscope integration using vector attitude measurements while

tracking the gyroscope biases. This is a standard technique that has been successfully

applied many times, and the results in this the~is show good performance in bias

estimation.
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The vector measurement is dependent on a reliable measurement of gravity, but

this is commonly obscured by non-gravitational accelerations. To overcome this. non­

gravitational accelerations are estimated and removed from the measurement. It is

shown that centripetal acceleration approximation, as used by some other authors, can

significantly improve the gravity measurement. Model-based estimation, also used by

others, of the non-gravitational acceleration is al 0 applied and improves the accuracy

of the attitude estimate during high-g maneuvers.

The magnetic field distortion is not addressed in detail. The magnetometer mea­

surements were generated for both the simulations and the flight test as they were

unavailable in each. A large noise figure was used to add noise to represent the distor­

tions which were not easily modeled. Also, the vector attitude measurement utilized

has an allowance for weighting each vector, i.e. magnetic versus gravity.

Finally, resolving the gyroscope and vector attitude measurements into a common

attitude representation presents some difficulty. While the quaternion representation

was used for each, the gyroscope attitude is the result of integration and the vector

attitude is calculated at each time step. To preserve the continuity of the vector

attitude estimate, two logical constraints developed for this thesis were applied which

showed good results in maintaining a smooth estimate.

It is not known whether CA can be successfully accomplished with existing AI-IRE

solutions. The sensor requirement is not yet defined by any authority. It is unlikely

that current MEMS-based systems will perform sufficiently for control during extreme

maneuvers. Therefore, focus on the development of an AHRS that gives a robust

estimate during CA maneuvers could improve the safety of all aircraft by allowing

better avoidance control. The results are positive in obtaining an accurate attitude

estimate during CA maneuvers for sUA.
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5.1.1 Contributions

The quaternion-based EKF is chosen as the filtering solution and attitude representa­

tion. The EKF requires a Jacobian matrix of partial derivatives of the state transition

function with respect to the state variables. The state vector contains the gyroscope

biases and, as a result, the Jaeobian matrix contains some lengthy expressions. The

analytic expression of the Jacobian matrix for a quaternion-based EKF including

gyroscope biases is given as an original contribution.

Centripetal acceleration correction is rarely mentioned in the academic literature

for AHRS, but is indispensable for accurate attitude estimation during banked turns.

An approximation as used in Euston et al. [7] is used to estimate the centripetal

acccleration. While other sources also consider centripetal acceleration correction, it

is essential to high performance AHRS, as demonstrated in Section 4.1.1.5. Aiding of

inertial navigation systems (INS) by vehicle dynamics modeling is not unique and has

been covered, for example, by Hegrenaes et al. [25] and Koifman and Bar-Itzhack [24].

However, the practical application of vehicle model information to aid an AHRS is

still uncommon. and is shown to offer significant improvement for high-g maneuvers.

In this thesis, these methods are combined to create an AHRS that performs well

during extreme maneuvers representative of CA. All elements required for software

implementation arc given in the previous chapters. ·Simulation results arc used to

validate the AHRS and demonstrate the performance of acceleration correction. Flight

test data is used for further validation versus existing sensor systems. The main

contribution is the design of a new attitude sensing solution that can improve high-g

maneuvers using existing autopilot hardware.
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5.2 Future Work

The field-conducted flight test data used was not specifically designed for this thesis.

Therefore, CA maneuven; arc not performed nor is the proper data or quality of data

recorded for AHRS development. A flight test with CA maneuvers and an independent

measurement of attitude is required to confirm the AHRS results. The other sensors

required for such a flight test are an IM with triaxial accelerometers and gyroscopes,

triaxial magnetometers, airspeed, aircraft control inputs, and preferably GPS data.

The independent attitude could be obtained via horizon tracking with a camera.

The aircraft model used in this thesis is a simple linearized model. With the

modern availability of powerful processors, a more complex model could be used to

estimate the acceleration in a number of axes for measurement correction, or even

estimate other parameters such as angular velocity. On-line system identification

could be used to estimate the model parameters during flight. allowing for the system

to be more readily adapted to new platforms. Wind modeling should be ineluded as

a correction term for the vector attitude measurement and the effect of wind on the

attitude should be quantified.

The ne>..1; step after an AHRS for CA has been developed is the e>..1;ension to

automatic control. With a proper controller. the AHRS could be revised to provide

improved feedback for CA.

Finally, the real-time implementation of this algorithm remains. The computa­

tional burden is not an issue as the algorithm is much faster than real-time even when

running in MATLAB without optimization on a mid-performance PC.
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